1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * MMU support 9 * 10 * Copyright (C) 2006 Qumranet, Inc. 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 12 * 13 * Authors: 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Avi Kivity <avi@qumranet.com> 16 */ 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include "irq.h" 20 #include "ioapic.h" 21 #include "mmu.h" 22 #include "mmu_internal.h" 23 #include "tdp_mmu.h" 24 #include "x86.h" 25 #include "kvm_cache_regs.h" 26 #include "smm.h" 27 #include "kvm_emulate.h" 28 #include "page_track.h" 29 #include "cpuid.h" 30 #include "spte.h" 31 32 #include <linux/kvm_host.h> 33 #include <linux/types.h> 34 #include <linux/string.h> 35 #include <linux/mm.h> 36 #include <linux/highmem.h> 37 #include <linux/moduleparam.h> 38 #include <linux/export.h> 39 #include <linux/swap.h> 40 #include <linux/hugetlb.h> 41 #include <linux/compiler.h> 42 #include <linux/srcu.h> 43 #include <linux/slab.h> 44 #include <linux/sched/signal.h> 45 #include <linux/uaccess.h> 46 #include <linux/hash.h> 47 #include <linux/kern_levels.h> 48 #include <linux/kstrtox.h> 49 #include <linux/kthread.h> 50 #include <linux/wordpart.h> 51 52 #include <asm/page.h> 53 #include <asm/memtype.h> 54 #include <asm/cmpxchg.h> 55 #include <asm/io.h> 56 #include <asm/set_memory.h> 57 #include <asm/spec-ctrl.h> 58 #include <asm/vmx.h> 59 60 #include "trace.h" 61 62 static bool nx_hugepage_mitigation_hard_disabled; 63 64 int __read_mostly nx_huge_pages = -1; 65 static uint __read_mostly nx_huge_pages_recovery_period_ms; 66 #ifdef CONFIG_PREEMPT_RT 67 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */ 68 static uint __read_mostly nx_huge_pages_recovery_ratio = 0; 69 #else 70 static uint __read_mostly nx_huge_pages_recovery_ratio = 60; 71 #endif 72 73 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp); 74 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp); 75 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp); 76 77 static const struct kernel_param_ops nx_huge_pages_ops = { 78 .set = set_nx_huge_pages, 79 .get = get_nx_huge_pages, 80 }; 81 82 static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = { 83 .set = set_nx_huge_pages_recovery_param, 84 .get = param_get_uint, 85 }; 86 87 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644); 88 __MODULE_PARM_TYPE(nx_huge_pages, "bool"); 89 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops, 90 &nx_huge_pages_recovery_ratio, 0644); 91 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint"); 92 module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops, 93 &nx_huge_pages_recovery_period_ms, 0644); 94 __MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint"); 95 96 static bool __read_mostly force_flush_and_sync_on_reuse; 97 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644); 98 99 /* 100 * When setting this variable to true it enables Two-Dimensional-Paging 101 * where the hardware walks 2 page tables: 102 * 1. the guest-virtual to guest-physical 103 * 2. while doing 1. it walks guest-physical to host-physical 104 * If the hardware supports that we don't need to do shadow paging. 105 */ 106 bool tdp_enabled = false; 107 108 static bool __ro_after_init tdp_mmu_allowed; 109 110 #ifdef CONFIG_X86_64 111 bool __read_mostly tdp_mmu_enabled = true; 112 module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0444); 113 #endif 114 115 static int max_huge_page_level __read_mostly; 116 static int tdp_root_level __read_mostly; 117 static int max_tdp_level __read_mostly; 118 119 #define PTE_PREFETCH_NUM 8 120 121 #include <trace/events/kvm.h> 122 123 /* make pte_list_desc fit well in cache lines */ 124 #define PTE_LIST_EXT 14 125 126 /* 127 * struct pte_list_desc is the core data structure used to implement a custom 128 * list for tracking a set of related SPTEs, e.g. all the SPTEs that map a 129 * given GFN when used in the context of rmaps. Using a custom list allows KVM 130 * to optimize for the common case where many GFNs will have at most a handful 131 * of SPTEs pointing at them, i.e. allows packing multiple SPTEs into a small 132 * memory footprint, which in turn improves runtime performance by exploiting 133 * cache locality. 134 * 135 * A list is comprised of one or more pte_list_desc objects (descriptors). 136 * Each individual descriptor stores up to PTE_LIST_EXT SPTEs. If a descriptor 137 * is full and a new SPTEs needs to be added, a new descriptor is allocated and 138 * becomes the head of the list. This means that by definitions, all tail 139 * descriptors are full. 140 * 141 * Note, the meta data fields are deliberately placed at the start of the 142 * structure to optimize the cacheline layout; accessing the descriptor will 143 * touch only a single cacheline so long as @spte_count<=6 (or if only the 144 * descriptors metadata is accessed). 145 */ 146 struct pte_list_desc { 147 struct pte_list_desc *more; 148 /* The number of PTEs stored in _this_ descriptor. */ 149 u32 spte_count; 150 /* The number of PTEs stored in all tails of this descriptor. */ 151 u32 tail_count; 152 u64 *sptes[PTE_LIST_EXT]; 153 }; 154 155 struct kvm_shadow_walk_iterator { 156 u64 addr; 157 hpa_t shadow_addr; 158 u64 *sptep; 159 int level; 160 unsigned index; 161 }; 162 163 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \ 164 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \ 165 (_root), (_addr)); \ 166 shadow_walk_okay(&(_walker)); \ 167 shadow_walk_next(&(_walker))) 168 169 #define for_each_shadow_entry(_vcpu, _addr, _walker) \ 170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 171 shadow_walk_okay(&(_walker)); \ 172 shadow_walk_next(&(_walker))) 173 174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \ 175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 176 shadow_walk_okay(&(_walker)) && \ 177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \ 178 __shadow_walk_next(&(_walker), spte)) 179 180 static struct kmem_cache *pte_list_desc_cache; 181 struct kmem_cache *mmu_page_header_cache; 182 static struct percpu_counter kvm_total_used_mmu_pages; 183 184 static void mmu_spte_set(u64 *sptep, u64 spte); 185 186 struct kvm_mmu_role_regs { 187 const unsigned long cr0; 188 const unsigned long cr4; 189 const u64 efer; 190 }; 191 192 #define CREATE_TRACE_POINTS 193 #include "mmutrace.h" 194 195 /* 196 * Yes, lot's of underscores. They're a hint that you probably shouldn't be 197 * reading from the role_regs. Once the root_role is constructed, it becomes 198 * the single source of truth for the MMU's state. 199 */ 200 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag) \ 201 static inline bool __maybe_unused \ 202 ____is_##reg##_##name(const struct kvm_mmu_role_regs *regs) \ 203 { \ 204 return !!(regs->reg & flag); \ 205 } 206 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG); 207 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP); 208 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE); 209 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE); 210 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP); 211 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP); 212 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE); 213 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57); 214 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX); 215 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA); 216 217 /* 218 * The MMU itself (with a valid role) is the single source of truth for the 219 * MMU. Do not use the regs used to build the MMU/role, nor the vCPU. The 220 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1, 221 * and the vCPU may be incorrect/irrelevant. 222 */ 223 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name) \ 224 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu) \ 225 { \ 226 return !!(mmu->cpu_role. base_or_ext . reg##_##name); \ 227 } 228 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp); 229 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pse); 230 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smep); 231 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smap); 232 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pke); 233 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, la57); 234 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx); 235 BUILD_MMU_ROLE_ACCESSOR(ext, efer, lma); 236 237 static inline bool is_cr0_pg(struct kvm_mmu *mmu) 238 { 239 return mmu->cpu_role.base.level > 0; 240 } 241 242 static inline bool is_cr4_pae(struct kvm_mmu *mmu) 243 { 244 return !mmu->cpu_role.base.has_4_byte_gpte; 245 } 246 247 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu) 248 { 249 struct kvm_mmu_role_regs regs = { 250 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS), 251 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS), 252 .efer = vcpu->arch.efer, 253 }; 254 255 return regs; 256 } 257 258 static unsigned long get_guest_cr3(struct kvm_vcpu *vcpu) 259 { 260 return kvm_read_cr3(vcpu); 261 } 262 263 static inline unsigned long kvm_mmu_get_guest_pgd(struct kvm_vcpu *vcpu, 264 struct kvm_mmu *mmu) 265 { 266 if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && mmu->get_guest_pgd == get_guest_cr3) 267 return kvm_read_cr3(vcpu); 268 269 return mmu->get_guest_pgd(vcpu); 270 } 271 272 static inline bool kvm_available_flush_remote_tlbs_range(void) 273 { 274 #if IS_ENABLED(CONFIG_HYPERV) 275 return kvm_x86_ops.flush_remote_tlbs_range; 276 #else 277 return false; 278 #endif 279 } 280 281 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index); 282 283 /* Flush the range of guest memory mapped by the given SPTE. */ 284 static void kvm_flush_remote_tlbs_sptep(struct kvm *kvm, u64 *sptep) 285 { 286 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 287 gfn_t gfn = kvm_mmu_page_get_gfn(sp, spte_index(sptep)); 288 289 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level); 290 } 291 292 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn, 293 unsigned int access) 294 { 295 u64 spte = make_mmio_spte(vcpu, gfn, access); 296 297 trace_mark_mmio_spte(sptep, gfn, spte); 298 mmu_spte_set(sptep, spte); 299 } 300 301 static gfn_t get_mmio_spte_gfn(u64 spte) 302 { 303 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask; 304 305 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN) 306 & shadow_nonpresent_or_rsvd_mask; 307 308 return gpa >> PAGE_SHIFT; 309 } 310 311 static unsigned get_mmio_spte_access(u64 spte) 312 { 313 return spte & shadow_mmio_access_mask; 314 } 315 316 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte) 317 { 318 u64 kvm_gen, spte_gen, gen; 319 320 gen = kvm_vcpu_memslots(vcpu)->generation; 321 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS)) 322 return false; 323 324 kvm_gen = gen & MMIO_SPTE_GEN_MASK; 325 spte_gen = get_mmio_spte_generation(spte); 326 327 trace_check_mmio_spte(spte, kvm_gen, spte_gen); 328 return likely(kvm_gen == spte_gen); 329 } 330 331 static int is_cpuid_PSE36(void) 332 { 333 return 1; 334 } 335 336 #ifdef CONFIG_X86_64 337 static void __set_spte(u64 *sptep, u64 spte) 338 { 339 KVM_MMU_WARN_ON(is_ept_ve_possible(spte)); 340 WRITE_ONCE(*sptep, spte); 341 } 342 343 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 344 { 345 KVM_MMU_WARN_ON(is_ept_ve_possible(spte)); 346 WRITE_ONCE(*sptep, spte); 347 } 348 349 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 350 { 351 KVM_MMU_WARN_ON(is_ept_ve_possible(spte)); 352 return xchg(sptep, spte); 353 } 354 355 static u64 __get_spte_lockless(u64 *sptep) 356 { 357 return READ_ONCE(*sptep); 358 } 359 #else 360 union split_spte { 361 struct { 362 u32 spte_low; 363 u32 spte_high; 364 }; 365 u64 spte; 366 }; 367 368 static void count_spte_clear(u64 *sptep, u64 spte) 369 { 370 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 371 372 if (is_shadow_present_pte(spte)) 373 return; 374 375 /* Ensure the spte is completely set before we increase the count */ 376 smp_wmb(); 377 sp->clear_spte_count++; 378 } 379 380 static void __set_spte(u64 *sptep, u64 spte) 381 { 382 union split_spte *ssptep, sspte; 383 384 ssptep = (union split_spte *)sptep; 385 sspte = (union split_spte)spte; 386 387 ssptep->spte_high = sspte.spte_high; 388 389 /* 390 * If we map the spte from nonpresent to present, We should store 391 * the high bits firstly, then set present bit, so cpu can not 392 * fetch this spte while we are setting the spte. 393 */ 394 smp_wmb(); 395 396 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 397 } 398 399 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 400 { 401 union split_spte *ssptep, sspte; 402 403 ssptep = (union split_spte *)sptep; 404 sspte = (union split_spte)spte; 405 406 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 407 408 /* 409 * If we map the spte from present to nonpresent, we should clear 410 * present bit firstly to avoid vcpu fetch the old high bits. 411 */ 412 smp_wmb(); 413 414 ssptep->spte_high = sspte.spte_high; 415 count_spte_clear(sptep, spte); 416 } 417 418 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 419 { 420 union split_spte *ssptep, sspte, orig; 421 422 ssptep = (union split_spte *)sptep; 423 sspte = (union split_spte)spte; 424 425 /* xchg acts as a barrier before the setting of the high bits */ 426 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); 427 orig.spte_high = ssptep->spte_high; 428 ssptep->spte_high = sspte.spte_high; 429 count_spte_clear(sptep, spte); 430 431 return orig.spte; 432 } 433 434 /* 435 * The idea using the light way get the spte on x86_32 guest is from 436 * gup_get_pte (mm/gup.c). 437 * 438 * An spte tlb flush may be pending, because they are coalesced and 439 * we are running out of the MMU lock. Therefore 440 * we need to protect against in-progress updates of the spte. 441 * 442 * Reading the spte while an update is in progress may get the old value 443 * for the high part of the spte. The race is fine for a present->non-present 444 * change (because the high part of the spte is ignored for non-present spte), 445 * but for a present->present change we must reread the spte. 446 * 447 * All such changes are done in two steps (present->non-present and 448 * non-present->present), hence it is enough to count the number of 449 * present->non-present updates: if it changed while reading the spte, 450 * we might have hit the race. This is done using clear_spte_count. 451 */ 452 static u64 __get_spte_lockless(u64 *sptep) 453 { 454 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 455 union split_spte spte, *orig = (union split_spte *)sptep; 456 int count; 457 458 retry: 459 count = sp->clear_spte_count; 460 smp_rmb(); 461 462 spte.spte_low = orig->spte_low; 463 smp_rmb(); 464 465 spte.spte_high = orig->spte_high; 466 smp_rmb(); 467 468 if (unlikely(spte.spte_low != orig->spte_low || 469 count != sp->clear_spte_count)) 470 goto retry; 471 472 return spte.spte; 473 } 474 #endif 475 476 /* Rules for using mmu_spte_set: 477 * Set the sptep from nonpresent to present. 478 * Note: the sptep being assigned *must* be either not present 479 * or in a state where the hardware will not attempt to update 480 * the spte. 481 */ 482 static void mmu_spte_set(u64 *sptep, u64 new_spte) 483 { 484 WARN_ON_ONCE(is_shadow_present_pte(*sptep)); 485 __set_spte(sptep, new_spte); 486 } 487 488 /* 489 * Update the SPTE (excluding the PFN), but do not track changes in its 490 * accessed/dirty status. 491 */ 492 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte) 493 { 494 u64 old_spte = *sptep; 495 496 WARN_ON_ONCE(!is_shadow_present_pte(new_spte)); 497 check_spte_writable_invariants(new_spte); 498 499 if (!is_shadow_present_pte(old_spte)) { 500 mmu_spte_set(sptep, new_spte); 501 return old_spte; 502 } 503 504 if (!spte_has_volatile_bits(old_spte)) 505 __update_clear_spte_fast(sptep, new_spte); 506 else 507 old_spte = __update_clear_spte_slow(sptep, new_spte); 508 509 WARN_ON_ONCE(spte_to_pfn(old_spte) != spte_to_pfn(new_spte)); 510 511 return old_spte; 512 } 513 514 /* Rules for using mmu_spte_update: 515 * Update the state bits, it means the mapped pfn is not changed. 516 * 517 * Whenever an MMU-writable SPTE is overwritten with a read-only SPTE, remote 518 * TLBs must be flushed. Otherwise rmap_write_protect will find a read-only 519 * spte, even though the writable spte might be cached on a CPU's TLB. 520 * 521 * Returns true if the TLB needs to be flushed 522 */ 523 static bool mmu_spte_update(u64 *sptep, u64 new_spte) 524 { 525 bool flush = false; 526 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte); 527 528 if (!is_shadow_present_pte(old_spte)) 529 return false; 530 531 /* 532 * For the spte updated out of mmu-lock is safe, since 533 * we always atomically update it, see the comments in 534 * spte_has_volatile_bits(). 535 */ 536 if (is_mmu_writable_spte(old_spte) && 537 !is_writable_pte(new_spte)) 538 flush = true; 539 540 /* 541 * Flush TLB when accessed/dirty states are changed in the page tables, 542 * to guarantee consistency between TLB and page tables. 543 */ 544 545 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) { 546 flush = true; 547 kvm_set_pfn_accessed(spte_to_pfn(old_spte)); 548 } 549 550 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) { 551 flush = true; 552 kvm_set_pfn_dirty(spte_to_pfn(old_spte)); 553 } 554 555 return flush; 556 } 557 558 /* 559 * Rules for using mmu_spte_clear_track_bits: 560 * It sets the sptep from present to nonpresent, and track the 561 * state bits, it is used to clear the last level sptep. 562 * Returns the old PTE. 563 */ 564 static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep) 565 { 566 kvm_pfn_t pfn; 567 u64 old_spte = *sptep; 568 int level = sptep_to_sp(sptep)->role.level; 569 struct page *page; 570 571 if (!is_shadow_present_pte(old_spte) || 572 !spte_has_volatile_bits(old_spte)) 573 __update_clear_spte_fast(sptep, SHADOW_NONPRESENT_VALUE); 574 else 575 old_spte = __update_clear_spte_slow(sptep, SHADOW_NONPRESENT_VALUE); 576 577 if (!is_shadow_present_pte(old_spte)) 578 return old_spte; 579 580 kvm_update_page_stats(kvm, level, -1); 581 582 pfn = spte_to_pfn(old_spte); 583 584 /* 585 * KVM doesn't hold a reference to any pages mapped into the guest, and 586 * instead uses the mmu_notifier to ensure that KVM unmaps any pages 587 * before they are reclaimed. Sanity check that, if the pfn is backed 588 * by a refcounted page, the refcount is elevated. 589 */ 590 page = kvm_pfn_to_refcounted_page(pfn); 591 WARN_ON_ONCE(page && !page_count(page)); 592 593 if (is_accessed_spte(old_spte)) 594 kvm_set_pfn_accessed(pfn); 595 596 if (is_dirty_spte(old_spte)) 597 kvm_set_pfn_dirty(pfn); 598 599 return old_spte; 600 } 601 602 /* 603 * Rules for using mmu_spte_clear_no_track: 604 * Directly clear spte without caring the state bits of sptep, 605 * it is used to set the upper level spte. 606 */ 607 static void mmu_spte_clear_no_track(u64 *sptep) 608 { 609 __update_clear_spte_fast(sptep, SHADOW_NONPRESENT_VALUE); 610 } 611 612 static u64 mmu_spte_get_lockless(u64 *sptep) 613 { 614 return __get_spte_lockless(sptep); 615 } 616 617 /* Returns the Accessed status of the PTE and resets it at the same time. */ 618 static bool mmu_spte_age(u64 *sptep) 619 { 620 u64 spte = mmu_spte_get_lockless(sptep); 621 622 if (!is_accessed_spte(spte)) 623 return false; 624 625 if (spte_ad_enabled(spte)) { 626 clear_bit((ffs(shadow_accessed_mask) - 1), 627 (unsigned long *)sptep); 628 } else { 629 /* 630 * Capture the dirty status of the page, so that it doesn't get 631 * lost when the SPTE is marked for access tracking. 632 */ 633 if (is_writable_pte(spte)) 634 kvm_set_pfn_dirty(spte_to_pfn(spte)); 635 636 spte = mark_spte_for_access_track(spte); 637 mmu_spte_update_no_track(sptep, spte); 638 } 639 640 return true; 641 } 642 643 static inline bool is_tdp_mmu_active(struct kvm_vcpu *vcpu) 644 { 645 return tdp_mmu_enabled && vcpu->arch.mmu->root_role.direct; 646 } 647 648 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) 649 { 650 if (is_tdp_mmu_active(vcpu)) { 651 kvm_tdp_mmu_walk_lockless_begin(); 652 } else { 653 /* 654 * Prevent page table teardown by making any free-er wait during 655 * kvm_flush_remote_tlbs() IPI to all active vcpus. 656 */ 657 local_irq_disable(); 658 659 /* 660 * Make sure a following spte read is not reordered ahead of the write 661 * to vcpu->mode. 662 */ 663 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); 664 } 665 } 666 667 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) 668 { 669 if (is_tdp_mmu_active(vcpu)) { 670 kvm_tdp_mmu_walk_lockless_end(); 671 } else { 672 /* 673 * Make sure the write to vcpu->mode is not reordered in front of 674 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us 675 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. 676 */ 677 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); 678 local_irq_enable(); 679 } 680 } 681 682 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect) 683 { 684 int r; 685 686 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */ 687 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, 688 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM); 689 if (r) 690 return r; 691 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache, 692 PT64_ROOT_MAX_LEVEL); 693 if (r) 694 return r; 695 if (maybe_indirect) { 696 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadowed_info_cache, 697 PT64_ROOT_MAX_LEVEL); 698 if (r) 699 return r; 700 } 701 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, 702 PT64_ROOT_MAX_LEVEL); 703 } 704 705 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) 706 { 707 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache); 708 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache); 709 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadowed_info_cache); 710 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache); 711 } 712 713 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) 714 { 715 kmem_cache_free(pte_list_desc_cache, pte_list_desc); 716 } 717 718 static bool sp_has_gptes(struct kvm_mmu_page *sp); 719 720 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) 721 { 722 if (sp->role.passthrough) 723 return sp->gfn; 724 725 if (sp->shadowed_translation) 726 return sp->shadowed_translation[index] >> PAGE_SHIFT; 727 728 return sp->gfn + (index << ((sp->role.level - 1) * SPTE_LEVEL_BITS)); 729 } 730 731 /* 732 * For leaf SPTEs, fetch the *guest* access permissions being shadowed. Note 733 * that the SPTE itself may have a more constrained access permissions that 734 * what the guest enforces. For example, a guest may create an executable 735 * huge PTE but KVM may disallow execution to mitigate iTLB multihit. 736 */ 737 static u32 kvm_mmu_page_get_access(struct kvm_mmu_page *sp, int index) 738 { 739 if (sp->shadowed_translation) 740 return sp->shadowed_translation[index] & ACC_ALL; 741 742 /* 743 * For direct MMUs (e.g. TDP or non-paging guests) or passthrough SPs, 744 * KVM is not shadowing any guest page tables, so the "guest access 745 * permissions" are just ACC_ALL. 746 * 747 * For direct SPs in indirect MMUs (shadow paging), i.e. when KVM 748 * is shadowing a guest huge page with small pages, the guest access 749 * permissions being shadowed are the access permissions of the huge 750 * page. 751 * 752 * In both cases, sp->role.access contains the correct access bits. 753 */ 754 return sp->role.access; 755 } 756 757 static void kvm_mmu_page_set_translation(struct kvm_mmu_page *sp, int index, 758 gfn_t gfn, unsigned int access) 759 { 760 if (sp->shadowed_translation) { 761 sp->shadowed_translation[index] = (gfn << PAGE_SHIFT) | access; 762 return; 763 } 764 765 WARN_ONCE(access != kvm_mmu_page_get_access(sp, index), 766 "access mismatch under %s page %llx (expected %u, got %u)\n", 767 sp->role.passthrough ? "passthrough" : "direct", 768 sp->gfn, kvm_mmu_page_get_access(sp, index), access); 769 770 WARN_ONCE(gfn != kvm_mmu_page_get_gfn(sp, index), 771 "gfn mismatch under %s page %llx (expected %llx, got %llx)\n", 772 sp->role.passthrough ? "passthrough" : "direct", 773 sp->gfn, kvm_mmu_page_get_gfn(sp, index), gfn); 774 } 775 776 static void kvm_mmu_page_set_access(struct kvm_mmu_page *sp, int index, 777 unsigned int access) 778 { 779 gfn_t gfn = kvm_mmu_page_get_gfn(sp, index); 780 781 kvm_mmu_page_set_translation(sp, index, gfn, access); 782 } 783 784 /* 785 * Return the pointer to the large page information for a given gfn, 786 * handling slots that are not large page aligned. 787 */ 788 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, 789 const struct kvm_memory_slot *slot, int level) 790 { 791 unsigned long idx; 792 793 idx = gfn_to_index(gfn, slot->base_gfn, level); 794 return &slot->arch.lpage_info[level - 2][idx]; 795 } 796 797 /* 798 * The most significant bit in disallow_lpage tracks whether or not memory 799 * attributes are mixed, i.e. not identical for all gfns at the current level. 800 * The lower order bits are used to refcount other cases where a hugepage is 801 * disallowed, e.g. if KVM has shadow a page table at the gfn. 802 */ 803 #define KVM_LPAGE_MIXED_FLAG BIT(31) 804 805 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot, 806 gfn_t gfn, int count) 807 { 808 struct kvm_lpage_info *linfo; 809 int old, i; 810 811 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 812 linfo = lpage_info_slot(gfn, slot, i); 813 814 old = linfo->disallow_lpage; 815 linfo->disallow_lpage += count; 816 WARN_ON_ONCE((old ^ linfo->disallow_lpage) & KVM_LPAGE_MIXED_FLAG); 817 } 818 } 819 820 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 821 { 822 update_gfn_disallow_lpage_count(slot, gfn, 1); 823 } 824 825 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 826 { 827 update_gfn_disallow_lpage_count(slot, gfn, -1); 828 } 829 830 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 831 { 832 struct kvm_memslots *slots; 833 struct kvm_memory_slot *slot; 834 gfn_t gfn; 835 836 kvm->arch.indirect_shadow_pages++; 837 /* 838 * Ensure indirect_shadow_pages is elevated prior to re-reading guest 839 * child PTEs in FNAME(gpte_changed), i.e. guarantee either in-flight 840 * emulated writes are visible before re-reading guest PTEs, or that 841 * an emulated write will see the elevated count and acquire mmu_lock 842 * to update SPTEs. Pairs with the smp_mb() in kvm_mmu_track_write(). 843 */ 844 smp_mb(); 845 846 gfn = sp->gfn; 847 slots = kvm_memslots_for_spte_role(kvm, sp->role); 848 slot = __gfn_to_memslot(slots, gfn); 849 850 /* the non-leaf shadow pages are keeping readonly. */ 851 if (sp->role.level > PG_LEVEL_4K) 852 return __kvm_write_track_add_gfn(kvm, slot, gfn); 853 854 kvm_mmu_gfn_disallow_lpage(slot, gfn); 855 856 if (kvm_mmu_slot_gfn_write_protect(kvm, slot, gfn, PG_LEVEL_4K)) 857 kvm_flush_remote_tlbs_gfn(kvm, gfn, PG_LEVEL_4K); 858 } 859 860 void track_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 861 { 862 /* 863 * If it's possible to replace the shadow page with an NX huge page, 864 * i.e. if the shadow page is the only thing currently preventing KVM 865 * from using a huge page, add the shadow page to the list of "to be 866 * zapped for NX recovery" pages. Note, the shadow page can already be 867 * on the list if KVM is reusing an existing shadow page, i.e. if KVM 868 * links a shadow page at multiple points. 869 */ 870 if (!list_empty(&sp->possible_nx_huge_page_link)) 871 return; 872 873 ++kvm->stat.nx_lpage_splits; 874 list_add_tail(&sp->possible_nx_huge_page_link, 875 &kvm->arch.possible_nx_huge_pages); 876 } 877 878 static void account_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp, 879 bool nx_huge_page_possible) 880 { 881 sp->nx_huge_page_disallowed = true; 882 883 if (nx_huge_page_possible) 884 track_possible_nx_huge_page(kvm, sp); 885 } 886 887 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 888 { 889 struct kvm_memslots *slots; 890 struct kvm_memory_slot *slot; 891 gfn_t gfn; 892 893 kvm->arch.indirect_shadow_pages--; 894 gfn = sp->gfn; 895 slots = kvm_memslots_for_spte_role(kvm, sp->role); 896 slot = __gfn_to_memslot(slots, gfn); 897 if (sp->role.level > PG_LEVEL_4K) 898 return __kvm_write_track_remove_gfn(kvm, slot, gfn); 899 900 kvm_mmu_gfn_allow_lpage(slot, gfn); 901 } 902 903 void untrack_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 904 { 905 if (list_empty(&sp->possible_nx_huge_page_link)) 906 return; 907 908 --kvm->stat.nx_lpage_splits; 909 list_del_init(&sp->possible_nx_huge_page_link); 910 } 911 912 static void unaccount_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 913 { 914 sp->nx_huge_page_disallowed = false; 915 916 untrack_possible_nx_huge_page(kvm, sp); 917 } 918 919 static struct kvm_memory_slot *gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, 920 gfn_t gfn, 921 bool no_dirty_log) 922 { 923 struct kvm_memory_slot *slot; 924 925 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 926 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 927 return NULL; 928 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot)) 929 return NULL; 930 931 return slot; 932 } 933 934 /* 935 * About rmap_head encoding: 936 * 937 * If the bit zero of rmap_head->val is clear, then it points to the only spte 938 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct 939 * pte_list_desc containing more mappings. 940 */ 941 942 /* 943 * Returns the number of pointers in the rmap chain, not counting the new one. 944 */ 945 static int pte_list_add(struct kvm_mmu_memory_cache *cache, u64 *spte, 946 struct kvm_rmap_head *rmap_head) 947 { 948 struct pte_list_desc *desc; 949 int count = 0; 950 951 if (!rmap_head->val) { 952 rmap_head->val = (unsigned long)spte; 953 } else if (!