1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * MMU support 9 * 10 * Copyright (C) 2006 Qumranet, Inc. 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 12 * 13 * Authors: 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Avi Kivity <avi@qumranet.com> 16 */ 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include "irq.h" 20 #include "ioapic.h" 21 #include "mmu.h" 22 #include "mmu_internal.h" 23 #include "tdp_mmu.h" 24 #include "x86.h" 25 #include "kvm_cache_regs.h" 26 #include "smm.h" 27 #include "kvm_emulate.h" 28 #include "page_track.h" 29 #include "cpuid.h" 30 #include "spte.h" 31 32 #include <linux/kvm_host.h> 33 #include <linux/types.h> 34 #include <linux/string.h> 35 #include <linux/mm.h> 36 #include <linux/highmem.h> 37 #include <linux/moduleparam.h> 38 #include <linux/export.h> 39 #include <linux/swap.h> 40 #include <linux/hugetlb.h> 41 #include <linux/compiler.h> 42 #include <linux/srcu.h> 43 #include <linux/slab.h> 44 #include <linux/sched/signal.h> 45 #include <linux/uaccess.h> 46 #include <linux/hash.h> 47 #include <linux/kern_levels.h> 48 #include <linux/kstrtox.h> 49 #include <linux/kthread.h> 50 #include <linux/wordpart.h> 51 52 #include <asm/page.h> 53 #include <asm/memtype.h> 54 #include <asm/cmpxchg.h> 55 #include <asm/io.h> 56 #include <asm/set_memory.h> 57 #include <asm/spec-ctrl.h> 58 #include <asm/vmx.h> 59 60 #include "trace.h" 61 62 static bool nx_hugepage_mitigation_hard_disabled; 63 64 int __read_mostly nx_huge_pages = -1; 65 static uint __read_mostly nx_huge_pages_recovery_period_ms; 66 #ifdef CONFIG_PREEMPT_RT 67 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */ 68 static uint __read_mostly nx_huge_pages_recovery_ratio = 0; 69 #else 70 static uint __read_mostly nx_huge_pages_recovery_ratio = 60; 71 #endif 72 73 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp); 74 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp); 75 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp); 76 77 static const struct kernel_param_ops nx_huge_pages_ops = { 78 .set = set_nx_huge_pages, 79 .get = get_nx_huge_pages, 80 }; 81 82 static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = { 83 .set = set_nx_huge_pages_recovery_param, 84 .get = param_get_uint, 85 }; 86 87 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644); 88 __MODULE_PARM_TYPE(nx_huge_pages, "bool"); 89 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops, 90 &nx_huge_pages_recovery_ratio, 0644); 91 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint"); 92 module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops, 93 &nx_huge_pages_recovery_period_ms, 0644); 94 __MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint"); 95 96 static bool __read_mostly force_flush_and_sync_on_reuse; 97 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644); 98 99 /* 100 * When setting this variable to true it enables Two-Dimensional-Paging 101 * where the hardware walks 2 page tables: 102 * 1. the guest-virtual to guest-physical 103 * 2. while doing 1. it walks guest-physical to host-physical 104 * If the hardware supports that we don't need to do shadow paging. 105 */ 106 bool tdp_enabled = false; 107 108 static bool __ro_after_init tdp_mmu_allowed; 109 110 #ifdef CONFIG_X86_64 111 bool __read_mostly tdp_mmu_enabled = true; 112 module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0444); 113 #endif 114 115 static int max_huge_page_level __read_mostly; 116 static int tdp_root_level __read_mostly; 117 static int max_tdp_level __read_mostly; 118 119 #define PTE_PREFETCH_NUM 8 120 121 #include <trace/events/kvm.h> 122 123 /* make pte_list_desc fit well in cache lines */ 124 #define PTE_LIST_EXT 14 125 126 /* 127 * struct pte_list_desc is the core data structure used to implement a custom 128 * list for tracking a set of related SPTEs, e.g. all the SPTEs that map a 129 * given GFN when used in the context of rmaps. Using a custom list allows KVM 130 * to optimize for the common case where many GFNs will have at most a handful 131 * of SPTEs pointing at them, i.e. allows packing multiple SPTEs into a small 132 * memory footprint, which in turn improves runtime performance by exploiting 133 * cache locality. 134 * 135 * A list is comprised of one or more pte_list_desc objects (descriptors). 136 * Each individual descriptor stores up to PTE_LIST_EXT SPTEs. If a descriptor 137 * is full and a new SPTEs needs to be added, a new descriptor is allocated and 138 * becomes the head of the list. This means that by definitions, all tail 139 * descriptors are full. 140 * 141 * Note, the meta data fields are deliberately placed at the start of the 142 * structure to optimize the cacheline layout; accessing the descriptor will 143 * touch only a single cacheline so long as @spte_count<=6 (or if only the 144 * descriptors metadata is accessed). 145 */ 146 struct pte_list_desc { 147 struct pte_list_desc *more; 148 /* The number of PTEs stored in _this_ descriptor. */ 149 u32 spte_count; 150 /* The number of PTEs stored in all tails of this descriptor. */ 151 u32 tail_count; 152 u64 *sptes[PTE_LIST_EXT]; 153 }; 154 155 struct kvm_shadow_walk_iterator { 156 u64 addr; 157 hpa_t shadow_addr; 158 u64 *sptep; 159 int level; 160 unsigned index; 161 }; 162 163 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \ 164 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \ 165 (_root), (_addr)); \ 166 shadow_walk_okay(&(_walker)); \ 167 shadow_walk_next(&(_walker))) 168 169 #define for_each_shadow_entry(_vcpu, _addr, _walker) \ 170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 171 shadow_walk_okay(&(_walker)); \ 172 shadow_walk_next(&(_walker))) 173 174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \ 175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 176 shadow_walk_okay(&(_walker)) && \ 177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \ 178 __shadow_walk_next(&(_walker), spte)) 179 180 static struct kmem_cache *pte_list_desc_cache; 181 struct kmem_cache *mmu_page_header_cache; 182 static struct percpu_counter kvm_total_used_mmu_pages; 183 184 static void mmu_spte_set(u64 *sptep, u64 spte); 185 186 struct kvm_mmu_role_regs { 187 const unsigned long cr0; 188 const unsigned long cr4; 189 const u64 efer; 190 }; 191 192 #define CREATE_TRACE_POINTS 193 #include "mmutrace.h" 194 195 /* 196 * Yes, lot's of underscores. They're a hint that you probably shouldn't be 197 * reading from the role_regs. Once the root_role is constructed, it becomes 198 * the single source of truth for the MMU's state. 199 */ 200 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag) \ 201 static inline bool __maybe_unused \ 202 ____is_##reg##_##name(const struct kvm_mmu_role_regs *regs) \ 203 { \ 204 return !!(regs->reg & flag); \ 205 } 206 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG); 207 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP); 208 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE); 209 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE); 210 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP); 211 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP); 212 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE); 213 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57); 214 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX); 215 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA); 216 217 /* 218 * The MMU itself (with a valid role) is the single source of truth for the 219 * MMU. Do not use the regs used to build the MMU/role, nor the vCPU. The 220 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1, 221 * and the vCPU may be incorrect/irrelevant. 222 */ 223 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name) \ 224 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu) \ 225 { \ 226 return !!(mmu->cpu_role. base_or_ext . reg##_##name); \ 227 } 228 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp); 229 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pse); 230 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smep); 231 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smap); 232 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pke); 233 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, la57); 234 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx); 235 BUILD_MMU_ROLE_ACCESSOR(ext, efer, lma); 236 237 static inline bool is_cr0_pg(struct kvm_mmu *mmu) 238 { 239 return mmu->cpu_role.base.level > 0; 240 } 241 242 static inline bool is_cr4_pae(struct kvm_mmu *mmu) 243 { 244 return !mmu->cpu_role.base.has_4_byte_gpte; 245 } 246 247 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu) 248 { 249 struct kvm_mmu_role_regs regs = { 250 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS), 251 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS), 252 .efer = vcpu->arch.efer, 253 }; 254 255 return regs; 256 } 257 258 static unsigned long get_guest_cr3(struct kvm_vcpu *vcpu) 259 { 260 return kvm_read_cr3(vcpu); 261 } 262 263 static inline unsigned long kvm_mmu_get_guest_pgd(struct kvm_vcpu *vcpu, 264 struct kvm_mmu *mmu) 265 { 266 if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && mmu->get_guest_pgd == get_guest_cr3) 267 return kvm_read_cr3(vcpu); 268 269 return mmu->get_guest_pgd(vcpu); 270 } 271 272 static inline bool kvm_available_flush_remote_tlbs_range(void) 273 { 274 #if IS_ENABLED(CONFIG_HYPERV) 275 return kvm_x86_ops.flush_remote_tlbs_range; 276 #else 277 return false; 278 #endif 279 } 280 281 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index); 282 283 /* Flush the range of guest memory mapped by the given SPTE. */ 284 static void kvm_flush_remote_tlbs_sptep(struct kvm *kvm, u64 *sptep) 285 { 286 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 287 gfn_t gfn = kvm_mmu_page_get_gfn(sp, spte_index(sptep)); 288 289 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level); 290 } 291 292 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn, 293 unsigned int access) 294 { 295 u64 spte = make_mmio_spte(vcpu, gfn, access); 296 297 trace_mark_mmio_spte(sptep, gfn, spte); 298 mmu_spte_set(sptep, spte); 299 } 300 301 static gfn_t get_mmio_spte_gfn(u64 spte) 302 { 303 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask; 304 305 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN) 306 & shadow_nonpresent_or_rsvd_mask; 307 308 return gpa >> PAGE_SHIFT; 309 } 310 311 static unsigned get_mmio_spte_access(u64 spte) 312 { 313 return spte & shadow_mmio_access_mask; 314 } 315 316 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte) 317 { 318 u64 kvm_gen, spte_gen, gen; 319 320 gen = kvm_vcpu_memslots(vcpu)->generation; 321 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS)) 322 return false; 323 324 kvm_gen = gen & MMIO_SPTE_GEN_MASK; 325 spte_gen = get_mmio_spte_generation(spte); 326 327 trace_check_mmio_spte(spte, kvm_gen, spte_gen); 328 return likely(kvm_gen == spte_gen); 329 } 330 331 static int is_cpuid_PSE36(void) 332 { 333 return 1; 334 } 335 336 #ifdef CONFIG_X86_64 337 static void __set_spte(u64 *sptep, u64 spte) 338 { 339 KVM_MMU_WARN_ON(is_ept_ve_possible(spte)); 340 WRITE_ONCE(*sptep, spte); 341 } 342 343 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 344 { 345 KVM_MMU_WARN_ON(is_ept_ve_possible(spte)); 346 WRITE_ONCE(*sptep, spte); 347 } 348 349 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 350 { 351 KVM_MMU_WARN_ON(is_ept_ve_possible(spte)); 352 return xchg(sptep, spte); 353 } 354 355 static u64 __get_spte_lockless(u64 *sptep) 356 { 357 return READ_ONCE(*sptep); 358 } 359 #else 360 union split_spte { 361 struct { 362 u32 spte_low; 363 u32 spte_high; 364 }; 365 u64 spte; 366 }; 367 368 static void count_spte_clear(u64 *sptep, u64 spte) 369 { 370 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 371 372 if (is_shadow_present_pte(spte)) 373 return; 374 375 /* Ensure the spte is completely set before we increase the count */ 376 smp_wmb(); 377 sp->clear_spte_count++; 378 } 379 380 static void __set_spte(u64 *sptep, u64 spte) 381 { 382 union split_spte *ssptep, sspte; 383 384 ssptep = (union split_spte *)sptep; 385 sspte = (union split_spte)spte; 386 387 ssptep->spte_high = sspte.spte_high; 388 389 /* 390 * If we map the spte from nonpresent to present, We should store 391 * the high bits firstly, then set present bit, so cpu can not 392 * fetch this spte while we are setting the spte. 393 */ 394 smp_wmb(); 395 396 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 397 } 398 399 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 400 { 401 union split_spte *ssptep, sspte; 402 403 ssptep = (union split_spte *)sptep; 404 sspte = (union split_spte)spte; 405 406 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 407 408 /* 409 * If we map the spte from present to nonpresent, we should clear 410 * present bit firstly to avoid vcpu fetch the old high bits. 411 */ 412 smp_wmb(); 413 414 ssptep->spte_high = sspte.spte_high; 415 count_spte_clear(sptep, spte); 416 } 417 418 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 419 { 420 union split_spte *ssptep, sspte, orig; 421 422 ssptep = (union split_spte *)sptep; 423 sspte = (union split_spte)spte; 424 425 /* xchg acts as a barrier before the setting of the high bits */ 426 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); 427 orig.spte_high = ssptep->spte_high; 428 ssptep->spte_high = sspte.spte_high; 429 count_spte_clear(sptep, spte); 430 431 return orig.spte; 432 } 433 434 /* 435 * The idea using the light way get the spte on x86_32 guest is from 436 * gup_get_pte (mm/gup.c). 437 * 438 * An spte tlb flush may be pending, because they are coalesced and 439 * we are running out of the MMU lock. Therefore 440 * we need to protect against in-progress updates of the spte. 441 * 442 * Reading the spte while an update is in progress may get the old value 443 * for the high part of the spte. The race is fine for a present->non-present 444 * change (because the high part of the spte is ignored for non-present spte), 445 * but for a present->present change we must reread the spte. 446 * 447 * All such changes are done in two steps (present->non-present and 448 * non-present->present), hence it is enough to count the number of 449 * present->non-present updates: if it changed while reading the spte, 450 * we might have hit the race. This is done using clear_spte_count. 451 */ 452 static u64 __get_spte_lockless(u64 *sptep) 453 { 454 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 455 union split_spte spte, *orig = (union split_spte *)sptep; 456 int count; 457 458 retry: 459 count = sp->clear_spte_count; 460 smp_rmb(); 461 462 spte.spte_low = orig->spte_low; 463 smp_rmb(); 464 465 spte.spte_high = orig->spte_high; 466 smp_rmb(); 467 468 if (unlikely(spte.spte_low != orig->spte_low || 469 count != sp->clear_spte_count)) 470 goto retry; 471 472 return spte.spte; 473 } 474 #endif 475 476 /* Rules for using mmu_spte_set: 477 * Set the sptep from nonpresent to present. 478 * Note: the sptep being assigned *must* be either not present 479 * or in a state where the hardware will not attempt to update 480 * the spte. 481 */ 482 static void mmu_spte_set(u64 *sptep, u64 new_spte) 483 { 484 WARN_ON_ONCE(is_shadow_present_pte(*sptep)); 485 __set_spte(sptep, new_spte); 486 } 487 488 /* 489 * Update the SPTE (excluding the PFN), but do not track changes in its 490 * accessed/dirty status. 491 */ 492 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte) 493 { 494 u64 old_spte = *sptep; 495 496 WARN_ON_ONCE(!is_shadow_present_pte(new_spte)); 497 check_spte_writable_invariants(new_spte); 498 499 if (!is_shadow_present_pte(old_spte)) { 500 mmu_spte_set(sptep, new_spte); 501 return old_spte; 502 } 503 504 if (!spte_has_volatile_bits(old_spte)) 505 __update_clear_spte_fast(sptep, new_spte); 506 else 507 old_spte = __update_clear_spte_slow(sptep, new_spte); 508 509 WARN_ON_ONCE(spte_to_pfn(old_spte) != spte_to_pfn(new_spte)); 510 511 return old_spte; 512 } 513 514 /* Rules for using mmu_spte_update: 515 * Update the state bits, it means the mapped pfn is not changed. 516 * 517 * Whenever an MMU-writable SPTE is overwritten with a read-only SPTE, remote 518 * TLBs must be flushed. Otherwise rmap_write_protect will find a read-only 519 * spte, even though the writable spte might be cached on a CPU's TLB. 520 * 521 * Returns true if the TLB needs to be flushed 522 */ 523 static bool mmu_spte_update(u64 *sptep, u64 new_spte) 524 { 525 bool flush = false; 526 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte); 527 528 if (!is_shadow_present_pte(old_spte)) 529 return false; 530 531 /* 532 * For the spte updated out of mmu-lock is safe, since 533 * we always atomically update it, see the comments in 534 * spte_has_volatile_bits(). 535 */ 536 if (is_mmu_writable_spte(old_spte) && 537 !is_writable_pte(new_spte)) 538 flush = true; 539 540 /* 541 * Flush TLB when accessed/dirty states are changed in the page tables, 542 * to guarantee consistency between TLB and page tables. 543 */ 544 545 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) { 546 flush = true; 547 kvm_set_pfn_accessed(spte_to_pfn(old_spte)); 548 } 549 550 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) { 551 flush = true; 552 kvm_set_pfn_dirty(spte_to_pfn(old_spte)); 553 } 554 555 return flush; 556 } 557 558 /* 559 * Rules for using mmu_spte_clear_track_bits: 560 * It sets the sptep from present to nonpresent, and track the 561 * state bits, it is used to clear the last level sptep. 562 * Returns the old PTE. 563 */ 564 static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep) 565 { 566 kvm_pfn_t pfn; 567 u64 old_spte = *sptep; 568 int level = sptep_to_sp(sptep)->role.level; 569 struct page *page; 570 571 if (!is_shadow_present_pte(old_spte) || 572 !spte_has_volatile_bits(old_spte)) 573 __update_clear_spte_fast(sptep, SHADOW_NONPRESENT_VALUE); 574 else 575 old_spte = __update_clear_spte_slow(sptep, SHADOW_NONPRESENT_VALUE); 576 577 if (!is_shadow_present_pte(old_spte)) 578 return old_spte; 579 580 kvm_update_page_stats(kvm, level, -1); 581 582 pfn = spte_to_pfn(old_spte); 583 584 /* 585 * KVM doesn't hold a reference to any pages mapped into the guest, and 586 * instead uses the mmu_notifier to ensure that KVM unmaps any pages 587 * before they are reclaimed. Sanity check that, if the pfn is backed 588 * by a refcounted page, the refcount is elevated. 589 */ 590 page = kvm_pfn_to_refcounted_page(pfn); 591 WARN_ON_ONCE(page && !page_count(page)); 592 593 if (is_accessed_spte(old_spte)) 594 kvm_set_pfn_accessed(pfn); 595 596 if (is_dirty_spte(old_spte)) 597 kvm_set_pfn_dirty(pfn); 598 599 return old_spte; 600 } 601 602 /* 603 * Rules for using mmu_spte_clear_no_track: 604 * Directly clear spte without caring the state bits of sptep, 605 * it is used to set the upper level spte. 606 */ 607 static void mmu_spte_clear_no_track(u64 *sptep) 608 { 609 __update_clear_spte_fast(sptep, SHADOW_NONPRESENT_VALUE); 610 } 611 612 static u64 mmu_spte_get_lockless(u64 *sptep) 613 { 614 return __get_spte_lockless(sptep); 615 } 616 617 static inline bool is_tdp_mmu_active(struct kvm_vcpu *vcpu) 618 { 619 return tdp_mmu_enabled && vcpu->arch.mmu->root_role.direct; 620 } 621 622 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) 623 { 624 if (is_tdp_mmu_active(vcpu)) { 625 kvm_tdp_mmu_walk_lockless_begin(); 626 } else { 627 /* 628 * Prevent page table teardown by making any free-er wait during 629 * kvm_flush_remote_tlbs() IPI to all active vcpus. 630 */ 631 local_irq_disable(); 632 633 /* 634 * Make sure a following spte read is not reordered ahead of the write 635 * to vcpu->mode. 636 */ 637 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); 638 } 639 } 640 641 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) 642 { 643 if (is_tdp_mmu_active(vcpu)) { 644 kvm_tdp_mmu_walk_lockless_end(); 645 } else { 646 /* 647 * Make sure the write to vcpu->mode is not reordered in front of 648 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us 649 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. 650 */ 651 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); 652 local_irq_enable(); 653 } 654 } 655 656 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect) 657 { 658 int r; 659 660 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */ 661 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, 662 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM); 663 if (r) 664 return r; 665 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache, 666 PT64_ROOT_MAX_LEVEL); 667 if (r) 668 return r; 669 if (maybe_indirect) { 670 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadowed_info_cache, 671 PT64_ROOT_MAX_LEVEL); 672 if (r) 673 return r; 674 } 675 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, 676 PT64_ROOT_MAX_LEVEL); 677 } 678 679 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) 680 { 681 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache); 682 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache); 683 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadowed_info_cache); 684 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache); 685 } 686 687 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) 688 { 689 kmem_cache_free(pte_list_desc_cache, pte_list_desc); 690 } 691 692 static bool sp_has_gptes(struct kvm_mmu_page *sp); 693 694 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) 695 { 696 if (sp->role.passthrough) 697 return sp->gfn; 698 699 if (sp->shadowed_translation) 700 return sp->shadowed_translation[index] >> PAGE_SHIFT; 701 702 return sp->gfn + (index << ((sp->role.level - 1) * SPTE_LEVEL_BITS)); 703 } 704 705 /* 706 * For leaf SPTEs, fetch the *guest* access permissions being shadowed. Note 707 * that the SPTE itself may have a more constrained access permissions that 708 * what the guest enforces. For example, a guest may create an executable 709 * huge PTE but KVM may disallow execution to mitigate iTLB multihit. 710 */ 711 static u32 kvm_mmu_page_get_access(struct kvm_mmu_page *sp, int index) 712 { 713 if (sp->shadowed_translation) 714 return sp->shadowed_translation[index] & ACC_ALL; 715 716 /* 717 * For direct MMUs (e.g. TDP or non-paging guests) or passthrough SPs, 718 * KVM is not shadowing any guest page tables, so the "guest access 719 * permissions" are just ACC_ALL. 720 * 721 * For direct SPs in indirect MMUs (shadow paging), i.e. when KVM 722 * is shadowing a guest huge page with small pages, the guest access 723 * permissions being shadowed are the access permissions of the huge 724 * page. 725 * 726 * In both cases, sp->role.access contains the correct access bits. 727 */ 728 return sp->role.access; 729 } 730 731 static void kvm_mmu_page_set_translation(struct kvm_mmu_page *sp, int index, 732 gfn_t gfn, unsigned int access) 733 { 734 if (sp->shadowed_translation) { 735 sp->shadowed_translation[index] = (gfn << PAGE_SHIFT) | access; 736 return; 737 } 738 739 WARN_ONCE(access != kvm_mmu_page_get_access(sp, index), 740 "access mismatch under %s page %llx (expected %u, got %u)\n", 741 sp->role.passthrough ? "passthrough" : "direct", 742 sp->gfn, kvm_mmu_page_get_access(sp, index), access); 743 744 WARN_ONCE(gfn != kvm_mmu_page_get_gfn(sp, index), 745 "gfn mismatch under %s page %llx (expected %llx, got %llx)\n", 746 sp->role.passthrough ? "passthrough" : "direct", 747 sp->gfn, kvm_mmu_page_get_gfn(sp, index), gfn); 748 } 749 750 static void kvm_mmu_page_set_access(struct kvm_mmu_page *sp, int index, 751 unsigned int access) 752 { 753 gfn_t gfn = kvm_mmu_page_get_gfn(sp, index); 754 755 kvm_mmu_page_set_translation(sp, index, gfn, access); 756 } 757 758 /* 759 * Return the pointer to the large page information for a given gfn, 760 * handling slots that are not large page aligned. 761 */ 762 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, 763 const struct kvm_memory_slot *slot, int level) 764 { 765 unsigned long idx; 766 767 idx = gfn_to_index(gfn, slot->base_gfn, level); 768 return &slot->arch.lpage_info[level - 2][idx]; 769 } 770 771 /* 772 * The most significant bit in disallow_lpage tracks whether or not memory 773 * attributes are mixed, i.e. not identical for all gfns at the current level. 774 * The lower order bits are used to refcount other cases where a hugepage is 775 * disallowed, e.g. if KVM has shadow a page table at the gfn. 776 */ 777 #define KVM_LPAGE_MIXED_FLAG BIT(31) 778 779 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot, 780 gfn_t gfn, int count) 781 { 782 struct kvm_lpage_info *linfo; 783 int old, i; 784 785 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 786 linfo = lpage_info_slot(gfn, slot, i); 787 788 old = linfo->disallow_lpage; 789 linfo->disallow_lpage += count; 790 WARN_ON_ONCE((old ^ linfo->disallow_lpage) & KVM_LPAGE_MIXED_FLAG); 791 } 792 } 793 794 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 795 { 796 update_gfn_disallow_lpage_count(slot, gfn, 1); 797 } 798 799 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 800 { 801 update_gfn_disallow_lpage_count(slot, gfn, -1); 802 } 803 804 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 805 { 806 struct kvm_memslots *slots; 807 struct kvm_memory_slot *slot; 808 gfn_t gfn; 809 810 kvm->arch.indirect_shadow_pages++; 811 /* 812 * Ensure indirect_shadow_pages is elevated prior to re-reading guest 813 * child PTEs in FNAME(gpte_changed), i.e. guarantee either in-flight 814 * emulated writes are visible before re-reading guest PTEs, or that 815 * an emulated write will see the elevated count and acquire mmu_lock 816 * to update SPTEs. Pairs with the smp_mb() in kvm_mmu_track_write(). 817 */ 818 smp_mb(); 819 820 gfn = sp->gfn; 821 slots = kvm_memslots_for_spte_role(kvm, sp->role); 822 slot = __gfn_to_memslot(slots, gfn); 823 824 /* the non-leaf shadow pages are keeping readonly. */ 825 if (sp->role.level > PG_LEVEL_4K) 826 return __kvm_write_track_add_gfn(kvm, slot, gfn); 827 828 kvm_mmu_gfn_disallow_lpage(slot, gfn); 829 830 if (kvm_mmu_slot_gfn_write_protect(kvm, slot, gfn, PG_LEVEL_4K)) 831 kvm_flush_remote_tlbs_gfn(kvm, gfn, PG_LEVEL_4K); 832 } 833 834 void track_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 835 { 836 /* 837 * If it's possible to replace the shadow page with an NX huge page, 838 * i.e. if the shadow page is the only thing currently preventing KVM 839 * from using a huge page, add the shadow page to the list of "to be 840 * zapped for NX recovery" pages. Note, the shadow page can already be 841 * on the list if KVM is reusing an existing shadow page, i.e. if KVM 842 * links a shadow page at multiple points. 843 */ 844 if (!list_empty(&sp->possible_nx_huge_page_link)) 845 return; 846 847 ++kvm->stat.nx_lpage_splits; 848 list_add_tail(&sp->possible_nx_huge_page_link, 849 &kvm->arch.possible_nx_huge_pages); 850 } 851 852 static void account_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp, 853 bool nx_huge_page_possible) 854 { 855 sp->nx_huge_page_disallowed = true; 856 857 if (nx_huge_page_possible) 858 track_possible_nx_huge_page(kvm, sp); 859 } 860 861 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 862 { 863 struct kvm_memslots *slots; 864 struct kvm_memory_slot *slot; 865 gfn_t gfn; 866 867 kvm->arch.indirect_shadow_pages--; 868 gfn = sp->gfn; 869 slots = kvm_memslots_for_spte_role(kvm, sp->role); 870 slot = __gfn_to_memslot(slots, gfn); 871 if (sp->role.level > PG_LEVEL_4K) 872 return __kvm_write_track_remove_gfn(kvm, slot, gfn); 873 874 kvm_mmu_gfn_allow_lpage(slot, gfn); 875 } 876 877 void untrack_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 878 { 879 if (list_empty(&sp->possible_nx_huge_page_link)) 880 return; 881 882 --kvm->stat.nx_lpage_splits; 883 list_del_init(&sp->possible_nx_huge_page_link); 884 } 885 886 static void unaccount_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 887 { 888 sp->nx_huge_page_disallowed = false; 889 890 untrack_possible_nx_huge_page(kvm, sp); 891 } 892 893 static struct kvm_memory_slot *gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, 894 gfn_t gfn, 895 bool no_dirty_log) 896 { 897 struct kvm_memory_slot *slot; 898 899 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 900 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 901 return NULL; 902 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot)) 903 return NULL; 904 905 return slot; 906 } 907 908 /* 909 * About rmap_head encoding: 910 * 911 * If the bit zero of rmap_head->val is clear, then it points to the only spte 912 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct 913 * pte_list_desc containing more mappings. 914 */ 915 #define KVM_RMAP_MANY BIT(0) 916 917 /* 918 * Returns the number of pointers in the rmap chain, not counting the new one. 919 */ 920 static int pte_list_add(struct kvm_mmu_memory_cache *cache, u64 *spte, 921 struct kvm_rmap_head *rmap_head) 922 { 923 struct pte_list_desc *desc; 924 int count = 0; 925 926 if (!rmap_head->val) { 927 rmap_head->val = (unsigned long)spte; 928 } else if (!(rmap_head->val & KVM_RMAP_MANY)) { 929 desc = kvm_mmu_memory_cache_alloc(cache); 930 desc->sptes[0] = (u64 *)rmap_head->val; 931 desc->sptes[1] = spte; 932 desc->spte_count = 2; 933 desc->tail_count = 0; 934 rmap_head->val = (unsigned long)desc | KVM_RMAP_MANY; 935 ++count; 936 } else { 937 desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); 938 count = desc->tail_count + desc->spte_count; 939 940 /* 941 * If the previous head is full, allocate a new head descriptor 942 * as tail descriptors are always kept full. 943 */ 944 if (desc->spte_count == PTE_LIST_EXT) { 945 desc = kvm_mmu_memory_cache_alloc(cache); 946 desc->more = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); 947 desc->spte_count = 0; 948 desc->tail_count = count; 949 rmap_head->val = (unsigned long)desc | KVM_RMAP_MANY; 950 } 951 desc->sptes[desc->spte_count++] = spte; 952 } 953 return count; 954 } 955 956 static void pte_list_desc_remove_entry(struct kvm *kvm, 957 struct kvm_rmap_head *rmap_head, 958 struct pte_list_desc *desc, int i) 959 { 960 struct pte_list_desc *head_desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); 961 int j = head_desc->spte_count - 1; 962 963 /* 964 * The head descriptor should never be empty. A new head is added only 965 * when adding an entry and the previous head is full, and heads are 966 * removed (this flow) when they become empty. 967 */ 968 KVM_BUG_ON_DATA_CORRUPTION(j < 0, kvm); 969 970 /* 971 * Replace the to-be-freed SPTE with the last valid entry from the head 972 * descriptor to ensure that tail descriptors are full at all times. 973 * Note, this also means that tail_count is stable for each descriptor. 