1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * MMU support 9 * 10 * Copyright (C) 2006 Qumranet, Inc. 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 12 * 13 * Authors: 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Avi Kivity <avi@qumranet.com> 16 */ 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include "irq.h" 20 #include "ioapic.h" 21 #include "mmu.h" 22 #include "mmu_internal.h" 23 #include "tdp_mmu.h" 24 #include "x86.h" 25 #include "kvm_cache_regs.h" 26 #include "smm.h" 27 #include "kvm_emulate.h" 28 #include "page_track.h" 29 #include "cpuid.h" 30 #include "spte.h" 31 32 #include <linux/kvm_host.h> 33 #include <linux/types.h> 34 #include <linux/string.h> 35 #include <linux/mm.h> 36 #include <linux/highmem.h> 37 #include <linux/moduleparam.h> 38 #include <linux/export.h> 39 #include <linux/swap.h> 40 #include <linux/hugetlb.h> 41 #include <linux/compiler.h> 42 #include <linux/srcu.h> 43 #include <linux/slab.h> 44 #include <linux/sched/signal.h> 45 #include <linux/uaccess.h> 46 #include <linux/hash.h> 47 #include <linux/kern_levels.h> 48 #include <linux/kstrtox.h> 49 #include <linux/kthread.h> 50 #include <linux/wordpart.h> 51 52 #include <asm/page.h> 53 #include <asm/memtype.h> 54 #include <asm/cmpxchg.h> 55 #include <asm/io.h> 56 #include <asm/set_memory.h> 57 #include <asm/spec-ctrl.h> 58 #include <asm/vmx.h> 59 60 #include "trace.h" 61 62 static bool nx_hugepage_mitigation_hard_disabled; 63 64 int __read_mostly nx_huge_pages = -1; 65 static uint __read_mostly nx_huge_pages_recovery_period_ms; 66 #ifdef CONFIG_PREEMPT_RT 67 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */ 68 static uint __read_mostly nx_huge_pages_recovery_ratio = 0; 69 #else 70 static uint __read_mostly nx_huge_pages_recovery_ratio = 60; 71 #endif 72 73 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp); 74 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp); 75 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp); 76 77 static const struct kernel_param_ops nx_huge_pages_ops = { 78 .set = set_nx_huge_pages, 79 .get = get_nx_huge_pages, 80 }; 81 82 static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = { 83 .set = set_nx_huge_pages_recovery_param, 84 .get = param_get_uint, 85 }; 86 87 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644); 88 __MODULE_PARM_TYPE(nx_huge_pages, "bool"); 89 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops, 90 &nx_huge_pages_recovery_ratio, 0644); 91 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint"); 92 module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops, 93 &nx_huge_pages_recovery_period_ms, 0644); 94 __MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint"); 95 96 static bool __read_mostly force_flush_and_sync_on_reuse; 97 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644); 98 99 /* 100 * When setting this variable to true it enables Two-Dimensional-Paging 101 * where the hardware walks 2 page tables: 102 * 1. the guest-virtual to guest-physical 103 * 2. while doing 1. it walks guest-physical to host-physical 104 * If the hardware supports that we don't need to do shadow paging. 105 */ 106 bool tdp_enabled = false; 107 108 static bool __ro_after_init tdp_mmu_allowed; 109 110 #ifdef CONFIG_X86_64 111 bool __read_mostly tdp_mmu_enabled = true; 112 module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0444); 113 EXPORT_SYMBOL_GPL(tdp_mmu_enabled); 114 #endif 115 116 static int max_huge_page_level __read_mostly; 117 static int tdp_root_level __read_mostly; 118 static int max_tdp_level __read_mostly; 119 120 #define PTE_PREFETCH_NUM 8 121 122 #include <trace/events/kvm.h> 123 124 /* make pte_list_desc fit well in cache lines */ 125 #define PTE_LIST_EXT 14 126 127 /* 128 * struct pte_list_desc is the core data structure used to implement a custom 129 * list for tracking a set of related SPTEs, e.g. all the SPTEs that map a 130 * given GFN when used in the context of rmaps. Using a custom list allows KVM 131 * to optimize for the common case where many GFNs will have at most a handful 132 * of SPTEs pointing at them, i.e. allows packing multiple SPTEs into a small 133 * memory footprint, which in turn improves runtime performance by exploiting 134 * cache locality. 135 * 136 * A list is comprised of one or more pte_list_desc objects (descriptors). 137 * Each individual descriptor stores up to PTE_LIST_EXT SPTEs. If a descriptor 138 * is full and a new SPTEs needs to be added, a new descriptor is allocated and 139 * becomes the head of the list. This means that by definitions, all tail 140 * descriptors are full. 141 * 142 * Note, the meta data fields are deliberately placed at the start of the 143 * structure to optimize the cacheline layout; accessing the descriptor will 144 * touch only a single cacheline so long as @spte_count<=6 (or if only the 145 * descriptors metadata is accessed). 146 */ 147 struct pte_list_desc { 148 struct pte_list_desc *more; 149 /* The number of PTEs stored in _this_ descriptor. */ 150 u32 spte_count; 151 /* The number of PTEs stored in all tails of this descriptor. */ 152 u32 tail_count; 153 u64 *sptes[PTE_LIST_EXT]; 154 }; 155 156 struct kvm_shadow_walk_iterator { 157 u64 addr; 158 hpa_t shadow_addr; 159 u64 *sptep; 160 int level; 161 unsigned index; 162 }; 163 164 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \ 165 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \ 166 (_root), (_addr)); \ 167 shadow_walk_okay(&(_walker)); \ 168 shadow_walk_next(&(_walker))) 169 170 #define for_each_shadow_entry(_vcpu, _addr, _walker) \ 171 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 172 shadow_walk_okay(&(_walker)); \ 173 shadow_walk_next(&(_walker))) 174 175 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \ 176 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 177 shadow_walk_okay(&(_walker)) && \ 178 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \ 179 __shadow_walk_next(&(_walker), spte)) 180 181 static struct kmem_cache *pte_list_desc_cache; 182 struct kmem_cache *mmu_page_header_cache; 183 184 static void mmu_spte_set(u64 *sptep, u64 spte); 185 186 struct kvm_mmu_role_regs { 187 const unsigned long cr0; 188 const unsigned long cr4; 189 const u64 efer; 190 }; 191 192 #define CREATE_TRACE_POINTS 193 #include "mmutrace.h" 194 195 /* 196 * Yes, lot's of underscores. They're a hint that you probably shouldn't be 197 * reading from the role_regs. Once the root_role is constructed, it becomes 198 * the single source of truth for the MMU's state. 199 */ 200 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag) \ 201 static inline bool __maybe_unused \ 202 ____is_##reg##_##name(const struct kvm_mmu_role_regs *regs) \ 203 { \ 204 return !!(regs->reg & flag); \ 205 } 206 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG); 207 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP); 208 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE); 209 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE); 210 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP); 211 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP); 212 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE); 213 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57); 214 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX); 215 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA); 216 217 /* 218 * The MMU itself (with a valid role) is the single source of truth for the 219 * MMU. Do not use the regs used to build the MMU/role, nor the vCPU. The 220 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1, 221 * and the vCPU may be incorrect/irrelevant. 222 */ 223 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name) \ 224 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu) \ 225 { \ 226 return !!(mmu->cpu_role. base_or_ext . reg##_##name); \ 227 } 228 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp); 229 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pse); 230 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smep); 231 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smap); 232 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pke); 233 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, la57); 234 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx); 235 BUILD_MMU_ROLE_ACCESSOR(ext, efer, lma); 236 237 static inline bool is_cr0_pg(struct kvm_mmu *mmu) 238 { 239 return mmu->cpu_role.base.level > 0; 240 } 241 242 static inline bool is_cr4_pae(struct kvm_mmu *mmu) 243 { 244 return !mmu->cpu_role.base.has_4_byte_gpte; 245 } 246 247 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu) 248 { 249 struct kvm_mmu_role_regs regs = { 250 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS), 251 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS), 252 .efer = vcpu->arch.efer, 253 }; 254 255 return regs; 256 } 257 258 static unsigned long get_guest_cr3(struct kvm_vcpu *vcpu) 259 { 260 return kvm_read_cr3(vcpu); 261 } 262 263 static inline unsigned long kvm_mmu_get_guest_pgd(struct kvm_vcpu *vcpu, 264 struct kvm_mmu *mmu) 265 { 266 if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && mmu->get_guest_pgd == get_guest_cr3) 267 return kvm_read_cr3(vcpu); 268 269 return mmu->get_guest_pgd(vcpu); 270 } 271 272 static inline bool kvm_available_flush_remote_tlbs_range(void) 273 { 274 #if IS_ENABLED(CONFIG_HYPERV) 275 return kvm_x86_ops.flush_remote_tlbs_range; 276 #else 277 return false; 278 #endif 279 } 280 281 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index); 282 283 /* Flush the range of guest memory mapped by the given SPTE. */ 284 static void kvm_flush_remote_tlbs_sptep(struct kvm *kvm, u64 *sptep) 285 { 286 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 287 gfn_t gfn = kvm_mmu_page_get_gfn(sp, spte_index(sptep)); 288 289 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level); 290 } 291 292 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn, 293 unsigned int access) 294 { 295 u64 spte = make_mmio_spte(vcpu, gfn, access); 296 297 trace_mark_mmio_spte(sptep, gfn, spte); 298 mmu_spte_set(sptep, spte); 299 } 300 301 static gfn_t get_mmio_spte_gfn(u64 spte) 302 { 303 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask; 304 305 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN) 306 & shadow_nonpresent_or_rsvd_mask; 307 308 return gpa >> PAGE_SHIFT; 309 } 310 311 static unsigned get_mmio_spte_access(u64 spte) 312 { 313 return spte & shadow_mmio_access_mask; 314 } 315 316 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte) 317 { 318 u64 kvm_gen, spte_gen, gen; 319 320 gen = kvm_vcpu_memslots(vcpu)->generation; 321 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS)) 322 return false; 323 324 kvm_gen = gen & MMIO_SPTE_GEN_MASK; 325 spte_gen = get_mmio_spte_generation(spte); 326 327 trace_check_mmio_spte(spte, kvm_gen, spte_gen); 328 return likely(kvm_gen == spte_gen); 329 } 330 331 static int is_cpuid_PSE36(void) 332 { 333 return 1; 334 } 335 336 #ifdef CONFIG_X86_64 337 static void __set_spte(u64 *sptep, u64 spte) 338 { 339 KVM_MMU_WARN_ON(is_ept_ve_possible(spte)); 340 WRITE_ONCE(*sptep, spte); 341 } 342 343 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 344 { 345 KVM_MMU_WARN_ON(is_ept_ve_possible(spte)); 346 WRITE_ONCE(*sptep, spte); 347 } 348 349 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 350 { 351 KVM_MMU_WARN_ON(is_ept_ve_possible(spte)); 352 return xchg(sptep, spte); 353 } 354 355 static u64 __get_spte_lockless(u64 *sptep) 356 { 357 return READ_ONCE(*sptep); 358 } 359 #else 360 union split_spte { 361 struct { 362 u32 spte_low; 363 u32 spte_high; 364 }; 365 u64 spte; 366 }; 367 368 static void count_spte_clear(u64 *sptep, u64 spte) 369 { 370 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 371 372 if (is_shadow_present_pte(spte)) 373 return; 374 375 /* Ensure the spte is completely set before we increase the count */ 376 smp_wmb(); 377 sp->clear_spte_count++; 378 } 379 380 static void __set_spte(u64 *sptep, u64 spte) 381 { 382 union split_spte *ssptep, sspte; 383 384 ssptep = (union split_spte *)sptep; 385 sspte = (union split_spte)spte; 386 387 ssptep->spte_high = sspte.spte_high; 388 389 /* 390 * If we map the spte from nonpresent to present, We should store 391 * the high bits firstly, then set present bit, so cpu can not 392 * fetch this spte while we are setting the spte. 393 */ 394 smp_wmb(); 395 396 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 397 } 398 399 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 400 { 401 union split_spte *ssptep, sspte; 402 403 ssptep = (union split_spte *)sptep; 404 sspte = (union split_spte)spte; 405 406 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 407 408 /* 409 * If we map the spte from present to nonpresent, we should clear 410 * present bit firstly to avoid vcpu fetch the old high bits. 411 */ 412 smp_wmb(); 413 414 ssptep->spte_high = sspte.spte_high; 415 count_spte_clear(sptep, spte); 416 } 417 418 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 419 { 420 union split_spte *ssptep, sspte, orig; 421 422 ssptep = (union split_spte *)sptep; 423 sspte = (union split_spte)spte; 424 425 /* xchg acts as a barrier before the setting of the high bits */ 426 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); 427 orig.spte_high = ssptep->spte_high; 428 ssptep->spte_high = sspte.spte_high; 429 count_spte_clear(sptep, spte); 430 431 return orig.spte; 432 } 433 434 /* 435 * The idea using the light way get the spte on x86_32 guest is from 436 * gup_get_pte (mm/gup.c). 437 * 438 * An spte tlb flush may be pending, because they are coalesced and 439 * we are running out of the MMU lock. Therefore 440 * we need to protect against in-progress updates of the spte. 441 * 442 * Reading the spte while an update is in progress may get the old value 443 * for the high part of the spte. The race is fine for a present->non-present 444 * change (because the high part of the spte is ignored for non-present spte), 445 * but for a present->present change we must reread the spte. 446 * 447 * All such changes are done in two steps (present->non-present and 448 * non-present->present), hence it is enough to count the number of 449 * present->non-present updates: if it changed while reading the spte, 450 * we might have hit the race. This is done using clear_spte_count. 451 */ 452 static u64 __get_spte_lockless(u64 *sptep) 453 { 454 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 455 union split_spte spte, *orig = (union split_spte *)sptep; 456 int count; 457 458 retry: 459 count = sp->clear_spte_count; 460 smp_rmb(); 461 462 spte.spte_low = orig->spte_low; 463 smp_rmb(); 464 465 spte.spte_high = orig->spte_high; 466 smp_rmb(); 467 468 if (unlikely(spte.spte_low != orig->spte_low || 469 count != sp->clear_spte_count)) 470 goto retry; 471 472 return spte.spte; 473 } 474 #endif 475 476 /* Rules for using mmu_spte_set: 477 * Set the sptep from nonpresent to present. 478 * Note: the sptep being assigned *must* be either not present 479 * or in a state where the hardware will not attempt to update 480 * the spte. 481 */ 482 static void mmu_spte_set(u64 *sptep, u64 new_spte) 483 { 484 WARN_ON_ONCE(is_shadow_present_pte(*sptep)); 485 __set_spte(sptep, new_spte); 486 } 487 488 /* Rules for using mmu_spte_update: 489 * Update the state bits, it means the mapped pfn is not changed. 490 * 491 * Returns true if the TLB needs to be flushed 492 */ 493 static bool mmu_spte_update(u64 *sptep, u64 new_spte) 494 { 495 u64 old_spte = *sptep; 496 497 WARN_ON_ONCE(!is_shadow_present_pte(new_spte)); 498 check_spte_writable_invariants(new_spte); 499 500 if (!is_shadow_present_pte(old_spte)) { 501 mmu_spte_set(sptep, new_spte); 502 return false; 503 } 504 505 if (!spte_needs_atomic_update(old_spte)) 506 __update_clear_spte_fast(sptep, new_spte); 507 else 508 old_spte = __update_clear_spte_slow(sptep, new_spte); 509 510 WARN_ON_ONCE(!is_shadow_present_pte(old_spte) || 511 spte_to_pfn(old_spte) != spte_to_pfn(new_spte)); 512 513 return leaf_spte_change_needs_tlb_flush(old_spte, new_spte); 514 } 515 516 /* 517 * Rules for using mmu_spte_clear_track_bits: 518 * It sets the sptep from present to nonpresent, and track the 519 * state bits, it is used to clear the last level sptep. 520 * Returns the old PTE. 521 */ 522 static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep) 523 { 524 u64 old_spte = *sptep; 525 int level = sptep_to_sp(sptep)->role.level; 526 527 if (!is_shadow_present_pte(old_spte) || 528 !spte_needs_atomic_update(old_spte)) 529 __update_clear_spte_fast(sptep, SHADOW_NONPRESENT_VALUE); 530 else 531 old_spte = __update_clear_spte_slow(sptep, SHADOW_NONPRESENT_VALUE); 532 533 if (!is_shadow_present_pte(old_spte)) 534 return old_spte; 535 536 kvm_update_page_stats(kvm, level, -1); 537 return old_spte; 538 } 539 540 /* 541 * Rules for using mmu_spte_clear_no_track: 542 * Directly clear spte without caring the state bits of sptep, 543 * it is used to set the upper level spte. 544 */ 545 static void mmu_spte_clear_no_track(u64 *sptep) 546 { 547 __update_clear_spte_fast(sptep, SHADOW_NONPRESENT_VALUE); 548 } 549 550 static u64 mmu_spte_get_lockless(u64 *sptep) 551 { 552 return __get_spte_lockless(sptep); 553 } 554 555 static inline bool is_tdp_mmu_active(struct kvm_vcpu *vcpu) 556 { 557 return tdp_mmu_enabled && vcpu->arch.mmu->root_role.direct; 558 } 559 560 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) 561 { 562 if (is_tdp_mmu_active(vcpu)) { 563 kvm_tdp_mmu_walk_lockless_begin(); 564 } else { 565 /* 566 * Prevent page table teardown by making any free-er wait during 567 * kvm_flush_remote_tlbs() IPI to all active vcpus. 568 */ 569 local_irq_disable(); 570 571 /* 572 * Make sure a following spte read is not reordered ahead of the write 573 * to vcpu->mode. 574 */ 575 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); 576 } 577 } 578 579 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) 580 { 581 if (is_tdp_mmu_active(vcpu)) { 582 kvm_tdp_mmu_walk_lockless_end(); 583 } else { 584 /* 585 * Make sure the write to vcpu->mode is not reordered in front of 586 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us 587 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. 588 */ 589 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); 590 local_irq_enable(); 591 } 592 } 593 594 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect) 595 { 596 int r; 597 598 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */ 599 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, 600 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM); 601 if (r) 602 return r; 603 if (kvm_has_mirrored_tdp(vcpu->kvm)) { 604 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_external_spt_cache, 605 PT64_ROOT_MAX_LEVEL); 606 if (r) 607 return r; 608 } 609 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache, 610 PT64_ROOT_MAX_LEVEL); 611 if (r) 612 return r; 613 if (maybe_indirect) { 614 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadowed_info_cache, 615 PT64_ROOT_MAX_LEVEL); 616 if (r) 617 return r; 618 } 619 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, 620 PT64_ROOT_MAX_LEVEL); 621 } 622 623 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) 624 { 625 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache); 626 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache); 627 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadowed_info_cache); 628 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_external_spt_cache); 629 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache); 630 } 631 632 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) 633 { 634 kmem_cache_free(pte_list_desc_cache, pte_list_desc); 635 } 636 637 static bool sp_has_gptes(struct kvm_mmu_page *sp); 638 639 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) 640 { 641 if (sp->role.passthrough) 642 return sp->gfn; 643 644 if (sp->shadowed_translation) 645 return sp->shadowed_translation[index] >> PAGE_SHIFT; 646 647 return sp->gfn + (index << ((sp->role.level - 1) * SPTE_LEVEL_BITS)); 648 } 649 650 /* 651 * For leaf SPTEs, fetch the *guest* access permissions being shadowed. Note 652 * that the SPTE itself may have a more constrained access permissions that 653 * what the guest enforces. For example, a guest may create an executable 654 * huge PTE but KVM may disallow execution to mitigate iTLB multihit. 655 */ 656 static u32 kvm_mmu_page_get_access(struct kvm_mmu_page *sp, int index) 657 { 658 if (sp->shadowed_translation) 659 return sp->shadowed_translation[index] & ACC_ALL; 660 661 /* 662 * For direct MMUs (e.g. TDP or non-paging guests) or passthrough SPs, 663 * KVM is not shadowing any guest page tables, so the "guest access 664 * permissions" are just ACC_ALL. 665 * 666 * For direct SPs in indirect MMUs (shadow paging), i.e. when KVM 667 * is shadowing a guest huge page with small pages, the guest access 668 * permissions being shadowed are the access permissions of the huge 669 * page. 670 * 671 * In both cases, sp->role.access contains the correct access bits. 672 */ 673 return sp->role.access; 674 } 675 676 static void kvm_mmu_page_set_translation(struct kvm_mmu_page *sp, int index, 677 gfn_t gfn, unsigned int access) 678 { 679 if (sp->shadowed_translation) { 680 sp->shadowed_translation[index] = (gfn << PAGE_SHIFT) | access; 681 return; 682 } 683 684 WARN_ONCE(access != kvm_mmu_page_get_access(sp, index), 685 "access mismatch under %s page %llx (expected %u, got %u)\n", 686 sp->role.passthrough ? "passthrough" : "direct", 687 sp->gfn, kvm_mmu_page_get_access(sp, index), access); 688 689 WARN_ONCE(gfn != kvm_mmu_page_get_gfn(sp, index), 690 "gfn mismatch under %s page %llx (expected %llx, got %llx)\n", 691 sp->role.passthrough ? "passthrough" : "direct", 692 sp->gfn, kvm_mmu_page_get_gfn(sp, index), gfn); 693 } 694 695 static void kvm_mmu_page_set_access(struct kvm_mmu_page *sp, int index, 696 unsigned int access) 697 { 698 gfn_t gfn = kvm_mmu_page_get_gfn(sp, index); 699 700 kvm_mmu_page_set_translation(sp, index, gfn, access); 701 } 702 703 /* 704 * Return the pointer to the large page information for a given gfn, 705 * handling slots that are not large page aligned. 706 */ 707 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, 708 const struct kvm_memory_slot *slot, int level) 709 { 710 unsigned long idx; 711 712 idx = gfn_to_index(gfn, slot->base_gfn, level); 713 return &slot->arch.lpage_info[level - 2][idx]; 714 } 715 716 /* 717 * The most significant bit in disallow_lpage tracks whether or not memory 718 * attributes are mixed, i.e. not identical for all gfns at the current level. 719 * The lower order bits are used to refcount other cases where a hugepage is 720 * disallowed, e.g. if KVM has shadow a page table at the gfn. 721 */ 722 #define KVM_LPAGE_MIXED_FLAG BIT(31) 723 724 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot, 725 gfn_t gfn, int count) 726 { 727 struct kvm_lpage_info *linfo; 728 int old, i; 729 730 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 731 linfo = lpage_info_slot(gfn, slot, i); 732 733 old = linfo->disallow_lpage; 734 linfo->disallow_lpage += count; 735 WARN_ON_ONCE((old ^ linfo->disallow_lpage) & KVM_LPAGE_MIXED_FLAG); 736 } 737 } 738 739 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 740 { 741 update_gfn_disallow_lpage_count(slot, gfn, 1); 742 } 743 744 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 745 { 746 update_gfn_disallow_lpage_count(slot, gfn, -1); 747 } 748 749 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 750 { 751 struct kvm_memslots *slots; 752 struct kvm_memory_slot *slot; 753 gfn_t gfn; 754 755 kvm->arch.indirect_shadow_pages++; 756 /* 757 * Ensure indirect_shadow_pages is elevated prior to re-reading guest 758 * child PTEs in FNAME(gpte_changed), i.e. guarantee either in-flight 759 * emulated writes are visible before re-reading guest PTEs, or that 760 * an emulated write will see the elevated count and acquire mmu_lock 761 * to update SPTEs. Pairs with the smp_mb() in kvm_mmu_track_write(). 762 */ 763 smp_mb(); 764 765 gfn = sp->gfn; 766 slots = kvm_memslots_for_spte_role(kvm, sp->role); 767 slot = __gfn_to_memslot(slots, gfn); 768 769 /* the non-leaf shadow pages are keeping readonly. */ 770 if (sp->role.level > PG_LEVEL_4K) 771 return __kvm_write_track_add_gfn(kvm, slot, gfn); 772 773 kvm_mmu_gfn_disallow_lpage(slot, gfn); 774 775 if (kvm_mmu_slot_gfn_write_protect(kvm, slot, gfn, PG_LEVEL_4K)) 776 kvm_flush_remote_tlbs_gfn(kvm, gfn, PG_LEVEL_4K); 777 } 778 779 void track_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 780 { 781 /* 782 * If it's possible to replace the shadow page with an NX huge page, 783 * i.e. if the shadow page is the only thing currently preventing KVM 784 * from using a huge page, add the shadow page to the list of "to be 785 * zapped for NX recovery" pages. Note, the shadow page can already be 786 * on the list if KVM is reusing an existing shadow page, i.e. if KVM 787 * links a shadow page at multiple points. 788 */ 789 if (!list_empty(&sp->possible_nx_huge_page_link)) 790 return; 791 792 ++kvm->stat.nx_lpage_splits; 793 list_add_tail(&sp->possible_nx_huge_page_link, 794 &kvm->arch.possible_nx_huge_pages); 795 } 796 797 static void account_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp, 798 bool nx_huge_page_possible) 799 { 800 sp->nx_huge_page_disallowed = true; 801 802 if (nx_huge_page_possible) 803 track_possible_nx_huge_page(kvm, sp); 804 } 805 806 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 807 { 808 struct kvm_memslots *slots; 809 struct kvm_memory_slot *slot; 810 gfn_t gfn; 811 812 kvm->arch.indirect_shadow_pages--; 813 gfn = sp->gfn; 814 slots = kvm_memslots_for_spte_role(kvm, sp->role); 815 slot = __gfn_to_memslot(slots, gfn); 816 if (sp->role.level > PG_LEVEL_4K) 817 return __kvm_write_track_remove_gfn(kvm, slot, gfn); 818 819 kvm_mmu_gfn_allow_lpage(slot, gfn); 820 } 821 822 void untrack_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 823 { 824 if (list_empty(&sp->possible_nx_huge_page_link)) 825 return; 826 827 --kvm->stat.nx_lpage_splits; 828 list_del_init(&sp->possible_nx_huge_page_link); 829 } 830 831 static void unaccount_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 832 { 833 sp->nx_huge_page_disallowed = false; 834 835 untrack_possible_nx_huge_page(kvm, sp); 836 } 837 838 static struct kvm_memory_slot *gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, 839 gfn_t gfn, 840 bool no_dirty_log) 841 { 842 struct kvm_memory_slot *slot; 843 844 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 845 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 846 return NULL; 847 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot)) 848 return NULL; 849 850 return slot; 851 } 852 853 /* 854 * About rmap_head encoding: 855 * 856 * If the bit zero of rmap_head->val is clear, then it points to the only spte 857 * in this rmap chain. Otherwise, (rmap_head->val & ~3) points to a struct 858 * pte_list_desc containing more mappings. 859 */ 860 #define KVM_RMAP_MANY BIT(0) 861 862 /* 863 * rmaps and PTE lists are mostly protected by mmu_lock (the shadow MMU always 864 * operates with mmu_lock held for write), but rmaps can be walked without 865 * holding mmu_lock so long as the caller can tolerate SPTEs in the rmap chain 866 * being zapped/dropped _while the rmap is locked_. 867 * 868 * Other than the KVM_RMAP_LOCKED flag, modifications to rmap entries must be 869 * done while holding mmu_lock for write. This allows a task walking rmaps 870 * without holding mmu_lock to concurrently walk the same entries as a task 871 * that is holding mmu_lock but _not_ the rmap lock. Neither task will modify 872 * the rmaps, thus the walks are stable. 873 * 874 * As alluded to above, SPTEs in rmaps are _not_ protected by KVM_RMAP_LOCKED, 875 * only the rmap chains themselves are protected. E.g. holding an rmap's lock 876 * ensures all "struct pte_list_desc" fields are stable. 877 */ 878 #define KVM_RMAP_LOCKED BIT(1) 879 880 static unsigned long __kvm_rmap_lock(struct kvm_rmap_head *rmap_head) 881 { 882 unsigned long old_val, new_val; 883 884 lockdep_assert_preemption_disabled(); 885 886 /* 887 * Elide the lock if the rmap is empty, as lockless walkers (read-only 888 * mode) don't need to (and can't) walk an empty rmap, nor can they add 889 * entries to the rmap. I.e. the only paths that process empty rmaps 890 * do so while holding mmu_lock for write, and are mutually exclusive. 891 */ 892 old_val = atomic_long_read(&rmap_head->val); 893 if (!old_val) 894 return 0; 895 896 do { 897 /* 898 * If the rmap is locked, wait for it to be unlocked before 899 * trying acquire the lock, e.g. to avoid bouncing the cache 900 * line. 901 */ 902 while (old_val & KVM_RMAP_LOCKED) { 903 cpu_relax(); 904 old_val = atomic_long_read(&rmap_head->val); 905 } 906 907 /* 908 * Recheck for an empty rmap, it may have been purged by the 909 * task that held the lock. 910 */ 911 if (!old_val) 912 return 0; 913 914 new_val = old_val | KVM_RMAP_LOCKED; 915 /* 916 * Use try_cmpxchg_acquire() to prevent reads and writes to the rmap 917 * from being reordered outside of the critical section created by 918 * __kvm_rmap_lock(). 919 * 920 * Pairs with the atomic_long_set_release() in kvm_rmap_unlock(). 921 * 922 * For the !old_val case, no ordering is needed, as there is no rmap 923 * to walk. 924 */ 925 } while (!atomic_long_try_cmpxchg_acquire(&rmap_head->val, &old_val, new_val)); 926 927 /* 928 * Return the old value, i.e. _without_ the LOCKED bit set. It's 929 * impossible for the return value to be 0 (see above), i.e. the read- 930 * only unlock flow can't get a false positive and fail to unlock. 931 */ 932 return old_val; 933 } 934 935 static unsigned long kvm_rmap_lock(struct kvm *kvm, 936 struct kvm_rmap_head *rmap_head) 937 { 938 lockdep_assert_held_write(&kvm->mmu_lock); 939 940 return __kvm_rmap_lock(rmap_head); 941 } 942 943 static void __kvm_rmap_unlock(struct kvm_rmap_head *rmap_head, 944 unsigned long val) 945 { 946 KVM_MMU_WARN_ON(val & KVM_RMAP_LOCKED); 947 /* 948 * Ensure that all accesses to the rmap have completed before unlocking 949 * the rmap. 950 * 951 * Pairs with the atomic_long_try_cmpxchg_acquire() in __kvm_rmap_lock(). 952 */ 953 atomic_long_set_release(&rmap_head->val, val); 954 } 955 956 static void kvm_rmap_unlock(struct kvm *kvm, 957 struct kvm_rmap_head *rmap_head, 958 unsigned long new_val) 959 { 960 lockdep_assert_held_write(&kvm->mmu_lock); 961 962 __kvm_rmap_unlock(rmap_head, new_val); 963 } 964 965 static unsigned long kvm_rmap_get(struct kvm_rmap_head *rmap_head) 966 { 967 return atomic_long_read(&rmap_head->val) & ~KVM_RMAP_LOCKED; 968 } 969 970 /* 971 * If mmu_lock isn't held, rmaps can only be locked in read-only mode. The 972 * actual locking is the same, but the caller is disallowed from modifying the 973 * rmap, and so the unlock flow is a nop if the rmap is/was empty. 974 */ 975 static unsigned long kvm_rmap_lock_readonly(struct kvm_rmap_head *rmap_head) 976 { 977 unsigned long rmap_val; 978 979 preempt_disable(); 980 rmap_val = __kvm_rmap_lock(rmap_head); 981 982 if (!rmap_val) 983 preempt_enable(); 984 985 return rmap_val; 986 } 987 988 static void kvm_rmap_unlock_readonly(struct kvm_rmap_head *rmap_head, 989 unsigned long old_val) 990 { 991 if (!old_val) 992 return; 993 994 KVM_MMU_WARN_ON(old_val != kvm_rmap_get(rmap_head)); 995 996 __kvm_rmap_unlock(rmap_head, old_val); 997 preempt_enable(); 998 } 999 1000 /* 1001 * Returns the number of pointers in the rmap chain, not counting the new one. 1002 */ 1003 static int pte_list_add(struct kvm *kvm, struct kvm_mmu_memory_cache *cache, 1004 u64 *spte, struct kvm_rmap_head *rmap_head) 1005 { 1006 unsigned long old_val, new_val; 1007 struct pte_list_desc *desc; 1008 int count = 0; 1009 1010 old_val = kvm_rmap_lock(kvm, rmap_head); 1011 1012 if (!old_val) { 1013 new_val = (unsigned long)spte; 1014 } else if (!