xref: /linux/arch/x86/kvm/mmu/mmu.c (revision a885a6b2d37eaaae08323583bdb1928c8a2935fc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include "irq.h"
20 #include "ioapic.h"
21 #include "mmu.h"
22 #include "mmu_internal.h"
23 #include "tdp_mmu.h"
24 #include "x86.h"
25 #include "kvm_cache_regs.h"
26 #include "smm.h"
27 #include "kvm_emulate.h"
28 #include "page_track.h"
29 #include "cpuid.h"
30 #include "spte.h"
31 
32 #include <linux/kvm_host.h>
33 #include <linux/types.h>
34 #include <linux/string.h>
35 #include <linux/mm.h>
36 #include <linux/highmem.h>
37 #include <linux/moduleparam.h>
38 #include <linux/export.h>
39 #include <linux/swap.h>
40 #include <linux/hugetlb.h>
41 #include <linux/compiler.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/sched/signal.h>
45 #include <linux/uaccess.h>
46 #include <linux/hash.h>
47 #include <linux/kern_levels.h>
48 #include <linux/kstrtox.h>
49 #include <linux/kthread.h>
50 #include <linux/wordpart.h>
51 
52 #include <asm/page.h>
53 #include <asm/memtype.h>
54 #include <asm/cmpxchg.h>
55 #include <asm/io.h>
56 #include <asm/set_memory.h>
57 #include <asm/spec-ctrl.h>
58 #include <asm/vmx.h>
59 
60 #include "trace.h"
61 
62 static bool nx_hugepage_mitigation_hard_disabled;
63 
64 int __read_mostly nx_huge_pages = -1;
65 static uint __read_mostly nx_huge_pages_recovery_period_ms;
66 #ifdef CONFIG_PREEMPT_RT
67 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
68 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
69 #else
70 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
71 #endif
72 
73 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp);
74 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
75 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp);
76 
77 static const struct kernel_param_ops nx_huge_pages_ops = {
78 	.set = set_nx_huge_pages,
79 	.get = get_nx_huge_pages,
80 };
81 
82 static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = {
83 	.set = set_nx_huge_pages_recovery_param,
84 	.get = param_get_uint,
85 };
86 
87 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
88 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
89 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops,
90 		&nx_huge_pages_recovery_ratio, 0644);
91 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
92 module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops,
93 		&nx_huge_pages_recovery_period_ms, 0644);
94 __MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint");
95 
96 static bool __read_mostly force_flush_and_sync_on_reuse;
97 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
98 
99 /*
100  * When setting this variable to true it enables Two-Dimensional-Paging
101  * where the hardware walks 2 page tables:
102  * 1. the guest-virtual to guest-physical
103  * 2. while doing 1. it walks guest-physical to host-physical
104  * If the hardware supports that we don't need to do shadow paging.
105  */
106 bool tdp_enabled = false;
107 
108 static bool __ro_after_init tdp_mmu_allowed;
109 
110 #ifdef CONFIG_X86_64
111 bool __read_mostly tdp_mmu_enabled = true;
112 module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0444);
113 #endif
114 
115 static int max_huge_page_level __read_mostly;
116 static int tdp_root_level __read_mostly;
117 static int max_tdp_level __read_mostly;
118 
119 #define PTE_PREFETCH_NUM		8
120 
121 #include <trace/events/kvm.h>
122 
123 /* make pte_list_desc fit well in cache lines */
124 #define PTE_LIST_EXT 14
125 
126 /*
127  * struct pte_list_desc is the core data structure used to implement a custom
128  * list for tracking a set of related SPTEs, e.g. all the SPTEs that map a
129  * given GFN when used in the context of rmaps.  Using a custom list allows KVM
130  * to optimize for the common case where many GFNs will have at most a handful
131  * of SPTEs pointing at them, i.e. allows packing multiple SPTEs into a small
132  * memory footprint, which in turn improves runtime performance by exploiting
133  * cache locality.
134  *
135  * A list is comprised of one or more pte_list_desc objects (descriptors).
136  * Each individual descriptor stores up to PTE_LIST_EXT SPTEs.  If a descriptor
137  * is full and a new SPTEs needs to be added, a new descriptor is allocated and
138  * becomes the head of the list.  This means that by definitions, all tail
139  * descriptors are full.
140  *
141  * Note, the meta data fields are deliberately placed at the start of the
142  * structure to optimize the cacheline layout; accessing the descriptor will
143  * touch only a single cacheline so long as @spte_count<=6 (or if only the
144  * descriptors metadata is accessed).
145  */
146 struct pte_list_desc {
147 	struct pte_list_desc *more;
148 	/* The number of PTEs stored in _this_ descriptor. */
149 	u32 spte_count;
150 	/* The number of PTEs stored in all tails of this descriptor. */
151 	u32 tail_count;
152 	u64 *sptes[PTE_LIST_EXT];
153 };
154 
155 struct kvm_shadow_walk_iterator {
156 	u64 addr;
157 	hpa_t shadow_addr;
158 	u64 *sptep;
159 	int level;
160 	unsigned index;
161 };
162 
163 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
164 	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
165 					 (_root), (_addr));                \
166 	     shadow_walk_okay(&(_walker));			           \
167 	     shadow_walk_next(&(_walker)))
168 
169 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
170 	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
171 	     shadow_walk_okay(&(_walker));			\
172 	     shadow_walk_next(&(_walker)))
173 
174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
175 	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
176 	     shadow_walk_okay(&(_walker)) &&				\
177 		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
178 	     __shadow_walk_next(&(_walker), spte))
179 
180 static struct kmem_cache *pte_list_desc_cache;
181 struct kmem_cache *mmu_page_header_cache;
182 static struct percpu_counter kvm_total_used_mmu_pages;
183 
184 static void mmu_spte_set(u64 *sptep, u64 spte);
185 
186 struct kvm_mmu_role_regs {
187 	const unsigned long cr0;
188 	const unsigned long cr4;
189 	const u64 efer;
190 };
191 
192 #define CREATE_TRACE_POINTS
193 #include "mmutrace.h"
194 
195 /*
196  * Yes, lot's of underscores.  They're a hint that you probably shouldn't be
197  * reading from the role_regs.  Once the root_role is constructed, it becomes
198  * the single source of truth for the MMU's state.
199  */
200 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag)			\
201 static inline bool __maybe_unused					\
202 ____is_##reg##_##name(const struct kvm_mmu_role_regs *regs)		\
203 {									\
204 	return !!(regs->reg & flag);					\
205 }
206 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
207 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
208 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
209 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
210 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
211 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
212 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
213 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
214 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
215 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);
216 
217 /*
218  * The MMU itself (with a valid role) is the single source of truth for the
219  * MMU.  Do not use the regs used to build the MMU/role, nor the vCPU.  The
220  * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
221  * and the vCPU may be incorrect/irrelevant.
222  */
223 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name)		\
224 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu)	\
225 {								\
226 	return !!(mmu->cpu_role. base_or_ext . reg##_##name);	\
227 }
228 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
229 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pse);
230 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smep);
231 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smap);
232 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pke);
233 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, la57);
234 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);
235 BUILD_MMU_ROLE_ACCESSOR(ext,  efer, lma);
236 
237 static inline bool is_cr0_pg(struct kvm_mmu *mmu)
238 {
239         return mmu->cpu_role.base.level > 0;
240 }
241 
242 static inline bool is_cr4_pae(struct kvm_mmu *mmu)
243 {
244         return !mmu->cpu_role.base.has_4_byte_gpte;
245 }
246 
247 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
248 {
249 	struct kvm_mmu_role_regs regs = {
250 		.cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
251 		.cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
252 		.efer = vcpu->arch.efer,
253 	};
254 
255 	return regs;
256 }
257 
258 static unsigned long get_guest_cr3(struct kvm_vcpu *vcpu)
259 {
260 	return kvm_read_cr3(vcpu);
261 }
262 
263 static inline unsigned long kvm_mmu_get_guest_pgd(struct kvm_vcpu *vcpu,
264 						  struct kvm_mmu *mmu)
265 {
266 	if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && mmu->get_guest_pgd == get_guest_cr3)
267 		return kvm_read_cr3(vcpu);
268 
269 	return mmu->get_guest_pgd(vcpu);
270 }
271 
272 static inline bool kvm_available_flush_remote_tlbs_range(void)
273 {
274 #if IS_ENABLED(CONFIG_HYPERV)
275 	return kvm_x86_ops.flush_remote_tlbs_range;
276 #else
277 	return false;
278 #endif
279 }
280 
281 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index);
282 
283 /* Flush the range of guest memory mapped by the given SPTE. */
284 static void kvm_flush_remote_tlbs_sptep(struct kvm *kvm, u64 *sptep)
285 {
286 	struct kvm_mmu_page *sp = sptep_to_sp(sptep);
287 	gfn_t gfn = kvm_mmu_page_get_gfn(sp, spte_index(sptep));
288 
289 	kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level);
290 }
291 
292 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
293 			   unsigned int access)
294 {
295 	u64 spte = make_mmio_spte(vcpu, gfn, access);
296 
297 	trace_mark_mmio_spte(sptep, gfn, spte);
298 	mmu_spte_set(sptep, spte);
299 }
300 
301 static gfn_t get_mmio_spte_gfn(u64 spte)
302 {
303 	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
304 
305 	gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
306 	       & shadow_nonpresent_or_rsvd_mask;
307 
308 	return gpa >> PAGE_SHIFT;
309 }
310 
311 static unsigned get_mmio_spte_access(u64 spte)
312 {
313 	return spte & shadow_mmio_access_mask;
314 }
315 
316 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
317 {
318 	u64 kvm_gen, spte_gen, gen;
319 
320 	gen = kvm_vcpu_memslots(vcpu)->generation;
321 	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
322 		return false;
323 
324 	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
325 	spte_gen = get_mmio_spte_generation(spte);
326 
327 	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
328 	return likely(kvm_gen == spte_gen);
329 }
330 
331 static int is_cpuid_PSE36(void)
332 {
333 	return 1;
334 }
335 
336 #ifdef CONFIG_X86_64
337 static void __set_spte(u64 *sptep, u64 spte)
338 {
339 	KVM_MMU_WARN_ON(is_ept_ve_possible(spte));
340 	WRITE_ONCE(*sptep, spte);
341 }
342 
343 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
344 {
345 	KVM_MMU_WARN_ON(is_ept_ve_possible(spte));
346 	WRITE_ONCE(*sptep, spte);
347 }
348 
349 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
350 {
351 	KVM_MMU_WARN_ON(is_ept_ve_possible(spte));
352 	return xchg(sptep, spte);
353 }
354 
355 static u64 __get_spte_lockless(u64 *sptep)
356 {
357 	return READ_ONCE(*sptep);
358 }
359 #else
360 union split_spte {
361 	struct {
362 		u32 spte_low;
363 		u32 spte_high;
364 	};
365 	u64 spte;
366 };
367 
368 static void count_spte_clear(u64 *sptep, u64 spte)
369 {
370 	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
371 
372 	if (is_shadow_present_pte(spte))
373 		return;
374 
375 	/* Ensure the spte is completely set before we increase the count */
376 	smp_wmb();
377 	sp->clear_spte_count++;
378 }
379 
380 static void __set_spte(u64 *sptep, u64 spte)
381 {
382 	union split_spte *ssptep, sspte;
383 
384 	ssptep = (union split_spte *)sptep;
385 	sspte = (union split_spte)spte;
386 
387 	ssptep->spte_high = sspte.spte_high;
388 
389 	/*
390 	 * If we map the spte from nonpresent to present, We should store
391 	 * the high bits firstly, then set present bit, so cpu can not
392 	 * fetch this spte while we are setting the spte.
393 	 */
394 	smp_wmb();
395 
396 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
397 }
398 
399 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
400 {
401 	union split_spte *ssptep, sspte;
402 
403 	ssptep = (union split_spte *)sptep;
404 	sspte = (union split_spte)spte;
405 
406 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
407 
408 	/*
409 	 * If we map the spte from present to nonpresent, we should clear
410 	 * present bit firstly to avoid vcpu fetch the old high bits.
411 	 */
412 	smp_wmb();
413 
414 	ssptep->spte_high = sspte.spte_high;
415 	count_spte_clear(sptep, spte);
416 }
417 
418 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
419 {
420 	union split_spte *ssptep, sspte, orig;
421 
422 	ssptep = (union split_spte *)sptep;
423 	sspte = (union split_spte)spte;
424 
425 	/* xchg acts as a barrier before the setting of the high bits */
426 	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
427 	orig.spte_high = ssptep->spte_high;
428 	ssptep->spte_high = sspte.spte_high;
429 	count_spte_clear(sptep, spte);
430 
431 	return orig.spte;
432 }
433 
434 /*
435  * The idea using the light way get the spte on x86_32 guest is from
436  * gup_get_pte (mm/gup.c).
437  *
438  * An spte tlb flush may be pending, because they are coalesced and
439  * we are running out of the MMU lock.  Therefore
440  * we need to protect against in-progress updates of the spte.
441  *
442  * Reading the spte while an update is in progress may get the old value
443  * for the high part of the spte.  The race is fine for a present->non-present
444  * change (because the high part of the spte is ignored for non-present spte),
445  * but for a present->present change we must reread the spte.
446  *
447  * All such changes are done in two steps (present->non-present and
448  * non-present->present), hence it is enough to count the number of
449  * present->non-present updates: if it changed while reading the spte,
450  * we might have hit the race.  This is done using clear_spte_count.
451  */
452 static u64 __get_spte_lockless(u64 *sptep)
453 {
454 	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
455 	union split_spte spte, *orig = (union split_spte *)sptep;
456 	int count;
457 
458 retry:
459 	count = sp->clear_spte_count;
460 	smp_rmb();
461 
462 	spte.spte_low = orig->spte_low;
463 	smp_rmb();
464 
465 	spte.spte_high = orig->spte_high;
466 	smp_rmb();
467 
468 	if (unlikely(spte.spte_low != orig->spte_low ||
469 	      count != sp->clear_spte_count))
470 		goto retry;
471 
472 	return spte.spte;
473 }
474 #endif
475 
476 /* Rules for using mmu_spte_set:
477  * Set the sptep from nonpresent to present.
478  * Note: the sptep being assigned *must* be either not present
479  * or in a state where the hardware will not attempt to update
480  * the spte.
481  */
482 static void mmu_spte_set(u64 *sptep, u64 new_spte)
483 {
484 	WARN_ON_ONCE(is_shadow_present_pte(*sptep));
485 	__set_spte(sptep, new_spte);
486 }
487 
488 /*
489  * Update the SPTE (excluding the PFN), but do not track changes in its
490  * accessed/dirty status.
491  */
492 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
493 {
494 	u64 old_spte = *sptep;
495 
496 	WARN_ON_ONCE(!is_shadow_present_pte(new_spte));
497 	check_spte_writable_invariants(new_spte);
498 
499 	if (!is_shadow_present_pte(old_spte)) {
500 		mmu_spte_set(sptep, new_spte);
501 		return old_spte;
502 	}
503 
504 	if (!spte_has_volatile_bits(old_spte))
505 		__update_clear_spte_fast(sptep, new_spte);
506 	else
507 		old_spte = __update_clear_spte_slow(sptep, new_spte);
508 
509 	WARN_ON_ONCE(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
510 
511 	return old_spte;
512 }
513 
514 /* Rules for using mmu_spte_update:
515  * Update the state bits, it means the mapped pfn is not changed.
516  *
517  * Whenever an MMU-writable SPTE is overwritten with a read-only SPTE, remote
518  * TLBs must be flushed. Otherwise rmap_write_protect will find a read-only
519  * spte, even though the writable spte might be cached on a CPU's TLB.
520  *
521  * Returns true if the TLB needs to be flushed
522  */
523 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
524 {
525 	bool flush = false;
526 	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
527 
528 	if (!is_shadow_present_pte(old_spte))
529 		return false;
530 
531 	/*
532 	 * For the spte updated out of mmu-lock is safe, since
533 	 * we always atomically update it, see the comments in
534 	 * spte_has_volatile_bits().
535 	 */
536 	if (is_mmu_writable_spte(old_spte) &&
537 	      !is_writable_pte(new_spte))
538 		flush = true;
539 
540 	/*
541 	 * Flush TLB when accessed/dirty states are changed in the page tables,
542 	 * to guarantee consistency between TLB and page tables.
543 	 */
544 
545 	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
546 		flush = true;
547 		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
548 	}
549 
550 	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
551 		flush = true;
552 		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
553 	}
554 
555 	return flush;
556 }
557 
558 /*
559  * Rules for using mmu_spte_clear_track_bits:
560  * It sets the sptep from present to nonpresent, and track the
561  * state bits, it is used to clear the last level sptep.
562  * Returns the old PTE.
563  */
564 static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
565 {
566 	kvm_pfn_t pfn;
567 	u64 old_spte = *sptep;
568 	int level = sptep_to_sp(sptep)->role.level;
569 	struct page *page;
570 
571 	if (!is_shadow_present_pte(old_spte) ||
572 	    !spte_has_volatile_bits(old_spte))
573 		__update_clear_spte_fast(sptep, SHADOW_NONPRESENT_VALUE);
574 	else
575 		old_spte = __update_clear_spte_slow(sptep, SHADOW_NONPRESENT_VALUE);
576 
577 	if (!is_shadow_present_pte(old_spte))
578 		return old_spte;
579 
580 	kvm_update_page_stats(kvm, level, -1);
581 
582 	pfn = spte_to_pfn(old_spte);
583 
584 	/*
585 	 * KVM doesn't hold a reference to any pages mapped into the guest, and
586 	 * instead uses the mmu_notifier to ensure that KVM unmaps any pages
587 	 * before they are reclaimed.  Sanity check that, if the pfn is backed
588 	 * by a refcounted page, the refcount is elevated.
589 	 */
590 	page = kvm_pfn_to_refcounted_page(pfn);
591 	WARN_ON_ONCE(page && !page_count(page));
592 
593 	if (is_accessed_spte(old_spte))
594 		kvm_set_pfn_accessed(pfn);
595 
596 	if (is_dirty_spte(old_spte))
597 		kvm_set_pfn_dirty(pfn);
598 
599 	return old_spte;
600 }
601 
602 /*
603  * Rules for using mmu_spte_clear_no_track:
604  * Directly clear spte without caring the state bits of sptep,
605  * it is used to set the upper level spte.
606  */
607 static void mmu_spte_clear_no_track(u64 *sptep)
608 {
609 	__update_clear_spte_fast(sptep, SHADOW_NONPRESENT_VALUE);
610 }
611 
612 static u64 mmu_spte_get_lockless(u64 *sptep)
613 {
614 	return __get_spte_lockless(sptep);
615 }
616 
617 static inline bool is_tdp_mmu_active(struct kvm_vcpu *vcpu)
618 {
619 	return tdp_mmu_enabled && vcpu->arch.mmu->root_role.direct;
620 }
621 
622 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
623 {
624 	if (is_tdp_mmu_active(vcpu)) {
625 		kvm_tdp_mmu_walk_lockless_begin();
626 	} else {
627 		/*
628 		 * Prevent page table teardown by making any free-er wait during
629 		 * kvm_flush_remote_tlbs() IPI to all active vcpus.
630 		 */
631 		local_irq_disable();
632 
633 		/*
634 		 * Make sure a following spte read is not reordered ahead of the write
635 		 * to vcpu->mode.
636 		 */
637 		smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
638 	}
639 }
640 
641 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
642 {
643 	if (is_tdp_mmu_active(vcpu)) {
644 		kvm_tdp_mmu_walk_lockless_end();
645 	} else {
646 		/*
647 		 * Make sure the write to vcpu->mode is not reordered in front of
648 		 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
649 		 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
650 		 */
651 		smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
652 		local_irq_enable();
653 	}
654 }
655 
656 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
657 {
658 	int r;
659 
660 	/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
661 	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
662 				       1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
663 	if (r)
664 		return r;
665 	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
666 				       PT64_ROOT_MAX_LEVEL);
667 	if (r)
668 		return r;
669 	if (maybe_indirect) {
670 		r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadowed_info_cache,
671 					       PT64_ROOT_MAX_LEVEL);
672 		if (r)
673 			return r;
674 	}
675 	return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
676 					  PT64_ROOT_MAX_LEVEL);
677 }
678 
679 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
680 {
681 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
682 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
683 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadowed_info_cache);
684 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
685 }
686 
687 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
688 {
689 	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
690 }
691 
692 static bool sp_has_gptes(struct kvm_mmu_page *sp);
693 
694 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
695 {
696 	if (sp->role.passthrough)
697 		return sp->gfn;
698 
699 	if (sp->shadowed_translation)
700 		return sp->shadowed_translation[index] >> PAGE_SHIFT;
701 
702 	return sp->gfn + (index << ((sp->role.level - 1) * SPTE_LEVEL_BITS));
703 }
704 
705 /*
706  * For leaf SPTEs, fetch the *guest* access permissions being shadowed. Note
707  * that the SPTE itself may have a more constrained access permissions that
708  * what the guest enforces. For example, a guest may create an executable
709  * huge PTE but KVM may disallow execution to mitigate iTLB multihit.
710  */
711 static u32 kvm_mmu_page_get_access(struct kvm_mmu_page *sp, int index)
712 {
713 	if (sp->shadowed_translation)
714 		return sp->shadowed_translation[index] & ACC_ALL;
715 
716 	/*
717 	 * For direct MMUs (e.g. TDP or non-paging guests) or passthrough SPs,
718 	 * KVM is not shadowing any guest page tables, so the "guest access
719 	 * permissions" are just ACC_ALL.
720 	 *
721 	 * For direct SPs in indirect MMUs (shadow paging), i.e. when KVM
722 	 * is shadowing a guest huge page with small pages, the guest access
723 	 * permissions being shadowed are the access permissions of the huge
724 	 * page.
725 	 *
726 	 * In both cases, sp->role.access contains the correct access bits.
727 	 */
728 	return sp->role.access;
729 }
730 
731 static void kvm_mmu_page_set_translation(struct kvm_mmu_page *sp, int index,
732 					 gfn_t gfn, unsigned int access)
733 {
734 	if (sp->shadowed_translation) {
735 		sp->shadowed_translation[index] = (gfn << PAGE_SHIFT) | access;
736 		return;
737 	}
738 
739 	WARN_ONCE(access != kvm_mmu_page_get_access(sp, index),
740 	          "access mismatch under %s page %llx (expected %u, got %u)\n",
741 	          sp->role.passthrough ? "passthrough" : "direct",
742 	          sp->gfn, kvm_mmu_page_get_access(sp, index), access);
743 
744 	WARN_ONCE(gfn != kvm_mmu_page_get_gfn(sp, index),
745 	          "gfn mismatch under %s page %llx (expected %llx, got %llx)\n",
746 	          sp->role.passthrough ? "passthrough" : "direct",
747 	          sp->gfn, kvm_mmu_page_get_gfn(sp, index), gfn);
748 }
749 
750 static void kvm_mmu_page_set_access(struct kvm_mmu_page *sp, int index,
751 				    unsigned int access)
752 {
753 	gfn_t gfn = kvm_mmu_page_get_gfn(sp, index);
754 
755 	kvm_mmu_page_set_translation(sp, index, gfn, access);
756 }
757 
758 /*
759  * Return the pointer to the large page information for a given gfn,
760  * handling slots that are not large page aligned.
761  */
762 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
763 		const struct kvm_memory_slot *slot, int level)
764 {
765 	unsigned long idx;
766 
767 	idx = gfn_to_index(gfn, slot->base_gfn, level);
768 	return &slot->arch.lpage_info[level - 2][idx];
769 }
770 
771 /*
772  * The most significant bit in disallow_lpage tracks whether or not memory
773  * attributes are mixed, i.e. not identical for all gfns at the current level.
774  * The lower order bits are used to refcount other cases where a hugepage is
775  * disallowed, e.g. if KVM has shadow a page table at the gfn.
776  */
777 #define KVM_LPAGE_MIXED_FLAG	BIT(31)
778 
779 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot,
780 					    gfn_t gfn, int count)
781 {
782 	struct kvm_lpage_info *linfo;
783 	int old, i;
784 
785 	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
786 		linfo = lpage_info_slot(gfn, slot, i);
787 
788 		old = linfo->disallow_lpage;
789 		linfo->disallow_lpage += count;
790 		WARN_ON_ONCE((old ^ linfo->disallow_lpage) & KVM_LPAGE_MIXED_FLAG);
791 	}
792 }
793 
794 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
795 {
796 	update_gfn_disallow_lpage_count(slot, gfn, 1);
797 }
798 
799 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
800 {
801 	update_gfn_disallow_lpage_count(slot, gfn, -1);
802 }
803 
804 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
805 {
806 	struct kvm_memslots *slots;
807 	struct kvm_memory_slot *slot;
808 	gfn_t gfn;
809 
810 	kvm->arch.indirect_shadow_pages++;
811 	/*
812 	 * Ensure indirect_shadow_pages is elevated prior to re-reading guest
813 	 * child PTEs in FNAME(gpte_changed), i.e. guarantee either in-flight
814 	 * emulated writes are visible before re-reading guest PTEs, or that
815 	 * an emulated write will see the elevated count and acquire mmu_lock
816 	 * to update SPTEs.  Pairs with the smp_mb() in kvm_mmu_track_write().
817 	 */
818 	smp_mb();
819 
820 	gfn = sp->gfn;
821 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
822 	slot = __gfn_to_memslot(slots, gfn);
823 
824 	/* the non-leaf shadow pages are keeping readonly. */
825 	if (sp->role.level > PG_LEVEL_4K)
826 		return __kvm_write_track_add_gfn(kvm, slot, gfn);
827 
828 	kvm_mmu_gfn_disallow_lpage(slot, gfn);
829 
830 	if (kvm_mmu_slot_gfn_write_protect(kvm, slot, gfn, PG_LEVEL_4K))
831 		kvm_flush_remote_tlbs_gfn(kvm, gfn, PG_LEVEL_4K);
832 }
833 
834 void track_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp)
835 {
836 	/*
837 	 * If it's possible to replace the shadow page with an NX huge page,
838 	 * i.e. if the shadow page is the only thing currently preventing KVM
839 	 * from using a huge page, add the shadow page to the list of "to be
840 	 * zapped for NX recovery" pages.  Note, the shadow page can already be
841 	 * on the list if KVM is reusing an existing shadow page, i.e. if KVM
842 	 * links a shadow page at multiple points.
843 	 */
844 	if (!list_empty(&sp->possible_nx_huge_page_link))
845 		return;
846 
847 	++kvm->stat.nx_lpage_splits;
848 	list_add_tail(&sp->possible_nx_huge_page_link,
849 		      &kvm->arch.possible_nx_huge_pages);
850 }
851 
852 static void account_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp,
853 				 bool nx_huge_page_possible)
854 {
855 	sp->nx_huge_page_disallowed = true;
856 
857 	if (nx_huge_page_possible)
858 		track_possible_nx_huge_page(kvm, sp);
859 }
860 
861 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
862 {
863 	struct kvm_memslots *slots;
864 	struct kvm_memory_slot *slot;
865 	gfn_t gfn;
866 
867 	kvm->arch.indirect_shadow_pages--;
868 	gfn = sp->gfn;
869 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
870 	slot = __gfn_to_memslot(slots, gfn);
871 	if (sp->role.level > PG_LEVEL_4K)
872 		return __kvm_write_track_remove_gfn(kvm, slot, gfn);
873 
874 	kvm_mmu_gfn_allow_lpage(slot, gfn);
875 }
876 
877 void untrack_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp)
878 {
879 	if (list_empty(&sp->possible_nx_huge_page_link))
880 		return;
881 
882 	--kvm->stat.nx_lpage_splits;
883 	list_del_init(&sp->possible_nx_huge_page_link);
884 }
885 
886 static void unaccount_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp)
887 {
888 	sp->nx_huge_page_disallowed = false;
889 
890 	untrack_possible_nx_huge_page(kvm, sp);
891 }
892 
893 static struct kvm_memory_slot *gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu,
894 							   gfn_t gfn,
895 							   bool no_dirty_log)
896 {
897 	struct kvm_memory_slot *slot;
898 
899 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
900 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
901 		return NULL;
902 	if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
903 		return NULL;
904 
905 	return slot;
906 }
907 
908 /*
909  * About rmap_head encoding:
910  *
911  * If the bit zero of rmap_head->val is clear, then it points to the only spte
912  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
913  * pte_list_desc containing more mappings.
914  */
915 #define KVM_RMAP_MANY	BIT(0)
916 
917 /*
918  * Returns the number of pointers in the rmap chain, not counting the new one.
919  */
920 static int pte_list_add(struct kvm_mmu_memory_cache *cache, u64 *spte,
921 			struct kvm_rmap_head *rmap_head)
922 {
923 	struct pte_list_desc *desc;
924 	int count = 0;
925 
926 	if (!rmap_head->val) {
927 		rmap_head->val = (unsigned long)spte;
928 	} else if (!(rmap_head->val & KVM_RMAP_MANY)) {
929 		desc = kvm_mmu_memory_cache_alloc(cache);
930 		desc->sptes[0] = (u64 *)rmap_head->val;
931 		desc->sptes[1] = spte;
932 		desc->spte_count = 2;
933 		desc->tail_count = 0;
934 		rmap_head->val = (unsigned long)desc | KVM_RMAP_MANY;
935 		++count;
936 	} else {
937 		desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY);
938 		count = desc->tail_count + desc->spte_count;
939 
940 		/*
941 		 * If the previous head is full, allocate a new head descriptor
942 		 * as tail descriptors are always kept full.
943 		 */
944 		if (desc->spte_count == PTE_LIST_EXT) {
945 			desc = kvm_mmu_memory_cache_alloc(cache);
946 			desc->more = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY);
947 			desc->spte_count = 0;
948 			desc->tail_count = count;
949 			rmap_head->val = (unsigned long)desc | KVM_RMAP_MANY;
950 		}
951 		desc->sptes[desc->spte_count++] = spte;
952 	}
953 	return count;
954 }
955 
956 static void pte_list_desc_remove_entry(struct kvm *kvm,
957 				       struct kvm_rmap_head *rmap_head,
958 				       struct pte_list_desc *desc, int i)
959 {
960 	struct pte_list_desc *head_desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY);
961 	int j = head_desc->spte_count - 1;
962 
963 	/*
964 	 * The head descriptor should never be empty.  A new head is added only
965 	 * when adding an entry and the previous head is full, and heads are
966 	 * removed (this flow) when they become empty.
967 	 */
968 	KVM_BUG_ON_DATA_CORRUPTION(j < 0, kvm);
969 
970 	/*
971 	 * Replace the to-be-freed SPTE with the last valid entry from the head
972 	 * descriptor to ensure that tail descriptors are full at all times.
973 	 * Note, this also means that tail_count is stable for each descriptor.
974 	 */
975 	desc->sptes[i] = head_desc->sptes[j];
976 	head_desc->sptes[j] = NULL;
977 	head_desc->spte_count--;
978 	if (head_desc->spte_count)
979 		return;
980 
981 	/*
982 	 * The head descriptor is empty.  If there are no tail descriptors,
983 	 * nullify the rmap head to mark the list as empty, else point the rmap
984 	 * head at the next descriptor, i.e. the new head.
985 	 */
986 	if (!head_desc->more)
987 		rmap_head->val = 0;
988 	else
989 		rmap_head->val = (unsigned long)head_desc->more | KVM_RMAP_MANY;
990 	mmu_free_pte_list_desc(head_desc);
991 }
992 
993 static void pte_list_remove(struct kvm *kvm, u64 *spte,
994 			    struct kvm_rmap_head *rmap_head)
995 {
996 	struct pte_list_desc *desc;
997 	int i;
998 
999 	if (KVM_BUG_ON_DATA_CORRUPTION(!rmap_head->val, kvm))
1000 		return;
1001 
1002 	if (!(rmap_head->val & KVM_RMAP_MANY)) {
1003 		if (KVM_BUG_ON_DATA_CORRUPTION((u64 *)rmap_head->val != spte, kvm))
1004 			return;
1005 
1006 		rmap_head->val = 0;
1007 	} else {
1008 		desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY);
1009 		while (desc) {
1010 			for (i = 0; i < desc->spte_count; ++i) {
1011 				if (desc->sptes[i] == spte) {
1012 					pte_list_desc_remove_entry(kvm, rmap_head,
1013 								   desc, i);
1014 					return;
1015 				}
1016 			}
1017 			desc = desc->more;
1018 		}
1019 
1020 		KVM_BUG_ON_DATA_CORRUPTION(true, kvm);
1021 	}
1022 }
1023 
1024 static void kvm_zap_one_rmap_spte(struct kvm *kvm,
1025 				  struct kvm_rmap_head *rmap_head, u64 *sptep)
1026 {
1027 	mmu_spte_clear_track_bits(kvm, sptep);
1028 	pte_list_remove(kvm, sptep, rmap_head);
1029 }
1030 
1031 /* Return true if at least one SPTE was zapped, false otherwise */
1032 static bool kvm_zap_all_rmap_sptes(struct kvm *kvm,
1033 				   struct kvm_rmap_head *rmap_head)
1034 {
1035 	struct pte_list_desc *desc, *next;
1036 	int i;
1037 
1038 	if (!rmap_head->val)
1039 		return false;
1040 
1041 	if (!(rmap_head->val & KVM_RMAP_MANY)) {
1042 		mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val);
1043 		goto out;
1044 	}
1045 
1046 	desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY);
1047 
1048 	for (; desc; desc = next) {
1049 		for (i = 0; i < desc->spte_count; i++)
1050 			mmu_spte_clear_track_bits(kvm, desc->sptes[i]);
1051 		next = desc->more;
1052 		mmu_free_pte_list_desc(desc);
1053 	}
1054 out:
1055 	/* rmap_head is meaningless now, remember to reset it */
1056 	rmap_head->val = 0;
1057 	return true;
1058 }
1059 
1060 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head)
1061 {
1062 	struct pte_list_desc *desc;
1063 
1064 	if (!rmap_head->val)
1065 		return 0;
1066 	else if (!(rmap_head->val & KVM_RMAP_MANY))
1067 		return 1;
1068 
1069 	desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY);
1070 	return desc->tail_count + desc->spte_count;
1071 }
1072 
1073 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level,
1074 					 const struct kvm_memory_slot *slot)
1075 {
1076 	unsigned long idx;
1077 
1078 	idx = gfn_to_index(gfn, slot->base_gfn, level);
1079 	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1080 }
1081 
1082 static void rmap_remove(struct kvm *kvm, u64 *spte)
1083 {
1084 	struct kvm_memslots *slots;
1085 	struct kvm_memory_slot *slot;
1086 	struct kvm_mmu_page *sp;
1087 	gfn_t gfn;
1088 	struct kvm_rmap_head *rmap_head;
1089 
1090 	sp = sptep_to_sp(spte);
1091 	gfn = kvm_mmu_page_get_gfn(sp, spte_index(spte));
1092 
1093 	/*
1094 	 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU
1095 	 * so we have to determine which memslots to use based on context
1096 	 * information in sp->role.