974 */ 975 desc->sptes[i] = head_desc->sptes[j]; 976 head_desc->sptes[j] = NULL; 977 head_desc->spte_count--; 978 if (head_desc->spte_count) 979 return; 980 981 /* 982 * The head descriptor is empty. If there are no tail descriptors, 983 * nullify the rmap head to mark the list as empty, else point the rmap 984 * head at the next descriptor, i.e. the new head. 985 */ 986 if (!head_desc->more) 987 rmap_head->val = 0; 988 else 989 rmap_head->val = (unsigned long)head_desc->more | KVM_RMAP_MANY; 990 mmu_free_pte_list_desc(head_desc); 991 } 992 993 static void pte_list_remove(struct kvm *kvm, u64 *spte, 994 struct kvm_rmap_head *rmap_head) 995 { 996 struct pte_list_desc *desc; 997 int i; 998 999 if (KVM_BUG_ON_DATA_CORRUPTION(!rmap_head->val, kvm)) 1000 return; 1001 1002 if (!(rmap_head->val & KVM_RMAP_MANY)) { 1003 if (KVM_BUG_ON_DATA_CORRUPTION((u64 *)rmap_head->val != spte, kvm)) 1004 return; 1005 1006 rmap_head->val = 0; 1007 } else { 1008 desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); 1009 while (desc) { 1010 for (i = 0; i < desc->spte_count; ++i) { 1011 if (desc->sptes[i] == spte) { 1012 pte_list_desc_remove_entry(kvm, rmap_head, 1013 desc, i); 1014 return; 1015 } 1016 } 1017 desc = desc->more; 1018 } 1019 1020 KVM_BUG_ON_DATA_CORRUPTION(true, kvm); 1021 } 1022 } 1023 1024 static void kvm_zap_one_rmap_spte(struct kvm *kvm, 1025 struct kvm_rmap_head *rmap_head, u64 *sptep) 1026 { 1027 mmu_spte_clear_track_bits(kvm, sptep); 1028 pte_list_remove(kvm, sptep, rmap_head); 1029 } 1030 1031 /* Return true if at least one SPTE was zapped, false otherwise */ 1032 static bool kvm_zap_all_rmap_sptes(struct kvm *kvm, 1033 struct kvm_rmap_head *rmap_head) 1034 { 1035 struct pte_list_desc *desc, *next; 1036 int i; 1037 1038 if (!rmap_head->val) 1039 return false; 1040 1041 if (!(rmap_head->val & KVM_RMAP_MANY)) { 1042 mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val); 1043 goto out; 1044 } 1045 1046 desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); 1047 1048 for (; desc; desc = next) { 1049 for (i = 0; i < desc->spte_count; i++) 1050 mmu_spte_clear_track_bits(kvm, desc->sptes[i]); 1051 next = desc->more; 1052 mmu_free_pte_list_desc(desc); 1053 } 1054 out: 1055 /* rmap_head is meaningless now, remember to reset it */ 1056 rmap_head->val = 0; 1057 return true; 1058 } 1059 1060 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head) 1061 { 1062 struct pte_list_desc *desc; 1063 1064 if (!rmap_head->val) 1065 return 0; 1066 else if (!(rmap_head->val & KVM_RMAP_MANY)) 1067 return 1; 1068 1069 desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); 1070 return desc->tail_count + desc->spte_count; 1071 } 1072 1073 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level, 1074 const struct kvm_memory_slot *slot) 1075 { 1076 unsigned long idx; 1077 1078 idx = gfn_to_index(gfn, slot->base_gfn, level); 1079 return &slot->arch.rmap[level - PG_LEVEL_4K][idx]; 1080 } 1081 1082 static void rmap_remove(struct kvm *kvm, u64 *spte) 1083 { 1084 struct kvm_memslots *slots; 1085 struct kvm_memory_slot *slot; 1086 struct kvm_mmu_page *sp; 1087 gfn_t gfn; 1088 struct kvm_rmap_head *rmap_head; 1089 1090 sp = sptep_to_sp(spte); 1091 gfn = kvm_mmu_page_get_gfn(sp, spte_index(spte)); 1092 1093 /* 1094 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU 1095 * so we have to determine which memslots to use based on context 1096 * information in sp->role. 1097 */ 1098 slots = kvm_memslots_for_spte_role(kvm, sp->role); 1099 1100 slot = __gfn_to_memslot(slots, gfn); 1101 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1102 1103 pte_list_remove(kvm, spte, rmap_head); 1104 } 1105 1106 /* 1107 * Used by the following functions to iterate through the sptes linked by a 1108 * rmap. All fields are private and not assumed to be used outside. 1109 */ 1110 struct rmap_iterator { 1111 /* private fields */ 1112 struct pte_list_desc *desc; /* holds the sptep if not NULL */ 1113 int pos; /* index of the sptep */ 1114 }; 1115 1116 /* 1117 * Iteration must be started by this function. This should also be used after 1118 * removing/dropping sptes from the rmap link because in such cases the 1119 * information in the iterator may not be valid. 1120 * 1121 * Returns sptep if found, NULL otherwise. 1122 */ 1123 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head, 1124 struct rmap_iterator *iter) 1125 { 1126 u64 *sptep; 1127 1128 if (!rmap_head->val) 1129 return NULL; 1130 1131 if (!(rmap_head->val & KVM_RMAP_MANY)) { 1132 iter->desc = NULL; 1133 sptep = (u64 *)rmap_head->val; 1134 goto out; 1135 } 1136 1137 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); 1138 iter->pos = 0; 1139 sptep = iter->desc->sptes[iter->pos]; 1140 out: 1141 BUG_ON(!is_shadow_present_pte(*sptep)); 1142 return sptep; 1143 } 1144 1145 /* 1146 * Must be used with a valid iterator: e.g. after rmap_get_first(). 1147 * 1148 * Returns sptep if found, NULL otherwise. 1149 */ 1150 static u64 *rmap_get_next(struct rmap_iterator *iter) 1151 { 1152 u64 *sptep; 1153 1154 if (iter->desc) { 1155 if (iter->pos < PTE_LIST_EXT - 1) { 1156 ++iter->pos; 1157 sptep = iter->desc->sptes[iter->pos]; 1158 if (sptep) 1159 goto out; 1160 } 1161 1162 iter->desc = iter->desc->more; 1163 1164 if (iter->desc) { 1165 iter->pos = 0; 1166 /* desc->sptes[0] cannot be NULL */ 1167 sptep = iter->desc->sptes[iter->pos]; 1168 goto out; 1169 } 1170 } 1171 1172 return NULL; 1173 out: 1174 BUG_ON(!is_shadow_present_pte(*sptep)); 1175 return sptep; 1176 } 1177 1178 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \ 1179 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \ 1180 _spte_; _spte_ = rmap_get_next(_iter_)) 1181 1182 static void drop_spte(struct kvm *kvm, u64 *sptep) 1183 { 1184 u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep); 1185 1186 if (is_shadow_present_pte(old_spte)) 1187 rmap_remove(kvm, sptep); 1188 } 1189 1190 static void drop_large_spte(struct kvm *kvm, u64 *sptep, bool flush) 1191 { 1192 struct kvm_mmu_page *sp; 1193 1194 sp = sptep_to_sp(sptep); 1195 WARN_ON_ONCE(sp->role.level == PG_LEVEL_4K); 1196 1197 drop_spte(kvm, sptep); 1198 1199 if (flush) 1200 kvm_flush_remote_tlbs_sptep(kvm, sptep); 1201 } 1202 1203 /* 1204 * Write-protect on the specified @sptep, @pt_protect indicates whether 1205 * spte write-protection is caused by protecting shadow page table. 1206 * 1207 * Note: write protection is difference between dirty logging and spte 1208 * protection: 1209 * - for dirty logging, the spte can be set to writable at anytime if 1210 * its dirty bitmap is properly set. 1211 * - for spte protection, the spte can be writable only after unsync-ing 1212 * shadow page. 1213 * 1214 * Return true if tlb need be flushed. 1215 */ 1216 static bool spte_write_protect(u64 *sptep, bool pt_protect) 1217 { 1218 u64 spte = *sptep; 1219 1220 if (!is_writable_pte(spte) && 1221 !(pt_protect && is_mmu_writable_spte(spte))) 1222 return false; 1223 1224 if (pt_protect) 1225 spte &= ~shadow_mmu_writable_mask; 1226 spte = spte & ~PT_WRITABLE_MASK; 1227 1228 return mmu_spte_update(sptep, spte); 1229 } 1230 1231 static bool rmap_write_protect(struct kvm_rmap_head *rmap_head, 1232 bool pt_protect) 1233 { 1234 u64 *sptep; 1235 struct rmap_iterator iter; 1236 bool flush = false; 1237 1238 for_each_rmap_spte(rmap_head, &iter, sptep) 1239 flush |= spte_write_protect(sptep, pt_protect); 1240 1241 return flush; 1242 } 1243 1244 static bool spte_clear_dirty(u64 *sptep) 1245 { 1246 u64 spte = *sptep; 1247 1248 KVM_MMU_WARN_ON(!spte_ad_enabled(spte)); 1249 spte &= ~shadow_dirty_mask; 1250 return mmu_spte_update(sptep, spte); 1251 } 1252 1253 static bool spte_wrprot_for_clear_dirty(u64 *sptep) 1254 { 1255 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT, 1256 (unsigned long *)sptep); 1257 if (was_writable && !spte_ad_enabled(*sptep)) 1258 kvm_set_pfn_dirty(spte_to_pfn(*sptep)); 1259 1260 return was_writable; 1261 } 1262 1263 /* 1264 * Gets the GFN ready for another round of dirty logging by clearing the 1265 * - D bit on ad-enabled SPTEs, and 1266 * - W bit on ad-disabled SPTEs. 1267 * Returns true iff any D or W bits were cleared. 1268 */ 1269 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1270 const struct kvm_memory_slot *slot) 1271 { 1272 u64 *sptep; 1273 struct rmap_iterator iter; 1274 bool flush = false; 1275 1276 for_each_rmap_spte(rmap_head, &iter, sptep) 1277 if (spte_ad_need_write_protect(*sptep)) 1278 flush |= spte_wrprot_for_clear_dirty(sptep); 1279 else 1280 flush |= spte_clear_dirty(sptep); 1281 1282 return flush; 1283 } 1284 1285 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 1286 struct kvm_memory_slot *slot, 1287 gfn_t gfn_offset, unsigned long mask) 1288 { 1289 struct kvm_rmap_head *rmap_head; 1290 1291 if (tdp_mmu_enabled) 1292 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1293 slot->base_gfn + gfn_offset, mask, true); 1294 1295 if (!kvm_memslots_have_rmaps(kvm)) 1296 return; 1297 1298 while (mask) { 1299 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1300 PG_LEVEL_4K, slot); 1301 rmap_write_protect(rmap_head, false); 1302 1303 /* clear the first set bit */ 1304 mask &= mask - 1; 1305 } 1306 } 1307 1308 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1309 struct kvm_memory_slot *slot, 1310 gfn_t gfn_offset, unsigned long mask) 1311 { 1312 struct kvm_rmap_head *rmap_head; 1313 1314 if (tdp_mmu_enabled) 1315 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1316 slot->base_gfn + gfn_offset, mask, false); 1317 1318 if (!kvm_memslots_have_rmaps(kvm)) 1319 return; 1320 1321 while (mask) { 1322 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1323 PG_LEVEL_4K, slot); 1324 __rmap_clear_dirty(kvm, rmap_head, slot); 1325 1326 /* clear the first set bit */ 1327 mask &= mask - 1; 1328 } 1329 } 1330 1331 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1332 struct kvm_memory_slot *slot, 1333 gfn_t gfn_offset, unsigned long mask) 1334 { 1335 /* 1336 * If the slot was assumed to be "initially all dirty", write-protect 1337 * huge pages to ensure they are split to 4KiB on the first write (KVM 1338 * dirty logs at 4KiB granularity). If eager page splitting is enabled, 1339 * immediately try to split huge pages, e.g. so that vCPUs don't get 1340 * saddled with the cost of splitting. 1341 * 1342 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn 1343 * of memslot has no such restriction, so the range can cross two large 1344 * pages. 1345 */ 1346 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) { 1347 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask); 1348 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask); 1349 1350 if (READ_ONCE(eager_page_split)) 1351 kvm_mmu_try_split_huge_pages(kvm, slot, start, end + 1, PG_LEVEL_4K); 1352 1353 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M); 1354 1355 /* Cross two large pages? */ 1356 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) != 1357 ALIGN(end << PAGE_SHIFT, PMD_SIZE)) 1358 kvm_mmu_slot_gfn_write_protect(kvm, slot, end, 1359 PG_LEVEL_2M); 1360 } 1361 1362 /* 1363 * (Re)Enable dirty logging for all 4KiB SPTEs that map the GFNs in 1364 * mask. If PML is enabled and the GFN doesn't need to be write- 1365 * protected for other reasons, e.g. shadow paging, clear the Dirty bit. 1366 * Otherwise clear the Writable bit. 1367 * 1368 * Note that kvm_mmu_clear_dirty_pt_masked() is called whenever PML is 1369 * enabled but it chooses between clearing the Dirty bit and Writeable 1370 * bit based on the context. 1371 */ 1372 if (kvm_x86_ops.cpu_dirty_log_size) 1373 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask); 1374 else 1375 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 1376 } 1377 1378 int kvm_cpu_dirty_log_size(void) 1379 { 1380 return kvm_x86_ops.cpu_dirty_log_size; 1381 } 1382 1383 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, 1384 struct kvm_memory_slot *slot, u64 gfn, 1385 int min_level) 1386 { 1387 struct kvm_rmap_head *rmap_head; 1388 int i; 1389 bool write_protected = false; 1390 1391 if (kvm_memslots_have_rmaps(kvm)) { 1392 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 1393 rmap_head = gfn_to_rmap(gfn, i, slot); 1394 write_protected |= rmap_write_protect(rmap_head, true); 1395 } 1396 } 1397 1398 if (tdp_mmu_enabled) 1399 write_protected |= 1400 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level); 1401 1402 return write_protected; 1403 } 1404 1405 static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn) 1406 { 1407 struct kvm_memory_slot *slot; 1408 1409 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1410 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K); 1411 } 1412 1413 static bool kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1414 const struct kvm_memory_slot *slot) 1415 { 1416 return kvm_zap_all_rmap_sptes(kvm, rmap_head); 1417 } 1418 1419 struct slot_rmap_walk_iterator { 1420 /* input fields. */ 1421 const struct kvm_memory_slot *slot; 1422 gfn_t start_gfn; 1423 gfn_t end_gfn; 1424 int start_level; 1425 int end_level; 1426 1427 /* output fields. */ 1428 gfn_t gfn; 1429 struct kvm_rmap_head *rmap; 1430 int level; 1431 1432 /* private field. */ 1433 struct kvm_rmap_head *end_rmap; 1434 }; 1435 1436 static void rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, 1437 int level) 1438 { 1439 iterator->level = level; 1440 iterator->gfn = iterator->start_gfn; 1441 iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot); 1442 iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot); 1443 } 1444 1445 static void slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator, 1446 const struct kvm_memory_slot *slot, 1447 int start_level, int end_level, 1448 gfn_t start_gfn, gfn_t end_gfn) 1449 { 1450 iterator->slot = slot; 1451 iterator->start_level = start_level; 1452 iterator->end_level = end_level; 1453 iterator->start_gfn = start_gfn; 1454 iterator->end_gfn = end_gfn; 1455 1456 rmap_walk_init_level(iterator, iterator->start_level); 1457 } 1458 1459 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator) 1460 { 1461 return !!iterator->rmap; 1462 } 1463 1464 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) 1465 { 1466 while (++iterator->rmap <= iterator->end_rmap) { 1467 iterator->gfn += KVM_PAGES_PER_HPAGE(iterator->level); 1468 1469 if (iterator->rmap->val) 1470 return; 1471 } 1472 1473 if (++iterator->level > iterator->end_level) { 1474 iterator->rmap = NULL; 1475 return; 1476 } 1477 1478 rmap_walk_init_level(iterator, iterator->level); 1479 } 1480 1481 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \ 1482 _start_gfn, _end_gfn, _iter_) \ 1483 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \ 1484 _end_level_, _start_gfn, _end_gfn); \ 1485 slot_rmap_walk_okay(_iter_); \ 1486 slot_rmap_walk_next(_iter_)) 1487 1488 /* The return value indicates if tlb flush on all vcpus is needed. */ 1489 typedef bool (*slot_rmaps_handler) (struct kvm *kvm, 1490 struct kvm_rmap_head *rmap_head, 1491 const struct kvm_memory_slot *slot); 1492 1493 static __always_inline bool __walk_slot_rmaps(struct kvm *kvm, 1494 const struct kvm_memory_slot *slot, 1495 slot_rmaps_handler fn, 1496 int start_level, int end_level, 1497 gfn_t start_gfn, gfn_t end_gfn, 1498 bool can_yield, bool flush_on_yield, 1499 bool flush) 1500 { 1501 struct slot_rmap_walk_iterator iterator; 1502 1503 lockdep_assert_held_write(&kvm->mmu_lock); 1504 1505 for_each_slot_rmap_range(slot, start_level, end_level, start_gfn, 1506 end_gfn, &iterator) { 1507 if (iterator.rmap) 1508 flush |= fn(kvm, iterator.rmap, slot); 1509 1510 if (!can_yield) 1511 continue; 1512 1513 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 1514 if (flush && flush_on_yield) { 1515 kvm_flush_remote_tlbs_range(kvm, start_gfn, 1516 iterator.gfn - start_gfn + 1); 1517 flush = false; 1518 } 1519 cond_resched_rwlock_write(&kvm->mmu_lock); 1520 } 1521 } 1522 1523 return flush; 1524 } 1525 1526 static __always_inline bool walk_slot_rmaps(struct kvm *kvm, 1527 const struct kvm_memory_slot *slot, 1528 slot_rmaps_handler fn, 1529 int start_level, int end_level, 1530 bool flush_on_yield) 1531 { 1532 return __walk_slot_rmaps(kvm, slot, fn, start_level, end_level, 1533 slot->base_gfn, slot->base_gfn + slot->npages - 1, 1534 true, flush_on_yield, false); 1535 } 1536 1537 static __always_inline bool walk_slot_rmaps_4k(struct kvm *kvm, 1538 const struct kvm_memory_slot *slot, 1539 slot_rmaps_handler fn, 1540 bool flush_on_yield) 1541 { 1542 return walk_slot_rmaps(kvm, slot, fn, PG_LEVEL_4K, PG_LEVEL_4K, flush_on_yield); 1543 } 1544 1545 static bool __kvm_rmap_zap_gfn_range(struct kvm *kvm, 1546 const struct kvm_memory_slot *slot, 1547 gfn_t start, gfn_t end, bool can_yield, 1548 bool flush) 1549 { 1550 return __walk_slot_rmaps(kvm, slot, kvm_zap_rmap, 1551 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 1552 start, end - 1, can_yield, true, flush); 1553 } 1554 1555 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1556 { 1557 bool flush = false; 1558 1559 /* 1560 * To prevent races with vCPUs faulting in a gfn using stale data, 1561 * zapping a gfn range must be protected by mmu_invalidate_in_progress 1562 * (and mmu_invalidate_seq). The only exception is memslot deletion; 1563 * in that case, SRCU synchronization ensures that SPTEs are zapped 1564 * after all vCPUs have unlocked SRCU, guaranteeing that vCPUs see the 1565 * invalid slot. 1566 */ 1567 lockdep_assert_once(kvm->mmu_invalidate_in_progress || 1568 lockdep_is_held(&kvm->slots_lock)); 1569 1570 if (kvm_memslots_have_rmaps(kvm)) 1571 flush = __kvm_rmap_zap_gfn_range(kvm, range->slot, 1572 range->start, range->end, 1573 range->may_block, flush); 1574 1575 if (tdp_mmu_enabled) 1576 flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush); 1577 1578 if (kvm_x86_ops.set_apic_access_page_addr && 1579 range->slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT) 1580 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 1581 1582 return flush; 1583 } 1584 1585 #define RMAP_RECYCLE_THRESHOLD 1000 1586 1587 static void __rmap_add(struct kvm *kvm, 1588 struct kvm_mmu_memory_cache *cache, 1589 const struct kvm_memory_slot *slot, 1590 u64 *spte, gfn_t gfn, unsigned int access) 1591 { 1592 struct kvm_mmu_page *sp; 1593 struct kvm_rmap_head *rmap_head; 1594 int rmap_count; 1595 1596 sp = sptep_to_sp(spte); 1597 kvm_mmu_page_set_translation(sp, spte_index(spte), gfn, access); 1598 kvm_update_page_stats(kvm, sp->role.level, 1); 1599 1600 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1601 rmap_count = pte_list_add(cache, spte, rmap_head); 1602 1603 if (rmap_count > kvm->stat.max_mmu_rmap_size) 1604 kvm->stat.max_mmu_rmap_size = rmap_count; 1605 if (rmap_count > RMAP_RECYCLE_THRESHOLD) { 1606 kvm_zap_all_rmap_sptes(kvm, rmap_head); 1607 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level); 1608 } 1609 } 1610 1611 static void rmap_add(struct kvm_vcpu *vcpu, const struct kvm_memory_slot *slot, 1612 u64 *spte, gfn_t gfn, unsigned int access) 1613 { 1614 struct kvm_mmu_memory_cache *cache = &vcpu->arch.mmu_pte_list_desc_cache; 1615 1616 __rmap_add(vcpu->kvm, cache, slot, spte, gfn, access); 1617 } 1618 1619 static bool kvm_rmap_age_gfn_range(struct kvm *kvm, 1620 struct kvm_gfn_range *range, bool test_only) 1621 { 1622 struct slot_rmap_walk_iterator iterator; 1623 struct rmap_iterator iter; 1624 bool young = false; 1625 u64 *sptep; 1626 1627 for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 1628 range->start, range->end - 1, &iterator) { 1629 for_each_rmap_spte(iterator.rmap, &iter, sptep) { 1630 u64 spte = *sptep; 1631 1632 if (!is_accessed_spte(spte)) 1633 continue; 1634 1635 if (test_only) 1636 return true; 1637 1638 if (spte_ad_enabled(spte)) { 1639 clear_bit((ffs(shadow_accessed_mask) - 1), 1640 (unsigned long *)sptep); 1641 } else { 1642 /* 1643 * Capture the dirty status of the page, so that 1644 * it doesn't get lost when the SPTE is marked 1645 * for access tracking. 1646 */ 1647 if (is_writable_pte(spte)) 1648 kvm_set_pfn_dirty(spte_to_pfn(spte)); 1649 1650 spte = mark_spte_for_access_track(spte); 1651 mmu_spte_update_no_track(sptep, spte); 1652 } 1653 young = true; 1654 } 1655 } 1656 return young; 1657 } 1658 1659 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1660 { 1661 bool young = false; 1662 1663 if (kvm_memslots_have_rmaps(kvm)) 1664 young = kvm_rmap_age_gfn_range(kvm, range, false); 1665 1666 if (tdp_mmu_enabled) 1667 young |= kvm_tdp_mmu_age_gfn_range(kvm, range); 1668 1669 return young; 1670 } 1671 1672 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1673 { 1674 bool young = false; 1675 1676 if (kvm_memslots_have_rmaps(kvm)) 1677 young = kvm_rmap_age_gfn_range(kvm, range, true); 1678 1679 if (tdp_mmu_enabled) 1680 young |= kvm_tdp_mmu_test_age_gfn(kvm, range); 1681 1682 return young; 1683 } 1684 1685 static void kvm_mmu_check_sptes_at_free(struct kvm_mmu_page *sp) 1686 { 1687 #ifdef CONFIG_KVM_PROVE_MMU 1688 int i; 1689 1690 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) { 1691 if (KVM_MMU_WARN_ON(is_shadow_present_pte(sp->spt[i]))) 1692 pr_err_ratelimited("SPTE %llx (@ %p) for gfn %llx shadow-present at free", 1693 sp->spt[i], &sp->spt[i], 1694 kvm_mmu_page_get_gfn(sp, i)); 1695 } 1696 #endif 1697 } 1698 1699 /* 1700 * This value is the sum of all of the kvm instances's 1701 * kvm->arch.n_used_mmu_pages values. We need a global, 1702 * aggregate version in order to make the slab shrinker 1703 * faster 1704 */ 1705 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr) 1706 { 1707 kvm->arch.n_used_mmu_pages += nr; 1708 percpu_counter_add(&kvm_total_used_mmu_pages, nr); 1709 } 1710 1711 static void kvm_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1712 { 1713 kvm_mod_used_mmu_pages(kvm, +1); 1714 kvm_account_pgtable_pages((void *)sp->spt, +1); 1715 } 1716 1717 static void kvm_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1718 { 1719 kvm_mod_used_mmu_pages(kvm, -1); 1720 kvm_account_pgtable_pages((void *)sp->spt, -1); 1721 } 1722 1723 static void kvm_mmu_free_shadow_page(struct kvm_mmu_page *sp) 1724 { 1725 kvm_mmu_check_sptes_at_free(sp); 1726 1727 hlist_del(&sp->hash_link); 1728 list_del(&sp->link); 1729 free_page((unsigned long)sp->spt); 1730 free_page((unsigned long)sp->shadowed_translation); 1731 kmem_cache_free(mmu_page_header_cache, sp); 1732 } 1733 1734 static unsigned kvm_page_table_hashfn(gfn_t gfn) 1735 { 1736 return hash_64(gfn, KVM_MMU_HASH_SHIFT); 1737 } 1738 1739 static void mmu_page_add_parent_pte(struct kvm_mmu_memory_cache *cache, 1740 struct kvm_mmu_page *sp, u64 *parent_pte) 1741 { 1742 if (!parent_pte) 1743 return; 1744 1745 pte_list_add(cache, parent_pte, &sp->parent_ptes); 1746 } 1747 1748 static void mmu_page_remove_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 1749 u64 *parent_pte) 1750 { 1751 pte_list_remove(kvm, parent_pte, &sp->parent_ptes); 1752 } 1753 1754 static void drop_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 1755 u64 *parent_pte) 1756 { 1757 mmu_page_remove_parent_pte(kvm, sp, parent_pte); 1758 mmu_spte_clear_no_track(parent_pte); 1759 } 1760 1761 static void mark_unsync(u64 *spte); 1762 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) 1763 { 1764 u64 *sptep; 1765 struct rmap_iterator iter; 1766 1767 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) { 1768 mark_unsync(sptep); 1769 } 1770 } 1771 1772 static void mark_unsync(u64 *spte) 1773 { 1774 struct kvm_mmu_page *sp; 1775 1776 sp = sptep_to_sp(spte); 1777 if (__test_and_set_bit(spte_index(spte), sp->unsync_child_bitmap)) 1778 return; 1779 if (sp->unsync_children++) 1780 return; 1781 kvm_mmu_mark_parents_unsync(sp); 1782 } 1783 1784 #define KVM_PAGE_ARRAY_NR 16 1785 1786 struct kvm_mmu_pages { 1787 struct mmu_page_and_offset { 1788 struct kvm_mmu_page *sp; 1789 unsigned int idx; 1790 } page[KVM_PAGE_ARRAY_NR]; 1791 unsigned int nr; 1792 }; 1793 1794 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, 1795 int idx) 1796 { 1797 int i; 1798 1799 if (sp->unsync) 1800 for (i=0; i < pvec->nr; i++) 1801 if (pvec->page[i].sp == sp) 1802 return 0; 1803 1804 pvec->page[pvec->nr].sp = sp; 1805 pvec->page[pvec->nr].idx = idx; 1806 pvec->nr++; 1807 return (pvec->nr == KVM_PAGE_ARRAY_NR); 1808 } 1809 1810 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx) 1811 { 1812 --sp->unsync_children; 1813 WARN_ON_ONCE((int)sp->unsync_children < 0); 1814 __clear_bit(idx, sp->unsync_child_bitmap); 1815 } 1816 1817 static int __mmu_unsync_walk(struct kvm_mmu_page *sp, 1818 struct kvm_mmu_pages *pvec) 1819 { 1820 int i, ret, nr_unsync_leaf = 0; 1821 1822 for_each_set_bit(i, sp->unsync_child_bitmap, 512) { 1823 struct kvm_mmu_page *child; 1824 u64 ent = sp->spt[i]; 1825 1826 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) { 1827 clear_unsync_child_bit(sp, i); 1828 continue; 1829 } 1830 1831 child = spte_to_child_sp(ent); 1832 1833 if (child->unsync_children) { 1834 if (mmu_pages_add(pvec, child, i)) 1835 return -ENOSPC; 1836 1837 ret = __mmu_unsync_walk(child, pvec); 1838 if (!ret) { 1839 clear_unsync_child_bit(sp, i); 1840 continue; 1841 } else if (ret > 0) { 1842 nr_unsync_leaf += ret; 1843 } else 1844 return ret; 1845 } else if (child->unsync) { 1846 nr_unsync_leaf++; 1847 if (mmu_pages_add(pvec, child, i)) 1848 return -ENOSPC; 1849 } else 1850 clear_unsync_child_bit(sp, i); 1851 } 1852 1853 return nr_unsync_leaf; 1854 } 1855 1856 #define INVALID_INDEX (-1) 1857 1858 static int mmu_unsync_walk(struct kvm_mmu_page *sp, 1859 struct kvm_mmu_pages *pvec) 1860 { 1861 pvec->nr = 0; 1862 if (!sp->unsync_children) 1863 return 0; 1864 1865 mmu_pages_add(pvec, sp, INVALID_INDEX); 1866 return __mmu_unsync_walk(sp, pvec); 1867 } 1868 1869 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1870 { 1871 WARN_ON_ONCE(!sp->unsync); 1872 trace_kvm_mmu_sync_page(sp); 1873 sp->unsync = 0; 1874 --kvm->stat.mmu_unsync; 1875 } 1876 1877 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 1878 struct list_head *invalid_list); 1879 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 1880 struct list_head *invalid_list); 1881 1882 static bool sp_has_gptes(struct kvm_mmu_page *sp) 1883 { 1884 if (sp->role.direct) 1885 return false; 1886 1887 if (sp->role.passthrough) 1888 return false; 1889 1890 return true; 1891 } 1892 1893 #define for_each_valid_sp(_kvm, _sp, _list) \ 1894 hlist_for_each_entry(_sp, _list, hash_link) \ 1895 if (is_obsolete_sp((_kvm), (_sp))) { \ 1896 } else 1897 1898 #define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn) \ 1899 for_each_valid_sp(_kvm, _sp, \ 1900 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \ 1901 if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else 1902 1903 static bool kvm_sync_page_check(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 1904 { 1905 union kvm_mmu_page_role root_role = vcpu->arch.mmu->root_role; 1906 1907 /* 1908 * Ignore various flags when verifying that it's safe to sync a shadow 1909 * page using the current MMU context. 1910 * 1911 * - level: not part of the overall MMU role and will never match as the MMU's 1912 * level tracks the root level 1913 * - access: updated based on the new guest PTE 1914 * - quadrant: not part of the overall MMU role (similar to level) 1915 */ 1916 const union kvm_mmu_page_role sync_role_ign = { 1917 .level = 0xf, 1918 .access = 0x7, 1919 .quadrant = 0x3, 1920 .passthrough = 0x1, 1921 }; 1922 1923 /* 1924 * Direct pages can never be unsync, and KVM should never attempt to 1925 * sync a shadow page for a different MMU context, e.g. if the role 1926 * differs then the memslot lookup (SMM vs. non-SMM) will be bogus, the 1927 * reserved bits checks will be wrong, etc... 1928 */ 1929 if (WARN_ON_ONCE(sp->role.direct || !vcpu->arch.mmu->sync_spte || 1930 (sp->role.word ^ root_role.word) & ~sync_role_ign.word)) 1931 return false; 1932 1933 return true; 1934 } 1935 1936 static int kvm_sync_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, int i) 1937 { 1938 /* sp->spt[i] has initial value of shadow page table allocation */ 1939 if (sp->spt[i] == SHADOW_NONPRESENT_VALUE) 1940 return 0; 1941 1942 return vcpu->arch.mmu->sync_spte(vcpu, sp, i); 1943 } 1944 1945 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 1946 { 1947 int flush = 0; 1948 int i; 1949 1950 if (!kvm_sync_page_check(vcpu, sp)) 1951 return -1; 1952 1953 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) { 1954 int ret = kvm_sync_spte(vcpu, sp, i); 1955 1956 if (ret < -1) 1957 return -1; 1958 flush |= ret; 1959 } 1960 1961 /* 1962 * Note, any flush is purely for KVM's correctness, e.g. when dropping 1963 * an existing SPTE or clearing W/A/D bits to ensure an mmu_notifier 1964 * unmap or dirty logging event doesn't fail to flush. The guest is 1965 * responsible for flushing the TLB to ensure any changes in protection 1966 * bits are recognized, i.e. until the guest flushes or page faults on 1967 * a relevant address, KVM is architecturally allowed to let vCPUs use 1968 * cached translations with the old protection bits. 1969 */ 1970 return flush; 1971 } 1972 1973 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 1974 struct list_head *invalid_list) 1975 { 1976 int ret = __kvm_sync_page(vcpu, sp); 1977 1978 if (ret < 0) 1979 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); 1980 return ret; 1981 } 1982 1983 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm, 1984 struct list_head *invalid_list, 1985 bool remote_flush) 1986 { 1987 if (!remote_flush && list_empty(invalid_list)) 1988 return false; 1989 1990 if (!list_empty(invalid_list)) 1991 kvm_mmu_commit_zap_page(kvm, invalid_list); 1992 else 1993 kvm_flush_remote_tlbs(kvm); 1994 return true; 1995 } 1996 1997 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 1998 { 1999 if (sp->role.invalid) 2000 return true; 2001 2002 /* TDP MMU pages do not use the MMU generation. */ 2003 return !is_tdp_mmu_page(sp) && 2004 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); 2005 } 2006 2007 struct mmu_page_path { 2008 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL]; 2009 unsigned int idx[PT64_ROOT_MAX_LEVEL]; 2010 }; 2011 2012 #define for_each_sp(pvec, sp, parents, i) \ 2013 for (i = mmu_pages_first(&pvec, &parents); \ 2014 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \ 2015 i = mmu_pages_next(&pvec, &parents, i)) 2016 2017 static int mmu_pages_next(struct kvm_mmu_pages *pvec, 2018 struct mmu_page_path *parents, 2019 int i) 2020 { 2021 int n; 2022 2023 for (n = i+1; n < pvec->nr; n++) { 2024 struct kvm_mmu_page *sp = pvec->page[n].sp; 2025 unsigned idx = pvec->page[n].idx; 2026 int level = sp->role.level; 2027 2028 parents->idx[level-1] = idx; 2029 if (level == PG_LEVEL_4K) 2030 break; 2031 2032 parents->parent[level-2] = sp; 2033 } 2034 2035 return n; 2036 } 2037 2038 static int mmu_pages_first(struct kvm_mmu_pages *pvec, 2039 struct mmu_page_path *parents) 2040 { 2041 struct kvm_mmu_page *sp; 2042 int level; 2043 2044 if (pvec->nr == 0) 2045 return 0; 2046 2047 WARN_ON_ONCE(pvec->page[0].idx != INVALID_INDEX); 2048 2049 sp = pvec->page[0].sp; 2050 level = sp->role.level; 2051 WARN_ON_ONCE(level == PG_LEVEL_4K); 2052 2053 parents->parent[level-2] = sp; 2054 2055 /* Also set up a sentinel. Further entries in pvec are all 2056 * children of sp, so this element is never overwritten. 