1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * MMU support 9 * 10 * Copyright (C) 2006 Qumranet, Inc. 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 12 * 13 * Authors: 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Avi Kivity <avi@qumranet.com> 16 */ 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include "irq.h" 20 #include "ioapic.h" 21 #include "mmu.h" 22 #include "mmu_internal.h" 23 #include "tdp_mmu.h" 24 #include "x86.h" 25 #include "kvm_cache_regs.h" 26 #include "smm.h" 27 #include "kvm_emulate.h" 28 #include "page_track.h" 29 #include "cpuid.h" 30 #include "spte.h" 31 32 #include <linux/kvm_host.h> 33 #include <linux/types.h> 34 #include <linux/string.h> 35 #include <linux/mm.h> 36 #include <linux/highmem.h> 37 #include <linux/moduleparam.h> 38 #include <linux/export.h> 39 #include <linux/swap.h> 40 #include <linux/hugetlb.h> 41 #include <linux/compiler.h> 42 #include <linux/srcu.h> 43 #include <linux/slab.h> 44 #include <linux/sched/signal.h> 45 #include <linux/uaccess.h> 46 #include <linux/hash.h> 47 #include <linux/kern_levels.h> 48 #include <linux/kstrtox.h> 49 #include <linux/kthread.h> 50 #include <linux/wordpart.h> 51 52 #include <asm/page.h> 53 #include <asm/memtype.h> 54 #include <asm/cmpxchg.h> 55 #include <asm/io.h> 56 #include <asm/set_memory.h> 57 #include <asm/spec-ctrl.h> 58 #include <asm/vmx.h> 59 60 #include "trace.h" 61 62 static bool nx_hugepage_mitigation_hard_disabled; 63 64 int __read_mostly nx_huge_pages = -1; 65 static uint __read_mostly nx_huge_pages_recovery_period_ms; 66 #ifdef CONFIG_PREEMPT_RT 67 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */ 68 static uint __read_mostly nx_huge_pages_recovery_ratio = 0; 69 #else 70 static uint __read_mostly nx_huge_pages_recovery_ratio = 60; 71 #endif 72 73 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp); 74 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp); 75 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp); 76 77 static const struct kernel_param_ops nx_huge_pages_ops = { 78 .set = set_nx_huge_pages, 79 .get = get_nx_huge_pages, 80 }; 81 82 static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = { 83 .set = set_nx_huge_pages_recovery_param, 84 .get = param_get_uint, 85 }; 86 87 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644); 88 __MODULE_PARM_TYPE(nx_huge_pages, "bool"); 89 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops, 90 &nx_huge_pages_recovery_ratio, 0644); 91 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint"); 92 module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops, 93 &nx_huge_pages_recovery_period_ms, 0644); 94 __MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint"); 95 96 static bool __read_mostly force_flush_and_sync_on_reuse; 97 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644); 98 99 /* 100 * When setting this variable to true it enables Two-Dimensional-Paging 101 * where the hardware walks 2 page tables: 102 * 1. the guest-virtual to guest-physical 103 * 2. while doing 1. it walks guest-physical to host-physical 104 * If the hardware supports that we don't need to do shadow paging. 105 */ 106 bool tdp_enabled = false; 107 108 static bool __ro_after_init tdp_mmu_allowed; 109 110 #ifdef CONFIG_X86_64 111 bool __read_mostly tdp_mmu_enabled = true; 112 module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0444); 113 #endif 114 115 static int max_huge_page_level __read_mostly; 116 static int tdp_root_level __read_mostly; 117 static int max_tdp_level __read_mostly; 118 119 #define PTE_PREFETCH_NUM 8 120 121 #include <trace/events/kvm.h> 122 123 /* make pte_list_desc fit well in cache lines */ 124 #define PTE_LIST_EXT 14 125 126 /* 127 * struct pte_list_desc is the core data structure used to implement a custom 128 * list for tracking a set of related SPTEs, e.g. all the SPTEs that map a 129 * given GFN when used in the context of rmaps. Using a custom list allows KVM 130 * to optimize for the common case where many GFNs will have at most a handful 131 * of SPTEs pointing at them, i.e. allows packing multiple SPTEs into a small 132 * memory footprint, which in turn improves runtime performance by exploiting 133 * cache locality. 134 * 135 * A list is comprised of one or more pte_list_desc objects (descriptors). 136 * Each individual descriptor stores up to PTE_LIST_EXT SPTEs. If a descriptor 137 * is full and a new SPTEs needs to be added, a new descriptor is allocated and 138 * becomes the head of the list. This means that by definitions, all tail 139 * descriptors are full. 140 * 141 * Note, the meta data fields are deliberately placed at the start of the 142 * structure to optimize the cacheline layout; accessing the descriptor will 143 * touch only a single cacheline so long as @spte_count<=6 (or if only the 144 * descriptors metadata is accessed). 145 */ 146 struct pte_list_desc { 147 struct pte_list_desc *more; 148 /* The number of PTEs stored in _this_ descriptor. */ 149 u32 spte_count; 150 /* The number of PTEs stored in all tails of this descriptor. */ 151 u32 tail_count; 152 u64 *sptes[PTE_LIST_EXT]; 153 }; 154 155 struct kvm_shadow_walk_iterator { 156 u64 addr; 157 hpa_t shadow_addr; 158 u64 *sptep; 159 int level; 160 unsigned index; 161 }; 162 163 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \ 164 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \ 165 (_root), (_addr)); \ 166 shadow_walk_okay(&(_walker)); \ 167 shadow_walk_next(&(_walker))) 168 169 #define for_each_shadow_entry(_vcpu, _addr, _walker) \ 170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 171 shadow_walk_okay(&(_walker)); \ 172 shadow_walk_next(&(_walker))) 173 174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \ 175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 176 shadow_walk_okay(&(_walker)) && \ 177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \ 178 __shadow_walk_next(&(_walker), spte)) 179 180 static struct kmem_cache *pte_list_desc_cache; 181 struct kmem_cache *mmu_page_header_cache; 182 static struct percpu_counter kvm_total_used_mmu_pages; 183 184 static void mmu_spte_set(u64 *sptep, u64 spte); 185 186 struct kvm_mmu_role_regs { 187 const unsigned long cr0; 188 const unsigned long cr4; 189 const u64 efer; 190 }; 191 192 #define CREATE_TRACE_POINTS 193 #include "mmutrace.h" 194 195 /* 196 * Yes, lot's of underscores. They're a hint that you probably shouldn't be 197 * reading from the role_regs. Once the root_role is constructed, it becomes 198 * the single source of truth for the MMU's state. 199 */ 200 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag) \ 201 static inline bool __maybe_unused \ 202 ____is_##reg##_##name(const struct kvm_mmu_role_regs *regs) \ 203 { \ 204 return !!(regs->reg & flag); \ 205 } 206 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG); 207 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP); 208 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE); 209 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE); 210 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP); 211 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP); 212 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE); 213 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57); 214 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX); 215 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA); 216 217 /* 218 * The MMU itself (with a valid role) is the single source of truth for the 219 * MMU. Do not use the regs used to build the MMU/role, nor the vCPU. The 220 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1, 221 * and the vCPU may be incorrect/irrelevant. 222 */ 223 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name) \ 224 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu) \ 225 { \ 226 return !!(mmu->cpu_role. base_or_ext . reg##_##name); \ 227 } 228 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp); 229 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pse); 230 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smep); 231 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smap); 232 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pke); 233 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, la57); 234 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx); 235 BUILD_MMU_ROLE_ACCESSOR(ext, efer, lma); 236 237 static inline bool is_cr0_pg(struct kvm_mmu *mmu) 238 { 239 return mmu->cpu_role.base.level > 0; 240 } 241 242 static inline bool is_cr4_pae(struct kvm_mmu *mmu) 243 { 244 return !mmu->cpu_role.base.has_4_byte_gpte; 245 } 246 247 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu) 248 { 249 struct kvm_mmu_role_regs regs = { 250 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS), 251 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS), 252 .efer = vcpu->arch.efer, 253 }; 254 255 return regs; 256 } 257 258 static unsigned long get_guest_cr3(struct kvm_vcpu *vcpu) 259 { 260 return kvm_read_cr3(vcpu); 261 } 262 263 static inline unsigned long kvm_mmu_get_guest_pgd(struct kvm_vcpu *vcpu, 264 struct kvm_mmu *mmu) 265 { 266 if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && mmu->get_guest_pgd == get_guest_cr3) 267 return kvm_read_cr3(vcpu); 268 269 return mmu->get_guest_pgd(vcpu); 270 } 271 272 static inline bool kvm_available_flush_remote_tlbs_range(void) 273 { 274 #if IS_ENABLED(CONFIG_HYPERV) 275 return kvm_x86_ops.flush_remote_tlbs_range; 276 #else 277 return false; 278 #endif 279 } 280 281 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index); 282 283 /* Flush the range of guest memory mapped by the given SPTE. */ 284 static void kvm_flush_remote_tlbs_sptep(struct kvm *kvm, u64 *sptep) 285 { 286 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 287 gfn_t gfn = kvm_mmu_page_get_gfn(sp, spte_index(sptep)); 288 289 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level); 290 } 291 292 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn, 293 unsigned int access) 294 { 295 u64 spte = make_mmio_spte(vcpu, gfn, access); 296 297 trace_mark_mmio_spte(sptep, gfn, spte); 298 mmu_spte_set(sptep, spte); 299 } 300 301 static gfn_t get_mmio_spte_gfn(u64 spte) 302 { 303 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask; 304 305 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN) 306 & shadow_nonpresent_or_rsvd_mask; 307 308 return gpa >> PAGE_SHIFT; 309 } 310 311 static unsigned get_mmio_spte_access(u64 spte) 312 { 313 return spte & shadow_mmio_access_mask; 314 } 315 316 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte) 317 { 318 u64 kvm_gen, spte_gen, gen; 319 320 gen = kvm_vcpu_memslots(vcpu)->generation; 321 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS)) 322 return false; 323 324 kvm_gen = gen & MMIO_SPTE_GEN_MASK; 325 spte_gen = get_mmio_spte_generation(spte); 326 327 trace_check_mmio_spte(spte, kvm_gen, spte_gen); 328 return likely(kvm_gen == spte_gen); 329 } 330 331 static int is_cpuid_PSE36(void) 332 { 333 return 1; 334 } 335 336 #ifdef CONFIG_X86_64 337 static void __set_spte(u64 *sptep, u64 spte) 338 { 339 WRITE_ONCE(*sptep, spte); 340 } 341 342 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 343 { 344 WRITE_ONCE(*sptep, spte); 345 } 346 347 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 348 { 349 return xchg(sptep, spte); 350 } 351 352 static u64 __get_spte_lockless(u64 *sptep) 353 { 354 return READ_ONCE(*sptep); 355 } 356 #else 357 union split_spte { 358 struct { 359 u32 spte_low; 360 u32 spte_high; 361 }; 362 u64 spte; 363 }; 364 365 static void count_spte_clear(u64 *sptep, u64 spte) 366 { 367 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 368 369 if (is_shadow_present_pte(spte)) 370 return; 371 372 /* Ensure the spte is completely set before we increase the count */ 373 smp_wmb(); 374 sp->clear_spte_count++; 375 } 376 377 static void __set_spte(u64 *sptep, u64 spte) 378 { 379 union split_spte *ssptep, sspte; 380 381 ssptep = (union split_spte *)sptep; 382 sspte = (union split_spte)spte; 383 384 ssptep->spte_high = sspte.spte_high; 385 386 /* 387 * If we map the spte from nonpresent to present, We should store 388 * the high bits firstly, then set present bit, so cpu can not 389 * fetch this spte while we are setting the spte. 390 */ 391 smp_wmb(); 392 393 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 394 } 395 396 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 397 { 398 union split_spte *ssptep, sspte; 399 400 ssptep = (union split_spte *)sptep; 401 sspte = (union split_spte)spte; 402 403 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 404 405 /* 406 * If we map the spte from present to nonpresent, we should clear 407 * present bit firstly to avoid vcpu fetch the old high bits. 408 */ 409 smp_wmb(); 410 411 ssptep->spte_high = sspte.spte_high; 412 count_spte_clear(sptep, spte); 413 } 414 415 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 416 { 417 union split_spte *ssptep, sspte, orig; 418 419 ssptep = (union split_spte *)sptep; 420 sspte = (union split_spte)spte; 421 422 /* xchg acts as a barrier before the setting of the high bits */ 423 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); 424 orig.spte_high = ssptep->spte_high; 425 ssptep->spte_high = sspte.spte_high; 426 count_spte_clear(sptep, spte); 427 428 return orig.spte; 429 } 430 431 /* 432 * The idea using the light way get the spte on x86_32 guest is from 433 * gup_get_pte (mm/gup.c). 434 * 435 * An spte tlb flush may be pending, because they are coalesced and 436 * we are running out of the MMU lock. Therefore 437 * we need to protect against in-progress updates of the spte. 438 * 439 * Reading the spte while an update is in progress may get the old value 440 * for the high part of the spte. The race is fine for a present->non-present 441 * change (because the high part of the spte is ignored for non-present spte), 442 * but for a present->present change we must reread the spte. 443 * 444 * All such changes are done in two steps (present->non-present and 445 * non-present->present), hence it is enough to count the number of 446 * present->non-present updates: if it changed while reading the spte, 447 * we might have hit the race. This is done using clear_spte_count. 448 */ 449 static u64 __get_spte_lockless(u64 *sptep) 450 { 451 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 452 union split_spte spte, *orig = (union split_spte *)sptep; 453 int count; 454 455 retry: 456 count = sp->clear_spte_count; 457 smp_rmb(); 458 459 spte.spte_low = orig->spte_low; 460 smp_rmb(); 461 462 spte.spte_high = orig->spte_high; 463 smp_rmb(); 464 465 if (unlikely(spte.spte_low != orig->spte_low || 466 count != sp->clear_spte_count)) 467 goto retry; 468 469 return spte.spte; 470 } 471 #endif 472 473 /* Rules for using mmu_spte_set: 474 * Set the sptep from nonpresent to present. 475 * Note: the sptep being assigned *must* be either not present 476 * or in a state where the hardware will not attempt to update 477 * the spte. 478 */ 479 static void mmu_spte_set(u64 *sptep, u64 new_spte) 480 { 481 WARN_ON_ONCE(is_shadow_present_pte(*sptep)); 482 __set_spte(sptep, new_spte); 483 } 484 485 /* 486 * Update the SPTE (excluding the PFN), but do not track changes in its 487 * accessed/dirty status. 488 */ 489 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte) 490 { 491 u64 old_spte = *sptep; 492 493 WARN_ON_ONCE(!is_shadow_present_pte(new_spte)); 494 check_spte_writable_invariants(new_spte); 495 496 if (!is_shadow_present_pte(old_spte)) { 497 mmu_spte_set(sptep, new_spte); 498 return old_spte; 499 } 500 501 if (!spte_has_volatile_bits(old_spte)) 502 __update_clear_spte_fast(sptep, new_spte); 503 else 504 old_spte = __update_clear_spte_slow(sptep, new_spte); 505 506 WARN_ON_ONCE(spte_to_pfn(old_spte) != spte_to_pfn(new_spte)); 507 508 return old_spte; 509 } 510 511 /* Rules for using mmu_spte_update: 512 * Update the state bits, it means the mapped pfn is not changed. 513 * 514 * Whenever an MMU-writable SPTE is overwritten with a read-only SPTE, remote 515 * TLBs must be flushed. Otherwise rmap_write_protect will find a read-only 516 * spte, even though the writable spte might be cached on a CPU's TLB. 517 * 518 * Returns true if the TLB needs to be flushed 519 */ 520 static bool mmu_spte_update(u64 *sptep, u64 new_spte) 521 { 522 bool flush = false; 523 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte); 524 525 if (!is_shadow_present_pte(old_spte)) 526 return false; 527 528 /* 529 * For the spte updated out of mmu-lock is safe, since 530 * we always atomically update it, see the comments in 531 * spte_has_volatile_bits(). 532 */ 533 if (is_mmu_writable_spte(old_spte) && 534 !is_writable_pte(new_spte)) 535 flush = true; 536 537 /* 538 * Flush TLB when accessed/dirty states are changed in the page tables, 539 * to guarantee consistency between TLB and page tables. 540 */ 541 542 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) { 543 flush = true; 544 kvm_set_pfn_accessed(spte_to_pfn(old_spte)); 545 } 546 547 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) { 548 flush = true; 549 kvm_set_pfn_dirty(spte_to_pfn(old_spte)); 550 } 551 552 return flush; 553 } 554 555 /* 556 * Rules for using mmu_spte_clear_track_bits: 557 * It sets the sptep from present to nonpresent, and track the 558 * state bits, it is used to clear the last level sptep. 559 * Returns the old PTE. 560 */ 561 static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep) 562 { 563 kvm_pfn_t pfn; 564 u64 old_spte = *sptep; 565 int level = sptep_to_sp(sptep)->role.level; 566 struct page *page; 567 568 if (!is_shadow_present_pte(old_spte) || 569 !spte_has_volatile_bits(old_spte)) 570 __update_clear_spte_fast(sptep, SHADOW_NONPRESENT_VALUE); 571 else 572 old_spte = __update_clear_spte_slow(sptep, SHADOW_NONPRESENT_VALUE); 573 574 if (!is_shadow_present_pte(old_spte)) 575 return old_spte; 576 577 kvm_update_page_stats(kvm, level, -1); 578 579 pfn = spte_to_pfn(old_spte); 580 581 /* 582 * KVM doesn't hold a reference to any pages mapped into the guest, and 583 * instead uses the mmu_notifier to ensure that KVM unmaps any pages 584 * before they are reclaimed. Sanity check that, if the pfn is backed 585 * by a refcounted page, the refcount is elevated. 586 */ 587 page = kvm_pfn_to_refcounted_page(pfn); 588 WARN_ON_ONCE(page && !page_count(page)); 589 590 if (is_accessed_spte(old_spte)) 591 kvm_set_pfn_accessed(pfn); 592 593 if (is_dirty_spte(old_spte)) 594 kvm_set_pfn_dirty(pfn); 595 596 return old_spte; 597 } 598 599 /* 600 * Rules for using mmu_spte_clear_no_track: 601 * Directly clear spte without caring the state bits of sptep, 602 * it is used to set the upper level spte. 603 */ 604 static void mmu_spte_clear_no_track(u64 *sptep) 605 { 606 __update_clear_spte_fast(sptep, SHADOW_NONPRESENT_VALUE); 607 } 608 609 static u64 mmu_spte_get_lockless(u64 *sptep) 610 { 611 return __get_spte_lockless(sptep); 612 } 613 614 /* Returns the Accessed status of the PTE and resets it at the same time. */ 615 static bool mmu_spte_age(u64 *sptep) 616 { 617 u64 spte = mmu_spte_get_lockless(sptep); 618 619 if (!is_accessed_spte(spte)) 620 return false; 621 622 if (spte_ad_enabled(spte)) { 623 clear_bit((ffs(shadow_accessed_mask) - 1), 624 (unsigned long *)sptep); 625 } else { 626 /* 627 * Capture the dirty status of the page, so that it doesn't get 628 * lost when the SPTE is marked for access tracking. 629 */ 630 if (is_writable_pte(spte)) 631 kvm_set_pfn_dirty(spte_to_pfn(spte)); 632 633 spte = mark_spte_for_access_track(spte); 634 mmu_spte_update_no_track(sptep, spte); 635 } 636 637 return true; 638 } 639 640 static inline bool is_tdp_mmu_active(struct kvm_vcpu *vcpu) 641 { 642 return tdp_mmu_enabled && vcpu->arch.mmu->root_role.direct; 643 } 644 645 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) 646 { 647 if (is_tdp_mmu_active(vcpu)) { 648 kvm_tdp_mmu_walk_lockless_begin(); 649 } else { 650 /* 651 * Prevent page table teardown by making any free-er wait during 652 * kvm_flush_remote_tlbs() IPI to all active vcpus. 653 */ 654 local_irq_disable(); 655 656 /* 657 * Make sure a following spte read is not reordered ahead of the write 658 * to vcpu->mode. 659 */ 660 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); 661 } 662 } 663 664 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) 665 { 666 if (is_tdp_mmu_active(vcpu)) { 667 kvm_tdp_mmu_walk_lockless_end(); 668 } else { 669 /* 670 * Make sure the write to vcpu->mode is not reordered in front of 671 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us 672 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. 673 */ 674 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); 675 local_irq_enable(); 676 } 677 } 678 679 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect) 680 { 681 int r; 682 683 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */ 684 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, 685 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM); 686 if (r) 687 return r; 688 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache, 689 PT64_ROOT_MAX_LEVEL); 690 if (r) 691 return r; 692 if (maybe_indirect) { 693 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadowed_info_cache, 694 PT64_ROOT_MAX_LEVEL); 695 if (r) 696 return r; 697 } 698 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, 699 PT64_ROOT_MAX_LEVEL); 700 } 701 702 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) 703 { 704 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache); 705 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache); 706 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadowed_info_cache); 707 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache); 708 } 709 710 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) 711 { 712 kmem_cache_free(pte_list_desc_cache, pte_list_desc); 713 } 714 715 static bool sp_has_gptes(struct kvm_mmu_page *sp); 716 717 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) 718 { 719 if (sp->role.passthrough) 720 return sp->gfn; 721 722 if (!sp->role.direct) 723 return sp->shadowed_translation[index] >> PAGE_SHIFT; 724 725 return sp->gfn + (index << ((sp->role.level - 1) * SPTE_LEVEL_BITS)); 726 } 727 728 /* 729 * For leaf SPTEs, fetch the *guest* access permissions being shadowed. Note 730 * that the SPTE itself may have a more constrained access permissions that 731 * what the guest enforces. For example, a guest may create an executable 732 * huge PTE but KVM may disallow execution to mitigate iTLB multihit. 733 */ 734 static u32 kvm_mmu_page_get_access(struct kvm_mmu_page *sp, int index) 735 { 736 if (sp_has_gptes(sp)) 737 return sp->shadowed_translation[index] & ACC_ALL; 738 739 /* 740 * For direct MMUs (e.g. TDP or non-paging guests) or passthrough SPs, 741 * KVM is not shadowing any guest page tables, so the "guest access 742 * permissions" are just ACC_ALL. 743 * 744 * For direct SPs in indirect MMUs (shadow paging), i.e. when KVM 745 * is shadowing a guest huge page with small pages, the guest access 746 * permissions being shadowed are the access permissions of the huge 747 * page. 748 * 749 * In both cases, sp->role.access contains the correct access bits. 750 */ 751 return sp->role.access; 752 } 753 754 static void kvm_mmu_page_set_translation(struct kvm_mmu_page *sp, int index, 755 gfn_t gfn, unsigned int access) 756 { 757 if (sp_has_gptes(sp)) { 758 sp->shadowed_translation[index] = (gfn << PAGE_SHIFT) | access; 759 return; 760 } 761 762 WARN_ONCE(access != kvm_mmu_page_get_access(sp, index), 763 "access mismatch under %s page %llx (expected %u, got %u)\n", 764 sp->role.passthrough ? "passthrough" : "direct", 765 sp->gfn, kvm_mmu_page_get_access(sp, index), access); 766 767 WARN_ONCE(gfn != kvm_mmu_page_get_gfn(sp, index), 768 "gfn mismatch under %s page %llx (expected %llx, got %llx)\n", 769 sp->role.passthrough ? "passthrough" : "direct", 770 sp->gfn, kvm_mmu_page_get_gfn(sp, index), gfn); 771 } 772 773 static void kvm_mmu_page_set_access(struct kvm_mmu_page *sp, int index, 774 unsigned int access) 775 { 776 gfn_t gfn = kvm_mmu_page_get_gfn(sp, index); 777 778 kvm_mmu_page_set_translation(sp, index, gfn, access); 779 } 780 781 /* 782 * Return the pointer to the large page information for a given gfn, 783 * handling slots that are not large page aligned. 784 */ 785 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, 786 const struct kvm_memory_slot *slot, int level) 787 { 788 unsigned long idx; 789 790 idx = gfn_to_index(gfn, slot->base_gfn, level); 791 return &slot->arch.lpage_info[level - 2][idx]; 792 } 793 794 /* 795 * The most significant bit in disallow_lpage tracks whether or not memory 796 * attributes are mixed, i.e. not identical for all gfns at the current level. 797 * The lower order bits are used to refcount other cases where a hugepage is 798 * disallowed, e.g. if KVM has shadow a page table at the gfn. 799 */ 800 #define KVM_LPAGE_MIXED_FLAG BIT(31) 801 802 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot, 803 gfn_t gfn, int count) 804 { 805 struct kvm_lpage_info *linfo; 806 int old, i; 807 808 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 809 linfo = lpage_info_slot(gfn, slot, i); 810 811 old = linfo->disallow_lpage; 812 linfo->disallow_lpage += count; 813 WARN_ON_ONCE((old ^ linfo->disallow_lpage) & KVM_LPAGE_MIXED_FLAG); 814 } 815 } 816 817 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 818 { 819 update_gfn_disallow_lpage_count(slot, gfn, 1); 820 } 821 822 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 823 { 824 update_gfn_disallow_lpage_count(slot, gfn, -1); 825 } 826 827 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 828 { 829 struct kvm_memslots *slots; 830 struct kvm_memory_slot *slot; 831 gfn_t gfn; 832 833 kvm->arch.indirect_shadow_pages++; 834 /* 835 * Ensure indirect_shadow_pages is elevated prior to re-reading guest 836 * child PTEs in FNAME(gpte_changed), i.e. guarantee either in-flight 837 * emulated writes are visible before re-reading guest PTEs, or that 838 * an emulated write will see the elevated count and acquire mmu_lock 839 * to update SPTEs. Pairs with the smp_mb() in kvm_mmu_track_write(). 840 */ 841 smp_mb(); 842 843 gfn = sp->gfn; 844 slots = kvm_memslots_for_spte_role(kvm, sp->role); 845 slot = __gfn_to_memslot(slots, gfn); 846 847 /* the non-leaf shadow pages are keeping readonly. */ 848 if (sp->role.level > PG_LEVEL_4K) 849 return __kvm_write_track_add_gfn(kvm, slot, gfn); 850 851 kvm_mmu_gfn_disallow_lpage(slot, gfn); 852 853 if (kvm_mmu_slot_gfn_write_protect(kvm, slot, gfn, PG_LEVEL_4K)) 854 kvm_flush_remote_tlbs_gfn(kvm, gfn, PG_LEVEL_4K); 855 } 856 857 void track_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 858 { 859 /* 860 * If it's possible to replace the shadow page with an NX huge page, 861 * i.e. if the shadow page is the only thing currently preventing KVM 862 * from using a huge page, add the shadow page to the list of "to be 863 * zapped for NX recovery" pages. Note, the shadow page can already be 864 * on the list if KVM is reusing an existing shadow page, i.e. if KVM 865 * links a shadow page at multiple points. 866 */ 867 if (!list_empty(&sp->possible_nx_huge_page_link)) 868 return; 869 870 ++kvm->stat.nx_lpage_splits; 871 list_add_tail(&sp->possible_nx_huge_page_link, 872 &kvm->arch.possible_nx_huge_pages); 873 } 874 875 static void account_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp, 876 bool nx_huge_page_possible) 877 { 878 sp->nx_huge_page_disallowed = true; 879 880 if (nx_huge_page_possible) 881 track_possible_nx_huge_page(kvm, sp); 882 } 883 884 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 885 { 886 struct kvm_memslots *slots; 887 struct kvm_memory_slot *slot; 888 gfn_t gfn; 889 890 kvm->arch.indirect_shadow_pages--; 891 gfn = sp->gfn; 892 slots = kvm_memslots_for_spte_role(kvm, sp->role); 893 slot = __gfn_to_memslot(slots, gfn); 894 if (sp->role.level > PG_LEVEL_4K) 895 return __kvm_write_track_remove_gfn(kvm, slot, gfn); 896 897 kvm_mmu_gfn_allow_lpage(slot, gfn); 898 } 899 900 void untrack_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 901 { 902 if (list_empty(&sp->possible_nx_huge_page_link)) 903 return; 904 905 --kvm->stat.nx_lpage_splits; 906 list_del_init(&sp->possible_nx_huge_page_link); 907 } 908 909 static void unaccount_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 910 { 911 sp->nx_huge_page_disallowed = false; 912 913 untrack_possible_nx_huge_page(kvm, sp); 914 } 915 916 static struct kvm_memory_slot *gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, 917 gfn_t gfn, 918 bool no_dirty_log) 919 { 920 struct kvm_memory_slot *slot; 921 922 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 923 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 924 return NULL; 925 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot)) 926 return NULL; 927 928 return slot; 929 } 930 931 /* 932 * About rmap_head encoding: 933 * 934 * If the bit zero of rmap_head->val is clear, then it points to the only spte 935 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct 936 * pte_list_desc containing more mappings. 937 */ 938 939 /* 940 * Returns the number of pointers in the rmap chain, not counting the new one. 941 */ 942 static int pte_list_add(struct kvm_mmu_memory_cache *cache, u64 *spte, 943 struct kvm_rmap_head *rmap_head) 944 { 945 struct pte_list_desc *desc; 946 int count = 0; 947 948 if (!rmap_head->val) { 949 rmap_head->val = (unsigned long)spte; 950 } else if (!