(rmap_head->val & 1)) { 954 desc = kvm_mmu_memory_cache_alloc(cache); 955 desc->sptes[0] = (u64 *)rmap_head->val; 956 desc->sptes[1] = spte; 957 desc->spte_count = 2; 958 desc->tail_count = 0; 959 rmap_head->val = (unsigned long)desc | 1; 960 ++count; 961 } else { 962 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 963 count = desc->tail_count + desc->spte_count; 964 965 /* 966 * If the previous head is full, allocate a new head descriptor 967 * as tail descriptors are always kept full. 968 */ 969 if (desc->spte_count == PTE_LIST_EXT) { 970 desc = kvm_mmu_memory_cache_alloc(cache); 971 desc->more = (struct pte_list_desc *)(rmap_head->val & ~1ul); 972 desc->spte_count = 0; 973 desc->tail_count = count; 974 rmap_head->val = (unsigned long)desc | 1; 975 } 976 desc->sptes[desc->spte_count++] = spte; 977 } 978 return count; 979 } 980 981 static void pte_list_desc_remove_entry(struct kvm *kvm, 982 struct kvm_rmap_head *rmap_head, 983 struct pte_list_desc *desc, int i) 984 { 985 struct pte_list_desc *head_desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 986 int j = head_desc->spte_count - 1; 987 988 /* 989 * The head descriptor should never be empty. A new head is added only 990 * when adding an entry and the previous head is full, and heads are 991 * removed (this flow) when they become empty. 992 */ 993 KVM_BUG_ON_DATA_CORRUPTION(j < 0, kvm); 994 995 /* 996 * Replace the to-be-freed SPTE with the last valid entry from the head 997 * descriptor to ensure that tail descriptors are full at all times. 998 * Note, this also means that tail_count is stable for each descriptor. 999 */ 1000 desc->sptes[i] = head_desc->sptes[j]; 1001 head_desc->sptes[j] = NULL; 1002 head_desc->spte_count--; 1003 if (head_desc->spte_count) 1004 return; 1005 1006 /* 1007 * The head descriptor is empty. If there are no tail descriptors, 1008 * nullify the rmap head to mark the list as empty, else point the rmap 1009 * head at the next descriptor, i.e. the new head. 1010 */ 1011 if (!head_desc->more) 1012 rmap_head->val = 0; 1013 else 1014 rmap_head->val = (unsigned long)head_desc->more | 1; 1015 mmu_free_pte_list_desc(head_desc); 1016 } 1017 1018 static void pte_list_remove(struct kvm *kvm, u64 *spte, 1019 struct kvm_rmap_head *rmap_head) 1020 { 1021 struct pte_list_desc *desc; 1022 int i; 1023 1024 if (KVM_BUG_ON_DATA_CORRUPTION(!rmap_head->val, kvm)) 1025 return; 1026 1027 if (!(rmap_head->val & 1)) { 1028 if (KVM_BUG_ON_DATA_CORRUPTION((u64 *)rmap_head->val != spte, kvm)) 1029 return; 1030 1031 rmap_head->val = 0; 1032 } else { 1033 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1034 while (desc) { 1035 for (i = 0; i < desc->spte_count; ++i) { 1036 if (desc->sptes[i] == spte) { 1037 pte_list_desc_remove_entry(kvm, rmap_head, 1038 desc, i); 1039 return; 1040 } 1041 } 1042 desc = desc->more; 1043 } 1044 1045 KVM_BUG_ON_DATA_CORRUPTION(true, kvm); 1046 } 1047 } 1048 1049 static void kvm_zap_one_rmap_spte(struct kvm *kvm, 1050 struct kvm_rmap_head *rmap_head, u64 *sptep) 1051 { 1052 mmu_spte_clear_track_bits(kvm, sptep); 1053 pte_list_remove(kvm, sptep, rmap_head); 1054 } 1055 1056 /* Return true if at least one SPTE was zapped, false otherwise */ 1057 static bool kvm_zap_all_rmap_sptes(struct kvm *kvm, 1058 struct kvm_rmap_head *rmap_head) 1059 { 1060 struct pte_list_desc *desc, *next; 1061 int i; 1062 1063 if (!rmap_head->val) 1064 return false; 1065 1066 if (!(rmap_head->val & 1)) { 1067 mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val); 1068 goto out; 1069 } 1070 1071 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1072 1073 for (; desc; desc = next) { 1074 for (i = 0; i < desc->spte_count; i++) 1075 mmu_spte_clear_track_bits(kvm, desc->sptes[i]); 1076 next = desc->more; 1077 mmu_free_pte_list_desc(desc); 1078 } 1079 out: 1080 /* rmap_head is meaningless now, remember to reset it */ 1081 rmap_head->val = 0; 1082 return true; 1083 } 1084 1085 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head) 1086 { 1087 struct pte_list_desc *desc; 1088 1089 if (!rmap_head->val) 1090 return 0; 1091 else if (!(rmap_head->val & 1)) 1092 return 1; 1093 1094 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1095 return desc->tail_count + desc->spte_count; 1096 } 1097 1098 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level, 1099 const struct kvm_memory_slot *slot) 1100 { 1101 unsigned long idx; 1102 1103 idx = gfn_to_index(gfn, slot->base_gfn, level); 1104 return &slot->arch.rmap[level - PG_LEVEL_4K][idx]; 1105 } 1106 1107 static void rmap_remove(struct kvm *kvm, u64 *spte) 1108 { 1109 struct kvm_memslots *slots; 1110 struct kvm_memory_slot *slot; 1111 struct kvm_mmu_page *sp; 1112 gfn_t gfn; 1113 struct kvm_rmap_head *rmap_head; 1114 1115 sp = sptep_to_sp(spte); 1116 gfn = kvm_mmu_page_get_gfn(sp, spte_index(spte)); 1117 1118 /* 1119 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU 1120 * so we have to determine which memslots to use based on context 1121 * information in sp->role. 1122 */ 1123 slots = kvm_memslots_for_spte_role(kvm, sp->role); 1124 1125 slot = __gfn_to_memslot(slots, gfn); 1126 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1127 1128 pte_list_remove(kvm, spte, rmap_head); 1129 } 1130 1131 /* 1132 * Used by the following functions to iterate through the sptes linked by a 1133 * rmap. All fields are private and not assumed to be used outside. 1134 */ 1135 struct rmap_iterator { 1136 /* private fields */ 1137 struct pte_list_desc *desc; /* holds the sptep if not NULL */ 1138 int pos; /* index of the sptep */ 1139 }; 1140 1141 /* 1142 * Iteration must be started by this function. This should also be used after 1143 * removing/dropping sptes from the rmap link because in such cases the 1144 * information in the iterator may not be valid. 1145 * 1146 * Returns sptep if found, NULL otherwise. 1147 */ 1148 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head, 1149 struct rmap_iterator *iter) 1150 { 1151 u64 *sptep; 1152 1153 if (!rmap_head->val) 1154 return NULL; 1155 1156 if (!(rmap_head->val & 1)) { 1157 iter->desc = NULL; 1158 sptep = (u64 *)rmap_head->val; 1159 goto out; 1160 } 1161 1162 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1163 iter->pos = 0; 1164 sptep = iter->desc->sptes[iter->pos]; 1165 out: 1166 BUG_ON(!is_shadow_present_pte(*sptep)); 1167 return sptep; 1168 } 1169 1170 /* 1171 * Must be used with a valid iterator: e.g. after rmap_get_first(). 1172 * 1173 * Returns sptep if found, NULL otherwise. 1174 */ 1175 static u64 *rmap_get_next(struct rmap_iterator *iter) 1176 { 1177 u64 *sptep; 1178 1179 if (iter->desc) { 1180 if (iter->pos < PTE_LIST_EXT - 1) { 1181 ++iter->pos; 1182 sptep = iter->desc->sptes[iter->pos]; 1183 if (sptep) 1184 goto out; 1185 } 1186 1187 iter->desc = iter->desc->more; 1188 1189 if (iter->desc) { 1190 iter->pos = 0; 1191 /* desc->sptes[0] cannot be NULL */ 1192 sptep = iter->desc->sptes[iter->pos]; 1193 goto out; 1194 } 1195 } 1196 1197 return NULL; 1198 out: 1199 BUG_ON(!is_shadow_present_pte(*sptep)); 1200 return sptep; 1201 } 1202 1203 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \ 1204 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \ 1205 _spte_; _spte_ = rmap_get_next(_iter_)) 1206 1207 static void drop_spte(struct kvm *kvm, u64 *sptep) 1208 { 1209 u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep); 1210 1211 if (is_shadow_present_pte(old_spte)) 1212 rmap_remove(kvm, sptep); 1213 } 1214 1215 static void drop_large_spte(struct kvm *kvm, u64 *sptep, bool flush) 1216 { 1217 struct kvm_mmu_page *sp; 1218 1219 sp = sptep_to_sp(sptep); 1220 WARN_ON_ONCE(sp->role.level == PG_LEVEL_4K); 1221 1222 drop_spte(kvm, sptep); 1223 1224 if (flush) 1225 kvm_flush_remote_tlbs_sptep(kvm, sptep); 1226 } 1227 1228 /* 1229 * Write-protect on the specified @sptep, @pt_protect indicates whether 1230 * spte write-protection is caused by protecting shadow page table. 1231 * 1232 * Note: write protection is difference between dirty logging and spte 1233 * protection: 1234 * - for dirty logging, the spte can be set to writable at anytime if 1235 * its dirty bitmap is properly set. 1236 * - for spte protection, the spte can be writable only after unsync-ing 1237 * shadow page. 1238 * 1239 * Return true if tlb need be flushed. 1240 */ 1241 static bool spte_write_protect(u64 *sptep, bool pt_protect) 1242 { 1243 u64 spte = *sptep; 1244 1245 if (!is_writable_pte(spte) && 1246 !(pt_protect && is_mmu_writable_spte(spte))) 1247 return false; 1248 1249 if (pt_protect) 1250 spte &= ~shadow_mmu_writable_mask; 1251 spte = spte & ~PT_WRITABLE_MASK; 1252 1253 return mmu_spte_update(sptep, spte); 1254 } 1255 1256 static bool rmap_write_protect(struct kvm_rmap_head *rmap_head, 1257 bool pt_protect) 1258 { 1259 u64 *sptep; 1260 struct rmap_iterator iter; 1261 bool flush = false; 1262 1263 for_each_rmap_spte(rmap_head, &iter, sptep) 1264 flush |= spte_write_protect(sptep, pt_protect); 1265 1266 return flush; 1267 } 1268 1269 static bool spte_clear_dirty(u64 *sptep) 1270 { 1271 u64 spte = *sptep; 1272 1273 KVM_MMU_WARN_ON(!spte_ad_enabled(spte)); 1274 spte &= ~shadow_dirty_mask; 1275 return mmu_spte_update(sptep, spte); 1276 } 1277 1278 static bool spte_wrprot_for_clear_dirty(u64 *sptep) 1279 { 1280 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT, 1281 (unsigned long *)sptep); 1282 if (was_writable && !spte_ad_enabled(*sptep)) 1283 kvm_set_pfn_dirty(spte_to_pfn(*sptep)); 1284 1285 return was_writable; 1286 } 1287 1288 /* 1289 * Gets the GFN ready for another round of dirty logging by clearing the 1290 * - D bit on ad-enabled SPTEs, and 1291 * - W bit on ad-disabled SPTEs. 1292 * Returns true iff any D or W bits were cleared. 1293 */ 1294 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1295 const struct kvm_memory_slot *slot) 1296 { 1297 u64 *sptep; 1298 struct rmap_iterator iter; 1299 bool flush = false; 1300 1301 for_each_rmap_spte(rmap_head, &iter, sptep) 1302 if (spte_ad_need_write_protect(*sptep)) 1303 flush |= spte_wrprot_for_clear_dirty(sptep); 1304 else 1305 flush |= spte_clear_dirty(sptep); 1306 1307 return flush; 1308 } 1309 1310 /** 1311 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages 1312 * @kvm: kvm instance 1313 * @slot: slot to protect 1314 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1315 * @mask: indicates which pages we should protect 1316 * 1317 * Used when we do not need to care about huge page mappings. 1318 */ 1319 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 1320 struct kvm_memory_slot *slot, 1321 gfn_t gfn_offset, unsigned long mask) 1322 { 1323 struct kvm_rmap_head *rmap_head; 1324 1325 if (tdp_mmu_enabled) 1326 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1327 slot->base_gfn + gfn_offset, mask, true); 1328 1329 if (!kvm_memslots_have_rmaps(kvm)) 1330 return; 1331 1332 while (mask) { 1333 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1334 PG_LEVEL_4K, slot); 1335 rmap_write_protect(rmap_head, false); 1336 1337 /* clear the first set bit */ 1338 mask &= mask - 1; 1339 } 1340 } 1341 1342 /** 1343 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write 1344 * protect the page if the D-bit isn't supported. 1345 * @kvm: kvm instance 1346 * @slot: slot to clear D-bit 1347 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1348 * @mask: indicates which pages we should clear D-bit 1349 * 1350 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap. 1351 */ 1352 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1353 struct kvm_memory_slot *slot, 1354 gfn_t gfn_offset, unsigned long mask) 1355 { 1356 struct kvm_rmap_head *rmap_head; 1357 1358 if (tdp_mmu_enabled) 1359 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1360 slot->base_gfn + gfn_offset, mask, false); 1361 1362 if (!kvm_memslots_have_rmaps(kvm)) 1363 return; 1364 1365 while (mask) { 1366 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1367 PG_LEVEL_4K, slot); 1368 __rmap_clear_dirty(kvm, rmap_head, slot); 1369 1370 /* clear the first set bit */ 1371 mask &= mask - 1; 1372 } 1373 } 1374 1375 /** 1376 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected 1377 * PT level pages. 1378 * 1379 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to 1380 * enable dirty logging for them. 1381 * 1382 * We need to care about huge page mappings: e.g. during dirty logging we may 1383 * have such mappings. 1384 */ 1385 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1386 struct kvm_memory_slot *slot, 1387 gfn_t gfn_offset, unsigned long mask) 1388 { 1389 /* 1390 * Huge pages are NOT write protected when we start dirty logging in 1391 * initially-all-set mode; must write protect them here so that they 1392 * are split to 4K on the first write. 1393 * 1394 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn 1395 * of memslot has no such restriction, so the range can cross two large 1396 * pages. 1397 */ 1398 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) { 1399 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask); 1400 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask); 1401 1402 if (READ_ONCE(eager_page_split)) 1403 kvm_mmu_try_split_huge_pages(kvm, slot, start, end + 1, PG_LEVEL_4K); 1404 1405 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M); 1406 1407 /* Cross two large pages? */ 1408 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) != 1409 ALIGN(end << PAGE_SHIFT, PMD_SIZE)) 1410 kvm_mmu_slot_gfn_write_protect(kvm, slot, end, 1411 PG_LEVEL_2M); 1412 } 1413 1414 /* Now handle 4K PTEs. */ 1415 if (kvm_x86_ops.cpu_dirty_log_size) 1416 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask); 1417 else 1418 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 1419 } 1420 1421 int kvm_cpu_dirty_log_size(void) 1422 { 1423 return kvm_x86_ops.cpu_dirty_log_size; 1424 } 1425 1426 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, 1427 struct kvm_memory_slot *slot, u64 gfn, 1428 int min_level) 1429 { 1430 struct kvm_rmap_head *rmap_head; 1431 int i; 1432 bool write_protected = false; 1433 1434 if (kvm_memslots_have_rmaps(kvm)) { 1435 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 1436 rmap_head = gfn_to_rmap(gfn, i, slot); 1437 write_protected |= rmap_write_protect(rmap_head, true); 1438 } 1439 } 1440 1441 if (tdp_mmu_enabled) 1442 write_protected |= 1443 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level); 1444 1445 return write_protected; 1446 } 1447 1448 static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn) 1449 { 1450 struct kvm_memory_slot *slot; 1451 1452 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1453 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K); 1454 } 1455 1456 static bool __kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1457 const struct kvm_memory_slot *slot) 1458 { 1459 return kvm_zap_all_rmap_sptes(kvm, rmap_head); 1460 } 1461 1462 static bool kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1463 struct kvm_memory_slot *slot, gfn_t gfn, int level) 1464 { 1465 return __kvm_zap_rmap(kvm, rmap_head, slot); 1466 } 1467 1468 struct slot_rmap_walk_iterator { 1469 /* input fields. */ 1470 const struct kvm_memory_slot *slot; 1471 gfn_t start_gfn; 1472 gfn_t end_gfn; 1473 int start_level; 1474 int end_level; 1475 1476 /* output fields. */ 1477 gfn_t gfn; 1478 struct kvm_rmap_head *rmap; 1479 int level; 1480 1481 /* private field. */ 1482 struct kvm_rmap_head *end_rmap; 1483 }; 1484 1485 static void rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, 1486 int level) 1487 { 1488 iterator->level = level; 1489 iterator->gfn = iterator->start_gfn; 1490 iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot); 1491 iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot); 1492 } 1493 1494 static void slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator, 1495 const struct kvm_memory_slot *slot, 1496 int start_level, int end_level, 1497 gfn_t start_gfn, gfn_t end_gfn) 1498 { 1499 iterator->slot = slot; 1500 iterator->start_level = start_level; 1501 iterator->end_level = end_level; 1502 iterator->start_gfn = start_gfn; 1503 iterator->end_gfn = end_gfn; 1504 1505 rmap_walk_init_level(iterator, iterator->start_level); 1506 } 1507 1508 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator) 1509 { 1510 return !!iterator->rmap; 1511 } 1512 1513 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) 1514 { 1515 while (++iterator->rmap <= iterator->end_rmap) { 1516 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level)); 1517 1518 if (iterator->rmap->val) 1519 return; 1520 } 1521 1522 if (++iterator->level > iterator->end_level) { 1523 iterator->rmap = NULL; 1524 return; 1525 } 1526 1527 rmap_walk_init_level(iterator, iterator->level); 1528 } 1529 1530 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \ 1531 _start_gfn, _end_gfn, _iter_) \ 1532 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \ 1533 _end_level_, _start_gfn, _end_gfn); \ 1534 slot_rmap_walk_okay(_iter_); \ 1535 slot_rmap_walk_next(_iter_)) 1536 1537 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1538 struct kvm_memory_slot *slot, gfn_t gfn, 1539 int level); 1540 1541 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm, 1542 struct kvm_gfn_range *range, 1543 rmap_handler_t handler) 1544 { 1545 struct slot_rmap_walk_iterator iterator; 1546 bool ret = false; 1547 1548 for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 1549 range->start, range->end - 1, &iterator) 1550 ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn, 1551 iterator.level); 1552 1553 return ret; 1554 } 1555 1556 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1557 { 1558 bool flush = false; 1559 1560 if (kvm_memslots_have_rmaps(kvm)) 1561 flush = kvm_handle_gfn_range(kvm, range, kvm_zap_rmap); 1562 1563 if (tdp_mmu_enabled) 1564 flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush); 1565 1566 if (kvm_x86_ops.set_apic_access_page_addr && 1567 range->slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT) 1568 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 1569 1570 return flush; 1571 } 1572 1573 static bool kvm_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1574 struct kvm_memory_slot *slot, gfn_t gfn, int level) 1575 { 1576 u64 *sptep; 1577 struct rmap_iterator iter; 1578 int young = 0; 1579 1580 for_each_rmap_spte(rmap_head, &iter, sptep) 1581 young |= mmu_spte_age(sptep); 1582 1583 return young; 1584 } 1585 1586 static bool kvm_test_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1587 struct kvm_memory_slot *slot, gfn_t gfn, int level) 1588 { 1589 u64 *sptep; 1590 struct rmap_iterator iter; 1591 1592 for_each_rmap_spte(rmap_head, &iter, sptep) 1593 if (is_accessed_spte(*sptep)) 1594 return true; 1595 return false; 1596 } 1597 1598 #define RMAP_RECYCLE_THRESHOLD 1000 1599 1600 static void __rmap_add(struct kvm *kvm, 1601 struct kvm_mmu_memory_cache *cache, 1602 const struct kvm_memory_slot *slot, 1603 u64 *spte, gfn_t gfn, unsigned int access) 1604 { 1605 struct kvm_mmu_page *sp; 1606 struct kvm_rmap_head *rmap_head; 1607 int rmap_count; 1608 1609 sp = sptep_to_sp(spte); 1610 kvm_mmu_page_set_translation(sp, spte_index(spte), gfn, access); 1611 kvm_update_page_stats(kvm, sp->role.level, 1); 1612 1613 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1614 rmap_count = pte_list_add(cache, spte, rmap_head); 1615 1616 if (rmap_count > kvm->stat.max_mmu_rmap_size) 1617 kvm->stat.max_mmu_rmap_size = rmap_count; 1618 if (rmap_count > RMAP_RECYCLE_THRESHOLD) { 1619 kvm_zap_all_rmap_sptes(kvm, rmap_head); 1620 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level); 1621 } 1622 } 1623 1624 static void rmap_add(struct kvm_vcpu *vcpu, const struct kvm_memory_slot *slot, 1625 u64 *spte, gfn_t gfn, unsigned int access) 1626 { 1627 struct kvm_mmu_memory_cache *cache = &vcpu->arch.mmu_pte_list_desc_cache; 1628 1629 __rmap_add(vcpu->kvm, cache, slot, spte, gfn, access); 1630 } 1631 1632 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1633 { 1634 bool young = false; 1635 1636 if (kvm_memslots_have_rmaps(kvm)) 1637 young = kvm_handle_gfn_range(kvm, range, kvm_age_rmap); 1638 1639 if (tdp_mmu_enabled) 1640 young |= kvm_tdp_mmu_age_gfn_range(kvm, range); 1641 1642 return young; 1643 } 1644 1645 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1646 { 1647 bool young = false; 1648 1649 if (kvm_memslots_have_rmaps(kvm)) 1650 young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmap); 1651 1652 if (tdp_mmu_enabled) 1653 young |= kvm_tdp_mmu_test_age_gfn(kvm, range); 1654 1655 return young; 1656 } 1657 1658 static void kvm_mmu_check_sptes_at_free(struct kvm_mmu_page *sp) 1659 { 1660 #ifdef CONFIG_KVM_PROVE_MMU 1661 int i; 1662 1663 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) { 1664 if (KVM_MMU_WARN_ON(is_shadow_present_pte(sp->spt[i]))) 1665 pr_err_ratelimited("SPTE %llx (@ %p) for gfn %llx shadow-present at free", 1666 sp->spt[i], &sp->spt[i], 1667 kvm_mmu_page_get_gfn(sp, i)); 1668 } 1669 #endif 1670 } 1671 1672 /* 1673 * This value is the sum of all of the kvm instances's 1674 * kvm->arch.n_used_mmu_pages values. We need a global, 1675 * aggregate version in order to make the slab shrinker 1676 * faster 1677 */ 1678 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr) 1679 { 1680 kvm->arch.n_used_mmu_pages += nr; 1681 percpu_counter_add(&kvm_total_used_mmu_pages, nr); 1682 } 1683 1684 static void kvm_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1685 { 1686 kvm_mod_used_mmu_pages(kvm, +1); 1687 kvm_account_pgtable_pages((void *)sp->spt, +1); 1688 } 1689 1690 static void kvm_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1691 { 1692 kvm_mod_used_mmu_pages(kvm, -1); 1693 kvm_account_pgtable_pages((void *)sp->spt, -1); 1694 } 1695 1696 static void kvm_mmu_free_shadow_page(struct kvm_mmu_page *sp) 1697 { 1698 kvm_mmu_check_sptes_at_free(sp); 1699 1700 hlist_del(&sp->hash_link); 1701 list_del(&sp->link); 1702 free_page((unsigned long)sp->spt); 1703 free_page((unsigned long)sp->shadowed_translation); 1704 kmem_cache_free(mmu_page_header_cache, sp); 1705 } 1706 1707 static unsigned kvm_page_table_hashfn(gfn_t gfn) 1708 { 1709 return hash_64(gfn, KVM_MMU_HASH_SHIFT); 1710 } 1711 1712 static void mmu_page_add_parent_pte(struct kvm_mmu_memory_cache *cache, 1713 struct kvm_mmu_page *sp, u64 *parent_pte) 1714 { 1715 if (!parent_pte) 1716 return; 1717 1718 pte_list_add(cache, parent_pte, &sp->parent_ptes); 1719 } 1720 1721 static void mmu_page_remove_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 1722 u64 *parent_pte) 1723 { 1724 pte_list_remove(kvm, parent_pte, &sp->parent_ptes); 1725 } 1726 1727 static void drop_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 1728 u64 *parent_pte) 1729 { 1730 mmu_page_remove_parent_pte(kvm, sp, parent_pte); 1731 mmu_spte_clear_no_track(parent_pte); 1732 } 1733 1734 static void mark_unsync(u64 *spte); 1735 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) 1736 { 1737 u64 *sptep; 1738 struct rmap_iterator iter; 1739 1740 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) { 1741 mark_unsync(sptep); 1742 } 1743 } 1744 1745 static void mark_unsync(u64 *spte) 1746 { 1747 struct kvm_mmu_page *sp; 1748 1749 sp = sptep_to_sp(spte); 1750 if (__test_and_set_bit(spte_index(spte), sp->unsync_child_bitmap)) 1751 return; 1752 if (sp->unsync_children++) 1753 return; 1754 kvm_mmu_mark_parents_unsync(sp); 1755 } 1756 1757 #define KVM_PAGE_ARRAY_NR 16 1758 1759 struct kvm_mmu_pages { 1760 struct mmu_page_and_offset { 1761 struct kvm_mmu_page *sp; 1762 unsigned int idx; 1763 } page[KVM_PAGE_ARRAY_NR]; 1764 unsigned int nr; 1765 }; 1766 1767 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, 1768 int idx) 1769 { 1770 int i; 1771 1772 if (sp->unsync) 1773 for (i=0; i < pvec->nr; i++) 1774 if (pvec->page[i].sp == sp) 1775 return 0; 1776 1777 pvec->page[pvec->nr].sp = sp; 1778 pvec->page[pvec->nr].idx = idx; 1779 pvec->nr++; 1780 return (pvec->nr == KVM_PAGE_ARRAY_NR); 1781 } 1782 1783 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx) 1784 { 1785 --sp->unsync_children; 1786 WARN_ON_ONCE((int)sp->unsync_children < 0); 1787 __clear_bit(idx, sp->unsync_child_bitmap); 1788 } 1789 1790 static int __mmu_unsync_walk(struct kvm_mmu_page *sp, 1791 struct kvm_mmu_pages *pvec) 1792 { 1793 int i, ret, nr_unsync_leaf = 0; 1794 1795 for_each_set_bit(i, sp->unsync_child_bitmap, 512) { 1796 struct kvm_mmu_page *child; 1797 u64 ent = sp->spt[i]; 1798 1799 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) { 1800 clear_unsync_child_bit(sp, i); 1801 continue; 1802 } 1803 1804 child = spte_to_child_sp(ent); 1805 1806 if (child->unsync_children) { 1807 if (mmu_pages_add(pvec, child, i)) 1808 return -ENOSPC; 1809 1810 ret = __mmu_unsync_walk(child, pvec); 1811 if (!ret) { 1812 clear_unsync_child_bit(sp, i); 1813 continue; 1814 } else if (ret > 0) { 1815 nr_unsync_leaf += ret; 1816 } else 1817 return ret; 1818 } else if (child->unsync) { 1819 nr_unsync_leaf++; 1820 if (mmu_pages_add(pvec, child, i)) 1821 return -ENOSPC; 1822 } else 1823 clear_unsync_child_bit(sp, i); 1824 } 1825 1826 return nr_unsync_leaf; 1827 } 1828 1829 #define INVALID_INDEX (-1) 1830 1831 static int mmu_unsync_walk(struct kvm_mmu_page *sp, 1832 struct kvm_mmu_pages *pvec) 1833 { 1834 pvec->nr = 0; 1835 if (!sp->unsync_children) 1836 return 0; 1837 1838 mmu_pages_add(pvec, sp, INVALID_INDEX); 1839 return __mmu_unsync_walk(sp, pvec); 1840 } 1841 1842 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1843 { 1844 WARN_ON_ONCE(!sp->unsync); 1845 trace_kvm_mmu_sync_page(sp); 1846 sp->unsync = 0; 1847 --kvm->stat.mmu_unsync; 1848 } 1849 1850 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 1851 struct list_head *invalid_list); 1852 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 1853 struct list_head *invalid_list); 1854 1855 static bool sp_has_gptes(struct kvm_mmu_page *sp) 1856 { 1857 if (sp->role.direct) 1858 return false; 1859 1860 if (sp->role.passthrough) 1861 return false; 1862 1863 return true; 1864 } 1865 1866 #define for_each_valid_sp(_kvm, _sp, _list) \ 1867 hlist_for_each_entry(_sp, _list, hash_link) \ 1868 if (is_obsolete_sp((_kvm), (_sp))) { \ 1869 } else 1870 1871 #define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn) \ 1872 for_each_valid_sp(_kvm, _sp, \ 1873 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \ 1874 if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else 1875 1876 static bool kvm_sync_page_check(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 1877 { 1878 union kvm_mmu_page_role root_role = vcpu->arch.mmu->root_role; 1879 1880 /* 1881 * Ignore various flags when verifying that it's safe to sync a shadow 1882 * page using the current MMU context. 1883 * 1884 * - level: not part of the overall MMU role and will never match as the MMU's 1885 * level tracks the root level 1886 * - access: updated based on the new guest PTE 1887 * - quadrant: not part of the overall MMU role (similar to level) 1888 */ 1889 const union kvm_mmu_page_role sync_role_ign = { 1890 .level = 0xf, 1891 .access = 0x7, 1892 .quadrant = 0x3, 1893 .passthrough = 0x1, 1894 }; 1895 1896 /* 1897 * Direct pages can never be unsync, and KVM should never attempt to 1898 * sync a shadow page for a different MMU context, e.g. if the role 1899 * differs then the memslot lookup (SMM vs. non-SMM) will be bogus, the 1900 * reserved bits checks will be wrong, etc... 1901 */ 1902 if (WARN_ON_ONCE(sp->role.direct || !vcpu->arch.mmu->sync_spte || 1903 (sp->role.word ^ root_role.word) & ~sync_role_ign.word)) 1904 return false; 1905 1906 return true; 1907 } 1908 1909 static int kvm_sync_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, int i) 1910 { 1911 /* sp->spt[i] has initial value of shadow page table allocation */ 1912 if (sp->spt[i] == SHADOW_NONPRESENT_VALUE) 1913 return 0; 1914 1915 return vcpu->arch.mmu->sync_spte(vcpu, sp, i); 1916 } 1917 1918 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 1919 { 1920 int flush = 0; 1921 int i; 1922 1923 if (!kvm_sync_page_check(vcpu, sp)) 1924 return -1; 1925 1926 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) { 1927 int ret = kvm_sync_spte(vcpu, sp, i); 1928 1929 if (ret < -1) 1930 return -1; 1931 flush |= ret; 1932 } 1933 1934 /* 1935 * Note, any flush is purely for KVM's correctness, e.g. when dropping 1936 * an existing SPTE or clearing W/A/D bits to ensure an mmu_notifier 1937 * unmap or dirty logging event doesn't fail to flush. The guest is 1938 * responsible for flushing the TLB to ensure any changes in protection 1939 * bits are recognized, i.e. until the guest flushes or page faults on 1940 * a relevant address, KVM is architecturally allowed to let vCPUs use 1941 * cached translations with the old protection bits. 1942 */ 1943 return flush; 1944 } 1945 1946 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 1947 struct list_head *invalid_list) 1948 { 1949 int ret = __kvm_sync_page(vcpu, sp); 1950 1951 if (ret < 0) 1952 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); 1953 return ret; 1954 } 1955 1956 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm, 1957 struct list_head *invalid_list, 1958 bool remote_flush) 1959 { 1960 if (!remote_flush && list_empty(invalid_list)) 1961 return false; 1962 1963 if (!list_empty(invalid_list)) 1964 kvm_mmu_commit_zap_page(kvm, invalid_list); 1965 else 1966 kvm_flush_remote_tlbs(kvm); 1967 return true; 1968 } 1969 1970 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 1971 { 1972 if (sp->role.invalid) 1973 return true; 1974 1975 /* TDP MMU pages do not use the MMU generation. */ 1976 return !is_tdp_mmu_page(sp) && 1977 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); 1978 } 1979 1980 struct mmu_page_path { 1981 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL]; 1982 unsigned int idx[PT64_ROOT_MAX_LEVEL]; 1983 }; 1984 1985 #define for_each_sp(pvec, sp, parents, i) \ 1986 for (i = mmu_pages_first(&pvec, &parents); \ 1987 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \ 1988 i = mmu_pages_next(&pvec, &parents, i)) 1989 1990 static int mmu_pages_next(struct kvm_mmu_pages *pvec, 1991 struct mmu_page_path *parents, 1992 int i) 1993 { 1994 int n; 1995 1996 for (n = i+1; n < pvec->nr; n++) { 1997 struct kvm_mmu_page *sp = pvec->page[n].sp; 1998 unsigned idx = pvec->page[n].idx; 1999 int level = sp->role.level; 2000 2001 parents->idx[level-1] = idx; 2002 if (level == PG_LEVEL_4K) 2003 break; 2004 2005 parents->parent[level-2] = sp; 2006 } 2007 2008 return n; 2009 } 2010 2011 static int mmu_pages_first(struct kvm_mmu_pages *pvec, 2012 struct mmu_page_path *parents) 2013 { 2014 struct kvm_mmu_page *sp; 2015 int level; 2016 2017 if (pvec->nr == 0) 2018 return 0; 2019 2020 WARN_ON_ONCE(pvec->page[0].idx != INVALID_INDEX); 2021 2022 sp = pvec->page[0].sp; 2023 level = sp->role.level; 2024 WARN_ON_ONCE(level == PG_LEVEL_4K); 2025 2026 parents->parent[level-2] = sp; 2027 2028 /* Also set up a sentinel. Further entries in pvec are all 2029 * children of sp, so this element is never overwritten. 