2057 */ 2058 parents->parent[level-1] = NULL; 2059 return mmu_pages_next(pvec, parents, 0); 2060 } 2061 2062 static void mmu_pages_clear_parents(struct mmu_page_path *parents) 2063 { 2064 struct kvm_mmu_page *sp; 2065 unsigned int level = 0; 2066 2067 do { 2068 unsigned int idx = parents->idx[level]; 2069 sp = parents->parent[level]; 2070 if (!sp) 2071 return; 2072 2073 WARN_ON_ONCE(idx == INVALID_INDEX); 2074 clear_unsync_child_bit(sp, idx); 2075 level++; 2076 } while (!sp->unsync_children); 2077 } 2078 2079 static int mmu_sync_children(struct kvm_vcpu *vcpu, 2080 struct kvm_mmu_page *parent, bool can_yield) 2081 { 2082 int i; 2083 struct kvm_mmu_page *sp; 2084 struct mmu_page_path parents; 2085 struct kvm_mmu_pages pages; 2086 LIST_HEAD(invalid_list); 2087 bool flush = false; 2088 2089 while (mmu_unsync_walk(parent, &pages)) { 2090 bool protected = false; 2091 2092 for_each_sp(pages, sp, parents, i) 2093 protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn); 2094 2095 if (protected) { 2096 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true); 2097 flush = false; 2098 } 2099 2100 for_each_sp(pages, sp, parents, i) { 2101 kvm_unlink_unsync_page(vcpu->kvm, sp); 2102 flush |= kvm_sync_page(vcpu, sp, &invalid_list) > 0; 2103 mmu_pages_clear_parents(&parents); 2104 } 2105 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) { 2106 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2107 if (!can_yield) { 2108 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 2109 return -EINTR; 2110 } 2111 2112 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock); 2113 flush = false; 2114 } 2115 } 2116 2117 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2118 return 0; 2119 } 2120 2121 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) 2122 { 2123 atomic_set(&sp->write_flooding_count, 0); 2124 } 2125 2126 static void clear_sp_write_flooding_count(u64 *spte) 2127 { 2128 __clear_sp_write_flooding_count(sptep_to_sp(spte)); 2129 } 2130 2131 /* 2132 * The vCPU is required when finding indirect shadow pages; the shadow 2133 * page may already exist and syncing it needs the vCPU pointer in 2134 * order to read guest page tables. Direct shadow pages are never 2135 * unsync, thus @vcpu can be NULL if @role.direct is true. 2136 */ 2137 static struct kvm_mmu_page *kvm_mmu_find_shadow_page(struct kvm *kvm, 2138 struct kvm_vcpu *vcpu, 2139 gfn_t gfn, 2140 struct hlist_head *sp_list, 2141 union kvm_mmu_page_role role) 2142 { 2143 struct kvm_mmu_page *sp; 2144 int ret; 2145 int collisions = 0; 2146 LIST_HEAD(invalid_list); 2147 2148 for_each_valid_sp(kvm, sp, sp_list) { 2149 if (sp->gfn != gfn) { 2150 collisions++; 2151 continue; 2152 } 2153 2154 if (sp->role.word != role.word) { 2155 /* 2156 * If the guest is creating an upper-level page, zap 2157 * unsync pages for the same gfn. While it's possible 2158 * the guest is using recursive page tables, in all 2159 * likelihood the guest has stopped using the unsync 2160 * page and is installing a completely unrelated page. 2161 * Unsync pages must not be left as is, because the new 2162 * upper-level page will be write-protected. 2163 */ 2164 if (role.level > PG_LEVEL_4K && sp->unsync) 2165 kvm_mmu_prepare_zap_page(kvm, sp, 2166 &invalid_list); 2167 continue; 2168 } 2169 2170 /* unsync and write-flooding only apply to indirect SPs. */ 2171 if (sp->role.direct) 2172 goto out; 2173 2174 if (sp->unsync) { 2175 if (KVM_BUG_ON(!vcpu, kvm)) 2176 break; 2177 2178 /* 2179 * The page is good, but is stale. kvm_sync_page does 2180 * get the latest guest state, but (unlike mmu_unsync_children) 2181 * it doesn't write-protect the page or mark it synchronized! 2182 * This way the validity of the mapping is ensured, but the 2183 * overhead of write protection is not incurred until the 2184 * guest invalidates the TLB mapping. This allows multiple 2185 * SPs for a single gfn to be unsync. 2186 * 2187 * If the sync fails, the page is zapped. If so, break 2188 * in order to rebuild it. 2189 */ 2190 ret = kvm_sync_page(vcpu, sp, &invalid_list); 2191 if (ret < 0) 2192 break; 2193 2194 WARN_ON_ONCE(!list_empty(&invalid_list)); 2195 if (ret > 0) 2196 kvm_flush_remote_tlbs(kvm); 2197 } 2198 2199 __clear_sp_write_flooding_count(sp); 2200 2201 goto out; 2202 } 2203 2204 sp = NULL; 2205 ++kvm->stat.mmu_cache_miss; 2206 2207 out: 2208 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2209 2210 if (collisions > kvm->stat.max_mmu_page_hash_collisions) 2211 kvm->stat.max_mmu_page_hash_collisions = collisions; 2212 return sp; 2213 } 2214 2215 /* Caches used when allocating a new shadow page. */ 2216 struct shadow_page_caches { 2217 struct kvm_mmu_memory_cache *page_header_cache; 2218 struct kvm_mmu_memory_cache *shadow_page_cache; 2219 struct kvm_mmu_memory_cache *shadowed_info_cache; 2220 }; 2221 2222 static struct kvm_mmu_page *kvm_mmu_alloc_shadow_page(struct kvm *kvm, 2223 struct shadow_page_caches *caches, 2224 gfn_t gfn, 2225 struct hlist_head *sp_list, 2226 union kvm_mmu_page_role role) 2227 { 2228 struct kvm_mmu_page *sp; 2229 2230 sp = kvm_mmu_memory_cache_alloc(caches->page_header_cache); 2231 sp->spt = kvm_mmu_memory_cache_alloc(caches->shadow_page_cache); 2232 if (!role.direct && role.level <= KVM_MAX_HUGEPAGE_LEVEL) 2233 sp->shadowed_translation = kvm_mmu_memory_cache_alloc(caches->shadowed_info_cache); 2234 2235 set_page_private(virt_to_page(sp->spt), (unsigned long)sp); 2236 2237 INIT_LIST_HEAD(&sp->possible_nx_huge_page_link); 2238 2239 /* 2240 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages() 2241 * depends on valid pages being added to the head of the list. See 2242 * comments in kvm_zap_obsolete_pages(). 2243 */ 2244 sp->mmu_valid_gen = kvm->arch.mmu_valid_gen; 2245 list_add(&sp->link, &kvm->arch.active_mmu_pages); 2246 kvm_account_mmu_page(kvm, sp); 2247 2248 sp->gfn = gfn; 2249 sp->role = role; 2250 hlist_add_head(&sp->hash_link, sp_list); 2251 if (sp_has_gptes(sp)) 2252 account_shadowed(kvm, sp); 2253 2254 return sp; 2255 } 2256 2257 /* Note, @vcpu may be NULL if @role.direct is true; see kvm_mmu_find_shadow_page. */ 2258 static struct kvm_mmu_page *__kvm_mmu_get_shadow_page(struct kvm *kvm, 2259 struct kvm_vcpu *vcpu, 2260 struct shadow_page_caches *caches, 2261 gfn_t gfn, 2262 union kvm_mmu_page_role role) 2263 { 2264 struct hlist_head *sp_list; 2265 struct kvm_mmu_page *sp; 2266 bool created = false; 2267 2268 sp_list = &kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]; 2269 2270 sp = kvm_mmu_find_shadow_page(kvm, vcpu, gfn, sp_list, role); 2271 if (!sp) { 2272 created = true; 2273 sp = kvm_mmu_alloc_shadow_page(kvm, caches, gfn, sp_list, role); 2274 } 2275 2276 trace_kvm_mmu_get_page(sp, created); 2277 return sp; 2278 } 2279 2280 static struct kvm_mmu_page *kvm_mmu_get_shadow_page(struct kvm_vcpu *vcpu, 2281 gfn_t gfn, 2282 union kvm_mmu_page_role role) 2283 { 2284 struct shadow_page_caches caches = { 2285 .page_header_cache = &vcpu->arch.mmu_page_header_cache, 2286 .shadow_page_cache = &vcpu->arch.mmu_shadow_page_cache, 2287 .shadowed_info_cache = &vcpu->arch.mmu_shadowed_info_cache, 2288 }; 2289 2290 return __kvm_mmu_get_shadow_page(vcpu->kvm, vcpu, &caches, gfn, role); 2291 } 2292 2293 static union kvm_mmu_page_role kvm_mmu_child_role(u64 *sptep, bool direct, 2294 unsigned int access) 2295 { 2296 struct kvm_mmu_page *parent_sp = sptep_to_sp(sptep); 2297 union kvm_mmu_page_role role; 2298 2299 role = parent_sp->role; 2300 role.level--; 2301 role.access = access; 2302 role.direct = direct; 2303 role.passthrough = 0; 2304 2305 /* 2306 * If the guest has 4-byte PTEs then that means it's using 32-bit, 2307 * 2-level, non-PAE paging. KVM shadows such guests with PAE paging 2308 * (i.e. 8-byte PTEs). The difference in PTE size means that KVM must 2309 * shadow each guest page table with multiple shadow page tables, which 2310 * requires extra bookkeeping in the role. 2311 * 2312 * Specifically, to shadow the guest's page directory (which covers a 2313 * 4GiB address space), KVM uses 4 PAE page directories, each mapping 2314 * 1GiB of the address space. @role.quadrant encodes which quarter of 2315 * the address space each maps. 2316 * 2317 * To shadow the guest's page tables (which each map a 4MiB region), KVM 2318 * uses 2 PAE page tables, each mapping a 2MiB region. For these, 2319 * @role.quadrant encodes which half of the region they map. 2320 * 2321 * Concretely, a 4-byte PDE consumes bits 31:22, while an 8-byte PDE 2322 * consumes bits 29:21. To consume bits 31:30, KVM's uses 4 shadow 2323 * PDPTEs; those 4 PAE page directories are pre-allocated and their 2324 * quadrant is assigned in mmu_alloc_root(). A 4-byte PTE consumes 2325 * bits 21:12, while an 8-byte PTE consumes bits 20:12. To consume 2326 * bit 21 in the PTE (the child here), KVM propagates that bit to the 2327 * quadrant, i.e. sets quadrant to '0' or '1'. The parent 8-byte PDE 2328 * covers bit 21 (see above), thus the quadrant is calculated from the 2329 * _least_ significant bit of the PDE index. 2330 */ 2331 if (role.has_4_byte_gpte) { 2332 WARN_ON_ONCE(role.level != PG_LEVEL_4K); 2333 role.quadrant = spte_index(sptep) & 1; 2334 } 2335 2336 return role; 2337 } 2338 2339 static struct kvm_mmu_page *kvm_mmu_get_child_sp(struct kvm_vcpu *vcpu, 2340 u64 *sptep, gfn_t gfn, 2341 bool direct, unsigned int access) 2342 { 2343 union kvm_mmu_page_role role; 2344 2345 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) 2346 return ERR_PTR(-EEXIST); 2347 2348 role = kvm_mmu_child_role(sptep, direct, access); 2349 return kvm_mmu_get_shadow_page(vcpu, gfn, role); 2350 } 2351 2352 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator, 2353 struct kvm_vcpu *vcpu, hpa_t root, 2354 u64 addr) 2355 { 2356 iterator->addr = addr; 2357 iterator->shadow_addr = root; 2358 iterator->level = vcpu->arch.mmu->root_role.level; 2359 2360 if (iterator->level >= PT64_ROOT_4LEVEL && 2361 vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL && 2362 !vcpu->arch.mmu->root_role.direct) 2363 iterator->level = PT32E_ROOT_LEVEL; 2364 2365 if (iterator->level == PT32E_ROOT_LEVEL) { 2366 /* 2367 * prev_root is currently only used for 64-bit hosts. So only 2368 * the active root_hpa is valid here. 2369 */ 2370 BUG_ON(root != vcpu->arch.mmu->root.hpa); 2371 2372 iterator->shadow_addr 2373 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3]; 2374 iterator->shadow_addr &= SPTE_BASE_ADDR_MASK; 2375 --iterator->level; 2376 if (!iterator->shadow_addr) 2377 iterator->level = 0; 2378 } 2379 } 2380 2381 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, 2382 struct kvm_vcpu *vcpu, u64 addr) 2383 { 2384 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa, 2385 addr); 2386 } 2387 2388 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) 2389 { 2390 if (iterator->level < PG_LEVEL_4K) 2391 return false; 2392 2393 iterator->index = SPTE_INDEX(iterator->addr, iterator->level); 2394 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; 2395 return true; 2396 } 2397 2398 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, 2399 u64 spte) 2400 { 2401 if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) { 2402 iterator->level = 0; 2403 return; 2404 } 2405 2406 iterator->shadow_addr = spte & SPTE_BASE_ADDR_MASK; 2407 --iterator->level; 2408 } 2409 2410 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) 2411 { 2412 __shadow_walk_next(iterator, *iterator->sptep); 2413 } 2414 2415 static void __link_shadow_page(struct kvm *kvm, 2416 struct kvm_mmu_memory_cache *cache, u64 *sptep, 2417 struct kvm_mmu_page *sp, bool flush) 2418 { 2419 u64 spte; 2420 2421 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); 2422 2423 /* 2424 * If an SPTE is present already, it must be a leaf and therefore 2425 * a large one. Drop it, and flush the TLB if needed, before 2426 * installing sp. 2427 */ 2428 if (is_shadow_present_pte(*sptep)) 2429 drop_large_spte(kvm, sptep, flush); 2430 2431 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp)); 2432 2433 mmu_spte_set(sptep, spte); 2434 2435 mmu_page_add_parent_pte(cache, sp, sptep); 2436 2437 /* 2438 * The non-direct sub-pagetable must be updated before linking. For 2439 * L1 sp, the pagetable is updated via kvm_sync_page() in 2440 * kvm_mmu_find_shadow_page() without write-protecting the gfn, 2441 * so sp->unsync can be true or false. For higher level non-direct 2442 * sp, the pagetable is updated/synced via mmu_sync_children() in 2443 * FNAME(fetch)(), so sp->unsync_children can only be false. 2444 * WARN_ON_ONCE() if anything happens unexpectedly. 2445 */ 2446 if (WARN_ON_ONCE(sp->unsync_children) || sp->unsync) 2447 mark_unsync(sptep); 2448 } 2449 2450 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, 2451 struct kvm_mmu_page *sp) 2452 { 2453 __link_shadow_page(vcpu->kvm, &vcpu->arch.mmu_pte_list_desc_cache, sptep, sp, true); 2454 } 2455 2456 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2457 unsigned direct_access) 2458 { 2459 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { 2460 struct kvm_mmu_page *child; 2461 2462 /* 2463 * For the direct sp, if the guest pte's dirty bit 2464 * changed form clean to dirty, it will corrupt the 2465 * sp's access: allow writable in the read-only sp, 2466 * so we should update the spte at this point to get 2467 * a new sp with the correct access. 2468 */ 2469 child = spte_to_child_sp(*sptep); 2470 if (child->role.access == direct_access) 2471 return; 2472 2473 drop_parent_pte(vcpu->kvm, child, sptep); 2474 kvm_flush_remote_tlbs_sptep(vcpu->kvm, sptep); 2475 } 2476 } 2477 2478 /* Returns the number of zapped non-leaf child shadow pages. */ 2479 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 2480 u64 *spte, struct list_head *invalid_list) 2481 { 2482 u64 pte; 2483 struct kvm_mmu_page *child; 2484 2485 pte = *spte; 2486 if (is_shadow_present_pte(pte)) { 2487 if (is_last_spte(pte, sp->role.level)) { 2488 drop_spte(kvm, spte); 2489 } else { 2490 child = spte_to_child_sp(pte); 2491 drop_parent_pte(kvm, child, spte); 2492 2493 /* 2494 * Recursively zap nested TDP SPs, parentless SPs are 2495 * unlikely to be used again in the near future. This 2496 * avoids retaining a large number of stale nested SPs. 2497 */ 2498 if (tdp_enabled && invalid_list && 2499 child->role.guest_mode && !child->parent_ptes.val) 2500 return kvm_mmu_prepare_zap_page(kvm, child, 2501 invalid_list); 2502 } 2503 } else if (is_mmio_spte(kvm, pte)) { 2504 mmu_spte_clear_no_track(spte); 2505 } 2506 return 0; 2507 } 2508 2509 static int kvm_mmu_page_unlink_children(struct kvm *kvm, 2510 struct kvm_mmu_page *sp, 2511 struct list_head *invalid_list) 2512 { 2513 int zapped = 0; 2514 unsigned i; 2515 2516 for (i = 0; i < SPTE_ENT_PER_PAGE; ++i) 2517 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list); 2518 2519 return zapped; 2520 } 2521 2522 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp) 2523 { 2524 u64 *sptep; 2525 struct rmap_iterator iter; 2526 2527 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter))) 2528 drop_parent_pte(kvm, sp, sptep); 2529 } 2530 2531 static int mmu_zap_unsync_children(struct kvm *kvm, 2532 struct kvm_mmu_page *parent, 2533 struct list_head *invalid_list) 2534 { 2535 int i, zapped = 0; 2536 struct mmu_page_path parents; 2537 struct kvm_mmu_pages pages; 2538 2539 if (parent->role.level == PG_LEVEL_4K) 2540 return 0; 2541 2542 while (mmu_unsync_walk(parent, &pages)) { 2543 struct kvm_mmu_page *sp; 2544 2545 for_each_sp(pages, sp, parents, i) { 2546 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 2547 mmu_pages_clear_parents(&parents); 2548 zapped++; 2549 } 2550 } 2551 2552 return zapped; 2553 } 2554 2555 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm, 2556 struct kvm_mmu_page *sp, 2557 struct list_head *invalid_list, 2558 int *nr_zapped) 2559 { 2560 bool list_unstable, zapped_root = false; 2561 2562 lockdep_assert_held_write(&kvm->mmu_lock); 2563 trace_kvm_mmu_prepare_zap_page(sp); 2564 ++kvm->stat.mmu_shadow_zapped; 2565 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list); 2566 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list); 2567 kvm_mmu_unlink_parents(kvm, sp); 2568 2569 /* Zapping children means active_mmu_pages has become unstable. */ 2570 list_unstable = *nr_zapped; 2571 2572 if (!sp->role.invalid && sp_has_gptes(sp)) 2573 unaccount_shadowed(kvm, sp); 2574 2575 if (sp->unsync) 2576 kvm_unlink_unsync_page(kvm, sp); 2577 if (!sp->root_count) { 2578 /* Count self */ 2579 (*nr_zapped)++; 2580 2581 /* 2582 * Already invalid pages (previously active roots) are not on 2583 * the active page list. See list_del() in the "else" case of 2584 * !sp->root_count. 2585 */ 2586 if (sp->role.invalid) 2587 list_add(&sp->link, invalid_list); 2588 else 2589 list_move(&sp->link, invalid_list); 2590 kvm_unaccount_mmu_page(kvm, sp); 2591 } else { 2592 /* 2593 * Remove the active root from the active page list, the root 2594 * will be explicitly freed when the root_count hits zero. 2595 */ 2596 list_del(&sp->link); 2597 2598 /* 2599 * Obsolete pages cannot be used on any vCPUs, see the comment 2600 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also 2601 * treats invalid shadow pages as being obsolete. 2602 */ 2603 zapped_root = !is_obsolete_sp(kvm, sp); 2604 } 2605 2606 if (sp->nx_huge_page_disallowed) 2607 unaccount_nx_huge_page(kvm, sp); 2608 2609 sp->role.invalid = 1; 2610 2611 /* 2612 * Make the request to free obsolete roots after marking the root 2613 * invalid, otherwise other vCPUs may not see it as invalid. 2614 */ 2615 if (zapped_root) 2616 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 2617 return list_unstable; 2618 } 2619 2620 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 2621 struct list_head *invalid_list) 2622 { 2623 int nr_zapped; 2624 2625 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped); 2626 return nr_zapped; 2627 } 2628 2629 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 2630 struct list_head *invalid_list) 2631 { 2632 struct kvm_mmu_page *sp, *nsp; 2633 2634 if (list_empty(invalid_list)) 2635 return; 2636 2637 /* 2638 * We need to make sure everyone sees our modifications to 2639 * the page tables and see changes to vcpu->mode here. The barrier 2640 * in the kvm_flush_remote_tlbs() achieves this. This pairs 2641 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end. 2642 * 2643 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit 2644 * guest mode and/or lockless shadow page table walks. 2645 */ 2646 kvm_flush_remote_tlbs(kvm); 2647 2648 list_for_each_entry_safe(sp, nsp, invalid_list, link) { 2649 WARN_ON_ONCE(!sp->role.invalid || sp->root_count); 2650 kvm_mmu_free_shadow_page(sp); 2651 } 2652 } 2653 2654 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm, 2655 unsigned long nr_to_zap) 2656 { 2657 unsigned long total_zapped = 0; 2658 struct kvm_mmu_page *sp, *tmp; 2659 LIST_HEAD(invalid_list); 2660 bool unstable; 2661 int nr_zapped; 2662 2663 if (list_empty(&kvm->arch.active_mmu_pages)) 2664 return 0; 2665 2666 restart: 2667 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) { 2668 /* 2669 * Don't zap active root pages, the page itself can't be freed 2670 * and zapping it will just force vCPUs to realloc and reload. 2671 */ 2672 if (sp->root_count) 2673 continue; 2674 2675 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, 2676 &nr_zapped); 2677 total_zapped += nr_zapped; 2678 if (total_zapped >= nr_to_zap) 2679 break; 2680 2681 if (unstable) 2682 goto restart; 2683 } 2684 2685 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2686 2687 kvm->stat.mmu_recycled += total_zapped; 2688 return total_zapped; 2689 } 2690 2691 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm) 2692 { 2693 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) 2694 return kvm->arch.n_max_mmu_pages - 2695 kvm->arch.n_used_mmu_pages; 2696 2697 return 0; 2698 } 2699 2700 static int make_mmu_pages_available(struct kvm_vcpu *vcpu) 2701 { 2702 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm); 2703 2704 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES)) 2705 return 0; 2706 2707 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail); 2708 2709 /* 2710 * Note, this check is intentionally soft, it only guarantees that one 2711 * page is available, while the caller may end up allocating as many as 2712 * four pages, e.g. for PAE roots or for 5-level paging. Temporarily 2713 * exceeding the (arbitrary by default) limit will not harm the host, 2714 * being too aggressive may unnecessarily kill the guest, and getting an 2715 * exact count is far more trouble than it's worth, especially in the 2716 * page fault paths. 2717 */ 2718 if (!kvm_mmu_available_pages(vcpu->kvm)) 2719 return -ENOSPC; 2720 return 0; 2721 } 2722 2723 /* 2724 * Changing the number of mmu pages allocated to the vm 2725 * Note: if goal_nr_mmu_pages is too small, you will get dead lock 2726 */ 2727 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages) 2728 { 2729 write_lock(&kvm->mmu_lock); 2730 2731 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { 2732 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages - 2733 goal_nr_mmu_pages); 2734 2735 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; 2736 } 2737 2738 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; 2739 2740 write_unlock(&kvm->mmu_lock); 2741 } 2742 2743 bool __kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 2744 bool always_retry) 2745 { 2746 struct kvm *kvm = vcpu->kvm; 2747 LIST_HEAD(invalid_list); 2748 struct kvm_mmu_page *sp; 2749 gpa_t gpa = cr2_or_gpa; 2750 bool r = false; 2751 2752 /* 2753 * Bail early if there aren't any write-protected shadow pages to avoid 2754 * unnecessarily taking mmu_lock lock, e.g. if the gfn is write-tracked 2755 * by a third party. Reading indirect_shadow_pages without holding 2756 * mmu_lock is safe, as this is purely an optimization, i.e. a false 2757 * positive is benign, and a false negative will simply result in KVM 2758 * skipping the unprotect+retry path, which is also an optimization. 2759 */ 2760 if (!READ_ONCE(kvm->arch.indirect_shadow_pages)) 2761 goto out; 2762 2763 if (!vcpu->arch.mmu->root_role.direct) { 2764 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 2765 if (gpa == INVALID_GPA) 2766 goto out; 2767 } 2768 2769 write_lock(&kvm->mmu_lock); 2770 for_each_gfn_valid_sp_with_gptes(kvm, sp, gpa_to_gfn(gpa)) 2771 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 2772 2773 /* 2774 * Snapshot the result before zapping, as zapping will remove all list 2775 * entries, i.e. checking the list later would yield a false negative. 2776 */ 2777 r = !list_empty(&invalid_list); 2778 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2779 write_unlock(&kvm->mmu_lock); 2780 2781 out: 2782 if (r || always_retry) { 2783 vcpu->arch.last_retry_eip = kvm_rip_read(vcpu); 2784 vcpu->arch.last_retry_addr = cr2_or_gpa; 2785 } 2786 return r; 2787 } 2788 2789 static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 2790 { 2791 trace_kvm_mmu_unsync_page(sp); 2792 ++kvm->stat.mmu_unsync; 2793 sp->unsync = 1; 2794 2795 kvm_mmu_mark_parents_unsync(sp); 2796 } 2797 2798 /* 2799 * Attempt to unsync any shadow pages that can be reached by the specified gfn, 2800 * KVM is creating a writable mapping for said gfn. Returns 0 if all pages 2801 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must 2802 * be write-protected. 2803 */ 2804 int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot, 2805 gfn_t gfn, bool can_unsync, bool prefetch) 2806 { 2807 struct kvm_mmu_page *sp; 2808 bool locked = false; 2809 2810 /* 2811 * Force write-protection if the page is being tracked. Note, the page 2812 * track machinery is used to write-protect upper-level shadow pages, 2813 * i.e. this guards the role.level == 4K assertion below! 2814 */ 2815 if (kvm_gfn_is_write_tracked(kvm, slot, gfn)) 2816 return -EPERM; 2817 2818 /* 2819 * The page is not write-tracked, mark existing shadow pages unsync 2820 * unless KVM is synchronizing an unsync SP (can_unsync = false). In 2821 * that case, KVM must complete emulation of the guest TLB flush before 2822 * allowing shadow pages to become unsync (writable by the guest). 2823 */ 2824 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) { 2825 if (!can_unsync) 2826 return -EPERM; 2827 2828 if (sp->unsync) 2829 continue; 2830 2831 if (prefetch) 2832 return -EEXIST; 2833 2834 /* 2835 * TDP MMU page faults require an additional spinlock as they 2836 * run with mmu_lock held for read, not write, and the unsync 2837 * logic is not thread safe. Take the spinklock regardless of 2838 * the MMU type to avoid extra conditionals/parameters, there's 2839 * no meaningful penalty if mmu_lock is held for write. 2840 */ 2841 if (!locked) { 2842 locked = true; 2843 spin_lock(&kvm->arch.mmu_unsync_pages_lock); 2844 2845 /* 2846 * Recheck after taking the spinlock, a different vCPU 2847 * may have since marked the page unsync. A false 2848 * negative on the unprotected check above is not 2849 * possible as clearing sp->unsync _must_ hold mmu_lock 2850 * for write, i.e. unsync cannot transition from 1->0 2851 * while this CPU holds mmu_lock for read (or write). 2852 */ 2853 if (READ_ONCE(sp->unsync)) 2854 continue; 2855 } 2856 2857 WARN_ON_ONCE(sp->role.level != PG_LEVEL_4K); 2858 kvm_unsync_page(kvm, sp); 2859 } 2860 if (locked) 2861 spin_unlock(&kvm->arch.mmu_unsync_pages_lock); 2862 2863 /* 2864 * We need to ensure that the marking of unsync pages is visible 2865 * before the SPTE is updated to allow writes because 2866 * kvm_mmu_sync_roots() checks the unsync flags without holding 2867 * the MMU lock and so can race with this. If the SPTE was updated 2868 * before the page had been marked as unsync-ed, something like the 2869 * following could happen: 2870 * 2871 * CPU 1 CPU 2 2872 * --------------------------------------------------------------------- 2873 * 1.2 Host updates SPTE 2874 * to be writable 2875 * 2.1 Guest writes a GPTE for GVA X. 2876 * (GPTE being in the guest page table shadowed 2877 * by the SP from CPU 1.) 2878 * This reads SPTE during the page table walk. 2879 * Since SPTE.W is read as 1, there is no 2880 * fault. 2881 * 2882 * 2.2 Guest issues TLB flush. 2883 * That causes a VM Exit. 2884 * 2885 * 2.3 Walking of unsync pages sees sp->unsync is 2886 * false and skips the page. 2887 * 2888 * 2.4 Guest accesses GVA X. 2889 * Since the mapping in the SP was not updated, 2890 * so the old mapping for GVA X incorrectly 2891 * gets used. 2892 * 1.1 Host marks SP 2893 * as unsync 2894 * (sp->unsync = true) 2895 * 2896 * The write barrier below ensures that 1.1 happens before 1.2 and thus 2897 * the situation in 2.4 does not arise. It pairs with the read barrier 2898 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3. 2899 */ 2900 smp_wmb(); 2901 2902 return 0; 2903 } 2904 2905 static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, 2906 u64 *sptep, unsigned int pte_access, gfn_t gfn, 2907 kvm_pfn_t pfn, struct kvm_page_fault *fault) 2908 { 2909 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 2910 int level = sp->role.level; 2911 int was_rmapped = 0; 2912 int ret = RET_PF_FIXED; 2913 bool flush = false; 2914 bool wrprot; 2915 u64 spte; 2916 2917 /* Prefetching always gets a writable pfn. */ 2918 bool host_writable = !fault || fault->map_writable; 2919 bool prefetch = !fault || fault->prefetch; 2920 bool write_fault = fault && fault->write; 2921 2922 if (unlikely(is_noslot_pfn(pfn))) { 2923 vcpu->stat.pf_mmio_spte_created++; 2924 mark_mmio_spte(vcpu, sptep, gfn, pte_access); 2925 return RET_PF_EMULATE; 2926 } 2927 2928 if (is_shadow_present_pte(*sptep)) { 2929 /* 2930 * If we overwrite a PTE page pointer with a 2MB PMD, unlink 2931 * the parent of the now unreachable PTE. 2932 */ 2933 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) { 2934 struct kvm_mmu_page *child; 2935 u64 pte = *sptep; 2936 2937 child = spte_to_child_sp(pte); 2938 drop_parent_pte(vcpu->kvm, child, sptep); 2939 flush = true; 2940 } else if (pfn != spte_to_pfn(*sptep)) { 2941 drop_spte(vcpu->kvm, sptep); 2942 flush = true; 2943 } else 2944 was_rmapped = 1; 2945 } 2946 2947 wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch, 2948 true, host_writable, &spte); 2949 2950 if (*sptep == spte) { 2951 ret = RET_PF_SPURIOUS; 2952 } else { 2953 flush |= mmu_spte_update(sptep, spte); 2954 trace_kvm_mmu_set_spte(level, gfn, sptep); 2955 } 2956 2957 if (wrprot && write_fault) 2958 ret = RET_PF_WRITE_PROTECTED; 2959 2960 if (flush) 2961 kvm_flush_remote_tlbs_gfn(vcpu->kvm, gfn, level); 2962 2963 if (!was_rmapped) { 2964 WARN_ON_ONCE(ret == RET_PF_SPURIOUS); 2965 rmap_add(vcpu, slot, sptep, gfn, pte_access); 2966 } else { 2967 /* Already rmapped but the pte_access bits may have changed. */ 2968 kvm_mmu_page_set_access(sp, spte_index(sptep), pte_access); 2969 } 2970 2971 return ret; 2972 } 2973 2974 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu, 2975 struct kvm_mmu_page *sp, 2976 u64 *start, u64 *end) 2977 { 2978 struct page *pages[PTE_PREFETCH_NUM]; 2979 struct kvm_memory_slot *slot; 2980 unsigned int access = sp->role.access; 2981 int i, ret; 2982 gfn_t gfn; 2983 2984 gfn = kvm_mmu_page_get_gfn(sp, spte_index(start)); 2985 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK); 2986 if (!slot) 2987 return -1; 2988 2989 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start); 2990 if (ret <= 0) 2991 return -1; 2992 2993 for (i = 0; i < ret; i++, gfn++, start++) { 2994 mmu_set_spte(vcpu, slot, start, access, gfn, 2995 page_to_pfn(pages[i]), NULL); 2996 put_page(pages[i]); 2997 } 2998 2999 return 0; 3000 } 3001 3002 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, 3003 struct kvm_mmu_page *sp, u64 *sptep) 3004 { 3005 u64 *spte, *start = NULL; 3006 int i; 3007 3008 WARN_ON_ONCE(!sp->role.direct); 3009 3010 i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1); 3011 spte = sp->spt + i; 3012 3013 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 3014 if (is_shadow_present_pte(*spte) || spte == sptep) { 3015 if (!start) 3016 continue; 3017 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0) 3018 return; 3019 start = NULL; 3020 } else if (!start) 3021 start = spte; 3022 } 3023 if (start) 3024 direct_pte_prefetch_many(vcpu, sp, start, spte); 3025 } 3026 3027 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) 3028 { 3029 struct kvm_mmu_page *sp; 3030 3031 sp = sptep_to_sp(sptep); 3032 3033 /* 3034 * Without accessed bits, there's no way to distinguish between 3035 * actually accessed translations and prefetched, so disable pte 3036 * prefetch if accessed bits aren't available. 