1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * MMU support 9 * 10 * Copyright (C) 2006 Qumranet, Inc. 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 12 * 13 * Authors: 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Avi Kivity <avi@qumranet.com> 16 */ 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include "irq.h" 20 #include "ioapic.h" 21 #include "mmu.h" 22 #include "mmu_internal.h" 23 #include "tdp_mmu.h" 24 #include "x86.h" 25 #include "kvm_cache_regs.h" 26 #include "smm.h" 27 #include "kvm_emulate.h" 28 #include "page_track.h" 29 #include "cpuid.h" 30 #include "spte.h" 31 32 #include <linux/kvm_host.h> 33 #include <linux/types.h> 34 #include <linux/string.h> 35 #include <linux/mm.h> 36 #include <linux/highmem.h> 37 #include <linux/moduleparam.h> 38 #include <linux/export.h> 39 #include <linux/swap.h> 40 #include <linux/hugetlb.h> 41 #include <linux/compiler.h> 42 #include <linux/srcu.h> 43 #include <linux/slab.h> 44 #include <linux/sched/signal.h> 45 #include <linux/uaccess.h> 46 #include <linux/hash.h> 47 #include <linux/kern_levels.h> 48 #include <linux/kstrtox.h> 49 #include <linux/kthread.h> 50 #include <linux/wordpart.h> 51 52 #include <asm/page.h> 53 #include <asm/memtype.h> 54 #include <asm/cmpxchg.h> 55 #include <asm/io.h> 56 #include <asm/set_memory.h> 57 #include <asm/spec-ctrl.h> 58 #include <asm/vmx.h> 59 60 #include "trace.h" 61 62 static bool nx_hugepage_mitigation_hard_disabled; 63 64 int __read_mostly nx_huge_pages = -1; 65 static uint __read_mostly nx_huge_pages_recovery_period_ms; 66 #ifdef CONFIG_PREEMPT_RT 67 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */ 68 static uint __read_mostly nx_huge_pages_recovery_ratio = 0; 69 #else 70 static uint __read_mostly nx_huge_pages_recovery_ratio = 60; 71 #endif 72 73 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp); 74 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp); 75 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp); 76 77 static const struct kernel_param_ops nx_huge_pages_ops = { 78 .set = set_nx_huge_pages, 79 .get = get_nx_huge_pages, 80 }; 81 82 static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = { 83 .set = set_nx_huge_pages_recovery_param, 84 .get = param_get_uint, 85 }; 86 87 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644); 88 __MODULE_PARM_TYPE(nx_huge_pages, "bool"); 89 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops, 90 &nx_huge_pages_recovery_ratio, 0644); 91 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint"); 92 module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops, 93 &nx_huge_pages_recovery_period_ms, 0644); 94 __MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint"); 95 96 static bool __read_mostly force_flush_and_sync_on_reuse; 97 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644); 98 99 /* 100 * When setting this variable to true it enables Two-Dimensional-Paging 101 * where the hardware walks 2 page tables: 102 * 1. the guest-virtual to guest-physical 103 * 2. while doing 1. it walks guest-physical to host-physical 104 * If the hardware supports that we don't need to do shadow paging. 105 */ 106 bool tdp_enabled = false; 107 108 static bool __ro_after_init tdp_mmu_allowed; 109 110 #ifdef CONFIG_X86_64 111 bool __read_mostly tdp_mmu_enabled = true; 112 module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0444); 113 #endif 114 115 static int max_huge_page_level __read_mostly; 116 static int tdp_root_level __read_mostly; 117 static int max_tdp_level __read_mostly; 118 119 #define PTE_PREFETCH_NUM 8 120 121 #include <trace/events/kvm.h> 122 123 /* make pte_list_desc fit well in cache lines */ 124 #define PTE_LIST_EXT 14 125 126 /* 127 * struct pte_list_desc is the core data structure used to implement a custom 128 * list for tracking a set of related SPTEs, e.g. all the SPTEs that map a 129 * given GFN when used in the context of rmaps. Using a custom list allows KVM 130 * to optimize for the common case where many GFNs will have at most a handful 131 * of SPTEs pointing at them, i.e. allows packing multiple SPTEs into a small 132 * memory footprint, which in turn improves runtime performance by exploiting 133 * cache locality. 134 * 135 * A list is comprised of one or more pte_list_desc objects (descriptors). 136 * Each individual descriptor stores up to PTE_LIST_EXT SPTEs. If a descriptor 137 * is full and a new SPTEs needs to be added, a new descriptor is allocated and 138 * becomes the head of the list. This means that by definitions, all tail 139 * descriptors are full. 140 * 141 * Note, the meta data fields are deliberately placed at the start of the 142 * structure to optimize the cacheline layout; accessing the descriptor will 143 * touch only a single cacheline so long as @spte_count<=6 (or if only the 144 * descriptors metadata is accessed). 145 */ 146 struct pte_list_desc { 147 struct pte_list_desc *more; 148 /* The number of PTEs stored in _this_ descriptor. */ 149 u32 spte_count; 150 /* The number of PTEs stored in all tails of this descriptor. */ 151 u32 tail_count; 152 u64 *sptes[PTE_LIST_EXT]; 153 }; 154 155 struct kvm_shadow_walk_iterator { 156 u64 addr; 157 hpa_t shadow_addr; 158 u64 *sptep; 159 int level; 160 unsigned index; 161 }; 162 163 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \ 164 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \ 165 (_root), (_addr)); \ 166 shadow_walk_okay(&(_walker)); \ 167 shadow_walk_next(&(_walker))) 168 169 #define for_each_shadow_entry(_vcpu, _addr, _walker) \ 170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 171 shadow_walk_okay(&(_walker)); \ 172 shadow_walk_next(&(_walker))) 173 174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \ 175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 176 shadow_walk_okay(&(_walker)) && \ 177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \ 178 __shadow_walk_next(&(_walker), spte)) 179 180 static struct kmem_cache *pte_list_desc_cache; 181 struct kmem_cache *mmu_page_header_cache; 182 static struct percpu_counter kvm_total_used_mmu_pages; 183 184 static void mmu_spte_set(u64 *sptep, u64 spte); 185 186 struct kvm_mmu_role_regs { 187 const unsigned long cr0; 188 const unsigned long cr4; 189 const u64 efer; 190 }; 191 192 #define CREATE_TRACE_POINTS 193 #include "mmutrace.h" 194 195 /* 196 * Yes, lot's of underscores. They're a hint that you probably shouldn't be 197 * reading from the role_regs. Once the root_role is constructed, it becomes 198 * the single source of truth for the MMU's state. 199 */ 200 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag) \ 201 static inline bool __maybe_unused \ 202 ____is_##reg##_##name(const struct kvm_mmu_role_regs *regs) \ 203 { \ 204 return !!(regs->reg & flag); \ 205 } 206 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG); 207 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP); 208 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE); 209 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE); 210 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP); 211 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP); 212 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE); 213 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57); 214 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX); 215 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA); 216 217 /* 218 * The MMU itself (with a valid role) is the single source of truth for the 219 * MMU. Do not use the regs used to build the MMU/role, nor the vCPU. The 220 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1, 221 * and the vCPU may be incorrect/irrelevant. 222 */ 223 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name) \ 224 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu) \ 225 { \ 226 return !!(mmu->cpu_role. base_or_ext . reg##_##name); \ 227 } 228 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp); 229 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pse); 230 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smep); 231 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smap); 232 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pke); 233 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, la57); 234 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx); 235 BUILD_MMU_ROLE_ACCESSOR(ext, efer, lma); 236 237 static inline bool is_cr0_pg(struct kvm_mmu *mmu) 238 { 239 return mmu->cpu_role.base.level > 0; 240 } 241 242 static inline bool is_cr4_pae(struct kvm_mmu *mmu) 243 { 244 return !mmu->cpu_role.base.has_4_byte_gpte; 245 } 246 247 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu) 248 { 249 struct kvm_mmu_role_regs regs = { 250 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS), 251 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS), 252 .efer = vcpu->arch.efer, 253 }; 254 255 return regs; 256 } 257 258 static unsigned long get_guest_cr3(struct kvm_vcpu *vcpu) 259 { 260 return kvm_read_cr3(vcpu); 261 } 262 263 static inline unsigned long kvm_mmu_get_guest_pgd(struct kvm_vcpu *vcpu, 264 struct kvm_mmu *mmu) 265 { 266 if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && mmu->get_guest_pgd == get_guest_cr3) 267 return kvm_read_cr3(vcpu); 268 269 return mmu->get_guest_pgd(vcpu); 270 } 271 272 static inline bool kvm_available_flush_remote_tlbs_range(void) 273 { 274 #if IS_ENABLED(CONFIG_HYPERV) 275 return kvm_x86_ops.flush_remote_tlbs_range; 276 #else 277 return false; 278 #endif 279 } 280 281 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index); 282 283 /* Flush the range of guest memory mapped by the given SPTE. */ 284 static void kvm_flush_remote_tlbs_sptep(struct kvm *kvm, u64 *sptep) 285 { 286 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 287 gfn_t gfn = kvm_mmu_page_get_gfn(sp, spte_index(sptep)); 288 289 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level); 290 } 291 292 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn, 293 unsigned int access) 294 { 295 u64 spte = make_mmio_spte(vcpu, gfn, access); 296 297 trace_mark_mmio_spte(sptep, gfn, spte); 298 mmu_spte_set(sptep, spte); 299 } 300 301 static gfn_t get_mmio_spte_gfn(u64 spte) 302 { 303 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask; 304 305 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN) 306 & shadow_nonpresent_or_rsvd_mask; 307 308 return gpa >> PAGE_SHIFT; 309 } 310 311 static unsigned get_mmio_spte_access(u64 spte) 312 { 313 return spte & shadow_mmio_access_mask; 314 } 315 316 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte) 317 { 318 u64 kvm_gen, spte_gen, gen; 319 320 gen = kvm_vcpu_memslots(vcpu)->generation; 321 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS)) 322 return false; 323 324 kvm_gen = gen & MMIO_SPTE_GEN_MASK; 325 spte_gen = get_mmio_spte_generation(spte); 326 327 trace_check_mmio_spte(spte, kvm_gen, spte_gen); 328 return likely(kvm_gen == spte_gen); 329 } 330 331 static int is_cpuid_PSE36(void) 332 { 333 return 1; 334 } 335 336 #ifdef CONFIG_X86_64 337 static void __set_spte(u64 *sptep, u64 spte) 338 { 339 KVM_MMU_WARN_ON(is_ept_ve_possible(spte)); 340 WRITE_ONCE(*sptep, spte); 341 } 342 343 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 344 { 345 KVM_MMU_WARN_ON(is_ept_ve_possible(spte)); 346 WRITE_ONCE(*sptep, spte); 347 } 348 349 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 350 { 351 KVM_MMU_WARN_ON(is_ept_ve_possible(spte)); 352 return xchg(sptep, spte); 353 } 354 355 static u64 __get_spte_lockless(u64 *sptep) 356 { 357 return READ_ONCE(*sptep); 358 } 359 #else 360 union split_spte { 361 struct { 362 u32 spte_low; 363 u32 spte_high; 364 }; 365 u64 spte; 366 }; 367 368 static void count_spte_clear(u64 *sptep, u64 spte) 369 { 370 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 371 372 if (is_shadow_present_pte(spte)) 373 return; 374 375 /* Ensure the spte is completely set before we increase the count */ 376 smp_wmb(); 377 sp->clear_spte_count++; 378 } 379 380 static void __set_spte(u64 *sptep, u64 spte) 381 { 382 union split_spte *ssptep, sspte; 383 384 ssptep = (union split_spte *)sptep; 385 sspte = (union split_spte)spte; 386 387 ssptep->spte_high = sspte.spte_high; 388 389 /* 390 * If we map the spte from nonpresent to present, We should store 391 * the high bits firstly, then set present bit, so cpu can not 392 * fetch this spte while we are setting the spte. 393 */ 394 smp_wmb(); 395 396 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 397 } 398 399 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 400 { 401 union split_spte *ssptep, sspte; 402 403 ssptep = (union split_spte *)sptep; 404 sspte = (union split_spte)spte; 405 406 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 407 408 /* 409 * If we map the spte from present to nonpresent, we should clear 410 * present bit firstly to avoid vcpu fetch the old high bits. 411 */ 412 smp_wmb(); 413 414 ssptep->spte_high = sspte.spte_high; 415 count_spte_clear(sptep, spte); 416 } 417 418 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 419 { 420 union split_spte *ssptep, sspte, orig; 421 422 ssptep = (union split_spte *)sptep; 423 sspte = (union split_spte)spte; 424 425 /* xchg acts as a barrier before the setting of the high bits */ 426 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); 427 orig.spte_high = ssptep->spte_high; 428 ssptep->spte_high = sspte.spte_high; 429 count_spte_clear(sptep, spte); 430 431 return orig.spte; 432 } 433 434 /* 435 * The idea using the light way get the spte on x86_32 guest is from 436 * gup_get_pte (mm/gup.c). 437 * 438 * An spte tlb flush may be pending, because they are coalesced and 439 * we are running out of the MMU lock. Therefore 440 * we need to protect against in-progress updates of the spte. 441 * 442 * Reading the spte while an update is in progress may get the old value 443 * for the high part of the spte. The race is fine for a present->non-present 444 * change (because the high part of the spte is ignored for non-present spte), 445 * but for a present->present change we must reread the spte. 446 * 447 * All such changes are done in two steps (present->non-present and 448 * non-present->present), hence it is enough to count the number of 449 * present->non-present updates: if it changed while reading the spte, 450 * we might have hit the race. This is done using clear_spte_count. 451 */ 452 static u64 __get_spte_lockless(u64 *sptep) 453 { 454 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 455 union split_spte spte, *orig = (union split_spte *)sptep; 456 int count; 457 458 retry: 459 count = sp->clear_spte_count; 460 smp_rmb(); 461 462 spte.spte_low = orig->spte_low; 463 smp_rmb(); 464 465 spte.spte_high = orig->spte_high; 466 smp_rmb(); 467 468 if (unlikely(spte.spte_low != orig->spte_low || 469 count != sp->clear_spte_count)) 470 goto retry; 471 472 return spte.spte; 473 } 474 #endif 475 476 /* Rules for using mmu_spte_set: 477 * Set the sptep from nonpresent to present. 478 * Note: the sptep being assigned *must* be either not present 479 * or in a state where the hardware will not attempt to update 480 * the spte. 481 */ 482 static void mmu_spte_set(u64 *sptep, u64 new_spte) 483 { 484 WARN_ON_ONCE(is_shadow_present_pte(*sptep)); 485 __set_spte(sptep, new_spte); 486 } 487 488 /* 489 * Update the SPTE (excluding the PFN), but do not track changes in its 490 * accessed/dirty status. 491 */ 492 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte) 493 { 494 u64 old_spte = *sptep; 495 496 WARN_ON_ONCE(!is_shadow_present_pte(new_spte)); 497 check_spte_writable_invariants(new_spte); 498 499 if (!is_shadow_present_pte(old_spte)) { 500 mmu_spte_set(sptep, new_spte); 501 return old_spte; 502 } 503 504 if (!spte_has_volatile_bits(old_spte)) 505 __update_clear_spte_fast(sptep, new_spte); 506 else 507 old_spte = __update_clear_spte_slow(sptep, new_spte); 508 509 WARN_ON_ONCE(spte_to_pfn(old_spte) != spte_to_pfn(new_spte)); 510 511 return old_spte; 512 } 513 514 /* Rules for using mmu_spte_update: 515 * Update the state bits, it means the mapped pfn is not changed. 516 * 517 * Whenever an MMU-writable SPTE is overwritten with a read-only SPTE, remote 518 * TLBs must be flushed. Otherwise rmap_write_protect will find a read-only 519 * spte, even though the writable spte might be cached on a CPU's TLB. 520 * 521 * Returns true if the TLB needs to be flushed 522 */ 523 static bool mmu_spte_update(u64 *sptep, u64 new_spte) 524 { 525 bool flush = false; 526 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte); 527 528 if (!is_shadow_present_pte(old_spte)) 529 return false; 530 531 /* 532 * For the spte updated out of mmu-lock is safe, since 533 * we always atomically update it, see the comments in 534 * spte_has_volatile_bits(). 535 */ 536 if (is_mmu_writable_spte(old_spte) && 537 !is_writable_pte(new_spte)) 538 flush = true; 539 540 /* 541 * Flush TLB when accessed/dirty states are changed in the page tables, 542 * to guarantee consistency between TLB and page tables. 543 */ 544 545 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) { 546 flush = true; 547 kvm_set_pfn_accessed(spte_to_pfn(old_spte)); 548 } 549 550 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) { 551 flush = true; 552 kvm_set_pfn_dirty(spte_to_pfn(old_spte)); 553 } 554 555 return flush; 556 } 557 558 /* 559 * Rules for using mmu_spte_clear_track_bits: 560 * It sets the sptep from present to nonpresent, and track the 561 * state bits, it is used to clear the last level sptep. 