xref: /linux/arch/x86/kvm/mmu/mmu.c (revision ad30469a841b50dbb541df4d6971d891f703c297)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include "irq.h"
20 #include "ioapic.h"
21 #include "mmu.h"
22 #include "mmu_internal.h"
23 #include "tdp_mmu.h"
24 #include "x86.h"
25 #include "kvm_cache_regs.h"
26 #include "smm.h"
27 #include "kvm_emulate.h"
28 #include "page_track.h"
29 #include "cpuid.h"
30 #include "spte.h"
31 
32 #include <linux/kvm_host.h>
33 #include <linux/types.h>
34 #include <linux/string.h>
35 #include <linux/mm.h>
36 #include <linux/highmem.h>
37 #include <linux/moduleparam.h>
38 #include <linux/export.h>
39 #include <linux/swap.h>
40 #include <linux/hugetlb.h>
41 #include <linux/compiler.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/sched/signal.h>
45 #include <linux/uaccess.h>
46 #include <linux/hash.h>
47 #include <linux/kern_levels.h>
48 #include <linux/kstrtox.h>
49 #include <linux/kthread.h>
50 
51 #include <asm/page.h>
52 #include <asm/memtype.h>
53 #include <asm/cmpxchg.h>
54 #include <asm/io.h>
55 #include <asm/set_memory.h>
56 #include <asm/vmx.h>
57 
58 #include "trace.h"
59 
60 extern bool itlb_multihit_kvm_mitigation;
61 
62 static bool nx_hugepage_mitigation_hard_disabled;
63 
64 int __read_mostly nx_huge_pages = -1;
65 static uint __read_mostly nx_huge_pages_recovery_period_ms;
66 #ifdef CONFIG_PREEMPT_RT
67 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
68 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
69 #else
70 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
71 #endif
72 
73 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp);
74 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
75 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp);
76 
77 static const struct kernel_param_ops nx_huge_pages_ops = {
78 	.set = set_nx_huge_pages,
79 	.get = get_nx_huge_pages,
80 };
81 
82 static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = {
83 	.set = set_nx_huge_pages_recovery_param,
84 	.get = param_get_uint,
85 };
86 
87 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
88 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
89 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops,
90 		&nx_huge_pages_recovery_ratio, 0644);
91 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
92 module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops,
93 		&nx_huge_pages_recovery_period_ms, 0644);
94 __MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint");
95 
96 static bool __read_mostly force_flush_and_sync_on_reuse;
97 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
98 
99 /*
100  * When setting this variable to true it enables Two-Dimensional-Paging
101  * where the hardware walks 2 page tables:
102  * 1. the guest-virtual to guest-physical
103  * 2. while doing 1. it walks guest-physical to host-physical
104  * If the hardware supports that we don't need to do shadow paging.
105  */
106 bool tdp_enabled = false;
107 
108 static bool __ro_after_init tdp_mmu_allowed;
109 
110 #ifdef CONFIG_X86_64
111 bool __read_mostly tdp_mmu_enabled = true;
112 module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0444);
113 #endif
114 
115 static int max_huge_page_level __read_mostly;
116 static int tdp_root_level __read_mostly;
117 static int max_tdp_level __read_mostly;
118 
119 #define PTE_PREFETCH_NUM		8
120 
121 #include <trace/events/kvm.h>
122 
123 /* make pte_list_desc fit well in cache lines */
124 #define PTE_LIST_EXT 14
125 
126 /*
127  * struct pte_list_desc is the core data structure used to implement a custom
128  * list for tracking a set of related SPTEs, e.g. all the SPTEs that map a
129  * given GFN when used in the context of rmaps.  Using a custom list allows KVM
130  * to optimize for the common case where many GFNs will have at most a handful
131  * of SPTEs pointing at them, i.e. allows packing multiple SPTEs into a small
132  * memory footprint, which in turn improves runtime performance by exploiting
133  * cache locality.
134  *
135  * A list is comprised of one or more pte_list_desc objects (descriptors).
136  * Each individual descriptor stores up to PTE_LIST_EXT SPTEs.  If a descriptor
137  * is full and a new SPTEs needs to be added, a new descriptor is allocated and
138  * becomes the head of the list.  This means that by definitions, all tail
139  * descriptors are full.
140  *
141  * Note, the meta data fields are deliberately placed at the start of the
142  * structure to optimize the cacheline layout; accessing the descriptor will
143  * touch only a single cacheline so long as @spte_count<=6 (or if only the
144  * descriptors metadata is accessed).
145  */
146 struct pte_list_desc {
147 	struct pte_list_desc *more;
148 	/* The number of PTEs stored in _this_ descriptor. */
149 	u32 spte_count;
150 	/* The number of PTEs stored in all tails of this descriptor. */
151 	u32 tail_count;
152 	u64 *sptes[PTE_LIST_EXT];
153 };
154 
155 struct kvm_shadow_walk_iterator {
156 	u64 addr;
157 	hpa_t shadow_addr;
158 	u64 *sptep;
159 	int level;
160 	unsigned index;
161 };
162 
163 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
164 	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
165 					 (_root), (_addr));                \
166 	     shadow_walk_okay(&(_walker));			           \
167 	     shadow_walk_next(&(_walker)))
168 
169 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
170 	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
171 	     shadow_walk_okay(&(_walker));			\
172 	     shadow_walk_next(&(_walker)))
173 
174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
175 	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
176 	     shadow_walk_okay(&(_walker)) &&				\
177 		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
178 	     __shadow_walk_next(&(_walker), spte))
179 
180 static struct kmem_cache *pte_list_desc_cache;
181 struct kmem_cache *mmu_page_header_cache;
182 static struct percpu_counter kvm_total_used_mmu_pages;
183 
184 static void mmu_spte_set(u64 *sptep, u64 spte);
185 
186 struct kvm_mmu_role_regs {
187 	const unsigned long cr0;
188 	const unsigned long cr4;
189 	const u64 efer;
190 };
191 
192 #define CREATE_TRACE_POINTS
193 #include "mmutrace.h"
194 
195 /*
196  * Yes, lot's of underscores.  They're a hint that you probably shouldn't be
197  * reading from the role_regs.  Once the root_role is constructed, it becomes
198  * the single source of truth for the MMU's state.
199  */
200 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag)			\
201 static inline bool __maybe_unused					\
202 ____is_##reg##_##name(const struct kvm_mmu_role_regs *regs)		\
203 {									\
204 	return !!(regs->reg & flag);					\
205 }
206 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
207 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
208 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
209 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
210 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
211 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
212 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
213 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
214 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
215 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);
216 
217 /*
218  * The MMU itself (with a valid role) is the single source of truth for the
219  * MMU.  Do not use the regs used to build the MMU/role, nor the vCPU.  The
220  * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
221  * and the vCPU may be incorrect/irrelevant.
222  */
223 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name)		\
224 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu)	\
225 {								\
226 	return !!(mmu->cpu_role. base_or_ext . reg##_##name);	\
227 }
228 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
229 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pse);
230 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smep);
231 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smap);
232 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pke);
233 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, la57);
234 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);
235 BUILD_MMU_ROLE_ACCESSOR(ext,  efer, lma);
236 
237 static inline bool is_cr0_pg(struct kvm_mmu *mmu)
238 {
239         return mmu->cpu_role.base.level > 0;
240 }
241 
242 static inline bool is_cr4_pae(struct kvm_mmu *mmu)
243 {
244         return !mmu->cpu_role.base.has_4_byte_gpte;
245 }
246 
247 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
248 {
249 	struct kvm_mmu_role_regs regs = {
250 		.cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
251 		.cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
252 		.efer = vcpu->arch.efer,
253 	};
254 
255 	return regs;
256 }
257 
258 static unsigned long get_guest_cr3(struct kvm_vcpu *vcpu)
259 {
260 	return kvm_read_cr3(vcpu);
261 }
262 
263 static inline unsigned long kvm_mmu_get_guest_pgd(struct kvm_vcpu *vcpu,
264 						  struct kvm_mmu *mmu)
265 {
266 	if (IS_ENABLED(CONFIG_RETPOLINE) && mmu->get_guest_pgd == get_guest_cr3)
267 		return kvm_read_cr3(vcpu);
268 
269 	return mmu->get_guest_pgd(vcpu);
270 }
271 
272 static inline bool kvm_available_flush_remote_tlbs_range(void)
273 {
274 	return kvm_x86_ops.flush_remote_tlbs_range;
275 }
276 
277 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
278 {
279 	if (!kvm_x86_ops.flush_remote_tlbs_range)
280 		return -EOPNOTSUPP;
281 
282 	return static_call(kvm_x86_flush_remote_tlbs_range)(kvm, gfn, nr_pages);
283 }
284 
285 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index);
286 
287 /* Flush the range of guest memory mapped by the given SPTE. */
288 static void kvm_flush_remote_tlbs_sptep(struct kvm *kvm, u64 *sptep)
289 {
290 	struct kvm_mmu_page *sp = sptep_to_sp(sptep);
291 	gfn_t gfn = kvm_mmu_page_get_gfn(sp, spte_index(sptep));
292 
293 	kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level);
294 }
295 
296 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
297 			   unsigned int access)
298 {
299 	u64 spte = make_mmio_spte(vcpu, gfn, access);
300 
301 	trace_mark_mmio_spte(sptep, gfn, spte);
302 	mmu_spte_set(sptep, spte);
303 }
304 
305 static gfn_t get_mmio_spte_gfn(u64 spte)
306 {
307 	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
308 
309 	gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
310 	       & shadow_nonpresent_or_rsvd_mask;
311 
312 	return gpa >> PAGE_SHIFT;
313 }
314 
315 static unsigned get_mmio_spte_access(u64 spte)
316 {
317 	return spte & shadow_mmio_access_mask;
318 }
319 
320 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
321 {
322 	u64 kvm_gen, spte_gen, gen;
323 
324 	gen = kvm_vcpu_memslots(vcpu)->generation;
325 	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
326 		return false;
327 
328 	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
329 	spte_gen = get_mmio_spte_generation(spte);
330 
331 	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
332 	return likely(kvm_gen == spte_gen);
333 }
334 
335 static int is_cpuid_PSE36(void)
336 {
337 	return 1;
338 }
339 
340 #ifdef CONFIG_X86_64
341 static void __set_spte(u64 *sptep, u64 spte)
342 {
343 	WRITE_ONCE(*sptep, spte);
344 }
345 
346 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
347 {
348 	WRITE_ONCE(*sptep, spte);
349 }
350 
351 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
352 {
353 	return xchg(sptep, spte);
354 }
355 
356 static u64 __get_spte_lockless(u64 *sptep)
357 {
358 	return READ_ONCE(*sptep);
359 }
360 #else
361 union split_spte {
362 	struct {
363 		u32 spte_low;
364 		u32 spte_high;
365 	};
366 	u64 spte;
367 };
368 
369 static void count_spte_clear(u64 *sptep, u64 spte)
370 {
371 	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
372 
373 	if (is_shadow_present_pte(spte))
374 		return;
375 
376 	/* Ensure the spte is completely set before we increase the count */
377 	smp_wmb();
378 	sp->clear_spte_count++;
379 }
380 
381 static void __set_spte(u64 *sptep, u64 spte)
382 {
383 	union split_spte *ssptep, sspte;
384 
385 	ssptep = (union split_spte *)sptep;
386 	sspte = (union split_spte)spte;
387 
388 	ssptep->spte_high = sspte.spte_high;
389 
390 	/*
391 	 * If we map the spte from nonpresent to present, We should store
392 	 * the high bits firstly, then set present bit, so cpu can not
393 	 * fetch this spte while we are setting the spte.
394 	 */
395 	smp_wmb();
396 
397 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
398 }
399 
400 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
401 {
402 	union split_spte *ssptep, sspte;
403 
404 	ssptep = (union split_spte *)sptep;
405 	sspte = (union split_spte)spte;
406 
407 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
408 
409 	/*
410 	 * If we map the spte from present to nonpresent, we should clear
411 	 * present bit firstly to avoid vcpu fetch the old high bits.
412 	 */
413 	smp_wmb();
414 
415 	ssptep->spte_high = sspte.spte_high;
416 	count_spte_clear(sptep, spte);
417 }
418 
419 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
420 {
421 	union split_spte *ssptep, sspte, orig;
422 
423 	ssptep = (union split_spte *)sptep;
424 	sspte = (union split_spte)spte;
425 
426 	/* xchg acts as a barrier before the setting of the high bits */
427 	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
428 	orig.spte_high = ssptep->spte_high;
429 	ssptep->spte_high = sspte.spte_high;
430 	count_spte_clear(sptep, spte);
431 
432 	return orig.spte;
433 }
434 
435 /*
436  * The idea using the light way get the spte on x86_32 guest is from
437  * gup_get_pte (mm/gup.c).
438  *
439  * An spte tlb flush may be pending, because kvm_set_pte_rmap
440  * coalesces them and we are running out of the MMU lock.  Therefore
441  * we need to protect against in-progress updates of the spte.
442  *
443  * Reading the spte while an update is in progress may get the old value
444  * for the high part of the spte.  The race is fine for a present->non-present
445  * change (because the high part of the spte is ignored for non-present spte),
446  * but for a present->present change we must reread the spte.
447  *
448  * All such changes are done in two steps (present->non-present and
449  * non-present->present), hence it is enough to count the number of
450  * present->non-present updates: if it changed while reading the spte,
451  * we might have hit the race.  This is done using clear_spte_count.
452  */
453 static u64 __get_spte_lockless(u64 *sptep)
454 {
455 	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
456 	union split_spte spte, *orig = (union split_spte *)sptep;
457 	int count;
458 
459 retry:
460 	count = sp->clear_spte_count;
461 	smp_rmb();
462 
463 	spte.spte_low = orig->spte_low;
464 	smp_rmb();
465 
466 	spte.spte_high = orig->spte_high;
467 	smp_rmb();
468 
469 	if (unlikely(spte.spte_low != orig->spte_low ||
470 	      count != sp->clear_spte_count))
471 		goto retry;
472 
473 	return spte.spte;
474 }
475 #endif
476 
477 /* Rules for using mmu_spte_set:
478  * Set the sptep from nonpresent to present.
479  * Note: the sptep being assigned *must* be either not present
480  * or in a state where the hardware will not attempt to update
481  * the spte.
482  */
483 static void mmu_spte_set(u64 *sptep, u64 new_spte)
484 {
485 	WARN_ON_ONCE(is_shadow_present_pte(*sptep));
486 	__set_spte(sptep, new_spte);
487 }
488 
489 /*
490  * Update the SPTE (excluding the PFN), but do not track changes in its
491  * accessed/dirty status.
492  */
493 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
494 {
495 	u64 old_spte = *sptep;
496 
497 	WARN_ON_ONCE(!is_shadow_present_pte(new_spte));
498 	check_spte_writable_invariants(new_spte);
499 
500 	if (!is_shadow_present_pte(old_spte)) {
501 		mmu_spte_set(sptep, new_spte);
502 		return old_spte;
503 	}
504 
505 	if (!spte_has_volatile_bits(old_spte))
506 		__update_clear_spte_fast(sptep, new_spte);
507 	else
508 		old_spte = __update_clear_spte_slow(sptep, new_spte);
509 
510 	WARN_ON_ONCE(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
511 
512 	return old_spte;
513 }
514 
515 /* Rules for using mmu_spte_update:
516  * Update the state bits, it means the mapped pfn is not changed.
517  *
518  * Whenever an MMU-writable SPTE is overwritten with a read-only SPTE, remote
519  * TLBs must be flushed. Otherwise rmap_write_protect will find a read-only
520  * spte, even though the writable spte might be cached on a CPU's TLB.
521  *
522  * Returns true if the TLB needs to be flushed
523  */
524 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
525 {
526 	bool flush = false;
527 	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
528 
529 	if (!is_shadow_present_pte(old_spte))
530 		return false;
531 
532 	/*
533 	 * For the spte updated out of mmu-lock is safe, since
534 	 * we always atomically update it, see the comments in
535 	 * spte_has_volatile_bits().
536 	 */
537 	if (is_mmu_writable_spte(old_spte) &&
538 	      !is_writable_pte(new_spte))
539 		flush = true;
540 
541 	/*
542 	 * Flush TLB when accessed/dirty states are changed in the page tables,
543 	 * to guarantee consistency between TLB and page tables.
544 	 */
545 
546 	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
547 		flush = true;
548 		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
549 	}
550 
551 	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
552 		flush = true;
553 		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
554 	}
555 
556 	return flush;
557 }
558 
559 /*
560  * Rules for using mmu_spte_clear_track_bits:
561  * It sets the sptep from present to nonpresent, and track the
562  * state bits, it is used to clear the last level sptep.
563  * Returns the old PTE.
564  */
565 static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
566 {
567 	kvm_pfn_t pfn;
568 	u64 old_spte = *sptep;
569 	int level = sptep_to_sp(sptep)->role.level;
570 	struct page *page;
571 
572 	if (!is_shadow_present_pte(old_spte) ||
573 	    !spte_has_volatile_bits(old_spte))
574 		__update_clear_spte_fast(sptep, 0ull);
575 	else
576 		old_spte = __update_clear_spte_slow(sptep, 0ull);
577 
578 	if (!is_shadow_present_pte(old_spte))
579 		return old_spte;
580 
581 	kvm_update_page_stats(kvm, level, -1);
582 
583 	pfn = spte_to_pfn(old_spte);
584 
585 	/*
586 	 * KVM doesn't hold a reference to any pages mapped into the guest, and
587 	 * instead uses the mmu_notifier to ensure that KVM unmaps any pages
588 	 * before they are reclaimed.  Sanity check that, if the pfn is backed
589 	 * by a refcounted page, the refcount is elevated.
590 	 */
591 	page = kvm_pfn_to_refcounted_page(pfn);
592 	WARN_ON_ONCE(page && !page_count(page));
593 
594 	if (is_accessed_spte(old_spte))
595 		kvm_set_pfn_accessed(pfn);
596 
597 	if (is_dirty_spte(old_spte))
598 		kvm_set_pfn_dirty(pfn);
599 
600 	return old_spte;
601 }
602 
603 /*
604  * Rules for using mmu_spte_clear_no_track:
605  * Directly clear spte without caring the state bits of sptep,
606  * it is used to set the upper level spte.
607  */
608 static void mmu_spte_clear_no_track(u64 *sptep)
609 {
610 	__update_clear_spte_fast(sptep, 0ull);
611 }
612 
613 static u64 mmu_spte_get_lockless(u64 *sptep)
614 {
615 	return __get_spte_lockless(sptep);
616 }
617 
618 /* Returns the Accessed status of the PTE and resets it at the same time. */
619 static bool mmu_spte_age(u64 *sptep)
620 {
621 	u64 spte = mmu_spte_get_lockless(sptep);
622 
623 	if (!is_accessed_spte(spte))
624 		return false;
625 
626 	if (spte_ad_enabled(spte)) {
627 		clear_bit((ffs(shadow_accessed_mask) - 1),
628 			  (unsigned long *)sptep);
629 	} else {
630 		/*
631 		 * Capture the dirty status of the page, so that it doesn't get
632 		 * lost when the SPTE is marked for access tracking.
633 		 */
634 		if (is_writable_pte(spte))
635 			kvm_set_pfn_dirty(spte_to_pfn(spte));
636 
637 		spte = mark_spte_for_access_track(spte);
638 		mmu_spte_update_no_track(sptep, spte);
639 	}
640 
641 	return true;
642 }
643 
644 static inline bool is_tdp_mmu_active(struct kvm_vcpu *vcpu)
645 {
646 	return tdp_mmu_enabled && vcpu->arch.mmu->root_role.direct;
647 }
648 
649 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
650 {
651 	if (is_tdp_mmu_active(vcpu)) {
652 		kvm_tdp_mmu_walk_lockless_begin();
653 	} else {
654 		/*
655 		 * Prevent page table teardown by making any free-er wait during
656 		 * kvm_flush_remote_tlbs() IPI to all active vcpus.
657 		 */
658 		local_irq_disable();
659 
660 		/*
661 		 * Make sure a following spte read is not reordered ahead of the write
662 		 * to vcpu->mode.
663 		 */
664 		smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
665 	}
666 }
667 
668 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
669 {
670 	if (is_tdp_mmu_active(vcpu)) {
671 		kvm_tdp_mmu_walk_lockless_end();
672 	} else {
673 		/*
674 		 * Make sure the write to vcpu->mode is not reordered in front of
675 		 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
676 		 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
677 		 */
678 		smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
679 		local_irq_enable();
680 	}
681 }
682 
683 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
684 {
685 	int r;
686 
687 	/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
688 	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
689 				       1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
690 	if (r)
691 		return r;
692 	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
693 				       PT64_ROOT_MAX_LEVEL);
694 	if (r)
695 		return r;
696 	if (maybe_indirect) {
697 		r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadowed_info_cache,
698 					       PT64_ROOT_MAX_LEVEL);
699 		if (r)
700 			return r;
701 	}
702 	return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
703 					  PT64_ROOT_MAX_LEVEL);
704 }
705 
706 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
707 {
708 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
709 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
710 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadowed_info_cache);
711 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
712 }
713 
714 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
715 {
716 	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
717 }
718 
719 static bool sp_has_gptes(struct kvm_mmu_page *sp);
720 
721 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
722 {
723 	if (sp->role.passthrough)
724 		return sp->gfn;
725 
726 	if (!sp->role.direct)
727 		return sp->shadowed_translation[index] >> PAGE_SHIFT;
728 
729 	return sp->gfn + (index << ((sp->role.level - 1) * SPTE_LEVEL_BITS));
730 }
731 
732 /*
733  * For leaf SPTEs, fetch the *guest* access permissions being shadowed. Note
734  * that the SPTE itself may have a more constrained access permissions that
735  * what the guest enforces. For example, a guest may create an executable
736  * huge PTE but KVM may disallow execution to mitigate iTLB multihit.
737  */
738 static u32 kvm_mmu_page_get_access(struct kvm_mmu_page *sp, int index)
739 {
740 	if (sp_has_gptes(sp))
741 		return sp->shadowed_translation[index] & ACC_ALL;
742 
743 	/*
744 	 * For direct MMUs (e.g. TDP or non-paging guests) or passthrough SPs,
745 	 * KVM is not shadowing any guest page tables, so the "guest access
746 	 * permissions" are just ACC_ALL.
747 	 *
748 	 * For direct SPs in indirect MMUs (shadow paging), i.e. when KVM
749 	 * is shadowing a guest huge page with small pages, the guest access
750 	 * permissions being shadowed are the access permissions of the huge
751 	 * page.
752 	 *
753 	 * In both cases, sp->role.access contains the correct access bits.
754 	 */
755 	return sp->role.access;
756 }
757 
758 static void kvm_mmu_page_set_translation(struct kvm_mmu_page *sp, int index,
759 					 gfn_t gfn, unsigned int access)
760 {
761 	if (sp_has_gptes(sp)) {
762 		sp->shadowed_translation[index] = (gfn << PAGE_SHIFT) | access;
763 		return;
764 	}
765 
766 	WARN_ONCE(access != kvm_mmu_page_get_access(sp, index),
767 	          "access mismatch under %s page %llx (expected %u, got %u)\n",
768 	          sp->role.passthrough ? "passthrough" : "direct",
769 	          sp->gfn, kvm_mmu_page_get_access(sp, index), access);
770 
771 	WARN_ONCE(gfn != kvm_mmu_page_get_gfn(sp, index),
772 	          "gfn mismatch under %s page %llx (expected %llx, got %llx)\n",
773 	          sp->role.passthrough ? "passthrough" : "direct",
774 	          sp->gfn, kvm_mmu_page_get_gfn(sp, index), gfn);
775 }
776 
777 static void kvm_mmu_page_set_access(struct kvm_mmu_page *sp, int index,
778 				    unsigned int access)
779 {
780 	gfn_t gfn = kvm_mmu_page_get_gfn(sp, index);
781 
782 	kvm_mmu_page_set_translation(sp, index, gfn, access);
783 }
784 
785 /*
786  * Return the pointer to the large page information for a given gfn,
787  * handling slots that are not large page aligned.
788  */
789 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
790 		const struct kvm_memory_slot *slot, int level)
791 {
792 	unsigned long idx;
793 
794 	idx = gfn_to_index(gfn, slot->base_gfn, level);
795 	return &slot->arch.lpage_info[level - 2][idx];
796 }
797 
798 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot,
799 					    gfn_t gfn, int count)
800 {
801 	struct kvm_lpage_info *linfo;
802 	int i;
803 
804 	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
805 		linfo = lpage_info_slot(gfn, slot, i);
806 		linfo->disallow_lpage += count;
807 		WARN_ON_ONCE(linfo->disallow_lpage < 0);
808 	}
809 }
810 
811 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
812 {
813 	update_gfn_disallow_lpage_count(slot, gfn, 1);
814 }
815 
816 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
817 {
818 	update_gfn_disallow_lpage_count(slot, gfn, -1);
819 }
820 
821 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
822 {
823 	struct kvm_memslots *slots;
824 	struct kvm_memory_slot *slot;
825 	gfn_t gfn;
826 
827 	kvm->arch.indirect_shadow_pages++;
828 	gfn = sp->gfn;
829 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
830 	slot = __gfn_to_memslot(slots, gfn);
831 
832 	/* the non-leaf shadow pages are keeping readonly. */
833 	if (sp->role.level > PG_LEVEL_4K)
834 		return __kvm_write_track_add_gfn(kvm, slot, gfn);
835 
836 	kvm_mmu_gfn_disallow_lpage(slot, gfn);
837 
838 	if (kvm_mmu_slot_gfn_write_protect(kvm, slot, gfn, PG_LEVEL_4K))
839 		kvm_flush_remote_tlbs_gfn(kvm, gfn, PG_LEVEL_4K);
840 }
841 
842 void track_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp)
843 {
844 	/*
845 	 * If it's possible to replace the shadow page with an NX huge page,
846 	 * i.e. if the shadow page is the only thing currently preventing KVM
847 	 * from using a huge page, add the shadow page to the list of "to be
848 	 * zapped for NX recovery" pages.  Note, the shadow page can already be
849 	 * on the list if KVM is reusing an existing shadow page, i.e. if KVM
850 	 * links a shadow page at multiple points.
851 	 */
852 	if (!list_empty(&sp->possible_nx_huge_page_link))
853 		return;
854 
855 	++kvm->stat.nx_lpage_splits;
856 	list_add_tail(&sp->possible_nx_huge_page_link,
857 		      &kvm->arch.possible_nx_huge_pages);
858 }
859 
860 static void account_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp,
861 				 bool nx_huge_page_possible)
862 {
863 	sp->nx_huge_page_disallowed = true;
864 
865 	if (nx_huge_page_possible)
866 		track_possible_nx_huge_page(kvm, sp);
867 }
868 
869 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
870 {
871 	struct kvm_memslots *slots;
872 	struct kvm_memory_slot *slot;
873 	gfn_t gfn;
874 
875 	kvm->arch.indirect_shadow_pages--;
876 	gfn = sp->gfn;
877 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
878 	slot = __gfn_to_memslot(slots, gfn);
879 	if (sp->role.level > PG_LEVEL_4K)
880 		return __kvm_write_track_remove_gfn(kvm, slot, gfn);
881 
882 	kvm_mmu_gfn_allow_lpage(slot, gfn);
883 }
884 
885 void untrack_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp)
886 {
887 	if (list_empty(&sp->possible_nx_huge_page_link))
888 		return;
889 
890 	--kvm->stat.nx_lpage_splits;
891 	list_del_init(&sp->possible_nx_huge_page_link);
892 }
893 
894 static void unaccount_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp)
895 {
896 	sp->nx_huge_page_disallowed = false;
897 
898 	untrack_possible_nx_huge_page(kvm, sp);
899 }
900 
901 static struct kvm_memory_slot *gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu,
902 							   gfn_t gfn,
903 							   bool no_dirty_log)
904 {
905 	struct kvm_memory_slot *slot;
906 
907 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
908 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
909 		return NULL;
910 	if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
911 		return NULL;
912 
913 	return slot;
914 }
915 
916 /*
917  * About rmap_head encoding:
918  *
919  * If the bit zero of rmap_head->val is clear, then it points to the only spte
920  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
921  * pte_list_desc containing more mappings.
922  */
923 
924 /*
925  * Returns the number of pointers in the rmap chain, not counting the new one.
926  */
927 static int pte_list_add(struct kvm_mmu_memory_cache *cache, u64 *spte,
928 			struct kvm_rmap_head *rmap_head)
929 {
930 	struct pte_list_desc *desc;
931 	int count = 0;
932 
933 	if (!rmap_head->val) {
934 		rmap_head->val = (unsigned long)spte;
935 	} else if (!(rmap_head->val & 1)) {
936 		desc = kvm_mmu_memory_cache_alloc(cache);
937 		desc->sptes[0] = (u64 *)rmap_head->val;
938 		desc->sptes[1] = spte;
939 		desc->spte_count = 2;
940 		desc->tail_count = 0;
941 		rmap_head->val = (unsigned long)desc | 1;
942 		++count;
943 	} else {
944 		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
945 		count = desc->tail_count + desc->spte_count;
946 
947 		/*
948 		 * If the previous head is full, allocate a new head descriptor
949 		 * as tail descriptors are always kept full.
950 		 */
951 		if (desc->spte_count == PTE_LIST_EXT) {
952 			desc = kvm_mmu_memory_cache_alloc(cache);
953 			desc->more = (struct pte_list_desc *)(rmap_head->val & ~1ul);
954 			desc->spte_count = 0;
955 			desc->tail_count = count;
956 			rmap_head->val = (unsigned long)desc | 1;
957 		}
958 		desc->sptes[desc->spte_count++] = spte;
959 	}
960 	return count;
961 }
962 
963 static void pte_list_desc_remove_entry(struct kvm *kvm,
964 				       struct kvm_rmap_head *rmap_head,
965 				       struct pte_list_desc *desc, int i)
966 {
967 	struct pte_list_desc *head_desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
968 	int j = head_desc->spte_count - 1;
969 
970 	/*
971 	 * The head descriptor should never be empty.  A new head is added only
972 	 * when adding an entry and the previous head is full, and heads are
973 	 * removed (this flow) when they become empty.
974 	 */
975 	KVM_BUG_ON_DATA_CORRUPTION(j < 0, kvm);
976 
977 	/*
978 	 * Replace the to-be-freed SPTE with the last valid entry from the head
979 	 * descriptor to ensure that tail descriptors are full at all times.
980 	 * Note, this also means that tail_count is stable for each descriptor.
981 	 */
982 	desc->sptes[i] = head_desc->sptes[j];
983 	head_desc->sptes[j] = NULL;
984 	head_desc->spte_count--;
985 	if (head_desc->spte_count)
986 		return;
987 
988 	/*
989 	 * The head descriptor is empty.  If there are no tail descriptors,
990 	 * nullify the rmap head to mark the list as emtpy, else point the rmap
991 	 * head at the next descriptor, i.e. the new head.