(rmap_head->val & 1)) { 951 desc = kvm_mmu_memory_cache_alloc(cache); 952 desc->sptes[0] = (u64 *)rmap_head->val; 953 desc->sptes[1] = spte; 954 desc->spte_count = 2; 955 desc->tail_count = 0; 956 rmap_head->val = (unsigned long)desc | 1; 957 ++count; 958 } else { 959 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 960 count = desc->tail_count + desc->spte_count; 961 962 /* 963 * If the previous head is full, allocate a new head descriptor 964 * as tail descriptors are always kept full. 965 */ 966 if (desc->spte_count == PTE_LIST_EXT) { 967 desc = kvm_mmu_memory_cache_alloc(cache); 968 desc->more = (struct pte_list_desc *)(rmap_head->val & ~1ul); 969 desc->spte_count = 0; 970 desc->tail_count = count; 971 rmap_head->val = (unsigned long)desc | 1; 972 } 973 desc->sptes[desc->spte_count++] = spte; 974 } 975 return count; 976 } 977 978 static void pte_list_desc_remove_entry(struct kvm *kvm, 979 struct kvm_rmap_head *rmap_head, 980 struct pte_list_desc *desc, int i) 981 { 982 struct pte_list_desc *head_desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 983 int j = head_desc->spte_count - 1; 984 985 /* 986 * The head descriptor should never be empty. A new head is added only 987 * when adding an entry and the previous head is full, and heads are 988 * removed (this flow) when they become empty. 989 */ 990 KVM_BUG_ON_DATA_CORRUPTION(j < 0, kvm); 991 992 /* 993 * Replace the to-be-freed SPTE with the last valid entry from the head 994 * descriptor to ensure that tail descriptors are full at all times. 995 * Note, this also means that tail_count is stable for each descriptor. 996 */ 997 desc->sptes[i] = head_desc->sptes[j]; 998 head_desc->sptes[j] = NULL; 999 head_desc->spte_count--; 1000 if (head_desc->spte_count) 1001 return; 1002 1003 /* 1004 * The head descriptor is empty. If there are no tail descriptors, 1005 * nullify the rmap head to mark the list as empty, else point the rmap 1006 * head at the next descriptor, i.e. the new head. 1007 */ 1008 if (!head_desc->more) 1009 rmap_head->val = 0; 1010 else 1011 rmap_head->val = (unsigned long)head_desc->more | 1; 1012 mmu_free_pte_list_desc(head_desc); 1013 } 1014 1015 static void pte_list_remove(struct kvm *kvm, u64 *spte, 1016 struct kvm_rmap_head *rmap_head) 1017 { 1018 struct pte_list_desc *desc; 1019 int i; 1020 1021 if (KVM_BUG_ON_DATA_CORRUPTION(!rmap_head->val, kvm)) 1022 return; 1023 1024 if (!(rmap_head->val & 1)) { 1025 if (KVM_BUG_ON_DATA_CORRUPTION((u64 *)rmap_head->val != spte, kvm)) 1026 return; 1027 1028 rmap_head->val = 0; 1029 } else { 1030 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1031 while (desc) { 1032 for (i = 0; i < desc->spte_count; ++i) { 1033 if (desc->sptes[i] == spte) { 1034 pte_list_desc_remove_entry(kvm, rmap_head, 1035 desc, i); 1036 return; 1037 } 1038 } 1039 desc = desc->more; 1040 } 1041 1042 KVM_BUG_ON_DATA_CORRUPTION(true, kvm); 1043 } 1044 } 1045 1046 static void kvm_zap_one_rmap_spte(struct kvm *kvm, 1047 struct kvm_rmap_head *rmap_head, u64 *sptep) 1048 { 1049 mmu_spte_clear_track_bits(kvm, sptep); 1050 pte_list_remove(kvm, sptep, rmap_head); 1051 } 1052 1053 /* Return true if at least one SPTE was zapped, false otherwise */ 1054 static bool kvm_zap_all_rmap_sptes(struct kvm *kvm, 1055 struct kvm_rmap_head *rmap_head) 1056 { 1057 struct pte_list_desc *desc, *next; 1058 int i; 1059 1060 if (!rmap_head->val) 1061 return false; 1062 1063 if (!(rmap_head->val & 1)) { 1064 mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val); 1065 goto out; 1066 } 1067 1068 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1069 1070 for (; desc; desc = next) { 1071 for (i = 0; i < desc->spte_count; i++) 1072 mmu_spte_clear_track_bits(kvm, desc->sptes[i]); 1073 next = desc->more; 1074 mmu_free_pte_list_desc(desc); 1075 } 1076 out: 1077 /* rmap_head is meaningless now, remember to reset it */ 1078 rmap_head->val = 0; 1079 return true; 1080 } 1081 1082 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head) 1083 { 1084 struct pte_list_desc *desc; 1085 1086 if (!rmap_head->val) 1087 return 0; 1088 else if (!(rmap_head->val & 1)) 1089 return 1; 1090 1091 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1092 return desc->tail_count + desc->spte_count; 1093 } 1094 1095 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level, 1096 const struct kvm_memory_slot *slot) 1097 { 1098 unsigned long idx; 1099 1100 idx = gfn_to_index(gfn, slot->base_gfn, level); 1101 return &slot->arch.rmap[level - PG_LEVEL_4K][idx]; 1102 } 1103 1104 static void rmap_remove(struct kvm *kvm, u64 *spte) 1105 { 1106 struct kvm_memslots *slots; 1107 struct kvm_memory_slot *slot; 1108 struct kvm_mmu_page *sp; 1109 gfn_t gfn; 1110 struct kvm_rmap_head *rmap_head; 1111 1112 sp = sptep_to_sp(spte); 1113 gfn = kvm_mmu_page_get_gfn(sp, spte_index(spte)); 1114 1115 /* 1116 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU 1117 * so we have to determine which memslots to use based on context 1118 * information in sp->role. 1119 */ 1120 slots = kvm_memslots_for_spte_role(kvm, sp->role); 1121 1122 slot = __gfn_to_memslot(slots, gfn); 1123 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1124 1125 pte_list_remove(kvm, spte, rmap_head); 1126 } 1127 1128 /* 1129 * Used by the following functions to iterate through the sptes linked by a 1130 * rmap. All fields are private and not assumed to be used outside. 1131 */ 1132 struct rmap_iterator { 1133 /* private fields */ 1134 struct pte_list_desc *desc; /* holds the sptep if not NULL */ 1135 int pos; /* index of the sptep */ 1136 }; 1137 1138 /* 1139 * Iteration must be started by this function. This should also be used after 1140 * removing/dropping sptes from the rmap link because in such cases the 1141 * information in the iterator may not be valid. 1142 * 1143 * Returns sptep if found, NULL otherwise. 1144 */ 1145 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head, 1146 struct rmap_iterator *iter) 1147 { 1148 u64 *sptep; 1149 1150 if (!rmap_head->val) 1151 return NULL; 1152 1153 if (!(rmap_head->val & 1)) { 1154 iter->desc = NULL; 1155 sptep = (u64 *)rmap_head->val; 1156 goto out; 1157 } 1158 1159 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1160 iter->pos = 0; 1161 sptep = iter->desc->sptes[iter->pos]; 1162 out: 1163 BUG_ON(!is_shadow_present_pte(*sptep)); 1164 return sptep; 1165 } 1166 1167 /* 1168 * Must be used with a valid iterator: e.g. after rmap_get_first(). 1169 * 1170 * Returns sptep if found, NULL otherwise. 1171 */ 1172 static u64 *rmap_get_next(struct rmap_iterator *iter) 1173 { 1174 u64 *sptep; 1175 1176 if (iter->desc) { 1177 if (iter->pos < PTE_LIST_EXT - 1) { 1178 ++iter->pos; 1179 sptep = iter->desc->sptes[iter->pos]; 1180 if (sptep) 1181 goto out; 1182 } 1183 1184 iter->desc = iter->desc->more; 1185 1186 if (iter->desc) { 1187 iter->pos = 0; 1188 /* desc->sptes[0] cannot be NULL */ 1189 sptep = iter->desc->sptes[iter->pos]; 1190 goto out; 1191 } 1192 } 1193 1194 return NULL; 1195 out: 1196 BUG_ON(!is_shadow_present_pte(*sptep)); 1197 return sptep; 1198 } 1199 1200 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \ 1201 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \ 1202 _spte_; _spte_ = rmap_get_next(_iter_)) 1203 1204 static void drop_spte(struct kvm *kvm, u64 *sptep) 1205 { 1206 u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep); 1207 1208 if (is_shadow_present_pte(old_spte)) 1209 rmap_remove(kvm, sptep); 1210 } 1211 1212 static void drop_large_spte(struct kvm *kvm, u64 *sptep, bool flush) 1213 { 1214 struct kvm_mmu_page *sp; 1215 1216 sp = sptep_to_sp(sptep); 1217 WARN_ON_ONCE(sp->role.level == PG_LEVEL_4K); 1218 1219 drop_spte(kvm, sptep); 1220 1221 if (flush) 1222 kvm_flush_remote_tlbs_sptep(kvm, sptep); 1223 } 1224 1225 /* 1226 * Write-protect on the specified @sptep, @pt_protect indicates whether 1227 * spte write-protection is caused by protecting shadow page table. 1228 * 1229 * Note: write protection is difference between dirty logging and spte 1230 * protection: 1231 * - for dirty logging, the spte can be set to writable at anytime if 1232 * its dirty bitmap is properly set. 1233 * - for spte protection, the spte can be writable only after unsync-ing 1234 * shadow page. 1235 * 1236 * Return true if tlb need be flushed. 1237 */ 1238 static bool spte_write_protect(u64 *sptep, bool pt_protect) 1239 { 1240 u64 spte = *sptep; 1241 1242 if (!is_writable_pte(spte) && 1243 !(pt_protect && is_mmu_writable_spte(spte))) 1244 return false; 1245 1246 if (pt_protect) 1247 spte &= ~shadow_mmu_writable_mask; 1248 spte = spte & ~PT_WRITABLE_MASK; 1249 1250 return mmu_spte_update(sptep, spte); 1251 } 1252 1253 static bool rmap_write_protect(struct kvm_rmap_head *rmap_head, 1254 bool pt_protect) 1255 { 1256 u64 *sptep; 1257 struct rmap_iterator iter; 1258 bool flush = false; 1259 1260 for_each_rmap_spte(rmap_head, &iter, sptep) 1261 flush |= spte_write_protect(sptep, pt_protect); 1262 1263 return flush; 1264 } 1265 1266 static bool spte_clear_dirty(u64 *sptep) 1267 { 1268 u64 spte = *sptep; 1269 1270 KVM_MMU_WARN_ON(!spte_ad_enabled(spte)); 1271 spte &= ~shadow_dirty_mask; 1272 return mmu_spte_update(sptep, spte); 1273 } 1274 1275 static bool spte_wrprot_for_clear_dirty(u64 *sptep) 1276 { 1277 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT, 1278 (unsigned long *)sptep); 1279 if (was_writable && !spte_ad_enabled(*sptep)) 1280 kvm_set_pfn_dirty(spte_to_pfn(*sptep)); 1281 1282 return was_writable; 1283 } 1284 1285 /* 1286 * Gets the GFN ready for another round of dirty logging by clearing the 1287 * - D bit on ad-enabled SPTEs, and 1288 * - W bit on ad-disabled SPTEs. 1289 * Returns true iff any D or W bits were cleared. 1290 */ 1291 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1292 const struct kvm_memory_slot *slot) 1293 { 1294 u64 *sptep; 1295 struct rmap_iterator iter; 1296 bool flush = false; 1297 1298 for_each_rmap_spte(rmap_head, &iter, sptep) 1299 if (spte_ad_need_write_protect(*sptep)) 1300 flush |= spte_wrprot_for_clear_dirty(sptep); 1301 else 1302 flush |= spte_clear_dirty(sptep); 1303 1304 return flush; 1305 } 1306 1307 /** 1308 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages 1309 * @kvm: kvm instance 1310 * @slot: slot to protect 1311 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1312 * @mask: indicates which pages we should protect 1313 * 1314 * Used when we do not need to care about huge page mappings. 1315 */ 1316 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 1317 struct kvm_memory_slot *slot, 1318 gfn_t gfn_offset, unsigned long mask) 1319 { 1320 struct kvm_rmap_head *rmap_head; 1321 1322 if (tdp_mmu_enabled) 1323 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1324 slot->base_gfn + gfn_offset, mask, true); 1325 1326 if (!kvm_memslots_have_rmaps(kvm)) 1327 return; 1328 1329 while (mask) { 1330 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1331 PG_LEVEL_4K, slot); 1332 rmap_write_protect(rmap_head, false); 1333 1334 /* clear the first set bit */ 1335 mask &= mask - 1; 1336 } 1337 } 1338 1339 /** 1340 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write 1341 * protect the page if the D-bit isn't supported. 1342 * @kvm: kvm instance 1343 * @slot: slot to clear D-bit 1344 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1345 * @mask: indicates which pages we should clear D-bit 1346 * 1347 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap. 1348 */ 1349 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1350 struct kvm_memory_slot *slot, 1351 gfn_t gfn_offset, unsigned long mask) 1352 { 1353 struct kvm_rmap_head *rmap_head; 1354 1355 if (tdp_mmu_enabled) 1356 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1357 slot->base_gfn + gfn_offset, mask, false); 1358 1359 if (!kvm_memslots_have_rmaps(kvm)) 1360 return; 1361 1362 while (mask) { 1363 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1364 PG_LEVEL_4K, slot); 1365 __rmap_clear_dirty(kvm, rmap_head, slot); 1366 1367 /* clear the first set bit */ 1368 mask &= mask - 1; 1369 } 1370 } 1371 1372 /** 1373 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected 1374 * PT level pages. 1375 * 1376 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to 1377 * enable dirty logging for them. 1378 * 1379 * We need to care about huge page mappings: e.g. during dirty logging we may 1380 * have such mappings. 1381 */ 1382 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1383 struct kvm_memory_slot *slot, 1384 gfn_t gfn_offset, unsigned long mask) 1385 { 1386 /* 1387 * Huge pages are NOT write protected when we start dirty logging in 1388 * initially-all-set mode; must write protect them here so that they 1389 * are split to 4K on the first write. 1390 * 1391 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn 1392 * of memslot has no such restriction, so the range can cross two large 1393 * pages. 1394 */ 1395 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) { 1396 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask); 1397 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask); 1398 1399 if (READ_ONCE(eager_page_split)) 1400 kvm_mmu_try_split_huge_pages(kvm, slot, start, end + 1, PG_LEVEL_4K); 1401 1402 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M); 1403 1404 /* Cross two large pages? */ 1405 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) != 1406 ALIGN(end << PAGE_SHIFT, PMD_SIZE)) 1407 kvm_mmu_slot_gfn_write_protect(kvm, slot, end, 1408 PG_LEVEL_2M); 1409 } 1410 1411 /* Now handle 4K PTEs. */ 1412 if (kvm_x86_ops.cpu_dirty_log_size) 1413 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask); 1414 else 1415 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 1416 } 1417 1418 int kvm_cpu_dirty_log_size(void) 1419 { 1420 return kvm_x86_ops.cpu_dirty_log_size; 1421 } 1422 1423 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, 1424 struct kvm_memory_slot *slot, u64 gfn, 1425 int min_level) 1426 { 1427 struct kvm_rmap_head *rmap_head; 1428 int i; 1429 bool write_protected = false; 1430 1431 if (kvm_memslots_have_rmaps(kvm)) { 1432 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 1433 rmap_head = gfn_to_rmap(gfn, i, slot); 1434 write_protected |= rmap_write_protect(rmap_head, true); 1435 } 1436 } 1437 1438 if (tdp_mmu_enabled) 1439 write_protected |= 1440 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level); 1441 1442 return write_protected; 1443 } 1444 1445 static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn) 1446 { 1447 struct kvm_memory_slot *slot; 1448 1449 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1450 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K); 1451 } 1452 1453 static bool __kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1454 const struct kvm_memory_slot *slot) 1455 { 1456 return kvm_zap_all_rmap_sptes(kvm, rmap_head); 1457 } 1458 1459 static bool kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1460 struct kvm_memory_slot *slot, gfn_t gfn, int level) 1461 { 1462 return __kvm_zap_rmap(kvm, rmap_head, slot); 1463 } 1464 1465 struct slot_rmap_walk_iterator { 1466 /* input fields. */ 1467 const struct kvm_memory_slot *slot; 1468 gfn_t start_gfn; 1469 gfn_t end_gfn; 1470 int start_level; 1471 int end_level; 1472 1473 /* output fields. */ 1474 gfn_t gfn; 1475 struct kvm_rmap_head *rmap; 1476 int level; 1477 1478 /* private field. */ 1479 struct kvm_rmap_head *end_rmap; 1480 }; 1481 1482 static void rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, 1483 int level) 1484 { 1485 iterator->level = level; 1486 iterator->gfn = iterator->start_gfn; 1487 iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot); 1488 iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot); 1489 } 1490 1491 static void slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator, 1492 const struct kvm_memory_slot *slot, 1493 int start_level, int end_level, 1494 gfn_t start_gfn, gfn_t end_gfn) 1495 { 1496 iterator->slot = slot; 1497 iterator->start_level = start_level; 1498 iterator->end_level = end_level; 1499 iterator->start_gfn = start_gfn; 1500 iterator->end_gfn = end_gfn; 1501 1502 rmap_walk_init_level(iterator, iterator->start_level); 1503 } 1504 1505 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator) 1506 { 1507 return !!iterator->rmap; 1508 } 1509 1510 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) 1511 { 1512 while (++iterator->rmap <= iterator->end_rmap) { 1513 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level)); 1514 1515 if (iterator->rmap->val) 1516 return; 1517 } 1518 1519 if (++iterator->level > iterator->end_level) { 1520 iterator->rmap = NULL; 1521 return; 1522 } 1523 1524 rmap_walk_init_level(iterator, iterator->level); 1525 } 1526 1527 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \ 1528 _start_gfn, _end_gfn, _iter_) \ 1529 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \ 1530 _end_level_, _start_gfn, _end_gfn); \ 1531 slot_rmap_walk_okay(_iter_); \ 1532 slot_rmap_walk_next(_iter_)) 1533 1534 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1535 struct kvm_memory_slot *slot, gfn_t gfn, 1536 int level); 1537 1538 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm, 1539 struct kvm_gfn_range *range, 1540 rmap_handler_t handler) 1541 { 1542 struct slot_rmap_walk_iterator iterator; 1543 bool ret = false; 1544 1545 for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 1546 range->start, range->end - 1, &iterator) 1547 ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn, 1548 iterator.level); 1549 1550 return ret; 1551 } 1552 1553 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1554 { 1555 bool flush = false; 1556 1557 if (kvm_memslots_have_rmaps(kvm)) 1558 flush = kvm_handle_gfn_range(kvm, range, kvm_zap_rmap); 1559 1560 if (tdp_mmu_enabled) 1561 flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush); 1562 1563 if (kvm_x86_ops.set_apic_access_page_addr && 1564 range->slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT) 1565 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 1566 1567 return flush; 1568 } 1569 1570 static bool kvm_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1571 struct kvm_memory_slot *slot, gfn_t gfn, int level) 1572 { 1573 u64 *sptep; 1574 struct rmap_iterator iter; 1575 int young = 0; 1576 1577 for_each_rmap_spte(rmap_head, &iter, sptep) 1578 young |= mmu_spte_age(sptep); 1579 1580 return young; 1581 } 1582 1583 static bool kvm_test_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1584 struct kvm_memory_slot *slot, gfn_t gfn, int level) 1585 { 1586 u64 *sptep; 1587 struct rmap_iterator iter; 1588 1589 for_each_rmap_spte(rmap_head, &iter, sptep) 1590 if (is_accessed_spte(*sptep)) 1591 return true; 1592 return false; 1593 } 1594 1595 #define RMAP_RECYCLE_THRESHOLD 1000 1596 1597 static void __rmap_add(struct kvm *kvm, 1598 struct kvm_mmu_memory_cache *cache, 1599 const struct kvm_memory_slot *slot, 1600 u64 *spte, gfn_t gfn, unsigned int access) 1601 { 1602 struct kvm_mmu_page *sp; 1603 struct kvm_rmap_head *rmap_head; 1604 int rmap_count; 1605 1606 sp = sptep_to_sp(spte); 1607 kvm_mmu_page_set_translation(sp, spte_index(spte), gfn, access); 1608 kvm_update_page_stats(kvm, sp->role.level, 1); 1609 1610 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1611 rmap_count = pte_list_add(cache, spte, rmap_head); 1612 1613 if (rmap_count > kvm->stat.max_mmu_rmap_size) 1614 kvm->stat.max_mmu_rmap_size = rmap_count; 1615 if (rmap_count > RMAP_RECYCLE_THRESHOLD) { 1616 kvm_zap_all_rmap_sptes(kvm, rmap_head); 1617 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level); 1618 } 1619 } 1620 1621 static void rmap_add(struct kvm_vcpu *vcpu, const struct kvm_memory_slot *slot, 1622 u64 *spte, gfn_t gfn, unsigned int access) 1623 { 1624 struct kvm_mmu_memory_cache *cache = &vcpu->arch.mmu_pte_list_desc_cache; 1625 1626 __rmap_add(vcpu->kvm, cache, slot, spte, gfn, access); 1627 } 1628 1629 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1630 { 1631 bool young = false; 1632 1633 if (kvm_memslots_have_rmaps(kvm)) 1634 young = kvm_handle_gfn_range(kvm, range, kvm_age_rmap); 1635 1636 if (tdp_mmu_enabled) 1637 young |= kvm_tdp_mmu_age_gfn_range(kvm, range); 1638 1639 return young; 1640 } 1641 1642 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1643 { 1644 bool young = false; 1645 1646 if (kvm_memslots_have_rmaps(kvm)) 1647 young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmap); 1648 1649 if (tdp_mmu_enabled) 1650 young |= kvm_tdp_mmu_test_age_gfn(kvm, range); 1651 1652 return young; 1653 } 1654 1655 static void kvm_mmu_check_sptes_at_free(struct kvm_mmu_page *sp) 1656 { 1657 #ifdef CONFIG_KVM_PROVE_MMU 1658 int i; 1659 1660 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) { 1661 if (KVM_MMU_WARN_ON(is_shadow_present_pte(sp->spt[i]))) 1662 pr_err_ratelimited("SPTE %llx (@ %p) for gfn %llx shadow-present at free", 1663 sp->spt[i], &sp->spt[i], 1664 kvm_mmu_page_get_gfn(sp, i)); 1665 } 1666 #endif 1667 } 1668 1669 /* 1670 * This value is the sum of all of the kvm instances's 1671 * kvm->arch.n_used_mmu_pages values. We need a global, 1672 * aggregate version in order to make the slab shrinker 1673 * faster 1674 */ 1675 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr) 1676 { 1677 kvm->arch.n_used_mmu_pages += nr; 1678 percpu_counter_add(&kvm_total_used_mmu_pages, nr); 1679 } 1680 1681 static void kvm_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1682 { 1683 kvm_mod_used_mmu_pages(kvm, +1); 1684 kvm_account_pgtable_pages((void *)sp->spt, +1); 1685 } 1686 1687 static void kvm_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1688 { 1689 kvm_mod_used_mmu_pages(kvm, -1); 1690 kvm_account_pgtable_pages((void *)sp->spt, -1); 1691 } 1692 1693 static void kvm_mmu_free_shadow_page(struct kvm_mmu_page *sp) 1694 { 1695 kvm_mmu_check_sptes_at_free(sp); 1696 1697 hlist_del(&sp->hash_link); 1698 list_del(&sp->link); 1699 free_page((unsigned long)sp->spt); 1700 if (!sp->role.direct) 1701 free_page((unsigned long)sp->shadowed_translation); 1702 kmem_cache_free(mmu_page_header_cache, sp); 1703 } 1704 1705 static unsigned kvm_page_table_hashfn(gfn_t gfn) 1706 { 1707 return hash_64(gfn, KVM_MMU_HASH_SHIFT); 1708 } 1709 1710 static void mmu_page_add_parent_pte(struct kvm_mmu_memory_cache *cache, 1711 struct kvm_mmu_page *sp, u64 *parent_pte) 1712 { 1713 if (!parent_pte) 1714 return; 1715 1716 pte_list_add(cache, parent_pte, &sp->parent_ptes); 1717 } 1718 1719 static void mmu_page_remove_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 1720 u64 *parent_pte) 1721 { 1722 pte_list_remove(kvm, parent_pte, &sp->parent_ptes); 1723 } 1724 1725 static void drop_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 1726 u64 *parent_pte) 1727 { 1728 mmu_page_remove_parent_pte(kvm, sp, parent_pte); 1729 mmu_spte_clear_no_track(parent_pte); 1730 } 1731 1732 static void mark_unsync(u64 *spte); 1733 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) 1734 { 1735 u64 *sptep; 1736 struct rmap_iterator iter; 1737 1738 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) { 1739 mark_unsync(sptep); 1740 } 1741 } 1742 1743 static void mark_unsync(u64 *spte) 1744 { 1745 struct kvm_mmu_page *sp; 1746 1747 sp = sptep_to_sp(spte); 1748 if (__test_and_set_bit(spte_index(spte), sp->unsync_child_bitmap)) 1749 return; 1750 if (sp->unsync_children++) 1751 return; 1752 kvm_mmu_mark_parents_unsync(sp); 1753 } 1754 1755 #define KVM_PAGE_ARRAY_NR 16 1756 1757 struct kvm_mmu_pages { 1758 struct mmu_page_and_offset { 1759 struct kvm_mmu_page *sp; 1760 unsigned int idx; 1761 } page[KVM_PAGE_ARRAY_NR]; 1762 unsigned int nr; 1763 }; 1764 1765 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, 1766 int idx) 1767 { 1768 int i; 1769 1770 if (sp->unsync) 1771 for (i=0; i < pvec->nr; i++) 1772 if (pvec->page[i].sp == sp) 1773 return 0; 1774 1775 pvec->page[pvec->nr].sp = sp; 1776 pvec->page[pvec->nr].idx = idx; 1777 pvec->nr++; 1778 return (pvec->nr == KVM_PAGE_ARRAY_NR); 1779 } 1780 1781 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx) 1782 { 1783 --sp->unsync_children; 1784 WARN_ON_ONCE((int)sp->unsync_children < 0); 1785 __clear_bit(idx, sp->unsync_child_bitmap); 1786 } 1787 1788 static int __mmu_unsync_walk(struct kvm_mmu_page *sp, 1789 struct kvm_mmu_pages *pvec) 1790 { 1791 int i, ret, nr_unsync_leaf = 0; 1792 1793 for_each_set_bit(i, sp->unsync_child_bitmap, 512) { 1794 struct kvm_mmu_page *child; 1795 u64 ent = sp->spt[i]; 1796 1797 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) { 1798 clear_unsync_child_bit(sp, i); 1799 continue; 1800 } 1801 1802 child = spte_to_child_sp(ent); 1803 1804 if (child->unsync_children) { 1805 if (mmu_pages_add(pvec, child, i)) 1806 return -ENOSPC; 1807 1808 ret = __mmu_unsync_walk(child, pvec); 1809 if (!ret) { 1810 clear_unsync_child_bit(sp, i); 1811 continue; 1812 } else if (ret > 0) { 1813 nr_unsync_leaf += ret; 1814 } else 1815 return ret; 1816 } else if (child->unsync) { 1817 nr_unsync_leaf++; 1818 if (mmu_pages_add(pvec, child, i)) 1819 return -ENOSPC; 1820 } else 1821 clear_unsync_child_bit(sp, i); 1822 } 1823 1824 return nr_unsync_leaf; 1825 } 1826 1827 #define INVALID_INDEX (-1) 1828 1829 static int mmu_unsync_walk(struct kvm_mmu_page *sp, 1830 struct kvm_mmu_pages *pvec) 1831 { 1832 pvec->nr = 0; 1833 if (!sp->unsync_children) 1834 return 0; 1835 1836 mmu_pages_add(pvec, sp, INVALID_INDEX); 1837 return __mmu_unsync_walk(sp, pvec); 1838 } 1839 1840 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1841 { 1842 WARN_ON_ONCE(!sp->unsync); 1843 trace_kvm_mmu_sync_page(sp); 1844 sp->unsync = 0; 1845 --kvm->stat.mmu_unsync; 1846 } 1847 1848 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 1849 struct list_head *invalid_list); 1850 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 1851 struct list_head *invalid_list); 1852 1853 static bool sp_has_gptes(struct kvm_mmu_page *sp) 1854 { 1855 if (sp->role.direct) 1856 return false; 1857 1858 if (sp->role.passthrough) 1859 return false; 1860 1861 return true; 1862 } 1863 1864 #define for_each_valid_sp(_kvm, _sp, _list) \ 1865 hlist_for_each_entry(_sp, _list, hash_link) \ 1866 if (is_obsolete_sp((_kvm), (_sp))) { \ 1867 } else 1868 1869 #define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn) \ 1870 for_each_valid_sp(_kvm, _sp, \ 1871 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \ 1872 if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else 1873 1874 static bool kvm_sync_page_check(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 1875 { 1876 union kvm_mmu_page_role root_role = vcpu->arch.mmu->root_role; 1877 1878 /* 1879 * Ignore various flags when verifying that it's safe to sync a shadow 1880 * page using the current MMU context. 1881 * 1882 * - level: not part of the overall MMU role and will never match as the MMU's 1883 * level tracks the root level 1884 * - access: updated based on the new guest PTE 1885 * - quadrant: not part of the overall MMU role (similar to level) 1886 */ 1887 const union kvm_mmu_page_role sync_role_ign = { 1888 .level = 0xf, 1889 .access = 0x7, 1890 .quadrant = 0x3, 1891 .passthrough = 0x1, 1892 }; 1893 1894 /* 1895 * Direct pages can never be unsync, and KVM should never attempt to 1896 * sync a shadow page for a different MMU context, e.g. if the role 1897 * differs then the memslot lookup (SMM vs. non-SMM) will be bogus, the 1898 * reserved bits checks will be wrong, etc... 1899 */ 1900 if (WARN_ON_ONCE(sp->role.direct || !vcpu->arch.mmu->sync_spte || 1901 (sp->role.word ^ root_role.word) & ~sync_role_ign.word)) 1902 return false; 1903 1904 return true; 1905 } 1906 1907 static int kvm_sync_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, int i) 1908 { 1909 /* sp->spt[i] has initial value of shadow page table allocation */ 1910 if (sp->spt[i] == SHADOW_NONPRESENT_VALUE) 1911 return 0; 1912 1913 return vcpu->arch.mmu->sync_spte(vcpu, sp, i); 1914 } 1915 1916 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 1917 { 1918 int flush = 0; 1919 int i; 1920 1921 if (!kvm_sync_page_check(vcpu, sp)) 1922 return -1; 1923 1924 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) { 1925 int ret = kvm_sync_spte(vcpu, sp, i); 1926 1927 if (ret < -1) 1928 return -1; 1929 flush |= ret; 1930 } 1931 1932 /* 1933 * Note, any flush is purely for KVM's correctness, e.g. when dropping 1934 * an existing SPTE or clearing W/A/D bits to ensure an mmu_notifier 1935 * unmap or dirty logging event doesn't fail to flush. The guest is 1936 * responsible for flushing the TLB to ensure any changes in protection 1937 * bits are recognized, i.e. until the guest flushes or page faults on 1938 * a relevant address, KVM is architecturally allowed to let vCPUs use 1939 * cached translations with the old protection bits. 1940 */ 1941 return flush; 1942 } 1943 1944 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 1945 struct list_head *invalid_list) 1946 { 1947 int ret = __kvm_sync_page(vcpu, sp); 1948 1949 if (ret < 0) 1950 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); 1951 return ret; 1952 } 1953 1954 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm, 1955 struct list_head *invalid_list, 1956 bool remote_flush) 1957 { 1958 if (!remote_flush && list_empty(invalid_list)) 1959 return false; 1960 1961 if (!list_empty(invalid_list)) 1962 kvm_mmu_commit_zap_page(kvm, invalid_list); 1963 else 1964 kvm_flush_remote_tlbs(kvm); 1965 return true; 1966 } 1967 1968 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 1969 { 1970 if (sp->role.invalid) 1971 return true; 1972 1973 /* TDP MMU pages do not use the MMU generation. */ 1974 return !is_tdp_mmu_page(sp) && 1975 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); 1976 } 1977 1978 struct mmu_page_path { 1979 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL]; 1980 unsigned int idx[PT64_ROOT_MAX_LEVEL]; 1981 }; 1982 1983 #define for_each_sp(pvec, sp, parents, i) \ 1984 for (i = mmu_pages_first(&pvec, &parents); \ 1985 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \ 1986 i = mmu_pages_next(&pvec, &parents, i)) 1987 1988 static int mmu_pages_next(struct kvm_mmu_pages *pvec, 1989 struct mmu_page_path *parents, 1990 int i) 1991 { 1992 int n; 1993 1994 for (n = i+1; n < pvec->nr; n++) { 1995 struct kvm_mmu_page *sp = pvec->page[n].sp; 1996 unsigned idx = pvec->page[n].idx; 1997 int level = sp->role.level; 1998 1999 parents->idx[level-1] = idx; 2000 if (level == PG_LEVEL_4K) 2001 break; 2002 2003 parents->parent[level-2] = sp; 2004 } 2005 2006 return n; 2007 } 2008 2009 static int mmu_pages_first(struct kvm_mmu_pages *pvec, 2010 struct mmu_page_path *parents) 2011 { 2012 struct kvm_mmu_page *sp; 2013 int level; 2014 2015 if (pvec->nr == 0) 2016 return 0; 2017 2018 WARN_ON_ONCE(pvec->page[0].idx != INVALID_INDEX); 2019 2020 sp = pvec->page[0].sp; 2021 level = sp->role.level; 2022 WARN_ON_ONCE(level == PG_LEVEL_4K); 2023 2024 parents->parent[level-2] = sp; 2025 2026 /* Also set up a sentinel. Further entries in pvec are all 2027 * children of sp, so this element is never overwritten. 