562 * Returns the old PTE. 563 */ 564 static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep) 565 { 566 kvm_pfn_t pfn; 567 u64 old_spte = *sptep; 568 int level = sptep_to_sp(sptep)->role.level; 569 struct page *page; 570 571 if (!is_shadow_present_pte(old_spte) || 572 !spte_has_volatile_bits(old_spte)) 573 __update_clear_spte_fast(sptep, SHADOW_NONPRESENT_VALUE); 574 else 575 old_spte = __update_clear_spte_slow(sptep, SHADOW_NONPRESENT_VALUE); 576 577 if (!is_shadow_present_pte(old_spte)) 578 return old_spte; 579 580 kvm_update_page_stats(kvm, level, -1); 581 582 pfn = spte_to_pfn(old_spte); 583 584 /* 585 * KVM doesn't hold a reference to any pages mapped into the guest, and 586 * instead uses the mmu_notifier to ensure that KVM unmaps any pages 587 * before they are reclaimed. Sanity check that, if the pfn is backed 588 * by a refcounted page, the refcount is elevated. 589 */ 590 page = kvm_pfn_to_refcounted_page(pfn); 591 WARN_ON_ONCE(page && !page_count(page)); 592 593 if (is_accessed_spte(old_spte)) 594 kvm_set_pfn_accessed(pfn); 595 596 if (is_dirty_spte(old_spte)) 597 kvm_set_pfn_dirty(pfn); 598 599 return old_spte; 600 } 601 602 /* 603 * Rules for using mmu_spte_clear_no_track: 604 * Directly clear spte without caring the state bits of sptep, 605 * it is used to set the upper level spte. 606 */ 607 static void mmu_spte_clear_no_track(u64 *sptep) 608 { 609 __update_clear_spte_fast(sptep, SHADOW_NONPRESENT_VALUE); 610 } 611 612 static u64 mmu_spte_get_lockless(u64 *sptep) 613 { 614 return __get_spte_lockless(sptep); 615 } 616 617 /* Returns the Accessed status of the PTE and resets it at the same time. */ 618 static bool mmu_spte_age(u64 *sptep) 619 { 620 u64 spte = mmu_spte_get_lockless(sptep); 621 622 if (!is_accessed_spte(spte)) 623 return false; 624 625 if (spte_ad_enabled(spte)) { 626 clear_bit((ffs(shadow_accessed_mask) - 1), 627 (unsigned long *)sptep); 628 } else { 629 /* 630 * Capture the dirty status of the page, so that it doesn't get 631 * lost when the SPTE is marked for access tracking. 632 */ 633 if (is_writable_pte(spte)) 634 kvm_set_pfn_dirty(spte_to_pfn(spte)); 635 636 spte = mark_spte_for_access_track(spte); 637 mmu_spte_update_no_track(sptep, spte); 638 } 639 640 return true; 641 } 642 643 static inline bool is_tdp_mmu_active(struct kvm_vcpu *vcpu) 644 { 645 return tdp_mmu_enabled && vcpu->arch.mmu->root_role.direct; 646 } 647 648 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) 649 { 650 if (is_tdp_mmu_active(vcpu)) { 651 kvm_tdp_mmu_walk_lockless_begin(); 652 } else { 653 /* 654 * Prevent page table teardown by making any free-er wait during 655 * kvm_flush_remote_tlbs() IPI to all active vcpus. 656 */ 657 local_irq_disable(); 658 659 /* 660 * Make sure a following spte read is not reordered ahead of the write 661 * to vcpu->mode. 662 */ 663 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); 664 } 665 } 666 667 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) 668 { 669 if (is_tdp_mmu_active(vcpu)) { 670 kvm_tdp_mmu_walk_lockless_end(); 671 } else { 672 /* 673 * Make sure the write to vcpu->mode is not reordered in front of 674 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us 675 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. 676 */ 677 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); 678 local_irq_enable(); 679 } 680 } 681 682 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect) 683 { 684 int r; 685 686 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */ 687 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, 688 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM); 689 if (r) 690 return r; 691 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache, 692 PT64_ROOT_MAX_LEVEL); 693 if (r) 694 return r; 695 if (maybe_indirect) { 696 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadowed_info_cache, 697 PT64_ROOT_MAX_LEVEL); 698 if (r) 699 return r; 700 } 701 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, 702 PT64_ROOT_MAX_LEVEL); 703 } 704 705 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) 706 { 707 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache); 708 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache); 709 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadowed_info_cache); 710 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache); 711 } 712 713 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) 714 { 715 kmem_cache_free(pte_list_desc_cache, pte_list_desc); 716 } 717 718 static bool sp_has_gptes(struct kvm_mmu_page *sp); 719 720 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) 721 { 722 if (sp->role.passthrough) 723 return sp->gfn; 724 725 if (!sp->role.direct) 726 return sp->shadowed_translation[index] >> PAGE_SHIFT; 727 728 return sp->gfn + (index << ((sp->role.level - 1) * SPTE_LEVEL_BITS)); 729 } 730 731 /* 732 * For leaf SPTEs, fetch the *guest* access permissions being shadowed. Note 733 * that the SPTE itself may have a more constrained access permissions that 734 * what the guest enforces. For example, a guest may create an executable 735 * huge PTE but KVM may disallow execution to mitigate iTLB multihit. 736 */ 737 static u32 kvm_mmu_page_get_access(struct kvm_mmu_page *sp, int index) 738 { 739 if (sp_has_gptes(sp)) 740 return sp->shadowed_translation[index] & ACC_ALL; 741 742 /* 743 * For direct MMUs (e.g. TDP or non-paging guests) or passthrough SPs, 744 * KVM is not shadowing any guest page tables, so the "guest access 745 * permissions" are just ACC_ALL. 746 * 747 * For direct SPs in indirect MMUs (shadow paging), i.e. when KVM 748 * is shadowing a guest huge page with small pages, the guest access 749 * permissions being shadowed are the access permissions of the huge 750 * page. 751 * 752 * In both cases, sp->role.access contains the correct access bits. 753 */ 754 return sp->role.access; 755 } 756 757 static void kvm_mmu_page_set_translation(struct kvm_mmu_page *sp, int index, 758 gfn_t gfn, unsigned int access) 759 { 760 if (sp_has_gptes(sp)) { 761 sp->shadowed_translation[index] = (gfn << PAGE_SHIFT) | access; 762 return; 763 } 764 765 WARN_ONCE(access != kvm_mmu_page_get_access(sp, index), 766 "access mismatch under %s page %llx (expected %u, got %u)\n", 767 sp->role.passthrough ? "passthrough" : "direct", 768 sp->gfn, kvm_mmu_page_get_access(sp, index), access); 769 770 WARN_ONCE(gfn != kvm_mmu_page_get_gfn(sp, index), 771 "gfn mismatch under %s page %llx (expected %llx, got %llx)\n", 772 sp->role.passthrough ? "passthrough" : "direct", 773 sp->gfn, kvm_mmu_page_get_gfn(sp, index), gfn); 774 } 775 776 static void kvm_mmu_page_set_access(struct kvm_mmu_page *sp, int index, 777 unsigned int access) 778 { 779 gfn_t gfn = kvm_mmu_page_get_gfn(sp, index); 780 781 kvm_mmu_page_set_translation(sp, index, gfn, access); 782 } 783 784 /* 785 * Return the pointer to the large page information for a given gfn, 786 * handling slots that are not large page aligned. 787 */ 788 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, 789 const struct kvm_memory_slot *slot, int level) 790 { 791 unsigned long idx; 792 793 idx = gfn_to_index(gfn, slot->base_gfn, level); 794 return &slot->arch.lpage_info[level - 2][idx]; 795 } 796 797 /* 798 * The most significant bit in disallow_lpage tracks whether or not memory 799 * attributes are mixed, i.e. not identical for all gfns at the current level. 800 * The lower order bits are used to refcount other cases where a hugepage is 801 * disallowed, e.g. if KVM has shadow a page table at the gfn. 802 */ 803 #define KVM_LPAGE_MIXED_FLAG BIT(31) 804 805 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot, 806 gfn_t gfn, int count) 807 { 808 struct kvm_lpage_info *linfo; 809 int old, i; 810 811 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 812 linfo = lpage_info_slot(gfn, slot, i); 813 814 old = linfo->disallow_lpage; 815 linfo->disallow_lpage += count; 816 WARN_ON_ONCE((old ^ linfo->disallow_lpage) & KVM_LPAGE_MIXED_FLAG); 817 } 818 } 819 820 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 821 { 822 update_gfn_disallow_lpage_count(slot, gfn, 1); 823 } 824 825 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 826 { 827 update_gfn_disallow_lpage_count(slot, gfn, -1); 828 } 829 830 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 831 { 832 struct kvm_memslots *slots; 833 struct kvm_memory_slot *slot; 834 gfn_t gfn; 835 836 kvm->arch.indirect_shadow_pages++; 837 /* 838 * Ensure indirect_shadow_pages is elevated prior to re-reading guest 839 * child PTEs in FNAME(gpte_changed), i.e. guarantee either in-flight 840 * emulated writes are visible before re-reading guest PTEs, or that 841 * an emulated write will see the elevated count and acquire mmu_lock 842 * to update SPTEs. Pairs with the smp_mb() in kvm_mmu_track_write(). 843 */ 844 smp_mb(); 845 846 gfn = sp->gfn; 847 slots = kvm_memslots_for_spte_role(kvm, sp->role); 848 slot = __gfn_to_memslot(slots, gfn); 849 850 /* the non-leaf shadow pages are keeping readonly. */ 851 if (sp->role.level > PG_LEVEL_4K) 852 return __kvm_write_track_add_gfn(kvm, slot, gfn); 853 854 kvm_mmu_gfn_disallow_lpage(slot, gfn); 855 856 if (kvm_mmu_slot_gfn_write_protect(kvm, slot, gfn, PG_LEVEL_4K)) 857 kvm_flush_remote_tlbs_gfn(kvm, gfn, PG_LEVEL_4K); 858 } 859 860 void track_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 861 { 862 /* 863 * If it's possible to replace the shadow page with an NX huge page, 864 * i.e. if the shadow page is the only thing currently preventing KVM 865 * from using a huge page, add the shadow page to the list of "to be 866 * zapped for NX recovery" pages. Note, the shadow page can already be 867 * on the list if KVM is reusing an existing shadow page, i.e. if KVM 868 * links a shadow page at multiple points. 869 */ 870 if (!list_empty(&sp->possible_nx_huge_page_link)) 871 return; 872 873 ++kvm->stat.nx_lpage_splits; 874 list_add_tail(&sp->possible_nx_huge_page_link, 875 &kvm->arch.possible_nx_huge_pages); 876 } 877 878 static void account_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp, 879 bool nx_huge_page_possible) 880 { 881 sp->nx_huge_page_disallowed = true; 882 883 if (nx_huge_page_possible) 884 track_possible_nx_huge_page(kvm, sp); 885 } 886 887 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 888 { 889 struct kvm_memslots *slots; 890 struct kvm_memory_slot *slot; 891 gfn_t gfn; 892 893 kvm->arch.indirect_shadow_pages--; 894 gfn = sp->gfn; 895 slots = kvm_memslots_for_spte_role(kvm, sp->role); 896 slot = __gfn_to_memslot(slots, gfn); 897 if (sp->role.level > PG_LEVEL_4K) 898 return __kvm_write_track_remove_gfn(kvm, slot, gfn); 899 900 kvm_mmu_gfn_allow_lpage(slot, gfn); 901 } 902 903 void untrack_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 904 { 905 if (list_empty(&sp->possible_nx_huge_page_link)) 906 return; 907 908 --kvm->stat.nx_lpage_splits; 909 list_del_init(&sp->possible_nx_huge_page_link); 910 } 911 912 static void unaccount_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 913 { 914 sp->nx_huge_page_disallowed = false; 915 916 untrack_possible_nx_huge_page(kvm, sp); 917 } 918 919 static struct kvm_memory_slot *gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, 920 gfn_t gfn, 921 bool no_dirty_log) 922 { 923 struct kvm_memory_slot *slot; 924 925 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 926 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 927 return NULL; 928 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot)) 929 return NULL; 930 931 return slot; 932 } 933 934 /* 935 * About rmap_head encoding: 936 * 937 * If the bit zero of rmap_head->val is clear, then it points to the only spte 938 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct 939 * pte_list_desc containing more mappings. 940 */ 941 942 /* 943 * Returns the number of pointers in the rmap chain, not counting the new one. 944 */ 945 static int pte_list_add(struct kvm_mmu_memory_cache *cache, u64 *spte, 946 struct kvm_rmap_head *rmap_head) 947 { 948 struct pte_list_desc *desc; 949 int count = 0; 950 951 if (!rmap_head->val) { 952 rmap_head->val = (unsigned long)spte; 953 } else if (!(rmap_head->val & 1)) { 954 desc = kvm_mmu_memory_cache_alloc(cache); 955 desc->sptes[0] = (u64 *)rmap_head->val; 956 desc->sptes[1] = spte; 957 desc->spte_count = 2; 958 desc->tail_count = 0; 959 rmap_head->val = (unsigned long)desc | 1; 960 ++count; 961 } else { 962 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 963 count = desc->tail_count + desc->spte_count; 964 965 /* 966 * If the previous head is full, allocate a new head descriptor 967 * as tail descriptors are always kept full. 968 */ 969 if (desc->spte_count == PTE_LIST_EXT) { 970 desc = kvm_mmu_memory_cache_alloc(cache); 971 desc->more = (struct pte_list_desc *)(rmap_head->val & ~1ul); 972 desc->spte_count = 0; 973 desc->tail_count = count; 974 rmap_head->val = (unsigned long)desc | 1; 975 } 976 desc->sptes[desc->spte_count++] = spte; 977 } 978 return count; 979 } 980 981 static void pte_list_desc_remove_entry(struct kvm *kvm, 982 struct kvm_rmap_head *rmap_head, 983 struct pte_list_desc *desc, int i) 984 { 985 struct pte_list_desc *head_desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 986 int j = head_desc->spte_count - 1; 987 988 /* 989 * The head descriptor should never be empty. A new head is added only 990 * when adding an entry and the previous head is full, and heads are 991 * removed (this flow) when they become empty. 992 */ 993 KVM_BUG_ON_DATA_CORRUPTION(j < 0, kvm); 994 995 /* 996 * Replace the to-be-freed SPTE with the last valid entry from the head 997 * descriptor to ensure that tail descriptors are full at all times. 998 * Note, this also means that tail_count is stable for each descriptor. 999 */ 1000 desc->sptes[i] = head_desc->sptes[j]; 1001 head_desc->sptes[j] = NULL; 1002 head_desc->spte_count--; 1003 if (head_desc->spte_count) 1004 return; 1005 1006 /* 1007 * The head descriptor is empty. If there are no tail descriptors, 1008 * nullify the rmap head to mark the list as empty, else point the rmap 1009 * head at the next descriptor, i.e. the new head. 1010 */ 1011 if (!head_desc->more) 1012 rmap_head->val = 0; 1013 else 1014 rmap_head->val = (unsigned long)head_desc->more | 1; 1015 mmu_free_pte_list_desc(head_desc); 1016 } 1017 1018 static void pte_list_remove(struct kvm *kvm, u64 *spte, 1019 struct kvm_rmap_head *rmap_head) 1020 { 1021 struct pte_list_desc *desc; 1022 int i; 1023 1024 if (KVM_BUG_ON_DATA_CORRUPTION(!rmap_head->val, kvm)) 1025 return; 1026 1027 if (!(rmap_head->val & 1)) { 1028 if (KVM_BUG_ON_DATA_CORRUPTION((u64 *)rmap_head->val != spte, kvm)) 1029 return; 1030 1031 rmap_head->val = 0; 1032 } else { 1033 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1034 while (desc) { 1035 for (i = 0; i < desc->spte_count; ++i) { 1036 if (desc->sptes[i] == spte) { 1037 pte_list_desc_remove_entry(kvm, rmap_head, 1038 desc, i); 1039 return; 1040 } 1041 } 1042 desc = desc->more; 1043 } 1044 1045 KVM_BUG_ON_DATA_CORRUPTION(true, kvm); 1046 } 1047 } 1048 1049 static void kvm_zap_one_rmap_spte(struct kvm *kvm, 1050 struct kvm_rmap_head *rmap_head, u64 *sptep) 1051 { 1052 mmu_spte_clear_track_bits(kvm, sptep); 1053 pte_list_remove(kvm, sptep, rmap_head); 1054 } 1055 1056 /* Return true if at least one SPTE was zapped, false otherwise */ 1057 static bool kvm_zap_all_rmap_sptes(struct kvm *kvm, 1058 struct kvm_rmap_head *rmap_head) 1059 { 1060 struct pte_list_desc *desc, *next; 1061 int i; 1062 1063 if (!rmap_head->val) 1064 return false; 1065 1066 if (!(rmap_head->val & 1)) { 1067 mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val); 1068 goto out; 1069 } 1070 1071 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1072 1073 for (; desc; desc = next) { 1074 for (i = 0; i < desc->spte_count; i++) 1075 mmu_spte_clear_track_bits(kvm, desc->sptes[i]); 1076 next = desc->more; 1077 mmu_free_pte_list_desc(desc); 1078 } 1079 out: 1080 /* rmap_head is meaningless now, remember to reset it */ 1081 rmap_head->val = 0; 1082 return true; 1083 } 1084 1085 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head) 1086 { 1087 struct pte_list_desc *desc; 1088 1089 if (!rmap_head->val) 1090 return 0; 1091 else if (!(rmap_head->val & 1)) 1092 return 1; 1093 1094 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1095 return desc->tail_count + desc->spte_count; 1096 } 1097 1098 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level, 1099 const struct kvm_memory_slot *slot) 1100 { 1101 unsigned long idx; 1102 1103 idx = gfn_to_index(gfn, slot->base_gfn, level); 1104 return &slot->arch.rmap[level - PG_LEVEL_4K][idx]; 1105 } 1106 1107 static void rmap_remove(struct kvm *kvm, u64 *spte) 1108 { 1109 struct kvm_memslots *slots; 1110 struct kvm_memory_slot *slot; 1111 struct kvm_mmu_page *sp; 1112 gfn_t gfn; 1113 struct kvm_rmap_head *rmap_head; 1114 1115 sp = sptep_to_sp(spte); 1116 gfn = kvm_mmu_page_get_gfn(sp, spte_index(spte)); 1117 1118 /* 1119 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU 1120 * so we have to determine which memslots to use based on context 1121 * information in sp->role. 1122 */ 1123 slots = kvm_memslots_for_spte_role(kvm, sp->role); 1124 1125 slot = __gfn_to_memslot(slots, gfn); 1126 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1127 1128 pte_list_remove(kvm, spte, rmap_head); 1129 } 1130 1131 /* 1132 * Used by the following functions to iterate through the sptes linked by a 1133 * rmap. All fields are private and not assumed to be used outside. 