992 	 */
993 	if (!head_desc->more)
994 		rmap_head->val = 0;
995 	else
996 		rmap_head->val = (unsigned long)head_desc->more | 1;
997 	mmu_free_pte_list_desc(head_desc);
998 }
999 
1000 static void pte_list_remove(struct kvm *kvm, u64 *spte,
1001 			    struct kvm_rmap_head *rmap_head)
1002 {
1003 	struct pte_list_desc *desc;
1004 	int i;
1005 
1006 	if (KVM_BUG_ON_DATA_CORRUPTION(!rmap_head->val, kvm))
1007 		return;
1008 
1009 	if (!(rmap_head->val & 1)) {
1010 		if (KVM_BUG_ON_DATA_CORRUPTION((u64 *)rmap_head->val != spte, kvm))
1011 			return;
1012 
1013 		rmap_head->val = 0;
1014 	} else {
1015 		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1016 		while (desc) {
1017 			for (i = 0; i < desc->spte_count; ++i) {
1018 				if (desc->sptes[i] == spte) {
1019 					pte_list_desc_remove_entry(kvm, rmap_head,
1020 								   desc, i);
1021 					return;
1022 				}
1023 			}
1024 			desc = desc->more;
1025 		}
1026 
1027 		KVM_BUG_ON_DATA_CORRUPTION(true, kvm);
1028 	}
1029 }
1030 
1031 static void kvm_zap_one_rmap_spte(struct kvm *kvm,
1032 				  struct kvm_rmap_head *rmap_head, u64 *sptep)
1033 {
1034 	mmu_spte_clear_track_bits(kvm, sptep);
1035 	pte_list_remove(kvm, sptep, rmap_head);
1036 }
1037 
1038 /* Return true if at least one SPTE was zapped, false otherwise */
1039 static bool kvm_zap_all_rmap_sptes(struct kvm *kvm,
1040 				   struct kvm_rmap_head *rmap_head)
1041 {
1042 	struct pte_list_desc *desc, *next;
1043 	int i;
1044 
1045 	if (!rmap_head->val)
1046 		return false;
1047 
1048 	if (!(rmap_head->val & 1)) {
1049 		mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val);
1050 		goto out;
1051 	}
1052 
1053 	desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1054 
1055 	for (; desc; desc = next) {
1056 		for (i = 0; i < desc->spte_count; i++)
1057 			mmu_spte_clear_track_bits(kvm, desc->sptes[i]);
1058 		next = desc->more;
1059 		mmu_free_pte_list_desc(desc);
1060 	}
1061 out:
1062 	/* rmap_head is meaningless now, remember to reset it */
1063 	rmap_head->val = 0;
1064 	return true;
1065 }
1066 
1067 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head)
1068 {
1069 	struct pte_list_desc *desc;
1070 
1071 	if (!rmap_head->val)
1072 		return 0;
1073 	else if (!(rmap_head->val & 1))
1074 		return 1;
1075 
1076 	desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1077 	return desc->tail_count + desc->spte_count;
1078 }
1079 
1080 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level,
1081 					 const struct kvm_memory_slot *slot)
1082 {
1083 	unsigned long idx;
1084 
1085 	idx = gfn_to_index(gfn, slot->base_gfn, level);
1086 	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1087 }
1088 
1089 static void rmap_remove(struct kvm *kvm, u64 *spte)
1090 {
1091 	struct kvm_memslots *slots;
1092 	struct kvm_memory_slot *slot;
1093 	struct kvm_mmu_page *sp;
1094 	gfn_t gfn;
1095 	struct kvm_rmap_head *rmap_head;
1096 
1097 	sp = sptep_to_sp(spte);
1098 	gfn = kvm_mmu_page_get_gfn(sp, spte_index(spte));
1099 
1100 	/*
1101 	 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU
1102 	 * so we have to determine which memslots to use based on context
1103 	 * information in sp->role.
1104 	 */
1105 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
1106 
1107 	slot = __gfn_to_memslot(slots, gfn);
1108 	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1109 
1110 	pte_list_remove(kvm, spte, rmap_head);
1111 }
1112 
1113 /*
1114  * Used by the following functions to iterate through the sptes linked by a
1115  * rmap.  All fields are private and not assumed to be used outside.
1116  */
1117 struct rmap_iterator {
1118 	/* private fields */
1119 	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
1120 	int pos;			/* index of the sptep */
1121 };
1122 
1123 /*
1124  * Iteration must be started by this function.  This should also be used after
1125  * removing/dropping sptes from the rmap link because in such cases the
1126  * information in the iterator may not be valid.
1127  *
1128  * Returns sptep if found, NULL otherwise.
1129  */
1130 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1131 			   struct rmap_iterator *iter)
1132 {
1133 	u64 *sptep;
1134 
1135 	if (!rmap_head->val)
1136 		return NULL;
1137 
1138 	if (!(rmap_head->val & 1)) {
1139 		iter->desc = NULL;
1140 		sptep = (u64 *)rmap_head->val;
1141 		goto out;
1142 	}
1143 
1144 	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1145 	iter->pos = 0;
1146 	sptep = iter->desc->sptes[iter->pos];
1147 out:
1148 	BUG_ON(!is_shadow_present_pte(*sptep));
1149 	return sptep;
1150 }
1151 
1152 /*
1153  * Must be used with a valid iterator: e.g. after rmap_get_first().
1154  *
1155  * Returns sptep if found, NULL otherwise.
1156  */
1157 static u64 *rmap_get_next(struct rmap_iterator *iter)
1158 {
1159 	u64 *sptep;
1160 
1161 	if (iter->desc) {
1162 		if (iter->pos < PTE_LIST_EXT - 1) {
1163 			++iter->pos;
1164 			sptep = iter->desc->sptes[iter->pos];
1165 			if (sptep)
1166 				goto out;
1167 		}
1168 
1169 		iter->desc = iter->desc->more;
1170 
1171 		if (iter->desc) {
1172 			iter->pos = 0;
1173 			/* desc->sptes[0] cannot be NULL */
1174 			sptep = iter->desc->sptes[iter->pos];
1175 			goto out;
1176 		}
1177 	}
1178 
1179 	return NULL;
1180 out:
1181 	BUG_ON(!is_shadow_present_pte(*sptep));
1182 	return sptep;
1183 }
1184 
1185 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
1186 	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1187 	     _spte_; _spte_ = rmap_get_next(_iter_))
1188 
1189 static void drop_spte(struct kvm *kvm, u64 *sptep)
1190 {
1191 	u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep);
1192 
1193 	if (is_shadow_present_pte(old_spte))
1194 		rmap_remove(kvm, sptep);
1195 }
1196 
1197 static void drop_large_spte(struct kvm *kvm, u64 *sptep, bool flush)
1198 {
1199 	struct kvm_mmu_page *sp;
1200 
1201 	sp = sptep_to_sp(sptep);
1202 	WARN_ON_ONCE(sp->role.level == PG_LEVEL_4K);
1203 
1204 	drop_spte(kvm, sptep);
1205 
1206 	if (flush)
1207 		kvm_flush_remote_tlbs_sptep(kvm, sptep);
1208 }
1209 
1210 /*
1211  * Write-protect on the specified @sptep, @pt_protect indicates whether
1212  * spte write-protection is caused by protecting shadow page table.
1213  *
1214  * Note: write protection is difference between dirty logging and spte
1215  * protection:
1216  * - for dirty logging, the spte can be set to writable at anytime if
1217  *   its dirty bitmap is properly set.
1218  * - for spte protection, the spte can be writable only after unsync-ing
1219  *   shadow page.
1220  *
1221  * Return true if tlb need be flushed.
1222  */
1223 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1224 {
1225 	u64 spte = *sptep;
1226 
1227 	if (!is_writable_pte(spte) &&
1228 	    !(pt_protect && is_mmu_writable_spte(spte)))
1229 		return false;
1230 
1231 	if (pt_protect)
1232 		spte &= ~shadow_mmu_writable_mask;
1233 	spte = spte & ~PT_WRITABLE_MASK;
1234 
1235 	return mmu_spte_update(sptep, spte);
1236 }
1237 
1238 static bool rmap_write_protect(struct kvm_rmap_head *rmap_head,
1239 			       bool pt_protect)
1240 {
1241 	u64 *sptep;
1242 	struct rmap_iterator iter;
1243 	bool flush = false;
1244 
1245 	for_each_rmap_spte(rmap_head, &iter, sptep)
1246 		flush |= spte_write_protect(sptep, pt_protect);
1247 
1248 	return flush;
1249 }
1250 
1251 static bool spte_clear_dirty(u64 *sptep)
1252 {
1253 	u64 spte = *sptep;
1254 
1255 	KVM_MMU_WARN_ON(!spte_ad_enabled(spte));
1256 	spte &= ~shadow_dirty_mask;
1257 	return mmu_spte_update(sptep, spte);
1258 }
1259 
1260 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1261 {
1262 	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1263 					       (unsigned long *)sptep);
1264 	if (was_writable && !spte_ad_enabled(*sptep))
1265 		kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1266 
1267 	return was_writable;
1268 }
1269 
1270 /*
1271  * Gets the GFN ready for another round of dirty logging by clearing the
1272  *	- D bit on ad-enabled SPTEs, and
1273  *	- W bit on ad-disabled SPTEs.
1274  * Returns true iff any D or W bits were cleared.
1275  */
1276 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1277 			       const struct kvm_memory_slot *slot)
1278 {
1279 	u64 *sptep;
1280 	struct rmap_iterator iter;
1281 	bool flush = false;
1282 
1283 	for_each_rmap_spte(rmap_head, &iter, sptep)
1284 		if (spte_ad_need_write_protect(*sptep))
1285 			flush |= spte_wrprot_for_clear_dirty(sptep);
1286 		else
1287 			flush |= spte_clear_dirty(sptep);
1288 
1289 	return flush;
1290 }
1291 
1292 /**
1293  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1294  * @kvm: kvm instance
1295  * @slot: slot to protect
1296  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1297  * @mask: indicates which pages we should protect
1298  *
1299  * Used when we do not need to care about huge page mappings.
1300  */
1301 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1302 				     struct kvm_memory_slot *slot,
1303 				     gfn_t gfn_offset, unsigned long mask)
1304 {
1305 	struct kvm_rmap_head *rmap_head;
1306 
1307 	if (tdp_mmu_enabled)
1308 		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1309 				slot->base_gfn + gfn_offset, mask, true);
1310 
1311 	if (!kvm_memslots_have_rmaps(kvm))
1312 		return;
1313 
1314 	while (mask) {
1315 		rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1316 					PG_LEVEL_4K, slot);
1317 		rmap_write_protect(rmap_head, false);
1318 
1319 		/* clear the first set bit */
1320 		mask &= mask - 1;
1321 	}
1322 }
1323 
1324 /**
1325  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1326  * protect the page if the D-bit isn't supported.
1327  * @kvm: kvm instance
1328  * @slot: slot to clear D-bit
1329  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1330  * @mask: indicates which pages we should clear D-bit
1331  *
1332  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1333  */
1334 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1335 					 struct kvm_memory_slot *slot,
1336 					 gfn_t gfn_offset, unsigned long mask)
1337 {
1338 	struct kvm_rmap_head *rmap_head;
1339 
1340 	if (tdp_mmu_enabled)
1341 		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1342 				slot->base_gfn + gfn_offset, mask, false);
1343 
1344 	if (!kvm_memslots_have_rmaps(kvm))
1345 		return;
1346 
1347 	while (mask) {
1348 		rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1349 					PG_LEVEL_4K, slot);
1350 		__rmap_clear_dirty(kvm, rmap_head, slot);
1351 
1352 		/* clear the first set bit */
1353 		mask &= mask - 1;
1354 	}
1355 }
1356 
1357 /**
1358  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1359  * PT level pages.
1360  *
1361  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1362  * enable dirty logging for them.
1363  *
1364  * We need to care about huge page mappings: e.g. during dirty logging we may
1365  * have such mappings.
1366  */
1367 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1368 				struct kvm_memory_slot *slot,
1369 				gfn_t gfn_offset, unsigned long mask)
1370 {
1371 	/*
1372 	 * Huge pages are NOT write protected when we start dirty logging in
1373 	 * initially-all-set mode; must write protect them here so that they
1374 	 * are split to 4K on the first write.
1375 	 *
1376 	 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
1377 	 * of memslot has no such restriction, so the range can cross two large
1378 	 * pages.
1379 	 */
1380 	if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1381 		gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
1382 		gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);
1383 
1384 		if (READ_ONCE(eager_page_split))
1385 			kvm_mmu_try_split_huge_pages(kvm, slot, start, end, PG_LEVEL_4K);
1386 
1387 		kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);
1388 
1389 		/* Cross two large pages? */
1390 		if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
1391 		    ALIGN(end << PAGE_SHIFT, PMD_SIZE))
1392 			kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
1393 						       PG_LEVEL_2M);
1394 	}
1395 
1396 	/* Now handle 4K PTEs.  */
1397 	if (kvm_x86_ops.cpu_dirty_log_size)
1398 		kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1399 	else
1400 		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1401 }
1402 
1403 int kvm_cpu_dirty_log_size(void)
1404 {
1405 	return kvm_x86_ops.cpu_dirty_log_size;
1406 }
1407 
1408 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1409 				    struct kvm_memory_slot *slot, u64 gfn,
1410 				    int min_level)
1411 {
1412 	struct kvm_rmap_head *rmap_head;
1413 	int i;
1414 	bool write_protected = false;
1415 
1416 	if (kvm_memslots_have_rmaps(kvm)) {
1417 		for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1418 			rmap_head = gfn_to_rmap(gfn, i, slot);
1419 			write_protected |= rmap_write_protect(rmap_head, true);
1420 		}
1421 	}
1422 
1423 	if (tdp_mmu_enabled)
1424 		write_protected |=
1425 			kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1426 
1427 	return write_protected;
1428 }
1429 
1430 static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn)
1431 {
1432 	struct kvm_memory_slot *slot;
1433 
1434 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1435 	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1436 }
1437 
1438 static bool __kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1439 			   const struct kvm_memory_slot *slot)
1440 {
1441 	return kvm_zap_all_rmap_sptes(kvm, rmap_head);
1442 }
1443 
1444 static bool kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1445 			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1446 			 pte_t unused)
1447 {
1448 	return __kvm_zap_rmap(kvm, rmap_head, slot);
1449 }
1450 
1451 static bool kvm_set_pte_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1452 			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
1453 			     pte_t pte)
1454 {
1455 	u64 *sptep;
1456 	struct rmap_iterator iter;
1457 	bool need_flush = false;
1458 	u64 new_spte;
1459 	kvm_pfn_t new_pfn;
1460 
1461 	WARN_ON_ONCE(pte_huge(pte));
1462 	new_pfn = pte_pfn(pte);
1463 
1464 restart:
1465 	for_each_rmap_spte(rmap_head, &iter, sptep) {
1466 		need_flush = true;
1467 
1468 		if (pte_write(pte)) {
1469 			kvm_zap_one_rmap_spte(kvm, rmap_head, sptep);
1470 			goto restart;
1471 		} else {
1472 			new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1473 					*sptep, new_pfn);
1474 
1475 			mmu_spte_clear_track_bits(kvm, sptep);
1476 			mmu_spte_set(sptep, new_spte);
1477 		}
1478 	}
1479 
1480 	if (need_flush && kvm_available_flush_remote_tlbs_range()) {
1481 		kvm_flush_remote_tlbs_gfn(kvm, gfn, level);
1482 		return false;
1483 	}
1484 
1485 	return need_flush;
1486 }
1487 
1488 struct slot_rmap_walk_iterator {
1489 	/* input fields. */
1490 	const struct kvm_memory_slot *slot;
1491 	gfn_t start_gfn;
1492 	gfn_t end_gfn;
1493 	int start_level;
1494 	int end_level;
1495 
1496 	/* output fields. */
1497 	gfn_t gfn;
1498 	struct kvm_rmap_head *rmap;
1499 	int level;
1500 
1501 	/* private field. */
1502 	struct kvm_rmap_head *end_rmap;
1503 };
1504 
1505 static void rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator,
1506 				 int level)
1507 {
1508 	iterator->level = level;
1509 	iterator->gfn = iterator->start_gfn;
1510 	iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot);
1511 	iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot);
1512 }
1513 
1514 static void slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1515 				const struct kvm_memory_slot *slot,
1516 				int start_level, int end_level,
1517 				gfn_t start_gfn, gfn_t end_gfn)
1518 {
1519 	iterator->slot = slot;
1520 	iterator->start_level = start_level;
1521 	iterator->end_level = end_level;
1522 	iterator->start_gfn = start_gfn;
1523 	iterator->end_gfn = end_gfn;
1524 
1525 	rmap_walk_init_level(iterator, iterator->start_level);
1526 }
1527 
1528 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1529 {
1530 	return !!iterator->rmap;
1531 }
1532 
1533 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1534 {
1535 	while (++iterator->rmap <= iterator->end_rmap) {
1536 		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1537 
1538 		if (iterator->rmap->val)
1539 			return;
1540 	}
1541 
1542 	if (++iterator->level > iterator->end_level) {
1543 		iterator->rmap = NULL;
1544 		return;
1545 	}
1546 
1547 	rmap_walk_init_level(iterator, iterator->level);
1548 }
1549 
1550 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
1551 	   _start_gfn, _end_gfn, _iter_)				\
1552 	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
1553 				 _end_level_, _start_gfn, _end_gfn);	\
1554 	     slot_rmap_walk_okay(_iter_);				\
1555 	     slot_rmap_walk_next(_iter_))
1556 
1557 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1558 			       struct kvm_memory_slot *slot, gfn_t gfn,
1559 			       int level, pte_t pte);
1560 
1561 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
1562 						 struct kvm_gfn_range *range,
1563 						 rmap_handler_t handler)
1564 {
1565 	struct slot_rmap_walk_iterator iterator;
1566 	bool ret = false;
1567 
1568 	for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
1569 				 range->start, range->end - 1, &iterator)
1570 		ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
1571 			       iterator.level, range->arg.pte);
1572 
1573 	return ret;
1574 }
1575 
1576 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1577 {
1578 	bool flush = false;
1579 
1580 	if (kvm_memslots_have_rmaps(kvm))
1581 		flush = kvm_handle_gfn_range(kvm, range, kvm_zap_rmap);
1582 
1583 	if (tdp_mmu_enabled)
1584 		flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1585 
1586 	if (kvm_x86_ops.set_apic_access_page_addr &&
1587 	    range->slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT)
1588 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
1589 
1590 	return flush;
1591 }
1592 
1593 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1594 {
1595 	bool flush = false;
1596 
1597 	if (kvm_memslots_have_rmaps(kvm))
1598 		flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmap);
1599 
1600 	if (tdp_mmu_enabled)
1601 		flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1602 
1603 	return flush;
1604 }
1605 
1606 static bool kvm_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1607 			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1608 			 pte_t unused)
1609 {
1610 	u64 *sptep;
1611 	struct rmap_iterator iter;
1612 	int young = 0;
1613 
1614 	for_each_rmap_spte(rmap_head, &iter, sptep)
1615 		young |= mmu_spte_age(sptep);
1616 
1617 	return young;
1618 }
1619 
1620 static bool kvm_test_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1621 			      struct kvm_memory_slot *slot, gfn_t gfn,
1622 			      int level, pte_t unused)
1623 {
1624 	u64 *sptep;
1625 	struct rmap_iterator iter;
1626 
1627 	for_each_rmap_spte(rmap_head, &iter, sptep)
1628 		if (is_accessed_spte(*sptep))
1629 			return true;
1630 	return false;
1631 }
1632 
1633 #define RMAP_RECYCLE_THRESHOLD 1000
1634 
1635 static void __rmap_add(struct kvm *kvm,
1636 		       struct kvm_mmu_memory_cache *cache,
1637 		       const struct kvm_memory_slot *slot,
1638 		       u64 *spte, gfn_t gfn, unsigned int access)
1639 {
1640 	struct kvm_mmu_page *sp;
1641 	struct kvm_rmap_head *rmap_head;
1642 	int rmap_count;
1643 
1644 	sp = sptep_to_sp(spte);
1645 	kvm_mmu_page_set_translation(sp, spte_index(spte), gfn, access);
1646 	kvm_update_page_stats(kvm, sp->role.level, 1);
1647 
1648 	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1649 	rmap_count = pte_list_add(cache, spte, rmap_head);
1650 
1651 	if (rmap_count > kvm->stat.max_mmu_rmap_size)
1652 		kvm->stat.max_mmu_rmap_size = rmap_count;
1653 	if (rmap_count > RMAP_RECYCLE_THRESHOLD) {
1654 		kvm_zap_all_rmap_sptes(kvm, rmap_head);
1655 		kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level);
1656 	}
1657 }
1658 
1659 static void rmap_add(struct kvm_vcpu *vcpu, const struct kvm_memory_slot *slot,
1660 		     u64 *spte, gfn_t gfn, unsigned int access)
1661 {
1662 	struct kvm_mmu_memory_cache *cache = &vcpu->arch.mmu_pte_list_desc_cache;
1663 
1664 	__rmap_add(vcpu->kvm, cache, slot, spte, gfn, access);
1665 }
1666 
1667 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1668 {
1669 	bool young = false;
1670 
1671 	if (kvm_memslots_have_rmaps(kvm))
1672 		young = kvm_handle_gfn_range(kvm, range, kvm_age_rmap);
1673 
1674 	if (tdp_mmu_enabled)
1675 		young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1676 
1677 	return young;
1678 }
1679 
1680 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1681 {
1682 	bool young = false;
1683 
1684 	if (kvm_memslots_have_rmaps(kvm))
1685 		young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmap);
1686 
1687 	if (tdp_mmu_enabled)
1688 		young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1689 
1690 	return young;
1691 }
1692 
1693 static void kvm_mmu_check_sptes_at_free(struct kvm_mmu_page *sp)
1694 {
1695 #ifdef CONFIG_KVM_PROVE_MMU
1696 	int i;
1697 
1698 	for (i = 0; i < SPTE_ENT_PER_PAGE; i++) {
1699 		if (KVM_MMU_WARN_ON(is_shadow_present_pte(sp->spt[i])))
1700 			pr_err_ratelimited("SPTE %llx (@ %p) for gfn %llx shadow-present at free",
1701 					   sp->spt[i], &sp->spt[i],
1702 					   kvm_mmu_page_get_gfn(sp, i));
1703 	}
1704 #endif
1705 }
1706 
1707 /*
1708  * This value is the sum of all of the kvm instances's
1709  * kvm->arch.n_used_mmu_pages values.  We need a global,
1710  * aggregate version in order to make the slab shrinker
1711  * faster
1712  */
1713 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr)
1714 {
1715 	kvm->arch.n_used_mmu_pages += nr;
1716 	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1717 }
1718 
1719 static void kvm_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1720 {
1721 	kvm_mod_used_mmu_pages(kvm, +1);
1722 	kvm_account_pgtable_pages((void *)sp->spt, +1);
1723 }
1724 
1725 static void kvm_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1726 {
1727 	kvm_mod_used_mmu_pages(kvm, -1);
1728 	kvm_account_pgtable_pages((void *)sp->spt, -1);
1729 }
1730 
1731 static void kvm_mmu_free_shadow_page(struct kvm_mmu_page *sp)
1732 {
1733 	kvm_mmu_check_sptes_at_free(sp);
1734 
1735 	hlist_del(&sp->hash_link);
1736 	list_del(&sp->link);
1737 	free_page((unsigned long)sp->spt);
1738 	if (!sp->role.direct)
1739 		free_page((unsigned long)sp->shadowed_translation);
1740 	kmem_cache_free(mmu_page_header_cache, sp);
1741 }
1742 
1743 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1744 {
1745 	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1746 }
1747 
1748 static void mmu_page_add_parent_pte(struct kvm_mmu_memory_cache *cache,
1749 				    struct kvm_mmu_page *sp, u64 *parent_pte)
1750 {
1751 	if (!parent_pte)
1752 		return;
1753 
1754 	pte_list_add(cache, parent_pte, &sp->parent_ptes);
1755 }
1756 
1757 static void mmu_page_remove_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1758 				       u64 *parent_pte)
1759 {
1760 	pte_list_remove(kvm, parent_pte, &sp->parent_ptes);
1761 }
1762 
1763 static void drop_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1764 			    u64 *parent_pte)
1765 {
1766 	mmu_page_remove_parent_pte(kvm, sp, parent_pte);
1767 	mmu_spte_clear_no_track(parent_pte);
1768 }
1769 
1770 static void mark_unsync(u64 *spte);
1771 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1772 {
1773 	u64 *sptep;
1774 	struct rmap_iterator iter;
1775 
1776 	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1777 		mark_unsync(sptep);
1778 	}
1779 }
1780 
1781 static void mark_unsync(u64 *spte)
1782 {
1783 	struct kvm_mmu_page *sp;
1784 
1785 	sp = sptep_to_sp(spte);
1786 	if (__test_and_set_bit(spte_index(spte), sp->unsync_child_bitmap))
1787 		return;
1788 	if (sp->unsync_children++)
1789 		return;
1790 	kvm_mmu_mark_parents_unsync(sp);
1791 }
1792 
1793 #define KVM_PAGE_ARRAY_NR 16
1794 
1795 struct kvm_mmu_pages {
1796 	struct mmu_page_and_offset {
1797 		struct kvm_mmu_page *sp;
1798 		unsigned int idx;
1799 	} page[KVM_PAGE_ARRAY_NR];
1800 	unsigned int nr;
1801 };
1802 
1803 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1804 			 int idx)
1805 {
1806 	int i;
1807 
1808 	if (sp->unsync)
1809 		for (i=0; i < pvec->nr; i++)
1810 			if (pvec->page[i].sp == sp)
1811 				return 0;
1812 
1813 	pvec->page[pvec->nr].sp = sp;
1814 	pvec->page[pvec->nr].idx = idx;
1815 	pvec->nr++;
1816 	return (pvec->nr == KVM_PAGE_ARRAY_NR);
1817 }
1818 
1819 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1820 {
1821 	--sp->unsync_children;
1822 	WARN_ON_ONCE((int)sp->unsync_children < 0);
1823 	__clear_bit(idx, sp->unsync_child_bitmap);
1824 }
1825 
1826 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1827 			   struct kvm_mmu_pages *pvec)
1828 {
1829 	int i, ret, nr_unsync_leaf = 0;
1830 
1831 	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1832 		struct kvm_mmu_page *child;
1833 		u64 ent = sp->spt[i];
1834 
1835 		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1836 			clear_unsync_child_bit(sp, i);
1837 			continue;
1838 		}
1839 
1840 		child = spte_to_child_sp(ent);
1841 
1842 		if (child->unsync_children) {
1843 			if (mmu_pages_add(pvec, child, i))
1844 				return -ENOSPC;
1845 
1846 			ret = __mmu_unsync_walk(child, pvec);
1847 			if (!ret) {
1848 				clear_unsync_child_bit(sp, i);
1849 				continue;
1850 			} else if (ret > 0) {
1851 				nr_unsync_leaf += ret;
1852 			} else
1853 				return ret;
1854 		} else if (child->unsync) {
1855 			nr_unsync_leaf++;
1856 			if (mmu_pages_add(pvec, child, i))
1857 				return -ENOSPC;
1858 		} else
1859 			clear_unsync_child_bit(sp, i);
1860 	}
1861 
1862 	return nr_unsync_leaf;
1863 }
1864 
1865 #define INVALID_INDEX (-1)
1866 
1867 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1868 			   struct kvm_mmu_pages *pvec)
1869 {
1870 	pvec->nr = 0;
1871 	if (!sp->unsync_children)
1872 		return 0;
1873 
1874 	mmu_pages_add(pvec, sp, INVALID_INDEX);
1875 	return __mmu_unsync_walk(sp, pvec);
1876 }
1877 
1878 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1879 {
1880 	WARN_ON_ONCE(!sp->unsync);
1881 	trace_kvm_mmu_sync_page(sp);
1882 	sp->unsync = 0;
1883 	--kvm->stat.mmu_unsync;
1884 }
1885 
1886 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1887 				     struct list_head *invalid_list);
1888 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1889 				    struct list_head *invalid_list);
1890 
1891 static bool sp_has_gptes(struct kvm_mmu_page *sp)
1892 {
1893 	if (sp->role.direct)
1894 		return false;
1895 
1896 	if (sp->role.passthrough)
1897 		return false;
1898 
1899 	return true;
1900 }
1901 
1902 #define for_each_valid_sp(_kvm, _sp, _list)				\
1903 	hlist_for_each_entry(_sp, _list, hash_link)			\
1904 		if (is_obsolete_sp((_kvm), (_sp))) {			\
1905 		} else
1906 
1907 #define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn)		\
1908 	for_each_valid_sp(_kvm, _sp,					\
1909 	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])	\
1910 		if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else
1911 
1912 static bool kvm_sync_page_check(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1913 {
1914 	union kvm_mmu_page_role root_role = vcpu->arch.mmu->root_role;
1915 
1916 	/*
1917 	 * Ignore various flags when verifying that it's safe to sync a shadow
1918 	 * page using the current MMU context.
1919 	 *
1920 	 *  - level: not part of the overall MMU role and will never match as the MMU's
1921 	 *           level tracks the root level
1922 	 *  - access: updated based on the new guest PTE
1923 	 *  - quadrant: not part of the overall MMU role (similar to level)
1924 	 */
1925 	const union kvm_mmu_page_role sync_role_ign = {
1926 		.level = 0xf,
1927 		.access = 0x7,
1928 		.quadrant = 0x3,
1929 		.passthrough = 0x1,
1930 	};
1931 
1932 	/*
1933 	 * Direct pages can never be unsync, and KVM should never attempt to
1934 	 * sync a shadow page for a different MMU context, e.g. if the role
1935 	 * differs then the memslot lookup (SMM vs. non-SMM) will be bogus, the
1936 	 * reserved bits checks will be wrong, etc...
1937 	 */
1938 	if (WARN_ON_ONCE(sp->role.direct || !vcpu->arch.mmu->sync_spte ||
1939 			 (sp->role.word ^ root_role.word) & ~sync_role_ign.word))
1940 		return false;
1941 
1942 	return true;
1943 }
1944 
1945 static int kvm_sync_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, int i)
1946 {
1947 	if (!sp->spt[i])
1948 		return 0;
1949 
1950 	return vcpu->arch.mmu->sync_spte(vcpu, sp, i);
1951 }
1952 
1953 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1954 {
1955 	int flush = 0;
1956 	int i;
1957 
1958 	if (!kvm_sync_page_check(vcpu, sp))
1959 		return -1;
1960 
1961 	for (i = 0; i < SPTE_ENT_PER_PAGE; i++) {
1962 		int ret = kvm_sync_spte(vcpu, sp, i);
1963 
1964 		if (ret < -1)
1965 			return -1;
1966 		flush |= ret;
1967 	}
1968 
1969 	/*
1970 	 * Note, any flush is purely for KVM's correctness, e.g. when dropping
1971 	 * an existing SPTE or clearing W/A/D bits to ensure an mmu_notifier
1972 	 * unmap or dirty logging event doesn't fail to flush.  The guest is
1973 	 * responsible for flushing the TLB to ensure any changes in protection
1974 	 * bits are recognized, i.e. until the guest flushes or page faults on
1975 	 * a relevant address, KVM is architecturally allowed to let vCPUs use
1976 	 * cached translations with the old protection bits.