1097 	 */
1098 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
1099 
1100 	slot = __gfn_to_memslot(slots, gfn);
1101 	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1102 
1103 	pte_list_remove(kvm, spte, rmap_head);
1104 }
1105 
1106 /*
1107  * Used by the following functions to iterate through the sptes linked by a
1108  * rmap.  All fields are private and not assumed to be used outside.
1109  */
1110 struct rmap_iterator {
1111 	/* private fields */
1112 	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
1113 	int pos;			/* index of the sptep */
1114 };
1115 
1116 /*
1117  * Iteration must be started by this function.  This should also be used after
1118  * removing/dropping sptes from the rmap link because in such cases the
1119  * information in the iterator may not be valid.
1120  *
1121  * Returns sptep if found, NULL otherwise.
1122  */
1123 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1124 			   struct rmap_iterator *iter)
1125 {
1126 	u64 *sptep;
1127 
1128 	if (!rmap_head->val)
1129 		return NULL;
1130 
1131 	if (!(rmap_head->val & KVM_RMAP_MANY)) {
1132 		iter->desc = NULL;
1133 		sptep = (u64 *)rmap_head->val;
1134 		goto out;
1135 	}
1136 
1137 	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY);
1138 	iter->pos = 0;
1139 	sptep = iter->desc->sptes[iter->pos];
1140 out:
1141 	BUG_ON(!is_shadow_present_pte(*sptep));
1142 	return sptep;
1143 }
1144 
1145 /*
1146  * Must be used with a valid iterator: e.g. after rmap_get_first().
1147  *
1148  * Returns sptep if found, NULL otherwise.
1149  */
1150 static u64 *rmap_get_next(struct rmap_iterator *iter)
1151 {
1152 	u64 *sptep;
1153 
1154 	if (iter->desc) {
1155 		if (iter->pos < PTE_LIST_EXT - 1) {
1156 			++iter->pos;
1157 			sptep = iter->desc->sptes[iter->pos];
1158 			if (sptep)
1159 				goto out;
1160 		}
1161 
1162 		iter->desc = iter->desc->more;
1163 
1164 		if (iter->desc) {
1165 			iter->pos = 0;
1166 			/* desc->sptes[0] cannot be NULL */
1167 			sptep = iter->desc->sptes[iter->pos];
1168 			goto out;
1169 		}
1170 	}
1171 
1172 	return NULL;
1173 out:
1174 	BUG_ON(!is_shadow_present_pte(*sptep));
1175 	return sptep;
1176 }
1177 
1178 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
1179 	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1180 	     _spte_; _spte_ = rmap_get_next(_iter_))
1181 
1182 static void drop_spte(struct kvm *kvm, u64 *sptep)
1183 {
1184 	u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep);
1185 
1186 	if (is_shadow_present_pte(old_spte))
1187 		rmap_remove(kvm, sptep);
1188 }
1189 
1190 static void drop_large_spte(struct kvm *kvm, u64 *sptep, bool flush)
1191 {
1192 	struct kvm_mmu_page *sp;
1193 
1194 	sp = sptep_to_sp(sptep);
1195 	WARN_ON_ONCE(sp->role.level == PG_LEVEL_4K);
1196 
1197 	drop_spte(kvm, sptep);
1198 
1199 	if (flush)
1200 		kvm_flush_remote_tlbs_sptep(kvm, sptep);
1201 }
1202 
1203 /*
1204  * Write-protect on the specified @sptep, @pt_protect indicates whether
1205  * spte write-protection is caused by protecting shadow page table.
1206  *
1207  * Note: write protection is difference between dirty logging and spte
1208  * protection:
1209  * - for dirty logging, the spte can be set to writable at anytime if
1210  *   its dirty bitmap is properly set.
1211  * - for spte protection, the spte can be writable only after unsync-ing
1212  *   shadow page.
1213  *
1214  * Return true if tlb need be flushed.
1215  */
1216 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1217 {
1218 	u64 spte = *sptep;
1219 
1220 	if (!is_writable_pte(spte) &&
1221 	    !(pt_protect && is_mmu_writable_spte(spte)))
1222 		return false;
1223 
1224 	if (pt_protect)
1225 		spte &= ~shadow_mmu_writable_mask;
1226 	spte = spte & ~PT_WRITABLE_MASK;
1227 
1228 	return mmu_spte_update(sptep, spte);
1229 }
1230 
1231 static bool rmap_write_protect(struct kvm_rmap_head *rmap_head,
1232 			       bool pt_protect)
1233 {
1234 	u64 *sptep;
1235 	struct rmap_iterator iter;
1236 	bool flush = false;
1237 
1238 	for_each_rmap_spte(rmap_head, &iter, sptep)
1239 		flush |= spte_write_protect(sptep, pt_protect);
1240 
1241 	return flush;
1242 }
1243 
1244 static bool spte_clear_dirty(u64 *sptep)
1245 {
1246 	u64 spte = *sptep;
1247 
1248 	KVM_MMU_WARN_ON(!spte_ad_enabled(spte));
1249 	spte &= ~shadow_dirty_mask;
1250 	return mmu_spte_update(sptep, spte);
1251 }
1252 
1253 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1254 {
1255 	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1256 					       (unsigned long *)sptep);
1257 	if (was_writable && !spte_ad_enabled(*sptep))
1258 		kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1259 
1260 	return was_writable;
1261 }
1262 
1263 /*
1264  * Gets the GFN ready for another round of dirty logging by clearing the
1265  *	- D bit on ad-enabled SPTEs, and
1266  *	- W bit on ad-disabled SPTEs.
1267  * Returns true iff any D or W bits were cleared.
1268  */
1269 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1270 			       const struct kvm_memory_slot *slot)
1271 {
1272 	u64 *sptep;
1273 	struct rmap_iterator iter;
1274 	bool flush = false;
1275 
1276 	for_each_rmap_spte(rmap_head, &iter, sptep)
1277 		if (spte_ad_need_write_protect(*sptep))
1278 			flush |= spte_wrprot_for_clear_dirty(sptep);
1279 		else
1280 			flush |= spte_clear_dirty(sptep);
1281 
1282 	return flush;
1283 }
1284 
1285 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1286 				     struct kvm_memory_slot *slot,
1287 				     gfn_t gfn_offset, unsigned long mask)
1288 {
1289 	struct kvm_rmap_head *rmap_head;
1290 
1291 	if (tdp_mmu_enabled)
1292 		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1293 				slot->base_gfn + gfn_offset, mask, true);
1294 
1295 	if (!kvm_memslots_have_rmaps(kvm))
1296 		return;
1297 
1298 	while (mask) {
1299 		rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1300 					PG_LEVEL_4K, slot);
1301 		rmap_write_protect(rmap_head, false);
1302 
1303 		/* clear the first set bit */
1304 		mask &= mask - 1;
1305 	}
1306 }
1307 
1308 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1309 					 struct kvm_memory_slot *slot,
1310 					 gfn_t gfn_offset, unsigned long mask)
1311 {
1312 	struct kvm_rmap_head *rmap_head;
1313 
1314 	if (tdp_mmu_enabled)
1315 		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1316 				slot->base_gfn + gfn_offset, mask, false);
1317 
1318 	if (!kvm_memslots_have_rmaps(kvm))
1319 		return;
1320 
1321 	while (mask) {
1322 		rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1323 					PG_LEVEL_4K, slot);
1324 		__rmap_clear_dirty(kvm, rmap_head, slot);
1325 
1326 		/* clear the first set bit */
1327 		mask &= mask - 1;
1328 	}
1329 }
1330 
1331 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1332 				struct kvm_memory_slot *slot,
1333 				gfn_t gfn_offset, unsigned long mask)
1334 {
1335 	/*
1336 	 * If the slot was assumed to be "initially all dirty", write-protect
1337 	 * huge pages to ensure they are split to 4KiB on the first write (KVM
1338 	 * dirty logs at 4KiB granularity). If eager page splitting is enabled,
1339 	 * immediately try to split huge pages, e.g. so that vCPUs don't get
1340 	 * saddled with the cost of splitting.
1341 	 *
1342 	 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
1343 	 * of memslot has no such restriction, so the range can cross two large
1344 	 * pages.
1345 	 */
1346 	if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1347 		gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
1348 		gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);
1349 
1350 		if (READ_ONCE(eager_page_split))
1351 			kvm_mmu_try_split_huge_pages(kvm, slot, start, end + 1, PG_LEVEL_4K);
1352 
1353 		kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);
1354 
1355 		/* Cross two large pages? */
1356 		if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
1357 		    ALIGN(end << PAGE_SHIFT, PMD_SIZE))
1358 			kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
1359 						       PG_LEVEL_2M);
1360 	}
1361 
1362 	/*
1363 	 * (Re)Enable dirty logging for all 4KiB SPTEs that map the GFNs in
1364 	 * mask.  If PML is enabled and the GFN doesn't need to be write-
1365 	 * protected for other reasons, e.g. shadow paging, clear the Dirty bit.
1366 	 * Otherwise clear the Writable bit.
1367 	 *
1368 	 * Note that kvm_mmu_clear_dirty_pt_masked() is called whenever PML is
1369 	 * enabled but it chooses between clearing the Dirty bit and Writeable
1370 	 * bit based on the context.
1371 	 */
1372 	if (kvm_x86_ops.cpu_dirty_log_size)
1373 		kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1374 	else
1375 		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1376 }
1377 
1378 int kvm_cpu_dirty_log_size(void)
1379 {
1380 	return kvm_x86_ops.cpu_dirty_log_size;
1381 }
1382 
1383 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1384 				    struct kvm_memory_slot *slot, u64 gfn,
1385 				    int min_level)
1386 {
1387 	struct kvm_rmap_head *rmap_head;
1388 	int i;
1389 	bool write_protected = false;
1390 
1391 	if (kvm_memslots_have_rmaps(kvm)) {
1392 		for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1393 			rmap_head = gfn_to_rmap(gfn, i, slot);
1394 			write_protected |= rmap_write_protect(rmap_head, true);
1395 		}
1396 	}
1397 
1398 	if (tdp_mmu_enabled)
1399 		write_protected |=
1400 			kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1401 
1402 	return write_protected;
1403 }
1404 
1405 static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn)
1406 {
1407 	struct kvm_memory_slot *slot;
1408 
1409 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1410 	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1411 }
1412 
1413 static bool kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1414 			 const struct kvm_memory_slot *slot)
1415 {
1416 	return kvm_zap_all_rmap_sptes(kvm, rmap_head);
1417 }
1418 
1419 struct slot_rmap_walk_iterator {
1420 	/* input fields. */
1421 	const struct kvm_memory_slot *slot;
1422 	gfn_t start_gfn;
1423 	gfn_t end_gfn;
1424 	int start_level;
1425 	int end_level;
1426 
1427 	/* output fields. */
1428 	gfn_t gfn;
1429 	struct kvm_rmap_head *rmap;
1430 	int level;
1431 
1432 	/* private field. */
1433 	struct kvm_rmap_head *end_rmap;
1434 };
1435 
1436 static void rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator,
1437 				 int level)
1438 {
1439 	iterator->level = level;
1440 	iterator->gfn = iterator->start_gfn;
1441 	iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot);
1442 	iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot);
1443 }
1444 
1445 static void slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1446 				const struct kvm_memory_slot *slot,
1447 				int start_level, int end_level,
1448 				gfn_t start_gfn, gfn_t end_gfn)
1449 {
1450 	iterator->slot = slot;
1451 	iterator->start_level = start_level;
1452 	iterator->end_level = end_level;
1453 	iterator->start_gfn = start_gfn;
1454 	iterator->end_gfn = end_gfn;
1455 
1456 	rmap_walk_init_level(iterator, iterator->start_level);
1457 }
1458 
1459 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1460 {
1461 	return !!iterator->rmap;
1462 }
1463 
1464 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1465 {
1466 	while (++iterator->rmap <= iterator->end_rmap) {
1467 		iterator->gfn += KVM_PAGES_PER_HPAGE(iterator->level);
1468 
1469 		if (iterator->rmap->val)
1470 			return;
1471 	}
1472 
1473 	if (++iterator->level > iterator->end_level) {
1474 		iterator->rmap = NULL;
1475 		return;
1476 	}
1477 
1478 	rmap_walk_init_level(iterator, iterator->level);
1479 }
1480 
1481 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
1482 	   _start_gfn, _end_gfn, _iter_)				\
1483 	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
1484 				 _end_level_, _start_gfn, _end_gfn);	\
1485 	     slot_rmap_walk_okay(_iter_);				\
1486 	     slot_rmap_walk_next(_iter_))
1487 
1488 /* The return value indicates if tlb flush on all vcpus is needed. */
1489 typedef bool (*slot_rmaps_handler) (struct kvm *kvm,
1490 				    struct kvm_rmap_head *rmap_head,
1491 				    const struct kvm_memory_slot *slot);
1492 
1493 static __always_inline bool __walk_slot_rmaps(struct kvm *kvm,
1494 					      const struct kvm_memory_slot *slot,
1495 					      slot_rmaps_handler fn,
1496 					      int start_level, int end_level,
1497 					      gfn_t start_gfn, gfn_t end_gfn,
1498 					      bool can_yield, bool flush_on_yield,
1499 					      bool flush)
1500 {
1501 	struct slot_rmap_walk_iterator iterator;
1502 
1503 	lockdep_assert_held_write(&kvm->mmu_lock);
1504 
1505 	for_each_slot_rmap_range(slot, start_level, end_level, start_gfn,
1506 			end_gfn, &iterator) {
1507 		if (iterator.rmap)
1508 			flush |= fn(kvm, iterator.rmap, slot);
1509 
1510 		if (!can_yield)
1511 			continue;
1512 
1513 		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
1514 			if (flush && flush_on_yield) {
1515 				kvm_flush_remote_tlbs_range(kvm, start_gfn,
1516 							    iterator.gfn - start_gfn + 1);
1517 				flush = false;
1518 			}
1519 			cond_resched_rwlock_write(&kvm->mmu_lock);
1520 		}
1521 	}
1522 
1523 	return flush;
1524 }
1525 
1526 static __always_inline bool walk_slot_rmaps(struct kvm *kvm,
1527 					    const struct kvm_memory_slot *slot,
1528 					    slot_rmaps_handler fn,
1529 					    int start_level, int end_level,
1530 					    bool flush_on_yield)
1531 {
1532 	return __walk_slot_rmaps(kvm, slot, fn, start_level, end_level,
1533 				 slot->base_gfn, slot->base_gfn + slot->npages - 1,
1534 				 true, flush_on_yield, false);
1535 }
1536 
1537 static __always_inline bool walk_slot_rmaps_4k(struct kvm *kvm,
1538 					       const struct kvm_memory_slot *slot,
1539 					       slot_rmaps_handler fn,
1540 					       bool flush_on_yield)
1541 {
1542 	return walk_slot_rmaps(kvm, slot, fn, PG_LEVEL_4K, PG_LEVEL_4K, flush_on_yield);
1543 }
1544 
1545 static bool __kvm_rmap_zap_gfn_range(struct kvm *kvm,
1546 				     const struct kvm_memory_slot *slot,
1547 				     gfn_t start, gfn_t end, bool can_yield,
1548 				     bool flush)
1549 {
1550 	return __walk_slot_rmaps(kvm, slot, kvm_zap_rmap,
1551 				 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
1552 				 start, end - 1, can_yield, true, flush);
1553 }
1554 
1555 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1556 {
1557 	bool flush = false;
1558 
1559 	/*
1560 	 * To prevent races with vCPUs faulting in a gfn using stale data,
1561 	 * zapping a gfn range must be protected by mmu_invalidate_in_progress
1562 	 * (and mmu_invalidate_seq).  The only exception is memslot deletion;
1563 	 * in that case, SRCU synchronization ensures that SPTEs are zapped
1564 	 * after all vCPUs have unlocked SRCU, guaranteeing that vCPUs see the
1565 	 * invalid slot.
1566 	 */
1567 	lockdep_assert_once(kvm->mmu_invalidate_in_progress ||
1568 			    lockdep_is_held(&kvm->slots_lock));
1569 
1570 	if (kvm_memslots_have_rmaps(kvm))
1571 		flush = __kvm_rmap_zap_gfn_range(kvm, range->slot,
1572 						 range->start, range->end,
1573 						 range->may_block, flush);
1574 
1575 	if (tdp_mmu_enabled)
1576 		flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1577 
1578 	if (kvm_x86_ops.set_apic_access_page_addr &&
1579 	    range->slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT)
1580 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
1581 
1582 	return flush;
1583 }
1584 
1585 #define RMAP_RECYCLE_THRESHOLD 1000
1586 
1587 static void __rmap_add(struct kvm *kvm,
1588 		       struct kvm_mmu_memory_cache *cache,
1589 		       const struct kvm_memory_slot *slot,
1590 		       u64 *spte, gfn_t gfn, unsigned int access)
1591 {
1592 	struct kvm_mmu_page *sp;
1593 	struct kvm_rmap_head *rmap_head;
1594 	int rmap_count;
1595 
1596 	sp = sptep_to_sp(spte);
1597 	kvm_mmu_page_set_translation(sp, spte_index(spte), gfn, access);
1598 	kvm_update_page_stats(kvm, sp->role.level, 1);
1599 
1600 	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1601 	rmap_count = pte_list_add(cache, spte, rmap_head);
1602 
1603 	if (rmap_count > kvm->stat.max_mmu_rmap_size)
1604 		kvm->stat.max_mmu_rmap_size = rmap_count;
1605 	if (rmap_count > RMAP_RECYCLE_THRESHOLD) {
1606 		kvm_zap_all_rmap_sptes(kvm, rmap_head);
1607 		kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level);
1608 	}
1609 }
1610 
1611 static void rmap_add(struct kvm_vcpu *vcpu, const struct kvm_memory_slot *slot,
1612 		     u64 *spte, gfn_t gfn, unsigned int access)
1613 {
1614 	struct kvm_mmu_memory_cache *cache = &vcpu->arch.mmu_pte_list_desc_cache;
1615 
1616 	__rmap_add(vcpu->kvm, cache, slot, spte, gfn, access);
1617 }
1618 
1619 static bool kvm_rmap_age_gfn_range(struct kvm *kvm,
1620 				   struct kvm_gfn_range *range, bool test_only)
1621 {
1622 	struct slot_rmap_walk_iterator iterator;
1623 	struct rmap_iterator iter;
1624 	bool young = false;
1625 	u64 *sptep;
1626 
1627 	for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
1628 				 range->start, range->end - 1, &iterator) {
1629 		for_each_rmap_spte(iterator.rmap, &iter, sptep) {
1630 			u64 spte = *sptep;
1631 
1632 			if (!is_accessed_spte(spte))
1633 				continue;
1634 
1635 			if (test_only)
1636 				return true;
1637 
1638 			if (spte_ad_enabled(spte)) {
1639 				clear_bit((ffs(shadow_accessed_mask) - 1),
1640 					(unsigned long *)sptep);
1641 			} else {
1642 				/*
1643 				 * Capture the dirty status of the page, so that
1644 				 * it doesn't get lost when the SPTE is marked
1645 				 * for access tracking.
1646 				 */
1647 				if (is_writable_pte(spte))
1648 					kvm_set_pfn_dirty(spte_to_pfn(spte));
1649 
1650 				spte = mark_spte_for_access_track(spte);
1651 				mmu_spte_update_no_track(sptep, spte);
1652 			}
1653 			young = true;
1654 		}
1655 	}
1656 	return young;
1657 }
1658 
1659 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1660 {
1661 	bool young = false;
1662 
1663 	if (kvm_memslots_have_rmaps(kvm))
1664 		young = kvm_rmap_age_gfn_range(kvm, range, false);
1665 
1666 	if (tdp_mmu_enabled)
1667 		young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1668 
1669 	return young;
1670 }
1671 
1672 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1673 {
1674 	bool young = false;
1675 
1676 	if (kvm_memslots_have_rmaps(kvm))
1677 		young = kvm_rmap_age_gfn_range(kvm, range, true);
1678 
1679 	if (tdp_mmu_enabled)
1680 		young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1681 
1682 	return young;
1683 }
1684 
1685 static void kvm_mmu_check_sptes_at_free(struct kvm_mmu_page *sp)
1686 {
1687 #ifdef CONFIG_KVM_PROVE_MMU
1688 	int i;
1689 
1690 	for (i = 0; i < SPTE_ENT_PER_PAGE; i++) {
1691 		if (KVM_MMU_WARN_ON(is_shadow_present_pte(sp->spt[i])))
1692 			pr_err_ratelimited("SPTE %llx (@ %p) for gfn %llx shadow-present at free",
1693 					   sp->spt[i], &sp->spt[i],
1694 					   kvm_mmu_page_get_gfn(sp, i));
1695 	}
1696 #endif
1697 }
1698 
1699 /*
1700  * This value is the sum of all of the kvm instances's
1701  * kvm->arch.n_used_mmu_pages values.  We need a global,
1702  * aggregate version in order to make the slab shrinker
1703  * faster
1704  */
1705 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr)
1706 {
1707 	kvm->arch.n_used_mmu_pages += nr;
1708 	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1709 }
1710 
1711 static void kvm_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1712 {
1713 	kvm_mod_used_mmu_pages(kvm, +1);
1714 	kvm_account_pgtable_pages((void *)sp->spt, +1);
1715 }
1716 
1717 static void kvm_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1718 {
1719 	kvm_mod_used_mmu_pages(kvm, -1);
1720 	kvm_account_pgtable_pages((void *)sp->spt, -1);
1721 }
1722 
1723 static void kvm_mmu_free_shadow_page(struct kvm_mmu_page *sp)
1724 {
1725 	kvm_mmu_check_sptes_at_free(sp);
1726 
1727 	hlist_del(&sp->hash_link);
1728 	list_del(&sp->link);
1729 	free_page((unsigned long)sp->spt);
1730 	free_page((unsigned long)sp->shadowed_translation);
1731 	kmem_cache_free(mmu_page_header_cache, sp);
1732 }
1733 
1734 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1735 {
1736 	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1737 }
1738 
1739 static void mmu_page_add_parent_pte(struct kvm_mmu_memory_cache *cache,
1740 				    struct kvm_mmu_page *sp, u64 *parent_pte)
1741 {
1742 	if (!parent_pte)
1743 		return;
1744 
1745 	pte_list_add(cache, parent_pte, &sp->parent_ptes);
1746 }
1747 
1748 static void mmu_page_remove_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1749 				       u64 *parent_pte)
1750 {
1751 	pte_list_remove(kvm, parent_pte, &sp->parent_ptes);
1752 }
1753 
1754 static void drop_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1755 			    u64 *parent_pte)
1756 {
1757 	mmu_page_remove_parent_pte(kvm, sp, parent_pte);
1758 	mmu_spte_clear_no_track(parent_pte);
1759 }
1760 
1761 static void mark_unsync(u64 *spte);
1762 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1763 {
1764 	u64 *sptep;
1765 	struct rmap_iterator iter;
1766 
1767 	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1768 		mark_unsync(sptep);
1769 	}
1770 }
1771 
1772 static void mark_unsync(u64 *spte)
1773 {
1774 	struct kvm_mmu_page *sp;
1775 
1776 	sp = sptep_to_sp(spte);
1777 	if (__test_and_set_bit(spte_index(spte), sp->unsync_child_bitmap))
1778 		return;
1779 	if (sp->unsync_children++)
1780 		return;
1781 	kvm_mmu_mark_parents_unsync(sp);
1782 }
1783 
1784 #define KVM_PAGE_ARRAY_NR 16
1785 
1786 struct kvm_mmu_pages {
1787 	struct mmu_page_and_offset {
1788 		struct kvm_mmu_page *sp;
1789 		unsigned int idx;
1790 	} page[KVM_PAGE_ARRAY_NR];
1791 	unsigned int nr;
1792 };
1793 
1794 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1795 			 int idx)
1796 {
1797 	int i;
1798 
1799 	if (sp->unsync)
1800 		for (i=0; i < pvec->nr; i++)
1801 			if (pvec->page[i].sp == sp)
1802 				return 0;
1803 
1804 	pvec->page[pvec->nr].sp = sp;
1805 	pvec->page[pvec->nr].idx = idx;
1806 	pvec->nr++;
1807 	return (pvec->nr == KVM_PAGE_ARRAY_NR);
1808 }
1809 
1810 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1811 {
1812 	--sp->unsync_children;
1813 	WARN_ON_ONCE((int)sp->unsync_children < 0);
1814 	__clear_bit(idx, sp->unsync_child_bitmap);
1815 }
1816 
1817 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1818 			   struct kvm_mmu_pages *pvec)
1819 {
1820 	int i, ret, nr_unsync_leaf = 0;
1821 
1822 	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1823 		struct kvm_mmu_page *child;
1824 		u64 ent = sp->spt[i];
1825 
1826 		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1827 			clear_unsync_child_bit(sp, i);
1828 			continue;
1829 		}
1830 
1831 		child = spte_to_child_sp(ent);
1832 
1833 		if (child->unsync_children) {
1834 			if (mmu_pages_add(pvec, child, i))
1835 				return -ENOSPC;
1836 
1837 			ret = __mmu_unsync_walk(child, pvec);
1838 			if (!ret) {
1839 				clear_unsync_child_bit(sp, i);
1840 				continue;
1841 			} else if (ret > 0) {
1842 				nr_unsync_leaf += ret;
1843 			} else
1844 				return ret;
1845 		} else if (child->unsync) {
1846 			nr_unsync_leaf++;
1847 			if (mmu_pages_add(pvec, child, i))
1848 				return -ENOSPC;
1849 		} else
1850 			clear_unsync_child_bit(sp, i);
1851 	}
1852 
1853 	return nr_unsync_leaf;
1854 }
1855 
1856 #define INVALID_INDEX (-1)
1857 
1858 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1859 			   struct kvm_mmu_pages *pvec)
1860 {
1861 	pvec->nr = 0;
1862 	if (!sp->unsync_children)
1863 		return 0;
1864 
1865 	mmu_pages_add(pvec, sp, INVALID_INDEX);
1866 	return __mmu_unsync_walk(sp, pvec);
1867 }
1868 
1869 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1870 {
1871 	WARN_ON_ONCE(!sp->unsync);
1872 	trace_kvm_mmu_sync_page(sp);
1873 	sp->unsync = 0;
1874 	--kvm->stat.mmu_unsync;
1875 }
1876 
1877 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1878 				     struct list_head *invalid_list);
1879 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1880 				    struct list_head *invalid_list);
1881 
1882 static bool sp_has_gptes(struct kvm_mmu_page *sp)
1883 {
1884 	if (sp->role.direct)
1885 		return false;
1886 
1887 	if (sp->role.passthrough)
1888 		return false;
1889 
1890 	return true;
1891 }
1892 
1893 #define for_each_valid_sp(_kvm, _sp, _list)				\
1894 	hlist_for_each_entry(_sp, _list, hash_link)			\
1895 		if (is_obsolete_sp((_kvm), (_sp))) {			\
1896 		} else
1897 
1898 #define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn)		\
1899 	for_each_valid_sp(_kvm, _sp,					\
1900 	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])	\
1901 		if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else
1902 
1903 static bool kvm_sync_page_check(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1904 {
1905 	union kvm_mmu_page_role root_role = vcpu->arch.mmu->root_role;
1906 
1907 	/*
1908 	 * Ignore various flags when verifying that it's safe to sync a shadow
1909 	 * page using the current MMU context.
1910 	 *
1911 	 *  - level: not part of the overall MMU role and will never match as the MMU's
1912 	 *           level tracks the root level
1913 	 *  - access: updated based on the new guest PTE
1914 	 *  - quadrant: not part of the overall MMU role (similar to level)
1915 	 */
1916 	const union kvm_mmu_page_role sync_role_ign = {
1917 		.level = 0xf,
1918 		.access = 0x7,
1919 		.quadrant = 0x3,
1920 		.passthrough = 0x1,
1921 	};
1922 
1923 	/*
1924 	 * Direct pages can never be unsync, and KVM should never attempt to
1925 	 * sync a shadow page for a different MMU context, e.g. if the role
1926 	 * differs then the memslot lookup (SMM vs. non-SMM) will be bogus, the
1927 	 * reserved bits checks will be wrong, etc...
1928 	 */
1929 	if (WARN_ON_ONCE(sp->role.direct || !vcpu->arch.mmu->sync_spte ||
1930 			 (sp->role.word ^ root_role.word) & ~sync_role_ign.word))
1931 		return false;
1932 
1933 	return true;
1934 }
1935 
1936 static int kvm_sync_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, int i)
1937 {
1938 	/* sp->spt[i] has initial value of shadow page table allocation */
1939 	if (sp->spt[i] == SHADOW_NONPRESENT_VALUE)
1940 		return 0;
1941 
1942 	return vcpu->arch.mmu->sync_spte(vcpu, sp, i);
1943 }
1944 
1945 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1946 {
1947 	int flush = 0;
1948 	int i;
1949 
1950 	if (!kvm_sync_page_check(vcpu, sp))
1951 		return -1;
1952 
1953 	for (i = 0; i < SPTE_ENT_PER_PAGE; i++) {
1954 		int ret = kvm_sync_spte(vcpu, sp, i);
1955 
1956 		if (ret < -1)
1957 			return -1;
1958 		flush |= ret;
1959 	}
1960 
1961 	/*
1962 	 * Note, any flush is purely for KVM's correctness, e.g. when dropping
1963 	 * an existing SPTE or clearing W/A/D bits to ensure an mmu_notifier
1964 	 * unmap or dirty logging event doesn't fail to flush.  The guest is
1965 	 * responsible for flushing the TLB to ensure any changes in protection
1966 	 * bits are recognized, i.e. until the guest flushes or page faults on
1967 	 * a relevant address, KVM is architecturally allowed to let vCPUs use
1968 	 * cached translations with the old protection bits.
1969 	 */
1970 	return flush;
1971 }
1972 
1973 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1974 			 struct list_head *invalid_list)
1975 {
1976 	int ret = __kvm_sync_page(vcpu, sp);
1977 
1978 	if (ret < 0)
1979 		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1980 	return ret;
1981 }
1982 
1983 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1984 					struct list_head *invalid_list,
1985 					bool remote_flush)
1986 {
1987 	if (!remote_flush && list_empty(invalid_list))
1988 		return false;
1989 
1990 	if (!list_empty(invalid_list))
1991 		kvm_mmu_commit_zap_page(kvm, invalid_list);
1992 	else
1993 		kvm_flush_remote_tlbs(kvm);
1994 	return true;
1995 }
1996 
1997 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1998 {
1999 	if (sp->role.invalid)
2000 		return true;
2001 
2002 	/* TDP MMU pages do not use the MMU generation. */
2003 	return !is_tdp_mmu_page(sp) &&
2004 	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2005 }
2006 
2007 struct mmu_page_path {
2008 	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2009 	unsigned int idx[PT64_ROOT_MAX_LEVEL];
2010 };
2011 
2012 #define for_each_sp(pvec, sp, parents, i)			\
2013 		for (i = mmu_pages_first(&pvec, &parents);	\
2014 			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
2015 			i = mmu_pages_next(&pvec, &parents, i))
2016 
2017 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2018 			  struct mmu_page_path *parents,
2019 			  int i)
2020 {
2021 	int n;
2022 
2023 	for (n = i+1; n < pvec->nr; n++) {
2024 		struct kvm_mmu_page *sp = pvec->page[n].sp;
2025 		unsigned idx = pvec->page[n].idx;
2026 		int level = sp->role.level;
2027 
2028 		parents->idx[level-1] = idx;
2029 		if (level == PG_LEVEL_4K)
2030 			break;
2031 
2032 		parents->parent[level-2] = sp;
2033 	}
2034 
2035 	return n;
2036 }
2037 
2038 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2039 			   struct mmu_page_path *parents)
2040 {
2041 	struct kvm_mmu_page *sp;
2042 	int level;
2043 
2044 	if (pvec->nr == 0)
2045 		return 0;
2046 
2047 	WARN_ON_ONCE(pvec->page[0].idx != INVALID_INDEX);
2048 
2049 	sp = pvec->page[0].sp;
2050 	level = sp->role.level;
2051 	WARN_ON_ONCE(level == PG_LEVEL_4K);
2052 
2053 	parents->parent[level-2] = sp;
2054 
2055 	/* Also set up a sentinel.  Further entries in pvec are all
2056 	 * children of sp, so this element is never overwritten.
2057 	 */
2058 	parents->parent[level-1] = NULL;
2059 	return mmu_pages_next(pvec, parents, 0);
2060 }
2061 
2062 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2063 {
2064 	struct kvm_mmu_page *sp;
2065 	unsigned int level = 0;
2066 
2067 	do {
2068 		unsigned int idx = parents->idx[level];
2069 		sp = parents->parent[level];
2070 		if (!sp)
2071 			return;
2072 
2073 		WARN_ON_ONCE(idx == INVALID_INDEX);
2074 		clear_unsync_child_bit(sp, idx);
2075 		level++;
2076 	} while (!sp->unsync_children);
2077 }
2078 
2079 static int mmu_sync_children(struct kvm_vcpu *vcpu,
2080 			     struct kvm_mmu_page *parent, bool can_yield)
2081 {
2082 	int i;
2083 	struct kvm_mmu_page *sp;
2084 	struct mmu_page_path parents;
2085 	struct kvm_mmu_pages pages;
2086 	LIST_HEAD(invalid_list);
2087 	bool flush = false;
2088 
2089 	while (mmu_unsync_walk(parent, &pages)) {
2090 		bool protected = false;
2091 
2092 		for_each_sp(pages, sp, parents, i)
2093 			protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn);
2094 
2095 		if (protected) {
2096 			kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true);
2097 			flush = false;
2098 		}
2099 
2100 		for_each_sp(pages, sp, parents, i) {
2101 			kvm_unlink_unsync_page(vcpu->kvm, sp);
2102 			flush |= kvm_sync_page(vcpu, sp, &invalid_list) > 0;
2103 			mmu_pages_clear_parents(&parents);
2104 		}
2105 		if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
2106 			kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2107 			if (!can_yield) {
2108 				kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2109 				return -EINTR;
2110 			}
2111 
2112 			cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
2113 			flush = false;
2114 		}
2115 	}
2116 
2117 	kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2118 	return 0;
2119 }
2120 
2121 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2122 {
2123 	atomic_set(&sp->write_flooding_count,  0);
2124 }
2125 
2126 static void clear_sp_write_flooding_count(u64 *spte)
2127 {
2128 	__clear_sp_write_flooding_count(sptep_to_sp(spte));
2129 }
2130 
2131 /*
2132  * The vCPU is required when finding indirect shadow pages; the shadow
2133  * page may already exist and syncing it needs the vCPU pointer in
2134  * order to read guest page tables.  Direct shadow pages are never
2135  * unsync, thus @vcpu can be NULL if @role.direct is true.