(old_val & KVM_RMAP_MANY)) { 1015 desc = kvm_mmu_memory_cache_alloc(cache); 1016 desc->sptes[0] = (u64 *)old_val; 1017 desc->sptes[1] = spte; 1018 desc->spte_count = 2; 1019 desc->tail_count = 0; 1020 new_val = (unsigned long)desc | KVM_RMAP_MANY; 1021 ++count; 1022 } else { 1023 desc = (struct pte_list_desc *)(old_val & ~KVM_RMAP_MANY); 1024 count = desc->tail_count + desc->spte_count; 1025 1026 /* 1027 * If the previous head is full, allocate a new head descriptor 1028 * as tail descriptors are always kept full. 1029 */ 1030 if (desc->spte_count == PTE_LIST_EXT) { 1031 desc = kvm_mmu_memory_cache_alloc(cache); 1032 desc->more = (struct pte_list_desc *)(old_val & ~KVM_RMAP_MANY); 1033 desc->spte_count = 0; 1034 desc->tail_count = count; 1035 new_val = (unsigned long)desc | KVM_RMAP_MANY; 1036 } else { 1037 new_val = old_val; 1038 } 1039 desc->sptes[desc->spte_count++] = spte; 1040 } 1041 1042 kvm_rmap_unlock(kvm, rmap_head, new_val); 1043 1044 return count; 1045 } 1046 1047 static void pte_list_desc_remove_entry(struct kvm *kvm, unsigned long *rmap_val, 1048 struct pte_list_desc *desc, int i) 1049 { 1050 struct pte_list_desc *head_desc = (struct pte_list_desc *)(*rmap_val & ~KVM_RMAP_MANY); 1051 int j = head_desc->spte_count - 1; 1052 1053 /* 1054 * The head descriptor should never be empty. A new head is added only 1055 * when adding an entry and the previous head is full, and heads are 1056 * removed (this flow) when they become empty. 1057 */ 1058 KVM_BUG_ON_DATA_CORRUPTION(j < 0, kvm); 1059 1060 /* 1061 * Replace the to-be-freed SPTE with the last valid entry from the head 1062 * descriptor to ensure that tail descriptors are full at all times. 1063 * Note, this also means that tail_count is stable for each descriptor. 1064 */ 1065 desc->sptes[i] = head_desc->sptes[j]; 1066 head_desc->sptes[j] = NULL; 1067 head_desc->spte_count--; 1068 if (head_desc->spte_count) 1069 return; 1070 1071 /* 1072 * The head descriptor is empty. If there are no tail descriptors, 1073 * nullify the rmap head to mark the list as empty, else point the rmap 1074 * head at the next descriptor, i.e. the new head. 1075 */ 1076 if (!head_desc->more) 1077 *rmap_val = 0; 1078 else 1079 *rmap_val = (unsigned long)head_desc->more | KVM_RMAP_MANY; 1080 mmu_free_pte_list_desc(head_desc); 1081 } 1082 1083 static void pte_list_remove(struct kvm *kvm, u64 *spte, 1084 struct kvm_rmap_head *rmap_head) 1085 { 1086 struct pte_list_desc *desc; 1087 unsigned long rmap_val; 1088 int i; 1089 1090 rmap_val = kvm_rmap_lock(kvm, rmap_head); 1091 if (KVM_BUG_ON_DATA_CORRUPTION(!rmap_val, kvm)) 1092 goto out; 1093 1094 if (!(rmap_val & KVM_RMAP_MANY)) { 1095 if (KVM_BUG_ON_DATA_CORRUPTION((u64 *)rmap_val != spte, kvm)) 1096 goto out; 1097 1098 rmap_val = 0; 1099 } else { 1100 desc = (struct pte_list_desc *)(rmap_val & ~KVM_RMAP_MANY); 1101 while (desc) { 1102 for (i = 0; i < desc->spte_count; ++i) { 1103 if (desc->sptes[i] == spte) { 1104 pte_list_desc_remove_entry(kvm, &rmap_val, 1105 desc, i); 1106 goto out; 1107 } 1108 } 1109 desc = desc->more; 1110 } 1111 1112 KVM_BUG_ON_DATA_CORRUPTION(true, kvm); 1113 } 1114 1115 out: 1116 kvm_rmap_unlock(kvm, rmap_head, rmap_val); 1117 } 1118 1119 static void kvm_zap_one_rmap_spte(struct kvm *kvm, 1120 struct kvm_rmap_head *rmap_head, u64 *sptep) 1121 { 1122 mmu_spte_clear_track_bits(kvm, sptep); 1123 pte_list_remove(kvm, sptep, rmap_head); 1124 } 1125 1126 /* Return true if at least one SPTE was zapped, false otherwise */ 1127 static bool kvm_zap_all_rmap_sptes(struct kvm *kvm, 1128 struct kvm_rmap_head *rmap_head) 1129 { 1130 struct pte_list_desc *desc, *next; 1131 unsigned long rmap_val; 1132 int i; 1133 1134 rmap_val = kvm_rmap_lock(kvm, rmap_head); 1135 if (!rmap_val) 1136 return false; 1137 1138 if (!(rmap_val & KVM_RMAP_MANY)) { 1139 mmu_spte_clear_track_bits(kvm, (u64 *)rmap_val); 1140 goto out; 1141 } 1142 1143 desc = (struct pte_list_desc *)(rmap_val & ~KVM_RMAP_MANY); 1144 1145 for (; desc; desc = next) { 1146 for (i = 0; i < desc->spte_count; i++) 1147 mmu_spte_clear_track_bits(kvm, desc->sptes[i]); 1148 next = desc->more; 1149 mmu_free_pte_list_desc(desc); 1150 } 1151 out: 1152 /* rmap_head is meaningless now, remember to reset it */ 1153 kvm_rmap_unlock(kvm, rmap_head, 0); 1154 return true; 1155 } 1156 1157 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head) 1158 { 1159 unsigned long rmap_val = kvm_rmap_get(rmap_head); 1160 struct pte_list_desc *desc; 1161 1162 if (!rmap_val) 1163 return 0; 1164 else if (!(rmap_val & KVM_RMAP_MANY)) 1165 return 1; 1166 1167 desc = (struct pte_list_desc *)(rmap_val & ~KVM_RMAP_MANY); 1168 return desc->tail_count + desc->spte_count; 1169 } 1170 1171 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level, 1172 const struct kvm_memory_slot *slot) 1173 { 1174 unsigned long idx; 1175 1176 idx = gfn_to_index(gfn, slot->base_gfn, level); 1177 return &slot->arch.rmap[level - PG_LEVEL_4K][idx]; 1178 } 1179 1180 static void rmap_remove(struct kvm *kvm, u64 *spte) 1181 { 1182 struct kvm_memslots *slots; 1183 struct kvm_memory_slot *slot; 1184 struct kvm_mmu_page *sp; 1185 gfn_t gfn; 1186 struct kvm_rmap_head *rmap_head; 1187 1188 sp = sptep_to_sp(spte); 1189 gfn = kvm_mmu_page_get_gfn(sp, spte_index(spte)); 1190 1191 /* 1192 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU 1193 * so we have to determine which memslots to use based on context 1194 * information in sp->role. 1195 */ 1196 slots = kvm_memslots_for_spte_role(kvm, sp->role); 1197 1198 slot = __gfn_to_memslot(slots, gfn); 1199 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1200 1201 pte_list_remove(kvm, spte, rmap_head); 1202 } 1203 1204 /* 1205 * Used by the following functions to iterate through the sptes linked by a 1206 * rmap. All fields are private and not assumed to be used outside. 1207 */ 1208 struct rmap_iterator { 1209 /* private fields */ 1210 struct rmap_head *head; 1211 struct pte_list_desc *desc; /* holds the sptep if not NULL */ 1212 int pos; /* index of the sptep */ 1213 }; 1214 1215 /* 1216 * Iteration must be started by this function. This should also be used after 1217 * removing/dropping sptes from the rmap link because in such cases the 1218 * information in the iterator may not be valid. 1219 * 1220 * Returns sptep if found, NULL otherwise. 1221 */ 1222 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head, 1223 struct rmap_iterator *iter) 1224 { 1225 unsigned long rmap_val = kvm_rmap_get(rmap_head); 1226 1227 if (!rmap_val) 1228 return NULL; 1229 1230 if (!(rmap_val & KVM_RMAP_MANY)) { 1231 iter->desc = NULL; 1232 return (u64 *)rmap_val; 1233 } 1234 1235 iter->desc = (struct pte_list_desc *)(rmap_val & ~KVM_RMAP_MANY); 1236 iter->pos = 0; 1237 return iter->desc->sptes[iter->pos]; 1238 } 1239 1240 /* 1241 * Must be used with a valid iterator: e.g. after rmap_get_first(). 1242 * 1243 * Returns sptep if found, NULL otherwise. 1244 */ 1245 static u64 *rmap_get_next(struct rmap_iterator *iter) 1246 { 1247 if (iter->desc) { 1248 if (iter->pos < PTE_LIST_EXT - 1) { 1249 ++iter->pos; 1250 if (iter->desc->sptes[iter->pos]) 1251 return iter->desc->sptes[iter->pos]; 1252 } 1253 1254 iter->desc = iter->desc->more; 1255 1256 if (iter->desc) { 1257 iter->pos = 0; 1258 /* desc->sptes[0] cannot be NULL */ 1259 return iter->desc->sptes[iter->pos]; 1260 } 1261 } 1262 1263 return NULL; 1264 } 1265 1266 #define __for_each_rmap_spte(_rmap_head_, _iter_, _sptep_) \ 1267 for (_sptep_ = rmap_get_first(_rmap_head_, _iter_); \ 1268 _sptep_; _sptep_ = rmap_get_next(_iter_)) 1269 1270 #define for_each_rmap_spte(_rmap_head_, _iter_, _sptep_) \ 1271 __for_each_rmap_spte(_rmap_head_, _iter_, _sptep_) \ 1272 if (!WARN_ON_ONCE(!is_shadow_present_pte(*(_sptep_)))) \ 1273 1274 #define for_each_rmap_spte_lockless(_rmap_head_, _iter_, _sptep_, _spte_) \ 1275 __for_each_rmap_spte(_rmap_head_, _iter_, _sptep_) \ 1276 if (is_shadow_present_pte(_spte_ = mmu_spte_get_lockless(sptep))) 1277 1278 static void drop_spte(struct kvm *kvm, u64 *sptep) 1279 { 1280 u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep); 1281 1282 if (is_shadow_present_pte(old_spte)) 1283 rmap_remove(kvm, sptep); 1284 } 1285 1286 static void drop_large_spte(struct kvm *kvm, u64 *sptep, bool flush) 1287 { 1288 struct kvm_mmu_page *sp; 1289 1290 sp = sptep_to_sp(sptep); 1291 WARN_ON_ONCE(sp->role.level == PG_LEVEL_4K); 1292 1293 drop_spte(kvm, sptep); 1294 1295 if (flush) 1296 kvm_flush_remote_tlbs_sptep(kvm, sptep); 1297 } 1298 1299 /* 1300 * Write-protect on the specified @sptep, @pt_protect indicates whether 1301 * spte write-protection is caused by protecting shadow page table. 1302 * 1303 * Note: write protection is difference between dirty logging and spte 1304 * protection: 1305 * - for dirty logging, the spte can be set to writable at anytime if 1306 * its dirty bitmap is properly set. 1307 * - for spte protection, the spte can be writable only after unsync-ing 1308 * shadow page. 1309 * 1310 * Return true if tlb need be flushed. 1311 */ 1312 static bool spte_write_protect(u64 *sptep, bool pt_protect) 1313 { 1314 u64 spte = *sptep; 1315 1316 if (!is_writable_pte(spte) && 1317 !(pt_protect && is_mmu_writable_spte(spte))) 1318 return false; 1319 1320 if (pt_protect) 1321 spte &= ~shadow_mmu_writable_mask; 1322 spte = spte & ~PT_WRITABLE_MASK; 1323 1324 return mmu_spte_update(sptep, spte); 1325 } 1326 1327 static bool rmap_write_protect(struct kvm_rmap_head *rmap_head, 1328 bool pt_protect) 1329 { 1330 u64 *sptep; 1331 struct rmap_iterator iter; 1332 bool flush = false; 1333 1334 for_each_rmap_spte(rmap_head, &iter, sptep) 1335 flush |= spte_write_protect(sptep, pt_protect); 1336 1337 return flush; 1338 } 1339 1340 static bool spte_clear_dirty(u64 *sptep) 1341 { 1342 u64 spte = *sptep; 1343 1344 KVM_MMU_WARN_ON(!spte_ad_enabled(spte)); 1345 spte &= ~shadow_dirty_mask; 1346 return mmu_spte_update(sptep, spte); 1347 } 1348 1349 /* 1350 * Gets the GFN ready for another round of dirty logging by clearing the 1351 * - D bit on ad-enabled SPTEs, and 1352 * - W bit on ad-disabled SPTEs. 1353 * Returns true iff any D or W bits were cleared. 1354 */ 1355 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1356 const struct kvm_memory_slot *slot) 1357 { 1358 u64 *sptep; 1359 struct rmap_iterator iter; 1360 bool flush = false; 1361 1362 for_each_rmap_spte(rmap_head, &iter, sptep) { 1363 if (spte_ad_need_write_protect(*sptep)) 1364 flush |= test_and_clear_bit(PT_WRITABLE_SHIFT, 1365 (unsigned long *)sptep); 1366 else 1367 flush |= spte_clear_dirty(sptep); 1368 } 1369 1370 return flush; 1371 } 1372 1373 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 1374 struct kvm_memory_slot *slot, 1375 gfn_t gfn_offset, unsigned long mask) 1376 { 1377 struct kvm_rmap_head *rmap_head; 1378 1379 if (tdp_mmu_enabled) 1380 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1381 slot->base_gfn + gfn_offset, mask, true); 1382 1383 if (!kvm_memslots_have_rmaps(kvm)) 1384 return; 1385 1386 while (mask) { 1387 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1388 PG_LEVEL_4K, slot); 1389 rmap_write_protect(rmap_head, false); 1390 1391 /* clear the first set bit */ 1392 mask &= mask - 1; 1393 } 1394 } 1395 1396 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1397 struct kvm_memory_slot *slot, 1398 gfn_t gfn_offset, unsigned long mask) 1399 { 1400 struct kvm_rmap_head *rmap_head; 1401 1402 if (tdp_mmu_enabled) 1403 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1404 slot->base_gfn + gfn_offset, mask, false); 1405 1406 if (!kvm_memslots_have_rmaps(kvm)) 1407 return; 1408 1409 while (mask) { 1410 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1411 PG_LEVEL_4K, slot); 1412 __rmap_clear_dirty(kvm, rmap_head, slot); 1413 1414 /* clear the first set bit */ 1415 mask &= mask - 1; 1416 } 1417 } 1418 1419 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1420 struct kvm_memory_slot *slot, 1421 gfn_t gfn_offset, unsigned long mask) 1422 { 1423 /* 1424 * If the slot was assumed to be "initially all dirty", write-protect 1425 * huge pages to ensure they are split to 4KiB on the first write (KVM 1426 * dirty logs at 4KiB granularity). If eager page splitting is enabled, 1427 * immediately try to split huge pages, e.g. so that vCPUs don't get 1428 * saddled with the cost of splitting. 1429 * 1430 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn 1431 * of memslot has no such restriction, so the range can cross two large 1432 * pages. 1433 */ 1434 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) { 1435 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask); 1436 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask); 1437 1438 if (READ_ONCE(eager_page_split)) 1439 kvm_mmu_try_split_huge_pages(kvm, slot, start, end + 1, PG_LEVEL_4K); 1440 1441 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M); 1442 1443 /* Cross two large pages? */ 1444 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) != 1445 ALIGN(end << PAGE_SHIFT, PMD_SIZE)) 1446 kvm_mmu_slot_gfn_write_protect(kvm, slot, end, 1447 PG_LEVEL_2M); 1448 } 1449 1450 /* 1451 * (Re)Enable dirty logging for all 4KiB SPTEs that map the GFNs in 1452 * mask. If PML is enabled and the GFN doesn't need to be write- 1453 * protected for other reasons, e.g. shadow paging, clear the Dirty bit. 1454 * Otherwise clear the Writable bit. 1455 * 1456 * Note that kvm_mmu_clear_dirty_pt_masked() is called whenever PML is 1457 * enabled but it chooses between clearing the Dirty bit and Writeable 1458 * bit based on the context. 1459 */ 1460 if (kvm->arch.cpu_dirty_log_size) 1461 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask); 1462 else 1463 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 1464 } 1465 1466 int kvm_cpu_dirty_log_size(struct kvm *kvm) 1467 { 1468 return kvm->arch.cpu_dirty_log_size; 1469 } 1470 1471 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, 1472 struct kvm_memory_slot *slot, u64 gfn, 1473 int min_level) 1474 { 1475 struct kvm_rmap_head *rmap_head; 1476 int i; 1477 bool write_protected = false; 1478 1479 if (kvm_memslots_have_rmaps(kvm)) { 1480 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 1481 rmap_head = gfn_to_rmap(gfn, i, slot); 1482 write_protected |= rmap_write_protect(rmap_head, true); 1483 } 1484 } 1485 1486 if (tdp_mmu_enabled) 1487 write_protected |= 1488 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level); 1489 1490 return write_protected; 1491 } 1492 1493 static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn) 1494 { 1495 struct kvm_memory_slot *slot; 1496 1497 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1498 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K); 1499 } 1500 1501 static bool kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1502 const struct kvm_memory_slot *slot) 1503 { 1504 return kvm_zap_all_rmap_sptes(kvm, rmap_head); 1505 } 1506 1507 struct slot_rmap_walk_iterator { 1508 /* input fields. */ 1509 const struct kvm_memory_slot *slot; 1510 gfn_t start_gfn; 1511 gfn_t end_gfn; 1512 int start_level; 1513 int end_level; 1514 1515 /* output fields. */ 1516 gfn_t gfn; 1517 struct kvm_rmap_head *rmap; 1518 int level; 1519 1520 /* private field. */ 1521 struct kvm_rmap_head *end_rmap; 1522 }; 1523 1524 static void rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, 1525 int level) 1526 { 1527 iterator->level = level; 1528 iterator->gfn = iterator->start_gfn; 1529 iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot); 1530 iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot); 1531 } 1532 1533 static void slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator, 1534 const struct kvm_memory_slot *slot, 1535 int start_level, int end_level, 1536 gfn_t start_gfn, gfn_t end_gfn) 1537 { 1538 iterator->slot = slot; 1539 iterator->start_level = start_level; 1540 iterator->end_level = end_level; 1541 iterator->start_gfn = start_gfn; 1542 iterator->end_gfn = end_gfn; 1543 1544 rmap_walk_init_level(iterator, iterator->start_level); 1545 } 1546 1547 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator) 1548 { 1549 return !!iterator->rmap; 1550 } 1551 1552 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) 1553 { 1554 while (++iterator->rmap <= iterator->end_rmap) { 1555 iterator->gfn += KVM_PAGES_PER_HPAGE(iterator->level); 1556 1557 if (atomic_long_read(&iterator->rmap->val)) 1558 return; 1559 } 1560 1561 if (++iterator->level > iterator->end_level) { 1562 iterator->rmap = NULL; 1563 return; 1564 } 1565 1566 rmap_walk_init_level(iterator, iterator->level); 1567 } 1568 1569 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \ 1570 _start_gfn, _end_gfn, _iter_) \ 1571 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \ 1572 _end_level_, _start_gfn, _end_gfn); \ 1573 slot_rmap_walk_okay(_iter_); \ 1574 slot_rmap_walk_next(_iter_)) 1575 1576 /* The return value indicates if tlb flush on all vcpus is needed. */ 1577 typedef bool (*slot_rmaps_handler) (struct kvm *kvm, 1578 struct kvm_rmap_head *rmap_head, 1579 const struct kvm_memory_slot *slot); 1580 1581 static __always_inline bool __walk_slot_rmaps(struct kvm *kvm, 1582 const struct kvm_memory_slot *slot, 1583 slot_rmaps_handler fn, 1584 int start_level, int end_level, 1585 gfn_t start_gfn, gfn_t end_gfn, 1586 bool can_yield, bool flush_on_yield, 1587 bool flush) 1588 { 1589 struct slot_rmap_walk_iterator iterator; 1590 1591 lockdep_assert_held_write(&kvm->mmu_lock); 1592 1593 for_each_slot_rmap_range(slot, start_level, end_level, start_gfn, 1594 end_gfn, &iterator) { 1595 if (iterator.rmap) 1596 flush |= fn(kvm, iterator.rmap, slot); 1597 1598 if (!can_yield) 1599 continue; 1600 1601 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 1602 if (flush && flush_on_yield) { 1603 kvm_flush_remote_tlbs_range(kvm, start_gfn, 1604 iterator.gfn - start_gfn + 1); 1605 flush = false; 1606 } 1607 cond_resched_rwlock_write(&kvm->mmu_lock); 1608 } 1609 } 1610 1611 return flush; 1612 } 1613 1614 static __always_inline bool walk_slot_rmaps(struct kvm *kvm, 1615 const struct kvm_memory_slot *slot, 1616 slot_rmaps_handler fn, 1617 int start_level, int end_level, 1618 bool flush_on_yield) 1619 { 1620 return __walk_slot_rmaps(kvm, slot, fn, start_level, end_level, 1621 slot->base_gfn, slot->base_gfn + slot->npages - 1, 1622 true, flush_on_yield, false); 1623 } 1624 1625 static __always_inline bool walk_slot_rmaps_4k(struct kvm *kvm, 1626 const struct kvm_memory_slot *slot, 1627 slot_rmaps_handler fn, 1628 bool flush_on_yield) 1629 { 1630 return walk_slot_rmaps(kvm, slot, fn, PG_LEVEL_4K, PG_LEVEL_4K, flush_on_yield); 1631 } 1632 1633 static bool __kvm_rmap_zap_gfn_range(struct kvm *kvm, 1634 const struct kvm_memory_slot *slot, 1635 gfn_t start, gfn_t end, bool can_yield, 1636 bool flush) 1637 { 1638 return __walk_slot_rmaps(kvm, slot, kvm_zap_rmap, 1639 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 1640 start, end - 1, can_yield, true, flush); 1641 } 1642 1643 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1644 { 1645 bool flush = false; 1646 1647 /* 1648 * To prevent races with vCPUs faulting in a gfn using stale data, 1649 * zapping a gfn range must be protected by mmu_invalidate_in_progress 1650 * (and mmu_invalidate_seq). The only exception is memslot deletion; 1651 * in that case, SRCU synchronization ensures that SPTEs are zapped 1652 * after all vCPUs have unlocked SRCU, guaranteeing that vCPUs see the 1653 * invalid slot. 1654 */ 1655 lockdep_assert_once(kvm->mmu_invalidate_in_progress || 1656 lockdep_is_held(&kvm->slots_lock)); 1657 1658 if (kvm_memslots_have_rmaps(kvm)) 1659 flush = __kvm_rmap_zap_gfn_range(kvm, range->slot, 1660 range->start, range->end, 1661 range->may_block, flush); 1662 1663 if (tdp_mmu_enabled) 1664 flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush); 1665 1666 if (kvm_x86_ops.set_apic_access_page_addr && 1667 range->slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT) 1668 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 1669 1670 return flush; 1671 } 1672 1673 #define RMAP_RECYCLE_THRESHOLD 1000 1674 1675 static void __rmap_add(struct kvm *kvm, 1676 struct kvm_mmu_memory_cache *cache, 1677 const struct kvm_memory_slot *slot, 1678 u64 *spte, gfn_t gfn, unsigned int access) 1679 { 1680 struct kvm_mmu_page *sp; 1681 struct kvm_rmap_head *rmap_head; 1682 int rmap_count; 1683 1684 sp = sptep_to_sp(spte); 1685 kvm_mmu_page_set_translation(sp, spte_index(spte), gfn, access); 1686 kvm_update_page_stats(kvm, sp->role.level, 1); 1687 1688 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1689 rmap_count = pte_list_add(kvm, cache, spte, rmap_head); 1690 1691 if (rmap_count > kvm->stat.max_mmu_rmap_size) 1692 kvm->stat.max_mmu_rmap_size = rmap_count; 1693 if (rmap_count > RMAP_RECYCLE_THRESHOLD) { 1694 kvm_zap_all_rmap_sptes(kvm, rmap_head); 1695 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level); 1696 } 1697 } 1698 1699 static void rmap_add(struct kvm_vcpu *vcpu, const struct kvm_memory_slot *slot, 1700 u64 *spte, gfn_t gfn, unsigned int access) 1701 { 1702 struct kvm_mmu_memory_cache *cache = &vcpu->arch.mmu_pte_list_desc_cache; 1703 1704 __rmap_add(vcpu->kvm, cache, slot, spte, gfn, access); 1705 } 1706 1707 static bool kvm_rmap_age_gfn_range(struct kvm *kvm, 1708 struct kvm_gfn_range *range, 1709 bool test_only) 1710 { 1711 struct kvm_rmap_head *rmap_head; 1712 struct rmap_iterator iter; 1713 unsigned long rmap_val; 1714 bool young = false; 1715 u64 *sptep; 1716 gfn_t gfn; 1717 int level; 1718 u64 spte; 1719 1720 for (level = PG_LEVEL_4K; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) { 1721 for (gfn = range->start; gfn < range->end; 1722 gfn += KVM_PAGES_PER_HPAGE(level)) { 1723 rmap_head = gfn_to_rmap(gfn, level, range->slot); 1724 rmap_val = kvm_rmap_lock_readonly(rmap_head); 1725 1726 for_each_rmap_spte_lockless(rmap_head, &iter, sptep, spte) { 1727 if (!is_accessed_spte(spte)) 1728 continue; 1729 1730 if (test_only) { 1731 kvm_rmap_unlock_readonly(rmap_head, rmap_val); 1732 return true; 1733 } 1734 1735 if (spte_ad_enabled(spte)) 1736 clear_bit((ffs(shadow_accessed_mask) - 1), 1737 (unsigned long *)sptep); 1738 else 1739 /* 1740 * If the following cmpxchg fails, the 1741 * spte is being concurrently modified 1742 * and should most likely stay young. 1743 */ 1744 cmpxchg64(sptep, spte, 1745 mark_spte_for_access_track(spte)); 1746 young = true; 1747 } 1748 1749 kvm_rmap_unlock_readonly(rmap_head, rmap_val); 1750 } 1751 } 1752 return young; 1753 } 1754 1755 static bool kvm_may_have_shadow_mmu_sptes(struct kvm *kvm) 1756 { 1757 return !tdp_mmu_enabled || READ_ONCE(kvm->arch.indirect_shadow_pages); 1758 } 1759 1760 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1761 { 1762 bool young = false; 1763 1764 if (tdp_mmu_enabled) 1765 young = kvm_tdp_mmu_age_gfn_range(kvm, range); 1766 1767 if (kvm_may_have_shadow_mmu_sptes(kvm)) 1768 young |= kvm_rmap_age_gfn_range(kvm, range, false); 1769 1770 return young; 1771 } 1772 1773 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1774 { 1775 bool young = false; 1776 1777 if (tdp_mmu_enabled) 1778 young = kvm_tdp_mmu_test_age_gfn(kvm, range); 1779 1780 if (young) 1781 return young; 1782 1783 if (kvm_may_have_shadow_mmu_sptes(kvm)) 1784 young |= kvm_rmap_age_gfn_range(kvm, range, true); 1785 1786 return young; 1787 } 1788 1789 static void kvm_mmu_check_sptes_at_free(struct kvm_mmu_page *sp) 1790 { 1791 #ifdef CONFIG_KVM_PROVE_MMU 1792 int i; 1793 1794 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) { 1795 if (KVM_MMU_WARN_ON(is_shadow_present_pte(sp->spt[i]))) 1796 pr_err_ratelimited("SPTE %llx (@ %p) for gfn %llx shadow-present at free", 1797 sp->spt[i], &sp->spt[i], 1798 kvm_mmu_page_get_gfn(sp, i)); 1799 } 1800 #endif 1801 } 1802 1803 static void kvm_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1804 { 1805 kvm->arch.n_used_mmu_pages++; 1806 kvm_account_pgtable_pages((void *)sp->spt, +1); 1807 } 1808 1809 static void kvm_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1810 { 1811 kvm->arch.n_used_mmu_pages--; 1812 kvm_account_pgtable_pages((void *)sp->spt, -1); 1813 } 1814 1815 static void kvm_mmu_free_shadow_page(struct kvm_mmu_page *sp) 1816 { 1817 kvm_mmu_check_sptes_at_free(sp); 1818 1819 hlist_del(&sp->hash_link); 1820 list_del(&sp->link); 1821 free_page((unsigned long)sp->spt); 1822 free_page((unsigned long)sp->shadowed_translation); 1823 kmem_cache_free(mmu_page_header_cache, sp); 1824 } 1825 1826 static unsigned kvm_page_table_hashfn(gfn_t gfn) 1827 { 1828 return hash_64(gfn, KVM_MMU_HASH_SHIFT); 1829 } 1830 1831 static void mmu_page_add_parent_pte(struct kvm *kvm, 1832 struct kvm_mmu_memory_cache *cache, 1833 struct kvm_mmu_page *sp, u64 *parent_pte) 1834 { 1835 if (!parent_pte) 1836 return; 1837 1838 pte_list_add(kvm, cache, parent_pte, &sp->parent_ptes); 1839 } 1840 1841 static void mmu_page_remove_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 1842 u64 *parent_pte) 1843 { 1844 pte_list_remove(kvm, parent_pte, &sp->parent_ptes); 1845 } 1846 1847 static void drop_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 1848 u64 *parent_pte) 1849 { 1850 mmu_page_remove_parent_pte(kvm, sp, parent_pte); 1851 mmu_spte_clear_no_track(parent_pte); 1852 } 1853 1854 static void mark_unsync(u64 *spte); 1855 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) 1856 { 1857 u64 *sptep; 1858 struct rmap_iterator iter; 1859 1860 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) { 1861 mark_unsync(sptep); 1862 } 1863 } 1864 1865 static void mark_unsync(u64 *spte) 1866 { 1867 struct kvm_mmu_page *sp; 1868 1869 sp = sptep_to_sp(spte); 1870 if (__test_and_set_bit(spte_index(spte), sp->unsync_child_bitmap)) 1871 return; 1872 if (sp->unsync_children++) 1873 return; 1874 kvm_mmu_mark_parents_unsync(sp); 1875 } 1876 1877 #define KVM_PAGE_ARRAY_NR 16 1878 1879 struct kvm_mmu_pages { 1880 struct mmu_page_and_offset { 1881 struct kvm_mmu_page *sp; 1882 unsigned int idx; 1883 } page[KVM_PAGE_ARRAY_NR]; 1884 unsigned int nr; 1885 }; 1886 1887 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, 1888 int idx) 1889 { 1890 int i; 1891 1892 if (sp->unsync) 1893 for (i=0; i < pvec->nr; i++) 1894 if (pvec->page[i].sp == sp) 1895 return 0; 1896 1897 pvec->page[pvec->nr].sp = sp; 1898 pvec->page[pvec->nr].idx = idx; 1899 pvec->nr++; 1900 return (pvec->nr == KVM_PAGE_ARRAY_NR); 1901 } 1902 1903 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx) 1904 { 1905 --sp->unsync_children; 1906 WARN_ON_ONCE((int)sp->unsync_children < 0); 1907 __clear_bit(idx, sp->unsync_child_bitmap); 1908 } 1909 1910 static int __mmu_unsync_walk(struct kvm_mmu_page *sp, 1911 struct kvm_mmu_pages *pvec) 1912 { 1913 int i, ret, nr_unsync_leaf = 0; 1914 1915 for_each_set_bit(i, sp->unsync_child_bitmap, 512) { 1916 struct kvm_mmu_page *child; 1917 u64 ent = sp->spt[i]; 1918 1919 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) { 1920 clear_unsync_child_bit(sp, i); 1921 continue; 1922 } 1923 1924 child = spte_to_child_sp(ent); 1925 1926 if (child->unsync_children) { 1927 if (mmu_pages_add(pvec, child, i)) 1928 return -ENOSPC; 1929 1930 ret = __mmu_unsync_walk(child, pvec); 1931 if (!ret) { 1932 clear_unsync_child_bit(sp, i); 1933 continue; 1934 } else if (ret > 0) { 1935 nr_unsync_leaf += ret; 1936 } else 1937 return ret; 1938 } else if (child->unsync) { 1939 nr_unsync_leaf++; 1940 if (mmu_pages_add(pvec, child, i)) 1941 return -ENOSPC; 1942 } else 1943 clear_unsync_child_bit(sp, i); 1944 } 1945 1946 return nr_unsync_leaf; 1947 } 1948 1949 #define INVALID_INDEX (-1) 1950 1951 static int mmu_unsync_walk(struct kvm_mmu_page *sp, 1952 struct kvm_mmu_pages *pvec) 1953 { 1954 pvec->nr = 0; 1955 if (!sp->unsync_children) 1956 return 0; 1957 1958 mmu_pages_add(pvec, sp, INVALID_INDEX); 1959 return __mmu_unsync_walk(sp, pvec); 1960 } 1961 1962 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1963 { 1964 WARN_ON_ONCE(!sp->unsync); 1965 trace_kvm_mmu_sync_page(sp); 1966 sp->unsync = 0; 1967 --kvm->stat.mmu_unsync; 1968 } 1969 1970 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 1971 struct list_head *invalid_list); 1972 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 1973 struct list_head *invalid_list); 1974 1975 static bool sp_has_gptes(struct kvm_mmu_page *sp) 1976 { 1977 if (sp->role.direct) 1978 return false; 1979 1980 if (sp->role.passthrough) 1981 return false; 1982 1983 return true; 1984 } 1985 1986 static __ro_after_init HLIST_HEAD(empty_page_hash); 1987 1988 static struct hlist_head *kvm_get_mmu_page_hash(struct kvm *kvm, gfn_t gfn) 1989 { 1990 /* 1991 * Ensure the load of the hash table pointer itself is ordered before 1992 * loads to walk the table. The pointer is set at runtime outside of 1993 * mmu_lock when the TDP MMU is enabled, i.e. when the hash table of 1994 * shadow pages becomes necessary only when KVM needs to shadow L1's 1995 * TDP for an L2 guest. Pairs with the smp_store_release() in 1996 * kvm_mmu_alloc_page_hash(). 1997 */ 1998 struct hlist_head *page_hash = smp_load_acquire(&kvm->arch.mmu_page_hash); 1999 2000 lockdep_assert_held(&kvm->mmu_lock); 2001 2002 if (!page_hash) 2003 return &empty_page_hash; 2004 2005 return &page_hash[kvm_page_table_hashfn(gfn)]; 2006 } 2007 2008 #define for_each_valid_sp(_kvm, _sp, _list) \ 2009 hlist_for_each_entry(_sp, _list, hash_link) \ 2010 if (is_obsolete_sp((_kvm), (_sp))) { \ 2011 } else 2012 2013 #define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn) \ 2014 for_each_valid_sp(_kvm, _sp, kvm_get_mmu_page_hash(_kvm, _gfn)) \ 2015 if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else 2016 2017 static bool kvm_sync_page_check(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 2018 { 2019 union kvm_mmu_page_role root_role = vcpu->arch.mmu->root_role; 2020 2021 /* 2022 * Ignore various flags when verifying that it's safe to sync a shadow 2023 * page using the current MMU context. 