1977 	 */
1978 	return flush;
1979 }
1980 
1981 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1982 			 struct list_head *invalid_list)
1983 {
1984 	int ret = __kvm_sync_page(vcpu, sp);
1985 
1986 	if (ret < 0)
1987 		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1988 	return ret;
1989 }
1990 
1991 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1992 					struct list_head *invalid_list,
1993 					bool remote_flush)
1994 {
1995 	if (!remote_flush && list_empty(invalid_list))
1996 		return false;
1997 
1998 	if (!list_empty(invalid_list))
1999 		kvm_mmu_commit_zap_page(kvm, invalid_list);
2000 	else
2001 		kvm_flush_remote_tlbs(kvm);
2002 	return true;
2003 }
2004 
2005 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2006 {
2007 	if (sp->role.invalid)
2008 		return true;
2009 
2010 	/* TDP MMU pages do not use the MMU generation. */
2011 	return !is_tdp_mmu_page(sp) &&
2012 	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2013 }
2014 
2015 struct mmu_page_path {
2016 	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2017 	unsigned int idx[PT64_ROOT_MAX_LEVEL];
2018 };
2019 
2020 #define for_each_sp(pvec, sp, parents, i)			\
2021 		for (i = mmu_pages_first(&pvec, &parents);	\
2022 			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
2023 			i = mmu_pages_next(&pvec, &parents, i))
2024 
2025 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2026 			  struct mmu_page_path *parents,
2027 			  int i)
2028 {
2029 	int n;
2030 
2031 	for (n = i+1; n < pvec->nr; n++) {
2032 		struct kvm_mmu_page *sp = pvec->page[n].sp;
2033 		unsigned idx = pvec->page[n].idx;
2034 		int level = sp->role.level;
2035 
2036 		parents->idx[level-1] = idx;
2037 		if (level == PG_LEVEL_4K)
2038 			break;
2039 
2040 		parents->parent[level-2] = sp;
2041 	}
2042 
2043 	return n;
2044 }
2045 
2046 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2047 			   struct mmu_page_path *parents)
2048 {
2049 	struct kvm_mmu_page *sp;
2050 	int level;
2051 
2052 	if (pvec->nr == 0)
2053 		return 0;
2054 
2055 	WARN_ON_ONCE(pvec->page[0].idx != INVALID_INDEX);
2056 
2057 	sp = pvec->page[0].sp;
2058 	level = sp->role.level;
2059 	WARN_ON_ONCE(level == PG_LEVEL_4K);
2060 
2061 	parents->parent[level-2] = sp;
2062 
2063 	/* Also set up a sentinel.  Further entries in pvec are all
2064 	 * children of sp, so this element is never overwritten.
2065 	 */
2066 	parents->parent[level-1] = NULL;
2067 	return mmu_pages_next(pvec, parents, 0);
2068 }
2069 
2070 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2071 {
2072 	struct kvm_mmu_page *sp;
2073 	unsigned int level = 0;
2074 
2075 	do {
2076 		unsigned int idx = parents->idx[level];
2077 		sp = parents->parent[level];
2078 		if (!sp)
2079 			return;
2080 
2081 		WARN_ON_ONCE(idx == INVALID_INDEX);
2082 		clear_unsync_child_bit(sp, idx);
2083 		level++;
2084 	} while (!sp->unsync_children);
2085 }
2086 
2087 static int mmu_sync_children(struct kvm_vcpu *vcpu,
2088 			     struct kvm_mmu_page *parent, bool can_yield)
2089 {
2090 	int i;
2091 	struct kvm_mmu_page *sp;
2092 	struct mmu_page_path parents;
2093 	struct kvm_mmu_pages pages;
2094 	LIST_HEAD(invalid_list);
2095 	bool flush = false;
2096 
2097 	while (mmu_unsync_walk(parent, &pages)) {
2098 		bool protected = false;
2099 
2100 		for_each_sp(pages, sp, parents, i)
2101 			protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn);
2102 
2103 		if (protected) {
2104 			kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true);
2105 			flush = false;
2106 		}
2107 
2108 		for_each_sp(pages, sp, parents, i) {
2109 			kvm_unlink_unsync_page(vcpu->kvm, sp);
2110 			flush |= kvm_sync_page(vcpu, sp, &invalid_list) > 0;
2111 			mmu_pages_clear_parents(&parents);
2112 		}
2113 		if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
2114 			kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2115 			if (!can_yield) {
2116 				kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2117 				return -EINTR;
2118 			}
2119 
2120 			cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
2121 			flush = false;
2122 		}
2123 	}
2124 
2125 	kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2126 	return 0;
2127 }
2128 
2129 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2130 {
2131 	atomic_set(&sp->write_flooding_count,  0);
2132 }
2133 
2134 static void clear_sp_write_flooding_count(u64 *spte)
2135 {
2136 	__clear_sp_write_flooding_count(sptep_to_sp(spte));
2137 }
2138 
2139 /*
2140  * The vCPU is required when finding indirect shadow pages; the shadow
2141  * page may already exist and syncing it needs the vCPU pointer in
2142  * order to read guest page tables.  Direct shadow pages are never
2143  * unsync, thus @vcpu can be NULL if @role.direct is true.
2144  */
2145 static struct kvm_mmu_page *kvm_mmu_find_shadow_page(struct kvm *kvm,
2146 						     struct kvm_vcpu *vcpu,
2147 						     gfn_t gfn,
2148 						     struct hlist_head *sp_list,
2149 						     union kvm_mmu_page_role role)
2150 {
2151 	struct kvm_mmu_page *sp;
2152 	int ret;
2153 	int collisions = 0;
2154 	LIST_HEAD(invalid_list);
2155 
2156 	for_each_valid_sp(kvm, sp, sp_list) {
2157 		if (sp->gfn != gfn) {
2158 			collisions++;
2159 			continue;
2160 		}
2161 
2162 		if (sp->role.word != role.word) {
2163 			/*
2164 			 * If the guest is creating an upper-level page, zap
2165 			 * unsync pages for the same gfn.  While it's possible
2166 			 * the guest is using recursive page tables, in all
2167 			 * likelihood the guest has stopped using the unsync
2168 			 * page and is installing a completely unrelated page.
2169 			 * Unsync pages must not be left as is, because the new
2170 			 * upper-level page will be write-protected.
2171 			 */
2172 			if (role.level > PG_LEVEL_4K && sp->unsync)
2173 				kvm_mmu_prepare_zap_page(kvm, sp,
2174 							 &invalid_list);
2175 			continue;
2176 		}
2177 
2178 		/* unsync and write-flooding only apply to indirect SPs. */
2179 		if (sp->role.direct)
2180 			goto out;
2181 
2182 		if (sp->unsync) {
2183 			if (KVM_BUG_ON(!vcpu, kvm))
2184 				break;
2185 
2186 			/*
2187 			 * The page is good, but is stale.  kvm_sync_page does
2188 			 * get the latest guest state, but (unlike mmu_unsync_children)
2189 			 * it doesn't write-protect the page or mark it synchronized!
2190 			 * This way the validity of the mapping is ensured, but the
2191 			 * overhead of write protection is not incurred until the
2192 			 * guest invalidates the TLB mapping.  This allows multiple
2193 			 * SPs for a single gfn to be unsync.
2194 			 *
2195 			 * If the sync fails, the page is zapped.  If so, break
2196 			 * in order to rebuild it.
2197 			 */
2198 			ret = kvm_sync_page(vcpu, sp, &invalid_list);
2199 			if (ret < 0)
2200 				break;
2201 
2202 			WARN_ON_ONCE(!list_empty(&invalid_list));
2203 			if (ret > 0)
2204 				kvm_flush_remote_tlbs(kvm);
2205 		}
2206 
2207 		__clear_sp_write_flooding_count(sp);
2208 
2209 		goto out;
2210 	}
2211 
2212 	sp = NULL;
2213 	++kvm->stat.mmu_cache_miss;
2214 
2215 out:
2216 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2217 
2218 	if (collisions > kvm->stat.max_mmu_page_hash_collisions)
2219 		kvm->stat.max_mmu_page_hash_collisions = collisions;
2220 	return sp;
2221 }
2222 
2223 /* Caches used when allocating a new shadow page. */
2224 struct shadow_page_caches {
2225 	struct kvm_mmu_memory_cache *page_header_cache;
2226 	struct kvm_mmu_memory_cache *shadow_page_cache;
2227 	struct kvm_mmu_memory_cache *shadowed_info_cache;
2228 };
2229 
2230 static struct kvm_mmu_page *kvm_mmu_alloc_shadow_page(struct kvm *kvm,
2231 						      struct shadow_page_caches *caches,
2232 						      gfn_t gfn,
2233 						      struct hlist_head *sp_list,
2234 						      union kvm_mmu_page_role role)
2235 {
2236 	struct kvm_mmu_page *sp;
2237 
2238 	sp = kvm_mmu_memory_cache_alloc(caches->page_header_cache);
2239 	sp->spt = kvm_mmu_memory_cache_alloc(caches->shadow_page_cache);
2240 	if (!role.direct)
2241 		sp->shadowed_translation = kvm_mmu_memory_cache_alloc(caches->shadowed_info_cache);
2242 
2243 	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2244 
2245 	INIT_LIST_HEAD(&sp->possible_nx_huge_page_link);
2246 
2247 	/*
2248 	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
2249 	 * depends on valid pages being added to the head of the list.  See
2250 	 * comments in kvm_zap_obsolete_pages().
2251 	 */
2252 	sp->mmu_valid_gen = kvm->arch.mmu_valid_gen;
2253 	list_add(&sp->link, &kvm->arch.active_mmu_pages);
2254 	kvm_account_mmu_page(kvm, sp);
2255 
2256 	sp->gfn = gfn;
2257 	sp->role = role;
2258 	hlist_add_head(&sp->hash_link, sp_list);
2259 	if (sp_has_gptes(sp))
2260 		account_shadowed(kvm, sp);
2261 
2262 	return sp;
2263 }
2264 
2265 /* Note, @vcpu may be NULL if @role.direct is true; see kvm_mmu_find_shadow_page. */
2266 static struct kvm_mmu_page *__kvm_mmu_get_shadow_page(struct kvm *kvm,
2267 						      struct kvm_vcpu *vcpu,
2268 						      struct shadow_page_caches *caches,
2269 						      gfn_t gfn,
2270 						      union kvm_mmu_page_role role)
2271 {
2272 	struct hlist_head *sp_list;
2273 	struct kvm_mmu_page *sp;
2274 	bool created = false;
2275 
2276 	sp_list = &kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2277 
2278 	sp = kvm_mmu_find_shadow_page(kvm, vcpu, gfn, sp_list, role);
2279 	if (!sp) {
2280 		created = true;
2281 		sp = kvm_mmu_alloc_shadow_page(kvm, caches, gfn, sp_list, role);
2282 	}
2283 
2284 	trace_kvm_mmu_get_page(sp, created);
2285 	return sp;
2286 }
2287 
2288 static struct kvm_mmu_page *kvm_mmu_get_shadow_page(struct kvm_vcpu *vcpu,
2289 						    gfn_t gfn,
2290 						    union kvm_mmu_page_role role)
2291 {
2292 	struct shadow_page_caches caches = {
2293 		.page_header_cache = &vcpu->arch.mmu_page_header_cache,
2294 		.shadow_page_cache = &vcpu->arch.mmu_shadow_page_cache,
2295 		.shadowed_info_cache = &vcpu->arch.mmu_shadowed_info_cache,
2296 	};
2297 
2298 	return __kvm_mmu_get_shadow_page(vcpu->kvm, vcpu, &caches, gfn, role);
2299 }
2300 
2301 static union kvm_mmu_page_role kvm_mmu_child_role(u64 *sptep, bool direct,
2302 						  unsigned int access)
2303 {
2304 	struct kvm_mmu_page *parent_sp = sptep_to_sp(sptep);
2305 	union kvm_mmu_page_role role;
2306 
2307 	role = parent_sp->role;
2308 	role.level--;
2309 	role.access = access;
2310 	role.direct = direct;
2311 	role.passthrough = 0;
2312 
2313 	/*
2314 	 * If the guest has 4-byte PTEs then that means it's using 32-bit,
2315 	 * 2-level, non-PAE paging. KVM shadows such guests with PAE paging
2316 	 * (i.e. 8-byte PTEs). The difference in PTE size means that KVM must
2317 	 * shadow each guest page table with multiple shadow page tables, which
2318 	 * requires extra bookkeeping in the role.
2319 	 *
2320 	 * Specifically, to shadow the guest's page directory (which covers a
2321 	 * 4GiB address space), KVM uses 4 PAE page directories, each mapping
2322 	 * 1GiB of the address space. @role.quadrant encodes which quarter of
2323 	 * the address space each maps.
2324 	 *
2325 	 * To shadow the guest's page tables (which each map a 4MiB region), KVM
2326 	 * uses 2 PAE page tables, each mapping a 2MiB region. For these,
2327 	 * @role.quadrant encodes which half of the region they map.
2328 	 *
2329 	 * Concretely, a 4-byte PDE consumes bits 31:22, while an 8-byte PDE
2330 	 * consumes bits 29:21.  To consume bits 31:30, KVM's uses 4 shadow
2331 	 * PDPTEs; those 4 PAE page directories are pre-allocated and their
2332 	 * quadrant is assigned in mmu_alloc_root().   A 4-byte PTE consumes
2333 	 * bits 21:12, while an 8-byte PTE consumes bits 20:12.  To consume
2334 	 * bit 21 in the PTE (the child here), KVM propagates that bit to the
2335 	 * quadrant, i.e. sets quadrant to '0' or '1'.  The parent 8-byte PDE
2336 	 * covers bit 21 (see above), thus the quadrant is calculated from the
2337 	 * _least_ significant bit of the PDE index.
2338 	 */
2339 	if (role.has_4_byte_gpte) {
2340 		WARN_ON_ONCE(role.level != PG_LEVEL_4K);
2341 		role.quadrant = spte_index(sptep) & 1;
2342 	}
2343 
2344 	return role;
2345 }
2346 
2347 static struct kvm_mmu_page *kvm_mmu_get_child_sp(struct kvm_vcpu *vcpu,
2348 						 u64 *sptep, gfn_t gfn,
2349 						 bool direct, unsigned int access)
2350 {
2351 	union kvm_mmu_page_role role;
2352 
2353 	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep))
2354 		return ERR_PTR(-EEXIST);
2355 
2356 	role = kvm_mmu_child_role(sptep, direct, access);
2357 	return kvm_mmu_get_shadow_page(vcpu, gfn, role);
2358 }
2359 
2360 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2361 					struct kvm_vcpu *vcpu, hpa_t root,
2362 					u64 addr)
2363 {
2364 	iterator->addr = addr;
2365 	iterator->shadow_addr = root;
2366 	iterator->level = vcpu->arch.mmu->root_role.level;
2367 
2368 	if (iterator->level >= PT64_ROOT_4LEVEL &&
2369 	    vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL &&
2370 	    !vcpu->arch.mmu->root_role.direct)
2371 		iterator->level = PT32E_ROOT_LEVEL;
2372 
2373 	if (iterator->level == PT32E_ROOT_LEVEL) {
2374 		/*
2375 		 * prev_root is currently only used for 64-bit hosts. So only
2376 		 * the active root_hpa is valid here.
2377 		 */
2378 		BUG_ON(root != vcpu->arch.mmu->root.hpa);
2379 
2380 		iterator->shadow_addr
2381 			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2382 		iterator->shadow_addr &= SPTE_BASE_ADDR_MASK;
2383 		--iterator->level;
2384 		if (!iterator->shadow_addr)
2385 			iterator->level = 0;
2386 	}
2387 }
2388 
2389 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2390 			     struct kvm_vcpu *vcpu, u64 addr)
2391 {
2392 	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa,
2393 				    addr);
2394 }
2395 
2396 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2397 {
2398 	if (iterator->level < PG_LEVEL_4K)
2399 		return false;
2400 
2401 	iterator->index = SPTE_INDEX(iterator->addr, iterator->level);
2402 	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2403 	return true;
2404 }
2405 
2406 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2407 			       u64 spte)
2408 {
2409 	if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) {
2410 		iterator->level = 0;
2411 		return;
2412 	}
2413 
2414 	iterator->shadow_addr = spte & SPTE_BASE_ADDR_MASK;
2415 	--iterator->level;
2416 }
2417 
2418 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2419 {
2420 	__shadow_walk_next(iterator, *iterator->sptep);
2421 }
2422 
2423 static void __link_shadow_page(struct kvm *kvm,
2424 			       struct kvm_mmu_memory_cache *cache, u64 *sptep,
2425 			       struct kvm_mmu_page *sp, bool flush)
2426 {
2427 	u64 spte;
2428 
2429 	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2430 
2431 	/*
2432 	 * If an SPTE is present already, it must be a leaf and therefore
2433 	 * a large one.  Drop it, and flush the TLB if needed, before
2434 	 * installing sp.
2435 	 */
2436 	if (is_shadow_present_pte(*sptep))
2437 		drop_large_spte(kvm, sptep, flush);
2438 
2439 	spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2440 
2441 	mmu_spte_set(sptep, spte);
2442 
2443 	mmu_page_add_parent_pte(cache, sp, sptep);
2444 
2445 	/*
2446 	 * The non-direct sub-pagetable must be updated before linking.  For
2447 	 * L1 sp, the pagetable is updated via kvm_sync_page() in
2448 	 * kvm_mmu_find_shadow_page() without write-protecting the gfn,
2449 	 * so sp->unsync can be true or false.  For higher level non-direct
2450 	 * sp, the pagetable is updated/synced via mmu_sync_children() in
2451 	 * FNAME(fetch)(), so sp->unsync_children can only be false.
2452 	 * WARN_ON_ONCE() if anything happens unexpectedly.
2453 	 */
2454 	if (WARN_ON_ONCE(sp->unsync_children) || sp->unsync)
2455 		mark_unsync(sptep);
2456 }
2457 
2458 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2459 			     struct kvm_mmu_page *sp)
2460 {
2461 	__link_shadow_page(vcpu->kvm, &vcpu->arch.mmu_pte_list_desc_cache, sptep, sp, true);
2462 }
2463 
2464 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2465 				   unsigned direct_access)
2466 {
2467 	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2468 		struct kvm_mmu_page *child;
2469 
2470 		/*
2471 		 * For the direct sp, if the guest pte's dirty bit
2472 		 * changed form clean to dirty, it will corrupt the
2473 		 * sp's access: allow writable in the read-only sp,
2474 		 * so we should update the spte at this point to get
2475 		 * a new sp with the correct access.
2476 		 */
2477 		child = spte_to_child_sp(*sptep);
2478 		if (child->role.access == direct_access)
2479 			return;
2480 
2481 		drop_parent_pte(vcpu->kvm, child, sptep);
2482 		kvm_flush_remote_tlbs_sptep(vcpu->kvm, sptep);
2483 	}
2484 }
2485 
2486 /* Returns the number of zapped non-leaf child shadow pages. */
2487 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2488 			    u64 *spte, struct list_head *invalid_list)
2489 {
2490 	u64 pte;
2491 	struct kvm_mmu_page *child;
2492 
2493 	pte = *spte;
2494 	if (is_shadow_present_pte(pte)) {
2495 		if (is_last_spte(pte, sp->role.level)) {
2496 			drop_spte(kvm, spte);
2497 		} else {
2498 			child = spte_to_child_sp(pte);
2499 			drop_parent_pte(kvm, child, spte);
2500 
2501 			/*
2502 			 * Recursively zap nested TDP SPs, parentless SPs are
2503 			 * unlikely to be used again in the near future.  This
2504 			 * avoids retaining a large number of stale nested SPs.
2505 			 */
2506 			if (tdp_enabled && invalid_list &&
2507 			    child->role.guest_mode && !child->parent_ptes.val)
2508 				return kvm_mmu_prepare_zap_page(kvm, child,
2509 								invalid_list);
2510 		}
2511 	} else if (is_mmio_spte(pte)) {
2512 		mmu_spte_clear_no_track(spte);
2513 	}
2514 	return 0;
2515 }
2516 
2517 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2518 					struct kvm_mmu_page *sp,
2519 					struct list_head *invalid_list)
2520 {
2521 	int zapped = 0;
2522 	unsigned i;
2523 
2524 	for (i = 0; i < SPTE_ENT_PER_PAGE; ++i)
2525 		zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2526 
2527 	return zapped;
2528 }
2529 
2530 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2531 {
2532 	u64 *sptep;
2533 	struct rmap_iterator iter;
2534 
2535 	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2536 		drop_parent_pte(kvm, sp, sptep);
2537 }
2538 
2539 static int mmu_zap_unsync_children(struct kvm *kvm,
2540 				   struct kvm_mmu_page *parent,
2541 				   struct list_head *invalid_list)
2542 {
2543 	int i, zapped = 0;
2544 	struct mmu_page_path parents;
2545 	struct kvm_mmu_pages pages;
2546 
2547 	if (parent->role.level == PG_LEVEL_4K)
2548 		return 0;
2549 
2550 	while (mmu_unsync_walk(parent, &pages)) {
2551 		struct kvm_mmu_page *sp;
2552 
2553 		for_each_sp(pages, sp, parents, i) {
2554 			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2555 			mmu_pages_clear_parents(&parents);
2556 			zapped++;
2557 		}
2558 	}
2559 
2560 	return zapped;
2561 }
2562 
2563 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2564 				       struct kvm_mmu_page *sp,
2565 				       struct list_head *invalid_list,
2566 				       int *nr_zapped)
2567 {
2568 	bool list_unstable, zapped_root = false;
2569 
2570 	lockdep_assert_held_write(&kvm->mmu_lock);
2571 	trace_kvm_mmu_prepare_zap_page(sp);
2572 	++kvm->stat.mmu_shadow_zapped;
2573 	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2574 	*nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2575 	kvm_mmu_unlink_parents(kvm, sp);
2576 
2577 	/* Zapping children means active_mmu_pages has become unstable. */
2578 	list_unstable = *nr_zapped;
2579 
2580 	if (!sp->role.invalid && sp_has_gptes(sp))
2581 		unaccount_shadowed(kvm, sp);
2582 
2583 	if (sp->unsync)
2584 		kvm_unlink_unsync_page(kvm, sp);
2585 	if (!sp->root_count) {
2586 		/* Count self */
2587 		(*nr_zapped)++;
2588 
2589 		/*
2590 		 * Already invalid pages (previously active roots) are not on
2591 		 * the active page list.  See list_del() in the "else" case of
2592 		 * !sp->root_count.
2593 		 */
2594 		if (sp->role.invalid)
2595 			list_add(&sp->link, invalid_list);
2596 		else
2597 			list_move(&sp->link, invalid_list);
2598 		kvm_unaccount_mmu_page(kvm, sp);
2599 	} else {
2600 		/*
2601 		 * Remove the active root from the active page list, the root
2602 		 * will be explicitly freed when the root_count hits zero.
2603 		 */
2604 		list_del(&sp->link);
2605 
2606 		/*
2607 		 * Obsolete pages cannot be used on any vCPUs, see the comment
2608 		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2609 		 * treats invalid shadow pages as being obsolete.
2610 		 */
2611 		zapped_root = !is_obsolete_sp(kvm, sp);
2612 	}
2613 
2614 	if (sp->nx_huge_page_disallowed)
2615 		unaccount_nx_huge_page(kvm, sp);
2616 
2617 	sp->role.invalid = 1;
2618 
2619 	/*
2620 	 * Make the request to free obsolete roots after marking the root
2621 	 * invalid, otherwise other vCPUs may not see it as invalid.
2622 	 */
2623 	if (zapped_root)
2624 		kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
2625 	return list_unstable;
2626 }
2627 
2628 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2629 				     struct list_head *invalid_list)
2630 {
2631 	int nr_zapped;
2632 
2633 	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2634 	return nr_zapped;
2635 }
2636 
2637 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2638 				    struct list_head *invalid_list)
2639 {
2640 	struct kvm_mmu_page *sp, *nsp;
2641 
2642 	if (list_empty(invalid_list))
2643 		return;
2644 
2645 	/*
2646 	 * We need to make sure everyone sees our modifications to
2647 	 * the page tables and see changes to vcpu->mode here. The barrier
2648 	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2649 	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2650 	 *
2651 	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2652 	 * guest mode and/or lockless shadow page table walks.
2653 	 */
2654 	kvm_flush_remote_tlbs(kvm);
2655 
2656 	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2657 		WARN_ON_ONCE(!sp->role.invalid || sp->root_count);
2658 		kvm_mmu_free_shadow_page(sp);
2659 	}
2660 }
2661 
2662 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2663 						  unsigned long nr_to_zap)
2664 {
2665 	unsigned long total_zapped = 0;
2666 	struct kvm_mmu_page *sp, *tmp;
2667 	LIST_HEAD(invalid_list);
2668 	bool unstable;
2669 	int nr_zapped;
2670 
2671 	if (list_empty(&kvm->arch.active_mmu_pages))
2672 		return 0;
2673 
2674 restart:
2675 	list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2676 		/*
2677 		 * Don't zap active root pages, the page itself can't be freed
2678 		 * and zapping it will just force vCPUs to realloc and reload.
2679 		 */
2680 		if (sp->root_count)
2681 			continue;
2682 
2683 		unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2684 						      &nr_zapped);
2685 		total_zapped += nr_zapped;
2686 		if (total_zapped >= nr_to_zap)
2687 			break;
2688 
2689 		if (unstable)
2690 			goto restart;
2691 	}
2692 
2693 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2694 
2695 	kvm->stat.mmu_recycled += total_zapped;
2696 	return total_zapped;
2697 }
2698 
2699 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2700 {
2701 	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2702 		return kvm->arch.n_max_mmu_pages -
2703 			kvm->arch.n_used_mmu_pages;
2704 
2705 	return 0;
2706 }
2707 
2708 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2709 {
2710 	unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2711 
2712 	if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2713 		return 0;
2714 
2715 	kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2716 
2717 	/*
2718 	 * Note, this check is intentionally soft, it only guarantees that one
2719 	 * page is available, while the caller may end up allocating as many as
2720 	 * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
2721 	 * exceeding the (arbitrary by default) limit will not harm the host,
2722 	 * being too aggressive may unnecessarily kill the guest, and getting an
2723 	 * exact count is far more trouble than it's worth, especially in the
2724 	 * page fault paths.
2725 	 */
2726 	if (!kvm_mmu_available_pages(vcpu->kvm))
2727 		return -ENOSPC;
2728 	return 0;
2729 }
2730 
2731 /*
2732  * Changing the number of mmu pages allocated to the vm
2733  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2734  */
2735 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2736 {
2737 	write_lock(&kvm->mmu_lock);
2738 
2739 	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2740 		kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2741 						  goal_nr_mmu_pages);
2742 
2743 		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2744 	}
2745 
2746 	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2747 
2748 	write_unlock(&kvm->mmu_lock);
2749 }
2750 
2751 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2752 {
2753 	struct kvm_mmu_page *sp;
2754 	LIST_HEAD(invalid_list);
2755 	int r;
2756 
2757 	r = 0;
2758 	write_lock(&kvm->mmu_lock);
2759 	for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) {
2760 		r = 1;
2761 		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2762 	}
2763 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2764 	write_unlock(&kvm->mmu_lock);
2765 
2766 	return r;
2767 }
2768 
2769 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2770 {
2771 	gpa_t gpa;
2772 	int r;
2773 
2774 	if (vcpu->arch.mmu->root_role.direct)
2775 		return 0;
2776 
2777 	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
2778 
2779 	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2780 
2781 	return r;
2782 }
2783 
2784 static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2785 {
2786 	trace_kvm_mmu_unsync_page(sp);
2787 	++kvm->stat.mmu_unsync;
2788 	sp->unsync = 1;
2789 
2790 	kvm_mmu_mark_parents_unsync(sp);
2791 }
2792 
2793 /*
2794  * Attempt to unsync any shadow pages that can be reached by the specified gfn,
2795  * KVM is creating a writable mapping for said gfn.  Returns 0 if all pages
2796  * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
2797  * be write-protected.
2798  */
2799 int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot,
2800 			    gfn_t gfn, bool can_unsync, bool prefetch)
2801 {
2802 	struct kvm_mmu_page *sp;
2803 	bool locked = false;
2804 
2805 	/*
2806 	 * Force write-protection if the page is being tracked.  Note, the page
2807 	 * track machinery is used to write-protect upper-level shadow pages,
2808 	 * i.e. this guards the role.level == 4K assertion below!
2809 	 */
2810 	if (kvm_gfn_is_write_tracked(kvm, slot, gfn))
2811 		return -EPERM;
2812 
2813 	/*
2814 	 * The page is not write-tracked, mark existing shadow pages unsync
2815 	 * unless KVM is synchronizing an unsync SP (can_unsync = false).  In
2816 	 * that case, KVM must complete emulation of the guest TLB flush before
2817 	 * allowing shadow pages to become unsync (writable by the guest).
2818 	 */
2819 	for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) {
2820 		if (!can_unsync)
2821 			return -EPERM;
2822 
2823 		if (sp->unsync)
2824 			continue;
2825 
2826 		if (prefetch)
2827 			return -EEXIST;
2828 
2829 		/*
2830 		 * TDP MMU page faults require an additional spinlock as they
2831 		 * run with mmu_lock held for read, not write, and the unsync
2832 		 * logic is not thread safe.  Take the spinklock regardless of
2833 		 * the MMU type to avoid extra conditionals/parameters, there's
2834 		 * no meaningful penalty if mmu_lock is held for write.
2835 		 */
2836 		if (!locked) {
2837 			locked = true;
2838 			spin_lock(&kvm->arch.mmu_unsync_pages_lock);
2839 
2840 			/*
2841 			 * Recheck after taking the spinlock, a different vCPU
2842 			 * may have since marked the page unsync.  A false
2843 			 * positive on the unprotected check above is not
2844 			 * possible as clearing sp->unsync _must_ hold mmu_lock
2845 			 * for write, i.e. unsync cannot transition from 0->1
2846 			 * while this CPU holds mmu_lock for read (or write).
2847 			 */
2848 			if (READ_ONCE(sp->unsync))
2849 				continue;
2850 		}
2851 
2852 		WARN_ON_ONCE(sp->role.level != PG_LEVEL_4K);
2853 		kvm_unsync_page(kvm, sp);
2854 	}
2855 	if (locked)
2856 		spin_unlock(&kvm->arch.mmu_unsync_pages_lock);
2857 
2858 	/*
2859 	 * We need to ensure that the marking of unsync pages is visible
2860 	 * before the SPTE is updated to allow writes because
2861 	 * kvm_mmu_sync_roots() checks the unsync flags without holding
2862 	 * the MMU lock and so can race with this. If the SPTE was updated
2863 	 * before the page had been marked as unsync-ed, something like the
2864 	 * following could happen:
2865 	 *
2866 	 * CPU 1                    CPU 2
2867 	 * ---------------------------------------------------------------------
2868 	 * 1.2 Host updates SPTE
2869 	 *     to be writable
2870 	 *                      2.1 Guest writes a GPTE for GVA X.
2871 	 *                          (GPTE being in the guest page table shadowed
2872 	 *                           by the SP from CPU 1.)