3037 */ 3038 if (sp_ad_disabled(sp)) 3039 return; 3040 3041 if (sp->role.level > PG_LEVEL_4K) 3042 return; 3043 3044 /* 3045 * If addresses are being invalidated, skip prefetching to avoid 3046 * accidentally prefetching those addresses. 3047 */ 3048 if (unlikely(vcpu->kvm->mmu_invalidate_in_progress)) 3049 return; 3050 3051 __direct_pte_prefetch(vcpu, sp, sptep); 3052 } 3053 3054 /* 3055 * Lookup the mapping level for @gfn in the current mm. 3056 * 3057 * WARNING! Use of host_pfn_mapping_level() requires the caller and the end 3058 * consumer to be tied into KVM's handlers for MMU notifier events! 3059 * 3060 * There are several ways to safely use this helper: 3061 * 3062 * - Check mmu_invalidate_retry_gfn() after grabbing the mapping level, before 3063 * consuming it. In this case, mmu_lock doesn't need to be held during the 3064 * lookup, but it does need to be held while checking the MMU notifier. 3065 * 3066 * - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation 3067 * event for the hva. This can be done by explicit checking the MMU notifier 3068 * or by ensuring that KVM already has a valid mapping that covers the hva. 3069 * 3070 * - Do not use the result to install new mappings, e.g. use the host mapping 3071 * level only to decide whether or not to zap an entry. In this case, it's 3072 * not required to hold mmu_lock (though it's highly likely the caller will 3073 * want to hold mmu_lock anyways, e.g. to modify SPTEs). 3074 * 3075 * Note! The lookup can still race with modifications to host page tables, but 3076 * the above "rules" ensure KVM will not _consume_ the result of the walk if a 3077 * race with the primary MMU occurs. 3078 */ 3079 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, 3080 const struct kvm_memory_slot *slot) 3081 { 3082 int level = PG_LEVEL_4K; 3083 unsigned long hva; 3084 unsigned long flags; 3085 pgd_t pgd; 3086 p4d_t p4d; 3087 pud_t pud; 3088 pmd_t pmd; 3089 3090 /* 3091 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot() 3092 * is not solely for performance, it's also necessary to avoid the 3093 * "writable" check in __gfn_to_hva_many(), which will always fail on 3094 * read-only memslots due to gfn_to_hva() assuming writes. Earlier 3095 * page fault steps have already verified the guest isn't writing a 3096 * read-only memslot. 3097 */ 3098 hva = __gfn_to_hva_memslot(slot, gfn); 3099 3100 /* 3101 * Disable IRQs to prevent concurrent tear down of host page tables, 3102 * e.g. if the primary MMU promotes a P*D to a huge page and then frees 3103 * the original page table. 3104 */ 3105 local_irq_save(flags); 3106 3107 /* 3108 * Read each entry once. As above, a non-leaf entry can be promoted to 3109 * a huge page _during_ this walk. Re-reading the entry could send the 3110 * walk into the weeks, e.g. p*d_leaf() returns false (sees the old 3111 * value) and then p*d_offset() walks into the target huge page instead 3112 * of the old page table (sees the new value). 3113 */ 3114 pgd = READ_ONCE(*pgd_offset(kvm->mm, hva)); 3115 if (pgd_none(pgd)) 3116 goto out; 3117 3118 p4d = READ_ONCE(*p4d_offset(&pgd, hva)); 3119 if (p4d_none(p4d) || !p4d_present(p4d)) 3120 goto out; 3121 3122 pud = READ_ONCE(*pud_offset(&p4d, hva)); 3123 if (pud_none(pud) || !pud_present(pud)) 3124 goto out; 3125 3126 if (pud_leaf(pud)) { 3127 level = PG_LEVEL_1G; 3128 goto out; 3129 } 3130 3131 pmd = READ_ONCE(*pmd_offset(&pud, hva)); 3132 if (pmd_none(pmd) || !pmd_present(pmd)) 3133 goto out; 3134 3135 if (pmd_leaf(pmd)) 3136 level = PG_LEVEL_2M; 3137 3138 out: 3139 local_irq_restore(flags); 3140 return level; 3141 } 3142 3143 static int __kvm_mmu_max_mapping_level(struct kvm *kvm, 3144 const struct kvm_memory_slot *slot, 3145 gfn_t gfn, int max_level, bool is_private) 3146 { 3147 struct kvm_lpage_info *linfo; 3148 int host_level; 3149 3150 max_level = min(max_level, max_huge_page_level); 3151 for ( ; max_level > PG_LEVEL_4K; max_level--) { 3152 linfo = lpage_info_slot(gfn, slot, max_level); 3153 if (!linfo->disallow_lpage) 3154 break; 3155 } 3156 3157 if (is_private) 3158 return max_level; 3159 3160 if (max_level == PG_LEVEL_4K) 3161 return PG_LEVEL_4K; 3162 3163 host_level = host_pfn_mapping_level(kvm, gfn, slot); 3164 return min(host_level, max_level); 3165 } 3166 3167 int kvm_mmu_max_mapping_level(struct kvm *kvm, 3168 const struct kvm_memory_slot *slot, gfn_t gfn, 3169 int max_level) 3170 { 3171 bool is_private = kvm_slot_can_be_private(slot) && 3172 kvm_mem_is_private(kvm, gfn); 3173 3174 return __kvm_mmu_max_mapping_level(kvm, slot, gfn, max_level, is_private); 3175 } 3176 3177 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3178 { 3179 struct kvm_memory_slot *slot = fault->slot; 3180 kvm_pfn_t mask; 3181 3182 fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled; 3183 3184 if (unlikely(fault->max_level == PG_LEVEL_4K)) 3185 return; 3186 3187 if (is_error_noslot_pfn(fault->pfn)) 3188 return; 3189 3190 if (kvm_slot_dirty_track_enabled(slot)) 3191 return; 3192 3193 /* 3194 * Enforce the iTLB multihit workaround after capturing the requested 3195 * level, which will be used to do precise, accurate accounting. 3196 */ 3197 fault->req_level = __kvm_mmu_max_mapping_level(vcpu->kvm, slot, 3198 fault->gfn, fault->max_level, 3199 fault->is_private); 3200 if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed) 3201 return; 3202 3203 /* 3204 * mmu_invalidate_retry() was successful and mmu_lock is held, so 3205 * the pmd can't be split from under us. 3206 */ 3207 fault->goal_level = fault->req_level; 3208 mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1; 3209 VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask)); 3210 fault->pfn &= ~mask; 3211 } 3212 3213 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level) 3214 { 3215 if (cur_level > PG_LEVEL_4K && 3216 cur_level == fault->goal_level && 3217 is_shadow_present_pte(spte) && 3218 !is_large_pte(spte) && 3219 spte_to_child_sp(spte)->nx_huge_page_disallowed) { 3220 /* 3221 * A small SPTE exists for this pfn, but FNAME(fetch), 3222 * direct_map(), or kvm_tdp_mmu_map() would like to create a 3223 * large PTE instead: just force them to go down another level, 3224 * patching back for them into pfn the next 9 bits of the 3225 * address. 3226 */ 3227 u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) - 3228 KVM_PAGES_PER_HPAGE(cur_level - 1); 3229 fault->pfn |= fault->gfn & page_mask; 3230 fault->goal_level--; 3231 } 3232 } 3233 3234 static int direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3235 { 3236 struct kvm_shadow_walk_iterator it; 3237 struct kvm_mmu_page *sp; 3238 int ret; 3239 gfn_t base_gfn = fault->gfn; 3240 3241 kvm_mmu_hugepage_adjust(vcpu, fault); 3242 3243 trace_kvm_mmu_spte_requested(fault); 3244 for_each_shadow_entry(vcpu, fault->addr, it) { 3245 /* 3246 * We cannot overwrite existing page tables with an NX 3247 * large page, as the leaf could be executable. 3248 */ 3249 if (fault->nx_huge_page_workaround_enabled) 3250 disallowed_hugepage_adjust(fault, *it.sptep, it.level); 3251 3252 base_gfn = gfn_round_for_level(fault->gfn, it.level); 3253 if (it.level == fault->goal_level) 3254 break; 3255 3256 sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, true, ACC_ALL); 3257 if (sp == ERR_PTR(-EEXIST)) 3258 continue; 3259 3260 link_shadow_page(vcpu, it.sptep, sp); 3261 if (fault->huge_page_disallowed) 3262 account_nx_huge_page(vcpu->kvm, sp, 3263 fault->req_level >= it.level); 3264 } 3265 3266 if (WARN_ON_ONCE(it.level != fault->goal_level)) 3267 return -EFAULT; 3268 3269 ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL, 3270 base_gfn, fault->pfn, fault); 3271 if (ret == RET_PF_SPURIOUS) 3272 return ret; 3273 3274 direct_pte_prefetch(vcpu, it.sptep); 3275 return ret; 3276 } 3277 3278 static void kvm_send_hwpoison_signal(struct kvm_memory_slot *slot, gfn_t gfn) 3279 { 3280 unsigned long hva = gfn_to_hva_memslot(slot, gfn); 3281 3282 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva, PAGE_SHIFT, current); 3283 } 3284 3285 static int kvm_handle_error_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3286 { 3287 if (is_sigpending_pfn(fault->pfn)) { 3288 kvm_handle_signal_exit(vcpu); 3289 return -EINTR; 3290 } 3291 3292 /* 3293 * Do not cache the mmio info caused by writing the readonly gfn 3294 * into the spte otherwise read access on readonly gfn also can 3295 * caused mmio page fault and treat it as mmio access. 3296 */ 3297 if (fault->pfn == KVM_PFN_ERR_RO_FAULT) 3298 return RET_PF_EMULATE; 3299 3300 if (fault->pfn == KVM_PFN_ERR_HWPOISON) { 3301 kvm_send_hwpoison_signal(fault->slot, fault->gfn); 3302 return RET_PF_RETRY; 3303 } 3304 3305 return -EFAULT; 3306 } 3307 3308 static int kvm_handle_noslot_fault(struct kvm_vcpu *vcpu, 3309 struct kvm_page_fault *fault, 3310 unsigned int access) 3311 { 3312 gva_t gva = fault->is_tdp ? 0 : fault->addr; 3313 3314 if (fault->is_private) { 3315 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 3316 return -EFAULT; 3317 } 3318 3319 vcpu_cache_mmio_info(vcpu, gva, fault->gfn, 3320 access & shadow_mmio_access_mask); 3321 3322 fault->slot = NULL; 3323 fault->pfn = KVM_PFN_NOSLOT; 3324 fault->map_writable = false; 3325 fault->hva = KVM_HVA_ERR_BAD; 3326 3327 /* 3328 * If MMIO caching is disabled, emulate immediately without 3329 * touching the shadow page tables as attempting to install an 3330 * MMIO SPTE will just be an expensive nop. 3331 */ 3332 if (unlikely(!enable_mmio_caching)) 3333 return RET_PF_EMULATE; 3334 3335 /* 3336 * Do not create an MMIO SPTE for a gfn greater than host.MAXPHYADDR, 3337 * any guest that generates such gfns is running nested and is being 3338 * tricked by L0 userspace (you can observe gfn > L1.MAXPHYADDR if and 3339 * only if L1's MAXPHYADDR is inaccurate with respect to the 3340 * hardware's). 3341 */ 3342 if (unlikely(fault->gfn > kvm_mmu_max_gfn())) 3343 return RET_PF_EMULATE; 3344 3345 return RET_PF_CONTINUE; 3346 } 3347 3348 static bool page_fault_can_be_fast(struct kvm *kvm, struct kvm_page_fault *fault) 3349 { 3350 /* 3351 * Page faults with reserved bits set, i.e. faults on MMIO SPTEs, only 3352 * reach the common page fault handler if the SPTE has an invalid MMIO 3353 * generation number. Refreshing the MMIO generation needs to go down 3354 * the slow path. Note, EPT Misconfigs do NOT set the PRESENT flag! 3355 */ 3356 if (fault->rsvd) 3357 return false; 3358 3359 /* 3360 * For hardware-protected VMs, certain conditions like attempting to 3361 * perform a write to a page which is not in the state that the guest 3362 * expects it to be in can result in a nested/extended #PF. In this 3363 * case, the below code might misconstrue this situation as being the 3364 * result of a write-protected access, and treat it as a spurious case 3365 * rather than taking any action to satisfy the real source of the #PF 3366 * such as generating a KVM_EXIT_MEMORY_FAULT. This can lead to the 3367 * guest spinning on a #PF indefinitely, so don't attempt the fast path 3368 * in this case. 3369 * 3370 * Note that the kvm_mem_is_private() check might race with an 3371 * attribute update, but this will either result in the guest spinning 3372 * on RET_PF_SPURIOUS until the update completes, or an actual spurious 3373 * case might go down the slow path. Either case will resolve itself. 3374 */ 3375 if (kvm->arch.has_private_mem && 3376 fault->is_private != kvm_mem_is_private(kvm, fault->gfn)) 3377 return false; 3378 3379 /* 3380 * #PF can be fast if: 3381 * 3382 * 1. The shadow page table entry is not present and A/D bits are 3383 * disabled _by KVM_, which could mean that the fault is potentially 3384 * caused by access tracking (if enabled). If A/D bits are enabled 3385 * by KVM, but disabled by L1 for L2, KVM is forced to disable A/D 3386 * bits for L2 and employ access tracking, but the fast page fault 3387 * mechanism only supports direct MMUs. 3388 * 2. The shadow page table entry is present, the access is a write, 3389 * and no reserved bits are set (MMIO SPTEs cannot be "fixed"), i.e. 3390 * the fault was caused by a write-protection violation. If the 3391 * SPTE is MMU-writable (determined later), the fault can be fixed 3392 * by setting the Writable bit, which can be done out of mmu_lock. 3393 */ 3394 if (!fault->present) 3395 return !kvm_ad_enabled(); 3396 3397 /* 3398 * Note, instruction fetches and writes are mutually exclusive, ignore 3399 * the "exec" flag. 3400 */ 3401 return fault->write; 3402 } 3403 3404 /* 3405 * Returns true if the SPTE was fixed successfully. Otherwise, 3406 * someone else modified the SPTE from its original value. 3407 */ 3408 static bool fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, 3409 struct kvm_page_fault *fault, 3410 u64 *sptep, u64 old_spte, u64 new_spte) 3411 { 3412 /* 3413 * Theoretically we could also set dirty bit (and flush TLB) here in 3414 * order to eliminate unnecessary PML logging. See comments in 3415 * set_spte. But fast_page_fault is very unlikely to happen with PML 3416 * enabled, so we do not do this. This might result in the same GPA 3417 * to be logged in PML buffer again when the write really happens, and 3418 * eventually to be called by mark_page_dirty twice. But it's also no 3419 * harm. This also avoids the TLB flush needed after setting dirty bit 3420 * so non-PML cases won't be impacted. 3421 * 3422 * Compare with set_spte where instead shadow_dirty_mask is set. 3423 */ 3424 if (!try_cmpxchg64(sptep, &old_spte, new_spte)) 3425 return false; 3426 3427 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) 3428 mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn); 3429 3430 return true; 3431 } 3432 3433 static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte) 3434 { 3435 if (fault->exec) 3436 return is_executable_pte(spte); 3437 3438 if (fault->write) 3439 return is_writable_pte(spte); 3440 3441 /* Fault was on Read access */ 3442 return spte & PT_PRESENT_MASK; 3443 } 3444 3445 /* 3446 * Returns the last level spte pointer of the shadow page walk for the given 3447 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no 3448 * walk could be performed, returns NULL and *spte does not contain valid data. 3449 * 3450 * Contract: 3451 * - Must be called between walk_shadow_page_lockless_{begin,end}. 3452 * - The returned sptep must not be used after walk_shadow_page_lockless_end. 3453 */ 3454 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte) 3455 { 3456 struct kvm_shadow_walk_iterator iterator; 3457 u64 old_spte; 3458 u64 *sptep = NULL; 3459 3460 for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) { 3461 sptep = iterator.sptep; 3462 *spte = old_spte; 3463 } 3464 3465 return sptep; 3466 } 3467 3468 /* 3469 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS. 3470 */ 3471 static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3472 { 3473 struct kvm_mmu_page *sp; 3474 int ret = RET_PF_INVALID; 3475 u64 spte; 3476 u64 *sptep; 3477 uint retry_count = 0; 3478 3479 if (!page_fault_can_be_fast(vcpu->kvm, fault)) 3480 return ret; 3481 3482 walk_shadow_page_lockless_begin(vcpu); 3483 3484 do { 3485 u64 new_spte; 3486 3487 if (tdp_mmu_enabled) 3488 sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->gfn, &spte); 3489 else 3490 sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte); 3491 3492 /* 3493 * It's entirely possible for the mapping to have been zapped 3494 * by a different task, but the root page should always be 3495 * available as the vCPU holds a reference to its root(s). 3496 */ 3497 if (WARN_ON_ONCE(!sptep)) 3498 spte = FROZEN_SPTE; 3499 3500 if (!is_shadow_present_pte(spte)) 3501 break; 3502 3503 sp = sptep_to_sp(sptep); 3504 if (!is_last_spte(spte, sp->role.level)) 3505 break; 3506 3507 /* 3508 * Check whether the memory access that caused the fault would 3509 * still cause it if it were to be performed right now. If not, 3510 * then this is a spurious fault caused by TLB lazily flushed, 3511 * or some other CPU has already fixed the PTE after the 3512 * current CPU took the fault. 3513 * 3514 * Need not check the access of upper level table entries since 3515 * they are always ACC_ALL. 3516 */ 3517 if (is_access_allowed(fault, spte)) { 3518 ret = RET_PF_SPURIOUS; 3519 break; 3520 } 3521 3522 new_spte = spte; 3523 3524 /* 3525 * KVM only supports fixing page faults outside of MMU lock for 3526 * direct MMUs, nested MMUs are always indirect, and KVM always 3527 * uses A/D bits for non-nested MMUs. Thus, if A/D bits are 3528 * enabled, the SPTE can't be an access-tracked SPTE. 3529 */ 3530 if (unlikely(!kvm_ad_enabled()) && is_access_track_spte(spte)) 3531 new_spte = restore_acc_track_spte(new_spte); 3532 3533 /* 3534 * To keep things simple, only SPTEs that are MMU-writable can 3535 * be made fully writable outside of mmu_lock, e.g. only SPTEs 3536 * that were write-protected for dirty-logging or access 3537 * tracking are handled here. Don't bother checking if the 3538 * SPTE is writable to prioritize running with A/D bits enabled. 3539 * The is_access_allowed() check above handles the common case 3540 * of the fault being spurious, and the SPTE is known to be 3541 * shadow-present, i.e. except for access tracking restoration 3542 * making the new SPTE writable, the check is wasteful. 3543 */ 3544 if (fault->write && is_mmu_writable_spte(spte)) { 3545 new_spte |= PT_WRITABLE_MASK; 3546 3547 /* 3548 * Do not fix write-permission on the large spte when 3549 * dirty logging is enabled. Since we only dirty the 3550 * first page into the dirty-bitmap in 3551 * fast_pf_fix_direct_spte(), other pages are missed 3552 * if its slot has dirty logging enabled. 3553 * 3554 * Instead, we let the slow page fault path create a 3555 * normal spte to fix the access. 3556 */ 3557 if (sp->role.level > PG_LEVEL_4K && 3558 kvm_slot_dirty_track_enabled(fault->slot)) 3559 break; 3560 } 3561 3562 /* Verify that the fault can be handled in the fast path */ 3563 if (new_spte == spte || 3564 !is_access_allowed(fault, new_spte)) 3565 break; 3566 3567 /* 3568 * Currently, fast page fault only works for direct mapping 3569 * since the gfn is not stable for indirect shadow page. See 3570 * Documentation/virt/kvm/locking.rst to get more detail. 3571 */ 3572 if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) { 3573 ret = RET_PF_FIXED; 3574 break; 3575 } 3576 3577 if (++retry_count > 4) { 3578 pr_warn_once("Fast #PF retrying more than 4 times.\n"); 3579 break; 3580 } 3581 3582 } while (true); 3583 3584 trace_fast_page_fault(vcpu, fault, sptep, spte, ret); 3585 walk_shadow_page_lockless_end(vcpu); 3586 3587 if (ret != RET_PF_INVALID) 3588 vcpu->stat.pf_fast++; 3589 3590 return ret; 3591 } 3592 3593 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa, 3594 struct list_head *invalid_list) 3595 { 3596 struct kvm_mmu_page *sp; 3597 3598 if (!VALID_PAGE(*root_hpa)) 3599 return; 3600 3601 sp = root_to_sp(*root_hpa); 3602 if (WARN_ON_ONCE(!sp)) 3603 return; 3604 3605 if (is_tdp_mmu_page(sp)) { 3606 lockdep_assert_held_read(&kvm->mmu_lock); 3607 kvm_tdp_mmu_put_root(kvm, sp); 3608 } else { 3609 lockdep_assert_held_write(&kvm->mmu_lock); 3610 if (!--sp->root_count && sp->role.invalid) 3611 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 3612 } 3613 3614 *root_hpa = INVALID_PAGE; 3615 } 3616 3617 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */ 3618 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, 3619 ulong roots_to_free) 3620 { 3621 bool is_tdp_mmu = tdp_mmu_enabled && mmu->root_role.direct; 3622 int i; 3623 LIST_HEAD(invalid_list); 3624 bool free_active_root; 3625 3626 WARN_ON_ONCE(roots_to_free & ~KVM_MMU_ROOTS_ALL); 3627 3628 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG); 3629 3630 /* Before acquiring the MMU lock, see if we need to do any real work. */ 3631 free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT) 3632 && VALID_PAGE(mmu->root.hpa); 3633 3634 if (!free_active_root) { 3635 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3636 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) && 3637 VALID_PAGE(mmu->prev_roots[i].hpa)) 3638 break; 3639 3640 if (i == KVM_MMU_NUM_PREV_ROOTS) 3641 return; 3642 } 3643 3644 if (is_tdp_mmu) 3645 read_lock(&kvm->mmu_lock); 3646 else 3647 write_lock(&kvm->mmu_lock); 3648 3649 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3650 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) 3651 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa, 3652 &invalid_list); 3653 3654 if (free_active_root) { 3655 if (kvm_mmu_is_dummy_root(mmu->root.hpa)) { 3656 /* Nothing to cleanup for dummy roots. */ 3657 } else if (root_to_sp(mmu->root.hpa)) { 3658 mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list); 3659 } else if (mmu->pae_root) { 3660 for (i = 0; i < 4; ++i) { 3661 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i])) 3662 continue; 3663 3664 mmu_free_root_page(kvm, &mmu->pae_root[i], 3665 &invalid_list); 3666 mmu->pae_root[i] = INVALID_PAE_ROOT; 3667 } 3668 } 3669 mmu->root.hpa = INVALID_PAGE; 3670 mmu->root.pgd = 0; 3671 } 3672 3673 if (is_tdp_mmu) { 3674 read_unlock(&kvm->mmu_lock); 3675 WARN_ON_ONCE(!list_empty(&invalid_list)); 3676 } else { 3677 kvm_mmu_commit_zap_page(kvm, &invalid_list); 3678 write_unlock(&kvm->mmu_lock); 3679 } 3680 } 3681 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots); 3682 3683 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu) 3684 { 3685 unsigned long roots_to_free = 0; 3686 struct kvm_mmu_page *sp; 3687 hpa_t root_hpa; 3688 int i; 3689 3690 /* 3691 * This should not be called while L2 is active, L2 can't invalidate 3692 * _only_ its own roots, e.g. INVVPID unconditionally exits. 3693 */ 3694 WARN_ON_ONCE(mmu->root_role.guest_mode); 3695 3696 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 3697 root_hpa = mmu->prev_roots[i].hpa; 3698 if (!VALID_PAGE(root_hpa)) 3699 continue; 3700 3701 sp = root_to_sp(root_hpa); 3702 if (!sp || sp->role.guest_mode) 3703 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 3704 } 3705 3706 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 3707 } 3708 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots); 3709 3710 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, int quadrant, 3711 u8 level) 3712 { 3713 union kvm_mmu_page_role role = vcpu->arch.mmu->root_role; 3714 struct kvm_mmu_page *sp; 3715 3716 role.level = level; 3717 role.quadrant = quadrant; 3718 3719 WARN_ON_ONCE(quadrant && !role.has_4_byte_gpte); 3720 WARN_ON_ONCE(role.direct && role.has_4_byte_gpte); 3721 3722 sp = kvm_mmu_get_shadow_page(vcpu, gfn, role); 3723 ++sp->root_count; 3724 3725 return __pa(sp->spt); 3726 } 3727 3728 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) 3729 { 3730 struct kvm_mmu *mmu = vcpu->arch.mmu; 3731 u8 shadow_root_level = mmu->root_role.level; 3732 hpa_t root; 3733 unsigned i; 3734 int r; 3735 3736 if (tdp_mmu_enabled) 3737 return kvm_tdp_mmu_alloc_root(vcpu); 3738 3739 write_lock(&vcpu->kvm->mmu_lock); 3740 r = make_mmu_pages_available(vcpu); 3741 if (r < 0) 3742 goto out_unlock; 3743 3744 if (shadow_root_level >= PT64_ROOT_4LEVEL) { 3745 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level); 3746 mmu->root.hpa = root; 3747 } else if (shadow_root_level == PT32E_ROOT_LEVEL) { 3748 if (WARN_ON_ONCE(!mmu->pae_root)) { 3749 r = -EIO; 3750 goto out_unlock; 3751 } 3752 3753 for (i = 0; i < 4; ++i) { 3754 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3755 3756 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 0, 3757 PT32_ROOT_LEVEL); 3758 mmu->pae_root[i] = root | PT_PRESENT_MASK | 3759 shadow_me_value; 3760 } 3761 mmu->root.hpa = __pa(mmu->pae_root); 3762 } else { 3763 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level); 3764 r = -EIO; 3765 goto out_unlock; 3766 } 3767 3768 /* root.pgd is ignored for direct MMUs. */ 3769 mmu->root.pgd = 0; 3770 out_unlock: 3771 write_unlock(&vcpu->kvm->mmu_lock); 3772 return r; 3773 } 3774 3775 static int mmu_first_shadow_root_alloc(struct kvm *kvm) 3776 { 3777 struct kvm_memslots *slots; 3778 struct kvm_memory_slot *slot; 3779 int r = 0, i, bkt; 3780 3781 /* 3782 * Check if this is the first shadow root being allocated before 3783 * taking the lock. 3784 */ 3785 if (kvm_shadow_root_allocated(kvm)) 3786 return 0; 3787 3788 mutex_lock(&kvm->slots_arch_lock); 3789 3790 /* Recheck, under the lock, whether this is the first shadow root. */ 3791 if (kvm_shadow_root_allocated(kvm)) 3792 goto out_unlock; 3793 3794 /* 3795 * Check if anything actually needs to be allocated, e.g. all metadata 3796 * will be allocated upfront if TDP is disabled. 3797 */ 3798 if (kvm_memslots_have_rmaps(kvm) && 3799 kvm_page_track_write_tracking_enabled(kvm)) 3800 goto out_success; 3801 3802 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 3803 slots = __kvm_memslots(kvm, i); 3804 kvm_for_each_memslot(slot, bkt, slots) { 3805 /* 3806 * Both of these functions are no-ops if the target is 3807 * already allocated, so unconditionally calling both 3808 * is safe. Intentionally do NOT free allocations on 3809 * failure to avoid having to track which allocations 3810 * were made now versus when the memslot was created. 3811 * The metadata is guaranteed to be freed when the slot 3812 * is freed, and will be kept/used if userspace retries 3813 * KVM_RUN instead of killing the VM. 3814 */ 3815 r = memslot_rmap_alloc(slot, slot->npages); 3816 if (r) 3817 goto out_unlock; 3818 r = kvm_page_track_write_tracking_alloc(slot); 3819 if (r) 3820 goto out_unlock; 3821 } 3822 } 3823 3824 /* 3825 * Ensure that shadow_root_allocated becomes true strictly after 3826 * all the related pointers are set. 3827 */ 3828 out_success: 3829 smp_store_release(&kvm->arch.shadow_root_allocated, true); 3830 3831 out_unlock: 3832 mutex_unlock(&kvm->slots_arch_lock); 3833 return r; 3834 } 3835 3836 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) 3837 { 3838 struct kvm_mmu *mmu = vcpu->arch.mmu; 3839 u64 pdptrs[4], pm_mask; 3840 gfn_t root_gfn, root_pgd; 3841 int quadrant, i, r; 3842 hpa_t root; 3843 3844 root_pgd = kvm_mmu_get_guest_pgd(vcpu, mmu); 3845 root_gfn = (root_pgd & __PT_BASE_ADDR_MASK) >> PAGE_SHIFT; 3846 3847 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) { 3848 mmu->root.hpa = kvm_mmu_get_dummy_root(); 3849 return 0; 3850 } 3851 3852 /* 3853 * On SVM, reading PDPTRs might access guest memory, which might fault 3854 * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock. 3855 */ 3856 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { 3857 for (i = 0; i < 4; ++i) { 3858 pdptrs[i] = mmu->get_pdptr(vcpu, i); 3859 if (!(pdptrs[i] & PT_PRESENT_MASK)) 3860 continue; 3861 3862 if (!kvm_vcpu_is_visible_gfn(vcpu, pdptrs[i] >> PAGE_SHIFT)) 3863 pdptrs[i] = 0; 3864 } 3865 } 3866 3867 r = mmu_first_shadow_root_alloc(vcpu->kvm); 3868 if (r) 3869 return r; 3870 3871 write_lock(&vcpu->kvm->mmu_lock); 3872 r = make_mmu_pages_available(vcpu); 3873 if (r < 0) 3874 goto out_unlock; 3875 3876 /* 3877 * Do we shadow a long mode page table? If so we need to 3878 * write-protect the guests page table root. 3879 */ 3880 if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { 3881 root = mmu_alloc_root(vcpu, root_gfn, 0, 3882 mmu->root_role.level); 3883 mmu->root.hpa = root; 3884 goto set_root_pgd; 3885 } 3886 3887 if (WARN_ON_ONCE(!mmu->pae_root)) { 3888 r = -EIO; 3889 goto out_unlock; 3890 } 3891 3892 /* 3893 * We shadow a 32 bit page table. This may be a legacy 2-level 3894 * or a PAE 3-level page table. In either case we need to be aware that 3895 * the shadow page table may be a PAE or a long mode page table. 3896 */ 3897 pm_mask = PT_PRESENT_MASK | shadow_me_value; 3898 if (mmu->root_role.level >= PT64_ROOT_4LEVEL) { 3899 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; 3900 3901 if (WARN_ON_ONCE(!mmu->pml4_root)) { 3902 r = -EIO; 3903 goto out_unlock; 3904 } 3905 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask; 3906 3907 if (mmu->root_role.level == PT64_ROOT_5LEVEL) { 3908 if (WARN_ON_ONCE(!mmu->pml5_root)) { 3909 r = -EIO; 3910 goto out_unlock; 3911 } 3912 mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask; 3913 } 3914 } 3915 3916 for (i = 0; i < 4; ++i) { 3917 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3918 3919 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { 3920 if (!(pdptrs[i] & PT_PRESENT_MASK)) { 3921 mmu->pae_root[i] = INVALID_PAE_ROOT; 3922 continue; 3923 } 3924 root_gfn = pdptrs[i] >> PAGE_SHIFT; 3925 } 3926 3927 /* 3928 * If shadowing 32-bit non-PAE page tables, each PAE page 3929 * directory maps one quarter of the guest's non-PAE page 3930 * directory. Othwerise each PAE page direct shadows one guest 3931 * PAE page directory so that quadrant should be 0. 3932 */ 3933 quadrant = (mmu->cpu_role.base.level == PT32_ROOT_LEVEL) ? i : 0; 3934 3935 root = mmu_alloc_root(vcpu, root_gfn, quadrant, PT32_ROOT_LEVEL); 3936 mmu->pae_root[i] = root | pm_mask; 3937 } 3938 3939 if (mmu->root_role.level == PT64_ROOT_5LEVEL) 3940 mmu->root.hpa = __pa(mmu->pml5_root); 3941 else if (mmu->root_role.level == PT64_ROOT_4LEVEL) 3942 mmu->root.hpa = __pa(mmu->pml4_root); 3943 else 3944 mmu->root.hpa = __pa(mmu->pae_root); 3945 3946 set_root_pgd: 3947 mmu->root.pgd = root_pgd; 3948 out_unlock: 3949 write_unlock(&vcpu->kvm->mmu_lock); 3950 3951 return r; 3952 } 3953 3954 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu) 3955 { 3956 struct kvm_mmu *mmu = vcpu->arch.mmu; 3957 bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL; 3958 u64 *pml5_root = NULL; 3959 u64 *pml4_root = NULL; 3960 u64 *pae_root; 3961 3962 /* 3963 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP 3964 * tables are allocated and initialized at root creation as there is no 3965 * equivalent level in the guest's NPT to shadow. Allocate the tables 3966 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare. 3967 */ 3968 if (mmu->root_role.direct || 3969 mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL || 3970 mmu->root_role.level < PT64_ROOT_4LEVEL) 3971 return 0; 3972 3973 /* 3974 * NPT, the only paging mode that uses this horror, uses a fixed number 3975 * of levels for the shadow page tables, e.g. all MMUs are 4-level or 3976 * all MMus are 5-level. Thus, this can safely require that pml5_root 3977 * is allocated if the other roots are valid and pml5 is needed, as any 3978 * prior MMU would also have required pml5. 