2136  */
2137 static struct kvm_mmu_page *kvm_mmu_find_shadow_page(struct kvm *kvm,
2138 						     struct kvm_vcpu *vcpu,
2139 						     gfn_t gfn,
2140 						     struct hlist_head *sp_list,
2141 						     union kvm_mmu_page_role role)
2142 {
2143 	struct kvm_mmu_page *sp;
2144 	int ret;
2145 	int collisions = 0;
2146 	LIST_HEAD(invalid_list);
2147 
2148 	for_each_valid_sp(kvm, sp, sp_list) {
2149 		if (sp->gfn != gfn) {
2150 			collisions++;
2151 			continue;
2152 		}
2153 
2154 		if (sp->role.word != role.word) {
2155 			/*
2156 			 * If the guest is creating an upper-level page, zap
2157 			 * unsync pages for the same gfn.  While it's possible
2158 			 * the guest is using recursive page tables, in all
2159 			 * likelihood the guest has stopped using the unsync
2160 			 * page and is installing a completely unrelated page.
2161 			 * Unsync pages must not be left as is, because the new
2162 			 * upper-level page will be write-protected.
2163 			 */
2164 			if (role.level > PG_LEVEL_4K && sp->unsync)
2165 				kvm_mmu_prepare_zap_page(kvm, sp,
2166 							 &invalid_list);
2167 			continue;
2168 		}
2169 
2170 		/* unsync and write-flooding only apply to indirect SPs. */
2171 		if (sp->role.direct)
2172 			goto out;
2173 
2174 		if (sp->unsync) {
2175 			if (KVM_BUG_ON(!vcpu, kvm))
2176 				break;
2177 
2178 			/*
2179 			 * The page is good, but is stale.  kvm_sync_page does
2180 			 * get the latest guest state, but (unlike mmu_unsync_children)
2181 			 * it doesn't write-protect the page or mark it synchronized!
2182 			 * This way the validity of the mapping is ensured, but the
2183 			 * overhead of write protection is not incurred until the
2184 			 * guest invalidates the TLB mapping.  This allows multiple
2185 			 * SPs for a single gfn to be unsync.
2186 			 *
2187 			 * If the sync fails, the page is zapped.  If so, break
2188 			 * in order to rebuild it.
2189 			 */
2190 			ret = kvm_sync_page(vcpu, sp, &invalid_list);
2191 			if (ret < 0)
2192 				break;
2193 
2194 			WARN_ON_ONCE(!list_empty(&invalid_list));
2195 			if (ret > 0)
2196 				kvm_flush_remote_tlbs(kvm);
2197 		}
2198 
2199 		__clear_sp_write_flooding_count(sp);
2200 
2201 		goto out;
2202 	}
2203 
2204 	sp = NULL;
2205 	++kvm->stat.mmu_cache_miss;
2206 
2207 out:
2208 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2209 
2210 	if (collisions > kvm->stat.max_mmu_page_hash_collisions)
2211 		kvm->stat.max_mmu_page_hash_collisions = collisions;
2212 	return sp;
2213 }
2214 
2215 /* Caches used when allocating a new shadow page. */
2216 struct shadow_page_caches {
2217 	struct kvm_mmu_memory_cache *page_header_cache;
2218 	struct kvm_mmu_memory_cache *shadow_page_cache;
2219 	struct kvm_mmu_memory_cache *shadowed_info_cache;
2220 };
2221 
2222 static struct kvm_mmu_page *kvm_mmu_alloc_shadow_page(struct kvm *kvm,
2223 						      struct shadow_page_caches *caches,
2224 						      gfn_t gfn,
2225 						      struct hlist_head *sp_list,
2226 						      union kvm_mmu_page_role role)
2227 {
2228 	struct kvm_mmu_page *sp;
2229 
2230 	sp = kvm_mmu_memory_cache_alloc(caches->page_header_cache);
2231 	sp->spt = kvm_mmu_memory_cache_alloc(caches->shadow_page_cache);
2232 	if (!role.direct && role.level <= KVM_MAX_HUGEPAGE_LEVEL)
2233 		sp->shadowed_translation = kvm_mmu_memory_cache_alloc(caches->shadowed_info_cache);
2234 
2235 	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2236 
2237 	INIT_LIST_HEAD(&sp->possible_nx_huge_page_link);
2238 
2239 	/*
2240 	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
2241 	 * depends on valid pages being added to the head of the list.  See
2242 	 * comments in kvm_zap_obsolete_pages().
2243 	 */
2244 	sp->mmu_valid_gen = kvm->arch.mmu_valid_gen;
2245 	list_add(&sp->link, &kvm->arch.active_mmu_pages);
2246 	kvm_account_mmu_page(kvm, sp);
2247 
2248 	sp->gfn = gfn;
2249 	sp->role = role;
2250 	hlist_add_head(&sp->hash_link, sp_list);
2251 	if (sp_has_gptes(sp))
2252 		account_shadowed(kvm, sp);
2253 
2254 	return sp;
2255 }
2256 
2257 /* Note, @vcpu may be NULL if @role.direct is true; see kvm_mmu_find_shadow_page. */
2258 static struct kvm_mmu_page *__kvm_mmu_get_shadow_page(struct kvm *kvm,
2259 						      struct kvm_vcpu *vcpu,
2260 						      struct shadow_page_caches *caches,
2261 						      gfn_t gfn,
2262 						      union kvm_mmu_page_role role)
2263 {
2264 	struct hlist_head *sp_list;
2265 	struct kvm_mmu_page *sp;
2266 	bool created = false;
2267 
2268 	sp_list = &kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2269 
2270 	sp = kvm_mmu_find_shadow_page(kvm, vcpu, gfn, sp_list, role);
2271 	if (!sp) {
2272 		created = true;
2273 		sp = kvm_mmu_alloc_shadow_page(kvm, caches, gfn, sp_list, role);
2274 	}
2275 
2276 	trace_kvm_mmu_get_page(sp, created);
2277 	return sp;
2278 }
2279 
2280 static struct kvm_mmu_page *kvm_mmu_get_shadow_page(struct kvm_vcpu *vcpu,
2281 						    gfn_t gfn,
2282 						    union kvm_mmu_page_role role)
2283 {
2284 	struct shadow_page_caches caches = {
2285 		.page_header_cache = &vcpu->arch.mmu_page_header_cache,
2286 		.shadow_page_cache = &vcpu->arch.mmu_shadow_page_cache,
2287 		.shadowed_info_cache = &vcpu->arch.mmu_shadowed_info_cache,
2288 	};
2289 
2290 	return __kvm_mmu_get_shadow_page(vcpu->kvm, vcpu, &caches, gfn, role);
2291 }
2292 
2293 static union kvm_mmu_page_role kvm_mmu_child_role(u64 *sptep, bool direct,
2294 						  unsigned int access)
2295 {
2296 	struct kvm_mmu_page *parent_sp = sptep_to_sp(sptep);
2297 	union kvm_mmu_page_role role;
2298 
2299 	role = parent_sp->role;
2300 	role.level--;
2301 	role.access = access;
2302 	role.direct = direct;
2303 	role.passthrough = 0;
2304 
2305 	/*
2306 	 * If the guest has 4-byte PTEs then that means it's using 32-bit,
2307 	 * 2-level, non-PAE paging. KVM shadows such guests with PAE paging
2308 	 * (i.e. 8-byte PTEs). The difference in PTE size means that KVM must
2309 	 * shadow each guest page table with multiple shadow page tables, which
2310 	 * requires extra bookkeeping in the role.
2311 	 *
2312 	 * Specifically, to shadow the guest's page directory (which covers a
2313 	 * 4GiB address space), KVM uses 4 PAE page directories, each mapping
2314 	 * 1GiB of the address space. @role.quadrant encodes which quarter of
2315 	 * the address space each maps.
2316 	 *
2317 	 * To shadow the guest's page tables (which each map a 4MiB region), KVM
2318 	 * uses 2 PAE page tables, each mapping a 2MiB region. For these,
2319 	 * @role.quadrant encodes which half of the region they map.
2320 	 *
2321 	 * Concretely, a 4-byte PDE consumes bits 31:22, while an 8-byte PDE
2322 	 * consumes bits 29:21.  To consume bits 31:30, KVM's uses 4 shadow
2323 	 * PDPTEs; those 4 PAE page directories are pre-allocated and their
2324 	 * quadrant is assigned in mmu_alloc_root().   A 4-byte PTE consumes
2325 	 * bits 21:12, while an 8-byte PTE consumes bits 20:12.  To consume
2326 	 * bit 21 in the PTE (the child here), KVM propagates that bit to the
2327 	 * quadrant, i.e. sets quadrant to '0' or '1'.  The parent 8-byte PDE
2328 	 * covers bit 21 (see above), thus the quadrant is calculated from the
2329 	 * _least_ significant bit of the PDE index.
2330 	 */
2331 	if (role.has_4_byte_gpte) {
2332 		WARN_ON_ONCE(role.level != PG_LEVEL_4K);
2333 		role.quadrant = spte_index(sptep) & 1;
2334 	}
2335 
2336 	return role;
2337 }
2338 
2339 static struct kvm_mmu_page *kvm_mmu_get_child_sp(struct kvm_vcpu *vcpu,
2340 						 u64 *sptep, gfn_t gfn,
2341 						 bool direct, unsigned int access)
2342 {
2343 	union kvm_mmu_page_role role;
2344 
2345 	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep))
2346 		return ERR_PTR(-EEXIST);
2347 
2348 	role = kvm_mmu_child_role(sptep, direct, access);
2349 	return kvm_mmu_get_shadow_page(vcpu, gfn, role);
2350 }
2351 
2352 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2353 					struct kvm_vcpu *vcpu, hpa_t root,
2354 					u64 addr)
2355 {
2356 	iterator->addr = addr;
2357 	iterator->shadow_addr = root;
2358 	iterator->level = vcpu->arch.mmu->root_role.level;
2359 
2360 	if (iterator->level >= PT64_ROOT_4LEVEL &&
2361 	    vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL &&
2362 	    !vcpu->arch.mmu->root_role.direct)
2363 		iterator->level = PT32E_ROOT_LEVEL;
2364 
2365 	if (iterator->level == PT32E_ROOT_LEVEL) {
2366 		/*
2367 		 * prev_root is currently only used for 64-bit hosts. So only
2368 		 * the active root_hpa is valid here.
2369 		 */
2370 		BUG_ON(root != vcpu->arch.mmu->root.hpa);
2371 
2372 		iterator->shadow_addr
2373 			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2374 		iterator->shadow_addr &= SPTE_BASE_ADDR_MASK;
2375 		--iterator->level;
2376 		if (!iterator->shadow_addr)
2377 			iterator->level = 0;
2378 	}
2379 }
2380 
2381 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2382 			     struct kvm_vcpu *vcpu, u64 addr)
2383 {
2384 	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa,
2385 				    addr);
2386 }
2387 
2388 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2389 {
2390 	if (iterator->level < PG_LEVEL_4K)
2391 		return false;
2392 
2393 	iterator->index = SPTE_INDEX(iterator->addr, iterator->level);
2394 	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2395 	return true;
2396 }
2397 
2398 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2399 			       u64 spte)
2400 {
2401 	if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) {
2402 		iterator->level = 0;
2403 		return;
2404 	}
2405 
2406 	iterator->shadow_addr = spte & SPTE_BASE_ADDR_MASK;
2407 	--iterator->level;
2408 }
2409 
2410 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2411 {
2412 	__shadow_walk_next(iterator, *iterator->sptep);
2413 }
2414 
2415 static void __link_shadow_page(struct kvm *kvm,
2416 			       struct kvm_mmu_memory_cache *cache, u64 *sptep,
2417 			       struct kvm_mmu_page *sp, bool flush)
2418 {
2419 	u64 spte;
2420 
2421 	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2422 
2423 	/*
2424 	 * If an SPTE is present already, it must be a leaf and therefore
2425 	 * a large one.  Drop it, and flush the TLB if needed, before
2426 	 * installing sp.
2427 	 */
2428 	if (is_shadow_present_pte(*sptep))
2429 		drop_large_spte(kvm, sptep, flush);
2430 
2431 	spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2432 
2433 	mmu_spte_set(sptep, spte);
2434 
2435 	mmu_page_add_parent_pte(cache, sp, sptep);
2436 
2437 	/*
2438 	 * The non-direct sub-pagetable must be updated before linking.  For
2439 	 * L1 sp, the pagetable is updated via kvm_sync_page() in
2440 	 * kvm_mmu_find_shadow_page() without write-protecting the gfn,
2441 	 * so sp->unsync can be true or false.  For higher level non-direct
2442 	 * sp, the pagetable is updated/synced via mmu_sync_children() in
2443 	 * FNAME(fetch)(), so sp->unsync_children can only be false.
2444 	 * WARN_ON_ONCE() if anything happens unexpectedly.
2445 	 */
2446 	if (WARN_ON_ONCE(sp->unsync_children) || sp->unsync)
2447 		mark_unsync(sptep);
2448 }
2449 
2450 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2451 			     struct kvm_mmu_page *sp)
2452 {
2453 	__link_shadow_page(vcpu->kvm, &vcpu->arch.mmu_pte_list_desc_cache, sptep, sp, true);
2454 }
2455 
2456 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2457 				   unsigned direct_access)
2458 {
2459 	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2460 		struct kvm_mmu_page *child;
2461 
2462 		/*
2463 		 * For the direct sp, if the guest pte's dirty bit
2464 		 * changed form clean to dirty, it will corrupt the
2465 		 * sp's access: allow writable in the read-only sp,
2466 		 * so we should update the spte at this point to get
2467 		 * a new sp with the correct access.
2468 		 */
2469 		child = spte_to_child_sp(*sptep);
2470 		if (child->role.access == direct_access)
2471 			return;
2472 
2473 		drop_parent_pte(vcpu->kvm, child, sptep);
2474 		kvm_flush_remote_tlbs_sptep(vcpu->kvm, sptep);
2475 	}
2476 }
2477 
2478 /* Returns the number of zapped non-leaf child shadow pages. */
2479 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2480 			    u64 *spte, struct list_head *invalid_list)
2481 {
2482 	u64 pte;
2483 	struct kvm_mmu_page *child;
2484 
2485 	pte = *spte;
2486 	if (is_shadow_present_pte(pte)) {
2487 		if (is_last_spte(pte, sp->role.level)) {
2488 			drop_spte(kvm, spte);
2489 		} else {
2490 			child = spte_to_child_sp(pte);
2491 			drop_parent_pte(kvm, child, spte);
2492 
2493 			/*
2494 			 * Recursively zap nested TDP SPs, parentless SPs are
2495 			 * unlikely to be used again in the near future.  This
2496 			 * avoids retaining a large number of stale nested SPs.
2497 			 */
2498 			if (tdp_enabled && invalid_list &&
2499 			    child->role.guest_mode && !child->parent_ptes.val)
2500 				return kvm_mmu_prepare_zap_page(kvm, child,
2501 								invalid_list);
2502 		}
2503 	} else if (is_mmio_spte(kvm, pte)) {
2504 		mmu_spte_clear_no_track(spte);
2505 	}
2506 	return 0;
2507 }
2508 
2509 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2510 					struct kvm_mmu_page *sp,
2511 					struct list_head *invalid_list)
2512 {
2513 	int zapped = 0;
2514 	unsigned i;
2515 
2516 	for (i = 0; i < SPTE_ENT_PER_PAGE; ++i)
2517 		zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2518 
2519 	return zapped;
2520 }
2521 
2522 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2523 {
2524 	u64 *sptep;
2525 	struct rmap_iterator iter;
2526 
2527 	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2528 		drop_parent_pte(kvm, sp, sptep);
2529 }
2530 
2531 static int mmu_zap_unsync_children(struct kvm *kvm,
2532 				   struct kvm_mmu_page *parent,
2533 				   struct list_head *invalid_list)
2534 {
2535 	int i, zapped = 0;
2536 	struct mmu_page_path parents;
2537 	struct kvm_mmu_pages pages;
2538 
2539 	if (parent->role.level == PG_LEVEL_4K)
2540 		return 0;
2541 
2542 	while (mmu_unsync_walk(parent, &pages)) {
2543 		struct kvm_mmu_page *sp;
2544 
2545 		for_each_sp(pages, sp, parents, i) {
2546 			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2547 			mmu_pages_clear_parents(&parents);
2548 			zapped++;
2549 		}
2550 	}
2551 
2552 	return zapped;
2553 }
2554 
2555 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2556 				       struct kvm_mmu_page *sp,
2557 				       struct list_head *invalid_list,
2558 				       int *nr_zapped)
2559 {
2560 	bool list_unstable, zapped_root = false;
2561 
2562 	lockdep_assert_held_write(&kvm->mmu_lock);
2563 	trace_kvm_mmu_prepare_zap_page(sp);
2564 	++kvm->stat.mmu_shadow_zapped;
2565 	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2566 	*nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2567 	kvm_mmu_unlink_parents(kvm, sp);
2568 
2569 	/* Zapping children means active_mmu_pages has become unstable. */
2570 	list_unstable = *nr_zapped;
2571 
2572 	if (!sp->role.invalid && sp_has_gptes(sp))
2573 		unaccount_shadowed(kvm, sp);
2574 
2575 	if (sp->unsync)
2576 		kvm_unlink_unsync_page(kvm, sp);
2577 	if (!sp->root_count) {
2578 		/* Count self */
2579 		(*nr_zapped)++;
2580 
2581 		/*
2582 		 * Already invalid pages (previously active roots) are not on
2583 		 * the active page list.  See list_del() in the "else" case of
2584 		 * !sp->root_count.
2585 		 */
2586 		if (sp->role.invalid)
2587 			list_add(&sp->link, invalid_list);
2588 		else
2589 			list_move(&sp->link, invalid_list);
2590 		kvm_unaccount_mmu_page(kvm, sp);
2591 	} else {
2592 		/*
2593 		 * Remove the active root from the active page list, the root
2594 		 * will be explicitly freed when the root_count hits zero.
2595 		 */
2596 		list_del(&sp->link);
2597 
2598 		/*
2599 		 * Obsolete pages cannot be used on any vCPUs, see the comment
2600 		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2601 		 * treats invalid shadow pages as being obsolete.
2602 		 */
2603 		zapped_root = !is_obsolete_sp(kvm, sp);
2604 	}
2605 
2606 	if (sp->nx_huge_page_disallowed)
2607 		unaccount_nx_huge_page(kvm, sp);
2608 
2609 	sp->role.invalid = 1;
2610 
2611 	/*
2612 	 * Make the request to free obsolete roots after marking the root
2613 	 * invalid, otherwise other vCPUs may not see it as invalid.
2614 	 */
2615 	if (zapped_root)
2616 		kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
2617 	return list_unstable;
2618 }
2619 
2620 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2621 				     struct list_head *invalid_list)
2622 {
2623 	int nr_zapped;
2624 
2625 	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2626 	return nr_zapped;
2627 }
2628 
2629 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2630 				    struct list_head *invalid_list)
2631 {
2632 	struct kvm_mmu_page *sp, *nsp;
2633 
2634 	if (list_empty(invalid_list))
2635 		return;
2636 
2637 	/*
2638 	 * We need to make sure everyone sees our modifications to
2639 	 * the page tables and see changes to vcpu->mode here. The barrier
2640 	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2641 	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2642 	 *
2643 	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2644 	 * guest mode and/or lockless shadow page table walks.
2645 	 */
2646 	kvm_flush_remote_tlbs(kvm);
2647 
2648 	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2649 		WARN_ON_ONCE(!sp->role.invalid || sp->root_count);
2650 		kvm_mmu_free_shadow_page(sp);
2651 	}
2652 }
2653 
2654 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2655 						  unsigned long nr_to_zap)
2656 {
2657 	unsigned long total_zapped = 0;
2658 	struct kvm_mmu_page *sp, *tmp;
2659 	LIST_HEAD(invalid_list);
2660 	bool unstable;
2661 	int nr_zapped;
2662 
2663 	if (list_empty(&kvm->arch.active_mmu_pages))
2664 		return 0;
2665 
2666 restart:
2667 	list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2668 		/*
2669 		 * Don't zap active root pages, the page itself can't be freed
2670 		 * and zapping it will just force vCPUs to realloc and reload.
2671 		 */
2672 		if (sp->root_count)
2673 			continue;
2674 
2675 		unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2676 						      &nr_zapped);
2677 		total_zapped += nr_zapped;
2678 		if (total_zapped >= nr_to_zap)
2679 			break;
2680 
2681 		if (unstable)
2682 			goto restart;
2683 	}
2684 
2685 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2686 
2687 	kvm->stat.mmu_recycled += total_zapped;
2688 	return total_zapped;
2689 }
2690 
2691 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2692 {
2693 	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2694 		return kvm->arch.n_max_mmu_pages -
2695 			kvm->arch.n_used_mmu_pages;
2696 
2697 	return 0;
2698 }
2699 
2700 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2701 {
2702 	unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2703 
2704 	if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2705 		return 0;
2706 
2707 	kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2708 
2709 	/*
2710 	 * Note, this check is intentionally soft, it only guarantees that one
2711 	 * page is available, while the caller may end up allocating as many as
2712 	 * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
2713 	 * exceeding the (arbitrary by default) limit will not harm the host,
2714 	 * being too aggressive may unnecessarily kill the guest, and getting an
2715 	 * exact count is far more trouble than it's worth, especially in the
2716 	 * page fault paths.
2717 	 */
2718 	if (!kvm_mmu_available_pages(vcpu->kvm))
2719 		return -ENOSPC;
2720 	return 0;
2721 }
2722 
2723 /*
2724  * Changing the number of mmu pages allocated to the vm
2725  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2726  */
2727 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2728 {
2729 	write_lock(&kvm->mmu_lock);
2730 
2731 	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2732 		kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2733 						  goal_nr_mmu_pages);
2734 
2735 		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2736 	}
2737 
2738 	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2739 
2740 	write_unlock(&kvm->mmu_lock);
2741 }
2742 
2743 bool __kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
2744 				       bool always_retry)
2745 {
2746 	struct kvm *kvm = vcpu->kvm;
2747 	LIST_HEAD(invalid_list);
2748 	struct kvm_mmu_page *sp;
2749 	gpa_t gpa = cr2_or_gpa;
2750 	bool r = false;
2751 
2752 	/*
2753 	 * Bail early if there aren't any write-protected shadow pages to avoid
2754 	 * unnecessarily taking mmu_lock lock, e.g. if the gfn is write-tracked
2755 	 * by a third party.  Reading indirect_shadow_pages without holding
2756 	 * mmu_lock is safe, as this is purely an optimization, i.e. a false
2757 	 * positive is benign, and a false negative will simply result in KVM
2758 	 * skipping the unprotect+retry path, which is also an optimization.
2759 	 */
2760 	if (!READ_ONCE(kvm->arch.indirect_shadow_pages))
2761 		goto out;
2762 
2763 	if (!vcpu->arch.mmu->root_role.direct) {
2764 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
2765 		if (gpa == INVALID_GPA)
2766 			goto out;
2767 	}
2768 
2769 	write_lock(&kvm->mmu_lock);
2770 	for_each_gfn_valid_sp_with_gptes(kvm, sp, gpa_to_gfn(gpa))
2771 		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2772 
2773 	/*
2774 	 * Snapshot the result before zapping, as zapping will remove all list
2775 	 * entries, i.e. checking the list later would yield a false negative.
2776 	 */
2777 	r = !list_empty(&invalid_list);
2778 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2779 	write_unlock(&kvm->mmu_lock);
2780 
2781 out:
2782 	if (r || always_retry) {
2783 		vcpu->arch.last_retry_eip = kvm_rip_read(vcpu);
2784 		vcpu->arch.last_retry_addr = cr2_or_gpa;
2785 	}
2786 	return r;
2787 }
2788 
2789 static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2790 {
2791 	trace_kvm_mmu_unsync_page(sp);
2792 	++kvm->stat.mmu_unsync;
2793 	sp->unsync = 1;
2794 
2795 	kvm_mmu_mark_parents_unsync(sp);
2796 }
2797 
2798 /*
2799  * Attempt to unsync any shadow pages that can be reached by the specified gfn,
2800  * KVM is creating a writable mapping for said gfn.  Returns 0 if all pages
2801  * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
2802  * be write-protected.
2803  */
2804 int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot,
2805 			    gfn_t gfn, bool can_unsync, bool prefetch)
2806 {
2807 	struct kvm_mmu_page *sp;
2808 	bool locked = false;
2809 
2810 	/*
2811 	 * Force write-protection if the page is being tracked.  Note, the page
2812 	 * track machinery is used to write-protect upper-level shadow pages,
2813 	 * i.e. this guards the role.level == 4K assertion below!
2814 	 */
2815 	if (kvm_gfn_is_write_tracked(kvm, slot, gfn))
2816 		return -EPERM;
2817 
2818 	/*
2819 	 * The page is not write-tracked, mark existing shadow pages unsync
2820 	 * unless KVM is synchronizing an unsync SP (can_unsync = false).  In
2821 	 * that case, KVM must complete emulation of the guest TLB flush before
2822 	 * allowing shadow pages to become unsync (writable by the guest).
2823 	 */
2824 	for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) {
2825 		if (!can_unsync)
2826 			return -EPERM;
2827 
2828 		if (sp->unsync)
2829 			continue;
2830 
2831 		if (prefetch)
2832 			return -EEXIST;
2833 
2834 		/*
2835 		 * TDP MMU page faults require an additional spinlock as they
2836 		 * run with mmu_lock held for read, not write, and the unsync
2837 		 * logic is not thread safe.  Take the spinklock regardless of
2838 		 * the MMU type to avoid extra conditionals/parameters, there's
2839 		 * no meaningful penalty if mmu_lock is held for write.
2840 		 */
2841 		if (!locked) {
2842 			locked = true;
2843 			spin_lock(&kvm->arch.mmu_unsync_pages_lock);
2844 
2845 			/*
2846 			 * Recheck after taking the spinlock, a different vCPU
2847 			 * may have since marked the page unsync.  A false
2848 			 * negative on the unprotected check above is not
2849 			 * possible as clearing sp->unsync _must_ hold mmu_lock
2850 			 * for write, i.e. unsync cannot transition from 1->0
2851 			 * while this CPU holds mmu_lock for read (or write).
2852 			 */
2853 			if (READ_ONCE(sp->unsync))
2854 				continue;
2855 		}
2856 
2857 		WARN_ON_ONCE(sp->role.level != PG_LEVEL_4K);
2858 		kvm_unsync_page(kvm, sp);
2859 	}
2860 	if (locked)
2861 		spin_unlock(&kvm->arch.mmu_unsync_pages_lock);
2862 
2863 	/*
2864 	 * We need to ensure that the marking of unsync pages is visible
2865 	 * before the SPTE is updated to allow writes because
2866 	 * kvm_mmu_sync_roots() checks the unsync flags without holding
2867 	 * the MMU lock and so can race with this. If the SPTE was updated
2868 	 * before the page had been marked as unsync-ed, something like the
2869 	 * following could happen:
2870 	 *
2871 	 * CPU 1                    CPU 2
2872 	 * ---------------------------------------------------------------------
2873 	 * 1.2 Host updates SPTE
2874 	 *     to be writable
2875 	 *                      2.1 Guest writes a GPTE for GVA X.
2876 	 *                          (GPTE being in the guest page table shadowed
2877 	 *                           by the SP from CPU 1.)
2878 	 *                          This reads SPTE during the page table walk.
2879 	 *                          Since SPTE.W is read as 1, there is no
2880 	 *                          fault.
2881 	 *
2882 	 *                      2.2 Guest issues TLB flush.
2883 	 *                          That causes a VM Exit.
2884 	 *
2885 	 *                      2.3 Walking of unsync pages sees sp->unsync is
2886 	 *                          false and skips the page.
2887 	 *
2888 	 *                      2.4 Guest accesses GVA X.
2889 	 *                          Since the mapping in the SP was not updated,
2890 	 *                          so the old mapping for GVA X incorrectly
2891 	 *                          gets used.
2892 	 * 1.1 Host marks SP
2893 	 *     as unsync
2894 	 *     (sp->unsync = true)
2895 	 *
2896 	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2897 	 * the situation in 2.4 does not arise.  It pairs with the read barrier
2898 	 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3.
2899 	 */
2900 	smp_wmb();
2901 
2902 	return 0;
2903 }
2904 
2905 static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
2906 			u64 *sptep, unsigned int pte_access, gfn_t gfn,
2907 			kvm_pfn_t pfn, struct kvm_page_fault *fault)
2908 {
2909 	struct kvm_mmu_page *sp = sptep_to_sp(sptep);
2910 	int level = sp->role.level;
2911 	int was_rmapped = 0;
2912 	int ret = RET_PF_FIXED;
2913 	bool flush = false;
2914 	bool wrprot;
2915 	u64 spte;
2916 
2917 	/* Prefetching always gets a writable pfn.  */
2918 	bool host_writable = !fault || fault->map_writable;
2919 	bool prefetch = !fault || fault->prefetch;
2920 	bool write_fault = fault && fault->write;
2921 
2922 	if (unlikely(is_noslot_pfn(pfn))) {
2923 		vcpu->stat.pf_mmio_spte_created++;
2924 		mark_mmio_spte(vcpu, sptep, gfn, pte_access);
2925 		return RET_PF_EMULATE;
2926 	}
2927 
2928 	if (is_shadow_present_pte(*sptep)) {
2929 		/*
2930 		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2931 		 * the parent of the now unreachable PTE.
2932 		 */
2933 		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2934 			struct kvm_mmu_page *child;
2935 			u64 pte = *sptep;
2936 
2937 			child = spte_to_child_sp(pte);
2938 			drop_parent_pte(vcpu->kvm, child, sptep);
2939 			flush = true;
2940 		} else if (pfn != spte_to_pfn(*sptep)) {
2941 			drop_spte(vcpu->kvm, sptep);
2942 			flush = true;
2943 		} else
2944 			was_rmapped = 1;
2945 	}
2946 
2947 	wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch,
2948 			   true, host_writable, &spte);
2949 
2950 	if (*sptep == spte) {
2951 		ret = RET_PF_SPURIOUS;
2952 	} else {
2953 		flush |= mmu_spte_update(sptep, spte);
2954 		trace_kvm_mmu_set_spte(level, gfn, sptep);
2955 	}
2956 
2957 	if (wrprot && write_fault)
2958 		ret = RET_PF_WRITE_PROTECTED;
2959 
2960 	if (flush)
2961 		kvm_flush_remote_tlbs_gfn(vcpu->kvm, gfn, level);
2962 
2963 	if (!was_rmapped) {
2964 		WARN_ON_ONCE(ret == RET_PF_SPURIOUS);
2965 		rmap_add(vcpu, slot, sptep, gfn, pte_access);
2966 	} else {
2967 		/* Already rmapped but the pte_access bits may have changed. */
2968 		kvm_mmu_page_set_access(sp, spte_index(sptep), pte_access);
2969 	}
2970 
2971 	return ret;
2972 }
2973 
2974 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2975 				    struct kvm_mmu_page *sp,
2976 				    u64 *start, u64 *end)
2977 {
2978 	struct page *pages[PTE_PREFETCH_NUM];
2979 	struct kvm_memory_slot *slot;
2980 	unsigned int access = sp->role.access;
2981 	int i, ret;
2982 	gfn_t gfn;
2983 
2984 	gfn = kvm_mmu_page_get_gfn(sp, spte_index(start));
2985 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2986 	if (!slot)
2987 		return -1;
2988 
2989 	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2990 	if (ret <= 0)
2991 		return -1;
2992 
2993 	for (i = 0; i < ret; i++, gfn++, start++) {
2994 		mmu_set_spte(vcpu, slot, start, access, gfn,
2995 			     page_to_pfn(pages[i]), NULL);
2996 		put_page(pages[i]);
2997 	}
2998 
2999 	return 0;
3000 }
3001 
3002 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3003 				  struct kvm_mmu_page *sp, u64 *sptep)
3004 {
3005 	u64 *spte, *start = NULL;
3006 	int i;
3007 
3008 	WARN_ON_ONCE(!sp->role.direct);
3009 
3010 	i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1);
3011 	spte = sp->spt + i;
3012 
3013 	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3014 		if (is_shadow_present_pte(*spte) || spte == sptep) {
3015 			if (!start)
3016 				continue;
3017 			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3018 				return;
3019 			start = NULL;
3020 		} else if (!start)
3021 			start = spte;
3022 	}
3023 	if (start)
3024 		direct_pte_prefetch_many(vcpu, sp, start, spte);
3025 }
3026 
3027 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3028 {
3029 	struct kvm_mmu_page *sp;
3030 
3031 	sp = sptep_to_sp(sptep);
3032 
3033 	/*
3034 	 * Without accessed bits, there's no way to distinguish between
3035 	 * actually accessed translations and prefetched, so disable pte
3036 	 * prefetch if accessed bits aren't available.
3037 	 */
3038 	if (sp_ad_disabled(sp))
3039 		return;
3040 
3041 	if (sp->role.level > PG_LEVEL_4K)
3042 		return;
3043 
3044 	/*
3045 	 * If addresses are being invalidated, skip prefetching to avoid
3046 	 * accidentally prefetching those addresses.
3047 	 */
3048 	if (unlikely(vcpu->kvm->mmu_invalidate_in_progress))
3049 		return;
3050 
3051 	__direct_pte_prefetch(vcpu, sp, sptep);
3052 }
3053 
3054 /*
3055  * Lookup the mapping level for @gfn in the current mm.
3056  *
3057  * WARNING!  Use of host_pfn_mapping_level() requires the caller and the end
3058  * consumer to be tied into KVM's handlers for MMU notifier events!
3059  *
3060  * There are several ways to safely use this helper:
3061  *
3062  * - Check mmu_invalidate_retry_gfn() after grabbing the mapping level, before
3063  *   consuming it.  In this case, mmu_lock doesn't need to be held during the
3064  *   lookup, but it does need to be held while checking the MMU notifier.
3065  *
3066  * - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation
3067  *   event for the hva.  This can be done by explicit checking the MMU notifier
3068  *   or by ensuring that KVM already has a valid mapping that covers the hva.
3069  *
3070  * - Do not use the result to install new mappings, e.g. use the host mapping
3071  *   level only to decide whether or not to zap an entry.  In this case, it's
3072  *   not required to hold mmu_lock (though it's highly likely the caller will
3073  *   want to hold mmu_lock anyways, e.g. to modify SPTEs).
3074  *
3075  * Note!  The lookup can still race with modifications to host page tables, but
3076  * the above "rules" ensure KVM will not _consume_ the result of the walk if a
3077  * race with the primary MMU occurs.
3078  */
3079 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn,
3080 				  const struct kvm_memory_slot *slot)
3081 {
3082 	int level = PG_LEVEL_4K;
3083 	unsigned long hva;
3084 	unsigned long flags;
3085 	pgd_t pgd;
3086 	p4d_t p4d;
3087 	pud_t pud;
3088 	pmd_t pmd;
3089 
3090 	/*
3091 	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
3092 	 * is not solely for performance, it's also necessary to avoid the
3093 	 * "writable" check in __gfn_to_hva_many(), which will always fail on
3094 	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
3095 	 * page fault steps have already verified the guest isn't writing a
3096 	 * read-only memslot.
