1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * MMU support 9 * 10 * Copyright (C) 2006 Qumranet, Inc. 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 12 * 13 * Authors: 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Avi Kivity <avi@qumranet.com> 16 */ 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include "irq.h" 20 #include "ioapic.h" 21 #include "mmu.h" 22 #include "mmu_internal.h" 23 #include "tdp_mmu.h" 24 #include "x86.h" 25 #include "kvm_cache_regs.h" 26 #include "smm.h" 27 #include "kvm_emulate.h" 28 #include "page_track.h" 29 #include "cpuid.h" 30 #include "spte.h" 31 32 #include <linux/kvm_host.h> 33 #include <linux/types.h> 34 #include <linux/string.h> 35 #include <linux/mm.h> 36 #include <linux/highmem.h> 37 #include <linux/moduleparam.h> 38 #include <linux/export.h> 39 #include <linux/swap.h> 40 #include <linux/hugetlb.h> 41 #include <linux/compiler.h> 42 #include <linux/srcu.h> 43 #include <linux/slab.h> 44 #include <linux/sched/signal.h> 45 #include <linux/uaccess.h> 46 #include <linux/hash.h> 47 #include <linux/kern_levels.h> 48 #include <linux/kstrtox.h> 49 #include <linux/kthread.h> 50 #include <linux/wordpart.h> 51 52 #include <asm/page.h> 53 #include <asm/memtype.h> 54 #include <asm/cmpxchg.h> 55 #include <asm/io.h> 56 #include <asm/set_memory.h> 57 #include <asm/spec-ctrl.h> 58 #include <asm/vmx.h> 59 60 #include "trace.h" 61 62 static bool nx_hugepage_mitigation_hard_disabled; 63 64 int __read_mostly nx_huge_pages = -1; 65 static uint __read_mostly nx_huge_pages_recovery_period_ms; 66 #ifdef CONFIG_PREEMPT_RT 67 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */ 68 static uint __read_mostly nx_huge_pages_recovery_ratio = 0; 69 #else 70 static uint __read_mostly nx_huge_pages_recovery_ratio = 60; 71 #endif 72 73 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp); 74 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp); 75 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp); 76 77 static const struct kernel_param_ops nx_huge_pages_ops = { 78 .set = set_nx_huge_pages, 79 .get = get_nx_huge_pages, 80 }; 81 82 static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = { 83 .set = set_nx_huge_pages_recovery_param, 84 .get = param_get_uint, 85 }; 86 87 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644); 88 __MODULE_PARM_TYPE(nx_huge_pages, "bool"); 89 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops, 90 &nx_huge_pages_recovery_ratio, 0644); 91 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint"); 92 module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops, 93 &nx_huge_pages_recovery_period_ms, 0644); 94 __MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint"); 95 96 static bool __read_mostly force_flush_and_sync_on_reuse; 97 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644); 98 99 /* 100 * When setting this variable to true it enables Two-Dimensional-Paging 101 * where the hardware walks 2 page tables: 102 * 1. the guest-virtual to guest-physical 103 * 2. while doing 1. it walks guest-physical to host-physical 104 * If the hardware supports that we don't need to do shadow paging. 105 */ 106 bool tdp_enabled = false; 107 108 static bool __ro_after_init tdp_mmu_allowed; 109 110 #ifdef CONFIG_X86_64 111 bool __read_mostly tdp_mmu_enabled = true; 112 module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0444); 113 EXPORT_SYMBOL_GPL(tdp_mmu_enabled); 114 #endif 115 116 static int max_huge_page_level __read_mostly; 117 static int tdp_root_level __read_mostly; 118 static int max_tdp_level __read_mostly; 119 120 #define PTE_PREFETCH_NUM 8 121 122 #include <trace/events/kvm.h> 123 124 /* make pte_list_desc fit well in cache lines */ 125 #define PTE_LIST_EXT 14 126 127 /* 128 * struct pte_list_desc is the core data structure used to implement a custom 129 * list for tracking a set of related SPTEs, e.g. all the SPTEs that map a 130 * given GFN when used in the context of rmaps. Using a custom list allows KVM 131 * to optimize for the common case where many GFNs will have at most a handful 132 * of SPTEs pointing at them, i.e. allows packing multiple SPTEs into a small 133 * memory footprint, which in turn improves runtime performance by exploiting 134 * cache locality. 135 * 136 * A list is comprised of one or more pte_list_desc objects (descriptors). 137 * Each individual descriptor stores up to PTE_LIST_EXT SPTEs. If a descriptor 138 * is full and a new SPTEs needs to be added, a new descriptor is allocated and 139 * becomes the head of the list. This means that by definitions, all tail 140 * descriptors are full. 141 * 142 * Note, the meta data fields are deliberately placed at the start of the 143 * structure to optimize the cacheline layout; accessing the descriptor will 144 * touch only a single cacheline so long as @spte_count<=6 (or if only the 145 * descriptors metadata is accessed). 146 */ 147 struct pte_list_desc { 148 struct pte_list_desc *more; 149 /* The number of PTEs stored in _this_ descriptor. */ 150 u32 spte_count; 151 /* The number of PTEs stored in all tails of this descriptor. */ 152 u32 tail_count; 153 u64 *sptes[PTE_LIST_EXT]; 154 }; 155 156 struct kvm_shadow_walk_iterator { 157 u64 addr; 158 hpa_t shadow_addr; 159 u64 *sptep; 160 int level; 161 unsigned index; 162 }; 163 164 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \ 165 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \ 166 (_root), (_addr)); \ 167 shadow_walk_okay(&(_walker)); \ 168 shadow_walk_next(&(_walker))) 169 170 #define for_each_shadow_entry(_vcpu, _addr, _walker) \ 171 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 172 shadow_walk_okay(&(_walker)); \ 173 shadow_walk_next(&(_walker))) 174 175 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \ 176 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 177 shadow_walk_okay(&(_walker)) && \ 178 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \ 179 __shadow_walk_next(&(_walker), spte)) 180 181 static struct kmem_cache *pte_list_desc_cache; 182 struct kmem_cache *mmu_page_header_cache; 183 184 static void mmu_spte_set(u64 *sptep, u64 spte); 185 186 struct kvm_mmu_role_regs { 187 const unsigned long cr0; 188 const unsigned long cr4; 189 const u64 efer; 190 }; 191 192 #define CREATE_TRACE_POINTS 193 #include "mmutrace.h" 194 195 /* 196 * Yes, lot's of underscores. They're a hint that you probably shouldn't be 197 * reading from the role_regs. Once the root_role is constructed, it becomes 198 * the single source of truth for the MMU's state. 199 */ 200 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag) \ 201 static inline bool __maybe_unused \ 202 ____is_##reg##_##name(const struct kvm_mmu_role_regs *regs) \ 203 { \ 204 return !!(regs->reg & flag); \ 205 } 206 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG); 207 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP); 208 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE); 209 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE); 210 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP); 211 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP); 212 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE); 213 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57); 214 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX); 215 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA); 216 217 /* 218 * The MMU itself (with a valid role) is the single source of truth for the 219 * MMU. Do not use the regs used to build the MMU/role, nor the vCPU. The 220 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1, 221 * and the vCPU may be incorrect/irrelevant. 222 */ 223 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name) \ 224 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu) \ 225 { \ 226 return !!(mmu->cpu_role. base_or_ext . reg##_##name); \ 227 } 228 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp); 229 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pse); 230 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smep); 231 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smap); 232 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pke); 233 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, la57); 234 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx); 235 BUILD_MMU_ROLE_ACCESSOR(ext, efer, lma); 236 237 static inline bool is_cr0_pg(struct kvm_mmu *mmu) 238 { 239 return mmu->cpu_role.base.level > 0; 240 } 241 242 static inline bool is_cr4_pae(struct kvm_mmu *mmu) 243 { 244 return !mmu->cpu_role.base.has_4_byte_gpte; 245 } 246 247 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu) 248 { 249 struct kvm_mmu_role_regs regs = { 250 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS), 251 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS), 252 .efer = vcpu->arch.efer, 253 }; 254 255 return regs; 256 } 257 258 static unsigned long get_guest_cr3(struct kvm_vcpu *vcpu) 259 { 260 return kvm_read_cr3(vcpu); 261 } 262 263 static inline unsigned long kvm_mmu_get_guest_pgd(struct kvm_vcpu *vcpu, 264 struct kvm_mmu *mmu) 265 { 266 if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && mmu->get_guest_pgd == get_guest_cr3) 267 return kvm_read_cr3(vcpu); 268 269 return mmu->get_guest_pgd(vcpu); 270 } 271 272 static inline bool kvm_available_flush_remote_tlbs_range(void) 273 { 274 #if IS_ENABLED(CONFIG_HYPERV) 275 return kvm_x86_ops.flush_remote_tlbs_range; 276 #else 277 return false; 278 #endif 279 } 280 281 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index); 282 283 /* Flush the range of guest memory mapped by the given SPTE. */ 284 static void kvm_flush_remote_tlbs_sptep(struct kvm *kvm, u64 *sptep) 285 { 286 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 287 gfn_t gfn = kvm_mmu_page_get_gfn(sp, spte_index(sptep)); 288 289 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level); 290 } 291 292 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn, 293 unsigned int access) 294 { 295 u64 spte = make_mmio_spte(vcpu, gfn, access); 296 297 trace_mark_mmio_spte(sptep, gfn, spte); 298 mmu_spte_set(sptep, spte); 299 } 300 301 static gfn_t get_mmio_spte_gfn(u64 spte) 302 { 303 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask; 304 305 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN) 306 & shadow_nonpresent_or_rsvd_mask; 307 308 return gpa >> PAGE_SHIFT; 309 } 310 311 static unsigned get_mmio_spte_access(u64 spte) 312 { 313 return spte & shadow_mmio_access_mask; 314 } 315 316 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte) 317 { 318 u64 kvm_gen, spte_gen, gen; 319 320 gen = kvm_vcpu_memslots(vcpu)->generation; 321 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS)) 322 return false; 323 324 kvm_gen = gen & MMIO_SPTE_GEN_MASK; 325 spte_gen = get_mmio_spte_generation(spte); 326 327 trace_check_mmio_spte(spte, kvm_gen, spte_gen); 328 return likely(kvm_gen == spte_gen); 329 } 330 331 static int is_cpuid_PSE36(void) 332 { 333 return 1; 334 } 335 336 #ifdef CONFIG_X86_64 337 static void __set_spte(u64 *sptep, u64 spte) 338 { 339 KVM_MMU_WARN_ON(is_ept_ve_possible(spte)); 340 WRITE_ONCE(*sptep, spte); 341 } 342 343 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 344 { 345 KVM_MMU_WARN_ON(is_ept_ve_possible(spte)); 346 WRITE_ONCE(*sptep, spte); 347 } 348 349 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 350 { 351 KVM_MMU_WARN_ON(is_ept_ve_possible(spte)); 352 return xchg(sptep, spte); 353 } 354 355 static u64 __get_spte_lockless(u64 *sptep) 356 { 357 return READ_ONCE(*sptep); 358 } 359 #else 360 union split_spte { 361 struct { 362 u32 spte_low; 363 u32 spte_high; 364 }; 365 u64 spte; 366 }; 367 368 static void count_spte_clear(u64 *sptep, u64 spte) 369 { 370 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 371 372 if (is_shadow_present_pte(spte)) 373 return; 374 375 /* Ensure the spte is completely set before we increase the count */ 376 smp_wmb(); 377 sp->clear_spte_count++; 378 } 379 380 static void __set_spte(u64 *sptep, u64 spte) 381 { 382 union split_spte *ssptep, sspte; 383 384 ssptep = (union split_spte *)sptep; 385 sspte = (union split_spte)spte; 386 387 ssptep->spte_high = sspte.spte_high; 388 389 /* 390 * If we map the spte from nonpresent to present, We should store 391 * the high bits firstly, then set present bit, so cpu can not 392 * fetch this spte while we are setting the spte. 393 */ 394 smp_wmb(); 395 396 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 397 } 398 399 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 400 { 401 union split_spte *ssptep, sspte; 402 403 ssptep = (union split_spte *)sptep; 404 sspte = (union split_spte)spte; 405 406 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 407 408 /* 409 * If we map the spte from present to nonpresent, we should clear 410 * present bit firstly to avoid vcpu fetch the old high bits. 411 */ 412 smp_wmb(); 413 414 ssptep->spte_high = sspte.spte_high; 415 count_spte_clear(sptep, spte); 416 } 417 418 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 419 { 420 union split_spte *ssptep, sspte, orig; 421 422 ssptep = (union split_spte *)sptep; 423 sspte = (union split_spte)spte; 424 425 /* xchg acts as a barrier before the setting of the high bits */ 426 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); 427 orig.spte_high = ssptep->spte_high; 428 ssptep->spte_high = sspte.spte_high; 429 count_spte_clear(sptep, spte); 430 431 return orig.spte; 432 } 433 434 /* 435 * The idea using the light way get the spte on x86_32 guest is from 436 * gup_get_pte (mm/gup.c). 437 * 438 * An spte tlb flush may be pending, because they are coalesced and 439 * we are running out of the MMU lock. Therefore 440 * we need to protect against in-progress updates of the spte. 441 * 442 * Reading the spte while an update is in progress may get the old value 443 * for the high part of the spte. The race is fine for a present->non-present 444 * change (because the high part of the spte is ignored for non-present spte), 445 * but for a present->present change we must reread the spte. 446 * 447 * All such changes are done in two steps (present->non-present and 448 * non-present->present), hence it is enough to count the number of 449 * present->non-present updates: if it changed while reading the spte, 450 * we might have hit the race. This is done using clear_spte_count. 451 */ 452 static u64 __get_spte_lockless(u64 *sptep) 453 { 454 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 455 union split_spte spte, *orig = (union split_spte *)sptep; 456 int count; 457 458 retry: 459 count = sp->clear_spte_count; 460 smp_rmb(); 461 462 spte.spte_low = orig->spte_low; 463 smp_rmb(); 464 465 spte.spte_high = orig->spte_high; 466 smp_rmb(); 467 468 if (unlikely(spte.spte_low != orig->spte_low || 469 count != sp->clear_spte_count)) 470 goto retry; 471 472 return spte.spte; 473 } 474 #endif 475 476 /* Rules for using mmu_spte_set: 477 * Set the sptep from nonpresent to present. 478 * Note: the sptep being assigned *must* be either not present 479 * or in a state where the hardware will not attempt to update 480 * the spte. 481 */ 482 static void mmu_spte_set(u64 *sptep, u64 new_spte) 483 { 484 WARN_ON_ONCE(is_shadow_present_pte(*sptep)); 485 __set_spte(sptep, new_spte); 486 } 487 488 /* Rules for using mmu_spte_update: 489 * Update the state bits, it means the mapped pfn is not changed. 490 * 491 * Returns true if the TLB needs to be flushed 492 */ 493 static bool mmu_spte_update(u64 *sptep, u64 new_spte) 494 { 495 u64 old_spte = *sptep; 496 497 WARN_ON_ONCE(!is_shadow_present_pte(new_spte)); 498 check_spte_writable_invariants(new_spte); 499 500 if (!is_shadow_present_pte(old_spte)) { 501 mmu_spte_set(sptep, new_spte); 502 return false; 503 } 504 505 if (!spte_needs_atomic_update(old_spte)) 506 __update_clear_spte_fast(sptep, new_spte); 507 else 508 old_spte = __update_clear_spte_slow(sptep, new_spte); 509 510 WARN_ON_ONCE(!is_shadow_present_pte(old_spte) || 511 spte_to_pfn(old_spte) != spte_to_pfn(new_spte)); 512 513 return leaf_spte_change_needs_tlb_flush(old_spte, new_spte); 514 } 515 516 /* 517 * Rules for using mmu_spte_clear_track_bits: 518 * It sets the sptep from present to nonpresent, and track the 519 * state bits, it is used to clear the last level sptep. 520 * Returns the old PTE. 521 */ 522 static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep) 523 { 524 u64 old_spte = *sptep; 525 int level = sptep_to_sp(sptep)->role.level; 526 527 if (!is_shadow_present_pte(old_spte) || 528 !spte_needs_atomic_update(old_spte)) 529 __update_clear_spte_fast(sptep, SHADOW_NONPRESENT_VALUE); 530 else 531 old_spte = __update_clear_spte_slow(sptep, SHADOW_NONPRESENT_VALUE); 532 533 if (!is_shadow_present_pte(old_spte)) 534 return old_spte; 535 536 kvm_update_page_stats(kvm, level, -1); 537 return old_spte; 538 } 539 540 /* 541 * Rules for using mmu_spte_clear_no_track: 542 * Directly clear spte without caring the state bits of sptep, 543 * it is used to set the upper level spte. 544 */ 545 static void mmu_spte_clear_no_track(u64 *sptep) 546 { 547 __update_clear_spte_fast(sptep, SHADOW_NONPRESENT_VALUE); 548 } 549 550 static u64 mmu_spte_get_lockless(u64 *sptep) 551 { 552 return __get_spte_lockless(sptep); 553 } 554 555 static inline bool is_tdp_mmu_active(struct kvm_vcpu *vcpu) 556 { 557 return tdp_mmu_enabled && vcpu->arch.mmu->root_role.direct; 558 } 559 560 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) 561 { 562 if (is_tdp_mmu_active(vcpu)) { 563 kvm_tdp_mmu_walk_lockless_begin(); 564 } else { 565 /* 566 * Prevent page table teardown by making any free-er wait during 567 * kvm_flush_remote_tlbs() IPI to all active vcpus. 568 */ 569 local_irq_disable(); 570 571 /* 572 * Make sure a following spte read is not reordered ahead of the write 573 * to vcpu->mode. 574 */ 575 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); 576 } 577 } 578 579 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) 580 { 581 if (is_tdp_mmu_active(vcpu)) { 582 kvm_tdp_mmu_walk_lockless_end(); 583 } else { 584 /* 585 * Make sure the write to vcpu->mode is not reordered in front of 586 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us 587 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. 588 */ 589 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); 590 local_irq_enable(); 591 } 592 } 593 594 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect) 595 { 596 int r; 597 598 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */ 599 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, 600 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM); 601 if (r) 602 return r; 603 if (kvm_has_mirrored_tdp(vcpu->kvm)) { 604 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_external_spt_cache, 605 PT64_ROOT_MAX_LEVEL); 606 if (r) 607 return r; 608 } 609 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache, 610 PT64_ROOT_MAX_LEVEL); 611 if (r) 612 return r; 613 if (maybe_indirect) { 614 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadowed_info_cache, 615 PT64_ROOT_MAX_LEVEL); 616 if (r) 617 return r; 618 } 619 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, 620 PT64_ROOT_MAX_LEVEL); 621 } 622 623 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) 624 { 625 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache); 626 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache); 627 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadowed_info_cache); 628 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_external_spt_cache); 629 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache); 630 } 631 632 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) 633 { 634 kmem_cache_free(pte_list_desc_cache, pte_list_desc); 635 } 636 637 static bool sp_has_gptes(struct kvm_mmu_page *sp); 638 639 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) 640 { 641 if (sp->role.passthrough) 642 return sp->gfn; 643 644 if (sp->shadowed_translation) 645 return sp->shadowed_translation[index] >> PAGE_SHIFT; 646 647 return sp->gfn + (index << ((sp->role.level - 1) * SPTE_LEVEL_BITS)); 648 } 649 650 /* 651 * For leaf SPTEs, fetch the *guest* access permissions being shadowed. Note 652 * that the SPTE itself may have a more constrained access permissions that 653 * what the guest enforces. For example, a guest may create an executable 654 * huge PTE but KVM may disallow execution to mitigate iTLB multihit. 655 */ 656 static u32 kvm_mmu_page_get_access(struct kvm_mmu_page *sp, int index) 657 { 658 if (sp->shadowed_translation) 659 return sp->shadowed_translation[index] & ACC_ALL; 660 661 /* 662 * For direct MMUs (e.g. TDP or non-paging guests) or passthrough SPs, 663 * KVM is not shadowing any guest page tables, so the "guest access 664 * permissions" are just ACC_ALL. 665 * 666 * For direct SPs in indirect MMUs (shadow paging), i.e. when KVM 667 * is shadowing a guest huge page with small pages, the guest access 668 * permissions being shadowed are the access permissions of the huge 669 * page. 670 * 671 * In both cases, sp->role.access contains the correct access bits. 672 */ 673 return sp->role.access; 674 } 675 676 static void kvm_mmu_page_set_translation(struct kvm_mmu_page *sp, int index, 677 gfn_t gfn, unsigned int access) 678 { 679 if (sp->shadowed_translation) { 680 sp->shadowed_translation[index] = (gfn << PAGE_SHIFT) | access; 681 return; 682 } 683 684 WARN_ONCE(access != kvm_mmu_page_get_access(sp, index), 685 "access mismatch under %s page %llx (expected %u, got %u)\n", 686 sp->role.passthrough ? "passthrough" : "direct", 687 sp->gfn, kvm_mmu_page_get_access(sp, index), access); 688 689 WARN_ONCE(gfn != kvm_mmu_page_get_gfn(sp, index), 690 "gfn mismatch under %s page %llx (expected %llx, got %llx)\n", 691 sp->role.passthrough ? "passthrough" : "direct", 692 sp->gfn, kvm_mmu_page_get_gfn(sp, index), gfn); 693 } 694 695 static void kvm_mmu_page_set_access(struct kvm_mmu_page *sp, int index, 696 unsigned int access) 697 { 698 gfn_t gfn = kvm_mmu_page_get_gfn(sp, index); 699 700 kvm_mmu_page_set_translation(sp, index, gfn, access); 701 } 702 703 /* 704 * Return the pointer to the large page information for a given gfn, 705 * handling slots that are not large page aligned. 706 */ 707 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, 708 const struct kvm_memory_slot *slot, int level) 709 { 710 unsigned long idx; 711 712 idx = gfn_to_index(gfn, slot->base_gfn, level); 713 return &slot->arch.lpage_info[level - 2][idx]; 714 } 715 716 /* 717 * The most significant bit in disallow_lpage tracks whether or not memory 718 * attributes are mixed, i.e. not identical for all gfns at the current level. 719 * The lower order bits are used to refcount other cases where a hugepage is 720 * disallowed, e.g. if KVM has shadow a page table at the gfn. 721 */ 722 #define KVM_LPAGE_MIXED_FLAG BIT(31) 723 724 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot, 725 gfn_t gfn, int count) 726 { 727 struct kvm_lpage_info *linfo; 728 int old, i; 729 730 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 731 linfo = lpage_info_slot(gfn, slot, i); 732 733 old = linfo->disallow_lpage; 734 linfo->disallow_lpage += count; 735 WARN_ON_ONCE((old ^ linfo->disallow_lpage) & KVM_LPAGE_MIXED_FLAG); 736 } 737 } 738 739 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 740 { 741 update_gfn_disallow_lpage_count(slot, gfn, 1); 742 } 743 744 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 745 { 746 update_gfn_disallow_lpage_count(slot, gfn, -1); 747 } 748 749 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 750 { 751 struct kvm_memslots *slots; 752 struct kvm_memory_slot *slot; 753 gfn_t gfn; 754 755 kvm->arch.indirect_shadow_pages++; 756 /* 757 * Ensure indirect_shadow_pages is elevated prior to re-reading guest 758 * child PTEs in FNAME(gpte_changed), i.e. guarantee either in-flight 759 * emulated writes are visible before re-reading guest PTEs, or that 760 * an emulated write will see the elevated count and acquire mmu_lock 761 * to update SPTEs. Pairs with the smp_mb() in kvm_mmu_track_write(). 762 */ 763 smp_mb(); 764 765 gfn = sp->gfn; 766 slots = kvm_memslots_for_spte_role(kvm, sp->role); 767 slot = __gfn_to_memslot(slots, gfn); 768 769 /* the non-leaf shadow pages are keeping readonly. */ 770 if (sp->role.level > PG_LEVEL_4K) 771 return __kvm_write_track_add_gfn(kvm, slot, gfn); 772 773 kvm_mmu_gfn_disallow_lpage(slot, gfn); 774 775 if (kvm_mmu_slot_gfn_write_protect(kvm, slot, gfn, PG_LEVEL_4K)) 776 kvm_flush_remote_tlbs_gfn(kvm, gfn, PG_LEVEL_4K); 777 } 778 779 void track_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 780 { 781 /* 782 * If it's possible to replace the shadow page with an NX huge page, 783 * i.e. if the shadow page is the only thing currently preventing KVM 784 * from using a huge page, add the shadow page to the list of "to be 785 * zapped for NX recovery" pages. Note, the shadow page can already be 786 * on the list if KVM is reusing an existing shadow page, i.e. if KVM 787 * links a shadow page at multiple points. 788 */ 789 if (!list_empty(&sp->possible_nx_huge_page_link)) 790 return; 791 792 ++kvm->stat.nx_lpage_splits; 793 list_add_tail(&sp->possible_nx_huge_page_link, 794 &kvm->arch.possible_nx_huge_pages); 795 } 796 797 static void account_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp, 798 bool nx_huge_page_possible) 799 { 800 sp->nx_huge_page_disallowed = true; 801 802 if (nx_huge_page_possible) 803 track_possible_nx_huge_page(kvm, sp); 804 } 805 806 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 807 { 808 struct kvm_memslots *slots; 809 struct kvm_memory_slot *slot; 810 gfn_t gfn; 811 812 kvm->arch.indirect_shadow_pages--; 813 gfn = sp->gfn; 814 slots = kvm_memslots_for_spte_role(kvm, sp->role); 815 slot = __gfn_to_memslot(slots, gfn); 816 if (sp->role.level > PG_LEVEL_4K) 817 return __kvm_write_track_remove_gfn(kvm, slot, gfn); 818 819 kvm_mmu_gfn_allow_lpage(slot, gfn); 820 } 821 822 void untrack_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 823 { 824 if (list_empty(&sp->possible_nx_huge_page_link)) 825 return; 826 827 --kvm->stat.nx_lpage_splits; 828 list_del_init(&sp->possible_nx_huge_page_link); 829 } 830 831 static void unaccount_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 832 { 833 sp->nx_huge_page_disallowed = false; 834 835 untrack_possible_nx_huge_page(kvm, sp); 836 } 837 838 static struct kvm_memory_slot *gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, 839 gfn_t gfn, 840 bool no_dirty_log) 841 { 842 struct kvm_memory_slot *slot; 843 844 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 845 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 846 return NULL; 847 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot)) 848 return NULL; 849 850 return slot; 851 } 852 853 /* 854 * About rmap_head encoding: 855 * 856 * If the bit zero of rmap_head->val is clear, then it points to the only spte 857 * in this rmap chain. Otherwise, (rmap_head->val & ~3) points to a struct 858 * pte_list_desc containing more mappings. 859 */ 860 #define KVM_RMAP_MANY BIT(0) 861 862 /* 863 * rmaps and PTE lists are mostly protected by mmu_lock (the shadow MMU always 864 * operates with mmu_lock held for write), but rmaps can be walked without 865 * holding mmu_lock so long as the caller can tolerate SPTEs in the rmap chain 866 * being zapped/dropped _while the rmap is locked_. 867 * 868 * Other than the KVM_RMAP_LOCKED flag, modifications to rmap entries must be 869 * done while holding mmu_lock for write. This allows a task walking rmaps 870 * without holding mmu_lock to concurrently walk the same entries as a task 871 * that is holding mmu_lock but _not_ the rmap lock. Neither task will modify 872 * the rmaps, thus the walks are stable. 873 * 874 * As alluded to above, SPTEs in rmaps are _not_ protected by KVM_RMAP_LOCKED, 875 * only the rmap chains themselves are protected. E.g. holding an rmap's lock 876 * ensures all "struct pte_list_desc" fields are stable. 877 */ 878 #define KVM_RMAP_LOCKED BIT(1) 879 880 static unsigned long __kvm_rmap_lock(struct kvm_rmap_head *rmap_head) 881 { 882 unsigned long old_val, new_val; 883 884 lockdep_assert_preemption_disabled(); 885 886 /* 887 * Elide the lock if the rmap is empty, as lockless walkers (read-only 888 * mode) don't need to (and can't) walk an empty rmap, nor can they add 889 * entries to the rmap. I.e. the only paths that process empty rmaps 890 * do so while holding mmu_lock for write, and are mutually exclusive. 891 */ 892 old_val = atomic_long_read(&rmap_head->val); 893 if (!old_val) 894 return 0; 895 896 do { 897 /* 898 * If the rmap is locked, wait for it to be unlocked before 899 * trying acquire the lock, e.g. to avoid bouncing the cache 900 * line. 901 */ 902 while (old_val & KVM_RMAP_LOCKED) { 903 cpu_relax(); 904 old_val = atomic_long_read(&rmap_head->val); 905 } 906 907 /* 908 * Recheck for an empty rmap, it may have been purged by the 909 * task that held the lock. 910 */ 911 if (!old_val) 912 return 0; 913 914 new_val = old_val | KVM_RMAP_LOCKED; 915 /* 916 * Use try_cmpxchg_acquire() to prevent reads and writes to the rmap 917 * from being reordered outside of the critical section created by 918 * __kvm_rmap_lock(). 919 * 920 * Pairs with the atomic_long_set_release() in kvm_rmap_unlock(). 921 * 922 * For the !old_val case, no ordering is needed, as there is no rmap 923 * to walk. 924 */ 925 } while (!atomic_long_try_cmpxchg_acquire(&rmap_head->val, &old_val, new_val)); 926 927 /* 928 * Return the old value, i.e. _without_ the LOCKED bit set. It's 929 * impossible for the return value to be 0 (see above), i.e. the read- 930 * only unlock flow can't get a false positive and fail to unlock. 931 */ 932 return old_val; 933 } 934 935 static unsigned long kvm_rmap_lock(struct kvm *kvm, 936 struct kvm_rmap_head *rmap_head) 937 { 938 lockdep_assert_held_write(&kvm->mmu_lock); 939 940 return __kvm_rmap_lock(rmap_head); 941 } 942 943 static void __kvm_rmap_unlock(struct kvm_rmap_head *rmap_head, 944 unsigned long val) 945 { 946 KVM_MMU_WARN_ON(val & KVM_RMAP_LOCKED); 947 /* 948 * Ensure that all accesses to the rmap have completed before unlocking 949 * the rmap. 950 * 951 * Pairs with the atomic_long_try_cmpxchg_acquire() in __kvm_rmap_lock(). 952 */ 953 atomic_long_set_release(&rmap_head->val, val); 954 } 955 956 static void kvm_rmap_unlock(struct kvm *kvm, 957 struct kvm_rmap_head *rmap_head, 958 unsigned long new_val) 959 { 960 lockdep_assert_held_write(&kvm->mmu_lock); 961 962 __kvm_rmap_unlock(rmap_head, new_val); 963 } 964 965 static unsigned long kvm_rmap_get(struct kvm_rmap_head *rmap_head) 966 { 967 return atomic_long_read(&rmap_head->val) & ~KVM_RMAP_LOCKED; 968 } 969 970 /* 971 * If mmu_lock isn't held, rmaps can only be locked in read-only mode. The 972 * actual locking is the same, but the caller is disallowed from modifying the 973 * rmap, and so the unlock flow is a nop if the rmap is/was empty. 