1134 */ 1135 struct rmap_iterator { 1136 /* private fields */ 1137 struct pte_list_desc *desc; /* holds the sptep if not NULL */ 1138 int pos; /* index of the sptep */ 1139 }; 1140 1141 /* 1142 * Iteration must be started by this function. This should also be used after 1143 * removing/dropping sptes from the rmap link because in such cases the 1144 * information in the iterator may not be valid. 1145 * 1146 * Returns sptep if found, NULL otherwise. 1147 */ 1148 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head, 1149 struct rmap_iterator *iter) 1150 { 1151 u64 *sptep; 1152 1153 if (!rmap_head->val) 1154 return NULL; 1155 1156 if (!(rmap_head->val & 1)) { 1157 iter->desc = NULL; 1158 sptep = (u64 *)rmap_head->val; 1159 goto out; 1160 } 1161 1162 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1163 iter->pos = 0; 1164 sptep = iter->desc->sptes[iter->pos]; 1165 out: 1166 BUG_ON(!is_shadow_present_pte(*sptep)); 1167 return sptep; 1168 } 1169 1170 /* 1171 * Must be used with a valid iterator: e.g. after rmap_get_first(). 1172 * 1173 * Returns sptep if found, NULL otherwise. 1174 */ 1175 static u64 *rmap_get_next(struct rmap_iterator *iter) 1176 { 1177 u64 *sptep; 1178 1179 if (iter->desc) { 1180 if (iter->pos < PTE_LIST_EXT - 1) { 1181 ++iter->pos; 1182 sptep = iter->desc->sptes[iter->pos]; 1183 if (sptep) 1184 goto out; 1185 } 1186 1187 iter->desc = iter->desc->more; 1188 1189 if (iter->desc) { 1190 iter->pos = 0; 1191 /* desc->sptes[0] cannot be NULL */ 1192 sptep = iter->desc->sptes[iter->pos]; 1193 goto out; 1194 } 1195 } 1196 1197 return NULL; 1198 out: 1199 BUG_ON(!is_shadow_present_pte(*sptep)); 1200 return sptep; 1201 } 1202 1203 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \ 1204 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \ 1205 _spte_; _spte_ = rmap_get_next(_iter_)) 1206 1207 static void drop_spte(struct kvm *kvm, u64 *sptep) 1208 { 1209 u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep); 1210 1211 if (is_shadow_present_pte(old_spte)) 1212 rmap_remove(kvm, sptep); 1213 } 1214 1215 static void drop_large_spte(struct kvm *kvm, u64 *sptep, bool flush) 1216 { 1217 struct kvm_mmu_page *sp; 1218 1219 sp = sptep_to_sp(sptep); 1220 WARN_ON_ONCE(sp->role.level == PG_LEVEL_4K); 1221 1222 drop_spte(kvm, sptep); 1223 1224 if (flush) 1225 kvm_flush_remote_tlbs_sptep(kvm, sptep); 1226 } 1227 1228 /* 1229 * Write-protect on the specified @sptep, @pt_protect indicates whether 1230 * spte write-protection is caused by protecting shadow page table. 1231 * 1232 * Note: write protection is difference between dirty logging and spte 1233 * protection: 1234 * - for dirty logging, the spte can be set to writable at anytime if 1235 * its dirty bitmap is properly set. 1236 * - for spte protection, the spte can be writable only after unsync-ing 1237 * shadow page. 1238 * 1239 * Return true if tlb need be flushed. 1240 */ 1241 static bool spte_write_protect(u64 *sptep, bool pt_protect) 1242 { 1243 u64 spte = *sptep; 1244 1245 if (!is_writable_pte(spte) && 1246 !(pt_protect && is_mmu_writable_spte(spte))) 1247 return false; 1248 1249 if (pt_protect) 1250 spte &= ~shadow_mmu_writable_mask; 1251 spte = spte & ~PT_WRITABLE_MASK; 1252 1253 return mmu_spte_update(sptep, spte); 1254 } 1255 1256 static bool rmap_write_protect(struct kvm_rmap_head *rmap_head, 1257 bool pt_protect) 1258 { 1259 u64 *sptep; 1260 struct rmap_iterator iter; 1261 bool flush = false; 1262 1263 for_each_rmap_spte(rmap_head, &iter, sptep) 1264 flush |= spte_write_protect(sptep, pt_protect); 1265 1266 return flush; 1267 } 1268 1269 static bool spte_clear_dirty(u64 *sptep) 1270 { 1271 u64 spte = *sptep; 1272 1273 KVM_MMU_WARN_ON(!spte_ad_enabled(spte)); 1274 spte &= ~shadow_dirty_mask; 1275 return mmu_spte_update(sptep, spte); 1276 } 1277 1278 static bool spte_wrprot_for_clear_dirty(u64 *sptep) 1279 { 1280 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT, 1281 (unsigned long *)sptep); 1282 if (was_writable && !spte_ad_enabled(*sptep)) 1283 kvm_set_pfn_dirty(spte_to_pfn(*sptep)); 1284 1285 return was_writable; 1286 } 1287 1288 /* 1289 * Gets the GFN ready for another round of dirty logging by clearing the 1290 * - D bit on ad-enabled SPTEs, and 1291 * - W bit on ad-disabled SPTEs. 1292 * Returns true iff any D or W bits were cleared. 1293 */ 1294 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1295 const struct kvm_memory_slot *slot) 1296 { 1297 u64 *sptep; 1298 struct rmap_iterator iter; 1299 bool flush = false; 1300 1301 for_each_rmap_spte(rmap_head, &iter, sptep) 1302 if (spte_ad_need_write_protect(*sptep)) 1303 flush |= spte_wrprot_for_clear_dirty(sptep); 1304 else 1305 flush |= spte_clear_dirty(sptep); 1306 1307 return flush; 1308 } 1309 1310 /** 1311 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages 1312 * @kvm: kvm instance 1313 * @slot: slot to protect 1314 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1315 * @mask: indicates which pages we should protect 1316 * 1317 * Used when we do not need to care about huge page mappings. 1318 */ 1319 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 1320 struct kvm_memory_slot *slot, 1321 gfn_t gfn_offset, unsigned long mask) 1322 { 1323 struct kvm_rmap_head *rmap_head; 1324 1325 if (tdp_mmu_enabled) 1326 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1327 slot->base_gfn + gfn_offset, mask, true); 1328 1329 if (!kvm_memslots_have_rmaps(kvm)) 1330 return; 1331 1332 while (mask) { 1333 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1334 PG_LEVEL_4K, slot); 1335 rmap_write_protect(rmap_head, false); 1336 1337 /* clear the first set bit */ 1338 mask &= mask - 1; 1339 } 1340 } 1341 1342 /** 1343 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write 1344 * protect the page if the D-bit isn't supported. 1345 * @kvm: kvm instance 1346 * @slot: slot to clear D-bit 1347 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1348 * @mask: indicates which pages we should clear D-bit 1349 * 1350 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap. 1351 */ 1352 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1353 struct kvm_memory_slot *slot, 1354 gfn_t gfn_offset, unsigned long mask) 1355 { 1356 struct kvm_rmap_head *rmap_head; 1357 1358 if (tdp_mmu_enabled) 1359 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1360 slot->base_gfn + gfn_offset, mask, false); 1361 1362 if (!kvm_memslots_have_rmaps(kvm)) 1363 return; 1364 1365 while (mask) { 1366 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1367 PG_LEVEL_4K, slot); 1368 __rmap_clear_dirty(kvm, rmap_head, slot); 1369 1370 /* clear the first set bit */ 1371 mask &= mask - 1; 1372 } 1373 } 1374 1375 /** 1376 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected 1377 * PT level pages. 1378 * 1379 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to 1380 * enable dirty logging for them. 1381 * 1382 * We need to care about huge page mappings: e.g. during dirty logging we may 1383 * have such mappings. 1384 */ 1385 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1386 struct kvm_memory_slot *slot, 1387 gfn_t gfn_offset, unsigned long mask) 1388 { 1389 /* 1390 * Huge pages are NOT write protected when we start dirty logging in 1391 * initially-all-set mode; must write protect them here so that they 1392 * are split to 4K on the first write. 1393 * 1394 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn 1395 * of memslot has no such restriction, so the range can cross two large 1396 * pages. 1397 */ 1398 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) { 1399 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask); 1400 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask); 1401 1402 if (READ_ONCE(eager_page_split)) 1403 kvm_mmu_try_split_huge_pages(kvm, slot, start, end + 1, PG_LEVEL_4K); 1404 1405 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M); 1406 1407 /* Cross two large pages? */ 1408 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) != 1409 ALIGN(end << PAGE_SHIFT, PMD_SIZE)) 1410 kvm_mmu_slot_gfn_write_protect(kvm, slot, end, 1411 PG_LEVEL_2M); 1412 } 1413 1414 /* Now handle 4K PTEs. */ 1415 if (kvm_x86_ops.cpu_dirty_log_size) 1416 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask); 1417 else 1418 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 1419 } 1420 1421 int kvm_cpu_dirty_log_size(void) 1422 { 1423 return kvm_x86_ops.cpu_dirty_log_size; 1424 } 1425 1426 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, 1427 struct kvm_memory_slot *slot, u64 gfn, 1428 int min_level) 1429 { 1430 struct kvm_rmap_head *rmap_head; 1431 int i; 1432 bool write_protected = false; 1433 1434 if (kvm_memslots_have_rmaps(kvm)) { 1435 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 1436 rmap_head = gfn_to_rmap(gfn, i, slot); 1437 write_protected |= rmap_write_protect(rmap_head, true); 1438 } 1439 } 1440 1441 if (tdp_mmu_enabled) 1442 write_protected |= 1443 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level); 1444 1445 return write_protected; 1446 } 1447 1448 static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn) 1449 { 1450 struct kvm_memory_slot *slot; 1451 1452 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1453 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K); 1454 } 1455 1456 static bool __kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1457 const struct kvm_memory_slot *slot) 1458 { 1459 return kvm_zap_all_rmap_sptes(kvm, rmap_head); 1460 } 1461 1462 static bool kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1463 struct kvm_memory_slot *slot, gfn_t gfn, int level) 1464 { 1465 return __kvm_zap_rmap(kvm, rmap_head, slot); 1466 } 1467 1468 struct slot_rmap_walk_iterator { 1469 /* input fields. */ 1470 const struct kvm_memory_slot *slot; 1471 gfn_t start_gfn; 1472 gfn_t end_gfn; 1473 int start_level; 1474 int end_level; 1475 1476 /* output fields. */ 1477 gfn_t gfn; 1478 struct kvm_rmap_head *rmap; 1479 int level; 1480 1481 /* private field. */ 1482 struct kvm_rmap_head *end_rmap; 1483 }; 1484 1485 static void rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, 1486 int level) 1487 { 1488 iterator->level = level; 1489 iterator->gfn = iterator->start_gfn; 1490 iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot); 1491 iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot); 1492 } 1493 1494 static void slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator, 1495 const struct kvm_memory_slot *slot, 1496 int start_level, int end_level, 1497 gfn_t start_gfn, gfn_t end_gfn) 1498 { 1499 iterator->slot = slot; 1500 iterator->start_level = start_level; 1501 iterator->end_level = end_level; 1502 iterator->start_gfn = start_gfn; 1503 iterator->end_gfn = end_gfn; 1504 1505 rmap_walk_init_level(iterator, iterator->start_level); 1506 } 1507 1508 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator) 1509 { 1510 return !!iterator->rmap; 1511 } 1512 1513 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) 1514 { 1515 while (++iterator->rmap <= iterator->end_rmap) { 1516 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level)); 1517 1518 if (iterator->rmap->val) 1519 return; 1520 } 1521 1522 if (++iterator->level > iterator->end_level) { 1523 iterator->rmap = NULL; 1524 return; 1525 } 1526 1527 rmap_walk_init_level(iterator, iterator->level); 1528 } 1529 1530 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \ 1531 _start_gfn, _end_gfn, _iter_) \ 1532 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \ 1533 _end_level_, _start_gfn, _end_gfn); \ 1534 slot_rmap_walk_okay(_iter_); \ 1535 slot_rmap_walk_next(_iter_)) 1536 1537 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1538 struct kvm_memory_slot *slot, gfn_t gfn, 1539 int level); 1540 1541 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm, 1542 struct kvm_gfn_range *range, 1543 rmap_handler_t handler) 1544 { 1545 struct slot_rmap_walk_iterator iterator; 1546 bool ret = false; 1547 1548 for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 1549 range->start, range->end - 1, &iterator) 1550 ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn, 1551 iterator.level); 1552 1553 return ret; 1554 } 1555 1556 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1557 { 1558 bool flush = false; 1559 1560 if (kvm_memslots_have_rmaps(kvm)) 1561 flush = kvm_handle_gfn_range(kvm, range, kvm_zap_rmap); 1562 1563 if (tdp_mmu_enabled) 1564 flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush); 1565 1566 if (kvm_x86_ops.set_apic_access_page_addr && 1567 range->slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT) 1568 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 1569 1570 return flush; 1571 } 1572 1573 static bool kvm_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1574 struct kvm_memory_slot *slot, gfn_t gfn, int level) 1575 { 1576 u64 *sptep; 1577 struct rmap_iterator iter; 1578 int young = 0; 1579 1580 for_each_rmap_spte(rmap_head, &iter, sptep) 1581 young |= mmu_spte_age(sptep); 1582 1583 return young; 1584 } 1585 1586 static bool kvm_test_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1587 struct kvm_memory_slot *slot, gfn_t gfn, int level) 1588 { 1589 u64 *sptep; 1590 struct rmap_iterator iter; 1591 1592 for_each_rmap_spte(rmap_head, &iter, sptep) 1593 if (is_accessed_spte(*sptep)) 1594 return true; 1595 return false; 1596 } 1597 1598 #define RMAP_RECYCLE_THRESHOLD 1000 1599 1600 static void __rmap_add(struct kvm *kvm, 1601 struct kvm_mmu_memory_cache *cache, 1602 const struct kvm_memory_slot *slot, 1603 u64 *spte, gfn_t gfn, unsigned int access) 1604 { 1605 struct kvm_mmu_page *sp; 1606 struct kvm_rmap_head *rmap_head; 1607 int rmap_count; 1608 1609 sp = sptep_to_sp(spte); 1610 kvm_mmu_page_set_translation(sp, spte_index(spte), gfn, access); 1611 kvm_update_page_stats(kvm, sp->role.level, 1); 1612 1613 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1614 rmap_count = pte_list_add(cache, spte, rmap_head); 1615 1616 if (rmap_count > kvm->stat.max_mmu_rmap_size) 1617 kvm->stat.max_mmu_rmap_size = rmap_count; 1618 if (rmap_count > RMAP_RECYCLE_THRESHOLD) { 1619 kvm_zap_all_rmap_sptes(kvm, rmap_head); 1620 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level); 1621 } 1622 } 1623 1624 static void rmap_add(struct kvm_vcpu *vcpu, const struct kvm_memory_slot *slot, 1625 u64 *spte, gfn_t gfn, unsigned int access) 1626 { 1627 struct kvm_mmu_memory_cache *cache = &vcpu->arch.mmu_pte_list_desc_cache; 1628 1629 __rmap_add(vcpu->kvm, cache, slot, spte, gfn, access); 1630 } 1631 1632 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1633 { 1634 bool young = false; 1635 1636 if (kvm_memslots_have_rmaps(kvm)) 1637 young = kvm_handle_gfn_range(kvm, range, kvm_age_rmap); 1638 1639 if (tdp_mmu_enabled) 1640 young |= kvm_tdp_mmu_age_gfn_range(kvm, range); 1641 1642 return young; 1643 } 1644 1645 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1646 { 1647 bool young = false; 1648 1649 if (kvm_memslots_have_rmaps(kvm)) 1650 young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmap); 1651 1652 if (tdp_mmu_enabled) 1653 young |= kvm_tdp_mmu_test_age_gfn(kvm, range); 1654 1655 return young; 1656 } 1657 1658 static void kvm_mmu_check_sptes_at_free(struct kvm_mmu_page *sp) 1659 { 1660 #ifdef CONFIG_KVM_PROVE_MMU 1661 int i; 1662 1663 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) { 1664 if (KVM_MMU_WARN_ON(is_shadow_present_pte(sp->spt[i]))) 1665 pr_err_ratelimited("SPTE %llx (@ %p) for gfn %llx shadow-present at free", 1666 sp->spt[i], &sp->spt[i], 1667 kvm_mmu_page_get_gfn(sp, i)); 1668 } 1669 #endif 1670 } 1671 1672 /* 1673 * This value is the sum of all of the kvm instances's 1674 * kvm->arch.n_used_mmu_pages values. We need a global, 1675 * aggregate version in order to make the slab shrinker 1676 * faster 1677 */ 1678 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr) 1679 { 1680 kvm->arch.n_used_mmu_pages += nr; 1681 percpu_counter_add(&kvm_total_used_mmu_pages, nr); 1682 } 1683 1684 static void kvm_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1685 { 1686 kvm_mod_used_mmu_pages(kvm, +1); 1687 kvm_account_pgtable_pages((void *)sp->spt, +1); 1688 } 1689 1690 static void kvm_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1691 { 1692 kvm_mod_used_mmu_pages(kvm, -1); 1693 kvm_account_pgtable_pages((void *)sp->spt, -1); 1694 } 1695 1696 static void kvm_mmu_free_shadow_page(struct kvm_mmu_page *sp) 1697 { 1698 kvm_mmu_check_sptes_at_free(sp); 1699 1700 hlist_del(&sp->hash_link); 1701 list_del(&sp->link); 1702 free_page((unsigned long)sp->spt); 1703 if (!sp->role.direct) 1704 free_page((unsigned long)sp->shadowed_translation); 1705 kmem_cache_free(mmu_page_header_cache, sp); 1706 } 1707 1708 static unsigned kvm_page_table_hashfn(gfn_t gfn) 1709 { 1710 return hash_64(gfn, KVM_MMU_HASH_SHIFT); 1711 } 1712 1713 static void mmu_page_add_parent_pte(struct kvm_mmu_memory_cache *cache, 1714 struct kvm_mmu_page *sp, u64 *parent_pte) 1715 { 1716 if (!parent_pte) 1717 return; 1718 1719 pte_list_add(cache, parent_pte, &sp->parent_ptes); 1720 } 1721 1722 static void mmu_page_remove_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 1723 u64 *parent_pte) 1724 { 1725 pte_list_remove(kvm, parent_pte, &sp->parent_ptes); 1726 } 1727 1728 static void drop_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 1729 u64 *parent_pte) 1730 { 1731 mmu_page_remove_parent_pte(kvm, sp, parent_pte); 1732 mmu_spte_clear_no_track(parent_pte); 1733 } 1734 1735 static void mark_unsync(u64 *spte); 1736 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) 1737 { 1738 u64 *sptep; 1739 struct rmap_iterator iter; 1740 1741 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) { 1742 mark_unsync(sptep); 1743 } 1744 } 1745 1746 static void mark_unsync(u64 *spte) 1747 { 1748 struct kvm_mmu_page *sp; 1749 1750 sp = sptep_to_sp(spte); 1751 if (__test_and_set_bit(spte_index(spte), sp->unsync_child_bitmap)) 1752 return; 1753 if (sp->unsync_children++) 1754 return; 1755 kvm_mmu_mark_parents_unsync(sp); 1756 } 1757 1758 #define KVM_PAGE_ARRAY_NR 16 1759 1760 struct kvm_mmu_pages { 1761 struct mmu_page_and_offset { 1762 struct kvm_mmu_page *sp; 1763 unsigned int idx; 1764 } page[KVM_PAGE_ARRAY_NR]; 1765 unsigned int nr; 1766 }; 1767 1768 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, 1769 int idx) 1770 { 1771 int i; 1772 1773 if (sp->unsync) 1774 for (i=0; i < pvec->nr; i++) 1775 if (pvec->page[i].sp == sp) 1776 return 0; 1777 1778 pvec->page[pvec->nr].sp = sp; 1779 pvec->page[pvec->nr].idx = idx; 1780 pvec->nr++; 1781 return (pvec->nr == KVM_PAGE_ARRAY_NR); 1782 } 1783 1784 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx) 1785 { 1786 --sp->unsync_children; 1787 WARN_ON_ONCE((int)sp->unsync_children < 0); 1788 __clear_bit(idx, sp->unsync_child_bitmap); 1789 } 1790 1791 static int __mmu_unsync_walk(struct kvm_mmu_page *sp, 1792 struct kvm_mmu_pages *pvec) 1793 { 1794 int i, ret, nr_unsync_leaf = 0; 1795 1796 for_each_set_bit(i, sp->unsync_child_bitmap, 512) { 1797 struct kvm_mmu_page *child; 1798 u64 ent = sp->spt[i]; 1799 1800 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) { 1801 clear_unsync_child_bit(sp, i); 1802 continue; 1803 } 1804 1805 child = spte_to_child_sp(ent); 1806 1807 if (child->unsync_children) { 1808 if (mmu_pages_add(pvec, child, i)) 1809 return -ENOSPC; 1810 1811 ret = __mmu_unsync_walk(child, pvec); 1812 if (!ret) { 1813 clear_unsync_child_bit(sp, i); 1814 continue; 1815 } else if (ret > 0) { 1816 nr_unsync_leaf += ret; 1817 } else 1818 return ret; 1819 } else if (child->unsync) { 1820 nr_unsync_leaf++; 1821 if (mmu_pages_add(pvec, child, i)) 1822 return -ENOSPC; 1823 } else 1824 clear_unsync_child_bit(sp, i); 1825 } 1826 1827 return nr_unsync_leaf; 1828 } 1829 1830 #define INVALID_INDEX (-1) 1831 1832 static int mmu_unsync_walk(struct kvm_mmu_page *sp, 1833 struct kvm_mmu_pages *pvec) 1834 { 1835 pvec->nr = 0; 1836 if (!sp->unsync_children) 1837 return 0; 1838 1839 mmu_pages_add(pvec, sp, INVALID_INDEX); 1840 return __mmu_unsync_walk(sp, pvec); 1841 } 1842 1843 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1844 { 1845 WARN_ON_ONCE(!sp->unsync); 1846 trace_kvm_mmu_sync_page(sp); 1847 sp->unsync = 0; 1848 --kvm->stat.mmu_unsync; 1849 } 1850 1851 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 1852 struct list_head *invalid_list); 1853 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 1854 struct list_head *invalid_list); 1855 1856 static bool sp_has_gptes(struct kvm_mmu_page *sp) 1857 { 1858 if (sp->role.direct) 1859 return false; 1860 1861 if (sp->role.passthrough) 1862 return false; 1863 1864 return true; 1865 } 1866 1867 #define for_each_valid_sp(_kvm, _sp, _list) \ 1868 hlist_for_each_entry(_sp, _list, hash_link) \ 1869 if (is_obsolete_sp((_kvm), (_sp))) { \ 1870 } else 1871 1872 #define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn) \ 1873 for_each_valid_sp(_kvm, _sp, \ 1874 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \ 1875 if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else 1876 1877 static bool kvm_sync_page_check(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 1878 { 1879 union kvm_mmu_page_role root_role = vcpu->arch.mmu->root_role; 1880 1881 /* 1882 * Ignore various flags when verifying that it's safe to sync a shadow 1883 * page using the current MMU context. 1884 * 1885 * - level: not part of the overall MMU role and will never match as the MMU's 1886 * level tracks the root level 1887 * - access: updated based on the new guest PTE 1888 * - quadrant: not part of the overall MMU role (similar to level) 1889 */ 1890 const union kvm_mmu_page_role sync_role_ign = { 1891 .level = 0xf, 1892 .access = 0x7, 1893 .quadrant = 0x3, 1894 .passthrough = 0x1, 1895 }; 1896 1897 /* 1898 * Direct pages can never be unsync, and KVM should never attempt to 1899 * sync a shadow page for a different MMU context, e.g. if the role 1900 * differs then the memslot lookup (SMM vs. non-SMM) will be bogus, the 1901 * reserved bits checks will be wrong, etc... 1902 */ 1903 if (WARN_ON_ONCE(sp->role.direct || !vcpu->arch.mmu->sync_spte || 1904 (sp->role.word ^ root_role.word) & ~sync_role_ign.word)) 1905 return false; 1906 1907 return true; 1908 } 1909 1910 static int kvm_sync_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, int i) 1911 { 1912 /* sp->spt[i] has initial value of shadow page table allocation */ 1913 if (sp->spt[i] == SHADOW_NONPRESENT_VALUE) 1914 return 0; 1915 1916 return vcpu->arch.mmu->sync_spte(vcpu, sp, i); 1917 } 1918 1919 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 1920 { 1921 int flush = 0; 1922 int i; 1923 1924 if (!kvm_sync_page_check(vcpu, sp)) 1925 return -1; 1926 1927 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) { 1928 int ret = kvm_sync_spte(vcpu, sp, i); 1929 1930 if (ret < -1) 1931 return -1; 1932 flush |= ret; 1933 } 1934 1935 /* 1936 * Note, any flush is purely for KVM's correctness, e.g. when dropping 1937 * an existing SPTE or clearing W/A/D bits to ensure an mmu_notifier 1938 * unmap or dirty logging event doesn't fail to flush. The guest is 1939 * responsible for flushing the TLB to ensure any changes in protection 1940 * bits are recognized, i.e. until the guest flushes or page faults on 1941 * a relevant address, KVM is architecturally allowed to let vCPUs use 1942 * cached translations with the old protection bits. 1943 */ 1944 return flush; 1945 } 1946 1947 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 1948 struct list_head *invalid_list) 1949 { 1950 int ret = __kvm_sync_page(vcpu, sp); 1951 1952 if (ret < 0) 1953 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); 1954 return ret; 1955 } 1956 1957 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm, 1958 struct list_head *invalid_list, 1959 bool remote_flush) 1960 { 1961 if (!remote_flush && list_empty(invalid_list)) 1962 return false; 1963 1964 if (!list_empty(invalid_list)) 1965 kvm_mmu_commit_zap_page(kvm, invalid_list); 1966 else 1967 kvm_flush_remote_tlbs(kvm); 1968 return true; 1969 } 1970 1971 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 1972 { 1973 if (sp->role.invalid) 1974 return true; 1975 1976 /* TDP MMU pages do not use the MMU generation. */ 1977 return !is_tdp_mmu_page(sp) && 1978 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); 1979 } 1980 1981 struct mmu_page_path { 1982 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL]; 1983 unsigned int idx[PT64_ROOT_MAX_LEVEL]; 1984 }; 1985 1986 #define for_each_sp(pvec, sp, parents, i) \ 1987 for (i = mmu_pages_first(&pvec, &parents); \ 1988 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \ 1989 i = mmu_pages_next(&pvec, &parents, i)) 1990 1991 static int mmu_pages_next(struct kvm_mmu_pages *pvec, 1992 struct mmu_page_path *parents, 1993 int i) 1994 { 1995 int n; 1996 1997 for (n = i+1; n < pvec->nr; n++) { 1998 struct kvm_mmu_page *sp = pvec->page[n].sp; 1999 unsigned idx = pvec->page[n].idx; 2000 int level = sp->role.level; 2001 2002 parents->idx[level-1] = idx; 2003 if (level == PG_LEVEL_4K) 2004 break; 2005 2006 parents->parent[level-2] = sp; 2007 } 2008 2009 return n; 2010 } 2011 2012 static int mmu_pages_first(struct kvm_mmu_pages *pvec, 2013 struct mmu_page_path *parents) 2014 { 2015 struct kvm_mmu_page *sp; 2016 int level; 2017 2018 if (pvec->nr == 0) 2019 return 0; 2020 2021 WARN_ON_ONCE(pvec->page[0].idx != INVALID_INDEX); 2022 2023 sp = pvec->page[0].sp; 2024 level = sp->role.level; 2025 WARN_ON_ONCE(level == PG_LEVEL_4K); 2026 2027 parents->parent[level-2] = sp; 2028 2029 /* Also set up a sentinel. Further entries in pvec are all 2030 * children of sp, so this element is never overwritten. 2031 */ 2032 parents->parent[level-1] = NULL; 2033 return mmu_pages_next(pvec, parents, 0); 2034 } 2035 2036 static void mmu_pages_clear_parents(struct mmu_page_path *parents) 2037 { 2038 struct kvm_mmu_page *sp; 2039 unsigned int level = 0; 2040 2041 do { 2042 unsigned int idx = parents->idx[level]; 2043 sp = parents->parent[level]; 2044 if (!sp) 2045 return; 2046 2047 WARN_ON_ONCE(idx == INVALID_INDEX); 2048 clear_unsync_child_bit(sp, idx); 2049 level++; 2050 } while (!sp->unsync_children); 2051 } 2052 2053 static int mmu_sync_children(struct kvm_vcpu *vcpu, 2054 struct kvm_mmu_page *parent, bool can_yield) 2055 { 2056 int i; 2057 struct kvm_mmu_page *sp; 2058 struct mmu_page_path parents; 2059 struct kvm_mmu_pages pages; 2060 LIST_HEAD(invalid_list); 2061 bool flush = false; 2062 2063 while (mmu_unsync_walk(parent, &pages)) { 2064 bool protected = false; 2065 2066 for_each_sp(pages, sp, parents, i) 2067 protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn); 2068 2069 if (protected) { 2070 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true); 2071 flush = false; 2072 } 2073 2074 for_each_sp(pages, sp, parents, i) { 2075 kvm_unlink_unsync_page(vcpu->kvm, sp); 2076 flush |= kvm_sync_page(vcpu, sp, &invalid_list) > 0; 2077 mmu_pages_clear_parents(&parents); 2078 } 2079 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) { 2080 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2081 if (!can_yield) { 2082 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 2083 return -EINTR; 2084 } 2085 2086 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock); 2087 flush = false; 2088 } 2089 } 2090 2091 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2092 return 0; 2093 } 2094 2095 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) 2096 { 2097 atomic_set(&sp->write_flooding_count, 0); 2098 } 2099 2100 static void clear_sp_write_flooding_count(u64 *spte) 2101 { 2102 __clear_sp_write_flooding_count(sptep_to_sp(spte)); 2103 } 2104 2105 /* 2106 * The vCPU is required when finding indirect shadow pages; the shadow 2107 * page may already exist and syncing it needs the vCPU pointer in 2108 * order to read guest page tables. Direct shadow pages are never 2109 * unsync, thus @vcpu can be NULL if @role.direct is true. 2110 */ 2111 static struct kvm_mmu_page *kvm_mmu_find_shadow_page(struct kvm *kvm, 2112 struct kvm_vcpu *vcpu, 2113 gfn_t gfn, 2114 struct hlist_head *sp_list, 2115 union kvm_mmu_page_role role) 2116 { 2117 struct kvm_mmu_page *sp; 2118 int ret; 2119 int collisions = 0; 2120 LIST_HEAD(invalid_list); 2121 2122 for_each_valid_sp(kvm, sp, sp_list) { 2123 if (sp->gfn != gfn) { 2124 collisions++; 2125 continue; 2126 } 2127 2128 if (sp->role.word != role.word) { 2129 /* 2130 * If the guest is creating an upper-level page, zap 2131 * unsync pages for the same gfn. While it's possible 2132 * the guest is using recursive page tables, in all 2133 * likelihood the guest has stopped using the unsync 2134 * page and is installing a completely unrelated page. 2135 * Unsync pages must not be left as is, because the new 2136 * upper-level page will be write-protected. 2137 */ 2138 if (role.level > PG_LEVEL_4K && sp->unsync) 2139 kvm_mmu_prepare_zap_page(kvm, sp, 2140 &invalid_list); 2141 continue; 2142 } 2143 2144 /* unsync and write-flooding only apply to indirect SPs. */ 2145 if (sp->role.direct) 2146 goto out; 2147 2148 if (sp->unsync) { 2149 if (KVM_BUG_ON(!vcpu, kvm)) 2150 break; 2151 2152 /* 2153 * The page is good, but is stale. kvm_sync_page does 2154 * get the latest guest state, but (unlike mmu_unsync_children) 2155 * it doesn't write-protect the page or mark it synchronized! 2156 * This way the validity of the mapping is ensured, but the 2157 * overhead of write protection is not incurred until the 2158 * guest invalidates the TLB mapping. This allows multiple 2159 * SPs for a single gfn to be unsync. 2160 * 2161 * If the sync fails, the page is zapped. If so, break 2162 * in order to rebuild it. 2163 */ 2164 ret = kvm_sync_page(vcpu, sp, &invalid_list); 2165 if (ret < 0) 2166 break; 2167 2168 WARN_ON_ONCE(!list_empty(&invalid_list)); 2169 if (ret > 0) 2170 kvm_flush_remote_tlbs(kvm); 2171 } 2172 2173 __clear_sp_write_flooding_count(sp); 2174 2175 goto out; 2176 } 2177 2178 sp = NULL; 2179 ++kvm->stat.mmu_cache_miss; 2180 2181 out: 2182 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2183 2184 if (collisions > kvm->stat.max_mmu_page_hash_collisions) 2185 kvm->stat.max_mmu_page_hash_collisions = collisions; 2186 return sp; 2187 } 2188 2189 /* Caches used when allocating a new shadow page. */ 2190 struct shadow_page_caches { 2191 struct kvm_mmu_memory_cache *page_header_cache; 2192 struct kvm_mmu_memory_cache *shadow_page_cache; 2193 struct kvm_mmu_memory_cache *shadowed_info_cache; 2194 }; 2195 2196 static struct kvm_mmu_page *kvm_mmu_alloc_shadow_page(struct kvm *kvm, 2197 struct shadow_page_caches *caches, 2198 gfn_t gfn, 2199 struct hlist_head *sp_list, 2200 union kvm_mmu_page_role role) 2201 { 2202 struct kvm_mmu_page *sp; 2203 2204 sp = kvm_mmu_memory_cache_alloc(caches->page_header_cache); 2205 sp->spt = kvm_mmu_memory_cache_alloc(caches->shadow_page_cache); 2206 if (!role.direct) 2207 sp->shadowed_translation = kvm_mmu_memory_cache_alloc(caches->shadowed_info_cache); 2208 2209 set_page_private(virt_to_page(sp->spt), (unsigned long)sp); 2210 2211 INIT_LIST_HEAD(&sp->possible_nx_huge_page_link); 2212 2213 /* 2214 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages() 2215 * depends on valid pages being added to the head of the list. See 2216 * comments in kvm_zap_obsolete_pages(). 2217 */ 2218 sp->mmu_valid_gen = kvm->arch.mmu_valid_gen; 2219 list_add(&sp->link, &kvm->arch.active_mmu_pages); 2220 kvm_account_mmu_page(kvm, sp); 2221 2222 sp->gfn = gfn; 2223 sp->role = role; 2224 hlist_add_head(&sp->hash_link, sp_list); 2225 if (sp_has_gptes(sp)) 2226 account_shadowed(kvm, sp); 2227 2228 return sp; 2229 } 2230 2231 /* Note, @vcpu may be NULL if @role.direct is true; see kvm_mmu_find_shadow_page. */ 2232 static struct kvm_mmu_page *__kvm_mmu_get_shadow_page(struct kvm *kvm, 2233 struct kvm_vcpu *vcpu, 2234 struct shadow_page_caches *caches, 2235 gfn_t gfn, 2236 union kvm_mmu_page_role role) 2237 { 2238 struct hlist_head *sp_list; 2239 struct kvm_mmu_page *sp; 2240 bool created = false; 2241 2242 sp_list = &kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]; 2243 2244 sp = kvm_mmu_find_shadow_page(kvm, vcpu, gfn, sp_list, role); 2245 if (!sp) { 2246 created = true; 2247 sp = kvm_mmu_alloc_shadow_page(kvm, caches, gfn, sp_list, role); 2248 } 2249 2250 trace_kvm_mmu_get_page(sp, created); 2251 return sp; 2252 } 2253 2254 static struct kvm_mmu_page *kvm_mmu_get_shadow_page(struct kvm_vcpu *vcpu, 2255 gfn_t gfn, 2256 union kvm_mmu_page_role role) 2257 { 2258 struct shadow_page_caches caches = { 2259 .page_header_cache = &vcpu->arch.mmu_page_header_cache, 2260 .shadow_page_cache = &vcpu->arch.mmu_shadow_page_cache, 2261 .shadowed_info_cache = &vcpu->arch.mmu_shadowed_info_cache, 2262 }; 2263 2264 return __kvm_mmu_get_shadow_page(vcpu->kvm, vcpu, &caches, gfn, role); 2265 } 2266 2267 static union kvm_mmu_page_role kvm_mmu_child_role(u64 *sptep, bool direct, 2268 unsigned int access) 2269 { 2270 struct kvm_mmu_page *parent_sp = sptep_to_sp(sptep); 2271 union kvm_mmu_page_role role; 2272 2273 role = parent_sp->role; 2274 role.level--; 2275 role.access = access; 2276 role.direct = direct; 2277 role.passthrough = 0; 2278 2279 /* 2280 * If the guest has 4-byte PTEs then that means it's using 32-bit, 2281 * 2-level, non-PAE paging. KVM shadows such guests with PAE paging 2282 * (i.e. 8-byte PTEs). The difference in PTE size means that KVM must 2283 * shadow each guest page table with multiple shadow page tables, which 2284 * requires extra bookkeeping in the role. 2285 * 2286 * Specifically, to shadow the guest's page directory (which covers a 2287 * 4GiB address space), KVM uses 4 PAE page directories, each mapping 2288 * 1GiB of the address space. @role.quadrant encodes which quarter of 2289 * the address space each maps. 2290 * 2291 * To shadow the guest's page tables (which each map a 4MiB region), KVM 2292 * uses 2 PAE page tables, each mapping a 2MiB region. For these, 2293 * @role.quadrant encodes which half of the region they map. 2294 * 2295 * Concretely, a 4-byte PDE consumes bits 31:22, while an 8-byte PDE 2296 * consumes bits 29:21. To consume bits 31:30, KVM's uses 4 shadow 2297 * PDPTEs; those 4 PAE page directories are pre-allocated and their 2298 * quadrant is assigned in mmu_alloc_root(). A 4-byte PTE consumes 2299 * bits 21:12, while an 8-byte PTE consumes bits 20:12. To consume 2300 * bit 21 in the PTE (the child here), KVM propagates that bit to the 2301 * quadrant, i.e. sets quadrant to '0' or '1'. The parent 8-byte PDE 2302 * covers bit 21 (see above), thus the quadrant is calculated from the 2303 * _least_ significant bit of the PDE index. 