2028 */ 2029 parents->parent[level-1] = NULL; 2030 return mmu_pages_next(pvec, parents, 0); 2031 } 2032 2033 static void mmu_pages_clear_parents(struct mmu_page_path *parents) 2034 { 2035 struct kvm_mmu_page *sp; 2036 unsigned int level = 0; 2037 2038 do { 2039 unsigned int idx = parents->idx[level]; 2040 sp = parents->parent[level]; 2041 if (!sp) 2042 return; 2043 2044 WARN_ON_ONCE(idx == INVALID_INDEX); 2045 clear_unsync_child_bit(sp, idx); 2046 level++; 2047 } while (!sp->unsync_children); 2048 } 2049 2050 static int mmu_sync_children(struct kvm_vcpu *vcpu, 2051 struct kvm_mmu_page *parent, bool can_yield) 2052 { 2053 int i; 2054 struct kvm_mmu_page *sp; 2055 struct mmu_page_path parents; 2056 struct kvm_mmu_pages pages; 2057 LIST_HEAD(invalid_list); 2058 bool flush = false; 2059 2060 while (mmu_unsync_walk(parent, &pages)) { 2061 bool protected = false; 2062 2063 for_each_sp(pages, sp, parents, i) 2064 protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn); 2065 2066 if (protected) { 2067 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true); 2068 flush = false; 2069 } 2070 2071 for_each_sp(pages, sp, parents, i) { 2072 kvm_unlink_unsync_page(vcpu->kvm, sp); 2073 flush |= kvm_sync_page(vcpu, sp, &invalid_list) > 0; 2074 mmu_pages_clear_parents(&parents); 2075 } 2076 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) { 2077 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2078 if (!can_yield) { 2079 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 2080 return -EINTR; 2081 } 2082 2083 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock); 2084 flush = false; 2085 } 2086 } 2087 2088 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2089 return 0; 2090 } 2091 2092 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) 2093 { 2094 atomic_set(&sp->write_flooding_count, 0); 2095 } 2096 2097 static void clear_sp_write_flooding_count(u64 *spte) 2098 { 2099 __clear_sp_write_flooding_count(sptep_to_sp(spte)); 2100 } 2101 2102 /* 2103 * The vCPU is required when finding indirect shadow pages; the shadow 2104 * page may already exist and syncing it needs the vCPU pointer in 2105 * order to read guest page tables. Direct shadow pages are never 2106 * unsync, thus @vcpu can be NULL if @role.direct is true. 2107 */ 2108 static struct kvm_mmu_page *kvm_mmu_find_shadow_page(struct kvm *kvm, 2109 struct kvm_vcpu *vcpu, 2110 gfn_t gfn, 2111 struct hlist_head *sp_list, 2112 union kvm_mmu_page_role role) 2113 { 2114 struct kvm_mmu_page *sp; 2115 int ret; 2116 int collisions = 0; 2117 LIST_HEAD(invalid_list); 2118 2119 for_each_valid_sp(kvm, sp, sp_list) { 2120 if (sp->gfn != gfn) { 2121 collisions++; 2122 continue; 2123 } 2124 2125 if (sp->role.word != role.word) { 2126 /* 2127 * If the guest is creating an upper-level page, zap 2128 * unsync pages for the same gfn. While it's possible 2129 * the guest is using recursive page tables, in all 2130 * likelihood the guest has stopped using the unsync 2131 * page and is installing a completely unrelated page. 2132 * Unsync pages must not be left as is, because the new 2133 * upper-level page will be write-protected. 2134 */ 2135 if (role.level > PG_LEVEL_4K && sp->unsync) 2136 kvm_mmu_prepare_zap_page(kvm, sp, 2137 &invalid_list); 2138 continue; 2139 } 2140 2141 /* unsync and write-flooding only apply to indirect SPs. */ 2142 if (sp->role.direct) 2143 goto out; 2144 2145 if (sp->unsync) { 2146 if (KVM_BUG_ON(!vcpu, kvm)) 2147 break; 2148 2149 /* 2150 * The page is good, but is stale. kvm_sync_page does 2151 * get the latest guest state, but (unlike mmu_unsync_children) 2152 * it doesn't write-protect the page or mark it synchronized! 2153 * This way the validity of the mapping is ensured, but the 2154 * overhead of write protection is not incurred until the 2155 * guest invalidates the TLB mapping. This allows multiple 2156 * SPs for a single gfn to be unsync. 2157 * 2158 * If the sync fails, the page is zapped. If so, break 2159 * in order to rebuild it. 2160 */ 2161 ret = kvm_sync_page(vcpu, sp, &invalid_list); 2162 if (ret < 0) 2163 break; 2164 2165 WARN_ON_ONCE(!list_empty(&invalid_list)); 2166 if (ret > 0) 2167 kvm_flush_remote_tlbs(kvm); 2168 } 2169 2170 __clear_sp_write_flooding_count(sp); 2171 2172 goto out; 2173 } 2174 2175 sp = NULL; 2176 ++kvm->stat.mmu_cache_miss; 2177 2178 out: 2179 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2180 2181 if (collisions > kvm->stat.max_mmu_page_hash_collisions) 2182 kvm->stat.max_mmu_page_hash_collisions = collisions; 2183 return sp; 2184 } 2185 2186 /* Caches used when allocating a new shadow page. */ 2187 struct shadow_page_caches { 2188 struct kvm_mmu_memory_cache *page_header_cache; 2189 struct kvm_mmu_memory_cache *shadow_page_cache; 2190 struct kvm_mmu_memory_cache *shadowed_info_cache; 2191 }; 2192 2193 static struct kvm_mmu_page *kvm_mmu_alloc_shadow_page(struct kvm *kvm, 2194 struct shadow_page_caches *caches, 2195 gfn_t gfn, 2196 struct hlist_head *sp_list, 2197 union kvm_mmu_page_role role) 2198 { 2199 struct kvm_mmu_page *sp; 2200 2201 sp = kvm_mmu_memory_cache_alloc(caches->page_header_cache); 2202 sp->spt = kvm_mmu_memory_cache_alloc(caches->shadow_page_cache); 2203 if (!role.direct) 2204 sp->shadowed_translation = kvm_mmu_memory_cache_alloc(caches->shadowed_info_cache); 2205 2206 set_page_private(virt_to_page(sp->spt), (unsigned long)sp); 2207 2208 INIT_LIST_HEAD(&sp->possible_nx_huge_page_link); 2209 2210 /* 2211 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages() 2212 * depends on valid pages being added to the head of the list. See 2213 * comments in kvm_zap_obsolete_pages(). 2214 */ 2215 sp->mmu_valid_gen = kvm->arch.mmu_valid_gen; 2216 list_add(&sp->link, &kvm->arch.active_mmu_pages); 2217 kvm_account_mmu_page(kvm, sp); 2218 2219 sp->gfn = gfn; 2220 sp->role = role; 2221 hlist_add_head(&sp->hash_link, sp_list); 2222 if (sp_has_gptes(sp)) 2223 account_shadowed(kvm, sp); 2224 2225 return sp; 2226 } 2227 2228 /* Note, @vcpu may be NULL if @role.direct is true; see kvm_mmu_find_shadow_page. */ 2229 static struct kvm_mmu_page *__kvm_mmu_get_shadow_page(struct kvm *kvm, 2230 struct kvm_vcpu *vcpu, 2231 struct shadow_page_caches *caches, 2232 gfn_t gfn, 2233 union kvm_mmu_page_role role) 2234 { 2235 struct hlist_head *sp_list; 2236 struct kvm_mmu_page *sp; 2237 bool created = false; 2238 2239 sp_list = &kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]; 2240 2241 sp = kvm_mmu_find_shadow_page(kvm, vcpu, gfn, sp_list, role); 2242 if (!sp) { 2243 created = true; 2244 sp = kvm_mmu_alloc_shadow_page(kvm, caches, gfn, sp_list, role); 2245 } 2246 2247 trace_kvm_mmu_get_page(sp, created); 2248 return sp; 2249 } 2250 2251 static struct kvm_mmu_page *kvm_mmu_get_shadow_page(struct kvm_vcpu *vcpu, 2252 gfn_t gfn, 2253 union kvm_mmu_page_role role) 2254 { 2255 struct shadow_page_caches caches = { 2256 .page_header_cache = &vcpu->arch.mmu_page_header_cache, 2257 .shadow_page_cache = &vcpu->arch.mmu_shadow_page_cache, 2258 .shadowed_info_cache = &vcpu->arch.mmu_shadowed_info_cache, 2259 }; 2260 2261 return __kvm_mmu_get_shadow_page(vcpu->kvm, vcpu, &caches, gfn, role); 2262 } 2263 2264 static union kvm_mmu_page_role kvm_mmu_child_role(u64 *sptep, bool direct, 2265 unsigned int access) 2266 { 2267 struct kvm_mmu_page *parent_sp = sptep_to_sp(sptep); 2268 union kvm_mmu_page_role role; 2269 2270 role = parent_sp->role; 2271 role.level--; 2272 role.access = access; 2273 role.direct = direct; 2274 role.passthrough = 0; 2275 2276 /* 2277 * If the guest has 4-byte PTEs then that means it's using 32-bit, 2278 * 2-level, non-PAE paging. KVM shadows such guests with PAE paging 2279 * (i.e. 8-byte PTEs). The difference in PTE size means that KVM must 2280 * shadow each guest page table with multiple shadow page tables, which 2281 * requires extra bookkeeping in the role. 2282 * 2283 * Specifically, to shadow the guest's page directory (which covers a 2284 * 4GiB address space), KVM uses 4 PAE page directories, each mapping 2285 * 1GiB of the address space. @role.quadrant encodes which quarter of 2286 * the address space each maps. 2287 * 2288 * To shadow the guest's page tables (which each map a 4MiB region), KVM 2289 * uses 2 PAE page tables, each mapping a 2MiB region. For these, 2290 * @role.quadrant encodes which half of the region they map. 2291 * 2292 * Concretely, a 4-byte PDE consumes bits 31:22, while an 8-byte PDE 2293 * consumes bits 29:21. To consume bits 31:30, KVM's uses 4 shadow 2294 * PDPTEs; those 4 PAE page directories are pre-allocated and their 2295 * quadrant is assigned in mmu_alloc_root(). A 4-byte PTE consumes 2296 * bits 21:12, while an 8-byte PTE consumes bits 20:12. To consume 2297 * bit 21 in the PTE (the child here), KVM propagates that bit to the 2298 * quadrant, i.e. sets quadrant to '0' or '1'. The parent 8-byte PDE 2299 * covers bit 21 (see above), thus the quadrant is calculated from the 2300 * _least_ significant bit of the PDE index. 2301 */ 2302 if (role.has_4_byte_gpte) { 2303 WARN_ON_ONCE(role.level != PG_LEVEL_4K); 2304 role.quadrant = spte_index(sptep) & 1; 2305 } 2306 2307 return role; 2308 } 2309 2310 static struct kvm_mmu_page *kvm_mmu_get_child_sp(struct kvm_vcpu *vcpu, 2311 u64 *sptep, gfn_t gfn, 2312 bool direct, unsigned int access) 2313 { 2314 union kvm_mmu_page_role role; 2315 2316 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) 2317 return ERR_PTR(-EEXIST); 2318 2319 role = kvm_mmu_child_role(sptep, direct, access); 2320 return kvm_mmu_get_shadow_page(vcpu, gfn, role); 2321 } 2322 2323 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator, 2324 struct kvm_vcpu *vcpu, hpa_t root, 2325 u64 addr) 2326 { 2327 iterator->addr = addr; 2328 iterator->shadow_addr = root; 2329 iterator->level = vcpu->arch.mmu->root_role.level; 2330 2331 if (iterator->level >= PT64_ROOT_4LEVEL && 2332 vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL && 2333 !vcpu->arch.mmu->root_role.direct) 2334 iterator->level = PT32E_ROOT_LEVEL; 2335 2336 if (iterator->level == PT32E_ROOT_LEVEL) { 2337 /* 2338 * prev_root is currently only used for 64-bit hosts. So only 2339 * the active root_hpa is valid here. 2340 */ 2341 BUG_ON(root != vcpu->arch.mmu->root.hpa); 2342 2343 iterator->shadow_addr 2344 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3]; 2345 iterator->shadow_addr &= SPTE_BASE_ADDR_MASK; 2346 --iterator->level; 2347 if (!iterator->shadow_addr) 2348 iterator->level = 0; 2349 } 2350 } 2351 2352 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, 2353 struct kvm_vcpu *vcpu, u64 addr) 2354 { 2355 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa, 2356 addr); 2357 } 2358 2359 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) 2360 { 2361 if (iterator->level < PG_LEVEL_4K) 2362 return false; 2363 2364 iterator->index = SPTE_INDEX(iterator->addr, iterator->level); 2365 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; 2366 return true; 2367 } 2368 2369 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, 2370 u64 spte) 2371 { 2372 if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) { 2373 iterator->level = 0; 2374 return; 2375 } 2376 2377 iterator->shadow_addr = spte & SPTE_BASE_ADDR_MASK; 2378 --iterator->level; 2379 } 2380 2381 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) 2382 { 2383 __shadow_walk_next(iterator, *iterator->sptep); 2384 } 2385 2386 static void __link_shadow_page(struct kvm *kvm, 2387 struct kvm_mmu_memory_cache *cache, u64 *sptep, 2388 struct kvm_mmu_page *sp, bool flush) 2389 { 2390 u64 spte; 2391 2392 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); 2393 2394 /* 2395 * If an SPTE is present already, it must be a leaf and therefore 2396 * a large one. Drop it, and flush the TLB if needed, before 2397 * installing sp. 2398 */ 2399 if (is_shadow_present_pte(*sptep)) 2400 drop_large_spte(kvm, sptep, flush); 2401 2402 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp)); 2403 2404 mmu_spte_set(sptep, spte); 2405 2406 mmu_page_add_parent_pte(cache, sp, sptep); 2407 2408 /* 2409 * The non-direct sub-pagetable must be updated before linking. For 2410 * L1 sp, the pagetable is updated via kvm_sync_page() in 2411 * kvm_mmu_find_shadow_page() without write-protecting the gfn, 2412 * so sp->unsync can be true or false. For higher level non-direct 2413 * sp, the pagetable is updated/synced via mmu_sync_children() in 2414 * FNAME(fetch)(), so sp->unsync_children can only be false. 2415 * WARN_ON_ONCE() if anything happens unexpectedly. 2416 */ 2417 if (WARN_ON_ONCE(sp->unsync_children) || sp->unsync) 2418 mark_unsync(sptep); 2419 } 2420 2421 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, 2422 struct kvm_mmu_page *sp) 2423 { 2424 __link_shadow_page(vcpu->kvm, &vcpu->arch.mmu_pte_list_desc_cache, sptep, sp, true); 2425 } 2426 2427 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2428 unsigned direct_access) 2429 { 2430 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { 2431 struct kvm_mmu_page *child; 2432 2433 /* 2434 * For the direct sp, if the guest pte's dirty bit 2435 * changed form clean to dirty, it will corrupt the 2436 * sp's access: allow writable in the read-only sp, 2437 * so we should update the spte at this point to get 2438 * a new sp with the correct access. 2439 */ 2440 child = spte_to_child_sp(*sptep); 2441 if (child->role.access == direct_access) 2442 return; 2443 2444 drop_parent_pte(vcpu->kvm, child, sptep); 2445 kvm_flush_remote_tlbs_sptep(vcpu->kvm, sptep); 2446 } 2447 } 2448 2449 /* Returns the number of zapped non-leaf child shadow pages. */ 2450 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 2451 u64 *spte, struct list_head *invalid_list) 2452 { 2453 u64 pte; 2454 struct kvm_mmu_page *child; 2455 2456 pte = *spte; 2457 if (is_shadow_present_pte(pte)) { 2458 if (is_last_spte(pte, sp->role.level)) { 2459 drop_spte(kvm, spte); 2460 } else { 2461 child = spte_to_child_sp(pte); 2462 drop_parent_pte(kvm, child, spte); 2463 2464 /* 2465 * Recursively zap nested TDP SPs, parentless SPs are 2466 * unlikely to be used again in the near future. This 2467 * avoids retaining a large number of stale nested SPs. 2468 */ 2469 if (tdp_enabled && invalid_list && 2470 child->role.guest_mode && !child->parent_ptes.val) 2471 return kvm_mmu_prepare_zap_page(kvm, child, 2472 invalid_list); 2473 } 2474 } else if (is_mmio_spte(kvm, pte)) { 2475 mmu_spte_clear_no_track(spte); 2476 } 2477 return 0; 2478 } 2479 2480 static int kvm_mmu_page_unlink_children(struct kvm *kvm, 2481 struct kvm_mmu_page *sp, 2482 struct list_head *invalid_list) 2483 { 2484 int zapped = 0; 2485 unsigned i; 2486 2487 for (i = 0; i < SPTE_ENT_PER_PAGE; ++i) 2488 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list); 2489 2490 return zapped; 2491 } 2492 2493 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp) 2494 { 2495 u64 *sptep; 2496 struct rmap_iterator iter; 2497 2498 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter))) 2499 drop_parent_pte(kvm, sp, sptep); 2500 } 2501 2502 static int mmu_zap_unsync_children(struct kvm *kvm, 2503 struct kvm_mmu_page *parent, 2504 struct list_head *invalid_list) 2505 { 2506 int i, zapped = 0; 2507 struct mmu_page_path parents; 2508 struct kvm_mmu_pages pages; 2509 2510 if (parent->role.level == PG_LEVEL_4K) 2511 return 0; 2512 2513 while (mmu_unsync_walk(parent, &pages)) { 2514 struct kvm_mmu_page *sp; 2515 2516 for_each_sp(pages, sp, parents, i) { 2517 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 2518 mmu_pages_clear_parents(&parents); 2519 zapped++; 2520 } 2521 } 2522 2523 return zapped; 2524 } 2525 2526 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm, 2527 struct kvm_mmu_page *sp, 2528 struct list_head *invalid_list, 2529 int *nr_zapped) 2530 { 2531 bool list_unstable, zapped_root = false; 2532 2533 lockdep_assert_held_write(&kvm->mmu_lock); 2534 trace_kvm_mmu_prepare_zap_page(sp); 2535 ++kvm->stat.mmu_shadow_zapped; 2536 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list); 2537 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list); 2538 kvm_mmu_unlink_parents(kvm, sp); 2539 2540 /* Zapping children means active_mmu_pages has become unstable. */ 2541 list_unstable = *nr_zapped; 2542 2543 if (!sp->role.invalid && sp_has_gptes(sp)) 2544 unaccount_shadowed(kvm, sp); 2545 2546 if (sp->unsync) 2547 kvm_unlink_unsync_page(kvm, sp); 2548 if (!sp->root_count) { 2549 /* Count self */ 2550 (*nr_zapped)++; 2551 2552 /* 2553 * Already invalid pages (previously active roots) are not on 2554 * the active page list. See list_del() in the "else" case of 2555 * !sp->root_count. 2556 */ 2557 if (sp->role.invalid) 2558 list_add(&sp->link, invalid_list); 2559 else 2560 list_move(&sp->link, invalid_list); 2561 kvm_unaccount_mmu_page(kvm, sp); 2562 } else { 2563 /* 2564 * Remove the active root from the active page list, the root 2565 * will be explicitly freed when the root_count hits zero. 2566 */ 2567 list_del(&sp->link); 2568 2569 /* 2570 * Obsolete pages cannot be used on any vCPUs, see the comment 2571 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also 2572 * treats invalid shadow pages as being obsolete. 2573 */ 2574 zapped_root = !is_obsolete_sp(kvm, sp); 2575 } 2576 2577 if (sp->nx_huge_page_disallowed) 2578 unaccount_nx_huge_page(kvm, sp); 2579 2580 sp->role.invalid = 1; 2581 2582 /* 2583 * Make the request to free obsolete roots after marking the root 2584 * invalid, otherwise other vCPUs may not see it as invalid. 2585 */ 2586 if (zapped_root) 2587 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 2588 return list_unstable; 2589 } 2590 2591 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 2592 struct list_head *invalid_list) 2593 { 2594 int nr_zapped; 2595 2596 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped); 2597 return nr_zapped; 2598 } 2599 2600 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 2601 struct list_head *invalid_list) 2602 { 2603 struct kvm_mmu_page *sp, *nsp; 2604 2605 if (list_empty(invalid_list)) 2606 return; 2607 2608 /* 2609 * We need to make sure everyone sees our modifications to 2610 * the page tables and see changes to vcpu->mode here. The barrier 2611 * in the kvm_flush_remote_tlbs() achieves this. This pairs 2612 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end. 2613 * 2614 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit 2615 * guest mode and/or lockless shadow page table walks. 2616 */ 2617 kvm_flush_remote_tlbs(kvm); 2618 2619 list_for_each_entry_safe(sp, nsp, invalid_list, link) { 2620 WARN_ON_ONCE(!sp->role.invalid || sp->root_count); 2621 kvm_mmu_free_shadow_page(sp); 2622 } 2623 } 2624 2625 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm, 2626 unsigned long nr_to_zap) 2627 { 2628 unsigned long total_zapped = 0; 2629 struct kvm_mmu_page *sp, *tmp; 2630 LIST_HEAD(invalid_list); 2631 bool unstable; 2632 int nr_zapped; 2633 2634 if (list_empty(&kvm->arch.active_mmu_pages)) 2635 return 0; 2636 2637 restart: 2638 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) { 2639 /* 2640 * Don't zap active root pages, the page itself can't be freed 2641 * and zapping it will just force vCPUs to realloc and reload. 2642 */ 2643 if (sp->root_count) 2644 continue; 2645 2646 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, 2647 &nr_zapped); 2648 total_zapped += nr_zapped; 2649 if (total_zapped >= nr_to_zap) 2650 break; 2651 2652 if (unstable) 2653 goto restart; 2654 } 2655 2656 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2657 2658 kvm->stat.mmu_recycled += total_zapped; 2659 return total_zapped; 2660 } 2661 2662 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm) 2663 { 2664 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) 2665 return kvm->arch.n_max_mmu_pages - 2666 kvm->arch.n_used_mmu_pages; 2667 2668 return 0; 2669 } 2670 2671 static int make_mmu_pages_available(struct kvm_vcpu *vcpu) 2672 { 2673 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm); 2674 2675 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES)) 2676 return 0; 2677 2678 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail); 2679 2680 /* 2681 * Note, this check is intentionally soft, it only guarantees that one 2682 * page is available, while the caller may end up allocating as many as 2683 * four pages, e.g. for PAE roots or for 5-level paging. Temporarily 2684 * exceeding the (arbitrary by default) limit will not harm the host, 2685 * being too aggressive may unnecessarily kill the guest, and getting an 2686 * exact count is far more trouble than it's worth, especially in the 2687 * page fault paths. 2688 */ 2689 if (!kvm_mmu_available_pages(vcpu->kvm)) 2690 return -ENOSPC; 2691 return 0; 2692 } 2693 2694 /* 2695 * Changing the number of mmu pages allocated to the vm 2696 * Note: if goal_nr_mmu_pages is too small, you will get dead lock 2697 */ 2698 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages) 2699 { 2700 write_lock(&kvm->mmu_lock); 2701 2702 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { 2703 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages - 2704 goal_nr_mmu_pages); 2705 2706 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; 2707 } 2708 2709 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; 2710 2711 write_unlock(&kvm->mmu_lock); 2712 } 2713 2714 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn) 2715 { 2716 struct kvm_mmu_page *sp; 2717 LIST_HEAD(invalid_list); 2718 int r; 2719 2720 r = 0; 2721 write_lock(&kvm->mmu_lock); 2722 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) { 2723 r = 1; 2724 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 2725 } 2726 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2727 write_unlock(&kvm->mmu_lock); 2728 2729 return r; 2730 } 2731 2732 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) 2733 { 2734 gpa_t gpa; 2735 int r; 2736 2737 if (vcpu->arch.mmu->root_role.direct) 2738 return 0; 2739 2740 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL); 2741 2742 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); 2743 2744 return r; 2745 } 2746 2747 static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 2748 { 2749 trace_kvm_mmu_unsync_page(sp); 2750 ++kvm->stat.mmu_unsync; 2751 sp->unsync = 1; 2752 2753 kvm_mmu_mark_parents_unsync(sp); 2754 } 2755 2756 /* 2757 * Attempt to unsync any shadow pages that can be reached by the specified gfn, 2758 * KVM is creating a writable mapping for said gfn. Returns 0 if all pages 2759 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must 2760 * be write-protected. 2761 */ 2762 int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot, 2763 gfn_t gfn, bool can_unsync, bool prefetch) 2764 { 2765 struct kvm_mmu_page *sp; 2766 bool locked = false; 2767 2768 /* 2769 * Force write-protection if the page is being tracked. Note, the page 2770 * track machinery is used to write-protect upper-level shadow pages, 2771 * i.e. this guards the role.level == 4K assertion below! 2772 */ 2773 if (kvm_gfn_is_write_tracked(kvm, slot, gfn)) 2774 return -EPERM; 2775 2776 /* 2777 * The page is not write-tracked, mark existing shadow pages unsync 2778 * unless KVM is synchronizing an unsync SP (can_unsync = false). In 2779 * that case, KVM must complete emulation of the guest TLB flush before 2780 * allowing shadow pages to become unsync (writable by the guest). 2781 */ 2782 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) { 2783 if (!can_unsync) 2784 return -EPERM; 2785 2786 if (sp->unsync) 2787 continue; 2788 2789 if (prefetch) 2790 return -EEXIST; 2791 2792 /* 2793 * TDP MMU page faults require an additional spinlock as they 2794 * run with mmu_lock held for read, not write, and the unsync 2795 * logic is not thread safe. Take the spinklock regardless of 2796 * the MMU type to avoid extra conditionals/parameters, there's 2797 * no meaningful penalty if mmu_lock is held for write. 2798 */ 2799 if (!locked) { 2800 locked = true; 2801 spin_lock(&kvm->arch.mmu_unsync_pages_lock); 2802 2803 /* 2804 * Recheck after taking the spinlock, a different vCPU 2805 * may have since marked the page unsync. A false 2806 * negative on the unprotected check above is not 2807 * possible as clearing sp->unsync _must_ hold mmu_lock 2808 * for write, i.e. unsync cannot transition from 1->0 2809 * while this CPU holds mmu_lock for read (or write). 2810 */ 2811 if (READ_ONCE(sp->unsync)) 2812 continue; 2813 } 2814 2815 WARN_ON_ONCE(sp->role.level != PG_LEVEL_4K); 2816 kvm_unsync_page(kvm, sp); 2817 } 2818 if (locked) 2819 spin_unlock(&kvm->arch.mmu_unsync_pages_lock); 2820 2821 /* 2822 * We need to ensure that the marking of unsync pages is visible 2823 * before the SPTE is updated to allow writes because 2824 * kvm_mmu_sync_roots() checks the unsync flags without holding 2825 * the MMU lock and so can race with this. If the SPTE was updated 2826 * before the page had been marked as unsync-ed, something like the 2827 * following could happen: 2828 * 2829 * CPU 1 CPU 2 2830 * --------------------------------------------------------------------- 2831 * 1.2 Host updates SPTE 2832 * to be writable 2833 * 2.1 Guest writes a GPTE for GVA X. 2834 * (GPTE being in the guest page table shadowed 2835 * by the SP from CPU 1.) 2836 * This reads SPTE during the page table walk. 2837 * Since SPTE.W is read as 1, there is no 2838 * fault. 2839 * 2840 * 2.2 Guest issues TLB flush. 2841 * That causes a VM Exit. 2842 * 2843 * 2.3 Walking of unsync pages sees sp->unsync is 2844 * false and skips the page. 2845 * 2846 * 2.4 Guest accesses GVA X. 2847 * Since the mapping in the SP was not updated, 2848 * so the old mapping for GVA X incorrectly 2849 * gets used. 2850 * 1.1 Host marks SP 2851 * as unsync 2852 * (sp->unsync = true) 2853 * 2854 * The write barrier below ensures that 1.1 happens before 1.2 and thus 2855 * the situation in 2.4 does not arise. It pairs with the read barrier 2856 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3. 