2024 * 2025 * - level: not part of the overall MMU role and will never match as the MMU's 2026 * level tracks the root level 2027 * - access: updated based on the new guest PTE 2028 * - quadrant: not part of the overall MMU role (similar to level) 2029 */ 2030 const union kvm_mmu_page_role sync_role_ign = { 2031 .level = 0xf, 2032 .access = 0x7, 2033 .quadrant = 0x3, 2034 .passthrough = 0x1, 2035 }; 2036 2037 /* 2038 * Direct pages can never be unsync, and KVM should never attempt to 2039 * sync a shadow page for a different MMU context, e.g. if the role 2040 * differs then the memslot lookup (SMM vs. non-SMM) will be bogus, the 2041 * reserved bits checks will be wrong, etc... 2042 */ 2043 if (WARN_ON_ONCE(sp->role.direct || !vcpu->arch.mmu->sync_spte || 2044 (sp->role.word ^ root_role.word) & ~sync_role_ign.word)) 2045 return false; 2046 2047 return true; 2048 } 2049 2050 static int kvm_sync_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, int i) 2051 { 2052 /* sp->spt[i] has initial value of shadow page table allocation */ 2053 if (sp->spt[i] == SHADOW_NONPRESENT_VALUE) 2054 return 0; 2055 2056 return vcpu->arch.mmu->sync_spte(vcpu, sp, i); 2057 } 2058 2059 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 2060 { 2061 int flush = 0; 2062 int i; 2063 2064 if (!kvm_sync_page_check(vcpu, sp)) 2065 return -1; 2066 2067 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) { 2068 int ret = kvm_sync_spte(vcpu, sp, i); 2069 2070 if (ret < -1) 2071 return -1; 2072 flush |= ret; 2073 } 2074 2075 /* 2076 * Note, any flush is purely for KVM's correctness, e.g. when dropping 2077 * an existing SPTE or clearing W/A/D bits to ensure an mmu_notifier 2078 * unmap or dirty logging event doesn't fail to flush. The guest is 2079 * responsible for flushing the TLB to ensure any changes in protection 2080 * bits are recognized, i.e. until the guest flushes or page faults on 2081 * a relevant address, KVM is architecturally allowed to let vCPUs use 2082 * cached translations with the old protection bits. 2083 */ 2084 return flush; 2085 } 2086 2087 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 2088 struct list_head *invalid_list) 2089 { 2090 int ret = __kvm_sync_page(vcpu, sp); 2091 2092 if (ret < 0) 2093 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); 2094 return ret; 2095 } 2096 2097 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm, 2098 struct list_head *invalid_list, 2099 bool remote_flush) 2100 { 2101 if (!remote_flush && list_empty(invalid_list)) 2102 return false; 2103 2104 if (!list_empty(invalid_list)) 2105 kvm_mmu_commit_zap_page(kvm, invalid_list); 2106 else 2107 kvm_flush_remote_tlbs(kvm); 2108 return true; 2109 } 2110 2111 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 2112 { 2113 if (sp->role.invalid) 2114 return true; 2115 2116 /* TDP MMU pages do not use the MMU generation. */ 2117 return !is_tdp_mmu_page(sp) && 2118 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); 2119 } 2120 2121 struct mmu_page_path { 2122 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL]; 2123 unsigned int idx[PT64_ROOT_MAX_LEVEL]; 2124 }; 2125 2126 #define for_each_sp(pvec, sp, parents, i) \ 2127 for (i = mmu_pages_first(&pvec, &parents); \ 2128 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \ 2129 i = mmu_pages_next(&pvec, &parents, i)) 2130 2131 static int mmu_pages_next(struct kvm_mmu_pages *pvec, 2132 struct mmu_page_path *parents, 2133 int i) 2134 { 2135 int n; 2136 2137 for (n = i+1; n < pvec->nr; n++) { 2138 struct kvm_mmu_page *sp = pvec->page[n].sp; 2139 unsigned idx = pvec->page[n].idx; 2140 int level = sp->role.level; 2141 2142 parents->idx[level-1] = idx; 2143 if (level == PG_LEVEL_4K) 2144 break; 2145 2146 parents->parent[level-2] = sp; 2147 } 2148 2149 return n; 2150 } 2151 2152 static int mmu_pages_first(struct kvm_mmu_pages *pvec, 2153 struct mmu_page_path *parents) 2154 { 2155 struct kvm_mmu_page *sp; 2156 int level; 2157 2158 if (pvec->nr == 0) 2159 return 0; 2160 2161 WARN_ON_ONCE(pvec->page[0].idx != INVALID_INDEX); 2162 2163 sp = pvec->page[0].sp; 2164 level = sp->role.level; 2165 WARN_ON_ONCE(level == PG_LEVEL_4K); 2166 2167 parents->parent[level-2] = sp; 2168 2169 /* Also set up a sentinel. Further entries in pvec are all 2170 * children of sp, so this element is never overwritten. 2171 */ 2172 parents->parent[level-1] = NULL; 2173 return mmu_pages_next(pvec, parents, 0); 2174 } 2175 2176 static void mmu_pages_clear_parents(struct mmu_page_path *parents) 2177 { 2178 struct kvm_mmu_page *sp; 2179 unsigned int level = 0; 2180 2181 do { 2182 unsigned int idx = parents->idx[level]; 2183 sp = parents->parent[level]; 2184 if (!sp) 2185 return; 2186 2187 WARN_ON_ONCE(idx == INVALID_INDEX); 2188 clear_unsync_child_bit(sp, idx); 2189 level++; 2190 } while (!sp->unsync_children); 2191 } 2192 2193 static int mmu_sync_children(struct kvm_vcpu *vcpu, 2194 struct kvm_mmu_page *parent, bool can_yield) 2195 { 2196 int i; 2197 struct kvm_mmu_page *sp; 2198 struct mmu_page_path parents; 2199 struct kvm_mmu_pages pages; 2200 LIST_HEAD(invalid_list); 2201 bool flush = false; 2202 2203 while (mmu_unsync_walk(parent, &pages)) { 2204 bool protected = false; 2205 2206 for_each_sp(pages, sp, parents, i) 2207 protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn); 2208 2209 if (protected) { 2210 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true); 2211 flush = false; 2212 } 2213 2214 for_each_sp(pages, sp, parents, i) { 2215 kvm_unlink_unsync_page(vcpu->kvm, sp); 2216 flush |= kvm_sync_page(vcpu, sp, &invalid_list) > 0; 2217 mmu_pages_clear_parents(&parents); 2218 } 2219 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) { 2220 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2221 if (!can_yield) { 2222 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 2223 return -EINTR; 2224 } 2225 2226 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock); 2227 flush = false; 2228 } 2229 } 2230 2231 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2232 return 0; 2233 } 2234 2235 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) 2236 { 2237 atomic_set(&sp->write_flooding_count, 0); 2238 } 2239 2240 static void clear_sp_write_flooding_count(u64 *spte) 2241 { 2242 __clear_sp_write_flooding_count(sptep_to_sp(spte)); 2243 } 2244 2245 /* 2246 * The vCPU is required when finding indirect shadow pages; the shadow 2247 * page may already exist and syncing it needs the vCPU pointer in 2248 * order to read guest page tables. Direct shadow pages are never 2249 * unsync, thus @vcpu can be NULL if @role.direct is true. 2250 */ 2251 static struct kvm_mmu_page *kvm_mmu_find_shadow_page(struct kvm *kvm, 2252 struct kvm_vcpu *vcpu, 2253 gfn_t gfn, 2254 struct hlist_head *sp_list, 2255 union kvm_mmu_page_role role) 2256 { 2257 struct kvm_mmu_page *sp; 2258 int ret; 2259 int collisions = 0; 2260 LIST_HEAD(invalid_list); 2261 2262 for_each_valid_sp(kvm, sp, sp_list) { 2263 if (sp->gfn != gfn) { 2264 collisions++; 2265 continue; 2266 } 2267 2268 if (sp->role.word != role.word) { 2269 /* 2270 * If the guest is creating an upper-level page, zap 2271 * unsync pages for the same gfn. While it's possible 2272 * the guest is using recursive page tables, in all 2273 * likelihood the guest has stopped using the unsync 2274 * page and is installing a completely unrelated page. 2275 * Unsync pages must not be left as is, because the new 2276 * upper-level page will be write-protected. 2277 */ 2278 if (role.level > PG_LEVEL_4K && sp->unsync) 2279 kvm_mmu_prepare_zap_page(kvm, sp, 2280 &invalid_list); 2281 continue; 2282 } 2283 2284 /* unsync and write-flooding only apply to indirect SPs. */ 2285 if (sp->role.direct) 2286 goto out; 2287 2288 if (sp->unsync) { 2289 if (KVM_BUG_ON(!vcpu, kvm)) 2290 break; 2291 2292 /* 2293 * The page is good, but is stale. kvm_sync_page does 2294 * get the latest guest state, but (unlike mmu_unsync_children) 2295 * it doesn't write-protect the page or mark it synchronized! 2296 * This way the validity of the mapping is ensured, but the 2297 * overhead of write protection is not incurred until the 2298 * guest invalidates the TLB mapping. This allows multiple 2299 * SPs for a single gfn to be unsync. 2300 * 2301 * If the sync fails, the page is zapped. If so, break 2302 * in order to rebuild it. 2303 */ 2304 ret = kvm_sync_page(vcpu, sp, &invalid_list); 2305 if (ret < 0) 2306 break; 2307 2308 WARN_ON_ONCE(!list_empty(&invalid_list)); 2309 if (ret > 0) 2310 kvm_flush_remote_tlbs(kvm); 2311 } 2312 2313 __clear_sp_write_flooding_count(sp); 2314 2315 goto out; 2316 } 2317 2318 sp = NULL; 2319 ++kvm->stat.mmu_cache_miss; 2320 2321 out: 2322 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2323 2324 if (collisions > kvm->stat.max_mmu_page_hash_collisions) 2325 kvm->stat.max_mmu_page_hash_collisions = collisions; 2326 return sp; 2327 } 2328 2329 /* Caches used when allocating a new shadow page. */ 2330 struct shadow_page_caches { 2331 struct kvm_mmu_memory_cache *page_header_cache; 2332 struct kvm_mmu_memory_cache *shadow_page_cache; 2333 struct kvm_mmu_memory_cache *shadowed_info_cache; 2334 }; 2335 2336 static struct kvm_mmu_page *kvm_mmu_alloc_shadow_page(struct kvm *kvm, 2337 struct shadow_page_caches *caches, 2338 gfn_t gfn, 2339 struct hlist_head *sp_list, 2340 union kvm_mmu_page_role role) 2341 { 2342 struct kvm_mmu_page *sp; 2343 2344 sp = kvm_mmu_memory_cache_alloc(caches->page_header_cache); 2345 sp->spt = kvm_mmu_memory_cache_alloc(caches->shadow_page_cache); 2346 if (!role.direct && role.level <= KVM_MAX_HUGEPAGE_LEVEL) 2347 sp->shadowed_translation = kvm_mmu_memory_cache_alloc(caches->shadowed_info_cache); 2348 2349 set_page_private(virt_to_page(sp->spt), (unsigned long)sp); 2350 2351 INIT_LIST_HEAD(&sp->possible_nx_huge_page_link); 2352 2353 /* 2354 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages() 2355 * depends on valid pages being added to the head of the list. See 2356 * comments in kvm_zap_obsolete_pages(). 2357 */ 2358 sp->mmu_valid_gen = kvm->arch.mmu_valid_gen; 2359 list_add(&sp->link, &kvm->arch.active_mmu_pages); 2360 kvm_account_mmu_page(kvm, sp); 2361 2362 sp->gfn = gfn; 2363 sp->role = role; 2364 hlist_add_head(&sp->hash_link, sp_list); 2365 if (sp_has_gptes(sp)) 2366 account_shadowed(kvm, sp); 2367 2368 return sp; 2369 } 2370 2371 /* Note, @vcpu may be NULL if @role.direct is true; see kvm_mmu_find_shadow_page. */ 2372 static struct kvm_mmu_page *__kvm_mmu_get_shadow_page(struct kvm *kvm, 2373 struct kvm_vcpu *vcpu, 2374 struct shadow_page_caches *caches, 2375 gfn_t gfn, 2376 union kvm_mmu_page_role role) 2377 { 2378 struct hlist_head *sp_list; 2379 struct kvm_mmu_page *sp; 2380 bool created = false; 2381 2382 /* 2383 * No need for memory barriers, unlike in kvm_get_mmu_page_hash(), as 2384 * mmu_page_hash must be set prior to creating the first shadow root, 2385 * i.e. reaching this point is fully serialized by slots_arch_lock. 2386 */ 2387 BUG_ON(!kvm->arch.mmu_page_hash); 2388 sp_list = &kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]; 2389 2390 sp = kvm_mmu_find_shadow_page(kvm, vcpu, gfn, sp_list, role); 2391 if (!sp) { 2392 created = true; 2393 sp = kvm_mmu_alloc_shadow_page(kvm, caches, gfn, sp_list, role); 2394 } 2395 2396 trace_kvm_mmu_get_page(sp, created); 2397 return sp; 2398 } 2399 2400 static struct kvm_mmu_page *kvm_mmu_get_shadow_page(struct kvm_vcpu *vcpu, 2401 gfn_t gfn, 2402 union kvm_mmu_page_role role) 2403 { 2404 struct shadow_page_caches caches = { 2405 .page_header_cache = &vcpu->arch.mmu_page_header_cache, 2406 .shadow_page_cache = &vcpu->arch.mmu_shadow_page_cache, 2407 .shadowed_info_cache = &vcpu->arch.mmu_shadowed_info_cache, 2408 }; 2409 2410 return __kvm_mmu_get_shadow_page(vcpu->kvm, vcpu, &caches, gfn, role); 2411 } 2412 2413 static union kvm_mmu_page_role kvm_mmu_child_role(u64 *sptep, bool direct, 2414 unsigned int access) 2415 { 2416 struct kvm_mmu_page *parent_sp = sptep_to_sp(sptep); 2417 union kvm_mmu_page_role role; 2418 2419 role = parent_sp->role; 2420 role.level--; 2421 role.access = access; 2422 role.direct = direct; 2423 role.passthrough = 0; 2424 2425 /* 2426 * If the guest has 4-byte PTEs then that means it's using 32-bit, 2427 * 2-level, non-PAE paging. KVM shadows such guests with PAE paging 2428 * (i.e. 8-byte PTEs). The difference in PTE size means that KVM must 2429 * shadow each guest page table with multiple shadow page tables, which 2430 * requires extra bookkeeping in the role. 2431 * 2432 * Specifically, to shadow the guest's page directory (which covers a 2433 * 4GiB address space), KVM uses 4 PAE page directories, each mapping 2434 * 1GiB of the address space. @role.quadrant encodes which quarter of 2435 * the address space each maps. 2436 * 2437 * To shadow the guest's page tables (which each map a 4MiB region), KVM 2438 * uses 2 PAE page tables, each mapping a 2MiB region. For these, 2439 * @role.quadrant encodes which half of the region they map. 2440 * 2441 * Concretely, a 4-byte PDE consumes bits 31:22, while an 8-byte PDE 2442 * consumes bits 29:21. To consume bits 31:30, KVM's uses 4 shadow 2443 * PDPTEs; those 4 PAE page directories are pre-allocated and their 2444 * quadrant is assigned in mmu_alloc_root(). A 4-byte PTE consumes 2445 * bits 21:12, while an 8-byte PTE consumes bits 20:12. To consume 2446 * bit 21 in the PTE (the child here), KVM propagates that bit to the 2447 * quadrant, i.e. sets quadrant to '0' or '1'. The parent 8-byte PDE 2448 * covers bit 21 (see above), thus the quadrant is calculated from the 2449 * _least_ significant bit of the PDE index. 2450 */ 2451 if (role.has_4_byte_gpte) { 2452 WARN_ON_ONCE(role.level != PG_LEVEL_4K); 2453 role.quadrant = spte_index(sptep) & 1; 2454 } 2455 2456 return role; 2457 } 2458 2459 static struct kvm_mmu_page *kvm_mmu_get_child_sp(struct kvm_vcpu *vcpu, 2460 u64 *sptep, gfn_t gfn, 2461 bool direct, unsigned int access) 2462 { 2463 union kvm_mmu_page_role role; 2464 2465 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) 2466 return ERR_PTR(-EEXIST); 2467 2468 role = kvm_mmu_child_role(sptep, direct, access); 2469 return kvm_mmu_get_shadow_page(vcpu, gfn, role); 2470 } 2471 2472 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator, 2473 struct kvm_vcpu *vcpu, hpa_t root, 2474 u64 addr) 2475 { 2476 iterator->addr = addr; 2477 iterator->shadow_addr = root; 2478 iterator->level = vcpu->arch.mmu->root_role.level; 2479 2480 if (iterator->level >= PT64_ROOT_4LEVEL && 2481 vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL && 2482 !vcpu->arch.mmu->root_role.direct) 2483 iterator->level = PT32E_ROOT_LEVEL; 2484 2485 if (iterator->level == PT32E_ROOT_LEVEL) { 2486 /* 2487 * prev_root is currently only used for 64-bit hosts. So only 2488 * the active root_hpa is valid here. 2489 */ 2490 BUG_ON(root != vcpu->arch.mmu->root.hpa); 2491 2492 iterator->shadow_addr 2493 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3]; 2494 iterator->shadow_addr &= SPTE_BASE_ADDR_MASK; 2495 --iterator->level; 2496 if (!iterator->shadow_addr) 2497 iterator->level = 0; 2498 } 2499 } 2500 2501 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, 2502 struct kvm_vcpu *vcpu, u64 addr) 2503 { 2504 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa, 2505 addr); 2506 } 2507 2508 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) 2509 { 2510 if (iterator->level < PG_LEVEL_4K) 2511 return false; 2512 2513 iterator->index = SPTE_INDEX(iterator->addr, iterator->level); 2514 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; 2515 return true; 2516 } 2517 2518 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, 2519 u64 spte) 2520 { 2521 if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) { 2522 iterator->level = 0; 2523 return; 2524 } 2525 2526 iterator->shadow_addr = spte & SPTE_BASE_ADDR_MASK; 2527 --iterator->level; 2528 } 2529 2530 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) 2531 { 2532 __shadow_walk_next(iterator, *iterator->sptep); 2533 } 2534 2535 static void __link_shadow_page(struct kvm *kvm, 2536 struct kvm_mmu_memory_cache *cache, u64 *sptep, 2537 struct kvm_mmu_page *sp, bool flush) 2538 { 2539 u64 spte; 2540 2541 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); 2542 2543 /* 2544 * If an SPTE is present already, it must be a leaf and therefore 2545 * a large one. Drop it, and flush the TLB if needed, before 2546 * installing sp. 2547 */ 2548 if (is_shadow_present_pte(*sptep)) 2549 drop_large_spte(kvm, sptep, flush); 2550 2551 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp)); 2552 2553 mmu_spte_set(sptep, spte); 2554 2555 mmu_page_add_parent_pte(kvm, cache, sp, sptep); 2556 2557 /* 2558 * The non-direct sub-pagetable must be updated before linking. For 2559 * L1 sp, the pagetable is updated via kvm_sync_page() in 2560 * kvm_mmu_find_shadow_page() without write-protecting the gfn, 2561 * so sp->unsync can be true or false. For higher level non-direct 2562 * sp, the pagetable is updated/synced via mmu_sync_children() in 2563 * FNAME(fetch)(), so sp->unsync_children can only be false. 2564 * WARN_ON_ONCE() if anything happens unexpectedly. 2565 */ 2566 if (WARN_ON_ONCE(sp->unsync_children) || sp->unsync) 2567 mark_unsync(sptep); 2568 } 2569 2570 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, 2571 struct kvm_mmu_page *sp) 2572 { 2573 __link_shadow_page(vcpu->kvm, &vcpu->arch.mmu_pte_list_desc_cache, sptep, sp, true); 2574 } 2575 2576 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2577 unsigned direct_access) 2578 { 2579 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { 2580 struct kvm_mmu_page *child; 2581 2582 /* 2583 * For the direct sp, if the guest pte's dirty bit 2584 * changed form clean to dirty, it will corrupt the 2585 * sp's access: allow writable in the read-only sp, 2586 * so we should update the spte at this point to get 2587 * a new sp with the correct access. 2588 */ 2589 child = spte_to_child_sp(*sptep); 2590 if (child->role.access == direct_access) 2591 return; 2592 2593 drop_parent_pte(vcpu->kvm, child, sptep); 2594 kvm_flush_remote_tlbs_sptep(vcpu->kvm, sptep); 2595 } 2596 } 2597 2598 /* Returns the number of zapped non-leaf child shadow pages. */ 2599 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 2600 u64 *spte, struct list_head *invalid_list) 2601 { 2602 u64 pte; 2603 struct kvm_mmu_page *child; 2604 2605 pte = *spte; 2606 if (is_shadow_present_pte(pte)) { 2607 if (is_last_spte(pte, sp->role.level)) { 2608 drop_spte(kvm, spte); 2609 } else { 2610 child = spte_to_child_sp(pte); 2611 drop_parent_pte(kvm, child, spte); 2612 2613 /* 2614 * Recursively zap nested TDP SPs, parentless SPs are 2615 * unlikely to be used again in the near future. This 2616 * avoids retaining a large number of stale nested SPs. 2617 */ 2618 if (tdp_enabled && invalid_list && 2619 child->role.guest_mode && 2620 !atomic_long_read(&child->parent_ptes.val)) 2621 return kvm_mmu_prepare_zap_page(kvm, child, 2622 invalid_list); 2623 } 2624 } else if (is_mmio_spte(kvm, pte)) { 2625 mmu_spte_clear_no_track(spte); 2626 } 2627 return 0; 2628 } 2629 2630 static int kvm_mmu_page_unlink_children(struct kvm *kvm, 2631 struct kvm_mmu_page *sp, 2632 struct list_head *invalid_list) 2633 { 2634 int zapped = 0; 2635 unsigned i; 2636 2637 for (i = 0; i < SPTE_ENT_PER_PAGE; ++i) 2638 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list); 2639 2640 return zapped; 2641 } 2642 2643 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp) 2644 { 2645 u64 *sptep; 2646 struct rmap_iterator iter; 2647 2648 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter))) 2649 drop_parent_pte(kvm, sp, sptep); 2650 } 2651 2652 static int mmu_zap_unsync_children(struct kvm *kvm, 2653 struct kvm_mmu_page *parent, 2654 struct list_head *invalid_list) 2655 { 2656 int i, zapped = 0; 2657 struct mmu_page_path parents; 2658 struct kvm_mmu_pages pages; 2659 2660 if (parent->role.level == PG_LEVEL_4K) 2661 return 0; 2662 2663 while (mmu_unsync_walk(parent, &pages)) { 2664 struct kvm_mmu_page *sp; 2665 2666 for_each_sp(pages, sp, parents, i) { 2667 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 2668 mmu_pages_clear_parents(&parents); 2669 zapped++; 2670 } 2671 } 2672 2673 return zapped; 2674 } 2675 2676 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm, 2677 struct kvm_mmu_page *sp, 2678 struct list_head *invalid_list, 2679 int *nr_zapped) 2680 { 2681 bool list_unstable, zapped_root = false; 2682 2683 lockdep_assert_held_write(&kvm->mmu_lock); 2684 trace_kvm_mmu_prepare_zap_page(sp); 2685 ++kvm->stat.mmu_shadow_zapped; 2686 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list); 2687 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list); 2688 kvm_mmu_unlink_parents(kvm, sp); 2689 2690 /* Zapping children means active_mmu_pages has become unstable. */ 2691 list_unstable = *nr_zapped; 2692 2693 if (!sp->role.invalid && sp_has_gptes(sp)) 2694 unaccount_shadowed(kvm, sp); 2695 2696 if (sp->unsync) 2697 kvm_unlink_unsync_page(kvm, sp); 2698 if (!sp->root_count) { 2699 /* Count self */ 2700 (*nr_zapped)++; 2701 2702 /* 2703 * Already invalid pages (previously active roots) are not on 2704 * the active page list. See list_del() in the "else" case of 2705 * !sp->root_count. 2706 */ 2707 if (sp->role.invalid) 2708 list_add(&sp->link, invalid_list); 2709 else 2710 list_move(&sp->link, invalid_list); 2711 kvm_unaccount_mmu_page(kvm, sp); 2712 } else { 2713 /* 2714 * Remove the active root from the active page list, the root 2715 * will be explicitly freed when the root_count hits zero. 2716 */ 2717 list_del(&sp->link); 2718 2719 /* 2720 * Obsolete pages cannot be used on any vCPUs, see the comment 2721 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also 2722 * treats invalid shadow pages as being obsolete. 2723 */ 2724 zapped_root = !is_obsolete_sp(kvm, sp); 2725 } 2726 2727 if (sp->nx_huge_page_disallowed) 2728 unaccount_nx_huge_page(kvm, sp); 2729 2730 sp->role.invalid = 1; 2731 2732 /* 2733 * Make the request to free obsolete roots after marking the root 2734 * invalid, otherwise other vCPUs may not see it as invalid. 2735 */ 2736 if (zapped_root) 2737 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 2738 return list_unstable; 2739 } 2740 2741 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 2742 struct list_head *invalid_list) 2743 { 2744 int nr_zapped; 2745 2746 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped); 2747 return nr_zapped; 2748 } 2749 2750 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 2751 struct list_head *invalid_list) 2752 { 2753 struct kvm_mmu_page *sp, *nsp; 2754 2755 if (list_empty(invalid_list)) 2756 return; 2757 2758 /* 2759 * We need to make sure everyone sees our modifications to 2760 * the page tables and see changes to vcpu->mode here. The barrier 2761 * in the kvm_flush_remote_tlbs() achieves this. This pairs 2762 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end. 2763 * 2764 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit 2765 * guest mode and/or lockless shadow page table walks. 2766 */ 2767 kvm_flush_remote_tlbs(kvm); 2768 2769 list_for_each_entry_safe(sp, nsp, invalid_list, link) { 2770 WARN_ON_ONCE(!sp->role.invalid || sp->root_count); 2771 kvm_mmu_free_shadow_page(sp); 2772 } 2773 } 2774 2775 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm, 2776 unsigned long nr_to_zap) 2777 { 2778 unsigned long total_zapped = 0; 2779 struct kvm_mmu_page *sp, *tmp; 2780 LIST_HEAD(invalid_list); 2781 bool unstable; 2782 int nr_zapped; 2783 2784 if (list_empty(&kvm->arch.active_mmu_pages)) 2785 return 0; 2786 2787 restart: 2788 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) { 2789 /* 2790 * Don't zap active root pages, the page itself can't be freed 2791 * and zapping it will just force vCPUs to realloc and reload. 2792 */ 2793 if (sp->root_count) 2794 continue; 2795 2796 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, 2797 &nr_zapped); 2798 total_zapped += nr_zapped; 2799 if (total_zapped >= nr_to_zap) 2800 break; 2801 2802 if (unstable) 2803 goto restart; 2804 } 2805 2806 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2807 2808 kvm->stat.mmu_recycled += total_zapped; 2809 return total_zapped; 2810 } 2811 2812 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm) 2813 { 2814 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) 2815 return kvm->arch.n_max_mmu_pages - 2816 kvm->arch.n_used_mmu_pages; 2817 2818 return 0; 2819 } 2820 2821 static int make_mmu_pages_available(struct kvm_vcpu *vcpu) 2822 { 2823 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm); 2824 2825 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES)) 2826 return 0; 2827 2828 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail); 2829 2830 /* 2831 * Note, this check is intentionally soft, it only guarantees that one 2832 * page is available, while the caller may end up allocating as many as 2833 * four pages, e.g. for PAE roots or for 5-level paging. Temporarily 2834 * exceeding the (arbitrary by default) limit will not harm the host, 2835 * being too aggressive may unnecessarily kill the guest, and getting an 2836 * exact count is far more trouble than it's worth, especially in the 2837 * page fault paths. 2838 */ 2839 if (!kvm_mmu_available_pages(vcpu->kvm)) 2840 return -ENOSPC; 2841 return 0; 2842 } 2843 2844 /* 2845 * Changing the number of mmu pages allocated to the vm 2846 * Note: if goal_nr_mmu_pages is too small, you will get dead lock 2847 */ 2848 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages) 2849 { 2850 write_lock(&kvm->mmu_lock); 2851 2852 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { 2853 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages - 2854 goal_nr_mmu_pages); 2855 2856 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; 2857 } 2858 2859 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; 2860 2861 write_unlock(&kvm->mmu_lock); 2862 } 2863 2864 bool __kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 2865 bool always_retry) 2866 { 2867 struct kvm *kvm = vcpu->kvm; 2868 LIST_HEAD(invalid_list); 2869 struct kvm_mmu_page *sp; 2870 gpa_t gpa = cr2_or_gpa; 2871 bool r = false; 2872 2873 /* 2874 * Bail early if there aren't any write-protected shadow pages to avoid 2875 * unnecessarily taking mmu_lock lock, e.g. if the gfn is write-tracked 2876 * by a third party. Reading indirect_shadow_pages without holding 2877 * mmu_lock is safe, as this is purely an optimization, i.e. a false 2878 * positive is benign, and a false negative will simply result in KVM 2879 * skipping the unprotect+retry path, which is also an optimization. 2880 */ 2881 if (!READ_ONCE(kvm->arch.indirect_shadow_pages)) 2882 goto out; 2883 2884 if (!vcpu->arch.mmu->root_role.direct) { 2885 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 2886 if (gpa == INVALID_GPA) 2887 goto out; 2888 } 2889 2890 write_lock(&kvm->mmu_lock); 2891 for_each_gfn_valid_sp_with_gptes(kvm, sp, gpa_to_gfn(gpa)) 2892 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 2893 2894 /* 2895 * Snapshot the result before zapping, as zapping will remove all list 2896 * entries, i.e. checking the list later would yield a false negative. 2897 */ 2898 r = !list_empty(&invalid_list); 2899 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2900 write_unlock(&kvm->mmu_lock); 2901 2902 out: 2903 if (r || always_retry) { 2904 vcpu->arch.last_retry_eip = kvm_rip_read(vcpu); 2905 vcpu->arch.last_retry_addr = cr2_or_gpa; 2906 } 2907 return r; 2908 } 2909 2910 static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 2911 { 2912 trace_kvm_mmu_unsync_page(sp); 2913 ++kvm->stat.mmu_unsync; 2914 sp->unsync = 1; 2915 2916 kvm_mmu_mark_parents_unsync(sp); 2917 } 2918 2919 /* 2920 * Attempt to unsync any shadow pages that can be reached by the specified gfn, 2921 * KVM is creating a writable mapping for said gfn. Returns 0 if all pages 2922 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must 2923 * be write-protected. 2924 */ 2925 int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot, 2926 gfn_t gfn, bool synchronizing, bool prefetch) 2927 { 2928 struct kvm_mmu_page *sp; 2929 bool locked = false; 2930 2931 /* 2932 * Force write-protection if the page is being tracked. Note, the page 2933 * track machinery is used to write-protect upper-level shadow pages, 2934 * i.e. this guards the role.level == 4K assertion below! 2935 */ 2936 if (kvm_gfn_is_write_tracked(kvm, slot, gfn)) 2937 return -EPERM; 2938 2939 /* 2940 * The page is not write-tracked, mark existing shadow pages unsync 2941 * unless KVM is synchronizing an unsync SP. In that case, KVM must 2942 * complete emulation of the guest TLB flush before allowing shadow 2943 * pages to become unsync (writable by the guest). 2944 */ 2945 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) { 2946 if (synchronizing) 2947 return -EPERM; 2948 2949 if (sp->unsync) 2950 continue; 2951 2952 if (prefetch) 2953 return -EEXIST; 2954 2955 /* 2956 * TDP MMU page faults require an additional spinlock as they 2957 * run with mmu_lock held for read, not write, and the unsync 2958 * logic is not thread safe. Take the spinklock regardless of 2959 * the MMU type to avoid extra conditionals/parameters, there's 2960 * no meaningful penalty if mmu_lock is held for write. 2961 */ 2962 if (!locked) { 2963 locked = true; 2964 spin_lock(&kvm->arch.mmu_unsync_pages_lock); 2965 2966 /* 2967 * Recheck after taking the spinlock, a different vCPU 2968 * may have since marked the page unsync. A false 2969 * negative on the unprotected check above is not 2970 * possible as clearing sp->unsync _must_ hold mmu_lock 2971 * for write, i.e. unsync cannot transition from 1->0 2972 * while this CPU holds mmu_lock for read (or write). 2973 */ 2974 if (READ_ONCE(sp->unsync)) 2975 continue; 2976 } 2977 2978 WARN_ON_ONCE(sp->role.level != PG_LEVEL_4K); 2979 kvm_unsync_page(kvm, sp); 2980 } 2981 if (locked) 2982 spin_unlock(&kvm->arch.mmu_unsync_pages_lock); 2983 2984 /* 2985 * We need to ensure that the marking of unsync pages is visible 2986 * before the SPTE is updated to allow writes because 2987 * kvm_mmu_sync_roots() checks the unsync flags without holding 2988 * the MMU lock and so can race with this. If the SPTE was updated 2989 * before the page had been marked as unsync-ed, something like the 2990 * following could happen: 2991 * 2992 * CPU 1 CPU 2 2993 * --------------------------------------------------------------------- 2994 * 1.2 Host updates SPTE 2995 * to be writable 2996 * 2.1 Guest writes a GPTE for GVA X. 2997 * (GPTE being in the guest page table shadowed 2998 * by the SP from CPU 1.) 2999 * This reads SPTE during the page table walk. 3000 * Since SPTE.W is read as 1, there is no 3001 * fault. 3002 * 3003 * 2.2 Guest issues TLB flush. 3004 * That causes a VM Exit. 3005 * 3006 * 2.3 Walking of unsync pages sees sp->unsync is 3007 * false and skips the page. 3008 * 3009 * 2.4 Guest accesses GVA X. 3010 * Since the mapping in the SP was not updated, 3011 * so the old mapping for GVA X incorrectly 3012 * gets used. 3013 * 1.1 Host marks SP 3014 * as unsync 3015 * (sp->unsync = true) 3016 * 3017 * The write barrier below ensures that 1.1 happens before 1.2 and thus 3018 * the situation in 2.4 does not arise. It pairs with the read barrier 3019 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3. 