3979 */ 3980 if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root)) 3981 return 0; 3982 3983 /* 3984 * The special roots should always be allocated in concert. Yell and 3985 * bail if KVM ends up in a state where only one of the roots is valid. 3986 */ 3987 if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root || 3988 (need_pml5 && mmu->pml5_root))) 3989 return -EIO; 3990 3991 /* 3992 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and 3993 * doesn't need to be decrypted. 3994 */ 3995 pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3996 if (!pae_root) 3997 return -ENOMEM; 3998 3999 #ifdef CONFIG_X86_64 4000 pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 4001 if (!pml4_root) 4002 goto err_pml4; 4003 4004 if (need_pml5) { 4005 pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 4006 if (!pml5_root) 4007 goto err_pml5; 4008 } 4009 #endif 4010 4011 mmu->pae_root = pae_root; 4012 mmu->pml4_root = pml4_root; 4013 mmu->pml5_root = pml5_root; 4014 4015 return 0; 4016 4017 #ifdef CONFIG_X86_64 4018 err_pml5: 4019 free_page((unsigned long)pml4_root); 4020 err_pml4: 4021 free_page((unsigned long)pae_root); 4022 return -ENOMEM; 4023 #endif 4024 } 4025 4026 static bool is_unsync_root(hpa_t root) 4027 { 4028 struct kvm_mmu_page *sp; 4029 4030 if (!VALID_PAGE(root) || kvm_mmu_is_dummy_root(root)) 4031 return false; 4032 4033 /* 4034 * The read barrier orders the CPU's read of SPTE.W during the page table 4035 * walk before the reads of sp->unsync/sp->unsync_children here. 4036 * 4037 * Even if another CPU was marking the SP as unsync-ed simultaneously, 4038 * any guest page table changes are not guaranteed to be visible anyway 4039 * until this VCPU issues a TLB flush strictly after those changes are 4040 * made. We only need to ensure that the other CPU sets these flags 4041 * before any actual changes to the page tables are made. The comments 4042 * in mmu_try_to_unsync_pages() describe what could go wrong if this 4043 * requirement isn't satisfied. 4044 */ 4045 smp_rmb(); 4046 sp = root_to_sp(root); 4047 4048 /* 4049 * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the 4050 * PDPTEs for a given PAE root need to be synchronized individually. 4051 */ 4052 if (WARN_ON_ONCE(!sp)) 4053 return false; 4054 4055 if (sp->unsync || sp->unsync_children) 4056 return true; 4057 4058 return false; 4059 } 4060 4061 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) 4062 { 4063 int i; 4064 struct kvm_mmu_page *sp; 4065 4066 if (vcpu->arch.mmu->root_role.direct) 4067 return; 4068 4069 if (!VALID_PAGE(vcpu->arch.mmu->root.hpa)) 4070 return; 4071 4072 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 4073 4074 if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { 4075 hpa_t root = vcpu->arch.mmu->root.hpa; 4076 4077 if (!is_unsync_root(root)) 4078 return; 4079 4080 sp = root_to_sp(root); 4081 4082 write_lock(&vcpu->kvm->mmu_lock); 4083 mmu_sync_children(vcpu, sp, true); 4084 write_unlock(&vcpu->kvm->mmu_lock); 4085 return; 4086 } 4087 4088 write_lock(&vcpu->kvm->mmu_lock); 4089 4090 for (i = 0; i < 4; ++i) { 4091 hpa_t root = vcpu->arch.mmu->pae_root[i]; 4092 4093 if (IS_VALID_PAE_ROOT(root)) { 4094 sp = spte_to_child_sp(root); 4095 mmu_sync_children(vcpu, sp, true); 4096 } 4097 } 4098 4099 write_unlock(&vcpu->kvm->mmu_lock); 4100 } 4101 4102 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu) 4103 { 4104 unsigned long roots_to_free = 0; 4105 int i; 4106 4107 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 4108 if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa)) 4109 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 4110 4111 /* sync prev_roots by simply freeing them */ 4112 kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free); 4113 } 4114 4115 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 4116 gpa_t vaddr, u64 access, 4117 struct x86_exception *exception) 4118 { 4119 if (exception) 4120 exception->error_code = 0; 4121 return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception); 4122 } 4123 4124 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct) 4125 { 4126 /* 4127 * A nested guest cannot use the MMIO cache if it is using nested 4128 * page tables, because cr2 is a nGPA while the cache stores GPAs. 4129 */ 4130 if (mmu_is_nested(vcpu)) 4131 return false; 4132 4133 if (direct) 4134 return vcpu_match_mmio_gpa(vcpu, addr); 4135 4136 return vcpu_match_mmio_gva(vcpu, addr); 4137 } 4138 4139 /* 4140 * Return the level of the lowest level SPTE added to sptes. 4141 * That SPTE may be non-present. 4142 * 4143 * Must be called between walk_shadow_page_lockless_{begin,end}. 4144 */ 4145 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level) 4146 { 4147 struct kvm_shadow_walk_iterator iterator; 4148 int leaf = -1; 4149 u64 spte; 4150 4151 for (shadow_walk_init(&iterator, vcpu, addr), 4152 *root_level = iterator.level; 4153 shadow_walk_okay(&iterator); 4154 __shadow_walk_next(&iterator, spte)) { 4155 leaf = iterator.level; 4156 spte = mmu_spte_get_lockless(iterator.sptep); 4157 4158 sptes[leaf] = spte; 4159 } 4160 4161 return leaf; 4162 } 4163 4164 static int get_sptes_lockless(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, 4165 int *root_level) 4166 { 4167 int leaf; 4168 4169 walk_shadow_page_lockless_begin(vcpu); 4170 4171 if (is_tdp_mmu_active(vcpu)) 4172 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, root_level); 4173 else 4174 leaf = get_walk(vcpu, addr, sptes, root_level); 4175 4176 walk_shadow_page_lockless_end(vcpu); 4177 return leaf; 4178 } 4179 4180 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */ 4181 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) 4182 { 4183 u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; 4184 struct rsvd_bits_validate *rsvd_check; 4185 int root, leaf, level; 4186 bool reserved = false; 4187 4188 leaf = get_sptes_lockless(vcpu, addr, sptes, &root); 4189 if (unlikely(leaf < 0)) { 4190 *sptep = 0ull; 4191 return reserved; 4192 } 4193 4194 *sptep = sptes[leaf]; 4195 4196 /* 4197 * Skip reserved bits checks on the terminal leaf if it's not a valid 4198 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by 4199 * design, always have reserved bits set. The purpose of the checks is 4200 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs. 4201 */ 4202 if (!is_shadow_present_pte(sptes[leaf])) 4203 leaf++; 4204 4205 rsvd_check = &vcpu->arch.mmu->shadow_zero_check; 4206 4207 for (level = root; level >= leaf; level--) 4208 reserved |= is_rsvd_spte(rsvd_check, sptes[level], level); 4209 4210 if (reserved) { 4211 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n", 4212 __func__, addr); 4213 for (level = root; level >= leaf; level--) 4214 pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx", 4215 sptes[level], level, 4216 get_rsvd_bits(rsvd_check, sptes[level], level)); 4217 } 4218 4219 return reserved; 4220 } 4221 4222 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct) 4223 { 4224 u64 spte; 4225 bool reserved; 4226 4227 if (mmio_info_in_cache(vcpu, addr, direct)) 4228 return RET_PF_EMULATE; 4229 4230 reserved = get_mmio_spte(vcpu, addr, &spte); 4231 if (WARN_ON_ONCE(reserved)) 4232 return -EINVAL; 4233 4234 if (is_mmio_spte(vcpu->kvm, spte)) { 4235 gfn_t gfn = get_mmio_spte_gfn(spte); 4236 unsigned int access = get_mmio_spte_access(spte); 4237 4238 if (!check_mmio_spte(vcpu, spte)) 4239 return RET_PF_INVALID; 4240 4241 if (direct) 4242 addr = 0; 4243 4244 trace_handle_mmio_page_fault(addr, gfn, access); 4245 vcpu_cache_mmio_info(vcpu, addr, gfn, access); 4246 return RET_PF_EMULATE; 4247 } 4248 4249 /* 4250 * If the page table is zapped by other cpus, let CPU fault again on 4251 * the address. 4252 */ 4253 return RET_PF_RETRY; 4254 } 4255 4256 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu, 4257 struct kvm_page_fault *fault) 4258 { 4259 if (unlikely(fault->rsvd)) 4260 return false; 4261 4262 if (!fault->present || !fault->write) 4263 return false; 4264 4265 /* 4266 * guest is writing the page which is write tracked which can 4267 * not be fixed by page fault handler. 4268 */ 4269 if (kvm_gfn_is_write_tracked(vcpu->kvm, fault->slot, fault->gfn)) 4270 return true; 4271 4272 return false; 4273 } 4274 4275 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr) 4276 { 4277 struct kvm_shadow_walk_iterator iterator; 4278 u64 spte; 4279 4280 walk_shadow_page_lockless_begin(vcpu); 4281 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) 4282 clear_sp_write_flooding_count(iterator.sptep); 4283 walk_shadow_page_lockless_end(vcpu); 4284 } 4285 4286 static u32 alloc_apf_token(struct kvm_vcpu *vcpu) 4287 { 4288 /* make sure the token value is not 0 */ 4289 u32 id = vcpu->arch.apf.id; 4290 4291 if (id << 12 == 0) 4292 vcpu->arch.apf.id = 1; 4293 4294 return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; 4295 } 4296 4297 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, 4298 struct kvm_page_fault *fault) 4299 { 4300 struct kvm_arch_async_pf arch; 4301 4302 arch.token = alloc_apf_token(vcpu); 4303 arch.gfn = fault->gfn; 4304 arch.error_code = fault->error_code; 4305 arch.direct_map = vcpu->arch.mmu->root_role.direct; 4306 arch.cr3 = kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu); 4307 4308 return kvm_setup_async_pf(vcpu, fault->addr, 4309 kvm_vcpu_gfn_to_hva(vcpu, fault->gfn), &arch); 4310 } 4311 4312 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 4313 { 4314 int r; 4315 4316 if (WARN_ON_ONCE(work->arch.error_code & PFERR_PRIVATE_ACCESS)) 4317 return; 4318 4319 if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) || 4320 work->wakeup_all) 4321 return; 4322 4323 r = kvm_mmu_reload(vcpu); 4324 if (unlikely(r)) 4325 return; 4326 4327 if (!vcpu->arch.mmu->root_role.direct && 4328 work->arch.cr3 != kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu)) 4329 return; 4330 4331 r = kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, work->arch.error_code, 4332 true, NULL, NULL); 4333 4334 /* 4335 * Account fixed page faults, otherwise they'll never be counted, but 4336 * ignore stats for all other return times. Page-ready "faults" aren't 4337 * truly spurious and never trigger emulation 4338 */ 4339 if (r == RET_PF_FIXED) 4340 vcpu->stat.pf_fixed++; 4341 } 4342 4343 static inline u8 kvm_max_level_for_order(int order) 4344 { 4345 BUILD_BUG_ON(KVM_MAX_HUGEPAGE_LEVEL > PG_LEVEL_1G); 4346 4347 KVM_MMU_WARN_ON(order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G) && 4348 order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M) && 4349 order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K)); 4350 4351 if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G)) 4352 return PG_LEVEL_1G; 4353 4354 if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M)) 4355 return PG_LEVEL_2M; 4356 4357 return PG_LEVEL_4K; 4358 } 4359 4360 static u8 kvm_max_private_mapping_level(struct kvm *kvm, kvm_pfn_t pfn, 4361 u8 max_level, int gmem_order) 4362 { 4363 u8 req_max_level; 4364 4365 if (max_level == PG_LEVEL_4K) 4366 return PG_LEVEL_4K; 4367 4368 max_level = min(kvm_max_level_for_order(gmem_order), max_level); 4369 if (max_level == PG_LEVEL_4K) 4370 return PG_LEVEL_4K; 4371 4372 req_max_level = kvm_x86_call(private_max_mapping_level)(kvm, pfn); 4373 if (req_max_level) 4374 max_level = min(max_level, req_max_level); 4375 4376 return max_level; 4377 } 4378 4379 static int kvm_faultin_pfn_private(struct kvm_vcpu *vcpu, 4380 struct kvm_page_fault *fault) 4381 { 4382 int max_order, r; 4383 4384 if (!kvm_slot_can_be_private(fault->slot)) { 4385 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 4386 return -EFAULT; 4387 } 4388 4389 r = kvm_gmem_get_pfn(vcpu->kvm, fault->slot, fault->gfn, &fault->pfn, 4390 &max_order); 4391 if (r) { 4392 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 4393 return r; 4394 } 4395 4396 fault->map_writable = !(fault->slot->flags & KVM_MEM_READONLY); 4397 fault->max_level = kvm_max_private_mapping_level(vcpu->kvm, fault->pfn, 4398 fault->max_level, max_order); 4399 4400 return RET_PF_CONTINUE; 4401 } 4402 4403 static int __kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4404 { 4405 bool async; 4406 4407 if (fault->is_private) 4408 return kvm_faultin_pfn_private(vcpu, fault); 4409 4410 async = false; 4411 fault->pfn = __gfn_to_pfn_memslot(fault->slot, fault->gfn, false, false, 4412 &async, fault->write, 4413 &fault->map_writable, &fault->hva); 4414 if (!async) 4415 return RET_PF_CONTINUE; /* *pfn has correct page already */ 4416 4417 if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) { 4418 trace_kvm_try_async_get_page(fault->addr, fault->gfn); 4419 if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) { 4420 trace_kvm_async_pf_repeated_fault(fault->addr, fault->gfn); 4421 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 4422 return RET_PF_RETRY; 4423 } else if (kvm_arch_setup_async_pf(vcpu, fault)) { 4424 return RET_PF_RETRY; 4425 } 4426 } 4427 4428 /* 4429 * Allow gup to bail on pending non-fatal signals when it's also allowed 4430 * to wait for IO. Note, gup always bails if it is unable to quickly 4431 * get a page and a fatal signal, i.e. SIGKILL, is pending. 4432 */ 4433 fault->pfn = __gfn_to_pfn_memslot(fault->slot, fault->gfn, false, true, 4434 NULL, fault->write, 4435 &fault->map_writable, &fault->hva); 4436 return RET_PF_CONTINUE; 4437 } 4438 4439 static int kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, 4440 unsigned int access) 4441 { 4442 struct kvm_memory_slot *slot = fault->slot; 4443 int ret; 4444 4445 /* 4446 * Note that the mmu_invalidate_seq also serves to detect a concurrent 4447 * change in attributes. is_page_fault_stale() will detect an 4448 * invalidation relate to fault->fn and resume the guest without 4449 * installing a mapping in the page tables. 4450 */ 4451 fault->mmu_seq = vcpu->kvm->mmu_invalidate_seq; 4452 smp_rmb(); 4453 4454 /* 4455 * Now that we have a snapshot of mmu_invalidate_seq we can check for a 4456 * private vs. shared mismatch. 4457 */ 4458 if (fault->is_private != kvm_mem_is_private(vcpu->kvm, fault->gfn)) { 4459 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 4460 return -EFAULT; 4461 } 4462 4463 if (unlikely(!slot)) 4464 return kvm_handle_noslot_fault(vcpu, fault, access); 4465 4466 /* 4467 * Retry the page fault if the gfn hit a memslot that is being deleted 4468 * or moved. This ensures any existing SPTEs for the old memslot will 4469 * be zapped before KVM inserts a new MMIO SPTE for the gfn. 4470 */ 4471 if (slot->flags & KVM_MEMSLOT_INVALID) 4472 return RET_PF_RETRY; 4473 4474 if (slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT) { 4475 /* 4476 * Don't map L1's APIC access page into L2, KVM doesn't support 4477 * using APICv/AVIC to accelerate L2 accesses to L1's APIC, 4478 * i.e. the access needs to be emulated. Emulating access to 4479 * L1's APIC is also correct if L1 is accelerating L2's own 4480 * virtual APIC, but for some reason L1 also maps _L1's_ APIC 4481 * into L2. Note, vcpu_is_mmio_gpa() always treats access to 4482 * the APIC as MMIO. Allow an MMIO SPTE to be created, as KVM 4483 * uses different roots for L1 vs. L2, i.e. there is no danger 4484 * of breaking APICv/AVIC for L1. 4485 */ 4486 if (is_guest_mode(vcpu)) 4487 return kvm_handle_noslot_fault(vcpu, fault, access); 4488 4489 /* 4490 * If the APIC access page exists but is disabled, go directly 4491 * to emulation without caching the MMIO access or creating a 4492 * MMIO SPTE. That way the cache doesn't need to be purged 4493 * when the AVIC is re-enabled. 4494 */ 4495 if (!kvm_apicv_activated(vcpu->kvm)) 4496 return RET_PF_EMULATE; 4497 } 4498 4499 /* 4500 * Check for a relevant mmu_notifier invalidation event before getting 4501 * the pfn from the primary MMU, and before acquiring mmu_lock. 4502 * 4503 * For mmu_lock, if there is an in-progress invalidation and the kernel 4504 * allows preemption, the invalidation task may drop mmu_lock and yield 4505 * in response to mmu_lock being contended, which is *very* counter- 4506 * productive as this vCPU can't actually make forward progress until 4507 * the invalidation completes. 4508 * 4509 * Retrying now can also avoid unnessary lock contention in the primary 4510 * MMU, as the primary MMU doesn't necessarily hold a single lock for 4511 * the duration of the invalidation, i.e. faulting in a conflicting pfn 4512 * can cause the invalidation to take longer by holding locks that are 4513 * needed to complete the invalidation. 4514 * 4515 * Do the pre-check even for non-preemtible kernels, i.e. even if KVM 4516 * will never yield mmu_lock in response to contention, as this vCPU is 4517 * *guaranteed* to need to retry, i.e. waiting until mmu_lock is held 4518 * to detect retry guarantees the worst case latency for the vCPU. 4519 */ 4520 if (mmu_invalidate_retry_gfn_unsafe(vcpu->kvm, fault->mmu_seq, fault->gfn)) 4521 return RET_PF_RETRY; 4522 4523 ret = __kvm_faultin_pfn(vcpu, fault); 4524 if (ret != RET_PF_CONTINUE) 4525 return ret; 4526 4527 if (unlikely(is_error_pfn(fault->pfn))) 4528 return kvm_handle_error_pfn(vcpu, fault); 4529 4530 if (WARN_ON_ONCE(!fault->slot || is_noslot_pfn(fault->pfn))) 4531 return kvm_handle_noslot_fault(vcpu, fault, access); 4532 4533 /* 4534 * Check again for a relevant mmu_notifier invalidation event purely to 4535 * avoid contending mmu_lock. Most invalidations will be detected by 4536 * the previous check, but checking is extremely cheap relative to the 4537 * overall cost of failing to detect the invalidation until after 4538 * mmu_lock is acquired. 4539 */ 4540 if (mmu_invalidate_retry_gfn_unsafe(vcpu->kvm, fault->mmu_seq, fault->gfn)) { 4541 kvm_release_pfn_clean(fault->pfn); 4542 return RET_PF_RETRY; 4543 } 4544 4545 return RET_PF_CONTINUE; 4546 } 4547 4548 /* 4549 * Returns true if the page fault is stale and needs to be retried, i.e. if the 4550 * root was invalidated by a memslot update or a relevant mmu_notifier fired. 4551 */ 4552 static bool is_page_fault_stale(struct kvm_vcpu *vcpu, 4553 struct kvm_page_fault *fault) 4554 { 4555 struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa); 4556 4557 /* Special roots, e.g. pae_root, are not backed by shadow pages. */ 4558 if (sp && is_obsolete_sp(vcpu->kvm, sp)) 4559 return true; 4560 4561 /* 4562 * Roots without an associated shadow page are considered invalid if 4563 * there is a pending request to free obsolete roots. The request is 4564 * only a hint that the current root _may_ be obsolete and needs to be 4565 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a 4566 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs 4567 * to reload even if no vCPU is actively using the root. 4568 */ 4569 if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 4570 return true; 4571 4572 /* 4573 * Check for a relevant mmu_notifier invalidation event one last time 4574 * now that mmu_lock is held, as the "unsafe" checks performed without 4575 * holding mmu_lock can get false negatives. 4576 */ 4577 return fault->slot && 4578 mmu_invalidate_retry_gfn(vcpu->kvm, fault->mmu_seq, fault->gfn); 4579 } 4580 4581 static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4582 { 4583 int r; 4584 4585 /* Dummy roots are used only for shadowing bad guest roots. */ 4586 if (WARN_ON_ONCE(kvm_mmu_is_dummy_root(vcpu->arch.mmu->root.hpa))) 4587 return RET_PF_RETRY; 4588 4589 if (page_fault_handle_page_track(vcpu, fault)) 4590 return RET_PF_WRITE_PROTECTED; 4591 4592 r = fast_page_fault(vcpu, fault); 4593 if (r != RET_PF_INVALID) 4594 return r; 4595 4596 r = mmu_topup_memory_caches(vcpu, false); 4597 if (r) 4598 return r; 4599 4600 r = kvm_faultin_pfn(vcpu, fault, ACC_ALL); 4601 if (r != RET_PF_CONTINUE) 4602 return r; 4603 4604 r = RET_PF_RETRY; 4605 write_lock(&vcpu->kvm->mmu_lock); 4606 4607 if (is_page_fault_stale(vcpu, fault)) 4608 goto out_unlock; 4609 4610 r = make_mmu_pages_available(vcpu); 4611 if (r) 4612 goto out_unlock; 4613 4614 r = direct_map(vcpu, fault); 4615 4616 out_unlock: 4617 write_unlock(&vcpu->kvm->mmu_lock); 4618 kvm_release_pfn_clean(fault->pfn); 4619 return r; 4620 } 4621 4622 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, 4623 struct kvm_page_fault *fault) 4624 { 4625 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */ 4626 fault->max_level = PG_LEVEL_2M; 4627 return direct_page_fault(vcpu, fault); 4628 } 4629 4630 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, 4631 u64 fault_address, char *insn, int insn_len) 4632 { 4633 int r = 1; 4634 u32 flags = vcpu->arch.apf.host_apf_flags; 4635 4636 #ifndef CONFIG_X86_64 4637 /* A 64-bit CR2 should be impossible on 32-bit KVM. */ 4638 if (WARN_ON_ONCE(fault_address >> 32)) 4639 return -EFAULT; 4640 #endif 4641 /* 4642 * Legacy #PF exception only have a 32-bit error code. Simply drop the 4643 * upper bits as KVM doesn't use them for #PF (because they are never 4644 * set), and to ensure there are no collisions with KVM-defined bits. 4645 */ 4646 if (WARN_ON_ONCE(error_code >> 32)) 4647 error_code = lower_32_bits(error_code); 4648 4649 /* 4650 * Restrict KVM-defined flags to bits 63:32 so that it's impossible for 4651 * them to conflict with #PF error codes, which are limited to 32 bits. 4652 */ 4653 BUILD_BUG_ON(lower_32_bits(PFERR_SYNTHETIC_MASK)); 4654 4655 vcpu->arch.l1tf_flush_l1d = true; 4656 if (!flags) { 4657 trace_kvm_page_fault(vcpu, fault_address, error_code); 4658 4659 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn, 4660 insn_len); 4661 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) { 4662 vcpu->arch.apf.host_apf_flags = 0; 4663 local_irq_disable(); 4664 kvm_async_pf_task_wait_schedule(fault_address); 4665 local_irq_enable(); 4666 } else { 4667 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags); 4668 } 4669 4670 return r; 4671 } 4672 EXPORT_SYMBOL_GPL(kvm_handle_page_fault); 4673 4674 #ifdef CONFIG_X86_64 4675 static int kvm_tdp_mmu_page_fault(struct kvm_vcpu *vcpu, 4676 struct kvm_page_fault *fault) 4677 { 4678 int r; 4679 4680 if (page_fault_handle_page_track(vcpu, fault)) 4681 return RET_PF_WRITE_PROTECTED; 4682 4683 r = fast_page_fault(vcpu, fault); 4684 if (r != RET_PF_INVALID) 4685 return r; 4686 4687 r = mmu_topup_memory_caches(vcpu, false); 4688 if (r) 4689 return r; 4690 4691 r = kvm_faultin_pfn(vcpu, fault, ACC_ALL); 4692 if (r != RET_PF_CONTINUE) 4693 return r; 4694 4695 r = RET_PF_RETRY; 4696 read_lock(&vcpu->kvm->mmu_lock); 4697 4698 if (is_page_fault_stale(vcpu, fault)) 4699 goto out_unlock; 4700 4701 r = kvm_tdp_mmu_map(vcpu, fault); 4702 4703 out_unlock: 4704 read_unlock(&vcpu->kvm->mmu_lock); 4705 kvm_release_pfn_clean(fault->pfn); 4706 return r; 4707 } 4708 #endif 4709 4710 bool kvm_mmu_may_ignore_guest_pat(void) 4711 { 4712 /* 4713 * When EPT is enabled (shadow_memtype_mask is non-zero), and the VM 4714 * has non-coherent DMA (DMA doesn't snoop CPU caches), KVM's ABI is to 4715 * honor the memtype from the guest's PAT so that guest accesses to 4716 * memory that is DMA'd aren't cached against the guest's wishes. As a 4717 * result, KVM _may_ ignore guest PAT, whereas without non-coherent DMA, 4718 * KVM _always_ ignores guest PAT (when EPT is enabled). 4719 */ 4720 return shadow_memtype_mask; 4721 } 4722 4723 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4724 { 4725 #ifdef CONFIG_X86_64 4726 if (tdp_mmu_enabled) 4727 return kvm_tdp_mmu_page_fault(vcpu, fault); 4728 #endif 4729 4730 return direct_page_fault(vcpu, fault); 4731 } 4732 4733 static int kvm_tdp_map_page(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code, 4734 u8 *level) 4735 { 4736 int r; 4737 4738 /* 4739 * Restrict to TDP page fault, since that's the only case where the MMU 4740 * is indexed by GPA. 4741 */ 4742 if (vcpu->arch.mmu->page_fault != kvm_tdp_page_fault) 4743 return -EOPNOTSUPP; 4744 4745 do { 4746 if (signal_pending(current)) 4747 return -EINTR; 4748 cond_resched(); 4749 r = kvm_mmu_do_page_fault(vcpu, gpa, error_code, true, NULL, level); 4750 } while (r == RET_PF_RETRY); 4751 4752 if (r < 0) 4753 return r; 4754 4755 switch (r) { 4756 case RET_PF_FIXED: 4757 case RET_PF_SPURIOUS: 4758 case RET_PF_WRITE_PROTECTED: 4759 return 0; 4760 4761 case RET_PF_EMULATE: 4762 return -ENOENT; 4763 4764 case RET_PF_RETRY: 4765 case RET_PF_CONTINUE: 4766 case RET_PF_INVALID: 4767 default: 4768 WARN_ONCE(1, "could not fix page fault during prefault"); 4769 return -EIO; 4770 } 4771 } 4772 4773 long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu, 4774 struct kvm_pre_fault_memory *range) 4775 { 4776 u64 error_code = PFERR_GUEST_FINAL_MASK; 4777 u8 level = PG_LEVEL_4K; 4778 u64 end; 4779 int r; 4780 4781 if (!vcpu->kvm->arch.pre_fault_allowed) 4782 return -EOPNOTSUPP; 4783 4784 /* 4785 * reload is efficient when called repeatedly, so we can do it on 4786 * every iteration. 4787 */ 4788 r = kvm_mmu_reload(vcpu); 4789 if (r) 4790 return r; 4791 4792 if (kvm_arch_has_private_mem(vcpu->kvm) && 4793 kvm_mem_is_private(vcpu->kvm, gpa_to_gfn(range->gpa))) 4794 error_code |= PFERR_PRIVATE_ACCESS; 4795 4796 /* 4797 * Shadow paging uses GVA for kvm page fault, so restrict to 4798 * two-dimensional paging. 4799 */ 4800 r = kvm_tdp_map_page(vcpu, range->gpa, error_code, &level); 4801 if (r < 0) 4802 return r; 4803 4804 /* 4805 * If the mapping that covers range->gpa can use a huge page, it 4806 * may start below it or end after range->gpa + range->size. 4807 */ 4808 end = (range->gpa & KVM_HPAGE_MASK(level)) + KVM_HPAGE_SIZE(level); 4809 return min(range->size, end - range->gpa); 4810 } 4811 4812 static void nonpaging_init_context(struct kvm_mmu *context) 4813 { 4814 context->page_fault = nonpaging_page_fault; 4815 context->gva_to_gpa = nonpaging_gva_to_gpa; 4816 context->sync_spte = NULL; 4817 } 4818 4819 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd, 4820 union kvm_mmu_page_role role) 4821 { 4822 struct kvm_mmu_page *sp; 4823 4824 if (!VALID_PAGE(root->hpa)) 4825 return false; 4826 4827 if (!role.direct && pgd != root->pgd) 4828 return false; 4829 4830 sp = root_to_sp(root->hpa); 4831 if (WARN_ON_ONCE(!sp)) 4832 return false; 4833 4834 return role.word == sp->role.word; 4835 } 4836 4837 /* 4838 * Find out if a previously cached root matching the new pgd/role is available, 4839 * and insert the current root as the MRU in the cache. 4840 * If a matching root is found, it is assigned to kvm_mmu->root and 4841 * true is returned. 4842 * If no match is found, kvm_mmu->root is left invalid, the LRU root is 4843 * evicted to make room for the current root, and false is returned. 4844 */ 4845 static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu, 4846 gpa_t new_pgd, 4847 union kvm_mmu_page_role new_role) 4848 { 4849 uint i; 4850 4851 if (is_root_usable(&mmu->root, new_pgd, new_role)) 4852 return true; 4853 4854 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 4855 /* 4856 * The swaps end up rotating the cache like this: 4857 * C 0 1 2 3 (on entry to the function) 4858 * 0 C 1 2 3 4859 * 1 C 0 2 3 4860 * 2 C 0 1 3 4861 * 3 C 0 1 2 (on exit from the loop) 4862 */ 4863 swap(mmu->root, mmu->prev_roots[i]); 4864 if (is_root_usable(&mmu->root, new_pgd, new_role)) 4865 return true; 4866 } 4867 4868 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 4869 return false; 4870 } 4871 4872 /* 4873 * Find out if a previously cached root matching the new pgd/role is available. 4874 * On entry, mmu->root is invalid. 4875 * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry 4876 * of the cache becomes invalid, and true is returned. 4877 * If no match is found, kvm_mmu->root is left invalid and false is returned. 4878 */ 4879 static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu, 4880 gpa_t new_pgd, 4881 union kvm_mmu_page_role new_role) 4882 { 4883 uint i; 4884 4885 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 4886 if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role)) 4887 goto hit; 4888 4889 return false; 4890 4891 hit: 4892 swap(mmu->root, mmu->prev_roots[i]); 4893 /* Bubble up the remaining roots. */ 4894 for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++) 4895 mmu->prev_roots[i] = mmu->prev_roots[i + 1]; 4896 mmu->prev_roots[i].hpa = INVALID_PAGE; 4897 return true; 4898 } 4899 4900 static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu, 4901 gpa_t new_pgd, union kvm_mmu_page_role new_role) 4902 { 4903 /* 4904 * Limit reuse to 64-bit hosts+VMs without "special" roots in order to 4905 * avoid having to deal with PDPTEs and other complexities. 4906 */ 4907 if (VALID_PAGE(mmu->root.hpa) && !root_to_sp(mmu->root.hpa)) 4908 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 4909 4910 if (VALID_PAGE(mmu->root.hpa)) 4911 return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role); 4912 else 4913 return cached_root_find_without_current(kvm, mmu, new_pgd, new_role); 4914 } 4915 4916 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd) 4917 { 4918 struct kvm_mmu *mmu = vcpu->arch.mmu; 4919 union kvm_mmu_page_role new_role = mmu->root_role; 4920 4921 /* 4922 * Return immediately if no usable root was found, kvm_mmu_reload() 4923 * will establish a valid root prior to the next VM-Enter. 4924 */ 4925 if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role)) 4926 return; 4927 4928 /* 4929 * It's possible that the cached previous root page is obsolete because 4930 * of a change in the MMU generation number. However, changing the 4931 * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, 4932 * which will free the root set here and allocate a new one. 4933 */ 4934 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 4935 4936 if (force_flush_and_sync_on_reuse) { 4937 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 4938 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 4939 } 4940 4941 /* 4942 * The last MMIO access's GVA and GPA are cached in the VCPU. When 4943 * switching to a new CR3, that GVA->GPA mapping may no longer be 4944 * valid. So clear any cached MMIO info even when we don't need to sync 4945 * the shadow page tables. 4946 */ 4947 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 4948 4949 /* 4950 * If this is a direct root page, it doesn't have a write flooding 4951 * count. Otherwise, clear the write flooding count. 