974 */ 975 static unsigned long kvm_rmap_lock_readonly(struct kvm_rmap_head *rmap_head) 976 { 977 unsigned long rmap_val; 978 979 preempt_disable(); 980 rmap_val = __kvm_rmap_lock(rmap_head); 981 982 if (!rmap_val) 983 preempt_enable(); 984 985 return rmap_val; 986 } 987 988 static void kvm_rmap_unlock_readonly(struct kvm_rmap_head *rmap_head, 989 unsigned long old_val) 990 { 991 if (!old_val) 992 return; 993 994 KVM_MMU_WARN_ON(old_val != kvm_rmap_get(rmap_head)); 995 996 __kvm_rmap_unlock(rmap_head, old_val); 997 preempt_enable(); 998 } 999 1000 /* 1001 * Returns the number of pointers in the rmap chain, not counting the new one. 1002 */ 1003 static int pte_list_add(struct kvm *kvm, struct kvm_mmu_memory_cache *cache, 1004 u64 *spte, struct kvm_rmap_head *rmap_head) 1005 { 1006 unsigned long old_val, new_val; 1007 struct pte_list_desc *desc; 1008 int count = 0; 1009 1010 old_val = kvm_rmap_lock(kvm, rmap_head); 1011 1012 if (!old_val) { 1013 new_val = (unsigned long)spte; 1014 } else if (!(old_val & KVM_RMAP_MANY)) { 1015 desc = kvm_mmu_memory_cache_alloc(cache); 1016 desc->sptes[0] = (u64 *)old_val; 1017 desc->sptes[1] = spte; 1018 desc->spte_count = 2; 1019 desc->tail_count = 0; 1020 new_val = (unsigned long)desc | KVM_RMAP_MANY; 1021 ++count; 1022 } else { 1023 desc = (struct pte_list_desc *)(old_val & ~KVM_RMAP_MANY); 1024 count = desc->tail_count + desc->spte_count; 1025 1026 /* 1027 * If the previous head is full, allocate a new head descriptor 1028 * as tail descriptors are always kept full. 1029 */ 1030 if (desc->spte_count == PTE_LIST_EXT) { 1031 desc = kvm_mmu_memory_cache_alloc(cache); 1032 desc->more = (struct pte_list_desc *)(old_val & ~KVM_RMAP_MANY); 1033 desc->spte_count = 0; 1034 desc->tail_count = count; 1035 new_val = (unsigned long)desc | KVM_RMAP_MANY; 1036 } else { 1037 new_val = old_val; 1038 } 1039 desc->sptes[desc->spte_count++] = spte; 1040 } 1041 1042 kvm_rmap_unlock(kvm, rmap_head, new_val); 1043 1044 return count; 1045 } 1046 1047 static void pte_list_desc_remove_entry(struct kvm *kvm, unsigned long *rmap_val, 1048 struct pte_list_desc *desc, int i) 1049 { 1050 struct pte_list_desc *head_desc = (struct pte_list_desc *)(*rmap_val & ~KVM_RMAP_MANY); 1051 int j = head_desc->spte_count - 1; 1052 1053 /* 1054 * The head descriptor should never be empty. A new head is added only 1055 * when adding an entry and the previous head is full, and heads are 1056 * removed (this flow) when they become empty. 1057 */ 1058 KVM_BUG_ON_DATA_CORRUPTION(j < 0, kvm); 1059 1060 /* 1061 * Replace the to-be-freed SPTE with the last valid entry from the head 1062 * descriptor to ensure that tail descriptors are full at all times. 1063 * Note, this also means that tail_count is stable for each descriptor. 1064 */ 1065 desc->sptes[i] = head_desc->sptes[j]; 1066 head_desc->sptes[j] = NULL; 1067 head_desc->spte_count--; 1068 if (head_desc->spte_count) 1069 return; 1070 1071 /* 1072 * The head descriptor is empty. If there are no tail descriptors, 1073 * nullify the rmap head to mark the list as empty, else point the rmap 1074 * head at the next descriptor, i.e. the new head. 1075 */ 1076 if (!head_desc->more) 1077 *rmap_val = 0; 1078 else 1079 *rmap_val = (unsigned long)head_desc->more | KVM_RMAP_MANY; 1080 mmu_free_pte_list_desc(head_desc); 1081 } 1082 1083 static void pte_list_remove(struct kvm *kvm, u64 *spte, 1084 struct kvm_rmap_head *rmap_head) 1085 { 1086 struct pte_list_desc *desc; 1087 unsigned long rmap_val; 1088 int i; 1089 1090 rmap_val = kvm_rmap_lock(kvm, rmap_head); 1091 if (KVM_BUG_ON_DATA_CORRUPTION(!rmap_val, kvm)) 1092 goto out; 1093 1094 if (!(rmap_val & KVM_RMAP_MANY)) { 1095 if (KVM_BUG_ON_DATA_CORRUPTION((u64 *)rmap_val != spte, kvm)) 1096 goto out; 1097 1098 rmap_val = 0; 1099 } else { 1100 desc = (struct pte_list_desc *)(rmap_val & ~KVM_RMAP_MANY); 1101 while (desc) { 1102 for (i = 0; i < desc->spte_count; ++i) { 1103 if (desc->sptes[i] == spte) { 1104 pte_list_desc_remove_entry(kvm, &rmap_val, 1105 desc, i); 1106 goto out; 1107 } 1108 } 1109 desc = desc->more; 1110 } 1111 1112 KVM_BUG_ON_DATA_CORRUPTION(true, kvm); 1113 } 1114 1115 out: 1116 kvm_rmap_unlock(kvm, rmap_head, rmap_val); 1117 } 1118 1119 static void kvm_zap_one_rmap_spte(struct kvm *kvm, 1120 struct kvm_rmap_head *rmap_head, u64 *sptep) 1121 { 1122 mmu_spte_clear_track_bits(kvm, sptep); 1123 pte_list_remove(kvm, sptep, rmap_head); 1124 } 1125 1126 /* Return true if at least one SPTE was zapped, false otherwise */ 1127 static bool kvm_zap_all_rmap_sptes(struct kvm *kvm, 1128 struct kvm_rmap_head *rmap_head) 1129 { 1130 struct pte_list_desc *desc, *next; 1131 unsigned long rmap_val; 1132 int i; 1133 1134 rmap_val = kvm_rmap_lock(kvm, rmap_head); 1135 if (!rmap_val) 1136 return false; 1137 1138 if (!(rmap_val & KVM_RMAP_MANY)) { 1139 mmu_spte_clear_track_bits(kvm, (u64 *)rmap_val); 1140 goto out; 1141 } 1142 1143 desc = (struct pte_list_desc *)(rmap_val & ~KVM_RMAP_MANY); 1144 1145 for (; desc; desc = next) { 1146 for (i = 0; i < desc->spte_count; i++) 1147 mmu_spte_clear_track_bits(kvm, desc->sptes[i]); 1148 next = desc->more; 1149 mmu_free_pte_list_desc(desc); 1150 } 1151 out: 1152 /* rmap_head is meaningless now, remember to reset it */ 1153 kvm_rmap_unlock(kvm, rmap_head, 0); 1154 return true; 1155 } 1156 1157 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head) 1158 { 1159 unsigned long rmap_val = kvm_rmap_get(rmap_head); 1160 struct pte_list_desc *desc; 1161 1162 if (!rmap_val) 1163 return 0; 1164 else if (!(rmap_val & KVM_RMAP_MANY)) 1165 return 1; 1166 1167 desc = (struct pte_list_desc *)(rmap_val & ~KVM_RMAP_MANY); 1168 return desc->tail_count + desc->spte_count; 1169 } 1170 1171 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level, 1172 const struct kvm_memory_slot *slot) 1173 { 1174 unsigned long idx; 1175 1176 idx = gfn_to_index(gfn, slot->base_gfn, level); 1177 return &slot->arch.rmap[level - PG_LEVEL_4K][idx]; 1178 } 1179 1180 static void rmap_remove(struct kvm *kvm, u64 *spte) 1181 { 1182 struct kvm_memslots *slots; 1183 struct kvm_memory_slot *slot; 1184 struct kvm_mmu_page *sp; 1185 gfn_t gfn; 1186 struct kvm_rmap_head *rmap_head; 1187 1188 sp = sptep_to_sp(spte); 1189 gfn = kvm_mmu_page_get_gfn(sp, spte_index(spte)); 1190 1191 /* 1192 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU 1193 * so we have to determine which memslots to use based on context 1194 * information in sp->role. 1195 */ 1196 slots = kvm_memslots_for_spte_role(kvm, sp->role); 1197 1198 slot = __gfn_to_memslot(slots, gfn); 1199 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1200 1201 pte_list_remove(kvm, spte, rmap_head); 1202 } 1203 1204 /* 1205 * Used by the following functions to iterate through the sptes linked by a 1206 * rmap. All fields are private and not assumed to be used outside. 1207 */ 1208 struct rmap_iterator { 1209 /* private fields */ 1210 struct rmap_head *head; 1211 struct pte_list_desc *desc; /* holds the sptep if not NULL */ 1212 int pos; /* index of the sptep */ 1213 }; 1214 1215 /* 1216 * Iteration must be started by this function. This should also be used after 1217 * removing/dropping sptes from the rmap link because in such cases the 1218 * information in the iterator may not be valid. 1219 * 1220 * Returns sptep if found, NULL otherwise. 1221 */ 1222 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head, 1223 struct rmap_iterator *iter) 1224 { 1225 unsigned long rmap_val = kvm_rmap_get(rmap_head); 1226 1227 if (!rmap_val) 1228 return NULL; 1229 1230 if (!(rmap_val & KVM_RMAP_MANY)) { 1231 iter->desc = NULL; 1232 return (u64 *)rmap_val; 1233 } 1234 1235 iter->desc = (struct pte_list_desc *)(rmap_val & ~KVM_RMAP_MANY); 1236 iter->pos = 0; 1237 return iter->desc->sptes[iter->pos]; 1238 } 1239 1240 /* 1241 * Must be used with a valid iterator: e.g. after rmap_get_first(). 1242 * 1243 * Returns sptep if found, NULL otherwise. 1244 */ 1245 static u64 *rmap_get_next(struct rmap_iterator *iter) 1246 { 1247 if (iter->desc) { 1248 if (iter->pos < PTE_LIST_EXT - 1) { 1249 ++iter->pos; 1250 if (iter->desc->sptes[iter->pos]) 1251 return iter->desc->sptes[iter->pos]; 1252 } 1253 1254 iter->desc = iter->desc->more; 1255 1256 if (iter->desc) { 1257 iter->pos = 0; 1258 /* desc->sptes[0] cannot be NULL */ 1259 return iter->desc->sptes[iter->pos]; 1260 } 1261 } 1262 1263 return NULL; 1264 } 1265 1266 #define __for_each_rmap_spte(_rmap_head_, _iter_, _sptep_) \ 1267 for (_sptep_ = rmap_get_first(_rmap_head_, _iter_); \ 1268 _sptep_; _sptep_ = rmap_get_next(_iter_)) 1269 1270 #define for_each_rmap_spte(_rmap_head_, _iter_, _sptep_) \ 1271 __for_each_rmap_spte(_rmap_head_, _iter_, _sptep_) \ 1272 if (!WARN_ON_ONCE(!is_shadow_present_pte(*(_sptep_)))) \ 1273 1274 #define for_each_rmap_spte_lockless(_rmap_head_, _iter_, _sptep_, _spte_) \ 1275 __for_each_rmap_spte(_rmap_head_, _iter_, _sptep_) \ 1276 if (is_shadow_present_pte(_spte_ = mmu_spte_get_lockless(sptep))) 1277 1278 static void drop_spte(struct kvm *kvm, u64 *sptep) 1279 { 1280 u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep); 1281 1282 if (is_shadow_present_pte(old_spte)) 1283 rmap_remove(kvm, sptep); 1284 } 1285 1286 static void drop_large_spte(struct kvm *kvm, u64 *sptep, bool flush) 1287 { 1288 struct kvm_mmu_page *sp; 1289 1290 sp = sptep_to_sp(sptep); 1291 WARN_ON_ONCE(sp->role.level == PG_LEVEL_4K); 1292 1293 drop_spte(kvm, sptep); 1294 1295 if (flush) 1296 kvm_flush_remote_tlbs_sptep(kvm, sptep); 1297 } 1298 1299 /* 1300 * Write-protect on the specified @sptep, @pt_protect indicates whether 1301 * spte write-protection is caused by protecting shadow page table. 1302 * 1303 * Note: write protection is difference between dirty logging and spte 1304 * protection: 1305 * - for dirty logging, the spte can be set to writable at anytime if 1306 * its dirty bitmap is properly set. 1307 * - for spte protection, the spte can be writable only after unsync-ing 1308 * shadow page. 1309 * 1310 * Return true if tlb need be flushed. 1311 */ 1312 static bool spte_write_protect(u64 *sptep, bool pt_protect) 1313 { 1314 u64 spte = *sptep; 1315 1316 if (!is_writable_pte(spte) && 1317 !(pt_protect && is_mmu_writable_spte(spte))) 1318 return false; 1319 1320 if (pt_protect) 1321 spte &= ~shadow_mmu_writable_mask; 1322 spte = spte & ~PT_WRITABLE_MASK; 1323 1324 return mmu_spte_update(sptep, spte); 1325 } 1326 1327 static bool rmap_write_protect(struct kvm_rmap_head *rmap_head, 1328 bool pt_protect) 1329 { 1330 u64 *sptep; 1331 struct rmap_iterator iter; 1332 bool flush = false; 1333 1334 for_each_rmap_spte(rmap_head, &iter, sptep) 1335 flush |= spte_write_protect(sptep, pt_protect); 1336 1337 return flush; 1338 } 1339 1340 static bool spte_clear_dirty(u64 *sptep) 1341 { 1342 u64 spte = *sptep; 1343 1344 KVM_MMU_WARN_ON(!spte_ad_enabled(spte)); 1345 spte &= ~shadow_dirty_mask; 1346 return mmu_spte_update(sptep, spte); 1347 } 1348 1349 /* 1350 * Gets the GFN ready for another round of dirty logging by clearing the 1351 * - D bit on ad-enabled SPTEs, and 1352 * - W bit on ad-disabled SPTEs. 1353 * Returns true iff any D or W bits were cleared. 1354 */ 1355 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1356 const struct kvm_memory_slot *slot) 1357 { 1358 u64 *sptep; 1359 struct rmap_iterator iter; 1360 bool flush = false; 1361 1362 for_each_rmap_spte(rmap_head, &iter, sptep) { 1363 if (spte_ad_need_write_protect(*sptep)) 1364 flush |= test_and_clear_bit(PT_WRITABLE_SHIFT, 1365 (unsigned long *)sptep); 1366 else 1367 flush |= spte_clear_dirty(sptep); 1368 } 1369 1370 return flush; 1371 } 1372 1373 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 1374 struct kvm_memory_slot *slot, 1375 gfn_t gfn_offset, unsigned long mask) 1376 { 1377 struct kvm_rmap_head *rmap_head; 1378 1379 if (tdp_mmu_enabled) 1380 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1381 slot->base_gfn + gfn_offset, mask, true); 1382 1383 if (!kvm_memslots_have_rmaps(kvm)) 1384 return; 1385 1386 while (mask) { 1387 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1388 PG_LEVEL_4K, slot); 1389 rmap_write_protect(rmap_head, false); 1390 1391 /* clear the first set bit */ 1392 mask &= mask - 1; 1393 } 1394 } 1395 1396 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1397 struct kvm_memory_slot *slot, 1398 gfn_t gfn_offset, unsigned long mask) 1399 { 1400 struct kvm_rmap_head *rmap_head; 1401 1402 if (tdp_mmu_enabled) 1403 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1404 slot->base_gfn + gfn_offset, mask, false); 1405 1406 if (!kvm_memslots_have_rmaps(kvm)) 1407 return; 1408 1409 while (mask) { 1410 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1411 PG_LEVEL_4K, slot); 1412 __rmap_clear_dirty(kvm, rmap_head, slot); 1413 1414 /* clear the first set bit */ 1415 mask &= mask - 1; 1416 } 1417 } 1418 1419 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1420 struct kvm_memory_slot *slot, 1421 gfn_t gfn_offset, unsigned long mask) 1422 { 1423 /* 1424 * If the slot was assumed to be "initially all dirty", write-protect 1425 * huge pages to ensure they are split to 4KiB on the first write (KVM 1426 * dirty logs at 4KiB granularity). If eager page splitting is enabled, 1427 * immediately try to split huge pages, e.g. so that vCPUs don't get 1428 * saddled with the cost of splitting. 1429 * 1430 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn 1431 * of memslot has no such restriction, so the range can cross two large 1432 * pages. 1433 */ 1434 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) { 1435 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask); 1436 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask); 1437 1438 if (READ_ONCE(eager_page_split)) 1439 kvm_mmu_try_split_huge_pages(kvm, slot, start, end + 1, PG_LEVEL_4K); 1440 1441 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M); 1442 1443 /* Cross two large pages? */ 1444 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) != 1445 ALIGN(end << PAGE_SHIFT, PMD_SIZE)) 1446 kvm_mmu_slot_gfn_write_protect(kvm, slot, end, 1447 PG_LEVEL_2M); 1448 } 1449 1450 /* 1451 * (Re)Enable dirty logging for all 4KiB SPTEs that map the GFNs in 1452 * mask. If PML is enabled and the GFN doesn't need to be write- 1453 * protected for other reasons, e.g. shadow paging, clear the Dirty bit. 1454 * Otherwise clear the Writable bit. 1455 * 1456 * Note that kvm_mmu_clear_dirty_pt_masked() is called whenever PML is 1457 * enabled but it chooses between clearing the Dirty bit and Writeable 1458 * bit based on the context. 1459 */ 1460 if (kvm->arch.cpu_dirty_log_size) 1461 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask); 1462 else 1463 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 1464 } 1465 1466 int kvm_cpu_dirty_log_size(struct kvm *kvm) 1467 { 1468 return kvm->arch.cpu_dirty_log_size; 1469 } 1470 1471 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, 1472 struct kvm_memory_slot *slot, u64 gfn, 1473 int min_level) 1474 { 1475 struct kvm_rmap_head *rmap_head; 1476 int i; 1477 bool write_protected = false; 1478 1479 if (kvm_memslots_have_rmaps(kvm)) { 1480 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 1481 rmap_head = gfn_to_rmap(gfn, i, slot); 1482 write_protected |= rmap_write_protect(rmap_head, true); 1483 } 1484 } 1485 1486 if (tdp_mmu_enabled) 1487 write_protected |= 1488 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level); 1489 1490 return write_protected; 1491 } 1492 1493 static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn) 1494 { 1495 struct kvm_memory_slot *slot; 1496 1497 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1498 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K); 1499 } 1500 1501 static bool kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1502 const struct kvm_memory_slot *slot) 1503 { 1504 return kvm_zap_all_rmap_sptes(kvm, rmap_head); 1505 } 1506 1507 struct slot_rmap_walk_iterator { 1508 /* input fields. */ 1509 const struct kvm_memory_slot *slot; 1510 gfn_t start_gfn; 1511 gfn_t end_gfn; 1512 int start_level; 1513 int end_level; 1514 1515 /* output fields. */ 1516 gfn_t gfn; 1517 struct kvm_rmap_head *rmap; 1518 int level; 1519 1520 /* private field. */ 1521 struct kvm_rmap_head *end_rmap; 1522 }; 1523 1524 static void rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, 1525 int level) 1526 { 1527 iterator->level = level; 1528 iterator->gfn = iterator->start_gfn; 1529 iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot); 1530 iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot); 1531 } 1532 1533 static void slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator, 1534 const struct kvm_memory_slot *slot, 1535 int start_level, int end_level, 1536 gfn_t start_gfn, gfn_t end_gfn) 1537 { 1538 iterator->slot = slot; 1539 iterator->start_level = start_level; 1540 iterator->end_level = end_level; 1541 iterator->start_gfn = start_gfn; 1542 iterator->end_gfn = end_gfn; 1543 1544 rmap_walk_init_level(iterator, iterator->start_level); 1545 } 1546 1547 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator) 1548 { 1549 return !!iterator->rmap; 1550 } 1551 1552 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) 1553 { 1554 while (++iterator->rmap <= iterator->end_rmap) { 1555 iterator->gfn += KVM_PAGES_PER_HPAGE(iterator->level); 1556 1557 if (atomic_long_read(&iterator->rmap->val)) 1558 return; 1559 } 1560 1561 if (++iterator->level > iterator->end_level) { 1562 iterator->rmap = NULL; 1563 return; 1564 } 1565 1566 rmap_walk_init_level(iterator, iterator->level); 1567 } 1568 1569 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \ 1570 _start_gfn, _end_gfn, _iter_) \ 1571 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \ 1572 _end_level_, _start_gfn, _end_gfn); \ 1573 slot_rmap_walk_okay(_iter_); \ 1574 slot_rmap_walk_next(_iter_)) 1575 1576 /* The return value indicates if tlb flush on all vcpus is needed. */ 1577 typedef bool (*slot_rmaps_handler) (struct kvm *kvm, 1578 struct kvm_rmap_head *rmap_head, 1579 const struct kvm_memory_slot *slot); 1580 1581 static __always_inline bool __walk_slot_rmaps(struct kvm *kvm, 1582 const struct kvm_memory_slot *slot, 1583 slot_rmaps_handler fn, 1584 int start_level, int end_level, 1585 gfn_t start_gfn, gfn_t end_gfn, 1586 bool can_yield, bool flush_on_yield, 1587 bool flush) 1588 { 1589 struct slot_rmap_walk_iterator iterator; 1590 1591 lockdep_assert_held_write(&kvm->mmu_lock); 1592 1593 for_each_slot_rmap_range(slot, start_level, end_level, start_gfn, 1594 end_gfn, &iterator) { 1595 if (iterator.rmap) 1596 flush |= fn(kvm, iterator.rmap, slot); 1597 1598 if (!can_yield) 1599 continue; 1600 1601 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 1602 if (flush && flush_on_yield) { 1603 kvm_flush_remote_tlbs_range(kvm, start_gfn, 1604 iterator.gfn - start_gfn + 1); 1605 flush = false; 1606 } 1607 cond_resched_rwlock_write(&kvm->mmu_lock); 1608 } 1609 } 1610 1611 return flush; 1612 } 1613 1614 static __always_inline bool walk_slot_rmaps(struct kvm *kvm, 1615 const struct kvm_memory_slot *slot, 1616 slot_rmaps_handler fn, 1617 int start_level, int end_level, 1618 bool flush_on_yield) 1619 { 1620 return __walk_slot_rmaps(kvm, slot, fn, start_level, end_level, 1621 slot->base_gfn, slot->base_gfn + slot->npages - 1, 1622 true, flush_on_yield, false); 1623 } 1624 1625 static __always_inline bool walk_slot_rmaps_4k(struct kvm *kvm, 1626 const struct kvm_memory_slot *slot, 1627 slot_rmaps_handler fn, 1628 bool flush_on_yield) 1629 { 1630 return walk_slot_rmaps(kvm, slot, fn, PG_LEVEL_4K, PG_LEVEL_4K, flush_on_yield); 1631 } 1632 1633 static bool __kvm_rmap_zap_gfn_range(struct kvm *kvm, 1634 const struct kvm_memory_slot *slot, 1635 gfn_t start, gfn_t end, bool can_yield, 1636 bool flush) 1637 { 1638 return __walk_slot_rmaps(kvm, slot, kvm_zap_rmap, 1639 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 1640 start, end - 1, can_yield, true, flush); 1641 } 1642 1643 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1644 { 1645 bool flush = false; 1646 1647 /* 1648 * To prevent races with vCPUs faulting in a gfn using stale data, 1649 * zapping a gfn range must be protected by mmu_invalidate_in_progress 1650 * (and mmu_invalidate_seq). The only exception is memslot deletion; 1651 * in that case, SRCU synchronization ensures that SPTEs are zapped 1652 * after all vCPUs have unlocked SRCU, guaranteeing that vCPUs see the 1653 * invalid slot. 1654 */ 1655 lockdep_assert_once(kvm->mmu_invalidate_in_progress || 1656 lockdep_is_held(&kvm->slots_lock)); 1657 1658 if (kvm_memslots_have_rmaps(kvm)) 1659 flush = __kvm_rmap_zap_gfn_range(kvm, range->slot, 1660 range->start, range->end, 1661 range->may_block, flush); 1662 1663 if (tdp_mmu_enabled) 1664 flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush); 1665 1666 if (kvm_x86_ops.set_apic_access_page_addr && 1667 range->slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT) 1668 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 1669 1670 return flush; 1671 } 1672 1673 #define RMAP_RECYCLE_THRESHOLD 1000 1674 1675 static void __rmap_add(struct kvm *kvm, 1676 struct kvm_mmu_memory_cache *cache, 1677 const struct kvm_memory_slot *slot, 1678 u64 *spte, gfn_t gfn, unsigned int access) 1679 { 1680 struct kvm_mmu_page *sp; 1681 struct kvm_rmap_head *rmap_head; 1682 int rmap_count; 1683 1684 sp = sptep_to_sp(spte); 1685 kvm_mmu_page_set_translation(sp, spte_index(spte), gfn, access); 1686 kvm_update_page_stats(kvm, sp->role.level, 1); 1687 1688 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1689 rmap_count = pte_list_add(kvm, cache, spte, rmap_head); 1690 1691 if (rmap_count > kvm->stat.max_mmu_rmap_size) 1692 kvm->stat.max_mmu_rmap_size = rmap_count; 1693 if (rmap_count > RMAP_RECYCLE_THRESHOLD) { 1694 kvm_zap_all_rmap_sptes(kvm, rmap_head); 1695 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level); 1696 } 1697 } 1698 1699 static void rmap_add(struct kvm_vcpu *vcpu, const struct kvm_memory_slot *slot, 1700 u64 *spte, gfn_t gfn, unsigned int access) 1701 { 1702 struct kvm_mmu_memory_cache *cache = &vcpu->arch.mmu_pte_list_desc_cache; 1703 1704 __rmap_add(vcpu->kvm, cache, slot, spte, gfn, access); 1705 } 1706 1707 static bool kvm_rmap_age_gfn_range(struct kvm *kvm, 1708 struct kvm_gfn_range *range, 1709 bool test_only) 1710 { 1711 struct kvm_rmap_head *rmap_head; 1712 struct rmap_iterator iter; 1713 unsigned long rmap_val; 1714 bool young = false; 1715 u64 *sptep; 1716 gfn_t gfn; 1717 int level; 1718 u64 spte; 1719 1720 for (level = PG_LEVEL_4K; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) { 1721 for (gfn = range->start; gfn < range->end; 1722 gfn += KVM_PAGES_PER_HPAGE(level)) { 1723 rmap_head = gfn_to_rmap(gfn, level, range->slot); 1724 rmap_val = kvm_rmap_lock_readonly(rmap_head); 1725 1726 for_each_rmap_spte_lockless(rmap_head, &iter, sptep, spte) { 1727 if (!is_accessed_spte(spte)) 1728 continue; 1729 1730 if (test_only) { 1731 kvm_rmap_unlock_readonly(rmap_head, rmap_val); 1732 return true; 1733 } 1734 1735 if (spte_ad_enabled(spte)) 1736 clear_bit((ffs(shadow_accessed_mask) - 1), 1737 (unsigned long *)sptep); 1738 else 1739 /* 1740 * If the following cmpxchg fails, the 1741 * spte is being concurrently modified 1742 * and should most likely stay young. 1743 */ 1744 cmpxchg64(sptep, spte, 1745 mark_spte_for_access_track(spte)); 1746 young = true; 1747 } 1748 1749 kvm_rmap_unlock_readonly(rmap_head, rmap_val); 1750 } 1751 } 1752 return young; 1753 } 1754 1755 static bool kvm_may_have_shadow_mmu_sptes(struct kvm *kvm) 1756 { 1757 return !tdp_mmu_enabled || READ_ONCE(kvm->arch.indirect_shadow_pages); 1758 } 1759 1760 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1761 { 1762 bool young = false; 1763 1764 if (tdp_mmu_enabled) 1765 young = kvm_tdp_mmu_age_gfn_range(kvm, range); 1766 1767 if (kvm_may_have_shadow_mmu_sptes(kvm)) 1768 young |= kvm_rmap_age_gfn_range(kvm, range, false); 1769 1770 return young; 1771 } 1772 1773 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1774 { 1775 bool young = false; 1776 1777 if (tdp_mmu_enabled) 1778 young = kvm_tdp_mmu_test_age_gfn(kvm, range); 1779 1780 if (young) 1781 return young; 1782 1783 if (kvm_may_have_shadow_mmu_sptes(kvm)) 1784 young |= kvm_rmap_age_gfn_range(kvm, range, true); 1785 1786 return young; 1787 } 1788 1789 static void kvm_mmu_check_sptes_at_free(struct kvm_mmu_page *sp) 1790 { 1791 #ifdef CONFIG_KVM_PROVE_MMU 1792 int i; 1793 1794 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) { 1795 if (KVM_MMU_WARN_ON(is_shadow_present_pte(sp->spt[i]))) 1796 pr_err_ratelimited("SPTE %llx (@ %p) for gfn %llx shadow-present at free", 1797 sp->spt[i], &sp->spt[i], 1798 kvm_mmu_page_get_gfn(sp, i)); 1799 } 1800 #endif 1801 } 1802 1803 static void kvm_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1804 { 1805 kvm->arch.n_used_mmu_pages++; 1806 kvm_account_pgtable_pages((void *)sp->spt, +1); 1807 } 1808 1809 static void kvm_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1810 { 1811 kvm->arch.n_used_mmu_pages--; 1812 kvm_account_pgtable_pages((void *)sp->spt, -1); 1813 } 1814 1815 static void kvm_mmu_free_shadow_page(struct kvm_mmu_page *sp) 1816 { 1817 kvm_mmu_check_sptes_at_free(sp); 1818 1819 hlist_del(&sp->hash_link); 1820 list_del(&sp->link); 1821 free_page((unsigned long)sp->spt); 1822 free_page((unsigned long)sp->shadowed_translation); 1823 kmem_cache_free(mmu_page_header_cache, sp); 1824 } 1825 1826 static unsigned kvm_page_table_hashfn(gfn_t gfn) 1827 { 1828 return hash_64(gfn, KVM_MMU_HASH_SHIFT); 1829 } 1830 1831 static void mmu_page_add_parent_pte(struct kvm *kvm, 1832 struct kvm_mmu_memory_cache *cache, 1833 struct kvm_mmu_page *sp, u64 *parent_pte) 1834 { 1835 if (!parent_pte) 1836 return; 1837 1838 pte_list_add(kvm, cache, parent_pte, &sp->parent_ptes); 1839 } 1840 1841 static void mmu_page_remove_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 1842 u64 *parent_pte) 1843 { 1844 pte_list_remove(kvm, parent_pte, &sp->parent_ptes); 1845 } 1846 1847 static void drop_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 1848 u64 *parent_pte) 1849 { 1850 mmu_page_remove_parent_pte(kvm, sp, parent_pte); 1851 mmu_spte_clear_no_track(parent_pte); 1852 } 1853 1854 static void mark_unsync(u64 *spte); 1855 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) 1856 { 1857 u64 *sptep; 1858 struct rmap_iterator iter; 1859 1860 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) { 1861 mark_unsync(sptep); 1862 } 1863 } 1864 1865 static void mark_unsync(u64 *spte) 1866 { 1867 struct kvm_mmu_page *sp; 1868 1869 sp = sptep_to_sp(spte); 1870 if (__test_and_set_bit(spte_index(spte), sp->unsync_child_bitmap)) 1871 return; 1872 if (sp->unsync_children++) 1873 return; 1874 kvm_mmu_mark_parents_unsync(sp); 1875 } 1876 1877 #define KVM_PAGE_ARRAY_NR 16 1878 1879 struct kvm_mmu_pages { 1880 struct mmu_page_and_offset { 1881 struct kvm_mmu_page *sp; 1882 unsigned int idx; 1883 } page[KVM_PAGE_ARRAY_NR]; 1884 unsigned int nr; 1885 }; 1886 1887 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, 1888 int idx) 1889 { 1890 int i; 1891 1892 if (sp->unsync) 1893 for (i=0; i < pvec->nr; i++) 1894 if (pvec->page[i].sp == sp) 1895 return 0; 1896 1897 pvec->page[pvec->nr].sp = sp; 1898 pvec->page[pvec->nr].idx = idx; 1899 pvec->nr++; 1900 return (pvec->nr == KVM_PAGE_ARRAY_NR); 1901 } 1902 1903 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx) 1904 { 1905 --sp->unsync_children; 1906 WARN_ON_ONCE((int)sp->unsync_children < 0); 1907 __clear_bit(idx, sp->unsync_child_bitmap); 1908 } 1909 1910 static int __mmu_unsync_walk(struct kvm_mmu_page *sp, 1911 struct kvm_mmu_pages *pvec) 1912 { 1913 int i, ret, nr_unsync_leaf = 0; 1914 1915 for_each_set_bit(i, sp->unsync_child_bitmap, 512) { 1916 struct kvm_mmu_page *child; 1917 u64 ent = sp->spt[i]; 1918 1919 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) { 1920 clear_unsync_child_bit(sp, i); 1921 continue; 1922 } 1923 1924 child = spte_to_child_sp(ent); 1925 1926 if (child->unsync_children) { 1927 if (mmu_pages_add(pvec, child, i)) 1928 return -ENOSPC; 1929 1930 ret = __mmu_unsync_walk(child, pvec); 1931 if (!ret) { 1932 clear_unsync_child_bit(sp, i); 1933 continue; 1934 } else if (ret > 0) { 1935 nr_unsync_leaf += ret; 1936 } else 1937 return ret; 1938 } else if (child->unsync) { 1939 nr_unsync_leaf++; 1940 if (mmu_pages_add(pvec, child, i)) 1941 return -ENOSPC; 1942 } else 1943 clear_unsync_child_bit(sp, i); 1944 } 1945 1946 return nr_unsync_leaf; 1947 } 1948 1949 #define INVALID_INDEX (-1) 1950 1951 static int mmu_unsync_walk(struct kvm_mmu_page *sp, 1952 struct kvm_mmu_pages *pvec) 1953 { 1954 pvec->nr = 0; 1955 if (!sp->unsync_children) 1956 return 0; 1957 1958 mmu_pages_add(pvec, sp, INVALID_INDEX); 1959 return __mmu_unsync_walk(sp, pvec); 1960 } 1961 1962 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1963 { 1964 WARN_ON_ONCE(!sp->unsync); 1965 trace_kvm_mmu_sync_page(sp); 1966 sp->unsync = 0; 1967 --kvm->stat.mmu_unsync; 1968 } 1969 1970 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 1971 struct list_head *invalid_list); 1972 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 1973 struct list_head *invalid_list); 1974 1975 static bool sp_has_gptes(struct kvm_mmu_page *sp) 1976 { 1977 if (sp->role.direct) 1978 return false; 1979 1980 if (sp->role.passthrough) 1981 return false; 1982 1983 return true; 1984 } 1985 1986 #define for_each_valid_sp(_kvm, _sp, _list) \ 1987 hlist_for_each_entry(_sp, _list, hash_link) \ 1988 if (is_obsolete_sp((_kvm), (_sp))) { \ 1989 } else 1990 1991 #define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn) \ 1992 for_each_valid_sp(_kvm, _sp, \ 1993 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \ 1994 if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else 1995 1996 static bool kvm_sync_page_check(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 1997 { 1998 union kvm_mmu_page_role root_role = vcpu->arch.mmu->root_role; 1999 2000 /* 2001 * Ignore various flags when verifying that it's safe to sync a shadow 2002 * page using the current MMU context. 