2857 */ 2858 smp_wmb(); 2859 2860 return 0; 2861 } 2862 2863 static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, 2864 u64 *sptep, unsigned int pte_access, gfn_t gfn, 2865 kvm_pfn_t pfn, struct kvm_page_fault *fault) 2866 { 2867 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 2868 int level = sp->role.level; 2869 int was_rmapped = 0; 2870 int ret = RET_PF_FIXED; 2871 bool flush = false; 2872 bool wrprot; 2873 u64 spte; 2874 2875 /* Prefetching always gets a writable pfn. */ 2876 bool host_writable = !fault || fault->map_writable; 2877 bool prefetch = !fault || fault->prefetch; 2878 bool write_fault = fault && fault->write; 2879 2880 if (unlikely(is_noslot_pfn(pfn))) { 2881 vcpu->stat.pf_mmio_spte_created++; 2882 mark_mmio_spte(vcpu, sptep, gfn, pte_access); 2883 return RET_PF_EMULATE; 2884 } 2885 2886 if (is_shadow_present_pte(*sptep)) { 2887 /* 2888 * If we overwrite a PTE page pointer with a 2MB PMD, unlink 2889 * the parent of the now unreachable PTE. 2890 */ 2891 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) { 2892 struct kvm_mmu_page *child; 2893 u64 pte = *sptep; 2894 2895 child = spte_to_child_sp(pte); 2896 drop_parent_pte(vcpu->kvm, child, sptep); 2897 flush = true; 2898 } else if (pfn != spte_to_pfn(*sptep)) { 2899 drop_spte(vcpu->kvm, sptep); 2900 flush = true; 2901 } else 2902 was_rmapped = 1; 2903 } 2904 2905 wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch, 2906 true, host_writable, &spte); 2907 2908 if (*sptep == spte) { 2909 ret = RET_PF_SPURIOUS; 2910 } else { 2911 flush |= mmu_spte_update(sptep, spte); 2912 trace_kvm_mmu_set_spte(level, gfn, sptep); 2913 } 2914 2915 if (wrprot) { 2916 if (write_fault) 2917 ret = RET_PF_EMULATE; 2918 } 2919 2920 if (flush) 2921 kvm_flush_remote_tlbs_gfn(vcpu->kvm, gfn, level); 2922 2923 if (!was_rmapped) { 2924 WARN_ON_ONCE(ret == RET_PF_SPURIOUS); 2925 rmap_add(vcpu, slot, sptep, gfn, pte_access); 2926 } else { 2927 /* Already rmapped but the pte_access bits may have changed. */ 2928 kvm_mmu_page_set_access(sp, spte_index(sptep), pte_access); 2929 } 2930 2931 return ret; 2932 } 2933 2934 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu, 2935 struct kvm_mmu_page *sp, 2936 u64 *start, u64 *end) 2937 { 2938 struct page *pages[PTE_PREFETCH_NUM]; 2939 struct kvm_memory_slot *slot; 2940 unsigned int access = sp->role.access; 2941 int i, ret; 2942 gfn_t gfn; 2943 2944 gfn = kvm_mmu_page_get_gfn(sp, spte_index(start)); 2945 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK); 2946 if (!slot) 2947 return -1; 2948 2949 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start); 2950 if (ret <= 0) 2951 return -1; 2952 2953 for (i = 0; i < ret; i++, gfn++, start++) { 2954 mmu_set_spte(vcpu, slot, start, access, gfn, 2955 page_to_pfn(pages[i]), NULL); 2956 put_page(pages[i]); 2957 } 2958 2959 return 0; 2960 } 2961 2962 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, 2963 struct kvm_mmu_page *sp, u64 *sptep) 2964 { 2965 u64 *spte, *start = NULL; 2966 int i; 2967 2968 WARN_ON_ONCE(!sp->role.direct); 2969 2970 i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1); 2971 spte = sp->spt + i; 2972 2973 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 2974 if (is_shadow_present_pte(*spte) || spte == sptep) { 2975 if (!start) 2976 continue; 2977 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0) 2978 return; 2979 start = NULL; 2980 } else if (!start) 2981 start = spte; 2982 } 2983 if (start) 2984 direct_pte_prefetch_many(vcpu, sp, start, spte); 2985 } 2986 2987 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) 2988 { 2989 struct kvm_mmu_page *sp; 2990 2991 sp = sptep_to_sp(sptep); 2992 2993 /* 2994 * Without accessed bits, there's no way to distinguish between 2995 * actually accessed translations and prefetched, so disable pte 2996 * prefetch if accessed bits aren't available. 2997 */ 2998 if (sp_ad_disabled(sp)) 2999 return; 3000 3001 if (sp->role.level > PG_LEVEL_4K) 3002 return; 3003 3004 /* 3005 * If addresses are being invalidated, skip prefetching to avoid 3006 * accidentally prefetching those addresses. 3007 */ 3008 if (unlikely(vcpu->kvm->mmu_invalidate_in_progress)) 3009 return; 3010 3011 __direct_pte_prefetch(vcpu, sp, sptep); 3012 } 3013 3014 /* 3015 * Lookup the mapping level for @gfn in the current mm. 3016 * 3017 * WARNING! Use of host_pfn_mapping_level() requires the caller and the end 3018 * consumer to be tied into KVM's handlers for MMU notifier events! 3019 * 3020 * There are several ways to safely use this helper: 3021 * 3022 * - Check mmu_invalidate_retry_gfn() after grabbing the mapping level, before 3023 * consuming it. In this case, mmu_lock doesn't need to be held during the 3024 * lookup, but it does need to be held while checking the MMU notifier. 3025 * 3026 * - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation 3027 * event for the hva. This can be done by explicit checking the MMU notifier 3028 * or by ensuring that KVM already has a valid mapping that covers the hva. 3029 * 3030 * - Do not use the result to install new mappings, e.g. use the host mapping 3031 * level only to decide whether or not to zap an entry. In this case, it's 3032 * not required to hold mmu_lock (though it's highly likely the caller will 3033 * want to hold mmu_lock anyways, e.g. to modify SPTEs). 3034 * 3035 * Note! The lookup can still race with modifications to host page tables, but 3036 * the above "rules" ensure KVM will not _consume_ the result of the walk if a 3037 * race with the primary MMU occurs. 3038 */ 3039 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, 3040 const struct kvm_memory_slot *slot) 3041 { 3042 int level = PG_LEVEL_4K; 3043 unsigned long hva; 3044 unsigned long flags; 3045 pgd_t pgd; 3046 p4d_t p4d; 3047 pud_t pud; 3048 pmd_t pmd; 3049 3050 /* 3051 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot() 3052 * is not solely for performance, it's also necessary to avoid the 3053 * "writable" check in __gfn_to_hva_many(), which will always fail on 3054 * read-only memslots due to gfn_to_hva() assuming writes. Earlier 3055 * page fault steps have already verified the guest isn't writing a 3056 * read-only memslot. 3057 */ 3058 hva = __gfn_to_hva_memslot(slot, gfn); 3059 3060 /* 3061 * Disable IRQs to prevent concurrent tear down of host page tables, 3062 * e.g. if the primary MMU promotes a P*D to a huge page and then frees 3063 * the original page table. 3064 */ 3065 local_irq_save(flags); 3066 3067 /* 3068 * Read each entry once. As above, a non-leaf entry can be promoted to 3069 * a huge page _during_ this walk. Re-reading the entry could send the 3070 * walk into the weeks, e.g. p*d_leaf() returns false (sees the old 3071 * value) and then p*d_offset() walks into the target huge page instead 3072 * of the old page table (sees the new value). 3073 */ 3074 pgd = READ_ONCE(*pgd_offset(kvm->mm, hva)); 3075 if (pgd_none(pgd)) 3076 goto out; 3077 3078 p4d = READ_ONCE(*p4d_offset(&pgd, hva)); 3079 if (p4d_none(p4d) || !p4d_present(p4d)) 3080 goto out; 3081 3082 pud = READ_ONCE(*pud_offset(&p4d, hva)); 3083 if (pud_none(pud) || !pud_present(pud)) 3084 goto out; 3085 3086 if (pud_leaf(pud)) { 3087 level = PG_LEVEL_1G; 3088 goto out; 3089 } 3090 3091 pmd = READ_ONCE(*pmd_offset(&pud, hva)); 3092 if (pmd_none(pmd) || !pmd_present(pmd)) 3093 goto out; 3094 3095 if (pmd_leaf(pmd)) 3096 level = PG_LEVEL_2M; 3097 3098 out: 3099 local_irq_restore(flags); 3100 return level; 3101 } 3102 3103 static int __kvm_mmu_max_mapping_level(struct kvm *kvm, 3104 const struct kvm_memory_slot *slot, 3105 gfn_t gfn, int max_level, bool is_private) 3106 { 3107 struct kvm_lpage_info *linfo; 3108 int host_level; 3109 3110 max_level = min(max_level, max_huge_page_level); 3111 for ( ; max_level > PG_LEVEL_4K; max_level--) { 3112 linfo = lpage_info_slot(gfn, slot, max_level); 3113 if (!linfo->disallow_lpage) 3114 break; 3115 } 3116 3117 if (is_private) 3118 return max_level; 3119 3120 if (max_level == PG_LEVEL_4K) 3121 return PG_LEVEL_4K; 3122 3123 host_level = host_pfn_mapping_level(kvm, gfn, slot); 3124 return min(host_level, max_level); 3125 } 3126 3127 int kvm_mmu_max_mapping_level(struct kvm *kvm, 3128 const struct kvm_memory_slot *slot, gfn_t gfn, 3129 int max_level) 3130 { 3131 bool is_private = kvm_slot_can_be_private(slot) && 3132 kvm_mem_is_private(kvm, gfn); 3133 3134 return __kvm_mmu_max_mapping_level(kvm, slot, gfn, max_level, is_private); 3135 } 3136 3137 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3138 { 3139 struct kvm_memory_slot *slot = fault->slot; 3140 kvm_pfn_t mask; 3141 3142 fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled; 3143 3144 if (unlikely(fault->max_level == PG_LEVEL_4K)) 3145 return; 3146 3147 if (is_error_noslot_pfn(fault->pfn)) 3148 return; 3149 3150 if (kvm_slot_dirty_track_enabled(slot)) 3151 return; 3152 3153 /* 3154 * Enforce the iTLB multihit workaround after capturing the requested 3155 * level, which will be used to do precise, accurate accounting. 3156 */ 3157 fault->req_level = __kvm_mmu_max_mapping_level(vcpu->kvm, slot, 3158 fault->gfn, fault->max_level, 3159 fault->is_private); 3160 if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed) 3161 return; 3162 3163 /* 3164 * mmu_invalidate_retry() was successful and mmu_lock is held, so 3165 * the pmd can't be split from under us. 3166 */ 3167 fault->goal_level = fault->req_level; 3168 mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1; 3169 VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask)); 3170 fault->pfn &= ~mask; 3171 } 3172 3173 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level) 3174 { 3175 if (cur_level > PG_LEVEL_4K && 3176 cur_level == fault->goal_level && 3177 is_shadow_present_pte(spte) && 3178 !is_large_pte(spte) && 3179 spte_to_child_sp(spte)->nx_huge_page_disallowed) { 3180 /* 3181 * A small SPTE exists for this pfn, but FNAME(fetch), 3182 * direct_map(), or kvm_tdp_mmu_map() would like to create a 3183 * large PTE instead: just force them to go down another level, 3184 * patching back for them into pfn the next 9 bits of the 3185 * address. 3186 */ 3187 u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) - 3188 KVM_PAGES_PER_HPAGE(cur_level - 1); 3189 fault->pfn |= fault->gfn & page_mask; 3190 fault->goal_level--; 3191 } 3192 } 3193 3194 static int direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3195 { 3196 struct kvm_shadow_walk_iterator it; 3197 struct kvm_mmu_page *sp; 3198 int ret; 3199 gfn_t base_gfn = fault->gfn; 3200 3201 kvm_mmu_hugepage_adjust(vcpu, fault); 3202 3203 trace_kvm_mmu_spte_requested(fault); 3204 for_each_shadow_entry(vcpu, fault->addr, it) { 3205 /* 3206 * We cannot overwrite existing page tables with an NX 3207 * large page, as the leaf could be executable. 3208 */ 3209 if (fault->nx_huge_page_workaround_enabled) 3210 disallowed_hugepage_adjust(fault, *it.sptep, it.level); 3211 3212 base_gfn = gfn_round_for_level(fault->gfn, it.level); 3213 if (it.level == fault->goal_level) 3214 break; 3215 3216 sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, true, ACC_ALL); 3217 if (sp == ERR_PTR(-EEXIST)) 3218 continue; 3219 3220 link_shadow_page(vcpu, it.sptep, sp); 3221 if (fault->huge_page_disallowed) 3222 account_nx_huge_page(vcpu->kvm, sp, 3223 fault->req_level >= it.level); 3224 } 3225 3226 if (WARN_ON_ONCE(it.level != fault->goal_level)) 3227 return -EFAULT; 3228 3229 ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL, 3230 base_gfn, fault->pfn, fault); 3231 if (ret == RET_PF_SPURIOUS) 3232 return ret; 3233 3234 direct_pte_prefetch(vcpu, it.sptep); 3235 return ret; 3236 } 3237 3238 static void kvm_send_hwpoison_signal(struct kvm_memory_slot *slot, gfn_t gfn) 3239 { 3240 unsigned long hva = gfn_to_hva_memslot(slot, gfn); 3241 3242 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva, PAGE_SHIFT, current); 3243 } 3244 3245 static int kvm_handle_error_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3246 { 3247 if (is_sigpending_pfn(fault->pfn)) { 3248 kvm_handle_signal_exit(vcpu); 3249 return -EINTR; 3250 } 3251 3252 /* 3253 * Do not cache the mmio info caused by writing the readonly gfn 3254 * into the spte otherwise read access on readonly gfn also can 3255 * caused mmio page fault and treat it as mmio access. 3256 */ 3257 if (fault->pfn == KVM_PFN_ERR_RO_FAULT) 3258 return RET_PF_EMULATE; 3259 3260 if (fault->pfn == KVM_PFN_ERR_HWPOISON) { 3261 kvm_send_hwpoison_signal(fault->slot, fault->gfn); 3262 return RET_PF_RETRY; 3263 } 3264 3265 return -EFAULT; 3266 } 3267 3268 static int kvm_handle_noslot_fault(struct kvm_vcpu *vcpu, 3269 struct kvm_page_fault *fault, 3270 unsigned int access) 3271 { 3272 gva_t gva = fault->is_tdp ? 0 : fault->addr; 3273 3274 if (fault->is_private) { 3275 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 3276 return -EFAULT; 3277 } 3278 3279 vcpu_cache_mmio_info(vcpu, gva, fault->gfn, 3280 access & shadow_mmio_access_mask); 3281 3282 fault->slot = NULL; 3283 fault->pfn = KVM_PFN_NOSLOT; 3284 fault->map_writable = false; 3285 fault->hva = KVM_HVA_ERR_BAD; 3286 3287 /* 3288 * If MMIO caching is disabled, emulate immediately without 3289 * touching the shadow page tables as attempting to install an 3290 * MMIO SPTE will just be an expensive nop. 3291 */ 3292 if (unlikely(!enable_mmio_caching)) 3293 return RET_PF_EMULATE; 3294 3295 /* 3296 * Do not create an MMIO SPTE for a gfn greater than host.MAXPHYADDR, 3297 * any guest that generates such gfns is running nested and is being 3298 * tricked by L0 userspace (you can observe gfn > L1.MAXPHYADDR if and 3299 * only if L1's MAXPHYADDR is inaccurate with respect to the 3300 * hardware's). 3301 */ 3302 if (unlikely(fault->gfn > kvm_mmu_max_gfn())) 3303 return RET_PF_EMULATE; 3304 3305 return RET_PF_CONTINUE; 3306 } 3307 3308 static bool page_fault_can_be_fast(struct kvm_page_fault *fault) 3309 { 3310 /* 3311 * Page faults with reserved bits set, i.e. faults on MMIO SPTEs, only 3312 * reach the common page fault handler if the SPTE has an invalid MMIO 3313 * generation number. Refreshing the MMIO generation needs to go down 3314 * the slow path. Note, EPT Misconfigs do NOT set the PRESENT flag! 3315 */ 3316 if (fault->rsvd) 3317 return false; 3318 3319 /* 3320 * #PF can be fast if: 3321 * 3322 * 1. The shadow page table entry is not present and A/D bits are 3323 * disabled _by KVM_, which could mean that the fault is potentially 3324 * caused by access tracking (if enabled). If A/D bits are enabled 3325 * by KVM, but disabled by L1 for L2, KVM is forced to disable A/D 3326 * bits for L2 and employ access tracking, but the fast page fault 3327 * mechanism only supports direct MMUs. 3328 * 2. The shadow page table entry is present, the access is a write, 3329 * and no reserved bits are set (MMIO SPTEs cannot be "fixed"), i.e. 3330 * the fault was caused by a write-protection violation. If the 3331 * SPTE is MMU-writable (determined later), the fault can be fixed 3332 * by setting the Writable bit, which can be done out of mmu_lock. 3333 */ 3334 if (!fault->present) 3335 return !kvm_ad_enabled(); 3336 3337 /* 3338 * Note, instruction fetches and writes are mutually exclusive, ignore 3339 * the "exec" flag. 3340 */ 3341 return fault->write; 3342 } 3343 3344 /* 3345 * Returns true if the SPTE was fixed successfully. Otherwise, 3346 * someone else modified the SPTE from its original value. 3347 */ 3348 static bool fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, 3349 struct kvm_page_fault *fault, 3350 u64 *sptep, u64 old_spte, u64 new_spte) 3351 { 3352 /* 3353 * Theoretically we could also set dirty bit (and flush TLB) here in 3354 * order to eliminate unnecessary PML logging. See comments in 3355 * set_spte. But fast_page_fault is very unlikely to happen with PML 3356 * enabled, so we do not do this. This might result in the same GPA 3357 * to be logged in PML buffer again when the write really happens, and 3358 * eventually to be called by mark_page_dirty twice. But it's also no 3359 * harm. This also avoids the TLB flush needed after setting dirty bit 3360 * so non-PML cases won't be impacted. 3361 * 3362 * Compare with set_spte where instead shadow_dirty_mask is set. 3363 */ 3364 if (!try_cmpxchg64(sptep, &old_spte, new_spte)) 3365 return false; 3366 3367 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) 3368 mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn); 3369 3370 return true; 3371 } 3372 3373 static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte) 3374 { 3375 if (fault->exec) 3376 return is_executable_pte(spte); 3377 3378 if (fault->write) 3379 return is_writable_pte(spte); 3380 3381 /* Fault was on Read access */ 3382 return spte & PT_PRESENT_MASK; 3383 } 3384 3385 /* 3386 * Returns the last level spte pointer of the shadow page walk for the given 3387 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no 3388 * walk could be performed, returns NULL and *spte does not contain valid data. 3389 * 3390 * Contract: 3391 * - Must be called between walk_shadow_page_lockless_{begin,end}. 3392 * - The returned sptep must not be used after walk_shadow_page_lockless_end. 3393 */ 3394 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte) 3395 { 3396 struct kvm_shadow_walk_iterator iterator; 3397 u64 old_spte; 3398 u64 *sptep = NULL; 3399 3400 for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) { 3401 sptep = iterator.sptep; 3402 *spte = old_spte; 3403 } 3404 3405 return sptep; 3406 } 3407 3408 /* 3409 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS. 3410 */ 3411 static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3412 { 3413 struct kvm_mmu_page *sp; 3414 int ret = RET_PF_INVALID; 3415 u64 spte; 3416 u64 *sptep; 3417 uint retry_count = 0; 3418 3419 if (!page_fault_can_be_fast(fault)) 3420 return ret; 3421 3422 walk_shadow_page_lockless_begin(vcpu); 3423 3424 do { 3425 u64 new_spte; 3426 3427 if (tdp_mmu_enabled) 3428 sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->addr, &spte); 3429 else 3430 sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte); 3431 3432 /* 3433 * It's entirely possible for the mapping to have been zapped 3434 * by a different task, but the root page should always be 3435 * available as the vCPU holds a reference to its root(s). 3436 */ 3437 if (WARN_ON_ONCE(!sptep)) 3438 spte = REMOVED_SPTE; 3439 3440 if (!is_shadow_present_pte(spte)) 3441 break; 3442 3443 sp = sptep_to_sp(sptep); 3444 if (!is_last_spte(spte, sp->role.level)) 3445 break; 3446 3447 /* 3448 * Check whether the memory access that caused the fault would 3449 * still cause it if it were to be performed right now. If not, 3450 * then this is a spurious fault caused by TLB lazily flushed, 3451 * or some other CPU has already fixed the PTE after the 3452 * current CPU took the fault. 3453 * 3454 * Need not check the access of upper level table entries since 3455 * they are always ACC_ALL. 3456 */ 3457 if (is_access_allowed(fault, spte)) { 3458 ret = RET_PF_SPURIOUS; 3459 break; 3460 } 3461 3462 new_spte = spte; 3463 3464 /* 3465 * KVM only supports fixing page faults outside of MMU lock for 3466 * direct MMUs, nested MMUs are always indirect, and KVM always 3467 * uses A/D bits for non-nested MMUs. Thus, if A/D bits are 3468 * enabled, the SPTE can't be an access-tracked SPTE. 3469 */ 3470 if (unlikely(!kvm_ad_enabled()) && is_access_track_spte(spte)) 3471 new_spte = restore_acc_track_spte(new_spte); 3472 3473 /* 3474 * To keep things simple, only SPTEs that are MMU-writable can 3475 * be made fully writable outside of mmu_lock, e.g. only SPTEs 3476 * that were write-protected for dirty-logging or access 3477 * tracking are handled here. Don't bother checking if the 3478 * SPTE is writable to prioritize running with A/D bits enabled. 3479 * The is_access_allowed() check above handles the common case 3480 * of the fault being spurious, and the SPTE is known to be 3481 * shadow-present, i.e. except for access tracking restoration 3482 * making the new SPTE writable, the check is wasteful. 3483 */ 3484 if (fault->write && is_mmu_writable_spte(spte)) { 3485 new_spte |= PT_WRITABLE_MASK; 3486 3487 /* 3488 * Do not fix write-permission on the large spte when 3489 * dirty logging is enabled. Since we only dirty the 3490 * first page into the dirty-bitmap in 3491 * fast_pf_fix_direct_spte(), other pages are missed 3492 * if its slot has dirty logging enabled. 3493 * 3494 * Instead, we let the slow page fault path create a 3495 * normal spte to fix the access. 3496 */ 3497 if (sp->role.level > PG_LEVEL_4K && 3498 kvm_slot_dirty_track_enabled(fault->slot)) 3499 break; 3500 } 3501 3502 /* Verify that the fault can be handled in the fast path */ 3503 if (new_spte == spte || 3504 !is_access_allowed(fault, new_spte)) 3505 break; 3506 3507 /* 3508 * Currently, fast page fault only works for direct mapping 3509 * since the gfn is not stable for indirect shadow page. See 3510 * Documentation/virt/kvm/locking.rst to get more detail. 3511 */ 3512 if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) { 3513 ret = RET_PF_FIXED; 3514 break; 3515 } 3516 3517 if (++retry_count > 4) { 3518 pr_warn_once("Fast #PF retrying more than 4 times.\n"); 3519 break; 3520 } 3521 3522 } while (true); 3523 3524 trace_fast_page_fault(vcpu, fault, sptep, spte, ret); 3525 walk_shadow_page_lockless_end(vcpu); 3526 3527 if (ret != RET_PF_INVALID) 3528 vcpu->stat.pf_fast++; 3529 3530 return ret; 3531 } 3532 3533 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa, 3534 struct list_head *invalid_list) 3535 { 3536 struct kvm_mmu_page *sp; 3537 3538 if (!VALID_PAGE(*root_hpa)) 3539 return; 3540 3541 sp = root_to_sp(*root_hpa); 3542 if (WARN_ON_ONCE(!sp)) 3543 return; 3544 3545 if (is_tdp_mmu_page(sp)) { 3546 lockdep_assert_held_read(&kvm->mmu_lock); 3547 kvm_tdp_mmu_put_root(kvm, sp); 3548 } else { 3549 lockdep_assert_held_write(&kvm->mmu_lock); 3550 if (!--sp->root_count && sp->role.invalid) 3551 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 3552 } 3553 3554 *root_hpa = INVALID_PAGE; 3555 } 3556 3557 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */ 3558 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, 3559 ulong roots_to_free) 3560 { 3561 bool is_tdp_mmu = tdp_mmu_enabled && mmu->root_role.direct; 3562 int i; 3563 LIST_HEAD(invalid_list); 3564 bool free_active_root; 3565 3566 WARN_ON_ONCE(roots_to_free & ~KVM_MMU_ROOTS_ALL); 3567 3568 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG); 3569 3570 /* Before acquiring the MMU lock, see if we need to do any real work. */ 3571 free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT) 3572 && VALID_PAGE(mmu->root.hpa); 3573 3574 if (!free_active_root) { 3575 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3576 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) && 3577 VALID_PAGE(mmu->prev_roots[i].hpa)) 3578 break; 3579 3580 if (i == KVM_MMU_NUM_PREV_ROOTS) 3581 return; 3582 } 3583 3584 if (is_tdp_mmu) 3585 read_lock(&kvm->mmu_lock); 3586 else 3587 write_lock(&kvm->mmu_lock); 3588 3589 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3590 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) 3591 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa, 3592 &invalid_list); 3593 3594 if (free_active_root) { 3595 if (kvm_mmu_is_dummy_root(mmu->root.hpa)) { 3596 /* Nothing to cleanup for dummy roots. */ 3597 } else if (root_to_sp(mmu->root.hpa)) { 3598 mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list); 3599 } else if (mmu->pae_root) { 3600 for (i = 0; i < 4; ++i) { 3601 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i])) 3602 continue; 3603 3604 mmu_free_root_page(kvm, &mmu->pae_root[i], 3605 &invalid_list); 3606 mmu->pae_root[i] = INVALID_PAE_ROOT; 3607 } 3608 } 3609 mmu->root.hpa = INVALID_PAGE; 3610 mmu->root.pgd = 0; 3611 } 3612 3613 if (is_tdp_mmu) { 3614 read_unlock(&kvm->mmu_lock); 3615 WARN_ON_ONCE(!list_empty(&invalid_list)); 3616 } else { 3617 kvm_mmu_commit_zap_page(kvm, &invalid_list); 3618 write_unlock(&kvm->mmu_lock); 3619 } 3620 } 3621 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots); 3622 3623 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu) 3624 { 3625 unsigned long roots_to_free = 0; 3626 struct kvm_mmu_page *sp; 3627 hpa_t root_hpa; 3628 int i; 3629 3630 /* 3631 * This should not be called while L2 is active, L2 can't invalidate 3632 * _only_ its own roots, e.g. INVVPID unconditionally exits. 3633 */ 3634 WARN_ON_ONCE(mmu->root_role.guest_mode); 3635 3636 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 3637 root_hpa = mmu->prev_roots[i].hpa; 3638 if (!VALID_PAGE(root_hpa)) 3639 continue; 3640 3641 sp = root_to_sp(root_hpa); 3642 if (!sp || sp->role.guest_mode) 3643 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 3644 } 3645 3646 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 3647 } 3648 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots); 3649 3650 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, int quadrant, 3651 u8 level) 3652 { 3653 union kvm_mmu_page_role role = vcpu->arch.mmu->root_role; 3654 struct kvm_mmu_page *sp; 3655 3656 role.level = level; 3657 role.quadrant = quadrant; 3658 3659 WARN_ON_ONCE(quadrant && !role.has_4_byte_gpte); 3660 WARN_ON_ONCE(role.direct && role.has_4_byte_gpte); 3661 3662 sp = kvm_mmu_get_shadow_page(vcpu, gfn, role); 3663 ++sp->root_count; 3664 3665 return __pa(sp->spt); 3666 } 3667 3668 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) 3669 { 3670 struct kvm_mmu *mmu = vcpu->arch.mmu; 3671 u8 shadow_root_level = mmu->root_role.level; 3672 hpa_t root; 3673 unsigned i; 3674 int r; 3675 3676 if (tdp_mmu_enabled) 3677 return kvm_tdp_mmu_alloc_root(vcpu); 3678 3679 write_lock(&vcpu->kvm->mmu_lock); 3680 r = make_mmu_pages_available(vcpu); 3681 if (r < 0) 3682 goto out_unlock; 3683 3684 if (shadow_root_level >= PT64_ROOT_4LEVEL) { 3685 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level); 3686 mmu->root.hpa = root; 3687 } else if (shadow_root_level == PT32E_ROOT_LEVEL) { 3688 if (WARN_ON_ONCE(!mmu->pae_root)) { 3689 r = -EIO; 3690 goto out_unlock; 3691 } 3692 3693 for (i = 0; i < 4; ++i) { 3694 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3695 3696 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 0, 3697 PT32_ROOT_LEVEL); 3698 mmu->pae_root[i] = root | PT_PRESENT_MASK | 3699 shadow_me_value; 3700 } 3701 mmu->root.hpa = __pa(mmu->pae_root); 3702 } else { 3703 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level); 3704 r = -EIO; 3705 goto out_unlock; 3706 } 3707 3708 /* root.pgd is ignored for direct MMUs. */ 3709 mmu->root.pgd = 0; 3710 out_unlock: 3711 write_unlock(&vcpu->kvm->mmu_lock); 3712 return r; 3713 } 3714 3715 static int mmu_first_shadow_root_alloc(struct kvm *kvm) 3716 { 3717 struct kvm_memslots *slots; 3718 struct kvm_memory_slot *slot; 3719 int r = 0, i, bkt; 3720 3721 /* 3722 * Check if this is the first shadow root being allocated before 3723 * taking the lock. 3724 */ 3725 if (kvm_shadow_root_allocated(kvm)) 3726 return 0; 3727 3728 mutex_lock(&kvm->slots_arch_lock); 3729 3730 /* Recheck, under the lock, whether this is the first shadow root. */ 3731 if (kvm_shadow_root_allocated(kvm)) 3732 goto out_unlock; 3733 3734 /* 3735 * Check if anything actually needs to be allocated, e.g. all metadata 3736 * will be allocated upfront if TDP is disabled. 3737 */ 3738 if (kvm_memslots_have_rmaps(kvm) && 3739 kvm_page_track_write_tracking_enabled(kvm)) 3740 goto out_success; 3741 3742 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 3743 slots = __kvm_memslots(kvm, i); 3744 kvm_for_each_memslot(slot, bkt, slots) { 3745 /* 3746 * Both of these functions are no-ops if the target is 3747 * already allocated, so unconditionally calling both 3748 * is safe. Intentionally do NOT free allocations on 3749 * failure to avoid having to track which allocations 3750 * were made now versus when the memslot was created. 3751 * The metadata is guaranteed to be freed when the slot 3752 * is freed, and will be kept/used if userspace retries 3753 * KVM_RUN instead of killing the VM. 3754 */ 3755 r = memslot_rmap_alloc(slot, slot->npages); 3756 if (r) 3757 goto out_unlock; 3758 r = kvm_page_track_write_tracking_alloc(slot); 3759 if (r) 3760 goto out_unlock; 3761 } 3762 } 3763 3764 /* 3765 * Ensure that shadow_root_allocated becomes true strictly after 3766 * all the related pointers are set. 3767 */ 3768 out_success: 3769 smp_store_release(&kvm->arch.shadow_root_allocated, true); 3770 3771 out_unlock: 3772 mutex_unlock(&kvm->slots_arch_lock); 3773 return r; 3774 } 3775 3776 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) 3777 { 3778 struct kvm_mmu *mmu = vcpu->arch.mmu; 3779 u64 pdptrs[4], pm_mask; 3780 gfn_t root_gfn, root_pgd; 3781 int quadrant, i, r; 3782 hpa_t root; 3783 3784 root_pgd = kvm_mmu_get_guest_pgd(vcpu, mmu); 3785 root_gfn = (root_pgd & __PT_BASE_ADDR_MASK) >> PAGE_SHIFT; 3786 3787 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) { 3788 mmu->root.hpa = kvm_mmu_get_dummy_root(); 3789 return 0; 3790 } 3791 3792 /* 3793 * On SVM, reading PDPTRs might access guest memory, which might fault 3794 * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock. 3795 */ 3796 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { 3797 for (i = 0; i < 4; ++i) { 3798 pdptrs[i] = mmu->get_pdptr(vcpu, i); 3799 if (!(pdptrs[i] & PT_PRESENT_MASK)) 3800 continue; 3801 3802 if (!kvm_vcpu_is_visible_gfn(vcpu, pdptrs[i] >> PAGE_SHIFT)) 3803 pdptrs[i] = 0; 3804 } 3805 } 3806 3807 r = mmu_first_shadow_root_alloc(vcpu->kvm); 3808 if (r) 3809 return r; 3810 3811 write_lock(&vcpu->kvm->mmu_lock); 3812 r = make_mmu_pages_available(vcpu); 3813 if (r < 0) 3814 goto out_unlock; 3815 3816 /* 3817 * Do we shadow a long mode page table? If so we need to 3818 * write-protect the guests page table root. 3819 */ 3820 if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { 3821 root = mmu_alloc_root(vcpu, root_gfn, 0, 3822 mmu->root_role.level); 3823 mmu->root.hpa = root; 3824 goto set_root_pgd; 3825 } 3826 3827 if (WARN_ON_ONCE(!mmu->pae_root)) { 3828 r = -EIO; 3829 goto out_unlock; 3830 } 3831 3832 /* 3833 * We shadow a 32 bit page table. This may be a legacy 2-level 3834 * or a PAE 3-level page table. In either case we need to be aware that 3835 * the shadow page table may be a PAE or a long mode page table. 3836 */ 3837 pm_mask = PT_PRESENT_MASK | shadow_me_value; 3838 if (mmu->root_role.level >= PT64_ROOT_4LEVEL) { 3839 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; 3840 3841 if (WARN_ON_ONCE(!mmu->pml4_root)) { 3842 r = -EIO; 3843 goto out_unlock; 3844 } 3845 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask; 3846 3847 if (mmu->root_role.level == PT64_ROOT_5LEVEL) { 3848 if (WARN_ON_ONCE(!mmu->pml5_root)) { 3849 r = -EIO; 3850 goto out_unlock; 3851 } 3852 mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask; 3853 } 3854 } 3855 3856 for (i = 0; i < 4; ++i) { 3857 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3858 3859 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { 3860 if (!