3020 */ 3021 smp_wmb(); 3022 3023 return 0; 3024 } 3025 3026 static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, 3027 u64 *sptep, unsigned int pte_access, gfn_t gfn, 3028 kvm_pfn_t pfn, struct kvm_page_fault *fault) 3029 { 3030 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 3031 int level = sp->role.level; 3032 int was_rmapped = 0; 3033 int ret = RET_PF_FIXED; 3034 bool flush = false; 3035 bool wrprot; 3036 u64 spte; 3037 3038 /* Prefetching always gets a writable pfn. */ 3039 bool host_writable = !fault || fault->map_writable; 3040 bool prefetch = !fault || fault->prefetch; 3041 bool write_fault = fault && fault->write; 3042 3043 if (unlikely(is_noslot_pfn(pfn))) { 3044 vcpu->stat.pf_mmio_spte_created++; 3045 mark_mmio_spte(vcpu, sptep, gfn, pte_access); 3046 return RET_PF_EMULATE; 3047 } 3048 3049 if (is_shadow_present_pte(*sptep)) { 3050 if (prefetch && is_last_spte(*sptep, level) && 3051 pfn == spte_to_pfn(*sptep)) 3052 return RET_PF_SPURIOUS; 3053 3054 /* 3055 * If we overwrite a PTE page pointer with a 2MB PMD, unlink 3056 * the parent of the now unreachable PTE. 3057 */ 3058 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) { 3059 struct kvm_mmu_page *child; 3060 u64 pte = *sptep; 3061 3062 child = spte_to_child_sp(pte); 3063 drop_parent_pte(vcpu->kvm, child, sptep); 3064 flush = true; 3065 } else if (WARN_ON_ONCE(pfn != spte_to_pfn(*sptep))) { 3066 drop_spte(vcpu->kvm, sptep); 3067 flush = true; 3068 } else 3069 was_rmapped = 1; 3070 } 3071 3072 wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch, 3073 false, host_writable, &spte); 3074 3075 if (*sptep == spte) { 3076 ret = RET_PF_SPURIOUS; 3077 } else { 3078 flush |= mmu_spte_update(sptep, spte); 3079 trace_kvm_mmu_set_spte(level, gfn, sptep); 3080 } 3081 3082 if (wrprot && write_fault) 3083 ret = RET_PF_WRITE_PROTECTED; 3084 3085 if (flush) 3086 kvm_flush_remote_tlbs_gfn(vcpu->kvm, gfn, level); 3087 3088 if (!was_rmapped) { 3089 WARN_ON_ONCE(ret == RET_PF_SPURIOUS); 3090 rmap_add(vcpu, slot, sptep, gfn, pte_access); 3091 } else { 3092 /* Already rmapped but the pte_access bits may have changed. */ 3093 kvm_mmu_page_set_access(sp, spte_index(sptep), pte_access); 3094 } 3095 3096 return ret; 3097 } 3098 3099 static bool kvm_mmu_prefetch_sptes(struct kvm_vcpu *vcpu, gfn_t gfn, u64 *sptep, 3100 int nr_pages, unsigned int access) 3101 { 3102 struct page *pages[PTE_PREFETCH_NUM]; 3103 struct kvm_memory_slot *slot; 3104 int i; 3105 3106 if (WARN_ON_ONCE(nr_pages > PTE_PREFETCH_NUM)) 3107 return false; 3108 3109 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK); 3110 if (!slot) 3111 return false; 3112 3113 nr_pages = kvm_prefetch_pages(slot, gfn, pages, nr_pages); 3114 if (nr_pages <= 0) 3115 return false; 3116 3117 for (i = 0; i < nr_pages; i++, gfn++, sptep++) { 3118 mmu_set_spte(vcpu, slot, sptep, access, gfn, 3119 page_to_pfn(pages[i]), NULL); 3120 3121 /* 3122 * KVM always prefetches writable pages from the primary MMU, 3123 * and KVM can make its SPTE writable in the fast page handler, 3124 * without notifying the primary MMU. Mark pages/folios dirty 3125 * now to ensure file data is written back if it ends up being 3126 * written by the guest. Because KVM's prefetching GUPs 3127 * writable PTEs, the probability of unnecessary writeback is 3128 * extremely low. 3129 */ 3130 kvm_release_page_dirty(pages[i]); 3131 } 3132 3133 return true; 3134 } 3135 3136 static bool direct_pte_prefetch_many(struct kvm_vcpu *vcpu, 3137 struct kvm_mmu_page *sp, 3138 u64 *start, u64 *end) 3139 { 3140 gfn_t gfn = kvm_mmu_page_get_gfn(sp, spte_index(start)); 3141 unsigned int access = sp->role.access; 3142 3143 return kvm_mmu_prefetch_sptes(vcpu, gfn, start, end - start, access); 3144 } 3145 3146 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, 3147 struct kvm_mmu_page *sp, u64 *sptep) 3148 { 3149 u64 *spte, *start = NULL; 3150 int i; 3151 3152 WARN_ON_ONCE(!sp->role.direct); 3153 3154 i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1); 3155 spte = sp->spt + i; 3156 3157 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 3158 if (is_shadow_present_pte(*spte) || spte == sptep) { 3159 if (!start) 3160 continue; 3161 if (!direct_pte_prefetch_many(vcpu, sp, start, spte)) 3162 return; 3163 3164 start = NULL; 3165 } else if (!start) 3166 start = spte; 3167 } 3168 if (start) 3169 direct_pte_prefetch_many(vcpu, sp, start, spte); 3170 } 3171 3172 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) 3173 { 3174 struct kvm_mmu_page *sp; 3175 3176 sp = sptep_to_sp(sptep); 3177 3178 /* 3179 * Without accessed bits, there's no way to distinguish between 3180 * actually accessed translations and prefetched, so disable pte 3181 * prefetch if accessed bits aren't available. 3182 */ 3183 if (sp_ad_disabled(sp)) 3184 return; 3185 3186 if (sp->role.level > PG_LEVEL_4K) 3187 return; 3188 3189 /* 3190 * If addresses are being invalidated, skip prefetching to avoid 3191 * accidentally prefetching those addresses. 3192 */ 3193 if (unlikely(vcpu->kvm->mmu_invalidate_in_progress)) 3194 return; 3195 3196 __direct_pte_prefetch(vcpu, sp, sptep); 3197 } 3198 3199 /* 3200 * Lookup the mapping level for @gfn in the current mm. 3201 * 3202 * WARNING! Use of host_pfn_mapping_level() requires the caller and the end 3203 * consumer to be tied into KVM's handlers for MMU notifier events! 3204 * 3205 * There are several ways to safely use this helper: 3206 * 3207 * - Check mmu_invalidate_retry_gfn() after grabbing the mapping level, before 3208 * consuming it. In this case, mmu_lock doesn't need to be held during the 3209 * lookup, but it does need to be held while checking the MMU notifier. 3210 * 3211 * - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation 3212 * event for the hva. This can be done by explicit checking the MMU notifier 3213 * or by ensuring that KVM already has a valid mapping that covers the hva. 3214 * 3215 * - Do not use the result to install new mappings, e.g. use the host mapping 3216 * level only to decide whether or not to zap an entry. In this case, it's 3217 * not required to hold mmu_lock (though it's highly likely the caller will 3218 * want to hold mmu_lock anyways, e.g. to modify SPTEs). 3219 * 3220 * Note! The lookup can still race with modifications to host page tables, but 3221 * the above "rules" ensure KVM will not _consume_ the result of the walk if a 3222 * race with the primary MMU occurs. 3223 */ 3224 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, 3225 const struct kvm_memory_slot *slot) 3226 { 3227 int level = PG_LEVEL_4K; 3228 unsigned long hva; 3229 unsigned long flags; 3230 pgd_t pgd; 3231 p4d_t p4d; 3232 pud_t pud; 3233 pmd_t pmd; 3234 3235 /* 3236 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot() 3237 * is not solely for performance, it's also necessary to avoid the 3238 * "writable" check in __gfn_to_hva_many(), which will always fail on 3239 * read-only memslots due to gfn_to_hva() assuming writes. Earlier 3240 * page fault steps have already verified the guest isn't writing a 3241 * read-only memslot. 3242 */ 3243 hva = __gfn_to_hva_memslot(slot, gfn); 3244 3245 /* 3246 * Disable IRQs to prevent concurrent tear down of host page tables, 3247 * e.g. if the primary MMU promotes a P*D to a huge page and then frees 3248 * the original page table. 3249 */ 3250 local_irq_save(flags); 3251 3252 /* 3253 * Read each entry once. As above, a non-leaf entry can be promoted to 3254 * a huge page _during_ this walk. Re-reading the entry could send the 3255 * walk into the weeks, e.g. p*d_leaf() returns false (sees the old 3256 * value) and then p*d_offset() walks into the target huge page instead 3257 * of the old page table (sees the new value). 3258 */ 3259 pgd = READ_ONCE(*pgd_offset(kvm->mm, hva)); 3260 if (pgd_none(pgd)) 3261 goto out; 3262 3263 p4d = READ_ONCE(*p4d_offset(&pgd, hva)); 3264 if (p4d_none(p4d) || !p4d_present(p4d)) 3265 goto out; 3266 3267 pud = READ_ONCE(*pud_offset(&p4d, hva)); 3268 if (pud_none(pud) || !pud_present(pud)) 3269 goto out; 3270 3271 if (pud_leaf(pud)) { 3272 level = PG_LEVEL_1G; 3273 goto out; 3274 } 3275 3276 pmd = READ_ONCE(*pmd_offset(&pud, hva)); 3277 if (pmd_none(pmd) || !pmd_present(pmd)) 3278 goto out; 3279 3280 if (pmd_leaf(pmd)) 3281 level = PG_LEVEL_2M; 3282 3283 out: 3284 local_irq_restore(flags); 3285 return level; 3286 } 3287 3288 static int __kvm_mmu_max_mapping_level(struct kvm *kvm, 3289 const struct kvm_memory_slot *slot, 3290 gfn_t gfn, int max_level, bool is_private) 3291 { 3292 struct kvm_lpage_info *linfo; 3293 int host_level; 3294 3295 max_level = min(max_level, max_huge_page_level); 3296 for ( ; max_level > PG_LEVEL_4K; max_level--) { 3297 linfo = lpage_info_slot(gfn, slot, max_level); 3298 if (!linfo->disallow_lpage) 3299 break; 3300 } 3301 3302 if (is_private) 3303 return max_level; 3304 3305 if (max_level == PG_LEVEL_4K) 3306 return PG_LEVEL_4K; 3307 3308 host_level = host_pfn_mapping_level(kvm, gfn, slot); 3309 return min(host_level, max_level); 3310 } 3311 3312 int kvm_mmu_max_mapping_level(struct kvm *kvm, 3313 const struct kvm_memory_slot *slot, gfn_t gfn) 3314 { 3315 bool is_private = kvm_slot_can_be_private(slot) && 3316 kvm_mem_is_private(kvm, gfn); 3317 3318 return __kvm_mmu_max_mapping_level(kvm, slot, gfn, PG_LEVEL_NUM, is_private); 3319 } 3320 3321 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3322 { 3323 struct kvm_memory_slot *slot = fault->slot; 3324 kvm_pfn_t mask; 3325 3326 fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled; 3327 3328 if (unlikely(fault->max_level == PG_LEVEL_4K)) 3329 return; 3330 3331 if (is_error_noslot_pfn(fault->pfn)) 3332 return; 3333 3334 if (kvm_slot_dirty_track_enabled(slot)) 3335 return; 3336 3337 /* 3338 * Enforce the iTLB multihit workaround after capturing the requested 3339 * level, which will be used to do precise, accurate accounting. 3340 */ 3341 fault->req_level = __kvm_mmu_max_mapping_level(vcpu->kvm, slot, 3342 fault->gfn, fault->max_level, 3343 fault->is_private); 3344 if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed) 3345 return; 3346 3347 /* 3348 * mmu_invalidate_retry() was successful and mmu_lock is held, so 3349 * the pmd can't be split from under us. 3350 */ 3351 fault->goal_level = fault->req_level; 3352 mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1; 3353 VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask)); 3354 fault->pfn &= ~mask; 3355 } 3356 3357 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level) 3358 { 3359 if (cur_level > PG_LEVEL_4K && 3360 cur_level == fault->goal_level && 3361 is_shadow_present_pte(spte) && 3362 !is_large_pte(spte) && 3363 spte_to_child_sp(spte)->nx_huge_page_disallowed) { 3364 /* 3365 * A small SPTE exists for this pfn, but FNAME(fetch), 3366 * direct_map(), or kvm_tdp_mmu_map() would like to create a 3367 * large PTE instead: just force them to go down another level, 3368 * patching back for them into pfn the next 9 bits of the 3369 * address. 3370 */ 3371 u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) - 3372 KVM_PAGES_PER_HPAGE(cur_level - 1); 3373 fault->pfn |= fault->gfn & page_mask; 3374 fault->goal_level--; 3375 } 3376 } 3377 3378 static int direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3379 { 3380 struct kvm_shadow_walk_iterator it; 3381 struct kvm_mmu_page *sp; 3382 int ret; 3383 gfn_t base_gfn = fault->gfn; 3384 3385 kvm_mmu_hugepage_adjust(vcpu, fault); 3386 3387 trace_kvm_mmu_spte_requested(fault); 3388 for_each_shadow_entry(vcpu, fault->addr, it) { 3389 /* 3390 * We cannot overwrite existing page tables with an NX 3391 * large page, as the leaf could be executable. 3392 */ 3393 if (fault->nx_huge_page_workaround_enabled) 3394 disallowed_hugepage_adjust(fault, *it.sptep, it.level); 3395 3396 base_gfn = gfn_round_for_level(fault->gfn, it.level); 3397 if (it.level == fault->goal_level) 3398 break; 3399 3400 sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, true, ACC_ALL); 3401 if (sp == ERR_PTR(-EEXIST)) 3402 continue; 3403 3404 link_shadow_page(vcpu, it.sptep, sp); 3405 if (fault->huge_page_disallowed) 3406 account_nx_huge_page(vcpu->kvm, sp, 3407 fault->req_level >= it.level); 3408 } 3409 3410 if (WARN_ON_ONCE(it.level != fault->goal_level)) 3411 return -EFAULT; 3412 3413 ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL, 3414 base_gfn, fault->pfn, fault); 3415 if (ret == RET_PF_SPURIOUS) 3416 return ret; 3417 3418 direct_pte_prefetch(vcpu, it.sptep); 3419 return ret; 3420 } 3421 3422 static void kvm_send_hwpoison_signal(struct kvm_memory_slot *slot, gfn_t gfn) 3423 { 3424 unsigned long hva = gfn_to_hva_memslot(slot, gfn); 3425 3426 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva, PAGE_SHIFT, current); 3427 } 3428 3429 static int kvm_handle_error_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3430 { 3431 if (is_sigpending_pfn(fault->pfn)) { 3432 kvm_handle_signal_exit(vcpu); 3433 return -EINTR; 3434 } 3435 3436 /* 3437 * Do not cache the mmio info caused by writing the readonly gfn 3438 * into the spte otherwise read access on readonly gfn also can 3439 * caused mmio page fault and treat it as mmio access. 3440 */ 3441 if (fault->pfn == KVM_PFN_ERR_RO_FAULT) 3442 return RET_PF_EMULATE; 3443 3444 if (fault->pfn == KVM_PFN_ERR_HWPOISON) { 3445 kvm_send_hwpoison_signal(fault->slot, fault->gfn); 3446 return RET_PF_RETRY; 3447 } 3448 3449 return -EFAULT; 3450 } 3451 3452 static int kvm_handle_noslot_fault(struct kvm_vcpu *vcpu, 3453 struct kvm_page_fault *fault, 3454 unsigned int access) 3455 { 3456 gva_t gva = fault->is_tdp ? 0 : fault->addr; 3457 3458 if (fault->is_private) { 3459 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 3460 return -EFAULT; 3461 } 3462 3463 vcpu_cache_mmio_info(vcpu, gva, fault->gfn, 3464 access & shadow_mmio_access_mask); 3465 3466 fault->slot = NULL; 3467 fault->pfn = KVM_PFN_NOSLOT; 3468 fault->map_writable = false; 3469 3470 /* 3471 * If MMIO caching is disabled, emulate immediately without 3472 * touching the shadow page tables as attempting to install an 3473 * MMIO SPTE will just be an expensive nop. 3474 */ 3475 if (unlikely(!enable_mmio_caching)) 3476 return RET_PF_EMULATE; 3477 3478 /* 3479 * Do not create an MMIO SPTE for a gfn greater than host.MAXPHYADDR, 3480 * any guest that generates such gfns is running nested and is being 3481 * tricked by L0 userspace (you can observe gfn > L1.MAXPHYADDR if and 3482 * only if L1's MAXPHYADDR is inaccurate with respect to the 3483 * hardware's). 3484 */ 3485 if (unlikely(fault->gfn > kvm_mmu_max_gfn())) 3486 return RET_PF_EMULATE; 3487 3488 return RET_PF_CONTINUE; 3489 } 3490 3491 static bool page_fault_can_be_fast(struct kvm *kvm, struct kvm_page_fault *fault) 3492 { 3493 /* 3494 * Page faults with reserved bits set, i.e. faults on MMIO SPTEs, only 3495 * reach the common page fault handler if the SPTE has an invalid MMIO 3496 * generation number. Refreshing the MMIO generation needs to go down 3497 * the slow path. Note, EPT Misconfigs do NOT set the PRESENT flag! 3498 */ 3499 if (fault->rsvd) 3500 return false; 3501 3502 /* 3503 * For hardware-protected VMs, certain conditions like attempting to 3504 * perform a write to a page which is not in the state that the guest 3505 * expects it to be in can result in a nested/extended #PF. In this 3506 * case, the below code might misconstrue this situation as being the 3507 * result of a write-protected access, and treat it as a spurious case 3508 * rather than taking any action to satisfy the real source of the #PF 3509 * such as generating a KVM_EXIT_MEMORY_FAULT. This can lead to the 3510 * guest spinning on a #PF indefinitely, so don't attempt the fast path 3511 * in this case. 3512 * 3513 * Note that the kvm_mem_is_private() check might race with an 3514 * attribute update, but this will either result in the guest spinning 3515 * on RET_PF_SPURIOUS until the update completes, or an actual spurious 3516 * case might go down the slow path. Either case will resolve itself. 3517 */ 3518 if (kvm->arch.has_private_mem && 3519 fault->is_private != kvm_mem_is_private(kvm, fault->gfn)) 3520 return false; 3521 3522 /* 3523 * #PF can be fast if: 3524 * 3525 * 1. The shadow page table entry is not present and A/D bits are 3526 * disabled _by KVM_, which could mean that the fault is potentially 3527 * caused by access tracking (if enabled). If A/D bits are enabled 3528 * by KVM, but disabled by L1 for L2, KVM is forced to disable A/D 3529 * bits for L2 and employ access tracking, but the fast page fault 3530 * mechanism only supports direct MMUs. 3531 * 2. The shadow page table entry is present, the access is a write, 3532 * and no reserved bits are set (MMIO SPTEs cannot be "fixed"), i.e. 3533 * the fault was caused by a write-protection violation. If the 3534 * SPTE is MMU-writable (determined later), the fault can be fixed 3535 * by setting the Writable bit, which can be done out of mmu_lock. 3536 */ 3537 if (!fault->present) 3538 return !kvm_ad_enabled; 3539 3540 /* 3541 * Note, instruction fetches and writes are mutually exclusive, ignore 3542 * the "exec" flag. 3543 */ 3544 return fault->write; 3545 } 3546 3547 /* 3548 * Returns true if the SPTE was fixed successfully. Otherwise, 3549 * someone else modified the SPTE from its original value. 3550 */ 3551 static bool fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, 3552 struct kvm_page_fault *fault, 3553 u64 *sptep, u64 old_spte, u64 new_spte) 3554 { 3555 /* 3556 * Theoretically we could also set dirty bit (and flush TLB) here in 3557 * order to eliminate unnecessary PML logging. See comments in 3558 * set_spte. But fast_page_fault is very unlikely to happen with PML 3559 * enabled, so we do not do this. This might result in the same GPA 3560 * to be logged in PML buffer again when the write really happens, and 3561 * eventually to be called by mark_page_dirty twice. But it's also no 3562 * harm. This also avoids the TLB flush needed after setting dirty bit 3563 * so non-PML cases won't be impacted. 3564 * 3565 * Compare with make_spte() where instead shadow_dirty_mask is set. 3566 */ 3567 if (!try_cmpxchg64(sptep, &old_spte, new_spte)) 3568 return false; 3569 3570 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) 3571 mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn); 3572 3573 return true; 3574 } 3575 3576 /* 3577 * Returns the last level spte pointer of the shadow page walk for the given 3578 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no 3579 * walk could be performed, returns NULL and *spte does not contain valid data. 3580 * 3581 * Contract: 3582 * - Must be called between walk_shadow_page_lockless_{begin,end}. 3583 * - The returned sptep must not be used after walk_shadow_page_lockless_end. 3584 */ 3585 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte) 3586 { 3587 struct kvm_shadow_walk_iterator iterator; 3588 u64 old_spte; 3589 u64 *sptep = NULL; 3590 3591 for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) { 3592 sptep = iterator.sptep; 3593 *spte = old_spte; 3594 } 3595 3596 return sptep; 3597 } 3598 3599 /* 3600 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS. 3601 */ 3602 static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3603 { 3604 struct kvm_mmu_page *sp; 3605 int ret = RET_PF_INVALID; 3606 u64 spte; 3607 u64 *sptep; 3608 uint retry_count = 0; 3609 3610 if (!page_fault_can_be_fast(vcpu->kvm, fault)) 3611 return ret; 3612 3613 walk_shadow_page_lockless_begin(vcpu); 3614 3615 do { 3616 u64 new_spte; 3617 3618 if (tdp_mmu_enabled) 3619 sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->gfn, &spte); 3620 else 3621 sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte); 3622 3623 /* 3624 * It's entirely possible for the mapping to have been zapped 3625 * by a different task, but the root page should always be 3626 * available as the vCPU holds a reference to its root(s). 3627 */ 3628 if (WARN_ON_ONCE(!sptep)) 3629 spte = FROZEN_SPTE; 3630 3631 if (!is_shadow_present_pte(spte)) 3632 break; 3633 3634 sp = sptep_to_sp(sptep); 3635 if (!is_last_spte(spte, sp->role.level)) 3636 break; 3637 3638 /* 3639 * Check whether the memory access that caused the fault would 3640 * still cause it if it were to be performed right now. If not, 3641 * then this is a spurious fault caused by TLB lazily flushed, 3642 * or some other CPU has already fixed the PTE after the 3643 * current CPU took the fault. 3644 * 3645 * Need not check the access of upper level table entries since 3646 * they are always ACC_ALL. 3647 */ 3648 if (is_access_allowed(fault, spte)) { 3649 ret = RET_PF_SPURIOUS; 3650 break; 3651 } 3652 3653 new_spte = spte; 3654 3655 /* 3656 * KVM only supports fixing page faults outside of MMU lock for 3657 * direct MMUs, nested MMUs are always indirect, and KVM always 3658 * uses A/D bits for non-nested MMUs. Thus, if A/D bits are 3659 * enabled, the SPTE can't be an access-tracked SPTE. 3660 */ 3661 if (unlikely(!kvm_ad_enabled) && is_access_track_spte(spte)) 3662 new_spte = restore_acc_track_spte(new_spte) | 3663 shadow_accessed_mask; 3664 3665 /* 3666 * To keep things simple, only SPTEs that are MMU-writable can 3667 * be made fully writable outside of mmu_lock, e.g. only SPTEs 3668 * that were write-protected for dirty-logging or access 3669 * tracking are handled here. Don't bother checking if the 3670 * SPTE is writable to prioritize running with A/D bits enabled. 3671 * The is_access_allowed() check above handles the common case 3672 * of the fault being spurious, and the SPTE is known to be 3673 * shadow-present, i.e. except for access tracking restoration 3674 * making the new SPTE writable, the check is wasteful. 3675 */ 3676 if (fault->write && is_mmu_writable_spte(spte)) { 3677 new_spte |= PT_WRITABLE_MASK; 3678 3679 /* 3680 * Do not fix write-permission on the large spte when 3681 * dirty logging is enabled. Since we only dirty the 3682 * first page into the dirty-bitmap in 3683 * fast_pf_fix_direct_spte(), other pages are missed 3684 * if its slot has dirty logging enabled. 3685 * 3686 * Instead, we let the slow page fault path create a 3687 * normal spte to fix the access. 3688 */ 3689 if (sp->role.level > PG_LEVEL_4K && 3690 kvm_slot_dirty_track_enabled(fault->slot)) 3691 break; 3692 } 3693 3694 /* Verify that the fault can be handled in the fast path */ 3695 if (new_spte == spte || 3696 !is_access_allowed(fault, new_spte)) 3697 break; 3698 3699 /* 3700 * Currently, fast page fault only works for direct mapping 3701 * since the gfn is not stable for indirect shadow page. See 3702 * Documentation/virt/kvm/locking.rst to get more detail. 3703 */ 3704 if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) { 3705 ret = RET_PF_FIXED; 3706 break; 3707 } 3708 3709 if (++retry_count > 4) { 3710 pr_warn_once("Fast #PF retrying more than 4 times.\n"); 3711 break; 3712 } 3713 3714 } while (true); 3715 3716 trace_fast_page_fault(vcpu, fault, sptep, spte, ret); 3717 walk_shadow_page_lockless_end(vcpu); 3718 3719 if (ret != RET_PF_INVALID) 3720 vcpu->stat.pf_fast++; 3721 3722 return ret; 3723 } 3724 3725 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa, 3726 struct list_head *invalid_list) 3727 { 3728 struct kvm_mmu_page *sp; 3729 3730 if (!VALID_PAGE(*root_hpa)) 3731 return; 3732 3733 sp = root_to_sp(*root_hpa); 3734 if (WARN_ON_ONCE(!sp)) 3735 return; 3736 3737 if (is_tdp_mmu_page(sp)) { 3738 lockdep_assert_held_read(&kvm->mmu_lock); 3739 kvm_tdp_mmu_put_root(kvm, sp); 3740 } else { 3741 lockdep_assert_held_write(&kvm->mmu_lock); 3742 if (!--sp->root_count && sp->role.invalid) 3743 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 3744 } 3745 3746 *root_hpa = INVALID_PAGE; 3747 } 3748 3749 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */ 3750 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, 3751 ulong roots_to_free) 3752 { 3753 bool is_tdp_mmu = tdp_mmu_enabled && mmu->root_role.direct; 3754 int i; 3755 LIST_HEAD(invalid_list); 3756 bool free_active_root; 3757 3758 WARN_ON_ONCE(roots_to_free & ~KVM_MMU_ROOTS_ALL); 3759 3760 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG); 3761 3762 /* Before acquiring the MMU lock, see if we need to do any real work. */ 3763 free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT) 3764 && VALID_PAGE(mmu->root.hpa); 3765 3766 if (!free_active_root) { 3767 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3768 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) && 3769 VALID_PAGE(mmu->prev_roots[i].hpa)) 3770 break; 3771 3772 if (i == KVM_MMU_NUM_PREV_ROOTS) 3773 return; 3774 } 3775 3776 if (is_tdp_mmu) 3777 read_lock(&kvm->mmu_lock); 3778 else 3779 write_lock(&kvm->mmu_lock); 3780 3781 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3782 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) 3783 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa, 3784 &invalid_list); 3785 3786 if (free_active_root) { 3787 if (kvm_mmu_is_dummy_root(mmu->root.hpa)) { 3788 /* Nothing to cleanup for dummy roots. */ 3789 } else if (root_to_sp(mmu->root.hpa)) { 3790 mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list); 3791 } else if (mmu->pae_root) { 3792 for (i = 0; i < 4; ++i) { 3793 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i])) 3794 continue; 3795 3796 mmu_free_root_page(kvm, &mmu->pae_root[i], 3797 &invalid_list); 3798 mmu->pae_root[i] = INVALID_PAE_ROOT; 3799 } 3800 } 3801 mmu->root.hpa = INVALID_PAGE; 3802 mmu->root.pgd = 0; 3803 } 3804 3805 if (is_tdp_mmu) { 3806 read_unlock(&kvm->mmu_lock); 3807 WARN_ON_ONCE(!list_empty(&invalid_list)); 3808 } else { 3809 kvm_mmu_commit_zap_page(kvm, &invalid_list); 3810 write_unlock(&kvm->mmu_lock); 3811 } 3812 } 3813 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots); 3814 3815 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu) 3816 { 3817 unsigned long roots_to_free = 0; 3818 struct kvm_mmu_page *sp; 3819 hpa_t root_hpa; 3820 int i; 3821 3822 /* 3823 * This should not be called while L2 is active, L2 can't invalidate 3824 * _only_ its own roots, e.g. INVVPID unconditionally exits. 3825 */ 3826 WARN_ON_ONCE(mmu->root_role.guest_mode); 3827 3828 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 3829 root_hpa = mmu->prev_roots[i].hpa; 3830 if (!VALID_PAGE(root_hpa)) 3831 continue; 3832 3833 sp = root_to_sp(root_hpa); 3834 if (!sp || sp->role.guest_mode) 3835 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 3836 } 3837 3838 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 3839 } 3840 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots); 3841 3842 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, int quadrant, 3843 u8 level) 3844 { 3845 union kvm_mmu_page_role role = vcpu->arch.mmu->root_role; 3846 struct kvm_mmu_page *sp; 3847 3848 role.level = level; 3849 role.quadrant = quadrant; 3850 3851 WARN_ON_ONCE(quadrant && !role.has_4_byte_gpte); 3852 WARN_ON_ONCE(role.direct && role.has_4_byte_gpte); 3853 3854 sp = kvm_mmu_get_shadow_page(vcpu, gfn, role); 3855 ++sp->root_count; 3856 3857 return __pa(sp->spt); 3858 } 3859 3860 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) 3861 { 3862 struct kvm_mmu *mmu = vcpu->arch.mmu; 3863 u8 shadow_root_level = mmu->root_role.level; 3864 hpa_t root; 3865 unsigned i; 3866 int r; 3867 3868 if (tdp_mmu_enabled) { 3869 if (kvm_has_mirrored_tdp(vcpu->kvm) && 3870 !VALID_PAGE(mmu->mirror_root_hpa)) 3871 kvm_tdp_mmu_alloc_root(vcpu, true); 3872 kvm_tdp_mmu_alloc_root(vcpu, false); 3873 return 0; 3874 } 3875 3876 write_lock(&vcpu->kvm->mmu_lock); 3877 r = make_mmu_pages_available(vcpu); 3878 if (r < 0) 3879 goto out_unlock; 3880 3881 if (shadow_root_level >= PT64_ROOT_4LEVEL) { 3882 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level); 3883 mmu->root.hpa = root; 3884 } else if (shadow_root_level == PT32E_ROOT_LEVEL) { 3885 if (WARN_ON_ONCE(!mmu->pae_root)) { 3886 r = -EIO; 3887 goto out_unlock; 3888 } 3889 3890 for (i = 0; i < 4; ++i) { 3891 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3892 3893 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 0, 3894 PT32_ROOT_LEVEL); 3895 mmu->pae_root[i] = root | PT_PRESENT_MASK | 3896 shadow_me_value; 3897 } 3898 mmu->root.hpa = __pa(mmu->pae_root); 3899 } else { 3900 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level); 3901 r = -EIO; 3902 goto out_unlock; 3903 } 3904 3905 /* root.pgd is ignored for direct MMUs. */ 3906 mmu->root.pgd = 0; 3907 out_unlock: 3908 write_unlock(&vcpu->kvm->mmu_lock); 3909 return r; 3910 } 3911 3912 static int kvm_mmu_alloc_page_hash(struct kvm *kvm) 3913 { 3914 struct hlist_head *h; 3915 3916 if (kvm->arch.mmu_page_hash) 3917 return 0; 3918 3919 h = kvcalloc(KVM_NUM_MMU_PAGES, sizeof(*h), GFP_KERNEL_ACCOUNT); 3920 if (!h) 3921 return -ENOMEM; 3922 3923 /* 3924 * Ensure the hash table pointer is set only after all stores to zero 3925 * the memory are retired. Pairs with the smp_load_acquire() in 3926 * kvm_get_mmu_page_hash(). Note, mmu_lock must be held for write to 3927 * add (or remove) shadow pages, and so readers are guaranteed to see 3928 * an empty list for their current mmu_lock critical section. 3929 */ 3930 smp_store_release(&kvm->arch.mmu_page_hash, h); 3931 return 0; 3932 } 3933 3934 static int mmu_first_shadow_root_alloc(struct kvm *kvm) 3935 { 3936 struct kvm_memslots *slots; 3937 struct kvm_memory_slot *slot; 3938 int r = 0, i, bkt; 3939 3940 /* 3941 * Check if this is the first shadow root being allocated before 3942 * taking the lock. 3943 */ 3944 if (kvm_shadow_root_allocated(kvm)) 3945 return 0; 3946 3947 mutex_lock(&kvm->slots_arch_lock); 3948 3949 /* Recheck, under the lock, whether this is the first shadow root. */ 3950 if (kvm_shadow_root_allocated(kvm)) 3951 goto out_unlock; 3952 3953 r = kvm_mmu_alloc_page_hash(kvm); 3954 if (r) 3955 goto out_unlock; 3956 3957 /* 3958 * Check if memslot metadata actually needs to be allocated, e.g. all 3959 * metadata will be allocated upfront if TDP is disabled. 3960 */ 3961 if (kvm_memslots_have_rmaps(kvm) && 3962 kvm_page_track_write_tracking_enabled(kvm)) 3963 goto out_success; 3964 3965 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 3966 slots = __kvm_memslots(kvm, i); 3967 kvm_for_each_memslot(slot, bkt, slots) { 3968 /* 3969 * Both of these functions are no-ops if the target is 3970 * already allocated, so unconditionally calling both 3971 * is safe. Intentionally do NOT free allocations on 3972 * failure to avoid having to track which allocations 3973 * were made now versus when the memslot was created. 3974 * The metadata is guaranteed to be freed when the slot 3975 * is freed, and will be kept/used if userspace retries 3976 * KVM_RUN instead of killing the VM. 3977 */ 3978 r = memslot_rmap_alloc(slot, slot->npages); 3979 if (r) 3980 goto out_unlock; 3981 r = kvm_page_track_write_tracking_alloc(slot); 3982 if (r) 3983 goto out_unlock; 3984 } 3985 } 3986 3987 /* 3988 * Ensure that shadow_root_allocated becomes true strictly after 3989 * all the related pointers are set. 3990 */ 3991 out_success: 3992 smp_store_release(&kvm->arch.shadow_root_allocated, true); 3993 3994 out_unlock: 3995 mutex_unlock(&kvm->slots_arch_lock); 3996 return r; 3997 } 3998 3999 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) 4000 { 4001 struct kvm_mmu *mmu = vcpu->arch.mmu; 4002 u64 pdptrs[4], pm_mask; 4003 gfn_t root_gfn, root_pgd; 4004 int quadrant, i, r; 4005 hpa_t root; 4006 4007 root_pgd = kvm_mmu_get_guest_pgd(vcpu, mmu); 4008 root_gfn = (root_pgd & __PT_BASE_ADDR_MASK) >> PAGE_SHIFT; 4009 4010 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) { 4011 mmu->root.hpa = kvm_mmu_get_dummy_root(); 4012 return 0; 4013 } 4014 4015 /* 4016 * On SVM, reading PDPTRs might access guest memory, which might fault 4017 * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock. 4018 */ 4019 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { 4020 for (i = 0; i < 4; ++i) { 4021 pdptrs[i] = mmu->get_pdptr(vcpu, i); 4022 if (!(pdptrs[i] & PT_PRESENT_MASK)) 4023 continue; 4024 4025 if (!kvm_vcpu_is_visible_gfn(vcpu, pdptrs[i] >> PAGE_SHIFT)) 4026 pdptrs[i] = 0; 4027 } 4028 } 4029 4030 r = mmu_first_shadow_root_alloc(vcpu->kvm); 4031 if (r) 4032 return r; 4033 4034 write_lock(&vcpu->kvm->mmu_lock); 4035 r = make_mmu_pages_available(vcpu); 4036 if (r < 0) 4037 goto out_unlock; 4038 4039 /* 4040 * Do we shadow a long mode page table? If so we need to 4041 * write-protect the guests page table root. 4042 */ 4043 if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { 4044 root = mmu_alloc_root(vcpu, root_gfn, 0, 4045 mmu->root_role.level); 4046 mmu->root.hpa = root; 4047 goto set_root_pgd; 4048 } 4049 4050 if (WARN_ON_ONCE(!mmu->pae_root)) { 4051 r = -EIO; 4052 goto out_unlock; 4053 } 4054 4055 /* 4056 * We shadow a 32 bit page table. This may be a legacy 2-level 4057 * or a PAE 3-level page table. In either case we need to be aware that 4058 * the shadow page table may be a PAE or a long mode page table. 4059 */ 4060 pm_mask = PT_PRESENT_MASK | shadow_me_value; 4061 if (mmu->root_role.level >= PT64_ROOT_4LEVEL) { 4062 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; 4063 4064 if (WARN_ON_ONCE(!mmu->pml4_root)) { 4065 r = -EIO; 4066 goto out_unlock; 4067 } 4068 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask; 4069 4070 if (mmu->root_role.level == PT64_ROOT_5LEVEL) { 4071 if (WARN_ON_ONCE(!mmu->pml5_root)) { 4072 r = -EIO; 4073 goto out_unlock; 4074 } 4075 mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask; 4076 } 4077 } 4078 4079 for (i = 0; i < 4; ++i) { 4080 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 4081 4082 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { 4083 if (!