2030 */ 2031 parents->parent[level-1] = NULL; 2032 return mmu_pages_next(pvec, parents, 0); 2033 } 2034 2035 static void mmu_pages_clear_parents(struct mmu_page_path *parents) 2036 { 2037 struct kvm_mmu_page *sp; 2038 unsigned int level = 0; 2039 2040 do { 2041 unsigned int idx = parents->idx[level]; 2042 sp = parents->parent[level]; 2043 if (!sp) 2044 return; 2045 2046 WARN_ON_ONCE(idx == INVALID_INDEX); 2047 clear_unsync_child_bit(sp, idx); 2048 level++; 2049 } while (!sp->unsync_children); 2050 } 2051 2052 static int mmu_sync_children(struct kvm_vcpu *vcpu, 2053 struct kvm_mmu_page *parent, bool can_yield) 2054 { 2055 int i; 2056 struct kvm_mmu_page *sp; 2057 struct mmu_page_path parents; 2058 struct kvm_mmu_pages pages; 2059 LIST_HEAD(invalid_list); 2060 bool flush = false; 2061 2062 while (mmu_unsync_walk(parent, &pages)) { 2063 bool protected = false; 2064 2065 for_each_sp(pages, sp, parents, i) 2066 protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn); 2067 2068 if (protected) { 2069 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true); 2070 flush = false; 2071 } 2072 2073 for_each_sp(pages, sp, parents, i) { 2074 kvm_unlink_unsync_page(vcpu->kvm, sp); 2075 flush |= kvm_sync_page(vcpu, sp, &invalid_list) > 0; 2076 mmu_pages_clear_parents(&parents); 2077 } 2078 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) { 2079 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2080 if (!can_yield) { 2081 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 2082 return -EINTR; 2083 } 2084 2085 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock); 2086 flush = false; 2087 } 2088 } 2089 2090 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2091 return 0; 2092 } 2093 2094 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) 2095 { 2096 atomic_set(&sp->write_flooding_count, 0); 2097 } 2098 2099 static void clear_sp_write_flooding_count(u64 *spte) 2100 { 2101 __clear_sp_write_flooding_count(sptep_to_sp(spte)); 2102 } 2103 2104 /* 2105 * The vCPU is required when finding indirect shadow pages; the shadow 2106 * page may already exist and syncing it needs the vCPU pointer in 2107 * order to read guest page tables. Direct shadow pages are never 2108 * unsync, thus @vcpu can be NULL if @role.direct is true. 2109 */ 2110 static struct kvm_mmu_page *kvm_mmu_find_shadow_page(struct kvm *kvm, 2111 struct kvm_vcpu *vcpu, 2112 gfn_t gfn, 2113 struct hlist_head *sp_list, 2114 union kvm_mmu_page_role role) 2115 { 2116 struct kvm_mmu_page *sp; 2117 int ret; 2118 int collisions = 0; 2119 LIST_HEAD(invalid_list); 2120 2121 for_each_valid_sp(kvm, sp, sp_list) { 2122 if (sp->gfn != gfn) { 2123 collisions++; 2124 continue; 2125 } 2126 2127 if (sp->role.word != role.word) { 2128 /* 2129 * If the guest is creating an upper-level page, zap 2130 * unsync pages for the same gfn. While it's possible 2131 * the guest is using recursive page tables, in all 2132 * likelihood the guest has stopped using the unsync 2133 * page and is installing a completely unrelated page. 2134 * Unsync pages must not be left as is, because the new 2135 * upper-level page will be write-protected. 2136 */ 2137 if (role.level > PG_LEVEL_4K && sp->unsync) 2138 kvm_mmu_prepare_zap_page(kvm, sp, 2139 &invalid_list); 2140 continue; 2141 } 2142 2143 /* unsync and write-flooding only apply to indirect SPs. */ 2144 if (sp->role.direct) 2145 goto out; 2146 2147 if (sp->unsync) { 2148 if (KVM_BUG_ON(!vcpu, kvm)) 2149 break; 2150 2151 /* 2152 * The page is good, but is stale. kvm_sync_page does 2153 * get the latest guest state, but (unlike mmu_unsync_children) 2154 * it doesn't write-protect the page or mark it synchronized! 2155 * This way the validity of the mapping is ensured, but the 2156 * overhead of write protection is not incurred until the 2157 * guest invalidates the TLB mapping. This allows multiple 2158 * SPs for a single gfn to be unsync. 2159 * 2160 * If the sync fails, the page is zapped. If so, break 2161 * in order to rebuild it. 2162 */ 2163 ret = kvm_sync_page(vcpu, sp, &invalid_list); 2164 if (ret < 0) 2165 break; 2166 2167 WARN_ON_ONCE(!list_empty(&invalid_list)); 2168 if (ret > 0) 2169 kvm_flush_remote_tlbs(kvm); 2170 } 2171 2172 __clear_sp_write_flooding_count(sp); 2173 2174 goto out; 2175 } 2176 2177 sp = NULL; 2178 ++kvm->stat.mmu_cache_miss; 2179 2180 out: 2181 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2182 2183 if (collisions > kvm->stat.max_mmu_page_hash_collisions) 2184 kvm->stat.max_mmu_page_hash_collisions = collisions; 2185 return sp; 2186 } 2187 2188 /* Caches used when allocating a new shadow page. */ 2189 struct shadow_page_caches { 2190 struct kvm_mmu_memory_cache *page_header_cache; 2191 struct kvm_mmu_memory_cache *shadow_page_cache; 2192 struct kvm_mmu_memory_cache *shadowed_info_cache; 2193 }; 2194 2195 static struct kvm_mmu_page *kvm_mmu_alloc_shadow_page(struct kvm *kvm, 2196 struct shadow_page_caches *caches, 2197 gfn_t gfn, 2198 struct hlist_head *sp_list, 2199 union kvm_mmu_page_role role) 2200 { 2201 struct kvm_mmu_page *sp; 2202 2203 sp = kvm_mmu_memory_cache_alloc(caches->page_header_cache); 2204 sp->spt = kvm_mmu_memory_cache_alloc(caches->shadow_page_cache); 2205 if (!role.direct && role.level <= KVM_MAX_HUGEPAGE_LEVEL) 2206 sp->shadowed_translation = kvm_mmu_memory_cache_alloc(caches->shadowed_info_cache); 2207 2208 set_page_private(virt_to_page(sp->spt), (unsigned long)sp); 2209 2210 INIT_LIST_HEAD(&sp->possible_nx_huge_page_link); 2211 2212 /* 2213 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages() 2214 * depends on valid pages being added to the head of the list. See 2215 * comments in kvm_zap_obsolete_pages(). 2216 */ 2217 sp->mmu_valid_gen = kvm->arch.mmu_valid_gen; 2218 list_add(&sp->link, &kvm->arch.active_mmu_pages); 2219 kvm_account_mmu_page(kvm, sp); 2220 2221 sp->gfn = gfn; 2222 sp->role = role; 2223 hlist_add_head(&sp->hash_link, sp_list); 2224 if (sp_has_gptes(sp)) 2225 account_shadowed(kvm, sp); 2226 2227 return sp; 2228 } 2229 2230 /* Note, @vcpu may be NULL if @role.direct is true; see kvm_mmu_find_shadow_page. */ 2231 static struct kvm_mmu_page *__kvm_mmu_get_shadow_page(struct kvm *kvm, 2232 struct kvm_vcpu *vcpu, 2233 struct shadow_page_caches *caches, 2234 gfn_t gfn, 2235 union kvm_mmu_page_role role) 2236 { 2237 struct hlist_head *sp_list; 2238 struct kvm_mmu_page *sp; 2239 bool created = false; 2240 2241 sp_list = &kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]; 2242 2243 sp = kvm_mmu_find_shadow_page(kvm, vcpu, gfn, sp_list, role); 2244 if (!sp) { 2245 created = true; 2246 sp = kvm_mmu_alloc_shadow_page(kvm, caches, gfn, sp_list, role); 2247 } 2248 2249 trace_kvm_mmu_get_page(sp, created); 2250 return sp; 2251 } 2252 2253 static struct kvm_mmu_page *kvm_mmu_get_shadow_page(struct kvm_vcpu *vcpu, 2254 gfn_t gfn, 2255 union kvm_mmu_page_role role) 2256 { 2257 struct shadow_page_caches caches = { 2258 .page_header_cache = &vcpu->arch.mmu_page_header_cache, 2259 .shadow_page_cache = &vcpu->arch.mmu_shadow_page_cache, 2260 .shadowed_info_cache = &vcpu->arch.mmu_shadowed_info_cache, 2261 }; 2262 2263 return __kvm_mmu_get_shadow_page(vcpu->kvm, vcpu, &caches, gfn, role); 2264 } 2265 2266 static union kvm_mmu_page_role kvm_mmu_child_role(u64 *sptep, bool direct, 2267 unsigned int access) 2268 { 2269 struct kvm_mmu_page *parent_sp = sptep_to_sp(sptep); 2270 union kvm_mmu_page_role role; 2271 2272 role = parent_sp->role; 2273 role.level--; 2274 role.access = access; 2275 role.direct = direct; 2276 role.passthrough = 0; 2277 2278 /* 2279 * If the guest has 4-byte PTEs then that means it's using 32-bit, 2280 * 2-level, non-PAE paging. KVM shadows such guests with PAE paging 2281 * (i.e. 8-byte PTEs). The difference in PTE size means that KVM must 2282 * shadow each guest page table with multiple shadow page tables, which 2283 * requires extra bookkeeping in the role. 2284 * 2285 * Specifically, to shadow the guest's page directory (which covers a 2286 * 4GiB address space), KVM uses 4 PAE page directories, each mapping 2287 * 1GiB of the address space. @role.quadrant encodes which quarter of 2288 * the address space each maps. 2289 * 2290 * To shadow the guest's page tables (which each map a 4MiB region), KVM 2291 * uses 2 PAE page tables, each mapping a 2MiB region. For these, 2292 * @role.quadrant encodes which half of the region they map. 2293 * 2294 * Concretely, a 4-byte PDE consumes bits 31:22, while an 8-byte PDE 2295 * consumes bits 29:21. To consume bits 31:30, KVM's uses 4 shadow 2296 * PDPTEs; those 4 PAE page directories are pre-allocated and their 2297 * quadrant is assigned in mmu_alloc_root(). A 4-byte PTE consumes 2298 * bits 21:12, while an 8-byte PTE consumes bits 20:12. To consume 2299 * bit 21 in the PTE (the child here), KVM propagates that bit to the 2300 * quadrant, i.e. sets quadrant to '0' or '1'. The parent 8-byte PDE 2301 * covers bit 21 (see above), thus the quadrant is calculated from the 2302 * _least_ significant bit of the PDE index. 2303 */ 2304 if (role.has_4_byte_gpte) { 2305 WARN_ON_ONCE(role.level != PG_LEVEL_4K); 2306 role.quadrant = spte_index(sptep) & 1; 2307 } 2308 2309 return role; 2310 } 2311 2312 static struct kvm_mmu_page *kvm_mmu_get_child_sp(struct kvm_vcpu *vcpu, 2313 u64 *sptep, gfn_t gfn, 2314 bool direct, unsigned int access) 2315 { 2316 union kvm_mmu_page_role role; 2317 2318 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) 2319 return ERR_PTR(-EEXIST); 2320 2321 role = kvm_mmu_child_role(sptep, direct, access); 2322 return kvm_mmu_get_shadow_page(vcpu, gfn, role); 2323 } 2324 2325 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator, 2326 struct kvm_vcpu *vcpu, hpa_t root, 2327 u64 addr) 2328 { 2329 iterator->addr = addr; 2330 iterator->shadow_addr = root; 2331 iterator->level = vcpu->arch.mmu->root_role.level; 2332 2333 if (iterator->level >= PT64_ROOT_4LEVEL && 2334 vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL && 2335 !vcpu->arch.mmu->root_role.direct) 2336 iterator->level = PT32E_ROOT_LEVEL; 2337 2338 if (iterator->level == PT32E_ROOT_LEVEL) { 2339 /* 2340 * prev_root is currently only used for 64-bit hosts. So only 2341 * the active root_hpa is valid here. 2342 */ 2343 BUG_ON(root != vcpu->arch.mmu->root.hpa); 2344 2345 iterator->shadow_addr 2346 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3]; 2347 iterator->shadow_addr &= SPTE_BASE_ADDR_MASK; 2348 --iterator->level; 2349 if (!iterator->shadow_addr) 2350 iterator->level = 0; 2351 } 2352 } 2353 2354 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, 2355 struct kvm_vcpu *vcpu, u64 addr) 2356 { 2357 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa, 2358 addr); 2359 } 2360 2361 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) 2362 { 2363 if (iterator->level < PG_LEVEL_4K) 2364 return false; 2365 2366 iterator->index = SPTE_INDEX(iterator->addr, iterator->level); 2367 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; 2368 return true; 2369 } 2370 2371 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, 2372 u64 spte) 2373 { 2374 if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) { 2375 iterator->level = 0; 2376 return; 2377 } 2378 2379 iterator->shadow_addr = spte & SPTE_BASE_ADDR_MASK; 2380 --iterator->level; 2381 } 2382 2383 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) 2384 { 2385 __shadow_walk_next(iterator, *iterator->sptep); 2386 } 2387 2388 static void __link_shadow_page(struct kvm *kvm, 2389 struct kvm_mmu_memory_cache *cache, u64 *sptep, 2390 struct kvm_mmu_page *sp, bool flush) 2391 { 2392 u64 spte; 2393 2394 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); 2395 2396 /* 2397 * If an SPTE is present already, it must be a leaf and therefore 2398 * a large one. Drop it, and flush the TLB if needed, before 2399 * installing sp. 2400 */ 2401 if (is_shadow_present_pte(*sptep)) 2402 drop_large_spte(kvm, sptep, flush); 2403 2404 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp)); 2405 2406 mmu_spte_set(sptep, spte); 2407 2408 mmu_page_add_parent_pte(cache, sp, sptep); 2409 2410 /* 2411 * The non-direct sub-pagetable must be updated before linking. For 2412 * L1 sp, the pagetable is updated via kvm_sync_page() in 2413 * kvm_mmu_find_shadow_page() without write-protecting the gfn, 2414 * so sp->unsync can be true or false. For higher level non-direct 2415 * sp, the pagetable is updated/synced via mmu_sync_children() in 2416 * FNAME(fetch)(), so sp->unsync_children can only be false. 2417 * WARN_ON_ONCE() if anything happens unexpectedly. 2418 */ 2419 if (WARN_ON_ONCE(sp->unsync_children) || sp->unsync) 2420 mark_unsync(sptep); 2421 } 2422 2423 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, 2424 struct kvm_mmu_page *sp) 2425 { 2426 __link_shadow_page(vcpu->kvm, &vcpu->arch.mmu_pte_list_desc_cache, sptep, sp, true); 2427 } 2428 2429 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2430 unsigned direct_access) 2431 { 2432 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { 2433 struct kvm_mmu_page *child; 2434 2435 /* 2436 * For the direct sp, if the guest pte's dirty bit 2437 * changed form clean to dirty, it will corrupt the 2438 * sp's access: allow writable in the read-only sp, 2439 * so we should update the spte at this point to get 2440 * a new sp with the correct access. 2441 */ 2442 child = spte_to_child_sp(*sptep); 2443 if (child->role.access == direct_access) 2444 return; 2445 2446 drop_parent_pte(vcpu->kvm, child, sptep); 2447 kvm_flush_remote_tlbs_sptep(vcpu->kvm, sptep); 2448 } 2449 } 2450 2451 /* Returns the number of zapped non-leaf child shadow pages. */ 2452 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 2453 u64 *spte, struct list_head *invalid_list) 2454 { 2455 u64 pte; 2456 struct kvm_mmu_page *child; 2457 2458 pte = *spte; 2459 if (is_shadow_present_pte(pte)) { 2460 if (is_last_spte(pte, sp->role.level)) { 2461 drop_spte(kvm, spte); 2462 } else { 2463 child = spte_to_child_sp(pte); 2464 drop_parent_pte(kvm, child, spte); 2465 2466 /* 2467 * Recursively zap nested TDP SPs, parentless SPs are 2468 * unlikely to be used again in the near future. This 2469 * avoids retaining a large number of stale nested SPs. 2470 */ 2471 if (tdp_enabled && invalid_list && 2472 child->role.guest_mode && !child->parent_ptes.val) 2473 return kvm_mmu_prepare_zap_page(kvm, child, 2474 invalid_list); 2475 } 2476 } else if (is_mmio_spte(kvm, pte)) { 2477 mmu_spte_clear_no_track(spte); 2478 } 2479 return 0; 2480 } 2481 2482 static int kvm_mmu_page_unlink_children(struct kvm *kvm, 2483 struct kvm_mmu_page *sp, 2484 struct list_head *invalid_list) 2485 { 2486 int zapped = 0; 2487 unsigned i; 2488 2489 for (i = 0; i < SPTE_ENT_PER_PAGE; ++i) 2490 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list); 2491 2492 return zapped; 2493 } 2494 2495 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp) 2496 { 2497 u64 *sptep; 2498 struct rmap_iterator iter; 2499 2500 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter))) 2501 drop_parent_pte(kvm, sp, sptep); 2502 } 2503 2504 static int mmu_zap_unsync_children(struct kvm *kvm, 2505 struct kvm_mmu_page *parent, 2506 struct list_head *invalid_list) 2507 { 2508 int i, zapped = 0; 2509 struct mmu_page_path parents; 2510 struct kvm_mmu_pages pages; 2511 2512 if (parent->role.level == PG_LEVEL_4K) 2513 return 0; 2514 2515 while (mmu_unsync_walk(parent, &pages)) { 2516 struct kvm_mmu_page *sp; 2517 2518 for_each_sp(pages, sp, parents, i) { 2519 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 2520 mmu_pages_clear_parents(&parents); 2521 zapped++; 2522 } 2523 } 2524 2525 return zapped; 2526 } 2527 2528 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm, 2529 struct kvm_mmu_page *sp, 2530 struct list_head *invalid_list, 2531 int *nr_zapped) 2532 { 2533 bool list_unstable, zapped_root = false; 2534 2535 lockdep_assert_held_write(&kvm->mmu_lock); 2536 trace_kvm_mmu_prepare_zap_page(sp); 2537 ++kvm->stat.mmu_shadow_zapped; 2538 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list); 2539 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list); 2540 kvm_mmu_unlink_parents(kvm, sp); 2541 2542 /* Zapping children means active_mmu_pages has become unstable. */ 2543 list_unstable = *nr_zapped; 2544 2545 if (!sp->role.invalid && sp_has_gptes(sp)) 2546 unaccount_shadowed(kvm, sp); 2547 2548 if (sp->unsync) 2549 kvm_unlink_unsync_page(kvm, sp); 2550 if (!sp->root_count) { 2551 /* Count self */ 2552 (*nr_zapped)++; 2553 2554 /* 2555 * Already invalid pages (previously active roots) are not on 2556 * the active page list. See list_del() in the "else" case of 2557 * !sp->root_count. 2558 */ 2559 if (sp->role.invalid) 2560 list_add(&sp->link, invalid_list); 2561 else 2562 list_move(&sp->link, invalid_list); 2563 kvm_unaccount_mmu_page(kvm, sp); 2564 } else { 2565 /* 2566 * Remove the active root from the active page list, the root 2567 * will be explicitly freed when the root_count hits zero. 2568 */ 2569 list_del(&sp->link); 2570 2571 /* 2572 * Obsolete pages cannot be used on any vCPUs, see the comment 2573 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also 2574 * treats invalid shadow pages as being obsolete. 2575 */ 2576 zapped_root = !is_obsolete_sp(kvm, sp); 2577 } 2578 2579 if (sp->nx_huge_page_disallowed) 2580 unaccount_nx_huge_page(kvm, sp); 2581 2582 sp->role.invalid = 1; 2583 2584 /* 2585 * Make the request to free obsolete roots after marking the root 2586 * invalid, otherwise other vCPUs may not see it as invalid. 2587 */ 2588 if (zapped_root) 2589 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 2590 return list_unstable; 2591 } 2592 2593 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 2594 struct list_head *invalid_list) 2595 { 2596 int nr_zapped; 2597 2598 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped); 2599 return nr_zapped; 2600 } 2601 2602 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 2603 struct list_head *invalid_list) 2604 { 2605 struct kvm_mmu_page *sp, *nsp; 2606 2607 if (list_empty(invalid_list)) 2608 return; 2609 2610 /* 2611 * We need to make sure everyone sees our modifications to 2612 * the page tables and see changes to vcpu->mode here. The barrier 2613 * in the kvm_flush_remote_tlbs() achieves this. This pairs 2614 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end. 2615 * 2616 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit 2617 * guest mode and/or lockless shadow page table walks. 2618 */ 2619 kvm_flush_remote_tlbs(kvm); 2620 2621 list_for_each_entry_safe(sp, nsp, invalid_list, link) { 2622 WARN_ON_ONCE(!sp->role.invalid || sp->root_count); 2623 kvm_mmu_free_shadow_page(sp); 2624 } 2625 } 2626 2627 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm, 2628 unsigned long nr_to_zap) 2629 { 2630 unsigned long total_zapped = 0; 2631 struct kvm_mmu_page *sp, *tmp; 2632 LIST_HEAD(invalid_list); 2633 bool unstable; 2634 int nr_zapped; 2635 2636 if (list_empty(&kvm->arch.active_mmu_pages)) 2637 return 0; 2638 2639 restart: 2640 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) { 2641 /* 2642 * Don't zap active root pages, the page itself can't be freed 2643 * and zapping it will just force vCPUs to realloc and reload. 2644 */ 2645 if (sp->root_count) 2646 continue; 2647 2648 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, 2649 &nr_zapped); 2650 total_zapped += nr_zapped; 2651 if (total_zapped >= nr_to_zap) 2652 break; 2653 2654 if (unstable) 2655 goto restart; 2656 } 2657 2658 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2659 2660 kvm->stat.mmu_recycled += total_zapped; 2661 return total_zapped; 2662 } 2663 2664 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm) 2665 { 2666 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) 2667 return kvm->arch.n_max_mmu_pages - 2668 kvm->arch.n_used_mmu_pages; 2669 2670 return 0; 2671 } 2672 2673 static int make_mmu_pages_available(struct kvm_vcpu *vcpu) 2674 { 2675 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm); 2676 2677 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES)) 2678 return 0; 2679 2680 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail); 2681 2682 /* 2683 * Note, this check is intentionally soft, it only guarantees that one 2684 * page is available, while the caller may end up allocating as many as 2685 * four pages, e.g. for PAE roots or for 5-level paging. Temporarily 2686 * exceeding the (arbitrary by default) limit will not harm the host, 2687 * being too aggressive may unnecessarily kill the guest, and getting an 2688 * exact count is far more trouble than it's worth, especially in the 2689 * page fault paths. 2690 */ 2691 if (!kvm_mmu_available_pages(vcpu->kvm)) 2692 return -ENOSPC; 2693 return 0; 2694 } 2695 2696 /* 2697 * Changing the number of mmu pages allocated to the vm 2698 * Note: if goal_nr_mmu_pages is too small, you will get dead lock 2699 */ 2700 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages) 2701 { 2702 write_lock(&kvm->mmu_lock); 2703 2704 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { 2705 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages - 2706 goal_nr_mmu_pages); 2707 2708 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; 2709 } 2710 2711 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; 2712 2713 write_unlock(&kvm->mmu_lock); 2714 } 2715 2716 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn) 2717 { 2718 struct kvm_mmu_page *sp; 2719 LIST_HEAD(invalid_list); 2720 int r; 2721 2722 r = 0; 2723 write_lock(&kvm->mmu_lock); 2724 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) { 2725 r = 1; 2726 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 2727 } 2728 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2729 write_unlock(&kvm->mmu_lock); 2730 2731 return r; 2732 } 2733 2734 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) 2735 { 2736 gpa_t gpa; 2737 int r; 2738 2739 if (vcpu->arch.mmu->root_role.direct) 2740 return 0; 2741 2742 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL); 2743 2744 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); 2745 2746 return r; 2747 } 2748 2749 static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 2750 { 2751 trace_kvm_mmu_unsync_page(sp); 2752 ++kvm->stat.mmu_unsync; 2753 sp->unsync = 1; 2754 2755 kvm_mmu_mark_parents_unsync(sp); 2756 } 2757 2758 /* 2759 * Attempt to unsync any shadow pages that can be reached by the specified gfn, 2760 * KVM is creating a writable mapping for said gfn. Returns 0 if all pages 2761 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must 2762 * be write-protected. 2763 */ 2764 int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot, 2765 gfn_t gfn, bool can_unsync, bool prefetch) 2766 { 2767 struct kvm_mmu_page *sp; 2768 bool locked = false; 2769 2770 /* 2771 * Force write-protection if the page is being tracked. Note, the page 2772 * track machinery is used to write-protect upper-level shadow pages, 2773 * i.e. this guards the role.level == 4K assertion below! 2774 */ 2775 if (kvm_gfn_is_write_tracked(kvm, slot, gfn)) 2776 return -EPERM; 2777 2778 /* 2779 * The page is not write-tracked, mark existing shadow pages unsync 2780 * unless KVM is synchronizing an unsync SP (can_unsync = false). In 2781 * that case, KVM must complete emulation of the guest TLB flush before 2782 * allowing shadow pages to become unsync (writable by the guest). 2783 */ 2784 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) { 2785 if (!can_unsync) 2786 return -EPERM; 2787 2788 if (sp->unsync) 2789 continue; 2790 2791 if (prefetch) 2792 return -EEXIST; 2793 2794 /* 2795 * TDP MMU page faults require an additional spinlock as they 2796 * run with mmu_lock held for read, not write, and the unsync 2797 * logic is not thread safe. Take the spinklock regardless of 2798 * the MMU type to avoid extra conditionals/parameters, there's 2799 * no meaningful penalty if mmu_lock is held for write. 2800 */ 2801 if (!locked) { 2802 locked = true; 2803 spin_lock(&kvm->arch.mmu_unsync_pages_lock); 2804 2805 /* 2806 * Recheck after taking the spinlock, a different vCPU 2807 * may have since marked the page unsync. A false 2808 * negative on the unprotected check above is not 2809 * possible as clearing sp->unsync _must_ hold mmu_lock 2810 * for write, i.e. unsync cannot transition from 1->0 2811 * while this CPU holds mmu_lock for read (or write). 2812 */ 2813 if (READ_ONCE(sp->unsync)) 2814 continue; 2815 } 2816 2817 WARN_ON_ONCE(sp->role.level != PG_LEVEL_4K); 2818 kvm_unsync_page(kvm, sp); 2819 } 2820 if (locked) 2821 spin_unlock(&kvm->arch.mmu_unsync_pages_lock); 2822 2823 /* 2824 * We need to ensure that the marking of unsync pages is visible 2825 * before the SPTE is updated to allow writes because 2826 * kvm_mmu_sync_roots() checks the unsync flags without holding 2827 * the MMU lock and so can race with this. If the SPTE was updated 2828 * before the page had been marked as unsync-ed, something like the 2829 * following could happen: 2830 * 2831 * CPU 1 CPU 2 2832 * --------------------------------------------------------------------- 2833 * 1.2 Host updates SPTE 2834 * to be writable 2835 * 2.1 Guest writes a GPTE for GVA X. 2836 * (GPTE being in the guest page table shadowed 2837 * by the SP from CPU 1.) 2838 * This reads SPTE during the page table walk. 2839 * Since SPTE.W is read as 1, there is no 2840 * fault. 2841 * 2842 * 2.2 Guest issues TLB flush. 2843 * That causes a VM Exit. 2844 * 2845 * 2.3 Walking of unsync pages sees sp->unsync is 2846 * false and skips the page. 2847 * 2848 * 2.4 Guest accesses GVA X. 2849 * Since the mapping in the SP was not updated, 2850 * so the old mapping for GVA X incorrectly 2851 * gets used. 2852 * 1.1 Host marks SP 2853 * as unsync 2854 * (sp->unsync = true) 2855 * 2856 * The write barrier below ensures that 1.1 happens before 1.2 and thus 2857 * the situation in 2.4 does not arise. It pairs with the read barrier 2858 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3. 2859 */ 2860 smp_wmb(); 2861 2862 return 0; 2863 } 2864 2865 static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, 2866 u64 *sptep, unsigned int pte_access, gfn_t gfn, 2867 kvm_pfn_t pfn, struct kvm_page_fault *fault) 2868 { 2869 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 2870 int level = sp->role.level; 2871 int was_rmapped = 0; 2872 int ret = RET_PF_FIXED; 2873 bool flush = false; 2874 bool wrprot; 2875 u64 spte; 2876 2877 /* Prefetching always gets a writable pfn. */ 2878 bool host_writable = !fault || fault->map_writable; 2879 bool prefetch = !fault || fault->prefetch; 2880 bool write_fault = fault && fault->write; 2881 2882 if (unlikely(is_noslot_pfn(pfn))) { 2883 vcpu->stat.pf_mmio_spte_created++; 2884 mark_mmio_spte(vcpu, sptep, gfn, pte_access); 2885 return RET_PF_EMULATE; 2886 } 2887 2888 if (is_shadow_present_pte(*sptep)) { 2889 /* 2890 * If we overwrite a PTE page pointer with a 2MB PMD, unlink 2891 * the parent of the now unreachable PTE. 2892 */ 2893 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) { 2894 struct kvm_mmu_page *child; 2895 u64 pte = *sptep; 2896 2897 child = spte_to_child_sp(pte); 2898 drop_parent_pte(vcpu->kvm, child, sptep); 2899 flush = true; 2900 } else if (pfn != spte_to_pfn(*sptep)) { 2901 drop_spte(vcpu->kvm, sptep); 2902 flush = true; 2903 } else 2904 was_rmapped = 1; 2905 } 2906 2907 wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch, 2908 true, host_writable, &spte); 2909 2910 if (*sptep == spte) { 2911 ret = RET_PF_SPURIOUS; 2912 } else { 2913 flush |= mmu_spte_update(sptep, spte); 2914 trace_kvm_mmu_set_spte(level, gfn, sptep); 2915 } 2916 2917 if (wrprot) { 2918 if (write_fault) 2919 ret = RET_PF_EMULATE; 2920 } 2921 2922 if (flush) 2923 kvm_flush_remote_tlbs_gfn(vcpu->kvm, gfn, level); 2924 2925 if (!was_rmapped) { 2926 WARN_ON_ONCE(ret == RET_PF_SPURIOUS); 2927 rmap_add(vcpu, slot, sptep, gfn, pte_access); 2928 } else { 2929 /* Already rmapped but the pte_access bits may have changed. */ 2930 kvm_mmu_page_set_access(sp, spte_index(sptep), pte_access); 2931 } 2932 2933 return ret; 2934 } 2935 2936 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu, 2937 struct kvm_mmu_page *sp, 2938 u64 *start, u64 *end) 2939 { 2940 struct page *pages[PTE_PREFETCH_NUM]; 2941 struct kvm_memory_slot *slot; 2942 unsigned int access = sp->role.access; 2943 int i, ret; 2944 gfn_t gfn; 2945 2946 gfn = kvm_mmu_page_get_gfn(sp, spte_index(start)); 2947 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK); 2948 if (!slot) 2949 return -1; 2950 2951 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start); 2952 if (ret <= 0) 2953 return -1; 2954 2955 for (i = 0; i < ret; i++, gfn++, start++) { 2956 mmu_set_spte(vcpu, slot, start, access, gfn, 2957 page_to_pfn(pages[i]), NULL); 2958 put_page(pages[i]); 2959 } 2960 2961 return 0; 2962 } 2963 2964 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, 2965 struct kvm_mmu_page *sp, u64 *sptep) 2966 { 2967 u64 *spte, *start = NULL; 2968 int i; 2969 2970 WARN_ON_ONCE(!sp->role.direct); 2971 2972 i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1); 2973 spte = sp->spt + i; 2974 2975 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 2976 if (is_shadow_present_pte(*spte) || spte == sptep) { 2977 if (!start) 2978 continue; 2979 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0) 2980 return; 2981 start = NULL; 2982 } else if (!start) 2983 start = spte; 2984 } 2985 if (start) 2986 direct_pte_prefetch_many(vcpu, sp, start, spte); 2987 } 2988 2989 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) 2990 { 2991 struct kvm_mmu_page *sp; 2992 2993 sp = sptep_to_sp(sptep); 2994 2995 /* 2996 * Without accessed bits, there's no way to distinguish between 2997 * actually accessed translations and prefetched, so disable pte 2998 * prefetch if accessed bits aren't available. 