2304 */ 2305 if (role.has_4_byte_gpte) { 2306 WARN_ON_ONCE(role.level != PG_LEVEL_4K); 2307 role.quadrant = spte_index(sptep) & 1; 2308 } 2309 2310 return role; 2311 } 2312 2313 static struct kvm_mmu_page *kvm_mmu_get_child_sp(struct kvm_vcpu *vcpu, 2314 u64 *sptep, gfn_t gfn, 2315 bool direct, unsigned int access) 2316 { 2317 union kvm_mmu_page_role role; 2318 2319 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) 2320 return ERR_PTR(-EEXIST); 2321 2322 role = kvm_mmu_child_role(sptep, direct, access); 2323 return kvm_mmu_get_shadow_page(vcpu, gfn, role); 2324 } 2325 2326 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator, 2327 struct kvm_vcpu *vcpu, hpa_t root, 2328 u64 addr) 2329 { 2330 iterator->addr = addr; 2331 iterator->shadow_addr = root; 2332 iterator->level = vcpu->arch.mmu->root_role.level; 2333 2334 if (iterator->level >= PT64_ROOT_4LEVEL && 2335 vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL && 2336 !vcpu->arch.mmu->root_role.direct) 2337 iterator->level = PT32E_ROOT_LEVEL; 2338 2339 if (iterator->level == PT32E_ROOT_LEVEL) { 2340 /* 2341 * prev_root is currently only used for 64-bit hosts. So only 2342 * the active root_hpa is valid here. 2343 */ 2344 BUG_ON(root != vcpu->arch.mmu->root.hpa); 2345 2346 iterator->shadow_addr 2347 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3]; 2348 iterator->shadow_addr &= SPTE_BASE_ADDR_MASK; 2349 --iterator->level; 2350 if (!iterator->shadow_addr) 2351 iterator->level = 0; 2352 } 2353 } 2354 2355 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, 2356 struct kvm_vcpu *vcpu, u64 addr) 2357 { 2358 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa, 2359 addr); 2360 } 2361 2362 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) 2363 { 2364 if (iterator->level < PG_LEVEL_4K) 2365 return false; 2366 2367 iterator->index = SPTE_INDEX(iterator->addr, iterator->level); 2368 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; 2369 return true; 2370 } 2371 2372 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, 2373 u64 spte) 2374 { 2375 if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) { 2376 iterator->level = 0; 2377 return; 2378 } 2379 2380 iterator->shadow_addr = spte & SPTE_BASE_ADDR_MASK; 2381 --iterator->level; 2382 } 2383 2384 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) 2385 { 2386 __shadow_walk_next(iterator, *iterator->sptep); 2387 } 2388 2389 static void __link_shadow_page(struct kvm *kvm, 2390 struct kvm_mmu_memory_cache *cache, u64 *sptep, 2391 struct kvm_mmu_page *sp, bool flush) 2392 { 2393 u64 spte; 2394 2395 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); 2396 2397 /* 2398 * If an SPTE is present already, it must be a leaf and therefore 2399 * a large one. Drop it, and flush the TLB if needed, before 2400 * installing sp. 2401 */ 2402 if (is_shadow_present_pte(*sptep)) 2403 drop_large_spte(kvm, sptep, flush); 2404 2405 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp)); 2406 2407 mmu_spte_set(sptep, spte); 2408 2409 mmu_page_add_parent_pte(cache, sp, sptep); 2410 2411 /* 2412 * The non-direct sub-pagetable must be updated before linking. For 2413 * L1 sp, the pagetable is updated via kvm_sync_page() in 2414 * kvm_mmu_find_shadow_page() without write-protecting the gfn, 2415 * so sp->unsync can be true or false. For higher level non-direct 2416 * sp, the pagetable is updated/synced via mmu_sync_children() in 2417 * FNAME(fetch)(), so sp->unsync_children can only be false. 2418 * WARN_ON_ONCE() if anything happens unexpectedly. 2419 */ 2420 if (WARN_ON_ONCE(sp->unsync_children) || sp->unsync) 2421 mark_unsync(sptep); 2422 } 2423 2424 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, 2425 struct kvm_mmu_page *sp) 2426 { 2427 __link_shadow_page(vcpu->kvm, &vcpu->arch.mmu_pte_list_desc_cache, sptep, sp, true); 2428 } 2429 2430 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2431 unsigned direct_access) 2432 { 2433 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { 2434 struct kvm_mmu_page *child; 2435 2436 /* 2437 * For the direct sp, if the guest pte's dirty bit 2438 * changed form clean to dirty, it will corrupt the 2439 * sp's access: allow writable in the read-only sp, 2440 * so we should update the spte at this point to get 2441 * a new sp with the correct access. 2442 */ 2443 child = spte_to_child_sp(*sptep); 2444 if (child->role.access == direct_access) 2445 return; 2446 2447 drop_parent_pte(vcpu->kvm, child, sptep); 2448 kvm_flush_remote_tlbs_sptep(vcpu->kvm, sptep); 2449 } 2450 } 2451 2452 /* Returns the number of zapped non-leaf child shadow pages. */ 2453 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 2454 u64 *spte, struct list_head *invalid_list) 2455 { 2456 u64 pte; 2457 struct kvm_mmu_page *child; 2458 2459 pte = *spte; 2460 if (is_shadow_present_pte(pte)) { 2461 if (is_last_spte(pte, sp->role.level)) { 2462 drop_spte(kvm, spte); 2463 } else { 2464 child = spte_to_child_sp(pte); 2465 drop_parent_pte(kvm, child, spte); 2466 2467 /* 2468 * Recursively zap nested TDP SPs, parentless SPs are 2469 * unlikely to be used again in the near future. This 2470 * avoids retaining a large number of stale nested SPs. 2471 */ 2472 if (tdp_enabled && invalid_list && 2473 child->role.guest_mode && !child->parent_ptes.val) 2474 return kvm_mmu_prepare_zap_page(kvm, child, 2475 invalid_list); 2476 } 2477 } else if (is_mmio_spte(kvm, pte)) { 2478 mmu_spte_clear_no_track(spte); 2479 } 2480 return 0; 2481 } 2482 2483 static int kvm_mmu_page_unlink_children(struct kvm *kvm, 2484 struct kvm_mmu_page *sp, 2485 struct list_head *invalid_list) 2486 { 2487 int zapped = 0; 2488 unsigned i; 2489 2490 for (i = 0; i < SPTE_ENT_PER_PAGE; ++i) 2491 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list); 2492 2493 return zapped; 2494 } 2495 2496 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp) 2497 { 2498 u64 *sptep; 2499 struct rmap_iterator iter; 2500 2501 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter))) 2502 drop_parent_pte(kvm, sp, sptep); 2503 } 2504 2505 static int mmu_zap_unsync_children(struct kvm *kvm, 2506 struct kvm_mmu_page *parent, 2507 struct list_head *invalid_list) 2508 { 2509 int i, zapped = 0; 2510 struct mmu_page_path parents; 2511 struct kvm_mmu_pages pages; 2512 2513 if (parent->role.level == PG_LEVEL_4K) 2514 return 0; 2515 2516 while (mmu_unsync_walk(parent, &pages)) { 2517 struct kvm_mmu_page *sp; 2518 2519 for_each_sp(pages, sp, parents, i) { 2520 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 2521 mmu_pages_clear_parents(&parents); 2522 zapped++; 2523 } 2524 } 2525 2526 return zapped; 2527 } 2528 2529 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm, 2530 struct kvm_mmu_page *sp, 2531 struct list_head *invalid_list, 2532 int *nr_zapped) 2533 { 2534 bool list_unstable, zapped_root = false; 2535 2536 lockdep_assert_held_write(&kvm->mmu_lock); 2537 trace_kvm_mmu_prepare_zap_page(sp); 2538 ++kvm->stat.mmu_shadow_zapped; 2539 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list); 2540 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list); 2541 kvm_mmu_unlink_parents(kvm, sp); 2542 2543 /* Zapping children means active_mmu_pages has become unstable. */ 2544 list_unstable = *nr_zapped; 2545 2546 if (!sp->role.invalid && sp_has_gptes(sp)) 2547 unaccount_shadowed(kvm, sp); 2548 2549 if (sp->unsync) 2550 kvm_unlink_unsync_page(kvm, sp); 2551 if (!sp->root_count) { 2552 /* Count self */ 2553 (*nr_zapped)++; 2554 2555 /* 2556 * Already invalid pages (previously active roots) are not on 2557 * the active page list. See list_del() in the "else" case of 2558 * !sp->root_count. 2559 */ 2560 if (sp->role.invalid) 2561 list_add(&sp->link, invalid_list); 2562 else 2563 list_move(&sp->link, invalid_list); 2564 kvm_unaccount_mmu_page(kvm, sp); 2565 } else { 2566 /* 2567 * Remove the active root from the active page list, the root 2568 * will be explicitly freed when the root_count hits zero. 2569 */ 2570 list_del(&sp->link); 2571 2572 /* 2573 * Obsolete pages cannot be used on any vCPUs, see the comment 2574 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also 2575 * treats invalid shadow pages as being obsolete. 2576 */ 2577 zapped_root = !is_obsolete_sp(kvm, sp); 2578 } 2579 2580 if (sp->nx_huge_page_disallowed) 2581 unaccount_nx_huge_page(kvm, sp); 2582 2583 sp->role.invalid = 1; 2584 2585 /* 2586 * Make the request to free obsolete roots after marking the root 2587 * invalid, otherwise other vCPUs may not see it as invalid. 2588 */ 2589 if (zapped_root) 2590 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 2591 return list_unstable; 2592 } 2593 2594 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 2595 struct list_head *invalid_list) 2596 { 2597 int nr_zapped; 2598 2599 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped); 2600 return nr_zapped; 2601 } 2602 2603 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 2604 struct list_head *invalid_list) 2605 { 2606 struct kvm_mmu_page *sp, *nsp; 2607 2608 if (list_empty(invalid_list)) 2609 return; 2610 2611 /* 2612 * We need to make sure everyone sees our modifications to 2613 * the page tables and see changes to vcpu->mode here. The barrier 2614 * in the kvm_flush_remote_tlbs() achieves this. This pairs 2615 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end. 2616 * 2617 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit 2618 * guest mode and/or lockless shadow page table walks. 2619 */ 2620 kvm_flush_remote_tlbs(kvm); 2621 2622 list_for_each_entry_safe(sp, nsp, invalid_list, link) { 2623 WARN_ON_ONCE(!sp->role.invalid || sp->root_count); 2624 kvm_mmu_free_shadow_page(sp); 2625 } 2626 } 2627 2628 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm, 2629 unsigned long nr_to_zap) 2630 { 2631 unsigned long total_zapped = 0; 2632 struct kvm_mmu_page *sp, *tmp; 2633 LIST_HEAD(invalid_list); 2634 bool unstable; 2635 int nr_zapped; 2636 2637 if (list_empty(&kvm->arch.active_mmu_pages)) 2638 return 0; 2639 2640 restart: 2641 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) { 2642 /* 2643 * Don't zap active root pages, the page itself can't be freed 2644 * and zapping it will just force vCPUs to realloc and reload. 2645 */ 2646 if (sp->root_count) 2647 continue; 2648 2649 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, 2650 &nr_zapped); 2651 total_zapped += nr_zapped; 2652 if (total_zapped >= nr_to_zap) 2653 break; 2654 2655 if (unstable) 2656 goto restart; 2657 } 2658 2659 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2660 2661 kvm->stat.mmu_recycled += total_zapped; 2662 return total_zapped; 2663 } 2664 2665 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm) 2666 { 2667 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) 2668 return kvm->arch.n_max_mmu_pages - 2669 kvm->arch.n_used_mmu_pages; 2670 2671 return 0; 2672 } 2673 2674 static int make_mmu_pages_available(struct kvm_vcpu *vcpu) 2675 { 2676 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm); 2677 2678 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES)) 2679 return 0; 2680 2681 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail); 2682 2683 /* 2684 * Note, this check is intentionally soft, it only guarantees that one 2685 * page is available, while the caller may end up allocating as many as 2686 * four pages, e.g. for PAE roots or for 5-level paging. Temporarily 2687 * exceeding the (arbitrary by default) limit will not harm the host, 2688 * being too aggressive may unnecessarily kill the guest, and getting an 2689 * exact count is far more trouble than it's worth, especially in the 2690 * page fault paths. 2691 */ 2692 if (!kvm_mmu_available_pages(vcpu->kvm)) 2693 return -ENOSPC; 2694 return 0; 2695 } 2696 2697 /* 2698 * Changing the number of mmu pages allocated to the vm 2699 * Note: if goal_nr_mmu_pages is too small, you will get dead lock 2700 */ 2701 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages) 2702 { 2703 write_lock(&kvm->mmu_lock); 2704 2705 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { 2706 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages - 2707 goal_nr_mmu_pages); 2708 2709 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; 2710 } 2711 2712 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; 2713 2714 write_unlock(&kvm->mmu_lock); 2715 } 2716 2717 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn) 2718 { 2719 struct kvm_mmu_page *sp; 2720 LIST_HEAD(invalid_list); 2721 int r; 2722 2723 r = 0; 2724 write_lock(&kvm->mmu_lock); 2725 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) { 2726 r = 1; 2727 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 2728 } 2729 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2730 write_unlock(&kvm->mmu_lock); 2731 2732 return r; 2733 } 2734 2735 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) 2736 { 2737 gpa_t gpa; 2738 int r; 2739 2740 if (vcpu->arch.mmu->root_role.direct) 2741 return 0; 2742 2743 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL); 2744 2745 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); 2746 2747 return r; 2748 } 2749 2750 static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 2751 { 2752 trace_kvm_mmu_unsync_page(sp); 2753 ++kvm->stat.mmu_unsync; 2754 sp->unsync = 1; 2755 2756 kvm_mmu_mark_parents_unsync(sp); 2757 } 2758 2759 /* 2760 * Attempt to unsync any shadow pages that can be reached by the specified gfn, 2761 * KVM is creating a writable mapping for said gfn. Returns 0 if all pages 2762 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must 2763 * be write-protected. 2764 */ 2765 int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot, 2766 gfn_t gfn, bool can_unsync, bool prefetch) 2767 { 2768 struct kvm_mmu_page *sp; 2769 bool locked = false; 2770 2771 /* 2772 * Force write-protection if the page is being tracked. Note, the page 2773 * track machinery is used to write-protect upper-level shadow pages, 2774 * i.e. this guards the role.level == 4K assertion below! 2775 */ 2776 if (kvm_gfn_is_write_tracked(kvm, slot, gfn)) 2777 return -EPERM; 2778 2779 /* 2780 * The page is not write-tracked, mark existing shadow pages unsync 2781 * unless KVM is synchronizing an unsync SP (can_unsync = false). In 2782 * that case, KVM must complete emulation of the guest TLB flush before 2783 * allowing shadow pages to become unsync (writable by the guest). 2784 */ 2785 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) { 2786 if (!can_unsync) 2787 return -EPERM; 2788 2789 if (sp->unsync) 2790 continue; 2791 2792 if (prefetch) 2793 return -EEXIST; 2794 2795 /* 2796 * TDP MMU page faults require an additional spinlock as they 2797 * run with mmu_lock held for read, not write, and the unsync 2798 * logic is not thread safe. Take the spinklock regardless of 2799 * the MMU type to avoid extra conditionals/parameters, there's 2800 * no meaningful penalty if mmu_lock is held for write. 2801 */ 2802 if (!locked) { 2803 locked = true; 2804 spin_lock(&kvm->arch.mmu_unsync_pages_lock); 2805 2806 /* 2807 * Recheck after taking the spinlock, a different vCPU 2808 * may have since marked the page unsync. A false 2809 * negative on the unprotected check above is not 2810 * possible as clearing sp->unsync _must_ hold mmu_lock 2811 * for write, i.e. unsync cannot transition from 1->0 2812 * while this CPU holds mmu_lock for read (or write). 2813 */ 2814 if (READ_ONCE(sp->unsync)) 2815 continue; 2816 } 2817 2818 WARN_ON_ONCE(sp->role.level != PG_LEVEL_4K); 2819 kvm_unsync_page(kvm, sp); 2820 } 2821 if (locked) 2822 spin_unlock(&kvm->arch.mmu_unsync_pages_lock); 2823 2824 /* 2825 * We need to ensure that the marking of unsync pages is visible 2826 * before the SPTE is updated to allow writes because 2827 * kvm_mmu_sync_roots() checks the unsync flags without holding 2828 * the MMU lock and so can race with this. If the SPTE was updated 2829 * before the page had been marked as unsync-ed, something like the 2830 * following could happen: 2831 * 2832 * CPU 1 CPU 2 2833 * --------------------------------------------------------------------- 2834 * 1.2 Host updates SPTE 2835 * to be writable 2836 * 2.1 Guest writes a GPTE for GVA X. 2837 * (GPTE being in the guest page table shadowed 2838 * by the SP from CPU 1.) 2839 * This reads SPTE during the page table walk. 2840 * Since SPTE.W is read as 1, there is no 2841 * fault. 2842 * 2843 * 2.2 Guest issues TLB flush. 2844 * That causes a VM Exit. 2845 * 2846 * 2.3 Walking of unsync pages sees sp->unsync is 2847 * false and skips the page. 2848 * 2849 * 2.4 Guest accesses GVA X. 2850 * Since the mapping in the SP was not updated, 2851 * so the old mapping for GVA X incorrectly 2852 * gets used. 2853 * 1.1 Host marks SP 2854 * as unsync 2855 * (sp->unsync = true) 2856 * 2857 * The write barrier below ensures that 1.1 happens before 1.2 and thus 2858 * the situation in 2.4 does not arise. It pairs with the read barrier 2859 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3. 