(pdptrs[i] & PT_PRESENT_MASK)) { 4084 mmu->pae_root[i] = INVALID_PAE_ROOT; 4085 continue; 4086 } 4087 root_gfn = pdptrs[i] >> PAGE_SHIFT; 4088 } 4089 4090 /* 4091 * If shadowing 32-bit non-PAE page tables, each PAE page 4092 * directory maps one quarter of the guest's non-PAE page 4093 * directory. Othwerise each PAE page direct shadows one guest 4094 * PAE page directory so that quadrant should be 0. 4095 */ 4096 quadrant = (mmu->cpu_role.base.level == PT32_ROOT_LEVEL) ? i : 0; 4097 4098 root = mmu_alloc_root(vcpu, root_gfn, quadrant, PT32_ROOT_LEVEL); 4099 mmu->pae_root[i] = root | pm_mask; 4100 } 4101 4102 if (mmu->root_role.level == PT64_ROOT_5LEVEL) 4103 mmu->root.hpa = __pa(mmu->pml5_root); 4104 else if (mmu->root_role.level == PT64_ROOT_4LEVEL) 4105 mmu->root.hpa = __pa(mmu->pml4_root); 4106 else 4107 mmu->root.hpa = __pa(mmu->pae_root); 4108 4109 set_root_pgd: 4110 mmu->root.pgd = root_pgd; 4111 out_unlock: 4112 write_unlock(&vcpu->kvm->mmu_lock); 4113 4114 return r; 4115 } 4116 4117 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu) 4118 { 4119 struct kvm_mmu *mmu = vcpu->arch.mmu; 4120 bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL; 4121 u64 *pml5_root = NULL; 4122 u64 *pml4_root = NULL; 4123 u64 *pae_root; 4124 4125 /* 4126 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP 4127 * tables are allocated and initialized at root creation as there is no 4128 * equivalent level in the guest's NPT to shadow. Allocate the tables 4129 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare. 4130 */ 4131 if (mmu->root_role.direct || 4132 mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL || 4133 mmu->root_role.level < PT64_ROOT_4LEVEL) 4134 return 0; 4135 4136 /* 4137 * NPT, the only paging mode that uses this horror, uses a fixed number 4138 * of levels for the shadow page tables, e.g. all MMUs are 4-level or 4139 * all MMus are 5-level. Thus, this can safely require that pml5_root 4140 * is allocated if the other roots are valid and pml5 is needed, as any 4141 * prior MMU would also have required pml5. 4142 */ 4143 if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root)) 4144 return 0; 4145 4146 /* 4147 * The special roots should always be allocated in concert. Yell and 4148 * bail if KVM ends up in a state where only one of the roots is valid. 4149 */ 4150 if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root || 4151 (need_pml5 && mmu->pml5_root))) 4152 return -EIO; 4153 4154 /* 4155 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and 4156 * doesn't need to be decrypted. 4157 */ 4158 pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 4159 if (!pae_root) 4160 return -ENOMEM; 4161 4162 #ifdef CONFIG_X86_64 4163 pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 4164 if (!pml4_root) 4165 goto err_pml4; 4166 4167 if (need_pml5) { 4168 pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 4169 if (!pml5_root) 4170 goto err_pml5; 4171 } 4172 #endif 4173 4174 mmu->pae_root = pae_root; 4175 mmu->pml4_root = pml4_root; 4176 mmu->pml5_root = pml5_root; 4177 4178 return 0; 4179 4180 #ifdef CONFIG_X86_64 4181 err_pml5: 4182 free_page((unsigned long)pml4_root); 4183 err_pml4: 4184 free_page((unsigned long)pae_root); 4185 return -ENOMEM; 4186 #endif 4187 } 4188 4189 static bool is_unsync_root(hpa_t root) 4190 { 4191 struct kvm_mmu_page *sp; 4192 4193 if (!VALID_PAGE(root) || kvm_mmu_is_dummy_root(root)) 4194 return false; 4195 4196 /* 4197 * The read barrier orders the CPU's read of SPTE.W during the page table 4198 * walk before the reads of sp->unsync/sp->unsync_children here. 4199 * 4200 * Even if another CPU was marking the SP as unsync-ed simultaneously, 4201 * any guest page table changes are not guaranteed to be visible anyway 4202 * until this VCPU issues a TLB flush strictly after those changes are 4203 * made. We only need to ensure that the other CPU sets these flags 4204 * before any actual changes to the page tables are made. The comments 4205 * in mmu_try_to_unsync_pages() describe what could go wrong if this 4206 * requirement isn't satisfied. 4207 */ 4208 smp_rmb(); 4209 sp = root_to_sp(root); 4210 4211 /* 4212 * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the 4213 * PDPTEs for a given PAE root need to be synchronized individually. 4214 */ 4215 if (WARN_ON_ONCE(!sp)) 4216 return false; 4217 4218 if (sp->unsync || sp->unsync_children) 4219 return true; 4220 4221 return false; 4222 } 4223 4224 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) 4225 { 4226 int i; 4227 struct kvm_mmu_page *sp; 4228 4229 if (vcpu->arch.mmu->root_role.direct) 4230 return; 4231 4232 if (!VALID_PAGE(vcpu->arch.mmu->root.hpa)) 4233 return; 4234 4235 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 4236 4237 if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { 4238 hpa_t root = vcpu->arch.mmu->root.hpa; 4239 4240 if (!is_unsync_root(root)) 4241 return; 4242 4243 sp = root_to_sp(root); 4244 4245 write_lock(&vcpu->kvm->mmu_lock); 4246 mmu_sync_children(vcpu, sp, true); 4247 write_unlock(&vcpu->kvm->mmu_lock); 4248 return; 4249 } 4250 4251 write_lock(&vcpu->kvm->mmu_lock); 4252 4253 for (i = 0; i < 4; ++i) { 4254 hpa_t root = vcpu->arch.mmu->pae_root[i]; 4255 4256 if (IS_VALID_PAE_ROOT(root)) { 4257 sp = spte_to_child_sp(root); 4258 mmu_sync_children(vcpu, sp, true); 4259 } 4260 } 4261 4262 write_unlock(&vcpu->kvm->mmu_lock); 4263 } 4264 4265 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu) 4266 { 4267 unsigned long roots_to_free = 0; 4268 int i; 4269 4270 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 4271 if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa)) 4272 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 4273 4274 /* sync prev_roots by simply freeing them */ 4275 kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free); 4276 } 4277 4278 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 4279 gpa_t vaddr, u64 access, 4280 struct x86_exception *exception) 4281 { 4282 if (exception) 4283 exception->error_code = 0; 4284 return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception); 4285 } 4286 4287 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct) 4288 { 4289 /* 4290 * A nested guest cannot use the MMIO cache if it is using nested 4291 * page tables, because cr2 is a nGPA while the cache stores GPAs. 4292 */ 4293 if (mmu_is_nested(vcpu)) 4294 return false; 4295 4296 if (direct) 4297 return vcpu_match_mmio_gpa(vcpu, addr); 4298 4299 return vcpu_match_mmio_gva(vcpu, addr); 4300 } 4301 4302 /* 4303 * Return the level of the lowest level SPTE added to sptes. 4304 * That SPTE may be non-present. 4305 * 4306 * Must be called between walk_shadow_page_lockless_{begin,end}. 4307 */ 4308 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level) 4309 { 4310 struct kvm_shadow_walk_iterator iterator; 4311 int leaf = -1; 4312 u64 spte; 4313 4314 for (shadow_walk_init(&iterator, vcpu, addr), 4315 *root_level = iterator.level; 4316 shadow_walk_okay(&iterator); 4317 __shadow_walk_next(&iterator, spte)) { 4318 leaf = iterator.level; 4319 spte = mmu_spte_get_lockless(iterator.sptep); 4320 4321 sptes[leaf] = spte; 4322 } 4323 4324 return leaf; 4325 } 4326 4327 static int get_sptes_lockless(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, 4328 int *root_level) 4329 { 4330 int leaf; 4331 4332 walk_shadow_page_lockless_begin(vcpu); 4333 4334 if (is_tdp_mmu_active(vcpu)) 4335 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, root_level); 4336 else 4337 leaf = get_walk(vcpu, addr, sptes, root_level); 4338 4339 walk_shadow_page_lockless_end(vcpu); 4340 return leaf; 4341 } 4342 4343 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */ 4344 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) 4345 { 4346 u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; 4347 struct rsvd_bits_validate *rsvd_check; 4348 int root, leaf, level; 4349 bool reserved = false; 4350 4351 leaf = get_sptes_lockless(vcpu, addr, sptes, &root); 4352 if (unlikely(leaf < 0)) { 4353 *sptep = 0ull; 4354 return reserved; 4355 } 4356 4357 *sptep = sptes[leaf]; 4358 4359 /* 4360 * Skip reserved bits checks on the terminal leaf if it's not a valid 4361 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by 4362 * design, always have reserved bits set. The purpose of the checks is 4363 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs. 4364 */ 4365 if (!is_shadow_present_pte(sptes[leaf])) 4366 leaf++; 4367 4368 rsvd_check = &vcpu->arch.mmu->shadow_zero_check; 4369 4370 for (level = root; level >= leaf; level--) 4371 reserved |= is_rsvd_spte(rsvd_check, sptes[level], level); 4372 4373 if (reserved) { 4374 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n", 4375 __func__, addr); 4376 for (level = root; level >= leaf; level--) 4377 pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx", 4378 sptes[level], level, 4379 get_rsvd_bits(rsvd_check, sptes[level], level)); 4380 } 4381 4382 return reserved; 4383 } 4384 4385 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct) 4386 { 4387 u64 spte; 4388 bool reserved; 4389 4390 if (mmio_info_in_cache(vcpu, addr, direct)) 4391 return RET_PF_EMULATE; 4392 4393 reserved = get_mmio_spte(vcpu, addr, &spte); 4394 if (WARN_ON_ONCE(reserved)) 4395 return -EINVAL; 4396 4397 if (is_mmio_spte(vcpu->kvm, spte)) { 4398 gfn_t gfn = get_mmio_spte_gfn(spte); 4399 unsigned int access = get_mmio_spte_access(spte); 4400 4401 if (!check_mmio_spte(vcpu, spte)) 4402 return RET_PF_INVALID; 4403 4404 if (direct) 4405 addr = 0; 4406 4407 trace_handle_mmio_page_fault(addr, gfn, access); 4408 vcpu_cache_mmio_info(vcpu, addr, gfn, access); 4409 return RET_PF_EMULATE; 4410 } 4411 4412 /* 4413 * If the page table is zapped by other cpus, let CPU fault again on 4414 * the address. 4415 */ 4416 return RET_PF_RETRY; 4417 } 4418 4419 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu, 4420 struct kvm_page_fault *fault) 4421 { 4422 if (unlikely(fault->rsvd)) 4423 return false; 4424 4425 if (!fault->present || !fault->write) 4426 return false; 4427 4428 /* 4429 * guest is writing the page which is write tracked which can 4430 * not be fixed by page fault handler. 4431 */ 4432 if (kvm_gfn_is_write_tracked(vcpu->kvm, fault->slot, fault->gfn)) 4433 return true; 4434 4435 return false; 4436 } 4437 4438 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr) 4439 { 4440 struct kvm_shadow_walk_iterator iterator; 4441 u64 spte; 4442 4443 walk_shadow_page_lockless_begin(vcpu); 4444 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) 4445 clear_sp_write_flooding_count(iterator.sptep); 4446 walk_shadow_page_lockless_end(vcpu); 4447 } 4448 4449 static u32 alloc_apf_token(struct kvm_vcpu *vcpu) 4450 { 4451 /* make sure the token value is not 0 */ 4452 u32 id = vcpu->arch.apf.id; 4453 4454 if (id << 12 == 0) 4455 vcpu->arch.apf.id = 1; 4456 4457 return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; 4458 } 4459 4460 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, 4461 struct kvm_page_fault *fault) 4462 { 4463 struct kvm_arch_async_pf arch; 4464 4465 arch.token = alloc_apf_token(vcpu); 4466 arch.gfn = fault->gfn; 4467 arch.error_code = fault->error_code; 4468 arch.direct_map = vcpu->arch.mmu->root_role.direct; 4469 arch.cr3 = kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu); 4470 4471 return kvm_setup_async_pf(vcpu, fault->addr, 4472 kvm_vcpu_gfn_to_hva(vcpu, fault->gfn), &arch); 4473 } 4474 4475 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 4476 { 4477 int r; 4478 4479 if (WARN_ON_ONCE(work->arch.error_code & PFERR_PRIVATE_ACCESS)) 4480 return; 4481 4482 if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) || 4483 work->wakeup_all) 4484 return; 4485 4486 r = kvm_mmu_reload(vcpu); 4487 if (unlikely(r)) 4488 return; 4489 4490 if (!vcpu->arch.mmu->root_role.direct && 4491 work->arch.cr3 != kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu)) 4492 return; 4493 4494 r = kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, work->arch.error_code, 4495 true, NULL, NULL); 4496 4497 /* 4498 * Account fixed page faults, otherwise they'll never be counted, but 4499 * ignore stats for all other return times. Page-ready "faults" aren't 4500 * truly spurious and never trigger emulation 4501 */ 4502 if (r == RET_PF_FIXED) 4503 vcpu->stat.pf_fixed++; 4504 } 4505 4506 static inline u8 kvm_max_level_for_order(int order) 4507 { 4508 BUILD_BUG_ON(KVM_MAX_HUGEPAGE_LEVEL > PG_LEVEL_1G); 4509 4510 KVM_MMU_WARN_ON(order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G) && 4511 order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M) && 4512 order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K)); 4513 4514 if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G)) 4515 return PG_LEVEL_1G; 4516 4517 if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M)) 4518 return PG_LEVEL_2M; 4519 4520 return PG_LEVEL_4K; 4521 } 4522 4523 static u8 kvm_max_private_mapping_level(struct kvm *kvm, kvm_pfn_t pfn, 4524 u8 max_level, int gmem_order) 4525 { 4526 u8 req_max_level; 4527 4528 if (max_level == PG_LEVEL_4K) 4529 return PG_LEVEL_4K; 4530 4531 max_level = min(kvm_max_level_for_order(gmem_order), max_level); 4532 if (max_level == PG_LEVEL_4K) 4533 return PG_LEVEL_4K; 4534 4535 req_max_level = kvm_x86_call(private_max_mapping_level)(kvm, pfn); 4536 if (req_max_level) 4537 max_level = min(max_level, req_max_level); 4538 4539 return max_level; 4540 } 4541 4542 static void kvm_mmu_finish_page_fault(struct kvm_vcpu *vcpu, 4543 struct kvm_page_fault *fault, int r) 4544 { 4545 kvm_release_faultin_page(vcpu->kvm, fault->refcounted_page, 4546 r == RET_PF_RETRY, fault->map_writable); 4547 } 4548 4549 static int kvm_mmu_faultin_pfn_private(struct kvm_vcpu *vcpu, 4550 struct kvm_page_fault *fault) 4551 { 4552 int max_order, r; 4553 4554 if (!kvm_slot_can_be_private(fault->slot)) { 4555 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 4556 return -EFAULT; 4557 } 4558 4559 r = kvm_gmem_get_pfn(vcpu->kvm, fault->slot, fault->gfn, &fault->pfn, 4560 &fault->refcounted_page, &max_order); 4561 if (r) { 4562 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 4563 return r; 4564 } 4565 4566 fault->map_writable = !(fault->slot->flags & KVM_MEM_READONLY); 4567 fault->max_level = kvm_max_private_mapping_level(vcpu->kvm, fault->pfn, 4568 fault->max_level, max_order); 4569 4570 return RET_PF_CONTINUE; 4571 } 4572 4573 static int __kvm_mmu_faultin_pfn(struct kvm_vcpu *vcpu, 4574 struct kvm_page_fault *fault) 4575 { 4576 unsigned int foll = fault->write ? FOLL_WRITE : 0; 4577 4578 if (fault->is_private) 4579 return kvm_mmu_faultin_pfn_private(vcpu, fault); 4580 4581 foll |= FOLL_NOWAIT; 4582 fault->pfn = __kvm_faultin_pfn(fault->slot, fault->gfn, foll, 4583 &fault->map_writable, &fault->refcounted_page); 4584 4585 /* 4586 * If resolving the page failed because I/O is needed to fault-in the 4587 * page, then either set up an asynchronous #PF to do the I/O, or if 4588 * doing an async #PF isn't possible, retry with I/O allowed. All 4589 * other failures are terminal, i.e. retrying won't help. 4590 */ 4591 if (fault->pfn != KVM_PFN_ERR_NEEDS_IO) 4592 return RET_PF_CONTINUE; 4593 4594 if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) { 4595 trace_kvm_try_async_get_page(fault->addr, fault->gfn); 4596 if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) { 4597 trace_kvm_async_pf_repeated_fault(fault->addr, fault->gfn); 4598 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 4599 return RET_PF_RETRY; 4600 } else if (kvm_arch_setup_async_pf(vcpu, fault)) { 4601 return RET_PF_RETRY; 4602 } 4603 } 4604 4605 /* 4606 * Allow gup to bail on pending non-fatal signals when it's also allowed 4607 * to wait for IO. Note, gup always bails if it is unable to quickly 4608 * get a page and a fatal signal, i.e. SIGKILL, is pending. 4609 */ 4610 foll |= FOLL_INTERRUPTIBLE; 4611 foll &= ~FOLL_NOWAIT; 4612 fault->pfn = __kvm_faultin_pfn(fault->slot, fault->gfn, foll, 4613 &fault->map_writable, &fault->refcounted_page); 4614 4615 return RET_PF_CONTINUE; 4616 } 4617 4618 static int kvm_mmu_faultin_pfn(struct kvm_vcpu *vcpu, 4619 struct kvm_page_fault *fault, unsigned int access) 4620 { 4621 struct kvm_memory_slot *slot = fault->slot; 4622 struct kvm *kvm = vcpu->kvm; 4623 int ret; 4624 4625 if (KVM_BUG_ON(kvm_is_gfn_alias(kvm, fault->gfn), kvm)) 4626 return -EFAULT; 4627 4628 /* 4629 * Note that the mmu_invalidate_seq also serves to detect a concurrent 4630 * change in attributes. is_page_fault_stale() will detect an 4631 * invalidation relate to fault->fn and resume the guest without 4632 * installing a mapping in the page tables. 4633 */ 4634 fault->mmu_seq = vcpu->kvm->mmu_invalidate_seq; 4635 smp_rmb(); 4636 4637 /* 4638 * Now that we have a snapshot of mmu_invalidate_seq we can check for a 4639 * private vs. shared mismatch. 4640 */ 4641 if (fault->is_private != kvm_mem_is_private(kvm, fault->gfn)) { 4642 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 4643 return -EFAULT; 4644 } 4645 4646 if (unlikely(!slot)) 4647 return kvm_handle_noslot_fault(vcpu, fault, access); 4648 4649 /* 4650 * Retry the page fault if the gfn hit a memslot that is being deleted 4651 * or moved. This ensures any existing SPTEs for the old memslot will 4652 * be zapped before KVM inserts a new MMIO SPTE for the gfn. 4653 */ 4654 if (slot->flags & KVM_MEMSLOT_INVALID) 4655 return RET_PF_RETRY; 4656 4657 if (slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT) { 4658 /* 4659 * Don't map L1's APIC access page into L2, KVM doesn't support 4660 * using APICv/AVIC to accelerate L2 accesses to L1's APIC, 4661 * i.e. the access needs to be emulated. Emulating access to 4662 * L1's APIC is also correct if L1 is accelerating L2's own 4663 * virtual APIC, but for some reason L1 also maps _L1's_ APIC 4664 * into L2. Note, vcpu_is_mmio_gpa() always treats access to 4665 * the APIC as MMIO. Allow an MMIO SPTE to be created, as KVM 4666 * uses different roots for L1 vs. L2, i.e. there is no danger 4667 * of breaking APICv/AVIC for L1. 4668 */ 4669 if (is_guest_mode(vcpu)) 4670 return kvm_handle_noslot_fault(vcpu, fault, access); 4671 4672 /* 4673 * If the APIC access page exists but is disabled, go directly 4674 * to emulation without caching the MMIO access or creating a 4675 * MMIO SPTE. That way the cache doesn't need to be purged 4676 * when the AVIC is re-enabled. 4677 */ 4678 if (!kvm_apicv_activated(vcpu->kvm)) 4679 return RET_PF_EMULATE; 4680 } 4681 4682 /* 4683 * Check for a relevant mmu_notifier invalidation event before getting 4684 * the pfn from the primary MMU, and before acquiring mmu_lock. 4685 * 4686 * For mmu_lock, if there is an in-progress invalidation and the kernel 4687 * allows preemption, the invalidation task may drop mmu_lock and yield 4688 * in response to mmu_lock being contended, which is *very* counter- 4689 * productive as this vCPU can't actually make forward progress until 4690 * the invalidation completes. 4691 * 4692 * Retrying now can also avoid unnessary lock contention in the primary 4693 * MMU, as the primary MMU doesn't necessarily hold a single lock for 4694 * the duration of the invalidation, i.e. faulting in a conflicting pfn 4695 * can cause the invalidation to take longer by holding locks that are 4696 * needed to complete the invalidation. 4697 * 4698 * Do the pre-check even for non-preemtible kernels, i.e. even if KVM 4699 * will never yield mmu_lock in response to contention, as this vCPU is 4700 * *guaranteed* to need to retry, i.e. waiting until mmu_lock is held 4701 * to detect retry guarantees the worst case latency for the vCPU. 4702 */ 4703 if (mmu_invalidate_retry_gfn_unsafe(kvm, fault->mmu_seq, fault->gfn)) 4704 return RET_PF_RETRY; 4705 4706 ret = __kvm_mmu_faultin_pfn(vcpu, fault); 4707 if (ret != RET_PF_CONTINUE) 4708 return ret; 4709 4710 if (unlikely(is_error_pfn(fault->pfn))) 4711 return kvm_handle_error_pfn(vcpu, fault); 4712 4713 if (WARN_ON_ONCE(!fault->slot || is_noslot_pfn(fault->pfn))) 4714 return kvm_handle_noslot_fault(vcpu, fault, access); 4715 4716 /* 4717 * Check again for a relevant mmu_notifier invalidation event purely to 4718 * avoid contending mmu_lock. Most invalidations will be detected by 4719 * the previous check, but checking is extremely cheap relative to the 4720 * overall cost of failing to detect the invalidation until after 4721 * mmu_lock is acquired. 4722 */ 4723 if (mmu_invalidate_retry_gfn_unsafe(kvm, fault->mmu_seq, fault->gfn)) { 4724 kvm_mmu_finish_page_fault(vcpu, fault, RET_PF_RETRY); 4725 return RET_PF_RETRY; 4726 } 4727 4728 return RET_PF_CONTINUE; 4729 } 4730 4731 /* 4732 * Returns true if the page fault is stale and needs to be retried, i.e. if the 4733 * root was invalidated by a memslot update or a relevant mmu_notifier fired. 4734 */ 4735 static bool is_page_fault_stale(struct kvm_vcpu *vcpu, 4736 struct kvm_page_fault *fault) 4737 { 4738 struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa); 4739 4740 /* Special roots, e.g. pae_root, are not backed by shadow pages. */ 4741 if (sp && is_obsolete_sp(vcpu->kvm, sp)) 4742 return true; 4743 4744 /* 4745 * Roots without an associated shadow page are considered invalid if 4746 * there is a pending request to free obsolete roots. The request is 4747 * only a hint that the current root _may_ be obsolete and needs to be 4748 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a 4749 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs 4750 * to reload even if no vCPU is actively using the root. 4751 */ 4752 if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 4753 return true; 4754 4755 /* 4756 * Check for a relevant mmu_notifier invalidation event one last time 4757 * now that mmu_lock is held, as the "unsafe" checks performed without 4758 * holding mmu_lock can get false negatives. 4759 */ 4760 return fault->slot && 4761 mmu_invalidate_retry_gfn(vcpu->kvm, fault->mmu_seq, fault->gfn); 4762 } 4763 4764 static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4765 { 4766 int r; 4767 4768 /* Dummy roots are used only for shadowing bad guest roots. */ 4769 if (WARN_ON_ONCE(kvm_mmu_is_dummy_root(vcpu->arch.mmu->root.hpa))) 4770 return RET_PF_RETRY; 4771 4772 if (page_fault_handle_page_track(vcpu, fault)) 4773 return RET_PF_WRITE_PROTECTED; 4774 4775 r = fast_page_fault(vcpu, fault); 4776 if (r != RET_PF_INVALID) 4777 return r; 4778 4779 r = mmu_topup_memory_caches(vcpu, false); 4780 if (r) 4781 return r; 4782 4783 r = kvm_mmu_faultin_pfn(vcpu, fault, ACC_ALL); 4784 if (r != RET_PF_CONTINUE) 4785 return r; 4786 4787 r = RET_PF_RETRY; 4788 write_lock(&vcpu->kvm->mmu_lock); 4789 4790 if (is_page_fault_stale(vcpu, fault)) 4791 goto out_unlock; 4792 4793 r = make_mmu_pages_available(vcpu); 4794 if (r) 4795 goto out_unlock; 4796 4797 r = direct_map(vcpu, fault); 4798 4799 out_unlock: 4800 kvm_mmu_finish_page_fault(vcpu, fault, r); 4801 write_unlock(&vcpu->kvm->mmu_lock); 4802 return r; 4803 } 4804 4805 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, 4806 struct kvm_page_fault *fault) 4807 { 4808 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */ 4809 fault->max_level = PG_LEVEL_2M; 4810 return direct_page_fault(vcpu, fault); 4811 } 4812 4813 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, 4814 u64 fault_address, char *insn, int insn_len) 4815 { 4816 int r = 1; 4817 u32 flags = vcpu->arch.apf.host_apf_flags; 4818 4819 #ifndef CONFIG_X86_64 4820 /* A 64-bit CR2 should be impossible on 32-bit KVM. */ 4821 if (WARN_ON_ONCE(fault_address >> 32)) 4822 return -EFAULT; 4823 #endif 4824 /* 4825 * Legacy #PF exception only have a 32-bit error code. Simply drop the 4826 * upper bits as KVM doesn't use them for #PF (because they are never 4827 * set), and to ensure there are no collisions with KVM-defined bits. 4828 */ 4829 if (WARN_ON_ONCE(error_code >> 32)) 4830 error_code = lower_32_bits(error_code); 4831 4832 /* 4833 * Restrict KVM-defined flags to bits 63:32 so that it's impossible for 4834 * them to conflict with #PF error codes, which are limited to 32 bits. 4835 */ 4836 BUILD_BUG_ON(lower_32_bits(PFERR_SYNTHETIC_MASK)); 4837 4838 vcpu->arch.l1tf_flush_l1d = true; 4839 if (!flags) { 4840 trace_kvm_page_fault(vcpu, fault_address, error_code); 4841 4842 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn, 4843 insn_len); 4844 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) { 4845 vcpu->arch.apf.host_apf_flags = 0; 4846 local_irq_disable(); 4847 kvm_async_pf_task_wait_schedule(fault_address); 4848 local_irq_enable(); 4849 } else { 4850 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags); 4851 } 4852 4853 return r; 4854 } 4855 EXPORT_SYMBOL_GPL(kvm_handle_page_fault); 4856 4857 #ifdef CONFIG_X86_64 4858 static int kvm_tdp_mmu_page_fault(struct kvm_vcpu *vcpu, 4859 struct kvm_page_fault *fault) 4860 { 4861 int r; 4862 4863 if (page_fault_handle_page_track(vcpu, fault)) 4864 return RET_PF_WRITE_PROTECTED; 4865 4866 r = fast_page_fault(vcpu, fault); 4867 if (r != RET_PF_INVALID) 4868 return r; 4869 4870 r = mmu_topup_memory_caches(vcpu, false); 4871 if (r) 4872 return r; 4873 4874 r = kvm_mmu_faultin_pfn(vcpu, fault, ACC_ALL); 4875 if (r != RET_PF_CONTINUE) 4876 return r; 4877 4878 r = RET_PF_RETRY; 4879 read_lock(&vcpu->kvm->mmu_lock); 4880 4881 if (is_page_fault_stale(vcpu, fault)) 4882 goto out_unlock; 4883 4884 r = kvm_tdp_mmu_map(vcpu, fault); 4885 4886 out_unlock: 4887 kvm_mmu_finish_page_fault(vcpu, fault, r); 4888 read_unlock(&vcpu->kvm->mmu_lock); 4889 return r; 4890 } 4891 #endif 4892 4893 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4894 { 4895 #ifdef CONFIG_X86_64 4896 if (tdp_mmu_enabled) 4897 return kvm_tdp_mmu_page_fault(vcpu, fault); 4898 #endif 4899 4900 return direct_page_fault(vcpu, fault); 4901 } 4902 4903 int kvm_tdp_map_page(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code, u8 *level) 4904 { 4905 int r; 4906 4907 /* 4908 * Restrict to TDP page fault, since that's the only case where the MMU 4909 * is indexed by GPA. 4910 */ 4911 if (vcpu->arch.mmu->page_fault != kvm_tdp_page_fault) 4912 return -EOPNOTSUPP; 4913 4914 do { 4915 if (signal_pending(current)) 4916 return -EINTR; 4917 4918 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) 4919 return -EIO; 4920 4921 cond_resched(); 4922 r = kvm_mmu_do_page_fault(vcpu, gpa, error_code, true, NULL, level); 4923 } while (r == RET_PF_RETRY); 4924 4925 if (r < 0) 4926 return r; 4927 4928 switch (r) { 4929 case RET_PF_FIXED: 4930 case RET_PF_SPURIOUS: 4931 case RET_PF_WRITE_PROTECTED: 4932 return 0; 4933 4934 case RET_PF_EMULATE: 4935 return -ENOENT; 4936 4937 case RET_PF_RETRY: 4938 case RET_PF_CONTINUE: 4939 case RET_PF_INVALID: 4940 default: 4941 WARN_ONCE(1, "could not fix page fault during prefault"); 4942 return -EIO; 4943 } 4944 } 4945 EXPORT_SYMBOL_GPL(kvm_tdp_map_page); 4946 4947 long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu, 4948 struct kvm_pre_fault_memory *range) 4949 { 4950 u64 error_code = PFERR_GUEST_FINAL_MASK; 4951 u8 level = PG_LEVEL_4K; 4952 u64 direct_bits; 4953 u64 end; 4954 int r; 4955 4956 if (!vcpu->kvm->arch.pre_fault_allowed) 4957 return -EOPNOTSUPP; 4958 4959 if (kvm_is_gfn_alias(vcpu->kvm, gpa_to_gfn(range->gpa))) 4960 return -EINVAL; 4961 4962 /* 4963 * reload is efficient when called repeatedly, so we can do it on 4964 * every iteration. 4965 */ 4966 r = kvm_mmu_reload(vcpu); 4967 if (r) 4968 return r; 4969 4970 direct_bits = 0; 4971 if (kvm_arch_has_private_mem(vcpu->kvm) && 4972 kvm_mem_is_private(vcpu->kvm, gpa_to_gfn(range->gpa))) 4973 error_code |= PFERR_PRIVATE_ACCESS; 4974 else 4975 direct_bits = gfn_to_gpa(kvm_gfn_direct_bits(vcpu->kvm)); 4976 4977 /* 4978 * Shadow paging uses GVA for kvm page fault, so restrict to 4979 * two-dimensional paging. 4980 */ 4981 r = kvm_tdp_map_page(vcpu, range->gpa | direct_bits, error_code, &level); 4982 if (r < 0) 4983 return r; 4984 4985 /* 4986 * If the mapping that covers range->gpa can use a huge page, it 4987 * may start below it or end after range->gpa + range->size. 4988 */ 4989 end = (range->gpa & KVM_HPAGE_MASK(level)) + KVM_HPAGE_SIZE(level); 4990 return min(range->size, end - range->gpa); 4991 } 4992 4993 static void nonpaging_init_context(struct kvm_mmu *context) 4994 { 4995 context->page_fault = nonpaging_page_fault; 4996 context->gva_to_gpa = nonpaging_gva_to_gpa; 4997 context->sync_spte = NULL; 4998 } 4999 5000 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd, 5001 union kvm_mmu_page_role role) 5002 { 5003 struct kvm_mmu_page *sp; 5004 5005 if (!VALID_PAGE(root->hpa)) 5006 return false; 5007 5008 if (!role.direct && pgd != root->pgd) 5009 return false; 5010 5011 sp = root_to_sp(root->hpa); 5012 if (WARN_ON_ONCE(!sp)) 5013 return false; 5014 5015 return role.word == sp->role.word; 5016 } 5017 5018 /* 5019 * Find out if a previously cached root matching the new pgd/role is available, 5020 * and insert the current root as the MRU in the cache. 5021 * If a matching root is found, it is assigned to kvm_mmu->root and 5022 * true is returned. 5023 * If no match is found, kvm_mmu->root is left invalid, the LRU root is 5024 * evicted to make room for the current root, and false is returned. 5025 */ 5026 static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu, 5027 gpa_t new_pgd, 5028 union kvm_mmu_page_role new_role) 5029 { 5030 uint i; 5031 5032 if (is_root_usable(&mmu->root, new_pgd, new_role)) 5033 return true; 5034 5035 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5036 /* 5037 * The swaps end up rotating the cache like this: 5038 * C 0 1 2 3 (on entry to the function) 5039 * 0 C 1 2 3 5040 * 1 C 0 2 3 5041 * 2 C 0 1 3 5042 * 3 C 0 1 2 (on exit from the loop) 5043 */ 5044 swap(mmu->root, mmu->prev_roots[i]); 5045 if (is_root_usable(&mmu->root, new_pgd, new_role)) 5046 return true; 5047 } 5048 5049 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 5050 return false; 5051 } 5052 5053 /* 5054 * Find out if a previously cached root matching the new pgd/role is available. 5055 * On entry, mmu->root is invalid. 5056 * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry 5057 * of the cache becomes invalid, and true is returned. 5058 * If no match is found, kvm_mmu->root is left invalid and false is returned. 5059 */ 5060 static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu, 5061 gpa_t new_pgd, 5062 union kvm_mmu_page_role new_role) 5063 { 5064 uint i; 5065 5066 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5067 if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role)) 5068 goto hit; 5069 5070 return false; 5071 5072 hit: 5073 swap(mmu->root, mmu->prev_roots[i]); 5074 /* Bubble up the remaining roots. */ 5075 for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++) 5076 mmu->prev_roots[i] = mmu->prev_roots[i + 1]; 5077 mmu->prev_roots[i].hpa = INVALID_PAGE; 5078 return true; 5079 } 5080 5081 static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu, 5082 gpa_t new_pgd, union kvm_mmu_page_role new_role) 5083 { 5084 /* 5085 * Limit reuse to 64-bit hosts+VMs without "special" roots in order to 5086 * avoid having to deal with PDPTEs and other complexities. 5087 */ 5088 if (VALID_PAGE(mmu->root.hpa) && !root_to_sp(mmu->root.hpa)) 5089 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 5090 5091 if (VALID_PAGE(mmu->root.hpa)) 5092 return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role); 5093 else 5094 return cached_root_find_without_current(kvm, mmu, new_pgd, new_role); 5095 } 5096 5097 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd) 5098 { 5099 struct kvm_mmu *mmu = vcpu->arch.mmu; 5100 union kvm_mmu_page_role new_role = mmu->root_role; 5101 5102 /* 5103 * Return immediately if no usable root was found, kvm_mmu_reload() 5104 * will establish a valid root prior to the next VM-Enter. 