2999 */ 3000 if (sp_ad_disabled(sp)) 3001 return; 3002 3003 if (sp->role.level > PG_LEVEL_4K) 3004 return; 3005 3006 /* 3007 * If addresses are being invalidated, skip prefetching to avoid 3008 * accidentally prefetching those addresses. 3009 */ 3010 if (unlikely(vcpu->kvm->mmu_invalidate_in_progress)) 3011 return; 3012 3013 __direct_pte_prefetch(vcpu, sp, sptep); 3014 } 3015 3016 /* 3017 * Lookup the mapping level for @gfn in the current mm. 3018 * 3019 * WARNING! Use of host_pfn_mapping_level() requires the caller and the end 3020 * consumer to be tied into KVM's handlers for MMU notifier events! 3021 * 3022 * There are several ways to safely use this helper: 3023 * 3024 * - Check mmu_invalidate_retry_gfn() after grabbing the mapping level, before 3025 * consuming it. In this case, mmu_lock doesn't need to be held during the 3026 * lookup, but it does need to be held while checking the MMU notifier. 3027 * 3028 * - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation 3029 * event for the hva. This can be done by explicit checking the MMU notifier 3030 * or by ensuring that KVM already has a valid mapping that covers the hva. 3031 * 3032 * - Do not use the result to install new mappings, e.g. use the host mapping 3033 * level only to decide whether or not to zap an entry. In this case, it's 3034 * not required to hold mmu_lock (though it's highly likely the caller will 3035 * want to hold mmu_lock anyways, e.g. to modify SPTEs). 3036 * 3037 * Note! The lookup can still race with modifications to host page tables, but 3038 * the above "rules" ensure KVM will not _consume_ the result of the walk if a 3039 * race with the primary MMU occurs. 3040 */ 3041 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, 3042 const struct kvm_memory_slot *slot) 3043 { 3044 int level = PG_LEVEL_4K; 3045 unsigned long hva; 3046 unsigned long flags; 3047 pgd_t pgd; 3048 p4d_t p4d; 3049 pud_t pud; 3050 pmd_t pmd; 3051 3052 /* 3053 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot() 3054 * is not solely for performance, it's also necessary to avoid the 3055 * "writable" check in __gfn_to_hva_many(), which will always fail on 3056 * read-only memslots due to gfn_to_hva() assuming writes. Earlier 3057 * page fault steps have already verified the guest isn't writing a 3058 * read-only memslot. 3059 */ 3060 hva = __gfn_to_hva_memslot(slot, gfn); 3061 3062 /* 3063 * Disable IRQs to prevent concurrent tear down of host page tables, 3064 * e.g. if the primary MMU promotes a P*D to a huge page and then frees 3065 * the original page table. 3066 */ 3067 local_irq_save(flags); 3068 3069 /* 3070 * Read each entry once. As above, a non-leaf entry can be promoted to 3071 * a huge page _during_ this walk. Re-reading the entry could send the 3072 * walk into the weeks, e.g. p*d_leaf() returns false (sees the old 3073 * value) and then p*d_offset() walks into the target huge page instead 3074 * of the old page table (sees the new value). 3075 */ 3076 pgd = READ_ONCE(*pgd_offset(kvm->mm, hva)); 3077 if (pgd_none(pgd)) 3078 goto out; 3079 3080 p4d = READ_ONCE(*p4d_offset(&pgd, hva)); 3081 if (p4d_none(p4d) || !p4d_present(p4d)) 3082 goto out; 3083 3084 pud = READ_ONCE(*pud_offset(&p4d, hva)); 3085 if (pud_none(pud) || !pud_present(pud)) 3086 goto out; 3087 3088 if (pud_leaf(pud)) { 3089 level = PG_LEVEL_1G; 3090 goto out; 3091 } 3092 3093 pmd = READ_ONCE(*pmd_offset(&pud, hva)); 3094 if (pmd_none(pmd) || !pmd_present(pmd)) 3095 goto out; 3096 3097 if (pmd_leaf(pmd)) 3098 level = PG_LEVEL_2M; 3099 3100 out: 3101 local_irq_restore(flags); 3102 return level; 3103 } 3104 3105 static int __kvm_mmu_max_mapping_level(struct kvm *kvm, 3106 const struct kvm_memory_slot *slot, 3107 gfn_t gfn, int max_level, bool is_private) 3108 { 3109 struct kvm_lpage_info *linfo; 3110 int host_level; 3111 3112 max_level = min(max_level, max_huge_page_level); 3113 for ( ; max_level > PG_LEVEL_4K; max_level--) { 3114 linfo = lpage_info_slot(gfn, slot, max_level); 3115 if (!linfo->disallow_lpage) 3116 break; 3117 } 3118 3119 if (is_private) 3120 return max_level; 3121 3122 if (max_level == PG_LEVEL_4K) 3123 return PG_LEVEL_4K; 3124 3125 host_level = host_pfn_mapping_level(kvm, gfn, slot); 3126 return min(host_level, max_level); 3127 } 3128 3129 int kvm_mmu_max_mapping_level(struct kvm *kvm, 3130 const struct kvm_memory_slot *slot, gfn_t gfn, 3131 int max_level) 3132 { 3133 bool is_private = kvm_slot_can_be_private(slot) && 3134 kvm_mem_is_private(kvm, gfn); 3135 3136 return __kvm_mmu_max_mapping_level(kvm, slot, gfn, max_level, is_private); 3137 } 3138 3139 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3140 { 3141 struct kvm_memory_slot *slot = fault->slot; 3142 kvm_pfn_t mask; 3143 3144 fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled; 3145 3146 if (unlikely(fault->max_level == PG_LEVEL_4K)) 3147 return; 3148 3149 if (is_error_noslot_pfn(fault->pfn)) 3150 return; 3151 3152 if (kvm_slot_dirty_track_enabled(slot)) 3153 return; 3154 3155 /* 3156 * Enforce the iTLB multihit workaround after capturing the requested 3157 * level, which will be used to do precise, accurate accounting. 3158 */ 3159 fault->req_level = __kvm_mmu_max_mapping_level(vcpu->kvm, slot, 3160 fault->gfn, fault->max_level, 3161 fault->is_private); 3162 if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed) 3163 return; 3164 3165 /* 3166 * mmu_invalidate_retry() was successful and mmu_lock is held, so 3167 * the pmd can't be split from under us. 3168 */ 3169 fault->goal_level = fault->req_level; 3170 mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1; 3171 VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask)); 3172 fault->pfn &= ~mask; 3173 } 3174 3175 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level) 3176 { 3177 if (cur_level > PG_LEVEL_4K && 3178 cur_level == fault->goal_level && 3179 is_shadow_present_pte(spte) && 3180 !is_large_pte(spte) && 3181 spte_to_child_sp(spte)->nx_huge_page_disallowed) { 3182 /* 3183 * A small SPTE exists for this pfn, but FNAME(fetch), 3184 * direct_map(), or kvm_tdp_mmu_map() would like to create a 3185 * large PTE instead: just force them to go down another level, 3186 * patching back for them into pfn the next 9 bits of the 3187 * address. 3188 */ 3189 u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) - 3190 KVM_PAGES_PER_HPAGE(cur_level - 1); 3191 fault->pfn |= fault->gfn & page_mask; 3192 fault->goal_level--; 3193 } 3194 } 3195 3196 static int direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3197 { 3198 struct kvm_shadow_walk_iterator it; 3199 struct kvm_mmu_page *sp; 3200 int ret; 3201 gfn_t base_gfn = fault->gfn; 3202 3203 kvm_mmu_hugepage_adjust(vcpu, fault); 3204 3205 trace_kvm_mmu_spte_requested(fault); 3206 for_each_shadow_entry(vcpu, fault->addr, it) { 3207 /* 3208 * We cannot overwrite existing page tables with an NX 3209 * large page, as the leaf could be executable. 3210 */ 3211 if (fault->nx_huge_page_workaround_enabled) 3212 disallowed_hugepage_adjust(fault, *it.sptep, it.level); 3213 3214 base_gfn = gfn_round_for_level(fault->gfn, it.level); 3215 if (it.level == fault->goal_level) 3216 break; 3217 3218 sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, true, ACC_ALL); 3219 if (sp == ERR_PTR(-EEXIST)) 3220 continue; 3221 3222 link_shadow_page(vcpu, it.sptep, sp); 3223 if (fault->huge_page_disallowed) 3224 account_nx_huge_page(vcpu->kvm, sp, 3225 fault->req_level >= it.level); 3226 } 3227 3228 if (WARN_ON_ONCE(it.level != fault->goal_level)) 3229 return -EFAULT; 3230 3231 ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL, 3232 base_gfn, fault->pfn, fault); 3233 if (ret == RET_PF_SPURIOUS) 3234 return ret; 3235 3236 direct_pte_prefetch(vcpu, it.sptep); 3237 return ret; 3238 } 3239 3240 static void kvm_send_hwpoison_signal(struct kvm_memory_slot *slot, gfn_t gfn) 3241 { 3242 unsigned long hva = gfn_to_hva_memslot(slot, gfn); 3243 3244 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva, PAGE_SHIFT, current); 3245 } 3246 3247 static int kvm_handle_error_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3248 { 3249 if (is_sigpending_pfn(fault->pfn)) { 3250 kvm_handle_signal_exit(vcpu); 3251 return -EINTR; 3252 } 3253 3254 /* 3255 * Do not cache the mmio info caused by writing the readonly gfn 3256 * into the spte otherwise read access on readonly gfn also can 3257 * caused mmio page fault and treat it as mmio access. 3258 */ 3259 if (fault->pfn == KVM_PFN_ERR_RO_FAULT) 3260 return RET_PF_EMULATE; 3261 3262 if (fault->pfn == KVM_PFN_ERR_HWPOISON) { 3263 kvm_send_hwpoison_signal(fault->slot, fault->gfn); 3264 return RET_PF_RETRY; 3265 } 3266 3267 return -EFAULT; 3268 } 3269 3270 static int kvm_handle_noslot_fault(struct kvm_vcpu *vcpu, 3271 struct kvm_page_fault *fault, 3272 unsigned int access) 3273 { 3274 gva_t gva = fault->is_tdp ? 0 : fault->addr; 3275 3276 if (fault->is_private) { 3277 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 3278 return -EFAULT; 3279 } 3280 3281 vcpu_cache_mmio_info(vcpu, gva, fault->gfn, 3282 access & shadow_mmio_access_mask); 3283 3284 fault->slot = NULL; 3285 fault->pfn = KVM_PFN_NOSLOT; 3286 fault->map_writable = false; 3287 fault->hva = KVM_HVA_ERR_BAD; 3288 3289 /* 3290 * If MMIO caching is disabled, emulate immediately without 3291 * touching the shadow page tables as attempting to install an 3292 * MMIO SPTE will just be an expensive nop. 3293 */ 3294 if (unlikely(!enable_mmio_caching)) 3295 return RET_PF_EMULATE; 3296 3297 /* 3298 * Do not create an MMIO SPTE for a gfn greater than host.MAXPHYADDR, 3299 * any guest that generates such gfns is running nested and is being 3300 * tricked by L0 userspace (you can observe gfn > L1.MAXPHYADDR if and 3301 * only if L1's MAXPHYADDR is inaccurate with respect to the 3302 * hardware's). 3303 */ 3304 if (unlikely(fault->gfn > kvm_mmu_max_gfn())) 3305 return RET_PF_EMULATE; 3306 3307 return RET_PF_CONTINUE; 3308 } 3309 3310 static bool page_fault_can_be_fast(struct kvm *kvm, struct kvm_page_fault *fault) 3311 { 3312 /* 3313 * Page faults with reserved bits set, i.e. faults on MMIO SPTEs, only 3314 * reach the common page fault handler if the SPTE has an invalid MMIO 3315 * generation number. Refreshing the MMIO generation needs to go down 3316 * the slow path. Note, EPT Misconfigs do NOT set the PRESENT flag! 3317 */ 3318 if (fault->rsvd) 3319 return false; 3320 3321 /* 3322 * For hardware-protected VMs, certain conditions like attempting to 3323 * perform a write to a page which is not in the state that the guest 3324 * expects it to be in can result in a nested/extended #PF. In this 3325 * case, the below code might misconstrue this situation as being the 3326 * result of a write-protected access, and treat it as a spurious case 3327 * rather than taking any action to satisfy the real source of the #PF 3328 * such as generating a KVM_EXIT_MEMORY_FAULT. This can lead to the 3329 * guest spinning on a #PF indefinitely, so don't attempt the fast path 3330 * in this case. 3331 * 3332 * Note that the kvm_mem_is_private() check might race with an 3333 * attribute update, but this will either result in the guest spinning 3334 * on RET_PF_SPURIOUS until the update completes, or an actual spurious 3335 * case might go down the slow path. Either case will resolve itself. 3336 */ 3337 if (kvm->arch.has_private_mem && 3338 fault->is_private != kvm_mem_is_private(kvm, fault->gfn)) 3339 return false; 3340 3341 /* 3342 * #PF can be fast if: 3343 * 3344 * 1. The shadow page table entry is not present and A/D bits are 3345 * disabled _by KVM_, which could mean that the fault is potentially 3346 * caused by access tracking (if enabled). If A/D bits are enabled 3347 * by KVM, but disabled by L1 for L2, KVM is forced to disable A/D 3348 * bits for L2 and employ access tracking, but the fast page fault 3349 * mechanism only supports direct MMUs. 3350 * 2. The shadow page table entry is present, the access is a write, 3351 * and no reserved bits are set (MMIO SPTEs cannot be "fixed"), i.e. 3352 * the fault was caused by a write-protection violation. If the 3353 * SPTE is MMU-writable (determined later), the fault can be fixed 3354 * by setting the Writable bit, which can be done out of mmu_lock. 3355 */ 3356 if (!fault->present) 3357 return !kvm_ad_enabled(); 3358 3359 /* 3360 * Note, instruction fetches and writes are mutually exclusive, ignore 3361 * the "exec" flag. 3362 */ 3363 return fault->write; 3364 } 3365 3366 /* 3367 * Returns true if the SPTE was fixed successfully. Otherwise, 3368 * someone else modified the SPTE from its original value. 3369 */ 3370 static bool fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, 3371 struct kvm_page_fault *fault, 3372 u64 *sptep, u64 old_spte, u64 new_spte) 3373 { 3374 /* 3375 * Theoretically we could also set dirty bit (and flush TLB) here in 3376 * order to eliminate unnecessary PML logging. See comments in 3377 * set_spte. But fast_page_fault is very unlikely to happen with PML 3378 * enabled, so we do not do this. This might result in the same GPA 3379 * to be logged in PML buffer again when the write really happens, and 3380 * eventually to be called by mark_page_dirty twice. But it's also no 3381 * harm. This also avoids the TLB flush needed after setting dirty bit 3382 * so non-PML cases won't be impacted. 3383 * 3384 * Compare with set_spte where instead shadow_dirty_mask is set. 3385 */ 3386 if (!try_cmpxchg64(sptep, &old_spte, new_spte)) 3387 return false; 3388 3389 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) 3390 mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn); 3391 3392 return true; 3393 } 3394 3395 static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte) 3396 { 3397 if (fault->exec) 3398 return is_executable_pte(spte); 3399 3400 if (fault->write) 3401 return is_writable_pte(spte); 3402 3403 /* Fault was on Read access */ 3404 return spte & PT_PRESENT_MASK; 3405 } 3406 3407 /* 3408 * Returns the last level spte pointer of the shadow page walk for the given 3409 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no 3410 * walk could be performed, returns NULL and *spte does not contain valid data. 3411 * 3412 * Contract: 3413 * - Must be called between walk_shadow_page_lockless_{begin,end}. 3414 * - The returned sptep must not be used after walk_shadow_page_lockless_end. 3415 */ 3416 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte) 3417 { 3418 struct kvm_shadow_walk_iterator iterator; 3419 u64 old_spte; 3420 u64 *sptep = NULL; 3421 3422 for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) { 3423 sptep = iterator.sptep; 3424 *spte = old_spte; 3425 } 3426 3427 return sptep; 3428 } 3429 3430 /* 3431 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS. 3432 */ 3433 static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3434 { 3435 struct kvm_mmu_page *sp; 3436 int ret = RET_PF_INVALID; 3437 u64 spte; 3438 u64 *sptep; 3439 uint retry_count = 0; 3440 3441 if (!page_fault_can_be_fast(vcpu->kvm, fault)) 3442 return ret; 3443 3444 walk_shadow_page_lockless_begin(vcpu); 3445 3446 do { 3447 u64 new_spte; 3448 3449 if (tdp_mmu_enabled) 3450 sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->gfn, &spte); 3451 else 3452 sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte); 3453 3454 /* 3455 * It's entirely possible for the mapping to have been zapped 3456 * by a different task, but the root page should always be 3457 * available as the vCPU holds a reference to its root(s). 3458 */ 3459 if (WARN_ON_ONCE(!sptep)) 3460 spte = FROZEN_SPTE; 3461 3462 if (!is_shadow_present_pte(spte)) 3463 break; 3464 3465 sp = sptep_to_sp(sptep); 3466 if (!is_last_spte(spte, sp->role.level)) 3467 break; 3468 3469 /* 3470 * Check whether the memory access that caused the fault would 3471 * still cause it if it were to be performed right now. If not, 3472 * then this is a spurious fault caused by TLB lazily flushed, 3473 * or some other CPU has already fixed the PTE after the 3474 * current CPU took the fault. 3475 * 3476 * Need not check the access of upper level table entries since 3477 * they are always ACC_ALL. 3478 */ 3479 if (is_access_allowed(fault, spte)) { 3480 ret = RET_PF_SPURIOUS; 3481 break; 3482 } 3483 3484 new_spte = spte; 3485 3486 /* 3487 * KVM only supports fixing page faults outside of MMU lock for 3488 * direct MMUs, nested MMUs are always indirect, and KVM always 3489 * uses A/D bits for non-nested MMUs. Thus, if A/D bits are 3490 * enabled, the SPTE can't be an access-tracked SPTE. 3491 */ 3492 if (unlikely(!kvm_ad_enabled()) && is_access_track_spte(spte)) 3493 new_spte = restore_acc_track_spte(new_spte); 3494 3495 /* 3496 * To keep things simple, only SPTEs that are MMU-writable can 3497 * be made fully writable outside of mmu_lock, e.g. only SPTEs 3498 * that were write-protected for dirty-logging or access 3499 * tracking are handled here. Don't bother checking if the 3500 * SPTE is writable to prioritize running with A/D bits enabled. 3501 * The is_access_allowed() check above handles the common case 3502 * of the fault being spurious, and the SPTE is known to be 3503 * shadow-present, i.e. except for access tracking restoration 3504 * making the new SPTE writable, the check is wasteful. 3505 */ 3506 if (fault->write && is_mmu_writable_spte(spte)) { 3507 new_spte |= PT_WRITABLE_MASK; 3508 3509 /* 3510 * Do not fix write-permission on the large spte when 3511 * dirty logging is enabled. Since we only dirty the 3512 * first page into the dirty-bitmap in 3513 * fast_pf_fix_direct_spte(), other pages are missed 3514 * if its slot has dirty logging enabled. 3515 * 3516 * Instead, we let the slow page fault path create a 3517 * normal spte to fix the access. 3518 */ 3519 if (sp->role.level > PG_LEVEL_4K && 3520 kvm_slot_dirty_track_enabled(fault->slot)) 3521 break; 3522 } 3523 3524 /* Verify that the fault can be handled in the fast path */ 3525 if (new_spte == spte || 3526 !is_access_allowed(fault, new_spte)) 3527 break; 3528 3529 /* 3530 * Currently, fast page fault only works for direct mapping 3531 * since the gfn is not stable for indirect shadow page. See 3532 * Documentation/virt/kvm/locking.rst to get more detail. 3533 */ 3534 if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) { 3535 ret = RET_PF_FIXED; 3536 break; 3537 } 3538 3539 if (++retry_count > 4) { 3540 pr_warn_once("Fast #PF retrying more than 4 times.\n"); 3541 break; 3542 } 3543 3544 } while (true); 3545 3546 trace_fast_page_fault(vcpu, fault, sptep, spte, ret); 3547 walk_shadow_page_lockless_end(vcpu); 3548 3549 if (ret != RET_PF_INVALID) 3550 vcpu->stat.pf_fast++; 3551 3552 return ret; 3553 } 3554 3555 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa, 3556 struct list_head *invalid_list) 3557 { 3558 struct kvm_mmu_page *sp; 3559 3560 if (!VALID_PAGE(*root_hpa)) 3561 return; 3562 3563 sp = root_to_sp(*root_hpa); 3564 if (WARN_ON_ONCE(!sp)) 3565 return; 3566 3567 if (is_tdp_mmu_page(sp)) { 3568 lockdep_assert_held_read(&kvm->mmu_lock); 3569 kvm_tdp_mmu_put_root(kvm, sp); 3570 } else { 3571 lockdep_assert_held_write(&kvm->mmu_lock); 3572 if (!--sp->root_count && sp->role.invalid) 3573 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 3574 } 3575 3576 *root_hpa = INVALID_PAGE; 3577 } 3578 3579 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */ 3580 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, 3581 ulong roots_to_free) 3582 { 3583 bool is_tdp_mmu = tdp_mmu_enabled && mmu->root_role.direct; 3584 int i; 3585 LIST_HEAD(invalid_list); 3586 bool free_active_root; 3587 3588 WARN_ON_ONCE(roots_to_free & ~KVM_MMU_ROOTS_ALL); 3589 3590 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG); 3591 3592 /* Before acquiring the MMU lock, see if we need to do any real work. */ 3593 free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT) 3594 && VALID_PAGE(mmu->root.hpa); 3595 3596 if (!free_active_root) { 3597 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3598 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) && 3599 VALID_PAGE(mmu->prev_roots[i].hpa)) 3600 break; 3601 3602 if (i == KVM_MMU_NUM_PREV_ROOTS) 3603 return; 3604 } 3605 3606 if (is_tdp_mmu) 3607 read_lock(&kvm->mmu_lock); 3608 else 3609 write_lock(&kvm->mmu_lock); 3610 3611 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3612 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) 3613 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa, 3614 &invalid_list); 3615 3616 if (free_active_root) { 3617 if (kvm_mmu_is_dummy_root(mmu->root.hpa)) { 3618 /* Nothing to cleanup for dummy roots. */ 3619 } else if (root_to_sp(mmu->root.hpa)) { 3620 mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list); 3621 } else if (mmu->pae_root) { 3622 for (i = 0; i < 4; ++i) { 3623 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i])) 3624 continue; 3625 3626 mmu_free_root_page(kvm, &mmu->pae_root[i], 3627 &invalid_list); 3628 mmu->pae_root[i] = INVALID_PAE_ROOT; 3629 } 3630 } 3631 mmu->root.hpa = INVALID_PAGE; 3632 mmu->root.pgd = 0; 3633 } 3634 3635 if (is_tdp_mmu) { 3636 read_unlock(&kvm->mmu_lock); 3637 WARN_ON_ONCE(!list_empty(&invalid_list)); 3638 } else { 3639 kvm_mmu_commit_zap_page(kvm, &invalid_list); 3640 write_unlock(&kvm->mmu_lock); 3641 } 3642 } 3643 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots); 3644 3645 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu) 3646 { 3647 unsigned long roots_to_free = 0; 3648 struct kvm_mmu_page *sp; 3649 hpa_t root_hpa; 3650 int i; 3651 3652 /* 3653 * This should not be called while L2 is active, L2 can't invalidate 3654 * _only_ its own roots, e.g. INVVPID unconditionally exits. 3655 */ 3656 WARN_ON_ONCE(mmu->root_role.guest_mode); 3657 3658 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 3659 root_hpa = mmu->prev_roots[i].hpa; 3660 if (!VALID_PAGE(root_hpa)) 3661 continue; 3662 3663 sp = root_to_sp(root_hpa); 3664 if (!sp || sp->role.guest_mode) 3665 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 3666 } 3667 3668 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 3669 } 3670 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots); 3671 3672 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, int quadrant, 3673 u8 level) 3674 { 3675 union kvm_mmu_page_role role = vcpu->arch.mmu->root_role; 3676 struct kvm_mmu_page *sp; 3677 3678 role.level = level; 3679 role.quadrant = quadrant; 3680 3681 WARN_ON_ONCE(quadrant && !role.has_4_byte_gpte); 3682 WARN_ON_ONCE(role.direct && role.has_4_byte_gpte); 3683 3684 sp = kvm_mmu_get_shadow_page(vcpu, gfn, role); 3685 ++sp->root_count; 3686 3687 return __pa(sp->spt); 3688 } 3689 3690 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) 3691 { 3692 struct kvm_mmu *mmu = vcpu->arch.mmu; 3693 u8 shadow_root_level = mmu->root_role.level; 3694 hpa_t root; 3695 unsigned i; 3696 int r; 3697 3698 if (tdp_mmu_enabled) 3699 return kvm_tdp_mmu_alloc_root(vcpu); 3700 3701 write_lock(&vcpu->kvm->mmu_lock); 3702 r = make_mmu_pages_available(vcpu); 3703 if (r < 0) 3704 goto out_unlock; 3705 3706 if (shadow_root_level >= PT64_ROOT_4LEVEL) { 3707 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level); 3708 mmu->root.hpa = root; 3709 } else if (shadow_root_level == PT32E_ROOT_LEVEL) { 3710 if (WARN_ON_ONCE(!mmu->pae_root)) { 3711 r = -EIO; 3712 goto out_unlock; 3713 } 3714 3715 for (i = 0; i < 4; ++i) { 3716 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3717 3718 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 0, 3719 PT32_ROOT_LEVEL); 3720 mmu->pae_root[i] = root | PT_PRESENT_MASK | 3721 shadow_me_value; 3722 } 3723 mmu->root.hpa = __pa(mmu->pae_root); 3724 } else { 3725 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level); 3726 r = -EIO; 3727 goto out_unlock; 3728 } 3729 3730 /* root.pgd is ignored for direct MMUs. */ 3731 mmu->root.pgd = 0; 3732 out_unlock: 3733 write_unlock(&vcpu->kvm->mmu_lock); 3734 return r; 3735 } 3736 3737 static int mmu_first_shadow_root_alloc(struct kvm *kvm) 3738 { 3739 struct kvm_memslots *slots; 3740 struct kvm_memory_slot *slot; 3741 int r = 0, i, bkt; 3742 3743 /* 3744 * Check if this is the first shadow root being allocated before 3745 * taking the lock. 3746 */ 3747 if (kvm_shadow_root_allocated(kvm)) 3748 return 0; 3749 3750 mutex_lock(&kvm->slots_arch_lock); 3751 3752 /* Recheck, under the lock, whether this is the first shadow root. */ 3753 if (kvm_shadow_root_allocated(kvm)) 3754 goto out_unlock; 3755 3756 /* 3757 * Check if anything actually needs to be allocated, e.g. all metadata 3758 * will be allocated upfront if TDP is disabled. 3759 */ 3760 if (kvm_memslots_have_rmaps(kvm) && 3761 kvm_page_track_write_tracking_enabled(kvm)) 3762 goto out_success; 3763 3764 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 3765 slots = __kvm_memslots(kvm, i); 3766 kvm_for_each_memslot(slot, bkt, slots) { 3767 /* 3768 * Both of these functions are no-ops if the target is 3769 * already allocated, so unconditionally calling both 3770 * is safe. Intentionally do NOT free allocations on 3771 * failure to avoid having to track which allocations 3772 * were made now versus when the memslot was created. 3773 * The metadata is guaranteed to be freed when the slot 3774 * is freed, and will be kept/used if userspace retries 3775 * KVM_RUN instead of killing the VM. 3776 */ 3777 r = memslot_rmap_alloc(slot, slot->npages); 3778 if (r) 3779 goto out_unlock; 3780 r = kvm_page_track_write_tracking_alloc(slot); 3781 if (r) 3782 goto out_unlock; 3783 } 3784 } 3785 3786 /* 3787 * Ensure that shadow_root_allocated becomes true strictly after 3788 * all the related pointers are set. 3789 */ 3790 out_success: 3791 smp_store_release(&kvm->arch.shadow_root_allocated, true); 3792 3793 out_unlock: 3794 mutex_unlock(&kvm->slots_arch_lock); 3795 return r; 3796 } 3797 3798 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) 3799 { 3800 struct kvm_mmu *mmu = vcpu->arch.mmu; 3801 u64 pdptrs[4], pm_mask; 3802 gfn_t root_gfn, root_pgd; 3803 int quadrant, i, r; 3804 hpa_t root; 3805 3806 root_pgd = kvm_mmu_get_guest_pgd(vcpu, mmu); 3807 root_gfn = (root_pgd & __PT_BASE_ADDR_MASK) >> PAGE_SHIFT; 3808 3809 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) { 3810 mmu->root.hpa = kvm_mmu_get_dummy_root(); 3811 return 0; 3812 } 3813 3814 /* 3815 * On SVM, reading PDPTRs might access guest memory, which might fault 3816 * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock. 3817 */ 3818 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { 3819 for (i = 0; i < 4; ++i) { 3820 pdptrs[i] = mmu->get_pdptr(vcpu, i); 3821 if (!(pdptrs[i] & PT_PRESENT_MASK)) 3822 continue; 3823 3824 if (!kvm_vcpu_is_visible_gfn(vcpu, pdptrs[i] >> PAGE_SHIFT)) 3825 pdptrs[i] = 0; 3826 } 3827 } 3828 3829 r = mmu_first_shadow_root_alloc(vcpu->kvm); 3830 if (r) 3831 return r; 3832 3833 write_lock(&vcpu->kvm->mmu_lock); 3834 r = make_mmu_pages_available(vcpu); 3835 if (r < 0) 3836 goto out_unlock; 3837 3838 /* 3839 * Do we shadow a long mode page table? If so we need to 3840 * write-protect the guests page table root. 3841 */ 3842 if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { 3843 root = mmu_alloc_root(vcpu, root_gfn, 0, 3844 mmu->root_role.level); 3845 mmu->root.hpa = root; 3846 goto set_root_pgd; 3847 } 3848 3849 if (WARN_ON_ONCE(!mmu->pae_root)) { 3850 r = -EIO; 3851 goto out_unlock; 3852 } 3853 3854 /* 3855 * We shadow a 32 bit page table. This may be a legacy 2-level 3856 * or a PAE 3-level page table. In either case we need to be aware that 3857 * the shadow page table may be a PAE or a long mode page table. 3858 */ 3859 pm_mask = PT_PRESENT_MASK | shadow_me_value; 3860 if (mmu->root_role.level >= PT64_ROOT_4LEVEL) { 3861 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; 3862 3863 if (WARN_ON_ONCE(!mmu->pml4_root)) { 3864 r = -EIO; 3865 goto out_unlock; 3866 } 3867 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask; 3868 3869 if (mmu->root_role.level == PT64_ROOT_5LEVEL) { 3870 if (WARN_ON_ONCE(!mmu->pml5_root)) { 3871 r = -EIO; 3872 goto out_unlock; 3873 } 3874 mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask; 3875 } 3876 } 3877 3878 for (i = 0; i < 4; ++i) { 3879 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3880 3881 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { 3882 if (!(pdptrs[i] & PT_PRESENT_MASK)) { 3883 mmu->pae_root[i] = INVALID_PAE_ROOT; 3884 continue; 3885 } 3886 root_gfn = pdptrs[i] >> PAGE_SHIFT; 3887 } 3888 3889 /* 3890 * If shadowing 32-bit non-PAE page tables, each PAE page 3891 * directory maps one quarter of the guest's non-PAE page 3892 * directory. Othwerise each PAE page direct shadows one guest 3893 * PAE page directory so that quadrant should be 0. 3894 */ 3895 quadrant = (mmu->cpu_role.base.level == PT32_ROOT_LEVEL) ? i : 0; 3896 3897 root = mmu_alloc_root(vcpu, root_gfn, quadrant, PT32_ROOT_LEVEL); 3898 mmu->pae_root[i] = root | pm_mask; 3899 } 3900 3901 if (mmu->root_role.level == PT64_ROOT_5LEVEL) 3902 mmu->root.hpa = __pa(mmu->pml5_root); 3903 else if (mmu->root_role.level == PT64_ROOT_4LEVEL) 3904 mmu->root.hpa = __pa(mmu->pml4_root); 3905 else 3906 mmu->root.hpa = __pa(mmu->pae_root); 3907 3908 set_root_pgd: 3909 mmu->root.pgd = root_pgd; 3910 out_unlock: 3911 write_unlock(&vcpu->kvm->mmu_lock); 3912 3913 return r; 3914 } 3915 3916 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu) 3917 { 3918 struct kvm_mmu *mmu = vcpu->arch.mmu; 3919 bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL; 3920 u64 *pml5_root = NULL; 3921 u64 *pml4_root = NULL; 3922 u64 *pae_root; 3923 3924 /* 3925 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP 3926 * tables are allocated and initialized at root creation as there is no 3927 * equivalent level in the guest's NPT to shadow. Allocate the tables 3928 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare. 3929 */ 3930 if (mmu->root_role.direct || 3931 mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL || 3932 mmu->root_role.level < PT64_ROOT_4LEVEL) 3933 return 0; 3934 3935 /* 3936 * NPT, the only paging mode that uses this horror, uses a fixed number 3937 * of levels for the shadow page tables, e.g. all MMUs are 4-level or 3938 * all MMus are 5-level. Thus, this can safely require that pml5_root 3939 * is allocated if the other roots are valid and pml5 is needed, as any 3940 * prior MMU would also have required pml5. 