4952 */ 4953 if (!new_role.direct) { 4954 struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa); 4955 4956 if (!WARN_ON_ONCE(!sp)) 4957 __clear_sp_write_flooding_count(sp); 4958 } 4959 } 4960 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd); 4961 4962 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, 4963 unsigned int access) 4964 { 4965 if (unlikely(is_mmio_spte(vcpu->kvm, *sptep))) { 4966 if (gfn != get_mmio_spte_gfn(*sptep)) { 4967 mmu_spte_clear_no_track(sptep); 4968 return true; 4969 } 4970 4971 mark_mmio_spte(vcpu, sptep, gfn, access); 4972 return true; 4973 } 4974 4975 return false; 4976 } 4977 4978 #define PTTYPE_EPT 18 /* arbitrary */ 4979 #define PTTYPE PTTYPE_EPT 4980 #include "paging_tmpl.h" 4981 #undef PTTYPE 4982 4983 #define PTTYPE 64 4984 #include "paging_tmpl.h" 4985 #undef PTTYPE 4986 4987 #define PTTYPE 32 4988 #include "paging_tmpl.h" 4989 #undef PTTYPE 4990 4991 static void __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check, 4992 u64 pa_bits_rsvd, int level, bool nx, 4993 bool gbpages, bool pse, bool amd) 4994 { 4995 u64 gbpages_bit_rsvd = 0; 4996 u64 nonleaf_bit8_rsvd = 0; 4997 u64 high_bits_rsvd; 4998 4999 rsvd_check->bad_mt_xwr = 0; 5000 5001 if (!gbpages) 5002 gbpages_bit_rsvd = rsvd_bits(7, 7); 5003 5004 if (level == PT32E_ROOT_LEVEL) 5005 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62); 5006 else 5007 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 5008 5009 /* Note, NX doesn't exist in PDPTEs, this is handled below. */ 5010 if (!nx) 5011 high_bits_rsvd |= rsvd_bits(63, 63); 5012 5013 /* 5014 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for 5015 * leaf entries) on AMD CPUs only. 5016 */ 5017 if (amd) 5018 nonleaf_bit8_rsvd = rsvd_bits(8, 8); 5019 5020 switch (level) { 5021 case PT32_ROOT_LEVEL: 5022 /* no rsvd bits for 2 level 4K page table entries */ 5023 rsvd_check->rsvd_bits_mask[0][1] = 0; 5024 rsvd_check->rsvd_bits_mask[0][0] = 0; 5025 rsvd_check->rsvd_bits_mask[1][0] = 5026 rsvd_check->rsvd_bits_mask[0][0]; 5027 5028 if (!pse) { 5029 rsvd_check->rsvd_bits_mask[1][1] = 0; 5030 break; 5031 } 5032 5033 if (is_cpuid_PSE36()) 5034 /* 36bits PSE 4MB page */ 5035 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); 5036 else 5037 /* 32 bits PSE 4MB page */ 5038 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); 5039 break; 5040 case PT32E_ROOT_LEVEL: 5041 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) | 5042 high_bits_rsvd | 5043 rsvd_bits(5, 8) | 5044 rsvd_bits(1, 2); /* PDPTE */ 5045 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */ 5046 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */ 5047 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 5048 rsvd_bits(13, 20); /* large page */ 5049 rsvd_check->rsvd_bits_mask[1][0] = 5050 rsvd_check->rsvd_bits_mask[0][0]; 5051 break; 5052 case PT64_ROOT_5LEVEL: 5053 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | 5054 nonleaf_bit8_rsvd | 5055 rsvd_bits(7, 7); 5056 rsvd_check->rsvd_bits_mask[1][4] = 5057 rsvd_check->rsvd_bits_mask[0][4]; 5058 fallthrough; 5059 case PT64_ROOT_4LEVEL: 5060 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | 5061 nonleaf_bit8_rsvd | 5062 rsvd_bits(7, 7); 5063 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | 5064 gbpages_bit_rsvd; 5065 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; 5066 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 5067 rsvd_check->rsvd_bits_mask[1][3] = 5068 rsvd_check->rsvd_bits_mask[0][3]; 5069 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | 5070 gbpages_bit_rsvd | 5071 rsvd_bits(13, 29); 5072 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 5073 rsvd_bits(13, 20); /* large page */ 5074 rsvd_check->rsvd_bits_mask[1][0] = 5075 rsvd_check->rsvd_bits_mask[0][0]; 5076 break; 5077 } 5078 } 5079 5080 static void reset_guest_rsvds_bits_mask(struct kvm_vcpu *vcpu, 5081 struct kvm_mmu *context) 5082 { 5083 __reset_rsvds_bits_mask(&context->guest_rsvd_check, 5084 vcpu->arch.reserved_gpa_bits, 5085 context->cpu_role.base.level, is_efer_nx(context), 5086 guest_can_use(vcpu, X86_FEATURE_GBPAGES), 5087 is_cr4_pse(context), 5088 guest_cpuid_is_amd_compatible(vcpu)); 5089 } 5090 5091 static void __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check, 5092 u64 pa_bits_rsvd, bool execonly, 5093 int huge_page_level) 5094 { 5095 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 5096 u64 large_1g_rsvd = 0, large_2m_rsvd = 0; 5097 u64 bad_mt_xwr; 5098 5099 if (huge_page_level < PG_LEVEL_1G) 5100 large_1g_rsvd = rsvd_bits(7, 7); 5101 if (huge_page_level < PG_LEVEL_2M) 5102 large_2m_rsvd = rsvd_bits(7, 7); 5103 5104 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7); 5105 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7); 5106 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd; 5107 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd; 5108 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 5109 5110 /* large page */ 5111 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4]; 5112 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3]; 5113 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd; 5114 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd; 5115 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0]; 5116 5117 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */ 5118 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */ 5119 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */ 5120 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */ 5121 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */ 5122 if (!execonly) { 5123 /* bits 0..2 must not be 100 unless VMX capabilities allow it */ 5124 bad_mt_xwr |= REPEAT_BYTE(1ull << 4); 5125 } 5126 rsvd_check->bad_mt_xwr = bad_mt_xwr; 5127 } 5128 5129 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, 5130 struct kvm_mmu *context, bool execonly, int huge_page_level) 5131 { 5132 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check, 5133 vcpu->arch.reserved_gpa_bits, execonly, 5134 huge_page_level); 5135 } 5136 5137 static inline u64 reserved_hpa_bits(void) 5138 { 5139 return rsvd_bits(kvm_host.maxphyaddr, 63); 5140 } 5141 5142 /* 5143 * the page table on host is the shadow page table for the page 5144 * table in guest or amd nested guest, its mmu features completely 5145 * follow the features in guest. 5146 */ 5147 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 5148 struct kvm_mmu *context) 5149 { 5150 /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */ 5151 bool is_amd = true; 5152 /* KVM doesn't use 2-level page tables for the shadow MMU. */ 5153 bool is_pse = false; 5154 struct rsvd_bits_validate *shadow_zero_check; 5155 int i; 5156 5157 WARN_ON_ONCE(context->root_role.level < PT32E_ROOT_LEVEL); 5158 5159 shadow_zero_check = &context->shadow_zero_check; 5160 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 5161 context->root_role.level, 5162 context->root_role.efer_nx, 5163 guest_can_use(vcpu, X86_FEATURE_GBPAGES), 5164 is_pse, is_amd); 5165 5166 if (!shadow_me_mask) 5167 return; 5168 5169 for (i = context->root_role.level; --i >= 0;) { 5170 /* 5171 * So far shadow_me_value is a constant during KVM's life 5172 * time. Bits in shadow_me_value are allowed to be set. 5173 * Bits in shadow_me_mask but not in shadow_me_value are 5174 * not allowed to be set. 5175 */ 5176 shadow_zero_check->rsvd_bits_mask[0][i] |= shadow_me_mask; 5177 shadow_zero_check->rsvd_bits_mask[1][i] |= shadow_me_mask; 5178 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_value; 5179 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_value; 5180 } 5181 5182 } 5183 5184 static inline bool boot_cpu_is_amd(void) 5185 { 5186 WARN_ON_ONCE(!tdp_enabled); 5187 return shadow_x_mask == 0; 5188 } 5189 5190 /* 5191 * the direct page table on host, use as much mmu features as 5192 * possible, however, kvm currently does not do execution-protection. 5193 */ 5194 static void reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context) 5195 { 5196 struct rsvd_bits_validate *shadow_zero_check; 5197 int i; 5198 5199 shadow_zero_check = &context->shadow_zero_check; 5200 5201 if (boot_cpu_is_amd()) 5202 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 5203 context->root_role.level, true, 5204 boot_cpu_has(X86_FEATURE_GBPAGES), 5205 false, true); 5206 else 5207 __reset_rsvds_bits_mask_ept(shadow_zero_check, 5208 reserved_hpa_bits(), false, 5209 max_huge_page_level); 5210 5211 if (!shadow_me_mask) 5212 return; 5213 5214 for (i = context->root_role.level; --i >= 0;) { 5215 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 5216 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 5217 } 5218 } 5219 5220 /* 5221 * as the comments in reset_shadow_zero_bits_mask() except it 5222 * is the shadow page table for intel nested guest. 5223 */ 5224 static void 5225 reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly) 5226 { 5227 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check, 5228 reserved_hpa_bits(), execonly, 5229 max_huge_page_level); 5230 } 5231 5232 #define BYTE_MASK(access) \ 5233 ((1 & (access) ? 2 : 0) | \ 5234 (2 & (access) ? 4 : 0) | \ 5235 (3 & (access) ? 8 : 0) | \ 5236 (4 & (access) ? 16 : 0) | \ 5237 (5 & (access) ? 32 : 0) | \ 5238 (6 & (access) ? 64 : 0) | \ 5239 (7 & (access) ? 128 : 0)) 5240 5241 5242 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept) 5243 { 5244 unsigned byte; 5245 5246 const u8 x = BYTE_MASK(ACC_EXEC_MASK); 5247 const u8 w = BYTE_MASK(ACC_WRITE_MASK); 5248 const u8 u = BYTE_MASK(ACC_USER_MASK); 5249 5250 bool cr4_smep = is_cr4_smep(mmu); 5251 bool cr4_smap = is_cr4_smap(mmu); 5252 bool cr0_wp = is_cr0_wp(mmu); 5253 bool efer_nx = is_efer_nx(mmu); 5254 5255 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { 5256 unsigned pfec = byte << 1; 5257 5258 /* 5259 * Each "*f" variable has a 1 bit for each UWX value 5260 * that causes a fault with the given PFEC. 5261 */ 5262 5263 /* Faults from writes to non-writable pages */ 5264 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0; 5265 /* Faults from user mode accesses to supervisor pages */ 5266 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0; 5267 /* Faults from fetches of non-executable pages*/ 5268 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0; 5269 /* Faults from kernel mode fetches of user pages */ 5270 u8 smepf = 0; 5271 /* Faults from kernel mode accesses of user pages */ 5272 u8 smapf = 0; 5273 5274 if (!ept) { 5275 /* Faults from kernel mode accesses to user pages */ 5276 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u; 5277 5278 /* Not really needed: !nx will cause pte.nx to fault */ 5279 if (!efer_nx) 5280 ff = 0; 5281 5282 /* Allow supervisor writes if !cr0.wp */ 5283 if (!cr0_wp) 5284 wf = (pfec & PFERR_USER_MASK) ? wf : 0; 5285 5286 /* Disallow supervisor fetches of user code if cr4.smep */ 5287 if (cr4_smep) 5288 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0; 5289 5290 /* 5291 * SMAP:kernel-mode data accesses from user-mode 5292 * mappings should fault. A fault is considered 5293 * as a SMAP violation if all of the following 5294 * conditions are true: 5295 * - X86_CR4_SMAP is set in CR4 5296 * - A user page is accessed 5297 * - The access is not a fetch 5298 * - The access is supervisor mode 5299 * - If implicit supervisor access or X86_EFLAGS_AC is clear 5300 * 5301 * Here, we cover the first four conditions. 5302 * The fifth is computed dynamically in permission_fault(); 5303 * PFERR_RSVD_MASK bit will be set in PFEC if the access is 5304 * *not* subject to SMAP restrictions. 5305 */ 5306 if (cr4_smap) 5307 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf; 5308 } 5309 5310 mmu->permissions[byte] = ff | uf | wf | smepf | smapf; 5311 } 5312 } 5313 5314 /* 5315 * PKU is an additional mechanism by which the paging controls access to 5316 * user-mode addresses based on the value in the PKRU register. Protection 5317 * key violations are reported through a bit in the page fault error code. 5318 * Unlike other bits of the error code, the PK bit is not known at the 5319 * call site of e.g. gva_to_gpa; it must be computed directly in 5320 * permission_fault based on two bits of PKRU, on some machine state (CR4, 5321 * CR0, EFER, CPL), and on other bits of the error code and the page tables. 5322 * 5323 * In particular the following conditions come from the error code, the 5324 * page tables and the machine state: 5325 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1 5326 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch) 5327 * - PK is always zero if U=0 in the page tables 5328 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access. 5329 * 5330 * The PKRU bitmask caches the result of these four conditions. The error 5331 * code (minus the P bit) and the page table's U bit form an index into the 5332 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed 5333 * with the two bits of the PKRU register corresponding to the protection key. 5334 * For the first three conditions above the bits will be 00, thus masking 5335 * away both AD and WD. For all reads or if the last condition holds, WD 5336 * only will be masked away. 5337 */ 5338 static void update_pkru_bitmask(struct kvm_mmu *mmu) 5339 { 5340 unsigned bit; 5341 bool wp; 5342 5343 mmu->pkru_mask = 0; 5344 5345 if (!is_cr4_pke(mmu)) 5346 return; 5347 5348 wp = is_cr0_wp(mmu); 5349 5350 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) { 5351 unsigned pfec, pkey_bits; 5352 bool check_pkey, check_write, ff, uf, wf, pte_user; 5353 5354 pfec = bit << 1; 5355 ff = pfec & PFERR_FETCH_MASK; 5356 uf = pfec & PFERR_USER_MASK; 5357 wf = pfec & PFERR_WRITE_MASK; 5358 5359 /* PFEC.RSVD is replaced by ACC_USER_MASK. */ 5360 pte_user = pfec & PFERR_RSVD_MASK; 5361 5362 /* 5363 * Only need to check the access which is not an 5364 * instruction fetch and is to a user page. 5365 */ 5366 check_pkey = (!ff && pte_user); 5367 /* 5368 * write access is controlled by PKRU if it is a 5369 * user access or CR0.WP = 1. 5370 */ 5371 check_write = check_pkey && wf && (uf || wp); 5372 5373 /* PKRU.AD stops both read and write access. */ 5374 pkey_bits = !!check_pkey; 5375 /* PKRU.WD stops write access. */ 5376 pkey_bits |= (!!check_write) << 1; 5377 5378 mmu->pkru_mask |= (pkey_bits & 3) << pfec; 5379 } 5380 } 5381 5382 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu, 5383 struct kvm_mmu *mmu) 5384 { 5385 if (!is_cr0_pg(mmu)) 5386 return; 5387 5388 reset_guest_rsvds_bits_mask(vcpu, mmu); 5389 update_permission_bitmask(mmu, false); 5390 update_pkru_bitmask(mmu); 5391 } 5392 5393 static void paging64_init_context(struct kvm_mmu *context) 5394 { 5395 context->page_fault = paging64_page_fault; 5396 context->gva_to_gpa = paging64_gva_to_gpa; 5397 context->sync_spte = paging64_sync_spte; 5398 } 5399 5400 static void paging32_init_context(struct kvm_mmu *context) 5401 { 5402 context->page_fault = paging32_page_fault; 5403 context->gva_to_gpa = paging32_gva_to_gpa; 5404 context->sync_spte = paging32_sync_spte; 5405 } 5406 5407 static union kvm_cpu_role kvm_calc_cpu_role(struct kvm_vcpu *vcpu, 5408 const struct kvm_mmu_role_regs *regs) 5409 { 5410 union kvm_cpu_role role = {0}; 5411 5412 role.base.access = ACC_ALL; 5413 role.base.smm = is_smm(vcpu); 5414 role.base.guest_mode = is_guest_mode(vcpu); 5415 role.ext.valid = 1; 5416 5417 if (!____is_cr0_pg(regs)) { 5418 role.base.direct = 1; 5419 return role; 5420 } 5421 5422 role.base.efer_nx = ____is_efer_nx(regs); 5423 role.base.cr0_wp = ____is_cr0_wp(regs); 5424 role.base.smep_andnot_wp = ____is_cr4_smep(regs) && !____is_cr0_wp(regs); 5425 role.base.smap_andnot_wp = ____is_cr4_smap(regs) && !____is_cr0_wp(regs); 5426 role.base.has_4_byte_gpte = !____is_cr4_pae(regs); 5427 5428 if (____is_efer_lma(regs)) 5429 role.base.level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL 5430 : PT64_ROOT_4LEVEL; 5431 else if (____is_cr4_pae(regs)) 5432 role.base.level = PT32E_ROOT_LEVEL; 5433 else 5434 role.base.level = PT32_ROOT_LEVEL; 5435 5436 role.ext.cr4_smep = ____is_cr4_smep(regs); 5437 role.ext.cr4_smap = ____is_cr4_smap(regs); 5438 role.ext.cr4_pse = ____is_cr4_pse(regs); 5439 5440 /* PKEY and LA57 are active iff long mode is active. */ 5441 role.ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs); 5442 role.ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs); 5443 role.ext.efer_lma = ____is_efer_lma(regs); 5444 return role; 5445 } 5446 5447 void __kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu, 5448 struct kvm_mmu *mmu) 5449 { 5450 const bool cr0_wp = kvm_is_cr0_bit_set(vcpu, X86_CR0_WP); 5451 5452 BUILD_BUG_ON((KVM_MMU_CR0_ROLE_BITS & KVM_POSSIBLE_CR0_GUEST_BITS) != X86_CR0_WP); 5453 BUILD_BUG_ON((KVM_MMU_CR4_ROLE_BITS & KVM_POSSIBLE_CR4_GUEST_BITS)); 5454 5455 if (is_cr0_wp(mmu) == cr0_wp) 5456 return; 5457 5458 mmu->cpu_role.base.cr0_wp = cr0_wp; 5459 reset_guest_paging_metadata(vcpu, mmu); 5460 } 5461 5462 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu) 5463 { 5464 /* tdp_root_level is architecture forced level, use it if nonzero */ 5465 if (tdp_root_level) 5466 return tdp_root_level; 5467 5468 /* Use 5-level TDP if and only if it's useful/necessary. */ 5469 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48) 5470 return 4; 5471 5472 return max_tdp_level; 5473 } 5474 5475 u8 kvm_mmu_get_max_tdp_level(void) 5476 { 5477 return tdp_root_level ? tdp_root_level : max_tdp_level; 5478 } 5479 5480 static union kvm_mmu_page_role 5481 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, 5482 union kvm_cpu_role cpu_role) 5483 { 5484 union kvm_mmu_page_role role = {0}; 5485 5486 role.access = ACC_ALL; 5487 role.cr0_wp = true; 5488 role.efer_nx = true; 5489 role.smm = cpu_role.base.smm; 5490 role.guest_mode = cpu_role.base.guest_mode; 5491 role.ad_disabled = !kvm_ad_enabled(); 5492 role.level = kvm_mmu_get_tdp_level(vcpu); 5493 role.direct = true; 5494 role.has_4_byte_gpte = false; 5495 5496 return role; 5497 } 5498 5499 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu, 5500 union kvm_cpu_role cpu_role) 5501 { 5502 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5503 union kvm_mmu_page_role root_role = kvm_calc_tdp_mmu_root_page_role(vcpu, cpu_role); 5504 5505 if (cpu_role.as_u64 == context->cpu_role.as_u64 && 5506 root_role.word == context->root_role.word) 5507 return; 5508 5509 context->cpu_role.as_u64 = cpu_role.as_u64; 5510 context->root_role.word = root_role.word; 5511 context->page_fault = kvm_tdp_page_fault; 5512 context->sync_spte = NULL; 5513 context->get_guest_pgd = get_guest_cr3; 5514 context->get_pdptr = kvm_pdptr_read; 5515 context->inject_page_fault = kvm_inject_page_fault; 5516 5517 if (!is_cr0_pg(context)) 5518 context->gva_to_gpa = nonpaging_gva_to_gpa; 5519 else if (is_cr4_pae(context)) 5520 context->gva_to_gpa = paging64_gva_to_gpa; 5521 else 5522 context->gva_to_gpa = paging32_gva_to_gpa; 5523 5524 reset_guest_paging_metadata(vcpu, context); 5525 reset_tdp_shadow_zero_bits_mask(context); 5526 } 5527 5528 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context, 5529 union kvm_cpu_role cpu_role, 5530 union kvm_mmu_page_role root_role) 5531 { 5532 if (cpu_role.as_u64 == context->cpu_role.as_u64 && 5533 root_role.word == context->root_role.word) 5534 return; 5535 5536 context->cpu_role.as_u64 = cpu_role.as_u64; 5537 context->root_role.word = root_role.word; 5538 5539 if (!is_cr0_pg(context)) 5540 nonpaging_init_context(context); 5541 else if (is_cr4_pae(context)) 5542 paging64_init_context(context); 5543 else 5544 paging32_init_context(context); 5545 5546 reset_guest_paging_metadata(vcpu, context); 5547 reset_shadow_zero_bits_mask(vcpu, context); 5548 } 5549 5550 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, 5551 union kvm_cpu_role cpu_role) 5552 { 5553 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5554 union kvm_mmu_page_role root_role; 5555 5556 root_role = cpu_role.base; 5557 5558 /* KVM uses PAE paging whenever the guest isn't using 64-bit paging. */ 5559 root_role.level = max_t(u32, root_role.level, PT32E_ROOT_LEVEL); 5560 5561 /* 5562 * KVM forces EFER.NX=1 when TDP is disabled, reflect it in the MMU role. 5563 * KVM uses NX when TDP is disabled to handle a variety of scenarios, 5564 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and 5565 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0. 5566 * The iTLB multi-hit workaround can be toggled at any time, so assume 5567 * NX can be used by any non-nested shadow MMU to avoid having to reset 5568 * MMU contexts. 5569 */ 5570 root_role.efer_nx = true; 5571 5572 shadow_mmu_init_context(vcpu, context, cpu_role, root_role); 5573 } 5574 5575 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0, 5576 unsigned long cr4, u64 efer, gpa_t nested_cr3) 5577 { 5578 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 5579 struct kvm_mmu_role_regs regs = { 5580 .cr0 = cr0, 5581 .cr4 = cr4 & ~X86_CR4_PKE, 5582 .efer = efer, 5583 }; 5584 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); 5585 union kvm_mmu_page_role root_role; 5586 5587 /* NPT requires CR0.PG=1. */ 5588 WARN_ON_ONCE(cpu_role.base.direct); 5589 5590 root_role = cpu_role.base; 5591 root_role.level = kvm_mmu_get_tdp_level(vcpu); 5592 if (root_role.level == PT64_ROOT_5LEVEL && 5593 cpu_role.base.level == PT64_ROOT_4LEVEL) 5594 root_role.passthrough = 1; 5595 5596 shadow_mmu_init_context(vcpu, context, cpu_role, root_role); 5597 kvm_mmu_new_pgd(vcpu, nested_cr3); 5598 } 5599 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu); 5600 5601 static union kvm_cpu_role 5602 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty, 5603 bool execonly, u8 level) 5604 { 5605 union kvm_cpu_role role = {0}; 5606 5607 /* 5608 * KVM does not support SMM transfer monitors, and consequently does not 5609 * support the "entry to SMM" control either. role.base.smm is always 0. 5610 */ 5611 WARN_ON_ONCE(is_smm(vcpu)); 5612 role.base.level = level; 5613 role.base.has_4_byte_gpte = false; 5614 role.base.direct = false; 5615 role.base.ad_disabled = !accessed_dirty; 5616 role.base.guest_mode = true; 5617 role.base.access = ACC_ALL; 5618 5619 role.ext.word = 0; 5620 role.ext.execonly = execonly; 5621 role.ext.valid = 1; 5622 5623 return role; 5624 } 5625 5626 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, 5627 int huge_page_level, bool accessed_dirty, 5628 gpa_t new_eptp) 5629 { 5630 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 5631 u8 level = vmx_eptp_page_walk_level(new_eptp); 5632 union kvm_cpu_role new_mode = 5633 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty, 5634 execonly, level); 5635 5636 if (new_mode.as_u64 != context->cpu_role.as_u64) { 5637 /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */ 5638 context->cpu_role.as_u64 = new_mode.as_u64; 5639 context->root_role.word = new_mode.base.word; 5640 5641 context->page_fault = ept_page_fault; 5642 context->gva_to_gpa = ept_gva_to_gpa; 5643 context->sync_spte = ept_sync_spte; 5644 5645 update_permission_bitmask(context, true); 5646 context->pkru_mask = 0; 5647 reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level); 5648 reset_ept_shadow_zero_bits_mask(context, execonly); 5649 } 5650 5651 kvm_mmu_new_pgd(vcpu, new_eptp); 5652 } 5653 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); 5654 5655 static void init_kvm_softmmu(struct kvm_vcpu *vcpu, 5656 union kvm_cpu_role cpu_role) 5657 { 5658 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5659 5660 kvm_init_shadow_mmu(vcpu, cpu_role); 5661 5662 context->get_guest_pgd = get_guest_cr3; 5663 context->get_pdptr = kvm_pdptr_read; 5664 context->inject_page_fault = kvm_inject_page_fault; 5665 } 5666 5667 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu, 5668 union kvm_cpu_role new_mode) 5669 { 5670 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; 5671 5672 if (new_mode.as_u64 == g_context->cpu_role.as_u64) 5673 return; 5674 5675 g_context->cpu_role.as_u64 = new_mode.as_u64; 5676 g_context->get_guest_pgd = get_guest_cr3; 5677 g_context->get_pdptr = kvm_pdptr_read; 5678 g_context->inject_page_fault = kvm_inject_page_fault; 5679 5680 /* 5681 * L2 page tables are never shadowed, so there is no need to sync 5682 * SPTEs. 5683 */ 5684 g_context->sync_spte = NULL; 5685 5686 /* 5687 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using 5688 * L1's nested page tables (e.g. EPT12). The nested translation 5689 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using 5690 * L2's page tables as the first level of translation and L1's 5691 * nested page tables as the second level of translation. Basically 5692 * the gva_to_gpa functions between mmu and nested_mmu are swapped. 5693 */ 5694 if (!is_paging(vcpu)) 5695 g_context->gva_to_gpa = nonpaging_gva_to_gpa; 5696 else if (is_long_mode(vcpu)) 5697 g_context->gva_to_gpa = paging64_gva_to_gpa; 5698 else if (is_pae(vcpu)) 5699 g_context->gva_to_gpa = paging64_gva_to_gpa; 5700 else 5701 g_context->gva_to_gpa = paging32_gva_to_gpa; 5702 5703 reset_guest_paging_metadata(vcpu, g_context); 5704 } 5705 5706 void kvm_init_mmu(struct kvm_vcpu *vcpu) 5707 { 5708 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 5709 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); 5710 5711 if (mmu_is_nested(vcpu)) 5712 init_kvm_nested_mmu(vcpu, cpu_role); 5713 else if (tdp_enabled) 5714 init_kvm_tdp_mmu(vcpu, cpu_role); 5715 else 5716 init_kvm_softmmu(vcpu, cpu_role); 5717 } 5718 EXPORT_SYMBOL_GPL(kvm_init_mmu); 5719 5720 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu) 5721 { 5722 /* 5723 * Invalidate all MMU roles to force them to reinitialize as CPUID 5724 * information is factored into reserved bit calculations. 5725 * 5726 * Correctly handling multiple vCPU models with respect to paging and 5727 * physical address properties) in a single VM would require tracking 5728 * all relevant CPUID information in kvm_mmu_page_role. That is very 5729 * undesirable as it would increase the memory requirements for 5730 * gfn_write_track (see struct kvm_mmu_page_role comments). For now 5731 * that problem is swept under the rug; KVM's CPUID API is horrific and 5732 * it's all but impossible to solve it without introducing a new API. 5733 */ 5734 vcpu->arch.root_mmu.root_role.invalid = 1; 5735 vcpu->arch.guest_mmu.root_role.invalid = 1; 5736 vcpu->arch.nested_mmu.root_role.invalid = 1; 5737 vcpu->arch.root_mmu.cpu_role.ext.valid = 0; 5738 vcpu->arch.guest_mmu.cpu_role.ext.valid = 0; 5739 vcpu->arch.nested_mmu.cpu_role.ext.valid = 0; 5740 kvm_mmu_reset_context(vcpu); 5741 5742 /* 5743 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in 5744 * kvm_arch_vcpu_ioctl(). 5745 */ 5746 KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm); 5747 } 5748 5749 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu) 5750 { 5751 kvm_mmu_unload(vcpu); 5752 kvm_init_mmu(vcpu); 5753 } 5754 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); 5755 5756 int kvm_mmu_load(struct kvm_vcpu *vcpu) 5757 { 5758 int r; 5759 5760 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->root_role.direct); 5761 if (r) 5762 goto out; 5763 r = mmu_alloc_special_roots(vcpu); 5764 if (r) 5765 goto out; 5766 if (vcpu->arch.mmu->root_role.direct) 5767 r = mmu_alloc_direct_roots(vcpu); 5768 else 5769 r = mmu_alloc_shadow_roots(vcpu); 5770 if (r) 5771 goto out; 5772 5773 kvm_mmu_sync_roots(vcpu); 5774 5775 kvm_mmu_load_pgd(vcpu); 5776 5777 /* 5778 * Flush any TLB entries for the new root, the provenance of the root 5779 * is unknown. Even if KVM ensures there are no stale TLB entries 5780 * for a freed root, in theory another hypervisor could have left 5781 * stale entries. Flushing on alloc also allows KVM to skip the TLB 5782 * flush when freeing a root (see kvm_tdp_mmu_put_root()). 5783 */ 5784 kvm_x86_call(flush_tlb_current)(vcpu); 5785 out: 5786 return r; 5787 } 5788 5789 void kvm_mmu_unload(struct kvm_vcpu *vcpu) 5790 { 5791 struct kvm *kvm = vcpu->kvm; 5792 5793 kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL); 5794 WARN_ON_ONCE(VALID_PAGE(vcpu->arch.root_mmu.root.hpa)); 5795 kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); 5796 WARN_ON_ONCE(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa)); 5797 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 5798 } 5799 5800 static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa) 5801 { 5802 struct kvm_mmu_page *sp; 5803 5804 if (!VALID_PAGE(root_hpa)) 5805 return false; 5806 5807 /* 5808 * When freeing obsolete roots, treat roots as obsolete if they don't 5809 * have an associated shadow page, as it's impossible to determine if 5810 * such roots are fresh or stale. This does mean KVM will get false 5811 * positives and free roots that don't strictly need to be freed, but 5812 * such false positives are relatively rare: 5813 * 5814 * (a) only PAE paging and nested NPT have roots without shadow pages 5815 * (or any shadow paging flavor with a dummy root, see note below) 5816 * (b) remote reloads due to a memslot update obsoletes _all_ roots 5817 * (c) KVM doesn't track previous roots for PAE paging, and the guest 5818 * is unlikely to zap an in-use PGD. 5819 * 5820 * Note! Dummy roots are unique in that they are obsoleted by memslot 5821 * _creation_! See also FNAME(fetch). 5822 */ 5823 sp = root_to_sp(root_hpa); 5824 return !sp || is_obsolete_sp(kvm, sp); 5825 } 5826 5827 static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu) 5828 { 5829 unsigned long roots_to_free = 0; 5830 int i; 5831 5832 if (is_obsolete_root(kvm, mmu->root.hpa)) 5833 roots_to_free |= KVM_MMU_ROOT_CURRENT; 5834 5835 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5836 if (is_obsolete_root(kvm, mmu->prev_roots[i].hpa)) 5837 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 5838 } 5839 5840 if (roots_to_free) 5841 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 5842 } 5843 5844 void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu) 5845 { 5846 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu); 5847 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu); 5848 } 5849 5850 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, 5851 int *bytes) 5852 { 5853 u64 gentry = 0; 5854 int r; 5855 5856 /* 5857 * Assume that the pte write on a page table of the same type 5858 * as the current vcpu paging mode since we update the sptes only 5859 * when they have the same mode. 5860 */ 5861 if (is_pae(vcpu) && *bytes == 4) { 5862 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ 5863 *gpa &= ~(gpa_t)7; 5864 *bytes = 8; 5865 } 5866 5867 if (*bytes == 4 || *bytes == 8) { 5868 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes); 5869 if (r) 5870 gentry = 0; 5871 } 5872 5873 return gentry; 5874 } 5875 5876 /* 5877 * If we're seeing too many writes to a page, it may no longer be a page table, 5878 * or we may be forking, in which case it is better to unmap the page. 5879 */ 5880 static bool detect_write_flooding(struct kvm_mmu_page *sp) 5881 { 5882 /* 5883 * Skip write-flooding detected for the sp whose level is 1, because 5884 * it can become unsync, then the guest page is not write-protected. 5885 */ 5886 if (sp->role.level == PG_LEVEL_4K) 5887 return false; 5888 5889 atomic_inc(&sp->write_flooding_count); 5890 return atomic_read(&sp->write_flooding_count) >= 3; 5891 } 5892 5893 /* 5894 * Misaligned accesses are too much trouble to fix up; also, they usually 5895 * indicate a page is not used as a page table. 