3097 	 */
3098 	hva = __gfn_to_hva_memslot(slot, gfn);
3099 
3100 	/*
3101 	 * Disable IRQs to prevent concurrent tear down of host page tables,
3102 	 * e.g. if the primary MMU promotes a P*D to a huge page and then frees
3103 	 * the original page table.
3104 	 */
3105 	local_irq_save(flags);
3106 
3107 	/*
3108 	 * Read each entry once.  As above, a non-leaf entry can be promoted to
3109 	 * a huge page _during_ this walk.  Re-reading the entry could send the
3110 	 * walk into the weeks, e.g. p*d_leaf() returns false (sees the old
3111 	 * value) and then p*d_offset() walks into the target huge page instead
3112 	 * of the old page table (sees the new value).
3113 	 */
3114 	pgd = READ_ONCE(*pgd_offset(kvm->mm, hva));
3115 	if (pgd_none(pgd))
3116 		goto out;
3117 
3118 	p4d = READ_ONCE(*p4d_offset(&pgd, hva));
3119 	if (p4d_none(p4d) || !p4d_present(p4d))
3120 		goto out;
3121 
3122 	pud = READ_ONCE(*pud_offset(&p4d, hva));
3123 	if (pud_none(pud) || !pud_present(pud))
3124 		goto out;
3125 
3126 	if (pud_leaf(pud)) {
3127 		level = PG_LEVEL_1G;
3128 		goto out;
3129 	}
3130 
3131 	pmd = READ_ONCE(*pmd_offset(&pud, hva));
3132 	if (pmd_none(pmd) || !pmd_present(pmd))
3133 		goto out;
3134 
3135 	if (pmd_leaf(pmd))
3136 		level = PG_LEVEL_2M;
3137 
3138 out:
3139 	local_irq_restore(flags);
3140 	return level;
3141 }
3142 
3143 static int __kvm_mmu_max_mapping_level(struct kvm *kvm,
3144 				       const struct kvm_memory_slot *slot,
3145 				       gfn_t gfn, int max_level, bool is_private)
3146 {
3147 	struct kvm_lpage_info *linfo;
3148 	int host_level;
3149 
3150 	max_level = min(max_level, max_huge_page_level);
3151 	for ( ; max_level > PG_LEVEL_4K; max_level--) {
3152 		linfo = lpage_info_slot(gfn, slot, max_level);
3153 		if (!linfo->disallow_lpage)
3154 			break;
3155 	}
3156 
3157 	if (is_private)
3158 		return max_level;
3159 
3160 	if (max_level == PG_LEVEL_4K)
3161 		return PG_LEVEL_4K;
3162 
3163 	host_level = host_pfn_mapping_level(kvm, gfn, slot);
3164 	return min(host_level, max_level);
3165 }
3166 
3167 int kvm_mmu_max_mapping_level(struct kvm *kvm,
3168 			      const struct kvm_memory_slot *slot, gfn_t gfn,
3169 			      int max_level)
3170 {
3171 	bool is_private = kvm_slot_can_be_private(slot) &&
3172 			  kvm_mem_is_private(kvm, gfn);
3173 
3174 	return __kvm_mmu_max_mapping_level(kvm, slot, gfn, max_level, is_private);
3175 }
3176 
3177 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3178 {
3179 	struct kvm_memory_slot *slot = fault->slot;
3180 	kvm_pfn_t mask;
3181 
3182 	fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled;
3183 
3184 	if (unlikely(fault->max_level == PG_LEVEL_4K))
3185 		return;
3186 
3187 	if (is_error_noslot_pfn(fault->pfn))
3188 		return;
3189 
3190 	if (kvm_slot_dirty_track_enabled(slot))
3191 		return;
3192 
3193 	/*
3194 	 * Enforce the iTLB multihit workaround after capturing the requested
3195 	 * level, which will be used to do precise, accurate accounting.
3196 	 */
3197 	fault->req_level = __kvm_mmu_max_mapping_level(vcpu->kvm, slot,
3198 						       fault->gfn, fault->max_level,
3199 						       fault->is_private);
3200 	if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed)
3201 		return;
3202 
3203 	/*
3204 	 * mmu_invalidate_retry() was successful and mmu_lock is held, so
3205 	 * the pmd can't be split from under us.
3206 	 */
3207 	fault->goal_level = fault->req_level;
3208 	mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1;
3209 	VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask));
3210 	fault->pfn &= ~mask;
3211 }
3212 
3213 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level)
3214 {
3215 	if (cur_level > PG_LEVEL_4K &&
3216 	    cur_level == fault->goal_level &&
3217 	    is_shadow_present_pte(spte) &&
3218 	    !is_large_pte(spte) &&
3219 	    spte_to_child_sp(spte)->nx_huge_page_disallowed) {
3220 		/*
3221 		 * A small SPTE exists for this pfn, but FNAME(fetch),
3222 		 * direct_map(), or kvm_tdp_mmu_map() would like to create a
3223 		 * large PTE instead: just force them to go down another level,
3224 		 * patching back for them into pfn the next 9 bits of the
3225 		 * address.
3226 		 */
3227 		u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) -
3228 				KVM_PAGES_PER_HPAGE(cur_level - 1);
3229 		fault->pfn |= fault->gfn & page_mask;
3230 		fault->goal_level--;
3231 	}
3232 }
3233 
3234 static int direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3235 {
3236 	struct kvm_shadow_walk_iterator it;
3237 	struct kvm_mmu_page *sp;
3238 	int ret;
3239 	gfn_t base_gfn = fault->gfn;
3240 
3241 	kvm_mmu_hugepage_adjust(vcpu, fault);
3242 
3243 	trace_kvm_mmu_spte_requested(fault);
3244 	for_each_shadow_entry(vcpu, fault->addr, it) {
3245 		/*
3246 		 * We cannot overwrite existing page tables with an NX
3247 		 * large page, as the leaf could be executable.
3248 		 */
3249 		if (fault->nx_huge_page_workaround_enabled)
3250 			disallowed_hugepage_adjust(fault, *it.sptep, it.level);
3251 
3252 		base_gfn = gfn_round_for_level(fault->gfn, it.level);
3253 		if (it.level == fault->goal_level)
3254 			break;
3255 
3256 		sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, true, ACC_ALL);
3257 		if (sp == ERR_PTR(-EEXIST))
3258 			continue;
3259 
3260 		link_shadow_page(vcpu, it.sptep, sp);
3261 		if (fault->huge_page_disallowed)
3262 			account_nx_huge_page(vcpu->kvm, sp,
3263 					     fault->req_level >= it.level);
3264 	}
3265 
3266 	if (WARN_ON_ONCE(it.level != fault->goal_level))
3267 		return -EFAULT;
3268 
3269 	ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL,
3270 			   base_gfn, fault->pfn, fault);
3271 	if (ret == RET_PF_SPURIOUS)
3272 		return ret;
3273 
3274 	direct_pte_prefetch(vcpu, it.sptep);
3275 	return ret;
3276 }
3277 
3278 static void kvm_send_hwpoison_signal(struct kvm_memory_slot *slot, gfn_t gfn)
3279 {
3280 	unsigned long hva = gfn_to_hva_memslot(slot, gfn);
3281 
3282 	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva, PAGE_SHIFT, current);
3283 }
3284 
3285 static int kvm_handle_error_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3286 {
3287 	if (is_sigpending_pfn(fault->pfn)) {
3288 		kvm_handle_signal_exit(vcpu);
3289 		return -EINTR;
3290 	}
3291 
3292 	/*
3293 	 * Do not cache the mmio info caused by writing the readonly gfn
3294 	 * into the spte otherwise read access on readonly gfn also can
3295 	 * caused mmio page fault and treat it as mmio access.
3296 	 */
3297 	if (fault->pfn == KVM_PFN_ERR_RO_FAULT)
3298 		return RET_PF_EMULATE;
3299 
3300 	if (fault->pfn == KVM_PFN_ERR_HWPOISON) {
3301 		kvm_send_hwpoison_signal(fault->slot, fault->gfn);
3302 		return RET_PF_RETRY;
3303 	}
3304 
3305 	return -EFAULT;
3306 }
3307 
3308 static int kvm_handle_noslot_fault(struct kvm_vcpu *vcpu,
3309 				   struct kvm_page_fault *fault,
3310 				   unsigned int access)
3311 {
3312 	gva_t gva = fault->is_tdp ? 0 : fault->addr;
3313 
3314 	if (fault->is_private) {
3315 		kvm_mmu_prepare_memory_fault_exit(vcpu, fault);
3316 		return -EFAULT;
3317 	}
3318 
3319 	vcpu_cache_mmio_info(vcpu, gva, fault->gfn,
3320 			     access & shadow_mmio_access_mask);
3321 
3322 	fault->slot = NULL;
3323 	fault->pfn = KVM_PFN_NOSLOT;
3324 	fault->map_writable = false;
3325 	fault->hva = KVM_HVA_ERR_BAD;
3326 
3327 	/*
3328 	 * If MMIO caching is disabled, emulate immediately without
3329 	 * touching the shadow page tables as attempting to install an
3330 	 * MMIO SPTE will just be an expensive nop.
3331 	 */
3332 	if (unlikely(!enable_mmio_caching))
3333 		return RET_PF_EMULATE;
3334 
3335 	/*
3336 	 * Do not create an MMIO SPTE for a gfn greater than host.MAXPHYADDR,
3337 	 * any guest that generates such gfns is running nested and is being
3338 	 * tricked by L0 userspace (you can observe gfn > L1.MAXPHYADDR if and
3339 	 * only if L1's MAXPHYADDR is inaccurate with respect to the
3340 	 * hardware's).
3341 	 */
3342 	if (unlikely(fault->gfn > kvm_mmu_max_gfn()))
3343 		return RET_PF_EMULATE;
3344 
3345 	return RET_PF_CONTINUE;
3346 }
3347 
3348 static bool page_fault_can_be_fast(struct kvm *kvm, struct kvm_page_fault *fault)
3349 {
3350 	/*
3351 	 * Page faults with reserved bits set, i.e. faults on MMIO SPTEs, only
3352 	 * reach the common page fault handler if the SPTE has an invalid MMIO
3353 	 * generation number.  Refreshing the MMIO generation needs to go down
3354 	 * the slow path.  Note, EPT Misconfigs do NOT set the PRESENT flag!
3355 	 */
3356 	if (fault->rsvd)
3357 		return false;
3358 
3359 	/*
3360 	 * For hardware-protected VMs, certain conditions like attempting to
3361 	 * perform a write to a page which is not in the state that the guest
3362 	 * expects it to be in can result in a nested/extended #PF. In this
3363 	 * case, the below code might misconstrue this situation as being the
3364 	 * result of a write-protected access, and treat it as a spurious case
3365 	 * rather than taking any action to satisfy the real source of the #PF
3366 	 * such as generating a KVM_EXIT_MEMORY_FAULT. This can lead to the
3367 	 * guest spinning on a #PF indefinitely, so don't attempt the fast path
3368 	 * in this case.
3369 	 *
3370 	 * Note that the kvm_mem_is_private() check might race with an
3371 	 * attribute update, but this will either result in the guest spinning
3372 	 * on RET_PF_SPURIOUS until the update completes, or an actual spurious
3373 	 * case might go down the slow path. Either case will resolve itself.
3374 	 */
3375 	if (kvm->arch.has_private_mem &&
3376 	    fault->is_private != kvm_mem_is_private(kvm, fault->gfn))
3377 		return false;
3378 
3379 	/*
3380 	 * #PF can be fast if:
3381 	 *
3382 	 * 1. The shadow page table entry is not present and A/D bits are
3383 	 *    disabled _by KVM_, which could mean that the fault is potentially
3384 	 *    caused by access tracking (if enabled).  If A/D bits are enabled
3385 	 *    by KVM, but disabled by L1 for L2, KVM is forced to disable A/D
3386 	 *    bits for L2 and employ access tracking, but the fast page fault
3387 	 *    mechanism only supports direct MMUs.
3388 	 * 2. The shadow page table entry is present, the access is a write,
3389 	 *    and no reserved bits are set (MMIO SPTEs cannot be "fixed"), i.e.
3390 	 *    the fault was caused by a write-protection violation.  If the
3391 	 *    SPTE is MMU-writable (determined later), the fault can be fixed
3392 	 *    by setting the Writable bit, which can be done out of mmu_lock.
3393 	 */
3394 	if (!fault->present)
3395 		return !kvm_ad_enabled();
3396 
3397 	/*
3398 	 * Note, instruction fetches and writes are mutually exclusive, ignore
3399 	 * the "exec" flag.
3400 	 */
3401 	return fault->write;
3402 }
3403 
3404 /*
3405  * Returns true if the SPTE was fixed successfully. Otherwise,
3406  * someone else modified the SPTE from its original value.
3407  */
3408 static bool fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu,
3409 				    struct kvm_page_fault *fault,
3410 				    u64 *sptep, u64 old_spte, u64 new_spte)
3411 {
3412 	/*
3413 	 * Theoretically we could also set dirty bit (and flush TLB) here in
3414 	 * order to eliminate unnecessary PML logging. See comments in
3415 	 * set_spte. But fast_page_fault is very unlikely to happen with PML
3416 	 * enabled, so we do not do this. This might result in the same GPA
3417 	 * to be logged in PML buffer again when the write really happens, and
3418 	 * eventually to be called by mark_page_dirty twice. But it's also no
3419 	 * harm. This also avoids the TLB flush needed after setting dirty bit
3420 	 * so non-PML cases won't be impacted.
3421 	 *
3422 	 * Compare with set_spte where instead shadow_dirty_mask is set.
3423 	 */
3424 	if (!try_cmpxchg64(sptep, &old_spte, new_spte))
3425 		return false;
3426 
3427 	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte))
3428 		mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn);
3429 
3430 	return true;
3431 }
3432 
3433 static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte)
3434 {
3435 	if (fault->exec)
3436 		return is_executable_pte(spte);
3437 
3438 	if (fault->write)
3439 		return is_writable_pte(spte);
3440 
3441 	/* Fault was on Read access */
3442 	return spte & PT_PRESENT_MASK;
3443 }
3444 
3445 /*
3446  * Returns the last level spte pointer of the shadow page walk for the given
3447  * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
3448  * walk could be performed, returns NULL and *spte does not contain valid data.
3449  *
3450  * Contract:
3451  *  - Must be called between walk_shadow_page_lockless_{begin,end}.
3452  *  - The returned sptep must not be used after walk_shadow_page_lockless_end.
3453  */
3454 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte)
3455 {
3456 	struct kvm_shadow_walk_iterator iterator;
3457 	u64 old_spte;
3458 	u64 *sptep = NULL;
3459 
3460 	for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) {
3461 		sptep = iterator.sptep;
3462 		*spte = old_spte;
3463 	}
3464 
3465 	return sptep;
3466 }
3467 
3468 /*
3469  * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3470  */
3471 static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3472 {
3473 	struct kvm_mmu_page *sp;
3474 	int ret = RET_PF_INVALID;
3475 	u64 spte;
3476 	u64 *sptep;
3477 	uint retry_count = 0;
3478 
3479 	if (!page_fault_can_be_fast(vcpu->kvm, fault))
3480 		return ret;
3481 
3482 	walk_shadow_page_lockless_begin(vcpu);
3483 
3484 	do {
3485 		u64 new_spte;
3486 
3487 		if (tdp_mmu_enabled)
3488 			sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->gfn, &spte);
3489 		else
3490 			sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3491 
3492 		/*
3493 		 * It's entirely possible for the mapping to have been zapped
3494 		 * by a different task, but the root page should always be
3495 		 * available as the vCPU holds a reference to its root(s).
3496 		 */
3497 		if (WARN_ON_ONCE(!sptep))
3498 			spte = FROZEN_SPTE;
3499 
3500 		if (!is_shadow_present_pte(spte))
3501 			break;
3502 
3503 		sp = sptep_to_sp(sptep);
3504 		if (!is_last_spte(spte, sp->role.level))
3505 			break;
3506 
3507 		/*
3508 		 * Check whether the memory access that caused the fault would
3509 		 * still cause it if it were to be performed right now. If not,
3510 		 * then this is a spurious fault caused by TLB lazily flushed,
3511 		 * or some other CPU has already fixed the PTE after the
3512 		 * current CPU took the fault.
3513 		 *
3514 		 * Need not check the access of upper level table entries since
3515 		 * they are always ACC_ALL.
3516 		 */
3517 		if (is_access_allowed(fault, spte)) {
3518 			ret = RET_PF_SPURIOUS;
3519 			break;
3520 		}
3521 
3522 		new_spte = spte;
3523 
3524 		/*
3525 		 * KVM only supports fixing page faults outside of MMU lock for
3526 		 * direct MMUs, nested MMUs are always indirect, and KVM always
3527 		 * uses A/D bits for non-nested MMUs.  Thus, if A/D bits are
3528 		 * enabled, the SPTE can't be an access-tracked SPTE.
3529 		 */
3530 		if (unlikely(!kvm_ad_enabled()) && is_access_track_spte(spte))
3531 			new_spte = restore_acc_track_spte(new_spte);
3532 
3533 		/*
3534 		 * To keep things simple, only SPTEs that are MMU-writable can
3535 		 * be made fully writable outside of mmu_lock, e.g. only SPTEs
3536 		 * that were write-protected for dirty-logging or access
3537 		 * tracking are handled here.  Don't bother checking if the
3538 		 * SPTE is writable to prioritize running with A/D bits enabled.
3539 		 * The is_access_allowed() check above handles the common case
3540 		 * of the fault being spurious, and the SPTE is known to be
3541 		 * shadow-present, i.e. except for access tracking restoration
3542 		 * making the new SPTE writable, the check is wasteful.
3543 		 */
3544 		if (fault->write && is_mmu_writable_spte(spte)) {
3545 			new_spte |= PT_WRITABLE_MASK;
3546 
3547 			/*
3548 			 * Do not fix write-permission on the large spte when
3549 			 * dirty logging is enabled. Since we only dirty the
3550 			 * first page into the dirty-bitmap in
3551 			 * fast_pf_fix_direct_spte(), other pages are missed
3552 			 * if its slot has dirty logging enabled.
3553 			 *
3554 			 * Instead, we let the slow page fault path create a
3555 			 * normal spte to fix the access.
3556 			 */
3557 			if (sp->role.level > PG_LEVEL_4K &&
3558 			    kvm_slot_dirty_track_enabled(fault->slot))
3559 				break;
3560 		}
3561 
3562 		/* Verify that the fault can be handled in the fast path */
3563 		if (new_spte == spte ||
3564 		    !is_access_allowed(fault, new_spte))
3565 			break;
3566 
3567 		/*
3568 		 * Currently, fast page fault only works for direct mapping
3569 		 * since the gfn is not stable for indirect shadow page. See
3570 		 * Documentation/virt/kvm/locking.rst to get more detail.
3571 		 */
3572 		if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) {
3573 			ret = RET_PF_FIXED;
3574 			break;
3575 		}
3576 
3577 		if (++retry_count > 4) {
3578 			pr_warn_once("Fast #PF retrying more than 4 times.\n");
3579 			break;
3580 		}
3581 
3582 	} while (true);
3583 
3584 	trace_fast_page_fault(vcpu, fault, sptep, spte, ret);
3585 	walk_shadow_page_lockless_end(vcpu);
3586 
3587 	if (ret != RET_PF_INVALID)
3588 		vcpu->stat.pf_fast++;
3589 
3590 	return ret;
3591 }
3592 
3593 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3594 			       struct list_head *invalid_list)
3595 {
3596 	struct kvm_mmu_page *sp;
3597 
3598 	if (!VALID_PAGE(*root_hpa))
3599 		return;
3600 
3601 	sp = root_to_sp(*root_hpa);
3602 	if (WARN_ON_ONCE(!sp))
3603 		return;
3604 
3605 	if (is_tdp_mmu_page(sp)) {
3606 		lockdep_assert_held_read(&kvm->mmu_lock);
3607 		kvm_tdp_mmu_put_root(kvm, sp);
3608 	} else {
3609 		lockdep_assert_held_write(&kvm->mmu_lock);
3610 		if (!--sp->root_count && sp->role.invalid)
3611 			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3612 	}
3613 
3614 	*root_hpa = INVALID_PAGE;
3615 }
3616 
3617 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3618 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
3619 			ulong roots_to_free)
3620 {
3621 	bool is_tdp_mmu = tdp_mmu_enabled && mmu->root_role.direct;
3622 	int i;
3623 	LIST_HEAD(invalid_list);
3624 	bool free_active_root;
3625 
3626 	WARN_ON_ONCE(roots_to_free & ~KVM_MMU_ROOTS_ALL);
3627 
3628 	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3629 
3630 	/* Before acquiring the MMU lock, see if we need to do any real work. */
3631 	free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT)
3632 		&& VALID_PAGE(mmu->root.hpa);
3633 
3634 	if (!free_active_root) {
3635 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3636 			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3637 			    VALID_PAGE(mmu->prev_roots[i].hpa))
3638 				break;
3639 
3640 		if (i == KVM_MMU_NUM_PREV_ROOTS)
3641 			return;
3642 	}
3643 
3644 	if (is_tdp_mmu)
3645 		read_lock(&kvm->mmu_lock);
3646 	else
3647 		write_lock(&kvm->mmu_lock);
3648 
3649 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3650 		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3651 			mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3652 					   &invalid_list);
3653 
3654 	if (free_active_root) {
3655 		if (kvm_mmu_is_dummy_root(mmu->root.hpa)) {
3656 			/* Nothing to cleanup for dummy roots. */
3657 		} else if (root_to_sp(mmu->root.hpa)) {
3658 			mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list);
3659 		} else if (mmu->pae_root) {
3660 			for (i = 0; i < 4; ++i) {
3661 				if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
3662 					continue;
3663 
3664 				mmu_free_root_page(kvm, &mmu->pae_root[i],
3665 						   &invalid_list);
3666 				mmu->pae_root[i] = INVALID_PAE_ROOT;
3667 			}
3668 		}
3669 		mmu->root.hpa = INVALID_PAGE;
3670 		mmu->root.pgd = 0;
3671 	}
3672 
3673 	if (is_tdp_mmu) {
3674 		read_unlock(&kvm->mmu_lock);
3675 		WARN_ON_ONCE(!list_empty(&invalid_list));
3676 	} else {
3677 		kvm_mmu_commit_zap_page(kvm, &invalid_list);
3678 		write_unlock(&kvm->mmu_lock);
3679 	}
3680 }
3681 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3682 
3683 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu)
3684 {
3685 	unsigned long roots_to_free = 0;
3686 	struct kvm_mmu_page *sp;
3687 	hpa_t root_hpa;
3688 	int i;
3689 
3690 	/*
3691 	 * This should not be called while L2 is active, L2 can't invalidate
3692 	 * _only_ its own roots, e.g. INVVPID unconditionally exits.
3693 	 */
3694 	WARN_ON_ONCE(mmu->root_role.guest_mode);
3695 
3696 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3697 		root_hpa = mmu->prev_roots[i].hpa;
3698 		if (!VALID_PAGE(root_hpa))
3699 			continue;
3700 
3701 		sp = root_to_sp(root_hpa);
3702 		if (!sp || sp->role.guest_mode)
3703 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
3704 	}
3705 
3706 	kvm_mmu_free_roots(kvm, mmu, roots_to_free);
3707 }
3708 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);
3709 
3710 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, int quadrant,
3711 			    u8 level)
3712 {
3713 	union kvm_mmu_page_role role = vcpu->arch.mmu->root_role;
3714 	struct kvm_mmu_page *sp;
3715 
3716 	role.level = level;
3717 	role.quadrant = quadrant;
3718 
3719 	WARN_ON_ONCE(quadrant && !role.has_4_byte_gpte);
3720 	WARN_ON_ONCE(role.direct && role.has_4_byte_gpte);
3721 
3722 	sp = kvm_mmu_get_shadow_page(vcpu, gfn, role);
3723 	++sp->root_count;
3724 
3725 	return __pa(sp->spt);
3726 }
3727 
3728 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3729 {
3730 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3731 	u8 shadow_root_level = mmu->root_role.level;
3732 	hpa_t root;
3733 	unsigned i;
3734 	int r;
3735 
3736 	if (tdp_mmu_enabled)
3737 		return kvm_tdp_mmu_alloc_root(vcpu);
3738 
3739 	write_lock(&vcpu->kvm->mmu_lock);
3740 	r = make_mmu_pages_available(vcpu);
3741 	if (r < 0)
3742 		goto out_unlock;
3743 
3744 	if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3745 		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level);
3746 		mmu->root.hpa = root;
3747 	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3748 		if (WARN_ON_ONCE(!mmu->pae_root)) {
3749 			r = -EIO;
3750 			goto out_unlock;
3751 		}
3752 
3753 		for (i = 0; i < 4; ++i) {
3754 			WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3755 
3756 			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 0,
3757 					      PT32_ROOT_LEVEL);
3758 			mmu->pae_root[i] = root | PT_PRESENT_MASK |
3759 					   shadow_me_value;
3760 		}
3761 		mmu->root.hpa = __pa(mmu->pae_root);
3762 	} else {
3763 		WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3764 		r = -EIO;
3765 		goto out_unlock;
3766 	}
3767 
3768 	/* root.pgd is ignored for direct MMUs. */
3769 	mmu->root.pgd = 0;
3770 out_unlock:
3771 	write_unlock(&vcpu->kvm->mmu_lock);
3772 	return r;
3773 }
3774 
3775 static int mmu_first_shadow_root_alloc(struct kvm *kvm)
3776 {
3777 	struct kvm_memslots *slots;
3778 	struct kvm_memory_slot *slot;
3779 	int r = 0, i, bkt;
3780 
3781 	/*
3782 	 * Check if this is the first shadow root being allocated before
3783 	 * taking the lock.
3784 	 */
3785 	if (kvm_shadow_root_allocated(kvm))
3786 		return 0;
3787 
3788 	mutex_lock(&kvm->slots_arch_lock);
3789 
3790 	/* Recheck, under the lock, whether this is the first shadow root. */
3791 	if (kvm_shadow_root_allocated(kvm))
3792 		goto out_unlock;
3793 
3794 	/*
3795 	 * Check if anything actually needs to be allocated, e.g. all metadata
3796 	 * will be allocated upfront if TDP is disabled.
3797 	 */
3798 	if (kvm_memslots_have_rmaps(kvm) &&
3799 	    kvm_page_track_write_tracking_enabled(kvm))
3800 		goto out_success;
3801 
3802 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
3803 		slots = __kvm_memslots(kvm, i);
3804 		kvm_for_each_memslot(slot, bkt, slots) {
3805 			/*
3806 			 * Both of these functions are no-ops if the target is
3807 			 * already allocated, so unconditionally calling both
3808 			 * is safe.  Intentionally do NOT free allocations on
3809 			 * failure to avoid having to track which allocations
3810 			 * were made now versus when the memslot was created.
3811 			 * The metadata is guaranteed to be freed when the slot
3812 			 * is freed, and will be kept/used if userspace retries
3813 			 * KVM_RUN instead of killing the VM.
3814 			 */
3815 			r = memslot_rmap_alloc(slot, slot->npages);
3816 			if (r)
3817 				goto out_unlock;
3818 			r = kvm_page_track_write_tracking_alloc(slot);
3819 			if (r)
3820 				goto out_unlock;
3821 		}
3822 	}
3823 
3824 	/*
3825 	 * Ensure that shadow_root_allocated becomes true strictly after
3826 	 * all the related pointers are set.
3827 	 */
3828 out_success:
3829 	smp_store_release(&kvm->arch.shadow_root_allocated, true);
3830 
3831 out_unlock:
3832 	mutex_unlock(&kvm->slots_arch_lock);
3833 	return r;
3834 }
3835 
3836 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3837 {
3838 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3839 	u64 pdptrs[4], pm_mask;
3840 	gfn_t root_gfn, root_pgd;
3841 	int quadrant, i, r;
3842 	hpa_t root;
3843 
3844 	root_pgd = kvm_mmu_get_guest_pgd(vcpu, mmu);
3845 	root_gfn = (root_pgd & __PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
3846 
3847 	if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3848 		mmu->root.hpa = kvm_mmu_get_dummy_root();
3849 		return 0;
3850 	}
3851 
3852 	/*
3853 	 * On SVM, reading PDPTRs might access guest memory, which might fault
3854 	 * and thus might sleep.  Grab the PDPTRs before acquiring mmu_lock.
3855 	 */
3856 	if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) {
3857 		for (i = 0; i < 4; ++i) {
3858 			pdptrs[i] = mmu->get_pdptr(vcpu, i);
3859 			if (!(pdptrs[i] & PT_PRESENT_MASK))
3860 				continue;
3861 
3862 			if (!kvm_vcpu_is_visible_gfn(vcpu, pdptrs[i] >> PAGE_SHIFT))
3863 				pdptrs[i] = 0;
3864 		}
3865 	}
3866 
3867 	r = mmu_first_shadow_root_alloc(vcpu->kvm);
3868 	if (r)
3869 		return r;
3870 
3871 	write_lock(&vcpu->kvm->mmu_lock);
3872 	r = make_mmu_pages_available(vcpu);
3873 	if (r < 0)
3874 		goto out_unlock;
3875 
3876 	/*
3877 	 * Do we shadow a long mode page table? If so we need to
3878 	 * write-protect the guests page table root.
3879 	 */
3880 	if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) {
3881 		root = mmu_alloc_root(vcpu, root_gfn, 0,
3882 				      mmu->root_role.level);
3883 		mmu->root.hpa = root;
3884 		goto set_root_pgd;
3885 	}
3886 
3887 	if (WARN_ON_ONCE(!mmu->pae_root)) {
3888 		r = -EIO;
3889 		goto out_unlock;
3890 	}
3891 
3892 	/*
3893 	 * We shadow a 32 bit page table. This may be a legacy 2-level
3894 	 * or a PAE 3-level page table. In either case we need to be aware that
3895 	 * the shadow page table may be a PAE or a long mode page table.
3896 	 */
3897 	pm_mask = PT_PRESENT_MASK | shadow_me_value;
3898 	if (mmu->root_role.level >= PT64_ROOT_4LEVEL) {
3899 		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3900 
3901 		if (WARN_ON_ONCE(!mmu->pml4_root)) {
3902 			r = -EIO;
3903 			goto out_unlock;
3904 		}
3905 		mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3906 
3907 		if (mmu->root_role.level == PT64_ROOT_5LEVEL) {
3908 			if (WARN_ON_ONCE(!mmu->pml5_root)) {
3909 				r = -EIO;
3910 				goto out_unlock;
3911 			}
3912 			mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask;
3913 		}
3914 	}
3915 
3916 	for (i = 0; i < 4; ++i) {
3917 		WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3918 
3919 		if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) {
3920 			if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3921 				mmu->pae_root[i] = INVALID_PAE_ROOT;
3922 				continue;
3923 			}
3924 			root_gfn = pdptrs[i] >> PAGE_SHIFT;
3925 		}
3926 
3927 		/*
3928 		 * If shadowing 32-bit non-PAE page tables, each PAE page
3929 		 * directory maps one quarter of the guest's non-PAE page
3930 		 * directory. Othwerise each PAE page direct shadows one guest
3931 		 * PAE page directory so that quadrant should be 0.
3932 		 */
3933 		quadrant = (mmu->cpu_role.base.level == PT32_ROOT_LEVEL) ? i : 0;
3934 
3935 		root = mmu_alloc_root(vcpu, root_gfn, quadrant, PT32_ROOT_LEVEL);
3936 		mmu->pae_root[i] = root | pm_mask;
3937 	}
3938 
3939 	if (mmu->root_role.level == PT64_ROOT_5LEVEL)
3940 		mmu->root.hpa = __pa(mmu->pml5_root);
3941 	else if (mmu->root_role.level == PT64_ROOT_4LEVEL)
3942 		mmu->root.hpa = __pa(mmu->pml4_root);
3943 	else
3944 		mmu->root.hpa = __pa(mmu->pae_root);
3945 
3946 set_root_pgd:
3947 	mmu->root.pgd = root_pgd;
3948 out_unlock:
3949 	write_unlock(&vcpu->kvm->mmu_lock);
3950 
3951 	return r;
3952 }
3953 
3954 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
3955 {
3956 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3957 	bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL;
3958 	u64 *pml5_root = NULL;
3959 	u64 *pml4_root = NULL;
3960 	u64 *pae_root;
3961 
3962 	/*
3963 	 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
3964 	 * tables are allocated and initialized at root creation as there is no
3965 	 * equivalent level in the guest's NPT to shadow.  Allocate the tables
3966 	 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3967 	 */
3968 	if (mmu->root_role.direct ||
3969 	    mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL ||
3970 	    mmu->root_role.level < PT64_ROOT_4LEVEL)
3971 		return 0;
3972 
3973 	/*
3974 	 * NPT, the only paging mode that uses this horror, uses a fixed number
3975 	 * of levels for the shadow page tables, e.g. all MMUs are 4-level or
3976 	 * all MMus are 5-level.  Thus, this can safely require that pml5_root
3977 	 * is allocated if the other roots are valid and pml5 is needed, as any
3978 	 * prior MMU would also have required pml5.
3979 	 */
3980 	if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root))
3981 		return 0;
3982 
3983 	/*
3984 	 * The special roots should always be allocated in concert.  Yell and
3985 	 * bail if KVM ends up in a state where only one of the roots is valid.
3986 	 */
3987 	if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root ||
3988 			 (need_pml5 && mmu->pml5_root)))
3989 		return -EIO;
3990 
3991 	/*
3992 	 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
3993 	 * doesn't need to be decrypted.
3994 	 */
3995 	pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3996 	if (!pae_root)
3997 		return -ENOMEM;
3998 
3999 #ifdef CONFIG_X86_64
4000 	pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
4001 	if (!pml4_root)
4002 		goto err_pml4;
4003 
4004 	if (need_pml5) {
4005 		pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
4006 		if (!pml5_root)
4007 			goto err_pml5;
4008 	}
4009 #endif
4010 
4011 	mmu->pae_root = pae_root;
4012 	mmu->pml4_root = pml4_root;
4013 	mmu->pml5_root = pml5_root;
4014 
4015 	return 0;
4016 
4017 #ifdef CONFIG_X86_64
4018 err_pml5:
4019 	free_page((unsigned long)pml4_root);
4020 err_pml4:
4021 	free_page((unsigned long)pae_root);
4022 	return -ENOMEM;
4023 #endif
4024 }
4025 
4026 static bool is_unsync_root(hpa_t root)
4027 {
4028 	struct kvm_mmu_page *sp;
4029 
4030 	if (!VALID_PAGE(root) || kvm_mmu_is_dummy_root(root))
4031 		return false;
4032 
4033 	/*
4034 	 * The read barrier orders the CPU's read of SPTE.W during the page table
4035 	 * walk before the reads of sp->unsync/sp->unsync_children here.