2003 * 2004 * - level: not part of the overall MMU role and will never match as the MMU's 2005 * level tracks the root level 2006 * - access: updated based on the new guest PTE 2007 * - quadrant: not part of the overall MMU role (similar to level) 2008 */ 2009 const union kvm_mmu_page_role sync_role_ign = { 2010 .level = 0xf, 2011 .access = 0x7, 2012 .quadrant = 0x3, 2013 .passthrough = 0x1, 2014 }; 2015 2016 /* 2017 * Direct pages can never be unsync, and KVM should never attempt to 2018 * sync a shadow page for a different MMU context, e.g. if the role 2019 * differs then the memslot lookup (SMM vs. non-SMM) will be bogus, the 2020 * reserved bits checks will be wrong, etc... 2021 */ 2022 if (WARN_ON_ONCE(sp->role.direct || !vcpu->arch.mmu->sync_spte || 2023 (sp->role.word ^ root_role.word) & ~sync_role_ign.word)) 2024 return false; 2025 2026 return true; 2027 } 2028 2029 static int kvm_sync_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, int i) 2030 { 2031 /* sp->spt[i] has initial value of shadow page table allocation */ 2032 if (sp->spt[i] == SHADOW_NONPRESENT_VALUE) 2033 return 0; 2034 2035 return vcpu->arch.mmu->sync_spte(vcpu, sp, i); 2036 } 2037 2038 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 2039 { 2040 int flush = 0; 2041 int i; 2042 2043 if (!kvm_sync_page_check(vcpu, sp)) 2044 return -1; 2045 2046 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) { 2047 int ret = kvm_sync_spte(vcpu, sp, i); 2048 2049 if (ret < -1) 2050 return -1; 2051 flush |= ret; 2052 } 2053 2054 /* 2055 * Note, any flush is purely for KVM's correctness, e.g. when dropping 2056 * an existing SPTE or clearing W/A/D bits to ensure an mmu_notifier 2057 * unmap or dirty logging event doesn't fail to flush. The guest is 2058 * responsible for flushing the TLB to ensure any changes in protection 2059 * bits are recognized, i.e. until the guest flushes or page faults on 2060 * a relevant address, KVM is architecturally allowed to let vCPUs use 2061 * cached translations with the old protection bits. 2062 */ 2063 return flush; 2064 } 2065 2066 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 2067 struct list_head *invalid_list) 2068 { 2069 int ret = __kvm_sync_page(vcpu, sp); 2070 2071 if (ret < 0) 2072 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); 2073 return ret; 2074 } 2075 2076 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm, 2077 struct list_head *invalid_list, 2078 bool remote_flush) 2079 { 2080 if (!remote_flush && list_empty(invalid_list)) 2081 return false; 2082 2083 if (!list_empty(invalid_list)) 2084 kvm_mmu_commit_zap_page(kvm, invalid_list); 2085 else 2086 kvm_flush_remote_tlbs(kvm); 2087 return true; 2088 } 2089 2090 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 2091 { 2092 if (sp->role.invalid) 2093 return true; 2094 2095 /* TDP MMU pages do not use the MMU generation. */ 2096 return !is_tdp_mmu_page(sp) && 2097 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); 2098 } 2099 2100 struct mmu_page_path { 2101 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL]; 2102 unsigned int idx[PT64_ROOT_MAX_LEVEL]; 2103 }; 2104 2105 #define for_each_sp(pvec, sp, parents, i) \ 2106 for (i = mmu_pages_first(&pvec, &parents); \ 2107 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \ 2108 i = mmu_pages_next(&pvec, &parents, i)) 2109 2110 static int mmu_pages_next(struct kvm_mmu_pages *pvec, 2111 struct mmu_page_path *parents, 2112 int i) 2113 { 2114 int n; 2115 2116 for (n = i+1; n < pvec->nr; n++) { 2117 struct kvm_mmu_page *sp = pvec->page[n].sp; 2118 unsigned idx = pvec->page[n].idx; 2119 int level = sp->role.level; 2120 2121 parents->idx[level-1] = idx; 2122 if (level == PG_LEVEL_4K) 2123 break; 2124 2125 parents->parent[level-2] = sp; 2126 } 2127 2128 return n; 2129 } 2130 2131 static int mmu_pages_first(struct kvm_mmu_pages *pvec, 2132 struct mmu_page_path *parents) 2133 { 2134 struct kvm_mmu_page *sp; 2135 int level; 2136 2137 if (pvec->nr == 0) 2138 return 0; 2139 2140 WARN_ON_ONCE(pvec->page[0].idx != INVALID_INDEX); 2141 2142 sp = pvec->page[0].sp; 2143 level = sp->role.level; 2144 WARN_ON_ONCE(level == PG_LEVEL_4K); 2145 2146 parents->parent[level-2] = sp; 2147 2148 /* Also set up a sentinel. Further entries in pvec are all 2149 * children of sp, so this element is never overwritten. 2150 */ 2151 parents->parent[level-1] = NULL; 2152 return mmu_pages_next(pvec, parents, 0); 2153 } 2154 2155 static void mmu_pages_clear_parents(struct mmu_page_path *parents) 2156 { 2157 struct kvm_mmu_page *sp; 2158 unsigned int level = 0; 2159 2160 do { 2161 unsigned int idx = parents->idx[level]; 2162 sp = parents->parent[level]; 2163 if (!sp) 2164 return; 2165 2166 WARN_ON_ONCE(idx == INVALID_INDEX); 2167 clear_unsync_child_bit(sp, idx); 2168 level++; 2169 } while (!sp->unsync_children); 2170 } 2171 2172 static int mmu_sync_children(struct kvm_vcpu *vcpu, 2173 struct kvm_mmu_page *parent, bool can_yield) 2174 { 2175 int i; 2176 struct kvm_mmu_page *sp; 2177 struct mmu_page_path parents; 2178 struct kvm_mmu_pages pages; 2179 LIST_HEAD(invalid_list); 2180 bool flush = false; 2181 2182 while (mmu_unsync_walk(parent, &pages)) { 2183 bool protected = false; 2184 2185 for_each_sp(pages, sp, parents, i) 2186 protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn); 2187 2188 if (protected) { 2189 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true); 2190 flush = false; 2191 } 2192 2193 for_each_sp(pages, sp, parents, i) { 2194 kvm_unlink_unsync_page(vcpu->kvm, sp); 2195 flush |= kvm_sync_page(vcpu, sp, &invalid_list) > 0; 2196 mmu_pages_clear_parents(&parents); 2197 } 2198 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) { 2199 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2200 if (!can_yield) { 2201 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 2202 return -EINTR; 2203 } 2204 2205 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock); 2206 flush = false; 2207 } 2208 } 2209 2210 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2211 return 0; 2212 } 2213 2214 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) 2215 { 2216 atomic_set(&sp->write_flooding_count, 0); 2217 } 2218 2219 static void clear_sp_write_flooding_count(u64 *spte) 2220 { 2221 __clear_sp_write_flooding_count(sptep_to_sp(spte)); 2222 } 2223 2224 /* 2225 * The vCPU is required when finding indirect shadow pages; the shadow 2226 * page may already exist and syncing it needs the vCPU pointer in 2227 * order to read guest page tables. Direct shadow pages are never 2228 * unsync, thus @vcpu can be NULL if @role.direct is true. 2229 */ 2230 static struct kvm_mmu_page *kvm_mmu_find_shadow_page(struct kvm *kvm, 2231 struct kvm_vcpu *vcpu, 2232 gfn_t gfn, 2233 struct hlist_head *sp_list, 2234 union kvm_mmu_page_role role) 2235 { 2236 struct kvm_mmu_page *sp; 2237 int ret; 2238 int collisions = 0; 2239 LIST_HEAD(invalid_list); 2240 2241 for_each_valid_sp(kvm, sp, sp_list) { 2242 if (sp->gfn != gfn) { 2243 collisions++; 2244 continue; 2245 } 2246 2247 if (sp->role.word != role.word) { 2248 /* 2249 * If the guest is creating an upper-level page, zap 2250 * unsync pages for the same gfn. While it's possible 2251 * the guest is using recursive page tables, in all 2252 * likelihood the guest has stopped using the unsync 2253 * page and is installing a completely unrelated page. 2254 * Unsync pages must not be left as is, because the new 2255 * upper-level page will be write-protected. 2256 */ 2257 if (role.level > PG_LEVEL_4K && sp->unsync) 2258 kvm_mmu_prepare_zap_page(kvm, sp, 2259 &invalid_list); 2260 continue; 2261 } 2262 2263 /* unsync and write-flooding only apply to indirect SPs. */ 2264 if (sp->role.direct) 2265 goto out; 2266 2267 if (sp->unsync) { 2268 if (KVM_BUG_ON(!vcpu, kvm)) 2269 break; 2270 2271 /* 2272 * The page is good, but is stale. kvm_sync_page does 2273 * get the latest guest state, but (unlike mmu_unsync_children) 2274 * it doesn't write-protect the page or mark it synchronized! 2275 * This way the validity of the mapping is ensured, but the 2276 * overhead of write protection is not incurred until the 2277 * guest invalidates the TLB mapping. This allows multiple 2278 * SPs for a single gfn to be unsync. 2279 * 2280 * If the sync fails, the page is zapped. If so, break 2281 * in order to rebuild it. 2282 */ 2283 ret = kvm_sync_page(vcpu, sp, &invalid_list); 2284 if (ret < 0) 2285 break; 2286 2287 WARN_ON_ONCE(!list_empty(&invalid_list)); 2288 if (ret > 0) 2289 kvm_flush_remote_tlbs(kvm); 2290 } 2291 2292 __clear_sp_write_flooding_count(sp); 2293 2294 goto out; 2295 } 2296 2297 sp = NULL; 2298 ++kvm->stat.mmu_cache_miss; 2299 2300 out: 2301 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2302 2303 if (collisions > kvm->stat.max_mmu_page_hash_collisions) 2304 kvm->stat.max_mmu_page_hash_collisions = collisions; 2305 return sp; 2306 } 2307 2308 /* Caches used when allocating a new shadow page. */ 2309 struct shadow_page_caches { 2310 struct kvm_mmu_memory_cache *page_header_cache; 2311 struct kvm_mmu_memory_cache *shadow_page_cache; 2312 struct kvm_mmu_memory_cache *shadowed_info_cache; 2313 }; 2314 2315 static struct kvm_mmu_page *kvm_mmu_alloc_shadow_page(struct kvm *kvm, 2316 struct shadow_page_caches *caches, 2317 gfn_t gfn, 2318 struct hlist_head *sp_list, 2319 union kvm_mmu_page_role role) 2320 { 2321 struct kvm_mmu_page *sp; 2322 2323 sp = kvm_mmu_memory_cache_alloc(caches->page_header_cache); 2324 sp->spt = kvm_mmu_memory_cache_alloc(caches->shadow_page_cache); 2325 if (!role.direct && role.level <= KVM_MAX_HUGEPAGE_LEVEL) 2326 sp->shadowed_translation = kvm_mmu_memory_cache_alloc(caches->shadowed_info_cache); 2327 2328 set_page_private(virt_to_page(sp->spt), (unsigned long)sp); 2329 2330 INIT_LIST_HEAD(&sp->possible_nx_huge_page_link); 2331 2332 /* 2333 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages() 2334 * depends on valid pages being added to the head of the list. See 2335 * comments in kvm_zap_obsolete_pages(). 2336 */ 2337 sp->mmu_valid_gen = kvm->arch.mmu_valid_gen; 2338 list_add(&sp->link, &kvm->arch.active_mmu_pages); 2339 kvm_account_mmu_page(kvm, sp); 2340 2341 sp->gfn = gfn; 2342 sp->role = role; 2343 hlist_add_head(&sp->hash_link, sp_list); 2344 if (sp_has_gptes(sp)) 2345 account_shadowed(kvm, sp); 2346 2347 return sp; 2348 } 2349 2350 /* Note, @vcpu may be NULL if @role.direct is true; see kvm_mmu_find_shadow_page. */ 2351 static struct kvm_mmu_page *__kvm_mmu_get_shadow_page(struct kvm *kvm, 2352 struct kvm_vcpu *vcpu, 2353 struct shadow_page_caches *caches, 2354 gfn_t gfn, 2355 union kvm_mmu_page_role role) 2356 { 2357 struct hlist_head *sp_list; 2358 struct kvm_mmu_page *sp; 2359 bool created = false; 2360 2361 sp_list = &kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]; 2362 2363 sp = kvm_mmu_find_shadow_page(kvm, vcpu, gfn, sp_list, role); 2364 if (!sp) { 2365 created = true; 2366 sp = kvm_mmu_alloc_shadow_page(kvm, caches, gfn, sp_list, role); 2367 } 2368 2369 trace_kvm_mmu_get_page(sp, created); 2370 return sp; 2371 } 2372 2373 static struct kvm_mmu_page *kvm_mmu_get_shadow_page(struct kvm_vcpu *vcpu, 2374 gfn_t gfn, 2375 union kvm_mmu_page_role role) 2376 { 2377 struct shadow_page_caches caches = { 2378 .page_header_cache = &vcpu->arch.mmu_page_header_cache, 2379 .shadow_page_cache = &vcpu->arch.mmu_shadow_page_cache, 2380 .shadowed_info_cache = &vcpu->arch.mmu_shadowed_info_cache, 2381 }; 2382 2383 return __kvm_mmu_get_shadow_page(vcpu->kvm, vcpu, &caches, gfn, role); 2384 } 2385 2386 static union kvm_mmu_page_role kvm_mmu_child_role(u64 *sptep, bool direct, 2387 unsigned int access) 2388 { 2389 struct kvm_mmu_page *parent_sp = sptep_to_sp(sptep); 2390 union kvm_mmu_page_role role; 2391 2392 role = parent_sp->role; 2393 role.level--; 2394 role.access = access; 2395 role.direct = direct; 2396 role.passthrough = 0; 2397 2398 /* 2399 * If the guest has 4-byte PTEs then that means it's using 32-bit, 2400 * 2-level, non-PAE paging. KVM shadows such guests with PAE paging 2401 * (i.e. 8-byte PTEs). The difference in PTE size means that KVM must 2402 * shadow each guest page table with multiple shadow page tables, which 2403 * requires extra bookkeeping in the role. 2404 * 2405 * Specifically, to shadow the guest's page directory (which covers a 2406 * 4GiB address space), KVM uses 4 PAE page directories, each mapping 2407 * 1GiB of the address space. @role.quadrant encodes which quarter of 2408 * the address space each maps. 2409 * 2410 * To shadow the guest's page tables (which each map a 4MiB region), KVM 2411 * uses 2 PAE page tables, each mapping a 2MiB region. For these, 2412 * @role.quadrant encodes which half of the region they map. 2413 * 2414 * Concretely, a 4-byte PDE consumes bits 31:22, while an 8-byte PDE 2415 * consumes bits 29:21. To consume bits 31:30, KVM's uses 4 shadow 2416 * PDPTEs; those 4 PAE page directories are pre-allocated and their 2417 * quadrant is assigned in mmu_alloc_root(). A 4-byte PTE consumes 2418 * bits 21:12, while an 8-byte PTE consumes bits 20:12. To consume 2419 * bit 21 in the PTE (the child here), KVM propagates that bit to the 2420 * quadrant, i.e. sets quadrant to '0' or '1'. The parent 8-byte PDE 2421 * covers bit 21 (see above), thus the quadrant is calculated from the 2422 * _least_ significant bit of the PDE index. 2423 */ 2424 if (role.has_4_byte_gpte) { 2425 WARN_ON_ONCE(role.level != PG_LEVEL_4K); 2426 role.quadrant = spte_index(sptep) & 1; 2427 } 2428 2429 return role; 2430 } 2431 2432 static struct kvm_mmu_page *kvm_mmu_get_child_sp(struct kvm_vcpu *vcpu, 2433 u64 *sptep, gfn_t gfn, 2434 bool direct, unsigned int access) 2435 { 2436 union kvm_mmu_page_role role; 2437 2438 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) 2439 return ERR_PTR(-EEXIST); 2440 2441 role = kvm_mmu_child_role(sptep, direct, access); 2442 return kvm_mmu_get_shadow_page(vcpu, gfn, role); 2443 } 2444 2445 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator, 2446 struct kvm_vcpu *vcpu, hpa_t root, 2447 u64 addr) 2448 { 2449 iterator->addr = addr; 2450 iterator->shadow_addr = root; 2451 iterator->level = vcpu->arch.mmu->root_role.level; 2452 2453 if (iterator->level >= PT64_ROOT_4LEVEL && 2454 vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL && 2455 !vcpu->arch.mmu->root_role.direct) 2456 iterator->level = PT32E_ROOT_LEVEL; 2457 2458 if (iterator->level == PT32E_ROOT_LEVEL) { 2459 /* 2460 * prev_root is currently only used for 64-bit hosts. So only 2461 * the active root_hpa is valid here. 2462 */ 2463 BUG_ON(root != vcpu->arch.mmu->root.hpa); 2464 2465 iterator->shadow_addr 2466 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3]; 2467 iterator->shadow_addr &= SPTE_BASE_ADDR_MASK; 2468 --iterator->level; 2469 if (!iterator->shadow_addr) 2470 iterator->level = 0; 2471 } 2472 } 2473 2474 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, 2475 struct kvm_vcpu *vcpu, u64 addr) 2476 { 2477 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa, 2478 addr); 2479 } 2480 2481 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) 2482 { 2483 if (iterator->level < PG_LEVEL_4K) 2484 return false; 2485 2486 iterator->index = SPTE_INDEX(iterator->addr, iterator->level); 2487 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; 2488 return true; 2489 } 2490 2491 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, 2492 u64 spte) 2493 { 2494 if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) { 2495 iterator->level = 0; 2496 return; 2497 } 2498 2499 iterator->shadow_addr = spte & SPTE_BASE_ADDR_MASK; 2500 --iterator->level; 2501 } 2502 2503 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) 2504 { 2505 __shadow_walk_next(iterator, *iterator->sptep); 2506 } 2507 2508 static void __link_shadow_page(struct kvm *kvm, 2509 struct kvm_mmu_memory_cache *cache, u64 *sptep, 2510 struct kvm_mmu_page *sp, bool flush) 2511 { 2512 u64 spte; 2513 2514 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); 2515 2516 /* 2517 * If an SPTE is present already, it must be a leaf and therefore 2518 * a large one. Drop it, and flush the TLB if needed, before 2519 * installing sp. 2520 */ 2521 if (is_shadow_present_pte(*sptep)) 2522 drop_large_spte(kvm, sptep, flush); 2523 2524 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp)); 2525 2526 mmu_spte_set(sptep, spte); 2527 2528 mmu_page_add_parent_pte(kvm, cache, sp, sptep); 2529 2530 /* 2531 * The non-direct sub-pagetable must be updated before linking. For 2532 * L1 sp, the pagetable is updated via kvm_sync_page() in 2533 * kvm_mmu_find_shadow_page() without write-protecting the gfn, 2534 * so sp->unsync can be true or false. For higher level non-direct 2535 * sp, the pagetable is updated/synced via mmu_sync_children() in 2536 * FNAME(fetch)(), so sp->unsync_children can only be false. 2537 * WARN_ON_ONCE() if anything happens unexpectedly. 2538 */ 2539 if (WARN_ON_ONCE(sp->unsync_children) || sp->unsync) 2540 mark_unsync(sptep); 2541 } 2542 2543 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, 2544 struct kvm_mmu_page *sp) 2545 { 2546 __link_shadow_page(vcpu->kvm, &vcpu->arch.mmu_pte_list_desc_cache, sptep, sp, true); 2547 } 2548 2549 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2550 unsigned direct_access) 2551 { 2552 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { 2553 struct kvm_mmu_page *child; 2554 2555 /* 2556 * For the direct sp, if the guest pte's dirty bit 2557 * changed form clean to dirty, it will corrupt the 2558 * sp's access: allow writable in the read-only sp, 2559 * so we should update the spte at this point to get 2560 * a new sp with the correct access. 2561 */ 2562 child = spte_to_child_sp(*sptep); 2563 if (child->role.access == direct_access) 2564 return; 2565 2566 drop_parent_pte(vcpu->kvm, child, sptep); 2567 kvm_flush_remote_tlbs_sptep(vcpu->kvm, sptep); 2568 } 2569 } 2570 2571 /* Returns the number of zapped non-leaf child shadow pages. */ 2572 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 2573 u64 *spte, struct list_head *invalid_list) 2574 { 2575 u64 pte; 2576 struct kvm_mmu_page *child; 2577 2578 pte = *spte; 2579 if (is_shadow_present_pte(pte)) { 2580 if (is_last_spte(pte, sp->role.level)) { 2581 drop_spte(kvm, spte); 2582 } else { 2583 child = spte_to_child_sp(pte); 2584 drop_parent_pte(kvm, child, spte); 2585 2586 /* 2587 * Recursively zap nested TDP SPs, parentless SPs are 2588 * unlikely to be used again in the near future. This 2589 * avoids retaining a large number of stale nested SPs. 2590 */ 2591 if (tdp_enabled && invalid_list && 2592 child->role.guest_mode && 2593 !atomic_long_read(&child->parent_ptes.val)) 2594 return kvm_mmu_prepare_zap_page(kvm, child, 2595 invalid_list); 2596 } 2597 } else if (is_mmio_spte(kvm, pte)) { 2598 mmu_spte_clear_no_track(spte); 2599 } 2600 return 0; 2601 } 2602 2603 static int kvm_mmu_page_unlink_children(struct kvm *kvm, 2604 struct kvm_mmu_page *sp, 2605 struct list_head *invalid_list) 2606 { 2607 int zapped = 0; 2608 unsigned i; 2609 2610 for (i = 0; i < SPTE_ENT_PER_PAGE; ++i) 2611 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list); 2612 2613 return zapped; 2614 } 2615 2616 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp) 2617 { 2618 u64 *sptep; 2619 struct rmap_iterator iter; 2620 2621 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter))) 2622 drop_parent_pte(kvm, sp, sptep); 2623 } 2624 2625 static int mmu_zap_unsync_children(struct kvm *kvm, 2626 struct kvm_mmu_page *parent, 2627 struct list_head *invalid_list) 2628 { 2629 int i, zapped = 0; 2630 struct mmu_page_path parents; 2631 struct kvm_mmu_pages pages; 2632 2633 if (parent->role.level == PG_LEVEL_4K) 2634 return 0; 2635 2636 while (mmu_unsync_walk(parent, &pages)) { 2637 struct kvm_mmu_page *sp; 2638 2639 for_each_sp(pages, sp, parents, i) { 2640 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 2641 mmu_pages_clear_parents(&parents); 2642 zapped++; 2643 } 2644 } 2645 2646 return zapped; 2647 } 2648 2649 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm, 2650 struct kvm_mmu_page *sp, 2651 struct list_head *invalid_list, 2652 int *nr_zapped) 2653 { 2654 bool list_unstable, zapped_root = false; 2655 2656 lockdep_assert_held_write(&kvm->mmu_lock); 2657 trace_kvm_mmu_prepare_zap_page(sp); 2658 ++kvm->stat.mmu_shadow_zapped; 2659 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list); 2660 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list); 2661 kvm_mmu_unlink_parents(kvm, sp); 2662 2663 /* Zapping children means active_mmu_pages has become unstable. */ 2664 list_unstable = *nr_zapped; 2665 2666 if (!sp->role.invalid && sp_has_gptes(sp)) 2667 unaccount_shadowed(kvm, sp); 2668 2669 if (sp->unsync) 2670 kvm_unlink_unsync_page(kvm, sp); 2671 if (!sp->root_count) { 2672 /* Count self */ 2673 (*nr_zapped)++; 2674 2675 /* 2676 * Already invalid pages (previously active roots) are not on 2677 * the active page list. See list_del() in the "else" case of 2678 * !sp->root_count. 2679 */ 2680 if (sp->role.invalid) 2681 list_add(&sp->link, invalid_list); 2682 else 2683 list_move(&sp->link, invalid_list); 2684 kvm_unaccount_mmu_page(kvm, sp); 2685 } else { 2686 /* 2687 * Remove the active root from the active page list, the root 2688 * will be explicitly freed when the root_count hits zero. 2689 */ 2690 list_del(&sp->link); 2691 2692 /* 2693 * Obsolete pages cannot be used on any vCPUs, see the comment 2694 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also 2695 * treats invalid shadow pages as being obsolete. 2696 */ 2697 zapped_root = !is_obsolete_sp(kvm, sp); 2698 } 2699 2700 if (sp->nx_huge_page_disallowed) 2701 unaccount_nx_huge_page(kvm, sp); 2702 2703 sp->role.invalid = 1; 2704 2705 /* 2706 * Make the request to free obsolete roots after marking the root 2707 * invalid, otherwise other vCPUs may not see it as invalid. 2708 */ 2709 if (zapped_root) 2710 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 2711 return list_unstable; 2712 } 2713 2714 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 2715 struct list_head *invalid_list) 2716 { 2717 int nr_zapped; 2718 2719 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped); 2720 return nr_zapped; 2721 } 2722 2723 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 2724 struct list_head *invalid_list) 2725 { 2726 struct kvm_mmu_page *sp, *nsp; 2727 2728 if (list_empty(invalid_list)) 2729 return; 2730 2731 /* 2732 * We need to make sure everyone sees our modifications to 2733 * the page tables and see changes to vcpu->mode here. The barrier 2734 * in the kvm_flush_remote_tlbs() achieves this. This pairs 2735 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end. 2736 * 2737 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit 2738 * guest mode and/or lockless shadow page table walks. 2739 */ 2740 kvm_flush_remote_tlbs(kvm); 2741 2742 list_for_each_entry_safe(sp, nsp, invalid_list, link) { 2743 WARN_ON_ONCE(!sp->role.invalid || sp->root_count); 2744 kvm_mmu_free_shadow_page(sp); 2745 } 2746 } 2747 2748 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm, 2749 unsigned long nr_to_zap) 2750 { 2751 unsigned long total_zapped = 0; 2752 struct kvm_mmu_page *sp, *tmp; 2753 LIST_HEAD(invalid_list); 2754 bool unstable; 2755 int nr_zapped; 2756 2757 if (list_empty(&kvm->arch.active_mmu_pages)) 2758 return 0; 2759 2760 restart: 2761 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) { 2762 /* 2763 * Don't zap active root pages, the page itself can't be freed 2764 * and zapping it will just force vCPUs to realloc and reload. 2765 */ 2766 if (sp->root_count) 2767 continue; 2768 2769 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, 2770 &nr_zapped); 2771 total_zapped += nr_zapped; 2772 if (total_zapped >= nr_to_zap) 2773 break; 2774 2775 if (unstable) 2776 goto restart; 2777 } 2778 2779 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2780 2781 kvm->stat.mmu_recycled += total_zapped; 2782 return total_zapped; 2783 } 2784 2785 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm) 2786 { 2787 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) 2788 return kvm->arch.n_max_mmu_pages - 2789 kvm->arch.n_used_mmu_pages; 2790 2791 return 0; 2792 } 2793 2794 static int make_mmu_pages_available(struct kvm_vcpu *vcpu) 2795 { 2796 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm); 2797 2798 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES)) 2799 return 0; 2800 2801 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail); 2802 2803 /* 2804 * Note, this check is intentionally soft, it only guarantees that one 2805 * page is available, while the caller may end up allocating as many as 2806 * four pages, e.g. for PAE roots or for 5-level paging. Temporarily 2807 * exceeding the (arbitrary by default) limit will not harm the host, 2808 * being too aggressive may unnecessarily kill the guest, and getting an 2809 * exact count is far more trouble than it's worth, especially in the 2810 * page fault paths. 2811 */ 2812 if (!kvm_mmu_available_pages(vcpu->kvm)) 2813 return -ENOSPC; 2814 return 0; 2815 } 2816 2817 /* 2818 * Changing the number of mmu pages allocated to the vm 2819 * Note: if goal_nr_mmu_pages is too small, you will get dead lock 2820 */ 2821 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages) 2822 { 2823 write_lock(&kvm->mmu_lock); 2824 2825 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { 2826 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages - 2827 goal_nr_mmu_pages); 2828 2829 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; 2830 } 2831 2832 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; 2833 2834 write_unlock(&kvm->mmu_lock); 2835 } 2836 2837 bool __kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 2838 bool always_retry) 2839 { 2840 struct kvm *kvm = vcpu->kvm; 2841 LIST_HEAD(invalid_list); 2842 struct kvm_mmu_page *sp; 2843 gpa_t gpa = cr2_or_gpa; 2844 bool r = false; 2845 2846 /* 2847 * Bail early if there aren't any write-protected shadow pages to avoid 2848 * unnecessarily taking mmu_lock lock, e.g. if the gfn is write-tracked 2849 * by a third party. Reading indirect_shadow_pages without holding 2850 * mmu_lock is safe, as this is purely an optimization, i.e. a false 2851 * positive is benign, and a false negative will simply result in KVM 2852 * skipping the unprotect+retry path, which is also an optimization. 2853 */ 2854 if (!READ_ONCE(kvm->arch.indirect_shadow_pages)) 2855 goto out; 2856 2857 if (!vcpu->arch.mmu->root_role.direct) { 2858 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 2859 if (gpa == INVALID_GPA) 2860 goto out; 2861 } 2862 2863 write_lock(&kvm->mmu_lock); 2864 for_each_gfn_valid_sp_with_gptes(kvm, sp, gpa_to_gfn(gpa)) 2865 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 2866 2867 /* 2868 * Snapshot the result before zapping, as zapping will remove all list 2869 * entries, i.e. checking the list later would yield a false negative. 2870 */ 2871 r = !list_empty(&invalid_list); 2872 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2873 write_unlock(&kvm->mmu_lock); 2874 2875 out: 2876 if (r || always_retry) { 2877 vcpu->arch.last_retry_eip = kvm_rip_read(vcpu); 2878 vcpu->arch.last_retry_addr = cr2_or_gpa; 2879 } 2880 return r; 2881 } 2882 2883 static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 2884 { 2885 trace_kvm_mmu_unsync_page(sp); 2886 ++kvm->stat.mmu_unsync; 2887 sp->unsync = 1; 2888 2889 kvm_mmu_mark_parents_unsync(sp); 2890 } 2891 2892 /* 2893 * Attempt to unsync any shadow pages that can be reached by the specified gfn, 2894 * KVM is creating a writable mapping for said gfn. Returns 0 if all pages 2895 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must 2896 * be write-protected. 2897 */ 2898 int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot, 2899 gfn_t gfn, bool synchronizing, bool prefetch) 2900 { 2901 struct kvm_mmu_page *sp; 2902 bool locked = false; 2903 2904 /* 2905 * Force write-protection if the page is being tracked. Note, the page 2906 * track machinery is used to write-protect upper-level shadow pages, 2907 * i.e. this guards the role.level == 4K assertion below! 2908 */ 2909 if (kvm_gfn_is_write_tracked(kvm, slot, gfn)) 2910 return -EPERM; 2911 2912 /* 2913 * The page is not write-tracked, mark existing shadow pages unsync 2914 * unless KVM is synchronizing an unsync SP. In that case, KVM must 2915 * complete emulation of the guest TLB flush before allowing shadow 2916 * pages to become unsync (writable by the guest). 2917 */ 2918 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) { 2919 if (synchronizing) 2920 return -EPERM; 2921 2922 if (sp->unsync) 2923 continue; 2924 2925 if (prefetch) 2926 return -EEXIST; 2927 2928 /* 2929 * TDP MMU page faults require an additional spinlock as they 2930 * run with mmu_lock held for read, not write, and the unsync 2931 * logic is not thread safe. Take the spinklock regardless of 2932 * the MMU type to avoid extra conditionals/parameters, there's 2933 * no meaningful penalty if mmu_lock is held for write. 2934 */ 2935 if (!locked) { 2936 locked = true; 2937 spin_lock(&kvm->arch.mmu_unsync_pages_lock); 2938 2939 /* 2940 * Recheck after taking the spinlock, a different vCPU 2941 * may have since marked the page unsync. A false 2942 * negative on the unprotected check above is not 2943 * possible as clearing sp->unsync _must_ hold mmu_lock 2944 * for write, i.e. unsync cannot transition from 1->0 2945 * while this CPU holds mmu_lock for read (or write). 2946 */ 2947 if (READ_ONCE(sp->unsync)) 2948 continue; 2949 } 2950 2951 WARN_ON_ONCE(sp->role.level != PG_LEVEL_4K); 2952 kvm_unsync_page(kvm, sp); 2953 } 2954 if (locked) 2955 spin_unlock(&kvm->arch.mmu_unsync_pages_lock); 2956 2957 /* 2958 * We need to ensure that the marking of unsync pages is visible 2959 * before the SPTE is updated to allow writes because 2960 * kvm_mmu_sync_roots() checks the unsync flags without holding 2961 * the MMU lock and so can race with this. If the SPTE was updated 2962 * before the page had been marked as unsync-ed, something like the 2963 * following could happen: 2964 * 2965 * CPU 1 CPU 2 2966 * --------------------------------------------------------------------- 2967 * 1.2 Host updates SPTE 2968 * to be writable 2969 * 2.1 Guest writes a GPTE for GVA X. 2970 * (GPTE being in the guest page table shadowed 2971 * by the SP from CPU 1.) 2972 * This reads SPTE during the page table walk. 2973 * Since SPTE.W is read as 1, there is no 2974 * fault. 2975 * 2976 * 2.2 Guest issues TLB flush. 2977 * That causes a VM Exit. 2978 * 2979 * 2.3 Walking of unsync pages sees sp->unsync is 2980 * false and skips the page. 2981 * 2982 * 2.4 Guest accesses GVA X. 2983 * Since the mapping in the SP was not updated, 2984 * so the old mapping for GVA X incorrectly 2985 * gets used. 2986 * 1.1 Host marks SP 2987 * as unsync 2988 * (sp->unsync = true) 2989 * 2990 * The write barrier below ensures that 1.1 happens before 1.2 and thus 2991 * the situation in 2.4 does not arise. It pairs with the read barrier 2992 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3. 