2873 	 *                          This reads SPTE during the page table walk.
2874 	 *                          Since SPTE.W is read as 1, there is no
2875 	 *                          fault.
2876 	 *
2877 	 *                      2.2 Guest issues TLB flush.
2878 	 *                          That causes a VM Exit.
2879 	 *
2880 	 *                      2.3 Walking of unsync pages sees sp->unsync is
2881 	 *                          false and skips the page.
2882 	 *
2883 	 *                      2.4 Guest accesses GVA X.
2884 	 *                          Since the mapping in the SP was not updated,
2885 	 *                          so the old mapping for GVA X incorrectly
2886 	 *                          gets used.
2887 	 * 1.1 Host marks SP
2888 	 *     as unsync
2889 	 *     (sp->unsync = true)
2890 	 *
2891 	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2892 	 * the situation in 2.4 does not arise.  It pairs with the read barrier
2893 	 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3.
2894 	 */
2895 	smp_wmb();
2896 
2897 	return 0;
2898 }
2899 
2900 static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
2901 			u64 *sptep, unsigned int pte_access, gfn_t gfn,
2902 			kvm_pfn_t pfn, struct kvm_page_fault *fault)
2903 {
2904 	struct kvm_mmu_page *sp = sptep_to_sp(sptep);
2905 	int level = sp->role.level;
2906 	int was_rmapped = 0;
2907 	int ret = RET_PF_FIXED;
2908 	bool flush = false;
2909 	bool wrprot;
2910 	u64 spte;
2911 
2912 	/* Prefetching always gets a writable pfn.  */
2913 	bool host_writable = !fault || fault->map_writable;
2914 	bool prefetch = !fault || fault->prefetch;
2915 	bool write_fault = fault && fault->write;
2916 
2917 	if (unlikely(is_noslot_pfn(pfn))) {
2918 		vcpu->stat.pf_mmio_spte_created++;
2919 		mark_mmio_spte(vcpu, sptep, gfn, pte_access);
2920 		return RET_PF_EMULATE;
2921 	}
2922 
2923 	if (is_shadow_present_pte(*sptep)) {
2924 		/*
2925 		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2926 		 * the parent of the now unreachable PTE.
2927 		 */
2928 		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2929 			struct kvm_mmu_page *child;
2930 			u64 pte = *sptep;
2931 
2932 			child = spte_to_child_sp(pte);
2933 			drop_parent_pte(vcpu->kvm, child, sptep);
2934 			flush = true;
2935 		} else if (pfn != spte_to_pfn(*sptep)) {
2936 			drop_spte(vcpu->kvm, sptep);
2937 			flush = true;
2938 		} else
2939 			was_rmapped = 1;
2940 	}
2941 
2942 	wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch,
2943 			   true, host_writable, &spte);
2944 
2945 	if (*sptep == spte) {
2946 		ret = RET_PF_SPURIOUS;
2947 	} else {
2948 		flush |= mmu_spte_update(sptep, spte);
2949 		trace_kvm_mmu_set_spte(level, gfn, sptep);
2950 	}
2951 
2952 	if (wrprot) {
2953 		if (write_fault)
2954 			ret = RET_PF_EMULATE;
2955 	}
2956 
2957 	if (flush)
2958 		kvm_flush_remote_tlbs_gfn(vcpu->kvm, gfn, level);
2959 
2960 	if (!was_rmapped) {
2961 		WARN_ON_ONCE(ret == RET_PF_SPURIOUS);
2962 		rmap_add(vcpu, slot, sptep, gfn, pte_access);
2963 	} else {
2964 		/* Already rmapped but the pte_access bits may have changed. */
2965 		kvm_mmu_page_set_access(sp, spte_index(sptep), pte_access);
2966 	}
2967 
2968 	return ret;
2969 }
2970 
2971 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2972 				    struct kvm_mmu_page *sp,
2973 				    u64 *start, u64 *end)
2974 {
2975 	struct page *pages[PTE_PREFETCH_NUM];
2976 	struct kvm_memory_slot *slot;
2977 	unsigned int access = sp->role.access;
2978 	int i, ret;
2979 	gfn_t gfn;
2980 
2981 	gfn = kvm_mmu_page_get_gfn(sp, spte_index(start));
2982 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2983 	if (!slot)
2984 		return -1;
2985 
2986 	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2987 	if (ret <= 0)
2988 		return -1;
2989 
2990 	for (i = 0; i < ret; i++, gfn++, start++) {
2991 		mmu_set_spte(vcpu, slot, start, access, gfn,
2992 			     page_to_pfn(pages[i]), NULL);
2993 		put_page(pages[i]);
2994 	}
2995 
2996 	return 0;
2997 }
2998 
2999 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3000 				  struct kvm_mmu_page *sp, u64 *sptep)
3001 {
3002 	u64 *spte, *start = NULL;
3003 	int i;
3004 
3005 	WARN_ON_ONCE(!sp->role.direct);
3006 
3007 	i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1);
3008 	spte = sp->spt + i;
3009 
3010 	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3011 		if (is_shadow_present_pte(*spte) || spte == sptep) {
3012 			if (!start)
3013 				continue;
3014 			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3015 				return;
3016 			start = NULL;
3017 		} else if (!start)
3018 			start = spte;
3019 	}
3020 	if (start)
3021 		direct_pte_prefetch_many(vcpu, sp, start, spte);
3022 }
3023 
3024 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3025 {
3026 	struct kvm_mmu_page *sp;
3027 
3028 	sp = sptep_to_sp(sptep);
3029 
3030 	/*
3031 	 * Without accessed bits, there's no way to distinguish between
3032 	 * actually accessed translations and prefetched, so disable pte
3033 	 * prefetch if accessed bits aren't available.
3034 	 */
3035 	if (sp_ad_disabled(sp))
3036 		return;
3037 
3038 	if (sp->role.level > PG_LEVEL_4K)
3039 		return;
3040 
3041 	/*
3042 	 * If addresses are being invalidated, skip prefetching to avoid
3043 	 * accidentally prefetching those addresses.
3044 	 */
3045 	if (unlikely(vcpu->kvm->mmu_invalidate_in_progress))
3046 		return;
3047 
3048 	__direct_pte_prefetch(vcpu, sp, sptep);
3049 }
3050 
3051 /*
3052  * Lookup the mapping level for @gfn in the current mm.
3053  *
3054  * WARNING!  Use of host_pfn_mapping_level() requires the caller and the end
3055  * consumer to be tied into KVM's handlers for MMU notifier events!
3056  *
3057  * There are several ways to safely use this helper:
3058  *
3059  * - Check mmu_invalidate_retry_hva() after grabbing the mapping level, before
3060  *   consuming it.  In this case, mmu_lock doesn't need to be held during the
3061  *   lookup, but it does need to be held while checking the MMU notifier.
3062  *
3063  * - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation
3064  *   event for the hva.  This can be done by explicit checking the MMU notifier
3065  *   or by ensuring that KVM already has a valid mapping that covers the hva.
3066  *
3067  * - Do not use the result to install new mappings, e.g. use the host mapping
3068  *   level only to decide whether or not to zap an entry.  In this case, it's
3069  *   not required to hold mmu_lock (though it's highly likely the caller will
3070  *   want to hold mmu_lock anyways, e.g. to modify SPTEs).
3071  *
3072  * Note!  The lookup can still race with modifications to host page tables, but
3073  * the above "rules" ensure KVM will not _consume_ the result of the walk if a
3074  * race with the primary MMU occurs.
3075  */
3076 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn,
3077 				  const struct kvm_memory_slot *slot)
3078 {
3079 	int level = PG_LEVEL_4K;
3080 	unsigned long hva;
3081 	unsigned long flags;
3082 	pgd_t pgd;
3083 	p4d_t p4d;
3084 	pud_t pud;
3085 	pmd_t pmd;
3086 
3087 	/*
3088 	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
3089 	 * is not solely for performance, it's also necessary to avoid the
3090 	 * "writable" check in __gfn_to_hva_many(), which will always fail on
3091 	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
3092 	 * page fault steps have already verified the guest isn't writing a
3093 	 * read-only memslot.
3094 	 */
3095 	hva = __gfn_to_hva_memslot(slot, gfn);
3096 
3097 	/*
3098 	 * Disable IRQs to prevent concurrent tear down of host page tables,
3099 	 * e.g. if the primary MMU promotes a P*D to a huge page and then frees
3100 	 * the original page table.
3101 	 */
3102 	local_irq_save(flags);
3103 
3104 	/*
3105 	 * Read each entry once.  As above, a non-leaf entry can be promoted to
3106 	 * a huge page _during_ this walk.  Re-reading the entry could send the
3107 	 * walk into the weeks, e.g. p*d_large() returns false (sees the old
3108 	 * value) and then p*d_offset() walks into the target huge page instead
3109 	 * of the old page table (sees the new value).
3110 	 */
3111 	pgd = READ_ONCE(*pgd_offset(kvm->mm, hva));
3112 	if (pgd_none(pgd))
3113 		goto out;
3114 
3115 	p4d = READ_ONCE(*p4d_offset(&pgd, hva));
3116 	if (p4d_none(p4d) || !p4d_present(p4d))
3117 		goto out;
3118 
3119 	pud = READ_ONCE(*pud_offset(&p4d, hva));
3120 	if (pud_none(pud) || !pud_present(pud))
3121 		goto out;
3122 
3123 	if (pud_large(pud)) {
3124 		level = PG_LEVEL_1G;
3125 		goto out;
3126 	}
3127 
3128 	pmd = READ_ONCE(*pmd_offset(&pud, hva));
3129 	if (pmd_none(pmd) || !pmd_present(pmd))
3130 		goto out;
3131 
3132 	if (pmd_large(pmd))
3133 		level = PG_LEVEL_2M;
3134 
3135 out:
3136 	local_irq_restore(flags);
3137 	return level;
3138 }
3139 
3140 int kvm_mmu_max_mapping_level(struct kvm *kvm,
3141 			      const struct kvm_memory_slot *slot, gfn_t gfn,
3142 			      int max_level)
3143 {
3144 	struct kvm_lpage_info *linfo;
3145 	int host_level;
3146 
3147 	max_level = min(max_level, max_huge_page_level);
3148 	for ( ; max_level > PG_LEVEL_4K; max_level--) {
3149 		linfo = lpage_info_slot(gfn, slot, max_level);
3150 		if (!linfo->disallow_lpage)
3151 			break;
3152 	}
3153 
3154 	if (max_level == PG_LEVEL_4K)
3155 		return PG_LEVEL_4K;
3156 
3157 	host_level = host_pfn_mapping_level(kvm, gfn, slot);
3158 	return min(host_level, max_level);
3159 }
3160 
3161 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3162 {
3163 	struct kvm_memory_slot *slot = fault->slot;
3164 	kvm_pfn_t mask;
3165 
3166 	fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled;
3167 
3168 	if (unlikely(fault->max_level == PG_LEVEL_4K))
3169 		return;
3170 
3171 	if (is_error_noslot_pfn(fault->pfn))
3172 		return;
3173 
3174 	if (kvm_slot_dirty_track_enabled(slot))
3175 		return;
3176 
3177 	/*
3178 	 * Enforce the iTLB multihit workaround after capturing the requested
3179 	 * level, which will be used to do precise, accurate accounting.
3180 	 */
3181 	fault->req_level = kvm_mmu_max_mapping_level(vcpu->kvm, slot,
3182 						     fault->gfn, fault->max_level);
3183 	if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed)
3184 		return;
3185 
3186 	/*
3187 	 * mmu_invalidate_retry() was successful and mmu_lock is held, so
3188 	 * the pmd can't be split from under us.
3189 	 */
3190 	fault->goal_level = fault->req_level;
3191 	mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1;
3192 	VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask));
3193 	fault->pfn &= ~mask;
3194 }
3195 
3196 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level)
3197 {
3198 	if (cur_level > PG_LEVEL_4K &&
3199 	    cur_level == fault->goal_level &&
3200 	    is_shadow_present_pte(spte) &&
3201 	    !is_large_pte(spte) &&
3202 	    spte_to_child_sp(spte)->nx_huge_page_disallowed) {
3203 		/*
3204 		 * A small SPTE exists for this pfn, but FNAME(fetch),
3205 		 * direct_map(), or kvm_tdp_mmu_map() would like to create a
3206 		 * large PTE instead: just force them to go down another level,
3207 		 * patching back for them into pfn the next 9 bits of the
3208 		 * address.
3209 		 */
3210 		u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) -
3211 				KVM_PAGES_PER_HPAGE(cur_level - 1);
3212 		fault->pfn |= fault->gfn & page_mask;
3213 		fault->goal_level--;
3214 	}
3215 }
3216 
3217 static int direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3218 {
3219 	struct kvm_shadow_walk_iterator it;
3220 	struct kvm_mmu_page *sp;
3221 	int ret;
3222 	gfn_t base_gfn = fault->gfn;
3223 
3224 	kvm_mmu_hugepage_adjust(vcpu, fault);
3225 
3226 	trace_kvm_mmu_spte_requested(fault);
3227 	for_each_shadow_entry(vcpu, fault->addr, it) {
3228 		/*
3229 		 * We cannot overwrite existing page tables with an NX
3230 		 * large page, as the leaf could be executable.
3231 		 */
3232 		if (fault->nx_huge_page_workaround_enabled)
3233 			disallowed_hugepage_adjust(fault, *it.sptep, it.level);
3234 
3235 		base_gfn = gfn_round_for_level(fault->gfn, it.level);
3236 		if (it.level == fault->goal_level)
3237 			break;
3238 
3239 		sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, true, ACC_ALL);
3240 		if (sp == ERR_PTR(-EEXIST))
3241 			continue;
3242 
3243 		link_shadow_page(vcpu, it.sptep, sp);
3244 		if (fault->huge_page_disallowed)
3245 			account_nx_huge_page(vcpu->kvm, sp,
3246 					     fault->req_level >= it.level);
3247 	}
3248 
3249 	if (WARN_ON_ONCE(it.level != fault->goal_level))
3250 		return -EFAULT;
3251 
3252 	ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL,
3253 			   base_gfn, fault->pfn, fault);
3254 	if (ret == RET_PF_SPURIOUS)
3255 		return ret;
3256 
3257 	direct_pte_prefetch(vcpu, it.sptep);
3258 	return ret;
3259 }
3260 
3261 static void kvm_send_hwpoison_signal(struct kvm_memory_slot *slot, gfn_t gfn)
3262 {
3263 	unsigned long hva = gfn_to_hva_memslot(slot, gfn);
3264 
3265 	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva, PAGE_SHIFT, current);
3266 }
3267 
3268 static int kvm_handle_error_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3269 {
3270 	if (is_sigpending_pfn(fault->pfn)) {
3271 		kvm_handle_signal_exit(vcpu);
3272 		return -EINTR;
3273 	}
3274 
3275 	/*
3276 	 * Do not cache the mmio info caused by writing the readonly gfn
3277 	 * into the spte otherwise read access on readonly gfn also can
3278 	 * caused mmio page fault and treat it as mmio access.
3279 	 */
3280 	if (fault->pfn == KVM_PFN_ERR_RO_FAULT)
3281 		return RET_PF_EMULATE;
3282 
3283 	if (fault->pfn == KVM_PFN_ERR_HWPOISON) {
3284 		kvm_send_hwpoison_signal(fault->slot, fault->gfn);
3285 		return RET_PF_RETRY;
3286 	}
3287 
3288 	return -EFAULT;
3289 }
3290 
3291 static int kvm_handle_noslot_fault(struct kvm_vcpu *vcpu,
3292 				   struct kvm_page_fault *fault,
3293 				   unsigned int access)
3294 {
3295 	gva_t gva = fault->is_tdp ? 0 : fault->addr;
3296 
3297 	vcpu_cache_mmio_info(vcpu, gva, fault->gfn,
3298 			     access & shadow_mmio_access_mask);
3299 
3300 	/*
3301 	 * If MMIO caching is disabled, emulate immediately without
3302 	 * touching the shadow page tables as attempting to install an
3303 	 * MMIO SPTE will just be an expensive nop.
3304 	 */
3305 	if (unlikely(!enable_mmio_caching))
3306 		return RET_PF_EMULATE;
3307 
3308 	/*
3309 	 * Do not create an MMIO SPTE for a gfn greater than host.MAXPHYADDR,
3310 	 * any guest that generates such gfns is running nested and is being
3311 	 * tricked by L0 userspace (you can observe gfn > L1.MAXPHYADDR if and
3312 	 * only if L1's MAXPHYADDR is inaccurate with respect to the
3313 	 * hardware's).
3314 	 */
3315 	if (unlikely(fault->gfn > kvm_mmu_max_gfn()))
3316 		return RET_PF_EMULATE;
3317 
3318 	return RET_PF_CONTINUE;
3319 }
3320 
3321 static bool page_fault_can_be_fast(struct kvm_page_fault *fault)
3322 {
3323 	/*
3324 	 * Page faults with reserved bits set, i.e. faults on MMIO SPTEs, only
3325 	 * reach the common page fault handler if the SPTE has an invalid MMIO
3326 	 * generation number.  Refreshing the MMIO generation needs to go down
3327 	 * the slow path.  Note, EPT Misconfigs do NOT set the PRESENT flag!
3328 	 */
3329 	if (fault->rsvd)
3330 		return false;
3331 
3332 	/*
3333 	 * #PF can be fast if:
3334 	 *
3335 	 * 1. The shadow page table entry is not present and A/D bits are
3336 	 *    disabled _by KVM_, which could mean that the fault is potentially
3337 	 *    caused by access tracking (if enabled).  If A/D bits are enabled
3338 	 *    by KVM, but disabled by L1 for L2, KVM is forced to disable A/D
3339 	 *    bits for L2 and employ access tracking, but the fast page fault
3340 	 *    mechanism only supports direct MMUs.
3341 	 * 2. The shadow page table entry is present, the access is a write,
3342 	 *    and no reserved bits are set (MMIO SPTEs cannot be "fixed"), i.e.
3343 	 *    the fault was caused by a write-protection violation.  If the
3344 	 *    SPTE is MMU-writable (determined later), the fault can be fixed
3345 	 *    by setting the Writable bit, which can be done out of mmu_lock.
3346 	 */
3347 	if (!fault->present)
3348 		return !kvm_ad_enabled();
3349 
3350 	/*
3351 	 * Note, instruction fetches and writes are mutually exclusive, ignore
3352 	 * the "exec" flag.
3353 	 */
3354 	return fault->write;
3355 }
3356 
3357 /*
3358  * Returns true if the SPTE was fixed successfully. Otherwise,
3359  * someone else modified the SPTE from its original value.
3360  */
3361 static bool fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu,
3362 				    struct kvm_page_fault *fault,
3363 				    u64 *sptep, u64 old_spte, u64 new_spte)
3364 {
3365 	/*
3366 	 * Theoretically we could also set dirty bit (and flush TLB) here in
3367 	 * order to eliminate unnecessary PML logging. See comments in
3368 	 * set_spte. But fast_page_fault is very unlikely to happen with PML
3369 	 * enabled, so we do not do this. This might result in the same GPA
3370 	 * to be logged in PML buffer again when the write really happens, and
3371 	 * eventually to be called by mark_page_dirty twice. But it's also no
3372 	 * harm. This also avoids the TLB flush needed after setting dirty bit
3373 	 * so non-PML cases won't be impacted.
3374 	 *
3375 	 * Compare with set_spte where instead shadow_dirty_mask is set.
3376 	 */
3377 	if (!try_cmpxchg64(sptep, &old_spte, new_spte))
3378 		return false;
3379 
3380 	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte))
3381 		mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn);
3382 
3383 	return true;
3384 }
3385 
3386 static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte)
3387 {
3388 	if (fault->exec)
3389 		return is_executable_pte(spte);
3390 
3391 	if (fault->write)
3392 		return is_writable_pte(spte);
3393 
3394 	/* Fault was on Read access */
3395 	return spte & PT_PRESENT_MASK;
3396 }
3397 
3398 /*
3399  * Returns the last level spte pointer of the shadow page walk for the given
3400  * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
3401  * walk could be performed, returns NULL and *spte does not contain valid data.
3402  *
3403  * Contract:
3404  *  - Must be called between walk_shadow_page_lockless_{begin,end}.
3405  *  - The returned sptep must not be used after walk_shadow_page_lockless_end.
3406  */
3407 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte)
3408 {
3409 	struct kvm_shadow_walk_iterator iterator;
3410 	u64 old_spte;
3411 	u64 *sptep = NULL;
3412 
3413 	for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) {
3414 		sptep = iterator.sptep;
3415 		*spte = old_spte;
3416 	}
3417 
3418 	return sptep;
3419 }
3420 
3421 /*
3422  * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3423  */
3424 static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3425 {
3426 	struct kvm_mmu_page *sp;
3427 	int ret = RET_PF_INVALID;
3428 	u64 spte;
3429 	u64 *sptep;
3430 	uint retry_count = 0;
3431 
3432 	if (!page_fault_can_be_fast(fault))
3433 		return ret;
3434 
3435 	walk_shadow_page_lockless_begin(vcpu);
3436 
3437 	do {
3438 		u64 new_spte;
3439 
3440 		if (tdp_mmu_enabled)
3441 			sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3442 		else
3443 			sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3444 
3445 		/*
3446 		 * It's entirely possible for the mapping to have been zapped
3447 		 * by a different task, but the root page should always be
3448 		 * available as the vCPU holds a reference to its root(s).
3449 		 */
3450 		if (WARN_ON_ONCE(!sptep))
3451 			spte = REMOVED_SPTE;
3452 
3453 		if (!is_shadow_present_pte(spte))
3454 			break;
3455 
3456 		sp = sptep_to_sp(sptep);
3457 		if (!is_last_spte(spte, sp->role.level))
3458 			break;
3459 
3460 		/*
3461 		 * Check whether the memory access that caused the fault would
3462 		 * still cause it if it were to be performed right now. If not,
3463 		 * then this is a spurious fault caused by TLB lazily flushed,
3464 		 * or some other CPU has already fixed the PTE after the
3465 		 * current CPU took the fault.
3466 		 *
3467 		 * Need not check the access of upper level table entries since
3468 		 * they are always ACC_ALL.
3469 		 */
3470 		if (is_access_allowed(fault, spte)) {
3471 			ret = RET_PF_SPURIOUS;
3472 			break;
3473 		}
3474 
3475 		new_spte = spte;
3476 
3477 		/*
3478 		 * KVM only supports fixing page faults outside of MMU lock for
3479 		 * direct MMUs, nested MMUs are always indirect, and KVM always
3480 		 * uses A/D bits for non-nested MMUs.  Thus, if A/D bits are
3481 		 * enabled, the SPTE can't be an access-tracked SPTE.
3482 		 */
3483 		if (unlikely(!kvm_ad_enabled()) && is_access_track_spte(spte))
3484 			new_spte = restore_acc_track_spte(new_spte);
3485 
3486 		/*
3487 		 * To keep things simple, only SPTEs that are MMU-writable can
3488 		 * be made fully writable outside of mmu_lock, e.g. only SPTEs
3489 		 * that were write-protected for dirty-logging or access
3490 		 * tracking are handled here.  Don't bother checking if the
3491 		 * SPTE is writable to prioritize running with A/D bits enabled.
3492 		 * The is_access_allowed() check above handles the common case
3493 		 * of the fault being spurious, and the SPTE is known to be
3494 		 * shadow-present, i.e. except for access tracking restoration
3495 		 * making the new SPTE writable, the check is wasteful.
3496 		 */
3497 		if (fault->write && is_mmu_writable_spte(spte)) {
3498 			new_spte |= PT_WRITABLE_MASK;
3499 
3500 			/*
3501 			 * Do not fix write-permission on the large spte when
3502 			 * dirty logging is enabled. Since we only dirty the
3503 			 * first page into the dirty-bitmap in
3504 			 * fast_pf_fix_direct_spte(), other pages are missed
3505 			 * if its slot has dirty logging enabled.
3506 			 *
3507 			 * Instead, we let the slow page fault path create a
3508 			 * normal spte to fix the access.
3509 			 */
3510 			if (sp->role.level > PG_LEVEL_4K &&
3511 			    kvm_slot_dirty_track_enabled(fault->slot))
3512 				break;
3513 		}
3514 
3515 		/* Verify that the fault can be handled in the fast path */
3516 		if (new_spte == spte ||
3517 		    !is_access_allowed(fault, new_spte))
3518 			break;
3519 
3520 		/*
3521 		 * Currently, fast page fault only works for direct mapping
3522 		 * since the gfn is not stable for indirect shadow page. See
3523 		 * Documentation/virt/kvm/locking.rst to get more detail.
3524 		 */
3525 		if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) {
3526 			ret = RET_PF_FIXED;
3527 			break;
3528 		}
3529 
3530 		if (++retry_count > 4) {
3531 			pr_warn_once("Fast #PF retrying more than 4 times.\n");
3532 			break;
3533 		}
3534 
3535 	} while (true);
3536 
3537 	trace_fast_page_fault(vcpu, fault, sptep, spte, ret);
3538 	walk_shadow_page_lockless_end(vcpu);
3539 
3540 	if (ret != RET_PF_INVALID)
3541 		vcpu->stat.pf_fast++;
3542 
3543 	return ret;
3544 }
3545 
3546 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3547 			       struct list_head *invalid_list)
3548 {
3549 	struct kvm_mmu_page *sp;
3550 
3551 	if (!VALID_PAGE(*root_hpa))
3552 		return;
3553 
3554 	sp = root_to_sp(*root_hpa);
3555 	if (WARN_ON_ONCE(!sp))
3556 		return;
3557 
3558 	if (is_tdp_mmu_page(sp))
3559 		kvm_tdp_mmu_put_root(kvm, sp, false);
3560 	else if (!--sp->root_count && sp->role.invalid)
3561 		kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3562 
3563 	*root_hpa = INVALID_PAGE;
3564 }
3565 
3566 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3567 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
3568 			ulong roots_to_free)
3569 {
3570 	int i;
3571 	LIST_HEAD(invalid_list);
3572 	bool free_active_root;
3573 
3574 	WARN_ON_ONCE(roots_to_free & ~KVM_MMU_ROOTS_ALL);
3575 
3576 	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3577 
3578 	/* Before acquiring the MMU lock, see if we need to do any real work. */
3579 	free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT)
3580 		&& VALID_PAGE(mmu->root.hpa);
3581 
3582 	if (!free_active_root) {
3583 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3584 			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3585 			    VALID_PAGE(mmu->prev_roots[i].hpa))
3586 				break;
3587 
3588 		if (i == KVM_MMU_NUM_PREV_ROOTS)
3589 			return;
3590 	}
3591 
3592 	write_lock(&kvm->mmu_lock);
3593 
3594 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3595 		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3596 			mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3597 					   &invalid_list);
3598 
3599 	if (free_active_root) {
3600 		if (kvm_mmu_is_dummy_root(mmu->root.hpa)) {
3601 			/* Nothing to cleanup for dummy roots. */
3602 		} else if (root_to_sp(mmu->root.hpa)) {
3603 			mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list);
3604 		} else if (mmu->pae_root) {
3605 			for (i = 0; i < 4; ++i) {
3606 				if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
3607 					continue;
3608 
3609 				mmu_free_root_page(kvm, &mmu->pae_root[i],
3610 						   &invalid_list);
3611 				mmu->pae_root[i] = INVALID_PAE_ROOT;
3612 			}
3613 		}
3614 		mmu->root.hpa = INVALID_PAGE;
3615 		mmu->root.pgd = 0;
3616 	}
3617 
3618 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
3619 	write_unlock(&kvm->mmu_lock);
3620 }
3621 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3622 
3623 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu)
3624 {
3625 	unsigned long roots_to_free = 0;
3626 	struct kvm_mmu_page *sp;
3627 	hpa_t root_hpa;
3628 	int i;
3629 
3630 	/*
3631 	 * This should not be called while L2 is active, L2 can't invalidate
3632 	 * _only_ its own roots, e.g. INVVPID unconditionally exits.
3633 	 */
3634 	WARN_ON_ONCE(mmu->root_role.guest_mode);
3635 
3636 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3637 		root_hpa = mmu->prev_roots[i].hpa;
3638 		if (!VALID_PAGE(root_hpa))
3639 			continue;
3640 
3641 		sp = root_to_sp(root_hpa);
3642 		if (!sp || sp->role.guest_mode)
3643 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
3644 	}
3645 
3646 	kvm_mmu_free_roots(kvm, mmu, roots_to_free);
3647 }
3648 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);
3649 
3650 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, int quadrant,
3651 			    u8 level)
3652 {
3653 	union kvm_mmu_page_role role = vcpu->arch.mmu->root_role;
3654 	struct kvm_mmu_page *sp;
3655 
3656 	role.level = level;
3657 	role.quadrant = quadrant;
3658 
3659 	WARN_ON_ONCE(quadrant && !role.has_4_byte_gpte);
3660 	WARN_ON_ONCE(role.direct && role.has_4_byte_gpte);
3661 
3662 	sp = kvm_mmu_get_shadow_page(vcpu, gfn, role);
3663 	++sp->root_count;
3664 
3665 	return __pa(sp->spt);
3666 }
3667 
3668 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3669 {
3670 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3671 	u8 shadow_root_level = mmu->root_role.level;
3672 	hpa_t root;
3673 	unsigned i;
3674 	int r;
3675 
3676 	write_lock(&vcpu->kvm->mmu_lock);
3677 	r = make_mmu_pages_available(vcpu);
3678 	if (r < 0)
3679 		goto out_unlock;
3680 
3681 	if (tdp_mmu_enabled) {
3682 		root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3683 		mmu->root.hpa = root;
3684 	} else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3685 		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level);
3686 		mmu->root.hpa = root;
3687 	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3688 		if (WARN_ON_ONCE(!mmu->pae_root)) {
3689 			r = -EIO;
3690 			goto out_unlock;
3691 		}
3692 
3693 		for (i = 0; i < 4; ++i) {
3694 			WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3695 
3696 			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 0,
3697 					      PT32_ROOT_LEVEL);
3698 			mmu->pae_root[i] = root | PT_PRESENT_MASK |
3699 					   shadow_me_value;
3700 		}
3701 		mmu->root.hpa = __pa(mmu->pae_root);
3702 	} else {
3703 		WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3704 		r = -EIO;
3705 		goto out_unlock;
3706 	}
3707 
3708 	/* root.pgd is ignored for direct MMUs. */
3709 	mmu->root.pgd = 0;
3710 out_unlock:
3711 	write_unlock(&vcpu->kvm->mmu_lock);
3712 	return r;
3713 }
3714 
3715 static int mmu_first_shadow_root_alloc(struct kvm *kvm)
3716 {
3717 	struct kvm_memslots *slots;
3718 	struct kvm_memory_slot *slot;
3719 	int r = 0, i, bkt;
3720 
3721 	/*
3722 	 * Check if this is the first shadow root being allocated before
3723 	 * taking the lock.