5105 */ 5106 if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role)) 5107 return; 5108 5109 /* 5110 * It's possible that the cached previous root page is obsolete because 5111 * of a change in the MMU generation number. However, changing the 5112 * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, 5113 * which will free the root set here and allocate a new one. 5114 */ 5115 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 5116 5117 if (force_flush_and_sync_on_reuse) { 5118 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 5119 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 5120 } 5121 5122 /* 5123 * The last MMIO access's GVA and GPA are cached in the VCPU. When 5124 * switching to a new CR3, that GVA->GPA mapping may no longer be 5125 * valid. So clear any cached MMIO info even when we don't need to sync 5126 * the shadow page tables. 5127 */ 5128 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 5129 5130 /* 5131 * If this is a direct root page, it doesn't have a write flooding 5132 * count. Otherwise, clear the write flooding count. 5133 */ 5134 if (!new_role.direct) { 5135 struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa); 5136 5137 if (!WARN_ON_ONCE(!sp)) 5138 __clear_sp_write_flooding_count(sp); 5139 } 5140 } 5141 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd); 5142 5143 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, 5144 unsigned int access) 5145 { 5146 if (unlikely(is_mmio_spte(vcpu->kvm, *sptep))) { 5147 if (gfn != get_mmio_spte_gfn(*sptep)) { 5148 mmu_spte_clear_no_track(sptep); 5149 return true; 5150 } 5151 5152 mark_mmio_spte(vcpu, sptep, gfn, access); 5153 return true; 5154 } 5155 5156 return false; 5157 } 5158 5159 #define PTTYPE_EPT 18 /* arbitrary */ 5160 #define PTTYPE PTTYPE_EPT 5161 #include "paging_tmpl.h" 5162 #undef PTTYPE 5163 5164 #define PTTYPE 64 5165 #include "paging_tmpl.h" 5166 #undef PTTYPE 5167 5168 #define PTTYPE 32 5169 #include "paging_tmpl.h" 5170 #undef PTTYPE 5171 5172 static void __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check, 5173 u64 pa_bits_rsvd, int level, bool nx, 5174 bool gbpages, bool pse, bool amd) 5175 { 5176 u64 gbpages_bit_rsvd = 0; 5177 u64 nonleaf_bit8_rsvd = 0; 5178 u64 high_bits_rsvd; 5179 5180 rsvd_check->bad_mt_xwr = 0; 5181 5182 if (!gbpages) 5183 gbpages_bit_rsvd = rsvd_bits(7, 7); 5184 5185 if (level == PT32E_ROOT_LEVEL) 5186 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62); 5187 else 5188 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 5189 5190 /* Note, NX doesn't exist in PDPTEs, this is handled below. */ 5191 if (!nx) 5192 high_bits_rsvd |= rsvd_bits(63, 63); 5193 5194 /* 5195 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for 5196 * leaf entries) on AMD CPUs only. 5197 */ 5198 if (amd) 5199 nonleaf_bit8_rsvd = rsvd_bits(8, 8); 5200 5201 switch (level) { 5202 case PT32_ROOT_LEVEL: 5203 /* no rsvd bits for 2 level 4K page table entries */ 5204 rsvd_check->rsvd_bits_mask[0][1] = 0; 5205 rsvd_check->rsvd_bits_mask[0][0] = 0; 5206 rsvd_check->rsvd_bits_mask[1][0] = 5207 rsvd_check->rsvd_bits_mask[0][0]; 5208 5209 if (!pse) { 5210 rsvd_check->rsvd_bits_mask[1][1] = 0; 5211 break; 5212 } 5213 5214 if (is_cpuid_PSE36()) 5215 /* 36bits PSE 4MB page */ 5216 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); 5217 else 5218 /* 32 bits PSE 4MB page */ 5219 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); 5220 break; 5221 case PT32E_ROOT_LEVEL: 5222 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) | 5223 high_bits_rsvd | 5224 rsvd_bits(5, 8) | 5225 rsvd_bits(1, 2); /* PDPTE */ 5226 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */ 5227 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */ 5228 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 5229 rsvd_bits(13, 20); /* large page */ 5230 rsvd_check->rsvd_bits_mask[1][0] = 5231 rsvd_check->rsvd_bits_mask[0][0]; 5232 break; 5233 case PT64_ROOT_5LEVEL: 5234 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | 5235 nonleaf_bit8_rsvd | 5236 rsvd_bits(7, 7); 5237 rsvd_check->rsvd_bits_mask[1][4] = 5238 rsvd_check->rsvd_bits_mask[0][4]; 5239 fallthrough; 5240 case PT64_ROOT_4LEVEL: 5241 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | 5242 nonleaf_bit8_rsvd | 5243 rsvd_bits(7, 7); 5244 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | 5245 gbpages_bit_rsvd; 5246 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; 5247 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 5248 rsvd_check->rsvd_bits_mask[1][3] = 5249 rsvd_check->rsvd_bits_mask[0][3]; 5250 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | 5251 gbpages_bit_rsvd | 5252 rsvd_bits(13, 29); 5253 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 5254 rsvd_bits(13, 20); /* large page */ 5255 rsvd_check->rsvd_bits_mask[1][0] = 5256 rsvd_check->rsvd_bits_mask[0][0]; 5257 break; 5258 } 5259 } 5260 5261 static void reset_guest_rsvds_bits_mask(struct kvm_vcpu *vcpu, 5262 struct kvm_mmu *context) 5263 { 5264 __reset_rsvds_bits_mask(&context->guest_rsvd_check, 5265 vcpu->arch.reserved_gpa_bits, 5266 context->cpu_role.base.level, is_efer_nx(context), 5267 guest_cpu_cap_has(vcpu, X86_FEATURE_GBPAGES), 5268 is_cr4_pse(context), 5269 guest_cpuid_is_amd_compatible(vcpu)); 5270 } 5271 5272 static void __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check, 5273 u64 pa_bits_rsvd, bool execonly, 5274 int huge_page_level) 5275 { 5276 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 5277 u64 large_1g_rsvd = 0, large_2m_rsvd = 0; 5278 u64 bad_mt_xwr; 5279 5280 if (huge_page_level < PG_LEVEL_1G) 5281 large_1g_rsvd = rsvd_bits(7, 7); 5282 if (huge_page_level < PG_LEVEL_2M) 5283 large_2m_rsvd = rsvd_bits(7, 7); 5284 5285 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7); 5286 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7); 5287 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd; 5288 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd; 5289 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 5290 5291 /* large page */ 5292 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4]; 5293 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3]; 5294 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd; 5295 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd; 5296 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0]; 5297 5298 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */ 5299 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */ 5300 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */ 5301 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */ 5302 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */ 5303 if (!execonly) { 5304 /* bits 0..2 must not be 100 unless VMX capabilities allow it */ 5305 bad_mt_xwr |= REPEAT_BYTE(1ull << 4); 5306 } 5307 rsvd_check->bad_mt_xwr = bad_mt_xwr; 5308 } 5309 5310 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, 5311 struct kvm_mmu *context, bool execonly, int huge_page_level) 5312 { 5313 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check, 5314 vcpu->arch.reserved_gpa_bits, execonly, 5315 huge_page_level); 5316 } 5317 5318 static inline u64 reserved_hpa_bits(void) 5319 { 5320 return rsvd_bits(kvm_host.maxphyaddr, 63); 5321 } 5322 5323 /* 5324 * the page table on host is the shadow page table for the page 5325 * table in guest or amd nested guest, its mmu features completely 5326 * follow the features in guest. 5327 */ 5328 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 5329 struct kvm_mmu *context) 5330 { 5331 /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */ 5332 bool is_amd = true; 5333 /* KVM doesn't use 2-level page tables for the shadow MMU. */ 5334 bool is_pse = false; 5335 struct rsvd_bits_validate *shadow_zero_check; 5336 int i; 5337 5338 WARN_ON_ONCE(context->root_role.level < PT32E_ROOT_LEVEL); 5339 5340 shadow_zero_check = &context->shadow_zero_check; 5341 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 5342 context->root_role.level, 5343 context->root_role.efer_nx, 5344 guest_cpu_cap_has(vcpu, X86_FEATURE_GBPAGES), 5345 is_pse, is_amd); 5346 5347 if (!shadow_me_mask) 5348 return; 5349 5350 for (i = context->root_role.level; --i >= 0;) { 5351 /* 5352 * So far shadow_me_value is a constant during KVM's life 5353 * time. Bits in shadow_me_value are allowed to be set. 5354 * Bits in shadow_me_mask but not in shadow_me_value are 5355 * not allowed to be set. 5356 */ 5357 shadow_zero_check->rsvd_bits_mask[0][i] |= shadow_me_mask; 5358 shadow_zero_check->rsvd_bits_mask[1][i] |= shadow_me_mask; 5359 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_value; 5360 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_value; 5361 } 5362 5363 } 5364 5365 static inline bool boot_cpu_is_amd(void) 5366 { 5367 WARN_ON_ONCE(!tdp_enabled); 5368 return shadow_x_mask == 0; 5369 } 5370 5371 /* 5372 * the direct page table on host, use as much mmu features as 5373 * possible, however, kvm currently does not do execution-protection. 5374 */ 5375 static void reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context) 5376 { 5377 struct rsvd_bits_validate *shadow_zero_check; 5378 int i; 5379 5380 shadow_zero_check = &context->shadow_zero_check; 5381 5382 if (boot_cpu_is_amd()) 5383 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 5384 context->root_role.level, true, 5385 boot_cpu_has(X86_FEATURE_GBPAGES), 5386 false, true); 5387 else 5388 __reset_rsvds_bits_mask_ept(shadow_zero_check, 5389 reserved_hpa_bits(), false, 5390 max_huge_page_level); 5391 5392 if (!shadow_me_mask) 5393 return; 5394 5395 for (i = context->root_role.level; --i >= 0;) { 5396 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 5397 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 5398 } 5399 } 5400 5401 /* 5402 * as the comments in reset_shadow_zero_bits_mask() except it 5403 * is the shadow page table for intel nested guest. 5404 */ 5405 static void 5406 reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly) 5407 { 5408 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check, 5409 reserved_hpa_bits(), execonly, 5410 max_huge_page_level); 5411 } 5412 5413 #define BYTE_MASK(access) \ 5414 ((1 & (access) ? 2 : 0) | \ 5415 (2 & (access) ? 4 : 0) | \ 5416 (3 & (access) ? 8 : 0) | \ 5417 (4 & (access) ? 16 : 0) | \ 5418 (5 & (access) ? 32 : 0) | \ 5419 (6 & (access) ? 64 : 0) | \ 5420 (7 & (access) ? 128 : 0)) 5421 5422 5423 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept) 5424 { 5425 unsigned byte; 5426 5427 const u8 x = BYTE_MASK(ACC_EXEC_MASK); 5428 const u8 w = BYTE_MASK(ACC_WRITE_MASK); 5429 const u8 u = BYTE_MASK(ACC_USER_MASK); 5430 5431 bool cr4_smep = is_cr4_smep(mmu); 5432 bool cr4_smap = is_cr4_smap(mmu); 5433 bool cr0_wp = is_cr0_wp(mmu); 5434 bool efer_nx = is_efer_nx(mmu); 5435 5436 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { 5437 unsigned pfec = byte << 1; 5438 5439 /* 5440 * Each "*f" variable has a 1 bit for each UWX value 5441 * that causes a fault with the given PFEC. 5442 */ 5443 5444 /* Faults from writes to non-writable pages */ 5445 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0; 5446 /* Faults from user mode accesses to supervisor pages */ 5447 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0; 5448 /* Faults from fetches of non-executable pages*/ 5449 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0; 5450 /* Faults from kernel mode fetches of user pages */ 5451 u8 smepf = 0; 5452 /* Faults from kernel mode accesses of user pages */ 5453 u8 smapf = 0; 5454 5455 if (!ept) { 5456 /* Faults from kernel mode accesses to user pages */ 5457 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u; 5458 5459 /* Not really needed: !nx will cause pte.nx to fault */ 5460 if (!efer_nx) 5461 ff = 0; 5462 5463 /* Allow supervisor writes if !cr0.wp */ 5464 if (!cr0_wp) 5465 wf = (pfec & PFERR_USER_MASK) ? wf : 0; 5466 5467 /* Disallow supervisor fetches of user code if cr4.smep */ 5468 if (cr4_smep) 5469 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0; 5470 5471 /* 5472 * SMAP:kernel-mode data accesses from user-mode 5473 * mappings should fault. A fault is considered 5474 * as a SMAP violation if all of the following 5475 * conditions are true: 5476 * - X86_CR4_SMAP is set in CR4 5477 * - A user page is accessed 5478 * - The access is not a fetch 5479 * - The access is supervisor mode 5480 * - If implicit supervisor access or X86_EFLAGS_AC is clear 5481 * 5482 * Here, we cover the first four conditions. 5483 * The fifth is computed dynamically in permission_fault(); 5484 * PFERR_RSVD_MASK bit will be set in PFEC if the access is 5485 * *not* subject to SMAP restrictions. 5486 */ 5487 if (cr4_smap) 5488 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf; 5489 } 5490 5491 mmu->permissions[byte] = ff | uf | wf | smepf | smapf; 5492 } 5493 } 5494 5495 /* 5496 * PKU is an additional mechanism by which the paging controls access to 5497 * user-mode addresses based on the value in the PKRU register. Protection 5498 * key violations are reported through a bit in the page fault error code. 5499 * Unlike other bits of the error code, the PK bit is not known at the 5500 * call site of e.g. gva_to_gpa; it must be computed directly in 5501 * permission_fault based on two bits of PKRU, on some machine state (CR4, 5502 * CR0, EFER, CPL), and on other bits of the error code and the page tables. 5503 * 5504 * In particular the following conditions come from the error code, the 5505 * page tables and the machine state: 5506 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1 5507 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch) 5508 * - PK is always zero if U=0 in the page tables 5509 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access. 5510 * 5511 * The PKRU bitmask caches the result of these four conditions. The error 5512 * code (minus the P bit) and the page table's U bit form an index into the 5513 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed 5514 * with the two bits of the PKRU register corresponding to the protection key. 5515 * For the first three conditions above the bits will be 00, thus masking 5516 * away both AD and WD. For all reads or if the last condition holds, WD 5517 * only will be masked away. 5518 */ 5519 static void update_pkru_bitmask(struct kvm_mmu *mmu) 5520 { 5521 unsigned bit; 5522 bool wp; 5523 5524 mmu->pkru_mask = 0; 5525 5526 if (!is_cr4_pke(mmu)) 5527 return; 5528 5529 wp = is_cr0_wp(mmu); 5530 5531 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) { 5532 unsigned pfec, pkey_bits; 5533 bool check_pkey, check_write, ff, uf, wf, pte_user; 5534 5535 pfec = bit << 1; 5536 ff = pfec & PFERR_FETCH_MASK; 5537 uf = pfec & PFERR_USER_MASK; 5538 wf = pfec & PFERR_WRITE_MASK; 5539 5540 /* PFEC.RSVD is replaced by ACC_USER_MASK. */ 5541 pte_user = pfec & PFERR_RSVD_MASK; 5542 5543 /* 5544 * Only need to check the access which is not an 5545 * instruction fetch and is to a user page. 5546 */ 5547 check_pkey = (!ff && pte_user); 5548 /* 5549 * write access is controlled by PKRU if it is a 5550 * user access or CR0.WP = 1. 5551 */ 5552 check_write = check_pkey && wf && (uf || wp); 5553 5554 /* PKRU.AD stops both read and write access. */ 5555 pkey_bits = !!check_pkey; 5556 /* PKRU.WD stops write access. */ 5557 pkey_bits |= (!!check_write) << 1; 5558 5559 mmu->pkru_mask |= (pkey_bits & 3) << pfec; 5560 } 5561 } 5562 5563 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu, 5564 struct kvm_mmu *mmu) 5565 { 5566 if (!is_cr0_pg(mmu)) 5567 return; 5568 5569 reset_guest_rsvds_bits_mask(vcpu, mmu); 5570 update_permission_bitmask(mmu, false); 5571 update_pkru_bitmask(mmu); 5572 } 5573 5574 static void paging64_init_context(struct kvm_mmu *context) 5575 { 5576 context->page_fault = paging64_page_fault; 5577 context->gva_to_gpa = paging64_gva_to_gpa; 5578 context->sync_spte = paging64_sync_spte; 5579 } 5580 5581 static void paging32_init_context(struct kvm_mmu *context) 5582 { 5583 context->page_fault = paging32_page_fault; 5584 context->gva_to_gpa = paging32_gva_to_gpa; 5585 context->sync_spte = paging32_sync_spte; 5586 } 5587 5588 static union kvm_cpu_role kvm_calc_cpu_role(struct kvm_vcpu *vcpu, 5589 const struct kvm_mmu_role_regs *regs) 5590 { 5591 union kvm_cpu_role role = {0}; 5592 5593 role.base.access = ACC_ALL; 5594 role.base.smm = is_smm(vcpu); 5595 role.base.guest_mode = is_guest_mode(vcpu); 5596 role.ext.valid = 1; 5597 5598 if (!____is_cr0_pg(regs)) { 5599 role.base.direct = 1; 5600 return role; 5601 } 5602 5603 role.base.efer_nx = ____is_efer_nx(regs); 5604 role.base.cr0_wp = ____is_cr0_wp(regs); 5605 role.base.smep_andnot_wp = ____is_cr4_smep(regs) && !____is_cr0_wp(regs); 5606 role.base.smap_andnot_wp = ____is_cr4_smap(regs) && !____is_cr0_wp(regs); 5607 role.base.has_4_byte_gpte = !____is_cr4_pae(regs); 5608 5609 if (____is_efer_lma(regs)) 5610 role.base.level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL 5611 : PT64_ROOT_4LEVEL; 5612 else if (____is_cr4_pae(regs)) 5613 role.base.level = PT32E_ROOT_LEVEL; 5614 else 5615 role.base.level = PT32_ROOT_LEVEL; 5616 5617 role.ext.cr4_smep = ____is_cr4_smep(regs); 5618 role.ext.cr4_smap = ____is_cr4_smap(regs); 5619 role.ext.cr4_pse = ____is_cr4_pse(regs); 5620 5621 /* PKEY and LA57 are active iff long mode is active. */ 5622 role.ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs); 5623 role.ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs); 5624 role.ext.efer_lma = ____is_efer_lma(regs); 5625 return role; 5626 } 5627 5628 void __kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu, 5629 struct kvm_mmu *mmu) 5630 { 5631 const bool cr0_wp = kvm_is_cr0_bit_set(vcpu, X86_CR0_WP); 5632 5633 BUILD_BUG_ON((KVM_MMU_CR0_ROLE_BITS & KVM_POSSIBLE_CR0_GUEST_BITS) != X86_CR0_WP); 5634 BUILD_BUG_ON((KVM_MMU_CR4_ROLE_BITS & KVM_POSSIBLE_CR4_GUEST_BITS)); 5635 5636 if (is_cr0_wp(mmu) == cr0_wp) 5637 return; 5638 5639 mmu->cpu_role.base.cr0_wp = cr0_wp; 5640 reset_guest_paging_metadata(vcpu, mmu); 5641 } 5642 5643 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu) 5644 { 5645 int maxpa; 5646 5647 if (vcpu->kvm->arch.vm_type == KVM_X86_TDX_VM) 5648 maxpa = cpuid_query_maxguestphyaddr(vcpu); 5649 else 5650 maxpa = cpuid_maxphyaddr(vcpu); 5651 5652 /* tdp_root_level is architecture forced level, use it if nonzero */ 5653 if (tdp_root_level) 5654 return tdp_root_level; 5655 5656 /* Use 5-level TDP if and only if it's useful/necessary. */ 5657 if (max_tdp_level == 5 && maxpa <= 48) 5658 return 4; 5659 5660 return max_tdp_level; 5661 } 5662 5663 u8 kvm_mmu_get_max_tdp_level(void) 5664 { 5665 return tdp_root_level ? tdp_root_level : max_tdp_level; 5666 } 5667 5668 static union kvm_mmu_page_role 5669 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, 5670 union kvm_cpu_role cpu_role) 5671 { 5672 union kvm_mmu_page_role role = {0}; 5673 5674 role.access = ACC_ALL; 5675 role.cr0_wp = true; 5676 role.efer_nx = true; 5677 role.smm = cpu_role.base.smm; 5678 role.guest_mode = cpu_role.base.guest_mode; 5679 role.ad_disabled = !kvm_ad_enabled; 5680 role.level = kvm_mmu_get_tdp_level(vcpu); 5681 role.direct = true; 5682 role.has_4_byte_gpte = false; 5683 5684 return role; 5685 } 5686 5687 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu, 5688 union kvm_cpu_role cpu_role) 5689 { 5690 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5691 union kvm_mmu_page_role root_role = kvm_calc_tdp_mmu_root_page_role(vcpu, cpu_role); 5692 5693 if (cpu_role.as_u64 == context->cpu_role.as_u64 && 5694 root_role.word == context->root_role.word) 5695 return; 5696 5697 context->cpu_role.as_u64 = cpu_role.as_u64; 5698 context->root_role.word = root_role.word; 5699 context->page_fault = kvm_tdp_page_fault; 5700 context->sync_spte = NULL; 5701 context->get_guest_pgd = get_guest_cr3; 5702 context->get_pdptr = kvm_pdptr_read; 5703 context->inject_page_fault = kvm_inject_page_fault; 5704 5705 if (!is_cr0_pg(context)) 5706 context->gva_to_gpa = nonpaging_gva_to_gpa; 5707 else if (is_cr4_pae(context)) 5708 context->gva_to_gpa = paging64_gva_to_gpa; 5709 else 5710 context->gva_to_gpa = paging32_gva_to_gpa; 5711 5712 reset_guest_paging_metadata(vcpu, context); 5713 reset_tdp_shadow_zero_bits_mask(context); 5714 } 5715 5716 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context, 5717 union kvm_cpu_role cpu_role, 5718 union kvm_mmu_page_role root_role) 5719 { 5720 if (cpu_role.as_u64 == context->cpu_role.as_u64 && 5721 root_role.word == context->root_role.word) 5722 return; 5723 5724 context->cpu_role.as_u64 = cpu_role.as_u64; 5725 context->root_role.word = root_role.word; 5726 5727 if (!is_cr0_pg(context)) 5728 nonpaging_init_context(context); 5729 else if (is_cr4_pae(context)) 5730 paging64_init_context(context); 5731 else 5732 paging32_init_context(context); 5733 5734 reset_guest_paging_metadata(vcpu, context); 5735 reset_shadow_zero_bits_mask(vcpu, context); 5736 } 5737 5738 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, 5739 union kvm_cpu_role cpu_role) 5740 { 5741 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5742 union kvm_mmu_page_role root_role; 5743 5744 root_role = cpu_role.base; 5745 5746 /* KVM uses PAE paging whenever the guest isn't using 64-bit paging. */ 5747 root_role.level = max_t(u32, root_role.level, PT32E_ROOT_LEVEL); 5748 5749 /* 5750 * KVM forces EFER.NX=1 when TDP is disabled, reflect it in the MMU role. 5751 * KVM uses NX when TDP is disabled to handle a variety of scenarios, 5752 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and 5753 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0. 5754 * The iTLB multi-hit workaround can be toggled at any time, so assume 5755 * NX can be used by any non-nested shadow MMU to avoid having to reset 5756 * MMU contexts. 5757 */ 5758 root_role.efer_nx = true; 5759 5760 shadow_mmu_init_context(vcpu, context, cpu_role, root_role); 5761 } 5762 5763 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0, 5764 unsigned long cr4, u64 efer, gpa_t nested_cr3) 5765 { 5766 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 5767 struct kvm_mmu_role_regs regs = { 5768 .cr0 = cr0, 5769 .cr4 = cr4 & ~X86_CR4_PKE, 5770 .efer = efer, 5771 }; 5772 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); 5773 union kvm_mmu_page_role root_role; 5774 5775 /* NPT requires CR0.PG=1. */ 5776 WARN_ON_ONCE(cpu_role.base.direct || !cpu_role.base.guest_mode); 5777 5778 root_role = cpu_role.base; 5779 root_role.level = kvm_mmu_get_tdp_level(vcpu); 5780 if (root_role.level == PT64_ROOT_5LEVEL && 5781 cpu_role.base.level == PT64_ROOT_4LEVEL) 5782 root_role.passthrough = 1; 5783 5784 shadow_mmu_init_context(vcpu, context, cpu_role, root_role); 5785 kvm_mmu_new_pgd(vcpu, nested_cr3); 5786 } 5787 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu); 5788 5789 static union kvm_cpu_role 5790 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty, 5791 bool execonly, u8 level) 5792 { 5793 union kvm_cpu_role role = {0}; 5794 5795 /* 5796 * KVM does not support SMM transfer monitors, and consequently does not 5797 * support the "entry to SMM" control either. role.base.smm is always 0. 5798 */ 5799 WARN_ON_ONCE(is_smm(vcpu)); 5800 role.base.level = level; 5801 role.base.has_4_byte_gpte = false; 5802 role.base.direct = false; 5803 role.base.ad_disabled = !accessed_dirty; 5804 role.base.guest_mode = true; 5805 role.base.access = ACC_ALL; 5806 5807 role.ext.word = 0; 5808 role.ext.execonly = execonly; 5809 role.ext.valid = 1; 5810 5811 return role; 5812 } 5813 5814 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, 5815 int huge_page_level, bool accessed_dirty, 5816 gpa_t new_eptp) 5817 { 5818 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 5819 u8 level = vmx_eptp_page_walk_level(new_eptp); 5820 union kvm_cpu_role new_mode = 5821 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty, 5822 execonly, level); 5823 5824 if (new_mode.as_u64 != context->cpu_role.as_u64) { 5825 /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */ 5826 context->cpu_role.as_u64 = new_mode.as_u64; 5827 context->root_role.word = new_mode.base.word; 5828 5829 context->page_fault = ept_page_fault; 5830 context->gva_to_gpa = ept_gva_to_gpa; 5831 context->sync_spte = ept_sync_spte; 5832 5833 update_permission_bitmask(context, true); 5834 context->pkru_mask = 0; 5835 reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level); 5836 reset_ept_shadow_zero_bits_mask(context, execonly); 5837 } 5838 5839 kvm_mmu_new_pgd(vcpu, new_eptp); 5840 } 5841 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); 5842 5843 static void init_kvm_softmmu(struct kvm_vcpu *vcpu, 5844 union kvm_cpu_role cpu_role) 5845 { 5846 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5847 5848 kvm_init_shadow_mmu(vcpu, cpu_role); 5849 5850 context->get_guest_pgd = get_guest_cr3; 5851 context->get_pdptr = kvm_pdptr_read; 5852 context->inject_page_fault = kvm_inject_page_fault; 5853 } 5854 5855 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu, 5856 union kvm_cpu_role new_mode) 5857 { 5858 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; 5859 5860 if (new_mode.as_u64 == g_context->cpu_role.as_u64) 5861 return; 5862 5863 g_context->cpu_role.as_u64 = new_mode.as_u64; 5864 g_context->get_guest_pgd = get_guest_cr3; 5865 g_context->get_pdptr = kvm_pdptr_read; 5866 g_context->inject_page_fault = kvm_inject_page_fault; 5867 5868 /* 5869 * L2 page tables are never shadowed, so there is no need to sync 5870 * SPTEs. 5871 */ 5872 g_context->sync_spte = NULL; 5873 5874 /* 5875 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using 5876 * L1's nested page tables (e.g. EPT12). The nested translation 5877 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using 5878 * L2's page tables as the first level of translation and L1's 5879 * nested page tables as the second level of translation. Basically 5880 * the gva_to_gpa functions between mmu and nested_mmu are swapped. 5881 */ 5882 if (!is_paging(vcpu)) 5883 g_context->gva_to_gpa = nonpaging_gva_to_gpa; 5884 else if (is_long_mode(vcpu)) 5885 g_context->gva_to_gpa = paging64_gva_to_gpa; 5886 else if (is_pae(vcpu)) 5887 g_context->gva_to_gpa = paging64_gva_to_gpa; 5888 else 5889 g_context->gva_to_gpa = paging32_gva_to_gpa; 5890 5891 reset_guest_paging_metadata(vcpu, g_context); 5892 } 5893 5894 void kvm_init_mmu(struct kvm_vcpu *vcpu) 5895 { 5896 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 5897 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); 5898 5899 if (mmu_is_nested(vcpu)) 5900 init_kvm_nested_mmu(vcpu, cpu_role); 5901 else if (tdp_enabled) 5902 init_kvm_tdp_mmu(vcpu, cpu_role); 5903 else 5904 init_kvm_softmmu(vcpu, cpu_role); 5905 } 5906 EXPORT_SYMBOL_GPL(kvm_init_mmu); 5907 5908 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu) 5909 { 5910 /* 5911 * Invalidate all MMU roles to force them to reinitialize as CPUID 5912 * information is factored into reserved bit calculations. 5913 * 5914 * Correctly handling multiple vCPU models with respect to paging and 5915 * physical address properties) in a single VM would require tracking 5916 * all relevant CPUID information in kvm_mmu_page_role. That is very 5917 * undesirable as it would increase the memory requirements for 5918 * gfn_write_track (see struct kvm_mmu_page_role comments). For now 5919 * that problem is swept under the rug; KVM's CPUID API is horrific and 5920 * it's all but impossible to solve it without introducing a new API. 5921 */ 5922 vcpu->arch.root_mmu.root_role.invalid = 1; 5923 vcpu->arch.guest_mmu.root_role.invalid = 1; 5924 vcpu->arch.nested_mmu.root_role.invalid = 1; 5925 vcpu->arch.root_mmu.cpu_role.ext.valid = 0; 5926 vcpu->arch.guest_mmu.cpu_role.ext.valid = 0; 5927 vcpu->arch.nested_mmu.cpu_role.ext.valid = 0; 5928 kvm_mmu_reset_context(vcpu); 5929 5930 /* 5931 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in 5932 * kvm_arch_vcpu_ioctl(). 5933 */ 5934 KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm); 5935 } 5936 5937 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu) 5938 { 5939 kvm_mmu_unload(vcpu); 5940 kvm_init_mmu(vcpu); 5941 } 5942 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); 5943 5944 int kvm_mmu_load(struct kvm_vcpu *vcpu) 5945 { 5946 int r; 5947 5948 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->root_role.direct); 5949 if (r) 5950 goto out; 5951 r = mmu_alloc_special_roots(vcpu); 5952 if (r) 5953 goto out; 5954 if (vcpu->arch.mmu->root_role.direct) 5955 r = mmu_alloc_direct_roots(vcpu); 5956 else 5957 r = mmu_alloc_shadow_roots(vcpu); 5958 if (r) 5959 goto out; 5960 5961 kvm_mmu_sync_roots(vcpu); 5962 5963 kvm_mmu_load_pgd(vcpu); 5964 5965 /* 5966 * Flush any TLB entries for the new root, the provenance of the root 5967 * is unknown. Even if KVM ensures there are no stale TLB entries 5968 * for a freed root, in theory another hypervisor could have left 5969 * stale entries. Flushing on alloc also allows KVM to skip the TLB 5970 * flush when freeing a root (see kvm_tdp_mmu_put_root()). 5971 */ 5972 kvm_x86_call(flush_tlb_current)(vcpu); 5973 out: 5974 return r; 5975 } 5976 EXPORT_SYMBOL_GPL(kvm_mmu_load); 5977 5978 void kvm_mmu_unload(struct kvm_vcpu *vcpu) 5979 { 5980 struct kvm *kvm = vcpu->kvm; 5981 5982 kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL); 5983 WARN_ON_ONCE(VALID_PAGE(vcpu->arch.root_mmu.root.hpa)); 5984 kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); 5985 WARN_ON_ONCE(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa)); 5986 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 5987 } 5988 5989 static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa) 5990 { 5991 struct kvm_mmu_page *sp; 5992 5993 if (!VALID_PAGE(root_hpa)) 5994 return false; 5995 5996 /* 5997 * When freeing obsolete roots, treat roots as obsolete if they don't 5998 * have an associated shadow page, as it's impossible to determine if 5999 * such roots are fresh or stale. This does mean KVM will get false 6000 * positives and free roots that don't strictly need to be freed, but 6001 * such false positives are relatively rare: 6002 * 6003 * (a) only PAE paging and nested NPT have roots without shadow pages 6004 * (or any shadow paging flavor with a dummy root, see note below) 6005 * (b) remote reloads due to a memslot update obsoletes _all_ roots 6006 * (c) KVM doesn't track previous roots for PAE paging, and the guest 6007 * is unlikely to zap an in-use PGD. 6008 * 6009 * Note! Dummy roots are unique in that they are obsoleted by memslot 6010 * _creation_! See also FNAME(fetch). 6011 */ 6012 sp = root_to_sp(root_hpa); 6013 return !sp || is_obsolete_sp(kvm, sp); 6014 } 6015 6016 static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu) 6017 { 6018 unsigned long roots_to_free = 0; 6019 int i; 6020 6021 if (is_obsolete_root(kvm, mmu->root.hpa)) 6022 roots_to_free |= KVM_MMU_ROOT_CURRENT; 6023 6024 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 6025 if (is_obsolete_root(kvm, mmu->prev_roots[i].hpa)) 6026 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 6027 } 6028 6029 if (roots_to_free) 6030 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 6031 } 6032 6033 void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu) 6034 { 6035 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu); 6036 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu); 6037 } 6038 EXPORT_SYMBOL_GPL(kvm_mmu_free_obsolete_roots); 6039 6040 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, 6041 int *bytes) 6042 { 6043 u64 gentry = 0; 6044 int r; 6045 6046 /* 6047 * Assume that the pte write on a page table of the same type 6048 * as the current vcpu paging mode since we update the sptes only 6049 * when they have the same mode. 6050 */ 6051 if (is_pae(vcpu) && *bytes == 4) { 6052 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ 6053 *gpa &= ~(gpa_t)7; 6054 *bytes = 8; 6055 } 6056 6057 if (*bytes == 4 || *bytes == 8) { 6058 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes); 6059 if (r) 6060 gentry = 0; 6061 } 6062 6063 return gentry; 6064 } 6065 6066 /* 6067 * If we're seeing too many writes to a page, it may no longer be a page table, 6068 * or we may be forking, in which case it is better to unmap the page. 6069 */ 6070 static bool detect_write_flooding(struct kvm_mmu_page *sp) 6071 { 6072 /* 6073 * Skip write-flooding detected for the sp whose level is 1, because 6074 * it can become unsync, then the guest page is not write-protected. 