5896 */ 5897 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, 5898 int bytes) 5899 { 5900 unsigned offset, pte_size, misaligned; 5901 5902 offset = offset_in_page(gpa); 5903 pte_size = sp->role.has_4_byte_gpte ? 4 : 8; 5904 5905 /* 5906 * Sometimes, the OS only writes the last one bytes to update status 5907 * bits, for example, in linux, andb instruction is used in clear_bit(). 5908 */ 5909 if (!(offset & (pte_size - 1)) && bytes == 1) 5910 return false; 5911 5912 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); 5913 misaligned |= bytes < 4; 5914 5915 return misaligned; 5916 } 5917 5918 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) 5919 { 5920 unsigned page_offset, quadrant; 5921 u64 *spte; 5922 int level; 5923 5924 page_offset = offset_in_page(gpa); 5925 level = sp->role.level; 5926 *nspte = 1; 5927 if (sp->role.has_4_byte_gpte) { 5928 page_offset <<= 1; /* 32->64 */ 5929 /* 5930 * A 32-bit pde maps 4MB while the shadow pdes map 5931 * only 2MB. So we need to double the offset again 5932 * and zap two pdes instead of one. 5933 */ 5934 if (level == PT32_ROOT_LEVEL) { 5935 page_offset &= ~7; /* kill rounding error */ 5936 page_offset <<= 1; 5937 *nspte = 2; 5938 } 5939 quadrant = page_offset >> PAGE_SHIFT; 5940 page_offset &= ~PAGE_MASK; 5941 if (quadrant != sp->role.quadrant) 5942 return NULL; 5943 } 5944 5945 spte = &sp->spt[page_offset / sizeof(*spte)]; 5946 return spte; 5947 } 5948 5949 void kvm_mmu_track_write(struct kvm_vcpu *vcpu, gpa_t gpa, const u8 *new, 5950 int bytes) 5951 { 5952 gfn_t gfn = gpa >> PAGE_SHIFT; 5953 struct kvm_mmu_page *sp; 5954 LIST_HEAD(invalid_list); 5955 u64 entry, gentry, *spte; 5956 int npte; 5957 bool flush = false; 5958 5959 /* 5960 * When emulating guest writes, ensure the written value is visible to 5961 * any task that is handling page faults before checking whether or not 5962 * KVM is shadowing a guest PTE. This ensures either KVM will create 5963 * the correct SPTE in the page fault handler, or this task will see 5964 * a non-zero indirect_shadow_pages. Pairs with the smp_mb() in 5965 * account_shadowed(). 5966 */ 5967 smp_mb(); 5968 if (!vcpu->kvm->arch.indirect_shadow_pages) 5969 return; 5970 5971 write_lock(&vcpu->kvm->mmu_lock); 5972 5973 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes); 5974 5975 ++vcpu->kvm->stat.mmu_pte_write; 5976 5977 for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) { 5978 if (detect_write_misaligned(sp, gpa, bytes) || 5979 detect_write_flooding(sp)) { 5980 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); 5981 ++vcpu->kvm->stat.mmu_flooded; 5982 continue; 5983 } 5984 5985 spte = get_written_sptes(sp, gpa, &npte); 5986 if (!spte) 5987 continue; 5988 5989 while (npte--) { 5990 entry = *spte; 5991 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL); 5992 if (gentry && sp->role.level != PG_LEVEL_4K) 5993 ++vcpu->kvm->stat.mmu_pde_zapped; 5994 if (is_shadow_present_pte(entry)) 5995 flush = true; 5996 ++spte; 5997 } 5998 } 5999 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 6000 write_unlock(&vcpu->kvm->mmu_lock); 6001 } 6002 6003 static bool is_write_to_guest_page_table(u64 error_code) 6004 { 6005 const u64 mask = PFERR_GUEST_PAGE_MASK | PFERR_WRITE_MASK | PFERR_PRESENT_MASK; 6006 6007 return (error_code & mask) == mask; 6008 } 6009 6010 static int kvm_mmu_write_protect_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 6011 u64 error_code, int *emulation_type) 6012 { 6013 bool direct = vcpu->arch.mmu->root_role.direct; 6014 6015 /* 6016 * Do not try to unprotect and retry if the vCPU re-faulted on the same 6017 * RIP with the same address that was previously unprotected, as doing 6018 * so will likely put the vCPU into an infinite. E.g. if the vCPU uses 6019 * a non-page-table modifying instruction on the PDE that points to the 6020 * instruction, then unprotecting the gfn will unmap the instruction's 6021 * code, i.e. make it impossible for the instruction to ever complete. 6022 */ 6023 if (vcpu->arch.last_retry_eip == kvm_rip_read(vcpu) && 6024 vcpu->arch.last_retry_addr == cr2_or_gpa) 6025 return RET_PF_EMULATE; 6026 6027 /* 6028 * Reset the unprotect+retry values that guard against infinite loops. 6029 * The values will be refreshed if KVM explicitly unprotects a gfn and 6030 * retries, in all other cases it's safe to retry in the future even if 6031 * the next page fault happens on the same RIP+address. 6032 */ 6033 vcpu->arch.last_retry_eip = 0; 6034 vcpu->arch.last_retry_addr = 0; 6035 6036 /* 6037 * It should be impossible to reach this point with an MMIO cache hit, 6038 * as RET_PF_WRITE_PROTECTED is returned if and only if there's a valid, 6039 * writable memslot, and creating a memslot should invalidate the MMIO 6040 * cache by way of changing the memslot generation. WARN and disallow 6041 * retry if MMIO is detected, as retrying MMIO emulation is pointless 6042 * and could put the vCPU into an infinite loop because the processor 6043 * will keep faulting on the non-existent MMIO address. 6044 */ 6045 if (WARN_ON_ONCE(mmio_info_in_cache(vcpu, cr2_or_gpa, direct))) 6046 return RET_PF_EMULATE; 6047 6048 /* 6049 * Before emulating the instruction, check to see if the access was due 6050 * to a read-only violation while the CPU was walking non-nested NPT 6051 * page tables, i.e. for a direct MMU, for _guest_ page tables in L1. 6052 * If L1 is sharing (a subset of) its page tables with L2, e.g. by 6053 * having nCR3 share lower level page tables with hCR3, then when KVM 6054 * (L0) write-protects the nested NPTs, i.e. npt12 entries, KVM is also 6055 * unknowingly write-protecting L1's guest page tables, which KVM isn't 6056 * shadowing. 6057 * 6058 * Because the CPU (by default) walks NPT page tables using a write 6059 * access (to ensure the CPU can do A/D updates), page walks in L1 can 6060 * trigger write faults for the above case even when L1 isn't modifying 6061 * PTEs. As a result, KVM will unnecessarily emulate (or at least, try 6062 * to emulate) an excessive number of L1 instructions; because L1's MMU 6063 * isn't shadowed by KVM, there is no need to write-protect L1's gPTEs 6064 * and thus no need to emulate in order to guarantee forward progress. 6065 * 6066 * Try to unprotect the gfn, i.e. zap any shadow pages, so that L1 can 6067 * proceed without triggering emulation. If one or more shadow pages 6068 * was zapped, skip emulation and resume L1 to let it natively execute 6069 * the instruction. If no shadow pages were zapped, then the write- 6070 * fault is due to something else entirely, i.e. KVM needs to emulate, 6071 * as resuming the guest will put it into an infinite loop. 6072 * 6073 * Note, this code also applies to Intel CPUs, even though it is *very* 6074 * unlikely that an L1 will share its page tables (IA32/PAE/paging64 6075 * format) with L2's page tables (EPT format). 6076 * 6077 * For indirect MMUs, i.e. if KVM is shadowing the current MMU, try to 6078 * unprotect the gfn and retry if an event is awaiting reinjection. If 6079 * KVM emulates multiple instructions before completing event injection, 6080 * the event could be delayed beyond what is architecturally allowed, 6081 * e.g. KVM could inject an IRQ after the TPR has been raised. 6082 */ 6083 if (((direct && is_write_to_guest_page_table(error_code)) || 6084 (!direct && kvm_event_needs_reinjection(vcpu))) && 6085 kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa)) 6086 return RET_PF_RETRY; 6087 6088 /* 6089 * The gfn is write-protected, but if KVM detects its emulating an 6090 * instruction that is unlikely to be used to modify page tables, or if 6091 * emulation fails, KVM can try to unprotect the gfn and let the CPU 6092 * re-execute the instruction that caused the page fault. Do not allow 6093 * retrying an instruction from a nested guest as KVM is only explicitly 6094 * shadowing L1's page tables, i.e. unprotecting something for L1 isn't 6095 * going to magically fix whatever issue caused L2 to fail. 6096 */ 6097 if (!is_guest_mode(vcpu)) 6098 *emulation_type |= EMULTYPE_ALLOW_RETRY_PF; 6099 6100 return RET_PF_EMULATE; 6101 } 6102 6103 int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 6104 void *insn, int insn_len) 6105 { 6106 int r, emulation_type = EMULTYPE_PF; 6107 bool direct = vcpu->arch.mmu->root_role.direct; 6108 6109 if (WARN_ON_ONCE(!VALID_PAGE(vcpu->arch.mmu->root.hpa))) 6110 return RET_PF_RETRY; 6111 6112 /* 6113 * Except for reserved faults (emulated MMIO is shared-only), set the 6114 * PFERR_PRIVATE_ACCESS flag for software-protected VMs based on the gfn's 6115 * current attributes, which are the source of truth for such VMs. Note, 6116 * this wrong for nested MMUs as the GPA is an L2 GPA, but KVM doesn't 6117 * currently supported nested virtualization (among many other things) 6118 * for software-protected VMs. 6119 */ 6120 if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && 6121 !(error_code & PFERR_RSVD_MASK) && 6122 vcpu->kvm->arch.vm_type == KVM_X86_SW_PROTECTED_VM && 6123 kvm_mem_is_private(vcpu->kvm, gpa_to_gfn(cr2_or_gpa))) 6124 error_code |= PFERR_PRIVATE_ACCESS; 6125 6126 r = RET_PF_INVALID; 6127 if (unlikely(error_code & PFERR_RSVD_MASK)) { 6128 if (WARN_ON_ONCE(error_code & PFERR_PRIVATE_ACCESS)) 6129 return -EFAULT; 6130 6131 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct); 6132 if (r == RET_PF_EMULATE) 6133 goto emulate; 6134 } 6135 6136 if (r == RET_PF_INVALID) { 6137 vcpu->stat.pf_taken++; 6138 6139 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, error_code, false, 6140 &emulation_type, NULL); 6141 if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm)) 6142 return -EIO; 6143 } 6144 6145 if (r < 0) 6146 return r; 6147 6148 if (r == RET_PF_WRITE_PROTECTED) 6149 r = kvm_mmu_write_protect_fault(vcpu, cr2_or_gpa, error_code, 6150 &emulation_type); 6151 6152 if (r == RET_PF_FIXED) 6153 vcpu->stat.pf_fixed++; 6154 else if (r == RET_PF_EMULATE) 6155 vcpu->stat.pf_emulate++; 6156 else if (r == RET_PF_SPURIOUS) 6157 vcpu->stat.pf_spurious++; 6158 6159 if (r != RET_PF_EMULATE) 6160 return 1; 6161 6162 emulate: 6163 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn, 6164 insn_len); 6165 } 6166 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); 6167 6168 void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg) 6169 { 6170 u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; 6171 int root_level, leaf, level; 6172 6173 leaf = get_sptes_lockless(vcpu, gpa, sptes, &root_level); 6174 if (unlikely(leaf < 0)) 6175 return; 6176 6177 pr_err("%s %llx", msg, gpa); 6178 for (level = root_level; level >= leaf; level--) 6179 pr_cont(", spte[%d] = 0x%llx", level, sptes[level]); 6180 pr_cont("\n"); 6181 } 6182 EXPORT_SYMBOL_GPL(kvm_mmu_print_sptes); 6183 6184 static void __kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 6185 u64 addr, hpa_t root_hpa) 6186 { 6187 struct kvm_shadow_walk_iterator iterator; 6188 6189 vcpu_clear_mmio_info(vcpu, addr); 6190 6191 /* 6192 * Walking and synchronizing SPTEs both assume they are operating in 6193 * the context of the current MMU, and would need to be reworked if 6194 * this is ever used to sync the guest_mmu, e.g. to emulate INVEPT. 6195 */ 6196 if (WARN_ON_ONCE(mmu != vcpu->arch.mmu)) 6197 return; 6198 6199 if (!VALID_PAGE(root_hpa)) 6200 return; 6201 6202 write_lock(&vcpu->kvm->mmu_lock); 6203 for_each_shadow_entry_using_root(vcpu, root_hpa, addr, iterator) { 6204 struct kvm_mmu_page *sp = sptep_to_sp(iterator.sptep); 6205 6206 if (sp->unsync) { 6207 int ret = kvm_sync_spte(vcpu, sp, iterator.index); 6208 6209 if (ret < 0) 6210 mmu_page_zap_pte(vcpu->kvm, sp, iterator.sptep, NULL); 6211 if (ret) 6212 kvm_flush_remote_tlbs_sptep(vcpu->kvm, iterator.sptep); 6213 } 6214 6215 if (!sp->unsync_children) 6216 break; 6217 } 6218 write_unlock(&vcpu->kvm->mmu_lock); 6219 } 6220 6221 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 6222 u64 addr, unsigned long roots) 6223 { 6224 int i; 6225 6226 WARN_ON_ONCE(roots & ~KVM_MMU_ROOTS_ALL); 6227 6228 /* It's actually a GPA for vcpu->arch.guest_mmu. */ 6229 if (mmu != &vcpu->arch.guest_mmu) { 6230 /* INVLPG on a non-canonical address is a NOP according to the SDM. */ 6231 if (is_noncanonical_address(addr, vcpu)) 6232 return; 6233 6234 kvm_x86_call(flush_tlb_gva)(vcpu, addr); 6235 } 6236 6237 if (!mmu->sync_spte) 6238 return; 6239 6240 if (roots & KVM_MMU_ROOT_CURRENT) 6241 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->root.hpa); 6242 6243 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 6244 if (roots & KVM_MMU_ROOT_PREVIOUS(i)) 6245 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->prev_roots[i].hpa); 6246 } 6247 } 6248 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_addr); 6249 6250 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) 6251 { 6252 /* 6253 * INVLPG is required to invalidate any global mappings for the VA, 6254 * irrespective of PCID. Blindly sync all roots as it would take 6255 * roughly the same amount of work/time to determine whether any of the 6256 * previous roots have a global mapping. 6257 * 6258 * Mappings not reachable via the current or previous cached roots will 6259 * be synced when switching to that new cr3, so nothing needs to be 6260 * done here for them. 6261 */ 6262 kvm_mmu_invalidate_addr(vcpu, vcpu->arch.walk_mmu, gva, KVM_MMU_ROOTS_ALL); 6263 ++vcpu->stat.invlpg; 6264 } 6265 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); 6266 6267 6268 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid) 6269 { 6270 struct kvm_mmu *mmu = vcpu->arch.mmu; 6271 unsigned long roots = 0; 6272 uint i; 6273 6274 if (pcid == kvm_get_active_pcid(vcpu)) 6275 roots |= KVM_MMU_ROOT_CURRENT; 6276 6277 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 6278 if (VALID_PAGE(mmu->prev_roots[i].hpa) && 6279 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) 6280 roots |= KVM_MMU_ROOT_PREVIOUS(i); 6281 } 6282 6283 if (roots) 6284 kvm_mmu_invalidate_addr(vcpu, mmu, gva, roots); 6285 ++vcpu->stat.invlpg; 6286 6287 /* 6288 * Mappings not reachable via the current cr3 or the prev_roots will be 6289 * synced when switching to that cr3, so nothing needs to be done here 6290 * for them. 6291 */ 6292 } 6293 6294 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 6295 int tdp_max_root_level, int tdp_huge_page_level) 6296 { 6297 tdp_enabled = enable_tdp; 6298 tdp_root_level = tdp_forced_root_level; 6299 max_tdp_level = tdp_max_root_level; 6300 6301 #ifdef CONFIG_X86_64 6302 tdp_mmu_enabled = tdp_mmu_allowed && tdp_enabled; 6303 #endif 6304 /* 6305 * max_huge_page_level reflects KVM's MMU capabilities irrespective 6306 * of kernel support, e.g. KVM may be capable of using 1GB pages when 6307 * the kernel is not. But, KVM never creates a page size greater than 6308 * what is used by the kernel for any given HVA, i.e. the kernel's 6309 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust(). 6310 */ 6311 if (tdp_enabled) 6312 max_huge_page_level = tdp_huge_page_level; 6313 else if (boot_cpu_has(X86_FEATURE_GBPAGES)) 6314 max_huge_page_level = PG_LEVEL_1G; 6315 else 6316 max_huge_page_level = PG_LEVEL_2M; 6317 } 6318 EXPORT_SYMBOL_GPL(kvm_configure_mmu); 6319 6320 static void free_mmu_pages(struct kvm_mmu *mmu) 6321 { 6322 if (!tdp_enabled && mmu->pae_root) 6323 set_memory_encrypted((unsigned long)mmu->pae_root, 1); 6324 free_page((unsigned long)mmu->pae_root); 6325 free_page((unsigned long)mmu->pml4_root); 6326 free_page((unsigned long)mmu->pml5_root); 6327 } 6328 6329 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 6330 { 6331 struct page *page; 6332 int i; 6333 6334 mmu->root.hpa = INVALID_PAGE; 6335 mmu->root.pgd = 0; 6336 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 6337 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 6338 6339 /* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */ 6340 if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu) 6341 return 0; 6342 6343 /* 6344 * When using PAE paging, the four PDPTEs are treated as 'root' pages, 6345 * while the PDP table is a per-vCPU construct that's allocated at MMU 6346 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on 6347 * x86_64. Therefore we need to allocate the PDP table in the first 6348 * 4GB of memory, which happens to fit the DMA32 zone. TDP paging 6349 * generally doesn't use PAE paging and can skip allocating the PDP 6350 * table. The main exception, handled here, is SVM's 32-bit NPT. The 6351 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit 6352 * KVM; that horror is handled on-demand by mmu_alloc_special_roots(). 6353 */ 6354 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL) 6355 return 0; 6356 6357 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32); 6358 if (!page) 6359 return -ENOMEM; 6360 6361 mmu->pae_root = page_address(page); 6362 6363 /* 6364 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to 6365 * get the CPU to treat the PDPTEs as encrypted. Decrypt the page so 6366 * that KVM's writes and the CPU's reads get along. Note, this is 6367 * only necessary when using shadow paging, as 64-bit NPT can get at 6368 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported 6369 * by 32-bit kernels (when KVM itself uses 32-bit NPT). 6370 */ 6371 if (!tdp_enabled) 6372 set_memory_decrypted((unsigned long)mmu->pae_root, 1); 6373 else 6374 WARN_ON_ONCE(shadow_me_value); 6375 6376 for (i = 0; i < 4; ++i) 6377 mmu->pae_root[i] = INVALID_PAE_ROOT; 6378 6379 return 0; 6380 } 6381 6382 int kvm_mmu_create(struct kvm_vcpu *vcpu) 6383 { 6384 int ret; 6385 6386 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache; 6387 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO; 6388 6389 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache; 6390 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO; 6391 6392 vcpu->arch.mmu_shadow_page_cache.init_value = 6393 SHADOW_NONPRESENT_VALUE; 6394 if (!vcpu->arch.mmu_shadow_page_cache.init_value) 6395 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO; 6396 6397 vcpu->arch.mmu = &vcpu->arch.root_mmu; 6398 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; 6399 6400 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu); 6401 if (ret) 6402 return ret; 6403 6404 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu); 6405 if (ret) 6406 goto fail_allocate_root; 6407 6408 return ret; 6409 fail_allocate_root: 6410 free_mmu_pages(&vcpu->arch.guest_mmu); 6411 return ret; 6412 } 6413 6414 #define BATCH_ZAP_PAGES 10 6415 static void kvm_zap_obsolete_pages(struct kvm *kvm) 6416 { 6417 struct kvm_mmu_page *sp, *node; 6418 int nr_zapped, batch = 0; 6419 bool unstable; 6420 6421 restart: 6422 list_for_each_entry_safe_reverse(sp, node, 6423 &kvm->arch.active_mmu_pages, link) { 6424 /* 6425 * No obsolete valid page exists before a newly created page 6426 * since active_mmu_pages is a FIFO list. 6427 */ 6428 if (!is_obsolete_sp(kvm, sp)) 6429 break; 6430 6431 /* 6432 * Invalid pages should never land back on the list of active 6433 * pages. Skip the bogus page, otherwise we'll get stuck in an 6434 * infinite loop if the page gets put back on the list (again). 6435 */ 6436 if (WARN_ON_ONCE(sp->role.invalid)) 6437 continue; 6438 6439 /* 6440 * No need to flush the TLB since we're only zapping shadow 6441 * pages with an obsolete generation number and all vCPUS have 6442 * loaded a new root, i.e. the shadow pages being zapped cannot 6443 * be in active use by the guest. 6444 */ 6445 if (batch >= BATCH_ZAP_PAGES && 6446 cond_resched_rwlock_write(&kvm->mmu_lock)) { 6447 batch = 0; 6448 goto restart; 6449 } 6450 6451 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, 6452 &kvm->arch.zapped_obsolete_pages, &nr_zapped); 6453 batch += nr_zapped; 6454 6455 if (unstable) 6456 goto restart; 6457 } 6458 6459 /* 6460 * Kick all vCPUs (via remote TLB flush) before freeing the page tables 6461 * to ensure KVM is not in the middle of a lockless shadow page table 6462 * walk, which may reference the pages. The remote TLB flush itself is 6463 * not required and is simply a convenient way to kick vCPUs as needed. 6464 * KVM performs a local TLB flush when allocating a new root (see 6465 * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are 6466 * running with an obsolete MMU. 6467 */ 6468 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages); 6469 } 6470 6471 /* 6472 * Fast invalidate all shadow pages and use lock-break technique 6473 * to zap obsolete pages. 6474 * 6475 * It's required when memslot is being deleted or VM is being 6476 * destroyed, in these cases, we should ensure that KVM MMU does 6477 * not use any resource of the being-deleted slot or all slots 6478 * after calling the function. 6479 */ 6480 static void kvm_mmu_zap_all_fast(struct kvm *kvm) 6481 { 6482 lockdep_assert_held(&kvm->slots_lock); 6483 6484 write_lock(&kvm->mmu_lock); 6485 trace_kvm_mmu_zap_all_fast(kvm); 6486 6487 /* 6488 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is 6489 * held for the entire duration of zapping obsolete pages, it's 6490 * impossible for there to be multiple invalid generations associated 6491 * with *valid* shadow pages at any given time, i.e. there is exactly 6492 * one valid generation and (at most) one invalid generation. 6493 */ 6494 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1; 6495 6496 /* 6497 * In order to ensure all vCPUs drop their soon-to-be invalid roots, 6498 * invalidating TDP MMU roots must be done while holding mmu_lock for 6499 * write and in the same critical section as making the reload request, 6500 * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield. 6501 */ 6502 if (tdp_mmu_enabled) 6503 kvm_tdp_mmu_invalidate_all_roots(kvm); 6504 6505 /* 6506 * Notify all vcpus to reload its shadow page table and flush TLB. 6507 * Then all vcpus will switch to new shadow page table with the new 6508 * mmu_valid_gen. 6509 * 6510 * Note: we need to do this under the protection of mmu_lock, 6511 * otherwise, vcpu would purge shadow page but miss tlb flush. 6512 */ 6513 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 6514 6515 kvm_zap_obsolete_pages(kvm); 6516 6517 write_unlock(&kvm->mmu_lock); 6518 6519 /* 6520 * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before 6521 * returning to the caller, e.g. if the zap is in response to a memslot 6522 * deletion, mmu_notifier callbacks will be unable to reach the SPTEs 6523 * associated with the deleted memslot once the update completes, and 6524 * Deferring the zap until the final reference to the root is put would 6525 * lead to use-after-free. 6526 */ 6527 if (tdp_mmu_enabled) 6528 kvm_tdp_mmu_zap_invalidated_roots(kvm); 6529 } 6530 6531 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm) 6532 { 6533 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages)); 6534 } 6535 6536 void kvm_mmu_init_vm(struct kvm *kvm) 6537 { 6538 kvm->arch.shadow_mmio_value = shadow_mmio_value; 6539 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 6540 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 6541 INIT_LIST_HEAD(&kvm->arch.possible_nx_huge_pages); 6542 spin_lock_init(&kvm->arch.mmu_unsync_pages_lock); 6543 6544 if (tdp_mmu_enabled) 6545 kvm_mmu_init_tdp_mmu(kvm); 6546 6547 kvm->arch.split_page_header_cache.kmem_cache = mmu_page_header_cache; 6548 kvm->arch.split_page_header_cache.gfp_zero = __GFP_ZERO; 6549 6550 kvm->arch.split_shadow_page_cache.gfp_zero = __GFP_ZERO; 6551 6552 kvm->arch.split_desc_cache.kmem_cache = pte_list_desc_cache; 6553 kvm->arch.split_desc_cache.gfp_zero = __GFP_ZERO; 6554 } 6555 6556 static void mmu_free_vm_memory_caches(struct kvm *kvm) 6557 { 6558 kvm_mmu_free_memory_cache(&kvm->arch.split_desc_cache); 6559 kvm_mmu_free_memory_cache(&kvm->arch.split_page_header_cache); 6560 kvm_mmu_free_memory_cache(&kvm->arch.split_shadow_page_cache); 6561 } 6562 6563 void kvm_mmu_uninit_vm(struct kvm *kvm) 6564 { 6565 if (tdp_mmu_enabled) 6566 kvm_mmu_uninit_tdp_mmu(kvm); 6567 6568 mmu_free_vm_memory_caches(kvm); 6569 } 6570 6571 static bool kvm_rmap_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 6572 { 6573 const struct kvm_memory_slot *memslot; 6574 struct kvm_memslots *slots; 6575 struct kvm_memslot_iter iter; 6576 bool flush = false; 6577 gfn_t start, end; 6578 int i; 6579 6580 if (!kvm_memslots_have_rmaps(kvm)) 6581 return flush; 6582 6583 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 6584 slots = __kvm_memslots(kvm, i); 6585 6586 kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) { 6587 memslot = iter.slot; 6588 start = max(gfn_start, memslot->base_gfn); 6589 end = min(gfn_end, memslot->base_gfn + memslot->npages); 6590 if (WARN_ON_ONCE(start >= end)) 6591 continue; 6592 6593 flush = __kvm_rmap_zap_gfn_range(kvm, memslot, start, 6594 end, true, flush); 6595 } 6596 } 6597 6598 return flush; 6599 } 6600 6601 /* 6602 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end 6603 * (not including it) 6604 */ 6605 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 6606 { 6607 bool flush; 6608 6609 if (WARN_ON_ONCE(gfn_end <= gfn_start)) 6610 return; 6611 6612 write_lock(&kvm->mmu_lock); 6613 6614 kvm_mmu_invalidate_begin(kvm); 6615 6616 kvm_mmu_invalidate_range_add(kvm, gfn_start, gfn_end); 6617 6618 flush = kvm_rmap_zap_gfn_range(kvm, gfn_start, gfn_end); 6619 6620 if (tdp_mmu_enabled) 6621 flush = kvm_tdp_mmu_zap_leafs(kvm, gfn_start, gfn_end, flush); 6622 6623 if (flush) 6624 kvm_flush_remote_tlbs_range(kvm, gfn_start, gfn_end - gfn_start); 6625 6626 kvm_mmu_invalidate_end(kvm); 6627 6628 write_unlock(&kvm->mmu_lock); 6629 } 6630 6631 static bool slot_rmap_write_protect(struct kvm *kvm, 6632 struct kvm_rmap_head *rmap_head, 6633 const struct kvm_memory_slot *slot) 6634 { 6635 return rmap_write_protect(rmap_head, false); 6636 } 6637 6638 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 6639 const struct kvm_memory_slot *memslot, 6640 int start_level) 6641 { 6642 if (kvm_memslots_have_rmaps(kvm)) { 6643 write_lock(&kvm->mmu_lock); 6644 walk_slot_rmaps(kvm, memslot, slot_rmap_write_protect, 6645 start_level, KVM_MAX_HUGEPAGE_LEVEL, false); 6646 write_unlock(&kvm->mmu_lock); 6647 } 6648 6649 if (tdp_mmu_enabled) { 6650 read_lock(&kvm->mmu_lock); 6651 kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level); 6652 read_unlock(&kvm->mmu_lock); 6653 } 6654 } 6655 6656 static inline bool need_topup(struct kvm_mmu_memory_cache *cache, int min) 6657 { 6658 return kvm_mmu_memory_cache_nr_free_objects(cache) < min; 6659 } 6660 6661 static bool need_topup_split_caches_or_resched(struct kvm *kvm) 6662 { 6663 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) 6664 return true; 6665 6666 /* 6667 * In the worst case, SPLIT_DESC_CACHE_MIN_NR_OBJECTS descriptors are needed 6668 * to split a single huge page. Calculating how many are actually needed 6669 * is possible but not worth the complexity. 6670 */ 6671 return need_topup(&kvm->arch.split_desc_cache, SPLIT_DESC_CACHE_MIN_NR_OBJECTS) || 6672 need_topup(&kvm->arch.split_page_header_cache, 1) || 6673 need_topup(&kvm->arch.split_shadow_page_cache, 1); 6674 } 6675 6676 static int topup_split_caches(struct kvm *kvm) 6677 { 6678 /* 6679 * Allocating rmap list entries when splitting huge pages for nested 6680 * MMUs is uncommon as KVM needs to use a list if and only if there is 6681 * more than one rmap entry for a gfn, i.e. requires an L1 gfn to be 6682 * aliased by multiple L2 gfns and/or from multiple nested roots with 6683 * different roles. Aliasing gfns when using TDP is atypical for VMMs; 6684 * a few gfns are often aliased during boot, e.g. when remapping BIOS, 6685 * but aliasing rarely occurs post-boot or for many gfns. If there is 6686 * only one rmap entry, rmap->val points directly at that one entry and 6687 * doesn't need to allocate a list. Buffer the cache by the default 6688 * capacity so that KVM doesn't have to drop mmu_lock to topup if KVM 6689 * encounters an aliased gfn or two. 6690 */ 6691 const int capacity = SPLIT_DESC_CACHE_MIN_NR_OBJECTS + 6692 KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE; 6693 int r; 6694 6695 lockdep_assert_held(&kvm->slots_lock); 6696 6697 r = __kvm_mmu_topup_memory_cache(&kvm->arch.split_desc_cache, capacity, 6698 SPLIT_DESC_CACHE_MIN_NR_OBJECTS); 6699 if (r) 6700 return r; 6701 6702 r = kvm_mmu_topup_memory_cache(&kvm->arch.split_page_header_cache, 1); 6703 if (r) 6704 return r; 6705 6706 return kvm_mmu_topup_memory_cache(&kvm->arch.split_shadow_page_cache, 1); 6707 } 6708 6709 static struct kvm_mmu_page *shadow_mmu_get_sp_for_split(struct kvm *kvm, u64 *huge_sptep) 6710 { 6711 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); 6712 struct shadow_page_caches caches = {}; 6713 union kvm_mmu_page_role role; 6714 unsigned int access; 6715 gfn_t gfn; 6716 6717 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep)); 6718 access = kvm_mmu_page_get_access(huge_sp, spte_index(huge_sptep)); 6719 6720 /* 6721 * Note, huge page splitting always uses direct shadow pages, regardless 6722 * of whether the huge page itself is mapped by a direct or indirect 6723 * shadow page, since the huge page region itself is being directly 6724 * mapped with smaller pages. 6725 */ 6726 role = kvm_mmu_child_role(huge_sptep, /*direct=*/true, access); 6727 6728 /* Direct SPs do not require a shadowed_info_cache. */ 6729 caches.page_header_cache = &kvm->arch.split_page_header_cache; 6730 caches.shadow_page_cache = &kvm->arch.split_shadow_page_cache; 6731 6732 /* Safe to pass NULL for vCPU since requesting a direct SP. */ 6733 return __kvm_mmu_get_shadow_page(kvm, NULL, &caches, gfn, role); 6734 } 6735 6736 static void shadow_mmu_split_huge_page(struct kvm *kvm, 6737 const struct kvm_memory_slot *slot, 6738 u64 *huge_sptep) 6739 6740 { 6741 struct kvm_mmu_memory_cache *cache = &kvm->arch.split_desc_cache; 6742 u64 huge_spte = READ_ONCE(*huge_sptep); 6743 struct kvm_mmu_page *sp; 6744 bool flush = false; 6745 u64 *sptep, spte; 6746 gfn_t gfn; 6747 int index; 6748 6749 sp = shadow_mmu_get_sp_for_split(kvm, huge_sptep); 6750 6751 for (index = 0; index < SPTE_ENT_PER_PAGE; index++) { 6752 sptep = &sp->spt[index]; 6753 gfn = kvm_mmu_page_get_gfn(sp, index); 6754 6755 /* 6756 * The SP may already have populated SPTEs, e.g. if this huge 6757 * page is aliased by multiple sptes with the same access 6758 * permissions. These entries are guaranteed to map the same 6759 * gfn-to-pfn translation since the SP is direct, so no need to 6760 * modify them. 6761 * 6762 * However, if a given SPTE points to a lower level page table, 6763 * that lower level page table may only be partially populated. 