3724 	 */
3725 	if (kvm_shadow_root_allocated(kvm))
3726 		return 0;
3727 
3728 	mutex_lock(&kvm->slots_arch_lock);
3729 
3730 	/* Recheck, under the lock, whether this is the first shadow root. */
3731 	if (kvm_shadow_root_allocated(kvm))
3732 		goto out_unlock;
3733 
3734 	/*
3735 	 * Check if anything actually needs to be allocated, e.g. all metadata
3736 	 * will be allocated upfront if TDP is disabled.
3737 	 */
3738 	if (kvm_memslots_have_rmaps(kvm) &&
3739 	    kvm_page_track_write_tracking_enabled(kvm))
3740 		goto out_success;
3741 
3742 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
3743 		slots = __kvm_memslots(kvm, i);
3744 		kvm_for_each_memslot(slot, bkt, slots) {
3745 			/*
3746 			 * Both of these functions are no-ops if the target is
3747 			 * already allocated, so unconditionally calling both
3748 			 * is safe.  Intentionally do NOT free allocations on
3749 			 * failure to avoid having to track which allocations
3750 			 * were made now versus when the memslot was created.
3751 			 * The metadata is guaranteed to be freed when the slot
3752 			 * is freed, and will be kept/used if userspace retries
3753 			 * KVM_RUN instead of killing the VM.
3754 			 */
3755 			r = memslot_rmap_alloc(slot, slot->npages);
3756 			if (r)
3757 				goto out_unlock;
3758 			r = kvm_page_track_write_tracking_alloc(slot);
3759 			if (r)
3760 				goto out_unlock;
3761 		}
3762 	}
3763 
3764 	/*
3765 	 * Ensure that shadow_root_allocated becomes true strictly after
3766 	 * all the related pointers are set.
3767 	 */
3768 out_success:
3769 	smp_store_release(&kvm->arch.shadow_root_allocated, true);
3770 
3771 out_unlock:
3772 	mutex_unlock(&kvm->slots_arch_lock);
3773 	return r;
3774 }
3775 
3776 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3777 {
3778 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3779 	u64 pdptrs[4], pm_mask;
3780 	gfn_t root_gfn, root_pgd;
3781 	int quadrant, i, r;
3782 	hpa_t root;
3783 
3784 	root_pgd = kvm_mmu_get_guest_pgd(vcpu, mmu);
3785 	root_gfn = root_pgd >> PAGE_SHIFT;
3786 
3787 	if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3788 		mmu->root.hpa = kvm_mmu_get_dummy_root();
3789 		return 0;
3790 	}
3791 
3792 	/*
3793 	 * On SVM, reading PDPTRs might access guest memory, which might fault
3794 	 * and thus might sleep.  Grab the PDPTRs before acquiring mmu_lock.
3795 	 */
3796 	if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) {
3797 		for (i = 0; i < 4; ++i) {
3798 			pdptrs[i] = mmu->get_pdptr(vcpu, i);
3799 			if (!(pdptrs[i] & PT_PRESENT_MASK))
3800 				continue;
3801 
3802 			if (!kvm_vcpu_is_visible_gfn(vcpu, pdptrs[i] >> PAGE_SHIFT))
3803 				pdptrs[i] = 0;
3804 		}
3805 	}
3806 
3807 	r = mmu_first_shadow_root_alloc(vcpu->kvm);
3808 	if (r)
3809 		return r;
3810 
3811 	write_lock(&vcpu->kvm->mmu_lock);
3812 	r = make_mmu_pages_available(vcpu);
3813 	if (r < 0)
3814 		goto out_unlock;
3815 
3816 	/*
3817 	 * Do we shadow a long mode page table? If so we need to
3818 	 * write-protect the guests page table root.
3819 	 */
3820 	if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) {
3821 		root = mmu_alloc_root(vcpu, root_gfn, 0,
3822 				      mmu->root_role.level);
3823 		mmu->root.hpa = root;
3824 		goto set_root_pgd;
3825 	}
3826 
3827 	if (WARN_ON_ONCE(!mmu->pae_root)) {
3828 		r = -EIO;
3829 		goto out_unlock;
3830 	}
3831 
3832 	/*
3833 	 * We shadow a 32 bit page table. This may be a legacy 2-level
3834 	 * or a PAE 3-level page table. In either case we need to be aware that
3835 	 * the shadow page table may be a PAE or a long mode page table.
3836 	 */
3837 	pm_mask = PT_PRESENT_MASK | shadow_me_value;
3838 	if (mmu->root_role.level >= PT64_ROOT_4LEVEL) {
3839 		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3840 
3841 		if (WARN_ON_ONCE(!mmu->pml4_root)) {
3842 			r = -EIO;
3843 			goto out_unlock;
3844 		}
3845 		mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3846 
3847 		if (mmu->root_role.level == PT64_ROOT_5LEVEL) {
3848 			if (WARN_ON_ONCE(!mmu->pml5_root)) {
3849 				r = -EIO;
3850 				goto out_unlock;
3851 			}
3852 			mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask;
3853 		}
3854 	}
3855 
3856 	for (i = 0; i < 4; ++i) {
3857 		WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3858 
3859 		if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) {
3860 			if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3861 				mmu->pae_root[i] = INVALID_PAE_ROOT;
3862 				continue;
3863 			}
3864 			root_gfn = pdptrs[i] >> PAGE_SHIFT;
3865 		}
3866 
3867 		/*
3868 		 * If shadowing 32-bit non-PAE page tables, each PAE page
3869 		 * directory maps one quarter of the guest's non-PAE page
3870 		 * directory. Othwerise each PAE page direct shadows one guest
3871 		 * PAE page directory so that quadrant should be 0.
3872 		 */
3873 		quadrant = (mmu->cpu_role.base.level == PT32_ROOT_LEVEL) ? i : 0;
3874 
3875 		root = mmu_alloc_root(vcpu, root_gfn, quadrant, PT32_ROOT_LEVEL);
3876 		mmu->pae_root[i] = root | pm_mask;
3877 	}
3878 
3879 	if (mmu->root_role.level == PT64_ROOT_5LEVEL)
3880 		mmu->root.hpa = __pa(mmu->pml5_root);
3881 	else if (mmu->root_role.level == PT64_ROOT_4LEVEL)
3882 		mmu->root.hpa = __pa(mmu->pml4_root);
3883 	else
3884 		mmu->root.hpa = __pa(mmu->pae_root);
3885 
3886 set_root_pgd:
3887 	mmu->root.pgd = root_pgd;
3888 out_unlock:
3889 	write_unlock(&vcpu->kvm->mmu_lock);
3890 
3891 	return r;
3892 }
3893 
3894 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
3895 {
3896 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3897 	bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL;
3898 	u64 *pml5_root = NULL;
3899 	u64 *pml4_root = NULL;
3900 	u64 *pae_root;
3901 
3902 	/*
3903 	 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
3904 	 * tables are allocated and initialized at root creation as there is no
3905 	 * equivalent level in the guest's NPT to shadow.  Allocate the tables
3906 	 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3907 	 */
3908 	if (mmu->root_role.direct ||
3909 	    mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL ||
3910 	    mmu->root_role.level < PT64_ROOT_4LEVEL)
3911 		return 0;
3912 
3913 	/*
3914 	 * NPT, the only paging mode that uses this horror, uses a fixed number
3915 	 * of levels for the shadow page tables, e.g. all MMUs are 4-level or
3916 	 * all MMus are 5-level.  Thus, this can safely require that pml5_root
3917 	 * is allocated if the other roots are valid and pml5 is needed, as any
3918 	 * prior MMU would also have required pml5.
3919 	 */
3920 	if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root))
3921 		return 0;
3922 
3923 	/*
3924 	 * The special roots should always be allocated in concert.  Yell and
3925 	 * bail if KVM ends up in a state where only one of the roots is valid.
3926 	 */
3927 	if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root ||
3928 			 (need_pml5 && mmu->pml5_root)))
3929 		return -EIO;
3930 
3931 	/*
3932 	 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
3933 	 * doesn't need to be decrypted.
3934 	 */
3935 	pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3936 	if (!pae_root)
3937 		return -ENOMEM;
3938 
3939 #ifdef CONFIG_X86_64
3940 	pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3941 	if (!pml4_root)
3942 		goto err_pml4;
3943 
3944 	if (need_pml5) {
3945 		pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3946 		if (!pml5_root)
3947 			goto err_pml5;
3948 	}
3949 #endif
3950 
3951 	mmu->pae_root = pae_root;
3952 	mmu->pml4_root = pml4_root;
3953 	mmu->pml5_root = pml5_root;
3954 
3955 	return 0;
3956 
3957 #ifdef CONFIG_X86_64
3958 err_pml5:
3959 	free_page((unsigned long)pml4_root);
3960 err_pml4:
3961 	free_page((unsigned long)pae_root);
3962 	return -ENOMEM;
3963 #endif
3964 }
3965 
3966 static bool is_unsync_root(hpa_t root)
3967 {
3968 	struct kvm_mmu_page *sp;
3969 
3970 	if (!VALID_PAGE(root) || kvm_mmu_is_dummy_root(root))
3971 		return false;
3972 
3973 	/*
3974 	 * The read barrier orders the CPU's read of SPTE.W during the page table
3975 	 * walk before the reads of sp->unsync/sp->unsync_children here.
3976 	 *
3977 	 * Even if another CPU was marking the SP as unsync-ed simultaneously,
3978 	 * any guest page table changes are not guaranteed to be visible anyway
3979 	 * until this VCPU issues a TLB flush strictly after those changes are
3980 	 * made.  We only need to ensure that the other CPU sets these flags
3981 	 * before any actual changes to the page tables are made.  The comments
3982 	 * in mmu_try_to_unsync_pages() describe what could go wrong if this
3983 	 * requirement isn't satisfied.
3984 	 */
3985 	smp_rmb();
3986 	sp = root_to_sp(root);
3987 
3988 	/*
3989 	 * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the
3990 	 * PDPTEs for a given PAE root need to be synchronized individually.
3991 	 */
3992 	if (WARN_ON_ONCE(!sp))
3993 		return false;
3994 
3995 	if (sp->unsync || sp->unsync_children)
3996 		return true;
3997 
3998 	return false;
3999 }
4000 
4001 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
4002 {
4003 	int i;
4004 	struct kvm_mmu_page *sp;
4005 
4006 	if (vcpu->arch.mmu->root_role.direct)
4007 		return;
4008 
4009 	if (!VALID_PAGE(vcpu->arch.mmu->root.hpa))
4010 		return;
4011 
4012 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4013 
4014 	if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) {
4015 		hpa_t root = vcpu->arch.mmu->root.hpa;
4016 
4017 		if (!is_unsync_root(root))
4018 			return;
4019 
4020 		sp = root_to_sp(root);
4021 
4022 		write_lock(&vcpu->kvm->mmu_lock);
4023 		mmu_sync_children(vcpu, sp, true);
4024 		write_unlock(&vcpu->kvm->mmu_lock);
4025 		return;
4026 	}
4027 
4028 	write_lock(&vcpu->kvm->mmu_lock);
4029 
4030 	for (i = 0; i < 4; ++i) {
4031 		hpa_t root = vcpu->arch.mmu->pae_root[i];
4032 
4033 		if (IS_VALID_PAE_ROOT(root)) {
4034 			sp = spte_to_child_sp(root);
4035 			mmu_sync_children(vcpu, sp, true);
4036 		}
4037 	}
4038 
4039 	write_unlock(&vcpu->kvm->mmu_lock);
4040 }
4041 
4042 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu)
4043 {
4044 	unsigned long roots_to_free = 0;
4045 	int i;
4046 
4047 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4048 		if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa))
4049 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
4050 
4051 	/* sync prev_roots by simply freeing them */
4052 	kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free);
4053 }
4054 
4055 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4056 				  gpa_t vaddr, u64 access,
4057 				  struct x86_exception *exception)
4058 {
4059 	if (exception)
4060 		exception->error_code = 0;
4061 	return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception);
4062 }
4063 
4064 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
4065 {
4066 	/*
4067 	 * A nested guest cannot use the MMIO cache if it is using nested
4068 	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
4069 	 */
4070 	if (mmu_is_nested(vcpu))
4071 		return false;
4072 
4073 	if (direct)
4074 		return vcpu_match_mmio_gpa(vcpu, addr);
4075 
4076 	return vcpu_match_mmio_gva(vcpu, addr);
4077 }
4078 
4079 /*
4080  * Return the level of the lowest level SPTE added to sptes.
4081  * That SPTE may be non-present.
4082  *
4083  * Must be called between walk_shadow_page_lockless_{begin,end}.
4084  */
4085 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
4086 {
4087 	struct kvm_shadow_walk_iterator iterator;
4088 	int leaf = -1;
4089 	u64 spte;
4090 
4091 	for (shadow_walk_init(&iterator, vcpu, addr),
4092 	     *root_level = iterator.level;
4093 	     shadow_walk_okay(&iterator);
4094 	     __shadow_walk_next(&iterator, spte)) {
4095 		leaf = iterator.level;
4096 		spte = mmu_spte_get_lockless(iterator.sptep);
4097 
4098 		sptes[leaf] = spte;
4099 	}
4100 
4101 	return leaf;
4102 }
4103 
4104 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
4105 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
4106 {
4107 	u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
4108 	struct rsvd_bits_validate *rsvd_check;
4109 	int root, leaf, level;
4110 	bool reserved = false;
4111 
4112 	walk_shadow_page_lockless_begin(vcpu);
4113 
4114 	if (is_tdp_mmu_active(vcpu))
4115 		leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
4116 	else
4117 		leaf = get_walk(vcpu, addr, sptes, &root);
4118 
4119 	walk_shadow_page_lockless_end(vcpu);
4120 
4121 	if (unlikely(leaf < 0)) {
4122 		*sptep = 0ull;
4123 		return reserved;
4124 	}
4125 
4126 	*sptep = sptes[leaf];
4127 
4128 	/*
4129 	 * Skip reserved bits checks on the terminal leaf if it's not a valid
4130 	 * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
4131 	 * design, always have reserved bits set.  The purpose of the checks is
4132 	 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
4133 	 */
4134 	if (!is_shadow_present_pte(sptes[leaf]))
4135 		leaf++;
4136 
4137 	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
4138 
4139 	for (level = root; level >= leaf; level--)
4140 		reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
4141 
4142 	if (reserved) {
4143 		pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
4144 		       __func__, addr);
4145 		for (level = root; level >= leaf; level--)
4146 			pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
4147 			       sptes[level], level,
4148 			       get_rsvd_bits(rsvd_check, sptes[level], level));
4149 	}
4150 
4151 	return reserved;
4152 }
4153 
4154 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
4155 {
4156 	u64 spte;
4157 	bool reserved;
4158 
4159 	if (mmio_info_in_cache(vcpu, addr, direct))
4160 		return RET_PF_EMULATE;
4161 
4162 	reserved = get_mmio_spte(vcpu, addr, &spte);
4163 	if (WARN_ON_ONCE(reserved))
4164 		return -EINVAL;
4165 
4166 	if (is_mmio_spte(spte)) {
4167 		gfn_t gfn = get_mmio_spte_gfn(spte);
4168 		unsigned int access = get_mmio_spte_access(spte);
4169 
4170 		if (!check_mmio_spte(vcpu, spte))
4171 			return RET_PF_INVALID;
4172 
4173 		if (direct)
4174 			addr = 0;
4175 
4176 		trace_handle_mmio_page_fault(addr, gfn, access);
4177 		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
4178 		return RET_PF_EMULATE;
4179 	}
4180 
4181 	/*
4182 	 * If the page table is zapped by other cpus, let CPU fault again on
4183 	 * the address.
4184 	 */
4185 	return RET_PF_RETRY;
4186 }
4187 
4188 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
4189 					 struct kvm_page_fault *fault)
4190 {
4191 	if (unlikely(fault->rsvd))
4192 		return false;
4193 
4194 	if (!fault->present || !fault->write)
4195 		return false;
4196 
4197 	/*
4198 	 * guest is writing the page which is write tracked which can
4199 	 * not be fixed by page fault handler.
4200 	 */
4201 	if (kvm_gfn_is_write_tracked(vcpu->kvm, fault->slot, fault->gfn))
4202 		return true;
4203 
4204 	return false;
4205 }
4206 
4207 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
4208 {
4209 	struct kvm_shadow_walk_iterator iterator;
4210 	u64 spte;
4211 
4212 	walk_shadow_page_lockless_begin(vcpu);
4213 	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
4214 		clear_sp_write_flooding_count(iterator.sptep);
4215 	walk_shadow_page_lockless_end(vcpu);
4216 }
4217 
4218 static u32 alloc_apf_token(struct kvm_vcpu *vcpu)
4219 {
4220 	/* make sure the token value is not 0 */
4221 	u32 id = vcpu->arch.apf.id;
4222 
4223 	if (id << 12 == 0)
4224 		vcpu->arch.apf.id = 1;
4225 
4226 	return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
4227 }
4228 
4229 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
4230 				    gfn_t gfn)
4231 {
4232 	struct kvm_arch_async_pf arch;
4233 
4234 	arch.token = alloc_apf_token(vcpu);
4235 	arch.gfn = gfn;
4236 	arch.direct_map = vcpu->arch.mmu->root_role.direct;
4237 	arch.cr3 = kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu);
4238 
4239 	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
4240 				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
4241 }
4242 
4243 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
4244 {
4245 	int r;
4246 
4247 	if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) ||
4248 	      work->wakeup_all)
4249 		return;
4250 
4251 	r = kvm_mmu_reload(vcpu);
4252 	if (unlikely(r))
4253 		return;
4254 
4255 	if (!vcpu->arch.mmu->root_role.direct &&
4256 	      work->arch.cr3 != kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu))
4257 		return;
4258 
4259 	kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true, NULL);
4260 }
4261 
4262 static int __kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4263 {
4264 	struct kvm_memory_slot *slot = fault->slot;
4265 	bool async;
4266 
4267 	/*
4268 	 * Retry the page fault if the gfn hit a memslot that is being deleted
4269 	 * or moved.  This ensures any existing SPTEs for the old memslot will
4270 	 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
4271 	 */
4272 	if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
4273 		return RET_PF_RETRY;
4274 
4275 	if (!kvm_is_visible_memslot(slot)) {
4276 		/* Don't expose private memslots to L2. */
4277 		if (is_guest_mode(vcpu)) {
4278 			fault->slot = NULL;
4279 			fault->pfn = KVM_PFN_NOSLOT;
4280 			fault->map_writable = false;
4281 			return RET_PF_CONTINUE;
4282 		}
4283 		/*
4284 		 * If the APIC access page exists but is disabled, go directly
4285 		 * to emulation without caching the MMIO access or creating a
4286 		 * MMIO SPTE.  That way the cache doesn't need to be purged
4287 		 * when the AVIC is re-enabled.
4288 		 */
4289 		if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT &&
4290 		    !kvm_apicv_activated(vcpu->kvm))
4291 			return RET_PF_EMULATE;
4292 	}
4293 
4294 	async = false;
4295 	fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, false, &async,
4296 					  fault->write, &fault->map_writable,
4297 					  &fault->hva);
4298 	if (!async)
4299 		return RET_PF_CONTINUE; /* *pfn has correct page already */
4300 
4301 	if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) {
4302 		trace_kvm_try_async_get_page(fault->addr, fault->gfn);
4303 		if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) {
4304 			trace_kvm_async_pf_repeated_fault(fault->addr, fault->gfn);
4305 			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4306 			return RET_PF_RETRY;
4307 		} else if (kvm_arch_setup_async_pf(vcpu, fault->addr, fault->gfn)) {
4308 			return RET_PF_RETRY;
4309 		}
4310 	}
4311 
4312 	/*
4313 	 * Allow gup to bail on pending non-fatal signals when it's also allowed
4314 	 * to wait for IO.  Note, gup always bails if it is unable to quickly
4315 	 * get a page and a fatal signal, i.e. SIGKILL, is pending.
4316 	 */
4317 	fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, true, NULL,
4318 					  fault->write, &fault->map_writable,
4319 					  &fault->hva);
4320 	return RET_PF_CONTINUE;
4321 }
4322 
4323 static int kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
4324 			   unsigned int access)
4325 {
4326 	int ret;
4327 
4328 	fault->mmu_seq = vcpu->kvm->mmu_invalidate_seq;
4329 	smp_rmb();
4330 
4331 	ret = __kvm_faultin_pfn(vcpu, fault);
4332 	if (ret != RET_PF_CONTINUE)
4333 		return ret;
4334 
4335 	if (unlikely(is_error_pfn(fault->pfn)))
4336 		return kvm_handle_error_pfn(vcpu, fault);
4337 
4338 	if (unlikely(!fault->slot))
4339 		return kvm_handle_noslot_fault(vcpu, fault, access);
4340 
4341 	return RET_PF_CONTINUE;
4342 }
4343 
4344 /*
4345  * Returns true if the page fault is stale and needs to be retried, i.e. if the
4346  * root was invalidated by a memslot update or a relevant mmu_notifier fired.
4347  */
4348 static bool is_page_fault_stale(struct kvm_vcpu *vcpu,
4349 				struct kvm_page_fault *fault)
4350 {
4351 	struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa);
4352 
4353 	/* Special roots, e.g. pae_root, are not backed by shadow pages. */
4354 	if (sp && is_obsolete_sp(vcpu->kvm, sp))
4355 		return true;
4356 
4357 	/*
4358 	 * Roots without an associated shadow page are considered invalid if
4359 	 * there is a pending request to free obsolete roots.  The request is
4360 	 * only a hint that the current root _may_ be obsolete and needs to be
4361 	 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a
4362 	 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs
4363 	 * to reload even if no vCPU is actively using the root.
4364 	 */
4365 	if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
4366 		return true;
4367 
4368 	return fault->slot &&
4369 	       mmu_invalidate_retry_hva(vcpu->kvm, fault->mmu_seq, fault->hva);
4370 }
4371 
4372 static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4373 {
4374 	int r;
4375 
4376 	/* Dummy roots are used only for shadowing bad guest roots. */
4377 	if (WARN_ON_ONCE(kvm_mmu_is_dummy_root(vcpu->arch.mmu->root.hpa)))
4378 		return RET_PF_RETRY;
4379 
4380 	if (page_fault_handle_page_track(vcpu, fault))
4381 		return RET_PF_EMULATE;
4382 
4383 	r = fast_page_fault(vcpu, fault);
4384 	if (r != RET_PF_INVALID)
4385 		return r;
4386 
4387 	r = mmu_topup_memory_caches(vcpu, false);
4388 	if (r)
4389 		return r;
4390 
4391 	r = kvm_faultin_pfn(vcpu, fault, ACC_ALL);
4392 	if (r != RET_PF_CONTINUE)
4393 		return r;
4394 
4395 	r = RET_PF_RETRY;
4396 	write_lock(&vcpu->kvm->mmu_lock);
4397 
4398 	if (is_page_fault_stale(vcpu, fault))
4399 		goto out_unlock;
4400 
4401 	r = make_mmu_pages_available(vcpu);
4402 	if (r)
4403 		goto out_unlock;
4404 
4405 	r = direct_map(vcpu, fault);
4406 
4407 out_unlock:
4408 	write_unlock(&vcpu->kvm->mmu_lock);
4409 	kvm_release_pfn_clean(fault->pfn);
4410 	return r;
4411 }
4412 
4413 static int nonpaging_page_fault(struct kvm_vcpu *vcpu,
4414 				struct kvm_page_fault *fault)
4415 {
4416 	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4417 	fault->max_level = PG_LEVEL_2M;
4418 	return direct_page_fault(vcpu, fault);
4419 }
4420 
4421 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4422 				u64 fault_address, char *insn, int insn_len)
4423 {
4424 	int r = 1;
4425 	u32 flags = vcpu->arch.apf.host_apf_flags;
4426 
4427 #ifndef CONFIG_X86_64
4428 	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
4429 	if (WARN_ON_ONCE(fault_address >> 32))
4430 		return -EFAULT;
4431 #endif
4432 
4433 	vcpu->arch.l1tf_flush_l1d = true;
4434 	if (!flags) {
4435 		trace_kvm_page_fault(vcpu, fault_address, error_code);
4436 
4437 		if (kvm_event_needs_reinjection(vcpu))
4438 			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4439 		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4440 				insn_len);
4441 	} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
4442 		vcpu->arch.apf.host_apf_flags = 0;
4443 		local_irq_disable();
4444 		kvm_async_pf_task_wait_schedule(fault_address);
4445 		local_irq_enable();
4446 	} else {
4447 		WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
4448 	}
4449 
4450 	return r;
4451 }
4452 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4453 
4454 #ifdef CONFIG_X86_64
4455 static int kvm_tdp_mmu_page_fault(struct kvm_vcpu *vcpu,
4456 				  struct kvm_page_fault *fault)
4457 {
4458 	int r;
4459 
4460 	if (page_fault_handle_page_track(vcpu, fault))
4461 		return RET_PF_EMULATE;
4462 
4463 	r = fast_page_fault(vcpu, fault);
4464 	if (r != RET_PF_INVALID)
4465 		return r;
4466 
4467 	r = mmu_topup_memory_caches(vcpu, false);
4468 	if (r)
4469 		return r;
4470 
4471 	r = kvm_faultin_pfn(vcpu, fault, ACC_ALL);
4472 	if (r != RET_PF_CONTINUE)
4473 		return r;
4474 
4475 	r = RET_PF_RETRY;
4476 	read_lock(&vcpu->kvm->mmu_lock);
4477 
4478 	if (is_page_fault_stale(vcpu, fault))
4479 		goto out_unlock;
4480 
4481 	r = kvm_tdp_mmu_map(vcpu, fault);
4482 
4483 out_unlock:
4484 	read_unlock(&vcpu->kvm->mmu_lock);
4485 	kvm_release_pfn_clean(fault->pfn);
4486 	return r;
4487 }
4488 #endif
4489 
4490 bool __kvm_mmu_honors_guest_mtrrs(bool vm_has_noncoherent_dma)
4491 {
4492 	/*
4493 	 * If host MTRRs are ignored (shadow_memtype_mask is non-zero), and the
4494 	 * VM has non-coherent DMA (DMA doesn't snoop CPU caches), KVM's ABI is
4495 	 * to honor the memtype from the guest's MTRRs so that guest accesses
4496 	 * to memory that is DMA'd aren't cached against the guest's wishes.
4497 	 *
4498 	 * Note, KVM may still ultimately ignore guest MTRRs for certain PFNs,
4499 	 * e.g. KVM will force UC memtype for host MMIO.
4500 	 */
4501 	return vm_has_noncoherent_dma && shadow_memtype_mask;
4502 }
4503 
4504 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4505 {
4506 	/*
4507 	 * If the guest's MTRRs may be used to compute the "real" memtype,
4508 	 * restrict the mapping level to ensure KVM uses a consistent memtype
4509 	 * across the entire mapping.
4510 	 */
4511 	if (kvm_mmu_honors_guest_mtrrs(vcpu->kvm)) {
4512 		for ( ; fault->max_level > PG_LEVEL_4K; --fault->max_level) {
4513 			int page_num = KVM_PAGES_PER_HPAGE(fault->max_level);
4514 			gfn_t base = gfn_round_for_level(fault->gfn,
4515 							 fault->max_level);
4516 
4517 			if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
4518 				break;
4519 		}
4520 	}
4521 
4522 #ifdef CONFIG_X86_64
4523 	if (tdp_mmu_enabled)
4524 		return kvm_tdp_mmu_page_fault(vcpu, fault);
4525 #endif
4526 
4527 	return direct_page_fault(vcpu, fault);
4528 }
4529 
4530 static void nonpaging_init_context(struct kvm_mmu *context)
4531 {
4532 	context->page_fault = nonpaging_page_fault;
4533 	context->gva_to_gpa = nonpaging_gva_to_gpa;
4534 	context->sync_spte = NULL;
4535 }
4536 
4537 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
4538 				  union kvm_mmu_page_role role)
4539 {
4540 	struct kvm_mmu_page *sp;
4541 
4542 	if (!VALID_PAGE(root->hpa))
4543 		return false;
4544 
4545 	if (!role.direct && pgd != root->pgd)
4546 		return false;
4547 
4548 	sp = root_to_sp(root->hpa);
4549 	if (WARN_ON_ONCE(!sp))
4550 		return false;
4551 
4552 	return role.word == sp->role.word;
4553 }
4554 
4555 /*
4556  * Find out if a previously cached root matching the new pgd/role is available,
4557  * and insert the current root as the MRU in the cache.
4558  * If a matching root is found, it is assigned to kvm_mmu->root and
4559  * true is returned.
4560  * If no match is found, kvm_mmu->root is left invalid, the LRU root is
4561  * evicted to make room for the current root, and false is returned.
4562  */
4563 static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu,
4564 					      gpa_t new_pgd,
4565 					      union kvm_mmu_page_role new_role)
4566 {
4567 	uint i;
4568 
4569 	if (is_root_usable(&mmu->root, new_pgd, new_role))
4570 		return true;
4571 
4572 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4573 		/*
4574 		 * The swaps end up rotating the cache like this:
4575 		 *   C   0 1 2 3   (on entry to the function)
4576 		 *   0   C 1 2 3
4577 		 *   1   C 0 2 3
4578 		 *   2   C 0 1 3
4579 		 *   3   C 0 1 2   (on exit from the loop)
4580 		 */
4581 		swap(mmu->root, mmu->prev_roots[i]);
4582 		if (is_root_usable(&mmu->root, new_pgd, new_role))
4583 			return true;
4584 	}
4585 
4586 	kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
4587 	return false;
4588 }
4589 
4590 /*
4591  * Find out if a previously cached root matching the new pgd/role is available.
4592  * On entry, mmu->root is invalid.
4593  * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry
4594  * of the cache becomes invalid, and true is returned.
4595  * If no match is found, kvm_mmu->root is left invalid and false is returned.
4596  */
4597 static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu,
4598 					     gpa_t new_pgd,
4599 					     union kvm_mmu_page_role new_role)
4600 {
4601 	uint i;
4602 
4603 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4604 		if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role))
4605 			goto hit;
4606 
4607 	return false;
4608 
4609 hit:
4610 	swap(mmu->root, mmu->prev_roots[i]);
4611 	/* Bubble up the remaining roots.  */
4612 	for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++)
4613 		mmu->prev_roots[i] = mmu->prev_roots[i + 1];
4614 	mmu->prev_roots[i].hpa = INVALID_PAGE;
4615 	return true;
4616 }
4617 
4618 static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu,
4619 			    gpa_t new_pgd, union kvm_mmu_page_role new_role)
4620 {
4621 	/*
4622 	 * Limit reuse to 64-bit hosts+VMs without "special" roots in order to
4623 	 * avoid having to deal with PDPTEs and other complexities.
4624 	 */
4625 	if (VALID_PAGE(mmu->root.hpa) && !root_to_sp(mmu->root.hpa))
4626 		kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
4627 
4628 	if (VALID_PAGE(mmu->root.hpa))
4629 		return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role);
4630 	else
4631 		return cached_root_find_without_current(kvm, mmu, new_pgd, new_role);
4632 }
4633 
4634 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
4635 {
4636 	struct kvm_mmu *mmu = vcpu->arch.mmu;
4637 	union kvm_mmu_page_role new_role = mmu->root_role;
4638 
4639 	/*
4640 	 * Return immediately if no usable root was found, kvm_mmu_reload()
4641 	 * will establish a valid root prior to the next VM-Enter.