4036 	 *
4037 	 * Even if another CPU was marking the SP as unsync-ed simultaneously,
4038 	 * any guest page table changes are not guaranteed to be visible anyway
4039 	 * until this VCPU issues a TLB flush strictly after those changes are
4040 	 * made.  We only need to ensure that the other CPU sets these flags
4041 	 * before any actual changes to the page tables are made.  The comments
4042 	 * in mmu_try_to_unsync_pages() describe what could go wrong if this
4043 	 * requirement isn't satisfied.
4044 	 */
4045 	smp_rmb();
4046 	sp = root_to_sp(root);
4047 
4048 	/*
4049 	 * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the
4050 	 * PDPTEs for a given PAE root need to be synchronized individually.
4051 	 */
4052 	if (WARN_ON_ONCE(!sp))
4053 		return false;
4054 
4055 	if (sp->unsync || sp->unsync_children)
4056 		return true;
4057 
4058 	return false;
4059 }
4060 
4061 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
4062 {
4063 	int i;
4064 	struct kvm_mmu_page *sp;
4065 
4066 	if (vcpu->arch.mmu->root_role.direct)
4067 		return;
4068 
4069 	if (!VALID_PAGE(vcpu->arch.mmu->root.hpa))
4070 		return;
4071 
4072 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4073 
4074 	if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) {
4075 		hpa_t root = vcpu->arch.mmu->root.hpa;
4076 
4077 		if (!is_unsync_root(root))
4078 			return;
4079 
4080 		sp = root_to_sp(root);
4081 
4082 		write_lock(&vcpu->kvm->mmu_lock);
4083 		mmu_sync_children(vcpu, sp, true);
4084 		write_unlock(&vcpu->kvm->mmu_lock);
4085 		return;
4086 	}
4087 
4088 	write_lock(&vcpu->kvm->mmu_lock);
4089 
4090 	for (i = 0; i < 4; ++i) {
4091 		hpa_t root = vcpu->arch.mmu->pae_root[i];
4092 
4093 		if (IS_VALID_PAE_ROOT(root)) {
4094 			sp = spte_to_child_sp(root);
4095 			mmu_sync_children(vcpu, sp, true);
4096 		}
4097 	}
4098 
4099 	write_unlock(&vcpu->kvm->mmu_lock);
4100 }
4101 
4102 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu)
4103 {
4104 	unsigned long roots_to_free = 0;
4105 	int i;
4106 
4107 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4108 		if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa))
4109 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
4110 
4111 	/* sync prev_roots by simply freeing them */
4112 	kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free);
4113 }
4114 
4115 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4116 				  gpa_t vaddr, u64 access,
4117 				  struct x86_exception *exception)
4118 {
4119 	if (exception)
4120 		exception->error_code = 0;
4121 	return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception);
4122 }
4123 
4124 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
4125 {
4126 	/*
4127 	 * A nested guest cannot use the MMIO cache if it is using nested
4128 	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
4129 	 */
4130 	if (mmu_is_nested(vcpu))
4131 		return false;
4132 
4133 	if (direct)
4134 		return vcpu_match_mmio_gpa(vcpu, addr);
4135 
4136 	return vcpu_match_mmio_gva(vcpu, addr);
4137 }
4138 
4139 /*
4140  * Return the level of the lowest level SPTE added to sptes.
4141  * That SPTE may be non-present.
4142  *
4143  * Must be called between walk_shadow_page_lockless_{begin,end}.
4144  */
4145 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
4146 {
4147 	struct kvm_shadow_walk_iterator iterator;
4148 	int leaf = -1;
4149 	u64 spte;
4150 
4151 	for (shadow_walk_init(&iterator, vcpu, addr),
4152 	     *root_level = iterator.level;
4153 	     shadow_walk_okay(&iterator);
4154 	     __shadow_walk_next(&iterator, spte)) {
4155 		leaf = iterator.level;
4156 		spte = mmu_spte_get_lockless(iterator.sptep);
4157 
4158 		sptes[leaf] = spte;
4159 	}
4160 
4161 	return leaf;
4162 }
4163 
4164 static int get_sptes_lockless(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes,
4165 			      int *root_level)
4166 {
4167 	int leaf;
4168 
4169 	walk_shadow_page_lockless_begin(vcpu);
4170 
4171 	if (is_tdp_mmu_active(vcpu))
4172 		leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, root_level);
4173 	else
4174 		leaf = get_walk(vcpu, addr, sptes, root_level);
4175 
4176 	walk_shadow_page_lockless_end(vcpu);
4177 	return leaf;
4178 }
4179 
4180 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
4181 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
4182 {
4183 	u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
4184 	struct rsvd_bits_validate *rsvd_check;
4185 	int root, leaf, level;
4186 	bool reserved = false;
4187 
4188 	leaf = get_sptes_lockless(vcpu, addr, sptes, &root);
4189 	if (unlikely(leaf < 0)) {
4190 		*sptep = 0ull;
4191 		return reserved;
4192 	}
4193 
4194 	*sptep = sptes[leaf];
4195 
4196 	/*
4197 	 * Skip reserved bits checks on the terminal leaf if it's not a valid
4198 	 * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
4199 	 * design, always have reserved bits set.  The purpose of the checks is
4200 	 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
4201 	 */
4202 	if (!is_shadow_present_pte(sptes[leaf]))
4203 		leaf++;
4204 
4205 	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
4206 
4207 	for (level = root; level >= leaf; level--)
4208 		reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
4209 
4210 	if (reserved) {
4211 		pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
4212 		       __func__, addr);
4213 		for (level = root; level >= leaf; level--)
4214 			pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
4215 			       sptes[level], level,
4216 			       get_rsvd_bits(rsvd_check, sptes[level], level));
4217 	}
4218 
4219 	return reserved;
4220 }
4221 
4222 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
4223 {
4224 	u64 spte;
4225 	bool reserved;
4226 
4227 	if (mmio_info_in_cache(vcpu, addr, direct))
4228 		return RET_PF_EMULATE;
4229 
4230 	reserved = get_mmio_spte(vcpu, addr, &spte);
4231 	if (WARN_ON_ONCE(reserved))
4232 		return -EINVAL;
4233 
4234 	if (is_mmio_spte(vcpu->kvm, spte)) {
4235 		gfn_t gfn = get_mmio_spte_gfn(spte);
4236 		unsigned int access = get_mmio_spte_access(spte);
4237 
4238 		if (!check_mmio_spte(vcpu, spte))
4239 			return RET_PF_INVALID;
4240 
4241 		if (direct)
4242 			addr = 0;
4243 
4244 		trace_handle_mmio_page_fault(addr, gfn, access);
4245 		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
4246 		return RET_PF_EMULATE;
4247 	}
4248 
4249 	/*
4250 	 * If the page table is zapped by other cpus, let CPU fault again on
4251 	 * the address.
4252 	 */
4253 	return RET_PF_RETRY;
4254 }
4255 
4256 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
4257 					 struct kvm_page_fault *fault)
4258 {
4259 	if (unlikely(fault->rsvd))
4260 		return false;
4261 
4262 	if (!fault->present || !fault->write)
4263 		return false;
4264 
4265 	/*
4266 	 * guest is writing the page which is write tracked which can
4267 	 * not be fixed by page fault handler.
4268 	 */
4269 	if (kvm_gfn_is_write_tracked(vcpu->kvm, fault->slot, fault->gfn))
4270 		return true;
4271 
4272 	return false;
4273 }
4274 
4275 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
4276 {
4277 	struct kvm_shadow_walk_iterator iterator;
4278 	u64 spte;
4279 
4280 	walk_shadow_page_lockless_begin(vcpu);
4281 	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
4282 		clear_sp_write_flooding_count(iterator.sptep);
4283 	walk_shadow_page_lockless_end(vcpu);
4284 }
4285 
4286 static u32 alloc_apf_token(struct kvm_vcpu *vcpu)
4287 {
4288 	/* make sure the token value is not 0 */
4289 	u32 id = vcpu->arch.apf.id;
4290 
4291 	if (id << 12 == 0)
4292 		vcpu->arch.apf.id = 1;
4293 
4294 	return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
4295 }
4296 
4297 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu,
4298 				    struct kvm_page_fault *fault)
4299 {
4300 	struct kvm_arch_async_pf arch;
4301 
4302 	arch.token = alloc_apf_token(vcpu);
4303 	arch.gfn = fault->gfn;
4304 	arch.error_code = fault->error_code;
4305 	arch.direct_map = vcpu->arch.mmu->root_role.direct;
4306 	arch.cr3 = kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu);
4307 
4308 	return kvm_setup_async_pf(vcpu, fault->addr,
4309 				  kvm_vcpu_gfn_to_hva(vcpu, fault->gfn), &arch);
4310 }
4311 
4312 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
4313 {
4314 	int r;
4315 
4316 	if (WARN_ON_ONCE(work->arch.error_code & PFERR_PRIVATE_ACCESS))
4317 		return;
4318 
4319 	if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) ||
4320 	      work->wakeup_all)
4321 		return;
4322 
4323 	r = kvm_mmu_reload(vcpu);
4324 	if (unlikely(r))
4325 		return;
4326 
4327 	if (!vcpu->arch.mmu->root_role.direct &&
4328 	      work->arch.cr3 != kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu))
4329 		return;
4330 
4331 	r = kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, work->arch.error_code,
4332 				  true, NULL, NULL);
4333 
4334 	/*
4335 	 * Account fixed page faults, otherwise they'll never be counted, but
4336 	 * ignore stats for all other return times.  Page-ready "faults" aren't
4337 	 * truly spurious and never trigger emulation
4338 	 */
4339 	if (r == RET_PF_FIXED)
4340 		vcpu->stat.pf_fixed++;
4341 }
4342 
4343 static inline u8 kvm_max_level_for_order(int order)
4344 {
4345 	BUILD_BUG_ON(KVM_MAX_HUGEPAGE_LEVEL > PG_LEVEL_1G);
4346 
4347 	KVM_MMU_WARN_ON(order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G) &&
4348 			order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M) &&
4349 			order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K));
4350 
4351 	if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G))
4352 		return PG_LEVEL_1G;
4353 
4354 	if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M))
4355 		return PG_LEVEL_2M;
4356 
4357 	return PG_LEVEL_4K;
4358 }
4359 
4360 static u8 kvm_max_private_mapping_level(struct kvm *kvm, kvm_pfn_t pfn,
4361 					u8 max_level, int gmem_order)
4362 {
4363 	u8 req_max_level;
4364 
4365 	if (max_level == PG_LEVEL_4K)
4366 		return PG_LEVEL_4K;
4367 
4368 	max_level = min(kvm_max_level_for_order(gmem_order), max_level);
4369 	if (max_level == PG_LEVEL_4K)
4370 		return PG_LEVEL_4K;
4371 
4372 	req_max_level = kvm_x86_call(private_max_mapping_level)(kvm, pfn);
4373 	if (req_max_level)
4374 		max_level = min(max_level, req_max_level);
4375 
4376 	return max_level;
4377 }
4378 
4379 static int kvm_faultin_pfn_private(struct kvm_vcpu *vcpu,
4380 				   struct kvm_page_fault *fault)
4381 {
4382 	int max_order, r;
4383 
4384 	if (!kvm_slot_can_be_private(fault->slot)) {
4385 		kvm_mmu_prepare_memory_fault_exit(vcpu, fault);
4386 		return -EFAULT;
4387 	}
4388 
4389 	r = kvm_gmem_get_pfn(vcpu->kvm, fault->slot, fault->gfn, &fault->pfn,
4390 			     &max_order);
4391 	if (r) {
4392 		kvm_mmu_prepare_memory_fault_exit(vcpu, fault);
4393 		return r;
4394 	}
4395 
4396 	fault->map_writable = !(fault->slot->flags & KVM_MEM_READONLY);
4397 	fault->max_level = kvm_max_private_mapping_level(vcpu->kvm, fault->pfn,
4398 							 fault->max_level, max_order);
4399 
4400 	return RET_PF_CONTINUE;
4401 }
4402 
4403 static int __kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4404 {
4405 	bool async;
4406 
4407 	if (fault->is_private)
4408 		return kvm_faultin_pfn_private(vcpu, fault);
4409 
4410 	async = false;
4411 	fault->pfn = __gfn_to_pfn_memslot(fault->slot, fault->gfn, false, false,
4412 					  &async, fault->write,
4413 					  &fault->map_writable, &fault->hva);
4414 	if (!async)
4415 		return RET_PF_CONTINUE; /* *pfn has correct page already */
4416 
4417 	if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) {
4418 		trace_kvm_try_async_get_page(fault->addr, fault->gfn);
4419 		if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) {
4420 			trace_kvm_async_pf_repeated_fault(fault->addr, fault->gfn);
4421 			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4422 			return RET_PF_RETRY;
4423 		} else if (kvm_arch_setup_async_pf(vcpu, fault)) {
4424 			return RET_PF_RETRY;
4425 		}
4426 	}
4427 
4428 	/*
4429 	 * Allow gup to bail on pending non-fatal signals when it's also allowed
4430 	 * to wait for IO.  Note, gup always bails if it is unable to quickly
4431 	 * get a page and a fatal signal, i.e. SIGKILL, is pending.
4432 	 */
4433 	fault->pfn = __gfn_to_pfn_memslot(fault->slot, fault->gfn, false, true,
4434 					  NULL, fault->write,
4435 					  &fault->map_writable, &fault->hva);
4436 	return RET_PF_CONTINUE;
4437 }
4438 
4439 static int kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
4440 			   unsigned int access)
4441 {
4442 	struct kvm_memory_slot *slot = fault->slot;
4443 	int ret;
4444 
4445 	/*
4446 	 * Note that the mmu_invalidate_seq also serves to detect a concurrent
4447 	 * change in attributes.  is_page_fault_stale() will detect an
4448 	 * invalidation relate to fault->fn and resume the guest without
4449 	 * installing a mapping in the page tables.
4450 	 */
4451 	fault->mmu_seq = vcpu->kvm->mmu_invalidate_seq;
4452 	smp_rmb();
4453 
4454 	/*
4455 	 * Now that we have a snapshot of mmu_invalidate_seq we can check for a
4456 	 * private vs. shared mismatch.
4457 	 */
4458 	if (fault->is_private != kvm_mem_is_private(vcpu->kvm, fault->gfn)) {
4459 		kvm_mmu_prepare_memory_fault_exit(vcpu, fault);
4460 		return -EFAULT;
4461 	}
4462 
4463 	if (unlikely(!slot))
4464 		return kvm_handle_noslot_fault(vcpu, fault, access);
4465 
4466 	/*
4467 	 * Retry the page fault if the gfn hit a memslot that is being deleted
4468 	 * or moved.  This ensures any existing SPTEs for the old memslot will
4469 	 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
4470 	 */
4471 	if (slot->flags & KVM_MEMSLOT_INVALID)
4472 		return RET_PF_RETRY;
4473 
4474 	if (slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT) {
4475 		/*
4476 		 * Don't map L1's APIC access page into L2, KVM doesn't support
4477 		 * using APICv/AVIC to accelerate L2 accesses to L1's APIC,
4478 		 * i.e. the access needs to be emulated.  Emulating access to
4479 		 * L1's APIC is also correct if L1 is accelerating L2's own
4480 		 * virtual APIC, but for some reason L1 also maps _L1's_ APIC
4481 		 * into L2.  Note, vcpu_is_mmio_gpa() always treats access to
4482 		 * the APIC as MMIO.  Allow an MMIO SPTE to be created, as KVM
4483 		 * uses different roots for L1 vs. L2, i.e. there is no danger
4484 		 * of breaking APICv/AVIC for L1.
4485 		 */
4486 		if (is_guest_mode(vcpu))
4487 			return kvm_handle_noslot_fault(vcpu, fault, access);
4488 
4489 		/*
4490 		 * If the APIC access page exists but is disabled, go directly
4491 		 * to emulation without caching the MMIO access or creating a
4492 		 * MMIO SPTE.  That way the cache doesn't need to be purged
4493 		 * when the AVIC is re-enabled.
4494 		 */
4495 		if (!kvm_apicv_activated(vcpu->kvm))
4496 			return RET_PF_EMULATE;
4497 	}
4498 
4499 	/*
4500 	 * Check for a relevant mmu_notifier invalidation event before getting
4501 	 * the pfn from the primary MMU, and before acquiring mmu_lock.
4502 	 *
4503 	 * For mmu_lock, if there is an in-progress invalidation and the kernel
4504 	 * allows preemption, the invalidation task may drop mmu_lock and yield
4505 	 * in response to mmu_lock being contended, which is *very* counter-
4506 	 * productive as this vCPU can't actually make forward progress until
4507 	 * the invalidation completes.
4508 	 *
4509 	 * Retrying now can also avoid unnessary lock contention in the primary
4510 	 * MMU, as the primary MMU doesn't necessarily hold a single lock for
4511 	 * the duration of the invalidation, i.e. faulting in a conflicting pfn
4512 	 * can cause the invalidation to take longer by holding locks that are
4513 	 * needed to complete the invalidation.
4514 	 *
4515 	 * Do the pre-check even for non-preemtible kernels, i.e. even if KVM
4516 	 * will never yield mmu_lock in response to contention, as this vCPU is
4517 	 * *guaranteed* to need to retry, i.e. waiting until mmu_lock is held
4518 	 * to detect retry guarantees the worst case latency for the vCPU.
4519 	 */
4520 	if (mmu_invalidate_retry_gfn_unsafe(vcpu->kvm, fault->mmu_seq, fault->gfn))
4521 		return RET_PF_RETRY;
4522 
4523 	ret = __kvm_faultin_pfn(vcpu, fault);
4524 	if (ret != RET_PF_CONTINUE)
4525 		return ret;
4526 
4527 	if (unlikely(is_error_pfn(fault->pfn)))
4528 		return kvm_handle_error_pfn(vcpu, fault);
4529 
4530 	if (WARN_ON_ONCE(!fault->slot || is_noslot_pfn(fault->pfn)))
4531 		return kvm_handle_noslot_fault(vcpu, fault, access);
4532 
4533 	/*
4534 	 * Check again for a relevant mmu_notifier invalidation event purely to
4535 	 * avoid contending mmu_lock.  Most invalidations will be detected by
4536 	 * the previous check, but checking is extremely cheap relative to the
4537 	 * overall cost of failing to detect the invalidation until after
4538 	 * mmu_lock is acquired.
4539 	 */
4540 	if (mmu_invalidate_retry_gfn_unsafe(vcpu->kvm, fault->mmu_seq, fault->gfn)) {
4541 		kvm_release_pfn_clean(fault->pfn);
4542 		return RET_PF_RETRY;
4543 	}
4544 
4545 	return RET_PF_CONTINUE;
4546 }
4547 
4548 /*
4549  * Returns true if the page fault is stale and needs to be retried, i.e. if the
4550  * root was invalidated by a memslot update or a relevant mmu_notifier fired.
4551  */
4552 static bool is_page_fault_stale(struct kvm_vcpu *vcpu,
4553 				struct kvm_page_fault *fault)
4554 {
4555 	struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa);
4556 
4557 	/* Special roots, e.g. pae_root, are not backed by shadow pages. */
4558 	if (sp && is_obsolete_sp(vcpu->kvm, sp))
4559 		return true;
4560 
4561 	/*
4562 	 * Roots without an associated shadow page are considered invalid if
4563 	 * there is a pending request to free obsolete roots.  The request is
4564 	 * only a hint that the current root _may_ be obsolete and needs to be
4565 	 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a
4566 	 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs
4567 	 * to reload even if no vCPU is actively using the root.
4568 	 */
4569 	if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
4570 		return true;
4571 
4572 	/*
4573 	 * Check for a relevant mmu_notifier invalidation event one last time
4574 	 * now that mmu_lock is held, as the "unsafe" checks performed without
4575 	 * holding mmu_lock can get false negatives.
4576 	 */
4577 	return fault->slot &&
4578 	       mmu_invalidate_retry_gfn(vcpu->kvm, fault->mmu_seq, fault->gfn);
4579 }
4580 
4581 static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4582 {
4583 	int r;
4584 
4585 	/* Dummy roots are used only for shadowing bad guest roots. */
4586 	if (WARN_ON_ONCE(kvm_mmu_is_dummy_root(vcpu->arch.mmu->root.hpa)))
4587 		return RET_PF_RETRY;
4588 
4589 	if (page_fault_handle_page_track(vcpu, fault))
4590 		return RET_PF_WRITE_PROTECTED;
4591 
4592 	r = fast_page_fault(vcpu, fault);
4593 	if (r != RET_PF_INVALID)
4594 		return r;
4595 
4596 	r = mmu_topup_memory_caches(vcpu, false);
4597 	if (r)
4598 		return r;
4599 
4600 	r = kvm_faultin_pfn(vcpu, fault, ACC_ALL);
4601 	if (r != RET_PF_CONTINUE)
4602 		return r;
4603 
4604 	r = RET_PF_RETRY;
4605 	write_lock(&vcpu->kvm->mmu_lock);
4606 
4607 	if (is_page_fault_stale(vcpu, fault))
4608 		goto out_unlock;
4609 
4610 	r = make_mmu_pages_available(vcpu);
4611 	if (r)
4612 		goto out_unlock;
4613 
4614 	r = direct_map(vcpu, fault);
4615 
4616 out_unlock:
4617 	write_unlock(&vcpu->kvm->mmu_lock);
4618 	kvm_release_pfn_clean(fault->pfn);
4619 	return r;
4620 }
4621 
4622 static int nonpaging_page_fault(struct kvm_vcpu *vcpu,
4623 				struct kvm_page_fault *fault)
4624 {
4625 	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4626 	fault->max_level = PG_LEVEL_2M;
4627 	return direct_page_fault(vcpu, fault);
4628 }
4629 
4630 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4631 				u64 fault_address, char *insn, int insn_len)
4632 {
4633 	int r = 1;
4634 	u32 flags = vcpu->arch.apf.host_apf_flags;
4635 
4636 #ifndef CONFIG_X86_64
4637 	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
4638 	if (WARN_ON_ONCE(fault_address >> 32))
4639 		return -EFAULT;
4640 #endif
4641 	/*
4642 	 * Legacy #PF exception only have a 32-bit error code.  Simply drop the
4643 	 * upper bits as KVM doesn't use them for #PF (because they are never
4644 	 * set), and to ensure there are no collisions with KVM-defined bits.
4645 	 */
4646 	if (WARN_ON_ONCE(error_code >> 32))
4647 		error_code = lower_32_bits(error_code);
4648 
4649 	/*
4650 	 * Restrict KVM-defined flags to bits 63:32 so that it's impossible for
4651 	 * them to conflict with #PF error codes, which are limited to 32 bits.
4652 	 */
4653 	BUILD_BUG_ON(lower_32_bits(PFERR_SYNTHETIC_MASK));
4654 
4655 	vcpu->arch.l1tf_flush_l1d = true;
4656 	if (!flags) {
4657 		trace_kvm_page_fault(vcpu, fault_address, error_code);
4658 
4659 		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4660 				insn_len);
4661 	} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
4662 		vcpu->arch.apf.host_apf_flags = 0;
4663 		local_irq_disable();
4664 		kvm_async_pf_task_wait_schedule(fault_address);
4665 		local_irq_enable();
4666 	} else {
4667 		WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
4668 	}
4669 
4670 	return r;
4671 }
4672 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4673 
4674 #ifdef CONFIG_X86_64
4675 static int kvm_tdp_mmu_page_fault(struct kvm_vcpu *vcpu,
4676 				  struct kvm_page_fault *fault)
4677 {
4678 	int r;
4679 
4680 	if (page_fault_handle_page_track(vcpu, fault))
4681 		return RET_PF_WRITE_PROTECTED;
4682 
4683 	r = fast_page_fault(vcpu, fault);
4684 	if (r != RET_PF_INVALID)
4685 		return r;
4686 
4687 	r = mmu_topup_memory_caches(vcpu, false);
4688 	if (r)
4689 		return r;
4690 
4691 	r = kvm_faultin_pfn(vcpu, fault, ACC_ALL);
4692 	if (r != RET_PF_CONTINUE)
4693 		return r;
4694 
4695 	r = RET_PF_RETRY;
4696 	read_lock(&vcpu->kvm->mmu_lock);
4697 
4698 	if (is_page_fault_stale(vcpu, fault))
4699 		goto out_unlock;
4700 
4701 	r = kvm_tdp_mmu_map(vcpu, fault);
4702 
4703 out_unlock:
4704 	read_unlock(&vcpu->kvm->mmu_lock);
4705 	kvm_release_pfn_clean(fault->pfn);
4706 	return r;
4707 }
4708 #endif
4709 
4710 bool kvm_mmu_may_ignore_guest_pat(void)
4711 {
4712 	/*
4713 	 * When EPT is enabled (shadow_memtype_mask is non-zero), and the VM
4714 	 * has non-coherent DMA (DMA doesn't snoop CPU caches), KVM's ABI is to
4715 	 * honor the memtype from the guest's PAT so that guest accesses to
4716 	 * memory that is DMA'd aren't cached against the guest's wishes.  As a
4717 	 * result, KVM _may_ ignore guest PAT, whereas without non-coherent DMA,
4718 	 * KVM _always_ ignores guest PAT (when EPT is enabled).
4719 	 */
4720 	return shadow_memtype_mask;
4721 }
4722 
4723 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4724 {
4725 #ifdef CONFIG_X86_64
4726 	if (tdp_mmu_enabled)
4727 		return kvm_tdp_mmu_page_fault(vcpu, fault);
4728 #endif
4729 
4730 	return direct_page_fault(vcpu, fault);
4731 }
4732 
4733 static int kvm_tdp_map_page(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code,
4734 			    u8 *level)
4735 {
4736 	int r;
4737 
4738 	/*
4739 	 * Restrict to TDP page fault, since that's the only case where the MMU
4740 	 * is indexed by GPA.
4741 	 */
4742 	if (vcpu->arch.mmu->page_fault != kvm_tdp_page_fault)
4743 		return -EOPNOTSUPP;
4744 
4745 	do {
4746 		if (signal_pending(current))
4747 			return -EINTR;
4748 		cond_resched();
4749 		r = kvm_mmu_do_page_fault(vcpu, gpa, error_code, true, NULL, level);
4750 	} while (r == RET_PF_RETRY);
4751 
4752 	if (r < 0)
4753 		return r;
4754 
4755 	switch (r) {
4756 	case RET_PF_FIXED:
4757 	case RET_PF_SPURIOUS:
4758 	case RET_PF_WRITE_PROTECTED:
4759 		return 0;
4760 
4761 	case RET_PF_EMULATE:
4762 		return -ENOENT;
4763 
4764 	case RET_PF_RETRY:
4765 	case RET_PF_CONTINUE:
4766 	case RET_PF_INVALID:
4767 	default:
4768 		WARN_ONCE(1, "could not fix page fault during prefault");
4769 		return -EIO;
4770 	}
4771 }
4772 
4773 long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
4774 				    struct kvm_pre_fault_memory *range)
4775 {
4776 	u64 error_code = PFERR_GUEST_FINAL_MASK;
4777 	u8 level = PG_LEVEL_4K;
4778 	u64 end;
4779 	int r;
4780 
4781 	if (!vcpu->kvm->arch.pre_fault_allowed)
4782 		return -EOPNOTSUPP;
4783 
4784 	/*
4785 	 * reload is efficient when called repeatedly, so we can do it on
4786 	 * every iteration.
4787 	 */
4788 	r = kvm_mmu_reload(vcpu);
4789 	if (r)
4790 		return r;
4791 
4792 	if (kvm_arch_has_private_mem(vcpu->kvm) &&
4793 	    kvm_mem_is_private(vcpu->kvm, gpa_to_gfn(range->gpa)))
4794 		error_code |= PFERR_PRIVATE_ACCESS;
4795 
4796 	/*
4797 	 * Shadow paging uses GVA for kvm page fault, so restrict to
4798 	 * two-dimensional paging.
4799 	 */
4800 	r = kvm_tdp_map_page(vcpu, range->gpa, error_code, &level);
4801 	if (r < 0)
4802 		return r;
4803 
4804 	/*
4805 	 * If the mapping that covers range->gpa can use a huge page, it
4806 	 * may start below it or end after range->gpa + range->size.
4807 	 */
4808 	end = (range->gpa & KVM_HPAGE_MASK(level)) + KVM_HPAGE_SIZE(level);
4809 	return min(range->size, end - range->gpa);
4810 }
4811 
4812 static void nonpaging_init_context(struct kvm_mmu *context)
4813 {
4814 	context->page_fault = nonpaging_page_fault;
4815 	context->gva_to_gpa = nonpaging_gva_to_gpa;
4816 	context->sync_spte = NULL;
4817 }
4818 
4819 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
4820 				  union kvm_mmu_page_role role)
4821 {
4822 	struct kvm_mmu_page *sp;
4823 
4824 	if (!VALID_PAGE(root->hpa))
4825 		return false;
4826 
4827 	if (!role.direct && pgd != root->pgd)
4828 		return false;
4829 
4830 	sp = root_to_sp(root->hpa);
4831 	if (WARN_ON_ONCE(!sp))
4832 		return false;
4833 
4834 	return role.word == sp->role.word;
4835 }
4836 
4837 /*
4838  * Find out if a previously cached root matching the new pgd/role is available,
4839  * and insert the current root as the MRU in the cache.
4840  * If a matching root is found, it is assigned to kvm_mmu->root and
4841  * true is returned.
4842  * If no match is found, kvm_mmu->root is left invalid, the LRU root is
4843  * evicted to make room for the current root, and false is returned.
4844  */
4845 static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu,
4846 					      gpa_t new_pgd,
4847 					      union kvm_mmu_page_role new_role)
4848 {
4849 	uint i;
4850 
4851 	if (is_root_usable(&mmu->root, new_pgd, new_role))
4852 		return true;
4853 
4854 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4855 		/*
4856 		 * The swaps end up rotating the cache like this:
4857 		 *   C   0 1 2 3   (on entry to the function)
4858 		 *   0   C 1 2 3
4859 		 *   1   C 0 2 3
4860 		 *   2   C 0 1 3
4861 		 *   3   C 0 1 2   (on exit from the loop)
4862 		 */
4863 		swap(mmu->root, mmu->prev_roots[i]);
4864 		if (is_root_usable(&mmu->root, new_pgd, new_role))
4865 			return true;
4866 	}
4867 
4868 	kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
4869 	return false;
4870 }
4871 
4872 /*
4873  * Find out if a previously cached root matching the new pgd/role is available.
4874  * On entry, mmu->root is invalid.
4875  * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry
4876  * of the cache becomes invalid, and true is returned.
4877  * If no match is found, kvm_mmu->root is left invalid and false is returned.
4878  */
4879 static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu,
4880 					     gpa_t new_pgd,
4881 					     union kvm_mmu_page_role new_role)
4882 {
4883 	uint i;
4884 
4885 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4886 		if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role))
4887 			goto hit;
4888 
4889 	return false;
4890 
4891 hit:
4892 	swap(mmu->root, mmu->prev_roots[i]);
4893 	/* Bubble up the remaining roots.  */
4894 	for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++)
4895 		mmu->prev_roots[i] = mmu->prev_roots[i + 1];
4896 	mmu->prev_roots[i].hpa = INVALID_PAGE;
4897 	return true;
4898 }
4899 
4900 static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu,
4901 			    gpa_t new_pgd, union kvm_mmu_page_role new_role)
4902 {
4903 	/*
4904 	 * Limit reuse to 64-bit hosts+VMs without "special" roots in order to
4905 	 * avoid having to deal with PDPTEs and other complexities.
4906 	 */
4907 	if (VALID_PAGE(mmu->root.hpa) && !root_to_sp(mmu->root.hpa))
4908 		kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
4909 
4910 	if (VALID_PAGE(mmu->root.hpa))
4911 		return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role);
4912 	else
4913 		return cached_root_find_without_current(kvm, mmu, new_pgd, new_role);
4914 }
4915 
4916 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
4917 {
4918 	struct kvm_mmu *mmu = vcpu->arch.mmu;
4919 	union kvm_mmu_page_role new_role = mmu->root_role;
4920 
4921 	/*
4922 	 * Return immediately if no usable root was found, kvm_mmu_reload()
4923 	 * will establish a valid root prior to the next VM-Enter.
4924 	 */
4925 	if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role))
4926 		return;
4927 
4928 	/*
4929 	 * It's possible that the cached previous root page is obsolete because
4930 	 * of a change in the MMU generation number. However, changing the
4931 	 * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS,
4932 	 * which will free the root set here and allocate a new one.
4933 	 */
4934 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
4935 
4936 	if (force_flush_and_sync_on_reuse) {
4937 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4938 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4939 	}
4940 
4941 	/*
4942 	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
4943 	 * switching to a new CR3, that GVA->GPA mapping may no longer be
4944 	 * valid. So clear any cached MMIO info even when we don't need to sync
4945 	 * the shadow page tables.
4946 	 */
4947 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4948 
4949 	/*
4950 	 * If this is a direct root page, it doesn't have a write flooding
4951 	 * count. Otherwise, clear the write flooding count.
4952 	 */
4953 	if (!new_role.direct) {
4954 		struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa);
4955 
4956 		if (!WARN_ON_ONCE(!sp))
4957 			__clear_sp_write_flooding_count(sp);
4958 	}
4959 }
4960 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4961 
4962 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4963 			   unsigned int access)
4964 {
4965 	if (unlikely(is_mmio_spte(vcpu->kvm, *sptep))) {
4966 		if (gfn != get_mmio_spte_gfn(*sptep)) {
4967 			mmu_spte_clear_no_track(sptep);
4968 			return true;
4969 		}
4970 
4971 		mark_mmio_spte(vcpu, sptep, gfn, access);
4972 		return true;
4973 	}
4974 
4975 	return false;
4976 }
4977 
4978 #define PTTYPE_EPT 18 /* arbitrary */
4979 #define PTTYPE PTTYPE_EPT
4980 #include "paging_tmpl.h"
4981 #undef PTTYPE
4982 
4983 #define PTTYPE 64
4984 #include "paging_tmpl.h"
4985 #undef PTTYPE
4986 
4987 #define PTTYPE 32
4988 #include "paging_tmpl.h"
4989 #undef PTTYPE
4990 
4991 static void __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
4992 				    u64 pa_bits_rsvd, int level, bool nx,
4993 				    bool gbpages, bool pse, bool amd)
4994 {
4995 	u64 gbpages_bit_rsvd = 0;
4996 	u64 nonleaf_bit8_rsvd = 0;
4997 	u64 high_bits_rsvd;
4998 
4999 	rsvd_check->bad_mt_xwr = 0;
5000 
5001 	if (!gbpages)
5002 		gbpages_bit_rsvd = rsvd_bits(7, 7);
5003 
5004 	if (level == PT32E_ROOT_LEVEL)
5005 		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
5006 	else
5007 		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
5008 
5009 	/* Note, NX doesn't exist in PDPTEs, this is handled below. */
5010 	if (!nx)
5011 		high_bits_rsvd |= rsvd_bits(63, 63);
5012 
5013 	/*
5014 	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
5015 	 * leaf entries) on AMD CPUs only.