2993 */ 2994 smp_wmb(); 2995 2996 return 0; 2997 } 2998 2999 static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, 3000 u64 *sptep, unsigned int pte_access, gfn_t gfn, 3001 kvm_pfn_t pfn, struct kvm_page_fault *fault) 3002 { 3003 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 3004 int level = sp->role.level; 3005 int was_rmapped = 0; 3006 int ret = RET_PF_FIXED; 3007 bool flush = false; 3008 bool wrprot; 3009 u64 spte; 3010 3011 /* Prefetching always gets a writable pfn. */ 3012 bool host_writable = !fault || fault->map_writable; 3013 bool prefetch = !fault || fault->prefetch; 3014 bool write_fault = fault && fault->write; 3015 3016 if (unlikely(is_noslot_pfn(pfn))) { 3017 vcpu->stat.pf_mmio_spte_created++; 3018 mark_mmio_spte(vcpu, sptep, gfn, pte_access); 3019 return RET_PF_EMULATE; 3020 } 3021 3022 if (is_shadow_present_pte(*sptep)) { 3023 if (prefetch && is_last_spte(*sptep, level) && 3024 pfn == spte_to_pfn(*sptep)) 3025 return RET_PF_SPURIOUS; 3026 3027 /* 3028 * If we overwrite a PTE page pointer with a 2MB PMD, unlink 3029 * the parent of the now unreachable PTE. 3030 */ 3031 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) { 3032 struct kvm_mmu_page *child; 3033 u64 pte = *sptep; 3034 3035 child = spte_to_child_sp(pte); 3036 drop_parent_pte(vcpu->kvm, child, sptep); 3037 flush = true; 3038 } else if (WARN_ON_ONCE(pfn != spte_to_pfn(*sptep))) { 3039 drop_spte(vcpu->kvm, sptep); 3040 flush = true; 3041 } else 3042 was_rmapped = 1; 3043 } 3044 3045 wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch, 3046 false, host_writable, &spte); 3047 3048 if (*sptep == spte) { 3049 ret = RET_PF_SPURIOUS; 3050 } else { 3051 flush |= mmu_spte_update(sptep, spte); 3052 trace_kvm_mmu_set_spte(level, gfn, sptep); 3053 } 3054 3055 if (wrprot && write_fault) 3056 ret = RET_PF_WRITE_PROTECTED; 3057 3058 if (flush) 3059 kvm_flush_remote_tlbs_gfn(vcpu->kvm, gfn, level); 3060 3061 if (!was_rmapped) { 3062 WARN_ON_ONCE(ret == RET_PF_SPURIOUS); 3063 rmap_add(vcpu, slot, sptep, gfn, pte_access); 3064 } else { 3065 /* Already rmapped but the pte_access bits may have changed. */ 3066 kvm_mmu_page_set_access(sp, spte_index(sptep), pte_access); 3067 } 3068 3069 return ret; 3070 } 3071 3072 static bool kvm_mmu_prefetch_sptes(struct kvm_vcpu *vcpu, gfn_t gfn, u64 *sptep, 3073 int nr_pages, unsigned int access) 3074 { 3075 struct page *pages[PTE_PREFETCH_NUM]; 3076 struct kvm_memory_slot *slot; 3077 int i; 3078 3079 if (WARN_ON_ONCE(nr_pages > PTE_PREFETCH_NUM)) 3080 return false; 3081 3082 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK); 3083 if (!slot) 3084 return false; 3085 3086 nr_pages = kvm_prefetch_pages(slot, gfn, pages, nr_pages); 3087 if (nr_pages <= 0) 3088 return false; 3089 3090 for (i = 0; i < nr_pages; i++, gfn++, sptep++) { 3091 mmu_set_spte(vcpu, slot, sptep, access, gfn, 3092 page_to_pfn(pages[i]), NULL); 3093 3094 /* 3095 * KVM always prefetches writable pages from the primary MMU, 3096 * and KVM can make its SPTE writable in the fast page handler, 3097 * without notifying the primary MMU. Mark pages/folios dirty 3098 * now to ensure file data is written back if it ends up being 3099 * written by the guest. Because KVM's prefetching GUPs 3100 * writable PTEs, the probability of unnecessary writeback is 3101 * extremely low. 3102 */ 3103 kvm_release_page_dirty(pages[i]); 3104 } 3105 3106 return true; 3107 } 3108 3109 static bool direct_pte_prefetch_many(struct kvm_vcpu *vcpu, 3110 struct kvm_mmu_page *sp, 3111 u64 *start, u64 *end) 3112 { 3113 gfn_t gfn = kvm_mmu_page_get_gfn(sp, spte_index(start)); 3114 unsigned int access = sp->role.access; 3115 3116 return kvm_mmu_prefetch_sptes(vcpu, gfn, start, end - start, access); 3117 } 3118 3119 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, 3120 struct kvm_mmu_page *sp, u64 *sptep) 3121 { 3122 u64 *spte, *start = NULL; 3123 int i; 3124 3125 WARN_ON_ONCE(!sp->role.direct); 3126 3127 i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1); 3128 spte = sp->spt + i; 3129 3130 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 3131 if (is_shadow_present_pte(*spte) || spte == sptep) { 3132 if (!start) 3133 continue; 3134 if (!direct_pte_prefetch_many(vcpu, sp, start, spte)) 3135 return; 3136 3137 start = NULL; 3138 } else if (!start) 3139 start = spte; 3140 } 3141 if (start) 3142 direct_pte_prefetch_many(vcpu, sp, start, spte); 3143 } 3144 3145 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) 3146 { 3147 struct kvm_mmu_page *sp; 3148 3149 sp = sptep_to_sp(sptep); 3150 3151 /* 3152 * Without accessed bits, there's no way to distinguish between 3153 * actually accessed translations and prefetched, so disable pte 3154 * prefetch if accessed bits aren't available. 3155 */ 3156 if (sp_ad_disabled(sp)) 3157 return; 3158 3159 if (sp->role.level > PG_LEVEL_4K) 3160 return; 3161 3162 /* 3163 * If addresses are being invalidated, skip prefetching to avoid 3164 * accidentally prefetching those addresses. 3165 */ 3166 if (unlikely(vcpu->kvm->mmu_invalidate_in_progress)) 3167 return; 3168 3169 __direct_pte_prefetch(vcpu, sp, sptep); 3170 } 3171 3172 /* 3173 * Lookup the mapping level for @gfn in the current mm. 3174 * 3175 * WARNING! Use of host_pfn_mapping_level() requires the caller and the end 3176 * consumer to be tied into KVM's handlers for MMU notifier events! 3177 * 3178 * There are several ways to safely use this helper: 3179 * 3180 * - Check mmu_invalidate_retry_gfn() after grabbing the mapping level, before 3181 * consuming it. In this case, mmu_lock doesn't need to be held during the 3182 * lookup, but it does need to be held while checking the MMU notifier. 3183 * 3184 * - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation 3185 * event for the hva. This can be done by explicit checking the MMU notifier 3186 * or by ensuring that KVM already has a valid mapping that covers the hva. 3187 * 3188 * - Do not use the result to install new mappings, e.g. use the host mapping 3189 * level only to decide whether or not to zap an entry. In this case, it's 3190 * not required to hold mmu_lock (though it's highly likely the caller will 3191 * want to hold mmu_lock anyways, e.g. to modify SPTEs). 3192 * 3193 * Note! The lookup can still race with modifications to host page tables, but 3194 * the above "rules" ensure KVM will not _consume_ the result of the walk if a 3195 * race with the primary MMU occurs. 3196 */ 3197 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, 3198 const struct kvm_memory_slot *slot) 3199 { 3200 int level = PG_LEVEL_4K; 3201 unsigned long hva; 3202 unsigned long flags; 3203 pgd_t pgd; 3204 p4d_t p4d; 3205 pud_t pud; 3206 pmd_t pmd; 3207 3208 /* 3209 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot() 3210 * is not solely for performance, it's also necessary to avoid the 3211 * "writable" check in __gfn_to_hva_many(), which will always fail on 3212 * read-only memslots due to gfn_to_hva() assuming writes. Earlier 3213 * page fault steps have already verified the guest isn't writing a 3214 * read-only memslot. 3215 */ 3216 hva = __gfn_to_hva_memslot(slot, gfn); 3217 3218 /* 3219 * Disable IRQs to prevent concurrent tear down of host page tables, 3220 * e.g. if the primary MMU promotes a P*D to a huge page and then frees 3221 * the original page table. 3222 */ 3223 local_irq_save(flags); 3224 3225 /* 3226 * Read each entry once. As above, a non-leaf entry can be promoted to 3227 * a huge page _during_ this walk. Re-reading the entry could send the 3228 * walk into the weeks, e.g. p*d_leaf() returns false (sees the old 3229 * value) and then p*d_offset() walks into the target huge page instead 3230 * of the old page table (sees the new value). 3231 */ 3232 pgd = READ_ONCE(*pgd_offset(kvm->mm, hva)); 3233 if (pgd_none(pgd)) 3234 goto out; 3235 3236 p4d = READ_ONCE(*p4d_offset(&pgd, hva)); 3237 if (p4d_none(p4d) || !p4d_present(p4d)) 3238 goto out; 3239 3240 pud = READ_ONCE(*pud_offset(&p4d, hva)); 3241 if (pud_none(pud) || !pud_present(pud)) 3242 goto out; 3243 3244 if (pud_leaf(pud)) { 3245 level = PG_LEVEL_1G; 3246 goto out; 3247 } 3248 3249 pmd = READ_ONCE(*pmd_offset(&pud, hva)); 3250 if (pmd_none(pmd) || !pmd_present(pmd)) 3251 goto out; 3252 3253 if (pmd_leaf(pmd)) 3254 level = PG_LEVEL_2M; 3255 3256 out: 3257 local_irq_restore(flags); 3258 return level; 3259 } 3260 3261 static int __kvm_mmu_max_mapping_level(struct kvm *kvm, 3262 const struct kvm_memory_slot *slot, 3263 gfn_t gfn, int max_level, bool is_private) 3264 { 3265 struct kvm_lpage_info *linfo; 3266 int host_level; 3267 3268 max_level = min(max_level, max_huge_page_level); 3269 for ( ; max_level > PG_LEVEL_4K; max_level--) { 3270 linfo = lpage_info_slot(gfn, slot, max_level); 3271 if (!linfo->disallow_lpage) 3272 break; 3273 } 3274 3275 if (is_private) 3276 return max_level; 3277 3278 if (max_level == PG_LEVEL_4K) 3279 return PG_LEVEL_4K; 3280 3281 host_level = host_pfn_mapping_level(kvm, gfn, slot); 3282 return min(host_level, max_level); 3283 } 3284 3285 int kvm_mmu_max_mapping_level(struct kvm *kvm, 3286 const struct kvm_memory_slot *slot, gfn_t gfn) 3287 { 3288 bool is_private = kvm_slot_can_be_private(slot) && 3289 kvm_mem_is_private(kvm, gfn); 3290 3291 return __kvm_mmu_max_mapping_level(kvm, slot, gfn, PG_LEVEL_NUM, is_private); 3292 } 3293 3294 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3295 { 3296 struct kvm_memory_slot *slot = fault->slot; 3297 kvm_pfn_t mask; 3298 3299 fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled; 3300 3301 if (unlikely(fault->max_level == PG_LEVEL_4K)) 3302 return; 3303 3304 if (is_error_noslot_pfn(fault->pfn)) 3305 return; 3306 3307 if (kvm_slot_dirty_track_enabled(slot)) 3308 return; 3309 3310 /* 3311 * Enforce the iTLB multihit workaround after capturing the requested 3312 * level, which will be used to do precise, accurate accounting. 3313 */ 3314 fault->req_level = __kvm_mmu_max_mapping_level(vcpu->kvm, slot, 3315 fault->gfn, fault->max_level, 3316 fault->is_private); 3317 if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed) 3318 return; 3319 3320 /* 3321 * mmu_invalidate_retry() was successful and mmu_lock is held, so 3322 * the pmd can't be split from under us. 3323 */ 3324 fault->goal_level = fault->req_level; 3325 mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1; 3326 VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask)); 3327 fault->pfn &= ~mask; 3328 } 3329 3330 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level) 3331 { 3332 if (cur_level > PG_LEVEL_4K && 3333 cur_level == fault->goal_level && 3334 is_shadow_present_pte(spte) && 3335 !is_large_pte(spte) && 3336 spte_to_child_sp(spte)->nx_huge_page_disallowed) { 3337 /* 3338 * A small SPTE exists for this pfn, but FNAME(fetch), 3339 * direct_map(), or kvm_tdp_mmu_map() would like to create a 3340 * large PTE instead: just force them to go down another level, 3341 * patching back for them into pfn the next 9 bits of the 3342 * address. 3343 */ 3344 u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) - 3345 KVM_PAGES_PER_HPAGE(cur_level - 1); 3346 fault->pfn |= fault->gfn & page_mask; 3347 fault->goal_level--; 3348 } 3349 } 3350 3351 static int direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3352 { 3353 struct kvm_shadow_walk_iterator it; 3354 struct kvm_mmu_page *sp; 3355 int ret; 3356 gfn_t base_gfn = fault->gfn; 3357 3358 kvm_mmu_hugepage_adjust(vcpu, fault); 3359 3360 trace_kvm_mmu_spte_requested(fault); 3361 for_each_shadow_entry(vcpu, fault->addr, it) { 3362 /* 3363 * We cannot overwrite existing page tables with an NX 3364 * large page, as the leaf could be executable. 3365 */ 3366 if (fault->nx_huge_page_workaround_enabled) 3367 disallowed_hugepage_adjust(fault, *it.sptep, it.level); 3368 3369 base_gfn = gfn_round_for_level(fault->gfn, it.level); 3370 if (it.level == fault->goal_level) 3371 break; 3372 3373 sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, true, ACC_ALL); 3374 if (sp == ERR_PTR(-EEXIST)) 3375 continue; 3376 3377 link_shadow_page(vcpu, it.sptep, sp); 3378 if (fault->huge_page_disallowed) 3379 account_nx_huge_page(vcpu->kvm, sp, 3380 fault->req_level >= it.level); 3381 } 3382 3383 if (WARN_ON_ONCE(it.level != fault->goal_level)) 3384 return -EFAULT; 3385 3386 ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL, 3387 base_gfn, fault->pfn, fault); 3388 if (ret == RET_PF_SPURIOUS) 3389 return ret; 3390 3391 direct_pte_prefetch(vcpu, it.sptep); 3392 return ret; 3393 } 3394 3395 static void kvm_send_hwpoison_signal(struct kvm_memory_slot *slot, gfn_t gfn) 3396 { 3397 unsigned long hva = gfn_to_hva_memslot(slot, gfn); 3398 3399 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva, PAGE_SHIFT, current); 3400 } 3401 3402 static int kvm_handle_error_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3403 { 3404 if (is_sigpending_pfn(fault->pfn)) { 3405 kvm_handle_signal_exit(vcpu); 3406 return -EINTR; 3407 } 3408 3409 /* 3410 * Do not cache the mmio info caused by writing the readonly gfn 3411 * into the spte otherwise read access on readonly gfn also can 3412 * caused mmio page fault and treat it as mmio access. 3413 */ 3414 if (fault->pfn == KVM_PFN_ERR_RO_FAULT) 3415 return RET_PF_EMULATE; 3416 3417 if (fault->pfn == KVM_PFN_ERR_HWPOISON) { 3418 kvm_send_hwpoison_signal(fault->slot, fault->gfn); 3419 return RET_PF_RETRY; 3420 } 3421 3422 return -EFAULT; 3423 } 3424 3425 static int kvm_handle_noslot_fault(struct kvm_vcpu *vcpu, 3426 struct kvm_page_fault *fault, 3427 unsigned int access) 3428 { 3429 gva_t gva = fault->is_tdp ? 0 : fault->addr; 3430 3431 if (fault->is_private) { 3432 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 3433 return -EFAULT; 3434 } 3435 3436 vcpu_cache_mmio_info(vcpu, gva, fault->gfn, 3437 access & shadow_mmio_access_mask); 3438 3439 fault->slot = NULL; 3440 fault->pfn = KVM_PFN_NOSLOT; 3441 fault->map_writable = false; 3442 3443 /* 3444 * If MMIO caching is disabled, emulate immediately without 3445 * touching the shadow page tables as attempting to install an 3446 * MMIO SPTE will just be an expensive nop. 3447 */ 3448 if (unlikely(!enable_mmio_caching)) 3449 return RET_PF_EMULATE; 3450 3451 /* 3452 * Do not create an MMIO SPTE for a gfn greater than host.MAXPHYADDR, 3453 * any guest that generates such gfns is running nested and is being 3454 * tricked by L0 userspace (you can observe gfn > L1.MAXPHYADDR if and 3455 * only if L1's MAXPHYADDR is inaccurate with respect to the 3456 * hardware's). 3457 */ 3458 if (unlikely(fault->gfn > kvm_mmu_max_gfn())) 3459 return RET_PF_EMULATE; 3460 3461 return RET_PF_CONTINUE; 3462 } 3463 3464 static bool page_fault_can_be_fast(struct kvm *kvm, struct kvm_page_fault *fault) 3465 { 3466 /* 3467 * Page faults with reserved bits set, i.e. faults on MMIO SPTEs, only 3468 * reach the common page fault handler if the SPTE has an invalid MMIO 3469 * generation number. Refreshing the MMIO generation needs to go down 3470 * the slow path. Note, EPT Misconfigs do NOT set the PRESENT flag! 3471 */ 3472 if (fault->rsvd) 3473 return false; 3474 3475 /* 3476 * For hardware-protected VMs, certain conditions like attempting to 3477 * perform a write to a page which is not in the state that the guest 3478 * expects it to be in can result in a nested/extended #PF. In this 3479 * case, the below code might misconstrue this situation as being the 3480 * result of a write-protected access, and treat it as a spurious case 3481 * rather than taking any action to satisfy the real source of the #PF 3482 * such as generating a KVM_EXIT_MEMORY_FAULT. This can lead to the 3483 * guest spinning on a #PF indefinitely, so don't attempt the fast path 3484 * in this case. 3485 * 3486 * Note that the kvm_mem_is_private() check might race with an 3487 * attribute update, but this will either result in the guest spinning 3488 * on RET_PF_SPURIOUS until the update completes, or an actual spurious 3489 * case might go down the slow path. Either case will resolve itself. 3490 */ 3491 if (kvm->arch.has_private_mem && 3492 fault->is_private != kvm_mem_is_private(kvm, fault->gfn)) 3493 return false; 3494 3495 /* 3496 * #PF can be fast if: 3497 * 3498 * 1. The shadow page table entry is not present and A/D bits are 3499 * disabled _by KVM_, which could mean that the fault is potentially 3500 * caused by access tracking (if enabled). If A/D bits are enabled 3501 * by KVM, but disabled by L1 for L2, KVM is forced to disable A/D 3502 * bits for L2 and employ access tracking, but the fast page fault 3503 * mechanism only supports direct MMUs. 3504 * 2. The shadow page table entry is present, the access is a write, 3505 * and no reserved bits are set (MMIO SPTEs cannot be "fixed"), i.e. 3506 * the fault was caused by a write-protection violation. If the 3507 * SPTE is MMU-writable (determined later), the fault can be fixed 3508 * by setting the Writable bit, which can be done out of mmu_lock. 3509 */ 3510 if (!fault->present) 3511 return !kvm_ad_enabled; 3512 3513 /* 3514 * Note, instruction fetches and writes are mutually exclusive, ignore 3515 * the "exec" flag. 3516 */ 3517 return fault->write; 3518 } 3519 3520 /* 3521 * Returns true if the SPTE was fixed successfully. Otherwise, 3522 * someone else modified the SPTE from its original value. 3523 */ 3524 static bool fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, 3525 struct kvm_page_fault *fault, 3526 u64 *sptep, u64 old_spte, u64 new_spte) 3527 { 3528 /* 3529 * Theoretically we could also set dirty bit (and flush TLB) here in 3530 * order to eliminate unnecessary PML logging. See comments in 3531 * set_spte. But fast_page_fault is very unlikely to happen with PML 3532 * enabled, so we do not do this. This might result in the same GPA 3533 * to be logged in PML buffer again when the write really happens, and 3534 * eventually to be called by mark_page_dirty twice. But it's also no 3535 * harm. This also avoids the TLB flush needed after setting dirty bit 3536 * so non-PML cases won't be impacted. 3537 * 3538 * Compare with make_spte() where instead shadow_dirty_mask is set. 3539 */ 3540 if (!try_cmpxchg64(sptep, &old_spte, new_spte)) 3541 return false; 3542 3543 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) 3544 mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn); 3545 3546 return true; 3547 } 3548 3549 /* 3550 * Returns the last level spte pointer of the shadow page walk for the given 3551 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no 3552 * walk could be performed, returns NULL and *spte does not contain valid data. 3553 * 3554 * Contract: 3555 * - Must be called between walk_shadow_page_lockless_{begin,end}. 3556 * - The returned sptep must not be used after walk_shadow_page_lockless_end. 3557 */ 3558 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte) 3559 { 3560 struct kvm_shadow_walk_iterator iterator; 3561 u64 old_spte; 3562 u64 *sptep = NULL; 3563 3564 for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) { 3565 sptep = iterator.sptep; 3566 *spte = old_spte; 3567 } 3568 3569 return sptep; 3570 } 3571 3572 /* 3573 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS. 3574 */ 3575 static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3576 { 3577 struct kvm_mmu_page *sp; 3578 int ret = RET_PF_INVALID; 3579 u64 spte; 3580 u64 *sptep; 3581 uint retry_count = 0; 3582 3583 if (!page_fault_can_be_fast(vcpu->kvm, fault)) 3584 return ret; 3585 3586 walk_shadow_page_lockless_begin(vcpu); 3587 3588 do { 3589 u64 new_spte; 3590 3591 if (tdp_mmu_enabled) 3592 sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->gfn, &spte); 3593 else 3594 sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte); 3595 3596 /* 3597 * It's entirely possible for the mapping to have been zapped 3598 * by a different task, but the root page should always be 3599 * available as the vCPU holds a reference to its root(s). 3600 */ 3601 if (WARN_ON_ONCE(!sptep)) 3602 spte = FROZEN_SPTE; 3603 3604 if (!is_shadow_present_pte(spte)) 3605 break; 3606 3607 sp = sptep_to_sp(sptep); 3608 if (!is_last_spte(spte, sp->role.level)) 3609 break; 3610 3611 /* 3612 * Check whether the memory access that caused the fault would 3613 * still cause it if it were to be performed right now. If not, 3614 * then this is a spurious fault caused by TLB lazily flushed, 3615 * or some other CPU has already fixed the PTE after the 3616 * current CPU took the fault. 3617 * 3618 * Need not check the access of upper level table entries since 3619 * they are always ACC_ALL. 3620 */ 3621 if (is_access_allowed(fault, spte)) { 3622 ret = RET_PF_SPURIOUS; 3623 break; 3624 } 3625 3626 new_spte = spte; 3627 3628 /* 3629 * KVM only supports fixing page faults outside of MMU lock for 3630 * direct MMUs, nested MMUs are always indirect, and KVM always 3631 * uses A/D bits for non-nested MMUs. Thus, if A/D bits are 3632 * enabled, the SPTE can't be an access-tracked SPTE. 3633 */ 3634 if (unlikely(!kvm_ad_enabled) && is_access_track_spte(spte)) 3635 new_spte = restore_acc_track_spte(new_spte) | 3636 shadow_accessed_mask; 3637 3638 /* 3639 * To keep things simple, only SPTEs that are MMU-writable can 3640 * be made fully writable outside of mmu_lock, e.g. only SPTEs 3641 * that were write-protected for dirty-logging or access 3642 * tracking are handled here. Don't bother checking if the 3643 * SPTE is writable to prioritize running with A/D bits enabled. 3644 * The is_access_allowed() check above handles the common case 3645 * of the fault being spurious, and the SPTE is known to be 3646 * shadow-present, i.e. except for access tracking restoration 3647 * making the new SPTE writable, the check is wasteful. 3648 */ 3649 if (fault->write && is_mmu_writable_spte(spte)) { 3650 new_spte |= PT_WRITABLE_MASK; 3651 3652 /* 3653 * Do not fix write-permission on the large spte when 3654 * dirty logging is enabled. Since we only dirty the 3655 * first page into the dirty-bitmap in 3656 * fast_pf_fix_direct_spte(), other pages are missed 3657 * if its slot has dirty logging enabled. 3658 * 3659 * Instead, we let the slow page fault path create a 3660 * normal spte to fix the access. 3661 */ 3662 if (sp->role.level > PG_LEVEL_4K && 3663 kvm_slot_dirty_track_enabled(fault->slot)) 3664 break; 3665 } 3666 3667 /* Verify that the fault can be handled in the fast path */ 3668 if (new_spte == spte || 3669 !is_access_allowed(fault, new_spte)) 3670 break; 3671 3672 /* 3673 * Currently, fast page fault only works for direct mapping 3674 * since the gfn is not stable for indirect shadow page. See 3675 * Documentation/virt/kvm/locking.rst to get more detail. 3676 */ 3677 if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) { 3678 ret = RET_PF_FIXED; 3679 break; 3680 } 3681 3682 if (++retry_count > 4) { 3683 pr_warn_once("Fast #PF retrying more than 4 times.\n"); 3684 break; 3685 } 3686 3687 } while (true); 3688 3689 trace_fast_page_fault(vcpu, fault, sptep, spte, ret); 3690 walk_shadow_page_lockless_end(vcpu); 3691 3692 if (ret != RET_PF_INVALID) 3693 vcpu->stat.pf_fast++; 3694 3695 return ret; 3696 } 3697 3698 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa, 3699 struct list_head *invalid_list) 3700 { 3701 struct kvm_mmu_page *sp; 3702 3703 if (!VALID_PAGE(*root_hpa)) 3704 return; 3705 3706 sp = root_to_sp(*root_hpa); 3707 if (WARN_ON_ONCE(!sp)) 3708 return; 3709 3710 if (is_tdp_mmu_page(sp)) { 3711 lockdep_assert_held_read(&kvm->mmu_lock); 3712 kvm_tdp_mmu_put_root(kvm, sp); 3713 } else { 3714 lockdep_assert_held_write(&kvm->mmu_lock); 3715 if (!--sp->root_count && sp->role.invalid) 3716 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 3717 } 3718 3719 *root_hpa = INVALID_PAGE; 3720 } 3721 3722 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */ 3723 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, 3724 ulong roots_to_free) 3725 { 3726 bool is_tdp_mmu = tdp_mmu_enabled && mmu->root_role.direct; 3727 int i; 3728 LIST_HEAD(invalid_list); 3729 bool free_active_root; 3730 3731 WARN_ON_ONCE(roots_to_free & ~KVM_MMU_ROOTS_ALL); 3732 3733 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG); 3734 3735 /* Before acquiring the MMU lock, see if we need to do any real work. */ 3736 free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT) 3737 && VALID_PAGE(mmu->root.hpa); 3738 3739 if (!free_active_root) { 3740 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3741 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) && 3742 VALID_PAGE(mmu->prev_roots[i].hpa)) 3743 break; 3744 3745 if (i == KVM_MMU_NUM_PREV_ROOTS) 3746 return; 3747 } 3748 3749 if (is_tdp_mmu) 3750 read_lock(&kvm->mmu_lock); 3751 else 3752 write_lock(&kvm->mmu_lock); 3753 3754 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3755 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) 3756 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa, 3757 &invalid_list); 3758 3759 if (free_active_root) { 3760 if (kvm_mmu_is_dummy_root(mmu->root.hpa)) { 3761 /* Nothing to cleanup for dummy roots. */ 3762 } else if (root_to_sp(mmu->root.hpa)) { 3763 mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list); 3764 } else if (mmu->pae_root) { 3765 for (i = 0; i < 4; ++i) { 3766 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i])) 3767 continue; 3768 3769 mmu_free_root_page(kvm, &mmu->pae_root[i], 3770 &invalid_list); 3771 mmu->pae_root[i] = INVALID_PAE_ROOT; 3772 } 3773 } 3774 mmu->root.hpa = INVALID_PAGE; 3775 mmu->root.pgd = 0; 3776 } 3777 3778 if (is_tdp_mmu) { 3779 read_unlock(&kvm->mmu_lock); 3780 WARN_ON_ONCE(!list_empty(&invalid_list)); 3781 } else { 3782 kvm_mmu_commit_zap_page(kvm, &invalid_list); 3783 write_unlock(&kvm->mmu_lock); 3784 } 3785 } 3786 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots); 3787 3788 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu) 3789 { 3790 unsigned long roots_to_free = 0; 3791 struct kvm_mmu_page *sp; 3792 hpa_t root_hpa; 3793 int i; 3794 3795 /* 3796 * This should not be called while L2 is active, L2 can't invalidate 3797 * _only_ its own roots, e.g. INVVPID unconditionally exits. 3798 */ 3799 WARN_ON_ONCE(mmu->root_role.guest_mode); 3800 3801 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 3802 root_hpa = mmu->prev_roots[i].hpa; 3803 if (!VALID_PAGE(root_hpa)) 3804 continue; 3805 3806 sp = root_to_sp(root_hpa); 3807 if (!sp || sp->role.guest_mode) 3808 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 3809 } 3810 3811 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 3812 } 3813 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots); 3814 3815 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, int quadrant, 3816 u8 level) 3817 { 3818 union kvm_mmu_page_role role = vcpu->arch.mmu->root_role; 3819 struct kvm_mmu_page *sp; 3820 3821 role.level = level; 3822 role.quadrant = quadrant; 3823 3824 WARN_ON_ONCE(quadrant && !role.has_4_byte_gpte); 3825 WARN_ON_ONCE(role.direct && role.has_4_byte_gpte); 3826 3827 sp = kvm_mmu_get_shadow_page(vcpu, gfn, role); 3828 ++sp->root_count; 3829 3830 return __pa(sp->spt); 3831 } 3832 3833 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) 3834 { 3835 struct kvm_mmu *mmu = vcpu->arch.mmu; 3836 u8 shadow_root_level = mmu->root_role.level; 3837 hpa_t root; 3838 unsigned i; 3839 int r; 3840 3841 if (tdp_mmu_enabled) { 3842 if (kvm_has_mirrored_tdp(vcpu->kvm) && 3843 !VALID_PAGE(mmu->mirror_root_hpa)) 3844 kvm_tdp_mmu_alloc_root(vcpu, true); 3845 kvm_tdp_mmu_alloc_root(vcpu, false); 3846 return 0; 3847 } 3848 3849 write_lock(&vcpu->kvm->mmu_lock); 3850 r = make_mmu_pages_available(vcpu); 3851 if (r < 0) 3852 goto out_unlock; 3853 3854 if (shadow_root_level >= PT64_ROOT_4LEVEL) { 3855 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level); 3856 mmu->root.hpa = root; 3857 } else if (shadow_root_level == PT32E_ROOT_LEVEL) { 3858 if (WARN_ON_ONCE(!mmu->pae_root)) { 3859 r = -EIO; 3860 goto out_unlock; 3861 } 3862 3863 for (i = 0; i < 4; ++i) { 3864 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3865 3866 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 0, 3867 PT32_ROOT_LEVEL); 3868 mmu->pae_root[i] = root | PT_PRESENT_MASK | 3869 shadow_me_value; 3870 } 3871 mmu->root.hpa = __pa(mmu->pae_root); 3872 } else { 3873 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level); 3874 r = -EIO; 3875 goto out_unlock; 3876 } 3877 3878 /* root.pgd is ignored for direct MMUs. */ 3879 mmu->root.pgd = 0; 3880 out_unlock: 3881 write_unlock(&vcpu->kvm->mmu_lock); 3882 return r; 3883 } 3884 3885 static int mmu_first_shadow_root_alloc(struct kvm *kvm) 3886 { 3887 struct kvm_memslots *slots; 3888 struct kvm_memory_slot *slot; 3889 int r = 0, i, bkt; 3890 3891 /* 3892 * Check if this is the first shadow root being allocated before 3893 * taking the lock. 3894 */ 3895 if (kvm_shadow_root_allocated(kvm)) 3896 return 0; 3897 3898 mutex_lock(&kvm->slots_arch_lock); 3899 3900 /* Recheck, under the lock, whether this is the first shadow root. */ 3901 if (kvm_shadow_root_allocated(kvm)) 3902 goto out_unlock; 3903 3904 /* 3905 * Check if anything actually needs to be allocated, e.g. all metadata 3906 * will be allocated upfront if TDP is disabled. 3907 */ 3908 if (kvm_memslots_have_rmaps(kvm) && 3909 kvm_page_track_write_tracking_enabled(kvm)) 3910 goto out_success; 3911 3912 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 3913 slots = __kvm_memslots(kvm, i); 3914 kvm_for_each_memslot(slot, bkt, slots) { 3915 /* 3916 * Both of these functions are no-ops if the target is 3917 * already allocated, so unconditionally calling both 3918 * is safe. Intentionally do NOT free allocations on 3919 * failure to avoid having to track which allocations 3920 * were made now versus when the memslot was created. 3921 * The metadata is guaranteed to be freed when the slot 3922 * is freed, and will be kept/used if userspace retries 3923 * KVM_RUN instead of killing the VM. 3924 */ 3925 r = memslot_rmap_alloc(slot, slot->npages); 3926 if (r) 3927 goto out_unlock; 3928 r = kvm_page_track_write_tracking_alloc(slot); 3929 if (r) 3930 goto out_unlock; 3931 } 3932 } 3933 3934 /* 3935 * Ensure that shadow_root_allocated becomes true strictly after 3936 * all the related pointers are set. 3937 */ 3938 out_success: 3939 smp_store_release(&kvm->arch.shadow_root_allocated, true); 3940 3941 out_unlock: 3942 mutex_unlock(&kvm->slots_arch_lock); 3943 return r; 3944 } 3945 3946 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) 3947 { 3948 struct kvm_mmu *mmu = vcpu->arch.mmu; 3949 u64 pdptrs[4], pm_mask; 3950 gfn_t root_gfn, root_pgd; 3951 int quadrant, i, r; 3952 hpa_t root; 3953 3954 root_pgd = kvm_mmu_get_guest_pgd(vcpu, mmu); 3955 root_gfn = (root_pgd & __PT_BASE_ADDR_MASK) >> PAGE_SHIFT; 3956 3957 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) { 3958 mmu->root.hpa = kvm_mmu_get_dummy_root(); 3959 return 0; 3960 } 3961 3962 /* 3963 * On SVM, reading PDPTRs might access guest memory, which might fault 3964 * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock. 3965 */ 3966 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { 3967 for (i = 0; i < 4; ++i) { 3968 pdptrs[i] = mmu->get_pdptr(vcpu, i); 3969 if (!(pdptrs[i] & PT_PRESENT_MASK)) 3970 continue; 3971 3972 if (!kvm_vcpu_is_visible_gfn(vcpu, pdptrs[i] >> PAGE_SHIFT)) 3973 pdptrs[i] = 0; 3974 } 3975 } 3976 3977 r = mmu_first_shadow_root_alloc(vcpu->kvm); 3978 if (r) 3979 return r; 3980 3981 write_lock(&vcpu->kvm->mmu_lock); 3982 r = make_mmu_pages_available(vcpu); 3983 if (r < 0) 3984 goto out_unlock; 3985 3986 /* 3987 * Do we shadow a long mode page table? If so we need to 3988 * write-protect the guests page table root. 3989 */ 3990 if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { 3991 root = mmu_alloc_root(vcpu, root_gfn, 0, 3992 mmu->root_role.level); 3993 mmu->root.hpa = root; 3994 goto set_root_pgd; 3995 } 3996 3997 if (WARN_ON_ONCE(!mmu->pae_root)) { 3998 r = -EIO; 3999 goto out_unlock; 4000 } 4001 4002 /* 4003 * We shadow a 32 bit page table. This may be a legacy 2-level 4004 * or a PAE 3-level page table. In either case we need to be aware that 4005 * the shadow page table may be a PAE or a long mode page table. 4006 */ 4007 pm_mask = PT_PRESENT_MASK | shadow_me_value; 4008 if (mmu->root_role.level >= PT64_ROOT_4LEVEL) { 4009 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; 4010 4011 if (WARN_ON_ONCE(!mmu->pml4_root)) { 4012 r = -EIO; 4013 goto out_unlock; 4014 } 4015 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask; 4016 4017 if (mmu->root_role.level == PT64_ROOT_5LEVEL) { 4018 if (WARN_ON_ONCE(!mmu->pml5_root)) { 4019 r = -EIO; 4020 goto out_unlock; 4021 } 4022 mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask; 4023 } 4024 } 4025 4026 for (i = 0; i < 4; ++i) { 4027 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 4028 4029 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { 4030 if (!(pdptrs[i] & PT_PRESENT_MASK)) { 4031 mmu->pae_root[i] = INVALID_PAE_ROOT; 4032 continue; 4033 } 4034 root_gfn = pdptrs[i] >> PAGE_SHIFT; 4035 } 4036 4037 /* 4038 * If shadowing 32-bit non-PAE page tables, each PAE page 4039 * directory maps one quarter of the guest's non-PAE page 4040 * directory. Othwerise each PAE page direct shadows one guest 4041 * PAE page directory so that quadrant should be 0. 