6075 */ 6076 if (sp->role.level == PG_LEVEL_4K) 6077 return false; 6078 6079 atomic_inc(&sp->write_flooding_count); 6080 return atomic_read(&sp->write_flooding_count) >= 3; 6081 } 6082 6083 /* 6084 * Misaligned accesses are too much trouble to fix up; also, they usually 6085 * indicate a page is not used as a page table. 6086 */ 6087 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, 6088 int bytes) 6089 { 6090 unsigned offset, pte_size, misaligned; 6091 6092 offset = offset_in_page(gpa); 6093 pte_size = sp->role.has_4_byte_gpte ? 4 : 8; 6094 6095 /* 6096 * Sometimes, the OS only writes the last one bytes to update status 6097 * bits, for example, in linux, andb instruction is used in clear_bit(). 6098 */ 6099 if (!(offset & (pte_size - 1)) && bytes == 1) 6100 return false; 6101 6102 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); 6103 misaligned |= bytes < 4; 6104 6105 return misaligned; 6106 } 6107 6108 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) 6109 { 6110 unsigned page_offset, quadrant; 6111 u64 *spte; 6112 int level; 6113 6114 page_offset = offset_in_page(gpa); 6115 level = sp->role.level; 6116 *nspte = 1; 6117 if (sp->role.has_4_byte_gpte) { 6118 page_offset <<= 1; /* 32->64 */ 6119 /* 6120 * A 32-bit pde maps 4MB while the shadow pdes map 6121 * only 2MB. So we need to double the offset again 6122 * and zap two pdes instead of one. 6123 */ 6124 if (level == PT32_ROOT_LEVEL) { 6125 page_offset &= ~7; /* kill rounding error */ 6126 page_offset <<= 1; 6127 *nspte = 2; 6128 } 6129 quadrant = page_offset >> PAGE_SHIFT; 6130 page_offset &= ~PAGE_MASK; 6131 if (quadrant != sp->role.quadrant) 6132 return NULL; 6133 } 6134 6135 spte = &sp->spt[page_offset / sizeof(*spte)]; 6136 return spte; 6137 } 6138 6139 void kvm_mmu_track_write(struct kvm_vcpu *vcpu, gpa_t gpa, const u8 *new, 6140 int bytes) 6141 { 6142 gfn_t gfn = gpa >> PAGE_SHIFT; 6143 struct kvm_mmu_page *sp; 6144 LIST_HEAD(invalid_list); 6145 u64 entry, gentry, *spte; 6146 int npte; 6147 bool flush = false; 6148 6149 /* 6150 * When emulating guest writes, ensure the written value is visible to 6151 * any task that is handling page faults before checking whether or not 6152 * KVM is shadowing a guest PTE. This ensures either KVM will create 6153 * the correct SPTE in the page fault handler, or this task will see 6154 * a non-zero indirect_shadow_pages. Pairs with the smp_mb() in 6155 * account_shadowed(). 6156 */ 6157 smp_mb(); 6158 if (!vcpu->kvm->arch.indirect_shadow_pages) 6159 return; 6160 6161 write_lock(&vcpu->kvm->mmu_lock); 6162 6163 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes); 6164 6165 ++vcpu->kvm->stat.mmu_pte_write; 6166 6167 for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) { 6168 if (detect_write_misaligned(sp, gpa, bytes) || 6169 detect_write_flooding(sp)) { 6170 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); 6171 ++vcpu->kvm->stat.mmu_flooded; 6172 continue; 6173 } 6174 6175 spte = get_written_sptes(sp, gpa, &npte); 6176 if (!spte) 6177 continue; 6178 6179 while (npte--) { 6180 entry = *spte; 6181 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL); 6182 if (gentry && sp->role.level != PG_LEVEL_4K) 6183 ++vcpu->kvm->stat.mmu_pde_zapped; 6184 if (is_shadow_present_pte(entry)) 6185 flush = true; 6186 ++spte; 6187 } 6188 } 6189 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 6190 write_unlock(&vcpu->kvm->mmu_lock); 6191 } 6192 6193 static bool is_write_to_guest_page_table(u64 error_code) 6194 { 6195 const u64 mask = PFERR_GUEST_PAGE_MASK | PFERR_WRITE_MASK | PFERR_PRESENT_MASK; 6196 6197 return (error_code & mask) == mask; 6198 } 6199 6200 static int kvm_mmu_write_protect_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 6201 u64 error_code, int *emulation_type) 6202 { 6203 bool direct = vcpu->arch.mmu->root_role.direct; 6204 6205 /* 6206 * Do not try to unprotect and retry if the vCPU re-faulted on the same 6207 * RIP with the same address that was previously unprotected, as doing 6208 * so will likely put the vCPU into an infinite. E.g. if the vCPU uses 6209 * a non-page-table modifying instruction on the PDE that points to the 6210 * instruction, then unprotecting the gfn will unmap the instruction's 6211 * code, i.e. make it impossible for the instruction to ever complete. 6212 */ 6213 if (vcpu->arch.last_retry_eip == kvm_rip_read(vcpu) && 6214 vcpu->arch.last_retry_addr == cr2_or_gpa) 6215 return RET_PF_EMULATE; 6216 6217 /* 6218 * Reset the unprotect+retry values that guard against infinite loops. 6219 * The values will be refreshed if KVM explicitly unprotects a gfn and 6220 * retries, in all other cases it's safe to retry in the future even if 6221 * the next page fault happens on the same RIP+address. 6222 */ 6223 vcpu->arch.last_retry_eip = 0; 6224 vcpu->arch.last_retry_addr = 0; 6225 6226 /* 6227 * It should be impossible to reach this point with an MMIO cache hit, 6228 * as RET_PF_WRITE_PROTECTED is returned if and only if there's a valid, 6229 * writable memslot, and creating a memslot should invalidate the MMIO 6230 * cache by way of changing the memslot generation. WARN and disallow 6231 * retry if MMIO is detected, as retrying MMIO emulation is pointless 6232 * and could put the vCPU into an infinite loop because the processor 6233 * will keep faulting on the non-existent MMIO address. 6234 */ 6235 if (WARN_ON_ONCE(mmio_info_in_cache(vcpu, cr2_or_gpa, direct))) 6236 return RET_PF_EMULATE; 6237 6238 /* 6239 * Before emulating the instruction, check to see if the access was due 6240 * to a read-only violation while the CPU was walking non-nested NPT 6241 * page tables, i.e. for a direct MMU, for _guest_ page tables in L1. 6242 * If L1 is sharing (a subset of) its page tables with L2, e.g. by 6243 * having nCR3 share lower level page tables with hCR3, then when KVM 6244 * (L0) write-protects the nested NPTs, i.e. npt12 entries, KVM is also 6245 * unknowingly write-protecting L1's guest page tables, which KVM isn't 6246 * shadowing. 6247 * 6248 * Because the CPU (by default) walks NPT page tables using a write 6249 * access (to ensure the CPU can do A/D updates), page walks in L1 can 6250 * trigger write faults for the above case even when L1 isn't modifying 6251 * PTEs. As a result, KVM will unnecessarily emulate (or at least, try 6252 * to emulate) an excessive number of L1 instructions; because L1's MMU 6253 * isn't shadowed by KVM, there is no need to write-protect L1's gPTEs 6254 * and thus no need to emulate in order to guarantee forward progress. 6255 * 6256 * Try to unprotect the gfn, i.e. zap any shadow pages, so that L1 can 6257 * proceed without triggering emulation. If one or more shadow pages 6258 * was zapped, skip emulation and resume L1 to let it natively execute 6259 * the instruction. If no shadow pages were zapped, then the write- 6260 * fault is due to something else entirely, i.e. KVM needs to emulate, 6261 * as resuming the guest will put it into an infinite loop. 6262 * 6263 * Note, this code also applies to Intel CPUs, even though it is *very* 6264 * unlikely that an L1 will share its page tables (IA32/PAE/paging64 6265 * format) with L2's page tables (EPT format). 6266 * 6267 * For indirect MMUs, i.e. if KVM is shadowing the current MMU, try to 6268 * unprotect the gfn and retry if an event is awaiting reinjection. If 6269 * KVM emulates multiple instructions before completing event injection, 6270 * the event could be delayed beyond what is architecturally allowed, 6271 * e.g. KVM could inject an IRQ after the TPR has been raised. 6272 */ 6273 if (((direct && is_write_to_guest_page_table(error_code)) || 6274 (!direct && kvm_event_needs_reinjection(vcpu))) && 6275 kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa)) 6276 return RET_PF_RETRY; 6277 6278 /* 6279 * The gfn is write-protected, but if KVM detects its emulating an 6280 * instruction that is unlikely to be used to modify page tables, or if 6281 * emulation fails, KVM can try to unprotect the gfn and let the CPU 6282 * re-execute the instruction that caused the page fault. Do not allow 6283 * retrying an instruction from a nested guest as KVM is only explicitly 6284 * shadowing L1's page tables, i.e. unprotecting something for L1 isn't 6285 * going to magically fix whatever issue caused L2 to fail. 6286 */ 6287 if (!is_guest_mode(vcpu)) 6288 *emulation_type |= EMULTYPE_ALLOW_RETRY_PF; 6289 6290 return RET_PF_EMULATE; 6291 } 6292 6293 int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 6294 void *insn, int insn_len) 6295 { 6296 int r, emulation_type = EMULTYPE_PF; 6297 bool direct = vcpu->arch.mmu->root_role.direct; 6298 6299 if (WARN_ON_ONCE(!VALID_PAGE(vcpu->arch.mmu->root.hpa))) 6300 return RET_PF_RETRY; 6301 6302 /* 6303 * Except for reserved faults (emulated MMIO is shared-only), set the 6304 * PFERR_PRIVATE_ACCESS flag for software-protected VMs based on the gfn's 6305 * current attributes, which are the source of truth for such VMs. Note, 6306 * this wrong for nested MMUs as the GPA is an L2 GPA, but KVM doesn't 6307 * currently supported nested virtualization (among many other things) 6308 * for software-protected VMs. 6309 */ 6310 if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && 6311 !(error_code & PFERR_RSVD_MASK) && 6312 vcpu->kvm->arch.vm_type == KVM_X86_SW_PROTECTED_VM && 6313 kvm_mem_is_private(vcpu->kvm, gpa_to_gfn(cr2_or_gpa))) 6314 error_code |= PFERR_PRIVATE_ACCESS; 6315 6316 r = RET_PF_INVALID; 6317 if (unlikely(error_code & PFERR_RSVD_MASK)) { 6318 if (WARN_ON_ONCE(error_code & PFERR_PRIVATE_ACCESS)) 6319 return -EFAULT; 6320 6321 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct); 6322 if (r == RET_PF_EMULATE) 6323 goto emulate; 6324 } 6325 6326 if (r == RET_PF_INVALID) { 6327 vcpu->stat.pf_taken++; 6328 6329 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, error_code, false, 6330 &emulation_type, NULL); 6331 if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm)) 6332 return -EIO; 6333 } 6334 6335 if (r < 0) 6336 return r; 6337 6338 if (r == RET_PF_WRITE_PROTECTED) 6339 r = kvm_mmu_write_protect_fault(vcpu, cr2_or_gpa, error_code, 6340 &emulation_type); 6341 6342 if (r == RET_PF_FIXED) 6343 vcpu->stat.pf_fixed++; 6344 else if (r == RET_PF_EMULATE) 6345 vcpu->stat.pf_emulate++; 6346 else if (r == RET_PF_SPURIOUS) 6347 vcpu->stat.pf_spurious++; 6348 6349 /* 6350 * None of handle_mmio_page_fault(), kvm_mmu_do_page_fault(), or 6351 * kvm_mmu_write_protect_fault() return RET_PF_CONTINUE. 6352 * kvm_mmu_do_page_fault() only uses RET_PF_CONTINUE internally to 6353 * indicate continuing the page fault handling until to the final 6354 * page table mapping phase. 6355 */ 6356 WARN_ON_ONCE(r == RET_PF_CONTINUE); 6357 if (r != RET_PF_EMULATE) 6358 return r; 6359 6360 emulate: 6361 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn, 6362 insn_len); 6363 } 6364 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); 6365 6366 void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg) 6367 { 6368 u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; 6369 int root_level, leaf, level; 6370 6371 leaf = get_sptes_lockless(vcpu, gpa, sptes, &root_level); 6372 if (unlikely(leaf < 0)) 6373 return; 6374 6375 pr_err("%s %llx", msg, gpa); 6376 for (level = root_level; level >= leaf; level--) 6377 pr_cont(", spte[%d] = 0x%llx", level, sptes[level]); 6378 pr_cont("\n"); 6379 } 6380 EXPORT_SYMBOL_GPL(kvm_mmu_print_sptes); 6381 6382 static void __kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 6383 u64 addr, hpa_t root_hpa) 6384 { 6385 struct kvm_shadow_walk_iterator iterator; 6386 6387 vcpu_clear_mmio_info(vcpu, addr); 6388 6389 /* 6390 * Walking and synchronizing SPTEs both assume they are operating in 6391 * the context of the current MMU, and would need to be reworked if 6392 * this is ever used to sync the guest_mmu, e.g. to emulate INVEPT. 6393 */ 6394 if (WARN_ON_ONCE(mmu != vcpu->arch.mmu)) 6395 return; 6396 6397 if (!VALID_PAGE(root_hpa)) 6398 return; 6399 6400 write_lock(&vcpu->kvm->mmu_lock); 6401 for_each_shadow_entry_using_root(vcpu, root_hpa, addr, iterator) { 6402 struct kvm_mmu_page *sp = sptep_to_sp(iterator.sptep); 6403 6404 if (sp->unsync) { 6405 int ret = kvm_sync_spte(vcpu, sp, iterator.index); 6406 6407 if (ret < 0) 6408 mmu_page_zap_pte(vcpu->kvm, sp, iterator.sptep, NULL); 6409 if (ret) 6410 kvm_flush_remote_tlbs_sptep(vcpu->kvm, iterator.sptep); 6411 } 6412 6413 if (!sp->unsync_children) 6414 break; 6415 } 6416 write_unlock(&vcpu->kvm->mmu_lock); 6417 } 6418 6419 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 6420 u64 addr, unsigned long roots) 6421 { 6422 int i; 6423 6424 WARN_ON_ONCE(roots & ~KVM_MMU_ROOTS_ALL); 6425 6426 /* It's actually a GPA for vcpu->arch.guest_mmu. */ 6427 if (mmu != &vcpu->arch.guest_mmu) { 6428 /* INVLPG on a non-canonical address is a NOP according to the SDM. */ 6429 if (is_noncanonical_invlpg_address(addr, vcpu)) 6430 return; 6431 6432 kvm_x86_call(flush_tlb_gva)(vcpu, addr); 6433 } 6434 6435 if (!mmu->sync_spte) 6436 return; 6437 6438 if (roots & KVM_MMU_ROOT_CURRENT) 6439 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->root.hpa); 6440 6441 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 6442 if (roots & KVM_MMU_ROOT_PREVIOUS(i)) 6443 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->prev_roots[i].hpa); 6444 } 6445 } 6446 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_addr); 6447 6448 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) 6449 { 6450 /* 6451 * INVLPG is required to invalidate any global mappings for the VA, 6452 * irrespective of PCID. Blindly sync all roots as it would take 6453 * roughly the same amount of work/time to determine whether any of the 6454 * previous roots have a global mapping. 6455 * 6456 * Mappings not reachable via the current or previous cached roots will 6457 * be synced when switching to that new cr3, so nothing needs to be 6458 * done here for them. 6459 */ 6460 kvm_mmu_invalidate_addr(vcpu, vcpu->arch.walk_mmu, gva, KVM_MMU_ROOTS_ALL); 6461 ++vcpu->stat.invlpg; 6462 } 6463 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); 6464 6465 6466 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid) 6467 { 6468 struct kvm_mmu *mmu = vcpu->arch.mmu; 6469 unsigned long roots = 0; 6470 uint i; 6471 6472 if (pcid == kvm_get_active_pcid(vcpu)) 6473 roots |= KVM_MMU_ROOT_CURRENT; 6474 6475 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 6476 if (VALID_PAGE(mmu->prev_roots[i].hpa) && 6477 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) 6478 roots |= KVM_MMU_ROOT_PREVIOUS(i); 6479 } 6480 6481 if (roots) 6482 kvm_mmu_invalidate_addr(vcpu, mmu, gva, roots); 6483 ++vcpu->stat.invlpg; 6484 6485 /* 6486 * Mappings not reachable via the current cr3 or the prev_roots will be 6487 * synced when switching to that cr3, so nothing needs to be done here 6488 * for them. 6489 */ 6490 } 6491 6492 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 6493 int tdp_max_root_level, int tdp_huge_page_level) 6494 { 6495 tdp_enabled = enable_tdp; 6496 tdp_root_level = tdp_forced_root_level; 6497 max_tdp_level = tdp_max_root_level; 6498 6499 #ifdef CONFIG_X86_64 6500 tdp_mmu_enabled = tdp_mmu_allowed && tdp_enabled; 6501 #endif 6502 /* 6503 * max_huge_page_level reflects KVM's MMU capabilities irrespective 6504 * of kernel support, e.g. KVM may be capable of using 1GB pages when 6505 * the kernel is not. But, KVM never creates a page size greater than 6506 * what is used by the kernel for any given HVA, i.e. the kernel's 6507 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust(). 6508 */ 6509 if (tdp_enabled) 6510 max_huge_page_level = tdp_huge_page_level; 6511 else if (boot_cpu_has(X86_FEATURE_GBPAGES)) 6512 max_huge_page_level = PG_LEVEL_1G; 6513 else 6514 max_huge_page_level = PG_LEVEL_2M; 6515 } 6516 EXPORT_SYMBOL_GPL(kvm_configure_mmu); 6517 6518 static void free_mmu_pages(struct kvm_mmu *mmu) 6519 { 6520 if (!tdp_enabled && mmu->pae_root) 6521 set_memory_encrypted((unsigned long)mmu->pae_root, 1); 6522 free_page((unsigned long)mmu->pae_root); 6523 free_page((unsigned long)mmu->pml4_root); 6524 free_page((unsigned long)mmu->pml5_root); 6525 } 6526 6527 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 6528 { 6529 struct page *page; 6530 int i; 6531 6532 mmu->root.hpa = INVALID_PAGE; 6533 mmu->root.pgd = 0; 6534 mmu->mirror_root_hpa = INVALID_PAGE; 6535 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 6536 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 6537 6538 /* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */ 6539 if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu) 6540 return 0; 6541 6542 /* 6543 * When using PAE paging, the four PDPTEs are treated as 'root' pages, 6544 * while the PDP table is a per-vCPU construct that's allocated at MMU 6545 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on 6546 * x86_64. Therefore we need to allocate the PDP table in the first 6547 * 4GB of memory, which happens to fit the DMA32 zone. TDP paging 6548 * generally doesn't use PAE paging and can skip allocating the PDP 6549 * table. The main exception, handled here, is SVM's 32-bit NPT. The 6550 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit 6551 * KVM; that horror is handled on-demand by mmu_alloc_special_roots(). 6552 */ 6553 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL) 6554 return 0; 6555 6556 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32); 6557 if (!page) 6558 return -ENOMEM; 6559 6560 mmu->pae_root = page_address(page); 6561 6562 /* 6563 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to 6564 * get the CPU to treat the PDPTEs as encrypted. Decrypt the page so 6565 * that KVM's writes and the CPU's reads get along. Note, this is 6566 * only necessary when using shadow paging, as 64-bit NPT can get at 6567 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported 6568 * by 32-bit kernels (when KVM itself uses 32-bit NPT). 6569 */ 6570 if (!tdp_enabled) 6571 set_memory_decrypted((unsigned long)mmu->pae_root, 1); 6572 else 6573 WARN_ON_ONCE(shadow_me_value); 6574 6575 for (i = 0; i < 4; ++i) 6576 mmu->pae_root[i] = INVALID_PAE_ROOT; 6577 6578 return 0; 6579 } 6580 6581 int kvm_mmu_create(struct kvm_vcpu *vcpu) 6582 { 6583 int ret; 6584 6585 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache; 6586 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO; 6587 6588 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache; 6589 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO; 6590 6591 vcpu->arch.mmu_shadow_page_cache.init_value = 6592 SHADOW_NONPRESENT_VALUE; 6593 if (!vcpu->arch.mmu_shadow_page_cache.init_value) 6594 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO; 6595 6596 vcpu->arch.mmu = &vcpu->arch.root_mmu; 6597 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; 6598 6599 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu); 6600 if (ret) 6601 return ret; 6602 6603 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu); 6604 if (ret) 6605 goto fail_allocate_root; 6606 6607 return ret; 6608 fail_allocate_root: 6609 free_mmu_pages(&vcpu->arch.guest_mmu); 6610 return ret; 6611 } 6612 6613 #define BATCH_ZAP_PAGES 10 6614 static void kvm_zap_obsolete_pages(struct kvm *kvm) 6615 { 6616 struct kvm_mmu_page *sp, *node; 6617 int nr_zapped, batch = 0; 6618 LIST_HEAD(invalid_list); 6619 bool unstable; 6620 6621 lockdep_assert_held(&kvm->slots_lock); 6622 6623 restart: 6624 list_for_each_entry_safe_reverse(sp, node, 6625 &kvm->arch.active_mmu_pages, link) { 6626 /* 6627 * No obsolete valid page exists before a newly created page 6628 * since active_mmu_pages is a FIFO list. 6629 */ 6630 if (!is_obsolete_sp(kvm, sp)) 6631 break; 6632 6633 /* 6634 * Invalid pages should never land back on the list of active 6635 * pages. Skip the bogus page, otherwise we'll get stuck in an 6636 * infinite loop if the page gets put back on the list (again). 6637 */ 6638 if (WARN_ON_ONCE(sp->role.invalid)) 6639 continue; 6640 6641 /* 6642 * No need to flush the TLB since we're only zapping shadow 6643 * pages with an obsolete generation number and all vCPUS have 6644 * loaded a new root, i.e. the shadow pages being zapped cannot 6645 * be in active use by the guest. 6646 */ 6647 if (batch >= BATCH_ZAP_PAGES && 6648 cond_resched_rwlock_write(&kvm->mmu_lock)) { 6649 batch = 0; 6650 goto restart; 6651 } 6652 6653 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, 6654 &invalid_list, &nr_zapped); 6655 batch += nr_zapped; 6656 6657 if (unstable) 6658 goto restart; 6659 } 6660 6661 /* 6662 * Kick all vCPUs (via remote TLB flush) before freeing the page tables 6663 * to ensure KVM is not in the middle of a lockless shadow page table 6664 * walk, which may reference the pages. The remote TLB flush itself is 6665 * not required and is simply a convenient way to kick vCPUs as needed. 6666 * KVM performs a local TLB flush when allocating a new root (see 6667 * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are 6668 * running with an obsolete MMU. 6669 */ 6670 kvm_mmu_commit_zap_page(kvm, &invalid_list); 6671 } 6672 6673 /* 6674 * Fast invalidate all shadow pages and use lock-break technique 6675 * to zap obsolete pages. 6676 * 6677 * It's required when memslot is being deleted or VM is being 6678 * destroyed, in these cases, we should ensure that KVM MMU does 6679 * not use any resource of the being-deleted slot or all slots 6680 * after calling the function. 6681 */ 6682 static void kvm_mmu_zap_all_fast(struct kvm *kvm) 6683 { 6684 lockdep_assert_held(&kvm->slots_lock); 6685 6686 write_lock(&kvm->mmu_lock); 6687 trace_kvm_mmu_zap_all_fast(kvm); 6688 6689 /* 6690 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is 6691 * held for the entire duration of zapping obsolete pages, it's 6692 * impossible for there to be multiple invalid generations associated 6693 * with *valid* shadow pages at any given time, i.e. there is exactly 6694 * one valid generation and (at most) one invalid generation. 6695 */ 6696 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1; 6697 6698 /* 6699 * In order to ensure all vCPUs drop their soon-to-be invalid roots, 6700 * invalidating TDP MMU roots must be done while holding mmu_lock for 6701 * write and in the same critical section as making the reload request, 6702 * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield. 6703 */ 6704 if (tdp_mmu_enabled) { 6705 /* 6706 * External page tables don't support fast zapping, therefore 6707 * their mirrors must be invalidated separately by the caller. 6708 */ 6709 kvm_tdp_mmu_invalidate_roots(kvm, KVM_DIRECT_ROOTS); 6710 } 6711 6712 /* 6713 * Notify all vcpus to reload its shadow page table and flush TLB. 6714 * Then all vcpus will switch to new shadow page table with the new 6715 * mmu_valid_gen. 6716 * 6717 * Note: we need to do this under the protection of mmu_lock, 6718 * otherwise, vcpu would purge shadow page but miss tlb flush. 6719 */ 6720 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 6721 6722 kvm_zap_obsolete_pages(kvm); 6723 6724 write_unlock(&kvm->mmu_lock); 6725 6726 /* 6727 * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before 6728 * returning to the caller, e.g. if the zap is in response to a memslot 6729 * deletion, mmu_notifier callbacks will be unable to reach the SPTEs 6730 * associated with the deleted memslot once the update completes, and 6731 * Deferring the zap until the final reference to the root is put would 6732 * lead to use-after-free. 6733 */ 6734 if (tdp_mmu_enabled) 6735 kvm_tdp_mmu_zap_invalidated_roots(kvm, true); 6736 } 6737 6738 int kvm_mmu_init_vm(struct kvm *kvm) 6739 { 6740 int r; 6741 6742 kvm->arch.shadow_mmio_value = shadow_mmio_value; 6743 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 6744 INIT_LIST_HEAD(&kvm->arch.possible_nx_huge_pages); 6745 spin_lock_init(&kvm->arch.mmu_unsync_pages_lock); 6746 6747 if (tdp_mmu_enabled) { 6748 kvm_mmu_init_tdp_mmu(kvm); 6749 } else { 6750 r = kvm_mmu_alloc_page_hash(kvm); 6751 if (r) 6752 return r; 6753 } 6754 6755 kvm->arch.split_page_header_cache.kmem_cache = mmu_page_header_cache; 6756 kvm->arch.split_page_header_cache.gfp_zero = __GFP_ZERO; 6757 6758 kvm->arch.split_shadow_page_cache.gfp_zero = __GFP_ZERO; 6759 6760 kvm->arch.split_desc_cache.kmem_cache = pte_list_desc_cache; 6761 kvm->arch.split_desc_cache.gfp_zero = __GFP_ZERO; 6762 return 0; 6763 } 6764 6765 static void mmu_free_vm_memory_caches(struct kvm *kvm) 6766 { 6767 kvm_mmu_free_memory_cache(&kvm->arch.split_desc_cache); 6768 kvm_mmu_free_memory_cache(&kvm->arch.split_page_header_cache); 6769 kvm_mmu_free_memory_cache(&kvm->arch.split_shadow_page_cache); 6770 } 6771 6772 void kvm_mmu_uninit_vm(struct kvm *kvm) 6773 { 6774 kvfree(kvm->arch.mmu_page_hash); 6775 6776 if (tdp_mmu_enabled) 6777 kvm_mmu_uninit_tdp_mmu(kvm); 6778 6779 mmu_free_vm_memory_caches(kvm); 6780 } 6781 6782 static bool kvm_rmap_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 6783 { 6784 const struct kvm_memory_slot *memslot; 6785 struct kvm_memslots *slots; 6786 struct kvm_memslot_iter iter; 6787 bool flush = false; 6788 gfn_t start, end; 6789 int i; 6790 6791 if (!kvm_memslots_have_rmaps(kvm)) 6792 return flush; 6793 6794 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 6795 slots = __kvm_memslots(kvm, i); 6796 6797 kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) { 6798 memslot = iter.slot; 6799 start = max(gfn_start, memslot->base_gfn); 6800 end = min(gfn_end, memslot->base_gfn + memslot->npages); 6801 if (WARN_ON_ONCE(start >= end)) 6802 continue; 6803 6804 flush = __kvm_rmap_zap_gfn_range(kvm, memslot, start, 6805 end, true, flush); 6806 } 6807 } 6808 6809 return flush; 6810 } 6811 6812 /* 6813 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end 6814 * (not including it) 6815 */ 6816 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 6817 { 6818 bool flush; 6819 6820 if (WARN_ON_ONCE(gfn_end <= gfn_start)) 6821 return; 6822 6823 write_lock(&kvm->mmu_lock); 6824 6825 kvm_mmu_invalidate_begin(kvm); 6826 6827 kvm_mmu_invalidate_range_add(kvm, gfn_start, gfn_end); 6828 6829 flush = kvm_rmap_zap_gfn_range(kvm, gfn_start, gfn_end); 6830 6831 if (tdp_mmu_enabled) 6832 flush = kvm_tdp_mmu_zap_leafs(kvm, gfn_start, gfn_end, flush); 6833 6834 if (flush) 6835 kvm_flush_remote_tlbs_range(kvm, gfn_start, gfn_end - gfn_start); 6836 6837 kvm_mmu_invalidate_end(kvm); 6838 6839 write_unlock(&kvm->mmu_lock); 6840 } 6841 6842 static bool slot_rmap_write_protect(struct kvm *kvm, 6843 struct kvm_rmap_head *rmap_head, 6844 const struct kvm_memory_slot *slot) 6845 { 6846 return rmap_write_protect(rmap_head, false); 6847 } 6848 6849 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 6850 const struct kvm_memory_slot *memslot, 6851 int start_level) 6852 { 6853 if (kvm_memslots_have_rmaps(kvm)) { 6854 write_lock(&kvm->mmu_lock); 6855 walk_slot_rmaps(kvm, memslot, slot_rmap_write_protect, 6856 start_level, KVM_MAX_HUGEPAGE_LEVEL, false); 6857 write_unlock(&kvm->mmu_lock); 6858 } 6859 6860 if (tdp_mmu_enabled) { 6861 read_lock(&kvm->mmu_lock); 6862 kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level); 6863 read_unlock(&kvm->mmu_lock); 6864 } 6865 } 6866 6867 static inline bool need_topup(struct kvm_mmu_memory_cache *cache, int min) 6868 { 6869 return kvm_mmu_memory_cache_nr_free_objects(cache) < min; 6870 } 6871 6872 static bool need_topup_split_caches_or_resched(struct kvm *kvm) 6873 { 6874 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) 6875 return true; 6876 6877 /* 6878 * In the worst case, SPLIT_DESC_CACHE_MIN_NR_OBJECTS descriptors are needed 6879 * to split a single huge page. Calculating how many are actually needed 6880 * is possible but not worth the complexity. 6881 */ 6882 return need_topup(&kvm->arch.split_desc_cache, SPLIT_DESC_CACHE_MIN_NR_OBJECTS) || 6883 need_topup(&kvm->arch.split_page_header_cache, 1) || 6884 need_topup(&kvm->arch.split_shadow_page_cache, 1); 6885 } 6886 6887 static int topup_split_caches(struct kvm *kvm) 6888 { 6889 /* 6890 * Allocating rmap list entries when splitting huge pages for nested 6891 * MMUs is uncommon as KVM needs to use a list if and only if there is 6892 * more than one rmap entry for a gfn, i.e. requires an L1 gfn to be 6893 * aliased by multiple L2 gfns and/or from multiple nested roots with 6894 * different roles. Aliasing gfns when using TDP is atypical for VMMs; 6895 * a few gfns are often aliased during boot, e.g. when remapping BIOS, 6896 * but aliasing rarely occurs post-boot or for many gfns. If there is 6897 * only one rmap entry, rmap->val points directly at that one entry and 6898 * doesn't need to allocate a list. Buffer the cache by the default 6899 * capacity so that KVM doesn't have to drop mmu_lock to topup if KVM 6900 * encounters an aliased gfn or two. 6901 */ 6902 const int capacity = SPLIT_DESC_CACHE_MIN_NR_OBJECTS + 6903 KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE; 6904 int r; 6905 6906 lockdep_assert_held(&kvm->slots_lock); 6907 6908 r = __kvm_mmu_topup_memory_cache(&kvm->arch.split_desc_cache, capacity, 6909 SPLIT_DESC_CACHE_MIN_NR_OBJECTS); 6910 if (r) 6911 return r; 6912 6913 r = kvm_mmu_topup_memory_cache(&kvm->arch.split_page_header_cache, 1); 6914 if (r) 6915 return r; 6916 6917 return kvm_mmu_topup_memory_cache(&kvm->arch.split_shadow_page_cache, 1); 6918 } 6919 6920 static struct kvm_mmu_page *shadow_mmu_get_sp_for_split(struct kvm *kvm, u64 *huge_sptep) 6921 { 6922 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); 6923 struct shadow_page_caches caches = {}; 6924 union kvm_mmu_page_role role; 6925 unsigned int access; 6926 gfn_t gfn; 6927 6928 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep)); 6929 access = kvm_mmu_page_get_access(huge_sp, spte_index(huge_sptep)); 6930 6931 /* 6932 * Note, huge page splitting always uses direct shadow pages, regardless 6933 * of whether the huge page itself is mapped by a direct or indirect 6934 * shadow page, since the huge page region itself is being directly 6935 * mapped with smaller pages. 6936 */ 6937 role = kvm_mmu_child_role(huge_sptep, /*direct=*/true, access); 6938 6939 /* Direct SPs do not require a shadowed_info_cache. */ 6940 caches.page_header_cache = &kvm->arch.split_page_header_cache; 6941 caches.shadow_page_cache = &kvm->arch.split_shadow_page_cache; 6942 6943 /* Safe to pass NULL for vCPU since requesting a direct SP. */ 6944 return __kvm_mmu_get_shadow_page(kvm, NULL, &caches, gfn, role); 6945 } 6946 6947 static void shadow_mmu_split_huge_page(struct kvm *kvm, 6948 const struct kvm_memory_slot *slot, 6949 u64 *huge_sptep) 6950 6951 { 6952 struct kvm_mmu_memory_cache *cache = &kvm->arch.split_desc_cache; 6953 u64 huge_spte = READ_ONCE(*huge_sptep); 6954 struct kvm_mmu_page *sp; 6955 bool flush = false; 6956 u64 *sptep, spte; 6957 gfn_t gfn; 6958 int index; 6959 6960 sp = shadow_mmu_get_sp_for_split(kvm, huge_sptep); 6961 6962 for (index = 0; index < SPTE_ENT_PER_PAGE; index++) { 6963 sptep = &sp->spt[index]; 6964 gfn = kvm_mmu_page_get_gfn(sp, index); 6965 6966 /* 6967 * The SP may already have populated SPTEs, e.g. if this huge 6968 * page is aliased by multiple sptes with the same access 6969 * permissions. These entries are guaranteed to map the same 6970 * gfn-to-pfn translation since the SP is direct, so no need to 6971 * modify them. 6972 * 6973 * However, if a given SPTE points to a lower level page table, 6974 * that lower level page table may only be partially populated. 