5016 	 */
5017 	if (amd)
5018 		nonleaf_bit8_rsvd = rsvd_bits(8, 8);
5019 
5020 	switch (level) {
5021 	case PT32_ROOT_LEVEL:
5022 		/* no rsvd bits for 2 level 4K page table entries */
5023 		rsvd_check->rsvd_bits_mask[0][1] = 0;
5024 		rsvd_check->rsvd_bits_mask[0][0] = 0;
5025 		rsvd_check->rsvd_bits_mask[1][0] =
5026 			rsvd_check->rsvd_bits_mask[0][0];
5027 
5028 		if (!pse) {
5029 			rsvd_check->rsvd_bits_mask[1][1] = 0;
5030 			break;
5031 		}
5032 
5033 		if (is_cpuid_PSE36())
5034 			/* 36bits PSE 4MB page */
5035 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
5036 		else
5037 			/* 32 bits PSE 4MB page */
5038 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
5039 		break;
5040 	case PT32E_ROOT_LEVEL:
5041 		rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
5042 						   high_bits_rsvd |
5043 						   rsvd_bits(5, 8) |
5044 						   rsvd_bits(1, 2);	/* PDPTE */
5045 		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;	/* PDE */
5046 		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;	/* PTE */
5047 		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
5048 						   rsvd_bits(13, 20);	/* large page */
5049 		rsvd_check->rsvd_bits_mask[1][0] =
5050 			rsvd_check->rsvd_bits_mask[0][0];
5051 		break;
5052 	case PT64_ROOT_5LEVEL:
5053 		rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
5054 						   nonleaf_bit8_rsvd |
5055 						   rsvd_bits(7, 7);
5056 		rsvd_check->rsvd_bits_mask[1][4] =
5057 			rsvd_check->rsvd_bits_mask[0][4];
5058 		fallthrough;
5059 	case PT64_ROOT_4LEVEL:
5060 		rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
5061 						   nonleaf_bit8_rsvd |
5062 						   rsvd_bits(7, 7);
5063 		rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
5064 						   gbpages_bit_rsvd;
5065 		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
5066 		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
5067 		rsvd_check->rsvd_bits_mask[1][3] =
5068 			rsvd_check->rsvd_bits_mask[0][3];
5069 		rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
5070 						   gbpages_bit_rsvd |
5071 						   rsvd_bits(13, 29);
5072 		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
5073 						   rsvd_bits(13, 20); /* large page */
5074 		rsvd_check->rsvd_bits_mask[1][0] =
5075 			rsvd_check->rsvd_bits_mask[0][0];
5076 		break;
5077 	}
5078 }
5079 
5080 static void reset_guest_rsvds_bits_mask(struct kvm_vcpu *vcpu,
5081 					struct kvm_mmu *context)
5082 {
5083 	__reset_rsvds_bits_mask(&context->guest_rsvd_check,
5084 				vcpu->arch.reserved_gpa_bits,
5085 				context->cpu_role.base.level, is_efer_nx(context),
5086 				guest_can_use(vcpu, X86_FEATURE_GBPAGES),
5087 				is_cr4_pse(context),
5088 				guest_cpuid_is_amd_compatible(vcpu));
5089 }
5090 
5091 static void __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
5092 					u64 pa_bits_rsvd, bool execonly,
5093 					int huge_page_level)
5094 {
5095 	u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
5096 	u64 large_1g_rsvd = 0, large_2m_rsvd = 0;
5097 	u64 bad_mt_xwr;
5098 
5099 	if (huge_page_level < PG_LEVEL_1G)
5100 		large_1g_rsvd = rsvd_bits(7, 7);
5101 	if (huge_page_level < PG_LEVEL_2M)
5102 		large_2m_rsvd = rsvd_bits(7, 7);
5103 
5104 	rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
5105 	rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
5106 	rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd;
5107 	rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd;
5108 	rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
5109 
5110 	/* large page */
5111 	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
5112 	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
5113 	rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd;
5114 	rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd;
5115 	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
5116 
5117 	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
5118 	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
5119 	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
5120 	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
5121 	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
5122 	if (!execonly) {
5123 		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
5124 		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
5125 	}
5126 	rsvd_check->bad_mt_xwr = bad_mt_xwr;
5127 }
5128 
5129 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
5130 		struct kvm_mmu *context, bool execonly, int huge_page_level)
5131 {
5132 	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
5133 				    vcpu->arch.reserved_gpa_bits, execonly,
5134 				    huge_page_level);
5135 }
5136 
5137 static inline u64 reserved_hpa_bits(void)
5138 {
5139 	return rsvd_bits(kvm_host.maxphyaddr, 63);
5140 }
5141 
5142 /*
5143  * the page table on host is the shadow page table for the page
5144  * table in guest or amd nested guest, its mmu features completely
5145  * follow the features in guest.
5146  */
5147 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
5148 					struct kvm_mmu *context)
5149 {
5150 	/* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
5151 	bool is_amd = true;
5152 	/* KVM doesn't use 2-level page tables for the shadow MMU. */
5153 	bool is_pse = false;
5154 	struct rsvd_bits_validate *shadow_zero_check;
5155 	int i;
5156 
5157 	WARN_ON_ONCE(context->root_role.level < PT32E_ROOT_LEVEL);
5158 
5159 	shadow_zero_check = &context->shadow_zero_check;
5160 	__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
5161 				context->root_role.level,
5162 				context->root_role.efer_nx,
5163 				guest_can_use(vcpu, X86_FEATURE_GBPAGES),
5164 				is_pse, is_amd);
5165 
5166 	if (!shadow_me_mask)
5167 		return;
5168 
5169 	for (i = context->root_role.level; --i >= 0;) {
5170 		/*
5171 		 * So far shadow_me_value is a constant during KVM's life
5172 		 * time.  Bits in shadow_me_value are allowed to be set.
5173 		 * Bits in shadow_me_mask but not in shadow_me_value are
5174 		 * not allowed to be set.
5175 		 */
5176 		shadow_zero_check->rsvd_bits_mask[0][i] |= shadow_me_mask;
5177 		shadow_zero_check->rsvd_bits_mask[1][i] |= shadow_me_mask;
5178 		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_value;
5179 		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_value;
5180 	}
5181 
5182 }
5183 
5184 static inline bool boot_cpu_is_amd(void)
5185 {
5186 	WARN_ON_ONCE(!tdp_enabled);
5187 	return shadow_x_mask == 0;
5188 }
5189 
5190 /*
5191  * the direct page table on host, use as much mmu features as
5192  * possible, however, kvm currently does not do execution-protection.
5193  */
5194 static void reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context)
5195 {
5196 	struct rsvd_bits_validate *shadow_zero_check;
5197 	int i;
5198 
5199 	shadow_zero_check = &context->shadow_zero_check;
5200 
5201 	if (boot_cpu_is_amd())
5202 		__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
5203 					context->root_role.level, true,
5204 					boot_cpu_has(X86_FEATURE_GBPAGES),
5205 					false, true);
5206 	else
5207 		__reset_rsvds_bits_mask_ept(shadow_zero_check,
5208 					    reserved_hpa_bits(), false,
5209 					    max_huge_page_level);
5210 
5211 	if (!shadow_me_mask)
5212 		return;
5213 
5214 	for (i = context->root_role.level; --i >= 0;) {
5215 		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
5216 		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
5217 	}
5218 }
5219 
5220 /*
5221  * as the comments in reset_shadow_zero_bits_mask() except it
5222  * is the shadow page table for intel nested guest.
5223  */
5224 static void
5225 reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly)
5226 {
5227 	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
5228 				    reserved_hpa_bits(), execonly,
5229 				    max_huge_page_level);
5230 }
5231 
5232 #define BYTE_MASK(access) \
5233 	((1 & (access) ? 2 : 0) | \
5234 	 (2 & (access) ? 4 : 0) | \
5235 	 (3 & (access) ? 8 : 0) | \
5236 	 (4 & (access) ? 16 : 0) | \
5237 	 (5 & (access) ? 32 : 0) | \
5238 	 (6 & (access) ? 64 : 0) | \
5239 	 (7 & (access) ? 128 : 0))
5240 
5241 
5242 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
5243 {
5244 	unsigned byte;
5245 
5246 	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
5247 	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
5248 	const u8 u = BYTE_MASK(ACC_USER_MASK);
5249 
5250 	bool cr4_smep = is_cr4_smep(mmu);
5251 	bool cr4_smap = is_cr4_smap(mmu);
5252 	bool cr0_wp = is_cr0_wp(mmu);
5253 	bool efer_nx = is_efer_nx(mmu);
5254 
5255 	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
5256 		unsigned pfec = byte << 1;
5257 
5258 		/*
5259 		 * Each "*f" variable has a 1 bit for each UWX value
5260 		 * that causes a fault with the given PFEC.
5261 		 */
5262 
5263 		/* Faults from writes to non-writable pages */
5264 		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
5265 		/* Faults from user mode accesses to supervisor pages */
5266 		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
5267 		/* Faults from fetches of non-executable pages*/
5268 		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
5269 		/* Faults from kernel mode fetches of user pages */
5270 		u8 smepf = 0;
5271 		/* Faults from kernel mode accesses of user pages */
5272 		u8 smapf = 0;
5273 
5274 		if (!ept) {
5275 			/* Faults from kernel mode accesses to user pages */
5276 			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
5277 
5278 			/* Not really needed: !nx will cause pte.nx to fault */
5279 			if (!efer_nx)
5280 				ff = 0;
5281 
5282 			/* Allow supervisor writes if !cr0.wp */
5283 			if (!cr0_wp)
5284 				wf = (pfec & PFERR_USER_MASK) ? wf : 0;
5285 
5286 			/* Disallow supervisor fetches of user code if cr4.smep */
5287 			if (cr4_smep)
5288 				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
5289 
5290 			/*
5291 			 * SMAP:kernel-mode data accesses from user-mode
5292 			 * mappings should fault. A fault is considered
5293 			 * as a SMAP violation if all of the following
5294 			 * conditions are true:
5295 			 *   - X86_CR4_SMAP is set in CR4
5296 			 *   - A user page is accessed
5297 			 *   - The access is not a fetch
5298 			 *   - The access is supervisor mode
5299 			 *   - If implicit supervisor access or X86_EFLAGS_AC is clear
5300 			 *
5301 			 * Here, we cover the first four conditions.
5302 			 * The fifth is computed dynamically in permission_fault();
5303 			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
5304 			 * *not* subject to SMAP restrictions.
5305 			 */
5306 			if (cr4_smap)
5307 				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
5308 		}
5309 
5310 		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
5311 	}
5312 }
5313 
5314 /*
5315 * PKU is an additional mechanism by which the paging controls access to
5316 * user-mode addresses based on the value in the PKRU register.  Protection
5317 * key violations are reported through a bit in the page fault error code.
5318 * Unlike other bits of the error code, the PK bit is not known at the
5319 * call site of e.g. gva_to_gpa; it must be computed directly in
5320 * permission_fault based on two bits of PKRU, on some machine state (CR4,
5321 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
5322 *
5323 * In particular the following conditions come from the error code, the
5324 * page tables and the machine state:
5325 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
5326 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
5327 * - PK is always zero if U=0 in the page tables
5328 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
5329 *
5330 * The PKRU bitmask caches the result of these four conditions.  The error
5331 * code (minus the P bit) and the page table's U bit form an index into the
5332 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
5333 * with the two bits of the PKRU register corresponding to the protection key.
5334 * For the first three conditions above the bits will be 00, thus masking
5335 * away both AD and WD.  For all reads or if the last condition holds, WD
5336 * only will be masked away.
5337 */
5338 static void update_pkru_bitmask(struct kvm_mmu *mmu)
5339 {
5340 	unsigned bit;
5341 	bool wp;
5342 
5343 	mmu->pkru_mask = 0;
5344 
5345 	if (!is_cr4_pke(mmu))
5346 		return;
5347 
5348 	wp = is_cr0_wp(mmu);
5349 
5350 	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
5351 		unsigned pfec, pkey_bits;
5352 		bool check_pkey, check_write, ff, uf, wf, pte_user;
5353 
5354 		pfec = bit << 1;
5355 		ff = pfec & PFERR_FETCH_MASK;
5356 		uf = pfec & PFERR_USER_MASK;
5357 		wf = pfec & PFERR_WRITE_MASK;
5358 
5359 		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
5360 		pte_user = pfec & PFERR_RSVD_MASK;
5361 
5362 		/*
5363 		 * Only need to check the access which is not an
5364 		 * instruction fetch and is to a user page.
5365 		 */
5366 		check_pkey = (!ff && pte_user);
5367 		/*
5368 		 * write access is controlled by PKRU if it is a
5369 		 * user access or CR0.WP = 1.
5370 		 */
5371 		check_write = check_pkey && wf && (uf || wp);
5372 
5373 		/* PKRU.AD stops both read and write access. */
5374 		pkey_bits = !!check_pkey;
5375 		/* PKRU.WD stops write access. */
5376 		pkey_bits |= (!!check_write) << 1;
5377 
5378 		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
5379 	}
5380 }
5381 
5382 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
5383 					struct kvm_mmu *mmu)
5384 {
5385 	if (!is_cr0_pg(mmu))
5386 		return;
5387 
5388 	reset_guest_rsvds_bits_mask(vcpu, mmu);
5389 	update_permission_bitmask(mmu, false);
5390 	update_pkru_bitmask(mmu);
5391 }
5392 
5393 static void paging64_init_context(struct kvm_mmu *context)
5394 {
5395 	context->page_fault = paging64_page_fault;
5396 	context->gva_to_gpa = paging64_gva_to_gpa;
5397 	context->sync_spte = paging64_sync_spte;
5398 }
5399 
5400 static void paging32_init_context(struct kvm_mmu *context)
5401 {
5402 	context->page_fault = paging32_page_fault;
5403 	context->gva_to_gpa = paging32_gva_to_gpa;
5404 	context->sync_spte = paging32_sync_spte;
5405 }
5406 
5407 static union kvm_cpu_role kvm_calc_cpu_role(struct kvm_vcpu *vcpu,
5408 					    const struct kvm_mmu_role_regs *regs)
5409 {
5410 	union kvm_cpu_role role = {0};
5411 
5412 	role.base.access = ACC_ALL;
5413 	role.base.smm = is_smm(vcpu);
5414 	role.base.guest_mode = is_guest_mode(vcpu);
5415 	role.ext.valid = 1;
5416 
5417 	if (!____is_cr0_pg(regs)) {
5418 		role.base.direct = 1;
5419 		return role;
5420 	}
5421 
5422 	role.base.efer_nx = ____is_efer_nx(regs);
5423 	role.base.cr0_wp = ____is_cr0_wp(regs);
5424 	role.base.smep_andnot_wp = ____is_cr4_smep(regs) && !____is_cr0_wp(regs);
5425 	role.base.smap_andnot_wp = ____is_cr4_smap(regs) && !____is_cr0_wp(regs);
5426 	role.base.has_4_byte_gpte = !____is_cr4_pae(regs);
5427 
5428 	if (____is_efer_lma(regs))
5429 		role.base.level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL
5430 							: PT64_ROOT_4LEVEL;
5431 	else if (____is_cr4_pae(regs))
5432 		role.base.level = PT32E_ROOT_LEVEL;
5433 	else
5434 		role.base.level = PT32_ROOT_LEVEL;
5435 
5436 	role.ext.cr4_smep = ____is_cr4_smep(regs);
5437 	role.ext.cr4_smap = ____is_cr4_smap(regs);
5438 	role.ext.cr4_pse = ____is_cr4_pse(regs);
5439 
5440 	/* PKEY and LA57 are active iff long mode is active. */
5441 	role.ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
5442 	role.ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
5443 	role.ext.efer_lma = ____is_efer_lma(regs);
5444 	return role;
5445 }
5446 
5447 void __kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu,
5448 					struct kvm_mmu *mmu)
5449 {
5450 	const bool cr0_wp = kvm_is_cr0_bit_set(vcpu, X86_CR0_WP);
5451 
5452 	BUILD_BUG_ON((KVM_MMU_CR0_ROLE_BITS & KVM_POSSIBLE_CR0_GUEST_BITS) != X86_CR0_WP);
5453 	BUILD_BUG_ON((KVM_MMU_CR4_ROLE_BITS & KVM_POSSIBLE_CR4_GUEST_BITS));
5454 
5455 	if (is_cr0_wp(mmu) == cr0_wp)
5456 		return;
5457 
5458 	mmu->cpu_role.base.cr0_wp = cr0_wp;
5459 	reset_guest_paging_metadata(vcpu, mmu);
5460 }
5461 
5462 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
5463 {
5464 	/* tdp_root_level is architecture forced level, use it if nonzero */
5465 	if (tdp_root_level)
5466 		return tdp_root_level;
5467 
5468 	/* Use 5-level TDP if and only if it's useful/necessary. */
5469 	if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
5470 		return 4;
5471 
5472 	return max_tdp_level;
5473 }
5474 
5475 u8 kvm_mmu_get_max_tdp_level(void)
5476 {
5477 	return tdp_root_level ? tdp_root_level : max_tdp_level;
5478 }
5479 
5480 static union kvm_mmu_page_role
5481 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
5482 				union kvm_cpu_role cpu_role)
5483 {
5484 	union kvm_mmu_page_role role = {0};
5485 
5486 	role.access = ACC_ALL;
5487 	role.cr0_wp = true;
5488 	role.efer_nx = true;
5489 	role.smm = cpu_role.base.smm;
5490 	role.guest_mode = cpu_role.base.guest_mode;
5491 	role.ad_disabled = !kvm_ad_enabled();
5492 	role.level = kvm_mmu_get_tdp_level(vcpu);
5493 	role.direct = true;
5494 	role.has_4_byte_gpte = false;
5495 
5496 	return role;
5497 }
5498 
5499 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu,
5500 			     union kvm_cpu_role cpu_role)
5501 {
5502 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
5503 	union kvm_mmu_page_role root_role = kvm_calc_tdp_mmu_root_page_role(vcpu, cpu_role);
5504 
5505 	if (cpu_role.as_u64 == context->cpu_role.as_u64 &&
5506 	    root_role.word == context->root_role.word)
5507 		return;
5508 
5509 	context->cpu_role.as_u64 = cpu_role.as_u64;
5510 	context->root_role.word = root_role.word;
5511 	context->page_fault = kvm_tdp_page_fault;
5512 	context->sync_spte = NULL;
5513 	context->get_guest_pgd = get_guest_cr3;
5514 	context->get_pdptr = kvm_pdptr_read;
5515 	context->inject_page_fault = kvm_inject_page_fault;
5516 
5517 	if (!is_cr0_pg(context))
5518 		context->gva_to_gpa = nonpaging_gva_to_gpa;
5519 	else if (is_cr4_pae(context))
5520 		context->gva_to_gpa = paging64_gva_to_gpa;
5521 	else
5522 		context->gva_to_gpa = paging32_gva_to_gpa;
5523 
5524 	reset_guest_paging_metadata(vcpu, context);
5525 	reset_tdp_shadow_zero_bits_mask(context);
5526 }
5527 
5528 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
5529 				    union kvm_cpu_role cpu_role,
5530 				    union kvm_mmu_page_role root_role)
5531 {
5532 	if (cpu_role.as_u64 == context->cpu_role.as_u64 &&
5533 	    root_role.word == context->root_role.word)
5534 		return;
5535 
5536 	context->cpu_role.as_u64 = cpu_role.as_u64;
5537 	context->root_role.word = root_role.word;
5538 
5539 	if (!is_cr0_pg(context))
5540 		nonpaging_init_context(context);
5541 	else if (is_cr4_pae(context))
5542 		paging64_init_context(context);
5543 	else
5544 		paging32_init_context(context);
5545 
5546 	reset_guest_paging_metadata(vcpu, context);
5547 	reset_shadow_zero_bits_mask(vcpu, context);
5548 }
5549 
5550 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
5551 				union kvm_cpu_role cpu_role)
5552 {
5553 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
5554 	union kvm_mmu_page_role root_role;
5555 
5556 	root_role = cpu_role.base;
5557 
5558 	/* KVM uses PAE paging whenever the guest isn't using 64-bit paging. */
5559 	root_role.level = max_t(u32, root_role.level, PT32E_ROOT_LEVEL);
5560 
5561 	/*
5562 	 * KVM forces EFER.NX=1 when TDP is disabled, reflect it in the MMU role.
5563 	 * KVM uses NX when TDP is disabled to handle a variety of scenarios,
5564 	 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
5565 	 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
5566 	 * The iTLB multi-hit workaround can be toggled at any time, so assume
5567 	 * NX can be used by any non-nested shadow MMU to avoid having to reset
5568 	 * MMU contexts.
5569 	 */
5570 	root_role.efer_nx = true;
5571 
5572 	shadow_mmu_init_context(vcpu, context, cpu_role, root_role);
5573 }
5574 
5575 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
5576 			     unsigned long cr4, u64 efer, gpa_t nested_cr3)
5577 {
5578 	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
5579 	struct kvm_mmu_role_regs regs = {
5580 		.cr0 = cr0,
5581 		.cr4 = cr4 & ~X86_CR4_PKE,
5582 		.efer = efer,
5583 	};
5584 	union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, &regs);
5585 	union kvm_mmu_page_role root_role;
5586 
5587 	/* NPT requires CR0.PG=1. */
5588 	WARN_ON_ONCE(cpu_role.base.direct);
5589 
5590 	root_role = cpu_role.base;
5591 	root_role.level = kvm_mmu_get_tdp_level(vcpu);
5592 	if (root_role.level == PT64_ROOT_5LEVEL &&
5593 	    cpu_role.base.level == PT64_ROOT_4LEVEL)
5594 		root_role.passthrough = 1;
5595 
5596 	shadow_mmu_init_context(vcpu, context, cpu_role, root_role);
5597 	kvm_mmu_new_pgd(vcpu, nested_cr3);
5598 }
5599 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
5600 
5601 static union kvm_cpu_role
5602 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
5603 				   bool execonly, u8 level)
5604 {
5605 	union kvm_cpu_role role = {0};
5606 
5607 	/*
5608 	 * KVM does not support SMM transfer monitors, and consequently does not
5609 	 * support the "entry to SMM" control either.  role.base.smm is always 0.
5610 	 */
5611 	WARN_ON_ONCE(is_smm(vcpu));
5612 	role.base.level = level;
5613 	role.base.has_4_byte_gpte = false;
5614 	role.base.direct = false;
5615 	role.base.ad_disabled = !accessed_dirty;
5616 	role.base.guest_mode = true;
5617 	role.base.access = ACC_ALL;
5618 
5619 	role.ext.word = 0;
5620 	role.ext.execonly = execonly;
5621 	role.ext.valid = 1;
5622 
5623 	return role;
5624 }
5625 
5626 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
5627 			     int huge_page_level, bool accessed_dirty,
5628 			     gpa_t new_eptp)
5629 {
5630 	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
5631 	u8 level = vmx_eptp_page_walk_level(new_eptp);
5632 	union kvm_cpu_role new_mode =
5633 		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
5634 						   execonly, level);
5635 
5636 	if (new_mode.as_u64 != context->cpu_role.as_u64) {
5637 		/* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
5638 		context->cpu_role.as_u64 = new_mode.as_u64;
5639 		context->root_role.word = new_mode.base.word;
5640 
5641 		context->page_fault = ept_page_fault;
5642 		context->gva_to_gpa = ept_gva_to_gpa;
5643 		context->sync_spte = ept_sync_spte;
5644 
5645 		update_permission_bitmask(context, true);
5646 		context->pkru_mask = 0;
5647 		reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level);
5648 		reset_ept_shadow_zero_bits_mask(context, execonly);
5649 	}
5650 
5651 	kvm_mmu_new_pgd(vcpu, new_eptp);
5652 }
5653 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
5654 
5655 static void init_kvm_softmmu(struct kvm_vcpu *vcpu,
5656 			     union kvm_cpu_role cpu_role)
5657 {
5658 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
5659 
5660 	kvm_init_shadow_mmu(vcpu, cpu_role);
5661 
5662 	context->get_guest_pgd     = get_guest_cr3;
5663 	context->get_pdptr         = kvm_pdptr_read;
5664 	context->inject_page_fault = kvm_inject_page_fault;
5665 }
5666 
5667 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu,
5668 				union kvm_cpu_role new_mode)
5669 {
5670 	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5671 
5672 	if (new_mode.as_u64 == g_context->cpu_role.as_u64)
5673 		return;
5674 
5675 	g_context->cpu_role.as_u64   = new_mode.as_u64;
5676 	g_context->get_guest_pgd     = get_guest_cr3;
5677 	g_context->get_pdptr         = kvm_pdptr_read;
5678 	g_context->inject_page_fault = kvm_inject_page_fault;
5679 
5680 	/*
5681 	 * L2 page tables are never shadowed, so there is no need to sync
5682 	 * SPTEs.
5683 	 */
5684 	g_context->sync_spte         = NULL;
5685 
5686 	/*
5687 	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5688 	 * L1's nested page tables (e.g. EPT12). The nested translation
5689 	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5690 	 * L2's page tables as the first level of translation and L1's
5691 	 * nested page tables as the second level of translation. Basically
5692 	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5693 	 */
5694 	if (!is_paging(vcpu))
5695 		g_context->gva_to_gpa = nonpaging_gva_to_gpa;
5696 	else if (is_long_mode(vcpu))
5697 		g_context->gva_to_gpa = paging64_gva_to_gpa;
5698 	else if (is_pae(vcpu))
5699 		g_context->gva_to_gpa = paging64_gva_to_gpa;
5700 	else
5701 		g_context->gva_to_gpa = paging32_gva_to_gpa;
5702 
5703 	reset_guest_paging_metadata(vcpu, g_context);
5704 }
5705 
5706 void kvm_init_mmu(struct kvm_vcpu *vcpu)
5707 {
5708 	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
5709 	union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, &regs);
5710 
5711 	if (mmu_is_nested(vcpu))
5712 		init_kvm_nested_mmu(vcpu, cpu_role);
5713 	else if (tdp_enabled)
5714 		init_kvm_tdp_mmu(vcpu, cpu_role);
5715 	else
5716 		init_kvm_softmmu(vcpu, cpu_role);
5717 }
5718 EXPORT_SYMBOL_GPL(kvm_init_mmu);
5719 
5720 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
5721 {
5722 	/*
5723 	 * Invalidate all MMU roles to force them to reinitialize as CPUID
5724 	 * information is factored into reserved bit calculations.
5725 	 *
5726 	 * Correctly handling multiple vCPU models with respect to paging and
5727 	 * physical address properties) in a single VM would require tracking
5728 	 * all relevant CPUID information in kvm_mmu_page_role. That is very
5729 	 * undesirable as it would increase the memory requirements for
5730 	 * gfn_write_track (see struct kvm_mmu_page_role comments).  For now
5731 	 * that problem is swept under the rug; KVM's CPUID API is horrific and
5732 	 * it's all but impossible to solve it without introducing a new API.
5733 	 */
5734 	vcpu->arch.root_mmu.root_role.invalid = 1;
5735 	vcpu->arch.guest_mmu.root_role.invalid = 1;
5736 	vcpu->arch.nested_mmu.root_role.invalid = 1;
5737 	vcpu->arch.root_mmu.cpu_role.ext.valid = 0;
5738 	vcpu->arch.guest_mmu.cpu_role.ext.valid = 0;
5739 	vcpu->arch.nested_mmu.cpu_role.ext.valid = 0;
5740 	kvm_mmu_reset_context(vcpu);
5741 
5742 	/*
5743 	 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in
5744 	 * kvm_arch_vcpu_ioctl().
5745 	 */
5746 	KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm);
5747 }
5748 
5749 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5750 {
5751 	kvm_mmu_unload(vcpu);
5752 	kvm_init_mmu(vcpu);
5753 }
5754 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5755 
5756 int kvm_mmu_load(struct kvm_vcpu *vcpu)
5757 {
5758 	int r;
5759 
5760 	r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->root_role.direct);
5761 	if (r)
5762 		goto out;
5763 	r = mmu_alloc_special_roots(vcpu);
5764 	if (r)
5765 		goto out;
5766 	if (vcpu->arch.mmu->root_role.direct)
5767 		r = mmu_alloc_direct_roots(vcpu);
5768 	else
5769 		r = mmu_alloc_shadow_roots(vcpu);
5770 	if (r)
5771 		goto out;
5772 
5773 	kvm_mmu_sync_roots(vcpu);
5774 
5775 	kvm_mmu_load_pgd(vcpu);
5776 
5777 	/*
5778 	 * Flush any TLB entries for the new root, the provenance of the root
5779 	 * is unknown.  Even if KVM ensures there are no stale TLB entries
5780 	 * for a freed root, in theory another hypervisor could have left
5781 	 * stale entries.  Flushing on alloc also allows KVM to skip the TLB
5782 	 * flush when freeing a root (see kvm_tdp_mmu_put_root()).
5783 	 */
5784 	kvm_x86_call(flush_tlb_current)(vcpu);
5785 out:
5786 	return r;
5787 }
5788 
5789 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5790 {
5791 	struct kvm *kvm = vcpu->kvm;
5792 
5793 	kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5794 	WARN_ON_ONCE(VALID_PAGE(vcpu->arch.root_mmu.root.hpa));
5795 	kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5796 	WARN_ON_ONCE(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa));
5797 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
5798 }
5799 
5800 static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa)
5801 {
5802 	struct kvm_mmu_page *sp;
5803 
5804 	if (!VALID_PAGE(root_hpa))
5805 		return false;
5806 
5807 	/*
5808 	 * When freeing obsolete roots, treat roots as obsolete if they don't
5809 	 * have an associated shadow page, as it's impossible to determine if
5810 	 * such roots are fresh or stale.  This does mean KVM will get false
5811 	 * positives and free roots that don't strictly need to be freed, but
5812 	 * such false positives are relatively rare:
5813 	 *
5814 	 *  (a) only PAE paging and nested NPT have roots without shadow pages
5815 	 *      (or any shadow paging flavor with a dummy root, see note below)
5816 	 *  (b) remote reloads due to a memslot update obsoletes _all_ roots
5817 	 *  (c) KVM doesn't track previous roots for PAE paging, and the guest
5818 	 *      is unlikely to zap an in-use PGD.
5819 	 *
5820 	 * Note!  Dummy roots are unique in that they are obsoleted by memslot
5821 	 * _creation_!  See also FNAME(fetch).
5822 	 */
5823 	sp = root_to_sp(root_hpa);
5824 	return !sp || is_obsolete_sp(kvm, sp);
5825 }
5826 
5827 static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu)
5828 {
5829 	unsigned long roots_to_free = 0;
5830 	int i;
5831 
5832 	if (is_obsolete_root(kvm, mmu->root.hpa))
5833 		roots_to_free |= KVM_MMU_ROOT_CURRENT;
5834 
5835 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5836 		if (is_obsolete_root(kvm, mmu->prev_roots[i].hpa))
5837 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5838 	}
5839 
5840 	if (roots_to_free)
5841 		kvm_mmu_free_roots(kvm, mmu, roots_to_free);
5842 }
5843 
5844 void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu)
5845 {
5846 	__kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu);
5847 	__kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu);
5848 }
5849 
5850 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5851 				    int *bytes)
5852 {
5853 	u64 gentry = 0;
5854 	int r;
5855 
5856 	/*
5857 	 * Assume that the pte write on a page table of the same type
5858 	 * as the current vcpu paging mode since we update the sptes only
5859 	 * when they have the same mode.
5860 	 */
5861 	if (is_pae(vcpu) && *bytes == 4) {
5862 		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5863 		*gpa &= ~(gpa_t)7;
5864 		*bytes = 8;
5865 	}
5866 
5867 	if (*bytes == 4 || *bytes == 8) {
5868 		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5869 		if (r)
5870 			gentry = 0;
5871 	}
5872 
5873 	return gentry;
5874 }
5875 
5876 /*
5877  * If we're seeing too many writes to a page, it may no longer be a page table,
5878  * or we may be forking, in which case it is better to unmap the page.
5879  */
5880 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5881 {
5882 	/*
5883 	 * Skip write-flooding detected for the sp whose level is 1, because
5884 	 * it can become unsync, then the guest page is not write-protected.
5885 	 */
5886 	if (sp->role.level == PG_LEVEL_4K)
5887 		return false;
5888 
5889 	atomic_inc(&sp->write_flooding_count);
5890 	return atomic_read(&sp->write_flooding_count) >= 3;
5891 }
5892 
5893 /*
5894  * Misaligned accesses are too much trouble to fix up; also, they usually
5895  * indicate a page is not used as a page table.
5896  */
5897 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5898 				    int bytes)
5899 {
5900 	unsigned offset, pte_size, misaligned;
5901 
5902 	offset = offset_in_page(gpa);
5903 	pte_size = sp->role.has_4_byte_gpte ? 4 : 8;
5904 
5905 	/*
5906 	 * Sometimes, the OS only writes the last one bytes to update status
5907 	 * bits, for example, in linux, andb instruction is used in clear_bit().
5908 	 */
5909 	if (!(offset & (pte_size - 1)) && bytes == 1)
5910 		return false;
5911 
5912 	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5913 	misaligned |= bytes < 4;
5914 
5915 	return misaligned;
5916 }
5917 
5918 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5919 {
5920 	unsigned page_offset, quadrant;
5921 	u64 *spte;
5922 	int level;
5923 
5924 	page_offset = offset_in_page(gpa);
5925 	level = sp->role.level;
5926 	*nspte = 1;
5927 	if (sp->role.has_4_byte_gpte) {
5928 		page_offset <<= 1;	/* 32->64 */
5929 		/*
5930 		 * A 32-bit pde maps 4MB while the shadow pdes map
5931 		 * only 2MB.  So we need to double the offset again
5932 		 * and zap two pdes instead of one.
5933 		 */
5934 		if (level == PT32_ROOT_LEVEL) {
5935 			page_offset &= ~7; /* kill rounding error */
5936 			page_offset <<= 1;
5937 			*nspte = 2;
5938 		}
5939 		quadrant = page_offset >> PAGE_SHIFT;
5940 		page_offset &= ~PAGE_MASK;
5941 		if (quadrant != sp->role.quadrant)
5942 			return NULL;
5943 	}
5944 
5945 	spte = &sp->spt[page_offset / sizeof(*spte)];
5946 	return spte;
5947 }
5948 
5949 void kvm_mmu_track_write(struct kvm_vcpu *vcpu, gpa_t gpa, const u8 *new,
5950 			 int bytes)
5951 {
5952 	gfn_t gfn = gpa >> PAGE_SHIFT;
5953 	struct kvm_mmu_page *sp;
5954 	LIST_HEAD(invalid_list);
5955 	u64 entry, gentry, *spte;
5956 	int npte;
5957 	bool flush = false;
5958 
5959 	/*
5960 	 * When emulating guest writes, ensure the written value is visible to
5961 	 * any task that is handling page faults before checking whether or not
5962 	 * KVM is shadowing a guest PTE.  This ensures either KVM will create
5963 	 * the correct SPTE in the page fault handler, or this task will see
5964 	 * a non-zero indirect_shadow_pages.  Pairs with the smp_mb() in
5965 	 * account_shadowed().