4042 */ 4043 quadrant = (mmu->cpu_role.base.level == PT32_ROOT_LEVEL) ? i : 0; 4044 4045 root = mmu_alloc_root(vcpu, root_gfn, quadrant, PT32_ROOT_LEVEL); 4046 mmu->pae_root[i] = root | pm_mask; 4047 } 4048 4049 if (mmu->root_role.level == PT64_ROOT_5LEVEL) 4050 mmu->root.hpa = __pa(mmu->pml5_root); 4051 else if (mmu->root_role.level == PT64_ROOT_4LEVEL) 4052 mmu->root.hpa = __pa(mmu->pml4_root); 4053 else 4054 mmu->root.hpa = __pa(mmu->pae_root); 4055 4056 set_root_pgd: 4057 mmu->root.pgd = root_pgd; 4058 out_unlock: 4059 write_unlock(&vcpu->kvm->mmu_lock); 4060 4061 return r; 4062 } 4063 4064 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu) 4065 { 4066 struct kvm_mmu *mmu = vcpu->arch.mmu; 4067 bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL; 4068 u64 *pml5_root = NULL; 4069 u64 *pml4_root = NULL; 4070 u64 *pae_root; 4071 4072 /* 4073 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP 4074 * tables are allocated and initialized at root creation as there is no 4075 * equivalent level in the guest's NPT to shadow. Allocate the tables 4076 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare. 4077 */ 4078 if (mmu->root_role.direct || 4079 mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL || 4080 mmu->root_role.level < PT64_ROOT_4LEVEL) 4081 return 0; 4082 4083 /* 4084 * NPT, the only paging mode that uses this horror, uses a fixed number 4085 * of levels for the shadow page tables, e.g. all MMUs are 4-level or 4086 * all MMus are 5-level. Thus, this can safely require that pml5_root 4087 * is allocated if the other roots are valid and pml5 is needed, as any 4088 * prior MMU would also have required pml5. 4089 */ 4090 if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root)) 4091 return 0; 4092 4093 /* 4094 * The special roots should always be allocated in concert. Yell and 4095 * bail if KVM ends up in a state where only one of the roots is valid. 4096 */ 4097 if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root || 4098 (need_pml5 && mmu->pml5_root))) 4099 return -EIO; 4100 4101 /* 4102 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and 4103 * doesn't need to be decrypted. 4104 */ 4105 pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 4106 if (!pae_root) 4107 return -ENOMEM; 4108 4109 #ifdef CONFIG_X86_64 4110 pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 4111 if (!pml4_root) 4112 goto err_pml4; 4113 4114 if (need_pml5) { 4115 pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 4116 if (!pml5_root) 4117 goto err_pml5; 4118 } 4119 #endif 4120 4121 mmu->pae_root = pae_root; 4122 mmu->pml4_root = pml4_root; 4123 mmu->pml5_root = pml5_root; 4124 4125 return 0; 4126 4127 #ifdef CONFIG_X86_64 4128 err_pml5: 4129 free_page((unsigned long)pml4_root); 4130 err_pml4: 4131 free_page((unsigned long)pae_root); 4132 return -ENOMEM; 4133 #endif 4134 } 4135 4136 static bool is_unsync_root(hpa_t root) 4137 { 4138 struct kvm_mmu_page *sp; 4139 4140 if (!VALID_PAGE(root) || kvm_mmu_is_dummy_root(root)) 4141 return false; 4142 4143 /* 4144 * The read barrier orders the CPU's read of SPTE.W during the page table 4145 * walk before the reads of sp->unsync/sp->unsync_children here. 4146 * 4147 * Even if another CPU was marking the SP as unsync-ed simultaneously, 4148 * any guest page table changes are not guaranteed to be visible anyway 4149 * until this VCPU issues a TLB flush strictly after those changes are 4150 * made. We only need to ensure that the other CPU sets these flags 4151 * before any actual changes to the page tables are made. The comments 4152 * in mmu_try_to_unsync_pages() describe what could go wrong if this 4153 * requirement isn't satisfied. 4154 */ 4155 smp_rmb(); 4156 sp = root_to_sp(root); 4157 4158 /* 4159 * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the 4160 * PDPTEs for a given PAE root need to be synchronized individually. 4161 */ 4162 if (WARN_ON_ONCE(!sp)) 4163 return false; 4164 4165 if (sp->unsync || sp->unsync_children) 4166 return true; 4167 4168 return false; 4169 } 4170 4171 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) 4172 { 4173 int i; 4174 struct kvm_mmu_page *sp; 4175 4176 if (vcpu->arch.mmu->root_role.direct) 4177 return; 4178 4179 if (!VALID_PAGE(vcpu->arch.mmu->root.hpa)) 4180 return; 4181 4182 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 4183 4184 if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { 4185 hpa_t root = vcpu->arch.mmu->root.hpa; 4186 4187 if (!is_unsync_root(root)) 4188 return; 4189 4190 sp = root_to_sp(root); 4191 4192 write_lock(&vcpu->kvm->mmu_lock); 4193 mmu_sync_children(vcpu, sp, true); 4194 write_unlock(&vcpu->kvm->mmu_lock); 4195 return; 4196 } 4197 4198 write_lock(&vcpu->kvm->mmu_lock); 4199 4200 for (i = 0; i < 4; ++i) { 4201 hpa_t root = vcpu->arch.mmu->pae_root[i]; 4202 4203 if (IS_VALID_PAE_ROOT(root)) { 4204 sp = spte_to_child_sp(root); 4205 mmu_sync_children(vcpu, sp, true); 4206 } 4207 } 4208 4209 write_unlock(&vcpu->kvm->mmu_lock); 4210 } 4211 4212 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu) 4213 { 4214 unsigned long roots_to_free = 0; 4215 int i; 4216 4217 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 4218 if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa)) 4219 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 4220 4221 /* sync prev_roots by simply freeing them */ 4222 kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free); 4223 } 4224 4225 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 4226 gpa_t vaddr, u64 access, 4227 struct x86_exception *exception) 4228 { 4229 if (exception) 4230 exception->error_code = 0; 4231 return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception); 4232 } 4233 4234 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct) 4235 { 4236 /* 4237 * A nested guest cannot use the MMIO cache if it is using nested 4238 * page tables, because cr2 is a nGPA while the cache stores GPAs. 4239 */ 4240 if (mmu_is_nested(vcpu)) 4241 return false; 4242 4243 if (direct) 4244 return vcpu_match_mmio_gpa(vcpu, addr); 4245 4246 return vcpu_match_mmio_gva(vcpu, addr); 4247 } 4248 4249 /* 4250 * Return the level of the lowest level SPTE added to sptes. 4251 * That SPTE may be non-present. 4252 * 4253 * Must be called between walk_shadow_page_lockless_{begin,end}. 4254 */ 4255 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level) 4256 { 4257 struct kvm_shadow_walk_iterator iterator; 4258 int leaf = -1; 4259 u64 spte; 4260 4261 for (shadow_walk_init(&iterator, vcpu, addr), 4262 *root_level = iterator.level; 4263 shadow_walk_okay(&iterator); 4264 __shadow_walk_next(&iterator, spte)) { 4265 leaf = iterator.level; 4266 spte = mmu_spte_get_lockless(iterator.sptep); 4267 4268 sptes[leaf] = spte; 4269 } 4270 4271 return leaf; 4272 } 4273 4274 static int get_sptes_lockless(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, 4275 int *root_level) 4276 { 4277 int leaf; 4278 4279 walk_shadow_page_lockless_begin(vcpu); 4280 4281 if (is_tdp_mmu_active(vcpu)) 4282 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, root_level); 4283 else 4284 leaf = get_walk(vcpu, addr, sptes, root_level); 4285 4286 walk_shadow_page_lockless_end(vcpu); 4287 return leaf; 4288 } 4289 4290 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */ 4291 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) 4292 { 4293 u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; 4294 struct rsvd_bits_validate *rsvd_check; 4295 int root, leaf, level; 4296 bool reserved = false; 4297 4298 leaf = get_sptes_lockless(vcpu, addr, sptes, &root); 4299 if (unlikely(leaf < 0)) { 4300 *sptep = 0ull; 4301 return reserved; 4302 } 4303 4304 *sptep = sptes[leaf]; 4305 4306 /* 4307 * Skip reserved bits checks on the terminal leaf if it's not a valid 4308 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by 4309 * design, always have reserved bits set. The purpose of the checks is 4310 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs. 4311 */ 4312 if (!is_shadow_present_pte(sptes[leaf])) 4313 leaf++; 4314 4315 rsvd_check = &vcpu->arch.mmu->shadow_zero_check; 4316 4317 for (level = root; level >= leaf; level--) 4318 reserved |= is_rsvd_spte(rsvd_check, sptes[level], level); 4319 4320 if (reserved) { 4321 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n", 4322 __func__, addr); 4323 for (level = root; level >= leaf; level--) 4324 pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx", 4325 sptes[level], level, 4326 get_rsvd_bits(rsvd_check, sptes[level], level)); 4327 } 4328 4329 return reserved; 4330 } 4331 4332 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct) 4333 { 4334 u64 spte; 4335 bool reserved; 4336 4337 if (mmio_info_in_cache(vcpu, addr, direct)) 4338 return RET_PF_EMULATE; 4339 4340 reserved = get_mmio_spte(vcpu, addr, &spte); 4341 if (WARN_ON_ONCE(reserved)) 4342 return -EINVAL; 4343 4344 if (is_mmio_spte(vcpu->kvm, spte)) { 4345 gfn_t gfn = get_mmio_spte_gfn(spte); 4346 unsigned int access = get_mmio_spte_access(spte); 4347 4348 if (!check_mmio_spte(vcpu, spte)) 4349 return RET_PF_INVALID; 4350 4351 if (direct) 4352 addr = 0; 4353 4354 trace_handle_mmio_page_fault(addr, gfn, access); 4355 vcpu_cache_mmio_info(vcpu, addr, gfn, access); 4356 return RET_PF_EMULATE; 4357 } 4358 4359 /* 4360 * If the page table is zapped by other cpus, let CPU fault again on 4361 * the address. 4362 */ 4363 return RET_PF_RETRY; 4364 } 4365 4366 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu, 4367 struct kvm_page_fault *fault) 4368 { 4369 if (unlikely(fault->rsvd)) 4370 return false; 4371 4372 if (!fault->present || !fault->write) 4373 return false; 4374 4375 /* 4376 * guest is writing the page which is write tracked which can 4377 * not be fixed by page fault handler. 4378 */ 4379 if (kvm_gfn_is_write_tracked(vcpu->kvm, fault->slot, fault->gfn)) 4380 return true; 4381 4382 return false; 4383 } 4384 4385 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr) 4386 { 4387 struct kvm_shadow_walk_iterator iterator; 4388 u64 spte; 4389 4390 walk_shadow_page_lockless_begin(vcpu); 4391 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) 4392 clear_sp_write_flooding_count(iterator.sptep); 4393 walk_shadow_page_lockless_end(vcpu); 4394 } 4395 4396 static u32 alloc_apf_token(struct kvm_vcpu *vcpu) 4397 { 4398 /* make sure the token value is not 0 */ 4399 u32 id = vcpu->arch.apf.id; 4400 4401 if (id << 12 == 0) 4402 vcpu->arch.apf.id = 1; 4403 4404 return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; 4405 } 4406 4407 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, 4408 struct kvm_page_fault *fault) 4409 { 4410 struct kvm_arch_async_pf arch; 4411 4412 arch.token = alloc_apf_token(vcpu); 4413 arch.gfn = fault->gfn; 4414 arch.error_code = fault->error_code; 4415 arch.direct_map = vcpu->arch.mmu->root_role.direct; 4416 arch.cr3 = kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu); 4417 4418 return kvm_setup_async_pf(vcpu, fault->addr, 4419 kvm_vcpu_gfn_to_hva(vcpu, fault->gfn), &arch); 4420 } 4421 4422 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 4423 { 4424 int r; 4425 4426 if (WARN_ON_ONCE(work->arch.error_code & PFERR_PRIVATE_ACCESS)) 4427 return; 4428 4429 if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) || 4430 work->wakeup_all) 4431 return; 4432 4433 r = kvm_mmu_reload(vcpu); 4434 if (unlikely(r)) 4435 return; 4436 4437 if (!vcpu->arch.mmu->root_role.direct && 4438 work->arch.cr3 != kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu)) 4439 return; 4440 4441 r = kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, work->arch.error_code, 4442 true, NULL, NULL); 4443 4444 /* 4445 * Account fixed page faults, otherwise they'll never be counted, but 4446 * ignore stats for all other return times. Page-ready "faults" aren't 4447 * truly spurious and never trigger emulation 4448 */ 4449 if (r == RET_PF_FIXED) 4450 vcpu->stat.pf_fixed++; 4451 } 4452 4453 static inline u8 kvm_max_level_for_order(int order) 4454 { 4455 BUILD_BUG_ON(KVM_MAX_HUGEPAGE_LEVEL > PG_LEVEL_1G); 4456 4457 KVM_MMU_WARN_ON(order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G) && 4458 order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M) && 4459 order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K)); 4460 4461 if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G)) 4462 return PG_LEVEL_1G; 4463 4464 if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M)) 4465 return PG_LEVEL_2M; 4466 4467 return PG_LEVEL_4K; 4468 } 4469 4470 static u8 kvm_max_private_mapping_level(struct kvm *kvm, kvm_pfn_t pfn, 4471 u8 max_level, int gmem_order) 4472 { 4473 u8 req_max_level; 4474 4475 if (max_level == PG_LEVEL_4K) 4476 return PG_LEVEL_4K; 4477 4478 max_level = min(kvm_max_level_for_order(gmem_order), max_level); 4479 if (max_level == PG_LEVEL_4K) 4480 return PG_LEVEL_4K; 4481 4482 req_max_level = kvm_x86_call(private_max_mapping_level)(kvm, pfn); 4483 if (req_max_level) 4484 max_level = min(max_level, req_max_level); 4485 4486 return max_level; 4487 } 4488 4489 static void kvm_mmu_finish_page_fault(struct kvm_vcpu *vcpu, 4490 struct kvm_page_fault *fault, int r) 4491 { 4492 kvm_release_faultin_page(vcpu->kvm, fault->refcounted_page, 4493 r == RET_PF_RETRY, fault->map_writable); 4494 } 4495 4496 static int kvm_mmu_faultin_pfn_private(struct kvm_vcpu *vcpu, 4497 struct kvm_page_fault *fault) 4498 { 4499 int max_order, r; 4500 4501 if (!kvm_slot_can_be_private(fault->slot)) { 4502 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 4503 return -EFAULT; 4504 } 4505 4506 r = kvm_gmem_get_pfn(vcpu->kvm, fault->slot, fault->gfn, &fault->pfn, 4507 &fault->refcounted_page, &max_order); 4508 if (r) { 4509 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 4510 return r; 4511 } 4512 4513 fault->map_writable = !(fault->slot->flags & KVM_MEM_READONLY); 4514 fault->max_level = kvm_max_private_mapping_level(vcpu->kvm, fault->pfn, 4515 fault->max_level, max_order); 4516 4517 return RET_PF_CONTINUE; 4518 } 4519 4520 static int __kvm_mmu_faultin_pfn(struct kvm_vcpu *vcpu, 4521 struct kvm_page_fault *fault) 4522 { 4523 unsigned int foll = fault->write ? FOLL_WRITE : 0; 4524 4525 if (fault->is_private) 4526 return kvm_mmu_faultin_pfn_private(vcpu, fault); 4527 4528 foll |= FOLL_NOWAIT; 4529 fault->pfn = __kvm_faultin_pfn(fault->slot, fault->gfn, foll, 4530 &fault->map_writable, &fault->refcounted_page); 4531 4532 /* 4533 * If resolving the page failed because I/O is needed to fault-in the 4534 * page, then either set up an asynchronous #PF to do the I/O, or if 4535 * doing an async #PF isn't possible, retry with I/O allowed. All 4536 * other failures are terminal, i.e. retrying won't help. 4537 */ 4538 if (fault->pfn != KVM_PFN_ERR_NEEDS_IO) 4539 return RET_PF_CONTINUE; 4540 4541 if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) { 4542 trace_kvm_try_async_get_page(fault->addr, fault->gfn); 4543 if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) { 4544 trace_kvm_async_pf_repeated_fault(fault->addr, fault->gfn); 4545 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 4546 return RET_PF_RETRY; 4547 } else if (kvm_arch_setup_async_pf(vcpu, fault)) { 4548 return RET_PF_RETRY; 4549 } 4550 } 4551 4552 /* 4553 * Allow gup to bail on pending non-fatal signals when it's also allowed 4554 * to wait for IO. Note, gup always bails if it is unable to quickly 4555 * get a page and a fatal signal, i.e. SIGKILL, is pending. 4556 */ 4557 foll |= FOLL_INTERRUPTIBLE; 4558 foll &= ~FOLL_NOWAIT; 4559 fault->pfn = __kvm_faultin_pfn(fault->slot, fault->gfn, foll, 4560 &fault->map_writable, &fault->refcounted_page); 4561 4562 return RET_PF_CONTINUE; 4563 } 4564 4565 static int kvm_mmu_faultin_pfn(struct kvm_vcpu *vcpu, 4566 struct kvm_page_fault *fault, unsigned int access) 4567 { 4568 struct kvm_memory_slot *slot = fault->slot; 4569 struct kvm *kvm = vcpu->kvm; 4570 int ret; 4571 4572 if (KVM_BUG_ON(kvm_is_gfn_alias(kvm, fault->gfn), kvm)) 4573 return -EFAULT; 4574 4575 /* 4576 * Note that the mmu_invalidate_seq also serves to detect a concurrent 4577 * change in attributes. is_page_fault_stale() will detect an 4578 * invalidation relate to fault->fn and resume the guest without 4579 * installing a mapping in the page tables. 4580 */ 4581 fault->mmu_seq = vcpu->kvm->mmu_invalidate_seq; 4582 smp_rmb(); 4583 4584 /* 4585 * Now that we have a snapshot of mmu_invalidate_seq we can check for a 4586 * private vs. shared mismatch. 4587 */ 4588 if (fault->is_private != kvm_mem_is_private(kvm, fault->gfn)) { 4589 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 4590 return -EFAULT; 4591 } 4592 4593 if (unlikely(!slot)) 4594 return kvm_handle_noslot_fault(vcpu, fault, access); 4595 4596 /* 4597 * Retry the page fault if the gfn hit a memslot that is being deleted 4598 * or moved. This ensures any existing SPTEs for the old memslot will 4599 * be zapped before KVM inserts a new MMIO SPTE for the gfn. 4600 */ 4601 if (slot->flags & KVM_MEMSLOT_INVALID) 4602 return RET_PF_RETRY; 4603 4604 if (slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT) { 4605 /* 4606 * Don't map L1's APIC access page into L2, KVM doesn't support 4607 * using APICv/AVIC to accelerate L2 accesses to L1's APIC, 4608 * i.e. the access needs to be emulated. Emulating access to 4609 * L1's APIC is also correct if L1 is accelerating L2's own 4610 * virtual APIC, but for some reason L1 also maps _L1's_ APIC 4611 * into L2. Note, vcpu_is_mmio_gpa() always treats access to 4612 * the APIC as MMIO. Allow an MMIO SPTE to be created, as KVM 4613 * uses different roots for L1 vs. L2, i.e. there is no danger 4614 * of breaking APICv/AVIC for L1. 4615 */ 4616 if (is_guest_mode(vcpu)) 4617 return kvm_handle_noslot_fault(vcpu, fault, access); 4618 4619 /* 4620 * If the APIC access page exists but is disabled, go directly 4621 * to emulation without caching the MMIO access or creating a 4622 * MMIO SPTE. That way the cache doesn't need to be purged 4623 * when the AVIC is re-enabled. 4624 */ 4625 if (!kvm_apicv_activated(vcpu->kvm)) 4626 return RET_PF_EMULATE; 4627 } 4628 4629 /* 4630 * Check for a relevant mmu_notifier invalidation event before getting 4631 * the pfn from the primary MMU, and before acquiring mmu_lock. 4632 * 4633 * For mmu_lock, if there is an in-progress invalidation and the kernel 4634 * allows preemption, the invalidation task may drop mmu_lock and yield 4635 * in response to mmu_lock being contended, which is *very* counter- 4636 * productive as this vCPU can't actually make forward progress until 4637 * the invalidation completes. 4638 * 4639 * Retrying now can also avoid unnessary lock contention in the primary 4640 * MMU, as the primary MMU doesn't necessarily hold a single lock for 4641 * the duration of the invalidation, i.e. faulting in a conflicting pfn 4642 * can cause the invalidation to take longer by holding locks that are 4643 * needed to complete the invalidation. 4644 * 4645 * Do the pre-check even for non-preemtible kernels, i.e. even if KVM 4646 * will never yield mmu_lock in response to contention, as this vCPU is 4647 * *guaranteed* to need to retry, i.e. waiting until mmu_lock is held 4648 * to detect retry guarantees the worst case latency for the vCPU. 4649 */ 4650 if (mmu_invalidate_retry_gfn_unsafe(kvm, fault->mmu_seq, fault->gfn)) 4651 return RET_PF_RETRY; 4652 4653 ret = __kvm_mmu_faultin_pfn(vcpu, fault); 4654 if (ret != RET_PF_CONTINUE) 4655 return ret; 4656 4657 if (unlikely(is_error_pfn(fault->pfn))) 4658 return kvm_handle_error_pfn(vcpu, fault); 4659 4660 if (WARN_ON_ONCE(!fault->slot || is_noslot_pfn(fault->pfn))) 4661 return kvm_handle_noslot_fault(vcpu, fault, access); 4662 4663 /* 4664 * Check again for a relevant mmu_notifier invalidation event purely to 4665 * avoid contending mmu_lock. Most invalidations will be detected by 4666 * the previous check, but checking is extremely cheap relative to the 4667 * overall cost of failing to detect the invalidation until after 4668 * mmu_lock is acquired. 4669 */ 4670 if (mmu_invalidate_retry_gfn_unsafe(kvm, fault->mmu_seq, fault->gfn)) { 4671 kvm_mmu_finish_page_fault(vcpu, fault, RET_PF_RETRY); 4672 return RET_PF_RETRY; 4673 } 4674 4675 return RET_PF_CONTINUE; 4676 } 4677 4678 /* 4679 * Returns true if the page fault is stale and needs to be retried, i.e. if the 4680 * root was invalidated by a memslot update or a relevant mmu_notifier fired. 4681 */ 4682 static bool is_page_fault_stale(struct kvm_vcpu *vcpu, 4683 struct kvm_page_fault *fault) 4684 { 4685 struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa); 4686 4687 /* Special roots, e.g. pae_root, are not backed by shadow pages. */ 4688 if (sp && is_obsolete_sp(vcpu->kvm, sp)) 4689 return true; 4690 4691 /* 4692 * Roots without an associated shadow page are considered invalid if 4693 * there is a pending request to free obsolete roots. The request is 4694 * only a hint that the current root _may_ be obsolete and needs to be 4695 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a 4696 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs 4697 * to reload even if no vCPU is actively using the root. 4698 */ 4699 if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 4700 return true; 4701 4702 /* 4703 * Check for a relevant mmu_notifier invalidation event one last time 4704 * now that mmu_lock is held, as the "unsafe" checks performed without 4705 * holding mmu_lock can get false negatives. 4706 */ 4707 return fault->slot && 4708 mmu_invalidate_retry_gfn(vcpu->kvm, fault->mmu_seq, fault->gfn); 4709 } 4710 4711 static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4712 { 4713 int r; 4714 4715 /* Dummy roots are used only for shadowing bad guest roots. */ 4716 if (WARN_ON_ONCE(kvm_mmu_is_dummy_root(vcpu->arch.mmu->root.hpa))) 4717 return RET_PF_RETRY; 4718 4719 if (page_fault_handle_page_track(vcpu, fault)) 4720 return RET_PF_WRITE_PROTECTED; 4721 4722 r = fast_page_fault(vcpu, fault); 4723 if (r != RET_PF_INVALID) 4724 return r; 4725 4726 r = mmu_topup_memory_caches(vcpu, false); 4727 if (r) 4728 return r; 4729 4730 r = kvm_mmu_faultin_pfn(vcpu, fault, ACC_ALL); 4731 if (r != RET_PF_CONTINUE) 4732 return r; 4733 4734 r = RET_PF_RETRY; 4735 write_lock(&vcpu->kvm->mmu_lock); 4736 4737 if (is_page_fault_stale(vcpu, fault)) 4738 goto out_unlock; 4739 4740 r = make_mmu_pages_available(vcpu); 4741 if (r) 4742 goto out_unlock; 4743 4744 r = direct_map(vcpu, fault); 4745 4746 out_unlock: 4747 kvm_mmu_finish_page_fault(vcpu, fault, r); 4748 write_unlock(&vcpu->kvm->mmu_lock); 4749 return r; 4750 } 4751 4752 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, 4753 struct kvm_page_fault *fault) 4754 { 4755 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */ 4756 fault->max_level = PG_LEVEL_2M; 4757 return direct_page_fault(vcpu, fault); 4758 } 4759 4760 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, 4761 u64 fault_address, char *insn, int insn_len) 4762 { 4763 int r = 1; 4764 u32 flags = vcpu->arch.apf.host_apf_flags; 4765 4766 #ifndef CONFIG_X86_64 4767 /* A 64-bit CR2 should be impossible on 32-bit KVM. */ 4768 if (WARN_ON_ONCE(fault_address >> 32)) 4769 return -EFAULT; 4770 #endif 4771 /* 4772 * Legacy #PF exception only have a 32-bit error code. Simply drop the 4773 * upper bits as KVM doesn't use them for #PF (because they are never 4774 * set), and to ensure there are no collisions with KVM-defined bits. 4775 */ 4776 if (WARN_ON_ONCE(error_code >> 32)) 4777 error_code = lower_32_bits(error_code); 4778 4779 /* 4780 * Restrict KVM-defined flags to bits 63:32 so that it's impossible for 4781 * them to conflict with #PF error codes, which are limited to 32 bits. 4782 */ 4783 BUILD_BUG_ON(lower_32_bits(PFERR_SYNTHETIC_MASK)); 4784 4785 vcpu->arch.l1tf_flush_l1d = true; 4786 if (!flags) { 4787 trace_kvm_page_fault(vcpu, fault_address, error_code); 4788 4789 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn, 4790 insn_len); 4791 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) { 4792 vcpu->arch.apf.host_apf_flags = 0; 4793 local_irq_disable(); 4794 kvm_async_pf_task_wait_schedule(fault_address); 4795 local_irq_enable(); 4796 } else { 4797 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags); 4798 } 4799 4800 return r; 4801 } 4802 EXPORT_SYMBOL_GPL(kvm_handle_page_fault); 4803 4804 #ifdef CONFIG_X86_64 4805 static int kvm_tdp_mmu_page_fault(struct kvm_vcpu *vcpu, 4806 struct kvm_page_fault *fault) 4807 { 4808 int r; 4809 4810 if (page_fault_handle_page_track(vcpu, fault)) 4811 return RET_PF_WRITE_PROTECTED; 4812 4813 r = fast_page_fault(vcpu, fault); 4814 if (r != RET_PF_INVALID) 4815 return r; 4816 4817 r = mmu_topup_memory_caches(vcpu, false); 4818 if (r) 4819 return r; 4820 4821 r = kvm_mmu_faultin_pfn(vcpu, fault, ACC_ALL); 4822 if (r != RET_PF_CONTINUE) 4823 return r; 4824 4825 r = RET_PF_RETRY; 4826 read_lock(&vcpu->kvm->mmu_lock); 4827 4828 if (is_page_fault_stale(vcpu, fault)) 4829 goto out_unlock; 4830 4831 r = kvm_tdp_mmu_map(vcpu, fault); 4832 4833 out_unlock: 4834 kvm_mmu_finish_page_fault(vcpu, fault, r); 4835 read_unlock(&vcpu->kvm->mmu_lock); 4836 return r; 4837 } 4838 #endif 4839 4840 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4841 { 4842 #ifdef CONFIG_X86_64 4843 if (tdp_mmu_enabled) 4844 return kvm_tdp_mmu_page_fault(vcpu, fault); 4845 #endif 4846 4847 return direct_page_fault(vcpu, fault); 4848 } 4849 4850 int kvm_tdp_map_page(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code, u8 *level) 4851 { 4852 int r; 4853 4854 /* 4855 * Restrict to TDP page fault, since that's the only case where the MMU 4856 * is indexed by GPA. 4857 */ 4858 if (vcpu->arch.mmu->page_fault != kvm_tdp_page_fault) 4859 return -EOPNOTSUPP; 4860 4861 do { 4862 if (signal_pending(current)) 4863 return -EINTR; 4864 4865 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) 4866 return -EIO; 4867 4868 cond_resched(); 4869 r = kvm_mmu_do_page_fault(vcpu, gpa, error_code, true, NULL, level); 4870 } while (r == RET_PF_RETRY); 4871 4872 if (r < 0) 4873 return r; 4874 4875 switch (r) { 4876 case RET_PF_FIXED: 4877 case RET_PF_SPURIOUS: 4878 case RET_PF_WRITE_PROTECTED: 4879 return 0; 4880 4881 case RET_PF_EMULATE: 4882 return -ENOENT; 4883 4884 case RET_PF_RETRY: 4885 case RET_PF_CONTINUE: 4886 case RET_PF_INVALID: 4887 default: 4888 WARN_ONCE(1, "could not fix page fault during prefault"); 4889 return -EIO; 4890 } 4891 } 4892 EXPORT_SYMBOL_GPL(kvm_tdp_map_page); 4893 4894 long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu, 4895 struct kvm_pre_fault_memory *range) 4896 { 4897 u64 error_code = PFERR_GUEST_FINAL_MASK; 4898 u8 level = PG_LEVEL_4K; 4899 u64 end; 4900 int r; 4901 4902 if (!vcpu->kvm->arch.pre_fault_allowed) 4903 return -EOPNOTSUPP; 4904 4905 /* 4906 * reload is efficient when called repeatedly, so we can do it on 4907 * every iteration. 4908 */ 4909 r = kvm_mmu_reload(vcpu); 4910 if (r) 4911 return r; 4912 4913 if (kvm_arch_has_private_mem(vcpu->kvm) && 4914 kvm_mem_is_private(vcpu->kvm, gpa_to_gfn(range->gpa))) 4915 error_code |= PFERR_PRIVATE_ACCESS; 4916 4917 /* 4918 * Shadow paging uses GVA for kvm page fault, so restrict to 4919 * two-dimensional paging. 4920 */ 4921 r = kvm_tdp_map_page(vcpu, range->gpa, error_code, &level); 4922 if (r < 0) 4923 return r; 4924 4925 /* 4926 * If the mapping that covers range->gpa can use a huge page, it 4927 * may start below it or end after range->gpa + range->size. 4928 */ 4929 end = (range->gpa & KVM_HPAGE_MASK(level)) + KVM_HPAGE_SIZE(level); 4930 return min(range->size, end - range->gpa); 4931 } 4932 4933 static void nonpaging_init_context(struct kvm_mmu *context) 4934 { 4935 context->page_fault = nonpaging_page_fault; 4936 context->gva_to_gpa = nonpaging_gva_to_gpa; 4937 context->sync_spte = NULL; 4938 } 4939 4940 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd, 4941 union kvm_mmu_page_role role) 4942 { 4943 struct kvm_mmu_page *sp; 4944 4945 if (!VALID_PAGE(root->hpa)) 4946 return false; 4947 4948 if (!role.direct && pgd != root->pgd) 4949 return false; 4950 4951 sp = root_to_sp(root->hpa); 4952 if (WARN_ON_ONCE(!sp)) 4953 return false; 4954 4955 return role.word == sp->role.word; 4956 } 4957 4958 /* 4959 * Find out if a previously cached root matching the new pgd/role is available, 4960 * and insert the current root as the MRU in the cache. 4961 * If a matching root is found, it is assigned to kvm_mmu->root and 4962 * true is returned. 4963 * If no match is found, kvm_mmu->root is left invalid, the LRU root is 4964 * evicted to make room for the current root, and false is returned. 4965 */ 4966 static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu, 4967 gpa_t new_pgd, 4968 union kvm_mmu_page_role new_role) 4969 { 4970 uint i; 4971 4972 if (is_root_usable(&mmu->root, new_pgd, new_role)) 4973 return true; 4974 4975 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 4976 /* 4977 * The swaps end up rotating the cache like this: 4978 * C 0 1 2 3 (on entry to the function) 4979 * 0 C 1 2 3 4980 * 1 C 0 2 3 4981 * 2 C 0 1 3 4982 * 3 C 0 1 2 (on exit from the loop) 4983 */ 4984 swap(mmu->root, mmu->prev_roots[i]); 4985 if (is_root_usable(&mmu->root, new_pgd, new_role)) 4986 return true; 4987 } 4988 4989 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 4990 return false; 4991 } 4992 4993 /* 4994 * Find out if a previously cached root matching the new pgd/role is available. 4995 * On entry, mmu->root is invalid. 4996 * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry 4997 * of the cache becomes invalid, and true is returned. 4998 * If no match is found, kvm_mmu->root is left invalid and false is returned. 4999 */ 5000 static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu, 5001 gpa_t new_pgd, 5002 union kvm_mmu_page_role new_role) 5003 { 5004 uint i; 5005 5006 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5007 if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role)) 5008 goto hit; 5009 5010 return false; 5011 5012 hit: 5013 swap(mmu->root, mmu->prev_roots[i]); 5014 /* Bubble up the remaining roots. */ 5015 for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++) 5016 mmu->prev_roots[i] = mmu->prev_roots[i + 1]; 5017 mmu->prev_roots[i].hpa = INVALID_PAGE; 5018 return true; 5019 } 5020 5021 static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu, 5022 gpa_t new_pgd, union kvm_mmu_page_role new_role) 5023 { 5024 /* 5025 * Limit reuse to 64-bit hosts+VMs without "special" roots in order to 5026 * avoid having to deal with PDPTEs and other complexities. 5027 */ 5028 if (VALID_PAGE(mmu->root.hpa) && !root_to_sp(mmu->root.hpa)) 5029 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 5030 5031 if (VALID_PAGE(mmu->root.hpa)) 5032 return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role); 5033 else 5034 return cached_root_find_without_current(kvm, mmu, new_pgd, new_role); 5035 } 5036 5037 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd) 5038 { 5039 struct kvm_mmu *mmu = vcpu->arch.mmu; 5040 union kvm_mmu_page_role new_role = mmu->root_role; 5041 5042 /* 5043 * Return immediately if no usable root was found, kvm_mmu_reload() 5044 * will establish a valid root prior to the next VM-Enter. 5045 */ 5046 if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role)) 5047 return; 5048 5049 /* 5050 * It's possible that the cached previous root page is obsolete because 5051 * of a change in the MMU generation number. However, changing the 5052 * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, 5053 * which will free the root set here and allocate a new one. 5054 */ 5055 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 5056 5057 if (force_flush_and_sync_on_reuse) { 5058 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 5059 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 5060 } 5061 5062 /* 5063 * The last MMIO access's GVA and GPA are cached in the VCPU. When 5064 * switching to a new CR3, that GVA->GPA mapping may no longer be 5065 * valid. So clear any cached MMIO info even when we don't need to sync 5066 * the shadow page tables. 