2860 */ 2861 smp_wmb(); 2862 2863 return 0; 2864 } 2865 2866 static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, 2867 u64 *sptep, unsigned int pte_access, gfn_t gfn, 2868 kvm_pfn_t pfn, struct kvm_page_fault *fault) 2869 { 2870 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 2871 int level = sp->role.level; 2872 int was_rmapped = 0; 2873 int ret = RET_PF_FIXED; 2874 bool flush = false; 2875 bool wrprot; 2876 u64 spte; 2877 2878 /* Prefetching always gets a writable pfn. */ 2879 bool host_writable = !fault || fault->map_writable; 2880 bool prefetch = !fault || fault->prefetch; 2881 bool write_fault = fault && fault->write; 2882 2883 if (unlikely(is_noslot_pfn(pfn))) { 2884 vcpu->stat.pf_mmio_spte_created++; 2885 mark_mmio_spte(vcpu, sptep, gfn, pte_access); 2886 return RET_PF_EMULATE; 2887 } 2888 2889 if (is_shadow_present_pte(*sptep)) { 2890 /* 2891 * If we overwrite a PTE page pointer with a 2MB PMD, unlink 2892 * the parent of the now unreachable PTE. 2893 */ 2894 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) { 2895 struct kvm_mmu_page *child; 2896 u64 pte = *sptep; 2897 2898 child = spte_to_child_sp(pte); 2899 drop_parent_pte(vcpu->kvm, child, sptep); 2900 flush = true; 2901 } else if (pfn != spte_to_pfn(*sptep)) { 2902 drop_spte(vcpu->kvm, sptep); 2903 flush = true; 2904 } else 2905 was_rmapped = 1; 2906 } 2907 2908 wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch, 2909 true, host_writable, &spte); 2910 2911 if (*sptep == spte) { 2912 ret = RET_PF_SPURIOUS; 2913 } else { 2914 flush |= mmu_spte_update(sptep, spte); 2915 trace_kvm_mmu_set_spte(level, gfn, sptep); 2916 } 2917 2918 if (wrprot) { 2919 if (write_fault) 2920 ret = RET_PF_EMULATE; 2921 } 2922 2923 if (flush) 2924 kvm_flush_remote_tlbs_gfn(vcpu->kvm, gfn, level); 2925 2926 if (!was_rmapped) { 2927 WARN_ON_ONCE(ret == RET_PF_SPURIOUS); 2928 rmap_add(vcpu, slot, sptep, gfn, pte_access); 2929 } else { 2930 /* Already rmapped but the pte_access bits may have changed. */ 2931 kvm_mmu_page_set_access(sp, spte_index(sptep), pte_access); 2932 } 2933 2934 return ret; 2935 } 2936 2937 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu, 2938 struct kvm_mmu_page *sp, 2939 u64 *start, u64 *end) 2940 { 2941 struct page *pages[PTE_PREFETCH_NUM]; 2942 struct kvm_memory_slot *slot; 2943 unsigned int access = sp->role.access; 2944 int i, ret; 2945 gfn_t gfn; 2946 2947 gfn = kvm_mmu_page_get_gfn(sp, spte_index(start)); 2948 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK); 2949 if (!slot) 2950 return -1; 2951 2952 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start); 2953 if (ret <= 0) 2954 return -1; 2955 2956 for (i = 0; i < ret; i++, gfn++, start++) { 2957 mmu_set_spte(vcpu, slot, start, access, gfn, 2958 page_to_pfn(pages[i]), NULL); 2959 put_page(pages[i]); 2960 } 2961 2962 return 0; 2963 } 2964 2965 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, 2966 struct kvm_mmu_page *sp, u64 *sptep) 2967 { 2968 u64 *spte, *start = NULL; 2969 int i; 2970 2971 WARN_ON_ONCE(!sp->role.direct); 2972 2973 i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1); 2974 spte = sp->spt + i; 2975 2976 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 2977 if (is_shadow_present_pte(*spte) || spte == sptep) { 2978 if (!start) 2979 continue; 2980 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0) 2981 return; 2982 start = NULL; 2983 } else if (!start) 2984 start = spte; 2985 } 2986 if (start) 2987 direct_pte_prefetch_many(vcpu, sp, start, spte); 2988 } 2989 2990 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) 2991 { 2992 struct kvm_mmu_page *sp; 2993 2994 sp = sptep_to_sp(sptep); 2995 2996 /* 2997 * Without accessed bits, there's no way to distinguish between 2998 * actually accessed translations and prefetched, so disable pte 2999 * prefetch if accessed bits aren't available. 3000 */ 3001 if (sp_ad_disabled(sp)) 3002 return; 3003 3004 if (sp->role.level > PG_LEVEL_4K) 3005 return; 3006 3007 /* 3008 * If addresses are being invalidated, skip prefetching to avoid 3009 * accidentally prefetching those addresses. 3010 */ 3011 if (unlikely(vcpu->kvm->mmu_invalidate_in_progress)) 3012 return; 3013 3014 __direct_pte_prefetch(vcpu, sp, sptep); 3015 } 3016 3017 /* 3018 * Lookup the mapping level for @gfn in the current mm. 3019 * 3020 * WARNING! Use of host_pfn_mapping_level() requires the caller and the end 3021 * consumer to be tied into KVM's handlers for MMU notifier events! 3022 * 3023 * There are several ways to safely use this helper: 3024 * 3025 * - Check mmu_invalidate_retry_gfn() after grabbing the mapping level, before 3026 * consuming it. In this case, mmu_lock doesn't need to be held during the 3027 * lookup, but it does need to be held while checking the MMU notifier. 3028 * 3029 * - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation 3030 * event for the hva. This can be done by explicit checking the MMU notifier 3031 * or by ensuring that KVM already has a valid mapping that covers the hva. 3032 * 3033 * - Do not use the result to install new mappings, e.g. use the host mapping 3034 * level only to decide whether or not to zap an entry. In this case, it's 3035 * not required to hold mmu_lock (though it's highly likely the caller will 3036 * want to hold mmu_lock anyways, e.g. to modify SPTEs). 3037 * 3038 * Note! The lookup can still race with modifications to host page tables, but 3039 * the above "rules" ensure KVM will not _consume_ the result of the walk if a 3040 * race with the primary MMU occurs. 3041 */ 3042 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, 3043 const struct kvm_memory_slot *slot) 3044 { 3045 int level = PG_LEVEL_4K; 3046 unsigned long hva; 3047 unsigned long flags; 3048 pgd_t pgd; 3049 p4d_t p4d; 3050 pud_t pud; 3051 pmd_t pmd; 3052 3053 /* 3054 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot() 3055 * is not solely for performance, it's also necessary to avoid the 3056 * "writable" check in __gfn_to_hva_many(), which will always fail on 3057 * read-only memslots due to gfn_to_hva() assuming writes. Earlier 3058 * page fault steps have already verified the guest isn't writing a 3059 * read-only memslot. 3060 */ 3061 hva = __gfn_to_hva_memslot(slot, gfn); 3062 3063 /* 3064 * Disable IRQs to prevent concurrent tear down of host page tables, 3065 * e.g. if the primary MMU promotes a P*D to a huge page and then frees 3066 * the original page table. 3067 */ 3068 local_irq_save(flags); 3069 3070 /* 3071 * Read each entry once. As above, a non-leaf entry can be promoted to 3072 * a huge page _during_ this walk. Re-reading the entry could send the 3073 * walk into the weeks, e.g. p*d_leaf() returns false (sees the old 3074 * value) and then p*d_offset() walks into the target huge page instead 3075 * of the old page table (sees the new value). 3076 */ 3077 pgd = READ_ONCE(*pgd_offset(kvm->mm, hva)); 3078 if (pgd_none(pgd)) 3079 goto out; 3080 3081 p4d = READ_ONCE(*p4d_offset(&pgd, hva)); 3082 if (p4d_none(p4d) || !p4d_present(p4d)) 3083 goto out; 3084 3085 pud = READ_ONCE(*pud_offset(&p4d, hva)); 3086 if (pud_none(pud) || !pud_present(pud)) 3087 goto out; 3088 3089 if (pud_leaf(pud)) { 3090 level = PG_LEVEL_1G; 3091 goto out; 3092 } 3093 3094 pmd = READ_ONCE(*pmd_offset(&pud, hva)); 3095 if (pmd_none(pmd) || !pmd_present(pmd)) 3096 goto out; 3097 3098 if (pmd_leaf(pmd)) 3099 level = PG_LEVEL_2M; 3100 3101 out: 3102 local_irq_restore(flags); 3103 return level; 3104 } 3105 3106 static int __kvm_mmu_max_mapping_level(struct kvm *kvm, 3107 const struct kvm_memory_slot *slot, 3108 gfn_t gfn, int max_level, bool is_private) 3109 { 3110 struct kvm_lpage_info *linfo; 3111 int host_level; 3112 3113 max_level = min(max_level, max_huge_page_level); 3114 for ( ; max_level > PG_LEVEL_4K; max_level--) { 3115 linfo = lpage_info_slot(gfn, slot, max_level); 3116 if (!linfo->disallow_lpage) 3117 break; 3118 } 3119 3120 if (is_private) 3121 return max_level; 3122 3123 if (max_level == PG_LEVEL_4K) 3124 return PG_LEVEL_4K; 3125 3126 host_level = host_pfn_mapping_level(kvm, gfn, slot); 3127 return min(host_level, max_level); 3128 } 3129 3130 int kvm_mmu_max_mapping_level(struct kvm *kvm, 3131 const struct kvm_memory_slot *slot, gfn_t gfn, 3132 int max_level) 3133 { 3134 bool is_private = kvm_slot_can_be_private(slot) && 3135 kvm_mem_is_private(kvm, gfn); 3136 3137 return __kvm_mmu_max_mapping_level(kvm, slot, gfn, max_level, is_private); 3138 } 3139 3140 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3141 { 3142 struct kvm_memory_slot *slot = fault->slot; 3143 kvm_pfn_t mask; 3144 3145 fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled; 3146 3147 if (unlikely(fault->max_level == PG_LEVEL_4K)) 3148 return; 3149 3150 if (is_error_noslot_pfn(fault->pfn)) 3151 return; 3152 3153 if (kvm_slot_dirty_track_enabled(slot)) 3154 return; 3155 3156 /* 3157 * Enforce the iTLB multihit workaround after capturing the requested 3158 * level, which will be used to do precise, accurate accounting. 3159 */ 3160 fault->req_level = __kvm_mmu_max_mapping_level(vcpu->kvm, slot, 3161 fault->gfn, fault->max_level, 3162 fault->is_private); 3163 if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed) 3164 return; 3165 3166 /* 3167 * mmu_invalidate_retry() was successful and mmu_lock is held, so 3168 * the pmd can't be split from under us. 3169 */ 3170 fault->goal_level = fault->req_level; 3171 mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1; 3172 VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask)); 3173 fault->pfn &= ~mask; 3174 } 3175 3176 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level) 3177 { 3178 if (cur_level > PG_LEVEL_4K && 3179 cur_level == fault->goal_level && 3180 is_shadow_present_pte(spte) && 3181 !is_large_pte(spte) && 3182 spte_to_child_sp(spte)->nx_huge_page_disallowed) { 3183 /* 3184 * A small SPTE exists for this pfn, but FNAME(fetch), 3185 * direct_map(), or kvm_tdp_mmu_map() would like to create a 3186 * large PTE instead: just force them to go down another level, 3187 * patching back for them into pfn the next 9 bits of the 3188 * address. 3189 */ 3190 u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) - 3191 KVM_PAGES_PER_HPAGE(cur_level - 1); 3192 fault->pfn |= fault->gfn & page_mask; 3193 fault->goal_level--; 3194 } 3195 } 3196 3197 static int direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3198 { 3199 struct kvm_shadow_walk_iterator it; 3200 struct kvm_mmu_page *sp; 3201 int ret; 3202 gfn_t base_gfn = fault->gfn; 3203 3204 kvm_mmu_hugepage_adjust(vcpu, fault); 3205 3206 trace_kvm_mmu_spte_requested(fault); 3207 for_each_shadow_entry(vcpu, fault->addr, it) { 3208 /* 3209 * We cannot overwrite existing page tables with an NX 3210 * large page, as the leaf could be executable. 3211 */ 3212 if (fault->nx_huge_page_workaround_enabled) 3213 disallowed_hugepage_adjust(fault, *it.sptep, it.level); 3214 3215 base_gfn = gfn_round_for_level(fault->gfn, it.level); 3216 if (it.level == fault->goal_level) 3217 break; 3218 3219 sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, true, ACC_ALL); 3220 if (sp == ERR_PTR(-EEXIST)) 3221 continue; 3222 3223 link_shadow_page(vcpu, it.sptep, sp); 3224 if (fault->huge_page_disallowed) 3225 account_nx_huge_page(vcpu->kvm, sp, 3226 fault->req_level >= it.level); 3227 } 3228 3229 if (WARN_ON_ONCE(it.level != fault->goal_level)) 3230 return -EFAULT; 3231 3232 ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL, 3233 base_gfn, fault->pfn, fault); 3234 if (ret == RET_PF_SPURIOUS) 3235 return ret; 3236 3237 direct_pte_prefetch(vcpu, it.sptep); 3238 return ret; 3239 } 3240 3241 static void kvm_send_hwpoison_signal(struct kvm_memory_slot *slot, gfn_t gfn) 3242 { 3243 unsigned long hva = gfn_to_hva_memslot(slot, gfn); 3244 3245 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva, PAGE_SHIFT, current); 3246 } 3247 3248 static int kvm_handle_error_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3249 { 3250 if (is_sigpending_pfn(fault->pfn)) { 3251 kvm_handle_signal_exit(vcpu); 3252 return -EINTR; 3253 } 3254 3255 /* 3256 * Do not cache the mmio info caused by writing the readonly gfn 3257 * into the spte otherwise read access on readonly gfn also can 3258 * caused mmio page fault and treat it as mmio access. 3259 */ 3260 if (fault->pfn == KVM_PFN_ERR_RO_FAULT) 3261 return RET_PF_EMULATE; 3262 3263 if (fault->pfn == KVM_PFN_ERR_HWPOISON) { 3264 kvm_send_hwpoison_signal(fault->slot, fault->gfn); 3265 return RET_PF_RETRY; 3266 } 3267 3268 return -EFAULT; 3269 } 3270 3271 static int kvm_handle_noslot_fault(struct kvm_vcpu *vcpu, 3272 struct kvm_page_fault *fault, 3273 unsigned int access) 3274 { 3275 gva_t gva = fault->is_tdp ? 0 : fault->addr; 3276 3277 if (fault->is_private) { 3278 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 3279 return -EFAULT; 3280 } 3281 3282 vcpu_cache_mmio_info(vcpu, gva, fault->gfn, 3283 access & shadow_mmio_access_mask); 3284 3285 fault->slot = NULL; 3286 fault->pfn = KVM_PFN_NOSLOT; 3287 fault->map_writable = false; 3288 fault->hva = KVM_HVA_ERR_BAD; 3289 3290 /* 3291 * If MMIO caching is disabled, emulate immediately without 3292 * touching the shadow page tables as attempting to install an 3293 * MMIO SPTE will just be an expensive nop. 3294 */ 3295 if (unlikely(!enable_mmio_caching)) 3296 return RET_PF_EMULATE; 3297 3298 /* 3299 * Do not create an MMIO SPTE for a gfn greater than host.MAXPHYADDR, 3300 * any guest that generates such gfns is running nested and is being 3301 * tricked by L0 userspace (you can observe gfn > L1.MAXPHYADDR if and 3302 * only if L1's MAXPHYADDR is inaccurate with respect to the 3303 * hardware's). 3304 */ 3305 if (unlikely(fault->gfn > kvm_mmu_max_gfn())) 3306 return RET_PF_EMULATE; 3307 3308 return RET_PF_CONTINUE; 3309 } 3310 3311 static bool page_fault_can_be_fast(struct kvm_page_fault *fault) 3312 { 3313 /* 3314 * Page faults with reserved bits set, i.e. faults on MMIO SPTEs, only 3315 * reach the common page fault handler if the SPTE has an invalid MMIO 3316 * generation number. Refreshing the MMIO generation needs to go down 3317 * the slow path. Note, EPT Misconfigs do NOT set the PRESENT flag! 3318 */ 3319 if (fault->rsvd) 3320 return false; 3321 3322 /* 3323 * #PF can be fast if: 3324 * 3325 * 1. The shadow page table entry is not present and A/D bits are 3326 * disabled _by KVM_, which could mean that the fault is potentially 3327 * caused by access tracking (if enabled). If A/D bits are enabled 3328 * by KVM, but disabled by L1 for L2, KVM is forced to disable A/D 3329 * bits for L2 and employ access tracking, but the fast page fault 3330 * mechanism only supports direct MMUs. 3331 * 2. The shadow page table entry is present, the access is a write, 3332 * and no reserved bits are set (MMIO SPTEs cannot be "fixed"), i.e. 3333 * the fault was caused by a write-protection violation. If the 3334 * SPTE is MMU-writable (determined later), the fault can be fixed 3335 * by setting the Writable bit, which can be done out of mmu_lock. 3336 */ 3337 if (!fault->present) 3338 return !kvm_ad_enabled(); 3339 3340 /* 3341 * Note, instruction fetches and writes are mutually exclusive, ignore 3342 * the "exec" flag. 3343 */ 3344 return fault->write; 3345 } 3346 3347 /* 3348 * Returns true if the SPTE was fixed successfully. Otherwise, 3349 * someone else modified the SPTE from its original value. 3350 */ 3351 static bool fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, 3352 struct kvm_page_fault *fault, 3353 u64 *sptep, u64 old_spte, u64 new_spte) 3354 { 3355 /* 3356 * Theoretically we could also set dirty bit (and flush TLB) here in 3357 * order to eliminate unnecessary PML logging. See comments in 3358 * set_spte. But fast_page_fault is very unlikely to happen with PML 3359 * enabled, so we do not do this. This might result in the same GPA 3360 * to be logged in PML buffer again when the write really happens, and 3361 * eventually to be called by mark_page_dirty twice. But it's also no 3362 * harm. This also avoids the TLB flush needed after setting dirty bit 3363 * so non-PML cases won't be impacted. 3364 * 3365 * Compare with set_spte where instead shadow_dirty_mask is set. 3366 */ 3367 if (!try_cmpxchg64(sptep, &old_spte, new_spte)) 3368 return false; 3369 3370 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) 3371 mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn); 3372 3373 return true; 3374 } 3375 3376 static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte) 3377 { 3378 if (fault->exec) 3379 return is_executable_pte(spte); 3380 3381 if (fault->write) 3382 return is_writable_pte(spte); 3383 3384 /* Fault was on Read access */ 3385 return spte & PT_PRESENT_MASK; 3386 } 3387 3388 /* 3389 * Returns the last level spte pointer of the shadow page walk for the given 3390 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no 3391 * walk could be performed, returns NULL and *spte does not contain valid data. 3392 * 3393 * Contract: 3394 * - Must be called between walk_shadow_page_lockless_{begin,end}. 3395 * - The returned sptep must not be used after walk_shadow_page_lockless_end. 3396 */ 3397 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte) 3398 { 3399 struct kvm_shadow_walk_iterator iterator; 3400 u64 old_spte; 3401 u64 *sptep = NULL; 3402 3403 for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) { 3404 sptep = iterator.sptep; 3405 *spte = old_spte; 3406 } 3407 3408 return sptep; 3409 } 3410 3411 /* 3412 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS. 3413 */ 3414 static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3415 { 3416 struct kvm_mmu_page *sp; 3417 int ret = RET_PF_INVALID; 3418 u64 spte; 3419 u64 *sptep; 3420 uint retry_count = 0; 3421 3422 if (!page_fault_can_be_fast(fault)) 3423 return ret; 3424 3425 walk_shadow_page_lockless_begin(vcpu); 3426 3427 do { 3428 u64 new_spte; 3429 3430 if (tdp_mmu_enabled) 3431 sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->addr, &spte); 3432 else 3433 sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte); 3434 3435 /* 3436 * It's entirely possible for the mapping to have been zapped 3437 * by a different task, but the root page should always be 3438 * available as the vCPU holds a reference to its root(s). 3439 */ 3440 if (WARN_ON_ONCE(!sptep)) 3441 spte = REMOVED_SPTE; 3442 3443 if (!is_shadow_present_pte(spte)) 3444 break; 3445 3446 sp = sptep_to_sp(sptep); 3447 if (!is_last_spte(spte, sp->role.level)) 3448 break; 3449 3450 /* 3451 * Check whether the memory access that caused the fault would 3452 * still cause it if it were to be performed right now. If not, 3453 * then this is a spurious fault caused by TLB lazily flushed, 3454 * or some other CPU has already fixed the PTE after the 3455 * current CPU took the fault. 