4642 	 */
4643 	if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role))
4644 		return;
4645 
4646 	/*
4647 	 * It's possible that the cached previous root page is obsolete because
4648 	 * of a change in the MMU generation number. However, changing the
4649 	 * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS,
4650 	 * which will free the root set here and allocate a new one.
4651 	 */
4652 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
4653 
4654 	if (force_flush_and_sync_on_reuse) {
4655 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4656 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4657 	}
4658 
4659 	/*
4660 	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
4661 	 * switching to a new CR3, that GVA->GPA mapping may no longer be
4662 	 * valid. So clear any cached MMIO info even when we don't need to sync
4663 	 * the shadow page tables.
4664 	 */
4665 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4666 
4667 	/*
4668 	 * If this is a direct root page, it doesn't have a write flooding
4669 	 * count. Otherwise, clear the write flooding count.
4670 	 */
4671 	if (!new_role.direct) {
4672 		struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa);
4673 
4674 		if (!WARN_ON_ONCE(!sp))
4675 			__clear_sp_write_flooding_count(sp);
4676 	}
4677 }
4678 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4679 
4680 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4681 			   unsigned int access)
4682 {
4683 	if (unlikely(is_mmio_spte(*sptep))) {
4684 		if (gfn != get_mmio_spte_gfn(*sptep)) {
4685 			mmu_spte_clear_no_track(sptep);
4686 			return true;
4687 		}
4688 
4689 		mark_mmio_spte(vcpu, sptep, gfn, access);
4690 		return true;
4691 	}
4692 
4693 	return false;
4694 }
4695 
4696 #define PTTYPE_EPT 18 /* arbitrary */
4697 #define PTTYPE PTTYPE_EPT
4698 #include "paging_tmpl.h"
4699 #undef PTTYPE
4700 
4701 #define PTTYPE 64
4702 #include "paging_tmpl.h"
4703 #undef PTTYPE
4704 
4705 #define PTTYPE 32
4706 #include "paging_tmpl.h"
4707 #undef PTTYPE
4708 
4709 static void __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
4710 				    u64 pa_bits_rsvd, int level, bool nx,
4711 				    bool gbpages, bool pse, bool amd)
4712 {
4713 	u64 gbpages_bit_rsvd = 0;
4714 	u64 nonleaf_bit8_rsvd = 0;
4715 	u64 high_bits_rsvd;
4716 
4717 	rsvd_check->bad_mt_xwr = 0;
4718 
4719 	if (!gbpages)
4720 		gbpages_bit_rsvd = rsvd_bits(7, 7);
4721 
4722 	if (level == PT32E_ROOT_LEVEL)
4723 		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
4724 	else
4725 		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4726 
4727 	/* Note, NX doesn't exist in PDPTEs, this is handled below. */
4728 	if (!nx)
4729 		high_bits_rsvd |= rsvd_bits(63, 63);
4730 
4731 	/*
4732 	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4733 	 * leaf entries) on AMD CPUs only.
4734 	 */
4735 	if (amd)
4736 		nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4737 
4738 	switch (level) {
4739 	case PT32_ROOT_LEVEL:
4740 		/* no rsvd bits for 2 level 4K page table entries */
4741 		rsvd_check->rsvd_bits_mask[0][1] = 0;
4742 		rsvd_check->rsvd_bits_mask[0][0] = 0;
4743 		rsvd_check->rsvd_bits_mask[1][0] =
4744 			rsvd_check->rsvd_bits_mask[0][0];
4745 
4746 		if (!pse) {
4747 			rsvd_check->rsvd_bits_mask[1][1] = 0;
4748 			break;
4749 		}
4750 
4751 		if (is_cpuid_PSE36())
4752 			/* 36bits PSE 4MB page */
4753 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4754 		else
4755 			/* 32 bits PSE 4MB page */
4756 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4757 		break;
4758 	case PT32E_ROOT_LEVEL:
4759 		rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
4760 						   high_bits_rsvd |
4761 						   rsvd_bits(5, 8) |
4762 						   rsvd_bits(1, 2);	/* PDPTE */
4763 		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;	/* PDE */
4764 		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;	/* PTE */
4765 		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4766 						   rsvd_bits(13, 20);	/* large page */
4767 		rsvd_check->rsvd_bits_mask[1][0] =
4768 			rsvd_check->rsvd_bits_mask[0][0];
4769 		break;
4770 	case PT64_ROOT_5LEVEL:
4771 		rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
4772 						   nonleaf_bit8_rsvd |
4773 						   rsvd_bits(7, 7);
4774 		rsvd_check->rsvd_bits_mask[1][4] =
4775 			rsvd_check->rsvd_bits_mask[0][4];
4776 		fallthrough;
4777 	case PT64_ROOT_4LEVEL:
4778 		rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
4779 						   nonleaf_bit8_rsvd |
4780 						   rsvd_bits(7, 7);
4781 		rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
4782 						   gbpages_bit_rsvd;
4783 		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
4784 		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4785 		rsvd_check->rsvd_bits_mask[1][3] =
4786 			rsvd_check->rsvd_bits_mask[0][3];
4787 		rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
4788 						   gbpages_bit_rsvd |
4789 						   rsvd_bits(13, 29);
4790 		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4791 						   rsvd_bits(13, 20); /* large page */
4792 		rsvd_check->rsvd_bits_mask[1][0] =
4793 			rsvd_check->rsvd_bits_mask[0][0];
4794 		break;
4795 	}
4796 }
4797 
4798 static void reset_guest_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4799 					struct kvm_mmu *context)
4800 {
4801 	__reset_rsvds_bits_mask(&context->guest_rsvd_check,
4802 				vcpu->arch.reserved_gpa_bits,
4803 				context->cpu_role.base.level, is_efer_nx(context),
4804 				guest_can_use(vcpu, X86_FEATURE_GBPAGES),
4805 				is_cr4_pse(context),
4806 				guest_cpuid_is_amd_or_hygon(vcpu));
4807 }
4808 
4809 static void __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4810 					u64 pa_bits_rsvd, bool execonly,
4811 					int huge_page_level)
4812 {
4813 	u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4814 	u64 large_1g_rsvd = 0, large_2m_rsvd = 0;
4815 	u64 bad_mt_xwr;
4816 
4817 	if (huge_page_level < PG_LEVEL_1G)
4818 		large_1g_rsvd = rsvd_bits(7, 7);
4819 	if (huge_page_level < PG_LEVEL_2M)
4820 		large_2m_rsvd = rsvd_bits(7, 7);
4821 
4822 	rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
4823 	rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4824 	rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd;
4825 	rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd;
4826 	rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4827 
4828 	/* large page */
4829 	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4830 	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4831 	rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd;
4832 	rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd;
4833 	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4834 
4835 	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
4836 	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
4837 	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
4838 	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
4839 	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
4840 	if (!execonly) {
4841 		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
4842 		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4843 	}
4844 	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4845 }
4846 
4847 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4848 		struct kvm_mmu *context, bool execonly, int huge_page_level)
4849 {
4850 	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4851 				    vcpu->arch.reserved_gpa_bits, execonly,
4852 				    huge_page_level);
4853 }
4854 
4855 static inline u64 reserved_hpa_bits(void)
4856 {
4857 	return rsvd_bits(shadow_phys_bits, 63);
4858 }
4859 
4860 /*
4861  * the page table on host is the shadow page table for the page
4862  * table in guest or amd nested guest, its mmu features completely
4863  * follow the features in guest.
4864  */
4865 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4866 					struct kvm_mmu *context)
4867 {
4868 	/* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
4869 	bool is_amd = true;
4870 	/* KVM doesn't use 2-level page tables for the shadow MMU. */
4871 	bool is_pse = false;
4872 	struct rsvd_bits_validate *shadow_zero_check;
4873 	int i;
4874 
4875 	WARN_ON_ONCE(context->root_role.level < PT32E_ROOT_LEVEL);
4876 
4877 	shadow_zero_check = &context->shadow_zero_check;
4878 	__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4879 				context->root_role.level,
4880 				context->root_role.efer_nx,
4881 				guest_can_use(vcpu, X86_FEATURE_GBPAGES),
4882 				is_pse, is_amd);
4883 
4884 	if (!shadow_me_mask)
4885 		return;
4886 
4887 	for (i = context->root_role.level; --i >= 0;) {
4888 		/*
4889 		 * So far shadow_me_value is a constant during KVM's life
4890 		 * time.  Bits in shadow_me_value are allowed to be set.
4891 		 * Bits in shadow_me_mask but not in shadow_me_value are
4892 		 * not allowed to be set.
4893 		 */
4894 		shadow_zero_check->rsvd_bits_mask[0][i] |= shadow_me_mask;
4895 		shadow_zero_check->rsvd_bits_mask[1][i] |= shadow_me_mask;
4896 		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_value;
4897 		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_value;
4898 	}
4899 
4900 }
4901 
4902 static inline bool boot_cpu_is_amd(void)
4903 {
4904 	WARN_ON_ONCE(!tdp_enabled);
4905 	return shadow_x_mask == 0;
4906 }
4907 
4908 /*
4909  * the direct page table on host, use as much mmu features as
4910  * possible, however, kvm currently does not do execution-protection.
4911  */
4912 static void reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context)
4913 {
4914 	struct rsvd_bits_validate *shadow_zero_check;
4915 	int i;
4916 
4917 	shadow_zero_check = &context->shadow_zero_check;
4918 
4919 	if (boot_cpu_is_amd())
4920 		__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4921 					context->root_role.level, true,
4922 					boot_cpu_has(X86_FEATURE_GBPAGES),
4923 					false, true);
4924 	else
4925 		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4926 					    reserved_hpa_bits(), false,
4927 					    max_huge_page_level);
4928 
4929 	if (!shadow_me_mask)
4930 		return;
4931 
4932 	for (i = context->root_role.level; --i >= 0;) {
4933 		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4934 		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4935 	}
4936 }
4937 
4938 /*
4939  * as the comments in reset_shadow_zero_bits_mask() except it
4940  * is the shadow page table for intel nested guest.
4941  */
4942 static void
4943 reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly)
4944 {
4945 	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4946 				    reserved_hpa_bits(), execonly,
4947 				    max_huge_page_level);
4948 }
4949 
4950 #define BYTE_MASK(access) \
4951 	((1 & (access) ? 2 : 0) | \
4952 	 (2 & (access) ? 4 : 0) | \
4953 	 (3 & (access) ? 8 : 0) | \
4954 	 (4 & (access) ? 16 : 0) | \
4955 	 (5 & (access) ? 32 : 0) | \
4956 	 (6 & (access) ? 64 : 0) | \
4957 	 (7 & (access) ? 128 : 0))
4958 
4959 
4960 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
4961 {
4962 	unsigned byte;
4963 
4964 	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4965 	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4966 	const u8 u = BYTE_MASK(ACC_USER_MASK);
4967 
4968 	bool cr4_smep = is_cr4_smep(mmu);
4969 	bool cr4_smap = is_cr4_smap(mmu);
4970 	bool cr0_wp = is_cr0_wp(mmu);
4971 	bool efer_nx = is_efer_nx(mmu);
4972 
4973 	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4974 		unsigned pfec = byte << 1;
4975 
4976 		/*
4977 		 * Each "*f" variable has a 1 bit for each UWX value
4978 		 * that causes a fault with the given PFEC.
4979 		 */
4980 
4981 		/* Faults from writes to non-writable pages */
4982 		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4983 		/* Faults from user mode accesses to supervisor pages */
4984 		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4985 		/* Faults from fetches of non-executable pages*/
4986 		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4987 		/* Faults from kernel mode fetches of user pages */
4988 		u8 smepf = 0;
4989 		/* Faults from kernel mode accesses of user pages */
4990 		u8 smapf = 0;
4991 
4992 		if (!ept) {
4993 			/* Faults from kernel mode accesses to user pages */
4994 			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4995 
4996 			/* Not really needed: !nx will cause pte.nx to fault */
4997 			if (!efer_nx)
4998 				ff = 0;
4999 
5000 			/* Allow supervisor writes if !cr0.wp */
5001 			if (!cr0_wp)
5002 				wf = (pfec & PFERR_USER_MASK) ? wf : 0;
5003 
5004 			/* Disallow supervisor fetches of user code if cr4.smep */
5005 			if (cr4_smep)
5006 				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
5007 
5008 			/*
5009 			 * SMAP:kernel-mode data accesses from user-mode
5010 			 * mappings should fault. A fault is considered
5011 			 * as a SMAP violation if all of the following
5012 			 * conditions are true:
5013 			 *   - X86_CR4_SMAP is set in CR4
5014 			 *   - A user page is accessed
5015 			 *   - The access is not a fetch
5016 			 *   - The access is supervisor mode
5017 			 *   - If implicit supervisor access or X86_EFLAGS_AC is clear
5018 			 *
5019 			 * Here, we cover the first four conditions.
5020 			 * The fifth is computed dynamically in permission_fault();
5021 			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
5022 			 * *not* subject to SMAP restrictions.
5023 			 */
5024 			if (cr4_smap)
5025 				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
5026 		}
5027 
5028 		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
5029 	}
5030 }
5031 
5032 /*
5033 * PKU is an additional mechanism by which the paging controls access to
5034 * user-mode addresses based on the value in the PKRU register.  Protection
5035 * key violations are reported through a bit in the page fault error code.
5036 * Unlike other bits of the error code, the PK bit is not known at the
5037 * call site of e.g. gva_to_gpa; it must be computed directly in
5038 * permission_fault based on two bits of PKRU, on some machine state (CR4,
5039 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
5040 *
5041 * In particular the following conditions come from the error code, the
5042 * page tables and the machine state:
5043 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
5044 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
5045 * - PK is always zero if U=0 in the page tables
5046 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
5047 *
5048 * The PKRU bitmask caches the result of these four conditions.  The error
5049 * code (minus the P bit) and the page table's U bit form an index into the
5050 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
5051 * with the two bits of the PKRU register corresponding to the protection key.
5052 * For the first three conditions above the bits will be 00, thus masking
5053 * away both AD and WD.  For all reads or if the last condition holds, WD
5054 * only will be masked away.
5055 */
5056 static void update_pkru_bitmask(struct kvm_mmu *mmu)
5057 {
5058 	unsigned bit;
5059 	bool wp;
5060 
5061 	mmu->pkru_mask = 0;
5062 
5063 	if (!is_cr4_pke(mmu))
5064 		return;
5065 
5066 	wp = is_cr0_wp(mmu);
5067 
5068 	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
5069 		unsigned pfec, pkey_bits;
5070 		bool check_pkey, check_write, ff, uf, wf, pte_user;
5071 
5072 		pfec = bit << 1;
5073 		ff = pfec & PFERR_FETCH_MASK;
5074 		uf = pfec & PFERR_USER_MASK;
5075 		wf = pfec & PFERR_WRITE_MASK;
5076 
5077 		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
5078 		pte_user = pfec & PFERR_RSVD_MASK;
5079 
5080 		/*
5081 		 * Only need to check the access which is not an
5082 		 * instruction fetch and is to a user page.
5083 		 */
5084 		check_pkey = (!ff && pte_user);
5085 		/*
5086 		 * write access is controlled by PKRU if it is a
5087 		 * user access or CR0.WP = 1.
5088 		 */
5089 		check_write = check_pkey && wf && (uf || wp);
5090 
5091 		/* PKRU.AD stops both read and write access. */
5092 		pkey_bits = !!check_pkey;
5093 		/* PKRU.WD stops write access. */
5094 		pkey_bits |= (!!check_write) << 1;
5095 
5096 		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
5097 	}
5098 }
5099 
5100 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
5101 					struct kvm_mmu *mmu)
5102 {
5103 	if (!is_cr0_pg(mmu))
5104 		return;
5105 
5106 	reset_guest_rsvds_bits_mask(vcpu, mmu);
5107 	update_permission_bitmask(mmu, false);
5108 	update_pkru_bitmask(mmu);
5109 }
5110 
5111 static void paging64_init_context(struct kvm_mmu *context)
5112 {
5113 	context->page_fault = paging64_page_fault;
5114 	context->gva_to_gpa = paging64_gva_to_gpa;
5115 	context->sync_spte = paging64_sync_spte;
5116 }
5117 
5118 static void paging32_init_context(struct kvm_mmu *context)
5119 {
5120 	context->page_fault = paging32_page_fault;
5121 	context->gva_to_gpa = paging32_gva_to_gpa;
5122 	context->sync_spte = paging32_sync_spte;
5123 }
5124 
5125 static union kvm_cpu_role kvm_calc_cpu_role(struct kvm_vcpu *vcpu,
5126 					    const struct kvm_mmu_role_regs *regs)
5127 {
5128 	union kvm_cpu_role role = {0};
5129 
5130 	role.base.access = ACC_ALL;
5131 	role.base.smm = is_smm(vcpu);
5132 	role.base.guest_mode = is_guest_mode(vcpu);
5133 	role.ext.valid = 1;
5134 
5135 	if (!____is_cr0_pg(regs)) {
5136 		role.base.direct = 1;
5137 		return role;
5138 	}
5139 
5140 	role.base.efer_nx = ____is_efer_nx(regs);
5141 	role.base.cr0_wp = ____is_cr0_wp(regs);
5142 	role.base.smep_andnot_wp = ____is_cr4_smep(regs) && !____is_cr0_wp(regs);
5143 	role.base.smap_andnot_wp = ____is_cr4_smap(regs) && !____is_cr0_wp(regs);
5144 	role.base.has_4_byte_gpte = !____is_cr4_pae(regs);
5145 
5146 	if (____is_efer_lma(regs))
5147 		role.base.level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL
5148 							: PT64_ROOT_4LEVEL;
5149 	else if (____is_cr4_pae(regs))
5150 		role.base.level = PT32E_ROOT_LEVEL;
5151 	else
5152 		role.base.level = PT32_ROOT_LEVEL;
5153 
5154 	role.ext.cr4_smep = ____is_cr4_smep(regs);
5155 	role.ext.cr4_smap = ____is_cr4_smap(regs);
5156 	role.ext.cr4_pse = ____is_cr4_pse(regs);
5157 
5158 	/* PKEY and LA57 are active iff long mode is active. */
5159 	role.ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
5160 	role.ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
5161 	role.ext.efer_lma = ____is_efer_lma(regs);
5162 	return role;
5163 }
5164 
5165 void __kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu,
5166 					struct kvm_mmu *mmu)
5167 {
5168 	const bool cr0_wp = kvm_is_cr0_bit_set(vcpu, X86_CR0_WP);
5169 
5170 	BUILD_BUG_ON((KVM_MMU_CR0_ROLE_BITS & KVM_POSSIBLE_CR0_GUEST_BITS) != X86_CR0_WP);
5171 	BUILD_BUG_ON((KVM_MMU_CR4_ROLE_BITS & KVM_POSSIBLE_CR4_GUEST_BITS));
5172 
5173 	if (is_cr0_wp(mmu) == cr0_wp)
5174 		return;
5175 
5176 	mmu->cpu_role.base.cr0_wp = cr0_wp;
5177 	reset_guest_paging_metadata(vcpu, mmu);
5178 }
5179 
5180 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
5181 {
5182 	/* tdp_root_level is architecture forced level, use it if nonzero */
5183 	if (tdp_root_level)
5184 		return tdp_root_level;
5185 
5186 	/* Use 5-level TDP if and only if it's useful/necessary. */
5187 	if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
5188 		return 4;
5189 
5190 	return max_tdp_level;
5191 }
5192 
5193 static union kvm_mmu_page_role
5194 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
5195 				union kvm_cpu_role cpu_role)
5196 {
5197 	union kvm_mmu_page_role role = {0};
5198 
5199 	role.access = ACC_ALL;
5200 	role.cr0_wp = true;
5201 	role.efer_nx = true;
5202 	role.smm = cpu_role.base.smm;
5203 	role.guest_mode = cpu_role.base.guest_mode;
5204 	role.ad_disabled = !kvm_ad_enabled();
5205 	role.level = kvm_mmu_get_tdp_level(vcpu);
5206 	role.direct = true;
5207 	role.has_4_byte_gpte = false;
5208 
5209 	return role;
5210 }
5211 
5212 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu,
5213 			     union kvm_cpu_role cpu_role)
5214 {
5215 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
5216 	union kvm_mmu_page_role root_role = kvm_calc_tdp_mmu_root_page_role(vcpu, cpu_role);
5217 
5218 	if (cpu_role.as_u64 == context->cpu_role.as_u64 &&
5219 	    root_role.word == context->root_role.word)
5220 		return;
5221 
5222 	context->cpu_role.as_u64 = cpu_role.as_u64;
5223 	context->root_role.word = root_role.word;
5224 	context->page_fault = kvm_tdp_page_fault;
5225 	context->sync_spte = NULL;
5226 	context->get_guest_pgd = get_guest_cr3;
5227 	context->get_pdptr = kvm_pdptr_read;
5228 	context->inject_page_fault = kvm_inject_page_fault;
5229 
5230 	if (!is_cr0_pg(context))
5231 		context->gva_to_gpa = nonpaging_gva_to_gpa;
5232 	else if (is_cr4_pae(context))
5233 		context->gva_to_gpa = paging64_gva_to_gpa;
5234 	else
5235 		context->gva_to_gpa = paging32_gva_to_gpa;
5236 
5237 	reset_guest_paging_metadata(vcpu, context);
5238 	reset_tdp_shadow_zero_bits_mask(context);
5239 }
5240 
5241 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
5242 				    union kvm_cpu_role cpu_role,
5243 				    union kvm_mmu_page_role root_role)
5244 {
5245 	if (cpu_role.as_u64 == context->cpu_role.as_u64 &&
5246 	    root_role.word == context->root_role.word)
5247 		return;
5248 
5249 	context->cpu_role.as_u64 = cpu_role.as_u64;
5250 	context->root_role.word = root_role.word;
5251 
5252 	if (!is_cr0_pg(context))
5253 		nonpaging_init_context(context);
5254 	else if (is_cr4_pae(context))
5255 		paging64_init_context(context);
5256 	else
5257 		paging32_init_context(context);
5258 
5259 	reset_guest_paging_metadata(vcpu, context);
5260 	reset_shadow_zero_bits_mask(vcpu, context);
5261 }
5262 
5263 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
5264 				union kvm_cpu_role cpu_role)
5265 {
5266 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
5267 	union kvm_mmu_page_role root_role;
5268 
5269 	root_role = cpu_role.base;
5270 
5271 	/* KVM uses PAE paging whenever the guest isn't using 64-bit paging. */
5272 	root_role.level = max_t(u32, root_role.level, PT32E_ROOT_LEVEL);
5273 
5274 	/*
5275 	 * KVM forces EFER.NX=1 when TDP is disabled, reflect it in the MMU role.
5276 	 * KVM uses NX when TDP is disabled to handle a variety of scenarios,
5277 	 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
5278 	 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
5279 	 * The iTLB multi-hit workaround can be toggled at any time, so assume
5280 	 * NX can be used by any non-nested shadow MMU to avoid having to reset
5281 	 * MMU contexts.
5282 	 */
5283 	root_role.efer_nx = true;
5284 
5285 	shadow_mmu_init_context(vcpu, context, cpu_role, root_role);
5286 }
5287 
5288 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
5289 			     unsigned long cr4, u64 efer, gpa_t nested_cr3)
5290 {
5291 	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
5292 	struct kvm_mmu_role_regs regs = {
5293 		.cr0 = cr0,
5294 		.cr4 = cr4 & ~X86_CR4_PKE,
5295 		.efer = efer,
5296 	};
5297 	union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, &regs);
5298 	union kvm_mmu_page_role root_role;
5299 
5300 	/* NPT requires CR0.PG=1. */
5301 	WARN_ON_ONCE(cpu_role.base.direct);
5302 
5303 	root_role = cpu_role.base;
5304 	root_role.level = kvm_mmu_get_tdp_level(vcpu);
5305 	if (root_role.level == PT64_ROOT_5LEVEL &&
5306 	    cpu_role.base.level == PT64_ROOT_4LEVEL)
5307 		root_role.passthrough = 1;
5308 
5309 	shadow_mmu_init_context(vcpu, context, cpu_role, root_role);
5310 	kvm_mmu_new_pgd(vcpu, nested_cr3);
5311 }
5312 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
5313 
5314 static union kvm_cpu_role
5315 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
5316 				   bool execonly, u8 level)
5317 {
5318 	union kvm_cpu_role role = {0};
5319 
5320 	/*
5321 	 * KVM does not support SMM transfer monitors, and consequently does not
5322 	 * support the "entry to SMM" control either.  role.base.smm is always 0.
5323 	 */
5324 	WARN_ON_ONCE(is_smm(vcpu));
5325 	role.base.level = level;
5326 	role.base.has_4_byte_gpte = false;
5327 	role.base.direct = false;
5328 	role.base.ad_disabled = !accessed_dirty;
5329 	role.base.guest_mode = true;
5330 	role.base.access = ACC_ALL;
5331 
5332 	role.ext.word = 0;
5333 	role.ext.execonly = execonly;
5334 	role.ext.valid = 1;
5335 
5336 	return role;
5337 }
5338 
5339 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
5340 			     int huge_page_level, bool accessed_dirty,
5341 			     gpa_t new_eptp)
5342 {
5343 	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
5344 	u8 level = vmx_eptp_page_walk_level(new_eptp);
5345 	union kvm_cpu_role new_mode =
5346 		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
5347 						   execonly, level);
5348 
5349 	if (new_mode.as_u64 != context->cpu_role.as_u64) {
5350 		/* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
5351 		context->cpu_role.as_u64 = new_mode.as_u64;
5352 		context->root_role.word = new_mode.base.word;
5353 
5354 		context->page_fault = ept_page_fault;
5355 		context->gva_to_gpa = ept_gva_to_gpa;
5356 		context->sync_spte = ept_sync_spte;
5357 
5358 		update_permission_bitmask(context, true);
5359 		context->pkru_mask = 0;
5360 		reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level);
5361 		reset_ept_shadow_zero_bits_mask(context, execonly);
5362 	}
5363 
5364 	kvm_mmu_new_pgd(vcpu, new_eptp);
5365 }
5366 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
5367 
5368 static void init_kvm_softmmu(struct kvm_vcpu *vcpu,
5369 			     union kvm_cpu_role cpu_role)
5370 {
5371 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
5372 
5373 	kvm_init_shadow_mmu(vcpu, cpu_role);
5374 
5375 	context->get_guest_pgd     = get_guest_cr3;
5376 	context->get_pdptr         = kvm_pdptr_read;
5377 	context->inject_page_fault = kvm_inject_page_fault;
5378 }
5379 
5380 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu,
5381 				union kvm_cpu_role new_mode)
5382 {
5383 	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5384 
5385 	if (new_mode.as_u64 == g_context->cpu_role.as_u64)
5386 		return;
5387 
5388 	g_context->cpu_role.as_u64   = new_mode.as_u64;
5389 	g_context->get_guest_pgd     = get_guest_cr3;
5390 	g_context->get_pdptr         = kvm_pdptr_read;
5391 	g_context->inject_page_fault = kvm_inject_page_fault;
5392 
5393 	/*
5394 	 * L2 page tables are never shadowed, so there is no need to sync
5395 	 * SPTEs.
5396 	 */
5397 	g_context->sync_spte         = NULL;
5398 
5399 	/*
5400 	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5401 	 * L1's nested page tables (e.g. EPT12). The nested translation
5402 	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5403 	 * L2's page tables as the first level of translation and L1's
5404 	 * nested page tables as the second level of translation. Basically
5405 	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5406 	 */
5407 	if (!is_paging(vcpu))
5408 		g_context->gva_to_gpa = nonpaging_gva_to_gpa;
5409 	else if (is_long_mode(vcpu))
5410 		g_context->gva_to_gpa = paging64_gva_to_gpa;
5411 	else if (is_pae(vcpu))
5412 		g_context->gva_to_gpa = paging64_gva_to_gpa;
5413 	else
5414 		g_context->gva_to_gpa = paging32_gva_to_gpa;
5415 
5416 	reset_guest_paging_metadata(vcpu, g_context);
5417 }
5418 
5419 void kvm_init_mmu(struct kvm_vcpu *vcpu)
5420 {
5421 	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
5422 	union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, &regs);
5423 
5424 	if (mmu_is_nested(vcpu))
5425 		init_kvm_nested_mmu(vcpu, cpu_role);
5426 	else if (tdp_enabled)
5427 		init_kvm_tdp_mmu(vcpu, cpu_role);
5428 	else
5429 		init_kvm_softmmu(vcpu, cpu_role);
5430 }
5431 EXPORT_SYMBOL_GPL(kvm_init_mmu);
5432 
5433 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
5434 {
5435 	/*
5436 	 * Invalidate all MMU roles to force them to reinitialize as CPUID
5437 	 * information is factored into reserved bit calculations.
5438 	 *
5439 	 * Correctly handling multiple vCPU models with respect to paging and
5440 	 * physical address properties) in a single VM would require tracking
5441 	 * all relevant CPUID information in kvm_mmu_page_role. That is very
5442 	 * undesirable as it would increase the memory requirements for
5443 	 * gfn_write_track (see struct kvm_mmu_page_role comments).  For now
5444 	 * that problem is swept under the rug; KVM's CPUID API is horrific and
5445 	 * it's all but impossible to solve it without introducing a new API.
5446 	 */
5447 	vcpu->arch.root_mmu.root_role.word = 0;
5448 	vcpu->arch.guest_mmu.root_role.word = 0;
5449 	vcpu->arch.nested_mmu.root_role.word = 0;
5450 	vcpu->arch.root_mmu.cpu_role.ext.valid = 0;
5451 	vcpu->arch.guest_mmu.cpu_role.ext.valid = 0;
5452 	vcpu->arch.nested_mmu.cpu_role.ext.valid = 0;
5453 	kvm_mmu_reset_context(vcpu);
5454 
5455 	/*
5456 	 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in
5457 	 * kvm_arch_vcpu_ioctl().
5458 	 */
5459 	KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm);
5460 }
5461 
5462 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5463 {
5464 	kvm_mmu_unload(vcpu);
5465 	kvm_init_mmu(vcpu);
5466 }
5467 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5468 
5469 int kvm_mmu_load(struct kvm_vcpu *vcpu)
5470 {
5471 	int r;
5472 
5473 	r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->root_role.direct);
5474 	if (r)
5475 		goto out;
5476 	r = mmu_alloc_special_roots(vcpu);
5477 	if (r)
5478 		goto out;
5479 	if (vcpu->arch.mmu->root_role.direct)
5480 		r = mmu_alloc_direct_roots(vcpu);
5481 	else
5482 		r = mmu_alloc_shadow_roots(vcpu);
5483 	if (r)
5484 		goto out;
5485 
5486 	kvm_mmu_sync_roots(vcpu);
5487 
5488 	kvm_mmu_load_pgd(vcpu);
5489 
5490 	/*
5491 	 * Flush any TLB entries for the new root, the provenance of the root
5492 	 * is unknown.  Even if KVM ensures there are no stale TLB entries
5493 	 * for a freed root, in theory another hypervisor could have left
5494 	 * stale entries.  Flushing on alloc also allows KVM to skip the TLB
5495 	 * flush when freeing a root (see kvm_tdp_mmu_put_root()).