(pdptrs[i] & PT_PRESENT_MASK)) { 3861 mmu->pae_root[i] = INVALID_PAE_ROOT; 3862 continue; 3863 } 3864 root_gfn = pdptrs[i] >> PAGE_SHIFT; 3865 } 3866 3867 /* 3868 * If shadowing 32-bit non-PAE page tables, each PAE page 3869 * directory maps one quarter of the guest's non-PAE page 3870 * directory. Othwerise each PAE page direct shadows one guest 3871 * PAE page directory so that quadrant should be 0. 3872 */ 3873 quadrant = (mmu->cpu_role.base.level == PT32_ROOT_LEVEL) ? i : 0; 3874 3875 root = mmu_alloc_root(vcpu, root_gfn, quadrant, PT32_ROOT_LEVEL); 3876 mmu->pae_root[i] = root | pm_mask; 3877 } 3878 3879 if (mmu->root_role.level == PT64_ROOT_5LEVEL) 3880 mmu->root.hpa = __pa(mmu->pml5_root); 3881 else if (mmu->root_role.level == PT64_ROOT_4LEVEL) 3882 mmu->root.hpa = __pa(mmu->pml4_root); 3883 else 3884 mmu->root.hpa = __pa(mmu->pae_root); 3885 3886 set_root_pgd: 3887 mmu->root.pgd = root_pgd; 3888 out_unlock: 3889 write_unlock(&vcpu->kvm->mmu_lock); 3890 3891 return r; 3892 } 3893 3894 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu) 3895 { 3896 struct kvm_mmu *mmu = vcpu->arch.mmu; 3897 bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL; 3898 u64 *pml5_root = NULL; 3899 u64 *pml4_root = NULL; 3900 u64 *pae_root; 3901 3902 /* 3903 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP 3904 * tables are allocated and initialized at root creation as there is no 3905 * equivalent level in the guest's NPT to shadow. Allocate the tables 3906 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare. 3907 */ 3908 if (mmu->root_role.direct || 3909 mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL || 3910 mmu->root_role.level < PT64_ROOT_4LEVEL) 3911 return 0; 3912 3913 /* 3914 * NPT, the only paging mode that uses this horror, uses a fixed number 3915 * of levels for the shadow page tables, e.g. all MMUs are 4-level or 3916 * all MMus are 5-level. Thus, this can safely require that pml5_root 3917 * is allocated if the other roots are valid and pml5 is needed, as any 3918 * prior MMU would also have required pml5. 3919 */ 3920 if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root)) 3921 return 0; 3922 3923 /* 3924 * The special roots should always be allocated in concert. Yell and 3925 * bail if KVM ends up in a state where only one of the roots is valid. 3926 */ 3927 if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root || 3928 (need_pml5 && mmu->pml5_root))) 3929 return -EIO; 3930 3931 /* 3932 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and 3933 * doesn't need to be decrypted. 3934 */ 3935 pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3936 if (!pae_root) 3937 return -ENOMEM; 3938 3939 #ifdef CONFIG_X86_64 3940 pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3941 if (!pml4_root) 3942 goto err_pml4; 3943 3944 if (need_pml5) { 3945 pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3946 if (!pml5_root) 3947 goto err_pml5; 3948 } 3949 #endif 3950 3951 mmu->pae_root = pae_root; 3952 mmu->pml4_root = pml4_root; 3953 mmu->pml5_root = pml5_root; 3954 3955 return 0; 3956 3957 #ifdef CONFIG_X86_64 3958 err_pml5: 3959 free_page((unsigned long)pml4_root); 3960 err_pml4: 3961 free_page((unsigned long)pae_root); 3962 return -ENOMEM; 3963 #endif 3964 } 3965 3966 static bool is_unsync_root(hpa_t root) 3967 { 3968 struct kvm_mmu_page *sp; 3969 3970 if (!VALID_PAGE(root) || kvm_mmu_is_dummy_root(root)) 3971 return false; 3972 3973 /* 3974 * The read barrier orders the CPU's read of SPTE.W during the page table 3975 * walk before the reads of sp->unsync/sp->unsync_children here. 3976 * 3977 * Even if another CPU was marking the SP as unsync-ed simultaneously, 3978 * any guest page table changes are not guaranteed to be visible anyway 3979 * until this VCPU issues a TLB flush strictly after those changes are 3980 * made. We only need to ensure that the other CPU sets these flags 3981 * before any actual changes to the page tables are made. The comments 3982 * in mmu_try_to_unsync_pages() describe what could go wrong if this 3983 * requirement isn't satisfied. 3984 */ 3985 smp_rmb(); 3986 sp = root_to_sp(root); 3987 3988 /* 3989 * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the 3990 * PDPTEs for a given PAE root need to be synchronized individually. 3991 */ 3992 if (WARN_ON_ONCE(!sp)) 3993 return false; 3994 3995 if (sp->unsync || sp->unsync_children) 3996 return true; 3997 3998 return false; 3999 } 4000 4001 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) 4002 { 4003 int i; 4004 struct kvm_mmu_page *sp; 4005 4006 if (vcpu->arch.mmu->root_role.direct) 4007 return; 4008 4009 if (!VALID_PAGE(vcpu->arch.mmu->root.hpa)) 4010 return; 4011 4012 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 4013 4014 if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { 4015 hpa_t root = vcpu->arch.mmu->root.hpa; 4016 4017 if (!is_unsync_root(root)) 4018 return; 4019 4020 sp = root_to_sp(root); 4021 4022 write_lock(&vcpu->kvm->mmu_lock); 4023 mmu_sync_children(vcpu, sp, true); 4024 write_unlock(&vcpu->kvm->mmu_lock); 4025 return; 4026 } 4027 4028 write_lock(&vcpu->kvm->mmu_lock); 4029 4030 for (i = 0; i < 4; ++i) { 4031 hpa_t root = vcpu->arch.mmu->pae_root[i]; 4032 4033 if (IS_VALID_PAE_ROOT(root)) { 4034 sp = spte_to_child_sp(root); 4035 mmu_sync_children(vcpu, sp, true); 4036 } 4037 } 4038 4039 write_unlock(&vcpu->kvm->mmu_lock); 4040 } 4041 4042 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu) 4043 { 4044 unsigned long roots_to_free = 0; 4045 int i; 4046 4047 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 4048 if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa)) 4049 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 4050 4051 /* sync prev_roots by simply freeing them */ 4052 kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free); 4053 } 4054 4055 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 4056 gpa_t vaddr, u64 access, 4057 struct x86_exception *exception) 4058 { 4059 if (exception) 4060 exception->error_code = 0; 4061 return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception); 4062 } 4063 4064 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct) 4065 { 4066 /* 4067 * A nested guest cannot use the MMIO cache if it is using nested 4068 * page tables, because cr2 is a nGPA while the cache stores GPAs. 4069 */ 4070 if (mmu_is_nested(vcpu)) 4071 return false; 4072 4073 if (direct) 4074 return vcpu_match_mmio_gpa(vcpu, addr); 4075 4076 return vcpu_match_mmio_gva(vcpu, addr); 4077 } 4078 4079 /* 4080 * Return the level of the lowest level SPTE added to sptes. 4081 * That SPTE may be non-present. 4082 * 4083 * Must be called between walk_shadow_page_lockless_{begin,end}. 4084 */ 4085 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level) 4086 { 4087 struct kvm_shadow_walk_iterator iterator; 4088 int leaf = -1; 4089 u64 spte; 4090 4091 for (shadow_walk_init(&iterator, vcpu, addr), 4092 *root_level = iterator.level; 4093 shadow_walk_okay(&iterator); 4094 __shadow_walk_next(&iterator, spte)) { 4095 leaf = iterator.level; 4096 spte = mmu_spte_get_lockless(iterator.sptep); 4097 4098 sptes[leaf] = spte; 4099 } 4100 4101 return leaf; 4102 } 4103 4104 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */ 4105 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) 4106 { 4107 u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; 4108 struct rsvd_bits_validate *rsvd_check; 4109 int root, leaf, level; 4110 bool reserved = false; 4111 4112 walk_shadow_page_lockless_begin(vcpu); 4113 4114 if (is_tdp_mmu_active(vcpu)) 4115 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root); 4116 else 4117 leaf = get_walk(vcpu, addr, sptes, &root); 4118 4119 walk_shadow_page_lockless_end(vcpu); 4120 4121 if (unlikely(leaf < 0)) { 4122 *sptep = 0ull; 4123 return reserved; 4124 } 4125 4126 *sptep = sptes[leaf]; 4127 4128 /* 4129 * Skip reserved bits checks on the terminal leaf if it's not a valid 4130 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by 4131 * design, always have reserved bits set. The purpose of the checks is 4132 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs. 4133 */ 4134 if (!is_shadow_present_pte(sptes[leaf])) 4135 leaf++; 4136 4137 rsvd_check = &vcpu->arch.mmu->shadow_zero_check; 4138 4139 for (level = root; level >= leaf; level--) 4140 reserved |= is_rsvd_spte(rsvd_check, sptes[level], level); 4141 4142 if (reserved) { 4143 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n", 4144 __func__, addr); 4145 for (level = root; level >= leaf; level--) 4146 pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx", 4147 sptes[level], level, 4148 get_rsvd_bits(rsvd_check, sptes[level], level)); 4149 } 4150 4151 return reserved; 4152 } 4153 4154 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct) 4155 { 4156 u64 spte; 4157 bool reserved; 4158 4159 if (mmio_info_in_cache(vcpu, addr, direct)) 4160 return RET_PF_EMULATE; 4161 4162 reserved = get_mmio_spte(vcpu, addr, &spte); 4163 if (WARN_ON_ONCE(reserved)) 4164 return -EINVAL; 4165 4166 if (is_mmio_spte(vcpu->kvm, spte)) { 4167 gfn_t gfn = get_mmio_spte_gfn(spte); 4168 unsigned int access = get_mmio_spte_access(spte); 4169 4170 if (!check_mmio_spte(vcpu, spte)) 4171 return RET_PF_INVALID; 4172 4173 if (direct) 4174 addr = 0; 4175 4176 trace_handle_mmio_page_fault(addr, gfn, access); 4177 vcpu_cache_mmio_info(vcpu, addr, gfn, access); 4178 return RET_PF_EMULATE; 4179 } 4180 4181 /* 4182 * If the page table is zapped by other cpus, let CPU fault again on 4183 * the address. 4184 */ 4185 return RET_PF_RETRY; 4186 } 4187 4188 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu, 4189 struct kvm_page_fault *fault) 4190 { 4191 if (unlikely(fault->rsvd)) 4192 return false; 4193 4194 if (!fault->present || !fault->write) 4195 return false; 4196 4197 /* 4198 * guest is writing the page which is write tracked which can 4199 * not be fixed by page fault handler. 4200 */ 4201 if (kvm_gfn_is_write_tracked(vcpu->kvm, fault->slot, fault->gfn)) 4202 return true; 4203 4204 return false; 4205 } 4206 4207 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr) 4208 { 4209 struct kvm_shadow_walk_iterator iterator; 4210 u64 spte; 4211 4212 walk_shadow_page_lockless_begin(vcpu); 4213 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) 4214 clear_sp_write_flooding_count(iterator.sptep); 4215 walk_shadow_page_lockless_end(vcpu); 4216 } 4217 4218 static u32 alloc_apf_token(struct kvm_vcpu *vcpu) 4219 { 4220 /* make sure the token value is not 0 */ 4221 u32 id = vcpu->arch.apf.id; 4222 4223 if (id << 12 == 0) 4224 vcpu->arch.apf.id = 1; 4225 4226 return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; 4227 } 4228 4229 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, 4230 struct kvm_page_fault *fault) 4231 { 4232 struct kvm_arch_async_pf arch; 4233 4234 arch.token = alloc_apf_token(vcpu); 4235 arch.gfn = fault->gfn; 4236 arch.error_code = fault->error_code; 4237 arch.direct_map = vcpu->arch.mmu->root_role.direct; 4238 arch.cr3 = kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu); 4239 4240 return kvm_setup_async_pf(vcpu, fault->addr, 4241 kvm_vcpu_gfn_to_hva(vcpu, fault->gfn), &arch); 4242 } 4243 4244 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 4245 { 4246 int r; 4247 4248 if (WARN_ON_ONCE(work->arch.error_code & PFERR_PRIVATE_ACCESS)) 4249 return; 4250 4251 if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) || 4252 work->wakeup_all) 4253 return; 4254 4255 r = kvm_mmu_reload(vcpu); 4256 if (unlikely(r)) 4257 return; 4258 4259 if (!vcpu->arch.mmu->root_role.direct && 4260 work->arch.cr3 != kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu)) 4261 return; 4262 4263 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, work->arch.error_code, true, NULL); 4264 } 4265 4266 static inline u8 kvm_max_level_for_order(int order) 4267 { 4268 BUILD_BUG_ON(KVM_MAX_HUGEPAGE_LEVEL > PG_LEVEL_1G); 4269 4270 KVM_MMU_WARN_ON(order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G) && 4271 order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M) && 4272 order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K)); 4273 4274 if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G)) 4275 return PG_LEVEL_1G; 4276 4277 if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M)) 4278 return PG_LEVEL_2M; 4279 4280 return PG_LEVEL_4K; 4281 } 4282 4283 static int kvm_faultin_pfn_private(struct kvm_vcpu *vcpu, 4284 struct kvm_page_fault *fault) 4285 { 4286 int max_order, r; 4287 4288 if (!kvm_slot_can_be_private(fault->slot)) { 4289 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 4290 return -EFAULT; 4291 } 4292 4293 r = kvm_gmem_get_pfn(vcpu->kvm, fault->slot, fault->gfn, &fault->pfn, 4294 &max_order); 4295 if (r) { 4296 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 4297 return r; 4298 } 4299 4300 fault->max_level = min(kvm_max_level_for_order(max_order), 4301 fault->max_level); 4302 fault->map_writable = !(fault->slot->flags & KVM_MEM_READONLY); 4303 4304 return RET_PF_CONTINUE; 4305 } 4306 4307 static int __kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4308 { 4309 bool async; 4310 4311 if (fault->is_private) 4312 return kvm_faultin_pfn_private(vcpu, fault); 4313 4314 async = false; 4315 fault->pfn = __gfn_to_pfn_memslot(fault->slot, fault->gfn, false, false, 4316 &async, fault->write, 4317 &fault->map_writable, &fault->hva); 4318 if (!async) 4319 return RET_PF_CONTINUE; /* *pfn has correct page already */ 4320 4321 if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) { 4322 trace_kvm_try_async_get_page(fault->addr, fault->gfn); 4323 if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) { 4324 trace_kvm_async_pf_repeated_fault(fault->addr, fault->gfn); 4325 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 4326 return RET_PF_RETRY; 4327 } else if (kvm_arch_setup_async_pf(vcpu, fault)) { 4328 return RET_PF_RETRY; 4329 } 4330 } 4331 4332 /* 4333 * Allow gup to bail on pending non-fatal signals when it's also allowed 4334 * to wait for IO. Note, gup always bails if it is unable to quickly 4335 * get a page and a fatal signal, i.e. SIGKILL, is pending. 4336 */ 4337 fault->pfn = __gfn_to_pfn_memslot(fault->slot, fault->gfn, false, true, 4338 NULL, fault->write, 4339 &fault->map_writable, &fault->hva); 4340 return RET_PF_CONTINUE; 4341 } 4342 4343 static int kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, 4344 unsigned int access) 4345 { 4346 struct kvm_memory_slot *slot = fault->slot; 4347 int ret; 4348 4349 /* 4350 * Note that the mmu_invalidate_seq also serves to detect a concurrent 4351 * change in attributes. is_page_fault_stale() will detect an 4352 * invalidation relate to fault->fn and resume the guest without 4353 * installing a mapping in the page tables. 4354 */ 4355 fault->mmu_seq = vcpu->kvm->mmu_invalidate_seq; 4356 smp_rmb(); 4357 4358 /* 4359 * Now that we have a snapshot of mmu_invalidate_seq we can check for a 4360 * private vs. shared mismatch. 4361 */ 4362 if (fault->is_private != kvm_mem_is_private(vcpu->kvm, fault->gfn)) { 4363 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 4364 return -EFAULT; 4365 } 4366 4367 if (unlikely(!slot)) 4368 return kvm_handle_noslot_fault(vcpu, fault, access); 4369 4370 /* 4371 * Retry the page fault if the gfn hit a memslot that is being deleted 4372 * or moved. This ensures any existing SPTEs for the old memslot will 4373 * be zapped before KVM inserts a new MMIO SPTE for the gfn. 4374 */ 4375 if (slot->flags & KVM_MEMSLOT_INVALID) 4376 return RET_PF_RETRY; 4377 4378 if (slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT) { 4379 /* 4380 * Don't map L1's APIC access page into L2, KVM doesn't support 4381 * using APICv/AVIC to accelerate L2 accesses to L1's APIC, 4382 * i.e. the access needs to be emulated. Emulating access to 4383 * L1's APIC is also correct if L1 is accelerating L2's own 4384 * virtual APIC, but for some reason L1 also maps _L1's_ APIC 4385 * into L2. Note, vcpu_is_mmio_gpa() always treats access to 4386 * the APIC as MMIO. Allow an MMIO SPTE to be created, as KVM 4387 * uses different roots for L1 vs. L2, i.e. there is no danger 4388 * of breaking APICv/AVIC for L1. 4389 */ 4390 if (is_guest_mode(vcpu)) 4391 return kvm_handle_noslot_fault(vcpu, fault, access); 4392 4393 /* 4394 * If the APIC access page exists but is disabled, go directly 4395 * to emulation without caching the MMIO access or creating a 4396 * MMIO SPTE. That way the cache doesn't need to be purged 4397 * when the AVIC is re-enabled. 4398 */ 4399 if (!kvm_apicv_activated(vcpu->kvm)) 4400 return RET_PF_EMULATE; 4401 } 4402 4403 fault->mmu_seq = vcpu->kvm->mmu_invalidate_seq; 4404 smp_rmb(); 4405 4406 /* 4407 * Check for a relevant mmu_notifier invalidation event before getting 4408 * the pfn from the primary MMU, and before acquiring mmu_lock. 4409 * 4410 * For mmu_lock, if there is an in-progress invalidation and the kernel 4411 * allows preemption, the invalidation task may drop mmu_lock and yield 4412 * in response to mmu_lock being contended, which is *very* counter- 4413 * productive as this vCPU can't actually make forward progress until 4414 * the invalidation completes. 4415 * 4416 * Retrying now can also avoid unnessary lock contention in the primary 4417 * MMU, as the primary MMU doesn't necessarily hold a single lock for 4418 * the duration of the invalidation, i.e. faulting in a conflicting pfn 4419 * can cause the invalidation to take longer by holding locks that are 4420 * needed to complete the invalidation. 4421 * 4422 * Do the pre-check even for non-preemtible kernels, i.e. even if KVM 4423 * will never yield mmu_lock in response to contention, as this vCPU is 4424 * *guaranteed* to need to retry, i.e. waiting until mmu_lock is held 4425 * to detect retry guarantees the worst case latency for the vCPU. 4426 */ 4427 if (mmu_invalidate_retry_gfn_unsafe(vcpu->kvm, fault->mmu_seq, fault->gfn)) 4428 return RET_PF_RETRY; 4429 4430 ret = __kvm_faultin_pfn(vcpu, fault); 4431 if (ret != RET_PF_CONTINUE) 4432 return ret; 4433 4434 if (unlikely(is_error_pfn(fault->pfn))) 4435 return kvm_handle_error_pfn(vcpu, fault); 4436 4437 if (WARN_ON_ONCE(!fault->slot || is_noslot_pfn(fault->pfn))) 4438 return kvm_handle_noslot_fault(vcpu, fault, access); 4439 4440 /* 4441 * Check again for a relevant mmu_notifier invalidation event purely to 4442 * avoid contending mmu_lock. Most invalidations will be detected by 4443 * the previous check, but checking is extremely cheap relative to the 4444 * overall cost of failing to detect the invalidation until after 4445 * mmu_lock is acquired. 4446 */ 4447 if (mmu_invalidate_retry_gfn_unsafe(vcpu->kvm, fault->mmu_seq, fault->gfn)) { 4448 kvm_release_pfn_clean(fault->pfn); 4449 return RET_PF_RETRY; 4450 } 4451 4452 return RET_PF_CONTINUE; 4453 } 4454 4455 /* 4456 * Returns true if the page fault is stale and needs to be retried, i.e. if the 4457 * root was invalidated by a memslot update or a relevant mmu_notifier fired. 4458 */ 4459 static bool is_page_fault_stale(struct kvm_vcpu *vcpu, 4460 struct kvm_page_fault *fault) 4461 { 4462 struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa); 4463 4464 /* Special roots, e.g. pae_root, are not backed by shadow pages. */ 4465 if (sp && is_obsolete_sp(vcpu->kvm, sp)) 4466 return true; 4467 4468 /* 4469 * Roots without an associated shadow page are considered invalid if 4470 * there is a pending request to free obsolete roots. The request is 4471 * only a hint that the current root _may_ be obsolete and needs to be 4472 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a 4473 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs 4474 * to reload even if no vCPU is actively using the root. 4475 */ 4476 if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 4477 return true; 4478 4479 /* 4480 * Check for a relevant mmu_notifier invalidation event one last time 4481 * now that mmu_lock is held, as the "unsafe" checks performed without 4482 * holding mmu_lock can get false negatives. 4483 */ 4484 return fault->slot && 4485 mmu_invalidate_retry_gfn(vcpu->kvm, fault->mmu_seq, fault->gfn); 4486 } 4487 4488 static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4489 { 4490 int r; 4491 4492 /* Dummy roots are used only for shadowing bad guest roots. */ 4493 if (WARN_ON_ONCE(kvm_mmu_is_dummy_root(vcpu->arch.mmu->root.hpa))) 4494 return RET_PF_RETRY; 4495 4496 if (page_fault_handle_page_track(vcpu, fault)) 4497 return RET_PF_EMULATE; 4498 4499 r = fast_page_fault(vcpu, fault); 4500 if (r != RET_PF_INVALID) 4501 return r; 4502 4503 r = mmu_topup_memory_caches(vcpu, false); 4504 if (r) 4505 return r; 4506 4507 r = kvm_faultin_pfn(vcpu, fault, ACC_ALL); 4508 if (r != RET_PF_CONTINUE) 4509 return r; 4510 4511 r = RET_PF_RETRY; 4512 write_lock(&vcpu->kvm->mmu_lock); 4513 4514 if (is_page_fault_stale(vcpu, fault)) 4515 goto out_unlock; 4516 4517 r = make_mmu_pages_available(vcpu); 4518 if (r) 4519 goto out_unlock; 4520 4521 r = direct_map(vcpu, fault); 4522 4523 out_unlock: 4524 write_unlock(&vcpu->kvm->mmu_lock); 4525 kvm_release_pfn_clean(fault->pfn); 4526 return r; 4527 } 4528 4529 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, 4530 struct kvm_page_fault *fault) 4531 { 4532 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */ 4533 fault->max_level = PG_LEVEL_2M; 4534 return direct_page_fault(vcpu, fault); 4535 } 4536 4537 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, 4538 u64 fault_address, char *insn, int insn_len) 4539 { 4540 int r = 1; 4541 u32 flags = vcpu->arch.apf.host_apf_flags; 4542 4543 #ifndef CONFIG_X86_64 4544 /* A 64-bit CR2 should be impossible on 32-bit KVM. */ 4545 if (WARN_ON_ONCE(fault_address >> 32)) 4546 return -EFAULT; 4547 #endif 4548 /* 4549 * Legacy #PF exception only have a 32-bit error code. Simply drop the 4550 * upper bits as KVM doesn't use them for #PF (because they are never 4551 * set), and to ensure there are no collisions with KVM-defined bits. 4552 */ 4553 if (WARN_ON_ONCE(error_code >> 32)) 4554 error_code = lower_32_bits(error_code); 4555 4556 /* Ensure the above sanity check also covers KVM-defined flags. */ 4557 BUILD_BUG_ON(lower_32_bits(PFERR_SYNTHETIC_MASK)); 4558 4559 vcpu->arch.l1tf_flush_l1d = true; 4560 if (!flags) { 4561 trace_kvm_page_fault(vcpu, fault_address, error_code); 4562 4563 if (kvm_event_needs_reinjection(vcpu)) 4564 kvm_mmu_unprotect_page_virt(vcpu, fault_address); 4565 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn, 4566 insn_len); 4567 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) { 4568 vcpu->arch.apf.host_apf_flags = 0; 4569 local_irq_disable(); 4570 kvm_async_pf_task_wait_schedule(fault_address); 4571 local_irq_enable(); 4572 } else { 4573 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags); 4574 } 4575 4576 return r; 4577 } 4578 EXPORT_SYMBOL_GPL(kvm_handle_page_fault); 4579 4580 #ifdef CONFIG_X86_64 4581 static int kvm_tdp_mmu_page_fault(struct kvm_vcpu *vcpu, 4582 struct kvm_page_fault *fault) 4583 { 4584 int r; 4585 4586 if (page_fault_handle_page_track(vcpu, fault)) 4587 return RET_PF_EMULATE; 4588 4589 r = fast_page_fault(vcpu, fault); 4590 if (r != RET_PF_INVALID) 4591 return r; 4592 4593 r = mmu_topup_memory_caches(vcpu, false); 4594 if (r) 4595 return r; 4596 4597 r = kvm_faultin_pfn(vcpu, fault, ACC_ALL); 4598 if (r != RET_PF_CONTINUE) 4599 return r; 4600 4601 r = RET_PF_RETRY; 4602 read_lock(&vcpu->kvm->mmu_lock); 4603 4604 if (is_page_fault_stale(vcpu, fault)) 4605 goto out_unlock; 4606 4607 r = kvm_tdp_mmu_map(vcpu, fault); 4608 4609 out_unlock: 4610 read_unlock(&vcpu->kvm->mmu_lock); 4611 kvm_release_pfn_clean(fault->pfn); 4612 return r; 4613 } 4614 #endif 4615 4616 bool __kvm_mmu_honors_guest_mtrrs(bool vm_has_noncoherent_dma) 4617 { 4618 /* 4619 * If host MTRRs are ignored (shadow_memtype_mask is non-zero), and the 4620 * VM has non-coherent DMA (DMA doesn't snoop CPU caches), KVM's ABI is 4621 * to honor the memtype from the guest's MTRRs so that guest accesses 4622 * to memory that is DMA'd aren't cached against the guest's wishes. 4623 * 4624 * Note, KVM may still ultimately ignore guest MTRRs for certain PFNs, 4625 * e.g. KVM will force UC memtype for host MMIO. 4626 */ 4627 return vm_has_noncoherent_dma && shadow_memtype_mask; 4628 } 4629 4630 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4631 { 4632 /* 4633 * If the guest's MTRRs may be used to compute the "real" memtype, 4634 * restrict the mapping level to ensure KVM uses a consistent memtype 4635 * across the entire mapping. 4636 */ 4637 if (kvm_mmu_honors_guest_mtrrs(vcpu->kvm)) { 4638 for ( ; fault->max_level > PG_LEVEL_4K; --fault->max_level) { 4639 int page_num = KVM_PAGES_PER_HPAGE(fault->max_level); 4640 gfn_t base = gfn_round_for_level(fault->gfn, 4641 fault->max_level); 4642 4643 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num)) 4644 break; 4645 } 4646 } 4647 4648 #ifdef CONFIG_X86_64 4649 if (tdp_mmu_enabled) 4650 return kvm_tdp_mmu_page_fault(vcpu, fault); 4651 #endif 4652 4653 return direct_page_fault(vcpu, fault); 4654 } 4655 4656 static void nonpaging_init_context(struct kvm_mmu *context) 4657 { 4658 context->page_fault = nonpaging_page_fault; 4659 context->gva_to_gpa = nonpaging_gva_to_gpa; 4660 context->sync_spte = NULL; 4661 } 4662 4663 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd, 4664 union kvm_mmu_page_role role) 4665 { 4666 struct kvm_mmu_page *sp; 4667 4668 if (!VALID_PAGE(root->hpa)) 4669 return false; 4670 4671 if (!role.direct && pgd != root->pgd) 4672 return false; 4673 4674 sp = root_to_sp(root->hpa); 4675 if (WARN_ON_ONCE(!sp)) 4676 return false; 4677 4678 return role.word == sp->role.word; 4679 } 4680 4681 /* 4682 * Find out if a previously cached root matching the new pgd/role is available, 4683 * and insert the current root as the MRU in the cache. 4684 * If a matching root is found, it is assigned to kvm_mmu->root and 4685 * true is returned. 4686 * If no match is found, kvm_mmu->root is left invalid, the LRU root is 4687 * evicted to make room for the current root, and false is returned. 4688 */ 4689 static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu, 4690 gpa_t new_pgd, 4691 union kvm_mmu_page_role new_role) 4692 { 4693 uint i; 4694 4695 if (is_root_usable(&mmu->root, new_pgd, new_role)) 4696 return true; 4697 4698 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 4699 /* 4700 * The swaps end up rotating the cache like this: 4701 * C 0 1 2 3 (on entry to the function) 4702 * 0 C 1 2 3 4703 * 1 C 0 2 3 4704 * 2 C 0 1 3 4705 * 3 C 0 1 2 (on exit from the loop) 4706 */ 4707 swap(mmu->root, mmu->prev_roots[i]); 4708 if (is_root_usable(&mmu->root, new_pgd, new_role)) 4709 return true; 4710 } 4711 4712 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 4713 return false; 4714 } 4715 4716 /* 4717 * Find out if a previously cached root matching the new pgd/role is available. 4718 * On entry, mmu->root is invalid. 4719 * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry 4720 * of the cache becomes invalid, and true is returned. 4721 * If no match is found, kvm_mmu->root is left invalid and false is returned. 4722 */ 4723 static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu, 4724 gpa_t new_pgd, 4725 union kvm_mmu_page_role new_role) 4726 { 4727 uint i; 4728 4729 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 4730 if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role)) 4731 goto hit; 4732 4733 return false; 4734 4735 hit: 4736 swap(mmu->root, mmu->prev_roots[i]); 4737 /* Bubble up the remaining roots. */ 4738 for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++) 4739 mmu->prev_roots[i] = mmu->prev_roots[i + 1]; 4740 mmu->prev_roots[i].hpa = INVALID_PAGE; 4741 return true; 4742 } 4743 4744 static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu, 4745 gpa_t new_pgd, union kvm_mmu_page_role new_role) 4746 { 4747 /* 4748 * Limit reuse to 64-bit hosts+VMs without "special" roots in order to 4749 * avoid having to deal with PDPTEs and other complexities. 4750 */ 4751 if (VALID_PAGE(mmu->root.hpa) && !root_to_sp(mmu->root.hpa)) 4752 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 4753 4754 if (VALID_PAGE(mmu->root.hpa)) 4755 return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role); 4756 else 4757 return cached_root_find_without_current(kvm, mmu, new_pgd, new_role); 4758 } 4759 4760 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd) 4761 { 4762 struct kvm_mmu *mmu = vcpu->arch.mmu; 4763 union kvm_mmu_page_role new_role = mmu->root_role; 4764 4765 /* 4766 * Return immediately if no usable root was found, kvm_mmu_reload() 4767 * will establish a valid root prior to the next VM-Enter. 4768 */ 4769 if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role)) 4770 return; 4771 4772 /* 4773 * It's possible that the cached previous root page is obsolete because 4774 * of a change in the MMU generation number. However, changing the 4775 * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, 4776 * which will free the root set here and allocate a new one. 4777 */ 4778 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 4779 4780 if (force_flush_and_sync_on_reuse) { 4781 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 4782 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 4783 } 4784 4785 /* 4786 * The last MMIO access's GVA and GPA are cached in the VCPU. When 4787 * switching to a new CR3, that GVA->GPA mapping may no longer be 4788 * valid. So clear any cached MMIO info even when we don't need to sync 4789 * the shadow page tables. 