3941 */ 3942 if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root)) 3943 return 0; 3944 3945 /* 3946 * The special roots should always be allocated in concert. Yell and 3947 * bail if KVM ends up in a state where only one of the roots is valid. 3948 */ 3949 if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root || 3950 (need_pml5 && mmu->pml5_root))) 3951 return -EIO; 3952 3953 /* 3954 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and 3955 * doesn't need to be decrypted. 3956 */ 3957 pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3958 if (!pae_root) 3959 return -ENOMEM; 3960 3961 #ifdef CONFIG_X86_64 3962 pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3963 if (!pml4_root) 3964 goto err_pml4; 3965 3966 if (need_pml5) { 3967 pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3968 if (!pml5_root) 3969 goto err_pml5; 3970 } 3971 #endif 3972 3973 mmu->pae_root = pae_root; 3974 mmu->pml4_root = pml4_root; 3975 mmu->pml5_root = pml5_root; 3976 3977 return 0; 3978 3979 #ifdef CONFIG_X86_64 3980 err_pml5: 3981 free_page((unsigned long)pml4_root); 3982 err_pml4: 3983 free_page((unsigned long)pae_root); 3984 return -ENOMEM; 3985 #endif 3986 } 3987 3988 static bool is_unsync_root(hpa_t root) 3989 { 3990 struct kvm_mmu_page *sp; 3991 3992 if (!VALID_PAGE(root) || kvm_mmu_is_dummy_root(root)) 3993 return false; 3994 3995 /* 3996 * The read barrier orders the CPU's read of SPTE.W during the page table 3997 * walk before the reads of sp->unsync/sp->unsync_children here. 3998 * 3999 * Even if another CPU was marking the SP as unsync-ed simultaneously, 4000 * any guest page table changes are not guaranteed to be visible anyway 4001 * until this VCPU issues a TLB flush strictly after those changes are 4002 * made. We only need to ensure that the other CPU sets these flags 4003 * before any actual changes to the page tables are made. The comments 4004 * in mmu_try_to_unsync_pages() describe what could go wrong if this 4005 * requirement isn't satisfied. 4006 */ 4007 smp_rmb(); 4008 sp = root_to_sp(root); 4009 4010 /* 4011 * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the 4012 * PDPTEs for a given PAE root need to be synchronized individually. 4013 */ 4014 if (WARN_ON_ONCE(!sp)) 4015 return false; 4016 4017 if (sp->unsync || sp->unsync_children) 4018 return true; 4019 4020 return false; 4021 } 4022 4023 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) 4024 { 4025 int i; 4026 struct kvm_mmu_page *sp; 4027 4028 if (vcpu->arch.mmu->root_role.direct) 4029 return; 4030 4031 if (!VALID_PAGE(vcpu->arch.mmu->root.hpa)) 4032 return; 4033 4034 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 4035 4036 if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { 4037 hpa_t root = vcpu->arch.mmu->root.hpa; 4038 4039 if (!is_unsync_root(root)) 4040 return; 4041 4042 sp = root_to_sp(root); 4043 4044 write_lock(&vcpu->kvm->mmu_lock); 4045 mmu_sync_children(vcpu, sp, true); 4046 write_unlock(&vcpu->kvm->mmu_lock); 4047 return; 4048 } 4049 4050 write_lock(&vcpu->kvm->mmu_lock); 4051 4052 for (i = 0; i < 4; ++i) { 4053 hpa_t root = vcpu->arch.mmu->pae_root[i]; 4054 4055 if (IS_VALID_PAE_ROOT(root)) { 4056 sp = spte_to_child_sp(root); 4057 mmu_sync_children(vcpu, sp, true); 4058 } 4059 } 4060 4061 write_unlock(&vcpu->kvm->mmu_lock); 4062 } 4063 4064 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu) 4065 { 4066 unsigned long roots_to_free = 0; 4067 int i; 4068 4069 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 4070 if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa)) 4071 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 4072 4073 /* sync prev_roots by simply freeing them */ 4074 kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free); 4075 } 4076 4077 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 4078 gpa_t vaddr, u64 access, 4079 struct x86_exception *exception) 4080 { 4081 if (exception) 4082 exception->error_code = 0; 4083 return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception); 4084 } 4085 4086 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct) 4087 { 4088 /* 4089 * A nested guest cannot use the MMIO cache if it is using nested 4090 * page tables, because cr2 is a nGPA while the cache stores GPAs. 4091 */ 4092 if (mmu_is_nested(vcpu)) 4093 return false; 4094 4095 if (direct) 4096 return vcpu_match_mmio_gpa(vcpu, addr); 4097 4098 return vcpu_match_mmio_gva(vcpu, addr); 4099 } 4100 4101 /* 4102 * Return the level of the lowest level SPTE added to sptes. 4103 * That SPTE may be non-present. 4104 * 4105 * Must be called between walk_shadow_page_lockless_{begin,end}. 4106 */ 4107 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level) 4108 { 4109 struct kvm_shadow_walk_iterator iterator; 4110 int leaf = -1; 4111 u64 spte; 4112 4113 for (shadow_walk_init(&iterator, vcpu, addr), 4114 *root_level = iterator.level; 4115 shadow_walk_okay(&iterator); 4116 __shadow_walk_next(&iterator, spte)) { 4117 leaf = iterator.level; 4118 spte = mmu_spte_get_lockless(iterator.sptep); 4119 4120 sptes[leaf] = spte; 4121 } 4122 4123 return leaf; 4124 } 4125 4126 static int get_sptes_lockless(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, 4127 int *root_level) 4128 { 4129 int leaf; 4130 4131 walk_shadow_page_lockless_begin(vcpu); 4132 4133 if (is_tdp_mmu_active(vcpu)) 4134 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, root_level); 4135 else 4136 leaf = get_walk(vcpu, addr, sptes, root_level); 4137 4138 walk_shadow_page_lockless_end(vcpu); 4139 return leaf; 4140 } 4141 4142 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */ 4143 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) 4144 { 4145 u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; 4146 struct rsvd_bits_validate *rsvd_check; 4147 int root, leaf, level; 4148 bool reserved = false; 4149 4150 leaf = get_sptes_lockless(vcpu, addr, sptes, &root); 4151 if (unlikely(leaf < 0)) { 4152 *sptep = 0ull; 4153 return reserved; 4154 } 4155 4156 *sptep = sptes[leaf]; 4157 4158 /* 4159 * Skip reserved bits checks on the terminal leaf if it's not a valid 4160 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by 4161 * design, always have reserved bits set. The purpose of the checks is 4162 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs. 4163 */ 4164 if (!is_shadow_present_pte(sptes[leaf])) 4165 leaf++; 4166 4167 rsvd_check = &vcpu->arch.mmu->shadow_zero_check; 4168 4169 for (level = root; level >= leaf; level--) 4170 reserved |= is_rsvd_spte(rsvd_check, sptes[level], level); 4171 4172 if (reserved) { 4173 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n", 4174 __func__, addr); 4175 for (level = root; level >= leaf; level--) 4176 pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx", 4177 sptes[level], level, 4178 get_rsvd_bits(rsvd_check, sptes[level], level)); 4179 } 4180 4181 return reserved; 4182 } 4183 4184 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct) 4185 { 4186 u64 spte; 4187 bool reserved; 4188 4189 if (mmio_info_in_cache(vcpu, addr, direct)) 4190 return RET_PF_EMULATE; 4191 4192 reserved = get_mmio_spte(vcpu, addr, &spte); 4193 if (WARN_ON_ONCE(reserved)) 4194 return -EINVAL; 4195 4196 if (is_mmio_spte(vcpu->kvm, spte)) { 4197 gfn_t gfn = get_mmio_spte_gfn(spte); 4198 unsigned int access = get_mmio_spte_access(spte); 4199 4200 if (!check_mmio_spte(vcpu, spte)) 4201 return RET_PF_INVALID; 4202 4203 if (direct) 4204 addr = 0; 4205 4206 trace_handle_mmio_page_fault(addr, gfn, access); 4207 vcpu_cache_mmio_info(vcpu, addr, gfn, access); 4208 return RET_PF_EMULATE; 4209 } 4210 4211 /* 4212 * If the page table is zapped by other cpus, let CPU fault again on 4213 * the address. 4214 */ 4215 return RET_PF_RETRY; 4216 } 4217 4218 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu, 4219 struct kvm_page_fault *fault) 4220 { 4221 if (unlikely(fault->rsvd)) 4222 return false; 4223 4224 if (!fault->present || !fault->write) 4225 return false; 4226 4227 /* 4228 * guest is writing the page which is write tracked which can 4229 * not be fixed by page fault handler. 4230 */ 4231 if (kvm_gfn_is_write_tracked(vcpu->kvm, fault->slot, fault->gfn)) 4232 return true; 4233 4234 return false; 4235 } 4236 4237 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr) 4238 { 4239 struct kvm_shadow_walk_iterator iterator; 4240 u64 spte; 4241 4242 walk_shadow_page_lockless_begin(vcpu); 4243 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) 4244 clear_sp_write_flooding_count(iterator.sptep); 4245 walk_shadow_page_lockless_end(vcpu); 4246 } 4247 4248 static u32 alloc_apf_token(struct kvm_vcpu *vcpu) 4249 { 4250 /* make sure the token value is not 0 */ 4251 u32 id = vcpu->arch.apf.id; 4252 4253 if (id << 12 == 0) 4254 vcpu->arch.apf.id = 1; 4255 4256 return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; 4257 } 4258 4259 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, 4260 struct kvm_page_fault *fault) 4261 { 4262 struct kvm_arch_async_pf arch; 4263 4264 arch.token = alloc_apf_token(vcpu); 4265 arch.gfn = fault->gfn; 4266 arch.error_code = fault->error_code; 4267 arch.direct_map = vcpu->arch.mmu->root_role.direct; 4268 arch.cr3 = kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu); 4269 4270 return kvm_setup_async_pf(vcpu, fault->addr, 4271 kvm_vcpu_gfn_to_hva(vcpu, fault->gfn), &arch); 4272 } 4273 4274 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 4275 { 4276 int r; 4277 4278 if (WARN_ON_ONCE(work->arch.error_code & PFERR_PRIVATE_ACCESS)) 4279 return; 4280 4281 if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) || 4282 work->wakeup_all) 4283 return; 4284 4285 r = kvm_mmu_reload(vcpu); 4286 if (unlikely(r)) 4287 return; 4288 4289 if (!vcpu->arch.mmu->root_role.direct && 4290 work->arch.cr3 != kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu)) 4291 return; 4292 4293 r = kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, work->arch.error_code, 4294 true, NULL, NULL); 4295 4296 /* 4297 * Account fixed page faults, otherwise they'll never be counted, but 4298 * ignore stats for all other return times. Page-ready "faults" aren't 4299 * truly spurious and never trigger emulation 4300 */ 4301 if (r == RET_PF_FIXED) 4302 vcpu->stat.pf_fixed++; 4303 } 4304 4305 static inline u8 kvm_max_level_for_order(int order) 4306 { 4307 BUILD_BUG_ON(KVM_MAX_HUGEPAGE_LEVEL > PG_LEVEL_1G); 4308 4309 KVM_MMU_WARN_ON(order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G) && 4310 order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M) && 4311 order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K)); 4312 4313 if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G)) 4314 return PG_LEVEL_1G; 4315 4316 if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M)) 4317 return PG_LEVEL_2M; 4318 4319 return PG_LEVEL_4K; 4320 } 4321 4322 static u8 kvm_max_private_mapping_level(struct kvm *kvm, kvm_pfn_t pfn, 4323 u8 max_level, int gmem_order) 4324 { 4325 u8 req_max_level; 4326 4327 if (max_level == PG_LEVEL_4K) 4328 return PG_LEVEL_4K; 4329 4330 max_level = min(kvm_max_level_for_order(gmem_order), max_level); 4331 if (max_level == PG_LEVEL_4K) 4332 return PG_LEVEL_4K; 4333 4334 req_max_level = kvm_x86_call(private_max_mapping_level)(kvm, pfn); 4335 if (req_max_level) 4336 max_level = min(max_level, req_max_level); 4337 4338 return max_level; 4339 } 4340 4341 static int kvm_faultin_pfn_private(struct kvm_vcpu *vcpu, 4342 struct kvm_page_fault *fault) 4343 { 4344 int max_order, r; 4345 4346 if (!kvm_slot_can_be_private(fault->slot)) { 4347 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 4348 return -EFAULT; 4349 } 4350 4351 r = kvm_gmem_get_pfn(vcpu->kvm, fault->slot, fault->gfn, &fault->pfn, 4352 &max_order); 4353 if (r) { 4354 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 4355 return r; 4356 } 4357 4358 fault->map_writable = !(fault->slot->flags & KVM_MEM_READONLY); 4359 fault->max_level = kvm_max_private_mapping_level(vcpu->kvm, fault->pfn, 4360 fault->max_level, max_order); 4361 4362 return RET_PF_CONTINUE; 4363 } 4364 4365 static int __kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4366 { 4367 bool async; 4368 4369 if (fault->is_private) 4370 return kvm_faultin_pfn_private(vcpu, fault); 4371 4372 async = false; 4373 fault->pfn = __gfn_to_pfn_memslot(fault->slot, fault->gfn, false, false, 4374 &async, fault->write, 4375 &fault->map_writable, &fault->hva); 4376 if (!async) 4377 return RET_PF_CONTINUE; /* *pfn has correct page already */ 4378 4379 if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) { 4380 trace_kvm_try_async_get_page(fault->addr, fault->gfn); 4381 if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) { 4382 trace_kvm_async_pf_repeated_fault(fault->addr, fault->gfn); 4383 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 4384 return RET_PF_RETRY; 4385 } else if (kvm_arch_setup_async_pf(vcpu, fault)) { 4386 return RET_PF_RETRY; 4387 } 4388 } 4389 4390 /* 4391 * Allow gup to bail on pending non-fatal signals when it's also allowed 4392 * to wait for IO. Note, gup always bails if it is unable to quickly 4393 * get a page and a fatal signal, i.e. SIGKILL, is pending. 4394 */ 4395 fault->pfn = __gfn_to_pfn_memslot(fault->slot, fault->gfn, false, true, 4396 NULL, fault->write, 4397 &fault->map_writable, &fault->hva); 4398 return RET_PF_CONTINUE; 4399 } 4400 4401 static int kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, 4402 unsigned int access) 4403 { 4404 struct kvm_memory_slot *slot = fault->slot; 4405 int ret; 4406 4407 /* 4408 * Note that the mmu_invalidate_seq also serves to detect a concurrent 4409 * change in attributes. is_page_fault_stale() will detect an 4410 * invalidation relate to fault->fn and resume the guest without 4411 * installing a mapping in the page tables. 4412 */ 4413 fault->mmu_seq = vcpu->kvm->mmu_invalidate_seq; 4414 smp_rmb(); 4415 4416 /* 4417 * Now that we have a snapshot of mmu_invalidate_seq we can check for a 4418 * private vs. shared mismatch. 4419 */ 4420 if (fault->is_private != kvm_mem_is_private(vcpu->kvm, fault->gfn)) { 4421 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 4422 return -EFAULT; 4423 } 4424 4425 if (unlikely(!slot)) 4426 return kvm_handle_noslot_fault(vcpu, fault, access); 4427 4428 /* 4429 * Retry the page fault if the gfn hit a memslot that is being deleted 4430 * or moved. This ensures any existing SPTEs for the old memslot will 4431 * be zapped before KVM inserts a new MMIO SPTE for the gfn. 4432 */ 4433 if (slot->flags & KVM_MEMSLOT_INVALID) 4434 return RET_PF_RETRY; 4435 4436 if (slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT) { 4437 /* 4438 * Don't map L1's APIC access page into L2, KVM doesn't support 4439 * using APICv/AVIC to accelerate L2 accesses to L1's APIC, 4440 * i.e. the access needs to be emulated. Emulating access to 4441 * L1's APIC is also correct if L1 is accelerating L2's own 4442 * virtual APIC, but for some reason L1 also maps _L1's_ APIC 4443 * into L2. Note, vcpu_is_mmio_gpa() always treats access to 4444 * the APIC as MMIO. Allow an MMIO SPTE to be created, as KVM 4445 * uses different roots for L1 vs. L2, i.e. there is no danger 4446 * of breaking APICv/AVIC for L1. 4447 */ 4448 if (is_guest_mode(vcpu)) 4449 return kvm_handle_noslot_fault(vcpu, fault, access); 4450 4451 /* 4452 * If the APIC access page exists but is disabled, go directly 4453 * to emulation without caching the MMIO access or creating a 4454 * MMIO SPTE. That way the cache doesn't need to be purged 4455 * when the AVIC is re-enabled. 4456 */ 4457 if (!kvm_apicv_activated(vcpu->kvm)) 4458 return RET_PF_EMULATE; 4459 } 4460 4461 /* 4462 * Check for a relevant mmu_notifier invalidation event before getting 4463 * the pfn from the primary MMU, and before acquiring mmu_lock. 4464 * 4465 * For mmu_lock, if there is an in-progress invalidation and the kernel 4466 * allows preemption, the invalidation task may drop mmu_lock and yield 4467 * in response to mmu_lock being contended, which is *very* counter- 4468 * productive as this vCPU can't actually make forward progress until 4469 * the invalidation completes. 4470 * 4471 * Retrying now can also avoid unnessary lock contention in the primary 4472 * MMU, as the primary MMU doesn't necessarily hold a single lock for 4473 * the duration of the invalidation, i.e. faulting in a conflicting pfn 4474 * can cause the invalidation to take longer by holding locks that are 4475 * needed to complete the invalidation. 4476 * 4477 * Do the pre-check even for non-preemtible kernels, i.e. even if KVM 4478 * will never yield mmu_lock in response to contention, as this vCPU is 4479 * *guaranteed* to need to retry, i.e. waiting until mmu_lock is held 4480 * to detect retry guarantees the worst case latency for the vCPU. 4481 */ 4482 if (mmu_invalidate_retry_gfn_unsafe(vcpu->kvm, fault->mmu_seq, fault->gfn)) 4483 return RET_PF_RETRY; 4484 4485 ret = __kvm_faultin_pfn(vcpu, fault); 4486 if (ret != RET_PF_CONTINUE) 4487 return ret; 4488 4489 if (unlikely(is_error_pfn(fault->pfn))) 4490 return kvm_handle_error_pfn(vcpu, fault); 4491 4492 if (WARN_ON_ONCE(!fault->slot || is_noslot_pfn(fault->pfn))) 4493 return kvm_handle_noslot_fault(vcpu, fault, access); 4494 4495 /* 4496 * Check again for a relevant mmu_notifier invalidation event purely to 4497 * avoid contending mmu_lock. Most invalidations will be detected by 4498 * the previous check, but checking is extremely cheap relative to the 4499 * overall cost of failing to detect the invalidation until after 4500 * mmu_lock is acquired. 4501 */ 4502 if (mmu_invalidate_retry_gfn_unsafe(vcpu->kvm, fault->mmu_seq, fault->gfn)) { 4503 kvm_release_pfn_clean(fault->pfn); 4504 return RET_PF_RETRY; 4505 } 4506 4507 return RET_PF_CONTINUE; 4508 } 4509 4510 /* 4511 * Returns true if the page fault is stale and needs to be retried, i.e. if the 4512 * root was invalidated by a memslot update or a relevant mmu_notifier fired. 4513 */ 4514 static bool is_page_fault_stale(struct kvm_vcpu *vcpu, 4515 struct kvm_page_fault *fault) 4516 { 4517 struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa); 4518 4519 /* Special roots, e.g. pae_root, are not backed by shadow pages. */ 4520 if (sp && is_obsolete_sp(vcpu->kvm, sp)) 4521 return true; 4522 4523 /* 4524 * Roots without an associated shadow page are considered invalid if 4525 * there is a pending request to free obsolete roots. The request is 4526 * only a hint that the current root _may_ be obsolete and needs to be 4527 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a 4528 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs 4529 * to reload even if no vCPU is actively using the root. 4530 */ 4531 if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 4532 return true; 4533 4534 /* 4535 * Check for a relevant mmu_notifier invalidation event one last time 4536 * now that mmu_lock is held, as the "unsafe" checks performed without 4537 * holding mmu_lock can get false negatives. 4538 */ 4539 return fault->slot && 4540 mmu_invalidate_retry_gfn(vcpu->kvm, fault->mmu_seq, fault->gfn); 4541 } 4542 4543 static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4544 { 4545 int r; 4546 4547 /* Dummy roots are used only for shadowing bad guest roots. */ 4548 if (WARN_ON_ONCE(kvm_mmu_is_dummy_root(vcpu->arch.mmu->root.hpa))) 4549 return RET_PF_RETRY; 4550 4551 if (page_fault_handle_page_track(vcpu, fault)) 4552 return RET_PF_EMULATE; 4553 4554 r = fast_page_fault(vcpu, fault); 4555 if (r != RET_PF_INVALID) 4556 return r; 4557 4558 r = mmu_topup_memory_caches(vcpu, false); 4559 if (r) 4560 return r; 4561 4562 r = kvm_faultin_pfn(vcpu, fault, ACC_ALL); 4563 if (r != RET_PF_CONTINUE) 4564 return r; 4565 4566 r = RET_PF_RETRY; 4567 write_lock(&vcpu->kvm->mmu_lock); 4568 4569 if (is_page_fault_stale(vcpu, fault)) 4570 goto out_unlock; 4571 4572 r = make_mmu_pages_available(vcpu); 4573 if (r) 4574 goto out_unlock; 4575 4576 r = direct_map(vcpu, fault); 4577 4578 out_unlock: 4579 write_unlock(&vcpu->kvm->mmu_lock); 4580 kvm_release_pfn_clean(fault->pfn); 4581 return r; 4582 } 4583 4584 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, 4585 struct kvm_page_fault *fault) 4586 { 4587 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */ 4588 fault->max_level = PG_LEVEL_2M; 4589 return direct_page_fault(vcpu, fault); 4590 } 4591 4592 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, 4593 u64 fault_address, char *insn, int insn_len) 4594 { 4595 int r = 1; 4596 u32 flags = vcpu->arch.apf.host_apf_flags; 4597 4598 #ifndef CONFIG_X86_64 4599 /* A 64-bit CR2 should be impossible on 32-bit KVM. */ 4600 if (WARN_ON_ONCE(fault_address >> 32)) 4601 return -EFAULT; 4602 #endif 4603 /* 4604 * Legacy #PF exception only have a 32-bit error code. Simply drop the 4605 * upper bits as KVM doesn't use them for #PF (because they are never 4606 * set), and to ensure there are no collisions with KVM-defined bits. 4607 */ 4608 if (WARN_ON_ONCE(error_code >> 32)) 4609 error_code = lower_32_bits(error_code); 4610 4611 /* 4612 * Restrict KVM-defined flags to bits 63:32 so that it's impossible for 4613 * them to conflict with #PF error codes, which are limited to 32 bits. 4614 */ 4615 BUILD_BUG_ON(lower_32_bits(PFERR_SYNTHETIC_MASK)); 4616 4617 vcpu->arch.l1tf_flush_l1d = true; 4618 if (!flags) { 4619 trace_kvm_page_fault(vcpu, fault_address, error_code); 4620 4621 if (kvm_event_needs_reinjection(vcpu)) 4622 kvm_mmu_unprotect_page_virt(vcpu, fault_address); 4623 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn, 4624 insn_len); 4625 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) { 4626 vcpu->arch.apf.host_apf_flags = 0; 4627 local_irq_disable(); 4628 kvm_async_pf_task_wait_schedule(fault_address); 4629 local_irq_enable(); 4630 } else { 4631 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags); 4632 } 4633 4634 return r; 4635 } 4636 EXPORT_SYMBOL_GPL(kvm_handle_page_fault); 4637 4638 #ifdef CONFIG_X86_64 4639 static int kvm_tdp_mmu_page_fault(struct kvm_vcpu *vcpu, 4640 struct kvm_page_fault *fault) 4641 { 4642 int r; 4643 4644 if (page_fault_handle_page_track(vcpu, fault)) 4645 return RET_PF_EMULATE; 4646 4647 r = fast_page_fault(vcpu, fault); 4648 if (r != RET_PF_INVALID) 4649 return r; 4650 4651 r = mmu_topup_memory_caches(vcpu, false); 4652 if (r) 4653 return r; 4654 4655 r = kvm_faultin_pfn(vcpu, fault, ACC_ALL); 4656 if (r != RET_PF_CONTINUE) 4657 return r; 4658 4659 r = RET_PF_RETRY; 4660 read_lock(&vcpu->kvm->mmu_lock); 4661 4662 if (is_page_fault_stale(vcpu, fault)) 4663 goto out_unlock; 4664 4665 r = kvm_tdp_mmu_map(vcpu, fault); 4666 4667 out_unlock: 4668 read_unlock(&vcpu->kvm->mmu_lock); 4669 kvm_release_pfn_clean(fault->pfn); 4670 return r; 4671 } 4672 #endif 4673 4674 bool kvm_mmu_may_ignore_guest_pat(void) 4675 { 4676 /* 4677 * When EPT is enabled (shadow_memtype_mask is non-zero), the CPU does 4678 * not support self-snoop (or is affected by an erratum), and the VM 4679 * has non-coherent DMA (DMA doesn't snoop CPU caches), KVM's ABI is to 4680 * honor the memtype from the guest's PAT so that guest accesses to 4681 * memory that is DMA'd aren't cached against the guest's wishes. As a 4682 * result, KVM _may_ ignore guest PAT, whereas without non-coherent DMA, 4683 * KVM _always_ ignores or honors guest PAT, i.e. doesn't toggle SPTE 4684 * bits in response to non-coherent device (un)registration. 4685 */ 4686 return !static_cpu_has(X86_FEATURE_SELFSNOOP) && shadow_memtype_mask; 4687 } 4688 4689 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4690 { 4691 #ifdef CONFIG_X86_64 4692 if (tdp_mmu_enabled) 4693 return kvm_tdp_mmu_page_fault(vcpu, fault); 4694 #endif 4695 4696 return direct_page_fault(vcpu, fault); 4697 } 4698 4699 static int kvm_tdp_map_page(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code, 4700 u8 *level) 4701 { 4702 int r; 4703 4704 /* 4705 * Restrict to TDP page fault, since that's the only case where the MMU 4706 * is indexed by GPA. 4707 */ 4708 if (vcpu->arch.mmu->page_fault != kvm_tdp_page_fault) 4709 return -EOPNOTSUPP; 4710 4711 do { 4712 if (signal_pending(current)) 4713 return -EINTR; 4714 cond_resched(); 4715 r = kvm_mmu_do_page_fault(vcpu, gpa, error_code, true, NULL, level); 4716 } while (r == RET_PF_RETRY); 4717 4718 if (r < 0) 4719 return r; 4720 4721 switch (r) { 4722 case RET_PF_FIXED: 4723 case RET_PF_SPURIOUS: 4724 return 0; 4725 4726 case RET_PF_EMULATE: 4727 return -ENOENT; 4728 4729 case RET_PF_RETRY: 4730 case RET_PF_CONTINUE: 4731 case RET_PF_INVALID: 4732 default: 4733 WARN_ONCE(1, "could not fix page fault during prefault"); 4734 return -EIO; 4735 } 4736 } 4737 4738 long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu, 4739 struct kvm_pre_fault_memory *range) 4740 { 4741 u64 error_code = PFERR_GUEST_FINAL_MASK; 4742 u8 level = PG_LEVEL_4K; 4743 u64 end; 4744 int r; 4745 4746 if (!vcpu->kvm->arch.pre_fault_allowed) 4747 return -EOPNOTSUPP; 4748 4749 /* 4750 * reload is efficient when called repeatedly, so we can do it on 4751 * every iteration. 4752 */ 4753 r = kvm_mmu_reload(vcpu); 4754 if (r) 4755 return r; 4756 4757 if (kvm_arch_has_private_mem(vcpu->kvm) && 4758 kvm_mem_is_private(vcpu->kvm, gpa_to_gfn(range->gpa))) 4759 error_code |= PFERR_PRIVATE_ACCESS; 4760 4761 /* 4762 * Shadow paging uses GVA for kvm page fault, so restrict to 4763 * two-dimensional paging. 4764 */ 4765 r = kvm_tdp_map_page(vcpu, range->gpa, error_code, &level); 4766 if (r < 0) 4767 return r; 4768 4769 /* 4770 * If the mapping that covers range->gpa can use a huge page, it 4771 * may start below it or end after range->gpa + range->size. 4772 */ 4773 end = (range->gpa & KVM_HPAGE_MASK(level)) + KVM_HPAGE_SIZE(level); 4774 return min(range->size, end - range->gpa); 4775 } 4776 4777 static void nonpaging_init_context(struct kvm_mmu *context) 4778 { 4779 context->page_fault = nonpaging_page_fault; 4780 context->gva_to_gpa = nonpaging_gva_to_gpa; 4781 context->sync_spte = NULL; 4782 } 4783 4784 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd, 4785 union kvm_mmu_page_role role) 4786 { 4787 struct kvm_mmu_page *sp; 4788 4789 if (!VALID_PAGE(root->hpa)) 4790 return false; 4791 4792 if (!role.direct && pgd != root->pgd) 4793 return false; 4794 4795 sp = root_to_sp(root->hpa); 4796 if (WARN_ON_ONCE(!sp)) 4797 return false; 4798 4799 return role.word == sp->role.word; 4800 } 4801 4802 /* 4803 * Find out if a previously cached root matching the new pgd/role is available, 4804 * and insert the current root as the MRU in the cache. 4805 * If a matching root is found, it is assigned to kvm_mmu->root and 4806 * true is returned. 4807 * If no match is found, kvm_mmu->root is left invalid, the LRU root is 4808 * evicted to make room for the current root, and false is returned. 4809 */ 4810 static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu, 4811 gpa_t new_pgd, 4812 union kvm_mmu_page_role new_role) 4813 { 4814 uint i; 4815 4816 if (is_root_usable(&mmu->root, new_pgd, new_role)) 4817 return true; 4818 4819 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 4820 /* 4821 * The swaps end up rotating the cache like this: 4822 * C 0 1 2 3 (on entry to the function) 4823 * 0 C 1 2 3 4824 * 1 C 0 2 3 4825 * 2 C 0 1 3 4826 * 3 C 0 1 2 (on exit from the loop) 4827 */ 4828 swap(mmu->root, mmu->prev_roots[i]); 4829 if (is_root_usable(&mmu->root, new_pgd, new_role)) 4830 return true; 4831 } 4832 4833 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 4834 return false; 4835 } 4836 4837 /* 4838 * Find out if a previously cached root matching the new pgd/role is available. 4839 * On entry, mmu->root is invalid. 4840 * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry 4841 * of the cache becomes invalid, and true is returned. 4842 * If no match is found, kvm_mmu->root is left invalid and false is returned. 4843 */ 4844 static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu, 4845 gpa_t new_pgd, 4846 union kvm_mmu_page_role new_role) 4847 { 4848 uint i; 4849 4850 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 4851 if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role)) 4852 goto hit; 4853 4854 return false; 4855 4856 hit: 4857 swap(mmu->root, mmu->prev_roots[i]); 4858 /* Bubble up the remaining roots. */ 4859 for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++) 4860 mmu->prev_roots[i] = mmu->prev_roots[i + 1]; 4861 mmu->prev_roots[i].hpa = INVALID_PAGE; 4862 return true; 4863 } 4864 4865 static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu, 4866 gpa_t new_pgd, union kvm_mmu_page_role new_role) 4867 { 4868 /* 4869 * Limit reuse to 64-bit hosts+VMs without "special" roots in order to 4870 * avoid having to deal with PDPTEs and other complexities. 4871 */ 4872 if (VALID_PAGE(mmu->root.hpa) && !root_to_sp(mmu->root.hpa)) 4873 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 4874 4875 if (VALID_PAGE(mmu->root.hpa)) 4876 return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role); 4877 else 4878 return cached_root_find_without_current(kvm, mmu, new_pgd, new_role); 4879 } 4880 4881 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd) 4882 { 4883 struct kvm_mmu *mmu = vcpu->arch.mmu; 4884 union kvm_mmu_page_role new_role = mmu->root_role; 4885 4886 /* 4887 * Return immediately if no usable root was found, kvm_mmu_reload() 4888 * will establish a valid root prior to the next VM-Enter. 