5496 	 */
5497 	static_call(kvm_x86_flush_tlb_current)(vcpu);
5498 out:
5499 	return r;
5500 }
5501 
5502 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5503 {
5504 	struct kvm *kvm = vcpu->kvm;
5505 
5506 	kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5507 	WARN_ON_ONCE(VALID_PAGE(vcpu->arch.root_mmu.root.hpa));
5508 	kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5509 	WARN_ON_ONCE(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa));
5510 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
5511 }
5512 
5513 static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa)
5514 {
5515 	struct kvm_mmu_page *sp;
5516 
5517 	if (!VALID_PAGE(root_hpa))
5518 		return false;
5519 
5520 	/*
5521 	 * When freeing obsolete roots, treat roots as obsolete if they don't
5522 	 * have an associated shadow page, as it's impossible to determine if
5523 	 * such roots are fresh or stale.  This does mean KVM will get false
5524 	 * positives and free roots that don't strictly need to be freed, but
5525 	 * such false positives are relatively rare:
5526 	 *
5527 	 *  (a) only PAE paging and nested NPT have roots without shadow pages
5528 	 *      (or any shadow paging flavor with a dummy root, see note below)
5529 	 *  (b) remote reloads due to a memslot update obsoletes _all_ roots
5530 	 *  (c) KVM doesn't track previous roots for PAE paging, and the guest
5531 	 *      is unlikely to zap an in-use PGD.
5532 	 *
5533 	 * Note!  Dummy roots are unique in that they are obsoleted by memslot
5534 	 * _creation_!  See also FNAME(fetch).
5535 	 */
5536 	sp = root_to_sp(root_hpa);
5537 	return !sp || is_obsolete_sp(kvm, sp);
5538 }
5539 
5540 static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu)
5541 {
5542 	unsigned long roots_to_free = 0;
5543 	int i;
5544 
5545 	if (is_obsolete_root(kvm, mmu->root.hpa))
5546 		roots_to_free |= KVM_MMU_ROOT_CURRENT;
5547 
5548 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5549 		if (is_obsolete_root(kvm, mmu->prev_roots[i].hpa))
5550 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5551 	}
5552 
5553 	if (roots_to_free)
5554 		kvm_mmu_free_roots(kvm, mmu, roots_to_free);
5555 }
5556 
5557 void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu)
5558 {
5559 	__kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu);
5560 	__kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu);
5561 }
5562 
5563 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5564 				    int *bytes)
5565 {
5566 	u64 gentry = 0;
5567 	int r;
5568 
5569 	/*
5570 	 * Assume that the pte write on a page table of the same type
5571 	 * as the current vcpu paging mode since we update the sptes only
5572 	 * when they have the same mode.
5573 	 */
5574 	if (is_pae(vcpu) && *bytes == 4) {
5575 		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5576 		*gpa &= ~(gpa_t)7;
5577 		*bytes = 8;
5578 	}
5579 
5580 	if (*bytes == 4 || *bytes == 8) {
5581 		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5582 		if (r)
5583 			gentry = 0;
5584 	}
5585 
5586 	return gentry;
5587 }
5588 
5589 /*
5590  * If we're seeing too many writes to a page, it may no longer be a page table,
5591  * or we may be forking, in which case it is better to unmap the page.
5592  */
5593 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5594 {
5595 	/*
5596 	 * Skip write-flooding detected for the sp whose level is 1, because
5597 	 * it can become unsync, then the guest page is not write-protected.
5598 	 */
5599 	if (sp->role.level == PG_LEVEL_4K)
5600 		return false;
5601 
5602 	atomic_inc(&sp->write_flooding_count);
5603 	return atomic_read(&sp->write_flooding_count) >= 3;
5604 }
5605 
5606 /*
5607  * Misaligned accesses are too much trouble to fix up; also, they usually
5608  * indicate a page is not used as a page table.
5609  */
5610 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5611 				    int bytes)
5612 {
5613 	unsigned offset, pte_size, misaligned;
5614 
5615 	offset = offset_in_page(gpa);
5616 	pte_size = sp->role.has_4_byte_gpte ? 4 : 8;
5617 
5618 	/*
5619 	 * Sometimes, the OS only writes the last one bytes to update status
5620 	 * bits, for example, in linux, andb instruction is used in clear_bit().
5621 	 */
5622 	if (!(offset & (pte_size - 1)) && bytes == 1)
5623 		return false;
5624 
5625 	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5626 	misaligned |= bytes < 4;
5627 
5628 	return misaligned;
5629 }
5630 
5631 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5632 {
5633 	unsigned page_offset, quadrant;
5634 	u64 *spte;
5635 	int level;
5636 
5637 	page_offset = offset_in_page(gpa);
5638 	level = sp->role.level;
5639 	*nspte = 1;
5640 	if (sp->role.has_4_byte_gpte) {
5641 		page_offset <<= 1;	/* 32->64 */
5642 		/*
5643 		 * A 32-bit pde maps 4MB while the shadow pdes map
5644 		 * only 2MB.  So we need to double the offset again
5645 		 * and zap two pdes instead of one.
5646 		 */
5647 		if (level == PT32_ROOT_LEVEL) {
5648 			page_offset &= ~7; /* kill rounding error */
5649 			page_offset <<= 1;
5650 			*nspte = 2;
5651 		}
5652 		quadrant = page_offset >> PAGE_SHIFT;
5653 		page_offset &= ~PAGE_MASK;
5654 		if (quadrant != sp->role.quadrant)
5655 			return NULL;
5656 	}
5657 
5658 	spte = &sp->spt[page_offset / sizeof(*spte)];
5659 	return spte;
5660 }
5661 
5662 void kvm_mmu_track_write(struct kvm_vcpu *vcpu, gpa_t gpa, const u8 *new,
5663 			 int bytes)
5664 {
5665 	gfn_t gfn = gpa >> PAGE_SHIFT;
5666 	struct kvm_mmu_page *sp;
5667 	LIST_HEAD(invalid_list);
5668 	u64 entry, gentry, *spte;
5669 	int npte;
5670 	bool flush = false;
5671 
5672 	/*
5673 	 * If we don't have indirect shadow pages, it means no page is
5674 	 * write-protected, so we can exit simply.
5675 	 */
5676 	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5677 		return;
5678 
5679 	write_lock(&vcpu->kvm->mmu_lock);
5680 
5681 	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5682 
5683 	++vcpu->kvm->stat.mmu_pte_write;
5684 
5685 	for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) {
5686 		if (detect_write_misaligned(sp, gpa, bytes) ||
5687 		      detect_write_flooding(sp)) {
5688 			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5689 			++vcpu->kvm->stat.mmu_flooded;
5690 			continue;
5691 		}
5692 
5693 		spte = get_written_sptes(sp, gpa, &npte);
5694 		if (!spte)
5695 			continue;
5696 
5697 		while (npte--) {
5698 			entry = *spte;
5699 			mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5700 			if (gentry && sp->role.level != PG_LEVEL_4K)
5701 				++vcpu->kvm->stat.mmu_pde_zapped;
5702 			if (is_shadow_present_pte(entry))
5703 				flush = true;
5704 			++spte;
5705 		}
5706 	}
5707 	kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
5708 	write_unlock(&vcpu->kvm->mmu_lock);
5709 }
5710 
5711 int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5712 		       void *insn, int insn_len)
5713 {
5714 	int r, emulation_type = EMULTYPE_PF;
5715 	bool direct = vcpu->arch.mmu->root_role.direct;
5716 
5717 	/*
5718 	 * IMPLICIT_ACCESS is a KVM-defined flag used to correctly perform SMAP
5719 	 * checks when emulating instructions that triggers implicit access.
5720 	 * WARN if hardware generates a fault with an error code that collides
5721 	 * with the KVM-defined value.  Clear the flag and continue on, i.e.
5722 	 * don't terminate the VM, as KVM can't possibly be relying on a flag
5723 	 * that KVM doesn't know about.
5724 	 */
5725 	if (WARN_ON_ONCE(error_code & PFERR_IMPLICIT_ACCESS))
5726 		error_code &= ~PFERR_IMPLICIT_ACCESS;
5727 
5728 	if (WARN_ON_ONCE(!VALID_PAGE(vcpu->arch.mmu->root.hpa)))
5729 		return RET_PF_RETRY;
5730 
5731 	r = RET_PF_INVALID;
5732 	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5733 		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5734 		if (r == RET_PF_EMULATE)
5735 			goto emulate;
5736 	}
5737 
5738 	if (r == RET_PF_INVALID) {
5739 		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5740 					  lower_32_bits(error_code), false,
5741 					  &emulation_type);
5742 		if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm))
5743 			return -EIO;
5744 	}
5745 
5746 	if (r < 0)
5747 		return r;
5748 	if (r != RET_PF_EMULATE)
5749 		return 1;
5750 
5751 	/*
5752 	 * Before emulating the instruction, check if the error code
5753 	 * was due to a RO violation while translating the guest page.
5754 	 * This can occur when using nested virtualization with nested
5755 	 * paging in both guests. If true, we simply unprotect the page
5756 	 * and resume the guest.
5757 	 */
5758 	if (vcpu->arch.mmu->root_role.direct &&
5759 	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5760 		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5761 		return 1;
5762 	}
5763 
5764 	/*
5765 	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5766 	 * optimistically try to just unprotect the page and let the processor
5767 	 * re-execute the instruction that caused the page fault.  Do not allow
5768 	 * retrying MMIO emulation, as it's not only pointless but could also
5769 	 * cause us to enter an infinite loop because the processor will keep
5770 	 * faulting on the non-existent MMIO address.  Retrying an instruction
5771 	 * from a nested guest is also pointless and dangerous as we are only
5772 	 * explicitly shadowing L1's page tables, i.e. unprotecting something
5773 	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5774 	 */
5775 	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5776 		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5777 emulate:
5778 	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5779 				       insn_len);
5780 }
5781 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5782 
5783 static void __kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5784 				      u64 addr, hpa_t root_hpa)
5785 {
5786 	struct kvm_shadow_walk_iterator iterator;
5787 
5788 	vcpu_clear_mmio_info(vcpu, addr);
5789 
5790 	/*
5791 	 * Walking and synchronizing SPTEs both assume they are operating in
5792 	 * the context of the current MMU, and would need to be reworked if
5793 	 * this is ever used to sync the guest_mmu, e.g. to emulate INVEPT.
5794 	 */
5795 	if (WARN_ON_ONCE(mmu != vcpu->arch.mmu))
5796 		return;
5797 
5798 	if (!VALID_PAGE(root_hpa))
5799 		return;
5800 
5801 	write_lock(&vcpu->kvm->mmu_lock);
5802 	for_each_shadow_entry_using_root(vcpu, root_hpa, addr, iterator) {
5803 		struct kvm_mmu_page *sp = sptep_to_sp(iterator.sptep);
5804 
5805 		if (sp->unsync) {
5806 			int ret = kvm_sync_spte(vcpu, sp, iterator.index);
5807 
5808 			if (ret < 0)
5809 				mmu_page_zap_pte(vcpu->kvm, sp, iterator.sptep, NULL);
5810 			if (ret)
5811 				kvm_flush_remote_tlbs_sptep(vcpu->kvm, iterator.sptep);
5812 		}
5813 
5814 		if (!sp->unsync_children)
5815 			break;
5816 	}
5817 	write_unlock(&vcpu->kvm->mmu_lock);
5818 }
5819 
5820 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5821 			     u64 addr, unsigned long roots)
5822 {
5823 	int i;
5824 
5825 	WARN_ON_ONCE(roots & ~KVM_MMU_ROOTS_ALL);
5826 
5827 	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
5828 	if (mmu != &vcpu->arch.guest_mmu) {
5829 		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
5830 		if (is_noncanonical_address(addr, vcpu))
5831 			return;
5832 
5833 		static_call(kvm_x86_flush_tlb_gva)(vcpu, addr);
5834 	}
5835 
5836 	if (!mmu->sync_spte)
5837 		return;
5838 
5839 	if (roots & KVM_MMU_ROOT_CURRENT)
5840 		__kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->root.hpa);
5841 
5842 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5843 		if (roots & KVM_MMU_ROOT_PREVIOUS(i))
5844 			__kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->prev_roots[i].hpa);
5845 	}
5846 }
5847 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_addr);
5848 
5849 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5850 {
5851 	/*
5852 	 * INVLPG is required to invalidate any global mappings for the VA,
5853 	 * irrespective of PCID.  Blindly sync all roots as it would take
5854 	 * roughly the same amount of work/time to determine whether any of the
5855 	 * previous roots have a global mapping.
5856 	 *
5857 	 * Mappings not reachable via the current or previous cached roots will
5858 	 * be synced when switching to that new cr3, so nothing needs to be
5859 	 * done here for them.
5860 	 */
5861 	kvm_mmu_invalidate_addr(vcpu, vcpu->arch.walk_mmu, gva, KVM_MMU_ROOTS_ALL);
5862 	++vcpu->stat.invlpg;
5863 }
5864 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5865 
5866 
5867 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5868 {
5869 	struct kvm_mmu *mmu = vcpu->arch.mmu;
5870 	unsigned long roots = 0;
5871 	uint i;
5872 
5873 	if (pcid == kvm_get_active_pcid(vcpu))
5874 		roots |= KVM_MMU_ROOT_CURRENT;
5875 
5876 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5877 		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5878 		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd))
5879 			roots |= KVM_MMU_ROOT_PREVIOUS(i);
5880 	}
5881 
5882 	if (roots)
5883 		kvm_mmu_invalidate_addr(vcpu, mmu, gva, roots);
5884 	++vcpu->stat.invlpg;
5885 
5886 	/*
5887 	 * Mappings not reachable via the current cr3 or the prev_roots will be
5888 	 * synced when switching to that cr3, so nothing needs to be done here
5889 	 * for them.
5890 	 */
5891 }
5892 
5893 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
5894 		       int tdp_max_root_level, int tdp_huge_page_level)
5895 {
5896 	tdp_enabled = enable_tdp;
5897 	tdp_root_level = tdp_forced_root_level;
5898 	max_tdp_level = tdp_max_root_level;
5899 
5900 #ifdef CONFIG_X86_64
5901 	tdp_mmu_enabled = tdp_mmu_allowed && tdp_enabled;
5902 #endif
5903 	/*
5904 	 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5905 	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5906 	 * the kernel is not.  But, KVM never creates a page size greater than
5907 	 * what is used by the kernel for any given HVA, i.e. the kernel's
5908 	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5909 	 */
5910 	if (tdp_enabled)
5911 		max_huge_page_level = tdp_huge_page_level;
5912 	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5913 		max_huge_page_level = PG_LEVEL_1G;
5914 	else
5915 		max_huge_page_level = PG_LEVEL_2M;
5916 }
5917 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5918 
5919 /* The return value indicates if tlb flush on all vcpus is needed. */
5920 typedef bool (*slot_rmaps_handler) (struct kvm *kvm,
5921 				    struct kvm_rmap_head *rmap_head,
5922 				    const struct kvm_memory_slot *slot);
5923 
5924 static __always_inline bool __walk_slot_rmaps(struct kvm *kvm,
5925 					      const struct kvm_memory_slot *slot,
5926 					      slot_rmaps_handler fn,
5927 					      int start_level, int end_level,
5928 					      gfn_t start_gfn, gfn_t end_gfn,
5929 					      bool flush_on_yield, bool flush)
5930 {
5931 	struct slot_rmap_walk_iterator iterator;
5932 
5933 	lockdep_assert_held_write(&kvm->mmu_lock);
5934 
5935 	for_each_slot_rmap_range(slot, start_level, end_level, start_gfn,
5936 			end_gfn, &iterator) {
5937 		if (iterator.rmap)
5938 			flush |= fn(kvm, iterator.rmap, slot);
5939 
5940 		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5941 			if (flush && flush_on_yield) {
5942 				kvm_flush_remote_tlbs_range(kvm, start_gfn,
5943 							    iterator.gfn - start_gfn + 1);
5944 				flush = false;
5945 			}
5946 			cond_resched_rwlock_write(&kvm->mmu_lock);
5947 		}
5948 	}
5949 
5950 	return flush;
5951 }
5952 
5953 static __always_inline bool walk_slot_rmaps(struct kvm *kvm,
5954 					    const struct kvm_memory_slot *slot,
5955 					    slot_rmaps_handler fn,
5956 					    int start_level, int end_level,
5957 					    bool flush_on_yield)
5958 {
5959 	return __walk_slot_rmaps(kvm, slot, fn, start_level, end_level,
5960 				 slot->base_gfn, slot->base_gfn + slot->npages - 1,
5961 				 flush_on_yield, false);
5962 }
5963 
5964 static __always_inline bool walk_slot_rmaps_4k(struct kvm *kvm,
5965 					       const struct kvm_memory_slot *slot,
5966 					       slot_rmaps_handler fn,
5967 					       bool flush_on_yield)
5968 {
5969 	return walk_slot_rmaps(kvm, slot, fn, PG_LEVEL_4K, PG_LEVEL_4K, flush_on_yield);
5970 }
5971 
5972 static void free_mmu_pages(struct kvm_mmu *mmu)
5973 {
5974 	if (!tdp_enabled && mmu->pae_root)
5975 		set_memory_encrypted((unsigned long)mmu->pae_root, 1);
5976 	free_page((unsigned long)mmu->pae_root);
5977 	free_page((unsigned long)mmu->pml4_root);
5978 	free_page((unsigned long)mmu->pml5_root);
5979 }
5980 
5981 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5982 {
5983 	struct page *page;
5984 	int i;
5985 
5986 	mmu->root.hpa = INVALID_PAGE;
5987 	mmu->root.pgd = 0;
5988 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5989 		mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5990 
5991 	/* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */
5992 	if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu)
5993 		return 0;
5994 
5995 	/*
5996 	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5997 	 * while the PDP table is a per-vCPU construct that's allocated at MMU
5998 	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5999 	 * x86_64.  Therefore we need to allocate the PDP table in the first
6000 	 * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
6001 	 * generally doesn't use PAE paging and can skip allocating the PDP
6002 	 * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
6003 	 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
6004 	 * KVM; that horror is handled on-demand by mmu_alloc_special_roots().
6005 	 */
6006 	if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
6007 		return 0;
6008 
6009 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
6010 	if (!page)
6011 		return -ENOMEM;
6012 
6013 	mmu->pae_root = page_address(page);
6014 
6015 	/*
6016 	 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
6017 	 * get the CPU to treat the PDPTEs as encrypted.  Decrypt the page so
6018 	 * that KVM's writes and the CPU's reads get along.  Note, this is
6019 	 * only necessary when using shadow paging, as 64-bit NPT can get at
6020 	 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
6021 	 * by 32-bit kernels (when KVM itself uses 32-bit NPT).
6022 	 */
6023 	if (!tdp_enabled)
6024 		set_memory_decrypted((unsigned long)mmu->pae_root, 1);
6025 	else
6026 		WARN_ON_ONCE(shadow_me_value);
6027 
6028 	for (i = 0; i < 4; ++i)
6029 		mmu->pae_root[i] = INVALID_PAE_ROOT;
6030 
6031 	return 0;
6032 }
6033 
6034 int kvm_mmu_create(struct kvm_vcpu *vcpu)
6035 {
6036 	int ret;
6037 
6038 	vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
6039 	vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
6040 
6041 	vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
6042 	vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
6043 
6044 	vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
6045 
6046 	vcpu->arch.mmu = &vcpu->arch.root_mmu;
6047 	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
6048 
6049 	ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
6050 	if (ret)
6051 		return ret;
6052 
6053 	ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
6054 	if (ret)
6055 		goto fail_allocate_root;
6056 
6057 	return ret;
6058  fail_allocate_root:
6059 	free_mmu_pages(&vcpu->arch.guest_mmu);
6060 	return ret;
6061 }
6062 
6063 #define BATCH_ZAP_PAGES	10
6064 static void kvm_zap_obsolete_pages(struct kvm *kvm)
6065 {
6066 	struct kvm_mmu_page *sp, *node;
6067 	int nr_zapped, batch = 0;
6068 	bool unstable;
6069 
6070 restart:
6071 	list_for_each_entry_safe_reverse(sp, node,
6072 	      &kvm->arch.active_mmu_pages, link) {
6073 		/*
6074 		 * No obsolete valid page exists before a newly created page
6075 		 * since active_mmu_pages is a FIFO list.
6076 		 */
6077 		if (!is_obsolete_sp(kvm, sp))
6078 			break;
6079 
6080 		/*
6081 		 * Invalid pages should never land back on the list of active
6082 		 * pages.  Skip the bogus page, otherwise we'll get stuck in an
6083 		 * infinite loop if the page gets put back on the list (again).
6084 		 */
6085 		if (WARN_ON_ONCE(sp->role.invalid))
6086 			continue;
6087 
6088 		/*
6089 		 * No need to flush the TLB since we're only zapping shadow
6090 		 * pages with an obsolete generation number and all vCPUS have
6091 		 * loaded a new root, i.e. the shadow pages being zapped cannot
6092 		 * be in active use by the guest.
6093 		 */
6094 		if (batch >= BATCH_ZAP_PAGES &&
6095 		    cond_resched_rwlock_write(&kvm->mmu_lock)) {
6096 			batch = 0;
6097 			goto restart;
6098 		}
6099 
6100 		unstable = __kvm_mmu_prepare_zap_page(kvm, sp,
6101 				&kvm->arch.zapped_obsolete_pages, &nr_zapped);
6102 		batch += nr_zapped;
6103 
6104 		if (unstable)
6105 			goto restart;
6106 	}
6107 
6108 	/*
6109 	 * Kick all vCPUs (via remote TLB flush) before freeing the page tables
6110 	 * to ensure KVM is not in the middle of a lockless shadow page table
6111 	 * walk, which may reference the pages.  The remote TLB flush itself is
6112 	 * not required and is simply a convenient way to kick vCPUs as needed.
6113 	 * KVM performs a local TLB flush when allocating a new root (see
6114 	 * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are
6115 	 * running with an obsolete MMU.
6116 	 */
6117 	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
6118 }
6119 
6120 /*
6121  * Fast invalidate all shadow pages and use lock-break technique
6122  * to zap obsolete pages.
6123  *
6124  * It's required when memslot is being deleted or VM is being
6125  * destroyed, in these cases, we should ensure that KVM MMU does
6126  * not use any resource of the being-deleted slot or all slots
6127  * after calling the function.
6128  */
6129 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
6130 {
6131 	lockdep_assert_held(&kvm->slots_lock);
6132 
6133 	write_lock(&kvm->mmu_lock);
6134 	trace_kvm_mmu_zap_all_fast(kvm);
6135 
6136 	/*
6137 	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
6138 	 * held for the entire duration of zapping obsolete pages, it's
6139 	 * impossible for there to be multiple invalid generations associated
6140 	 * with *valid* shadow pages at any given time, i.e. there is exactly
6141 	 * one valid generation and (at most) one invalid generation.
6142 	 */
6143 	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
6144 
6145 	/*
6146 	 * In order to ensure all vCPUs drop their soon-to-be invalid roots,
6147 	 * invalidating TDP MMU roots must be done while holding mmu_lock for
6148 	 * write and in the same critical section as making the reload request,
6149 	 * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield.
6150 	 */
6151 	if (tdp_mmu_enabled)
6152 		kvm_tdp_mmu_invalidate_all_roots(kvm);
6153 
6154 	/*
6155 	 * Notify all vcpus to reload its shadow page table and flush TLB.
6156 	 * Then all vcpus will switch to new shadow page table with the new
6157 	 * mmu_valid_gen.
6158 	 *
6159 	 * Note: we need to do this under the protection of mmu_lock,
6160 	 * otherwise, vcpu would purge shadow page but miss tlb flush.
6161 	 */
6162 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
6163 
6164 	kvm_zap_obsolete_pages(kvm);
6165 
6166 	write_unlock(&kvm->mmu_lock);
6167 
6168 	/*
6169 	 * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before
6170 	 * returning to the caller, e.g. if the zap is in response to a memslot
6171 	 * deletion, mmu_notifier callbacks will be unable to reach the SPTEs
6172 	 * associated with the deleted memslot once the update completes, and
6173 	 * Deferring the zap until the final reference to the root is put would
6174 	 * lead to use-after-free.
6175 	 */
6176 	if (tdp_mmu_enabled)
6177 		kvm_tdp_mmu_zap_invalidated_roots(kvm);
6178 }
6179 
6180 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
6181 {
6182 	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
6183 }
6184 
6185 void kvm_mmu_init_vm(struct kvm *kvm)
6186 {
6187 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6188 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
6189 	INIT_LIST_HEAD(&kvm->arch.possible_nx_huge_pages);
6190 	spin_lock_init(&kvm->arch.mmu_unsync_pages_lock);
6191 
6192 	if (tdp_mmu_enabled)
6193 		kvm_mmu_init_tdp_mmu(kvm);
6194 
6195 	kvm->arch.split_page_header_cache.kmem_cache = mmu_page_header_cache;
6196 	kvm->arch.split_page_header_cache.gfp_zero = __GFP_ZERO;
6197 
6198 	kvm->arch.split_shadow_page_cache.gfp_zero = __GFP_ZERO;
6199 
6200 	kvm->arch.split_desc_cache.kmem_cache = pte_list_desc_cache;
6201 	kvm->arch.split_desc_cache.gfp_zero = __GFP_ZERO;
6202 }
6203 
6204 static void mmu_free_vm_memory_caches(struct kvm *kvm)
6205 {
6206 	kvm_mmu_free_memory_cache(&kvm->arch.split_desc_cache);
6207 	kvm_mmu_free_memory_cache(&kvm->arch.split_page_header_cache);
6208 	kvm_mmu_free_memory_cache(&kvm->arch.split_shadow_page_cache);
6209 }
6210 
6211 void kvm_mmu_uninit_vm(struct kvm *kvm)
6212 {
6213 	if (tdp_mmu_enabled)
6214 		kvm_mmu_uninit_tdp_mmu(kvm);
6215 
6216 	mmu_free_vm_memory_caches(kvm);
6217 }
6218 
6219 static bool kvm_rmap_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
6220 {
6221 	const struct kvm_memory_slot *memslot;
6222 	struct kvm_memslots *slots;
6223 	struct kvm_memslot_iter iter;
6224 	bool flush = false;
6225 	gfn_t start, end;
6226 	int i;
6227 
6228 	if (!kvm_memslots_have_rmaps(kvm))
6229 		return flush;
6230 
6231 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6232 		slots = __kvm_memslots(kvm, i);
6233 
6234 		kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) {
6235 			memslot = iter.slot;
6236 			start = max(gfn_start, memslot->base_gfn);
6237 			end = min(gfn_end, memslot->base_gfn + memslot->npages);
6238 			if (WARN_ON_ONCE(start >= end))
6239 				continue;
6240 
6241 			flush = __walk_slot_rmaps(kvm, memslot, __kvm_zap_rmap,
6242 						  PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
6243 						  start, end - 1, true, flush);
6244 		}
6245 	}
6246 
6247 	return flush;
6248 }
6249 
6250 /*
6251  * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end
6252  * (not including it)
6253  */
6254 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
6255 {
6256 	bool flush;
6257 
6258 	if (WARN_ON_ONCE(gfn_end <= gfn_start))
6259 		return;
6260 
6261 	write_lock(&kvm->mmu_lock);
6262 
6263 	kvm_mmu_invalidate_begin(kvm, 0, -1ul);
6264 
6265 	flush = kvm_rmap_zap_gfn_range(kvm, gfn_start, gfn_end);
6266 
6267 	if (tdp_mmu_enabled)
6268 		flush = kvm_tdp_mmu_zap_leafs(kvm, gfn_start, gfn_end, flush);
6269 
6270 	if (flush)
6271 		kvm_flush_remote_tlbs_range(kvm, gfn_start, gfn_end - gfn_start);
6272 
6273 	kvm_mmu_invalidate_end(kvm, 0, -1ul);
6274 
6275 	write_unlock(&kvm->mmu_lock);
6276 }
6277 
6278 static bool slot_rmap_write_protect(struct kvm *kvm,
6279 				    struct kvm_rmap_head *rmap_head,
6280 				    const struct kvm_memory_slot *slot)
6281 {
6282 	return rmap_write_protect(rmap_head, false);
6283 }
6284 
6285 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
6286 				      const struct kvm_memory_slot *memslot,
6287 				      int start_level)
6288 {
6289 	if (kvm_memslots_have_rmaps(kvm)) {
6290 		write_lock(&kvm->mmu_lock);
6291 		walk_slot_rmaps(kvm, memslot, slot_rmap_write_protect,
6292 				start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
6293 		write_unlock(&kvm->mmu_lock);
6294 	}
6295 
6296 	if (tdp_mmu_enabled) {
6297 		read_lock(&kvm->mmu_lock);
6298 		kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
6299 		read_unlock(&kvm->mmu_lock);
6300 	}
6301 }
6302 
6303 static inline bool need_topup(struct kvm_mmu_memory_cache *cache, int min)
6304 {
6305 	return kvm_mmu_memory_cache_nr_free_objects(cache) < min;
6306 }
6307 
6308 static bool need_topup_split_caches_or_resched(struct kvm *kvm)
6309 {
6310 	if (need_resched() || rwlock_needbreak(&kvm->mmu_lock))
6311 		return true;
6312 
6313 	/*
6314 	 * In the worst case, SPLIT_DESC_CACHE_MIN_NR_OBJECTS descriptors are needed
6315 	 * to split a single huge page. Calculating how many are actually needed
6316 	 * is possible but not worth the complexity.
6317 	 */
6318 	return need_topup(&kvm->arch.split_desc_cache, SPLIT_DESC_CACHE_MIN_NR_OBJECTS) ||
6319 	       need_topup(&kvm->arch.split_page_header_cache, 1) ||
6320 	       need_topup(&kvm->arch.split_shadow_page_cache, 1);
6321 }
6322 
6323 static int topup_split_caches(struct kvm *kvm)
6324 {
6325 	/*
6326 	 * Allocating rmap list entries when splitting huge pages for nested
6327 	 * MMUs is uncommon as KVM needs to use a list if and only if there is
6328 	 * more than one rmap entry for a gfn, i.e. requires an L1 gfn to be
6329 	 * aliased by multiple L2 gfns and/or from multiple nested roots with
6330 	 * different roles.  Aliasing gfns when using TDP is atypical for VMMs;
6331 	 * a few gfns are often aliased during boot, e.g. when remapping BIOS,
6332 	 * but aliasing rarely occurs post-boot or for many gfns.  If there is
6333 	 * only one rmap entry, rmap->val points directly at that one entry and
6334 	 * doesn't need to allocate a list.  Buffer the cache by the default
6335 	 * capacity so that KVM doesn't have to drop mmu_lock to topup if KVM
6336 	 * encounters an aliased gfn or two.