5067 */ 5068 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 5069 5070 /* 5071 * If this is a direct root page, it doesn't have a write flooding 5072 * count. Otherwise, clear the write flooding count. 5073 */ 5074 if (!new_role.direct) { 5075 struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa); 5076 5077 if (!WARN_ON_ONCE(!sp)) 5078 __clear_sp_write_flooding_count(sp); 5079 } 5080 } 5081 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd); 5082 5083 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, 5084 unsigned int access) 5085 { 5086 if (unlikely(is_mmio_spte(vcpu->kvm, *sptep))) { 5087 if (gfn != get_mmio_spte_gfn(*sptep)) { 5088 mmu_spte_clear_no_track(sptep); 5089 return true; 5090 } 5091 5092 mark_mmio_spte(vcpu, sptep, gfn, access); 5093 return true; 5094 } 5095 5096 return false; 5097 } 5098 5099 #define PTTYPE_EPT 18 /* arbitrary */ 5100 #define PTTYPE PTTYPE_EPT 5101 #include "paging_tmpl.h" 5102 #undef PTTYPE 5103 5104 #define PTTYPE 64 5105 #include "paging_tmpl.h" 5106 #undef PTTYPE 5107 5108 #define PTTYPE 32 5109 #include "paging_tmpl.h" 5110 #undef PTTYPE 5111 5112 static void __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check, 5113 u64 pa_bits_rsvd, int level, bool nx, 5114 bool gbpages, bool pse, bool amd) 5115 { 5116 u64 gbpages_bit_rsvd = 0; 5117 u64 nonleaf_bit8_rsvd = 0; 5118 u64 high_bits_rsvd; 5119 5120 rsvd_check->bad_mt_xwr = 0; 5121 5122 if (!gbpages) 5123 gbpages_bit_rsvd = rsvd_bits(7, 7); 5124 5125 if (level == PT32E_ROOT_LEVEL) 5126 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62); 5127 else 5128 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 5129 5130 /* Note, NX doesn't exist in PDPTEs, this is handled below. */ 5131 if (!nx) 5132 high_bits_rsvd |= rsvd_bits(63, 63); 5133 5134 /* 5135 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for 5136 * leaf entries) on AMD CPUs only. 5137 */ 5138 if (amd) 5139 nonleaf_bit8_rsvd = rsvd_bits(8, 8); 5140 5141 switch (level) { 5142 case PT32_ROOT_LEVEL: 5143 /* no rsvd bits for 2 level 4K page table entries */ 5144 rsvd_check->rsvd_bits_mask[0][1] = 0; 5145 rsvd_check->rsvd_bits_mask[0][0] = 0; 5146 rsvd_check->rsvd_bits_mask[1][0] = 5147 rsvd_check->rsvd_bits_mask[0][0]; 5148 5149 if (!pse) { 5150 rsvd_check->rsvd_bits_mask[1][1] = 0; 5151 break; 5152 } 5153 5154 if (is_cpuid_PSE36()) 5155 /* 36bits PSE 4MB page */ 5156 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); 5157 else 5158 /* 32 bits PSE 4MB page */ 5159 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); 5160 break; 5161 case PT32E_ROOT_LEVEL: 5162 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) | 5163 high_bits_rsvd | 5164 rsvd_bits(5, 8) | 5165 rsvd_bits(1, 2); /* PDPTE */ 5166 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */ 5167 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */ 5168 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 5169 rsvd_bits(13, 20); /* large page */ 5170 rsvd_check->rsvd_bits_mask[1][0] = 5171 rsvd_check->rsvd_bits_mask[0][0]; 5172 break; 5173 case PT64_ROOT_5LEVEL: 5174 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | 5175 nonleaf_bit8_rsvd | 5176 rsvd_bits(7, 7); 5177 rsvd_check->rsvd_bits_mask[1][4] = 5178 rsvd_check->rsvd_bits_mask[0][4]; 5179 fallthrough; 5180 case PT64_ROOT_4LEVEL: 5181 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | 5182 nonleaf_bit8_rsvd | 5183 rsvd_bits(7, 7); 5184 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | 5185 gbpages_bit_rsvd; 5186 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; 5187 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 5188 rsvd_check->rsvd_bits_mask[1][3] = 5189 rsvd_check->rsvd_bits_mask[0][3]; 5190 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | 5191 gbpages_bit_rsvd | 5192 rsvd_bits(13, 29); 5193 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 5194 rsvd_bits(13, 20); /* large page */ 5195 rsvd_check->rsvd_bits_mask[1][0] = 5196 rsvd_check->rsvd_bits_mask[0][0]; 5197 break; 5198 } 5199 } 5200 5201 static void reset_guest_rsvds_bits_mask(struct kvm_vcpu *vcpu, 5202 struct kvm_mmu *context) 5203 { 5204 __reset_rsvds_bits_mask(&context->guest_rsvd_check, 5205 vcpu->arch.reserved_gpa_bits, 5206 context->cpu_role.base.level, is_efer_nx(context), 5207 guest_cpu_cap_has(vcpu, X86_FEATURE_GBPAGES), 5208 is_cr4_pse(context), 5209 guest_cpuid_is_amd_compatible(vcpu)); 5210 } 5211 5212 static void __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check, 5213 u64 pa_bits_rsvd, bool execonly, 5214 int huge_page_level) 5215 { 5216 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 5217 u64 large_1g_rsvd = 0, large_2m_rsvd = 0; 5218 u64 bad_mt_xwr; 5219 5220 if (huge_page_level < PG_LEVEL_1G) 5221 large_1g_rsvd = rsvd_bits(7, 7); 5222 if (huge_page_level < PG_LEVEL_2M) 5223 large_2m_rsvd = rsvd_bits(7, 7); 5224 5225 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7); 5226 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7); 5227 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd; 5228 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd; 5229 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 5230 5231 /* large page */ 5232 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4]; 5233 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3]; 5234 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd; 5235 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd; 5236 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0]; 5237 5238 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */ 5239 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */ 5240 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */ 5241 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */ 5242 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */ 5243 if (!execonly) { 5244 /* bits 0..2 must not be 100 unless VMX capabilities allow it */ 5245 bad_mt_xwr |= REPEAT_BYTE(1ull << 4); 5246 } 5247 rsvd_check->bad_mt_xwr = bad_mt_xwr; 5248 } 5249 5250 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, 5251 struct kvm_mmu *context, bool execonly, int huge_page_level) 5252 { 5253 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check, 5254 vcpu->arch.reserved_gpa_bits, execonly, 5255 huge_page_level); 5256 } 5257 5258 static inline u64 reserved_hpa_bits(void) 5259 { 5260 return rsvd_bits(kvm_host.maxphyaddr, 63); 5261 } 5262 5263 /* 5264 * the page table on host is the shadow page table for the page 5265 * table in guest or amd nested guest, its mmu features completely 5266 * follow the features in guest. 5267 */ 5268 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 5269 struct kvm_mmu *context) 5270 { 5271 /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */ 5272 bool is_amd = true; 5273 /* KVM doesn't use 2-level page tables for the shadow MMU. */ 5274 bool is_pse = false; 5275 struct rsvd_bits_validate *shadow_zero_check; 5276 int i; 5277 5278 WARN_ON_ONCE(context->root_role.level < PT32E_ROOT_LEVEL); 5279 5280 shadow_zero_check = &context->shadow_zero_check; 5281 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 5282 context->root_role.level, 5283 context->root_role.efer_nx, 5284 guest_cpu_cap_has(vcpu, X86_FEATURE_GBPAGES), 5285 is_pse, is_amd); 5286 5287 if (!shadow_me_mask) 5288 return; 5289 5290 for (i = context->root_role.level; --i >= 0;) { 5291 /* 5292 * So far shadow_me_value is a constant during KVM's life 5293 * time. Bits in shadow_me_value are allowed to be set. 5294 * Bits in shadow_me_mask but not in shadow_me_value are 5295 * not allowed to be set. 5296 */ 5297 shadow_zero_check->rsvd_bits_mask[0][i] |= shadow_me_mask; 5298 shadow_zero_check->rsvd_bits_mask[1][i] |= shadow_me_mask; 5299 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_value; 5300 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_value; 5301 } 5302 5303 } 5304 5305 static inline bool boot_cpu_is_amd(void) 5306 { 5307 WARN_ON_ONCE(!tdp_enabled); 5308 return shadow_x_mask == 0; 5309 } 5310 5311 /* 5312 * the direct page table on host, use as much mmu features as 5313 * possible, however, kvm currently does not do execution-protection. 5314 */ 5315 static void reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context) 5316 { 5317 struct rsvd_bits_validate *shadow_zero_check; 5318 int i; 5319 5320 shadow_zero_check = &context->shadow_zero_check; 5321 5322 if (boot_cpu_is_amd()) 5323 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 5324 context->root_role.level, true, 5325 boot_cpu_has(X86_FEATURE_GBPAGES), 5326 false, true); 5327 else 5328 __reset_rsvds_bits_mask_ept(shadow_zero_check, 5329 reserved_hpa_bits(), false, 5330 max_huge_page_level); 5331 5332 if (!shadow_me_mask) 5333 return; 5334 5335 for (i = context->root_role.level; --i >= 0;) { 5336 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 5337 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 5338 } 5339 } 5340 5341 /* 5342 * as the comments in reset_shadow_zero_bits_mask() except it 5343 * is the shadow page table for intel nested guest. 5344 */ 5345 static void 5346 reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly) 5347 { 5348 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check, 5349 reserved_hpa_bits(), execonly, 5350 max_huge_page_level); 5351 } 5352 5353 #define BYTE_MASK(access) \ 5354 ((1 & (access) ? 2 : 0) | \ 5355 (2 & (access) ? 4 : 0) | \ 5356 (3 & (access) ? 8 : 0) | \ 5357 (4 & (access) ? 16 : 0) | \ 5358 (5 & (access) ? 32 : 0) | \ 5359 (6 & (access) ? 64 : 0) | \ 5360 (7 & (access) ? 128 : 0)) 5361 5362 5363 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept) 5364 { 5365 unsigned byte; 5366 5367 const u8 x = BYTE_MASK(ACC_EXEC_MASK); 5368 const u8 w = BYTE_MASK(ACC_WRITE_MASK); 5369 const u8 u = BYTE_MASK(ACC_USER_MASK); 5370 5371 bool cr4_smep = is_cr4_smep(mmu); 5372 bool cr4_smap = is_cr4_smap(mmu); 5373 bool cr0_wp = is_cr0_wp(mmu); 5374 bool efer_nx = is_efer_nx(mmu); 5375 5376 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { 5377 unsigned pfec = byte << 1; 5378 5379 /* 5380 * Each "*f" variable has a 1 bit for each UWX value 5381 * that causes a fault with the given PFEC. 5382 */ 5383 5384 /* Faults from writes to non-writable pages */ 5385 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0; 5386 /* Faults from user mode accesses to supervisor pages */ 5387 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0; 5388 /* Faults from fetches of non-executable pages*/ 5389 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0; 5390 /* Faults from kernel mode fetches of user pages */ 5391 u8 smepf = 0; 5392 /* Faults from kernel mode accesses of user pages */ 5393 u8 smapf = 0; 5394 5395 if (!ept) { 5396 /* Faults from kernel mode accesses to user pages */ 5397 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u; 5398 5399 /* Not really needed: !nx will cause pte.nx to fault */ 5400 if (!efer_nx) 5401 ff = 0; 5402 5403 /* Allow supervisor writes if !cr0.wp */ 5404 if (!cr0_wp) 5405 wf = (pfec & PFERR_USER_MASK) ? wf : 0; 5406 5407 /* Disallow supervisor fetches of user code if cr4.smep */ 5408 if (cr4_smep) 5409 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0; 5410 5411 /* 5412 * SMAP:kernel-mode data accesses from user-mode 5413 * mappings should fault. A fault is considered 5414 * as a SMAP violation if all of the following 5415 * conditions are true: 5416 * - X86_CR4_SMAP is set in CR4 5417 * - A user page is accessed 5418 * - The access is not a fetch 5419 * - The access is supervisor mode 5420 * - If implicit supervisor access or X86_EFLAGS_AC is clear 5421 * 5422 * Here, we cover the first four conditions. 5423 * The fifth is computed dynamically in permission_fault(); 5424 * PFERR_RSVD_MASK bit will be set in PFEC if the access is 5425 * *not* subject to SMAP restrictions. 5426 */ 5427 if (cr4_smap) 5428 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf; 5429 } 5430 5431 mmu->permissions[byte] = ff | uf | wf | smepf | smapf; 5432 } 5433 } 5434 5435 /* 5436 * PKU is an additional mechanism by which the paging controls access to 5437 * user-mode addresses based on the value in the PKRU register. Protection 5438 * key violations are reported through a bit in the page fault error code. 5439 * Unlike other bits of the error code, the PK bit is not known at the 5440 * call site of e.g. gva_to_gpa; it must be computed directly in 5441 * permission_fault based on two bits of PKRU, on some machine state (CR4, 5442 * CR0, EFER, CPL), and on other bits of the error code and the page tables. 5443 * 5444 * In particular the following conditions come from the error code, the 5445 * page tables and the machine state: 5446 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1 5447 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch) 5448 * - PK is always zero if U=0 in the page tables 5449 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access. 5450 * 5451 * The PKRU bitmask caches the result of these four conditions. The error 5452 * code (minus the P bit) and the page table's U bit form an index into the 5453 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed 5454 * with the two bits of the PKRU register corresponding to the protection key. 5455 * For the first three conditions above the bits will be 00, thus masking 5456 * away both AD and WD. For all reads or if the last condition holds, WD 5457 * only will be masked away. 5458 */ 5459 static void update_pkru_bitmask(struct kvm_mmu *mmu) 5460 { 5461 unsigned bit; 5462 bool wp; 5463 5464 mmu->pkru_mask = 0; 5465 5466 if (!is_cr4_pke(mmu)) 5467 return; 5468 5469 wp = is_cr0_wp(mmu); 5470 5471 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) { 5472 unsigned pfec, pkey_bits; 5473 bool check_pkey, check_write, ff, uf, wf, pte_user; 5474 5475 pfec = bit << 1; 5476 ff = pfec & PFERR_FETCH_MASK; 5477 uf = pfec & PFERR_USER_MASK; 5478 wf = pfec & PFERR_WRITE_MASK; 5479 5480 /* PFEC.RSVD is replaced by ACC_USER_MASK. */ 5481 pte_user = pfec & PFERR_RSVD_MASK; 5482 5483 /* 5484 * Only need to check the access which is not an 5485 * instruction fetch and is to a user page. 5486 */ 5487 check_pkey = (!ff && pte_user); 5488 /* 5489 * write access is controlled by PKRU if it is a 5490 * user access or CR0.WP = 1. 5491 */ 5492 check_write = check_pkey && wf && (uf || wp); 5493 5494 /* PKRU.AD stops both read and write access. */ 5495 pkey_bits = !!check_pkey; 5496 /* PKRU.WD stops write access. */ 5497 pkey_bits |= (!!check_write) << 1; 5498 5499 mmu->pkru_mask |= (pkey_bits & 3) << pfec; 5500 } 5501 } 5502 5503 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu, 5504 struct kvm_mmu *mmu) 5505 { 5506 if (!is_cr0_pg(mmu)) 5507 return; 5508 5509 reset_guest_rsvds_bits_mask(vcpu, mmu); 5510 update_permission_bitmask(mmu, false); 5511 update_pkru_bitmask(mmu); 5512 } 5513 5514 static void paging64_init_context(struct kvm_mmu *context) 5515 { 5516 context->page_fault = paging64_page_fault; 5517 context->gva_to_gpa = paging64_gva_to_gpa; 5518 context->sync_spte = paging64_sync_spte; 5519 } 5520 5521 static void paging32_init_context(struct kvm_mmu *context) 5522 { 5523 context->page_fault = paging32_page_fault; 5524 context->gva_to_gpa = paging32_gva_to_gpa; 5525 context->sync_spte = paging32_sync_spte; 5526 } 5527 5528 static union kvm_cpu_role kvm_calc_cpu_role(struct kvm_vcpu *vcpu, 5529 const struct kvm_mmu_role_regs *regs) 5530 { 5531 union kvm_cpu_role role = {0}; 5532 5533 role.base.access = ACC_ALL; 5534 role.base.smm = is_smm(vcpu); 5535 role.base.guest_mode = is_guest_mode(vcpu); 5536 role.ext.valid = 1; 5537 5538 if (!____is_cr0_pg(regs)) { 5539 role.base.direct = 1; 5540 return role; 5541 } 5542 5543 role.base.efer_nx = ____is_efer_nx(regs); 5544 role.base.cr0_wp = ____is_cr0_wp(regs); 5545 role.base.smep_andnot_wp = ____is_cr4_smep(regs) && !____is_cr0_wp(regs); 5546 role.base.smap_andnot_wp = ____is_cr4_smap(regs) && !____is_cr0_wp(regs); 5547 role.base.has_4_byte_gpte = !____is_cr4_pae(regs); 5548 5549 if (____is_efer_lma(regs)) 5550 role.base.level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL 5551 : PT64_ROOT_4LEVEL; 5552 else if (____is_cr4_pae(regs)) 5553 role.base.level = PT32E_ROOT_LEVEL; 5554 else 5555 role.base.level = PT32_ROOT_LEVEL; 5556 5557 role.ext.cr4_smep = ____is_cr4_smep(regs); 5558 role.ext.cr4_smap = ____is_cr4_smap(regs); 5559 role.ext.cr4_pse = ____is_cr4_pse(regs); 5560 5561 /* PKEY and LA57 are active iff long mode is active. */ 5562 role.ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs); 5563 role.ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs); 5564 role.ext.efer_lma = ____is_efer_lma(regs); 5565 return role; 5566 } 5567 5568 void __kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu, 5569 struct kvm_mmu *mmu) 5570 { 5571 const bool cr0_wp = kvm_is_cr0_bit_set(vcpu, X86_CR0_WP); 5572 5573 BUILD_BUG_ON((KVM_MMU_CR0_ROLE_BITS & KVM_POSSIBLE_CR0_GUEST_BITS) != X86_CR0_WP); 5574 BUILD_BUG_ON((KVM_MMU_CR4_ROLE_BITS & KVM_POSSIBLE_CR4_GUEST_BITS)); 5575 5576 if (is_cr0_wp(mmu) == cr0_wp) 5577 return; 5578 5579 mmu->cpu_role.base.cr0_wp = cr0_wp; 5580 reset_guest_paging_metadata(vcpu, mmu); 5581 } 5582 5583 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu) 5584 { 5585 int maxpa; 5586 5587 if (vcpu->kvm->arch.vm_type == KVM_X86_TDX_VM) 5588 maxpa = cpuid_query_maxguestphyaddr(vcpu); 5589 else 5590 maxpa = cpuid_maxphyaddr(vcpu); 5591 5592 /* tdp_root_level is architecture forced level, use it if nonzero */ 5593 if (tdp_root_level) 5594 return tdp_root_level; 5595 5596 /* Use 5-level TDP if and only if it's useful/necessary. */ 5597 if (max_tdp_level == 5 && maxpa <= 48) 5598 return 4; 5599 5600 return max_tdp_level; 5601 } 5602 5603 u8 kvm_mmu_get_max_tdp_level(void) 5604 { 5605 return tdp_root_level ? tdp_root_level : max_tdp_level; 5606 } 5607 5608 static union kvm_mmu_page_role 5609 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, 5610 union kvm_cpu_role cpu_role) 5611 { 5612 union kvm_mmu_page_role role = {0}; 5613 5614 role.access = ACC_ALL; 5615 role.cr0_wp = true; 5616 role.efer_nx = true; 5617 role.smm = cpu_role.base.smm; 5618 role.guest_mode = cpu_role.base.guest_mode; 5619 role.ad_disabled = !kvm_ad_enabled; 5620 role.level = kvm_mmu_get_tdp_level(vcpu); 5621 role.direct = true; 5622 role.has_4_byte_gpte = false; 5623 5624 return role; 5625 } 5626 5627 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu, 5628 union kvm_cpu_role cpu_role) 5629 { 5630 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5631 union kvm_mmu_page_role root_role = kvm_calc_tdp_mmu_root_page_role(vcpu, cpu_role); 5632 5633 if (cpu_role.as_u64 == context->cpu_role.as_u64 && 5634 root_role.word == context->root_role.word) 5635 return; 5636 5637 context->cpu_role.as_u64 = cpu_role.as_u64; 5638 context->root_role.word = root_role.word; 5639 context->page_fault = kvm_tdp_page_fault; 5640 context->sync_spte = NULL; 5641 context->get_guest_pgd = get_guest_cr3; 5642 context->get_pdptr = kvm_pdptr_read; 5643 context->inject_page_fault = kvm_inject_page_fault; 5644 5645 if (!is_cr0_pg(context)) 5646 context->gva_to_gpa = nonpaging_gva_to_gpa; 5647 else if (is_cr4_pae(context)) 5648 context->gva_to_gpa = paging64_gva_to_gpa; 5649 else 5650 context->gva_to_gpa = paging32_gva_to_gpa; 5651 5652 reset_guest_paging_metadata(vcpu, context); 5653 reset_tdp_shadow_zero_bits_mask(context); 5654 } 5655 5656 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context, 5657 union kvm_cpu_role cpu_role, 5658 union kvm_mmu_page_role root_role) 5659 { 5660 if (cpu_role.as_u64 == context->cpu_role.as_u64 && 5661 root_role.word == context->root_role.word) 5662 return; 5663 5664 context->cpu_role.as_u64 = cpu_role.as_u64; 5665 context->root_role.word = root_role.word; 5666 5667 if (!is_cr0_pg(context)) 5668 nonpaging_init_context(context); 5669 else if (is_cr4_pae(context)) 5670 paging64_init_context(context); 5671 else 5672 paging32_init_context(context); 5673 5674 reset_guest_paging_metadata(vcpu, context); 5675 reset_shadow_zero_bits_mask(vcpu, context); 5676 } 5677 5678 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, 5679 union kvm_cpu_role cpu_role) 5680 { 5681 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5682 union kvm_mmu_page_role root_role; 5683 5684 root_role = cpu_role.base; 5685 5686 /* KVM uses PAE paging whenever the guest isn't using 64-bit paging. */ 5687 root_role.level = max_t(u32, root_role.level, PT32E_ROOT_LEVEL); 5688 5689 /* 5690 * KVM forces EFER.NX=1 when TDP is disabled, reflect it in the MMU role. 5691 * KVM uses NX when TDP is disabled to handle a variety of scenarios, 5692 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and 5693 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0. 5694 * The iTLB multi-hit workaround can be toggled at any time, so assume 5695 * NX can be used by any non-nested shadow MMU to avoid having to reset 5696 * MMU contexts. 5697 */ 5698 root_role.efer_nx = true; 5699 5700 shadow_mmu_init_context(vcpu, context, cpu_role, root_role); 5701 } 5702 5703 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0, 5704 unsigned long cr4, u64 efer, gpa_t nested_cr3) 5705 { 5706 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 5707 struct kvm_mmu_role_regs regs = { 5708 .cr0 = cr0, 5709 .cr4 = cr4 & ~X86_CR4_PKE, 5710 .efer = efer, 5711 }; 5712 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); 5713 union kvm_mmu_page_role root_role; 5714 5715 /* NPT requires CR0.PG=1. */ 5716 WARN_ON_ONCE(cpu_role.base.direct || !cpu_role.base.guest_mode); 5717 5718 root_role = cpu_role.base; 5719 root_role.level = kvm_mmu_get_tdp_level(vcpu); 5720 if (root_role.level == PT64_ROOT_5LEVEL && 5721 cpu_role.base.level == PT64_ROOT_4LEVEL) 5722 root_role.passthrough = 1; 5723 5724 shadow_mmu_init_context(vcpu, context, cpu_role, root_role); 5725 kvm_mmu_new_pgd(vcpu, nested_cr3); 5726 } 5727 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu); 5728 5729 static union kvm_cpu_role 5730 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty, 5731 bool execonly, u8 level) 5732 { 5733 union kvm_cpu_role role = {0}; 5734 5735 /* 5736 * KVM does not support SMM transfer monitors, and consequently does not 5737 * support the "entry to SMM" control either. role.base.smm is always 0. 5738 */ 5739 WARN_ON_ONCE(is_smm(vcpu)); 5740 role.base.level = level; 5741 role.base.has_4_byte_gpte = false; 5742 role.base.direct = false; 5743 role.base.ad_disabled = !accessed_dirty; 5744 role.base.guest_mode = true; 5745 role.base.access = ACC_ALL; 5746 5747 role.ext.word = 0; 5748 role.ext.execonly = execonly; 5749 role.ext.valid = 1; 5750 5751 return role; 5752 } 5753 5754 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, 5755 int huge_page_level, bool accessed_dirty, 5756 gpa_t new_eptp) 5757 { 5758 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 5759 u8 level = vmx_eptp_page_walk_level(new_eptp); 5760 union kvm_cpu_role new_mode = 5761 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty, 5762 execonly, level); 5763 5764 if (new_mode.as_u64 != context->cpu_role.as_u64) { 5765 /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */ 5766 context->cpu_role.as_u64 = new_mode.as_u64; 5767 context->root_role.word = new_mode.base.word; 5768 5769 context->page_fault = ept_page_fault; 5770 context->gva_to_gpa = ept_gva_to_gpa; 5771 context->sync_spte = ept_sync_spte; 5772 5773 update_permission_bitmask(context, true); 5774 context->pkru_mask = 0; 5775 reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level); 5776 reset_ept_shadow_zero_bits_mask(context, execonly); 5777 } 5778 5779 kvm_mmu_new_pgd(vcpu, new_eptp); 5780 } 5781 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); 5782 5783 static void init_kvm_softmmu(struct kvm_vcpu *vcpu, 5784 union kvm_cpu_role cpu_role) 5785 { 5786 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5787 5788 kvm_init_shadow_mmu(vcpu, cpu_role); 5789 5790 context->get_guest_pgd = get_guest_cr3; 5791 context->get_pdptr = kvm_pdptr_read; 5792 context->inject_page_fault = kvm_inject_page_fault; 5793 } 5794 5795 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu, 5796 union kvm_cpu_role new_mode) 5797 { 5798 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; 5799 5800 if (new_mode.as_u64 == g_context->cpu_role.as_u64) 5801 return; 5802 5803 g_context->cpu_role.as_u64 = new_mode.as_u64; 5804 g_context->get_guest_pgd = get_guest_cr3; 5805 g_context->get_pdptr = kvm_pdptr_read; 5806 g_context->inject_page_fault = kvm_inject_page_fault; 5807 5808 /* 5809 * L2 page tables are never shadowed, so there is no need to sync 5810 * SPTEs. 5811 */ 5812 g_context->sync_spte = NULL; 5813 5814 /* 5815 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using 5816 * L1's nested page tables (e.g. EPT12). The nested translation 5817 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using 5818 * L2's page tables as the first level of translation and L1's 5819 * nested page tables as the second level of translation. Basically 5820 * the gva_to_gpa functions between mmu and nested_mmu are swapped. 5821 */ 5822 if (!is_paging(vcpu)) 5823 g_context->gva_to_gpa = nonpaging_gva_to_gpa; 5824 else if (is_long_mode(vcpu)) 5825 g_context->gva_to_gpa = paging64_gva_to_gpa; 5826 else if (is_pae(vcpu)) 5827 g_context->gva_to_gpa = paging64_gva_to_gpa; 5828 else 5829 g_context->gva_to_gpa = paging32_gva_to_gpa; 5830 5831 reset_guest_paging_metadata(vcpu, g_context); 5832 } 5833 5834 void kvm_init_mmu(struct kvm_vcpu *vcpu) 5835 { 5836 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 5837 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); 5838 5839 if (mmu_is_nested(vcpu)) 5840 init_kvm_nested_mmu(vcpu, cpu_role); 5841 else if (tdp_enabled) 5842 init_kvm_tdp_mmu(vcpu, cpu_role); 5843 else 5844 init_kvm_softmmu(vcpu, cpu_role); 5845 } 5846 EXPORT_SYMBOL_GPL(kvm_init_mmu); 5847 5848 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu) 5849 { 5850 /* 5851 * Invalidate all MMU roles to force them to reinitialize as CPUID 5852 * information is factored into reserved bit calculations. 5853 * 5854 * Correctly handling multiple vCPU models with respect to paging and 5855 * physical address properties) in a single VM would require tracking 5856 * all relevant CPUID information in kvm_mmu_page_role. That is very 5857 * undesirable as it would increase the memory requirements for 5858 * gfn_write_track (see struct kvm_mmu_page_role comments). For now 5859 * that problem is swept under the rug; KVM's CPUID API is horrific and 5860 * it's all but impossible to solve it without introducing a new API. 5861 */ 5862 vcpu->arch.root_mmu.root_role.invalid = 1; 5863 vcpu->arch.guest_mmu.root_role.invalid = 1; 5864 vcpu->arch.nested_mmu.root_role.invalid = 1; 5865 vcpu->arch.root_mmu.cpu_role.ext.valid = 0; 5866 vcpu->arch.guest_mmu.cpu_role.ext.valid = 0; 5867 vcpu->arch.nested_mmu.cpu_role.ext.valid = 0; 5868 kvm_mmu_reset_context(vcpu); 5869 5870 /* 5871 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in 5872 * kvm_arch_vcpu_ioctl(). 5873 */ 5874 KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm); 5875 } 5876 5877 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu) 5878 { 5879 kvm_mmu_unload(vcpu); 5880 kvm_init_mmu(vcpu); 5881 } 5882 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); 5883 5884 int kvm_mmu_load(struct kvm_vcpu *vcpu) 5885 { 5886 int r; 5887 5888 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->root_role.direct); 5889 if (r) 5890 goto out; 5891 r = mmu_alloc_special_roots(vcpu); 5892 if (r) 5893 goto out; 5894 if (vcpu->arch.mmu->root_role.direct) 5895 r = mmu_alloc_direct_roots(vcpu); 5896 else 5897 r = mmu_alloc_shadow_roots(vcpu); 5898 if (r) 5899 goto out; 5900 5901 kvm_mmu_sync_roots(vcpu); 5902 5903 kvm_mmu_load_pgd(vcpu); 5904 5905 /* 5906 * Flush any TLB entries for the new root, the provenance of the root 5907 * is unknown. Even if KVM ensures there are no stale TLB entries 5908 * for a freed root, in theory another hypervisor could have left 5909 * stale entries. Flushing on alloc also allows KVM to skip the TLB 5910 * flush when freeing a root (see kvm_tdp_mmu_put_root()). 5911 */ 5912 kvm_x86_call(flush_tlb_current)(vcpu); 5913 out: 5914 return r; 5915 } 5916 EXPORT_SYMBOL_GPL(kvm_mmu_load); 5917 5918 void kvm_mmu_unload(struct kvm_vcpu *vcpu) 5919 { 5920 struct kvm *kvm = vcpu->kvm; 5921 5922 kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL); 5923 WARN_ON_ONCE(VALID_PAGE(vcpu->arch.root_mmu.root.hpa)); 5924 kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); 5925 WARN_ON_ONCE(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa)); 5926 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 5927 } 5928 5929 static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa) 5930 { 5931 struct kvm_mmu_page *sp; 5932 5933 if (!VALID_PAGE(root_hpa)) 5934 return false; 5935 5936 /* 5937 * When freeing obsolete roots, treat roots as obsolete if they don't 5938 * have an associated shadow page, as it's impossible to determine if 5939 * such roots are fresh or stale. This does mean KVM will get false 5940 * positives and free roots that don't strictly need to be freed, but 5941 * such false positives are relatively rare: 5942 * 5943 * (a) only PAE paging and nested NPT have roots without shadow pages 5944 * (or any shadow paging flavor with a dummy root, see note below) 5945 * (b) remote reloads due to a memslot update obsoletes _all_ roots 5946 * (c) KVM doesn't track previous roots for PAE paging, and the guest 5947 * is unlikely to zap an in-use PGD. 5948 * 5949 * Note! Dummy roots are unique in that they are obsoleted by memslot 5950 * _creation_! See also FNAME(fetch). 5951 */ 5952 sp = root_to_sp(root_hpa); 5953 return !sp || is_obsolete_sp(kvm, sp); 5954 } 5955 5956 static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu) 5957 { 5958 unsigned long roots_to_free = 0; 5959 int i; 5960 5961 if (is_obsolete_root(kvm, mmu->root.hpa)) 5962 roots_to_free |= KVM_MMU_ROOT_CURRENT; 5963 5964 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5965 if (is_obsolete_root(kvm, mmu->prev_roots[i].hpa)) 5966 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 5967 } 5968 5969 if (roots_to_free) 5970 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 5971 } 5972 5973 void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu) 5974 { 5975 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu); 5976 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu); 5977 } 5978 EXPORT_SYMBOL_GPL(kvm_mmu_free_obsolete_roots); 5979 5980 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, 5981 int *bytes) 5982 { 5983 u64 gentry = 0; 5984 int r; 5985 5986 /* 5987 * Assume that the pte write on a page table of the same type 5988 * as the current vcpu paging mode since we update the sptes only 5989 * when they have the same mode. 5990 */ 5991 if (is_pae(vcpu) && *bytes == 4) { 5992 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ 5993 *gpa &= ~(gpa_t)7; 5994 *bytes = 8; 5995 } 5996 5997 if (*bytes == 4 || *bytes == 8) { 5998 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes); 5999 if (r) 6000 gentry = 0; 6001 } 6002 6003 return gentry; 6004 } 6005 6006 /* 6007 * If we're seeing too many writes to a page, it may no longer be a page table, 6008 * or we may be forking, in which case it is better to unmap the page. 6009 */ 6010 static bool detect_write_flooding(struct kvm_mmu_page *sp) 6011 { 6012 /* 6013 * Skip write-flooding detected for the sp whose level is 1, because 6014 * it can become unsync, then the guest page is not write-protected. 