4889 */ 4890 if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role)) 4891 return; 4892 4893 /* 4894 * It's possible that the cached previous root page is obsolete because 4895 * of a change in the MMU generation number. However, changing the 4896 * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, 4897 * which will free the root set here and allocate a new one. 4898 */ 4899 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 4900 4901 if (force_flush_and_sync_on_reuse) { 4902 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 4903 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 4904 } 4905 4906 /* 4907 * The last MMIO access's GVA and GPA are cached in the VCPU. When 4908 * switching to a new CR3, that GVA->GPA mapping may no longer be 4909 * valid. So clear any cached MMIO info even when we don't need to sync 4910 * the shadow page tables. 4911 */ 4912 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 4913 4914 /* 4915 * If this is a direct root page, it doesn't have a write flooding 4916 * count. Otherwise, clear the write flooding count. 4917 */ 4918 if (!new_role.direct) { 4919 struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa); 4920 4921 if (!WARN_ON_ONCE(!sp)) 4922 __clear_sp_write_flooding_count(sp); 4923 } 4924 } 4925 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd); 4926 4927 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, 4928 unsigned int access) 4929 { 4930 if (unlikely(is_mmio_spte(vcpu->kvm, *sptep))) { 4931 if (gfn != get_mmio_spte_gfn(*sptep)) { 4932 mmu_spte_clear_no_track(sptep); 4933 return true; 4934 } 4935 4936 mark_mmio_spte(vcpu, sptep, gfn, access); 4937 return true; 4938 } 4939 4940 return false; 4941 } 4942 4943 #define PTTYPE_EPT 18 /* arbitrary */ 4944 #define PTTYPE PTTYPE_EPT 4945 #include "paging_tmpl.h" 4946 #undef PTTYPE 4947 4948 #define PTTYPE 64 4949 #include "paging_tmpl.h" 4950 #undef PTTYPE 4951 4952 #define PTTYPE 32 4953 #include "paging_tmpl.h" 4954 #undef PTTYPE 4955 4956 static void __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check, 4957 u64 pa_bits_rsvd, int level, bool nx, 4958 bool gbpages, bool pse, bool amd) 4959 { 4960 u64 gbpages_bit_rsvd = 0; 4961 u64 nonleaf_bit8_rsvd = 0; 4962 u64 high_bits_rsvd; 4963 4964 rsvd_check->bad_mt_xwr = 0; 4965 4966 if (!gbpages) 4967 gbpages_bit_rsvd = rsvd_bits(7, 7); 4968 4969 if (level == PT32E_ROOT_LEVEL) 4970 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62); 4971 else 4972 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4973 4974 /* Note, NX doesn't exist in PDPTEs, this is handled below. */ 4975 if (!nx) 4976 high_bits_rsvd |= rsvd_bits(63, 63); 4977 4978 /* 4979 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for 4980 * leaf entries) on AMD CPUs only. 4981 */ 4982 if (amd) 4983 nonleaf_bit8_rsvd = rsvd_bits(8, 8); 4984 4985 switch (level) { 4986 case PT32_ROOT_LEVEL: 4987 /* no rsvd bits for 2 level 4K page table entries */ 4988 rsvd_check->rsvd_bits_mask[0][1] = 0; 4989 rsvd_check->rsvd_bits_mask[0][0] = 0; 4990 rsvd_check->rsvd_bits_mask[1][0] = 4991 rsvd_check->rsvd_bits_mask[0][0]; 4992 4993 if (!pse) { 4994 rsvd_check->rsvd_bits_mask[1][1] = 0; 4995 break; 4996 } 4997 4998 if (is_cpuid_PSE36()) 4999 /* 36bits PSE 4MB page */ 5000 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); 5001 else 5002 /* 32 bits PSE 4MB page */ 5003 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); 5004 break; 5005 case PT32E_ROOT_LEVEL: 5006 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) | 5007 high_bits_rsvd | 5008 rsvd_bits(5, 8) | 5009 rsvd_bits(1, 2); /* PDPTE */ 5010 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */ 5011 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */ 5012 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 5013 rsvd_bits(13, 20); /* large page */ 5014 rsvd_check->rsvd_bits_mask[1][0] = 5015 rsvd_check->rsvd_bits_mask[0][0]; 5016 break; 5017 case PT64_ROOT_5LEVEL: 5018 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | 5019 nonleaf_bit8_rsvd | 5020 rsvd_bits(7, 7); 5021 rsvd_check->rsvd_bits_mask[1][4] = 5022 rsvd_check->rsvd_bits_mask[0][4]; 5023 fallthrough; 5024 case PT64_ROOT_4LEVEL: 5025 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | 5026 nonleaf_bit8_rsvd | 5027 rsvd_bits(7, 7); 5028 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | 5029 gbpages_bit_rsvd; 5030 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; 5031 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 5032 rsvd_check->rsvd_bits_mask[1][3] = 5033 rsvd_check->rsvd_bits_mask[0][3]; 5034 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | 5035 gbpages_bit_rsvd | 5036 rsvd_bits(13, 29); 5037 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 5038 rsvd_bits(13, 20); /* large page */ 5039 rsvd_check->rsvd_bits_mask[1][0] = 5040 rsvd_check->rsvd_bits_mask[0][0]; 5041 break; 5042 } 5043 } 5044 5045 static void reset_guest_rsvds_bits_mask(struct kvm_vcpu *vcpu, 5046 struct kvm_mmu *context) 5047 { 5048 __reset_rsvds_bits_mask(&context->guest_rsvd_check, 5049 vcpu->arch.reserved_gpa_bits, 5050 context->cpu_role.base.level, is_efer_nx(context), 5051 guest_can_use(vcpu, X86_FEATURE_GBPAGES), 5052 is_cr4_pse(context), 5053 guest_cpuid_is_amd_compatible(vcpu)); 5054 } 5055 5056 static void __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check, 5057 u64 pa_bits_rsvd, bool execonly, 5058 int huge_page_level) 5059 { 5060 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 5061 u64 large_1g_rsvd = 0, large_2m_rsvd = 0; 5062 u64 bad_mt_xwr; 5063 5064 if (huge_page_level < PG_LEVEL_1G) 5065 large_1g_rsvd = rsvd_bits(7, 7); 5066 if (huge_page_level < PG_LEVEL_2M) 5067 large_2m_rsvd = rsvd_bits(7, 7); 5068 5069 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7); 5070 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7); 5071 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd; 5072 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd; 5073 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 5074 5075 /* large page */ 5076 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4]; 5077 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3]; 5078 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd; 5079 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd; 5080 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0]; 5081 5082 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */ 5083 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */ 5084 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */ 5085 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */ 5086 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */ 5087 if (!execonly) { 5088 /* bits 0..2 must not be 100 unless VMX capabilities allow it */ 5089 bad_mt_xwr |= REPEAT_BYTE(1ull << 4); 5090 } 5091 rsvd_check->bad_mt_xwr = bad_mt_xwr; 5092 } 5093 5094 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, 5095 struct kvm_mmu *context, bool execonly, int huge_page_level) 5096 { 5097 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check, 5098 vcpu->arch.reserved_gpa_bits, execonly, 5099 huge_page_level); 5100 } 5101 5102 static inline u64 reserved_hpa_bits(void) 5103 { 5104 return rsvd_bits(kvm_host.maxphyaddr, 63); 5105 } 5106 5107 /* 5108 * the page table on host is the shadow page table for the page 5109 * table in guest or amd nested guest, its mmu features completely 5110 * follow the features in guest. 5111 */ 5112 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 5113 struct kvm_mmu *context) 5114 { 5115 /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */ 5116 bool is_amd = true; 5117 /* KVM doesn't use 2-level page tables for the shadow MMU. */ 5118 bool is_pse = false; 5119 struct rsvd_bits_validate *shadow_zero_check; 5120 int i; 5121 5122 WARN_ON_ONCE(context->root_role.level < PT32E_ROOT_LEVEL); 5123 5124 shadow_zero_check = &context->shadow_zero_check; 5125 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 5126 context->root_role.level, 5127 context->root_role.efer_nx, 5128 guest_can_use(vcpu, X86_FEATURE_GBPAGES), 5129 is_pse, is_amd); 5130 5131 if (!shadow_me_mask) 5132 return; 5133 5134 for (i = context->root_role.level; --i >= 0;) { 5135 /* 5136 * So far shadow_me_value is a constant during KVM's life 5137 * time. Bits in shadow_me_value are allowed to be set. 5138 * Bits in shadow_me_mask but not in shadow_me_value are 5139 * not allowed to be set. 5140 */ 5141 shadow_zero_check->rsvd_bits_mask[0][i] |= shadow_me_mask; 5142 shadow_zero_check->rsvd_bits_mask[1][i] |= shadow_me_mask; 5143 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_value; 5144 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_value; 5145 } 5146 5147 } 5148 5149 static inline bool boot_cpu_is_amd(void) 5150 { 5151 WARN_ON_ONCE(!tdp_enabled); 5152 return shadow_x_mask == 0; 5153 } 5154 5155 /* 5156 * the direct page table on host, use as much mmu features as 5157 * possible, however, kvm currently does not do execution-protection. 5158 */ 5159 static void reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context) 5160 { 5161 struct rsvd_bits_validate *shadow_zero_check; 5162 int i; 5163 5164 shadow_zero_check = &context->shadow_zero_check; 5165 5166 if (boot_cpu_is_amd()) 5167 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 5168 context->root_role.level, true, 5169 boot_cpu_has(X86_FEATURE_GBPAGES), 5170 false, true); 5171 else 5172 __reset_rsvds_bits_mask_ept(shadow_zero_check, 5173 reserved_hpa_bits(), false, 5174 max_huge_page_level); 5175 5176 if (!shadow_me_mask) 5177 return; 5178 5179 for (i = context->root_role.level; --i >= 0;) { 5180 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 5181 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 5182 } 5183 } 5184 5185 /* 5186 * as the comments in reset_shadow_zero_bits_mask() except it 5187 * is the shadow page table for intel nested guest. 5188 */ 5189 static void 5190 reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly) 5191 { 5192 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check, 5193 reserved_hpa_bits(), execonly, 5194 max_huge_page_level); 5195 } 5196 5197 #define BYTE_MASK(access) \ 5198 ((1 & (access) ? 2 : 0) | \ 5199 (2 & (access) ? 4 : 0) | \ 5200 (3 & (access) ? 8 : 0) | \ 5201 (4 & (access) ? 16 : 0) | \ 5202 (5 & (access) ? 32 : 0) | \ 5203 (6 & (access) ? 64 : 0) | \ 5204 (7 & (access) ? 128 : 0)) 5205 5206 5207 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept) 5208 { 5209 unsigned byte; 5210 5211 const u8 x = BYTE_MASK(ACC_EXEC_MASK); 5212 const u8 w = BYTE_MASK(ACC_WRITE_MASK); 5213 const u8 u = BYTE_MASK(ACC_USER_MASK); 5214 5215 bool cr4_smep = is_cr4_smep(mmu); 5216 bool cr4_smap = is_cr4_smap(mmu); 5217 bool cr0_wp = is_cr0_wp(mmu); 5218 bool efer_nx = is_efer_nx(mmu); 5219 5220 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { 5221 unsigned pfec = byte << 1; 5222 5223 /* 5224 * Each "*f" variable has a 1 bit for each UWX value 5225 * that causes a fault with the given PFEC. 5226 */ 5227 5228 /* Faults from writes to non-writable pages */ 5229 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0; 5230 /* Faults from user mode accesses to supervisor pages */ 5231 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0; 5232 /* Faults from fetches of non-executable pages*/ 5233 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0; 5234 /* Faults from kernel mode fetches of user pages */ 5235 u8 smepf = 0; 5236 /* Faults from kernel mode accesses of user pages */ 5237 u8 smapf = 0; 5238 5239 if (!ept) { 5240 /* Faults from kernel mode accesses to user pages */ 5241 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u; 5242 5243 /* Not really needed: !nx will cause pte.nx to fault */ 5244 if (!efer_nx) 5245 ff = 0; 5246 5247 /* Allow supervisor writes if !cr0.wp */ 5248 if (!cr0_wp) 5249 wf = (pfec & PFERR_USER_MASK) ? wf : 0; 5250 5251 /* Disallow supervisor fetches of user code if cr4.smep */ 5252 if (cr4_smep) 5253 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0; 5254 5255 /* 5256 * SMAP:kernel-mode data accesses from user-mode 5257 * mappings should fault. A fault is considered 5258 * as a SMAP violation if all of the following 5259 * conditions are true: 5260 * - X86_CR4_SMAP is set in CR4 5261 * - A user page is accessed 5262 * - The access is not a fetch 5263 * - The access is supervisor mode 5264 * - If implicit supervisor access or X86_EFLAGS_AC is clear 5265 * 5266 * Here, we cover the first four conditions. 5267 * The fifth is computed dynamically in permission_fault(); 5268 * PFERR_RSVD_MASK bit will be set in PFEC if the access is 5269 * *not* subject to SMAP restrictions. 5270 */ 5271 if (cr4_smap) 5272 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf; 5273 } 5274 5275 mmu->permissions[byte] = ff | uf | wf | smepf | smapf; 5276 } 5277 } 5278 5279 /* 5280 * PKU is an additional mechanism by which the paging controls access to 5281 * user-mode addresses based on the value in the PKRU register. Protection 5282 * key violations are reported through a bit in the page fault error code. 5283 * Unlike other bits of the error code, the PK bit is not known at the 5284 * call site of e.g. gva_to_gpa; it must be computed directly in 5285 * permission_fault based on two bits of PKRU, on some machine state (CR4, 5286 * CR0, EFER, CPL), and on other bits of the error code and the page tables. 5287 * 5288 * In particular the following conditions come from the error code, the 5289 * page tables and the machine state: 5290 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1 5291 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch) 5292 * - PK is always zero if U=0 in the page tables 5293 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access. 5294 * 5295 * The PKRU bitmask caches the result of these four conditions. The error 5296 * code (minus the P bit) and the page table's U bit form an index into the 5297 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed 5298 * with the two bits of the PKRU register corresponding to the protection key. 5299 * For the first three conditions above the bits will be 00, thus masking 5300 * away both AD and WD. For all reads or if the last condition holds, WD 5301 * only will be masked away. 5302 */ 5303 static void update_pkru_bitmask(struct kvm_mmu *mmu) 5304 { 5305 unsigned bit; 5306 bool wp; 5307 5308 mmu->pkru_mask = 0; 5309 5310 if (!is_cr4_pke(mmu)) 5311 return; 5312 5313 wp = is_cr0_wp(mmu); 5314 5315 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) { 5316 unsigned pfec, pkey_bits; 5317 bool check_pkey, check_write, ff, uf, wf, pte_user; 5318 5319 pfec = bit << 1; 5320 ff = pfec & PFERR_FETCH_MASK; 5321 uf = pfec & PFERR_USER_MASK; 5322 wf = pfec & PFERR_WRITE_MASK; 5323 5324 /* PFEC.RSVD is replaced by ACC_USER_MASK. */ 5325 pte_user = pfec & PFERR_RSVD_MASK; 5326 5327 /* 5328 * Only need to check the access which is not an 5329 * instruction fetch and is to a user page. 5330 */ 5331 check_pkey = (!ff && pte_user); 5332 /* 5333 * write access is controlled by PKRU if it is a 5334 * user access or CR0.WP = 1. 5335 */ 5336 check_write = check_pkey && wf && (uf || wp); 5337 5338 /* PKRU.AD stops both read and write access. */ 5339 pkey_bits = !!check_pkey; 5340 /* PKRU.WD stops write access. */ 5341 pkey_bits |= (!!check_write) << 1; 5342 5343 mmu->pkru_mask |= (pkey_bits & 3) << pfec; 5344 } 5345 } 5346 5347 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu, 5348 struct kvm_mmu *mmu) 5349 { 5350 if (!is_cr0_pg(mmu)) 5351 return; 5352 5353 reset_guest_rsvds_bits_mask(vcpu, mmu); 5354 update_permission_bitmask(mmu, false); 5355 update_pkru_bitmask(mmu); 5356 } 5357 5358 static void paging64_init_context(struct kvm_mmu *context) 5359 { 5360 context->page_fault = paging64_page_fault; 5361 context->gva_to_gpa = paging64_gva_to_gpa; 5362 context->sync_spte = paging64_sync_spte; 5363 } 5364 5365 static void paging32_init_context(struct kvm_mmu *context) 5366 { 5367 context->page_fault = paging32_page_fault; 5368 context->gva_to_gpa = paging32_gva_to_gpa; 5369 context->sync_spte = paging32_sync_spte; 5370 } 5371 5372 static union kvm_cpu_role kvm_calc_cpu_role(struct kvm_vcpu *vcpu, 5373 const struct kvm_mmu_role_regs *regs) 5374 { 5375 union kvm_cpu_role role = {0}; 5376 5377 role.base.access = ACC_ALL; 5378 role.base.smm = is_smm(vcpu); 5379 role.base.guest_mode = is_guest_mode(vcpu); 5380 role.ext.valid = 1; 5381 5382 if (!____is_cr0_pg(regs)) { 5383 role.base.direct = 1; 5384 return role; 5385 } 5386 5387 role.base.efer_nx = ____is_efer_nx(regs); 5388 role.base.cr0_wp = ____is_cr0_wp(regs); 5389 role.base.smep_andnot_wp = ____is_cr4_smep(regs) && !____is_cr0_wp(regs); 5390 role.base.smap_andnot_wp = ____is_cr4_smap(regs) && !____is_cr0_wp(regs); 5391 role.base.has_4_byte_gpte = !____is_cr4_pae(regs); 5392 5393 if (____is_efer_lma(regs)) 5394 role.base.level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL 5395 : PT64_ROOT_4LEVEL; 5396 else if (____is_cr4_pae(regs)) 5397 role.base.level = PT32E_ROOT_LEVEL; 5398 else 5399 role.base.level = PT32_ROOT_LEVEL; 5400 5401 role.ext.cr4_smep = ____is_cr4_smep(regs); 5402 role.ext.cr4_smap = ____is_cr4_smap(regs); 5403 role.ext.cr4_pse = ____is_cr4_pse(regs); 5404 5405 /* PKEY and LA57 are active iff long mode is active. */ 5406 role.ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs); 5407 role.ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs); 5408 role.ext.efer_lma = ____is_efer_lma(regs); 5409 return role; 5410 } 5411 5412 void __kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu, 5413 struct kvm_mmu *mmu) 5414 { 5415 const bool cr0_wp = kvm_is_cr0_bit_set(vcpu, X86_CR0_WP); 5416 5417 BUILD_BUG_ON((KVM_MMU_CR0_ROLE_BITS & KVM_POSSIBLE_CR0_GUEST_BITS) != X86_CR0_WP); 5418 BUILD_BUG_ON((KVM_MMU_CR4_ROLE_BITS & KVM_POSSIBLE_CR4_GUEST_BITS)); 5419 5420 if (is_cr0_wp(mmu) == cr0_wp) 5421 return; 5422 5423 mmu->cpu_role.base.cr0_wp = cr0_wp; 5424 reset_guest_paging_metadata(vcpu, mmu); 5425 } 5426 5427 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu) 5428 { 5429 /* tdp_root_level is architecture forced level, use it if nonzero */ 5430 if (tdp_root_level) 5431 return tdp_root_level; 5432 5433 /* Use 5-level TDP if and only if it's useful/necessary. */ 5434 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48) 5435 return 4; 5436 5437 return max_tdp_level; 5438 } 5439 5440 u8 kvm_mmu_get_max_tdp_level(void) 5441 { 5442 return tdp_root_level ? tdp_root_level : max_tdp_level; 5443 } 5444 5445 static union kvm_mmu_page_role 5446 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, 5447 union kvm_cpu_role cpu_role) 5448 { 5449 union kvm_mmu_page_role role = {0}; 5450 5451 role.access = ACC_ALL; 5452 role.cr0_wp = true; 5453 role.efer_nx = true; 5454 role.smm = cpu_role.base.smm; 5455 role.guest_mode = cpu_role.base.guest_mode; 5456 role.ad_disabled = !kvm_ad_enabled(); 5457 role.level = kvm_mmu_get_tdp_level(vcpu); 5458 role.direct = true; 5459 role.has_4_byte_gpte = false; 5460 5461 return role; 5462 } 5463 5464 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu, 5465 union kvm_cpu_role cpu_role) 5466 { 5467 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5468 union kvm_mmu_page_role root_role = kvm_calc_tdp_mmu_root_page_role(vcpu, cpu_role); 5469 5470 if (cpu_role.as_u64 == context->cpu_role.as_u64 && 5471 root_role.word == context->root_role.word) 5472 return; 5473 5474 context->cpu_role.as_u64 = cpu_role.as_u64; 5475 context->root_role.word = root_role.word; 5476 context->page_fault = kvm_tdp_page_fault; 5477 context->sync_spte = NULL; 5478 context->get_guest_pgd = get_guest_cr3; 5479 context->get_pdptr = kvm_pdptr_read; 5480 context->inject_page_fault = kvm_inject_page_fault; 5481 5482 if (!is_cr0_pg(context)) 5483 context->gva_to_gpa = nonpaging_gva_to_gpa; 5484 else if (is_cr4_pae(context)) 5485 context->gva_to_gpa = paging64_gva_to_gpa; 5486 else 5487 context->gva_to_gpa = paging32_gva_to_gpa; 5488 5489 reset_guest_paging_metadata(vcpu, context); 5490 reset_tdp_shadow_zero_bits_mask(context); 5491 } 5492 5493 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context, 5494 union kvm_cpu_role cpu_role, 5495 union kvm_mmu_page_role root_role) 5496 { 5497 if (cpu_role.as_u64 == context->cpu_role.as_u64 && 5498 root_role.word == context->root_role.word) 5499 return; 5500 5501 context->cpu_role.as_u64 = cpu_role.as_u64; 5502 context->root_role.word = root_role.word; 5503 5504 if (!is_cr0_pg(context)) 5505 nonpaging_init_context(context); 5506 else if (is_cr4_pae(context)) 5507 paging64_init_context(context); 5508 else 5509 paging32_init_context(context); 5510 5511 reset_guest_paging_metadata(vcpu, context); 5512 reset_shadow_zero_bits_mask(vcpu, context); 5513 } 5514 5515 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, 5516 union kvm_cpu_role cpu_role) 5517 { 5518 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5519 union kvm_mmu_page_role root_role; 5520 5521 root_role = cpu_role.base; 5522 5523 /* KVM uses PAE paging whenever the guest isn't using 64-bit paging. */ 5524 root_role.level = max_t(u32, root_role.level, PT32E_ROOT_LEVEL); 5525 5526 /* 5527 * KVM forces EFER.NX=1 when TDP is disabled, reflect it in the MMU role. 5528 * KVM uses NX when TDP is disabled to handle a variety of scenarios, 5529 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and 5530 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0. 5531 * The iTLB multi-hit workaround can be toggled at any time, so assume 5532 * NX can be used by any non-nested shadow MMU to avoid having to reset 5533 * MMU contexts. 5534 */ 5535 root_role.efer_nx = true; 5536 5537 shadow_mmu_init_context(vcpu, context, cpu_role, root_role); 5538 } 5539 5540 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0, 5541 unsigned long cr4, u64 efer, gpa_t nested_cr3) 5542 { 5543 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 5544 struct kvm_mmu_role_regs regs = { 5545 .cr0 = cr0, 5546 .cr4 = cr4 & ~X86_CR4_PKE, 5547 .efer = efer, 5548 }; 5549 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); 5550 union kvm_mmu_page_role root_role; 5551 5552 /* NPT requires CR0.PG=1. */ 5553 WARN_ON_ONCE(cpu_role.base.direct); 5554 5555 root_role = cpu_role.base; 5556 root_role.level = kvm_mmu_get_tdp_level(vcpu); 5557 if (root_role.level == PT64_ROOT_5LEVEL && 5558 cpu_role.base.level == PT64_ROOT_4LEVEL) 5559 root_role.passthrough = 1; 5560 5561 shadow_mmu_init_context(vcpu, context, cpu_role, root_role); 5562 kvm_mmu_new_pgd(vcpu, nested_cr3); 5563 } 5564 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu); 5565 5566 static union kvm_cpu_role 5567 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty, 5568 bool execonly, u8 level) 5569 { 5570 union kvm_cpu_role role = {0}; 5571 5572 /* 5573 * KVM does not support SMM transfer monitors, and consequently does not 5574 * support the "entry to SMM" control either. role.base.smm is always 0. 5575 */ 5576 WARN_ON_ONCE(is_smm(vcpu)); 5577 role.base.level = level; 5578 role.base.has_4_byte_gpte = false; 5579 role.base.direct = false; 5580 role.base.ad_disabled = !accessed_dirty; 5581 role.base.guest_mode = true; 5582 role.base.access = ACC_ALL; 5583 5584 role.ext.word = 0; 5585 role.ext.execonly = execonly; 5586 role.ext.valid = 1; 5587 5588 return role; 5589 } 5590 5591 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, 5592 int huge_page_level, bool accessed_dirty, 5593 gpa_t new_eptp) 5594 { 5595 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 5596 u8 level = vmx_eptp_page_walk_level(new_eptp); 5597 union kvm_cpu_role new_mode = 5598 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty, 5599 execonly, level); 5600 5601 if (new_mode.as_u64 != context->cpu_role.as_u64) { 5602 /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */ 5603 context->cpu_role.as_u64 = new_mode.as_u64; 5604 context->root_role.word = new_mode.base.word; 5605 5606 context->page_fault = ept_page_fault; 5607 context->gva_to_gpa = ept_gva_to_gpa; 5608 context->sync_spte = ept_sync_spte; 5609 5610 update_permission_bitmask(context, true); 5611 context->pkru_mask = 0; 5612 reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level); 5613 reset_ept_shadow_zero_bits_mask(context, execonly); 5614 } 5615 5616 kvm_mmu_new_pgd(vcpu, new_eptp); 5617 } 5618 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); 5619 5620 static void init_kvm_softmmu(struct kvm_vcpu *vcpu, 5621 union kvm_cpu_role cpu_role) 5622 { 5623 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5624 5625 kvm_init_shadow_mmu(vcpu, cpu_role); 5626 5627 context->get_guest_pgd = get_guest_cr3; 5628 context->get_pdptr = kvm_pdptr_read; 5629 context->inject_page_fault = kvm_inject_page_fault; 5630 } 5631 5632 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu, 5633 union kvm_cpu_role new_mode) 5634 { 5635 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; 5636 5637 if (new_mode.as_u64 == g_context->cpu_role.as_u64) 5638 return; 5639 5640 g_context->cpu_role.as_u64 = new_mode.as_u64; 5641 g_context->get_guest_pgd = get_guest_cr3; 5642 g_context->get_pdptr = kvm_pdptr_read; 5643 g_context->inject_page_fault = kvm_inject_page_fault; 5644 5645 /* 5646 * L2 page tables are never shadowed, so there is no need to sync 5647 * SPTEs. 5648 */ 5649 g_context->sync_spte = NULL; 5650 5651 /* 5652 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using 5653 * L1's nested page tables (e.g. EPT12). The nested translation 5654 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using 5655 * L2's page tables as the first level of translation and L1's 5656 * nested page tables as the second level of translation. Basically 5657 * the gva_to_gpa functions between mmu and nested_mmu are swapped. 5658 */ 5659 if (!is_paging(vcpu)) 5660 g_context->gva_to_gpa = nonpaging_gva_to_gpa; 5661 else if (is_long_mode(vcpu)) 5662 g_context->gva_to_gpa = paging64_gva_to_gpa; 5663 else if (is_pae(vcpu)) 5664 g_context->gva_to_gpa = paging64_gva_to_gpa; 5665 else 5666 g_context->gva_to_gpa = paging32_gva_to_gpa; 5667 5668 reset_guest_paging_metadata(vcpu, g_context); 5669 } 5670 5671 void kvm_init_mmu(struct kvm_vcpu *vcpu) 5672 { 5673 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 5674 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); 5675 5676 if (mmu_is_nested(vcpu)) 5677 init_kvm_nested_mmu(vcpu, cpu_role); 5678 else if (tdp_enabled) 5679 init_kvm_tdp_mmu(vcpu, cpu_role); 5680 else 5681 init_kvm_softmmu(vcpu, cpu_role); 5682 } 5683 EXPORT_SYMBOL_GPL(kvm_init_mmu); 5684 5685 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu) 5686 { 5687 /* 5688 * Invalidate all MMU roles to force them to reinitialize as CPUID 5689 * information is factored into reserved bit calculations. 5690 * 5691 * Correctly handling multiple vCPU models with respect to paging and 5692 * physical address properties) in a single VM would require tracking 5693 * all relevant CPUID information in kvm_mmu_page_role. That is very 5694 * undesirable as it would increase the memory requirements for 5695 * gfn_write_track (see struct kvm_mmu_page_role comments). For now 5696 * that problem is swept under the rug; KVM's CPUID API is horrific and 5697 * it's all but impossible to solve it without introducing a new API. 5698 */ 5699 vcpu->arch.root_mmu.root_role.invalid = 1; 5700 vcpu->arch.guest_mmu.root_role.invalid = 1; 5701 vcpu->arch.nested_mmu.root_role.invalid = 1; 5702 vcpu->arch.root_mmu.cpu_role.ext.valid = 0; 5703 vcpu->arch.guest_mmu.cpu_role.ext.valid = 0; 5704 vcpu->arch.nested_mmu.cpu_role.ext.valid = 0; 5705 kvm_mmu_reset_context(vcpu); 5706 5707 /* 5708 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in 5709 * kvm_arch_vcpu_ioctl(). 5710 */ 5711 KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm); 5712 } 5713 5714 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu) 5715 { 5716 kvm_mmu_unload(vcpu); 5717 kvm_init_mmu(vcpu); 5718 } 5719 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); 5720 5721 int kvm_mmu_load(struct kvm_vcpu *vcpu) 5722 { 5723 int r; 5724 5725 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->root_role.direct); 5726 if (r) 5727 goto out; 5728 r = mmu_alloc_special_roots(vcpu); 5729 if (r) 5730 goto out; 5731 if (vcpu->arch.mmu->root_role.direct) 5732 r = mmu_alloc_direct_roots(vcpu); 5733 else 5734 r = mmu_alloc_shadow_roots(vcpu); 5735 if (r) 5736 goto out; 5737 5738 kvm_mmu_sync_roots(vcpu); 5739 5740 kvm_mmu_load_pgd(vcpu); 5741 5742 /* 5743 * Flush any TLB entries for the new root, the provenance of the root 5744 * is unknown. Even if KVM ensures there are no stale TLB entries 5745 * for a freed root, in theory another hypervisor could have left 5746 * stale entries. Flushing on alloc also allows KVM to skip the TLB 5747 * flush when freeing a root (see kvm_tdp_mmu_put_root()). 5748 */ 5749 kvm_x86_call(flush_tlb_current)(vcpu); 5750 out: 5751 return r; 5752 } 5753 5754 void kvm_mmu_unload(struct kvm_vcpu *vcpu) 5755 { 5756 struct kvm *kvm = vcpu->kvm; 5757 5758 kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL); 5759 WARN_ON_ONCE(VALID_PAGE(vcpu->arch.root_mmu.root.hpa)); 5760 kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); 5761 WARN_ON_ONCE(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa)); 5762 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 5763 } 5764 5765 static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa) 5766 { 5767 struct kvm_mmu_page *sp; 5768 5769 if (!VALID_PAGE(root_hpa)) 5770 return false; 5771 5772 /* 5773 * When freeing obsolete roots, treat roots as obsolete if they don't 5774 * have an associated shadow page, as it's impossible to determine if 5775 * such roots are fresh or stale. This does mean KVM will get false 5776 * positives and free roots that don't strictly need to be freed, but 5777 * such false positives are relatively rare: 5778 * 5779 * (a) only PAE paging and nested NPT have roots without shadow pages 5780 * (or any shadow paging flavor with a dummy root, see note below) 5781 * (b) remote reloads due to a memslot update obsoletes _all_ roots 5782 * (c) KVM doesn't track previous roots for PAE paging, and the guest 5783 * is unlikely to zap an in-use PGD. 5784 * 5785 * Note! Dummy roots are unique in that they are obsoleted by memslot 5786 * _creation_! See also FNAME(fetch). 