4790 */ 4791 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 4792 4793 /* 4794 * If this is a direct root page, it doesn't have a write flooding 4795 * count. Otherwise, clear the write flooding count. 4796 */ 4797 if (!new_role.direct) { 4798 struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa); 4799 4800 if (!WARN_ON_ONCE(!sp)) 4801 __clear_sp_write_flooding_count(sp); 4802 } 4803 } 4804 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd); 4805 4806 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, 4807 unsigned int access) 4808 { 4809 if (unlikely(is_mmio_spte(vcpu->kvm, *sptep))) { 4810 if (gfn != get_mmio_spte_gfn(*sptep)) { 4811 mmu_spte_clear_no_track(sptep); 4812 return true; 4813 } 4814 4815 mark_mmio_spte(vcpu, sptep, gfn, access); 4816 return true; 4817 } 4818 4819 return false; 4820 } 4821 4822 #define PTTYPE_EPT 18 /* arbitrary */ 4823 #define PTTYPE PTTYPE_EPT 4824 #include "paging_tmpl.h" 4825 #undef PTTYPE 4826 4827 #define PTTYPE 64 4828 #include "paging_tmpl.h" 4829 #undef PTTYPE 4830 4831 #define PTTYPE 32 4832 #include "paging_tmpl.h" 4833 #undef PTTYPE 4834 4835 static void __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check, 4836 u64 pa_bits_rsvd, int level, bool nx, 4837 bool gbpages, bool pse, bool amd) 4838 { 4839 u64 gbpages_bit_rsvd = 0; 4840 u64 nonleaf_bit8_rsvd = 0; 4841 u64 high_bits_rsvd; 4842 4843 rsvd_check->bad_mt_xwr = 0; 4844 4845 if (!gbpages) 4846 gbpages_bit_rsvd = rsvd_bits(7, 7); 4847 4848 if (level == PT32E_ROOT_LEVEL) 4849 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62); 4850 else 4851 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4852 4853 /* Note, NX doesn't exist in PDPTEs, this is handled below. */ 4854 if (!nx) 4855 high_bits_rsvd |= rsvd_bits(63, 63); 4856 4857 /* 4858 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for 4859 * leaf entries) on AMD CPUs only. 4860 */ 4861 if (amd) 4862 nonleaf_bit8_rsvd = rsvd_bits(8, 8); 4863 4864 switch (level) { 4865 case PT32_ROOT_LEVEL: 4866 /* no rsvd bits for 2 level 4K page table entries */ 4867 rsvd_check->rsvd_bits_mask[0][1] = 0; 4868 rsvd_check->rsvd_bits_mask[0][0] = 0; 4869 rsvd_check->rsvd_bits_mask[1][0] = 4870 rsvd_check->rsvd_bits_mask[0][0]; 4871 4872 if (!pse) { 4873 rsvd_check->rsvd_bits_mask[1][1] = 0; 4874 break; 4875 } 4876 4877 if (is_cpuid_PSE36()) 4878 /* 36bits PSE 4MB page */ 4879 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); 4880 else 4881 /* 32 bits PSE 4MB page */ 4882 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); 4883 break; 4884 case PT32E_ROOT_LEVEL: 4885 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) | 4886 high_bits_rsvd | 4887 rsvd_bits(5, 8) | 4888 rsvd_bits(1, 2); /* PDPTE */ 4889 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */ 4890 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */ 4891 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 4892 rsvd_bits(13, 20); /* large page */ 4893 rsvd_check->rsvd_bits_mask[1][0] = 4894 rsvd_check->rsvd_bits_mask[0][0]; 4895 break; 4896 case PT64_ROOT_5LEVEL: 4897 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | 4898 nonleaf_bit8_rsvd | 4899 rsvd_bits(7, 7); 4900 rsvd_check->rsvd_bits_mask[1][4] = 4901 rsvd_check->rsvd_bits_mask[0][4]; 4902 fallthrough; 4903 case PT64_ROOT_4LEVEL: 4904 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | 4905 nonleaf_bit8_rsvd | 4906 rsvd_bits(7, 7); 4907 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | 4908 gbpages_bit_rsvd; 4909 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; 4910 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 4911 rsvd_check->rsvd_bits_mask[1][3] = 4912 rsvd_check->rsvd_bits_mask[0][3]; 4913 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | 4914 gbpages_bit_rsvd | 4915 rsvd_bits(13, 29); 4916 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 4917 rsvd_bits(13, 20); /* large page */ 4918 rsvd_check->rsvd_bits_mask[1][0] = 4919 rsvd_check->rsvd_bits_mask[0][0]; 4920 break; 4921 } 4922 } 4923 4924 static void reset_guest_rsvds_bits_mask(struct kvm_vcpu *vcpu, 4925 struct kvm_mmu *context) 4926 { 4927 __reset_rsvds_bits_mask(&context->guest_rsvd_check, 4928 vcpu->arch.reserved_gpa_bits, 4929 context->cpu_role.base.level, is_efer_nx(context), 4930 guest_can_use(vcpu, X86_FEATURE_GBPAGES), 4931 is_cr4_pse(context), 4932 guest_cpuid_is_amd_compatible(vcpu)); 4933 } 4934 4935 static void __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check, 4936 u64 pa_bits_rsvd, bool execonly, 4937 int huge_page_level) 4938 { 4939 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4940 u64 large_1g_rsvd = 0, large_2m_rsvd = 0; 4941 u64 bad_mt_xwr; 4942 4943 if (huge_page_level < PG_LEVEL_1G) 4944 large_1g_rsvd = rsvd_bits(7, 7); 4945 if (huge_page_level < PG_LEVEL_2M) 4946 large_2m_rsvd = rsvd_bits(7, 7); 4947 4948 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7); 4949 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7); 4950 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd; 4951 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd; 4952 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 4953 4954 /* large page */ 4955 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4]; 4956 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3]; 4957 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd; 4958 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd; 4959 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0]; 4960 4961 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */ 4962 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */ 4963 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */ 4964 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */ 4965 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */ 4966 if (!execonly) { 4967 /* bits 0..2 must not be 100 unless VMX capabilities allow it */ 4968 bad_mt_xwr |= REPEAT_BYTE(1ull << 4); 4969 } 4970 rsvd_check->bad_mt_xwr = bad_mt_xwr; 4971 } 4972 4973 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, 4974 struct kvm_mmu *context, bool execonly, int huge_page_level) 4975 { 4976 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check, 4977 vcpu->arch.reserved_gpa_bits, execonly, 4978 huge_page_level); 4979 } 4980 4981 static inline u64 reserved_hpa_bits(void) 4982 { 4983 return rsvd_bits(shadow_phys_bits, 63); 4984 } 4985 4986 /* 4987 * the page table on host is the shadow page table for the page 4988 * table in guest or amd nested guest, its mmu features completely 4989 * follow the features in guest. 4990 */ 4991 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 4992 struct kvm_mmu *context) 4993 { 4994 /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */ 4995 bool is_amd = true; 4996 /* KVM doesn't use 2-level page tables for the shadow MMU. */ 4997 bool is_pse = false; 4998 struct rsvd_bits_validate *shadow_zero_check; 4999 int i; 5000 5001 WARN_ON_ONCE(context->root_role.level < PT32E_ROOT_LEVEL); 5002 5003 shadow_zero_check = &context->shadow_zero_check; 5004 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 5005 context->root_role.level, 5006 context->root_role.efer_nx, 5007 guest_can_use(vcpu, X86_FEATURE_GBPAGES), 5008 is_pse, is_amd); 5009 5010 if (!shadow_me_mask) 5011 return; 5012 5013 for (i = context->root_role.level; --i >= 0;) { 5014 /* 5015 * So far shadow_me_value is a constant during KVM's life 5016 * time. Bits in shadow_me_value are allowed to be set. 5017 * Bits in shadow_me_mask but not in shadow_me_value are 5018 * not allowed to be set. 5019 */ 5020 shadow_zero_check->rsvd_bits_mask[0][i] |= shadow_me_mask; 5021 shadow_zero_check->rsvd_bits_mask[1][i] |= shadow_me_mask; 5022 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_value; 5023 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_value; 5024 } 5025 5026 } 5027 5028 static inline bool boot_cpu_is_amd(void) 5029 { 5030 WARN_ON_ONCE(!tdp_enabled); 5031 return shadow_x_mask == 0; 5032 } 5033 5034 /* 5035 * the direct page table on host, use as much mmu features as 5036 * possible, however, kvm currently does not do execution-protection. 5037 */ 5038 static void reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context) 5039 { 5040 struct rsvd_bits_validate *shadow_zero_check; 5041 int i; 5042 5043 shadow_zero_check = &context->shadow_zero_check; 5044 5045 if (boot_cpu_is_amd()) 5046 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 5047 context->root_role.level, true, 5048 boot_cpu_has(X86_FEATURE_GBPAGES), 5049 false, true); 5050 else 5051 __reset_rsvds_bits_mask_ept(shadow_zero_check, 5052 reserved_hpa_bits(), false, 5053 max_huge_page_level); 5054 5055 if (!shadow_me_mask) 5056 return; 5057 5058 for (i = context->root_role.level; --i >= 0;) { 5059 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 5060 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 5061 } 5062 } 5063 5064 /* 5065 * as the comments in reset_shadow_zero_bits_mask() except it 5066 * is the shadow page table for intel nested guest. 5067 */ 5068 static void 5069 reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly) 5070 { 5071 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check, 5072 reserved_hpa_bits(), execonly, 5073 max_huge_page_level); 5074 } 5075 5076 #define BYTE_MASK(access) \ 5077 ((1 & (access) ? 2 : 0) | \ 5078 (2 & (access) ? 4 : 0) | \ 5079 (3 & (access) ? 8 : 0) | \ 5080 (4 & (access) ? 16 : 0) | \ 5081 (5 & (access) ? 32 : 0) | \ 5082 (6 & (access) ? 64 : 0) | \ 5083 (7 & (access) ? 128 : 0)) 5084 5085 5086 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept) 5087 { 5088 unsigned byte; 5089 5090 const u8 x = BYTE_MASK(ACC_EXEC_MASK); 5091 const u8 w = BYTE_MASK(ACC_WRITE_MASK); 5092 const u8 u = BYTE_MASK(ACC_USER_MASK); 5093 5094 bool cr4_smep = is_cr4_smep(mmu); 5095 bool cr4_smap = is_cr4_smap(mmu); 5096 bool cr0_wp = is_cr0_wp(mmu); 5097 bool efer_nx = is_efer_nx(mmu); 5098 5099 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { 5100 unsigned pfec = byte << 1; 5101 5102 /* 5103 * Each "*f" variable has a 1 bit for each UWX value 5104 * that causes a fault with the given PFEC. 5105 */ 5106 5107 /* Faults from writes to non-writable pages */ 5108 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0; 5109 /* Faults from user mode accesses to supervisor pages */ 5110 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0; 5111 /* Faults from fetches of non-executable pages*/ 5112 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0; 5113 /* Faults from kernel mode fetches of user pages */ 5114 u8 smepf = 0; 5115 /* Faults from kernel mode accesses of user pages */ 5116 u8 smapf = 0; 5117 5118 if (!ept) { 5119 /* Faults from kernel mode accesses to user pages */ 5120 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u; 5121 5122 /* Not really needed: !nx will cause pte.nx to fault */ 5123 if (!efer_nx) 5124 ff = 0; 5125 5126 /* Allow supervisor writes if !cr0.wp */ 5127 if (!cr0_wp) 5128 wf = (pfec & PFERR_USER_MASK) ? wf : 0; 5129 5130 /* Disallow supervisor fetches of user code if cr4.smep */ 5131 if (cr4_smep) 5132 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0; 5133 5134 /* 5135 * SMAP:kernel-mode data accesses from user-mode 5136 * mappings should fault. A fault is considered 5137 * as a SMAP violation if all of the following 5138 * conditions are true: 5139 * - X86_CR4_SMAP is set in CR4 5140 * - A user page is accessed 5141 * - The access is not a fetch 5142 * - The access is supervisor mode 5143 * - If implicit supervisor access or X86_EFLAGS_AC is clear 5144 * 5145 * Here, we cover the first four conditions. 5146 * The fifth is computed dynamically in permission_fault(); 5147 * PFERR_RSVD_MASK bit will be set in PFEC if the access is 5148 * *not* subject to SMAP restrictions. 5149 */ 5150 if (cr4_smap) 5151 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf; 5152 } 5153 5154 mmu->permissions[byte] = ff | uf | wf | smepf | smapf; 5155 } 5156 } 5157 5158 /* 5159 * PKU is an additional mechanism by which the paging controls access to 5160 * user-mode addresses based on the value in the PKRU register. Protection 5161 * key violations are reported through a bit in the page fault error code. 5162 * Unlike other bits of the error code, the PK bit is not known at the 5163 * call site of e.g. gva_to_gpa; it must be computed directly in 5164 * permission_fault based on two bits of PKRU, on some machine state (CR4, 5165 * CR0, EFER, CPL), and on other bits of the error code and the page tables. 5166 * 5167 * In particular the following conditions come from the error code, the 5168 * page tables and the machine state: 5169 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1 5170 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch) 5171 * - PK is always zero if U=0 in the page tables 5172 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access. 5173 * 5174 * The PKRU bitmask caches the result of these four conditions. The error 5175 * code (minus the P bit) and the page table's U bit form an index into the 5176 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed 5177 * with the two bits of the PKRU register corresponding to the protection key. 5178 * For the first three conditions above the bits will be 00, thus masking 5179 * away both AD and WD. For all reads or if the last condition holds, WD 5180 * only will be masked away. 5181 */ 5182 static void update_pkru_bitmask(struct kvm_mmu *mmu) 5183 { 5184 unsigned bit; 5185 bool wp; 5186 5187 mmu->pkru_mask = 0; 5188 5189 if (!is_cr4_pke(mmu)) 5190 return; 5191 5192 wp = is_cr0_wp(mmu); 5193 5194 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) { 5195 unsigned pfec, pkey_bits; 5196 bool check_pkey, check_write, ff, uf, wf, pte_user; 5197 5198 pfec = bit << 1; 5199 ff = pfec & PFERR_FETCH_MASK; 5200 uf = pfec & PFERR_USER_MASK; 5201 wf = pfec & PFERR_WRITE_MASK; 5202 5203 /* PFEC.RSVD is replaced by ACC_USER_MASK. */ 5204 pte_user = pfec & PFERR_RSVD_MASK; 5205 5206 /* 5207 * Only need to check the access which is not an 5208 * instruction fetch and is to a user page. 5209 */ 5210 check_pkey = (!ff && pte_user); 5211 /* 5212 * write access is controlled by PKRU if it is a 5213 * user access or CR0.WP = 1. 5214 */ 5215 check_write = check_pkey && wf && (uf || wp); 5216 5217 /* PKRU.AD stops both read and write access. */ 5218 pkey_bits = !!check_pkey; 5219 /* PKRU.WD stops write access. */ 5220 pkey_bits |= (!!check_write) << 1; 5221 5222 mmu->pkru_mask |= (pkey_bits & 3) << pfec; 5223 } 5224 } 5225 5226 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu, 5227 struct kvm_mmu *mmu) 5228 { 5229 if (!is_cr0_pg(mmu)) 5230 return; 5231 5232 reset_guest_rsvds_bits_mask(vcpu, mmu); 5233 update_permission_bitmask(mmu, false); 5234 update_pkru_bitmask(mmu); 5235 } 5236 5237 static void paging64_init_context(struct kvm_mmu *context) 5238 { 5239 context->page_fault = paging64_page_fault; 5240 context->gva_to_gpa = paging64_gva_to_gpa; 5241 context->sync_spte = paging64_sync_spte; 5242 } 5243 5244 static void paging32_init_context(struct kvm_mmu *context) 5245 { 5246 context->page_fault = paging32_page_fault; 5247 context->gva_to_gpa = paging32_gva_to_gpa; 5248 context->sync_spte = paging32_sync_spte; 5249 } 5250 5251 static union kvm_cpu_role kvm_calc_cpu_role(struct kvm_vcpu *vcpu, 5252 const struct kvm_mmu_role_regs *regs) 5253 { 5254 union kvm_cpu_role role = {0}; 5255 5256 role.base.access = ACC_ALL; 5257 role.base.smm = is_smm(vcpu); 5258 role.base.guest_mode = is_guest_mode(vcpu); 5259 role.ext.valid = 1; 5260 5261 if (!____is_cr0_pg(regs)) { 5262 role.base.direct = 1; 5263 return role; 5264 } 5265 5266 role.base.efer_nx = ____is_efer_nx(regs); 5267 role.base.cr0_wp = ____is_cr0_wp(regs); 5268 role.base.smep_andnot_wp = ____is_cr4_smep(regs) && !____is_cr0_wp(regs); 5269 role.base.smap_andnot_wp = ____is_cr4_smap(regs) && !____is_cr0_wp(regs); 5270 role.base.has_4_byte_gpte = !____is_cr4_pae(regs); 5271 5272 if (____is_efer_lma(regs)) 5273 role.base.level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL 5274 : PT64_ROOT_4LEVEL; 5275 else if (____is_cr4_pae(regs)) 5276 role.base.level = PT32E_ROOT_LEVEL; 5277 else 5278 role.base.level = PT32_ROOT_LEVEL; 5279 5280 role.ext.cr4_smep = ____is_cr4_smep(regs); 5281 role.ext.cr4_smap = ____is_cr4_smap(regs); 5282 role.ext.cr4_pse = ____is_cr4_pse(regs); 5283 5284 /* PKEY and LA57 are active iff long mode is active. */ 5285 role.ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs); 5286 role.ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs); 5287 role.ext.efer_lma = ____is_efer_lma(regs); 5288 return role; 5289 } 5290 5291 void __kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu, 5292 struct kvm_mmu *mmu) 5293 { 5294 const bool cr0_wp = kvm_is_cr0_bit_set(vcpu, X86_CR0_WP); 5295 5296 BUILD_BUG_ON((KVM_MMU_CR0_ROLE_BITS & KVM_POSSIBLE_CR0_GUEST_BITS) != X86_CR0_WP); 5297 BUILD_BUG_ON((KVM_MMU_CR4_ROLE_BITS & KVM_POSSIBLE_CR4_GUEST_BITS)); 5298 5299 if (is_cr0_wp(mmu) == cr0_wp) 5300 return; 5301 5302 mmu->cpu_role.base.cr0_wp = cr0_wp; 5303 reset_guest_paging_metadata(vcpu, mmu); 5304 } 5305 5306 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu) 5307 { 5308 /* tdp_root_level is architecture forced level, use it if nonzero */ 5309 if (tdp_root_level) 5310 return tdp_root_level; 5311 5312 /* Use 5-level TDP if and only if it's useful/necessary. */ 5313 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48) 5314 return 4; 5315 5316 return max_tdp_level; 5317 } 5318 5319 u8 kvm_mmu_get_max_tdp_level(void) 5320 { 5321 return tdp_root_level ? tdp_root_level : max_tdp_level; 5322 } 5323 5324 static union kvm_mmu_page_role 5325 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, 5326 union kvm_cpu_role cpu_role) 5327 { 5328 union kvm_mmu_page_role role = {0}; 5329 5330 role.access = ACC_ALL; 5331 role.cr0_wp = true; 5332 role.efer_nx = true; 5333 role.smm = cpu_role.base.smm; 5334 role.guest_mode = cpu_role.base.guest_mode; 5335 role.ad_disabled = !kvm_ad_enabled(); 5336 role.level = kvm_mmu_get_tdp_level(vcpu); 5337 role.direct = true; 5338 role.has_4_byte_gpte = false; 5339 5340 return role; 5341 } 5342 5343 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu, 5344 union kvm_cpu_role cpu_role) 5345 { 5346 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5347 union kvm_mmu_page_role root_role = kvm_calc_tdp_mmu_root_page_role(vcpu, cpu_role); 5348 5349 if (cpu_role.as_u64 == context->cpu_role.as_u64 && 5350 root_role.word == context->root_role.word) 5351 return; 5352 5353 context->cpu_role.as_u64 = cpu_role.as_u64; 5354 context->root_role.word = root_role.word; 5355 context->page_fault = kvm_tdp_page_fault; 5356 context->sync_spte = NULL; 5357 context->get_guest_pgd = get_guest_cr3; 5358 context->get_pdptr = kvm_pdptr_read; 5359 context->inject_page_fault = kvm_inject_page_fault; 5360 5361 if (!is_cr0_pg(context)) 5362 context->gva_to_gpa = nonpaging_gva_to_gpa; 5363 else if (is_cr4_pae(context)) 5364 context->gva_to_gpa = paging64_gva_to_gpa; 5365 else 5366 context->gva_to_gpa = paging32_gva_to_gpa; 5367 5368 reset_guest_paging_metadata(vcpu, context); 5369 reset_tdp_shadow_zero_bits_mask(context); 5370 } 5371 5372 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context, 5373 union kvm_cpu_role cpu_role, 5374 union kvm_mmu_page_role root_role) 5375 { 5376 if (cpu_role.as_u64 == context->cpu_role.as_u64 && 5377 root_role.word == context->root_role.word) 5378 return; 5379 5380 context->cpu_role.as_u64 = cpu_role.as_u64; 5381 context->root_role.word = root_role.word; 5382 5383 if (!is_cr0_pg(context)) 5384 nonpaging_init_context(context); 5385 else if (is_cr4_pae(context)) 5386 paging64_init_context(context); 5387 else 5388 paging32_init_context(context); 5389 5390 reset_guest_paging_metadata(vcpu, context); 5391 reset_shadow_zero_bits_mask(vcpu, context); 5392 } 5393 5394 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, 5395 union kvm_cpu_role cpu_role) 5396 { 5397 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5398 union kvm_mmu_page_role root_role; 5399 5400 root_role = cpu_role.base; 5401 5402 /* KVM uses PAE paging whenever the guest isn't using 64-bit paging. */ 5403 root_role.level = max_t(u32, root_role.level, PT32E_ROOT_LEVEL); 5404 5405 /* 5406 * KVM forces EFER.NX=1 when TDP is disabled, reflect it in the MMU role. 5407 * KVM uses NX when TDP is disabled to handle a variety of scenarios, 5408 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and 5409 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0. 5410 * The iTLB multi-hit workaround can be toggled at any time, so assume 5411 * NX can be used by any non-nested shadow MMU to avoid having to reset 5412 * MMU contexts. 5413 */ 5414 root_role.efer_nx = true; 5415 5416 shadow_mmu_init_context(vcpu, context, cpu_role, root_role); 5417 } 5418 5419 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0, 5420 unsigned long cr4, u64 efer, gpa_t nested_cr3) 5421 { 5422 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 5423 struct kvm_mmu_role_regs regs = { 5424 .cr0 = cr0, 5425 .cr4 = cr4 & ~X86_CR4_PKE, 5426 .efer = efer, 5427 }; 5428 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); 5429 union kvm_mmu_page_role root_role; 5430 5431 /* NPT requires CR0.PG=1. */ 5432 WARN_ON_ONCE(cpu_role.base.direct); 5433 5434 root_role = cpu_role.base; 5435 root_role.level = kvm_mmu_get_tdp_level(vcpu); 5436 if (root_role.level == PT64_ROOT_5LEVEL && 5437 cpu_role.base.level == PT64_ROOT_4LEVEL) 5438 root_role.passthrough = 1; 5439 5440 shadow_mmu_init_context(vcpu, context, cpu_role, root_role); 5441 kvm_mmu_new_pgd(vcpu, nested_cr3); 5442 } 5443 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu); 5444 5445 static union kvm_cpu_role 5446 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty, 5447 bool execonly, u8 level) 5448 { 5449 union kvm_cpu_role role = {0}; 5450 5451 /* 5452 * KVM does not support SMM transfer monitors, and consequently does not 5453 * support the "entry to SMM" control either. role.base.smm is always 0. 5454 */ 5455 WARN_ON_ONCE(is_smm(vcpu)); 5456 role.base.level = level; 5457 role.base.has_4_byte_gpte = false; 5458 role.base.direct = false; 5459 role.base.ad_disabled = !accessed_dirty; 5460 role.base.guest_mode = true; 5461 role.base.access = ACC_ALL; 5462 5463 role.ext.word = 0; 5464 role.ext.execonly = execonly; 5465 role.ext.valid = 1; 5466 5467 return role; 5468 } 5469 5470 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, 5471 int huge_page_level, bool accessed_dirty, 5472 gpa_t new_eptp) 5473 { 5474 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 5475 u8 level = vmx_eptp_page_walk_level(new_eptp); 5476 union kvm_cpu_role new_mode = 5477 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty, 5478 execonly, level); 5479 5480 if (new_mode.as_u64 != context->cpu_role.as_u64) { 5481 /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */ 5482 context->cpu_role.as_u64 = new_mode.as_u64; 5483 context->root_role.word = new_mode.base.word; 5484 5485 context->page_fault = ept_page_fault; 5486 context->gva_to_gpa = ept_gva_to_gpa; 5487 context->sync_spte = ept_sync_spte; 5488 5489 update_permission_bitmask(context, true); 5490 context->pkru_mask = 0; 5491 reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level); 5492 reset_ept_shadow_zero_bits_mask(context, execonly); 5493 } 5494 5495 kvm_mmu_new_pgd(vcpu, new_eptp); 5496 } 5497 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); 5498 5499 static void init_kvm_softmmu(struct kvm_vcpu *vcpu, 5500 union kvm_cpu_role cpu_role) 5501 { 5502 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5503 5504 kvm_init_shadow_mmu(vcpu, cpu_role); 5505 5506 context->get_guest_pgd = get_guest_cr3; 5507 context->get_pdptr = kvm_pdptr_read; 5508 context->inject_page_fault = kvm_inject_page_fault; 5509 } 5510 5511 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu, 5512 union kvm_cpu_role new_mode) 5513 { 5514 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; 5515 5516 if (new_mode.as_u64 == g_context->cpu_role.as_u64) 5517 return; 5518 5519 g_context->cpu_role.as_u64 = new_mode.as_u64; 5520 g_context->get_guest_pgd = get_guest_cr3; 5521 g_context->get_pdptr = kvm_pdptr_read; 5522 g_context->inject_page_fault = kvm_inject_page_fault; 5523 5524 /* 5525 * L2 page tables are never shadowed, so there is no need to sync 5526 * SPTEs. 5527 */ 5528 g_context->sync_spte = NULL; 5529 5530 /* 5531 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using 5532 * L1's nested page tables (e.g. EPT12). The nested translation 5533 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using 5534 * L2's page tables as the first level of translation and L1's 5535 * nested page tables as the second level of translation. Basically 5536 * the gva_to_gpa functions between mmu and nested_mmu are swapped. 5537 */ 5538 if (!is_paging(vcpu)) 5539 g_context->gva_to_gpa = nonpaging_gva_to_gpa; 5540 else if (is_long_mode(vcpu)) 5541 g_context->gva_to_gpa = paging64_gva_to_gpa; 5542 else if (is_pae(vcpu)) 5543 g_context->gva_to_gpa = paging64_gva_to_gpa; 5544 else 5545 g_context->gva_to_gpa = paging32_gva_to_gpa; 5546 5547 reset_guest_paging_metadata(vcpu, g_context); 5548 } 5549 5550 void kvm_init_mmu(struct kvm_vcpu *vcpu) 5551 { 5552 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 5553 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); 5554 5555 if (mmu_is_nested(vcpu)) 5556 init_kvm_nested_mmu(vcpu, cpu_role); 5557 else if (tdp_enabled) 5558 init_kvm_tdp_mmu(vcpu, cpu_role); 5559 else 5560 init_kvm_softmmu(vcpu, cpu_role); 5561 } 5562 EXPORT_SYMBOL_GPL(kvm_init_mmu); 5563 5564 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu) 5565 { 5566 /* 5567 * Invalidate all MMU roles to force them to reinitialize as CPUID 5568 * information is factored into reserved bit calculations. 5569 * 5570 * Correctly handling multiple vCPU models with respect to paging and 5571 * physical address properties) in a single VM would require tracking 5572 * all relevant CPUID information in kvm_mmu_page_role. That is very 5573 * undesirable as it would increase the memory requirements for 5574 * gfn_write_track (see struct kvm_mmu_page_role comments). For now 5575 * that problem is swept under the rug; KVM's CPUID API is horrific and 5576 * it's all but impossible to solve it without introducing a new API. 5577 */ 5578 vcpu->arch.root_mmu.root_role.invalid = 1; 5579 vcpu->arch.guest_mmu.root_role.invalid = 1; 5580 vcpu->arch.nested_mmu.root_role.invalid = 1; 5581 vcpu->arch.root_mmu.cpu_role.ext.valid = 0; 5582 vcpu->arch.guest_mmu.cpu_role.ext.valid = 0; 5583 vcpu->arch.nested_mmu.cpu_role.ext.valid = 0; 5584 kvm_mmu_reset_context(vcpu); 5585 5586 /* 5587 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in 5588 * kvm_arch_vcpu_ioctl(). 5589 */ 5590 KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm); 5591 } 5592 5593 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu) 5594 { 5595 kvm_mmu_unload(vcpu); 5596 kvm_init_mmu(vcpu); 5597 } 5598 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); 5599 5600 int kvm_mmu_load(struct kvm_vcpu *vcpu) 5601 { 5602 int r; 5603 5604 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->root_role.direct); 5605 if (r) 5606 goto out; 5607 r = mmu_alloc_special_roots(vcpu); 5608 if (r) 5609 goto out; 5610 if (vcpu->arch.mmu->root_role.direct) 5611 r = mmu_alloc_direct_roots(vcpu); 5612 else 5613 r = mmu_alloc_shadow_roots(vcpu); 5614 if (r) 5615 goto out; 5616 5617 kvm_mmu_sync_roots(vcpu); 5618 5619 kvm_mmu_load_pgd(vcpu); 5620 5621 /* 5622 * Flush any TLB entries for the new root, the provenance of the root 5623 * is unknown. Even if KVM ensures there are no stale TLB entries 5624 * for a freed root, in theory another hypervisor could have left 5625 * stale entries. Flushing on alloc also allows KVM to skip the TLB 5626 * flush when freeing a root (see kvm_tdp_mmu_put_root()). 5627 */ 5628 static_call(kvm_x86_flush_tlb_current)(vcpu); 5629 out: 5630 return r; 5631 } 5632 5633 void kvm_mmu_unload(struct kvm_vcpu *vcpu) 5634 { 5635 struct kvm *kvm = vcpu->kvm; 5636 5637 kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL); 5638 WARN_ON_ONCE(VALID_PAGE(vcpu->arch.root_mmu.root.hpa)); 5639 kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); 5640 WARN_ON_ONCE(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa)); 5641 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 5642 } 5643 5644 static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa) 5645 { 5646 struct kvm_mmu_page *sp; 5647 5648 if (!VALID_PAGE(root_hpa)) 5649 return false; 5650 5651 /* 5652 * When freeing obsolete roots, treat roots as obsolete if they don't 5653 * have an associated shadow page, as it's impossible to determine if 5654 * such roots are fresh or stale. This does mean KVM will get false 5655 * positives and free roots that don't strictly need to be freed, but 5656 * such false positives are relatively rare: 5657 * 5658 * (a) only PAE paging and nested NPT have roots without shadow pages 5659 * (or any shadow paging flavor with a dummy root, see note below) 5660 * (b) remote reloads due to a memslot update obsoletes _all_ roots 5661 * (c) KVM doesn't track previous roots for PAE paging, and the guest 5662 * is unlikely to zap an in-use PGD. 5663 * 5664 * Note! Dummy roots are unique in that they are obsoleted by memslot 5665 * _creation_! See also FNAME(fetch). 