3456 * 3457 * Need not check the access of upper level table entries since 3458 * they are always ACC_ALL. 3459 */ 3460 if (is_access_allowed(fault, spte)) { 3461 ret = RET_PF_SPURIOUS; 3462 break; 3463 } 3464 3465 new_spte = spte; 3466 3467 /* 3468 * KVM only supports fixing page faults outside of MMU lock for 3469 * direct MMUs, nested MMUs are always indirect, and KVM always 3470 * uses A/D bits for non-nested MMUs. Thus, if A/D bits are 3471 * enabled, the SPTE can't be an access-tracked SPTE. 3472 */ 3473 if (unlikely(!kvm_ad_enabled()) && is_access_track_spte(spte)) 3474 new_spte = restore_acc_track_spte(new_spte); 3475 3476 /* 3477 * To keep things simple, only SPTEs that are MMU-writable can 3478 * be made fully writable outside of mmu_lock, e.g. only SPTEs 3479 * that were write-protected for dirty-logging or access 3480 * tracking are handled here. Don't bother checking if the 3481 * SPTE is writable to prioritize running with A/D bits enabled. 3482 * The is_access_allowed() check above handles the common case 3483 * of the fault being spurious, and the SPTE is known to be 3484 * shadow-present, i.e. except for access tracking restoration 3485 * making the new SPTE writable, the check is wasteful. 3486 */ 3487 if (fault->write && is_mmu_writable_spte(spte)) { 3488 new_spte |= PT_WRITABLE_MASK; 3489 3490 /* 3491 * Do not fix write-permission on the large spte when 3492 * dirty logging is enabled. Since we only dirty the 3493 * first page into the dirty-bitmap in 3494 * fast_pf_fix_direct_spte(), other pages are missed 3495 * if its slot has dirty logging enabled. 3496 * 3497 * Instead, we let the slow page fault path create a 3498 * normal spte to fix the access. 3499 */ 3500 if (sp->role.level > PG_LEVEL_4K && 3501 kvm_slot_dirty_track_enabled(fault->slot)) 3502 break; 3503 } 3504 3505 /* Verify that the fault can be handled in the fast path */ 3506 if (new_spte == spte || 3507 !is_access_allowed(fault, new_spte)) 3508 break; 3509 3510 /* 3511 * Currently, fast page fault only works for direct mapping 3512 * since the gfn is not stable for indirect shadow page. See 3513 * Documentation/virt/kvm/locking.rst to get more detail. 3514 */ 3515 if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) { 3516 ret = RET_PF_FIXED; 3517 break; 3518 } 3519 3520 if (++retry_count > 4) { 3521 pr_warn_once("Fast #PF retrying more than 4 times.\n"); 3522 break; 3523 } 3524 3525 } while (true); 3526 3527 trace_fast_page_fault(vcpu, fault, sptep, spte, ret); 3528 walk_shadow_page_lockless_end(vcpu); 3529 3530 if (ret != RET_PF_INVALID) 3531 vcpu->stat.pf_fast++; 3532 3533 return ret; 3534 } 3535 3536 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa, 3537 struct list_head *invalid_list) 3538 { 3539 struct kvm_mmu_page *sp; 3540 3541 if (!VALID_PAGE(*root_hpa)) 3542 return; 3543 3544 sp = root_to_sp(*root_hpa); 3545 if (WARN_ON_ONCE(!sp)) 3546 return; 3547 3548 if (is_tdp_mmu_page(sp)) { 3549 lockdep_assert_held_read(&kvm->mmu_lock); 3550 kvm_tdp_mmu_put_root(kvm, sp); 3551 } else { 3552 lockdep_assert_held_write(&kvm->mmu_lock); 3553 if (!--sp->root_count && sp->role.invalid) 3554 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 3555 } 3556 3557 *root_hpa = INVALID_PAGE; 3558 } 3559 3560 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */ 3561 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, 3562 ulong roots_to_free) 3563 { 3564 bool is_tdp_mmu = tdp_mmu_enabled && mmu->root_role.direct; 3565 int i; 3566 LIST_HEAD(invalid_list); 3567 bool free_active_root; 3568 3569 WARN_ON_ONCE(roots_to_free & ~KVM_MMU_ROOTS_ALL); 3570 3571 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG); 3572 3573 /* Before acquiring the MMU lock, see if we need to do any real work. */ 3574 free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT) 3575 && VALID_PAGE(mmu->root.hpa); 3576 3577 if (!free_active_root) { 3578 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3579 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) && 3580 VALID_PAGE(mmu->prev_roots[i].hpa)) 3581 break; 3582 3583 if (i == KVM_MMU_NUM_PREV_ROOTS) 3584 return; 3585 } 3586 3587 if (is_tdp_mmu) 3588 read_lock(&kvm->mmu_lock); 3589 else 3590 write_lock(&kvm->mmu_lock); 3591 3592 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3593 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) 3594 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa, 3595 &invalid_list); 3596 3597 if (free_active_root) { 3598 if (kvm_mmu_is_dummy_root(mmu->root.hpa)) { 3599 /* Nothing to cleanup for dummy roots. */ 3600 } else if (root_to_sp(mmu->root.hpa)) { 3601 mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list); 3602 } else if (mmu->pae_root) { 3603 for (i = 0; i < 4; ++i) { 3604 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i])) 3605 continue; 3606 3607 mmu_free_root_page(kvm, &mmu->pae_root[i], 3608 &invalid_list); 3609 mmu->pae_root[i] = INVALID_PAE_ROOT; 3610 } 3611 } 3612 mmu->root.hpa = INVALID_PAGE; 3613 mmu->root.pgd = 0; 3614 } 3615 3616 if (is_tdp_mmu) { 3617 read_unlock(&kvm->mmu_lock); 3618 WARN_ON_ONCE(!list_empty(&invalid_list)); 3619 } else { 3620 kvm_mmu_commit_zap_page(kvm, &invalid_list); 3621 write_unlock(&kvm->mmu_lock); 3622 } 3623 } 3624 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots); 3625 3626 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu) 3627 { 3628 unsigned long roots_to_free = 0; 3629 struct kvm_mmu_page *sp; 3630 hpa_t root_hpa; 3631 int i; 3632 3633 /* 3634 * This should not be called while L2 is active, L2 can't invalidate 3635 * _only_ its own roots, e.g. INVVPID unconditionally exits. 3636 */ 3637 WARN_ON_ONCE(mmu->root_role.guest_mode); 3638 3639 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 3640 root_hpa = mmu->prev_roots[i].hpa; 3641 if (!VALID_PAGE(root_hpa)) 3642 continue; 3643 3644 sp = root_to_sp(root_hpa); 3645 if (!sp || sp->role.guest_mode) 3646 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 3647 } 3648 3649 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 3650 } 3651 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots); 3652 3653 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, int quadrant, 3654 u8 level) 3655 { 3656 union kvm_mmu_page_role role = vcpu->arch.mmu->root_role; 3657 struct kvm_mmu_page *sp; 3658 3659 role.level = level; 3660 role.quadrant = quadrant; 3661 3662 WARN_ON_ONCE(quadrant && !role.has_4_byte_gpte); 3663 WARN_ON_ONCE(role.direct && role.has_4_byte_gpte); 3664 3665 sp = kvm_mmu_get_shadow_page(vcpu, gfn, role); 3666 ++sp->root_count; 3667 3668 return __pa(sp->spt); 3669 } 3670 3671 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) 3672 { 3673 struct kvm_mmu *mmu = vcpu->arch.mmu; 3674 u8 shadow_root_level = mmu->root_role.level; 3675 hpa_t root; 3676 unsigned i; 3677 int r; 3678 3679 if (tdp_mmu_enabled) 3680 return kvm_tdp_mmu_alloc_root(vcpu); 3681 3682 write_lock(&vcpu->kvm->mmu_lock); 3683 r = make_mmu_pages_available(vcpu); 3684 if (r < 0) 3685 goto out_unlock; 3686 3687 if (shadow_root_level >= PT64_ROOT_4LEVEL) { 3688 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level); 3689 mmu->root.hpa = root; 3690 } else if (shadow_root_level == PT32E_ROOT_LEVEL) { 3691 if (WARN_ON_ONCE(!mmu->pae_root)) { 3692 r = -EIO; 3693 goto out_unlock; 3694 } 3695 3696 for (i = 0; i < 4; ++i) { 3697 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3698 3699 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 0, 3700 PT32_ROOT_LEVEL); 3701 mmu->pae_root[i] = root | PT_PRESENT_MASK | 3702 shadow_me_value; 3703 } 3704 mmu->root.hpa = __pa(mmu->pae_root); 3705 } else { 3706 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level); 3707 r = -EIO; 3708 goto out_unlock; 3709 } 3710 3711 /* root.pgd is ignored for direct MMUs. */ 3712 mmu->root.pgd = 0; 3713 out_unlock: 3714 write_unlock(&vcpu->kvm->mmu_lock); 3715 return r; 3716 } 3717 3718 static int mmu_first_shadow_root_alloc(struct kvm *kvm) 3719 { 3720 struct kvm_memslots *slots; 3721 struct kvm_memory_slot *slot; 3722 int r = 0, i, bkt; 3723 3724 /* 3725 * Check if this is the first shadow root being allocated before 3726 * taking the lock. 3727 */ 3728 if (kvm_shadow_root_allocated(kvm)) 3729 return 0; 3730 3731 mutex_lock(&kvm->slots_arch_lock); 3732 3733 /* Recheck, under the lock, whether this is the first shadow root. */ 3734 if (kvm_shadow_root_allocated(kvm)) 3735 goto out_unlock; 3736 3737 /* 3738 * Check if anything actually needs to be allocated, e.g. all metadata 3739 * will be allocated upfront if TDP is disabled. 3740 */ 3741 if (kvm_memslots_have_rmaps(kvm) && 3742 kvm_page_track_write_tracking_enabled(kvm)) 3743 goto out_success; 3744 3745 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 3746 slots = __kvm_memslots(kvm, i); 3747 kvm_for_each_memslot(slot, bkt, slots) { 3748 /* 3749 * Both of these functions are no-ops if the target is 3750 * already allocated, so unconditionally calling both 3751 * is safe. Intentionally do NOT free allocations on 3752 * failure to avoid having to track which allocations 3753 * were made now versus when the memslot was created. 3754 * The metadata is guaranteed to be freed when the slot 3755 * is freed, and will be kept/used if userspace retries 3756 * KVM_RUN instead of killing the VM. 3757 */ 3758 r = memslot_rmap_alloc(slot, slot->npages); 3759 if (r) 3760 goto out_unlock; 3761 r = kvm_page_track_write_tracking_alloc(slot); 3762 if (r) 3763 goto out_unlock; 3764 } 3765 } 3766 3767 /* 3768 * Ensure that shadow_root_allocated becomes true strictly after 3769 * all the related pointers are set. 3770 */ 3771 out_success: 3772 smp_store_release(&kvm->arch.shadow_root_allocated, true); 3773 3774 out_unlock: 3775 mutex_unlock(&kvm->slots_arch_lock); 3776 return r; 3777 } 3778 3779 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) 3780 { 3781 struct kvm_mmu *mmu = vcpu->arch.mmu; 3782 u64 pdptrs[4], pm_mask; 3783 gfn_t root_gfn, root_pgd; 3784 int quadrant, i, r; 3785 hpa_t root; 3786 3787 root_pgd = kvm_mmu_get_guest_pgd(vcpu, mmu); 3788 root_gfn = (root_pgd & __PT_BASE_ADDR_MASK) >> PAGE_SHIFT; 3789 3790 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) { 3791 mmu->root.hpa = kvm_mmu_get_dummy_root(); 3792 return 0; 3793 } 3794 3795 /* 3796 * On SVM, reading PDPTRs might access guest memory, which might fault 3797 * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock. 3798 */ 3799 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { 3800 for (i = 0; i < 4; ++i) { 3801 pdptrs[i] = mmu->get_pdptr(vcpu, i); 3802 if (!(pdptrs[i] & PT_PRESENT_MASK)) 3803 continue; 3804 3805 if (!kvm_vcpu_is_visible_gfn(vcpu, pdptrs[i] >> PAGE_SHIFT)) 3806 pdptrs[i] = 0; 3807 } 3808 } 3809 3810 r = mmu_first_shadow_root_alloc(vcpu->kvm); 3811 if (r) 3812 return r; 3813 3814 write_lock(&vcpu->kvm->mmu_lock); 3815 r = make_mmu_pages_available(vcpu); 3816 if (r < 0) 3817 goto out_unlock; 3818 3819 /* 3820 * Do we shadow a long mode page table? If so we need to 3821 * write-protect the guests page table root. 3822 */ 3823 if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { 3824 root = mmu_alloc_root(vcpu, root_gfn, 0, 3825 mmu->root_role.level); 3826 mmu->root.hpa = root; 3827 goto set_root_pgd; 3828 } 3829 3830 if (WARN_ON_ONCE(!mmu->pae_root)) { 3831 r = -EIO; 3832 goto out_unlock; 3833 } 3834 3835 /* 3836 * We shadow a 32 bit page table. This may be a legacy 2-level 3837 * or a PAE 3-level page table. In either case we need to be aware that 3838 * the shadow page table may be a PAE or a long mode page table. 3839 */ 3840 pm_mask = PT_PRESENT_MASK | shadow_me_value; 3841 if (mmu->root_role.level >= PT64_ROOT_4LEVEL) { 3842 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; 3843 3844 if (WARN_ON_ONCE(!mmu->pml4_root)) { 3845 r = -EIO; 3846 goto out_unlock; 3847 } 3848 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask; 3849 3850 if (mmu->root_role.level == PT64_ROOT_5LEVEL) { 3851 if (WARN_ON_ONCE(!mmu->pml5_root)) { 3852 r = -EIO; 3853 goto out_unlock; 3854 } 3855 mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask; 3856 } 3857 } 3858 3859 for (i = 0; i < 4; ++i) { 3860 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3861 3862 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { 3863 if (!(pdptrs[i] & PT_PRESENT_MASK)) { 3864 mmu->pae_root[i] = INVALID_PAE_ROOT; 3865 continue; 3866 } 3867 root_gfn = pdptrs[i] >> PAGE_SHIFT; 3868 } 3869 3870 /* 3871 * If shadowing 32-bit non-PAE page tables, each PAE page 3872 * directory maps one quarter of the guest's non-PAE page 3873 * directory. Othwerise each PAE page direct shadows one guest 3874 * PAE page directory so that quadrant should be 0. 3875 */ 3876 quadrant = (mmu->cpu_role.base.level == PT32_ROOT_LEVEL) ? i : 0; 3877 3878 root = mmu_alloc_root(vcpu, root_gfn, quadrant, PT32_ROOT_LEVEL); 3879 mmu->pae_root[i] = root | pm_mask; 3880 } 3881 3882 if (mmu->root_role.level == PT64_ROOT_5LEVEL) 3883 mmu->root.hpa = __pa(mmu->pml5_root); 3884 else if (mmu->root_role.level == PT64_ROOT_4LEVEL) 3885 mmu->root.hpa = __pa(mmu->pml4_root); 3886 else 3887 mmu->root.hpa = __pa(mmu->pae_root); 3888 3889 set_root_pgd: 3890 mmu->root.pgd = root_pgd; 3891 out_unlock: 3892 write_unlock(&vcpu->kvm->mmu_lock); 3893 3894 return r; 3895 } 3896 3897 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu) 3898 { 3899 struct kvm_mmu *mmu = vcpu->arch.mmu; 3900 bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL; 3901 u64 *pml5_root = NULL; 3902 u64 *pml4_root = NULL; 3903 u64 *pae_root; 3904 3905 /* 3906 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP 3907 * tables are allocated and initialized at root creation as there is no 3908 * equivalent level in the guest's NPT to shadow. Allocate the tables 3909 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare. 3910 */ 3911 if (mmu->root_role.direct || 3912 mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL || 3913 mmu->root_role.level < PT64_ROOT_4LEVEL) 3914 return 0; 3915 3916 /* 3917 * NPT, the only paging mode that uses this horror, uses a fixed number 3918 * of levels for the shadow page tables, e.g. all MMUs are 4-level or 3919 * all MMus are 5-level. Thus, this can safely require that pml5_root 3920 * is allocated if the other roots are valid and pml5 is needed, as any 3921 * prior MMU would also have required pml5. 3922 */ 3923 if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root)) 3924 return 0; 3925 3926 /* 3927 * The special roots should always be allocated in concert. Yell and 3928 * bail if KVM ends up in a state where only one of the roots is valid. 3929 */ 3930 if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root || 3931 (need_pml5 && mmu->pml5_root))) 3932 return -EIO; 3933 3934 /* 3935 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and 3936 * doesn't need to be decrypted. 3937 */ 3938 pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3939 if (!pae_root) 3940 return -ENOMEM; 3941 3942 #ifdef CONFIG_X86_64 3943 pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3944 if (!pml4_root) 3945 goto err_pml4; 3946 3947 if (need_pml5) { 3948 pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3949 if (!pml5_root) 3950 goto err_pml5; 3951 } 3952 #endif 3953 3954 mmu->pae_root = pae_root; 3955 mmu->pml4_root = pml4_root; 3956 mmu->pml5_root = pml5_root; 3957 3958 return 0; 3959 3960 #ifdef CONFIG_X86_64 3961 err_pml5: 3962 free_page((unsigned long)pml4_root); 3963 err_pml4: 3964 free_page((unsigned long)pae_root); 3965 return -ENOMEM; 3966 #endif 3967 } 3968 3969 static bool is_unsync_root(hpa_t root) 3970 { 3971 struct kvm_mmu_page *sp; 3972 3973 if (!VALID_PAGE(root) || kvm_mmu_is_dummy_root(root)) 3974 return false; 3975 3976 /* 3977 * The read barrier orders the CPU's read of SPTE.W during the page table 3978 * walk before the reads of sp->unsync/sp->unsync_children here. 3979 * 3980 * Even if another CPU was marking the SP as unsync-ed simultaneously, 3981 * any guest page table changes are not guaranteed to be visible anyway 3982 * until this VCPU issues a TLB flush strictly after those changes are 3983 * made. We only need to ensure that the other CPU sets these flags 3984 * before any actual changes to the page tables are made. The comments 3985 * in mmu_try_to_unsync_pages() describe what could go wrong if this 3986 * requirement isn't satisfied. 3987 */ 3988 smp_rmb(); 3989 sp = root_to_sp(root); 3990 3991 /* 3992 * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the 3993 * PDPTEs for a given PAE root need to be synchronized individually. 3994 */ 3995 if (WARN_ON_ONCE(!sp)) 3996 return false; 3997 3998 if (sp->unsync || sp->unsync_children) 3999 return true; 4000 4001 return false; 4002 } 4003 4004 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) 4005 { 4006 int i; 4007 struct kvm_mmu_page *sp; 4008 4009 if (vcpu->arch.mmu->root_role.direct) 4010 return; 4011 4012 if (!VALID_PAGE(vcpu->arch.mmu->root.hpa)) 4013 return; 4014 4015 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 4016 4017 if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { 4018 hpa_t root = vcpu->arch.mmu->root.hpa; 4019 4020 if (!is_unsync_root(root)) 4021 return; 4022 4023 sp = root_to_sp(root); 4024 4025 write_lock(&vcpu->kvm->mmu_lock); 4026 mmu_sync_children(vcpu, sp, true); 4027 write_unlock(&vcpu->kvm->mmu_lock); 4028 return; 4029 } 4030 4031 write_lock(&vcpu->kvm->mmu_lock); 4032 4033 for (i = 0; i < 4; ++i) { 4034 hpa_t root = vcpu->arch.mmu->pae_root[i]; 4035 4036 if (IS_VALID_PAE_ROOT(root)) { 4037 sp = spte_to_child_sp(root); 4038 mmu_sync_children(vcpu, sp, true); 4039 } 4040 } 4041 4042 write_unlock(&vcpu->kvm->mmu_lock); 4043 } 4044 4045 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu) 4046 { 4047 unsigned long roots_to_free = 0; 4048 int i; 4049 4050 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 4051 if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa)) 4052 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 4053 4054 /* sync prev_roots by simply freeing them */ 4055 kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free); 4056 } 4057 4058 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 4059 gpa_t vaddr, u64 access, 4060 struct x86_exception *exception) 4061 { 4062 if (exception) 4063 exception->error_code = 0; 4064 return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception); 4065 } 4066 4067 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct) 4068 { 4069 /* 4070 * A nested guest cannot use the MMIO cache if it is using nested 4071 * page tables, because cr2 is a nGPA while the cache stores GPAs. 4072 */ 4073 if (mmu_is_nested(vcpu)) 4074 return false; 4075 4076 if (direct) 4077 return vcpu_match_mmio_gpa(vcpu, addr); 4078 4079 return vcpu_match_mmio_gva(vcpu, addr); 4080 } 4081 4082 /* 4083 * Return the level of the lowest level SPTE added to sptes. 