6975 * Installing such SPTEs would effectively unmap a potion of the 6976 * huge page. Unmapping guest memory always requires a TLB flush 6977 * since a subsequent operation on the unmapped regions would 6978 * fail to detect the need to flush. 6979 */ 6980 if (is_shadow_present_pte(*sptep)) { 6981 flush |= !is_last_spte(*sptep, sp->role.level); 6982 continue; 6983 } 6984 6985 spte = make_small_spte(kvm, huge_spte, sp->role, index); 6986 mmu_spte_set(sptep, spte); 6987 __rmap_add(kvm, cache, slot, sptep, gfn, sp->role.access); 6988 } 6989 6990 __link_shadow_page(kvm, cache, huge_sptep, sp, flush); 6991 } 6992 6993 static int shadow_mmu_try_split_huge_page(struct kvm *kvm, 6994 const struct kvm_memory_slot *slot, 6995 u64 *huge_sptep) 6996 { 6997 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); 6998 int level, r = 0; 6999 gfn_t gfn; 7000 u64 spte; 7001 7002 /* Grab information for the tracepoint before dropping the MMU lock. */ 7003 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep)); 7004 level = huge_sp->role.level; 7005 spte = *huge_sptep; 7006 7007 if (kvm_mmu_available_pages(kvm) <= KVM_MIN_FREE_MMU_PAGES) { 7008 r = -ENOSPC; 7009 goto out; 7010 } 7011 7012 if (need_topup_split_caches_or_resched(kvm)) { 7013 write_unlock(&kvm->mmu_lock); 7014 cond_resched(); 7015 /* 7016 * If the topup succeeds, return -EAGAIN to indicate that the 7017 * rmap iterator should be restarted because the MMU lock was 7018 * dropped. 7019 */ 7020 r = topup_split_caches(kvm) ?: -EAGAIN; 7021 write_lock(&kvm->mmu_lock); 7022 goto out; 7023 } 7024 7025 shadow_mmu_split_huge_page(kvm, slot, huge_sptep); 7026 7027 out: 7028 trace_kvm_mmu_split_huge_page(gfn, spte, level, r); 7029 return r; 7030 } 7031 7032 static bool shadow_mmu_try_split_huge_pages(struct kvm *kvm, 7033 struct kvm_rmap_head *rmap_head, 7034 const struct kvm_memory_slot *slot) 7035 { 7036 struct rmap_iterator iter; 7037 struct kvm_mmu_page *sp; 7038 u64 *huge_sptep; 7039 int r; 7040 7041 restart: 7042 for_each_rmap_spte(rmap_head, &iter, huge_sptep) { 7043 sp = sptep_to_sp(huge_sptep); 7044 7045 /* TDP MMU is enabled, so rmap only contains nested MMU SPs. */ 7046 if (WARN_ON_ONCE(!sp->role.guest_mode)) 7047 continue; 7048 7049 /* The rmaps should never contain non-leaf SPTEs. */ 7050 if (WARN_ON_ONCE(!is_large_pte(*huge_sptep))) 7051 continue; 7052 7053 /* SPs with level >PG_LEVEL_4K should never by unsync. */ 7054 if (WARN_ON_ONCE(sp->unsync)) 7055 continue; 7056 7057 /* Don't bother splitting huge pages on invalid SPs. */ 7058 if (sp->role.invalid) 7059 continue; 7060 7061 r = shadow_mmu_try_split_huge_page(kvm, slot, huge_sptep); 7062 7063 /* 7064 * The split succeeded or needs to be retried because the MMU 7065 * lock was dropped. Either way, restart the iterator to get it 7066 * back into a consistent state. 7067 */ 7068 if (!r || r == -EAGAIN) 7069 goto restart; 7070 7071 /* The split failed and shouldn't be retried (e.g. -ENOMEM). */ 7072 break; 7073 } 7074 7075 return false; 7076 } 7077 7078 static void kvm_shadow_mmu_try_split_huge_pages(struct kvm *kvm, 7079 const struct kvm_memory_slot *slot, 7080 gfn_t start, gfn_t end, 7081 int target_level) 7082 { 7083 int level; 7084 7085 /* 7086 * Split huge pages starting with KVM_MAX_HUGEPAGE_LEVEL and working 7087 * down to the target level. This ensures pages are recursively split 7088 * all the way to the target level. There's no need to split pages 7089 * already at the target level. 7090 */ 7091 for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--) 7092 __walk_slot_rmaps(kvm, slot, shadow_mmu_try_split_huge_pages, 7093 level, level, start, end - 1, true, true, false); 7094 } 7095 7096 /* Must be called with the mmu_lock held in write-mode. */ 7097 void kvm_mmu_try_split_huge_pages(struct kvm *kvm, 7098 const struct kvm_memory_slot *memslot, 7099 u64 start, u64 end, 7100 int target_level) 7101 { 7102 if (!tdp_mmu_enabled) 7103 return; 7104 7105 if (kvm_memslots_have_rmaps(kvm)) 7106 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); 7107 7108 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, false); 7109 7110 /* 7111 * A TLB flush is unnecessary at this point for the same reasons as in 7112 * kvm_mmu_slot_try_split_huge_pages(). 7113 */ 7114 } 7115 7116 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, 7117 const struct kvm_memory_slot *memslot, 7118 int target_level) 7119 { 7120 u64 start = memslot->base_gfn; 7121 u64 end = start + memslot->npages; 7122 7123 if (!tdp_mmu_enabled) 7124 return; 7125 7126 if (kvm_memslots_have_rmaps(kvm)) { 7127 write_lock(&kvm->mmu_lock); 7128 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); 7129 write_unlock(&kvm->mmu_lock); 7130 } 7131 7132 read_lock(&kvm->mmu_lock); 7133 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true); 7134 read_unlock(&kvm->mmu_lock); 7135 7136 /* 7137 * No TLB flush is necessary here. KVM will flush TLBs after 7138 * write-protecting and/or clearing dirty on the newly split SPTEs to 7139 * ensure that guest writes are reflected in the dirty log before the 7140 * ioctl to enable dirty logging on this memslot completes. Since the 7141 * split SPTEs retain the write and dirty bits of the huge SPTE, it is 7142 * safe for KVM to decide if a TLB flush is necessary based on the split 7143 * SPTEs. 7144 */ 7145 } 7146 7147 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, 7148 struct kvm_rmap_head *rmap_head, 7149 const struct kvm_memory_slot *slot) 7150 { 7151 u64 *sptep; 7152 struct rmap_iterator iter; 7153 int need_tlb_flush = 0; 7154 struct kvm_mmu_page *sp; 7155 7156 restart: 7157 for_each_rmap_spte(rmap_head, &iter, sptep) { 7158 sp = sptep_to_sp(sptep); 7159 7160 /* 7161 * We cannot do huge page mapping for indirect shadow pages, 7162 * which are found on the last rmap (level = 1) when not using 7163 * tdp; such shadow pages are synced with the page table in 7164 * the guest, and the guest page table is using 4K page size 7165 * mapping if the indirect sp has level = 1. 7166 */ 7167 if (sp->role.direct && 7168 sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn)) { 7169 kvm_zap_one_rmap_spte(kvm, rmap_head, sptep); 7170 7171 if (kvm_available_flush_remote_tlbs_range()) 7172 kvm_flush_remote_tlbs_sptep(kvm, sptep); 7173 else 7174 need_tlb_flush = 1; 7175 7176 goto restart; 7177 } 7178 } 7179 7180 return need_tlb_flush; 7181 } 7182 EXPORT_SYMBOL_GPL(kvm_zap_gfn_range); 7183 7184 static void kvm_rmap_zap_collapsible_sptes(struct kvm *kvm, 7185 const struct kvm_memory_slot *slot) 7186 { 7187 /* 7188 * Note, use KVM_MAX_HUGEPAGE_LEVEL - 1 since there's no need to zap 7189 * pages that are already mapped at the maximum hugepage level. 7190 */ 7191 if (walk_slot_rmaps(kvm, slot, kvm_mmu_zap_collapsible_spte, 7192 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL - 1, true)) 7193 kvm_flush_remote_tlbs_memslot(kvm, slot); 7194 } 7195 7196 void kvm_mmu_recover_huge_pages(struct kvm *kvm, 7197 const struct kvm_memory_slot *slot) 7198 { 7199 if (kvm_memslots_have_rmaps(kvm)) { 7200 write_lock(&kvm->mmu_lock); 7201 kvm_rmap_zap_collapsible_sptes(kvm, slot); 7202 write_unlock(&kvm->mmu_lock); 7203 } 7204 7205 if (tdp_mmu_enabled) { 7206 read_lock(&kvm->mmu_lock); 7207 kvm_tdp_mmu_recover_huge_pages(kvm, slot); 7208 read_unlock(&kvm->mmu_lock); 7209 } 7210 } 7211 7212 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 7213 const struct kvm_memory_slot *memslot) 7214 { 7215 if (kvm_memslots_have_rmaps(kvm)) { 7216 write_lock(&kvm->mmu_lock); 7217 /* 7218 * Clear dirty bits only on 4k SPTEs since the legacy MMU only 7219 * support dirty logging at a 4k granularity. 7220 */ 7221 walk_slot_rmaps_4k(kvm, memslot, __rmap_clear_dirty, false); 7222 write_unlock(&kvm->mmu_lock); 7223 } 7224 7225 if (tdp_mmu_enabled) { 7226 read_lock(&kvm->mmu_lock); 7227 kvm_tdp_mmu_clear_dirty_slot(kvm, memslot); 7228 read_unlock(&kvm->mmu_lock); 7229 } 7230 7231 /* 7232 * The caller will flush the TLBs after this function returns. 7233 * 7234 * It's also safe to flush TLBs out of mmu lock here as currently this 7235 * function is only used for dirty logging, in which case flushing TLB 7236 * out of mmu lock also guarantees no dirty pages will be lost in 7237 * dirty_bitmap. 7238 */ 7239 } 7240 7241 static void kvm_mmu_zap_all(struct kvm *kvm) 7242 { 7243 struct kvm_mmu_page *sp, *node; 7244 LIST_HEAD(invalid_list); 7245 int ign; 7246 7247 write_lock(&kvm->mmu_lock); 7248 restart: 7249 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) { 7250 if (WARN_ON_ONCE(sp->role.invalid)) 7251 continue; 7252 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign)) 7253 goto restart; 7254 if (cond_resched_rwlock_write(&kvm->mmu_lock)) 7255 goto restart; 7256 } 7257 7258 kvm_mmu_commit_zap_page(kvm, &invalid_list); 7259 7260 if (tdp_mmu_enabled) 7261 kvm_tdp_mmu_zap_all(kvm); 7262 7263 write_unlock(&kvm->mmu_lock); 7264 } 7265 7266 void kvm_arch_flush_shadow_all(struct kvm *kvm) 7267 { 7268 kvm_mmu_zap_all(kvm); 7269 } 7270 7271 static void kvm_mmu_zap_memslot_pages_and_flush(struct kvm *kvm, 7272 struct kvm_memory_slot *slot, 7273 bool flush) 7274 { 7275 LIST_HEAD(invalid_list); 7276 unsigned long i; 7277 7278 if (list_empty(&kvm->arch.active_mmu_pages)) 7279 goto out_flush; 7280 7281 /* 7282 * Since accounting information is stored in struct kvm_arch_memory_slot, 7283 * all MMU pages that are shadowing guest PTEs must be zapped before the 7284 * memslot is deleted, as freeing such pages after the memslot is freed 7285 * will result in use-after-free, e.g. in unaccount_shadowed(). 7286 */ 7287 for (i = 0; i < slot->npages; i++) { 7288 struct kvm_mmu_page *sp; 7289 gfn_t gfn = slot->base_gfn + i; 7290 7291 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) 7292 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 7293 7294 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 7295 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7296 flush = false; 7297 cond_resched_rwlock_write(&kvm->mmu_lock); 7298 } 7299 } 7300 7301 out_flush: 7302 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7303 } 7304 7305 static void kvm_mmu_zap_memslot(struct kvm *kvm, 7306 struct kvm_memory_slot *slot) 7307 { 7308 struct kvm_gfn_range range = { 7309 .slot = slot, 7310 .start = slot->base_gfn, 7311 .end = slot->base_gfn + slot->npages, 7312 .may_block = true, 7313 .attr_filter = KVM_FILTER_PRIVATE | KVM_FILTER_SHARED, 7314 }; 7315 bool flush; 7316 7317 write_lock(&kvm->mmu_lock); 7318 flush = kvm_unmap_gfn_range(kvm, &range); 7319 kvm_mmu_zap_memslot_pages_and_flush(kvm, slot, flush); 7320 write_unlock(&kvm->mmu_lock); 7321 } 7322 7323 static inline bool kvm_memslot_flush_zap_all(struct kvm *kvm) 7324 { 7325 return kvm->arch.vm_type == KVM_X86_DEFAULT_VM && 7326 kvm_check_has_quirk(kvm, KVM_X86_QUIRK_SLOT_ZAP_ALL); 7327 } 7328 7329 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 7330 struct kvm_memory_slot *slot) 7331 { 7332 if (kvm_memslot_flush_zap_all(kvm)) 7333 kvm_mmu_zap_all_fast(kvm); 7334 else 7335 kvm_mmu_zap_memslot(kvm, slot); 7336 } 7337 7338 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen) 7339 { 7340 WARN_ON_ONCE(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 7341 7342 gen &= MMIO_SPTE_GEN_MASK; 7343 7344 /* 7345 * Generation numbers are incremented in multiples of the number of 7346 * address spaces in order to provide unique generations across all 7347 * address spaces. Strip what is effectively the address space 7348 * modifier prior to checking for a wrap of the MMIO generation so 7349 * that a wrap in any address space is detected. 7350 */ 7351 gen &= ~((u64)kvm_arch_nr_memslot_as_ids(kvm) - 1); 7352 7353 /* 7354 * The very rare case: if the MMIO generation number has wrapped, 7355 * zap all shadow pages. 7356 */ 7357 if (unlikely(gen == 0)) { 7358 kvm_debug_ratelimited("zapping shadow pages for mmio generation wraparound\n"); 7359 kvm_mmu_zap_all_fast(kvm); 7360 } 7361 } 7362 7363 static void mmu_destroy_caches(void) 7364 { 7365 kmem_cache_destroy(pte_list_desc_cache); 7366 kmem_cache_destroy(mmu_page_header_cache); 7367 } 7368 7369 static void kvm_wake_nx_recovery_thread(struct kvm *kvm) 7370 { 7371 /* 7372 * The NX recovery thread is spawned on-demand at the first KVM_RUN and 7373 * may not be valid even though the VM is globally visible. Do nothing, 7374 * as such a VM can't have any possible NX huge pages. 7375 */ 7376 struct vhost_task *nx_thread = READ_ONCE(kvm->arch.nx_huge_page_recovery_thread); 7377 7378 if (nx_thread) 7379 vhost_task_wake(nx_thread); 7380 } 7381 7382 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp) 7383 { 7384 if (nx_hugepage_mitigation_hard_disabled) 7385 return sysfs_emit(buffer, "never\n"); 7386 7387 return param_get_bool(buffer, kp); 7388 } 7389 7390 static bool get_nx_auto_mode(void) 7391 { 7392 /* Return true when CPU has the bug, and mitigations are ON */ 7393 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off(); 7394 } 7395 7396 static void __set_nx_huge_pages(bool val) 7397 { 7398 nx_huge_pages = itlb_multihit_kvm_mitigation = val; 7399 } 7400 7401 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp) 7402 { 7403 bool old_val = nx_huge_pages; 7404 bool new_val; 7405 7406 if (nx_hugepage_mitigation_hard_disabled) 7407 return -EPERM; 7408 7409 /* In "auto" mode deploy workaround only if CPU has the bug. */ 7410 if (sysfs_streq(val, "off")) { 7411 new_val = 0; 7412 } else if (sysfs_streq(val, "force")) { 7413 new_val = 1; 7414 } else if (sysfs_streq(val, "auto")) { 7415 new_val = get_nx_auto_mode(); 7416 } else if (sysfs_streq(val, "never")) { 7417 new_val = 0; 7418 7419 mutex_lock(&kvm_lock); 7420 if (!list_empty(&vm_list)) { 7421 mutex_unlock(&kvm_lock); 7422 return -EBUSY; 7423 } 7424 nx_hugepage_mitigation_hard_disabled = true; 7425 mutex_unlock(&kvm_lock); 7426 } else if (kstrtobool(val, &new_val) < 0) { 7427 return -EINVAL; 7428 } 7429 7430 __set_nx_huge_pages(new_val); 7431 7432 if (new_val != old_val) { 7433 struct kvm *kvm; 7434 7435 mutex_lock(&kvm_lock); 7436 7437 list_for_each_entry(kvm, &vm_list, vm_list) { 7438 mutex_lock(&kvm->slots_lock); 7439 kvm_mmu_zap_all_fast(kvm); 7440 mutex_unlock(&kvm->slots_lock); 7441 7442 kvm_wake_nx_recovery_thread(kvm); 7443 } 7444 mutex_unlock(&kvm_lock); 7445 } 7446 7447 return 0; 7448 } 7449 7450 /* 7451 * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as 7452 * its default value of -1 is technically undefined behavior for a boolean. 7453 * Forward the module init call to SPTE code so that it too can handle module 7454 * params that need to be resolved/snapshot. 7455 */ 7456 void __init kvm_mmu_x86_module_init(void) 7457 { 7458 if (nx_huge_pages == -1) 7459 __set_nx_huge_pages(get_nx_auto_mode()); 7460 7461 /* 7462 * Snapshot userspace's desire to enable the TDP MMU. Whether or not the 7463 * TDP MMU is actually enabled is determined in kvm_configure_mmu() 7464 * when the vendor module is loaded. 7465 */ 7466 tdp_mmu_allowed = tdp_mmu_enabled; 7467 7468 kvm_mmu_spte_module_init(); 7469 } 7470 7471 /* 7472 * The bulk of the MMU initialization is deferred until the vendor module is 7473 * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need 7474 * to be reset when a potentially different vendor module is loaded. 7475 */ 7476 int kvm_mmu_vendor_module_init(void) 7477 { 7478 int ret = -ENOMEM; 7479 7480 /* 7481 * MMU roles use union aliasing which is, generally speaking, an 7482 * undefined behavior. However, we supposedly know how compilers behave 7483 * and the current status quo is unlikely to change. Guardians below are 7484 * supposed to let us know if the assumption becomes false. 7485 */ 7486 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32)); 7487 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32)); 7488 BUILD_BUG_ON(sizeof(union kvm_cpu_role) != sizeof(u64)); 7489 7490 kvm_mmu_reset_all_pte_masks(); 7491 7492 pte_list_desc_cache = KMEM_CACHE(pte_list_desc, SLAB_ACCOUNT); 7493 if (!pte_list_desc_cache) 7494 goto out; 7495 7496 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", 7497 sizeof(struct kvm_mmu_page), 7498 0, SLAB_ACCOUNT, NULL); 7499 if (!mmu_page_header_cache) 7500 goto out; 7501 7502 return 0; 7503 7504 out: 7505 mmu_destroy_caches(); 7506 return ret; 7507 } 7508 7509 void kvm_mmu_destroy(struct kvm_vcpu *vcpu) 7510 { 7511 kvm_mmu_unload(vcpu); 7512 if (tdp_mmu_enabled) { 7513 read_lock(&vcpu->kvm->mmu_lock); 7514 mmu_free_root_page(vcpu->kvm, &vcpu->arch.mmu->mirror_root_hpa, 7515 NULL); 7516 read_unlock(&vcpu->kvm->mmu_lock); 7517 } 7518 free_mmu_pages(&vcpu->arch.root_mmu); 7519 free_mmu_pages(&vcpu->arch.guest_mmu); 7520 mmu_free_memory_caches(vcpu); 7521 } 7522 7523 void kvm_mmu_vendor_module_exit(void) 7524 { 7525 mmu_destroy_caches(); 7526 } 7527 7528 /* 7529 * Calculate the effective recovery period, accounting for '0' meaning "let KVM 7530 * select a halving time of 1 hour". Returns true if recovery is enabled. 7531 */ 7532 static bool calc_nx_huge_pages_recovery_period(uint *period) 7533 { 7534 /* 7535 * Use READ_ONCE to get the params, this may be called outside of the 7536 * param setters, e.g. by the kthread to compute its next timeout. 7537 */ 7538 bool enabled = READ_ONCE(nx_huge_pages); 7539 uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 7540 7541 if (!enabled || !ratio) 7542 return false; 7543 7544 *period = READ_ONCE(nx_huge_pages_recovery_period_ms); 7545 if (!*period) { 7546 /* Make sure the period is not less than one second. */ 7547 ratio = min(ratio, 3600u); 7548 *period = 60 * 60 * 1000 / ratio; 7549 } 7550 return true; 7551 } 7552 7553 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp) 7554 { 7555 bool was_recovery_enabled, is_recovery_enabled; 7556 uint old_period, new_period; 7557 int err; 7558 7559 if (nx_hugepage_mitigation_hard_disabled) 7560 return -EPERM; 7561 7562 was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period); 7563 7564 err = param_set_uint(val, kp); 7565 if (err) 7566 return err; 7567 7568 is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period); 7569 7570 if (is_recovery_enabled && 7571 (!was_recovery_enabled || old_period > new_period)) { 7572 struct kvm *kvm; 7573 7574 mutex_lock(&kvm_lock); 7575 7576 list_for_each_entry(kvm, &vm_list, vm_list) 7577 kvm_wake_nx_recovery_thread(kvm); 7578 7579 mutex_unlock(&kvm_lock); 7580 } 7581 7582 return err; 7583 } 7584 7585 static void kvm_recover_nx_huge_pages(struct kvm *kvm) 7586 { 7587 unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits; 7588 struct kvm_memory_slot *slot; 7589 int rcu_idx; 7590 struct kvm_mmu_page *sp; 7591 unsigned int ratio; 7592 LIST_HEAD(invalid_list); 7593 bool flush = false; 7594 ulong to_zap; 7595 7596 rcu_idx = srcu_read_lock(&kvm->srcu); 7597 write_lock(&kvm->mmu_lock); 7598 7599 /* 7600 * Zapping TDP MMU shadow pages, including the remote TLB flush, must 7601 * be done under RCU protection, because the pages are freed via RCU 7602 * callback. 7603 */ 7604 rcu_read_lock(); 7605 7606 ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 7607 to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0; 7608 for ( ; to_zap; --to_zap) { 7609 if (list_empty(&kvm->arch.possible_nx_huge_pages)) 7610 break; 7611 7612 /* 7613 * We use a separate list instead of just using active_mmu_pages 7614 * because the number of shadow pages that be replaced with an 7615 * NX huge page is expected to be relatively small compared to 7616 * the total number of shadow pages. And because the TDP MMU 7617 * doesn't use active_mmu_pages. 7618 */ 7619 sp = list_first_entry(&kvm->arch.possible_nx_huge_pages, 7620 struct kvm_mmu_page, 7621 possible_nx_huge_page_link); 7622 WARN_ON_ONCE(!sp->nx_huge_page_disallowed); 7623 WARN_ON_ONCE(!sp->role.direct); 7624 7625 /* 7626 * Unaccount and do not attempt to recover any NX Huge Pages 7627 * that are being dirty tracked, as they would just be faulted 7628 * back in as 4KiB pages. The NX Huge Pages in this slot will be 7629 * recovered, along with all the other huge pages in the slot, 7630 * when dirty logging is disabled. 7631 * 7632 * Since gfn_to_memslot() is relatively expensive, it helps to 7633 * skip it if it the test cannot possibly return true. On the 7634 * other hand, if any memslot has logging enabled, chances are 7635 * good that all of them do, in which case unaccount_nx_huge_page() 7636 * is much cheaper than zapping the page. 7637 * 7638 * If a memslot update is in progress, reading an incorrect value 7639 * of kvm->nr_memslots_dirty_logging is not a problem: if it is 7640 * becoming zero, gfn_to_memslot() will be done unnecessarily; if 7641 * it is becoming nonzero, the page will be zapped unnecessarily. 7642 * Either way, this only affects efficiency in racy situations, 7643 * and not correctness. 7644 */ 7645 slot = NULL; 7646 if (atomic_read(&kvm->nr_memslots_dirty_logging)) { 7647 struct kvm_memslots *slots; 7648 7649 slots = kvm_memslots_for_spte_role(kvm, sp->role); 7650 slot = __gfn_to_memslot(slots, sp->gfn); 7651 WARN_ON_ONCE(!slot); 7652 } 7653 7654 if (slot && kvm_slot_dirty_track_enabled(slot)) 7655 unaccount_nx_huge_page(kvm, sp); 7656 else if (is_tdp_mmu_page(sp)) 7657 flush |= kvm_tdp_mmu_zap_sp(kvm, sp); 7658 else 7659 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 7660 WARN_ON_ONCE(sp->nx_huge_page_disallowed); 7661 7662 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 7663 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7664 rcu_read_unlock(); 7665 7666 cond_resched_rwlock_write(&kvm->mmu_lock); 7667 flush = false; 7668 7669 rcu_read_lock(); 7670 } 7671 } 7672 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7673 7674 rcu_read_unlock(); 7675 7676 write_unlock(&kvm->mmu_lock); 7677 srcu_read_unlock(&kvm->srcu, rcu_idx); 7678 } 7679 7680 static void kvm_nx_huge_page_recovery_worker_kill(void *data) 7681 { 7682 } 7683 7684 static bool kvm_nx_huge_page_recovery_worker(void *data) 7685 { 7686 struct kvm *kvm = data; 7687 bool enabled; 7688 uint period; 7689 long remaining_time; 7690 7691 enabled = calc_nx_huge_pages_recovery_period(&period); 7692 if (!enabled) 7693 return false; 7694 7695 remaining_time = kvm->arch.nx_huge_page_last + msecs_to_jiffies(period) 7696 - get_jiffies_64(); 7697 if (remaining_time > 0) { 7698 schedule_timeout(remaining_time); 7699 /* check for signals and come back */ 7700 return true; 7701 } 7702 7703 __set_current_state(TASK_RUNNING); 7704 kvm_recover_nx_huge_pages(kvm); 7705 kvm->arch.nx_huge_page_last = get_jiffies_64(); 7706 return true; 7707 } 7708 7709 static int kvm_mmu_start_lpage_recovery(struct once *once) 7710 { 7711 struct kvm_arch *ka = container_of(once, struct kvm_arch, nx_once); 7712 struct kvm *kvm = container_of(ka, struct kvm, arch); 7713 struct vhost_task *nx_thread; 7714 7715 kvm->arch.nx_huge_page_last = get_jiffies_64(); 7716 nx_thread = vhost_task_create(kvm_nx_huge_page_recovery_worker, 7717 kvm_nx_huge_page_recovery_worker_kill, 7718 kvm, "kvm-nx-lpage-recovery"); 7719 7720 if (IS_ERR(nx_thread)) 7721 return PTR_ERR(nx_thread); 7722 7723 vhost_task_start(nx_thread); 7724 7725 /* Make the task visible only once it is fully started. */ 7726 WRITE_ONCE(kvm->arch.nx_huge_page_recovery_thread, nx_thread); 7727 return 0; 7728 } 7729 7730 int kvm_mmu_post_init_vm(struct kvm *kvm) 7731 { 7732 if (nx_hugepage_mitigation_hard_disabled) 7733 return 0; 7734 7735 return call_once(&kvm->arch.nx_once, kvm_mmu_start_lpage_recovery); 7736 } 7737 7738 void kvm_mmu_pre_destroy_vm(struct kvm *kvm) 7739 { 7740 if (kvm->arch.nx_huge_page_recovery_thread) 7741 vhost_task_stop(kvm->arch.nx_huge_page_recovery_thread); 7742 } 7743 7744 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 7745 static bool hugepage_test_mixed(struct kvm_memory_slot *slot, gfn_t gfn, 7746 int level) 7747 { 7748 return lpage_info_slot(gfn, slot, level)->disallow_lpage & KVM_LPAGE_MIXED_FLAG; 7749 } 7750 7751 static void hugepage_clear_mixed(struct kvm_memory_slot *slot, gfn_t gfn, 7752 int level) 7753 { 7754 lpage_info_slot(gfn, slot, level)->disallow_lpage &= ~KVM_LPAGE_MIXED_FLAG; 7755 } 7756 7757 static void hugepage_set_mixed(struct kvm_memory_slot *slot, gfn_t gfn, 7758 int level) 7759 { 7760 lpage_info_slot(gfn, slot, level)->disallow_lpage |= KVM_LPAGE_MIXED_FLAG; 7761 } 7762 7763 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm, 7764 struct kvm_gfn_range *range) 7765 { 7766 struct kvm_memory_slot *slot = range->slot; 7767 int level; 7768 7769 /* 7770 * Zap SPTEs even if the slot can't be mapped PRIVATE. KVM x86 only 7771 * supports KVM_MEMORY_ATTRIBUTE_PRIVATE, and so it *seems* like KVM 7772 * can simply ignore such slots. But if userspace is making memory 7773 * PRIVATE, then KVM must prevent the guest from accessing the memory 7774 * as shared. And if userspace is making memory SHARED and this point 7775 * is reached, then at least one page within the range was previously 7776 * PRIVATE, i.e. the slot's possible hugepage ranges are changing. 7777 * Zapping SPTEs in this case ensures KVM will reassess whether or not 7778 * a hugepage can be used for affected ranges. 7779 */ 7780 if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm))) 7781 return false; 7782 7783 if (WARN_ON_ONCE(range->end <= range->start)) 7784 return false; 7785 7786 /* 7787 * If the head and tail pages of the range currently allow a hugepage, 7788 * i.e. reside fully in the slot and don't have mixed attributes, then 7789 * add each corresponding hugepage range to the ongoing invalidation, 7790 * e.g. to prevent KVM from creating a hugepage in response to a fault 7791 * for a gfn whose attributes aren't changing. Note, only the range 7792 * of gfns whose attributes are being modified needs to be explicitly 7793 * unmapped, as that will unmap any existing hugepages. 7794 */ 7795 for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) { 7796 gfn_t start = gfn_round_for_level(range->start, level); 7797 gfn_t end = gfn_round_for_level(range->end - 1, level); 7798 gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level); 7799 7800 if ((start != range->start || start + nr_pages > range->end) && 7801 start >= slot->base_gfn && 7802 start + nr_pages <= slot->base_gfn + slot->npages && 7803 !hugepage_test_mixed(slot, start, level)) 7804 kvm_mmu_invalidate_range_add(kvm, start, start + nr_pages); 7805 7806 if (end == start) 7807 continue; 7808 7809 if ((end + nr_pages) > range->end && 7810 (end + nr_pages) <= (slot->base_gfn + slot->npages) && 7811 !hugepage_test_mixed(slot, end, level)) 7812 kvm_mmu_invalidate_range_add(kvm, end, end + nr_pages); 7813 } 7814 7815 /* Unmap the old attribute page. */ 7816 if (range->arg.attributes & KVM_MEMORY_ATTRIBUTE_PRIVATE) 7817 range->attr_filter = KVM_FILTER_SHARED; 7818 else 7819 range->attr_filter = KVM_FILTER_PRIVATE; 7820 7821 return kvm_unmap_gfn_range(kvm, range); 7822 } 7823 7824 7825 7826 static bool hugepage_has_attrs(struct kvm *kvm, struct kvm_memory_slot *slot, 7827 gfn_t gfn, int level, unsigned long attrs) 7828 { 7829 const unsigned long start = gfn; 7830 const unsigned long end = start + KVM_PAGES_PER_HPAGE(level); 7831 7832 if (level == PG_LEVEL_2M) 7833 return kvm_range_has_memory_attributes(kvm, start, end, ~0, attrs); 7834 7835 for (gfn = start; gfn < end; gfn += KVM_PAGES_PER_HPAGE(level - 1)) { 7836 if (hugepage_test_mixed(slot, gfn, level - 1) || 7837 attrs != kvm_get_memory_attributes(kvm, gfn)) 7838 return false; 7839 } 7840 return true; 7841 } 7842 7843 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm, 7844 struct kvm_gfn_range *range) 7845 { 7846 unsigned long attrs = range->arg.attributes; 7847 struct kvm_memory_slot *slot = range->slot; 7848 int level; 7849 7850 lockdep_assert_held_write(&kvm->mmu_lock); 7851 lockdep_assert_held(&kvm->slots_lock); 7852 7853 /* 7854 * Calculate which ranges can be mapped with hugepages even if the slot 7855 * can't map memory PRIVATE. KVM mustn't create a SHARED hugepage over 7856 * a range that has PRIVATE GFNs, and conversely converting a range to 7857 * SHARED may now allow hugepages. 7858 */ 7859 if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm))) 7860 return false; 7861 7862 /* 7863 * The sequence matters here: upper levels consume the result of lower 7864 * level's scanning. 7865 */ 7866 for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) { 7867 gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level); 7868 gfn_t gfn = gfn_round_for_level(range->start, level); 7869 7870 /* Process the head page if it straddles the range. */ 7871 if (gfn != range->start || gfn + nr_pages > range->end) { 7872 /* 7873 * Skip mixed tracking if the aligned gfn isn't covered 7874 * by the memslot, KVM can't use a hugepage due to the 7875 * misaligned address regardless of memory attributes. 7876 */ 7877 if (gfn >= slot->base_gfn && 7878 gfn + nr_pages <= slot->base_gfn + slot->npages) { 7879 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs)) 7880 hugepage_clear_mixed(slot, gfn, level); 7881 else 7882 hugepage_set_mixed(slot, gfn, level); 7883 } 7884 gfn += nr_pages; 7885 } 7886 7887 /* 7888 * Pages entirely covered by the range are guaranteed to have 7889 * only the attributes which were just set. 7890 */ 7891 for ( ; gfn + nr_pages <= range->end; gfn += nr_pages) 7892 hugepage_clear_mixed(slot, gfn, level); 7893 7894 /* 7895 * Process the last tail page if it straddles the range and is 7896 * contained by the memslot. Like the head page, KVM can't 7897 * create a hugepage if the slot size is misaligned. 7898 */ 7899 if (gfn < range->end && 7900 (gfn + nr_pages) <= (slot->base_gfn + slot->npages)) { 7901 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs)) 7902 hugepage_clear_mixed(slot, gfn, level); 7903 else 7904 hugepage_set_mixed(slot, gfn, level); 7905 } 7906 } 7907 return false; 7908 } 7909 7910 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm, 7911 struct kvm_memory_slot *slot) 7912 { 7913 int level; 7914 7915 if (!kvm_arch_has_private_mem(kvm)) 7916 return; 7917 7918 for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) { 7919 /* 7920 * Don't bother tracking mixed attributes for pages that can't 7921 * be huge due to alignment, i.e. process only pages that are 7922 * entirely contained by the memslot. 7923 */ 7924 gfn_t end = gfn_round_for_level(slot->base_gfn + slot->npages, level); 7925 gfn_t start = gfn_round_for_level(slot->base_gfn, level); 7926 gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level); 7927 gfn_t gfn; 7928 7929 if (start < slot->base_gfn) 7930 start += nr_pages; 7931 7932 /* 7933 * Unlike setting attributes, every potential hugepage needs to 7934 * be manually checked as the attributes may already be mixed. 7935 */ 7936 for (gfn = start; gfn < end; gfn += nr_pages) { 7937 unsigned long attrs = kvm_get_memory_attributes(kvm, gfn); 7938 7939 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs)) 7940 hugepage_clear_mixed(slot, gfn, level); 7941 else 7942 hugepage_set_mixed(slot, gfn, level); 7943 } 7944 } 7945 } 7946 #endif 7947