5787 */ 5788 sp = root_to_sp(root_hpa); 5789 return !sp || is_obsolete_sp(kvm, sp); 5790 } 5791 5792 static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu) 5793 { 5794 unsigned long roots_to_free = 0; 5795 int i; 5796 5797 if (is_obsolete_root(kvm, mmu->root.hpa)) 5798 roots_to_free |= KVM_MMU_ROOT_CURRENT; 5799 5800 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5801 if (is_obsolete_root(kvm, mmu->prev_roots[i].hpa)) 5802 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 5803 } 5804 5805 if (roots_to_free) 5806 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 5807 } 5808 5809 void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu) 5810 { 5811 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu); 5812 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu); 5813 } 5814 5815 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, 5816 int *bytes) 5817 { 5818 u64 gentry = 0; 5819 int r; 5820 5821 /* 5822 * Assume that the pte write on a page table of the same type 5823 * as the current vcpu paging mode since we update the sptes only 5824 * when they have the same mode. 5825 */ 5826 if (is_pae(vcpu) && *bytes == 4) { 5827 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ 5828 *gpa &= ~(gpa_t)7; 5829 *bytes = 8; 5830 } 5831 5832 if (*bytes == 4 || *bytes == 8) { 5833 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes); 5834 if (r) 5835 gentry = 0; 5836 } 5837 5838 return gentry; 5839 } 5840 5841 /* 5842 * If we're seeing too many writes to a page, it may no longer be a page table, 5843 * or we may be forking, in which case it is better to unmap the page. 5844 */ 5845 static bool detect_write_flooding(struct kvm_mmu_page *sp) 5846 { 5847 /* 5848 * Skip write-flooding detected for the sp whose level is 1, because 5849 * it can become unsync, then the guest page is not write-protected. 5850 */ 5851 if (sp->role.level == PG_LEVEL_4K) 5852 return false; 5853 5854 atomic_inc(&sp->write_flooding_count); 5855 return atomic_read(&sp->write_flooding_count) >= 3; 5856 } 5857 5858 /* 5859 * Misaligned accesses are too much trouble to fix up; also, they usually 5860 * indicate a page is not used as a page table. 5861 */ 5862 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, 5863 int bytes) 5864 { 5865 unsigned offset, pte_size, misaligned; 5866 5867 offset = offset_in_page(gpa); 5868 pte_size = sp->role.has_4_byte_gpte ? 4 : 8; 5869 5870 /* 5871 * Sometimes, the OS only writes the last one bytes to update status 5872 * bits, for example, in linux, andb instruction is used in clear_bit(). 5873 */ 5874 if (!(offset & (pte_size - 1)) && bytes == 1) 5875 return false; 5876 5877 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); 5878 misaligned |= bytes < 4; 5879 5880 return misaligned; 5881 } 5882 5883 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) 5884 { 5885 unsigned page_offset, quadrant; 5886 u64 *spte; 5887 int level; 5888 5889 page_offset = offset_in_page(gpa); 5890 level = sp->role.level; 5891 *nspte = 1; 5892 if (sp->role.has_4_byte_gpte) { 5893 page_offset <<= 1; /* 32->64 */ 5894 /* 5895 * A 32-bit pde maps 4MB while the shadow pdes map 5896 * only 2MB. So we need to double the offset again 5897 * and zap two pdes instead of one. 5898 */ 5899 if (level == PT32_ROOT_LEVEL) { 5900 page_offset &= ~7; /* kill rounding error */ 5901 page_offset <<= 1; 5902 *nspte = 2; 5903 } 5904 quadrant = page_offset >> PAGE_SHIFT; 5905 page_offset &= ~PAGE_MASK; 5906 if (quadrant != sp->role.quadrant) 5907 return NULL; 5908 } 5909 5910 spte = &sp->spt[page_offset / sizeof(*spte)]; 5911 return spte; 5912 } 5913 5914 void kvm_mmu_track_write(struct kvm_vcpu *vcpu, gpa_t gpa, const u8 *new, 5915 int bytes) 5916 { 5917 gfn_t gfn = gpa >> PAGE_SHIFT; 5918 struct kvm_mmu_page *sp; 5919 LIST_HEAD(invalid_list); 5920 u64 entry, gentry, *spte; 5921 int npte; 5922 bool flush = false; 5923 5924 /* 5925 * When emulating guest writes, ensure the written value is visible to 5926 * any task that is handling page faults before checking whether or not 5927 * KVM is shadowing a guest PTE. This ensures either KVM will create 5928 * the correct SPTE in the page fault handler, or this task will see 5929 * a non-zero indirect_shadow_pages. Pairs with the smp_mb() in 5930 * account_shadowed(). 5931 */ 5932 smp_mb(); 5933 if (!vcpu->kvm->arch.indirect_shadow_pages) 5934 return; 5935 5936 write_lock(&vcpu->kvm->mmu_lock); 5937 5938 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes); 5939 5940 ++vcpu->kvm->stat.mmu_pte_write; 5941 5942 for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) { 5943 if (detect_write_misaligned(sp, gpa, bytes) || 5944 detect_write_flooding(sp)) { 5945 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); 5946 ++vcpu->kvm->stat.mmu_flooded; 5947 continue; 5948 } 5949 5950 spte = get_written_sptes(sp, gpa, &npte); 5951 if (!spte) 5952 continue; 5953 5954 while (npte--) { 5955 entry = *spte; 5956 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL); 5957 if (gentry && sp->role.level != PG_LEVEL_4K) 5958 ++vcpu->kvm->stat.mmu_pde_zapped; 5959 if (is_shadow_present_pte(entry)) 5960 flush = true; 5961 ++spte; 5962 } 5963 } 5964 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 5965 write_unlock(&vcpu->kvm->mmu_lock); 5966 } 5967 5968 int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 5969 void *insn, int insn_len) 5970 { 5971 int r, emulation_type = EMULTYPE_PF; 5972 bool direct = vcpu->arch.mmu->root_role.direct; 5973 5974 if (WARN_ON_ONCE(!VALID_PAGE(vcpu->arch.mmu->root.hpa))) 5975 return RET_PF_RETRY; 5976 5977 /* 5978 * Except for reserved faults (emulated MMIO is shared-only), set the 5979 * PFERR_PRIVATE_ACCESS flag for software-protected VMs based on the gfn's 5980 * current attributes, which are the source of truth for such VMs. Note, 5981 * this wrong for nested MMUs as the GPA is an L2 GPA, but KVM doesn't 5982 * currently supported nested virtualization (among many other things) 5983 * for software-protected VMs. 5984 */ 5985 if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && 5986 !(error_code & PFERR_RSVD_MASK) && 5987 vcpu->kvm->arch.vm_type == KVM_X86_SW_PROTECTED_VM && 5988 kvm_mem_is_private(vcpu->kvm, gpa_to_gfn(cr2_or_gpa))) 5989 error_code |= PFERR_PRIVATE_ACCESS; 5990 5991 r = RET_PF_INVALID; 5992 if (unlikely(error_code & PFERR_RSVD_MASK)) { 5993 if (WARN_ON_ONCE(error_code & PFERR_PRIVATE_ACCESS)) 5994 return -EFAULT; 5995 5996 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct); 5997 if (r == RET_PF_EMULATE) 5998 goto emulate; 5999 } 6000 6001 if (r == RET_PF_INVALID) { 6002 vcpu->stat.pf_taken++; 6003 6004 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, error_code, false, 6005 &emulation_type, NULL); 6006 if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm)) 6007 return -EIO; 6008 } 6009 6010 if (r < 0) 6011 return r; 6012 6013 if (r == RET_PF_FIXED) 6014 vcpu->stat.pf_fixed++; 6015 else if (r == RET_PF_EMULATE) 6016 vcpu->stat.pf_emulate++; 6017 else if (r == RET_PF_SPURIOUS) 6018 vcpu->stat.pf_spurious++; 6019 6020 if (r != RET_PF_EMULATE) 6021 return 1; 6022 6023 /* 6024 * Before emulating the instruction, check if the error code 6025 * was due to a RO violation while translating the guest page. 6026 * This can occur when using nested virtualization with nested 6027 * paging in both guests. If true, we simply unprotect the page 6028 * and resume the guest. 6029 */ 6030 if (vcpu->arch.mmu->root_role.direct && 6031 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) { 6032 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa)); 6033 return 1; 6034 } 6035 6036 /* 6037 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still 6038 * optimistically try to just unprotect the page and let the processor 6039 * re-execute the instruction that caused the page fault. Do not allow 6040 * retrying MMIO emulation, as it's not only pointless but could also 6041 * cause us to enter an infinite loop because the processor will keep 6042 * faulting on the non-existent MMIO address. Retrying an instruction 6043 * from a nested guest is also pointless and dangerous as we are only 6044 * explicitly shadowing L1's page tables, i.e. unprotecting something 6045 * for L1 isn't going to magically fix whatever issue cause L2 to fail. 6046 */ 6047 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu)) 6048 emulation_type |= EMULTYPE_ALLOW_RETRY_PF; 6049 emulate: 6050 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn, 6051 insn_len); 6052 } 6053 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); 6054 6055 void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg) 6056 { 6057 u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; 6058 int root_level, leaf, level; 6059 6060 leaf = get_sptes_lockless(vcpu, gpa, sptes, &root_level); 6061 if (unlikely(leaf < 0)) 6062 return; 6063 6064 pr_err("%s %llx", msg, gpa); 6065 for (level = root_level; level >= leaf; level--) 6066 pr_cont(", spte[%d] = 0x%llx", level, sptes[level]); 6067 pr_cont("\n"); 6068 } 6069 EXPORT_SYMBOL_GPL(kvm_mmu_print_sptes); 6070 6071 static void __kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 6072 u64 addr, hpa_t root_hpa) 6073 { 6074 struct kvm_shadow_walk_iterator iterator; 6075 6076 vcpu_clear_mmio_info(vcpu, addr); 6077 6078 /* 6079 * Walking and synchronizing SPTEs both assume they are operating in 6080 * the context of the current MMU, and would need to be reworked if 6081 * this is ever used to sync the guest_mmu, e.g. to emulate INVEPT. 6082 */ 6083 if (WARN_ON_ONCE(mmu != vcpu->arch.mmu)) 6084 return; 6085 6086 if (!VALID_PAGE(root_hpa)) 6087 return; 6088 6089 write_lock(&vcpu->kvm->mmu_lock); 6090 for_each_shadow_entry_using_root(vcpu, root_hpa, addr, iterator) { 6091 struct kvm_mmu_page *sp = sptep_to_sp(iterator.sptep); 6092 6093 if (sp->unsync) { 6094 int ret = kvm_sync_spte(vcpu, sp, iterator.index); 6095 6096 if (ret < 0) 6097 mmu_page_zap_pte(vcpu->kvm, sp, iterator.sptep, NULL); 6098 if (ret) 6099 kvm_flush_remote_tlbs_sptep(vcpu->kvm, iterator.sptep); 6100 } 6101 6102 if (!sp->unsync_children) 6103 break; 6104 } 6105 write_unlock(&vcpu->kvm->mmu_lock); 6106 } 6107 6108 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 6109 u64 addr, unsigned long roots) 6110 { 6111 int i; 6112 6113 WARN_ON_ONCE(roots & ~KVM_MMU_ROOTS_ALL); 6114 6115 /* It's actually a GPA for vcpu->arch.guest_mmu. */ 6116 if (mmu != &vcpu->arch.guest_mmu) { 6117 /* INVLPG on a non-canonical address is a NOP according to the SDM. */ 6118 if (is_noncanonical_address(addr, vcpu)) 6119 return; 6120 6121 kvm_x86_call(flush_tlb_gva)(vcpu, addr); 6122 } 6123 6124 if (!mmu->sync_spte) 6125 return; 6126 6127 if (roots & KVM_MMU_ROOT_CURRENT) 6128 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->root.hpa); 6129 6130 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 6131 if (roots & KVM_MMU_ROOT_PREVIOUS(i)) 6132 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->prev_roots[i].hpa); 6133 } 6134 } 6135 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_addr); 6136 6137 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) 6138 { 6139 /* 6140 * INVLPG is required to invalidate any global mappings for the VA, 6141 * irrespective of PCID. Blindly sync all roots as it would take 6142 * roughly the same amount of work/time to determine whether any of the 6143 * previous roots have a global mapping. 6144 * 6145 * Mappings not reachable via the current or previous cached roots will 6146 * be synced when switching to that new cr3, so nothing needs to be 6147 * done here for them. 6148 */ 6149 kvm_mmu_invalidate_addr(vcpu, vcpu->arch.walk_mmu, gva, KVM_MMU_ROOTS_ALL); 6150 ++vcpu->stat.invlpg; 6151 } 6152 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); 6153 6154 6155 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid) 6156 { 6157 struct kvm_mmu *mmu = vcpu->arch.mmu; 6158 unsigned long roots = 0; 6159 uint i; 6160 6161 if (pcid == kvm_get_active_pcid(vcpu)) 6162 roots |= KVM_MMU_ROOT_CURRENT; 6163 6164 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 6165 if (VALID_PAGE(mmu->prev_roots[i].hpa) && 6166 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) 6167 roots |= KVM_MMU_ROOT_PREVIOUS(i); 6168 } 6169 6170 if (roots) 6171 kvm_mmu_invalidate_addr(vcpu, mmu, gva, roots); 6172 ++vcpu->stat.invlpg; 6173 6174 /* 6175 * Mappings not reachable via the current cr3 or the prev_roots will be 6176 * synced when switching to that cr3, so nothing needs to be done here 6177 * for them. 6178 */ 6179 } 6180 6181 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 6182 int tdp_max_root_level, int tdp_huge_page_level) 6183 { 6184 tdp_enabled = enable_tdp; 6185 tdp_root_level = tdp_forced_root_level; 6186 max_tdp_level = tdp_max_root_level; 6187 6188 #ifdef CONFIG_X86_64 6189 tdp_mmu_enabled = tdp_mmu_allowed && tdp_enabled; 6190 #endif 6191 /* 6192 * max_huge_page_level reflects KVM's MMU capabilities irrespective 6193 * of kernel support, e.g. KVM may be capable of using 1GB pages when 6194 * the kernel is not. But, KVM never creates a page size greater than 6195 * what is used by the kernel for any given HVA, i.e. the kernel's 6196 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust(). 6197 */ 6198 if (tdp_enabled) 6199 max_huge_page_level = tdp_huge_page_level; 6200 else if (boot_cpu_has(X86_FEATURE_GBPAGES)) 6201 max_huge_page_level = PG_LEVEL_1G; 6202 else 6203 max_huge_page_level = PG_LEVEL_2M; 6204 } 6205 EXPORT_SYMBOL_GPL(kvm_configure_mmu); 6206 6207 /* The return value indicates if tlb flush on all vcpus is needed. */ 6208 typedef bool (*slot_rmaps_handler) (struct kvm *kvm, 6209 struct kvm_rmap_head *rmap_head, 6210 const struct kvm_memory_slot *slot); 6211 6212 static __always_inline bool __walk_slot_rmaps(struct kvm *kvm, 6213 const struct kvm_memory_slot *slot, 6214 slot_rmaps_handler fn, 6215 int start_level, int end_level, 6216 gfn_t start_gfn, gfn_t end_gfn, 6217 bool flush_on_yield, bool flush) 6218 { 6219 struct slot_rmap_walk_iterator iterator; 6220 6221 lockdep_assert_held_write(&kvm->mmu_lock); 6222 6223 for_each_slot_rmap_range(slot, start_level, end_level, start_gfn, 6224 end_gfn, &iterator) { 6225 if (iterator.rmap) 6226 flush |= fn(kvm, iterator.rmap, slot); 6227 6228 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 6229 if (flush && flush_on_yield) { 6230 kvm_flush_remote_tlbs_range(kvm, start_gfn, 6231 iterator.gfn - start_gfn + 1); 6232 flush = false; 6233 } 6234 cond_resched_rwlock_write(&kvm->mmu_lock); 6235 } 6236 } 6237 6238 return flush; 6239 } 6240 6241 static __always_inline bool walk_slot_rmaps(struct kvm *kvm, 6242 const struct kvm_memory_slot *slot, 6243 slot_rmaps_handler fn, 6244 int start_level, int end_level, 6245 bool flush_on_yield) 6246 { 6247 return __walk_slot_rmaps(kvm, slot, fn, start_level, end_level, 6248 slot->base_gfn, slot->base_gfn + slot->npages - 1, 6249 flush_on_yield, false); 6250 } 6251 6252 static __always_inline bool walk_slot_rmaps_4k(struct kvm *kvm, 6253 const struct kvm_memory_slot *slot, 6254 slot_rmaps_handler fn, 6255 bool flush_on_yield) 6256 { 6257 return walk_slot_rmaps(kvm, slot, fn, PG_LEVEL_4K, PG_LEVEL_4K, flush_on_yield); 6258 } 6259 6260 static void free_mmu_pages(struct kvm_mmu *mmu) 6261 { 6262 if (!tdp_enabled && mmu->pae_root) 6263 set_memory_encrypted((unsigned long)mmu->pae_root, 1); 6264 free_page((unsigned long)mmu->pae_root); 6265 free_page((unsigned long)mmu->pml4_root); 6266 free_page((unsigned long)mmu->pml5_root); 6267 } 6268 6269 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 6270 { 6271 struct page *page; 6272 int i; 6273 6274 mmu->root.hpa = INVALID_PAGE; 6275 mmu->root.pgd = 0; 6276 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 6277 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 6278 6279 /* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */ 6280 if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu) 6281 return 0; 6282 6283 /* 6284 * When using PAE paging, the four PDPTEs are treated as 'root' pages, 6285 * while the PDP table is a per-vCPU construct that's allocated at MMU 6286 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on 6287 * x86_64. Therefore we need to allocate the PDP table in the first 6288 * 4GB of memory, which happens to fit the DMA32 zone. TDP paging 6289 * generally doesn't use PAE paging and can skip allocating the PDP 6290 * table. The main exception, handled here, is SVM's 32-bit NPT. The 6291 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit 6292 * KVM; that horror is handled on-demand by mmu_alloc_special_roots(). 6293 */ 6294 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL) 6295 return 0; 6296 6297 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32); 6298 if (!page) 6299 return -ENOMEM; 6300 6301 mmu->pae_root = page_address(page); 6302 6303 /* 6304 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to 6305 * get the CPU to treat the PDPTEs as encrypted. Decrypt the page so 6306 * that KVM's writes and the CPU's reads get along. Note, this is 6307 * only necessary when using shadow paging, as 64-bit NPT can get at 6308 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported 6309 * by 32-bit kernels (when KVM itself uses 32-bit NPT). 6310 */ 6311 if (!tdp_enabled) 6312 set_memory_decrypted((unsigned long)mmu->pae_root, 1); 6313 else 6314 WARN_ON_ONCE(shadow_me_value); 6315 6316 for (i = 0; i < 4; ++i) 6317 mmu->pae_root[i] = INVALID_PAE_ROOT; 6318 6319 return 0; 6320 } 6321 6322 int kvm_mmu_create(struct kvm_vcpu *vcpu) 6323 { 6324 int ret; 6325 6326 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache; 6327 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO; 6328 6329 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache; 6330 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO; 6331 6332 vcpu->arch.mmu_shadow_page_cache.init_value = 6333 SHADOW_NONPRESENT_VALUE; 6334 if (!vcpu->arch.mmu_shadow_page_cache.init_value) 6335 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO; 6336 6337 vcpu->arch.mmu = &vcpu->arch.root_mmu; 6338 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; 6339 6340 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu); 6341 if (ret) 6342 return ret; 6343 6344 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu); 6345 if (ret) 6346 goto fail_allocate_root; 6347 6348 return ret; 6349 fail_allocate_root: 6350 free_mmu_pages(&vcpu->arch.guest_mmu); 6351 return ret; 6352 } 6353 6354 #define BATCH_ZAP_PAGES 10 6355 static void kvm_zap_obsolete_pages(struct kvm *kvm) 6356 { 6357 struct kvm_mmu_page *sp, *node; 6358 int nr_zapped, batch = 0; 6359 bool unstable; 6360 6361 restart: 6362 list_for_each_entry_safe_reverse(sp, node, 6363 &kvm->arch.active_mmu_pages, link) { 6364 /* 6365 * No obsolete valid page exists before a newly created page 6366 * since active_mmu_pages is a FIFO list. 6367 */ 6368 if (!is_obsolete_sp(kvm, sp)) 6369 break; 6370 6371 /* 6372 * Invalid pages should never land back on the list of active 6373 * pages. Skip the bogus page, otherwise we'll get stuck in an 6374 * infinite loop if the page gets put back on the list (again). 6375 */ 6376 if (WARN_ON_ONCE(sp->role.invalid)) 6377 continue; 6378 6379 /* 6380 * No need to flush the TLB since we're only zapping shadow 6381 * pages with an obsolete generation number and all vCPUS have 6382 * loaded a new root, i.e. the shadow pages being zapped cannot 6383 * be in active use by the guest. 6384 */ 6385 if (batch >= BATCH_ZAP_PAGES && 6386 cond_resched_rwlock_write(&kvm->mmu_lock)) { 6387 batch = 0; 6388 goto restart; 6389 } 6390 6391 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, 6392 &kvm->arch.zapped_obsolete_pages, &nr_zapped); 6393 batch += nr_zapped; 6394 6395 if (unstable) 6396 goto restart; 6397 } 6398 6399 /* 6400 * Kick all vCPUs (via remote TLB flush) before freeing the page tables 6401 * to ensure KVM is not in the middle of a lockless shadow page table 6402 * walk, which may reference the pages. The remote TLB flush itself is 6403 * not required and is simply a convenient way to kick vCPUs as needed. 6404 * KVM performs a local TLB flush when allocating a new root (see 6405 * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are 6406 * running with an obsolete MMU. 6407 */ 6408 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages); 6409 } 6410 6411 /* 6412 * Fast invalidate all shadow pages and use lock-break technique 6413 * to zap obsolete pages. 6414 * 6415 * It's required when memslot is being deleted or VM is being 6416 * destroyed, in these cases, we should ensure that KVM MMU does 6417 * not use any resource of the being-deleted slot or all slots 6418 * after calling the function. 6419 */ 6420 static void kvm_mmu_zap_all_fast(struct kvm *kvm) 6421 { 6422 lockdep_assert_held(&kvm->slots_lock); 6423 6424 write_lock(&kvm->mmu_lock); 6425 trace_kvm_mmu_zap_all_fast(kvm); 6426 6427 /* 6428 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is 6429 * held for the entire duration of zapping obsolete pages, it's 6430 * impossible for there to be multiple invalid generations associated 6431 * with *valid* shadow pages at any given time, i.e. there is exactly 6432 * one valid generation and (at most) one invalid generation. 6433 */ 6434 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1; 6435 6436 /* 6437 * In order to ensure all vCPUs drop their soon-to-be invalid roots, 6438 * invalidating TDP MMU roots must be done while holding mmu_lock for 6439 * write and in the same critical section as making the reload request, 6440 * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield. 6441 */ 6442 if (tdp_mmu_enabled) 6443 kvm_tdp_mmu_invalidate_all_roots(kvm); 6444 6445 /* 6446 * Notify all vcpus to reload its shadow page table and flush TLB. 6447 * Then all vcpus will switch to new shadow page table with the new 6448 * mmu_valid_gen. 6449 * 6450 * Note: we need to do this under the protection of mmu_lock, 6451 * otherwise, vcpu would purge shadow page but miss tlb flush. 6452 */ 6453 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 6454 6455 kvm_zap_obsolete_pages(kvm); 6456 6457 write_unlock(&kvm->mmu_lock); 6458 6459 /* 6460 * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before 6461 * returning to the caller, e.g. if the zap is in response to a memslot 6462 * deletion, mmu_notifier callbacks will be unable to reach the SPTEs 6463 * associated with the deleted memslot once the update completes, and 6464 * Deferring the zap until the final reference to the root is put would 6465 * lead to use-after-free. 6466 */ 6467 if (tdp_mmu_enabled) 6468 kvm_tdp_mmu_zap_invalidated_roots(kvm); 6469 } 6470 6471 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm) 6472 { 6473 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages)); 6474 } 6475 6476 void kvm_mmu_init_vm(struct kvm *kvm) 6477 { 6478 kvm->arch.shadow_mmio_value = shadow_mmio_value; 6479 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 6480 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 6481 INIT_LIST_HEAD(&kvm->arch.possible_nx_huge_pages); 6482 spin_lock_init(&kvm->arch.mmu_unsync_pages_lock); 6483 6484 if (tdp_mmu_enabled) 6485 kvm_mmu_init_tdp_mmu(kvm); 6486 6487 kvm->arch.split_page_header_cache.kmem_cache = mmu_page_header_cache; 6488 kvm->arch.split_page_header_cache.gfp_zero = __GFP_ZERO; 6489 6490 kvm->arch.split_shadow_page_cache.gfp_zero = __GFP_ZERO; 6491 6492 kvm->arch.split_desc_cache.kmem_cache = pte_list_desc_cache; 6493 kvm->arch.split_desc_cache.gfp_zero = __GFP_ZERO; 6494 } 6495 6496 static void mmu_free_vm_memory_caches(struct kvm *kvm) 6497 { 6498 kvm_mmu_free_memory_cache(&kvm->arch.split_desc_cache); 6499 kvm_mmu_free_memory_cache(&kvm->arch.split_page_header_cache); 6500 kvm_mmu_free_memory_cache(&kvm->arch.split_shadow_page_cache); 6501 } 6502 6503 void kvm_mmu_uninit_vm(struct kvm *kvm) 6504 { 6505 if (tdp_mmu_enabled) 6506 kvm_mmu_uninit_tdp_mmu(kvm); 6507 6508 mmu_free_vm_memory_caches(kvm); 6509 } 6510 6511 static bool kvm_rmap_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 6512 { 6513 const struct kvm_memory_slot *memslot; 6514 struct kvm_memslots *slots; 6515 struct kvm_memslot_iter iter; 6516 bool flush = false; 6517 gfn_t start, end; 6518 int i; 6519 6520 if (!kvm_memslots_have_rmaps(kvm)) 6521 return flush; 6522 6523 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 6524 slots = __kvm_memslots(kvm, i); 6525 6526 kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) { 6527 memslot = iter.slot; 6528 start = max(gfn_start, memslot->base_gfn); 6529 end = min(gfn_end, memslot->base_gfn + memslot->npages); 6530 if (WARN_ON_ONCE(start >= end)) 6531 continue; 6532 6533 flush = __walk_slot_rmaps(kvm, memslot, __kvm_zap_rmap, 6534 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 6535 start, end - 1, true, flush); 6536 } 6537 } 6538 6539 return flush; 6540 } 6541 6542 /* 6543 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end 6544 * (not including it) 6545 */ 6546 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 6547 { 6548 bool flush; 6549 6550 if (WARN_ON_ONCE(gfn_end <= gfn_start)) 6551 return; 6552 6553 write_lock(&kvm->mmu_lock); 6554 6555 kvm_mmu_invalidate_begin(kvm); 6556 6557 kvm_mmu_invalidate_range_add(kvm, gfn_start, gfn_end); 6558 6559 flush = kvm_rmap_zap_gfn_range(kvm, gfn_start, gfn_end); 6560 6561 if (tdp_mmu_enabled) 6562 flush = kvm_tdp_mmu_zap_leafs(kvm, gfn_start, gfn_end, flush); 6563 6564 if (flush) 6565 kvm_flush_remote_tlbs_range(kvm, gfn_start, gfn_end - gfn_start); 6566 6567 kvm_mmu_invalidate_end(kvm); 6568 6569 write_unlock(&kvm->mmu_lock); 6570 } 6571 6572 static bool slot_rmap_write_protect(struct kvm *kvm, 6573 struct kvm_rmap_head *rmap_head, 6574 const struct kvm_memory_slot *slot) 6575 { 6576 return rmap_write_protect(rmap_head, false); 6577 } 6578 6579 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 6580 const struct kvm_memory_slot *memslot, 6581 int start_level) 6582 { 6583 if (kvm_memslots_have_rmaps(kvm)) { 6584 write_lock(&kvm->mmu_lock); 6585 walk_slot_rmaps(kvm, memslot, slot_rmap_write_protect, 6586 start_level, KVM_MAX_HUGEPAGE_LEVEL, false); 6587 write_unlock(&kvm->mmu_lock); 6588 } 6589 6590 if (tdp_mmu_enabled) { 6591 read_lock(&kvm->mmu_lock); 6592 kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level); 6593 read_unlock(&kvm->mmu_lock); 6594 } 6595 } 6596 6597 static inline bool need_topup(struct kvm_mmu_memory_cache *cache, int min) 6598 { 6599 return kvm_mmu_memory_cache_nr_free_objects(cache) < min; 6600 } 6601 6602 static bool need_topup_split_caches_or_resched(struct kvm *kvm) 6603 { 6604 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) 6605 return true; 6606 6607 /* 6608 * In the worst case, SPLIT_DESC_CACHE_MIN_NR_OBJECTS descriptors are needed 6609 * to split a single huge page. Calculating how many are actually needed 6610 * is possible but not worth the complexity. 6611 */ 6612 return need_topup(&kvm->arch.split_desc_cache, SPLIT_DESC_CACHE_MIN_NR_OBJECTS) || 6613 need_topup(&kvm->arch.split_page_header_cache, 1) || 6614 need_topup(&kvm->arch.split_shadow_page_cache, 1); 6615 } 6616 6617 static int topup_split_caches(struct kvm *kvm) 6618 { 6619 /* 6620 * Allocating rmap list entries when splitting huge pages for nested 6621 * MMUs is uncommon as KVM needs to use a list if and only if there is 6622 * more than one rmap entry for a gfn, i.e. requires an L1 gfn to be 6623 * aliased by multiple L2 gfns and/or from multiple nested roots with 6624 * different roles. Aliasing gfns when using TDP is atypical for VMMs; 6625 * a few gfns are often aliased during boot, e.g. when remapping BIOS, 6626 * but aliasing rarely occurs post-boot or for many gfns. If there is 6627 * only one rmap entry, rmap->val points directly at that one entry and 6628 * doesn't need to allocate a list. Buffer the cache by the default 6629 * capacity so that KVM doesn't have to drop mmu_lock to topup if KVM 6630 * encounters an aliased gfn or two. 6631 */ 6632 const int capacity = SPLIT_DESC_CACHE_MIN_NR_OBJECTS + 6633 KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE; 6634 int r; 6635 6636 lockdep_assert_held(&kvm->slots_lock); 6637 6638 r = __kvm_mmu_topup_memory_cache(&kvm->arch.split_desc_cache, capacity, 6639 SPLIT_DESC_CACHE_MIN_NR_OBJECTS); 6640 if (r) 6641 return r; 6642 6643 r = kvm_mmu_topup_memory_cache(&kvm->arch.split_page_header_cache, 1); 6644 if (r) 6645 return r; 6646 6647 return kvm_mmu_topup_memory_cache(&kvm->arch.split_shadow_page_cache, 1); 6648 } 6649 6650 static struct kvm_mmu_page *shadow_mmu_get_sp_for_split(struct kvm *kvm, u64 *huge_sptep) 6651 { 6652 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); 6653 struct shadow_page_caches caches = {}; 6654 union kvm_mmu_page_role role; 6655 unsigned int access; 6656 gfn_t gfn; 6657 6658 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep)); 6659 access = kvm_mmu_page_get_access(huge_sp, spte_index(huge_sptep)); 6660 6661 /* 6662 * Note, huge page splitting always uses direct shadow pages, regardless 6663 * of whether the huge page itself is mapped by a direct or indirect 6664 * shadow page, since the huge page region itself is being directly 6665 * mapped with smaller pages. 