5966 	 */
5967 	smp_mb();
5968 	if (!vcpu->kvm->arch.indirect_shadow_pages)
5969 		return;
5970 
5971 	write_lock(&vcpu->kvm->mmu_lock);
5972 
5973 	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5974 
5975 	++vcpu->kvm->stat.mmu_pte_write;
5976 
5977 	for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) {
5978 		if (detect_write_misaligned(sp, gpa, bytes) ||
5979 		      detect_write_flooding(sp)) {
5980 			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5981 			++vcpu->kvm->stat.mmu_flooded;
5982 			continue;
5983 		}
5984 
5985 		spte = get_written_sptes(sp, gpa, &npte);
5986 		if (!spte)
5987 			continue;
5988 
5989 		while (npte--) {
5990 			entry = *spte;
5991 			mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5992 			if (gentry && sp->role.level != PG_LEVEL_4K)
5993 				++vcpu->kvm->stat.mmu_pde_zapped;
5994 			if (is_shadow_present_pte(entry))
5995 				flush = true;
5996 			++spte;
5997 		}
5998 	}
5999 	kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
6000 	write_unlock(&vcpu->kvm->mmu_lock);
6001 }
6002 
6003 static bool is_write_to_guest_page_table(u64 error_code)
6004 {
6005 	const u64 mask = PFERR_GUEST_PAGE_MASK | PFERR_WRITE_MASK | PFERR_PRESENT_MASK;
6006 
6007 	return (error_code & mask) == mask;
6008 }
6009 
6010 static int kvm_mmu_write_protect_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
6011 				       u64 error_code, int *emulation_type)
6012 {
6013 	bool direct = vcpu->arch.mmu->root_role.direct;
6014 
6015 	/*
6016 	 * Do not try to unprotect and retry if the vCPU re-faulted on the same
6017 	 * RIP with the same address that was previously unprotected, as doing
6018 	 * so will likely put the vCPU into an infinite.  E.g. if the vCPU uses
6019 	 * a non-page-table modifying instruction on the PDE that points to the
6020 	 * instruction, then unprotecting the gfn will unmap the instruction's
6021 	 * code, i.e. make it impossible for the instruction to ever complete.
6022 	 */
6023 	if (vcpu->arch.last_retry_eip == kvm_rip_read(vcpu) &&
6024 	    vcpu->arch.last_retry_addr == cr2_or_gpa)
6025 		return RET_PF_EMULATE;
6026 
6027 	/*
6028 	 * Reset the unprotect+retry values that guard against infinite loops.
6029 	 * The values will be refreshed if KVM explicitly unprotects a gfn and
6030 	 * retries, in all other cases it's safe to retry in the future even if
6031 	 * the next page fault happens on the same RIP+address.
6032 	 */
6033 	vcpu->arch.last_retry_eip = 0;
6034 	vcpu->arch.last_retry_addr = 0;
6035 
6036 	/*
6037 	 * It should be impossible to reach this point with an MMIO cache hit,
6038 	 * as RET_PF_WRITE_PROTECTED is returned if and only if there's a valid,
6039 	 * writable memslot, and creating a memslot should invalidate the MMIO
6040 	 * cache by way of changing the memslot generation.  WARN and disallow
6041 	 * retry if MMIO is detected, as retrying MMIO emulation is pointless
6042 	 * and could put the vCPU into an infinite loop because the processor
6043 	 * will keep faulting on the non-existent MMIO address.
6044 	 */
6045 	if (WARN_ON_ONCE(mmio_info_in_cache(vcpu, cr2_or_gpa, direct)))
6046 		return RET_PF_EMULATE;
6047 
6048 	/*
6049 	 * Before emulating the instruction, check to see if the access was due
6050 	 * to a read-only violation while the CPU was walking non-nested NPT
6051 	 * page tables, i.e. for a direct MMU, for _guest_ page tables in L1.
6052 	 * If L1 is sharing (a subset of) its page tables with L2, e.g. by
6053 	 * having nCR3 share lower level page tables with hCR3, then when KVM
6054 	 * (L0) write-protects the nested NPTs, i.e. npt12 entries, KVM is also
6055 	 * unknowingly write-protecting L1's guest page tables, which KVM isn't
6056 	 * shadowing.
6057 	 *
6058 	 * Because the CPU (by default) walks NPT page tables using a write
6059 	 * access (to ensure the CPU can do A/D updates), page walks in L1 can
6060 	 * trigger write faults for the above case even when L1 isn't modifying
6061 	 * PTEs.  As a result, KVM will unnecessarily emulate (or at least, try
6062 	 * to emulate) an excessive number of L1 instructions; because L1's MMU
6063 	 * isn't shadowed by KVM, there is no need to write-protect L1's gPTEs
6064 	 * and thus no need to emulate in order to guarantee forward progress.
6065 	 *
6066 	 * Try to unprotect the gfn, i.e. zap any shadow pages, so that L1 can
6067 	 * proceed without triggering emulation.  If one or more shadow pages
6068 	 * was zapped, skip emulation and resume L1 to let it natively execute
6069 	 * the instruction.  If no shadow pages were zapped, then the write-
6070 	 * fault is due to something else entirely, i.e. KVM needs to emulate,
6071 	 * as resuming the guest will put it into an infinite loop.
6072 	 *
6073 	 * Note, this code also applies to Intel CPUs, even though it is *very*
6074 	 * unlikely that an L1 will share its page tables (IA32/PAE/paging64
6075 	 * format) with L2's page tables (EPT format).
6076 	 *
6077 	 * For indirect MMUs, i.e. if KVM is shadowing the current MMU, try to
6078 	 * unprotect the gfn and retry if an event is awaiting reinjection.  If
6079 	 * KVM emulates multiple instructions before completing event injection,
6080 	 * the event could be delayed beyond what is architecturally allowed,
6081 	 * e.g. KVM could inject an IRQ after the TPR has been raised.
6082 	 */
6083 	if (((direct && is_write_to_guest_page_table(error_code)) ||
6084 	     (!direct && kvm_event_needs_reinjection(vcpu))) &&
6085 	    kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa))
6086 		return RET_PF_RETRY;
6087 
6088 	/*
6089 	 * The gfn is write-protected, but if KVM detects its emulating an
6090 	 * instruction that is unlikely to be used to modify page tables, or if
6091 	 * emulation fails, KVM can try to unprotect the gfn and let the CPU
6092 	 * re-execute the instruction that caused the page fault.  Do not allow
6093 	 * retrying an instruction from a nested guest as KVM is only explicitly
6094 	 * shadowing L1's page tables, i.e. unprotecting something for L1 isn't
6095 	 * going to magically fix whatever issue caused L2 to fail.
6096 	 */
6097 	if (!is_guest_mode(vcpu))
6098 		*emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
6099 
6100 	return RET_PF_EMULATE;
6101 }
6102 
6103 int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
6104 		       void *insn, int insn_len)
6105 {
6106 	int r, emulation_type = EMULTYPE_PF;
6107 	bool direct = vcpu->arch.mmu->root_role.direct;
6108 
6109 	if (WARN_ON_ONCE(!VALID_PAGE(vcpu->arch.mmu->root.hpa)))
6110 		return RET_PF_RETRY;
6111 
6112 	/*
6113 	 * Except for reserved faults (emulated MMIO is shared-only), set the
6114 	 * PFERR_PRIVATE_ACCESS flag for software-protected VMs based on the gfn's
6115 	 * current attributes, which are the source of truth for such VMs.  Note,
6116 	 * this wrong for nested MMUs as the GPA is an L2 GPA, but KVM doesn't
6117 	 * currently supported nested virtualization (among many other things)
6118 	 * for software-protected VMs.
6119 	 */
6120 	if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) &&
6121 	    !(error_code & PFERR_RSVD_MASK) &&
6122 	    vcpu->kvm->arch.vm_type == KVM_X86_SW_PROTECTED_VM &&
6123 	    kvm_mem_is_private(vcpu->kvm, gpa_to_gfn(cr2_or_gpa)))
6124 		error_code |= PFERR_PRIVATE_ACCESS;
6125 
6126 	r = RET_PF_INVALID;
6127 	if (unlikely(error_code & PFERR_RSVD_MASK)) {
6128 		if (WARN_ON_ONCE(error_code & PFERR_PRIVATE_ACCESS))
6129 			return -EFAULT;
6130 
6131 		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
6132 		if (r == RET_PF_EMULATE)
6133 			goto emulate;
6134 	}
6135 
6136 	if (r == RET_PF_INVALID) {
6137 		vcpu->stat.pf_taken++;
6138 
6139 		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, error_code, false,
6140 					  &emulation_type, NULL);
6141 		if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm))
6142 			return -EIO;
6143 	}
6144 
6145 	if (r < 0)
6146 		return r;
6147 
6148 	if (r == RET_PF_WRITE_PROTECTED)
6149 		r = kvm_mmu_write_protect_fault(vcpu, cr2_or_gpa, error_code,
6150 						&emulation_type);
6151 
6152 	if (r == RET_PF_FIXED)
6153 		vcpu->stat.pf_fixed++;
6154 	else if (r == RET_PF_EMULATE)
6155 		vcpu->stat.pf_emulate++;
6156 	else if (r == RET_PF_SPURIOUS)
6157 		vcpu->stat.pf_spurious++;
6158 
6159 	if (r != RET_PF_EMULATE)
6160 		return 1;
6161 
6162 emulate:
6163 	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
6164 				       insn_len);
6165 }
6166 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
6167 
6168 void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg)
6169 {
6170 	u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
6171 	int root_level, leaf, level;
6172 
6173 	leaf = get_sptes_lockless(vcpu, gpa, sptes, &root_level);
6174 	if (unlikely(leaf < 0))
6175 		return;
6176 
6177 	pr_err("%s %llx", msg, gpa);
6178 	for (level = root_level; level >= leaf; level--)
6179 		pr_cont(", spte[%d] = 0x%llx", level, sptes[level]);
6180 	pr_cont("\n");
6181 }
6182 EXPORT_SYMBOL_GPL(kvm_mmu_print_sptes);
6183 
6184 static void __kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
6185 				      u64 addr, hpa_t root_hpa)
6186 {
6187 	struct kvm_shadow_walk_iterator iterator;
6188 
6189 	vcpu_clear_mmio_info(vcpu, addr);
6190 
6191 	/*
6192 	 * Walking and synchronizing SPTEs both assume they are operating in
6193 	 * the context of the current MMU, and would need to be reworked if
6194 	 * this is ever used to sync the guest_mmu, e.g. to emulate INVEPT.
6195 	 */
6196 	if (WARN_ON_ONCE(mmu != vcpu->arch.mmu))
6197 		return;
6198 
6199 	if (!VALID_PAGE(root_hpa))
6200 		return;
6201 
6202 	write_lock(&vcpu->kvm->mmu_lock);
6203 	for_each_shadow_entry_using_root(vcpu, root_hpa, addr, iterator) {
6204 		struct kvm_mmu_page *sp = sptep_to_sp(iterator.sptep);
6205 
6206 		if (sp->unsync) {
6207 			int ret = kvm_sync_spte(vcpu, sp, iterator.index);
6208 
6209 			if (ret < 0)
6210 				mmu_page_zap_pte(vcpu->kvm, sp, iterator.sptep, NULL);
6211 			if (ret)
6212 				kvm_flush_remote_tlbs_sptep(vcpu->kvm, iterator.sptep);
6213 		}
6214 
6215 		if (!sp->unsync_children)
6216 			break;
6217 	}
6218 	write_unlock(&vcpu->kvm->mmu_lock);
6219 }
6220 
6221 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
6222 			     u64 addr, unsigned long roots)
6223 {
6224 	int i;
6225 
6226 	WARN_ON_ONCE(roots & ~KVM_MMU_ROOTS_ALL);
6227 
6228 	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
6229 	if (mmu != &vcpu->arch.guest_mmu) {
6230 		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
6231 		if (is_noncanonical_address(addr, vcpu))
6232 			return;
6233 
6234 		kvm_x86_call(flush_tlb_gva)(vcpu, addr);
6235 	}
6236 
6237 	if (!mmu->sync_spte)
6238 		return;
6239 
6240 	if (roots & KVM_MMU_ROOT_CURRENT)
6241 		__kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->root.hpa);
6242 
6243 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
6244 		if (roots & KVM_MMU_ROOT_PREVIOUS(i))
6245 			__kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->prev_roots[i].hpa);
6246 	}
6247 }
6248 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_addr);
6249 
6250 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
6251 {
6252 	/*
6253 	 * INVLPG is required to invalidate any global mappings for the VA,
6254 	 * irrespective of PCID.  Blindly sync all roots as it would take
6255 	 * roughly the same amount of work/time to determine whether any of the
6256 	 * previous roots have a global mapping.
6257 	 *
6258 	 * Mappings not reachable via the current or previous cached roots will
6259 	 * be synced when switching to that new cr3, so nothing needs to be
6260 	 * done here for them.
6261 	 */
6262 	kvm_mmu_invalidate_addr(vcpu, vcpu->arch.walk_mmu, gva, KVM_MMU_ROOTS_ALL);
6263 	++vcpu->stat.invlpg;
6264 }
6265 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
6266 
6267 
6268 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
6269 {
6270 	struct kvm_mmu *mmu = vcpu->arch.mmu;
6271 	unsigned long roots = 0;
6272 	uint i;
6273 
6274 	if (pcid == kvm_get_active_pcid(vcpu))
6275 		roots |= KVM_MMU_ROOT_CURRENT;
6276 
6277 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
6278 		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
6279 		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd))
6280 			roots |= KVM_MMU_ROOT_PREVIOUS(i);
6281 	}
6282 
6283 	if (roots)
6284 		kvm_mmu_invalidate_addr(vcpu, mmu, gva, roots);
6285 	++vcpu->stat.invlpg;
6286 
6287 	/*
6288 	 * Mappings not reachable via the current cr3 or the prev_roots will be
6289 	 * synced when switching to that cr3, so nothing needs to be done here
6290 	 * for them.
6291 	 */
6292 }
6293 
6294 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
6295 		       int tdp_max_root_level, int tdp_huge_page_level)
6296 {
6297 	tdp_enabled = enable_tdp;
6298 	tdp_root_level = tdp_forced_root_level;
6299 	max_tdp_level = tdp_max_root_level;
6300 
6301 #ifdef CONFIG_X86_64
6302 	tdp_mmu_enabled = tdp_mmu_allowed && tdp_enabled;
6303 #endif
6304 	/*
6305 	 * max_huge_page_level reflects KVM's MMU capabilities irrespective
6306 	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
6307 	 * the kernel is not.  But, KVM never creates a page size greater than
6308 	 * what is used by the kernel for any given HVA, i.e. the kernel's
6309 	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
6310 	 */
6311 	if (tdp_enabled)
6312 		max_huge_page_level = tdp_huge_page_level;
6313 	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
6314 		max_huge_page_level = PG_LEVEL_1G;
6315 	else
6316 		max_huge_page_level = PG_LEVEL_2M;
6317 }
6318 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
6319 
6320 static void free_mmu_pages(struct kvm_mmu *mmu)
6321 {
6322 	if (!tdp_enabled && mmu->pae_root)
6323 		set_memory_encrypted((unsigned long)mmu->pae_root, 1);
6324 	free_page((unsigned long)mmu->pae_root);
6325 	free_page((unsigned long)mmu->pml4_root);
6326 	free_page((unsigned long)mmu->pml5_root);
6327 }
6328 
6329 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6330 {
6331 	struct page *page;
6332 	int i;
6333 
6334 	mmu->root.hpa = INVALID_PAGE;
6335 	mmu->root.pgd = 0;
6336 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
6337 		mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
6338 
6339 	/* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */
6340 	if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu)
6341 		return 0;
6342 
6343 	/*
6344 	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
6345 	 * while the PDP table is a per-vCPU construct that's allocated at MMU
6346 	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
6347 	 * x86_64.  Therefore we need to allocate the PDP table in the first
6348 	 * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
6349 	 * generally doesn't use PAE paging and can skip allocating the PDP
6350 	 * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
6351 	 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
6352 	 * KVM; that horror is handled on-demand by mmu_alloc_special_roots().
6353 	 */
6354 	if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
6355 		return 0;
6356 
6357 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
6358 	if (!page)
6359 		return -ENOMEM;
6360 
6361 	mmu->pae_root = page_address(page);
6362 
6363 	/*
6364 	 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
6365 	 * get the CPU to treat the PDPTEs as encrypted.  Decrypt the page so
6366 	 * that KVM's writes and the CPU's reads get along.  Note, this is
6367 	 * only necessary when using shadow paging, as 64-bit NPT can get at
6368 	 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
6369 	 * by 32-bit kernels (when KVM itself uses 32-bit NPT).
6370 	 */
6371 	if (!tdp_enabled)
6372 		set_memory_decrypted((unsigned long)mmu->pae_root, 1);
6373 	else
6374 		WARN_ON_ONCE(shadow_me_value);
6375 
6376 	for (i = 0; i < 4; ++i)
6377 		mmu->pae_root[i] = INVALID_PAE_ROOT;
6378 
6379 	return 0;
6380 }
6381 
6382 int kvm_mmu_create(struct kvm_vcpu *vcpu)
6383 {
6384 	int ret;
6385 
6386 	vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
6387 	vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
6388 
6389 	vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
6390 	vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
6391 
6392 	vcpu->arch.mmu_shadow_page_cache.init_value =
6393 		SHADOW_NONPRESENT_VALUE;
6394 	if (!vcpu->arch.mmu_shadow_page_cache.init_value)
6395 		vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
6396 
6397 	vcpu->arch.mmu = &vcpu->arch.root_mmu;
6398 	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
6399 
6400 	ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
6401 	if (ret)
6402 		return ret;
6403 
6404 	ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
6405 	if (ret)
6406 		goto fail_allocate_root;
6407 
6408 	return ret;
6409  fail_allocate_root:
6410 	free_mmu_pages(&vcpu->arch.guest_mmu);
6411 	return ret;
6412 }
6413 
6414 #define BATCH_ZAP_PAGES	10
6415 static void kvm_zap_obsolete_pages(struct kvm *kvm)
6416 {
6417 	struct kvm_mmu_page *sp, *node;
6418 	int nr_zapped, batch = 0;
6419 	bool unstable;
6420 
6421 restart:
6422 	list_for_each_entry_safe_reverse(sp, node,
6423 	      &kvm->arch.active_mmu_pages, link) {
6424 		/*
6425 		 * No obsolete valid page exists before a newly created page
6426 		 * since active_mmu_pages is a FIFO list.
6427 		 */
6428 		if (!is_obsolete_sp(kvm, sp))
6429 			break;
6430 
6431 		/*
6432 		 * Invalid pages should never land back on the list of active
6433 		 * pages.  Skip the bogus page, otherwise we'll get stuck in an
6434 		 * infinite loop if the page gets put back on the list (again).
6435 		 */
6436 		if (WARN_ON_ONCE(sp->role.invalid))
6437 			continue;
6438 
6439 		/*
6440 		 * No need to flush the TLB since we're only zapping shadow
6441 		 * pages with an obsolete generation number and all vCPUS have
6442 		 * loaded a new root, i.e. the shadow pages being zapped cannot
6443 		 * be in active use by the guest.
6444 		 */
6445 		if (batch >= BATCH_ZAP_PAGES &&
6446 		    cond_resched_rwlock_write(&kvm->mmu_lock)) {
6447 			batch = 0;
6448 			goto restart;
6449 		}
6450 
6451 		unstable = __kvm_mmu_prepare_zap_page(kvm, sp,
6452 				&kvm->arch.zapped_obsolete_pages, &nr_zapped);
6453 		batch += nr_zapped;
6454 
6455 		if (unstable)
6456 			goto restart;
6457 	}
6458 
6459 	/*
6460 	 * Kick all vCPUs (via remote TLB flush) before freeing the page tables
6461 	 * to ensure KVM is not in the middle of a lockless shadow page table
6462 	 * walk, which may reference the pages.  The remote TLB flush itself is
6463 	 * not required and is simply a convenient way to kick vCPUs as needed.
6464 	 * KVM performs a local TLB flush when allocating a new root (see
6465 	 * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are
6466 	 * running with an obsolete MMU.
6467 	 */
6468 	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
6469 }
6470 
6471 /*
6472  * Fast invalidate all shadow pages and use lock-break technique
6473  * to zap obsolete pages.
6474  *
6475  * It's required when memslot is being deleted or VM is being
6476  * destroyed, in these cases, we should ensure that KVM MMU does
6477  * not use any resource of the being-deleted slot or all slots
6478  * after calling the function.
6479  */
6480 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
6481 {
6482 	lockdep_assert_held(&kvm->slots_lock);
6483 
6484 	write_lock(&kvm->mmu_lock);
6485 	trace_kvm_mmu_zap_all_fast(kvm);
6486 
6487 	/*
6488 	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
6489 	 * held for the entire duration of zapping obsolete pages, it's
6490 	 * impossible for there to be multiple invalid generations associated
6491 	 * with *valid* shadow pages at any given time, i.e. there is exactly
6492 	 * one valid generation and (at most) one invalid generation.
6493 	 */
6494 	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
6495 
6496 	/*
6497 	 * In order to ensure all vCPUs drop their soon-to-be invalid roots,
6498 	 * invalidating TDP MMU roots must be done while holding mmu_lock for
6499 	 * write and in the same critical section as making the reload request,
6500 	 * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield.
6501 	 */
6502 	if (tdp_mmu_enabled)
6503 		kvm_tdp_mmu_invalidate_all_roots(kvm);
6504 
6505 	/*
6506 	 * Notify all vcpus to reload its shadow page table and flush TLB.
6507 	 * Then all vcpus will switch to new shadow page table with the new
6508 	 * mmu_valid_gen.
6509 	 *
6510 	 * Note: we need to do this under the protection of mmu_lock,
6511 	 * otherwise, vcpu would purge shadow page but miss tlb flush.
6512 	 */
6513 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
6514 
6515 	kvm_zap_obsolete_pages(kvm);
6516 
6517 	write_unlock(&kvm->mmu_lock);
6518 
6519 	/*
6520 	 * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before
6521 	 * returning to the caller, e.g. if the zap is in response to a memslot
6522 	 * deletion, mmu_notifier callbacks will be unable to reach the SPTEs
6523 	 * associated with the deleted memslot once the update completes, and
6524 	 * Deferring the zap until the final reference to the root is put would
6525 	 * lead to use-after-free.
6526 	 */
6527 	if (tdp_mmu_enabled)
6528 		kvm_tdp_mmu_zap_invalidated_roots(kvm);
6529 }
6530 
6531 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
6532 {
6533 	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
6534 }
6535 
6536 void kvm_mmu_init_vm(struct kvm *kvm)
6537 {
6538 	kvm->arch.shadow_mmio_value = shadow_mmio_value;
6539 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6540 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
6541 	INIT_LIST_HEAD(&kvm->arch.possible_nx_huge_pages);
6542 	spin_lock_init(&kvm->arch.mmu_unsync_pages_lock);
6543 
6544 	if (tdp_mmu_enabled)
6545 		kvm_mmu_init_tdp_mmu(kvm);
6546 
6547 	kvm->arch.split_page_header_cache.kmem_cache = mmu_page_header_cache;
6548 	kvm->arch.split_page_header_cache.gfp_zero = __GFP_ZERO;
6549 
6550 	kvm->arch.split_shadow_page_cache.gfp_zero = __GFP_ZERO;
6551 
6552 	kvm->arch.split_desc_cache.kmem_cache = pte_list_desc_cache;
6553 	kvm->arch.split_desc_cache.gfp_zero = __GFP_ZERO;
6554 }
6555 
6556 static void mmu_free_vm_memory_caches(struct kvm *kvm)
6557 {
6558 	kvm_mmu_free_memory_cache(&kvm->arch.split_desc_cache);
6559 	kvm_mmu_free_memory_cache(&kvm->arch.split_page_header_cache);
6560 	kvm_mmu_free_memory_cache(&kvm->arch.split_shadow_page_cache);
6561 }
6562 
6563 void kvm_mmu_uninit_vm(struct kvm *kvm)
6564 {
6565 	if (tdp_mmu_enabled)
6566 		kvm_mmu_uninit_tdp_mmu(kvm);
6567 
6568 	mmu_free_vm_memory_caches(kvm);
6569 }
6570 
6571 static bool kvm_rmap_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
6572 {
6573 	const struct kvm_memory_slot *memslot;
6574 	struct kvm_memslots *slots;
6575 	struct kvm_memslot_iter iter;
6576 	bool flush = false;
6577 	gfn_t start, end;
6578 	int i;
6579 
6580 	if (!kvm_memslots_have_rmaps(kvm))
6581 		return flush;
6582 
6583 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
6584 		slots = __kvm_memslots(kvm, i);
6585 
6586 		kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) {
6587 			memslot = iter.slot;
6588 			start = max(gfn_start, memslot->base_gfn);
6589 			end = min(gfn_end, memslot->base_gfn + memslot->npages);
6590 			if (WARN_ON_ONCE(start >= end))
6591 				continue;
6592 
6593 			flush = __kvm_rmap_zap_gfn_range(kvm, memslot, start,
6594 							 end, true, flush);
6595 		}
6596 	}
6597 
6598 	return flush;
6599 }
6600 
6601 /*
6602  * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end
6603  * (not including it)
6604  */
6605 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
6606 {
6607 	bool flush;
6608 
6609 	if (WARN_ON_ONCE(gfn_end <= gfn_start))
6610 		return;
6611 
6612 	write_lock(&kvm->mmu_lock);
6613 
6614 	kvm_mmu_invalidate_begin(kvm);
6615 
6616 	kvm_mmu_invalidate_range_add(kvm, gfn_start, gfn_end);
6617 
6618 	flush = kvm_rmap_zap_gfn_range(kvm, gfn_start, gfn_end);
6619 
6620 	if (tdp_mmu_enabled)
6621 		flush = kvm_tdp_mmu_zap_leafs(kvm, gfn_start, gfn_end, flush);
6622 
6623 	if (flush)
6624 		kvm_flush_remote_tlbs_range(kvm, gfn_start, gfn_end - gfn_start);
6625 
6626 	kvm_mmu_invalidate_end(kvm);
6627 
6628 	write_unlock(&kvm->mmu_lock);
6629 }
6630 
6631 static bool slot_rmap_write_protect(struct kvm *kvm,
6632 				    struct kvm_rmap_head *rmap_head,
6633 				    const struct kvm_memory_slot *slot)
6634 {
6635 	return rmap_write_protect(rmap_head, false);
6636 }
6637 
6638 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
6639 				      const struct kvm_memory_slot *memslot,
6640 				      int start_level)
6641 {
6642 	if (kvm_memslots_have_rmaps(kvm)) {
6643 		write_lock(&kvm->mmu_lock);
6644 		walk_slot_rmaps(kvm, memslot, slot_rmap_write_protect,
6645 				start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
6646 		write_unlock(&kvm->mmu_lock);
6647 	}
6648 
6649 	if (tdp_mmu_enabled) {
6650 		read_lock(&kvm->mmu_lock);
6651 		kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
6652 		read_unlock(&kvm->mmu_lock);
6653 	}
6654 }
6655 
6656 static inline bool need_topup(struct kvm_mmu_memory_cache *cache, int min)
6657 {
6658 	return kvm_mmu_memory_cache_nr_free_objects(cache) < min;
6659 }
6660 
6661 static bool need_topup_split_caches_or_resched(struct kvm *kvm)
6662 {
6663 	if (need_resched() || rwlock_needbreak(&kvm->mmu_lock))
6664 		return true;
6665 
6666 	/*
6667 	 * In the worst case, SPLIT_DESC_CACHE_MIN_NR_OBJECTS descriptors are needed
6668 	 * to split a single huge page. Calculating how many are actually needed
6669 	 * is possible but not worth the complexity.
6670 	 */
6671 	return need_topup(&kvm->arch.split_desc_cache, SPLIT_DESC_CACHE_MIN_NR_OBJECTS) ||
6672 	       need_topup(&kvm->arch.split_page_header_cache, 1) ||
6673 	       need_topup(&kvm->arch.split_shadow_page_cache, 1);
6674 }
6675 
6676 static int topup_split_caches(struct kvm *kvm)
6677 {
6678 	/*
6679 	 * Allocating rmap list entries when splitting huge pages for nested
6680 	 * MMUs is uncommon as KVM needs to use a list if and only if there is
6681 	 * more than one rmap entry for a gfn, i.e. requires an L1 gfn to be
6682 	 * aliased by multiple L2 gfns and/or from multiple nested roots with
6683 	 * different roles.  Aliasing gfns when using TDP is atypical for VMMs;
6684 	 * a few gfns are often aliased during boot, e.g. when remapping BIOS,
6685 	 * but aliasing rarely occurs post-boot or for many gfns.  If there is
6686 	 * only one rmap entry, rmap->val points directly at that one entry and
6687 	 * doesn't need to allocate a list.  Buffer the cache by the default
6688 	 * capacity so that KVM doesn't have to drop mmu_lock to topup if KVM
6689 	 * encounters an aliased gfn or two.
6690 	 */
6691 	const int capacity = SPLIT_DESC_CACHE_MIN_NR_OBJECTS +
6692 			     KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE;
6693 	int r;
6694 
6695 	lockdep_assert_held(&kvm->slots_lock);
6696 
6697 	r = __kvm_mmu_topup_memory_cache(&kvm->arch.split_desc_cache, capacity,
6698 					 SPLIT_DESC_CACHE_MIN_NR_OBJECTS);
6699 	if (r)
6700 		return r;
6701 
6702 	r = kvm_mmu_topup_memory_cache(&kvm->arch.split_page_header_cache, 1);
6703 	if (r)
6704 		return r;
6705 
6706 	return kvm_mmu_topup_memory_cache(&kvm->arch.split_shadow_page_cache, 1);
6707 }
6708 
6709 static struct kvm_mmu_page *shadow_mmu_get_sp_for_split(struct kvm *kvm, u64 *huge_sptep)
6710 {
6711 	struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep);
6712 	struct shadow_page_caches caches = {};
6713 	union kvm_mmu_page_role role;
6714 	unsigned int access;
6715 	gfn_t gfn;
6716 
6717 	gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep));
6718 	access = kvm_mmu_page_get_access(huge_sp, spte_index(huge_sptep));
6719 
6720 	/*
6721 	 * Note, huge page splitting always uses direct shadow pages, regardless
6722 	 * of whether the huge page itself is mapped by a direct or indirect
6723 	 * shadow page, since the huge page region itself is being directly
6724 	 * mapped with smaller pages.
6725 	 */
6726 	role = kvm_mmu_child_role(huge_sptep, /*direct=*/true, access);
6727 
6728 	/* Direct SPs do not require a shadowed_info_cache. */
6729 	caches.page_header_cache = &kvm->arch.split_page_header_cache;
6730 	caches.shadow_page_cache = &kvm->arch.split_shadow_page_cache;
6731 
6732 	/* Safe to pass NULL for vCPU since requesting a direct SP. */
6733 	return __kvm_mmu_get_shadow_page(kvm, NULL, &caches, gfn, role);
6734 }
6735 
6736 static void shadow_mmu_split_huge_page(struct kvm *kvm,
6737 				       const struct kvm_memory_slot *slot,
6738 				       u64 *huge_sptep)
6739 
6740 {
6741 	struct kvm_mmu_memory_cache *cache = &kvm->arch.split_desc_cache;
6742 	u64 huge_spte = READ_ONCE(*huge_sptep);
6743 	struct kvm_mmu_page *sp;
6744 	bool flush = false;
6745 	u64 *sptep, spte;
6746 	gfn_t gfn;
6747 	int index;
6748 
6749 	sp = shadow_mmu_get_sp_for_split(kvm, huge_sptep);
6750 
6751 	for (index = 0; index < SPTE_ENT_PER_PAGE; index++) {
6752 		sptep = &sp->spt[index];
6753 		gfn = kvm_mmu_page_get_gfn(sp, index);
6754 
6755 		/*
6756 		 * The SP may already have populated SPTEs, e.g. if this huge
6757 		 * page is aliased by multiple sptes with the same access
6758 		 * permissions. These entries are guaranteed to map the same
6759 		 * gfn-to-pfn translation since the SP is direct, so no need to
6760 		 * modify them.
6761 		 *
6762 		 * However, if a given SPTE points to a lower level page table,
6763 		 * that lower level page table may only be partially populated.
6764 		 * Installing such SPTEs would effectively unmap a potion of the
6765 		 * huge page. Unmapping guest memory always requires a TLB flush
6766 		 * since a subsequent operation on the unmapped regions would
6767 		 * fail to detect the need to flush.
6768 		 */
6769 		if (is_shadow_present_pte(*sptep)) {
6770 			flush |= !is_last_spte(*sptep, sp->role.level);
6771 			continue;
6772 		}
6773 
6774 		spte = make_huge_page_split_spte(kvm, huge_spte, sp->role, index);
6775 		mmu_spte_set(sptep, spte);
6776 		__rmap_add(kvm, cache, slot, sptep, gfn, sp->role.access);
6777 	}
6778 
6779 	__link_shadow_page(kvm, cache, huge_sptep, sp, flush);
6780 }
6781 
6782 static int shadow_mmu_try_split_huge_page(struct kvm *kvm,
6783 					  const struct kvm_memory_slot *slot,
6784 					  u64 *huge_sptep)
6785 {
6786 	struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep);
6787 	int level, r = 0;
6788 	gfn_t gfn;
6789 	u64 spte;
6790 
6791 	/* Grab information for the tracepoint before dropping the MMU lock. */
6792 	gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep));
6793 	level = huge_sp->role.level;
6794 	spte = *huge_sptep;
6795 
6796 	if (kvm_mmu_available_pages(kvm) <= KVM_MIN_FREE_MMU_PAGES) {
6797 		r = -ENOSPC;
6798 		goto out;
6799 	}
6800 
6801 	if (need_topup_split_caches_or_resched(kvm)) {
6802 		write_unlock(&kvm->mmu_lock);
6803 		cond_resched();
6804 		/*
6805 		 * If the topup succeeds, return -EAGAIN to indicate that the
6806 		 * rmap iterator should be restarted because the MMU lock was
6807 		 * dropped.