5666 */ 5667 sp = root_to_sp(root_hpa); 5668 return !sp || is_obsolete_sp(kvm, sp); 5669 } 5670 5671 static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu) 5672 { 5673 unsigned long roots_to_free = 0; 5674 int i; 5675 5676 if (is_obsolete_root(kvm, mmu->root.hpa)) 5677 roots_to_free |= KVM_MMU_ROOT_CURRENT; 5678 5679 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5680 if (is_obsolete_root(kvm, mmu->prev_roots[i].hpa)) 5681 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 5682 } 5683 5684 if (roots_to_free) 5685 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 5686 } 5687 5688 void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu) 5689 { 5690 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu); 5691 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu); 5692 } 5693 5694 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, 5695 int *bytes) 5696 { 5697 u64 gentry = 0; 5698 int r; 5699 5700 /* 5701 * Assume that the pte write on a page table of the same type 5702 * as the current vcpu paging mode since we update the sptes only 5703 * when they have the same mode. 5704 */ 5705 if (is_pae(vcpu) && *bytes == 4) { 5706 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ 5707 *gpa &= ~(gpa_t)7; 5708 *bytes = 8; 5709 } 5710 5711 if (*bytes == 4 || *bytes == 8) { 5712 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes); 5713 if (r) 5714 gentry = 0; 5715 } 5716 5717 return gentry; 5718 } 5719 5720 /* 5721 * If we're seeing too many writes to a page, it may no longer be a page table, 5722 * or we may be forking, in which case it is better to unmap the page. 5723 */ 5724 static bool detect_write_flooding(struct kvm_mmu_page *sp) 5725 { 5726 /* 5727 * Skip write-flooding detected for the sp whose level is 1, because 5728 * it can become unsync, then the guest page is not write-protected. 5729 */ 5730 if (sp->role.level == PG_LEVEL_4K) 5731 return false; 5732 5733 atomic_inc(&sp->write_flooding_count); 5734 return atomic_read(&sp->write_flooding_count) >= 3; 5735 } 5736 5737 /* 5738 * Misaligned accesses are too much trouble to fix up; also, they usually 5739 * indicate a page is not used as a page table. 5740 */ 5741 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, 5742 int bytes) 5743 { 5744 unsigned offset, pte_size, misaligned; 5745 5746 offset = offset_in_page(gpa); 5747 pte_size = sp->role.has_4_byte_gpte ? 4 : 8; 5748 5749 /* 5750 * Sometimes, the OS only writes the last one bytes to update status 5751 * bits, for example, in linux, andb instruction is used in clear_bit(). 5752 */ 5753 if (!(offset & (pte_size - 1)) && bytes == 1) 5754 return false; 5755 5756 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); 5757 misaligned |= bytes < 4; 5758 5759 return misaligned; 5760 } 5761 5762 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) 5763 { 5764 unsigned page_offset, quadrant; 5765 u64 *spte; 5766 int level; 5767 5768 page_offset = offset_in_page(gpa); 5769 level = sp->role.level; 5770 *nspte = 1; 5771 if (sp->role.has_4_byte_gpte) { 5772 page_offset <<= 1; /* 32->64 */ 5773 /* 5774 * A 32-bit pde maps 4MB while the shadow pdes map 5775 * only 2MB. So we need to double the offset again 5776 * and zap two pdes instead of one. 5777 */ 5778 if (level == PT32_ROOT_LEVEL) { 5779 page_offset &= ~7; /* kill rounding error */ 5780 page_offset <<= 1; 5781 *nspte = 2; 5782 } 5783 quadrant = page_offset >> PAGE_SHIFT; 5784 page_offset &= ~PAGE_MASK; 5785 if (quadrant != sp->role.quadrant) 5786 return NULL; 5787 } 5788 5789 spte = &sp->spt[page_offset / sizeof(*spte)]; 5790 return spte; 5791 } 5792 5793 void kvm_mmu_track_write(struct kvm_vcpu *vcpu, gpa_t gpa, const u8 *new, 5794 int bytes) 5795 { 5796 gfn_t gfn = gpa >> PAGE_SHIFT; 5797 struct kvm_mmu_page *sp; 5798 LIST_HEAD(invalid_list); 5799 u64 entry, gentry, *spte; 5800 int npte; 5801 bool flush = false; 5802 5803 /* 5804 * When emulating guest writes, ensure the written value is visible to 5805 * any task that is handling page faults before checking whether or not 5806 * KVM is shadowing a guest PTE. This ensures either KVM will create 5807 * the correct SPTE in the page fault handler, or this task will see 5808 * a non-zero indirect_shadow_pages. Pairs with the smp_mb() in 5809 * account_shadowed(). 5810 */ 5811 smp_mb(); 5812 if (!vcpu->kvm->arch.indirect_shadow_pages) 5813 return; 5814 5815 write_lock(&vcpu->kvm->mmu_lock); 5816 5817 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes); 5818 5819 ++vcpu->kvm->stat.mmu_pte_write; 5820 5821 for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) { 5822 if (detect_write_misaligned(sp, gpa, bytes) || 5823 detect_write_flooding(sp)) { 5824 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); 5825 ++vcpu->kvm->stat.mmu_flooded; 5826 continue; 5827 } 5828 5829 spte = get_written_sptes(sp, gpa, &npte); 5830 if (!spte) 5831 continue; 5832 5833 while (npte--) { 5834 entry = *spte; 5835 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL); 5836 if (gentry && sp->role.level != PG_LEVEL_4K) 5837 ++vcpu->kvm->stat.mmu_pde_zapped; 5838 if (is_shadow_present_pte(entry)) 5839 flush = true; 5840 ++spte; 5841 } 5842 } 5843 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 5844 write_unlock(&vcpu->kvm->mmu_lock); 5845 } 5846 5847 int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 5848 void *insn, int insn_len) 5849 { 5850 int r, emulation_type = EMULTYPE_PF; 5851 bool direct = vcpu->arch.mmu->root_role.direct; 5852 5853 if (WARN_ON_ONCE(!VALID_PAGE(vcpu->arch.mmu->root.hpa))) 5854 return RET_PF_RETRY; 5855 5856 /* 5857 * Except for reserved faults (emulated MMIO is shared-only), set the 5858 * PFERR_PRIVATE_ACCESS flag for software-protected VMs based on the gfn's 5859 * current attributes, which are the source of truth for such VMs. Note, 5860 * this wrong for nested MMUs as the GPA is an L2 GPA, but KVM doesn't 5861 * currently supported nested virtualization (among many other things) 5862 * for software-protected VMs. 5863 */ 5864 if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && 5865 !(error_code & PFERR_RSVD_MASK) && 5866 vcpu->kvm->arch.vm_type == KVM_X86_SW_PROTECTED_VM && 5867 kvm_mem_is_private(vcpu->kvm, gpa_to_gfn(cr2_or_gpa))) 5868 error_code |= PFERR_PRIVATE_ACCESS; 5869 5870 r = RET_PF_INVALID; 5871 if (unlikely(error_code & PFERR_RSVD_MASK)) { 5872 if (WARN_ON_ONCE(error_code & PFERR_PRIVATE_ACCESS)) 5873 return -EFAULT; 5874 5875 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct); 5876 if (r == RET_PF_EMULATE) 5877 goto emulate; 5878 } 5879 5880 if (r == RET_PF_INVALID) { 5881 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, error_code, false, 5882 &emulation_type); 5883 if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm)) 5884 return -EIO; 5885 } 5886 5887 if (r < 0) 5888 return r; 5889 if (r != RET_PF_EMULATE) 5890 return 1; 5891 5892 /* 5893 * Before emulating the instruction, check if the error code 5894 * was due to a RO violation while translating the guest page. 5895 * This can occur when using nested virtualization with nested 5896 * paging in both guests. If true, we simply unprotect the page 5897 * and resume the guest. 5898 */ 5899 if (vcpu->arch.mmu->root_role.direct && 5900 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) { 5901 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa)); 5902 return 1; 5903 } 5904 5905 /* 5906 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still 5907 * optimistically try to just unprotect the page and let the processor 5908 * re-execute the instruction that caused the page fault. Do not allow 5909 * retrying MMIO emulation, as it's not only pointless but could also 5910 * cause us to enter an infinite loop because the processor will keep 5911 * faulting on the non-existent MMIO address. Retrying an instruction 5912 * from a nested guest is also pointless and dangerous as we are only 5913 * explicitly shadowing L1's page tables, i.e. unprotecting something 5914 * for L1 isn't going to magically fix whatever issue cause L2 to fail. 5915 */ 5916 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu)) 5917 emulation_type |= EMULTYPE_ALLOW_RETRY_PF; 5918 emulate: 5919 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn, 5920 insn_len); 5921 } 5922 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); 5923 5924 static void __kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 5925 u64 addr, hpa_t root_hpa) 5926 { 5927 struct kvm_shadow_walk_iterator iterator; 5928 5929 vcpu_clear_mmio_info(vcpu, addr); 5930 5931 /* 5932 * Walking and synchronizing SPTEs both assume they are operating in 5933 * the context of the current MMU, and would need to be reworked if 5934 * this is ever used to sync the guest_mmu, e.g. to emulate INVEPT. 5935 */ 5936 if (WARN_ON_ONCE(mmu != vcpu->arch.mmu)) 5937 return; 5938 5939 if (!VALID_PAGE(root_hpa)) 5940 return; 5941 5942 write_lock(&vcpu->kvm->mmu_lock); 5943 for_each_shadow_entry_using_root(vcpu, root_hpa, addr, iterator) { 5944 struct kvm_mmu_page *sp = sptep_to_sp(iterator.sptep); 5945 5946 if (sp->unsync) { 5947 int ret = kvm_sync_spte(vcpu, sp, iterator.index); 5948 5949 if (ret < 0) 5950 mmu_page_zap_pte(vcpu->kvm, sp, iterator.sptep, NULL); 5951 if (ret) 5952 kvm_flush_remote_tlbs_sptep(vcpu->kvm, iterator.sptep); 5953 } 5954 5955 if (!sp->unsync_children) 5956 break; 5957 } 5958 write_unlock(&vcpu->kvm->mmu_lock); 5959 } 5960 5961 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 5962 u64 addr, unsigned long roots) 5963 { 5964 int i; 5965 5966 WARN_ON_ONCE(roots & ~KVM_MMU_ROOTS_ALL); 5967 5968 /* It's actually a GPA for vcpu->arch.guest_mmu. */ 5969 if (mmu != &vcpu->arch.guest_mmu) { 5970 /* INVLPG on a non-canonical address is a NOP according to the SDM. */ 5971 if (is_noncanonical_address(addr, vcpu)) 5972 return; 5973 5974 static_call(kvm_x86_flush_tlb_gva)(vcpu, addr); 5975 } 5976 5977 if (!mmu->sync_spte) 5978 return; 5979 5980 if (roots & KVM_MMU_ROOT_CURRENT) 5981 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->root.hpa); 5982 5983 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5984 if (roots & KVM_MMU_ROOT_PREVIOUS(i)) 5985 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->prev_roots[i].hpa); 5986 } 5987 } 5988 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_addr); 5989 5990 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) 5991 { 5992 /* 5993 * INVLPG is required to invalidate any global mappings for the VA, 5994 * irrespective of PCID. Blindly sync all roots as it would take 5995 * roughly the same amount of work/time to determine whether any of the 5996 * previous roots have a global mapping. 5997 * 5998 * Mappings not reachable via the current or previous cached roots will 5999 * be synced when switching to that new cr3, so nothing needs to be 6000 * done here for them. 6001 */ 6002 kvm_mmu_invalidate_addr(vcpu, vcpu->arch.walk_mmu, gva, KVM_MMU_ROOTS_ALL); 6003 ++vcpu->stat.invlpg; 6004 } 6005 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); 6006 6007 6008 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid) 6009 { 6010 struct kvm_mmu *mmu = vcpu->arch.mmu; 6011 unsigned long roots = 0; 6012 uint i; 6013 6014 if (pcid == kvm_get_active_pcid(vcpu)) 6015 roots |= KVM_MMU_ROOT_CURRENT; 6016 6017 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 6018 if (VALID_PAGE(mmu->prev_roots[i].hpa) && 6019 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) 6020 roots |= KVM_MMU_ROOT_PREVIOUS(i); 6021 } 6022 6023 if (roots) 6024 kvm_mmu_invalidate_addr(vcpu, mmu, gva, roots); 6025 ++vcpu->stat.invlpg; 6026 6027 /* 6028 * Mappings not reachable via the current cr3 or the prev_roots will be 6029 * synced when switching to that cr3, so nothing needs to be done here 6030 * for them. 6031 */ 6032 } 6033 6034 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 6035 int tdp_max_root_level, int tdp_huge_page_level) 6036 { 6037 tdp_enabled = enable_tdp; 6038 tdp_root_level = tdp_forced_root_level; 6039 max_tdp_level = tdp_max_root_level; 6040 6041 #ifdef CONFIG_X86_64 6042 tdp_mmu_enabled = tdp_mmu_allowed && tdp_enabled; 6043 #endif 6044 /* 6045 * max_huge_page_level reflects KVM's MMU capabilities irrespective 6046 * of kernel support, e.g. KVM may be capable of using 1GB pages when 6047 * the kernel is not. But, KVM never creates a page size greater than 6048 * what is used by the kernel for any given HVA, i.e. the kernel's 6049 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust(). 6050 */ 6051 if (tdp_enabled) 6052 max_huge_page_level = tdp_huge_page_level; 6053 else if (boot_cpu_has(X86_FEATURE_GBPAGES)) 6054 max_huge_page_level = PG_LEVEL_1G; 6055 else 6056 max_huge_page_level = PG_LEVEL_2M; 6057 } 6058 EXPORT_SYMBOL_GPL(kvm_configure_mmu); 6059 6060 /* The return value indicates if tlb flush on all vcpus is needed. */ 6061 typedef bool (*slot_rmaps_handler) (struct kvm *kvm, 6062 struct kvm_rmap_head *rmap_head, 6063 const struct kvm_memory_slot *slot); 6064 6065 static __always_inline bool __walk_slot_rmaps(struct kvm *kvm, 6066 const struct kvm_memory_slot *slot, 6067 slot_rmaps_handler fn, 6068 int start_level, int end_level, 6069 gfn_t start_gfn, gfn_t end_gfn, 6070 bool flush_on_yield, bool flush) 6071 { 6072 struct slot_rmap_walk_iterator iterator; 6073 6074 lockdep_assert_held_write(&kvm->mmu_lock); 6075 6076 for_each_slot_rmap_range(slot, start_level, end_level, start_gfn, 6077 end_gfn, &iterator) { 6078 if (iterator.rmap) 6079 flush |= fn(kvm, iterator.rmap, slot); 6080 6081 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 6082 if (flush && flush_on_yield) { 6083 kvm_flush_remote_tlbs_range(kvm, start_gfn, 6084 iterator.gfn - start_gfn + 1); 6085 flush = false; 6086 } 6087 cond_resched_rwlock_write(&kvm->mmu_lock); 6088 } 6089 } 6090 6091 return flush; 6092 } 6093 6094 static __always_inline bool walk_slot_rmaps(struct kvm *kvm, 6095 const struct kvm_memory_slot *slot, 6096 slot_rmaps_handler fn, 6097 int start_level, int end_level, 6098 bool flush_on_yield) 6099 { 6100 return __walk_slot_rmaps(kvm, slot, fn, start_level, end_level, 6101 slot->base_gfn, slot->base_gfn + slot->npages - 1, 6102 flush_on_yield, false); 6103 } 6104 6105 static __always_inline bool walk_slot_rmaps_4k(struct kvm *kvm, 6106 const struct kvm_memory_slot *slot, 6107 slot_rmaps_handler fn, 6108 bool flush_on_yield) 6109 { 6110 return walk_slot_rmaps(kvm, slot, fn, PG_LEVEL_4K, PG_LEVEL_4K, flush_on_yield); 6111 } 6112 6113 static void free_mmu_pages(struct kvm_mmu *mmu) 6114 { 6115 if (!tdp_enabled && mmu->pae_root) 6116 set_memory_encrypted((unsigned long)mmu->pae_root, 1); 6117 free_page((unsigned long)mmu->pae_root); 6118 free_page((unsigned long)mmu->pml4_root); 6119 free_page((unsigned long)mmu->pml5_root); 6120 } 6121 6122 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 6123 { 6124 struct page *page; 6125 int i; 6126 6127 mmu->root.hpa = INVALID_PAGE; 6128 mmu->root.pgd = 0; 6129 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 6130 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 6131 6132 /* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */ 6133 if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu) 6134 return 0; 6135 6136 /* 6137 * When using PAE paging, the four PDPTEs are treated as 'root' pages, 6138 * while the PDP table is a per-vCPU construct that's allocated at MMU 6139 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on 6140 * x86_64. Therefore we need to allocate the PDP table in the first 6141 * 4GB of memory, which happens to fit the DMA32 zone. TDP paging 6142 * generally doesn't use PAE paging and can skip allocating the PDP 6143 * table. The main exception, handled here, is SVM's 32-bit NPT. The 6144 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit 6145 * KVM; that horror is handled on-demand by mmu_alloc_special_roots(). 6146 */ 6147 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL) 6148 return 0; 6149 6150 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32); 6151 if (!page) 6152 return -ENOMEM; 6153 6154 mmu->pae_root = page_address(page); 6155 6156 /* 6157 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to 6158 * get the CPU to treat the PDPTEs as encrypted. Decrypt the page so 6159 * that KVM's writes and the CPU's reads get along. Note, this is 6160 * only necessary when using shadow paging, as 64-bit NPT can get at 6161 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported 6162 * by 32-bit kernels (when KVM itself uses 32-bit NPT). 6163 */ 6164 if (!tdp_enabled) 6165 set_memory_decrypted((unsigned long)mmu->pae_root, 1); 6166 else 6167 WARN_ON_ONCE(shadow_me_value); 6168 6169 for (i = 0; i < 4; ++i) 6170 mmu->pae_root[i] = INVALID_PAE_ROOT; 6171 6172 return 0; 6173 } 6174 6175 int kvm_mmu_create(struct kvm_vcpu *vcpu) 6176 { 6177 int ret; 6178 6179 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache; 6180 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO; 6181 6182 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache; 6183 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO; 6184 6185 vcpu->arch.mmu_shadow_page_cache.init_value = 6186 SHADOW_NONPRESENT_VALUE; 6187 if (!vcpu->arch.mmu_shadow_page_cache.init_value) 6188 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO; 6189 6190 vcpu->arch.mmu = &vcpu->arch.root_mmu; 6191 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; 6192 6193 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu); 6194 if (ret) 6195 return ret; 6196 6197 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu); 6198 if (ret) 6199 goto fail_allocate_root; 6200 6201 return ret; 6202 fail_allocate_root: 6203 free_mmu_pages(&vcpu->arch.guest_mmu); 6204 return ret; 6205 } 6206 6207 #define BATCH_ZAP_PAGES 10 6208 static void kvm_zap_obsolete_pages(struct kvm *kvm) 6209 { 6210 struct kvm_mmu_page *sp, *node; 6211 int nr_zapped, batch = 0; 6212 bool unstable; 6213 6214 restart: 6215 list_for_each_entry_safe_reverse(sp, node, 6216 &kvm->arch.active_mmu_pages, link) { 6217 /* 6218 * No obsolete valid page exists before a newly created page 6219 * since active_mmu_pages is a FIFO list. 6220 */ 6221 if (!is_obsolete_sp(kvm, sp)) 6222 break; 6223 6224 /* 6225 * Invalid pages should never land back on the list of active 6226 * pages. Skip the bogus page, otherwise we'll get stuck in an 6227 * infinite loop if the page gets put back on the list (again). 6228 */ 6229 if (WARN_ON_ONCE(sp->role.invalid)) 6230 continue; 6231 6232 /* 6233 * No need to flush the TLB since we're only zapping shadow 6234 * pages with an obsolete generation number and all vCPUS have 6235 * loaded a new root, i.e. the shadow pages being zapped cannot 6236 * be in active use by the guest. 6237 */ 6238 if (batch >= BATCH_ZAP_PAGES && 6239 cond_resched_rwlock_write(&kvm->mmu_lock)) { 6240 batch = 0; 6241 goto restart; 6242 } 6243 6244 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, 6245 &kvm->arch.zapped_obsolete_pages, &nr_zapped); 6246 batch += nr_zapped; 6247 6248 if (unstable) 6249 goto restart; 6250 } 6251 6252 /* 6253 * Kick all vCPUs (via remote TLB flush) before freeing the page tables 6254 * to ensure KVM is not in the middle of a lockless shadow page table 6255 * walk, which may reference the pages. The remote TLB flush itself is 6256 * not required and is simply a convenient way to kick vCPUs as needed. 6257 * KVM performs a local TLB flush when allocating a new root (see 6258 * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are 6259 * running with an obsolete MMU. 6260 */ 6261 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages); 6262 } 6263 6264 /* 6265 * Fast invalidate all shadow pages and use lock-break technique 6266 * to zap obsolete pages. 6267 * 6268 * It's required when memslot is being deleted or VM is being 6269 * destroyed, in these cases, we should ensure that KVM MMU does 6270 * not use any resource of the being-deleted slot or all slots 6271 * after calling the function. 6272 */ 6273 static void kvm_mmu_zap_all_fast(struct kvm *kvm) 6274 { 6275 lockdep_assert_held(&kvm->slots_lock); 6276 6277 write_lock(&kvm->mmu_lock); 6278 trace_kvm_mmu_zap_all_fast(kvm); 6279 6280 /* 6281 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is 6282 * held for the entire duration of zapping obsolete pages, it's 6283 * impossible for there to be multiple invalid generations associated 6284 * with *valid* shadow pages at any given time, i.e. there is exactly 6285 * one valid generation and (at most) one invalid generation. 6286 */ 6287 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1; 6288 6289 /* 6290 * In order to ensure all vCPUs drop their soon-to-be invalid roots, 6291 * invalidating TDP MMU roots must be done while holding mmu_lock for 6292 * write and in the same critical section as making the reload request, 6293 * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield. 6294 */ 6295 if (tdp_mmu_enabled) 6296 kvm_tdp_mmu_invalidate_all_roots(kvm); 6297 6298 /* 6299 * Notify all vcpus to reload its shadow page table and flush TLB. 6300 * Then all vcpus will switch to new shadow page table with the new 6301 * mmu_valid_gen. 6302 * 6303 * Note: we need to do this under the protection of mmu_lock, 6304 * otherwise, vcpu would purge shadow page but miss tlb flush. 6305 */ 6306 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 6307 6308 kvm_zap_obsolete_pages(kvm); 6309 6310 write_unlock(&kvm->mmu_lock); 6311 6312 /* 6313 * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before 6314 * returning to the caller, e.g. if the zap is in response to a memslot 6315 * deletion, mmu_notifier callbacks will be unable to reach the SPTEs 6316 * associated with the deleted memslot once the update completes, and 6317 * Deferring the zap until the final reference to the root is put would 6318 * lead to use-after-free. 6319 */ 6320 if (tdp_mmu_enabled) 6321 kvm_tdp_mmu_zap_invalidated_roots(kvm); 6322 } 6323 6324 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm) 6325 { 6326 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages)); 6327 } 6328 6329 void kvm_mmu_init_vm(struct kvm *kvm) 6330 { 6331 kvm->arch.shadow_mmio_value = shadow_mmio_value; 6332 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 6333 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 6334 INIT_LIST_HEAD(&kvm->arch.possible_nx_huge_pages); 6335 spin_lock_init(&kvm->arch.mmu_unsync_pages_lock); 6336 6337 if (tdp_mmu_enabled) 6338 kvm_mmu_init_tdp_mmu(kvm); 6339 6340 kvm->arch.split_page_header_cache.kmem_cache = mmu_page_header_cache; 6341 kvm->arch.split_page_header_cache.gfp_zero = __GFP_ZERO; 6342 6343 kvm->arch.split_shadow_page_cache.gfp_zero = __GFP_ZERO; 6344 6345 kvm->arch.split_desc_cache.kmem_cache = pte_list_desc_cache; 6346 kvm->arch.split_desc_cache.gfp_zero = __GFP_ZERO; 6347 } 6348 6349 static void mmu_free_vm_memory_caches(struct kvm *kvm) 6350 { 6351 kvm_mmu_free_memory_cache(&kvm->arch.split_desc_cache); 6352 kvm_mmu_free_memory_cache(&kvm->arch.split_page_header_cache); 6353 kvm_mmu_free_memory_cache(&kvm->arch.split_shadow_page_cache); 6354 } 6355 6356 void kvm_mmu_uninit_vm(struct kvm *kvm) 6357 { 6358 if (tdp_mmu_enabled) 6359 kvm_mmu_uninit_tdp_mmu(kvm); 6360 6361 mmu_free_vm_memory_caches(kvm); 6362 } 6363 6364 static bool kvm_rmap_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 6365 { 6366 const struct kvm_memory_slot *memslot; 6367 struct kvm_memslots *slots; 6368 struct kvm_memslot_iter iter; 6369 bool flush = false; 6370 gfn_t start, end; 6371 int i; 6372 6373 if (!kvm_memslots_have_rmaps(kvm)) 6374 return flush; 6375 6376 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 6377 slots = __kvm_memslots(kvm, i); 6378 6379 kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) { 6380 memslot = iter.slot; 6381 start = max(gfn_start, memslot->base_gfn); 6382 end = min(gfn_end, memslot->base_gfn + memslot->npages); 6383 if (WARN_ON_ONCE(start >= end)) 6384 continue; 6385 6386 flush = __walk_slot_rmaps(kvm, memslot, __kvm_zap_rmap, 6387 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 6388 start, end - 1, true, flush); 6389 } 6390 } 6391 6392 return flush; 6393 } 6394 6395 /* 6396 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end 6397 * (not including it) 6398 */ 6399 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 6400 { 6401 bool flush; 6402 6403 if (WARN_ON_ONCE(gfn_end <= gfn_start)) 6404 return; 6405 6406 write_lock(&kvm->mmu_lock); 6407 6408 kvm_mmu_invalidate_begin(kvm); 6409 6410 kvm_mmu_invalidate_range_add(kvm, gfn_start, gfn_end); 6411 6412 flush = kvm_rmap_zap_gfn_range(kvm, gfn_start, gfn_end); 6413 6414 if (tdp_mmu_enabled) 6415 flush = kvm_tdp_mmu_zap_leafs(kvm, gfn_start, gfn_end, flush); 6416 6417 if (flush) 6418 kvm_flush_remote_tlbs_range(kvm, gfn_start, gfn_end - gfn_start); 6419 6420 kvm_mmu_invalidate_end(kvm); 6421 6422 write_unlock(&kvm->mmu_lock); 6423 } 6424 6425 static bool slot_rmap_write_protect(struct kvm *kvm, 6426 struct kvm_rmap_head *rmap_head, 6427 const struct kvm_memory_slot *slot) 6428 { 6429 return rmap_write_protect(rmap_head, false); 6430 } 6431 6432 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 6433 const struct kvm_memory_slot *memslot, 6434 int start_level) 6435 { 6436 if (kvm_memslots_have_rmaps(kvm)) { 6437 write_lock(&kvm->mmu_lock); 6438 walk_slot_rmaps(kvm, memslot, slot_rmap_write_protect, 6439 start_level, KVM_MAX_HUGEPAGE_LEVEL, false); 6440 write_unlock(&kvm->mmu_lock); 6441 } 6442 6443 if (tdp_mmu_enabled) { 6444 read_lock(&kvm->mmu_lock); 6445 kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level); 6446 read_unlock(&kvm->mmu_lock); 6447 } 6448 } 6449 6450 static inline bool need_topup(struct kvm_mmu_memory_cache *cache, int min) 6451 { 6452 return kvm_mmu_memory_cache_nr_free_objects(cache) < min; 6453 } 6454 6455 static bool need_topup_split_caches_or_resched(struct kvm *kvm) 6456 { 6457 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) 6458 return true; 6459 6460 /* 6461 * In the worst case, SPLIT_DESC_CACHE_MIN_NR_OBJECTS descriptors are needed 6462 * to split a single huge page. Calculating how many are actually needed 6463 * is possible but not worth the complexity. 6464 */ 6465 return need_topup(&kvm->arch.split_desc_cache, SPLIT_DESC_CACHE_MIN_NR_OBJECTS) || 6466 need_topup(&kvm->arch.split_page_header_cache, 1) || 6467 need_topup(&kvm->arch.split_shadow_page_cache, 1); 6468 } 6469 6470 static int topup_split_caches(struct kvm *kvm) 6471 { 6472 /* 6473 * Allocating rmap list entries when splitting huge pages for nested 6474 * MMUs is uncommon as KVM needs to use a list if and only if there is 6475 * more than one rmap entry for a gfn, i.e. requires an L1 gfn to be 6476 * aliased by multiple L2 gfns and/or from multiple nested roots with 6477 * different roles. Aliasing gfns when using TDP is atypical for VMMs; 6478 * a few gfns are often aliased during boot, e.g. when remapping BIOS, 6479 * but aliasing rarely occurs post-boot or for many gfns. If there is 6480 * only one rmap entry, rmap->val points directly at that one entry and 6481 * doesn't need to allocate a list. Buffer the cache by the default 6482 * capacity so that KVM doesn't have to drop mmu_lock to topup if KVM 6483 * encounters an aliased gfn or two. 6484 */ 6485 const int capacity = SPLIT_DESC_CACHE_MIN_NR_OBJECTS + 6486 KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE; 6487 int r; 6488 6489 lockdep_assert_held(&kvm->slots_lock); 6490 6491 r = __kvm_mmu_topup_memory_cache(&kvm->arch.split_desc_cache, capacity, 6492 SPLIT_DESC_CACHE_MIN_NR_OBJECTS); 6493 if (r) 6494 return r; 6495 6496 r = kvm_mmu_topup_memory_cache(&kvm->arch.split_page_header_cache, 1); 6497 if (r) 6498 return r; 6499 6500 return kvm_mmu_topup_memory_cache(&kvm->arch.split_shadow_page_cache, 1); 6501 } 6502 6503 static struct kvm_mmu_page *shadow_mmu_get_sp_for_split(struct kvm *kvm, u64 *huge_sptep) 6504 { 6505 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); 6506 struct shadow_page_caches caches = {}; 6507 union kvm_mmu_page_role role; 6508 unsigned int access; 6509 gfn_t gfn; 6510 6511 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep)); 6512 access = kvm_mmu_page_get_access(huge_sp, spte_index(huge_sptep)); 6513 6514 /* 6515 * Note, huge page splitting always uses direct shadow pages, regardless 6516 * of whether the huge page itself is mapped by a direct or indirect 6517 * shadow page, since the huge page region itself is being directly 6518 * mapped with smaller pages. 6519 */ 6520 role = kvm_mmu_child_role(huge_sptep, /*direct=*/true, access); 6521 6522 /* Direct SPs do not require a shadowed_info_cache. */ 6523 caches.page_header_cache = &kvm->arch.split_page_header_cache; 6524 caches.shadow_page_cache = &kvm->arch.split_shadow_page_cache; 6525 6526 /* Safe to pass NULL for vCPU since requesting a direct SP. */ 6527 return __kvm_mmu_get_shadow_page(kvm, NULL, &caches, gfn, role); 6528 } 6529 6530 static void shadow_mmu_split_huge_page(struct kvm *kvm, 6531 const struct kvm_memory_slot *slot, 6532 u64 *huge_sptep) 6533 6534 { 6535 struct kvm_mmu_memory_cache *cache = &kvm->arch.split_desc_cache; 6536 u64 huge_spte = READ_ONCE(*huge_sptep); 6537 struct kvm_mmu_page *sp; 6538 bool flush = false; 6539 u64 *sptep, spte; 6540 gfn_t gfn; 6541 int index; 6542 6543 sp = shadow_mmu_get_sp_for_split(kvm, huge_sptep); 6544 6545 for (index = 0; index < SPTE_ENT_PER_PAGE; index++) { 6546 sptep = &sp->spt[index]; 6547 gfn = kvm_mmu_page_get_gfn(sp, index); 6548 6549 /* 6550 * The SP may already have populated SPTEs, e.g. if this huge 6551 * page is aliased by multiple sptes with the same access 6552 * permissions. These entries are guaranteed to map the same 6553 * gfn-to-pfn translation since the SP is direct, so no need to 6554 * modify them. 6555 * 6556 * However, if a given SPTE points to a lower level page table, 6557 * that lower level page table may only be partially populated. 