6666 */ 6667 role = kvm_mmu_child_role(huge_sptep, /*direct=*/true, access); 6668 6669 /* Direct SPs do not require a shadowed_info_cache. */ 6670 caches.page_header_cache = &kvm->arch.split_page_header_cache; 6671 caches.shadow_page_cache = &kvm->arch.split_shadow_page_cache; 6672 6673 /* Safe to pass NULL for vCPU since requesting a direct SP. */ 6674 return __kvm_mmu_get_shadow_page(kvm, NULL, &caches, gfn, role); 6675 } 6676 6677 static void shadow_mmu_split_huge_page(struct kvm *kvm, 6678 const struct kvm_memory_slot *slot, 6679 u64 *huge_sptep) 6680 6681 { 6682 struct kvm_mmu_memory_cache *cache = &kvm->arch.split_desc_cache; 6683 u64 huge_spte = READ_ONCE(*huge_sptep); 6684 struct kvm_mmu_page *sp; 6685 bool flush = false; 6686 u64 *sptep, spte; 6687 gfn_t gfn; 6688 int index; 6689 6690 sp = shadow_mmu_get_sp_for_split(kvm, huge_sptep); 6691 6692 for (index = 0; index < SPTE_ENT_PER_PAGE; index++) { 6693 sptep = &sp->spt[index]; 6694 gfn = kvm_mmu_page_get_gfn(sp, index); 6695 6696 /* 6697 * The SP may already have populated SPTEs, e.g. if this huge 6698 * page is aliased by multiple sptes with the same access 6699 * permissions. These entries are guaranteed to map the same 6700 * gfn-to-pfn translation since the SP is direct, so no need to 6701 * modify them. 6702 * 6703 * However, if a given SPTE points to a lower level page table, 6704 * that lower level page table may only be partially populated. 6705 * Installing such SPTEs would effectively unmap a potion of the 6706 * huge page. Unmapping guest memory always requires a TLB flush 6707 * since a subsequent operation on the unmapped regions would 6708 * fail to detect the need to flush. 6709 */ 6710 if (is_shadow_present_pte(*sptep)) { 6711 flush |= !is_last_spte(*sptep, sp->role.level); 6712 continue; 6713 } 6714 6715 spte = make_huge_page_split_spte(kvm, huge_spte, sp->role, index); 6716 mmu_spte_set(sptep, spte); 6717 __rmap_add(kvm, cache, slot, sptep, gfn, sp->role.access); 6718 } 6719 6720 __link_shadow_page(kvm, cache, huge_sptep, sp, flush); 6721 } 6722 6723 static int shadow_mmu_try_split_huge_page(struct kvm *kvm, 6724 const struct kvm_memory_slot *slot, 6725 u64 *huge_sptep) 6726 { 6727 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); 6728 int level, r = 0; 6729 gfn_t gfn; 6730 u64 spte; 6731 6732 /* Grab information for the tracepoint before dropping the MMU lock. */ 6733 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep)); 6734 level = huge_sp->role.level; 6735 spte = *huge_sptep; 6736 6737 if (kvm_mmu_available_pages(kvm) <= KVM_MIN_FREE_MMU_PAGES) { 6738 r = -ENOSPC; 6739 goto out; 6740 } 6741 6742 if (need_topup_split_caches_or_resched(kvm)) { 6743 write_unlock(&kvm->mmu_lock); 6744 cond_resched(); 6745 /* 6746 * If the topup succeeds, return -EAGAIN to indicate that the 6747 * rmap iterator should be restarted because the MMU lock was 6748 * dropped. 6749 */ 6750 r = topup_split_caches(kvm) ?: -EAGAIN; 6751 write_lock(&kvm->mmu_lock); 6752 goto out; 6753 } 6754 6755 shadow_mmu_split_huge_page(kvm, slot, huge_sptep); 6756 6757 out: 6758 trace_kvm_mmu_split_huge_page(gfn, spte, level, r); 6759 return r; 6760 } 6761 6762 static bool shadow_mmu_try_split_huge_pages(struct kvm *kvm, 6763 struct kvm_rmap_head *rmap_head, 6764 const struct kvm_memory_slot *slot) 6765 { 6766 struct rmap_iterator iter; 6767 struct kvm_mmu_page *sp; 6768 u64 *huge_sptep; 6769 int r; 6770 6771 restart: 6772 for_each_rmap_spte(rmap_head, &iter, huge_sptep) { 6773 sp = sptep_to_sp(huge_sptep); 6774 6775 /* TDP MMU is enabled, so rmap only contains nested MMU SPs. */ 6776 if (WARN_ON_ONCE(!sp->role.guest_mode)) 6777 continue; 6778 6779 /* The rmaps should never contain non-leaf SPTEs. */ 6780 if (WARN_ON_ONCE(!is_large_pte(*huge_sptep))) 6781 continue; 6782 6783 /* SPs with level >PG_LEVEL_4K should never by unsync. */ 6784 if (WARN_ON_ONCE(sp->unsync)) 6785 continue; 6786 6787 /* Don't bother splitting huge pages on invalid SPs. */ 6788 if (sp->role.invalid) 6789 continue; 6790 6791 r = shadow_mmu_try_split_huge_page(kvm, slot, huge_sptep); 6792 6793 /* 6794 * The split succeeded or needs to be retried because the MMU 6795 * lock was dropped. Either way, restart the iterator to get it 6796 * back into a consistent state. 6797 */ 6798 if (!r || r == -EAGAIN) 6799 goto restart; 6800 6801 /* The split failed and shouldn't be retried (e.g. -ENOMEM). */ 6802 break; 6803 } 6804 6805 return false; 6806 } 6807 6808 static void kvm_shadow_mmu_try_split_huge_pages(struct kvm *kvm, 6809 const struct kvm_memory_slot *slot, 6810 gfn_t start, gfn_t end, 6811 int target_level) 6812 { 6813 int level; 6814 6815 /* 6816 * Split huge pages starting with KVM_MAX_HUGEPAGE_LEVEL and working 6817 * down to the target level. This ensures pages are recursively split 6818 * all the way to the target level. There's no need to split pages 6819 * already at the target level. 6820 */ 6821 for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--) 6822 __walk_slot_rmaps(kvm, slot, shadow_mmu_try_split_huge_pages, 6823 level, level, start, end - 1, true, false); 6824 } 6825 6826 /* Must be called with the mmu_lock held in write-mode. */ 6827 void kvm_mmu_try_split_huge_pages(struct kvm *kvm, 6828 const struct kvm_memory_slot *memslot, 6829 u64 start, u64 end, 6830 int target_level) 6831 { 6832 if (!tdp_mmu_enabled) 6833 return; 6834 6835 if (kvm_memslots_have_rmaps(kvm)) 6836 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); 6837 6838 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, false); 6839 6840 /* 6841 * A TLB flush is unnecessary at this point for the same reasons as in 6842 * kvm_mmu_slot_try_split_huge_pages(). 6843 */ 6844 } 6845 6846 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, 6847 const struct kvm_memory_slot *memslot, 6848 int target_level) 6849 { 6850 u64 start = memslot->base_gfn; 6851 u64 end = start + memslot->npages; 6852 6853 if (!tdp_mmu_enabled) 6854 return; 6855 6856 if (kvm_memslots_have_rmaps(kvm)) { 6857 write_lock(&kvm->mmu_lock); 6858 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); 6859 write_unlock(&kvm->mmu_lock); 6860 } 6861 6862 read_lock(&kvm->mmu_lock); 6863 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true); 6864 read_unlock(&kvm->mmu_lock); 6865 6866 /* 6867 * No TLB flush is necessary here. KVM will flush TLBs after 6868 * write-protecting and/or clearing dirty on the newly split SPTEs to 6869 * ensure that guest writes are reflected in the dirty log before the 6870 * ioctl to enable dirty logging on this memslot completes. Since the 6871 * split SPTEs retain the write and dirty bits of the huge SPTE, it is 6872 * safe for KVM to decide if a TLB flush is necessary based on the split 6873 * SPTEs. 6874 */ 6875 } 6876 6877 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, 6878 struct kvm_rmap_head *rmap_head, 6879 const struct kvm_memory_slot *slot) 6880 { 6881 u64 *sptep; 6882 struct rmap_iterator iter; 6883 int need_tlb_flush = 0; 6884 struct kvm_mmu_page *sp; 6885 6886 restart: 6887 for_each_rmap_spte(rmap_head, &iter, sptep) { 6888 sp = sptep_to_sp(sptep); 6889 6890 /* 6891 * We cannot do huge page mapping for indirect shadow pages, 6892 * which are found on the last rmap (level = 1) when not using 6893 * tdp; such shadow pages are synced with the page table in 6894 * the guest, and the guest page table is using 4K page size 6895 * mapping if the indirect sp has level = 1. 6896 */ 6897 if (sp->role.direct && 6898 sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn, 6899 PG_LEVEL_NUM)) { 6900 kvm_zap_one_rmap_spte(kvm, rmap_head, sptep); 6901 6902 if (kvm_available_flush_remote_tlbs_range()) 6903 kvm_flush_remote_tlbs_sptep(kvm, sptep); 6904 else 6905 need_tlb_flush = 1; 6906 6907 goto restart; 6908 } 6909 } 6910 6911 return need_tlb_flush; 6912 } 6913 EXPORT_SYMBOL_GPL(kvm_zap_gfn_range); 6914 6915 static void kvm_rmap_zap_collapsible_sptes(struct kvm *kvm, 6916 const struct kvm_memory_slot *slot) 6917 { 6918 /* 6919 * Note, use KVM_MAX_HUGEPAGE_LEVEL - 1 since there's no need to zap 6920 * pages that are already mapped at the maximum hugepage level. 6921 */ 6922 if (walk_slot_rmaps(kvm, slot, kvm_mmu_zap_collapsible_spte, 6923 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL - 1, true)) 6924 kvm_flush_remote_tlbs_memslot(kvm, slot); 6925 } 6926 6927 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, 6928 const struct kvm_memory_slot *slot) 6929 { 6930 if (kvm_memslots_have_rmaps(kvm)) { 6931 write_lock(&kvm->mmu_lock); 6932 kvm_rmap_zap_collapsible_sptes(kvm, slot); 6933 write_unlock(&kvm->mmu_lock); 6934 } 6935 6936 if (tdp_mmu_enabled) { 6937 read_lock(&kvm->mmu_lock); 6938 kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot); 6939 read_unlock(&kvm->mmu_lock); 6940 } 6941 } 6942 6943 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 6944 const struct kvm_memory_slot *memslot) 6945 { 6946 if (kvm_memslots_have_rmaps(kvm)) { 6947 write_lock(&kvm->mmu_lock); 6948 /* 6949 * Clear dirty bits only on 4k SPTEs since the legacy MMU only 6950 * support dirty logging at a 4k granularity. 6951 */ 6952 walk_slot_rmaps_4k(kvm, memslot, __rmap_clear_dirty, false); 6953 write_unlock(&kvm->mmu_lock); 6954 } 6955 6956 if (tdp_mmu_enabled) { 6957 read_lock(&kvm->mmu_lock); 6958 kvm_tdp_mmu_clear_dirty_slot(kvm, memslot); 6959 read_unlock(&kvm->mmu_lock); 6960 } 6961 6962 /* 6963 * The caller will flush the TLBs after this function returns. 6964 * 6965 * It's also safe to flush TLBs out of mmu lock here as currently this 6966 * function is only used for dirty logging, in which case flushing TLB 6967 * out of mmu lock also guarantees no dirty pages will be lost in 6968 * dirty_bitmap. 6969 */ 6970 } 6971 6972 static void kvm_mmu_zap_all(struct kvm *kvm) 6973 { 6974 struct kvm_mmu_page *sp, *node; 6975 LIST_HEAD(invalid_list); 6976 int ign; 6977 6978 write_lock(&kvm->mmu_lock); 6979 restart: 6980 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) { 6981 if (WARN_ON_ONCE(sp->role.invalid)) 6982 continue; 6983 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign)) 6984 goto restart; 6985 if (cond_resched_rwlock_write(&kvm->mmu_lock)) 6986 goto restart; 6987 } 6988 6989 kvm_mmu_commit_zap_page(kvm, &invalid_list); 6990 6991 if (tdp_mmu_enabled) 6992 kvm_tdp_mmu_zap_all(kvm); 6993 6994 write_unlock(&kvm->mmu_lock); 6995 } 6996 6997 void kvm_arch_flush_shadow_all(struct kvm *kvm) 6998 { 6999 kvm_mmu_zap_all(kvm); 7000 } 7001 7002 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 7003 struct kvm_memory_slot *slot) 7004 { 7005 kvm_mmu_zap_all_fast(kvm); 7006 } 7007 7008 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen) 7009 { 7010 WARN_ON_ONCE(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 7011 7012 gen &= MMIO_SPTE_GEN_MASK; 7013 7014 /* 7015 * Generation numbers are incremented in multiples of the number of 7016 * address spaces in order to provide unique generations across all 7017 * address spaces. Strip what is effectively the address space 7018 * modifier prior to checking for a wrap of the MMIO generation so 7019 * that a wrap in any address space is detected. 7020 */ 7021 gen &= ~((u64)kvm_arch_nr_memslot_as_ids(kvm) - 1); 7022 7023 /* 7024 * The very rare case: if the MMIO generation number has wrapped, 7025 * zap all shadow pages. 7026 */ 7027 if (unlikely(gen == 0)) { 7028 kvm_debug_ratelimited("zapping shadow pages for mmio generation wraparound\n"); 7029 kvm_mmu_zap_all_fast(kvm); 7030 } 7031 } 7032 7033 static unsigned long mmu_shrink_scan(struct shrinker *shrink, 7034 struct shrink_control *sc) 7035 { 7036 struct kvm *kvm; 7037 int nr_to_scan = sc->nr_to_scan; 7038 unsigned long freed = 0; 7039 7040 mutex_lock(&kvm_lock); 7041 7042 list_for_each_entry(kvm, &vm_list, vm_list) { 7043 int idx; 7044 7045 /* 7046 * Never scan more than sc->nr_to_scan VM instances. 7047 * Will not hit this condition practically since we do not try 7048 * to shrink more than one VM and it is very unlikely to see 7049 * !n_used_mmu_pages so many times. 7050 */ 7051 if (!nr_to_scan--) 7052 break; 7053 /* 7054 * n_used_mmu_pages is accessed without holding kvm->mmu_lock 7055 * here. We may skip a VM instance errorneosly, but we do not 7056 * want to shrink a VM that only started to populate its MMU 7057 * anyway. 7058 */ 7059 if (!kvm->arch.n_used_mmu_pages && 7060 !kvm_has_zapped_obsolete_pages(kvm)) 7061 continue; 7062 7063 idx = srcu_read_lock(&kvm->srcu); 7064 write_lock(&kvm->mmu_lock); 7065 7066 if (kvm_has_zapped_obsolete_pages(kvm)) { 7067 kvm_mmu_commit_zap_page(kvm, 7068 &kvm->arch.zapped_obsolete_pages); 7069 goto unlock; 7070 } 7071 7072 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan); 7073 7074 unlock: 7075 write_unlock(&kvm->mmu_lock); 7076 srcu_read_unlock(&kvm->srcu, idx); 7077 7078 /* 7079 * unfair on small ones 7080 * per-vm shrinkers cry out 7081 * sadness comes quickly 7082 */ 7083 list_move_tail(&kvm->vm_list, &vm_list); 7084 break; 7085 } 7086 7087 mutex_unlock(&kvm_lock); 7088 return freed; 7089 } 7090 7091 static unsigned long mmu_shrink_count(struct shrinker *shrink, 7092 struct shrink_control *sc) 7093 { 7094 return percpu_counter_read_positive(&kvm_total_used_mmu_pages); 7095 } 7096 7097 static struct shrinker *mmu_shrinker; 7098 7099 static void mmu_destroy_caches(void) 7100 { 7101 kmem_cache_destroy(pte_list_desc_cache); 7102 kmem_cache_destroy(mmu_page_header_cache); 7103 } 7104 7105 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp) 7106 { 7107 if (nx_hugepage_mitigation_hard_disabled) 7108 return sysfs_emit(buffer, "never\n"); 7109 7110 return param_get_bool(buffer, kp); 7111 } 7112 7113 static bool get_nx_auto_mode(void) 7114 { 7115 /* Return true when CPU has the bug, and mitigations are ON */ 7116 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off(); 7117 } 7118 7119 static void __set_nx_huge_pages(bool val) 7120 { 7121 nx_huge_pages = itlb_multihit_kvm_mitigation = val; 7122 } 7123 7124 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp) 7125 { 7126 bool old_val = nx_huge_pages; 7127 bool new_val; 7128 7129 if (nx_hugepage_mitigation_hard_disabled) 7130 return -EPERM; 7131 7132 /* In "auto" mode deploy workaround only if CPU has the bug. */ 7133 if (sysfs_streq(val, "off")) { 7134 new_val = 0; 7135 } else if (sysfs_streq(val, "force")) { 7136 new_val = 1; 7137 } else if (sysfs_streq(val, "auto")) { 7138 new_val = get_nx_auto_mode(); 7139 } else if (sysfs_streq(val, "never")) { 7140 new_val = 0; 7141 7142 mutex_lock(&kvm_lock); 7143 if (!list_empty(&vm_list)) { 7144 mutex_unlock(&kvm_lock); 7145 return -EBUSY; 7146 } 7147 nx_hugepage_mitigation_hard_disabled = true; 7148 mutex_unlock(&kvm_lock); 7149 } else if (kstrtobool(val, &new_val) < 0) { 7150 return -EINVAL; 7151 } 7152 7153 __set_nx_huge_pages(new_val); 7154 7155 if (new_val != old_val) { 7156 struct kvm *kvm; 7157 7158 mutex_lock(&kvm_lock); 7159 7160 list_for_each_entry(kvm, &vm_list, vm_list) { 7161 mutex_lock(&kvm->slots_lock); 7162 kvm_mmu_zap_all_fast(kvm); 7163 mutex_unlock(&kvm->slots_lock); 7164 7165 wake_up_process(kvm->arch.nx_huge_page_recovery_thread); 7166 } 7167 mutex_unlock(&kvm_lock); 7168 } 7169 7170 return 0; 7171 } 7172 7173 /* 7174 * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as 7175 * its default value of -1 is technically undefined behavior for a boolean. 7176 * Forward the module init call to SPTE code so that it too can handle module 7177 * params that need to be resolved/snapshot. 7178 */ 7179 void __init kvm_mmu_x86_module_init(void) 7180 { 7181 if (nx_huge_pages == -1) 7182 __set_nx_huge_pages(get_nx_auto_mode()); 7183 7184 /* 7185 * Snapshot userspace's desire to enable the TDP MMU. Whether or not the 7186 * TDP MMU is actually enabled is determined in kvm_configure_mmu() 7187 * when the vendor module is loaded. 7188 */ 7189 tdp_mmu_allowed = tdp_mmu_enabled; 7190 7191 kvm_mmu_spte_module_init(); 7192 } 7193 7194 /* 7195 * The bulk of the MMU initialization is deferred until the vendor module is 7196 * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need 7197 * to be reset when a potentially different vendor module is loaded. 7198 */ 7199 int kvm_mmu_vendor_module_init(void) 7200 { 7201 int ret = -ENOMEM; 7202 7203 /* 7204 * MMU roles use union aliasing which is, generally speaking, an 7205 * undefined behavior. However, we supposedly know how compilers behave 7206 * and the current status quo is unlikely to change. Guardians below are 7207 * supposed to let us know if the assumption becomes false. 7208 */ 7209 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32)); 7210 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32)); 7211 BUILD_BUG_ON(sizeof(union kvm_cpu_role) != sizeof(u64)); 7212 7213 kvm_mmu_reset_all_pte_masks(); 7214 7215 pte_list_desc_cache = KMEM_CACHE(pte_list_desc, SLAB_ACCOUNT); 7216 if (!pte_list_desc_cache) 7217 goto out; 7218 7219 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", 7220 sizeof(struct kvm_mmu_page), 7221 0, SLAB_ACCOUNT, NULL); 7222 if (!mmu_page_header_cache) 7223 goto out; 7224 7225 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL)) 7226 goto out; 7227 7228 mmu_shrinker = shrinker_alloc(0, "x86-mmu"); 7229 if (!mmu_shrinker) 7230 goto out_shrinker; 7231 7232 mmu_shrinker->count_objects = mmu_shrink_count; 7233 mmu_shrinker->scan_objects = mmu_shrink_scan; 7234 mmu_shrinker->seeks = DEFAULT_SEEKS * 10; 7235 7236 shrinker_register(mmu_shrinker); 7237 7238 return 0; 7239 7240 out_shrinker: 7241 percpu_counter_destroy(&kvm_total_used_mmu_pages); 7242 out: 7243 mmu_destroy_caches(); 7244 return ret; 7245 } 7246 7247 void kvm_mmu_destroy(struct kvm_vcpu *vcpu) 7248 { 7249 kvm_mmu_unload(vcpu); 7250 free_mmu_pages(&vcpu->arch.root_mmu); 7251 free_mmu_pages(&vcpu->arch.guest_mmu); 7252 mmu_free_memory_caches(vcpu); 7253 } 7254 7255 void kvm_mmu_vendor_module_exit(void) 7256 { 7257 mmu_destroy_caches(); 7258 percpu_counter_destroy(&kvm_total_used_mmu_pages); 7259 shrinker_free(mmu_shrinker); 7260 } 7261 7262 /* 7263 * Calculate the effective recovery period, accounting for '0' meaning "let KVM 7264 * select a halving time of 1 hour". Returns true if recovery is enabled. 7265 */ 7266 static bool calc_nx_huge_pages_recovery_period(uint *period) 7267 { 7268 /* 7269 * Use READ_ONCE to get the params, this may be called outside of the 7270 * param setters, e.g. by the kthread to compute its next timeout. 7271 */ 7272 bool enabled = READ_ONCE(nx_huge_pages); 7273 uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 7274 7275 if (!enabled || !ratio) 7276 return false; 7277 7278 *period = READ_ONCE(nx_huge_pages_recovery_period_ms); 7279 if (!*period) { 7280 /* Make sure the period is not less than one second. */ 7281 ratio = min(ratio, 3600u); 7282 *period = 60 * 60 * 1000 / ratio; 7283 } 7284 return true; 7285 } 7286 7287 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp) 7288 { 7289 bool was_recovery_enabled, is_recovery_enabled; 7290 uint old_period, new_period; 7291 int err; 7292 7293 if (nx_hugepage_mitigation_hard_disabled) 7294 return -EPERM; 7295 7296 was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period); 7297 7298 err = param_set_uint(val, kp); 7299 if (err) 7300 return err; 7301 7302 is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period); 7303 7304 if (is_recovery_enabled && 7305 (!was_recovery_enabled || old_period > new_period)) { 7306 struct kvm *kvm; 7307 7308 mutex_lock(&kvm_lock); 7309 7310 list_for_each_entry(kvm, &vm_list, vm_list) 7311 wake_up_process(kvm->arch.nx_huge_page_recovery_thread); 7312 7313 mutex_unlock(&kvm_lock); 7314 } 7315 7316 return err; 7317 } 7318 7319 static void kvm_recover_nx_huge_pages(struct kvm *kvm) 7320 { 7321 unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits; 7322 struct kvm_memory_slot *slot; 7323 int rcu_idx; 7324 struct kvm_mmu_page *sp; 7325 unsigned int ratio; 7326 LIST_HEAD(invalid_list); 7327 bool flush = false; 7328 ulong to_zap; 7329 7330 rcu_idx = srcu_read_lock(&kvm->srcu); 7331 write_lock(&kvm->mmu_lock); 7332 7333 /* 7334 * Zapping TDP MMU shadow pages, including the remote TLB flush, must 7335 * be done under RCU protection, because the pages are freed via RCU 7336 * callback. 7337 */ 7338 rcu_read_lock(); 7339 7340 ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 7341 to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0; 7342 for ( ; to_zap; --to_zap) { 7343 if (list_empty(&kvm->arch.possible_nx_huge_pages)) 7344 break; 7345 7346 /* 7347 * We use a separate list instead of just using active_mmu_pages 7348 * because the number of shadow pages that be replaced with an 7349 * NX huge page is expected to be relatively small compared to 7350 * the total number of shadow pages. And because the TDP MMU 7351 * doesn't use active_mmu_pages. 7352 */ 7353 sp = list_first_entry(&kvm->arch.possible_nx_huge_pages, 7354 struct kvm_mmu_page, 7355 possible_nx_huge_page_link); 7356 WARN_ON_ONCE(!sp->nx_huge_page_disallowed); 7357 WARN_ON_ONCE(!sp->role.direct); 7358 7359 /* 7360 * Unaccount and do not attempt to recover any NX Huge Pages 7361 * that are being dirty tracked, as they would just be faulted 7362 * back in as 4KiB pages. The NX Huge Pages in this slot will be 7363 * recovered, along with all the other huge pages in the slot, 7364 * when dirty logging is disabled. 7365 * 7366 * Since gfn_to_memslot() is relatively expensive, it helps to 7367 * skip it if it the test cannot possibly return true. On the 7368 * other hand, if any memslot has logging enabled, chances are 7369 * good that all of them do, in which case unaccount_nx_huge_page() 7370 * is much cheaper than zapping the page. 7371 * 7372 * If a memslot update is in progress, reading an incorrect value 7373 * of kvm->nr_memslots_dirty_logging is not a problem: if it is 7374 * becoming zero, gfn_to_memslot() will be done unnecessarily; if 7375 * it is becoming nonzero, the page will be zapped unnecessarily. 7376 * Either way, this only affects efficiency in racy situations, 7377 * and not correctness. 7378 */ 7379 slot = NULL; 7380 if (atomic_read(&kvm->nr_memslots_dirty_logging)) { 7381 struct kvm_memslots *slots; 7382 7383 slots = kvm_memslots_for_spte_role(kvm, sp->role); 7384 slot = __gfn_to_memslot(slots, sp->gfn); 7385 WARN_ON_ONCE(!slot); 7386 } 7387 7388 if (slot && kvm_slot_dirty_track_enabled(slot)) 7389 unaccount_nx_huge_page(kvm, sp); 7390 else if (is_tdp_mmu_page(sp)) 7391 flush |= kvm_tdp_mmu_zap_sp(kvm, sp); 7392 else 7393 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 7394 WARN_ON_ONCE(sp->nx_huge_page_disallowed); 7395 7396 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 7397 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7398 rcu_read_unlock(); 7399 7400 cond_resched_rwlock_write(&kvm->mmu_lock); 7401 flush = false; 7402 7403 rcu_read_lock(); 7404 } 7405 } 7406 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7407 7408 rcu_read_unlock(); 7409 7410 write_unlock(&kvm->mmu_lock); 7411 srcu_read_unlock(&kvm->srcu, rcu_idx); 7412 } 7413 7414 static long get_nx_huge_page_recovery_timeout(u64 start_time) 7415 { 7416 bool enabled; 7417 uint period; 7418 7419 enabled = calc_nx_huge_pages_recovery_period(&period); 7420 7421 return enabled ? start_time + msecs_to_jiffies(period) - get_jiffies_64() 7422 : MAX_SCHEDULE_TIMEOUT; 7423 } 7424 7425 static int kvm_nx_huge_page_recovery_worker(struct kvm *kvm, uintptr_t data) 7426 { 7427 u64 start_time; 7428 long remaining_time; 7429 7430 while (true) { 7431 start_time = get_jiffies_64(); 7432 remaining_time = get_nx_huge_page_recovery_timeout(start_time); 7433 7434 set_current_state(TASK_INTERRUPTIBLE); 7435 while (!kthread_should_stop() && remaining_time > 0) { 7436 schedule_timeout(remaining_time); 7437 remaining_time = get_nx_huge_page_recovery_timeout(start_time); 7438 set_current_state(TASK_INTERRUPTIBLE); 7439 } 7440 7441 set_current_state(TASK_RUNNING); 7442 7443 if (kthread_should_stop()) 7444 return 0; 7445 7446 kvm_recover_nx_huge_pages(kvm); 7447 } 7448 } 7449 7450 int kvm_mmu_post_init_vm(struct kvm *kvm) 7451 { 7452 int err; 7453 7454 if (nx_hugepage_mitigation_hard_disabled) 7455 return 0; 7456 7457 err = kvm_vm_create_worker_thread(kvm, kvm_nx_huge_page_recovery_worker, 0, 7458 "kvm-nx-lpage-recovery", 7459 &kvm->arch.nx_huge_page_recovery_thread); 7460 if (!err) 7461 kthread_unpark(kvm->arch.nx_huge_page_recovery_thread); 7462 7463 return err; 7464 } 7465 7466 void kvm_mmu_pre_destroy_vm(struct kvm *kvm) 7467 { 7468 if (kvm->arch.nx_huge_page_recovery_thread) 7469 kthread_stop(kvm->arch.nx_huge_page_recovery_thread); 7470 } 7471 7472 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 7473 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm, 7474 struct kvm_gfn_range *range) 7475 { 7476 /* 7477 * Zap SPTEs even if the slot can't be mapped PRIVATE. KVM x86 only 7478 * supports KVM_MEMORY_ATTRIBUTE_PRIVATE, and so it *seems* like KVM 7479 * can simply ignore such slots. But if userspace is making memory 7480 * PRIVATE, then KVM must prevent the guest from accessing the memory 7481 * as shared. And if userspace is making memory SHARED and this point 7482 * is reached, then at least one page within the range was previously 7483 * PRIVATE, i.e. the slot's possible hugepage ranges are changing. 7484 * Zapping SPTEs in this case ensures KVM will reassess whether or not 7485 * a hugepage can be used for affected ranges. 7486 */ 7487 if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm))) 7488 return false; 7489 7490 return kvm_unmap_gfn_range(kvm, range); 7491 } 7492 7493 static bool hugepage_test_mixed(struct kvm_memory_slot *slot, gfn_t gfn, 7494 int level) 7495 { 7496 return lpage_info_slot(gfn, slot, level)->disallow_lpage & KVM_LPAGE_MIXED_FLAG; 7497 } 7498 7499 static void hugepage_clear_mixed(struct kvm_memory_slot *slot, gfn_t gfn, 7500 int level) 7501 { 7502 lpage_info_slot(gfn, slot, level)->disallow_lpage &= ~KVM_LPAGE_MIXED_FLAG; 7503 } 7504 7505 static void hugepage_set_mixed(struct kvm_memory_slot *slot, gfn_t gfn, 7506 int level) 7507 { 7508 lpage_info_slot(gfn, slot, level)->disallow_lpage |= KVM_LPAGE_MIXED_FLAG; 7509 } 7510 7511 static bool hugepage_has_attrs(struct kvm *kvm, struct kvm_memory_slot *slot, 7512 gfn_t gfn, int level, unsigned long attrs) 7513 { 7514 const unsigned long start = gfn; 7515 const unsigned long end = start + KVM_PAGES_PER_HPAGE(level); 7516 7517 if (level == PG_LEVEL_2M) 7518 return kvm_range_has_memory_attributes(kvm, start, end, ~0, attrs); 7519 7520 for (gfn = start; gfn < end; gfn += KVM_PAGES_PER_HPAGE(level - 1)) { 7521 if (hugepage_test_mixed(slot, gfn, level - 1) || 7522 attrs != kvm_get_memory_attributes(kvm, gfn)) 7523 return false; 7524 } 7525 return true; 7526 } 7527 7528 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm, 7529 struct kvm_gfn_range *range) 7530 { 7531 unsigned long attrs = range->arg.attributes; 7532 struct kvm_memory_slot *slot = range->slot; 7533 int level; 7534 7535 lockdep_assert_held_write(&kvm->mmu_lock); 7536 lockdep_assert_held(&kvm->slots_lock); 7537 7538 /* 7539 * Calculate which ranges can be mapped with hugepages even if the slot 7540 * can't map memory PRIVATE. KVM mustn't create a SHARED hugepage over 7541 * a range that has PRIVATE GFNs, and conversely converting a range to 7542 * SHARED may now allow hugepages. 7543 */ 7544 if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm))) 7545 return false; 7546 7547 /* 7548 * The sequence matters here: upper levels consume the result of lower 7549 * level's scanning. 7550 */ 7551 for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) { 7552 gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level); 7553 gfn_t gfn = gfn_round_for_level(range->start, level); 7554 7555 /* Process the head page if it straddles the range. */ 7556 if (gfn != range->start || gfn + nr_pages > range->end) { 7557 /* 7558 * Skip mixed tracking if the aligned gfn isn't covered 7559 * by the memslot, KVM can't use a hugepage due to the 7560 * misaligned address regardless of memory attributes. 7561 */ 7562 if (gfn >= slot->base_gfn && 7563 gfn + nr_pages <= slot->base_gfn + slot->npages) { 7564 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs)) 7565 hugepage_clear_mixed(slot, gfn, level); 7566 else 7567 hugepage_set_mixed(slot, gfn, level); 7568 } 7569 gfn += nr_pages; 7570 } 7571 7572 /* 7573 * Pages entirely covered by the range are guaranteed to have 7574 * only the attributes which were just set. 7575 */ 7576 for ( ; gfn + nr_pages <= range->end; gfn += nr_pages) 7577 hugepage_clear_mixed(slot, gfn, level); 7578 7579 /* 7580 * Process the last tail page if it straddles the range and is 7581 * contained by the memslot. Like the head page, KVM can't 7582 * create a hugepage if the slot size is misaligned. 7583 */ 7584 if (gfn < range->end && 7585 (gfn + nr_pages) <= (slot->base_gfn + slot->npages)) { 7586 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs)) 7587 hugepage_clear_mixed(slot, gfn, level); 7588 else 7589 hugepage_set_mixed(slot, gfn, level); 7590 } 7591 } 7592 return false; 7593 } 7594 7595 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm, 7596 struct kvm_memory_slot *slot) 7597 { 7598 int level; 7599 7600 if (!kvm_arch_has_private_mem(kvm)) 7601 return; 7602 7603 for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) { 7604 /* 7605 * Don't bother tracking mixed attributes for pages that can't 7606 * be huge due to alignment, i.e. process only pages that are 7607 * entirely contained by the memslot. 7608 */ 7609 gfn_t end = gfn_round_for_level(slot->base_gfn + slot->npages, level); 7610 gfn_t start = gfn_round_for_level(slot->base_gfn, level); 7611 gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level); 7612 gfn_t gfn; 7613 7614 if (start < slot->base_gfn) 7615 start += nr_pages; 7616 7617 /* 7618 * Unlike setting attributes, every potential hugepage needs to 7619 * be manually checked as the attributes may already be mixed. 7620 */ 7621 for (gfn = start; gfn < end; gfn += nr_pages) { 7622 unsigned long attrs = kvm_get_memory_attributes(kvm, gfn); 7623 7624 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs)) 7625 hugepage_clear_mixed(slot, gfn, level); 7626 else 7627 hugepage_set_mixed(slot, gfn, level); 7628 } 7629 } 7630 } 7631 #endif 7632