6808 		 */
6809 		r = topup_split_caches(kvm) ?: -EAGAIN;
6810 		write_lock(&kvm->mmu_lock);
6811 		goto out;
6812 	}
6813 
6814 	shadow_mmu_split_huge_page(kvm, slot, huge_sptep);
6815 
6816 out:
6817 	trace_kvm_mmu_split_huge_page(gfn, spte, level, r);
6818 	return r;
6819 }
6820 
6821 static bool shadow_mmu_try_split_huge_pages(struct kvm *kvm,
6822 					    struct kvm_rmap_head *rmap_head,
6823 					    const struct kvm_memory_slot *slot)
6824 {
6825 	struct rmap_iterator iter;
6826 	struct kvm_mmu_page *sp;
6827 	u64 *huge_sptep;
6828 	int r;
6829 
6830 restart:
6831 	for_each_rmap_spte(rmap_head, &iter, huge_sptep) {
6832 		sp = sptep_to_sp(huge_sptep);
6833 
6834 		/* TDP MMU is enabled, so rmap only contains nested MMU SPs. */
6835 		if (WARN_ON_ONCE(!sp->role.guest_mode))
6836 			continue;
6837 
6838 		/* The rmaps should never contain non-leaf SPTEs. */
6839 		if (WARN_ON_ONCE(!is_large_pte(*huge_sptep)))
6840 			continue;
6841 
6842 		/* SPs with level >PG_LEVEL_4K should never by unsync. */
6843 		if (WARN_ON_ONCE(sp->unsync))
6844 			continue;
6845 
6846 		/* Don't bother splitting huge pages on invalid SPs. */
6847 		if (sp->role.invalid)
6848 			continue;
6849 
6850 		r = shadow_mmu_try_split_huge_page(kvm, slot, huge_sptep);
6851 
6852 		/*
6853 		 * The split succeeded or needs to be retried because the MMU
6854 		 * lock was dropped. Either way, restart the iterator to get it
6855 		 * back into a consistent state.
6856 		 */
6857 		if (!r || r == -EAGAIN)
6858 			goto restart;
6859 
6860 		/* The split failed and shouldn't be retried (e.g. -ENOMEM). */
6861 		break;
6862 	}
6863 
6864 	return false;
6865 }
6866 
6867 static void kvm_shadow_mmu_try_split_huge_pages(struct kvm *kvm,
6868 						const struct kvm_memory_slot *slot,
6869 						gfn_t start, gfn_t end,
6870 						int target_level)
6871 {
6872 	int level;
6873 
6874 	/*
6875 	 * Split huge pages starting with KVM_MAX_HUGEPAGE_LEVEL and working
6876 	 * down to the target level. This ensures pages are recursively split
6877 	 * all the way to the target level. There's no need to split pages
6878 	 * already at the target level.
6879 	 */
6880 	for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--)
6881 		__walk_slot_rmaps(kvm, slot, shadow_mmu_try_split_huge_pages,
6882 				  level, level, start, end - 1, true, true, false);
6883 }
6884 
6885 /* Must be called with the mmu_lock held in write-mode. */
6886 void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
6887 				   const struct kvm_memory_slot *memslot,
6888 				   u64 start, u64 end,
6889 				   int target_level)
6890 {
6891 	if (!tdp_mmu_enabled)
6892 		return;
6893 
6894 	if (kvm_memslots_have_rmaps(kvm))
6895 		kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level);
6896 
6897 	kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, false);
6898 
6899 	/*
6900 	 * A TLB flush is unnecessary at this point for the same reasons as in
6901 	 * kvm_mmu_slot_try_split_huge_pages().
6902 	 */
6903 }
6904 
6905 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
6906 					const struct kvm_memory_slot *memslot,
6907 					int target_level)
6908 {
6909 	u64 start = memslot->base_gfn;
6910 	u64 end = start + memslot->npages;
6911 
6912 	if (!tdp_mmu_enabled)
6913 		return;
6914 
6915 	if (kvm_memslots_have_rmaps(kvm)) {
6916 		write_lock(&kvm->mmu_lock);
6917 		kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level);
6918 		write_unlock(&kvm->mmu_lock);
6919 	}
6920 
6921 	read_lock(&kvm->mmu_lock);
6922 	kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true);
6923 	read_unlock(&kvm->mmu_lock);
6924 
6925 	/*
6926 	 * No TLB flush is necessary here. KVM will flush TLBs after
6927 	 * write-protecting and/or clearing dirty on the newly split SPTEs to
6928 	 * ensure that guest writes are reflected in the dirty log before the
6929 	 * ioctl to enable dirty logging on this memslot completes. Since the
6930 	 * split SPTEs retain the write and dirty bits of the huge SPTE, it is
6931 	 * safe for KVM to decide if a TLB flush is necessary based on the split
6932 	 * SPTEs.
6933 	 */
6934 }
6935 
6936 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
6937 					 struct kvm_rmap_head *rmap_head,
6938 					 const struct kvm_memory_slot *slot)
6939 {
6940 	u64 *sptep;
6941 	struct rmap_iterator iter;
6942 	int need_tlb_flush = 0;
6943 	struct kvm_mmu_page *sp;
6944 
6945 restart:
6946 	for_each_rmap_spte(rmap_head, &iter, sptep) {
6947 		sp = sptep_to_sp(sptep);
6948 
6949 		/*
6950 		 * We cannot do huge page mapping for indirect shadow pages,
6951 		 * which are found on the last rmap (level = 1) when not using
6952 		 * tdp; such shadow pages are synced with the page table in
6953 		 * the guest, and the guest page table is using 4K page size
6954 		 * mapping if the indirect sp has level = 1.
6955 		 */
6956 		if (sp->role.direct &&
6957 		    sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
6958 							       PG_LEVEL_NUM)) {
6959 			kvm_zap_one_rmap_spte(kvm, rmap_head, sptep);
6960 
6961 			if (kvm_available_flush_remote_tlbs_range())
6962 				kvm_flush_remote_tlbs_sptep(kvm, sptep);
6963 			else
6964 				need_tlb_flush = 1;
6965 
6966 			goto restart;
6967 		}
6968 	}
6969 
6970 	return need_tlb_flush;
6971 }
6972 EXPORT_SYMBOL_GPL(kvm_zap_gfn_range);
6973 
6974 static void kvm_rmap_zap_collapsible_sptes(struct kvm *kvm,
6975 					   const struct kvm_memory_slot *slot)
6976 {
6977 	/*
6978 	 * Note, use KVM_MAX_HUGEPAGE_LEVEL - 1 since there's no need to zap
6979 	 * pages that are already mapped at the maximum hugepage level.
6980 	 */
6981 	if (walk_slot_rmaps(kvm, slot, kvm_mmu_zap_collapsible_spte,
6982 			    PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL - 1, true))
6983 		kvm_flush_remote_tlbs_memslot(kvm, slot);
6984 }
6985 
6986 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
6987 				   const struct kvm_memory_slot *slot)
6988 {
6989 	if (kvm_memslots_have_rmaps(kvm)) {
6990 		write_lock(&kvm->mmu_lock);
6991 		kvm_rmap_zap_collapsible_sptes(kvm, slot);
6992 		write_unlock(&kvm->mmu_lock);
6993 	}
6994 
6995 	if (tdp_mmu_enabled) {
6996 		read_lock(&kvm->mmu_lock);
6997 		kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot);
6998 		read_unlock(&kvm->mmu_lock);
6999 	}
7000 }
7001 
7002 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
7003 				   const struct kvm_memory_slot *memslot)
7004 {
7005 	if (kvm_memslots_have_rmaps(kvm)) {
7006 		write_lock(&kvm->mmu_lock);
7007 		/*
7008 		 * Clear dirty bits only on 4k SPTEs since the legacy MMU only
7009 		 * support dirty logging at a 4k granularity.
7010 		 */
7011 		walk_slot_rmaps_4k(kvm, memslot, __rmap_clear_dirty, false);
7012 		write_unlock(&kvm->mmu_lock);
7013 	}
7014 
7015 	if (tdp_mmu_enabled) {
7016 		read_lock(&kvm->mmu_lock);
7017 		kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
7018 		read_unlock(&kvm->mmu_lock);
7019 	}
7020 
7021 	/*
7022 	 * The caller will flush the TLBs after this function returns.
7023 	 *
7024 	 * It's also safe to flush TLBs out of mmu lock here as currently this
7025 	 * function is only used for dirty logging, in which case flushing TLB
7026 	 * out of mmu lock also guarantees no dirty pages will be lost in
7027 	 * dirty_bitmap.
7028 	 */
7029 }
7030 
7031 static void kvm_mmu_zap_all(struct kvm *kvm)
7032 {
7033 	struct kvm_mmu_page *sp, *node;
7034 	LIST_HEAD(invalid_list);
7035 	int ign;
7036 
7037 	write_lock(&kvm->mmu_lock);
7038 restart:
7039 	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
7040 		if (WARN_ON_ONCE(sp->role.invalid))
7041 			continue;
7042 		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
7043 			goto restart;
7044 		if (cond_resched_rwlock_write(&kvm->mmu_lock))
7045 			goto restart;
7046 	}
7047 
7048 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
7049 
7050 	if (tdp_mmu_enabled)
7051 		kvm_tdp_mmu_zap_all(kvm);
7052 
7053 	write_unlock(&kvm->mmu_lock);
7054 }
7055 
7056 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7057 {
7058 	kvm_mmu_zap_all(kvm);
7059 }
7060 
7061 static void kvm_mmu_zap_memslot_pages_and_flush(struct kvm *kvm,
7062 						struct kvm_memory_slot *slot,
7063 						bool flush)
7064 {
7065 	LIST_HEAD(invalid_list);
7066 	unsigned long i;
7067 
7068 	if (list_empty(&kvm->arch.active_mmu_pages))
7069 		goto out_flush;
7070 
7071 	/*
7072 	 * Since accounting information is stored in struct kvm_arch_memory_slot,
7073 	 * all MMU pages that are shadowing guest PTEs must be zapped before the
7074 	 * memslot is deleted, as freeing such pages after the memslot is freed
7075 	 * will result in use-after-free, e.g. in unaccount_shadowed().
7076 	 */
7077 	for (i = 0; i < slot->npages; i++) {
7078 		struct kvm_mmu_page *sp;
7079 		gfn_t gfn = slot->base_gfn + i;
7080 
7081 		for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn)
7082 			kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7083 
7084 		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
7085 			kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
7086 			flush = false;
7087 			cond_resched_rwlock_write(&kvm->mmu_lock);
7088 		}
7089 	}
7090 
7091 out_flush:
7092 	kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
7093 }
7094 
7095 static void kvm_mmu_zap_memslot(struct kvm *kvm,
7096 				struct kvm_memory_slot *slot)
7097 {
7098 	struct kvm_gfn_range range = {
7099 		.slot = slot,
7100 		.start = slot->base_gfn,
7101 		.end = slot->base_gfn + slot->npages,
7102 		.may_block = true,
7103 	};
7104 	bool flush;
7105 
7106 	write_lock(&kvm->mmu_lock);
7107 	flush = kvm_unmap_gfn_range(kvm, &range);
7108 	kvm_mmu_zap_memslot_pages_and_flush(kvm, slot, flush);
7109 	write_unlock(&kvm->mmu_lock);
7110 }
7111 
7112 static inline bool kvm_memslot_flush_zap_all(struct kvm *kvm)
7113 {
7114 	return kvm->arch.vm_type == KVM_X86_DEFAULT_VM &&
7115 	       kvm_check_has_quirk(kvm, KVM_X86_QUIRK_SLOT_ZAP_ALL);
7116 }
7117 
7118 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7119 				   struct kvm_memory_slot *slot)
7120 {
7121 	if (kvm_memslot_flush_zap_all(kvm))
7122 		kvm_mmu_zap_all_fast(kvm);
7123 	else
7124 		kvm_mmu_zap_memslot(kvm, slot);
7125 }
7126 
7127 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
7128 {
7129 	WARN_ON_ONCE(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
7130 
7131 	gen &= MMIO_SPTE_GEN_MASK;
7132 
7133 	/*
7134 	 * Generation numbers are incremented in multiples of the number of
7135 	 * address spaces in order to provide unique generations across all
7136 	 * address spaces.  Strip what is effectively the address space
7137 	 * modifier prior to checking for a wrap of the MMIO generation so
7138 	 * that a wrap in any address space is detected.
7139 	 */
7140 	gen &= ~((u64)kvm_arch_nr_memslot_as_ids(kvm) - 1);
7141 
7142 	/*
7143 	 * The very rare case: if the MMIO generation number has wrapped,
7144 	 * zap all shadow pages.
7145 	 */
7146 	if (unlikely(gen == 0)) {
7147 		kvm_debug_ratelimited("zapping shadow pages for mmio generation wraparound\n");
7148 		kvm_mmu_zap_all_fast(kvm);
7149 	}
7150 }
7151 
7152 static unsigned long mmu_shrink_scan(struct shrinker *shrink,
7153 				     struct shrink_control *sc)
7154 {
7155 	struct kvm *kvm;
7156 	int nr_to_scan = sc->nr_to_scan;
7157 	unsigned long freed = 0;
7158 
7159 	mutex_lock(&kvm_lock);
7160 
7161 	list_for_each_entry(kvm, &vm_list, vm_list) {
7162 		int idx;
7163 
7164 		/*
7165 		 * Never scan more than sc->nr_to_scan VM instances.
7166 		 * Will not hit this condition practically since we do not try
7167 		 * to shrink more than one VM and it is very unlikely to see
7168 		 * !n_used_mmu_pages so many times.
7169 		 */
7170 		if (!nr_to_scan--)
7171 			break;
7172 		/*
7173 		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
7174 		 * here. We may skip a VM instance errorneosly, but we do not
7175 		 * want to shrink a VM that only started to populate its MMU
7176 		 * anyway.
7177 		 */
7178 		if (!kvm->arch.n_used_mmu_pages &&
7179 		    !kvm_has_zapped_obsolete_pages(kvm))
7180 			continue;
7181 
7182 		idx = srcu_read_lock(&kvm->srcu);
7183 		write_lock(&kvm->mmu_lock);
7184 
7185 		if (kvm_has_zapped_obsolete_pages(kvm)) {
7186 			kvm_mmu_commit_zap_page(kvm,
7187 			      &kvm->arch.zapped_obsolete_pages);
7188 			goto unlock;
7189 		}
7190 
7191 		freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
7192 
7193 unlock:
7194 		write_unlock(&kvm->mmu_lock);
7195 		srcu_read_unlock(&kvm->srcu, idx);
7196 
7197 		/*
7198 		 * unfair on small ones
7199 		 * per-vm shrinkers cry out
7200 		 * sadness comes quickly
7201 		 */
7202 		list_move_tail(&kvm->vm_list, &vm_list);
7203 		break;
7204 	}
7205 
7206 	mutex_unlock(&kvm_lock);
7207 	return freed;
7208 }
7209 
7210 static unsigned long mmu_shrink_count(struct shrinker *shrink,
7211 				      struct shrink_control *sc)
7212 {
7213 	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
7214 }
7215 
7216 static struct shrinker *mmu_shrinker;
7217 
7218 static void mmu_destroy_caches(void)
7219 {
7220 	kmem_cache_destroy(pte_list_desc_cache);
7221 	kmem_cache_destroy(mmu_page_header_cache);
7222 }
7223 
7224 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp)
7225 {
7226 	if (nx_hugepage_mitigation_hard_disabled)
7227 		return sysfs_emit(buffer, "never\n");
7228 
7229 	return param_get_bool(buffer, kp);
7230 }
7231 
7232 static bool get_nx_auto_mode(void)
7233 {
7234 	/* Return true when CPU has the bug, and mitigations are ON */
7235 	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
7236 }
7237 
7238 static void __set_nx_huge_pages(bool val)
7239 {
7240 	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
7241 }
7242 
7243 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
7244 {
7245 	bool old_val = nx_huge_pages;
7246 	bool new_val;
7247 
7248 	if (nx_hugepage_mitigation_hard_disabled)
7249 		return -EPERM;
7250 
7251 	/* In "auto" mode deploy workaround only if CPU has the bug. */
7252 	if (sysfs_streq(val, "off")) {
7253 		new_val = 0;
7254 	} else if (sysfs_streq(val, "force")) {
7255 		new_val = 1;
7256 	} else if (sysfs_streq(val, "auto")) {
7257 		new_val = get_nx_auto_mode();
7258 	} else if (sysfs_streq(val, "never")) {
7259 		new_val = 0;
7260 
7261 		mutex_lock(&kvm_lock);
7262 		if (!list_empty(&vm_list)) {
7263 			mutex_unlock(&kvm_lock);
7264 			return -EBUSY;
7265 		}
7266 		nx_hugepage_mitigation_hard_disabled = true;
7267 		mutex_unlock(&kvm_lock);
7268 	} else if (kstrtobool(val, &new_val) < 0) {
7269 		return -EINVAL;
7270 	}
7271 
7272 	__set_nx_huge_pages(new_val);
7273 
7274 	if (new_val != old_val) {
7275 		struct kvm *kvm;
7276 
7277 		mutex_lock(&kvm_lock);
7278 
7279 		list_for_each_entry(kvm, &vm_list, vm_list) {
7280 			mutex_lock(&kvm->slots_lock);
7281 			kvm_mmu_zap_all_fast(kvm);
7282 			mutex_unlock(&kvm->slots_lock);
7283 
7284 			wake_up_process(kvm->arch.nx_huge_page_recovery_thread);
7285 		}
7286 		mutex_unlock(&kvm_lock);
7287 	}
7288 
7289 	return 0;
7290 }
7291 
7292 /*
7293  * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as
7294  * its default value of -1 is technically undefined behavior for a boolean.
7295  * Forward the module init call to SPTE code so that it too can handle module
7296  * params that need to be resolved/snapshot.
7297  */
7298 void __init kvm_mmu_x86_module_init(void)
7299 {
7300 	if (nx_huge_pages == -1)
7301 		__set_nx_huge_pages(get_nx_auto_mode());
7302 
7303 	/*
7304 	 * Snapshot userspace's desire to enable the TDP MMU. Whether or not the
7305 	 * TDP MMU is actually enabled is determined in kvm_configure_mmu()
7306 	 * when the vendor module is loaded.
7307 	 */
7308 	tdp_mmu_allowed = tdp_mmu_enabled;
7309 
7310 	kvm_mmu_spte_module_init();
7311 }
7312 
7313 /*
7314  * The bulk of the MMU initialization is deferred until the vendor module is
7315  * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need
7316  * to be reset when a potentially different vendor module is loaded.
7317  */
7318 int kvm_mmu_vendor_module_init(void)
7319 {
7320 	int ret = -ENOMEM;
7321 
7322 	/*
7323 	 * MMU roles use union aliasing which is, generally speaking, an
7324 	 * undefined behavior. However, we supposedly know how compilers behave
7325 	 * and the current status quo is unlikely to change. Guardians below are
7326 	 * supposed to let us know if the assumption becomes false.
7327 	 */
7328 	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
7329 	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
7330 	BUILD_BUG_ON(sizeof(union kvm_cpu_role) != sizeof(u64));
7331 
7332 	kvm_mmu_reset_all_pte_masks();
7333 
7334 	pte_list_desc_cache = KMEM_CACHE(pte_list_desc, SLAB_ACCOUNT);
7335 	if (!pte_list_desc_cache)
7336 		goto out;
7337 
7338 	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
7339 						  sizeof(struct kvm_mmu_page),
7340 						  0, SLAB_ACCOUNT, NULL);
7341 	if (!mmu_page_header_cache)
7342 		goto out;
7343 
7344 	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
7345 		goto out;
7346 
7347 	mmu_shrinker = shrinker_alloc(0, "x86-mmu");
7348 	if (!mmu_shrinker)
7349 		goto out_shrinker;
7350 
7351 	mmu_shrinker->count_objects = mmu_shrink_count;
7352 	mmu_shrinker->scan_objects = mmu_shrink_scan;
7353 	mmu_shrinker->seeks = DEFAULT_SEEKS * 10;
7354 
7355 	shrinker_register(mmu_shrinker);
7356 
7357 	return 0;
7358 
7359 out_shrinker:
7360 	percpu_counter_destroy(&kvm_total_used_mmu_pages);
7361 out:
7362 	mmu_destroy_caches();
7363 	return ret;
7364 }
7365 
7366 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
7367 {
7368 	kvm_mmu_unload(vcpu);
7369 	free_mmu_pages(&vcpu->arch.root_mmu);
7370 	free_mmu_pages(&vcpu->arch.guest_mmu);
7371 	mmu_free_memory_caches(vcpu);
7372 }
7373 
7374 void kvm_mmu_vendor_module_exit(void)
7375 {
7376 	mmu_destroy_caches();
7377 	percpu_counter_destroy(&kvm_total_used_mmu_pages);
7378 	shrinker_free(mmu_shrinker);
7379 }
7380 
7381 /*
7382  * Calculate the effective recovery period, accounting for '0' meaning "let KVM
7383  * select a halving time of 1 hour".  Returns true if recovery is enabled.
7384  */
7385 static bool calc_nx_huge_pages_recovery_period(uint *period)
7386 {
7387 	/*
7388 	 * Use READ_ONCE to get the params, this may be called outside of the
7389 	 * param setters, e.g. by the kthread to compute its next timeout.
7390 	 */
7391 	bool enabled = READ_ONCE(nx_huge_pages);
7392 	uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
7393 
7394 	if (!enabled || !ratio)
7395 		return false;
7396 
7397 	*period = READ_ONCE(nx_huge_pages_recovery_period_ms);
7398 	if (!*period) {
7399 		/* Make sure the period is not less than one second.  */
7400 		ratio = min(ratio, 3600u);
7401 		*period = 60 * 60 * 1000 / ratio;
7402 	}
7403 	return true;
7404 }
7405 
7406 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp)
7407 {
7408 	bool was_recovery_enabled, is_recovery_enabled;
7409 	uint old_period, new_period;
7410 	int err;
7411 
7412 	if (nx_hugepage_mitigation_hard_disabled)
7413 		return -EPERM;
7414 
7415 	was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period);
7416 
7417 	err = param_set_uint(val, kp);
7418 	if (err)
7419 		return err;
7420 
7421 	is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period);
7422 
7423 	if (is_recovery_enabled &&
7424 	    (!was_recovery_enabled || old_period > new_period)) {
7425 		struct kvm *kvm;
7426 
7427 		mutex_lock(&kvm_lock);
7428 
7429 		list_for_each_entry(kvm, &vm_list, vm_list)
7430 			wake_up_process(kvm->arch.nx_huge_page_recovery_thread);
7431 
7432 		mutex_unlock(&kvm_lock);
7433 	}
7434 
7435 	return err;
7436 }
7437 
7438 static void kvm_recover_nx_huge_pages(struct kvm *kvm)
7439 {
7440 	unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
7441 	struct kvm_memory_slot *slot;
7442 	int rcu_idx;
7443 	struct kvm_mmu_page *sp;
7444 	unsigned int ratio;
7445 	LIST_HEAD(invalid_list);
7446 	bool flush = false;
7447 	ulong to_zap;
7448 
7449 	rcu_idx = srcu_read_lock(&kvm->srcu);
7450 	write_lock(&kvm->mmu_lock);
7451 
7452 	/*
7453 	 * Zapping TDP MMU shadow pages, including the remote TLB flush, must
7454 	 * be done under RCU protection, because the pages are freed via RCU
7455 	 * callback.
7456 	 */
7457 	rcu_read_lock();
7458 
7459 	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
7460 	to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
7461 	for ( ; to_zap; --to_zap) {
7462 		if (list_empty(&kvm->arch.possible_nx_huge_pages))
7463 			break;
7464 
7465 		/*
7466 		 * We use a separate list instead of just using active_mmu_pages
7467 		 * because the number of shadow pages that be replaced with an
7468 		 * NX huge page is expected to be relatively small compared to
7469 		 * the total number of shadow pages.  And because the TDP MMU
7470 		 * doesn't use active_mmu_pages.
7471 		 */
7472 		sp = list_first_entry(&kvm->arch.possible_nx_huge_pages,
7473 				      struct kvm_mmu_page,
7474 				      possible_nx_huge_page_link);
7475 		WARN_ON_ONCE(!sp->nx_huge_page_disallowed);
7476 		WARN_ON_ONCE(!sp->role.direct);
7477 
7478 		/*
7479 		 * Unaccount and do not attempt to recover any NX Huge Pages
7480 		 * that are being dirty tracked, as they would just be faulted
7481 		 * back in as 4KiB pages. The NX Huge Pages in this slot will be
7482 		 * recovered, along with all the other huge pages in the slot,
7483 		 * when dirty logging is disabled.
7484 		 *
7485 		 * Since gfn_to_memslot() is relatively expensive, it helps to
7486 		 * skip it if it the test cannot possibly return true.  On the
7487 		 * other hand, if any memslot has logging enabled, chances are
7488 		 * good that all of them do, in which case unaccount_nx_huge_page()
7489 		 * is much cheaper than zapping the page.
7490 		 *
7491 		 * If a memslot update is in progress, reading an incorrect value
7492 		 * of kvm->nr_memslots_dirty_logging is not a problem: if it is
7493 		 * becoming zero, gfn_to_memslot() will be done unnecessarily; if
7494 		 * it is becoming nonzero, the page will be zapped unnecessarily.
7495 		 * Either way, this only affects efficiency in racy situations,
7496 		 * and not correctness.
7497 		 */
7498 		slot = NULL;
7499 		if (atomic_read(&kvm->nr_memslots_dirty_logging)) {
7500 			struct kvm_memslots *slots;
7501 
7502 			slots = kvm_memslots_for_spte_role(kvm, sp->role);
7503 			slot = __gfn_to_memslot(slots, sp->gfn);
7504 			WARN_ON_ONCE(!slot);
7505 		}
7506 
7507 		if (slot && kvm_slot_dirty_track_enabled(slot))
7508 			unaccount_nx_huge_page(kvm, sp);
7509 		else if (is_tdp_mmu_page(sp))
7510 			flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
7511 		else
7512 			kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7513 		WARN_ON_ONCE(sp->nx_huge_page_disallowed);
7514 
7515 		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
7516 			kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
7517 			rcu_read_unlock();
7518 
7519 			cond_resched_rwlock_write(&kvm->mmu_lock);
7520 			flush = false;
7521 
7522 			rcu_read_lock();
7523 		}
7524 	}
7525 	kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
7526 
7527 	rcu_read_unlock();
7528 
7529 	write_unlock(&kvm->mmu_lock);
7530 	srcu_read_unlock(&kvm->srcu, rcu_idx);
7531 }
7532 
7533 static long get_nx_huge_page_recovery_timeout(u64 start_time)
7534 {
7535 	bool enabled;
7536 	uint period;
7537 
7538 	enabled = calc_nx_huge_pages_recovery_period(&period);
7539 
7540 	return enabled ? start_time + msecs_to_jiffies(period) - get_jiffies_64()
7541 		       : MAX_SCHEDULE_TIMEOUT;
7542 }
7543 
7544 static int kvm_nx_huge_page_recovery_worker(struct kvm *kvm, uintptr_t data)
7545 {
7546 	u64 start_time;
7547 	long remaining_time;
7548 
7549 	while (true) {
7550 		start_time = get_jiffies_64();
7551 		remaining_time = get_nx_huge_page_recovery_timeout(start_time);
7552 
7553 		set_current_state(TASK_INTERRUPTIBLE);
7554 		while (!kthread_should_stop() && remaining_time > 0) {
7555 			schedule_timeout(remaining_time);
7556 			remaining_time = get_nx_huge_page_recovery_timeout(start_time);
7557 			set_current_state(TASK_INTERRUPTIBLE);
7558 		}
7559 
7560 		set_current_state(TASK_RUNNING);
7561 
7562 		if (kthread_should_stop())
7563 			return 0;
7564 
7565 		kvm_recover_nx_huge_pages(kvm);
7566 	}
7567 }
7568 
7569 int kvm_mmu_post_init_vm(struct kvm *kvm)
7570 {
7571 	int err;
7572 
7573 	if (nx_hugepage_mitigation_hard_disabled)
7574 		return 0;
7575 
7576 	err = kvm_vm_create_worker_thread(kvm, kvm_nx_huge_page_recovery_worker, 0,
7577 					  "kvm-nx-lpage-recovery",
7578 					  &kvm->arch.nx_huge_page_recovery_thread);
7579 	if (!err)
7580 		kthread_unpark(kvm->arch.nx_huge_page_recovery_thread);
7581 
7582 	return err;
7583 }
7584 
7585 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
7586 {
7587 	if (kvm->arch.nx_huge_page_recovery_thread)
7588 		kthread_stop(kvm->arch.nx_huge_page_recovery_thread);
7589 }
7590 
7591 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
7592 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm,
7593 					struct kvm_gfn_range *range)
7594 {
7595 	/*
7596 	 * Zap SPTEs even if the slot can't be mapped PRIVATE.  KVM x86 only
7597 	 * supports KVM_MEMORY_ATTRIBUTE_PRIVATE, and so it *seems* like KVM
7598 	 * can simply ignore such slots.  But if userspace is making memory
7599 	 * PRIVATE, then KVM must prevent the guest from accessing the memory
7600 	 * as shared.  And if userspace is making memory SHARED and this point
7601 	 * is reached, then at least one page within the range was previously
7602 	 * PRIVATE, i.e. the slot's possible hugepage ranges are changing.
7603 	 * Zapping SPTEs in this case ensures KVM will reassess whether or not
7604 	 * a hugepage can be used for affected ranges.
7605 	 */
7606 	if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm)))
7607 		return false;
7608 
7609 	return kvm_unmap_gfn_range(kvm, range);
7610 }
7611 
7612 static bool hugepage_test_mixed(struct kvm_memory_slot *slot, gfn_t gfn,
7613 				int level)
7614 {
7615 	return lpage_info_slot(gfn, slot, level)->disallow_lpage & KVM_LPAGE_MIXED_FLAG;
7616 }
7617 
7618 static void hugepage_clear_mixed(struct kvm_memory_slot *slot, gfn_t gfn,
7619 				 int level)
7620 {
7621 	lpage_info_slot(gfn, slot, level)->disallow_lpage &= ~KVM_LPAGE_MIXED_FLAG;
7622 }
7623 
7624 static void hugepage_set_mixed(struct kvm_memory_slot *slot, gfn_t gfn,
7625 			       int level)
7626 {
7627 	lpage_info_slot(gfn, slot, level)->disallow_lpage |= KVM_LPAGE_MIXED_FLAG;
7628 }
7629 
7630 static bool hugepage_has_attrs(struct kvm *kvm, struct kvm_memory_slot *slot,
7631 			       gfn_t gfn, int level, unsigned long attrs)
7632 {
7633 	const unsigned long start = gfn;
7634 	const unsigned long end = start + KVM_PAGES_PER_HPAGE(level);
7635 
7636 	if (level == PG_LEVEL_2M)
7637 		return kvm_range_has_memory_attributes(kvm, start, end, ~0, attrs);
7638 
7639 	for (gfn = start; gfn < end; gfn += KVM_PAGES_PER_HPAGE(level - 1)) {
7640 		if (hugepage_test_mixed(slot, gfn, level - 1) ||
7641 		    attrs != kvm_get_memory_attributes(kvm, gfn))
7642 			return false;
7643 	}
7644 	return true;
7645 }
7646 
7647 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm,
7648 					 struct kvm_gfn_range *range)
7649 {
7650 	unsigned long attrs = range->arg.attributes;
7651 	struct kvm_memory_slot *slot = range->slot;
7652 	int level;
7653 
7654 	lockdep_assert_held_write(&kvm->mmu_lock);
7655 	lockdep_assert_held(&kvm->slots_lock);
7656 
7657 	/*
7658 	 * Calculate which ranges can be mapped with hugepages even if the slot
7659 	 * can't map memory PRIVATE.  KVM mustn't create a SHARED hugepage over
7660 	 * a range that has PRIVATE GFNs, and conversely converting a range to
7661 	 * SHARED may now allow hugepages.
7662 	 */
7663 	if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm)))
7664 		return false;
7665 
7666 	/*
7667 	 * The sequence matters here: upper levels consume the result of lower
7668 	 * level's scanning.
7669 	 */
7670 	for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) {
7671 		gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level);
7672 		gfn_t gfn = gfn_round_for_level(range->start, level);
7673 
7674 		/* Process the head page if it straddles the range. */
7675 		if (gfn != range->start || gfn + nr_pages > range->end) {
7676 			/*
7677 			 * Skip mixed tracking if the aligned gfn isn't covered
7678 			 * by the memslot, KVM can't use a hugepage due to the
7679 			 * misaligned address regardless of memory attributes.
7680 			 */
7681 			if (gfn >= slot->base_gfn &&
7682 			    gfn + nr_pages <= slot->base_gfn + slot->npages) {
7683 				if (hugepage_has_attrs(kvm, slot, gfn, level, attrs))
7684 					hugepage_clear_mixed(slot, gfn, level);
7685 				else
7686 					hugepage_set_mixed(slot, gfn, level);
7687 			}
7688 			gfn += nr_pages;
7689 		}
7690 
7691 		/*
7692 		 * Pages entirely covered by the range are guaranteed to have
7693 		 * only the attributes which were just set.
7694 		 */
7695 		for ( ; gfn + nr_pages <= range->end; gfn += nr_pages)
7696 			hugepage_clear_mixed(slot, gfn, level);
7697 
7698 		/*
7699 		 * Process the last tail page if it straddles the range and is
7700 		 * contained by the memslot.  Like the head page, KVM can't
7701 		 * create a hugepage if the slot size is misaligned.
7702 		 */
7703 		if (gfn < range->end &&
7704 		    (gfn + nr_pages) <= (slot->base_gfn + slot->npages)) {
7705 			if (hugepage_has_attrs(kvm, slot, gfn, level, attrs))
7706 				hugepage_clear_mixed(slot, gfn, level);
7707 			else
7708 				hugepage_set_mixed(slot, gfn, level);
7709 		}
7710 	}
7711 	return false;
7712 }
7713 
7714 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm,
7715 					    struct kvm_memory_slot *slot)
7716 {
7717 	int level;
7718 
7719 	if (!kvm_arch_has_private_mem(kvm))
7720 		return;
7721 
7722 	for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) {
7723 		/*
7724 		 * Don't bother tracking mixed attributes for pages that can't
7725 		 * be huge due to alignment, i.e. process only pages that are
7726 		 * entirely contained by the memslot.
7727 		 */
7728 		gfn_t end = gfn_round_for_level(slot->base_gfn + slot->npages, level);
7729 		gfn_t start = gfn_round_for_level(slot->base_gfn, level);
7730 		gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level);
7731 		gfn_t gfn;
7732 
7733 		if (start < slot->base_gfn)
7734 			start += nr_pages;
7735 
7736 		/*
7737 		 * Unlike setting attributes, every potential hugepage needs to
7738 		 * be manually checked as the attributes may already be mixed.
7739 		 */
7740 		for (gfn = start; gfn < end; gfn += nr_pages) {
7741 			unsigned long attrs = kvm_get_memory_attributes(kvm, gfn);
7742 
7743 			if (hugepage_has_attrs(kvm, slot, gfn, level, attrs))
7744 				hugepage_clear_mixed(slot, gfn, level);
7745 			else
7746 				hugepage_set_mixed(slot, gfn, level);
7747 		}
7748 	}
7749 }
7750 #endif
7751