6015 */ 6016 if (sp->role.level == PG_LEVEL_4K) 6017 return false; 6018 6019 atomic_inc(&sp->write_flooding_count); 6020 return atomic_read(&sp->write_flooding_count) >= 3; 6021 } 6022 6023 /* 6024 * Misaligned accesses are too much trouble to fix up; also, they usually 6025 * indicate a page is not used as a page table. 6026 */ 6027 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, 6028 int bytes) 6029 { 6030 unsigned offset, pte_size, misaligned; 6031 6032 offset = offset_in_page(gpa); 6033 pte_size = sp->role.has_4_byte_gpte ? 4 : 8; 6034 6035 /* 6036 * Sometimes, the OS only writes the last one bytes to update status 6037 * bits, for example, in linux, andb instruction is used in clear_bit(). 6038 */ 6039 if (!(offset & (pte_size - 1)) && bytes == 1) 6040 return false; 6041 6042 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); 6043 misaligned |= bytes < 4; 6044 6045 return misaligned; 6046 } 6047 6048 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) 6049 { 6050 unsigned page_offset, quadrant; 6051 u64 *spte; 6052 int level; 6053 6054 page_offset = offset_in_page(gpa); 6055 level = sp->role.level; 6056 *nspte = 1; 6057 if (sp->role.has_4_byte_gpte) { 6058 page_offset <<= 1; /* 32->64 */ 6059 /* 6060 * A 32-bit pde maps 4MB while the shadow pdes map 6061 * only 2MB. So we need to double the offset again 6062 * and zap two pdes instead of one. 6063 */ 6064 if (level == PT32_ROOT_LEVEL) { 6065 page_offset &= ~7; /* kill rounding error */ 6066 page_offset <<= 1; 6067 *nspte = 2; 6068 } 6069 quadrant = page_offset >> PAGE_SHIFT; 6070 page_offset &= ~PAGE_MASK; 6071 if (quadrant != sp->role.quadrant) 6072 return NULL; 6073 } 6074 6075 spte = &sp->spt[page_offset / sizeof(*spte)]; 6076 return spte; 6077 } 6078 6079 void kvm_mmu_track_write(struct kvm_vcpu *vcpu, gpa_t gpa, const u8 *new, 6080 int bytes) 6081 { 6082 gfn_t gfn = gpa >> PAGE_SHIFT; 6083 struct kvm_mmu_page *sp; 6084 LIST_HEAD(invalid_list); 6085 u64 entry, gentry, *spte; 6086 int npte; 6087 bool flush = false; 6088 6089 /* 6090 * When emulating guest writes, ensure the written value is visible to 6091 * any task that is handling page faults before checking whether or not 6092 * KVM is shadowing a guest PTE. This ensures either KVM will create 6093 * the correct SPTE in the page fault handler, or this task will see 6094 * a non-zero indirect_shadow_pages. Pairs with the smp_mb() in 6095 * account_shadowed(). 6096 */ 6097 smp_mb(); 6098 if (!vcpu->kvm->arch.indirect_shadow_pages) 6099 return; 6100 6101 write_lock(&vcpu->kvm->mmu_lock); 6102 6103 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes); 6104 6105 ++vcpu->kvm->stat.mmu_pte_write; 6106 6107 for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) { 6108 if (detect_write_misaligned(sp, gpa, bytes) || 6109 detect_write_flooding(sp)) { 6110 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); 6111 ++vcpu->kvm->stat.mmu_flooded; 6112 continue; 6113 } 6114 6115 spte = get_written_sptes(sp, gpa, &npte); 6116 if (!spte) 6117 continue; 6118 6119 while (npte--) { 6120 entry = *spte; 6121 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL); 6122 if (gentry && sp->role.level != PG_LEVEL_4K) 6123 ++vcpu->kvm->stat.mmu_pde_zapped; 6124 if (is_shadow_present_pte(entry)) 6125 flush = true; 6126 ++spte; 6127 } 6128 } 6129 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 6130 write_unlock(&vcpu->kvm->mmu_lock); 6131 } 6132 6133 static bool is_write_to_guest_page_table(u64 error_code) 6134 { 6135 const u64 mask = PFERR_GUEST_PAGE_MASK | PFERR_WRITE_MASK | PFERR_PRESENT_MASK; 6136 6137 return (error_code & mask) == mask; 6138 } 6139 6140 static int kvm_mmu_write_protect_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 6141 u64 error_code, int *emulation_type) 6142 { 6143 bool direct = vcpu->arch.mmu->root_role.direct; 6144 6145 /* 6146 * Do not try to unprotect and retry if the vCPU re-faulted on the same 6147 * RIP with the same address that was previously unprotected, as doing 6148 * so will likely put the vCPU into an infinite. E.g. if the vCPU uses 6149 * a non-page-table modifying instruction on the PDE that points to the 6150 * instruction, then unprotecting the gfn will unmap the instruction's 6151 * code, i.e. make it impossible for the instruction to ever complete. 6152 */ 6153 if (vcpu->arch.last_retry_eip == kvm_rip_read(vcpu) && 6154 vcpu->arch.last_retry_addr == cr2_or_gpa) 6155 return RET_PF_EMULATE; 6156 6157 /* 6158 * Reset the unprotect+retry values that guard against infinite loops. 6159 * The values will be refreshed if KVM explicitly unprotects a gfn and 6160 * retries, in all other cases it's safe to retry in the future even if 6161 * the next page fault happens on the same RIP+address. 6162 */ 6163 vcpu->arch.last_retry_eip = 0; 6164 vcpu->arch.last_retry_addr = 0; 6165 6166 /* 6167 * It should be impossible to reach this point with an MMIO cache hit, 6168 * as RET_PF_WRITE_PROTECTED is returned if and only if there's a valid, 6169 * writable memslot, and creating a memslot should invalidate the MMIO 6170 * cache by way of changing the memslot generation. WARN and disallow 6171 * retry if MMIO is detected, as retrying MMIO emulation is pointless 6172 * and could put the vCPU into an infinite loop because the processor 6173 * will keep faulting on the non-existent MMIO address. 6174 */ 6175 if (WARN_ON_ONCE(mmio_info_in_cache(vcpu, cr2_or_gpa, direct))) 6176 return RET_PF_EMULATE; 6177 6178 /* 6179 * Before emulating the instruction, check to see if the access was due 6180 * to a read-only violation while the CPU was walking non-nested NPT 6181 * page tables, i.e. for a direct MMU, for _guest_ page tables in L1. 6182 * If L1 is sharing (a subset of) its page tables with L2, e.g. by 6183 * having nCR3 share lower level page tables with hCR3, then when KVM 6184 * (L0) write-protects the nested NPTs, i.e. npt12 entries, KVM is also 6185 * unknowingly write-protecting L1's guest page tables, which KVM isn't 6186 * shadowing. 6187 * 6188 * Because the CPU (by default) walks NPT page tables using a write 6189 * access (to ensure the CPU can do A/D updates), page walks in L1 can 6190 * trigger write faults for the above case even when L1 isn't modifying 6191 * PTEs. As a result, KVM will unnecessarily emulate (or at least, try 6192 * to emulate) an excessive number of L1 instructions; because L1's MMU 6193 * isn't shadowed by KVM, there is no need to write-protect L1's gPTEs 6194 * and thus no need to emulate in order to guarantee forward progress. 6195 * 6196 * Try to unprotect the gfn, i.e. zap any shadow pages, so that L1 can 6197 * proceed without triggering emulation. If one or more shadow pages 6198 * was zapped, skip emulation and resume L1 to let it natively execute 6199 * the instruction. If no shadow pages were zapped, then the write- 6200 * fault is due to something else entirely, i.e. KVM needs to emulate, 6201 * as resuming the guest will put it into an infinite loop. 6202 * 6203 * Note, this code also applies to Intel CPUs, even though it is *very* 6204 * unlikely that an L1 will share its page tables (IA32/PAE/paging64 6205 * format) with L2's page tables (EPT format). 6206 * 6207 * For indirect MMUs, i.e. if KVM is shadowing the current MMU, try to 6208 * unprotect the gfn and retry if an event is awaiting reinjection. If 6209 * KVM emulates multiple instructions before completing event injection, 6210 * the event could be delayed beyond what is architecturally allowed, 6211 * e.g. KVM could inject an IRQ after the TPR has been raised. 6212 */ 6213 if (((direct && is_write_to_guest_page_table(error_code)) || 6214 (!direct && kvm_event_needs_reinjection(vcpu))) && 6215 kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa)) 6216 return RET_PF_RETRY; 6217 6218 /* 6219 * The gfn is write-protected, but if KVM detects its emulating an 6220 * instruction that is unlikely to be used to modify page tables, or if 6221 * emulation fails, KVM can try to unprotect the gfn and let the CPU 6222 * re-execute the instruction that caused the page fault. Do not allow 6223 * retrying an instruction from a nested guest as KVM is only explicitly 6224 * shadowing L1's page tables, i.e. unprotecting something for L1 isn't 6225 * going to magically fix whatever issue caused L2 to fail. 6226 */ 6227 if (!is_guest_mode(vcpu)) 6228 *emulation_type |= EMULTYPE_ALLOW_RETRY_PF; 6229 6230 return RET_PF_EMULATE; 6231 } 6232 6233 int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 6234 void *insn, int insn_len) 6235 { 6236 int r, emulation_type = EMULTYPE_PF; 6237 bool direct = vcpu->arch.mmu->root_role.direct; 6238 6239 if (WARN_ON_ONCE(!VALID_PAGE(vcpu->arch.mmu->root.hpa))) 6240 return RET_PF_RETRY; 6241 6242 /* 6243 * Except for reserved faults (emulated MMIO is shared-only), set the 6244 * PFERR_PRIVATE_ACCESS flag for software-protected VMs based on the gfn's 6245 * current attributes, which are the source of truth for such VMs. Note, 6246 * this wrong for nested MMUs as the GPA is an L2 GPA, but KVM doesn't 6247 * currently supported nested virtualization (among many other things) 6248 * for software-protected VMs. 6249 */ 6250 if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && 6251 !(error_code & PFERR_RSVD_MASK) && 6252 vcpu->kvm->arch.vm_type == KVM_X86_SW_PROTECTED_VM && 6253 kvm_mem_is_private(vcpu->kvm, gpa_to_gfn(cr2_or_gpa))) 6254 error_code |= PFERR_PRIVATE_ACCESS; 6255 6256 r = RET_PF_INVALID; 6257 if (unlikely(error_code & PFERR_RSVD_MASK)) { 6258 if (WARN_ON_ONCE(error_code & PFERR_PRIVATE_ACCESS)) 6259 return -EFAULT; 6260 6261 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct); 6262 if (r == RET_PF_EMULATE) 6263 goto emulate; 6264 } 6265 6266 if (r == RET_PF_INVALID) { 6267 vcpu->stat.pf_taken++; 6268 6269 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, error_code, false, 6270 &emulation_type, NULL); 6271 if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm)) 6272 return -EIO; 6273 } 6274 6275 if (r < 0) 6276 return r; 6277 6278 if (r == RET_PF_WRITE_PROTECTED) 6279 r = kvm_mmu_write_protect_fault(vcpu, cr2_or_gpa, error_code, 6280 &emulation_type); 6281 6282 if (r == RET_PF_FIXED) 6283 vcpu->stat.pf_fixed++; 6284 else if (r == RET_PF_EMULATE) 6285 vcpu->stat.pf_emulate++; 6286 else if (r == RET_PF_SPURIOUS) 6287 vcpu->stat.pf_spurious++; 6288 6289 /* 6290 * None of handle_mmio_page_fault(), kvm_mmu_do_page_fault(), or 6291 * kvm_mmu_write_protect_fault() return RET_PF_CONTINUE. 6292 * kvm_mmu_do_page_fault() only uses RET_PF_CONTINUE internally to 6293 * indicate continuing the page fault handling until to the final 6294 * page table mapping phase. 6295 */ 6296 WARN_ON_ONCE(r == RET_PF_CONTINUE); 6297 if (r != RET_PF_EMULATE) 6298 return r; 6299 6300 emulate: 6301 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn, 6302 insn_len); 6303 } 6304 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); 6305 6306 void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg) 6307 { 6308 u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; 6309 int root_level, leaf, level; 6310 6311 leaf = get_sptes_lockless(vcpu, gpa, sptes, &root_level); 6312 if (unlikely(leaf < 0)) 6313 return; 6314 6315 pr_err("%s %llx", msg, gpa); 6316 for (level = root_level; level >= leaf; level--) 6317 pr_cont(", spte[%d] = 0x%llx", level, sptes[level]); 6318 pr_cont("\n"); 6319 } 6320 EXPORT_SYMBOL_GPL(kvm_mmu_print_sptes); 6321 6322 static void __kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 6323 u64 addr, hpa_t root_hpa) 6324 { 6325 struct kvm_shadow_walk_iterator iterator; 6326 6327 vcpu_clear_mmio_info(vcpu, addr); 6328 6329 /* 6330 * Walking and synchronizing SPTEs both assume they are operating in 6331 * the context of the current MMU, and would need to be reworked if 6332 * this is ever used to sync the guest_mmu, e.g. to emulate INVEPT. 6333 */ 6334 if (WARN_ON_ONCE(mmu != vcpu->arch.mmu)) 6335 return; 6336 6337 if (!VALID_PAGE(root_hpa)) 6338 return; 6339 6340 write_lock(&vcpu->kvm->mmu_lock); 6341 for_each_shadow_entry_using_root(vcpu, root_hpa, addr, iterator) { 6342 struct kvm_mmu_page *sp = sptep_to_sp(iterator.sptep); 6343 6344 if (sp->unsync) { 6345 int ret = kvm_sync_spte(vcpu, sp, iterator.index); 6346 6347 if (ret < 0) 6348 mmu_page_zap_pte(vcpu->kvm, sp, iterator.sptep, NULL); 6349 if (ret) 6350 kvm_flush_remote_tlbs_sptep(vcpu->kvm, iterator.sptep); 6351 } 6352 6353 if (!sp->unsync_children) 6354 break; 6355 } 6356 write_unlock(&vcpu->kvm->mmu_lock); 6357 } 6358 6359 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 6360 u64 addr, unsigned long roots) 6361 { 6362 int i; 6363 6364 WARN_ON_ONCE(roots & ~KVM_MMU_ROOTS_ALL); 6365 6366 /* It's actually a GPA for vcpu->arch.guest_mmu. */ 6367 if (mmu != &vcpu->arch.guest_mmu) { 6368 /* INVLPG on a non-canonical address is a NOP according to the SDM. */ 6369 if (is_noncanonical_invlpg_address(addr, vcpu)) 6370 return; 6371 6372 kvm_x86_call(flush_tlb_gva)(vcpu, addr); 6373 } 6374 6375 if (!mmu->sync_spte) 6376 return; 6377 6378 if (roots & KVM_MMU_ROOT_CURRENT) 6379 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->root.hpa); 6380 6381 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 6382 if (roots & KVM_MMU_ROOT_PREVIOUS(i)) 6383 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->prev_roots[i].hpa); 6384 } 6385 } 6386 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_addr); 6387 6388 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) 6389 { 6390 /* 6391 * INVLPG is required to invalidate any global mappings for the VA, 6392 * irrespective of PCID. Blindly sync all roots as it would take 6393 * roughly the same amount of work/time to determine whether any of the 6394 * previous roots have a global mapping. 6395 * 6396 * Mappings not reachable via the current or previous cached roots will 6397 * be synced when switching to that new cr3, so nothing needs to be 6398 * done here for them. 6399 */ 6400 kvm_mmu_invalidate_addr(vcpu, vcpu->arch.walk_mmu, gva, KVM_MMU_ROOTS_ALL); 6401 ++vcpu->stat.invlpg; 6402 } 6403 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); 6404 6405 6406 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid) 6407 { 6408 struct kvm_mmu *mmu = vcpu->arch.mmu; 6409 unsigned long roots = 0; 6410 uint i; 6411 6412 if (pcid == kvm_get_active_pcid(vcpu)) 6413 roots |= KVM_MMU_ROOT_CURRENT; 6414 6415 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 6416 if (VALID_PAGE(mmu->prev_roots[i].hpa) && 6417 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) 6418 roots |= KVM_MMU_ROOT_PREVIOUS(i); 6419 } 6420 6421 if (roots) 6422 kvm_mmu_invalidate_addr(vcpu, mmu, gva, roots); 6423 ++vcpu->stat.invlpg; 6424 6425 /* 6426 * Mappings not reachable via the current cr3 or the prev_roots will be 6427 * synced when switching to that cr3, so nothing needs to be done here 6428 * for them. 6429 */ 6430 } 6431 6432 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 6433 int tdp_max_root_level, int tdp_huge_page_level) 6434 { 6435 tdp_enabled = enable_tdp; 6436 tdp_root_level = tdp_forced_root_level; 6437 max_tdp_level = tdp_max_root_level; 6438 6439 #ifdef CONFIG_X86_64 6440 tdp_mmu_enabled = tdp_mmu_allowed && tdp_enabled; 6441 #endif 6442 /* 6443 * max_huge_page_level reflects KVM's MMU capabilities irrespective 6444 * of kernel support, e.g. KVM may be capable of using 1GB pages when 6445 * the kernel is not. But, KVM never creates a page size greater than 6446 * what is used by the kernel for any given HVA, i.e. the kernel's 6447 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust(). 6448 */ 6449 if (tdp_enabled) 6450 max_huge_page_level = tdp_huge_page_level; 6451 else if (boot_cpu_has(X86_FEATURE_GBPAGES)) 6452 max_huge_page_level = PG_LEVEL_1G; 6453 else 6454 max_huge_page_level = PG_LEVEL_2M; 6455 } 6456 EXPORT_SYMBOL_GPL(kvm_configure_mmu); 6457 6458 static void free_mmu_pages(struct kvm_mmu *mmu) 6459 { 6460 if (!tdp_enabled && mmu->pae_root) 6461 set_memory_encrypted((unsigned long)mmu->pae_root, 1); 6462 free_page((unsigned long)mmu->pae_root); 6463 free_page((unsigned long)mmu->pml4_root); 6464 free_page((unsigned long)mmu->pml5_root); 6465 } 6466 6467 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 6468 { 6469 struct page *page; 6470 int i; 6471 6472 mmu->root.hpa = INVALID_PAGE; 6473 mmu->root.pgd = 0; 6474 mmu->mirror_root_hpa = INVALID_PAGE; 6475 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 6476 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 6477 6478 /* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */ 6479 if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu) 6480 return 0; 6481 6482 /* 6483 * When using PAE paging, the four PDPTEs are treated as 'root' pages, 6484 * while the PDP table is a per-vCPU construct that's allocated at MMU 6485 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on 6486 * x86_64. Therefore we need to allocate the PDP table in the first 6487 * 4GB of memory, which happens to fit the DMA32 zone. TDP paging 6488 * generally doesn't use PAE paging and can skip allocating the PDP 6489 * table. The main exception, handled here, is SVM's 32-bit NPT. The 6490 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit 6491 * KVM; that horror is handled on-demand by mmu_alloc_special_roots(). 6492 */ 6493 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL) 6494 return 0; 6495 6496 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32); 6497 if (!page) 6498 return -ENOMEM; 6499 6500 mmu->pae_root = page_address(page); 6501 6502 /* 6503 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to 6504 * get the CPU to treat the PDPTEs as encrypted. Decrypt the page so 6505 * that KVM's writes and the CPU's reads get along. Note, this is 6506 * only necessary when using shadow paging, as 64-bit NPT can get at 6507 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported 6508 * by 32-bit kernels (when KVM itself uses 32-bit NPT). 6509 */ 6510 if (!tdp_enabled) 6511 set_memory_decrypted((unsigned long)mmu->pae_root, 1); 6512 else 6513 WARN_ON_ONCE(shadow_me_value); 6514 6515 for (i = 0; i < 4; ++i) 6516 mmu->pae_root[i] = INVALID_PAE_ROOT; 6517 6518 return 0; 6519 } 6520 6521 int kvm_mmu_create(struct kvm_vcpu *vcpu) 6522 { 6523 int ret; 6524 6525 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache; 6526 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO; 6527 6528 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache; 6529 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO; 6530 6531 vcpu->arch.mmu_shadow_page_cache.init_value = 6532 SHADOW_NONPRESENT_VALUE; 6533 if (!vcpu->arch.mmu_shadow_page_cache.init_value) 6534 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO; 6535 6536 vcpu->arch.mmu = &vcpu->arch.root_mmu; 6537 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; 6538 6539 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu); 6540 if (ret) 6541 return ret; 6542 6543 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu); 6544 if (ret) 6545 goto fail_allocate_root; 6546 6547 return ret; 6548 fail_allocate_root: 6549 free_mmu_pages(&vcpu->arch.guest_mmu); 6550 return ret; 6551 } 6552 6553 #define BATCH_ZAP_PAGES 10 6554 static void kvm_zap_obsolete_pages(struct kvm *kvm) 6555 { 6556 struct kvm_mmu_page *sp, *node; 6557 int nr_zapped, batch = 0; 6558 LIST_HEAD(invalid_list); 6559 bool unstable; 6560 6561 lockdep_assert_held(&kvm->slots_lock); 6562 6563 restart: 6564 list_for_each_entry_safe_reverse(sp, node, 6565 &kvm->arch.active_mmu_pages, link) { 6566 /* 6567 * No obsolete valid page exists before a newly created page 6568 * since active_mmu_pages is a FIFO list. 6569 */ 6570 if (!is_obsolete_sp(kvm, sp)) 6571 break; 6572 6573 /* 6574 * Invalid pages should never land back on the list of active 6575 * pages. Skip the bogus page, otherwise we'll get stuck in an 6576 * infinite loop if the page gets put back on the list (again). 6577 */ 6578 if (WARN_ON_ONCE(sp->role.invalid)) 6579 continue; 6580 6581 /* 6582 * No need to flush the TLB since we're only zapping shadow 6583 * pages with an obsolete generation number and all vCPUS have 6584 * loaded a new root, i.e. the shadow pages being zapped cannot 6585 * be in active use by the guest. 6586 */ 6587 if (batch >= BATCH_ZAP_PAGES && 6588 cond_resched_rwlock_write(&kvm->mmu_lock)) { 6589 batch = 0; 6590 goto restart; 6591 } 6592 6593 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, 6594 &invalid_list, &nr_zapped); 6595 batch += nr_zapped; 6596 6597 if (unstable) 6598 goto restart; 6599 } 6600 6601 /* 6602 * Kick all vCPUs (via remote TLB flush) before freeing the page tables 6603 * to ensure KVM is not in the middle of a lockless shadow page table 6604 * walk, which may reference the pages. The remote TLB flush itself is 6605 * not required and is simply a convenient way to kick vCPUs as needed. 6606 * KVM performs a local TLB flush when allocating a new root (see 6607 * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are 6608 * running with an obsolete MMU. 6609 */ 6610 kvm_mmu_commit_zap_page(kvm, &invalid_list); 6611 } 6612 6613 /* 6614 * Fast invalidate all shadow pages and use lock-break technique 6615 * to zap obsolete pages. 6616 * 6617 * It's required when memslot is being deleted or VM is being 6618 * destroyed, in these cases, we should ensure that KVM MMU does 6619 * not use any resource of the being-deleted slot or all slots 6620 * after calling the function. 6621 */ 6622 static void kvm_mmu_zap_all_fast(struct kvm *kvm) 6623 { 6624 lockdep_assert_held(&kvm->slots_lock); 6625 6626 write_lock(&kvm->mmu_lock); 6627 trace_kvm_mmu_zap_all_fast(kvm); 6628 6629 /* 6630 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is 6631 * held for the entire duration of zapping obsolete pages, it's 6632 * impossible for there to be multiple invalid generations associated 6633 * with *valid* shadow pages at any given time, i.e. there is exactly 6634 * one valid generation and (at most) one invalid generation. 6635 */ 6636 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1; 6637 6638 /* 6639 * In order to ensure all vCPUs drop their soon-to-be invalid roots, 6640 * invalidating TDP MMU roots must be done while holding mmu_lock for 6641 * write and in the same critical section as making the reload request, 6642 * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield. 6643 */ 6644 if (tdp_mmu_enabled) { 6645 /* 6646 * External page tables don't support fast zapping, therefore 6647 * their mirrors must be invalidated separately by the caller. 6648 */ 6649 kvm_tdp_mmu_invalidate_roots(kvm, KVM_DIRECT_ROOTS); 6650 } 6651 6652 /* 6653 * Notify all vcpus to reload its shadow page table and flush TLB. 6654 * Then all vcpus will switch to new shadow page table with the new 6655 * mmu_valid_gen. 6656 * 6657 * Note: we need to do this under the protection of mmu_lock, 6658 * otherwise, vcpu would purge shadow page but miss tlb flush. 6659 */ 6660 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 6661 6662 kvm_zap_obsolete_pages(kvm); 6663 6664 write_unlock(&kvm->mmu_lock); 6665 6666 /* 6667 * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before 6668 * returning to the caller, e.g. if the zap is in response to a memslot 6669 * deletion, mmu_notifier callbacks will be unable to reach the SPTEs 6670 * associated with the deleted memslot once the update completes, and 6671 * Deferring the zap until the final reference to the root is put would 6672 * lead to use-after-free. 6673 */ 6674 if (tdp_mmu_enabled) 6675 kvm_tdp_mmu_zap_invalidated_roots(kvm, true); 6676 } 6677 6678 void kvm_mmu_init_vm(struct kvm *kvm) 6679 { 6680 kvm->arch.shadow_mmio_value = shadow_mmio_value; 6681 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 6682 INIT_LIST_HEAD(&kvm->arch.possible_nx_huge_pages); 6683 spin_lock_init(&kvm->arch.mmu_unsync_pages_lock); 6684 6685 if (tdp_mmu_enabled) 6686 kvm_mmu_init_tdp_mmu(kvm); 6687 6688 kvm->arch.split_page_header_cache.kmem_cache = mmu_page_header_cache; 6689 kvm->arch.split_page_header_cache.gfp_zero = __GFP_ZERO; 6690 6691 kvm->arch.split_shadow_page_cache.gfp_zero = __GFP_ZERO; 6692 6693 kvm->arch.split_desc_cache.kmem_cache = pte_list_desc_cache; 6694 kvm->arch.split_desc_cache.gfp_zero = __GFP_ZERO; 6695 } 6696 6697 static void mmu_free_vm_memory_caches(struct kvm *kvm) 6698 { 6699 kvm_mmu_free_memory_cache(&kvm->arch.split_desc_cache); 6700 kvm_mmu_free_memory_cache(&kvm->arch.split_page_header_cache); 6701 kvm_mmu_free_memory_cache(&kvm->arch.split_shadow_page_cache); 6702 } 6703 6704 void kvm_mmu_uninit_vm(struct kvm *kvm) 6705 { 6706 if (tdp_mmu_enabled) 6707 kvm_mmu_uninit_tdp_mmu(kvm); 6708 6709 mmu_free_vm_memory_caches(kvm); 6710 } 6711 6712 static bool kvm_rmap_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 6713 { 6714 const struct kvm_memory_slot *memslot; 6715 struct kvm_memslots *slots; 6716 struct kvm_memslot_iter iter; 6717 bool flush = false; 6718 gfn_t start, end; 6719 int i; 6720 6721 if (!kvm_memslots_have_rmaps(kvm)) 6722 return flush; 6723 6724 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 6725 slots = __kvm_memslots(kvm, i); 6726 6727 kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) { 6728 memslot = iter.slot; 6729 start = max(gfn_start, memslot->base_gfn); 6730 end = min(gfn_end, memslot->base_gfn + memslot->npages); 6731 if (WARN_ON_ONCE(start >= end)) 6732 continue; 6733 6734 flush = __kvm_rmap_zap_gfn_range(kvm, memslot, start, 6735 end, true, flush); 6736 } 6737 } 6738 6739 return flush; 6740 } 6741 6742 /* 6743 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end 6744 * (not including it) 6745 */ 6746 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 6747 { 6748 bool flush; 6749 6750 if (WARN_ON_ONCE(gfn_end <= gfn_start)) 6751 return; 6752 6753 write_lock(&kvm->mmu_lock); 6754 6755 kvm_mmu_invalidate_begin(kvm); 6756 6757 kvm_mmu_invalidate_range_add(kvm, gfn_start, gfn_end); 6758 6759 flush = kvm_rmap_zap_gfn_range(kvm, gfn_start, gfn_end); 6760 6761 if (tdp_mmu_enabled) 6762 flush = kvm_tdp_mmu_zap_leafs(kvm, gfn_start, gfn_end, flush); 6763 6764 if (flush) 6765 kvm_flush_remote_tlbs_range(kvm, gfn_start, gfn_end - gfn_start); 6766 6767 kvm_mmu_invalidate_end(kvm); 6768 6769 write_unlock(&kvm->mmu_lock); 6770 } 6771 6772 static bool slot_rmap_write_protect(struct kvm *kvm, 6773 struct kvm_rmap_head *rmap_head, 6774 const struct kvm_memory_slot *slot) 6775 { 6776 return rmap_write_protect(rmap_head, false); 6777 } 6778 6779 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 6780 const struct kvm_memory_slot *memslot, 6781 int start_level) 6782 { 6783 if (kvm_memslots_have_rmaps(kvm)) { 6784 write_lock(&kvm->mmu_lock); 6785 walk_slot_rmaps(kvm, memslot, slot_rmap_write_protect, 6786 start_level, KVM_MAX_HUGEPAGE_LEVEL, false); 6787 write_unlock(&kvm->mmu_lock); 6788 } 6789 6790 if (tdp_mmu_enabled) { 6791 read_lock(&kvm->mmu_lock); 6792 kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level); 6793 read_unlock(&kvm->mmu_lock); 6794 } 6795 } 6796 6797 static inline bool need_topup(struct kvm_mmu_memory_cache *cache, int min) 6798 { 6799 return kvm_mmu_memory_cache_nr_free_objects(cache) < min; 6800 } 6801 6802 static bool need_topup_split_caches_or_resched(struct kvm *kvm) 6803 { 6804 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) 6805 return true; 6806 6807 /* 6808 * In the worst case, SPLIT_DESC_CACHE_MIN_NR_OBJECTS descriptors are needed 6809 * to split a single huge page. Calculating how many are actually needed 6810 * is possible but not worth the complexity. 6811 */ 6812 return need_topup(&kvm->arch.split_desc_cache, SPLIT_DESC_CACHE_MIN_NR_OBJECTS) || 6813 need_topup(&kvm->arch.split_page_header_cache, 1) || 6814 need_topup(&kvm->arch.split_shadow_page_cache, 1); 6815 } 6816 6817 static int topup_split_caches(struct kvm *kvm) 6818 { 6819 /* 6820 * Allocating rmap list entries when splitting huge pages for nested 6821 * MMUs is uncommon as KVM needs to use a list if and only if there is 6822 * more than one rmap entry for a gfn, i.e. requires an L1 gfn to be 6823 * aliased by multiple L2 gfns and/or from multiple nested roots with 6824 * different roles. Aliasing gfns when using TDP is atypical for VMMs; 6825 * a few gfns are often aliased during boot, e.g. when remapping BIOS, 6826 * but aliasing rarely occurs post-boot or for many gfns. If there is 6827 * only one rmap entry, rmap->val points directly at that one entry and 6828 * doesn't need to allocate a list. Buffer the cache by the default 6829 * capacity so that KVM doesn't have to drop mmu_lock to topup if KVM 6830 * encounters an aliased gfn or two. 6831 */ 6832 const int capacity = SPLIT_DESC_CACHE_MIN_NR_OBJECTS + 6833 KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE; 6834 int r; 6835 6836 lockdep_assert_held(&kvm->slots_lock); 6837 6838 r = __kvm_mmu_topup_memory_cache(&kvm->arch.split_desc_cache, capacity, 6839 SPLIT_DESC_CACHE_MIN_NR_OBJECTS); 6840 if (r) 6841 return r; 6842 6843 r = kvm_mmu_topup_memory_cache(&kvm->arch.split_page_header_cache, 1); 6844 if (r) 6845 return r; 6846 6847 return kvm_mmu_topup_memory_cache(&kvm->arch.split_shadow_page_cache, 1); 6848 } 6849 6850 static struct kvm_mmu_page *shadow_mmu_get_sp_for_split(struct kvm *kvm, u64 *huge_sptep) 6851 { 6852 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); 6853 struct shadow_page_caches caches = {}; 6854 union kvm_mmu_page_role role; 6855 unsigned int access; 6856 gfn_t gfn; 6857 6858 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep)); 6859 access = kvm_mmu_page_get_access(huge_sp, spte_index(huge_sptep)); 6860 6861 /* 6862 * Note, huge page splitting always uses direct shadow pages, regardless 6863 * of whether the huge page itself is mapped by a direct or indirect 6864 * shadow page, since the huge page region itself is being directly 6865 * mapped with smaller pages. 6866 */ 6867 role = kvm_mmu_child_role(huge_sptep, /*direct=*/true, access); 6868 6869 /* Direct SPs do not require a shadowed_info_cache. */ 6870 caches.page_header_cache = &kvm->arch.split_page_header_cache; 6871 caches.shadow_page_cache = &kvm->arch.split_shadow_page_cache; 6872 6873 /* Safe to pass NULL for vCPU since requesting a direct SP. */ 6874 return __kvm_mmu_get_shadow_page(kvm, NULL, &caches, gfn, role); 6875 } 6876 6877 static void shadow_mmu_split_huge_page(struct kvm *kvm, 6878 const struct kvm_memory_slot *slot, 6879 u64 *huge_sptep) 6880 6881 { 6882 struct kvm_mmu_memory_cache *cache = &kvm->arch.split_desc_cache; 6883 u64 huge_spte = READ_ONCE(*huge_sptep); 6884 struct kvm_mmu_page *sp; 6885 bool flush = false; 6886 u64 *sptep, spte; 6887 gfn_t gfn; 6888 int index; 6889 6890 sp = shadow_mmu_get_sp_for_split(kvm, huge_sptep); 6891 6892 for (index = 0; index < SPTE_ENT_PER_PAGE; index++) { 6893 sptep = &sp->spt[index]; 6894 gfn = kvm_mmu_page_get_gfn(sp, index); 6895 6896 /* 6897 * The SP may already have populated SPTEs, e.g. if this huge 6898 * page is aliased by multiple sptes with the same access 6899 * permissions. These entries are guaranteed to map the same 6900 * gfn-to-pfn translation since the SP is direct, so no need to 6901 * modify them. 6902 * 6903 * However, if a given SPTE points to a lower level page table, 6904 * that lower level page table may only be partially populated. 