6764 * Installing such SPTEs would effectively unmap a potion of the 6765 * huge page. Unmapping guest memory always requires a TLB flush 6766 * since a subsequent operation on the unmapped regions would 6767 * fail to detect the need to flush. 6768 */ 6769 if (is_shadow_present_pte(*sptep)) { 6770 flush |= !is_last_spte(*sptep, sp->role.level); 6771 continue; 6772 } 6773 6774 spte = make_huge_page_split_spte(kvm, huge_spte, sp->role, index); 6775 mmu_spte_set(sptep, spte); 6776 __rmap_add(kvm, cache, slot, sptep, gfn, sp->role.access); 6777 } 6778 6779 __link_shadow_page(kvm, cache, huge_sptep, sp, flush); 6780 } 6781 6782 static int shadow_mmu_try_split_huge_page(struct kvm *kvm, 6783 const struct kvm_memory_slot *slot, 6784 u64 *huge_sptep) 6785 { 6786 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); 6787 int level, r = 0; 6788 gfn_t gfn; 6789 u64 spte; 6790 6791 /* Grab information for the tracepoint before dropping the MMU lock. */ 6792 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep)); 6793 level = huge_sp->role.level; 6794 spte = *huge_sptep; 6795 6796 if (kvm_mmu_available_pages(kvm) <= KVM_MIN_FREE_MMU_PAGES) { 6797 r = -ENOSPC; 6798 goto out; 6799 } 6800 6801 if (need_topup_split_caches_or_resched(kvm)) { 6802 write_unlock(&kvm->mmu_lock); 6803 cond_resched(); 6804 /* 6805 * If the topup succeeds, return -EAGAIN to indicate that the 6806 * rmap iterator should be restarted because the MMU lock was 6807 * dropped. 6808 */ 6809 r = topup_split_caches(kvm) ?: -EAGAIN; 6810 write_lock(&kvm->mmu_lock); 6811 goto out; 6812 } 6813 6814 shadow_mmu_split_huge_page(kvm, slot, huge_sptep); 6815 6816 out: 6817 trace_kvm_mmu_split_huge_page(gfn, spte, level, r); 6818 return r; 6819 } 6820 6821 static bool shadow_mmu_try_split_huge_pages(struct kvm *kvm, 6822 struct kvm_rmap_head *rmap_head, 6823 const struct kvm_memory_slot *slot) 6824 { 6825 struct rmap_iterator iter; 6826 struct kvm_mmu_page *sp; 6827 u64 *huge_sptep; 6828 int r; 6829 6830 restart: 6831 for_each_rmap_spte(rmap_head, &iter, huge_sptep) { 6832 sp = sptep_to_sp(huge_sptep); 6833 6834 /* TDP MMU is enabled, so rmap only contains nested MMU SPs. */ 6835 if (WARN_ON_ONCE(!sp->role.guest_mode)) 6836 continue; 6837 6838 /* The rmaps should never contain non-leaf SPTEs. */ 6839 if (WARN_ON_ONCE(!is_large_pte(*huge_sptep))) 6840 continue; 6841 6842 /* SPs with level >PG_LEVEL_4K should never by unsync. */ 6843 if (WARN_ON_ONCE(sp->unsync)) 6844 continue; 6845 6846 /* Don't bother splitting huge pages on invalid SPs. */ 6847 if (sp->role.invalid) 6848 continue; 6849 6850 r = shadow_mmu_try_split_huge_page(kvm, slot, huge_sptep); 6851 6852 /* 6853 * The split succeeded or needs to be retried because the MMU 6854 * lock was dropped. Either way, restart the iterator to get it 6855 * back into a consistent state. 6856 */ 6857 if (!r || r == -EAGAIN) 6858 goto restart; 6859 6860 /* The split failed and shouldn't be retried (e.g. -ENOMEM). */ 6861 break; 6862 } 6863 6864 return false; 6865 } 6866 6867 static void kvm_shadow_mmu_try_split_huge_pages(struct kvm *kvm, 6868 const struct kvm_memory_slot *slot, 6869 gfn_t start, gfn_t end, 6870 int target_level) 6871 { 6872 int level; 6873 6874 /* 6875 * Split huge pages starting with KVM_MAX_HUGEPAGE_LEVEL and working 6876 * down to the target level. This ensures pages are recursively split 6877 * all the way to the target level. There's no need to split pages 6878 * already at the target level. 6879 */ 6880 for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--) 6881 __walk_slot_rmaps(kvm, slot, shadow_mmu_try_split_huge_pages, 6882 level, level, start, end - 1, true, true, false); 6883 } 6884 6885 /* Must be called with the mmu_lock held in write-mode. */ 6886 void kvm_mmu_try_split_huge_pages(struct kvm *kvm, 6887 const struct kvm_memory_slot *memslot, 6888 u64 start, u64 end, 6889 int target_level) 6890 { 6891 if (!tdp_mmu_enabled) 6892 return; 6893 6894 if (kvm_memslots_have_rmaps(kvm)) 6895 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); 6896 6897 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, false); 6898 6899 /* 6900 * A TLB flush is unnecessary at this point for the same reasons as in 6901 * kvm_mmu_slot_try_split_huge_pages(). 6902 */ 6903 } 6904 6905 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, 6906 const struct kvm_memory_slot *memslot, 6907 int target_level) 6908 { 6909 u64 start = memslot->base_gfn; 6910 u64 end = start + memslot->npages; 6911 6912 if (!tdp_mmu_enabled) 6913 return; 6914 6915 if (kvm_memslots_have_rmaps(kvm)) { 6916 write_lock(&kvm->mmu_lock); 6917 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); 6918 write_unlock(&kvm->mmu_lock); 6919 } 6920 6921 read_lock(&kvm->mmu_lock); 6922 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true); 6923 read_unlock(&kvm->mmu_lock); 6924 6925 /* 6926 * No TLB flush is necessary here. KVM will flush TLBs after 6927 * write-protecting and/or clearing dirty on the newly split SPTEs to 6928 * ensure that guest writes are reflected in the dirty log before the 6929 * ioctl to enable dirty logging on this memslot completes. Since the 6930 * split SPTEs retain the write and dirty bits of the huge SPTE, it is 6931 * safe for KVM to decide if a TLB flush is necessary based on the split 6932 * SPTEs. 6933 */ 6934 } 6935 6936 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, 6937 struct kvm_rmap_head *rmap_head, 6938 const struct kvm_memory_slot *slot) 6939 { 6940 u64 *sptep; 6941 struct rmap_iterator iter; 6942 int need_tlb_flush = 0; 6943 struct kvm_mmu_page *sp; 6944 6945 restart: 6946 for_each_rmap_spte(rmap_head, &iter, sptep) { 6947 sp = sptep_to_sp(sptep); 6948 6949 /* 6950 * We cannot do huge page mapping for indirect shadow pages, 6951 * which are found on the last rmap (level = 1) when not using 6952 * tdp; such shadow pages are synced with the page table in 6953 * the guest, and the guest page table is using 4K page size 6954 * mapping if the indirect sp has level = 1. 6955 */ 6956 if (sp->role.direct && 6957 sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn, 6958 PG_LEVEL_NUM)) { 6959 kvm_zap_one_rmap_spte(kvm, rmap_head, sptep); 6960 6961 if (kvm_available_flush_remote_tlbs_range()) 6962 kvm_flush_remote_tlbs_sptep(kvm, sptep); 6963 else 6964 need_tlb_flush = 1; 6965 6966 goto restart; 6967 } 6968 } 6969 6970 return need_tlb_flush; 6971 } 6972 EXPORT_SYMBOL_GPL(kvm_zap_gfn_range); 6973 6974 static void kvm_rmap_zap_collapsible_sptes(struct kvm *kvm, 6975 const struct kvm_memory_slot *slot) 6976 { 6977 /* 6978 * Note, use KVM_MAX_HUGEPAGE_LEVEL - 1 since there's no need to zap 6979 * pages that are already mapped at the maximum hugepage level. 6980 */ 6981 if (walk_slot_rmaps(kvm, slot, kvm_mmu_zap_collapsible_spte, 6982 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL - 1, true)) 6983 kvm_flush_remote_tlbs_memslot(kvm, slot); 6984 } 6985 6986 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, 6987 const struct kvm_memory_slot *slot) 6988 { 6989 if (kvm_memslots_have_rmaps(kvm)) { 6990 write_lock(&kvm->mmu_lock); 6991 kvm_rmap_zap_collapsible_sptes(kvm, slot); 6992 write_unlock(&kvm->mmu_lock); 6993 } 6994 6995 if (tdp_mmu_enabled) { 6996 read_lock(&kvm->mmu_lock); 6997 kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot); 6998 read_unlock(&kvm->mmu_lock); 6999 } 7000 } 7001 7002 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 7003 const struct kvm_memory_slot *memslot) 7004 { 7005 if (kvm_memslots_have_rmaps(kvm)) { 7006 write_lock(&kvm->mmu_lock); 7007 /* 7008 * Clear dirty bits only on 4k SPTEs since the legacy MMU only 7009 * support dirty logging at a 4k granularity. 7010 */ 7011 walk_slot_rmaps_4k(kvm, memslot, __rmap_clear_dirty, false); 7012 write_unlock(&kvm->mmu_lock); 7013 } 7014 7015 if (tdp_mmu_enabled) { 7016 read_lock(&kvm->mmu_lock); 7017 kvm_tdp_mmu_clear_dirty_slot(kvm, memslot); 7018 read_unlock(&kvm->mmu_lock); 7019 } 7020 7021 /* 7022 * The caller will flush the TLBs after this function returns. 7023 * 7024 * It's also safe to flush TLBs out of mmu lock here as currently this 7025 * function is only used for dirty logging, in which case flushing TLB 7026 * out of mmu lock also guarantees no dirty pages will be lost in 7027 * dirty_bitmap. 7028 */ 7029 } 7030 7031 static void kvm_mmu_zap_all(struct kvm *kvm) 7032 { 7033 struct kvm_mmu_page *sp, *node; 7034 LIST_HEAD(invalid_list); 7035 int ign; 7036 7037 write_lock(&kvm->mmu_lock); 7038 restart: 7039 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) { 7040 if (WARN_ON_ONCE(sp->role.invalid)) 7041 continue; 7042 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign)) 7043 goto restart; 7044 if (cond_resched_rwlock_write(&kvm->mmu_lock)) 7045 goto restart; 7046 } 7047 7048 kvm_mmu_commit_zap_page(kvm, &invalid_list); 7049 7050 if (tdp_mmu_enabled) 7051 kvm_tdp_mmu_zap_all(kvm); 7052 7053 write_unlock(&kvm->mmu_lock); 7054 } 7055 7056 void kvm_arch_flush_shadow_all(struct kvm *kvm) 7057 { 7058 kvm_mmu_zap_all(kvm); 7059 } 7060 7061 static void kvm_mmu_zap_memslot_pages_and_flush(struct kvm *kvm, 7062 struct kvm_memory_slot *slot, 7063 bool flush) 7064 { 7065 LIST_HEAD(invalid_list); 7066 unsigned long i; 7067 7068 if (list_empty(&kvm->arch.active_mmu_pages)) 7069 goto out_flush; 7070 7071 /* 7072 * Since accounting information is stored in struct kvm_arch_memory_slot, 7073 * all MMU pages that are shadowing guest PTEs must be zapped before the 7074 * memslot is deleted, as freeing such pages after the memslot is freed 7075 * will result in use-after-free, e.g. in unaccount_shadowed(). 7076 */ 7077 for (i = 0; i < slot->npages; i++) { 7078 struct kvm_mmu_page *sp; 7079 gfn_t gfn = slot->base_gfn + i; 7080 7081 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) 7082 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 7083 7084 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 7085 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7086 flush = false; 7087 cond_resched_rwlock_write(&kvm->mmu_lock); 7088 } 7089 } 7090 7091 out_flush: 7092 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7093 } 7094 7095 static void kvm_mmu_zap_memslot(struct kvm *kvm, 7096 struct kvm_memory_slot *slot) 7097 { 7098 struct kvm_gfn_range range = { 7099 .slot = slot, 7100 .start = slot->base_gfn, 7101 .end = slot->base_gfn + slot->npages, 7102 .may_block = true, 7103 }; 7104 bool flush; 7105 7106 write_lock(&kvm->mmu_lock); 7107 flush = kvm_unmap_gfn_range(kvm, &range); 7108 kvm_mmu_zap_memslot_pages_and_flush(kvm, slot, flush); 7109 write_unlock(&kvm->mmu_lock); 7110 } 7111 7112 static inline bool kvm_memslot_flush_zap_all(struct kvm *kvm) 7113 { 7114 return kvm->arch.vm_type == KVM_X86_DEFAULT_VM && 7115 kvm_check_has_quirk(kvm, KVM_X86_QUIRK_SLOT_ZAP_ALL); 7116 } 7117 7118 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 7119 struct kvm_memory_slot *slot) 7120 { 7121 if (kvm_memslot_flush_zap_all(kvm)) 7122 kvm_mmu_zap_all_fast(kvm); 7123 else 7124 kvm_mmu_zap_memslot(kvm, slot); 7125 } 7126 7127 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen) 7128 { 7129 WARN_ON_ONCE(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 7130 7131 gen &= MMIO_SPTE_GEN_MASK; 7132 7133 /* 7134 * Generation numbers are incremented in multiples of the number of 7135 * address spaces in order to provide unique generations across all 7136 * address spaces. Strip what is effectively the address space 7137 * modifier prior to checking for a wrap of the MMIO generation so 7138 * that a wrap in any address space is detected. 7139 */ 7140 gen &= ~((u64)kvm_arch_nr_memslot_as_ids(kvm) - 1); 7141 7142 /* 7143 * The very rare case: if the MMIO generation number has wrapped, 7144 * zap all shadow pages. 7145 */ 7146 if (unlikely(gen == 0)) { 7147 kvm_debug_ratelimited("zapping shadow pages for mmio generation wraparound\n"); 7148 kvm_mmu_zap_all_fast(kvm); 7149 } 7150 } 7151 7152 static unsigned long mmu_shrink_scan(struct shrinker *shrink, 7153 struct shrink_control *sc) 7154 { 7155 struct kvm *kvm; 7156 int nr_to_scan = sc->nr_to_scan; 7157 unsigned long freed = 0; 7158 7159 mutex_lock(&kvm_lock); 7160 7161 list_for_each_entry(kvm, &vm_list, vm_list) { 7162 int idx; 7163 7164 /* 7165 * Never scan more than sc->nr_to_scan VM instances. 7166 * Will not hit this condition practically since we do not try 7167 * to shrink more than one VM and it is very unlikely to see 7168 * !n_used_mmu_pages so many times. 7169 */ 7170 if (!nr_to_scan--) 7171 break; 7172 /* 7173 * n_used_mmu_pages is accessed without holding kvm->mmu_lock 7174 * here. We may skip a VM instance errorneosly, but we do not 7175 * want to shrink a VM that only started to populate its MMU 7176 * anyway. 7177 */ 7178 if (!kvm->arch.n_used_mmu_pages && 7179 !kvm_has_zapped_obsolete_pages(kvm)) 7180 continue; 7181 7182 idx = srcu_read_lock(&kvm->srcu); 7183 write_lock(&kvm->mmu_lock); 7184 7185 if (kvm_has_zapped_obsolete_pages(kvm)) { 7186 kvm_mmu_commit_zap_page(kvm, 7187 &kvm->arch.zapped_obsolete_pages); 7188 goto unlock; 7189 } 7190 7191 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan); 7192 7193 unlock: 7194 write_unlock(&kvm->mmu_lock); 7195 srcu_read_unlock(&kvm->srcu, idx); 7196 7197 /* 7198 * unfair on small ones 7199 * per-vm shrinkers cry out 7200 * sadness comes quickly 7201 */ 7202 list_move_tail(&kvm->vm_list, &vm_list); 7203 break; 7204 } 7205 7206 mutex_unlock(&kvm_lock); 7207 return freed; 7208 } 7209 7210 static unsigned long mmu_shrink_count(struct shrinker *shrink, 7211 struct shrink_control *sc) 7212 { 7213 return percpu_counter_read_positive(&kvm_total_used_mmu_pages); 7214 } 7215 7216 static struct shrinker *mmu_shrinker; 7217 7218 static void mmu_destroy_caches(void) 7219 { 7220 kmem_cache_destroy(pte_list_desc_cache); 7221 kmem_cache_destroy(mmu_page_header_cache); 7222 } 7223 7224 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp) 7225 { 7226 if (nx_hugepage_mitigation_hard_disabled) 7227 return sysfs_emit(buffer, "never\n"); 7228 7229 return param_get_bool(buffer, kp); 7230 } 7231 7232 static bool get_nx_auto_mode(void) 7233 { 7234 /* Return true when CPU has the bug, and mitigations are ON */ 7235 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off(); 7236 } 7237 7238 static void __set_nx_huge_pages(bool val) 7239 { 7240 nx_huge_pages = itlb_multihit_kvm_mitigation = val; 7241 } 7242 7243 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp) 7244 { 7245 bool old_val = nx_huge_pages; 7246 bool new_val; 7247 7248 if (nx_hugepage_mitigation_hard_disabled) 7249 return -EPERM; 7250 7251 /* In "auto" mode deploy workaround only if CPU has the bug. */ 7252 if (sysfs_streq(val, "off")) { 7253 new_val = 0; 7254 } else if (sysfs_streq(val, "force")) { 7255 new_val = 1; 7256 } else if (sysfs_streq(val, "auto")) { 7257 new_val = get_nx_auto_mode(); 7258 } else if (sysfs_streq(val, "never")) { 7259 new_val = 0; 7260 7261 mutex_lock(&kvm_lock); 7262 if (!list_empty(&vm_list)) { 7263 mutex_unlock(&kvm_lock); 7264 return -EBUSY; 7265 } 7266 nx_hugepage_mitigation_hard_disabled = true; 7267 mutex_unlock(&kvm_lock); 7268 } else if (kstrtobool(val, &new_val) < 0) { 7269 return -EINVAL; 7270 } 7271 7272 __set_nx_huge_pages(new_val); 7273 7274 if (new_val != old_val) { 7275 struct kvm *kvm; 7276 7277 mutex_lock(&kvm_lock); 7278 7279 list_for_each_entry(kvm, &vm_list, vm_list) { 7280 mutex_lock(&kvm->slots_lock); 7281 kvm_mmu_zap_all_fast(kvm); 7282 mutex_unlock(&kvm->slots_lock); 7283 7284 wake_up_process(kvm->arch.nx_huge_page_recovery_thread); 7285 } 7286 mutex_unlock(&kvm_lock); 7287 } 7288 7289 return 0; 7290 } 7291 7292 /* 7293 * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as 7294 * its default value of -1 is technically undefined behavior for a boolean. 7295 * Forward the module init call to SPTE code so that it too can handle module 7296 * params that need to be resolved/snapshot. 7297 */ 7298 void __init kvm_mmu_x86_module_init(void) 7299 { 7300 if (nx_huge_pages == -1) 7301 __set_nx_huge_pages(get_nx_auto_mode()); 7302 7303 /* 7304 * Snapshot userspace's desire to enable the TDP MMU. Whether or not the 7305 * TDP MMU is actually enabled is determined in kvm_configure_mmu() 7306 * when the vendor module is loaded. 7307 */ 7308 tdp_mmu_allowed = tdp_mmu_enabled; 7309 7310 kvm_mmu_spte_module_init(); 7311 } 7312 7313 /* 7314 * The bulk of the MMU initialization is deferred until the vendor module is 7315 * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need 7316 * to be reset when a potentially different vendor module is loaded. 7317 */ 7318 int kvm_mmu_vendor_module_init(void) 7319 { 7320 int ret = -ENOMEM; 7321 7322 /* 7323 * MMU roles use union aliasing which is, generally speaking, an 7324 * undefined behavior. However, we supposedly know how compilers behave 7325 * and the current status quo is unlikely to change. Guardians below are 7326 * supposed to let us know if the assumption becomes false. 7327 */ 7328 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32)); 7329 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32)); 7330 BUILD_BUG_ON(sizeof(union kvm_cpu_role) != sizeof(u64)); 7331 7332 kvm_mmu_reset_all_pte_masks(); 7333 7334 pte_list_desc_cache = KMEM_CACHE(pte_list_desc, SLAB_ACCOUNT); 7335 if (!pte_list_desc_cache) 7336 goto out; 7337 7338 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", 7339 sizeof(struct kvm_mmu_page), 7340 0, SLAB_ACCOUNT, NULL); 7341 if (!mmu_page_header_cache) 7342 goto out; 7343 7344 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL)) 7345 goto out; 7346 7347 mmu_shrinker = shrinker_alloc(0, "x86-mmu"); 7348 if (!mmu_shrinker) 7349 goto out_shrinker; 7350 7351 mmu_shrinker->count_objects = mmu_shrink_count; 7352 mmu_shrinker->scan_objects = mmu_shrink_scan; 7353 mmu_shrinker->seeks = DEFAULT_SEEKS * 10; 7354 7355 shrinker_register(mmu_shrinker); 7356 7357 return 0; 7358 7359 out_shrinker: 7360 percpu_counter_destroy(&kvm_total_used_mmu_pages); 7361 out: 7362 mmu_destroy_caches(); 7363 return ret; 7364 } 7365 7366 void kvm_mmu_destroy(struct kvm_vcpu *vcpu) 7367 { 7368 kvm_mmu_unload(vcpu); 7369 free_mmu_pages(&vcpu->arch.root_mmu); 7370 free_mmu_pages(&vcpu->arch.guest_mmu); 7371 mmu_free_memory_caches(vcpu); 7372 } 7373 7374 void kvm_mmu_vendor_module_exit(void) 7375 { 7376 mmu_destroy_caches(); 7377 percpu_counter_destroy(&kvm_total_used_mmu_pages); 7378 shrinker_free(mmu_shrinker); 7379 } 7380 7381 /* 7382 * Calculate the effective recovery period, accounting for '0' meaning "let KVM 7383 * select a halving time of 1 hour". Returns true if recovery is enabled. 7384 */ 7385 static bool calc_nx_huge_pages_recovery_period(uint *period) 7386 { 7387 /* 7388 * Use READ_ONCE to get the params, this may be called outside of the 7389 * param setters, e.g. by the kthread to compute its next timeout. 7390 */ 7391 bool enabled = READ_ONCE(nx_huge_pages); 7392 uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 7393 7394 if (!enabled || !ratio) 7395 return false; 7396 7397 *period = READ_ONCE(nx_huge_pages_recovery_period_ms); 7398 if (!*period) { 7399 /* Make sure the period is not less than one second. */ 7400 ratio = min(ratio, 3600u); 7401 *period = 60 * 60 * 1000 / ratio; 7402 } 7403 return true; 7404 } 7405 7406 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp) 7407 { 7408 bool was_recovery_enabled, is_recovery_enabled; 7409 uint old_period, new_period; 7410 int err; 7411 7412 if (nx_hugepage_mitigation_hard_disabled) 7413 return -EPERM; 7414 7415 was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period); 7416 7417 err = param_set_uint(val, kp); 7418 if (err) 7419 return err; 7420 7421 is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period); 7422 7423 if (is_recovery_enabled && 7424 (!was_recovery_enabled || old_period > new_period)) { 7425 struct kvm *kvm; 7426 7427 mutex_lock(&kvm_lock); 7428 7429 list_for_each_entry(kvm, &vm_list, vm_list) 7430 wake_up_process(kvm->arch.nx_huge_page_recovery_thread); 7431 7432 mutex_unlock(&kvm_lock); 7433 } 7434 7435 return err; 7436 } 7437 7438 static void kvm_recover_nx_huge_pages(struct kvm *kvm) 7439 { 7440 unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits; 7441 struct kvm_memory_slot *slot; 7442 int rcu_idx; 7443 struct kvm_mmu_page *sp; 7444 unsigned int ratio; 7445 LIST_HEAD(invalid_list); 7446 bool flush = false; 7447 ulong to_zap; 7448 7449 rcu_idx = srcu_read_lock(&kvm->srcu); 7450 write_lock(&kvm->mmu_lock); 7451 7452 /* 7453 * Zapping TDP MMU shadow pages, including the remote TLB flush, must 7454 * be done under RCU protection, because the pages are freed via RCU 7455 * callback. 7456 */ 7457 rcu_read_lock(); 7458 7459 ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 7460 to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0; 7461 for ( ; to_zap; --to_zap) { 7462 if (list_empty(&kvm->arch.possible_nx_huge_pages)) 7463 break; 7464 7465 /* 7466 * We use a separate list instead of just using active_mmu_pages 7467 * because the number of shadow pages that be replaced with an 7468 * NX huge page is expected to be relatively small compared to 7469 * the total number of shadow pages. And because the TDP MMU 7470 * doesn't use active_mmu_pages. 7471 */ 7472 sp = list_first_entry(&kvm->arch.possible_nx_huge_pages, 7473 struct kvm_mmu_page, 7474 possible_nx_huge_page_link); 7475 WARN_ON_ONCE(!sp->nx_huge_page_disallowed); 7476 WARN_ON_ONCE(!sp->role.direct); 7477 7478 /* 7479 * Unaccount and do not attempt to recover any NX Huge Pages 7480 * that are being dirty tracked, as they would just be faulted 7481 * back in as 4KiB pages. The NX Huge Pages in this slot will be 7482 * recovered, along with all the other huge pages in the slot, 7483 * when dirty logging is disabled. 7484 * 7485 * Since gfn_to_memslot() is relatively expensive, it helps to 7486 * skip it if it the test cannot possibly return true. On the 7487 * other hand, if any memslot has logging enabled, chances are 7488 * good that all of them do, in which case unaccount_nx_huge_page() 7489 * is much cheaper than zapping the page. 7490 * 7491 * If a memslot update is in progress, reading an incorrect value 7492 * of kvm->nr_memslots_dirty_logging is not a problem: if it is 7493 * becoming zero, gfn_to_memslot() will be done unnecessarily; if 7494 * it is becoming nonzero, the page will be zapped unnecessarily. 7495 * Either way, this only affects efficiency in racy situations, 7496 * and not correctness. 7497 */ 7498 slot = NULL; 7499 if (atomic_read(&kvm->nr_memslots_dirty_logging)) { 7500 struct kvm_memslots *slots; 7501 7502 slots = kvm_memslots_for_spte_role(kvm, sp->role); 7503 slot = __gfn_to_memslot(slots, sp->gfn); 7504 WARN_ON_ONCE(!slot); 7505 } 7506 7507 if (slot && kvm_slot_dirty_track_enabled(slot)) 7508 unaccount_nx_huge_page(kvm, sp); 7509 else if (is_tdp_mmu_page(sp)) 7510 flush |= kvm_tdp_mmu_zap_sp(kvm, sp); 7511 else 7512 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 7513 WARN_ON_ONCE(sp->nx_huge_page_disallowed); 7514 7515 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 7516 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7517 rcu_read_unlock(); 7518 7519 cond_resched_rwlock_write(&kvm->mmu_lock); 7520 flush = false; 7521 7522 rcu_read_lock(); 7523 } 7524 } 7525 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7526 7527 rcu_read_unlock(); 7528 7529 write_unlock(&kvm->mmu_lock); 7530 srcu_read_unlock(&kvm->srcu, rcu_idx); 7531 } 7532 7533 static long get_nx_huge_page_recovery_timeout(u64 start_time) 7534 { 7535 bool enabled; 7536 uint period; 7537 7538 enabled = calc_nx_huge_pages_recovery_period(&period); 7539 7540 return enabled ? start_time + msecs_to_jiffies(period) - get_jiffies_64() 7541 : MAX_SCHEDULE_TIMEOUT; 7542 } 7543 7544 static int kvm_nx_huge_page_recovery_worker(struct kvm *kvm, uintptr_t data) 7545 { 7546 u64 start_time; 7547 long remaining_time; 7548 7549 while (true) { 7550 start_time = get_jiffies_64(); 7551 remaining_time = get_nx_huge_page_recovery_timeout(start_time); 7552 7553 set_current_state(TASK_INTERRUPTIBLE); 7554 while (!kthread_should_stop() && remaining_time > 0) { 7555 schedule_timeout(remaining_time); 7556 remaining_time = get_nx_huge_page_recovery_timeout(start_time); 7557 set_current_state(TASK_INTERRUPTIBLE); 7558 } 7559 7560 set_current_state(TASK_RUNNING); 7561 7562 if (kthread_should_stop()) 7563 return 0; 7564 7565 kvm_recover_nx_huge_pages(kvm); 7566 } 7567 } 7568 7569 int kvm_mmu_post_init_vm(struct kvm *kvm) 7570 { 7571 int err; 7572 7573 if (nx_hugepage_mitigation_hard_disabled) 7574 return 0; 7575 7576 err = kvm_vm_create_worker_thread(kvm, kvm_nx_huge_page_recovery_worker, 0, 7577 "kvm-nx-lpage-recovery", 7578 &kvm->arch.nx_huge_page_recovery_thread); 7579 if (!err) 7580 kthread_unpark(kvm->arch.nx_huge_page_recovery_thread); 7581 7582 return err; 7583 } 7584 7585 void kvm_mmu_pre_destroy_vm(struct kvm *kvm) 7586 { 7587 if (kvm->arch.nx_huge_page_recovery_thread) 7588 kthread_stop(kvm->arch.nx_huge_page_recovery_thread); 7589 } 7590 7591 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 7592 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm, 7593 struct kvm_gfn_range *range) 7594 { 7595 /* 7596 * Zap SPTEs even if the slot can't be mapped PRIVATE. KVM x86 only 7597 * supports KVM_MEMORY_ATTRIBUTE_PRIVATE, and so it *seems* like KVM 7598 * can simply ignore such slots. But if userspace is making memory 7599 * PRIVATE, then KVM must prevent the guest from accessing the memory 7600 * as shared. And if userspace is making memory SHARED and this point 7601 * is reached, then at least one page within the range was previously 7602 * PRIVATE, i.e. the slot's possible hugepage ranges are changing. 7603 * Zapping SPTEs in this case ensures KVM will reassess whether or not 7604 * a hugepage can be used for affected ranges. 7605 */ 7606 if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm))) 7607 return false; 7608 7609 return kvm_unmap_gfn_range(kvm, range); 7610 } 7611 7612 static bool hugepage_test_mixed(struct kvm_memory_slot *slot, gfn_t gfn, 7613 int level) 7614 { 7615 return lpage_info_slot(gfn, slot, level)->disallow_lpage & KVM_LPAGE_MIXED_FLAG; 7616 } 7617 7618 static void hugepage_clear_mixed(struct kvm_memory_slot *slot, gfn_t gfn, 7619 int level) 7620 { 7621 lpage_info_slot(gfn, slot, level)->disallow_lpage &= ~KVM_LPAGE_MIXED_FLAG; 7622 } 7623 7624 static void hugepage_set_mixed(struct kvm_memory_slot *slot, gfn_t gfn, 7625 int level) 7626 { 7627 lpage_info_slot(gfn, slot, level)->disallow_lpage |= KVM_LPAGE_MIXED_FLAG; 7628 } 7629 7630 static bool hugepage_has_attrs(struct kvm *kvm, struct kvm_memory_slot *slot, 7631 gfn_t gfn, int level, unsigned long attrs) 7632 { 7633 const unsigned long start = gfn; 7634 const unsigned long end = start + KVM_PAGES_PER_HPAGE(level); 7635 7636 if (level == PG_LEVEL_2M) 7637 return kvm_range_has_memory_attributes(kvm, start, end, ~0, attrs); 7638 7639 for (gfn = start; gfn < end; gfn += KVM_PAGES_PER_HPAGE(level - 1)) { 7640 if (hugepage_test_mixed(slot, gfn, level - 1) || 7641 attrs != kvm_get_memory_attributes(kvm, gfn)) 7642 return false; 7643 } 7644 return true; 7645 } 7646 7647 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm, 7648 struct kvm_gfn_range *range) 7649 { 7650 unsigned long attrs = range->arg.attributes; 7651 struct kvm_memory_slot *slot = range->slot; 7652 int level; 7653 7654 lockdep_assert_held_write(&kvm->mmu_lock); 7655 lockdep_assert_held(&kvm->slots_lock); 7656 7657 /* 7658 * Calculate which ranges can be mapped with hugepages even if the slot 7659 * can't map memory PRIVATE. KVM mustn't create a SHARED hugepage over 7660 * a range that has PRIVATE GFNs, and conversely converting a range to 7661 * SHARED may now allow hugepages. 7662 */ 7663 if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm))) 7664 return false; 7665 7666 /* 7667 * The sequence matters here: upper levels consume the result of lower 7668 * level's scanning. 7669 */ 7670 for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) { 7671 gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level); 7672 gfn_t gfn = gfn_round_for_level(range->start, level); 7673 7674 /* Process the head page if it straddles the range. */ 7675 if (gfn != range->start || gfn + nr_pages > range->end) { 7676 /* 7677 * Skip mixed tracking if the aligned gfn isn't covered 7678 * by the memslot, KVM can't use a hugepage due to the 7679 * misaligned address regardless of memory attributes. 7680 */ 7681 if (gfn >= slot->base_gfn && 7682 gfn + nr_pages <= slot->base_gfn + slot->npages) { 7683 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs)) 7684 hugepage_clear_mixed(slot, gfn, level); 7685 else 7686 hugepage_set_mixed(slot, gfn, level); 7687 } 7688 gfn += nr_pages; 7689 } 7690 7691 /* 7692 * Pages entirely covered by the range are guaranteed to have 7693 * only the attributes which were just set. 7694 */ 7695 for ( ; gfn + nr_pages <= range->end; gfn += nr_pages) 7696 hugepage_clear_mixed(slot, gfn, level); 7697 7698 /* 7699 * Process the last tail page if it straddles the range and is 7700 * contained by the memslot. Like the head page, KVM can't 7701 * create a hugepage if the slot size is misaligned. 7702 */ 7703 if (gfn < range->end && 7704 (gfn + nr_pages) <= (slot->base_gfn + slot->npages)) { 7705 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs)) 7706 hugepage_clear_mixed(slot, gfn, level); 7707 else 7708 hugepage_set_mixed(slot, gfn, level); 7709 } 7710 } 7711 return false; 7712 } 7713 7714 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm, 7715 struct kvm_memory_slot *slot) 7716 { 7717 int level; 7718 7719 if (!kvm_arch_has_private_mem(kvm)) 7720 return; 7721 7722 for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) { 7723 /* 7724 * Don't bother tracking mixed attributes for pages that can't 7725 * be huge due to alignment, i.e. process only pages that are 7726 * entirely contained by the memslot. 7727 */ 7728 gfn_t end = gfn_round_for_level(slot->base_gfn + slot->npages, level); 7729 gfn_t start = gfn_round_for_level(slot->base_gfn, level); 7730 gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level); 7731 gfn_t gfn; 7732 7733 if (start < slot->base_gfn) 7734 start += nr_pages; 7735 7736 /* 7737 * Unlike setting attributes, every potential hugepage needs to 7738 * be manually checked as the attributes may already be mixed. 7739 */ 7740 for (gfn = start; gfn < end; gfn += nr_pages) { 7741 unsigned long attrs = kvm_get_memory_attributes(kvm, gfn); 7742 7743 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs)) 7744 hugepage_clear_mixed(slot, gfn, level); 7745 else 7746 hugepage_set_mixed(slot, gfn, level); 7747 } 7748 } 7749 } 7750 #endif 7751