6558 * Installing such SPTEs would effectively unmap a potion of the 6559 * huge page. Unmapping guest memory always requires a TLB flush 6560 * since a subsequent operation on the unmapped regions would 6561 * fail to detect the need to flush. 6562 */ 6563 if (is_shadow_present_pte(*sptep)) { 6564 flush |= !is_last_spte(*sptep, sp->role.level); 6565 continue; 6566 } 6567 6568 spte = make_huge_page_split_spte(kvm, huge_spte, sp->role, index); 6569 mmu_spte_set(sptep, spte); 6570 __rmap_add(kvm, cache, slot, sptep, gfn, sp->role.access); 6571 } 6572 6573 __link_shadow_page(kvm, cache, huge_sptep, sp, flush); 6574 } 6575 6576 static int shadow_mmu_try_split_huge_page(struct kvm *kvm, 6577 const struct kvm_memory_slot *slot, 6578 u64 *huge_sptep) 6579 { 6580 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); 6581 int level, r = 0; 6582 gfn_t gfn; 6583 u64 spte; 6584 6585 /* Grab information for the tracepoint before dropping the MMU lock. */ 6586 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep)); 6587 level = huge_sp->role.level; 6588 spte = *huge_sptep; 6589 6590 if (kvm_mmu_available_pages(kvm) <= KVM_MIN_FREE_MMU_PAGES) { 6591 r = -ENOSPC; 6592 goto out; 6593 } 6594 6595 if (need_topup_split_caches_or_resched(kvm)) { 6596 write_unlock(&kvm->mmu_lock); 6597 cond_resched(); 6598 /* 6599 * If the topup succeeds, return -EAGAIN to indicate that the 6600 * rmap iterator should be restarted because the MMU lock was 6601 * dropped. 6602 */ 6603 r = topup_split_caches(kvm) ?: -EAGAIN; 6604 write_lock(&kvm->mmu_lock); 6605 goto out; 6606 } 6607 6608 shadow_mmu_split_huge_page(kvm, slot, huge_sptep); 6609 6610 out: 6611 trace_kvm_mmu_split_huge_page(gfn, spte, level, r); 6612 return r; 6613 } 6614 6615 static bool shadow_mmu_try_split_huge_pages(struct kvm *kvm, 6616 struct kvm_rmap_head *rmap_head, 6617 const struct kvm_memory_slot *slot) 6618 { 6619 struct rmap_iterator iter; 6620 struct kvm_mmu_page *sp; 6621 u64 *huge_sptep; 6622 int r; 6623 6624 restart: 6625 for_each_rmap_spte(rmap_head, &iter, huge_sptep) { 6626 sp = sptep_to_sp(huge_sptep); 6627 6628 /* TDP MMU is enabled, so rmap only contains nested MMU SPs. */ 6629 if (WARN_ON_ONCE(!sp->role.guest_mode)) 6630 continue; 6631 6632 /* The rmaps should never contain non-leaf SPTEs. */ 6633 if (WARN_ON_ONCE(!is_large_pte(*huge_sptep))) 6634 continue; 6635 6636 /* SPs with level >PG_LEVEL_4K should never by unsync. */ 6637 if (WARN_ON_ONCE(sp->unsync)) 6638 continue; 6639 6640 /* Don't bother splitting huge pages on invalid SPs. */ 6641 if (sp->role.invalid) 6642 continue; 6643 6644 r = shadow_mmu_try_split_huge_page(kvm, slot, huge_sptep); 6645 6646 /* 6647 * The split succeeded or needs to be retried because the MMU 6648 * lock was dropped. Either way, restart the iterator to get it 6649 * back into a consistent state. 6650 */ 6651 if (!r || r == -EAGAIN) 6652 goto restart; 6653 6654 /* The split failed and shouldn't be retried (e.g. -ENOMEM). */ 6655 break; 6656 } 6657 6658 return false; 6659 } 6660 6661 static void kvm_shadow_mmu_try_split_huge_pages(struct kvm *kvm, 6662 const struct kvm_memory_slot *slot, 6663 gfn_t start, gfn_t end, 6664 int target_level) 6665 { 6666 int level; 6667 6668 /* 6669 * Split huge pages starting with KVM_MAX_HUGEPAGE_LEVEL and working 6670 * down to the target level. This ensures pages are recursively split 6671 * all the way to the target level. There's no need to split pages 6672 * already at the target level. 6673 */ 6674 for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--) 6675 __walk_slot_rmaps(kvm, slot, shadow_mmu_try_split_huge_pages, 6676 level, level, start, end - 1, true, false); 6677 } 6678 6679 /* Must be called with the mmu_lock held in write-mode. */ 6680 void kvm_mmu_try_split_huge_pages(struct kvm *kvm, 6681 const struct kvm_memory_slot *memslot, 6682 u64 start, u64 end, 6683 int target_level) 6684 { 6685 if (!tdp_mmu_enabled) 6686 return; 6687 6688 if (kvm_memslots_have_rmaps(kvm)) 6689 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); 6690 6691 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, false); 6692 6693 /* 6694 * A TLB flush is unnecessary at this point for the same reasons as in 6695 * kvm_mmu_slot_try_split_huge_pages(). 6696 */ 6697 } 6698 6699 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, 6700 const struct kvm_memory_slot *memslot, 6701 int target_level) 6702 { 6703 u64 start = memslot->base_gfn; 6704 u64 end = start + memslot->npages; 6705 6706 if (!tdp_mmu_enabled) 6707 return; 6708 6709 if (kvm_memslots_have_rmaps(kvm)) { 6710 write_lock(&kvm->mmu_lock); 6711 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); 6712 write_unlock(&kvm->mmu_lock); 6713 } 6714 6715 read_lock(&kvm->mmu_lock); 6716 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true); 6717 read_unlock(&kvm->mmu_lock); 6718 6719 /* 6720 * No TLB flush is necessary here. KVM will flush TLBs after 6721 * write-protecting and/or clearing dirty on the newly split SPTEs to 6722 * ensure that guest writes are reflected in the dirty log before the 6723 * ioctl to enable dirty logging on this memslot completes. Since the 6724 * split SPTEs retain the write and dirty bits of the huge SPTE, it is 6725 * safe for KVM to decide if a TLB flush is necessary based on the split 6726 * SPTEs. 6727 */ 6728 } 6729 6730 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, 6731 struct kvm_rmap_head *rmap_head, 6732 const struct kvm_memory_slot *slot) 6733 { 6734 u64 *sptep; 6735 struct rmap_iterator iter; 6736 int need_tlb_flush = 0; 6737 struct kvm_mmu_page *sp; 6738 6739 restart: 6740 for_each_rmap_spte(rmap_head, &iter, sptep) { 6741 sp = sptep_to_sp(sptep); 6742 6743 /* 6744 * We cannot do huge page mapping for indirect shadow pages, 6745 * which are found on the last rmap (level = 1) when not using 6746 * tdp; such shadow pages are synced with the page table in 6747 * the guest, and the guest page table is using 4K page size 6748 * mapping if the indirect sp has level = 1. 6749 */ 6750 if (sp->role.direct && 6751 sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn, 6752 PG_LEVEL_NUM)) { 6753 kvm_zap_one_rmap_spte(kvm, rmap_head, sptep); 6754 6755 if (kvm_available_flush_remote_tlbs_range()) 6756 kvm_flush_remote_tlbs_sptep(kvm, sptep); 6757 else 6758 need_tlb_flush = 1; 6759 6760 goto restart; 6761 } 6762 } 6763 6764 return need_tlb_flush; 6765 } 6766 6767 static void kvm_rmap_zap_collapsible_sptes(struct kvm *kvm, 6768 const struct kvm_memory_slot *slot) 6769 { 6770 /* 6771 * Note, use KVM_MAX_HUGEPAGE_LEVEL - 1 since there's no need to zap 6772 * pages that are already mapped at the maximum hugepage level. 6773 */ 6774 if (walk_slot_rmaps(kvm, slot, kvm_mmu_zap_collapsible_spte, 6775 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL - 1, true)) 6776 kvm_flush_remote_tlbs_memslot(kvm, slot); 6777 } 6778 6779 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, 6780 const struct kvm_memory_slot *slot) 6781 { 6782 if (kvm_memslots_have_rmaps(kvm)) { 6783 write_lock(&kvm->mmu_lock); 6784 kvm_rmap_zap_collapsible_sptes(kvm, slot); 6785 write_unlock(&kvm->mmu_lock); 6786 } 6787 6788 if (tdp_mmu_enabled) { 6789 read_lock(&kvm->mmu_lock); 6790 kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot); 6791 read_unlock(&kvm->mmu_lock); 6792 } 6793 } 6794 6795 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 6796 const struct kvm_memory_slot *memslot) 6797 { 6798 if (kvm_memslots_have_rmaps(kvm)) { 6799 write_lock(&kvm->mmu_lock); 6800 /* 6801 * Clear dirty bits only on 4k SPTEs since the legacy MMU only 6802 * support dirty logging at a 4k granularity. 6803 */ 6804 walk_slot_rmaps_4k(kvm, memslot, __rmap_clear_dirty, false); 6805 write_unlock(&kvm->mmu_lock); 6806 } 6807 6808 if (tdp_mmu_enabled) { 6809 read_lock(&kvm->mmu_lock); 6810 kvm_tdp_mmu_clear_dirty_slot(kvm, memslot); 6811 read_unlock(&kvm->mmu_lock); 6812 } 6813 6814 /* 6815 * The caller will flush the TLBs after this function returns. 6816 * 6817 * It's also safe to flush TLBs out of mmu lock here as currently this 6818 * function is only used for dirty logging, in which case flushing TLB 6819 * out of mmu lock also guarantees no dirty pages will be lost in 6820 * dirty_bitmap. 6821 */ 6822 } 6823 6824 static void kvm_mmu_zap_all(struct kvm *kvm) 6825 { 6826 struct kvm_mmu_page *sp, *node; 6827 LIST_HEAD(invalid_list); 6828 int ign; 6829 6830 write_lock(&kvm->mmu_lock); 6831 restart: 6832 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) { 6833 if (WARN_ON_ONCE(sp->role.invalid)) 6834 continue; 6835 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign)) 6836 goto restart; 6837 if (cond_resched_rwlock_write(&kvm->mmu_lock)) 6838 goto restart; 6839 } 6840 6841 kvm_mmu_commit_zap_page(kvm, &invalid_list); 6842 6843 if (tdp_mmu_enabled) 6844 kvm_tdp_mmu_zap_all(kvm); 6845 6846 write_unlock(&kvm->mmu_lock); 6847 } 6848 6849 void kvm_arch_flush_shadow_all(struct kvm *kvm) 6850 { 6851 kvm_mmu_zap_all(kvm); 6852 } 6853 6854 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 6855 struct kvm_memory_slot *slot) 6856 { 6857 kvm_mmu_zap_all_fast(kvm); 6858 } 6859 6860 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen) 6861 { 6862 WARN_ON_ONCE(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 6863 6864 gen &= MMIO_SPTE_GEN_MASK; 6865 6866 /* 6867 * Generation numbers are incremented in multiples of the number of 6868 * address spaces in order to provide unique generations across all 6869 * address spaces. Strip what is effectively the address space 6870 * modifier prior to checking for a wrap of the MMIO generation so 6871 * that a wrap in any address space is detected. 6872 */ 6873 gen &= ~((u64)kvm_arch_nr_memslot_as_ids(kvm) - 1); 6874 6875 /* 6876 * The very rare case: if the MMIO generation number has wrapped, 6877 * zap all shadow pages. 6878 */ 6879 if (unlikely(gen == 0)) { 6880 kvm_debug_ratelimited("zapping shadow pages for mmio generation wraparound\n"); 6881 kvm_mmu_zap_all_fast(kvm); 6882 } 6883 } 6884 6885 static unsigned long mmu_shrink_scan(struct shrinker *shrink, 6886 struct shrink_control *sc) 6887 { 6888 struct kvm *kvm; 6889 int nr_to_scan = sc->nr_to_scan; 6890 unsigned long freed = 0; 6891 6892 mutex_lock(&kvm_lock); 6893 6894 list_for_each_entry(kvm, &vm_list, vm_list) { 6895 int idx; 6896 LIST_HEAD(invalid_list); 6897 6898 /* 6899 * Never scan more than sc->nr_to_scan VM instances. 6900 * Will not hit this condition practically since we do not try 6901 * to shrink more than one VM and it is very unlikely to see 6902 * !n_used_mmu_pages so many times. 6903 */ 6904 if (!nr_to_scan--) 6905 break; 6906 /* 6907 * n_used_mmu_pages is accessed without holding kvm->mmu_lock 6908 * here. We may skip a VM instance errorneosly, but we do not 6909 * want to shrink a VM that only started to populate its MMU 6910 * anyway. 6911 */ 6912 if (!kvm->arch.n_used_mmu_pages && 6913 !kvm_has_zapped_obsolete_pages(kvm)) 6914 continue; 6915 6916 idx = srcu_read_lock(&kvm->srcu); 6917 write_lock(&kvm->mmu_lock); 6918 6919 if (kvm_has_zapped_obsolete_pages(kvm)) { 6920 kvm_mmu_commit_zap_page(kvm, 6921 &kvm->arch.zapped_obsolete_pages); 6922 goto unlock; 6923 } 6924 6925 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan); 6926 6927 unlock: 6928 write_unlock(&kvm->mmu_lock); 6929 srcu_read_unlock(&kvm->srcu, idx); 6930 6931 /* 6932 * unfair on small ones 6933 * per-vm shrinkers cry out 6934 * sadness comes quickly 6935 */ 6936 list_move_tail(&kvm->vm_list, &vm_list); 6937 break; 6938 } 6939 6940 mutex_unlock(&kvm_lock); 6941 return freed; 6942 } 6943 6944 static unsigned long mmu_shrink_count(struct shrinker *shrink, 6945 struct shrink_control *sc) 6946 { 6947 return percpu_counter_read_positive(&kvm_total_used_mmu_pages); 6948 } 6949 6950 static struct shrinker *mmu_shrinker; 6951 6952 static void mmu_destroy_caches(void) 6953 { 6954 kmem_cache_destroy(pte_list_desc_cache); 6955 kmem_cache_destroy(mmu_page_header_cache); 6956 } 6957 6958 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp) 6959 { 6960 if (nx_hugepage_mitigation_hard_disabled) 6961 return sysfs_emit(buffer, "never\n"); 6962 6963 return param_get_bool(buffer, kp); 6964 } 6965 6966 static bool get_nx_auto_mode(void) 6967 { 6968 /* Return true when CPU has the bug, and mitigations are ON */ 6969 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off(); 6970 } 6971 6972 static void __set_nx_huge_pages(bool val) 6973 { 6974 nx_huge_pages = itlb_multihit_kvm_mitigation = val; 6975 } 6976 6977 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp) 6978 { 6979 bool old_val = nx_huge_pages; 6980 bool new_val; 6981 6982 if (nx_hugepage_mitigation_hard_disabled) 6983 return -EPERM; 6984 6985 /* In "auto" mode deploy workaround only if CPU has the bug. */ 6986 if (sysfs_streq(val, "off")) { 6987 new_val = 0; 6988 } else if (sysfs_streq(val, "force")) { 6989 new_val = 1; 6990 } else if (sysfs_streq(val, "auto")) { 6991 new_val = get_nx_auto_mode(); 6992 } else if (sysfs_streq(val, "never")) { 6993 new_val = 0; 6994 6995 mutex_lock(&kvm_lock); 6996 if (!list_empty(&vm_list)) { 6997 mutex_unlock(&kvm_lock); 6998 return -EBUSY; 6999 } 7000 nx_hugepage_mitigation_hard_disabled = true; 7001 mutex_unlock(&kvm_lock); 7002 } else if (kstrtobool(val, &new_val) < 0) { 7003 return -EINVAL; 7004 } 7005 7006 __set_nx_huge_pages(new_val); 7007 7008 if (new_val != old_val) { 7009 struct kvm *kvm; 7010 7011 mutex_lock(&kvm_lock); 7012 7013 list_for_each_entry(kvm, &vm_list, vm_list) { 7014 mutex_lock(&kvm->slots_lock); 7015 kvm_mmu_zap_all_fast(kvm); 7016 mutex_unlock(&kvm->slots_lock); 7017 7018 wake_up_process(kvm->arch.nx_huge_page_recovery_thread); 7019 } 7020 mutex_unlock(&kvm_lock); 7021 } 7022 7023 return 0; 7024 } 7025 7026 /* 7027 * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as 7028 * its default value of -1 is technically undefined behavior for a boolean. 7029 * Forward the module init call to SPTE code so that it too can handle module 7030 * params that need to be resolved/snapshot. 7031 */ 7032 void __init kvm_mmu_x86_module_init(void) 7033 { 7034 if (nx_huge_pages == -1) 7035 __set_nx_huge_pages(get_nx_auto_mode()); 7036 7037 /* 7038 * Snapshot userspace's desire to enable the TDP MMU. Whether or not the 7039 * TDP MMU is actually enabled is determined in kvm_configure_mmu() 7040 * when the vendor module is loaded. 7041 */ 7042 tdp_mmu_allowed = tdp_mmu_enabled; 7043 7044 kvm_mmu_spte_module_init(); 7045 } 7046 7047 /* 7048 * The bulk of the MMU initialization is deferred until the vendor module is 7049 * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need 7050 * to be reset when a potentially different vendor module is loaded. 7051 */ 7052 int kvm_mmu_vendor_module_init(void) 7053 { 7054 int ret = -ENOMEM; 7055 7056 /* 7057 * MMU roles use union aliasing which is, generally speaking, an 7058 * undefined behavior. However, we supposedly know how compilers behave 7059 * and the current status quo is unlikely to change. Guardians below are 7060 * supposed to let us know if the assumption becomes false. 7061 */ 7062 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32)); 7063 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32)); 7064 BUILD_BUG_ON(sizeof(union kvm_cpu_role) != sizeof(u64)); 7065 7066 kvm_mmu_reset_all_pte_masks(); 7067 7068 pte_list_desc_cache = KMEM_CACHE(pte_list_desc, SLAB_ACCOUNT); 7069 if (!pte_list_desc_cache) 7070 goto out; 7071 7072 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", 7073 sizeof(struct kvm_mmu_page), 7074 0, SLAB_ACCOUNT, NULL); 7075 if (!mmu_page_header_cache) 7076 goto out; 7077 7078 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL)) 7079 goto out; 7080 7081 mmu_shrinker = shrinker_alloc(0, "x86-mmu"); 7082 if (!mmu_shrinker) 7083 goto out_shrinker; 7084 7085 mmu_shrinker->count_objects = mmu_shrink_count; 7086 mmu_shrinker->scan_objects = mmu_shrink_scan; 7087 mmu_shrinker->seeks = DEFAULT_SEEKS * 10; 7088 7089 shrinker_register(mmu_shrinker); 7090 7091 return 0; 7092 7093 out_shrinker: 7094 percpu_counter_destroy(&kvm_total_used_mmu_pages); 7095 out: 7096 mmu_destroy_caches(); 7097 return ret; 7098 } 7099 7100 void kvm_mmu_destroy(struct kvm_vcpu *vcpu) 7101 { 7102 kvm_mmu_unload(vcpu); 7103 free_mmu_pages(&vcpu->arch.root_mmu); 7104 free_mmu_pages(&vcpu->arch.guest_mmu); 7105 mmu_free_memory_caches(vcpu); 7106 } 7107 7108 void kvm_mmu_vendor_module_exit(void) 7109 { 7110 mmu_destroy_caches(); 7111 percpu_counter_destroy(&kvm_total_used_mmu_pages); 7112 shrinker_free(mmu_shrinker); 7113 } 7114 7115 /* 7116 * Calculate the effective recovery period, accounting for '0' meaning "let KVM 7117 * select a halving time of 1 hour". Returns true if recovery is enabled. 7118 */ 7119 static bool calc_nx_huge_pages_recovery_period(uint *period) 7120 { 7121 /* 7122 * Use READ_ONCE to get the params, this may be called outside of the 7123 * param setters, e.g. by the kthread to compute its next timeout. 7124 */ 7125 bool enabled = READ_ONCE(nx_huge_pages); 7126 uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 7127 7128 if (!enabled || !ratio) 7129 return false; 7130 7131 *period = READ_ONCE(nx_huge_pages_recovery_period_ms); 7132 if (!*period) { 7133 /* Make sure the period is not less than one second. */ 7134 ratio = min(ratio, 3600u); 7135 *period = 60 * 60 * 1000 / ratio; 7136 } 7137 return true; 7138 } 7139 7140 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp) 7141 { 7142 bool was_recovery_enabled, is_recovery_enabled; 7143 uint old_period, new_period; 7144 int err; 7145 7146 if (nx_hugepage_mitigation_hard_disabled) 7147 return -EPERM; 7148 7149 was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period); 7150 7151 err = param_set_uint(val, kp); 7152 if (err) 7153 return err; 7154 7155 is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period); 7156 7157 if (is_recovery_enabled && 7158 (!was_recovery_enabled || old_period > new_period)) { 7159 struct kvm *kvm; 7160 7161 mutex_lock(&kvm_lock); 7162 7163 list_for_each_entry(kvm, &vm_list, vm_list) 7164 wake_up_process(kvm->arch.nx_huge_page_recovery_thread); 7165 7166 mutex_unlock(&kvm_lock); 7167 } 7168 7169 return err; 7170 } 7171 7172 static void kvm_recover_nx_huge_pages(struct kvm *kvm) 7173 { 7174 unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits; 7175 struct kvm_memory_slot *slot; 7176 int rcu_idx; 7177 struct kvm_mmu_page *sp; 7178 unsigned int ratio; 7179 LIST_HEAD(invalid_list); 7180 bool flush = false; 7181 ulong to_zap; 7182 7183 rcu_idx = srcu_read_lock(&kvm->srcu); 7184 write_lock(&kvm->mmu_lock); 7185 7186 /* 7187 * Zapping TDP MMU shadow pages, including the remote TLB flush, must 7188 * be done under RCU protection, because the pages are freed via RCU 7189 * callback. 7190 */ 7191 rcu_read_lock(); 7192 7193 ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 7194 to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0; 7195 for ( ; to_zap; --to_zap) { 7196 if (list_empty(&kvm->arch.possible_nx_huge_pages)) 7197 break; 7198 7199 /* 7200 * We use a separate list instead of just using active_mmu_pages 7201 * because the number of shadow pages that be replaced with an 7202 * NX huge page is expected to be relatively small compared to 7203 * the total number of shadow pages. And because the TDP MMU 7204 * doesn't use active_mmu_pages. 7205 */ 7206 sp = list_first_entry(&kvm->arch.possible_nx_huge_pages, 7207 struct kvm_mmu_page, 7208 possible_nx_huge_page_link); 7209 WARN_ON_ONCE(!sp->nx_huge_page_disallowed); 7210 WARN_ON_ONCE(!sp->role.direct); 7211 7212 /* 7213 * Unaccount and do not attempt to recover any NX Huge Pages 7214 * that are being dirty tracked, as they would just be faulted 7215 * back in as 4KiB pages. The NX Huge Pages in this slot will be 7216 * recovered, along with all the other huge pages in the slot, 7217 * when dirty logging is disabled. 7218 * 7219 * Since gfn_to_memslot() is relatively expensive, it helps to 7220 * skip it if it the test cannot possibly return true. On the 7221 * other hand, if any memslot has logging enabled, chances are 7222 * good that all of them do, in which case unaccount_nx_huge_page() 7223 * is much cheaper than zapping the page. 7224 * 7225 * If a memslot update is in progress, reading an incorrect value 7226 * of kvm->nr_memslots_dirty_logging is not a problem: if it is 7227 * becoming zero, gfn_to_memslot() will be done unnecessarily; if 7228 * it is becoming nonzero, the page will be zapped unnecessarily. 7229 * Either way, this only affects efficiency in racy situations, 7230 * and not correctness. 7231 */ 7232 slot = NULL; 7233 if (atomic_read(&kvm->nr_memslots_dirty_logging)) { 7234 struct kvm_memslots *slots; 7235 7236 slots = kvm_memslots_for_spte_role(kvm, sp->role); 7237 slot = __gfn_to_memslot(slots, sp->gfn); 7238 WARN_ON_ONCE(!slot); 7239 } 7240 7241 if (slot && kvm_slot_dirty_track_enabled(slot)) 7242 unaccount_nx_huge_page(kvm, sp); 7243 else if (is_tdp_mmu_page(sp)) 7244 flush |= kvm_tdp_mmu_zap_sp(kvm, sp); 7245 else 7246 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 7247 WARN_ON_ONCE(sp->nx_huge_page_disallowed); 7248 7249 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 7250 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7251 rcu_read_unlock(); 7252 7253 cond_resched_rwlock_write(&kvm->mmu_lock); 7254 flush = false; 7255 7256 rcu_read_lock(); 7257 } 7258 } 7259 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7260 7261 rcu_read_unlock(); 7262 7263 write_unlock(&kvm->mmu_lock); 7264 srcu_read_unlock(&kvm->srcu, rcu_idx); 7265 } 7266 7267 static long get_nx_huge_page_recovery_timeout(u64 start_time) 7268 { 7269 bool enabled; 7270 uint period; 7271 7272 enabled = calc_nx_huge_pages_recovery_period(&period); 7273 7274 return enabled ? start_time + msecs_to_jiffies(period) - get_jiffies_64() 7275 : MAX_SCHEDULE_TIMEOUT; 7276 } 7277 7278 static int kvm_nx_huge_page_recovery_worker(struct kvm *kvm, uintptr_t data) 7279 { 7280 u64 start_time; 7281 long remaining_time; 7282 7283 while (true) { 7284 start_time = get_jiffies_64(); 7285 remaining_time = get_nx_huge_page_recovery_timeout(start_time); 7286 7287 set_current_state(TASK_INTERRUPTIBLE); 7288 while (!kthread_should_stop() && remaining_time > 0) { 7289 schedule_timeout(remaining_time); 7290 remaining_time = get_nx_huge_page_recovery_timeout(start_time); 7291 set_current_state(TASK_INTERRUPTIBLE); 7292 } 7293 7294 set_current_state(TASK_RUNNING); 7295 7296 if (kthread_should_stop()) 7297 return 0; 7298 7299 kvm_recover_nx_huge_pages(kvm); 7300 } 7301 } 7302 7303 int kvm_mmu_post_init_vm(struct kvm *kvm) 7304 { 7305 int err; 7306 7307 if (nx_hugepage_mitigation_hard_disabled) 7308 return 0; 7309 7310 err = kvm_vm_create_worker_thread(kvm, kvm_nx_huge_page_recovery_worker, 0, 7311 "kvm-nx-lpage-recovery", 7312 &kvm->arch.nx_huge_page_recovery_thread); 7313 if (!err) 7314 kthread_unpark(kvm->arch.nx_huge_page_recovery_thread); 7315 7316 return err; 7317 } 7318 7319 void kvm_mmu_pre_destroy_vm(struct kvm *kvm) 7320 { 7321 if (kvm->arch.nx_huge_page_recovery_thread) 7322 kthread_stop(kvm->arch.nx_huge_page_recovery_thread); 7323 } 7324 7325 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 7326 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm, 7327 struct kvm_gfn_range *range) 7328 { 7329 /* 7330 * Zap SPTEs even if the slot can't be mapped PRIVATE. KVM x86 only 7331 * supports KVM_MEMORY_ATTRIBUTE_PRIVATE, and so it *seems* like KVM 7332 * can simply ignore such slots. But if userspace is making memory 7333 * PRIVATE, then KVM must prevent the guest from accessing the memory 7334 * as shared. And if userspace is making memory SHARED and this point 7335 * is reached, then at least one page within the range was previously 7336 * PRIVATE, i.e. the slot's possible hugepage ranges are changing. 7337 * Zapping SPTEs in this case ensures KVM will reassess whether or not 7338 * a hugepage can be used for affected ranges. 7339 */ 7340 if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm))) 7341 return false; 7342 7343 return kvm_unmap_gfn_range(kvm, range); 7344 } 7345 7346 static bool hugepage_test_mixed(struct kvm_memory_slot *slot, gfn_t gfn, 7347 int level) 7348 { 7349 return lpage_info_slot(gfn, slot, level)->disallow_lpage & KVM_LPAGE_MIXED_FLAG; 7350 } 7351 7352 static void hugepage_clear_mixed(struct kvm_memory_slot *slot, gfn_t gfn, 7353 int level) 7354 { 7355 lpage_info_slot(gfn, slot, level)->disallow_lpage &= ~KVM_LPAGE_MIXED_FLAG; 7356 } 7357 7358 static void hugepage_set_mixed(struct kvm_memory_slot *slot, gfn_t gfn, 7359 int level) 7360 { 7361 lpage_info_slot(gfn, slot, level)->disallow_lpage |= KVM_LPAGE_MIXED_FLAG; 7362 } 7363 7364 static bool hugepage_has_attrs(struct kvm *kvm, struct kvm_memory_slot *slot, 7365 gfn_t gfn, int level, unsigned long attrs) 7366 { 7367 const unsigned long start = gfn; 7368 const unsigned long end = start + KVM_PAGES_PER_HPAGE(level); 7369 7370 if (level == PG_LEVEL_2M) 7371 return kvm_range_has_memory_attributes(kvm, start, end, attrs); 7372 7373 for (gfn = start; gfn < end; gfn += KVM_PAGES_PER_HPAGE(level - 1)) { 7374 if (hugepage_test_mixed(slot, gfn, level - 1) || 7375 attrs != kvm_get_memory_attributes(kvm, gfn)) 7376 return false; 7377 } 7378 return true; 7379 } 7380 7381 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm, 7382 struct kvm_gfn_range *range) 7383 { 7384 unsigned long attrs = range->arg.attributes; 7385 struct kvm_memory_slot *slot = range->slot; 7386 int level; 7387 7388 lockdep_assert_held_write(&kvm->mmu_lock); 7389 lockdep_assert_held(&kvm->slots_lock); 7390 7391 /* 7392 * Calculate which ranges can be mapped with hugepages even if the slot 7393 * can't map memory PRIVATE. KVM mustn't create a SHARED hugepage over 7394 * a range that has PRIVATE GFNs, and conversely converting a range to 7395 * SHARED may now allow hugepages. 7396 */ 7397 if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm))) 7398 return false; 7399 7400 /* 7401 * The sequence matters here: upper levels consume the result of lower 7402 * level's scanning. 7403 */ 7404 for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) { 7405 gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level); 7406 gfn_t gfn = gfn_round_for_level(range->start, level); 7407 7408 /* Process the head page if it straddles the range. */ 7409 if (gfn != range->start || gfn + nr_pages > range->end) { 7410 /* 7411 * Skip mixed tracking if the aligned gfn isn't covered 7412 * by the memslot, KVM can't use a hugepage due to the 7413 * misaligned address regardless of memory attributes. 7414 */ 7415 if (gfn >= slot->base_gfn && 7416 gfn + nr_pages <= slot->base_gfn + slot->npages) { 7417 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs)) 7418 hugepage_clear_mixed(slot, gfn, level); 7419 else 7420 hugepage_set_mixed(slot, gfn, level); 7421 } 7422 gfn += nr_pages; 7423 } 7424 7425 /* 7426 * Pages entirely covered by the range are guaranteed to have 7427 * only the attributes which were just set. 7428 */ 7429 for ( ; gfn + nr_pages <= range->end; gfn += nr_pages) 7430 hugepage_clear_mixed(slot, gfn, level); 7431 7432 /* 7433 * Process the last tail page if it straddles the range and is 7434 * contained by the memslot. Like the head page, KVM can't 7435 * create a hugepage if the slot size is misaligned. 7436 */ 7437 if (gfn < range->end && 7438 (gfn + nr_pages) <= (slot->base_gfn + slot->npages)) { 7439 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs)) 7440 hugepage_clear_mixed(slot, gfn, level); 7441 else 7442 hugepage_set_mixed(slot, gfn, level); 7443 } 7444 } 7445 return false; 7446 } 7447 7448 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm, 7449 struct kvm_memory_slot *slot) 7450 { 7451 int level; 7452 7453 if (!kvm_arch_has_private_mem(kvm)) 7454 return; 7455 7456 for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) { 7457 /* 7458 * Don't bother tracking mixed attributes for pages that can't 7459 * be huge due to alignment, i.e. process only pages that are 7460 * entirely contained by the memslot. 7461 */ 7462 gfn_t end = gfn_round_for_level(slot->base_gfn + slot->npages, level); 7463 gfn_t start = gfn_round_for_level(slot->base_gfn, level); 7464 gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level); 7465 gfn_t gfn; 7466 7467 if (start < slot->base_gfn) 7468 start += nr_pages; 7469 7470 /* 7471 * Unlike setting attributes, every potential hugepage needs to 7472 * be manually checked as the attributes may already be mixed. 7473 */ 7474 for (gfn = start; gfn < end; gfn += nr_pages) { 7475 unsigned long attrs = kvm_get_memory_attributes(kvm, gfn); 7476 7477 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs)) 7478 hugepage_clear_mixed(slot, gfn, level); 7479 else 7480 hugepage_set_mixed(slot, gfn, level); 7481 } 7482 } 7483 } 7484 #endif 7485