6905 * Installing such SPTEs would effectively unmap a potion of the 6906 * huge page. Unmapping guest memory always requires a TLB flush 6907 * since a subsequent operation on the unmapped regions would 6908 * fail to detect the need to flush. 6909 */ 6910 if (is_shadow_present_pte(*sptep)) { 6911 flush |= !is_last_spte(*sptep, sp->role.level); 6912 continue; 6913 } 6914 6915 spte = make_small_spte(kvm, huge_spte, sp->role, index); 6916 mmu_spte_set(sptep, spte); 6917 __rmap_add(kvm, cache, slot, sptep, gfn, sp->role.access); 6918 } 6919 6920 __link_shadow_page(kvm, cache, huge_sptep, sp, flush); 6921 } 6922 6923 static int shadow_mmu_try_split_huge_page(struct kvm *kvm, 6924 const struct kvm_memory_slot *slot, 6925 u64 *huge_sptep) 6926 { 6927 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); 6928 int level, r = 0; 6929 gfn_t gfn; 6930 u64 spte; 6931 6932 /* Grab information for the tracepoint before dropping the MMU lock. */ 6933 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep)); 6934 level = huge_sp->role.level; 6935 spte = *huge_sptep; 6936 6937 if (kvm_mmu_available_pages(kvm) <= KVM_MIN_FREE_MMU_PAGES) { 6938 r = -ENOSPC; 6939 goto out; 6940 } 6941 6942 if (need_topup_split_caches_or_resched(kvm)) { 6943 write_unlock(&kvm->mmu_lock); 6944 cond_resched(); 6945 /* 6946 * If the topup succeeds, return -EAGAIN to indicate that the 6947 * rmap iterator should be restarted because the MMU lock was 6948 * dropped. 6949 */ 6950 r = topup_split_caches(kvm) ?: -EAGAIN; 6951 write_lock(&kvm->mmu_lock); 6952 goto out; 6953 } 6954 6955 shadow_mmu_split_huge_page(kvm, slot, huge_sptep); 6956 6957 out: 6958 trace_kvm_mmu_split_huge_page(gfn, spte, level, r); 6959 return r; 6960 } 6961 6962 static bool shadow_mmu_try_split_huge_pages(struct kvm *kvm, 6963 struct kvm_rmap_head *rmap_head, 6964 const struct kvm_memory_slot *slot) 6965 { 6966 struct rmap_iterator iter; 6967 struct kvm_mmu_page *sp; 6968 u64 *huge_sptep; 6969 int r; 6970 6971 restart: 6972 for_each_rmap_spte(rmap_head, &iter, huge_sptep) { 6973 sp = sptep_to_sp(huge_sptep); 6974 6975 /* TDP MMU is enabled, so rmap only contains nested MMU SPs. */ 6976 if (WARN_ON_ONCE(!sp->role.guest_mode)) 6977 continue; 6978 6979 /* The rmaps should never contain non-leaf SPTEs. */ 6980 if (WARN_ON_ONCE(!is_large_pte(*huge_sptep))) 6981 continue; 6982 6983 /* SPs with level >PG_LEVEL_4K should never by unsync. */ 6984 if (WARN_ON_ONCE(sp->unsync)) 6985 continue; 6986 6987 /* Don't bother splitting huge pages on invalid SPs. */ 6988 if (sp->role.invalid) 6989 continue; 6990 6991 r = shadow_mmu_try_split_huge_page(kvm, slot, huge_sptep); 6992 6993 /* 6994 * The split succeeded or needs to be retried because the MMU 6995 * lock was dropped. Either way, restart the iterator to get it 6996 * back into a consistent state. 6997 */ 6998 if (!r || r == -EAGAIN) 6999 goto restart; 7000 7001 /* The split failed and shouldn't be retried (e.g. -ENOMEM). */ 7002 break; 7003 } 7004 7005 return false; 7006 } 7007 7008 static void kvm_shadow_mmu_try_split_huge_pages(struct kvm *kvm, 7009 const struct kvm_memory_slot *slot, 7010 gfn_t start, gfn_t end, 7011 int target_level) 7012 { 7013 int level; 7014 7015 /* 7016 * Split huge pages starting with KVM_MAX_HUGEPAGE_LEVEL and working 7017 * down to the target level. This ensures pages are recursively split 7018 * all the way to the target level. There's no need to split pages 7019 * already at the target level. 7020 */ 7021 for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--) 7022 __walk_slot_rmaps(kvm, slot, shadow_mmu_try_split_huge_pages, 7023 level, level, start, end - 1, true, true, false); 7024 } 7025 7026 /* Must be called with the mmu_lock held in write-mode. */ 7027 void kvm_mmu_try_split_huge_pages(struct kvm *kvm, 7028 const struct kvm_memory_slot *memslot, 7029 u64 start, u64 end, 7030 int target_level) 7031 { 7032 if (!tdp_mmu_enabled) 7033 return; 7034 7035 if (kvm_memslots_have_rmaps(kvm)) 7036 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); 7037 7038 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, false); 7039 7040 /* 7041 * A TLB flush is unnecessary at this point for the same reasons as in 7042 * kvm_mmu_slot_try_split_huge_pages(). 7043 */ 7044 } 7045 7046 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, 7047 const struct kvm_memory_slot *memslot, 7048 int target_level) 7049 { 7050 u64 start = memslot->base_gfn; 7051 u64 end = start + memslot->npages; 7052 7053 if (!tdp_mmu_enabled) 7054 return; 7055 7056 if (kvm_memslots_have_rmaps(kvm)) { 7057 write_lock(&kvm->mmu_lock); 7058 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); 7059 write_unlock(&kvm->mmu_lock); 7060 } 7061 7062 read_lock(&kvm->mmu_lock); 7063 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true); 7064 read_unlock(&kvm->mmu_lock); 7065 7066 /* 7067 * No TLB flush is necessary here. KVM will flush TLBs after 7068 * write-protecting and/or clearing dirty on the newly split SPTEs to 7069 * ensure that guest writes are reflected in the dirty log before the 7070 * ioctl to enable dirty logging on this memslot completes. Since the 7071 * split SPTEs retain the write and dirty bits of the huge SPTE, it is 7072 * safe for KVM to decide if a TLB flush is necessary based on the split 7073 * SPTEs. 7074 */ 7075 } 7076 7077 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, 7078 struct kvm_rmap_head *rmap_head, 7079 const struct kvm_memory_slot *slot) 7080 { 7081 u64 *sptep; 7082 struct rmap_iterator iter; 7083 int need_tlb_flush = 0; 7084 struct kvm_mmu_page *sp; 7085 7086 restart: 7087 for_each_rmap_spte(rmap_head, &iter, sptep) { 7088 sp = sptep_to_sp(sptep); 7089 7090 /* 7091 * We cannot do huge page mapping for indirect shadow pages, 7092 * which are found on the last rmap (level = 1) when not using 7093 * tdp; such shadow pages are synced with the page table in 7094 * the guest, and the guest page table is using 4K page size 7095 * mapping if the indirect sp has level = 1. 7096 */ 7097 if (sp->role.direct && 7098 sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn)) { 7099 kvm_zap_one_rmap_spte(kvm, rmap_head, sptep); 7100 7101 if (kvm_available_flush_remote_tlbs_range()) 7102 kvm_flush_remote_tlbs_sptep(kvm, sptep); 7103 else 7104 need_tlb_flush = 1; 7105 7106 goto restart; 7107 } 7108 } 7109 7110 return need_tlb_flush; 7111 } 7112 EXPORT_SYMBOL_GPL(kvm_zap_gfn_range); 7113 7114 static void kvm_rmap_zap_collapsible_sptes(struct kvm *kvm, 7115 const struct kvm_memory_slot *slot) 7116 { 7117 /* 7118 * Note, use KVM_MAX_HUGEPAGE_LEVEL - 1 since there's no need to zap 7119 * pages that are already mapped at the maximum hugepage level. 7120 */ 7121 if (walk_slot_rmaps(kvm, slot, kvm_mmu_zap_collapsible_spte, 7122 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL - 1, true)) 7123 kvm_flush_remote_tlbs_memslot(kvm, slot); 7124 } 7125 7126 void kvm_mmu_recover_huge_pages(struct kvm *kvm, 7127 const struct kvm_memory_slot *slot) 7128 { 7129 if (kvm_memslots_have_rmaps(kvm)) { 7130 write_lock(&kvm->mmu_lock); 7131 kvm_rmap_zap_collapsible_sptes(kvm, slot); 7132 write_unlock(&kvm->mmu_lock); 7133 } 7134 7135 if (tdp_mmu_enabled) { 7136 read_lock(&kvm->mmu_lock); 7137 kvm_tdp_mmu_recover_huge_pages(kvm, slot); 7138 read_unlock(&kvm->mmu_lock); 7139 } 7140 } 7141 7142 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 7143 const struct kvm_memory_slot *memslot) 7144 { 7145 if (kvm_memslots_have_rmaps(kvm)) { 7146 write_lock(&kvm->mmu_lock); 7147 /* 7148 * Clear dirty bits only on 4k SPTEs since the legacy MMU only 7149 * support dirty logging at a 4k granularity. 7150 */ 7151 walk_slot_rmaps_4k(kvm, memslot, __rmap_clear_dirty, false); 7152 write_unlock(&kvm->mmu_lock); 7153 } 7154 7155 if (tdp_mmu_enabled) { 7156 read_lock(&kvm->mmu_lock); 7157 kvm_tdp_mmu_clear_dirty_slot(kvm, memslot); 7158 read_unlock(&kvm->mmu_lock); 7159 } 7160 7161 /* 7162 * The caller will flush the TLBs after this function returns. 7163 * 7164 * It's also safe to flush TLBs out of mmu lock here as currently this 7165 * function is only used for dirty logging, in which case flushing TLB 7166 * out of mmu lock also guarantees no dirty pages will be lost in 7167 * dirty_bitmap. 7168 */ 7169 } 7170 7171 static void kvm_mmu_zap_all(struct kvm *kvm) 7172 { 7173 struct kvm_mmu_page *sp, *node; 7174 LIST_HEAD(invalid_list); 7175 int ign; 7176 7177 write_lock(&kvm->mmu_lock); 7178 restart: 7179 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) { 7180 if (WARN_ON_ONCE(sp->role.invalid)) 7181 continue; 7182 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign)) 7183 goto restart; 7184 if (cond_resched_rwlock_write(&kvm->mmu_lock)) 7185 goto restart; 7186 } 7187 7188 kvm_mmu_commit_zap_page(kvm, &invalid_list); 7189 7190 if (tdp_mmu_enabled) 7191 kvm_tdp_mmu_zap_all(kvm); 7192 7193 write_unlock(&kvm->mmu_lock); 7194 } 7195 7196 void kvm_arch_flush_shadow_all(struct kvm *kvm) 7197 { 7198 kvm_mmu_zap_all(kvm); 7199 } 7200 7201 static void kvm_mmu_zap_memslot_pages_and_flush(struct kvm *kvm, 7202 struct kvm_memory_slot *slot, 7203 bool flush) 7204 { 7205 LIST_HEAD(invalid_list); 7206 unsigned long i; 7207 7208 if (list_empty(&kvm->arch.active_mmu_pages)) 7209 goto out_flush; 7210 7211 /* 7212 * Since accounting information is stored in struct kvm_arch_memory_slot, 7213 * all MMU pages that are shadowing guest PTEs must be zapped before the 7214 * memslot is deleted, as freeing such pages after the memslot is freed 7215 * will result in use-after-free, e.g. in unaccount_shadowed(). 7216 */ 7217 for (i = 0; i < slot->npages; i++) { 7218 struct kvm_mmu_page *sp; 7219 gfn_t gfn = slot->base_gfn + i; 7220 7221 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) 7222 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 7223 7224 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 7225 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7226 flush = false; 7227 cond_resched_rwlock_write(&kvm->mmu_lock); 7228 } 7229 } 7230 7231 out_flush: 7232 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7233 } 7234 7235 static void kvm_mmu_zap_memslot(struct kvm *kvm, 7236 struct kvm_memory_slot *slot) 7237 { 7238 struct kvm_gfn_range range = { 7239 .slot = slot, 7240 .start = slot->base_gfn, 7241 .end = slot->base_gfn + slot->npages, 7242 .may_block = true, 7243 .attr_filter = KVM_FILTER_PRIVATE | KVM_FILTER_SHARED, 7244 }; 7245 bool flush; 7246 7247 write_lock(&kvm->mmu_lock); 7248 flush = kvm_unmap_gfn_range(kvm, &range); 7249 kvm_mmu_zap_memslot_pages_and_flush(kvm, slot, flush); 7250 write_unlock(&kvm->mmu_lock); 7251 } 7252 7253 static inline bool kvm_memslot_flush_zap_all(struct kvm *kvm) 7254 { 7255 return kvm->arch.vm_type == KVM_X86_DEFAULT_VM && 7256 kvm_check_has_quirk(kvm, KVM_X86_QUIRK_SLOT_ZAP_ALL); 7257 } 7258 7259 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 7260 struct kvm_memory_slot *slot) 7261 { 7262 if (kvm_memslot_flush_zap_all(kvm)) 7263 kvm_mmu_zap_all_fast(kvm); 7264 else 7265 kvm_mmu_zap_memslot(kvm, slot); 7266 } 7267 7268 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen) 7269 { 7270 WARN_ON_ONCE(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 7271 7272 gen &= MMIO_SPTE_GEN_MASK; 7273 7274 /* 7275 * Generation numbers are incremented in multiples of the number of 7276 * address spaces in order to provide unique generations across all 7277 * address spaces. Strip what is effectively the address space 7278 * modifier prior to checking for a wrap of the MMIO generation so 7279 * that a wrap in any address space is detected. 7280 */ 7281 gen &= ~((u64)kvm_arch_nr_memslot_as_ids(kvm) - 1); 7282 7283 /* 7284 * The very rare case: if the MMIO generation number has wrapped, 7285 * zap all shadow pages. 7286 */ 7287 if (unlikely(gen == 0)) { 7288 kvm_debug_ratelimited("zapping shadow pages for mmio generation wraparound\n"); 7289 kvm_mmu_zap_all_fast(kvm); 7290 } 7291 } 7292 7293 static void mmu_destroy_caches(void) 7294 { 7295 kmem_cache_destroy(pte_list_desc_cache); 7296 kmem_cache_destroy(mmu_page_header_cache); 7297 } 7298 7299 static void kvm_wake_nx_recovery_thread(struct kvm *kvm) 7300 { 7301 /* 7302 * The NX recovery thread is spawned on-demand at the first KVM_RUN and 7303 * may not be valid even though the VM is globally visible. Do nothing, 7304 * as such a VM can't have any possible NX huge pages. 7305 */ 7306 struct vhost_task *nx_thread = READ_ONCE(kvm->arch.nx_huge_page_recovery_thread); 7307 7308 if (nx_thread) 7309 vhost_task_wake(nx_thread); 7310 } 7311 7312 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp) 7313 { 7314 if (nx_hugepage_mitigation_hard_disabled) 7315 return sysfs_emit(buffer, "never\n"); 7316 7317 return param_get_bool(buffer, kp); 7318 } 7319 7320 static bool get_nx_auto_mode(void) 7321 { 7322 /* Return true when CPU has the bug, and mitigations are ON */ 7323 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off(); 7324 } 7325 7326 static void __set_nx_huge_pages(bool val) 7327 { 7328 nx_huge_pages = itlb_multihit_kvm_mitigation = val; 7329 } 7330 7331 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp) 7332 { 7333 bool old_val = nx_huge_pages; 7334 bool new_val; 7335 7336 if (nx_hugepage_mitigation_hard_disabled) 7337 return -EPERM; 7338 7339 /* In "auto" mode deploy workaround only if CPU has the bug. */ 7340 if (sysfs_streq(val, "off")) { 7341 new_val = 0; 7342 } else if (sysfs_streq(val, "force")) { 7343 new_val = 1; 7344 } else if (sysfs_streq(val, "auto")) { 7345 new_val = get_nx_auto_mode(); 7346 } else if (sysfs_streq(val, "never")) { 7347 new_val = 0; 7348 7349 mutex_lock(&kvm_lock); 7350 if (!list_empty(&vm_list)) { 7351 mutex_unlock(&kvm_lock); 7352 return -EBUSY; 7353 } 7354 nx_hugepage_mitigation_hard_disabled = true; 7355 mutex_unlock(&kvm_lock); 7356 } else if (kstrtobool(val, &new_val) < 0) { 7357 return -EINVAL; 7358 } 7359 7360 __set_nx_huge_pages(new_val); 7361 7362 if (new_val != old_val) { 7363 struct kvm *kvm; 7364 7365 mutex_lock(&kvm_lock); 7366 7367 list_for_each_entry(kvm, &vm_list, vm_list) { 7368 mutex_lock(&kvm->slots_lock); 7369 kvm_mmu_zap_all_fast(kvm); 7370 mutex_unlock(&kvm->slots_lock); 7371 7372 kvm_wake_nx_recovery_thread(kvm); 7373 } 7374 mutex_unlock(&kvm_lock); 7375 } 7376 7377 return 0; 7378 } 7379 7380 /* 7381 * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as 7382 * its default value of -1 is technically undefined behavior for a boolean. 7383 * Forward the module init call to SPTE code so that it too can handle module 7384 * params that need to be resolved/snapshot. 7385 */ 7386 void __init kvm_mmu_x86_module_init(void) 7387 { 7388 if (nx_huge_pages == -1) 7389 __set_nx_huge_pages(get_nx_auto_mode()); 7390 7391 /* 7392 * Snapshot userspace's desire to enable the TDP MMU. Whether or not the 7393 * TDP MMU is actually enabled is determined in kvm_configure_mmu() 7394 * when the vendor module is loaded. 7395 */ 7396 tdp_mmu_allowed = tdp_mmu_enabled; 7397 7398 kvm_mmu_spte_module_init(); 7399 } 7400 7401 /* 7402 * The bulk of the MMU initialization is deferred until the vendor module is 7403 * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need 7404 * to be reset when a potentially different vendor module is loaded. 7405 */ 7406 int kvm_mmu_vendor_module_init(void) 7407 { 7408 int ret = -ENOMEM; 7409 7410 /* 7411 * MMU roles use union aliasing which is, generally speaking, an 7412 * undefined behavior. However, we supposedly know how compilers behave 7413 * and the current status quo is unlikely to change. Guardians below are 7414 * supposed to let us know if the assumption becomes false. 7415 */ 7416 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32)); 7417 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32)); 7418 BUILD_BUG_ON(sizeof(union kvm_cpu_role) != sizeof(u64)); 7419 7420 kvm_mmu_reset_all_pte_masks(); 7421 7422 pte_list_desc_cache = KMEM_CACHE(pte_list_desc, SLAB_ACCOUNT); 7423 if (!pte_list_desc_cache) 7424 goto out; 7425 7426 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", 7427 sizeof(struct kvm_mmu_page), 7428 0, SLAB_ACCOUNT, NULL); 7429 if (!mmu_page_header_cache) 7430 goto out; 7431 7432 return 0; 7433 7434 out: 7435 mmu_destroy_caches(); 7436 return ret; 7437 } 7438 7439 void kvm_mmu_destroy(struct kvm_vcpu *vcpu) 7440 { 7441 kvm_mmu_unload(vcpu); 7442 if (tdp_mmu_enabled) { 7443 read_lock(&vcpu->kvm->mmu_lock); 7444 mmu_free_root_page(vcpu->kvm, &vcpu->arch.mmu->mirror_root_hpa, 7445 NULL); 7446 read_unlock(&vcpu->kvm->mmu_lock); 7447 } 7448 free_mmu_pages(&vcpu->arch.root_mmu); 7449 free_mmu_pages(&vcpu->arch.guest_mmu); 7450 mmu_free_memory_caches(vcpu); 7451 } 7452 7453 void kvm_mmu_vendor_module_exit(void) 7454 { 7455 mmu_destroy_caches(); 7456 } 7457 7458 /* 7459 * Calculate the effective recovery period, accounting for '0' meaning "let KVM 7460 * select a halving time of 1 hour". Returns true if recovery is enabled. 7461 */ 7462 static bool calc_nx_huge_pages_recovery_period(uint *period) 7463 { 7464 /* 7465 * Use READ_ONCE to get the params, this may be called outside of the 7466 * param setters, e.g. by the kthread to compute its next timeout. 7467 */ 7468 bool enabled = READ_ONCE(nx_huge_pages); 7469 uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 7470 7471 if (!enabled || !ratio) 7472 return false; 7473 7474 *period = READ_ONCE(nx_huge_pages_recovery_period_ms); 7475 if (!*period) { 7476 /* Make sure the period is not less than one second. */ 7477 ratio = min(ratio, 3600u); 7478 *period = 60 * 60 * 1000 / ratio; 7479 } 7480 return true; 7481 } 7482 7483 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp) 7484 { 7485 bool was_recovery_enabled, is_recovery_enabled; 7486 uint old_period, new_period; 7487 int err; 7488 7489 if (nx_hugepage_mitigation_hard_disabled) 7490 return -EPERM; 7491 7492 was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period); 7493 7494 err = param_set_uint(val, kp); 7495 if (err) 7496 return err; 7497 7498 is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period); 7499 7500 if (is_recovery_enabled && 7501 (!was_recovery_enabled || old_period > new_period)) { 7502 struct kvm *kvm; 7503 7504 mutex_lock(&kvm_lock); 7505 7506 list_for_each_entry(kvm, &vm_list, vm_list) 7507 kvm_wake_nx_recovery_thread(kvm); 7508 7509 mutex_unlock(&kvm_lock); 7510 } 7511 7512 return err; 7513 } 7514 7515 static void kvm_recover_nx_huge_pages(struct kvm *kvm) 7516 { 7517 unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits; 7518 struct kvm_memory_slot *slot; 7519 int rcu_idx; 7520 struct kvm_mmu_page *sp; 7521 unsigned int ratio; 7522 LIST_HEAD(invalid_list); 7523 bool flush = false; 7524 ulong to_zap; 7525 7526 rcu_idx = srcu_read_lock(&kvm->srcu); 7527 write_lock(&kvm->mmu_lock); 7528 7529 /* 7530 * Zapping TDP MMU shadow pages, including the remote TLB flush, must 7531 * be done under RCU protection, because the pages are freed via RCU 7532 * callback. 7533 */ 7534 rcu_read_lock(); 7535 7536 ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 7537 to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0; 7538 for ( ; to_zap; --to_zap) { 7539 if (list_empty(&kvm->arch.possible_nx_huge_pages)) 7540 break; 7541 7542 /* 7543 * We use a separate list instead of just using active_mmu_pages 7544 * because the number of shadow pages that be replaced with an 7545 * NX huge page is expected to be relatively small compared to 7546 * the total number of shadow pages. And because the TDP MMU 7547 * doesn't use active_mmu_pages. 7548 */ 7549 sp = list_first_entry(&kvm->arch.possible_nx_huge_pages, 7550 struct kvm_mmu_page, 7551 possible_nx_huge_page_link); 7552 WARN_ON_ONCE(!sp->nx_huge_page_disallowed); 7553 WARN_ON_ONCE(!sp->role.direct); 7554 7555 /* 7556 * Unaccount and do not attempt to recover any NX Huge Pages 7557 * that are being dirty tracked, as they would just be faulted 7558 * back in as 4KiB pages. The NX Huge Pages in this slot will be 7559 * recovered, along with all the other huge pages in the slot, 7560 * when dirty logging is disabled. 7561 * 7562 * Since gfn_to_memslot() is relatively expensive, it helps to 7563 * skip it if it the test cannot possibly return true. On the 7564 * other hand, if any memslot has logging enabled, chances are 7565 * good that all of them do, in which case unaccount_nx_huge_page() 7566 * is much cheaper than zapping the page. 7567 * 7568 * If a memslot update is in progress, reading an incorrect value 7569 * of kvm->nr_memslots_dirty_logging is not a problem: if it is 7570 * becoming zero, gfn_to_memslot() will be done unnecessarily; if 7571 * it is becoming nonzero, the page will be zapped unnecessarily. 7572 * Either way, this only affects efficiency in racy situations, 7573 * and not correctness. 7574 */ 7575 slot = NULL; 7576 if (atomic_read(&kvm->nr_memslots_dirty_logging)) { 7577 struct kvm_memslots *slots; 7578 7579 slots = kvm_memslots_for_spte_role(kvm, sp->role); 7580 slot = __gfn_to_memslot(slots, sp->gfn); 7581 WARN_ON_ONCE(!slot); 7582 } 7583 7584 if (slot && kvm_slot_dirty_track_enabled(slot)) 7585 unaccount_nx_huge_page(kvm, sp); 7586 else if (is_tdp_mmu_page(sp)) 7587 flush |= kvm_tdp_mmu_zap_sp(kvm, sp); 7588 else 7589 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 7590 WARN_ON_ONCE(sp->nx_huge_page_disallowed); 7591 7592 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 7593 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7594 rcu_read_unlock(); 7595 7596 cond_resched_rwlock_write(&kvm->mmu_lock); 7597 flush = false; 7598 7599 rcu_read_lock(); 7600 } 7601 } 7602 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7603 7604 rcu_read_unlock(); 7605 7606 write_unlock(&kvm->mmu_lock); 7607 srcu_read_unlock(&kvm->srcu, rcu_idx); 7608 } 7609 7610 static void kvm_nx_huge_page_recovery_worker_kill(void *data) 7611 { 7612 } 7613 7614 static bool kvm_nx_huge_page_recovery_worker(void *data) 7615 { 7616 struct kvm *kvm = data; 7617 bool enabled; 7618 uint period; 7619 long remaining_time; 7620 7621 enabled = calc_nx_huge_pages_recovery_period(&period); 7622 if (!enabled) 7623 return false; 7624 7625 remaining_time = kvm->arch.nx_huge_page_last + msecs_to_jiffies(period) 7626 - get_jiffies_64(); 7627 if (remaining_time > 0) { 7628 schedule_timeout(remaining_time); 7629 /* check for signals and come back */ 7630 return true; 7631 } 7632 7633 __set_current_state(TASK_RUNNING); 7634 kvm_recover_nx_huge_pages(kvm); 7635 kvm->arch.nx_huge_page_last = get_jiffies_64(); 7636 return true; 7637 } 7638 7639 static int kvm_mmu_start_lpage_recovery(struct once *once) 7640 { 7641 struct kvm_arch *ka = container_of(once, struct kvm_arch, nx_once); 7642 struct kvm *kvm = container_of(ka, struct kvm, arch); 7643 struct vhost_task *nx_thread; 7644 7645 kvm->arch.nx_huge_page_last = get_jiffies_64(); 7646 nx_thread = vhost_task_create(kvm_nx_huge_page_recovery_worker, 7647 kvm_nx_huge_page_recovery_worker_kill, 7648 kvm, "kvm-nx-lpage-recovery"); 7649 7650 if (IS_ERR(nx_thread)) 7651 return PTR_ERR(nx_thread); 7652 7653 vhost_task_start(nx_thread); 7654 7655 /* Make the task visible only once it is fully started. */ 7656 WRITE_ONCE(kvm->arch.nx_huge_page_recovery_thread, nx_thread); 7657 return 0; 7658 } 7659 7660 int kvm_mmu_post_init_vm(struct kvm *kvm) 7661 { 7662 if (nx_hugepage_mitigation_hard_disabled) 7663 return 0; 7664 7665 return call_once(&kvm->arch.nx_once, kvm_mmu_start_lpage_recovery); 7666 } 7667 7668 void kvm_mmu_pre_destroy_vm(struct kvm *kvm) 7669 { 7670 if (kvm->arch.nx_huge_page_recovery_thread) 7671 vhost_task_stop(kvm->arch.nx_huge_page_recovery_thread); 7672 } 7673 7674 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 7675 static bool hugepage_test_mixed(struct kvm_memory_slot *slot, gfn_t gfn, 7676 int level) 7677 { 7678 return lpage_info_slot(gfn, slot, level)->disallow_lpage & KVM_LPAGE_MIXED_FLAG; 7679 } 7680 7681 static void hugepage_clear_mixed(struct kvm_memory_slot *slot, gfn_t gfn, 7682 int level) 7683 { 7684 lpage_info_slot(gfn, slot, level)->disallow_lpage &= ~KVM_LPAGE_MIXED_FLAG; 7685 } 7686 7687 static void hugepage_set_mixed(struct kvm_memory_slot *slot, gfn_t gfn, 7688 int level) 7689 { 7690 lpage_info_slot(gfn, slot, level)->disallow_lpage |= KVM_LPAGE_MIXED_FLAG; 7691 } 7692 7693 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm, 7694 struct kvm_gfn_range *range) 7695 { 7696 struct kvm_memory_slot *slot = range->slot; 7697 int level; 7698 7699 /* 7700 * Zap SPTEs even if the slot can't be mapped PRIVATE. KVM x86 only 7701 * supports KVM_MEMORY_ATTRIBUTE_PRIVATE, and so it *seems* like KVM 7702 * can simply ignore such slots. But if userspace is making memory 7703 * PRIVATE, then KVM must prevent the guest from accessing the memory 7704 * as shared. And if userspace is making memory SHARED and this point 7705 * is reached, then at least one page within the range was previously 7706 * PRIVATE, i.e. the slot's possible hugepage ranges are changing. 7707 * Zapping SPTEs in this case ensures KVM will reassess whether or not 7708 * a hugepage can be used for affected ranges. 7709 */ 7710 if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm))) 7711 return false; 7712 7713 if (WARN_ON_ONCE(range->end <= range->start)) 7714 return false; 7715 7716 /* 7717 * If the head and tail pages of the range currently allow a hugepage, 7718 * i.e. reside fully in the slot and don't have mixed attributes, then 7719 * add each corresponding hugepage range to the ongoing invalidation, 7720 * e.g. to prevent KVM from creating a hugepage in response to a fault 7721 * for a gfn whose attributes aren't changing. Note, only the range 7722 * of gfns whose attributes are being modified needs to be explicitly 7723 * unmapped, as that will unmap any existing hugepages. 7724 */ 7725 for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) { 7726 gfn_t start = gfn_round_for_level(range->start, level); 7727 gfn_t end = gfn_round_for_level(range->end - 1, level); 7728 gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level); 7729 7730 if ((start != range->start || start + nr_pages > range->end) && 7731 start >= slot->base_gfn && 7732 start + nr_pages <= slot->base_gfn + slot->npages && 7733 !hugepage_test_mixed(slot, start, level)) 7734 kvm_mmu_invalidate_range_add(kvm, start, start + nr_pages); 7735 7736 if (end == start) 7737 continue; 7738 7739 if ((end + nr_pages) > range->end && 7740 (end + nr_pages) <= (slot->base_gfn + slot->npages) && 7741 !hugepage_test_mixed(slot, end, level)) 7742 kvm_mmu_invalidate_range_add(kvm, end, end + nr_pages); 7743 } 7744 7745 /* Unmap the old attribute page. */ 7746 if (range->arg.attributes & KVM_MEMORY_ATTRIBUTE_PRIVATE) 7747 range->attr_filter = KVM_FILTER_SHARED; 7748 else 7749 range->attr_filter = KVM_FILTER_PRIVATE; 7750 7751 return kvm_unmap_gfn_range(kvm, range); 7752 } 7753 7754 7755 7756 static bool hugepage_has_attrs(struct kvm *kvm, struct kvm_memory_slot *slot, 7757 gfn_t gfn, int level, unsigned long attrs) 7758 { 7759 const unsigned long start = gfn; 7760 const unsigned long end = start + KVM_PAGES_PER_HPAGE(level); 7761 7762 if (level == PG_LEVEL_2M) 7763 return kvm_range_has_memory_attributes(kvm, start, end, ~0, attrs); 7764 7765 for (gfn = start; gfn < end; gfn += KVM_PAGES_PER_HPAGE(level - 1)) { 7766 if (hugepage_test_mixed(slot, gfn, level - 1) || 7767 attrs != kvm_get_memory_attributes(kvm, gfn)) 7768 return false; 7769 } 7770 return true; 7771 } 7772 7773 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm, 7774 struct kvm_gfn_range *range) 7775 { 7776 unsigned long attrs = range->arg.attributes; 7777 struct kvm_memory_slot *slot = range->slot; 7778 int level; 7779 7780 lockdep_assert_held_write(&kvm->mmu_lock); 7781 lockdep_assert_held(&kvm->slots_lock); 7782 7783 /* 7784 * Calculate which ranges can be mapped with hugepages even if the slot 7785 * can't map memory PRIVATE. KVM mustn't create a SHARED hugepage over 7786 * a range that has PRIVATE GFNs, and conversely converting a range to 7787 * SHARED may now allow hugepages. 7788 */ 7789 if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm))) 7790 return false; 7791 7792 /* 7793 * The sequence matters here: upper levels consume the result of lower 7794 * level's scanning. 7795 */ 7796 for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) { 7797 gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level); 7798 gfn_t gfn = gfn_round_for_level(range->start, level); 7799 7800 /* Process the head page if it straddles the range. */ 7801 if (gfn != range->start || gfn + nr_pages > range->end) { 7802 /* 7803 * Skip mixed tracking if the aligned gfn isn't covered 7804 * by the memslot, KVM can't use a hugepage due to the 7805 * misaligned address regardless of memory attributes. 7806 */ 7807 if (gfn >= slot->base_gfn && 7808 gfn + nr_pages <= slot->base_gfn + slot->npages) { 7809 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs)) 7810 hugepage_clear_mixed(slot, gfn, level); 7811 else 7812 hugepage_set_mixed(slot, gfn, level); 7813 } 7814 gfn += nr_pages; 7815 } 7816 7817 /* 7818 * Pages entirely covered by the range are guaranteed to have 7819 * only the attributes which were just set. 7820 */ 7821 for ( ; gfn + nr_pages <= range->end; gfn += nr_pages) 7822 hugepage_clear_mixed(slot, gfn, level); 7823 7824 /* 7825 * Process the last tail page if it straddles the range and is 7826 * contained by the memslot. Like the head page, KVM can't 7827 * create a hugepage if the slot size is misaligned. 7828 */ 7829 if (gfn < range->end && 7830 (gfn + nr_pages) <= (slot->base_gfn + slot->npages)) { 7831 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs)) 7832 hugepage_clear_mixed(slot, gfn, level); 7833 else 7834 hugepage_set_mixed(slot, gfn, level); 7835 } 7836 } 7837 return false; 7838 } 7839 7840 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm, 7841 struct kvm_memory_slot *slot) 7842 { 7843 int level; 7844 7845 if (!kvm_arch_has_private_mem(kvm)) 7846 return; 7847 7848 for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) { 7849 /* 7850 * Don't bother tracking mixed attributes for pages that can't 7851 * be huge due to alignment, i.e. process only pages that are 7852 * entirely contained by the memslot. 7853 */ 7854 gfn_t end = gfn_round_for_level(slot->base_gfn + slot->npages, level); 7855 gfn_t start = gfn_round_for_level(slot->base_gfn, level); 7856 gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level); 7857 gfn_t gfn; 7858 7859 if (start < slot->base_gfn) 7860 start += nr_pages; 7861 7862 /* 7863 * Unlike setting attributes, every potential hugepage needs to 7864 * be manually checked as the attributes may already be mixed. 7865 */ 7866 for (gfn = start; gfn < end; gfn += nr_pages) { 7867 unsigned long attrs = kvm_get_memory_attributes(kvm, gfn); 7868 7869 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs)) 7870 hugepage_clear_mixed(slot, gfn, level); 7871 else 7872 hugepage_set_mixed(slot, gfn, level); 7873 } 7874 } 7875 } 7876 #endif 7877