6337 	 */
6338 	const int capacity = SPLIT_DESC_CACHE_MIN_NR_OBJECTS +
6339 			     KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE;
6340 	int r;
6341 
6342 	lockdep_assert_held(&kvm->slots_lock);
6343 
6344 	r = __kvm_mmu_topup_memory_cache(&kvm->arch.split_desc_cache, capacity,
6345 					 SPLIT_DESC_CACHE_MIN_NR_OBJECTS);
6346 	if (r)
6347 		return r;
6348 
6349 	r = kvm_mmu_topup_memory_cache(&kvm->arch.split_page_header_cache, 1);
6350 	if (r)
6351 		return r;
6352 
6353 	return kvm_mmu_topup_memory_cache(&kvm->arch.split_shadow_page_cache, 1);
6354 }
6355 
6356 static struct kvm_mmu_page *shadow_mmu_get_sp_for_split(struct kvm *kvm, u64 *huge_sptep)
6357 {
6358 	struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep);
6359 	struct shadow_page_caches caches = {};
6360 	union kvm_mmu_page_role role;
6361 	unsigned int access;
6362 	gfn_t gfn;
6363 
6364 	gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep));
6365 	access = kvm_mmu_page_get_access(huge_sp, spte_index(huge_sptep));
6366 
6367 	/*
6368 	 * Note, huge page splitting always uses direct shadow pages, regardless
6369 	 * of whether the huge page itself is mapped by a direct or indirect
6370 	 * shadow page, since the huge page region itself is being directly
6371 	 * mapped with smaller pages.
6372 	 */
6373 	role = kvm_mmu_child_role(huge_sptep, /*direct=*/true, access);
6374 
6375 	/* Direct SPs do not require a shadowed_info_cache. */
6376 	caches.page_header_cache = &kvm->arch.split_page_header_cache;
6377 	caches.shadow_page_cache = &kvm->arch.split_shadow_page_cache;
6378 
6379 	/* Safe to pass NULL for vCPU since requesting a direct SP. */
6380 	return __kvm_mmu_get_shadow_page(kvm, NULL, &caches, gfn, role);
6381 }
6382 
6383 static void shadow_mmu_split_huge_page(struct kvm *kvm,
6384 				       const struct kvm_memory_slot *slot,
6385 				       u64 *huge_sptep)
6386 
6387 {
6388 	struct kvm_mmu_memory_cache *cache = &kvm->arch.split_desc_cache;
6389 	u64 huge_spte = READ_ONCE(*huge_sptep);
6390 	struct kvm_mmu_page *sp;
6391 	bool flush = false;
6392 	u64 *sptep, spte;
6393 	gfn_t gfn;
6394 	int index;
6395 
6396 	sp = shadow_mmu_get_sp_for_split(kvm, huge_sptep);
6397 
6398 	for (index = 0; index < SPTE_ENT_PER_PAGE; index++) {
6399 		sptep = &sp->spt[index];
6400 		gfn = kvm_mmu_page_get_gfn(sp, index);
6401 
6402 		/*
6403 		 * The SP may already have populated SPTEs, e.g. if this huge
6404 		 * page is aliased by multiple sptes with the same access
6405 		 * permissions. These entries are guaranteed to map the same
6406 		 * gfn-to-pfn translation since the SP is direct, so no need to
6407 		 * modify them.
6408 		 *
6409 		 * However, if a given SPTE points to a lower level page table,
6410 		 * that lower level page table may only be partially populated.
6411 		 * Installing such SPTEs would effectively unmap a potion of the
6412 		 * huge page. Unmapping guest memory always requires a TLB flush
6413 		 * since a subsequent operation on the unmapped regions would
6414 		 * fail to detect the need to flush.
6415 		 */
6416 		if (is_shadow_present_pte(*sptep)) {
6417 			flush |= !is_last_spte(*sptep, sp->role.level);
6418 			continue;
6419 		}
6420 
6421 		spte = make_huge_page_split_spte(kvm, huge_spte, sp->role, index);
6422 		mmu_spte_set(sptep, spte);
6423 		__rmap_add(kvm, cache, slot, sptep, gfn, sp->role.access);
6424 	}
6425 
6426 	__link_shadow_page(kvm, cache, huge_sptep, sp, flush);
6427 }
6428 
6429 static int shadow_mmu_try_split_huge_page(struct kvm *kvm,
6430 					  const struct kvm_memory_slot *slot,
6431 					  u64 *huge_sptep)
6432 {
6433 	struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep);
6434 	int level, r = 0;
6435 	gfn_t gfn;
6436 	u64 spte;
6437 
6438 	/* Grab information for the tracepoint before dropping the MMU lock. */
6439 	gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep));
6440 	level = huge_sp->role.level;
6441 	spte = *huge_sptep;
6442 
6443 	if (kvm_mmu_available_pages(kvm) <= KVM_MIN_FREE_MMU_PAGES) {
6444 		r = -ENOSPC;
6445 		goto out;
6446 	}
6447 
6448 	if (need_topup_split_caches_or_resched(kvm)) {
6449 		write_unlock(&kvm->mmu_lock);
6450 		cond_resched();
6451 		/*
6452 		 * If the topup succeeds, return -EAGAIN to indicate that the
6453 		 * rmap iterator should be restarted because the MMU lock was
6454 		 * dropped.
6455 		 */
6456 		r = topup_split_caches(kvm) ?: -EAGAIN;
6457 		write_lock(&kvm->mmu_lock);
6458 		goto out;
6459 	}
6460 
6461 	shadow_mmu_split_huge_page(kvm, slot, huge_sptep);
6462 
6463 out:
6464 	trace_kvm_mmu_split_huge_page(gfn, spte, level, r);
6465 	return r;
6466 }
6467 
6468 static bool shadow_mmu_try_split_huge_pages(struct kvm *kvm,
6469 					    struct kvm_rmap_head *rmap_head,
6470 					    const struct kvm_memory_slot *slot)
6471 {
6472 	struct rmap_iterator iter;
6473 	struct kvm_mmu_page *sp;
6474 	u64 *huge_sptep;
6475 	int r;
6476 
6477 restart:
6478 	for_each_rmap_spte(rmap_head, &iter, huge_sptep) {
6479 		sp = sptep_to_sp(huge_sptep);
6480 
6481 		/* TDP MMU is enabled, so rmap only contains nested MMU SPs. */
6482 		if (WARN_ON_ONCE(!sp->role.guest_mode))
6483 			continue;
6484 
6485 		/* The rmaps should never contain non-leaf SPTEs. */
6486 		if (WARN_ON_ONCE(!is_large_pte(*huge_sptep)))
6487 			continue;
6488 
6489 		/* SPs with level >PG_LEVEL_4K should never by unsync. */
6490 		if (WARN_ON_ONCE(sp->unsync))
6491 			continue;
6492 
6493 		/* Don't bother splitting huge pages on invalid SPs. */
6494 		if (sp->role.invalid)
6495 			continue;
6496 
6497 		r = shadow_mmu_try_split_huge_page(kvm, slot, huge_sptep);
6498 
6499 		/*
6500 		 * The split succeeded or needs to be retried because the MMU
6501 		 * lock was dropped. Either way, restart the iterator to get it
6502 		 * back into a consistent state.
6503 		 */
6504 		if (!r || r == -EAGAIN)
6505 			goto restart;
6506 
6507 		/* The split failed and shouldn't be retried (e.g. -ENOMEM). */
6508 		break;
6509 	}
6510 
6511 	return false;
6512 }
6513 
6514 static void kvm_shadow_mmu_try_split_huge_pages(struct kvm *kvm,
6515 						const struct kvm_memory_slot *slot,
6516 						gfn_t start, gfn_t end,
6517 						int target_level)
6518 {
6519 	int level;
6520 
6521 	/*
6522 	 * Split huge pages starting with KVM_MAX_HUGEPAGE_LEVEL and working
6523 	 * down to the target level. This ensures pages are recursively split
6524 	 * all the way to the target level. There's no need to split pages
6525 	 * already at the target level.
6526 	 */
6527 	for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--)
6528 		__walk_slot_rmaps(kvm, slot, shadow_mmu_try_split_huge_pages,
6529 				  level, level, start, end - 1, true, false);
6530 }
6531 
6532 /* Must be called with the mmu_lock held in write-mode. */
6533 void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
6534 				   const struct kvm_memory_slot *memslot,
6535 				   u64 start, u64 end,
6536 				   int target_level)
6537 {
6538 	if (!tdp_mmu_enabled)
6539 		return;
6540 
6541 	if (kvm_memslots_have_rmaps(kvm))
6542 		kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level);
6543 
6544 	kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, false);
6545 
6546 	/*
6547 	 * A TLB flush is unnecessary at this point for the same resons as in
6548 	 * kvm_mmu_slot_try_split_huge_pages().
6549 	 */
6550 }
6551 
6552 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
6553 					const struct kvm_memory_slot *memslot,
6554 					int target_level)
6555 {
6556 	u64 start = memslot->base_gfn;
6557 	u64 end = start + memslot->npages;
6558 
6559 	if (!tdp_mmu_enabled)
6560 		return;
6561 
6562 	if (kvm_memslots_have_rmaps(kvm)) {
6563 		write_lock(&kvm->mmu_lock);
6564 		kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level);
6565 		write_unlock(&kvm->mmu_lock);
6566 	}
6567 
6568 	read_lock(&kvm->mmu_lock);
6569 	kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true);
6570 	read_unlock(&kvm->mmu_lock);
6571 
6572 	/*
6573 	 * No TLB flush is necessary here. KVM will flush TLBs after
6574 	 * write-protecting and/or clearing dirty on the newly split SPTEs to
6575 	 * ensure that guest writes are reflected in the dirty log before the
6576 	 * ioctl to enable dirty logging on this memslot completes. Since the
6577 	 * split SPTEs retain the write and dirty bits of the huge SPTE, it is
6578 	 * safe for KVM to decide if a TLB flush is necessary based on the split
6579 	 * SPTEs.
6580 	 */
6581 }
6582 
6583 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
6584 					 struct kvm_rmap_head *rmap_head,
6585 					 const struct kvm_memory_slot *slot)
6586 {
6587 	u64 *sptep;
6588 	struct rmap_iterator iter;
6589 	int need_tlb_flush = 0;
6590 	struct kvm_mmu_page *sp;
6591 
6592 restart:
6593 	for_each_rmap_spte(rmap_head, &iter, sptep) {
6594 		sp = sptep_to_sp(sptep);
6595 
6596 		/*
6597 		 * We cannot do huge page mapping for indirect shadow pages,
6598 		 * which are found on the last rmap (level = 1) when not using
6599 		 * tdp; such shadow pages are synced with the page table in
6600 		 * the guest, and the guest page table is using 4K page size
6601 		 * mapping if the indirect sp has level = 1.
6602 		 */
6603 		if (sp->role.direct &&
6604 		    sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
6605 							       PG_LEVEL_NUM)) {
6606 			kvm_zap_one_rmap_spte(kvm, rmap_head, sptep);
6607 
6608 			if (kvm_available_flush_remote_tlbs_range())
6609 				kvm_flush_remote_tlbs_sptep(kvm, sptep);
6610 			else
6611 				need_tlb_flush = 1;
6612 
6613 			goto restart;
6614 		}
6615 	}
6616 
6617 	return need_tlb_flush;
6618 }
6619 
6620 static void kvm_rmap_zap_collapsible_sptes(struct kvm *kvm,
6621 					   const struct kvm_memory_slot *slot)
6622 {
6623 	/*
6624 	 * Note, use KVM_MAX_HUGEPAGE_LEVEL - 1 since there's no need to zap
6625 	 * pages that are already mapped at the maximum hugepage level.
6626 	 */
6627 	if (walk_slot_rmaps(kvm, slot, kvm_mmu_zap_collapsible_spte,
6628 			    PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL - 1, true))
6629 		kvm_flush_remote_tlbs_memslot(kvm, slot);
6630 }
6631 
6632 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
6633 				   const struct kvm_memory_slot *slot)
6634 {
6635 	if (kvm_memslots_have_rmaps(kvm)) {
6636 		write_lock(&kvm->mmu_lock);
6637 		kvm_rmap_zap_collapsible_sptes(kvm, slot);
6638 		write_unlock(&kvm->mmu_lock);
6639 	}
6640 
6641 	if (tdp_mmu_enabled) {
6642 		read_lock(&kvm->mmu_lock);
6643 		kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot);
6644 		read_unlock(&kvm->mmu_lock);
6645 	}
6646 }
6647 
6648 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
6649 				   const struct kvm_memory_slot *memslot)
6650 {
6651 	if (kvm_memslots_have_rmaps(kvm)) {
6652 		write_lock(&kvm->mmu_lock);
6653 		/*
6654 		 * Clear dirty bits only on 4k SPTEs since the legacy MMU only
6655 		 * support dirty logging at a 4k granularity.
6656 		 */
6657 		walk_slot_rmaps_4k(kvm, memslot, __rmap_clear_dirty, false);
6658 		write_unlock(&kvm->mmu_lock);
6659 	}
6660 
6661 	if (tdp_mmu_enabled) {
6662 		read_lock(&kvm->mmu_lock);
6663 		kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
6664 		read_unlock(&kvm->mmu_lock);
6665 	}
6666 
6667 	/*
6668 	 * The caller will flush the TLBs after this function returns.
6669 	 *
6670 	 * It's also safe to flush TLBs out of mmu lock here as currently this
6671 	 * function is only used for dirty logging, in which case flushing TLB
6672 	 * out of mmu lock also guarantees no dirty pages will be lost in
6673 	 * dirty_bitmap.
6674 	 */
6675 }
6676 
6677 static void kvm_mmu_zap_all(struct kvm *kvm)
6678 {
6679 	struct kvm_mmu_page *sp, *node;
6680 	LIST_HEAD(invalid_list);
6681 	int ign;
6682 
6683 	write_lock(&kvm->mmu_lock);
6684 restart:
6685 	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
6686 		if (WARN_ON_ONCE(sp->role.invalid))
6687 			continue;
6688 		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
6689 			goto restart;
6690 		if (cond_resched_rwlock_write(&kvm->mmu_lock))
6691 			goto restart;
6692 	}
6693 
6694 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
6695 
6696 	if (tdp_mmu_enabled)
6697 		kvm_tdp_mmu_zap_all(kvm);
6698 
6699 	write_unlock(&kvm->mmu_lock);
6700 }
6701 
6702 void kvm_arch_flush_shadow_all(struct kvm *kvm)
6703 {
6704 	kvm_mmu_zap_all(kvm);
6705 }
6706 
6707 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
6708 				   struct kvm_memory_slot *slot)
6709 {
6710 	kvm_mmu_zap_all_fast(kvm);
6711 }
6712 
6713 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
6714 {
6715 	WARN_ON_ONCE(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
6716 
6717 	gen &= MMIO_SPTE_GEN_MASK;
6718 
6719 	/*
6720 	 * Generation numbers are incremented in multiples of the number of
6721 	 * address spaces in order to provide unique generations across all
6722 	 * address spaces.  Strip what is effectively the address space
6723 	 * modifier prior to checking for a wrap of the MMIO generation so
6724 	 * that a wrap in any address space is detected.
6725 	 */
6726 	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
6727 
6728 	/*
6729 	 * The very rare case: if the MMIO generation number has wrapped,
6730 	 * zap all shadow pages.
6731 	 */
6732 	if (unlikely(gen == 0)) {
6733 		kvm_debug_ratelimited("zapping shadow pages for mmio generation wraparound\n");
6734 		kvm_mmu_zap_all_fast(kvm);
6735 	}
6736 }
6737 
6738 static unsigned long mmu_shrink_scan(struct shrinker *shrink,
6739 				     struct shrink_control *sc)
6740 {
6741 	struct kvm *kvm;
6742 	int nr_to_scan = sc->nr_to_scan;
6743 	unsigned long freed = 0;
6744 
6745 	mutex_lock(&kvm_lock);
6746 
6747 	list_for_each_entry(kvm, &vm_list, vm_list) {
6748 		int idx;
6749 		LIST_HEAD(invalid_list);
6750 
6751 		/*
6752 		 * Never scan more than sc->nr_to_scan VM instances.
6753 		 * Will not hit this condition practically since we do not try
6754 		 * to shrink more than one VM and it is very unlikely to see
6755 		 * !n_used_mmu_pages so many times.
6756 		 */
6757 		if (!nr_to_scan--)
6758 			break;
6759 		/*
6760 		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
6761 		 * here. We may skip a VM instance errorneosly, but we do not
6762 		 * want to shrink a VM that only started to populate its MMU
6763 		 * anyway.
6764 		 */
6765 		if (!kvm->arch.n_used_mmu_pages &&
6766 		    !kvm_has_zapped_obsolete_pages(kvm))
6767 			continue;
6768 
6769 		idx = srcu_read_lock(&kvm->srcu);
6770 		write_lock(&kvm->mmu_lock);
6771 
6772 		if (kvm_has_zapped_obsolete_pages(kvm)) {
6773 			kvm_mmu_commit_zap_page(kvm,
6774 			      &kvm->arch.zapped_obsolete_pages);
6775 			goto unlock;
6776 		}
6777 
6778 		freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
6779 
6780 unlock:
6781 		write_unlock(&kvm->mmu_lock);
6782 		srcu_read_unlock(&kvm->srcu, idx);
6783 
6784 		/*
6785 		 * unfair on small ones
6786 		 * per-vm shrinkers cry out
6787 		 * sadness comes quickly
6788 		 */
6789 		list_move_tail(&kvm->vm_list, &vm_list);
6790 		break;
6791 	}
6792 
6793 	mutex_unlock(&kvm_lock);
6794 	return freed;
6795 }
6796 
6797 static unsigned long mmu_shrink_count(struct shrinker *shrink,
6798 				      struct shrink_control *sc)
6799 {
6800 	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6801 }
6802 
6803 static struct shrinker *mmu_shrinker;
6804 
6805 static void mmu_destroy_caches(void)
6806 {
6807 	kmem_cache_destroy(pte_list_desc_cache);
6808 	kmem_cache_destroy(mmu_page_header_cache);
6809 }
6810 
6811 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp)
6812 {
6813 	if (nx_hugepage_mitigation_hard_disabled)
6814 		return sysfs_emit(buffer, "never\n");
6815 
6816 	return param_get_bool(buffer, kp);
6817 }
6818 
6819 static bool get_nx_auto_mode(void)
6820 {
6821 	/* Return true when CPU has the bug, and mitigations are ON */
6822 	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
6823 }
6824 
6825 static void __set_nx_huge_pages(bool val)
6826 {
6827 	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
6828 }
6829 
6830 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
6831 {
6832 	bool old_val = nx_huge_pages;
6833 	bool new_val;
6834 
6835 	if (nx_hugepage_mitigation_hard_disabled)
6836 		return -EPERM;
6837 
6838 	/* In "auto" mode deploy workaround only if CPU has the bug. */
6839 	if (sysfs_streq(val, "off")) {
6840 		new_val = 0;
6841 	} else if (sysfs_streq(val, "force")) {
6842 		new_val = 1;
6843 	} else if (sysfs_streq(val, "auto")) {
6844 		new_val = get_nx_auto_mode();
6845 	} else if (sysfs_streq(val, "never")) {
6846 		new_val = 0;
6847 
6848 		mutex_lock(&kvm_lock);
6849 		if (!list_empty(&vm_list)) {
6850 			mutex_unlock(&kvm_lock);
6851 			return -EBUSY;
6852 		}
6853 		nx_hugepage_mitigation_hard_disabled = true;
6854 		mutex_unlock(&kvm_lock);
6855 	} else if (kstrtobool(val, &new_val) < 0) {
6856 		return -EINVAL;
6857 	}
6858 
6859 	__set_nx_huge_pages(new_val);
6860 
6861 	if (new_val != old_val) {
6862 		struct kvm *kvm;
6863 
6864 		mutex_lock(&kvm_lock);
6865 
6866 		list_for_each_entry(kvm, &vm_list, vm_list) {
6867 			mutex_lock(&kvm->slots_lock);
6868 			kvm_mmu_zap_all_fast(kvm);
6869 			mutex_unlock(&kvm->slots_lock);
6870 
6871 			wake_up_process(kvm->arch.nx_huge_page_recovery_thread);
6872 		}
6873 		mutex_unlock(&kvm_lock);
6874 	}
6875 
6876 	return 0;
6877 }
6878 
6879 /*
6880  * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as
6881  * its default value of -1 is technically undefined behavior for a boolean.
6882  * Forward the module init call to SPTE code so that it too can handle module
6883  * params that need to be resolved/snapshot.
6884  */
6885 void __init kvm_mmu_x86_module_init(void)
6886 {
6887 	if (nx_huge_pages == -1)
6888 		__set_nx_huge_pages(get_nx_auto_mode());
6889 
6890 	/*
6891 	 * Snapshot userspace's desire to enable the TDP MMU. Whether or not the
6892 	 * TDP MMU is actually enabled is determined in kvm_configure_mmu()
6893 	 * when the vendor module is loaded.
6894 	 */
6895 	tdp_mmu_allowed = tdp_mmu_enabled;
6896 
6897 	kvm_mmu_spte_module_init();
6898 }
6899 
6900 /*
6901  * The bulk of the MMU initialization is deferred until the vendor module is
6902  * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need
6903  * to be reset when a potentially different vendor module is loaded.
6904  */
6905 int kvm_mmu_vendor_module_init(void)
6906 {
6907 	int ret = -ENOMEM;
6908 
6909 	/*
6910 	 * MMU roles use union aliasing which is, generally speaking, an
6911 	 * undefined behavior. However, we supposedly know how compilers behave
6912 	 * and the current status quo is unlikely to change. Guardians below are
6913 	 * supposed to let us know if the assumption becomes false.
6914 	 */
6915 	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6916 	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6917 	BUILD_BUG_ON(sizeof(union kvm_cpu_role) != sizeof(u64));
6918 
6919 	kvm_mmu_reset_all_pte_masks();
6920 
6921 	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6922 					    sizeof(struct pte_list_desc),
6923 					    0, SLAB_ACCOUNT, NULL);
6924 	if (!pte_list_desc_cache)
6925 		goto out;
6926 
6927 	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6928 						  sizeof(struct kvm_mmu_page),
6929 						  0, SLAB_ACCOUNT, NULL);
6930 	if (!mmu_page_header_cache)
6931 		goto out;
6932 
6933 	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6934 		goto out;
6935 
6936 	mmu_shrinker = shrinker_alloc(0, "x86-mmu");
6937 	if (!mmu_shrinker)
6938 		goto out_shrinker;
6939 
6940 	mmu_shrinker->count_objects = mmu_shrink_count;
6941 	mmu_shrinker->scan_objects = mmu_shrink_scan;
6942 	mmu_shrinker->seeks = DEFAULT_SEEKS * 10;
6943 
6944 	shrinker_register(mmu_shrinker);
6945 
6946 	return 0;
6947 
6948 out_shrinker:
6949 	percpu_counter_destroy(&kvm_total_used_mmu_pages);
6950 out:
6951 	mmu_destroy_caches();
6952 	return ret;
6953 }
6954 
6955 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6956 {
6957 	kvm_mmu_unload(vcpu);
6958 	free_mmu_pages(&vcpu->arch.root_mmu);
6959 	free_mmu_pages(&vcpu->arch.guest_mmu);
6960 	mmu_free_memory_caches(vcpu);
6961 }
6962 
6963 void kvm_mmu_vendor_module_exit(void)
6964 {
6965 	mmu_destroy_caches();
6966 	percpu_counter_destroy(&kvm_total_used_mmu_pages);
6967 	shrinker_free(mmu_shrinker);
6968 }
6969 
6970 /*
6971  * Calculate the effective recovery period, accounting for '0' meaning "let KVM
6972  * select a halving time of 1 hour".  Returns true if recovery is enabled.
6973  */
6974 static bool calc_nx_huge_pages_recovery_period(uint *period)
6975 {
6976 	/*
6977 	 * Use READ_ONCE to get the params, this may be called outside of the
6978 	 * param setters, e.g. by the kthread to compute its next timeout.
6979 	 */
6980 	bool enabled = READ_ONCE(nx_huge_pages);
6981 	uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6982 
6983 	if (!enabled || !ratio)
6984 		return false;
6985 
6986 	*period = READ_ONCE(nx_huge_pages_recovery_period_ms);
6987 	if (!*period) {
6988 		/* Make sure the period is not less than one second.  */
6989 		ratio = min(ratio, 3600u);
6990 		*period = 60 * 60 * 1000 / ratio;
6991 	}
6992 	return true;
6993 }
6994 
6995 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp)
6996 {
6997 	bool was_recovery_enabled, is_recovery_enabled;
6998 	uint old_period, new_period;
6999 	int err;
7000 
7001 	if (nx_hugepage_mitigation_hard_disabled)
7002 		return -EPERM;
7003 
7004 	was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period);
7005 
7006 	err = param_set_uint(val, kp);
7007 	if (err)
7008 		return err;
7009 
7010 	is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period);
7011 
7012 	if (is_recovery_enabled &&
7013 	    (!was_recovery_enabled || old_period > new_period)) {
7014 		struct kvm *kvm;
7015 
7016 		mutex_lock(&kvm_lock);
7017 
7018 		list_for_each_entry(kvm, &vm_list, vm_list)
7019 			wake_up_process(kvm->arch.nx_huge_page_recovery_thread);
7020 
7021 		mutex_unlock(&kvm_lock);
7022 	}
7023 
7024 	return err;
7025 }
7026 
7027 static void kvm_recover_nx_huge_pages(struct kvm *kvm)
7028 {
7029 	unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
7030 	struct kvm_memory_slot *slot;
7031 	int rcu_idx;
7032 	struct kvm_mmu_page *sp;
7033 	unsigned int ratio;
7034 	LIST_HEAD(invalid_list);
7035 	bool flush = false;
7036 	ulong to_zap;
7037 
7038 	rcu_idx = srcu_read_lock(&kvm->srcu);
7039 	write_lock(&kvm->mmu_lock);
7040 
7041 	/*
7042 	 * Zapping TDP MMU shadow pages, including the remote TLB flush, must
7043 	 * be done under RCU protection, because the pages are freed via RCU
7044 	 * callback.
7045 	 */
7046 	rcu_read_lock();
7047 
7048 	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
7049 	to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
7050 	for ( ; to_zap; --to_zap) {
7051 		if (list_empty(&kvm->arch.possible_nx_huge_pages))
7052 			break;
7053 
7054 		/*
7055 		 * We use a separate list instead of just using active_mmu_pages
7056 		 * because the number of shadow pages that be replaced with an
7057 		 * NX huge page is expected to be relatively small compared to
7058 		 * the total number of shadow pages.  And because the TDP MMU
7059 		 * doesn't use active_mmu_pages.
7060 		 */
7061 		sp = list_first_entry(&kvm->arch.possible_nx_huge_pages,
7062 				      struct kvm_mmu_page,
7063 				      possible_nx_huge_page_link);
7064 		WARN_ON_ONCE(!sp->nx_huge_page_disallowed);
7065 		WARN_ON_ONCE(!sp->role.direct);
7066 
7067 		/*
7068 		 * Unaccount and do not attempt to recover any NX Huge Pages
7069 		 * that are being dirty tracked, as they would just be faulted
7070 		 * back in as 4KiB pages. The NX Huge Pages in this slot will be
7071 		 * recovered, along with all the other huge pages in the slot,
7072 		 * when dirty logging is disabled.
7073 		 *
7074 		 * Since gfn_to_memslot() is relatively expensive, it helps to
7075 		 * skip it if it the test cannot possibly return true.  On the
7076 		 * other hand, if any memslot has logging enabled, chances are
7077 		 * good that all of them do, in which case unaccount_nx_huge_page()
7078 		 * is much cheaper than zapping the page.
7079 		 *
7080 		 * If a memslot update is in progress, reading an incorrect value
7081 		 * of kvm->nr_memslots_dirty_logging is not a problem: if it is
7082 		 * becoming zero, gfn_to_memslot() will be done unnecessarily; if
7083 		 * it is becoming nonzero, the page will be zapped unnecessarily.
7084 		 * Either way, this only affects efficiency in racy situations,
7085 		 * and not correctness.
7086 		 */
7087 		slot = NULL;
7088 		if (atomic_read(&kvm->nr_memslots_dirty_logging)) {
7089 			struct kvm_memslots *slots;
7090 
7091 			slots = kvm_memslots_for_spte_role(kvm, sp->role);
7092 			slot = __gfn_to_memslot(slots, sp->gfn);
7093 			WARN_ON_ONCE(!slot);
7094 		}
7095 
7096 		if (slot && kvm_slot_dirty_track_enabled(slot))
7097 			unaccount_nx_huge_page(kvm, sp);
7098 		else if (is_tdp_mmu_page(sp))
7099 			flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
7100 		else
7101 			kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7102 		WARN_ON_ONCE(sp->nx_huge_page_disallowed);
7103 
7104 		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
7105 			kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
7106 			rcu_read_unlock();
7107 
7108 			cond_resched_rwlock_write(&kvm->mmu_lock);
7109 			flush = false;
7110 
7111 			rcu_read_lock();
7112 		}
7113 	}
7114 	kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
7115 
7116 	rcu_read_unlock();
7117 
7118 	write_unlock(&kvm->mmu_lock);
7119 	srcu_read_unlock(&kvm->srcu, rcu_idx);
7120 }
7121 
7122 static long get_nx_huge_page_recovery_timeout(u64 start_time)
7123 {
7124 	bool enabled;
7125 	uint period;
7126 
7127 	enabled = calc_nx_huge_pages_recovery_period(&period);
7128 
7129 	return enabled ? start_time + msecs_to_jiffies(period) - get_jiffies_64()
7130 		       : MAX_SCHEDULE_TIMEOUT;
7131 }
7132 
7133 static int kvm_nx_huge_page_recovery_worker(struct kvm *kvm, uintptr_t data)
7134 {
7135 	u64 start_time;
7136 	long remaining_time;
7137 
7138 	while (true) {
7139 		start_time = get_jiffies_64();
7140 		remaining_time = get_nx_huge_page_recovery_timeout(start_time);
7141 
7142 		set_current_state(TASK_INTERRUPTIBLE);
7143 		while (!kthread_should_stop() && remaining_time > 0) {
7144 			schedule_timeout(remaining_time);
7145 			remaining_time = get_nx_huge_page_recovery_timeout(start_time);
7146 			set_current_state(TASK_INTERRUPTIBLE);
7147 		}
7148 
7149 		set_current_state(TASK_RUNNING);
7150 
7151 		if (kthread_should_stop())
7152 			return 0;
7153 
7154 		kvm_recover_nx_huge_pages(kvm);
7155 	}
7156 }
7157 
7158 int kvm_mmu_post_init_vm(struct kvm *kvm)
7159 {
7160 	int err;
7161 
7162 	if (nx_hugepage_mitigation_hard_disabled)
7163 		return 0;
7164 
7165 	err = kvm_vm_create_worker_thread(kvm, kvm_nx_huge_page_recovery_worker, 0,
7166 					  "kvm-nx-lpage-recovery",
7167 					  &kvm->arch.nx_huge_page_recovery_thread);
7168 	if (!err)
7169 		kthread_unpark(kvm->arch.nx_huge_page_recovery_thread);
7170 
7171 	return err;
7172 }
7173 
7174 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
7175 {
7176 	if (kvm->arch.nx_huge_page_recovery_thread)
7177 		kthread_stop(kvm->arch.nx_huge_page_recovery_thread);
7178 }
7179