4084 * That SPTE may be non-present. 4085 * 4086 * Must be called between walk_shadow_page_lockless_{begin,end}. 4087 */ 4088 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level) 4089 { 4090 struct kvm_shadow_walk_iterator iterator; 4091 int leaf = -1; 4092 u64 spte; 4093 4094 for (shadow_walk_init(&iterator, vcpu, addr), 4095 *root_level = iterator.level; 4096 shadow_walk_okay(&iterator); 4097 __shadow_walk_next(&iterator, spte)) { 4098 leaf = iterator.level; 4099 spte = mmu_spte_get_lockless(iterator.sptep); 4100 4101 sptes[leaf] = spte; 4102 } 4103 4104 return leaf; 4105 } 4106 4107 static int get_sptes_lockless(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, 4108 int *root_level) 4109 { 4110 int leaf; 4111 4112 walk_shadow_page_lockless_begin(vcpu); 4113 4114 if (is_tdp_mmu_active(vcpu)) 4115 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, root_level); 4116 else 4117 leaf = get_walk(vcpu, addr, sptes, root_level); 4118 4119 walk_shadow_page_lockless_end(vcpu); 4120 return leaf; 4121 } 4122 4123 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */ 4124 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) 4125 { 4126 u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; 4127 struct rsvd_bits_validate *rsvd_check; 4128 int root, leaf, level; 4129 bool reserved = false; 4130 4131 leaf = get_sptes_lockless(vcpu, addr, sptes, &root); 4132 if (unlikely(leaf < 0)) { 4133 *sptep = 0ull; 4134 return reserved; 4135 } 4136 4137 *sptep = sptes[leaf]; 4138 4139 /* 4140 * Skip reserved bits checks on the terminal leaf if it's not a valid 4141 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by 4142 * design, always have reserved bits set. The purpose of the checks is 4143 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs. 4144 */ 4145 if (!is_shadow_present_pte(sptes[leaf])) 4146 leaf++; 4147 4148 rsvd_check = &vcpu->arch.mmu->shadow_zero_check; 4149 4150 for (level = root; level >= leaf; level--) 4151 reserved |= is_rsvd_spte(rsvd_check, sptes[level], level); 4152 4153 if (reserved) { 4154 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n", 4155 __func__, addr); 4156 for (level = root; level >= leaf; level--) 4157 pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx", 4158 sptes[level], level, 4159 get_rsvd_bits(rsvd_check, sptes[level], level)); 4160 } 4161 4162 return reserved; 4163 } 4164 4165 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct) 4166 { 4167 u64 spte; 4168 bool reserved; 4169 4170 if (mmio_info_in_cache(vcpu, addr, direct)) 4171 return RET_PF_EMULATE; 4172 4173 reserved = get_mmio_spte(vcpu, addr, &spte); 4174 if (WARN_ON_ONCE(reserved)) 4175 return -EINVAL; 4176 4177 if (is_mmio_spte(vcpu->kvm, spte)) { 4178 gfn_t gfn = get_mmio_spte_gfn(spte); 4179 unsigned int access = get_mmio_spte_access(spte); 4180 4181 if (!check_mmio_spte(vcpu, spte)) 4182 return RET_PF_INVALID; 4183 4184 if (direct) 4185 addr = 0; 4186 4187 trace_handle_mmio_page_fault(addr, gfn, access); 4188 vcpu_cache_mmio_info(vcpu, addr, gfn, access); 4189 return RET_PF_EMULATE; 4190 } 4191 4192 /* 4193 * If the page table is zapped by other cpus, let CPU fault again on 4194 * the address. 4195 */ 4196 return RET_PF_RETRY; 4197 } 4198 4199 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu, 4200 struct kvm_page_fault *fault) 4201 { 4202 if (unlikely(fault->rsvd)) 4203 return false; 4204 4205 if (!fault->present || !fault->write) 4206 return false; 4207 4208 /* 4209 * guest is writing the page which is write tracked which can 4210 * not be fixed by page fault handler. 4211 */ 4212 if (kvm_gfn_is_write_tracked(vcpu->kvm, fault->slot, fault->gfn)) 4213 return true; 4214 4215 return false; 4216 } 4217 4218 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr) 4219 { 4220 struct kvm_shadow_walk_iterator iterator; 4221 u64 spte; 4222 4223 walk_shadow_page_lockless_begin(vcpu); 4224 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) 4225 clear_sp_write_flooding_count(iterator.sptep); 4226 walk_shadow_page_lockless_end(vcpu); 4227 } 4228 4229 static u32 alloc_apf_token(struct kvm_vcpu *vcpu) 4230 { 4231 /* make sure the token value is not 0 */ 4232 u32 id = vcpu->arch.apf.id; 4233 4234 if (id << 12 == 0) 4235 vcpu->arch.apf.id = 1; 4236 4237 return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; 4238 } 4239 4240 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, 4241 struct kvm_page_fault *fault) 4242 { 4243 struct kvm_arch_async_pf arch; 4244 4245 arch.token = alloc_apf_token(vcpu); 4246 arch.gfn = fault->gfn; 4247 arch.error_code = fault->error_code; 4248 arch.direct_map = vcpu->arch.mmu->root_role.direct; 4249 arch.cr3 = kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu); 4250 4251 return kvm_setup_async_pf(vcpu, fault->addr, 4252 kvm_vcpu_gfn_to_hva(vcpu, fault->gfn), &arch); 4253 } 4254 4255 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 4256 { 4257 int r; 4258 4259 if (WARN_ON_ONCE(work->arch.error_code & PFERR_PRIVATE_ACCESS)) 4260 return; 4261 4262 if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) || 4263 work->wakeup_all) 4264 return; 4265 4266 r = kvm_mmu_reload(vcpu); 4267 if (unlikely(r)) 4268 return; 4269 4270 if (!vcpu->arch.mmu->root_role.direct && 4271 work->arch.cr3 != kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu)) 4272 return; 4273 4274 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, work->arch.error_code, true, NULL); 4275 } 4276 4277 static inline u8 kvm_max_level_for_order(int order) 4278 { 4279 BUILD_BUG_ON(KVM_MAX_HUGEPAGE_LEVEL > PG_LEVEL_1G); 4280 4281 KVM_MMU_WARN_ON(order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G) && 4282 order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M) && 4283 order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K)); 4284 4285 if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G)) 4286 return PG_LEVEL_1G; 4287 4288 if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M)) 4289 return PG_LEVEL_2M; 4290 4291 return PG_LEVEL_4K; 4292 } 4293 4294 static int kvm_faultin_pfn_private(struct kvm_vcpu *vcpu, 4295 struct kvm_page_fault *fault) 4296 { 4297 int max_order, r; 4298 4299 if (!kvm_slot_can_be_private(fault->slot)) { 4300 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 4301 return -EFAULT; 4302 } 4303 4304 r = kvm_gmem_get_pfn(vcpu->kvm, fault->slot, fault->gfn, &fault->pfn, 4305 &max_order); 4306 if (r) { 4307 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 4308 return r; 4309 } 4310 4311 fault->max_level = min(kvm_max_level_for_order(max_order), 4312 fault->max_level); 4313 fault->map_writable = !(fault->slot->flags & KVM_MEM_READONLY); 4314 4315 return RET_PF_CONTINUE; 4316 } 4317 4318 static int __kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4319 { 4320 bool async; 4321 4322 if (fault->is_private) 4323 return kvm_faultin_pfn_private(vcpu, fault); 4324 4325 async = false; 4326 fault->pfn = __gfn_to_pfn_memslot(fault->slot, fault->gfn, false, false, 4327 &async, fault->write, 4328 &fault->map_writable, &fault->hva); 4329 if (!async) 4330 return RET_PF_CONTINUE; /* *pfn has correct page already */ 4331 4332 if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) { 4333 trace_kvm_try_async_get_page(fault->addr, fault->gfn); 4334 if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) { 4335 trace_kvm_async_pf_repeated_fault(fault->addr, fault->gfn); 4336 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 4337 return RET_PF_RETRY; 4338 } else if (kvm_arch_setup_async_pf(vcpu, fault)) { 4339 return RET_PF_RETRY; 4340 } 4341 } 4342 4343 /* 4344 * Allow gup to bail on pending non-fatal signals when it's also allowed 4345 * to wait for IO. Note, gup always bails if it is unable to quickly 4346 * get a page and a fatal signal, i.e. SIGKILL, is pending. 4347 */ 4348 fault->pfn = __gfn_to_pfn_memslot(fault->slot, fault->gfn, false, true, 4349 NULL, fault->write, 4350 &fault->map_writable, &fault->hva); 4351 return RET_PF_CONTINUE; 4352 } 4353 4354 static int kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, 4355 unsigned int access) 4356 { 4357 struct kvm_memory_slot *slot = fault->slot; 4358 int ret; 4359 4360 /* 4361 * Note that the mmu_invalidate_seq also serves to detect a concurrent 4362 * change in attributes. is_page_fault_stale() will detect an 4363 * invalidation relate to fault->fn and resume the guest without 4364 * installing a mapping in the page tables. 4365 */ 4366 fault->mmu_seq = vcpu->kvm->mmu_invalidate_seq; 4367 smp_rmb(); 4368 4369 /* 4370 * Now that we have a snapshot of mmu_invalidate_seq we can check for a 4371 * private vs. shared mismatch. 4372 */ 4373 if (fault->is_private != kvm_mem_is_private(vcpu->kvm, fault->gfn)) { 4374 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 4375 return -EFAULT; 4376 } 4377 4378 if (unlikely(!slot)) 4379 return kvm_handle_noslot_fault(vcpu, fault, access); 4380 4381 /* 4382 * Retry the page fault if the gfn hit a memslot that is being deleted 4383 * or moved. This ensures any existing SPTEs for the old memslot will 4384 * be zapped before KVM inserts a new MMIO SPTE for the gfn. 4385 */ 4386 if (slot->flags & KVM_MEMSLOT_INVALID) 4387 return RET_PF_RETRY; 4388 4389 if (slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT) { 4390 /* 4391 * Don't map L1's APIC access page into L2, KVM doesn't support 4392 * using APICv/AVIC to accelerate L2 accesses to L1's APIC, 4393 * i.e. the access needs to be emulated. Emulating access to 4394 * L1's APIC is also correct if L1 is accelerating L2's own 4395 * virtual APIC, but for some reason L1 also maps _L1's_ APIC 4396 * into L2. Note, vcpu_is_mmio_gpa() always treats access to 4397 * the APIC as MMIO. Allow an MMIO SPTE to be created, as KVM 4398 * uses different roots for L1 vs. L2, i.e. there is no danger 4399 * of breaking APICv/AVIC for L1. 4400 */ 4401 if (is_guest_mode(vcpu)) 4402 return kvm_handle_noslot_fault(vcpu, fault, access); 4403 4404 /* 4405 * If the APIC access page exists but is disabled, go directly 4406 * to emulation without caching the MMIO access or creating a 4407 * MMIO SPTE. That way the cache doesn't need to be purged 4408 * when the AVIC is re-enabled. 4409 */ 4410 if (!kvm_apicv_activated(vcpu->kvm)) 4411 return RET_PF_EMULATE; 4412 } 4413 4414 /* 4415 * Check for a relevant mmu_notifier invalidation event before getting 4416 * the pfn from the primary MMU, and before acquiring mmu_lock. 4417 * 4418 * For mmu_lock, if there is an in-progress invalidation and the kernel 4419 * allows preemption, the invalidation task may drop mmu_lock and yield 4420 * in response to mmu_lock being contended, which is *very* counter- 4421 * productive as this vCPU can't actually make forward progress until 4422 * the invalidation completes. 4423 * 4424 * Retrying now can also avoid unnessary lock contention in the primary 4425 * MMU, as the primary MMU doesn't necessarily hold a single lock for 4426 * the duration of the invalidation, i.e. faulting in a conflicting pfn 4427 * can cause the invalidation to take longer by holding locks that are 4428 * needed to complete the invalidation. 4429 * 4430 * Do the pre-check even for non-preemtible kernels, i.e. even if KVM 4431 * will never yield mmu_lock in response to contention, as this vCPU is 4432 * *guaranteed* to need to retry, i.e. waiting until mmu_lock is held 4433 * to detect retry guarantees the worst case latency for the vCPU. 4434 */ 4435 if (mmu_invalidate_retry_gfn_unsafe(vcpu->kvm, fault->mmu_seq, fault->gfn)) 4436 return RET_PF_RETRY; 4437 4438 ret = __kvm_faultin_pfn(vcpu, fault); 4439 if (ret != RET_PF_CONTINUE) 4440 return ret; 4441 4442 if (unlikely(is_error_pfn(fault->pfn))) 4443 return kvm_handle_error_pfn(vcpu, fault); 4444 4445 if (WARN_ON_ONCE(!fault->slot || is_noslot_pfn(fault->pfn))) 4446 return kvm_handle_noslot_fault(vcpu, fault, access); 4447 4448 /* 4449 * Check again for a relevant mmu_notifier invalidation event purely to 4450 * avoid contending mmu_lock. Most invalidations will be detected by 4451 * the previous check, but checking is extremely cheap relative to the 4452 * overall cost of failing to detect the invalidation until after 4453 * mmu_lock is acquired. 4454 */ 4455 if (mmu_invalidate_retry_gfn_unsafe(vcpu->kvm, fault->mmu_seq, fault->gfn)) { 4456 kvm_release_pfn_clean(fault->pfn); 4457 return RET_PF_RETRY; 4458 } 4459 4460 return RET_PF_CONTINUE; 4461 } 4462 4463 /* 4464 * Returns true if the page fault is stale and needs to be retried, i.e. if the 4465 * root was invalidated by a memslot update or a relevant mmu_notifier fired. 4466 */ 4467 static bool is_page_fault_stale(struct kvm_vcpu *vcpu, 4468 struct kvm_page_fault *fault) 4469 { 4470 struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa); 4471 4472 /* Special roots, e.g. pae_root, are not backed by shadow pages. */ 4473 if (sp && is_obsolete_sp(vcpu->kvm, sp)) 4474 return true; 4475 4476 /* 4477 * Roots without an associated shadow page are considered invalid if 4478 * there is a pending request to free obsolete roots. The request is 4479 * only a hint that the current root _may_ be obsolete and needs to be 4480 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a 4481 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs 4482 * to reload even if no vCPU is actively using the root. 4483 */ 4484 if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 4485 return true; 4486 4487 /* 4488 * Check for a relevant mmu_notifier invalidation event one last time 4489 * now that mmu_lock is held, as the "unsafe" checks performed without 4490 * holding mmu_lock can get false negatives. 4491 */ 4492 return fault->slot && 4493 mmu_invalidate_retry_gfn(vcpu->kvm, fault->mmu_seq, fault->gfn); 4494 } 4495 4496 static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4497 { 4498 int r; 4499 4500 /* Dummy roots are used only for shadowing bad guest roots. */ 4501 if (WARN_ON_ONCE(kvm_mmu_is_dummy_root(vcpu->arch.mmu->root.hpa))) 4502 return RET_PF_RETRY; 4503 4504 if (page_fault_handle_page_track(vcpu, fault)) 4505 return RET_PF_EMULATE; 4506 4507 r = fast_page_fault(vcpu, fault); 4508 if (r != RET_PF_INVALID) 4509 return r; 4510 4511 r = mmu_topup_memory_caches(vcpu, false); 4512 if (r) 4513 return r; 4514 4515 r = kvm_faultin_pfn(vcpu, fault, ACC_ALL); 4516 if (r != RET_PF_CONTINUE) 4517 return r; 4518 4519 r = RET_PF_RETRY; 4520 write_lock(&vcpu->kvm->mmu_lock); 4521 4522 if (is_page_fault_stale(vcpu, fault)) 4523 goto out_unlock; 4524 4525 r = make_mmu_pages_available(vcpu); 4526 if (r) 4527 goto out_unlock; 4528 4529 r = direct_map(vcpu, fault); 4530 4531 out_unlock: 4532 write_unlock(&vcpu->kvm->mmu_lock); 4533 kvm_release_pfn_clean(fault->pfn); 4534 return r; 4535 } 4536 4537 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, 4538 struct kvm_page_fault *fault) 4539 { 4540 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */ 4541 fault->max_level = PG_LEVEL_2M; 4542 return direct_page_fault(vcpu, fault); 4543 } 4544 4545 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, 4546 u64 fault_address, char *insn, int insn_len) 4547 { 4548 int r = 1; 4549 u32 flags = vcpu->arch.apf.host_apf_flags; 4550 4551 #ifndef CONFIG_X86_64 4552 /* A 64-bit CR2 should be impossible on 32-bit KVM. */ 4553 if (WARN_ON_ONCE(fault_address >> 32)) 4554 return -EFAULT; 4555 #endif 4556 /* 4557 * Legacy #PF exception only have a 32-bit error code. Simply drop the 4558 * upper bits as KVM doesn't use them for #PF (because they are never 4559 * set), and to ensure there are no collisions with KVM-defined bits. 4560 */ 4561 if (WARN_ON_ONCE(error_code >> 32)) 4562 error_code = lower_32_bits(error_code); 4563 4564 /* Ensure the above sanity check also covers KVM-defined flags. */ 4565 BUILD_BUG_ON(lower_32_bits(PFERR_SYNTHETIC_MASK)); 4566 4567 vcpu->arch.l1tf_flush_l1d = true; 4568 if (!flags) { 4569 trace_kvm_page_fault(vcpu, fault_address, error_code); 4570 4571 if (kvm_event_needs_reinjection(vcpu)) 4572 kvm_mmu_unprotect_page_virt(vcpu, fault_address); 4573 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn, 4574 insn_len); 4575 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) { 4576 vcpu->arch.apf.host_apf_flags = 0; 4577 local_irq_disable(); 4578 kvm_async_pf_task_wait_schedule(fault_address); 4579 local_irq_enable(); 4580 } else { 4581 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags); 4582 } 4583 4584 return r; 4585 } 4586 EXPORT_SYMBOL_GPL(kvm_handle_page_fault); 4587 4588 #ifdef CONFIG_X86_64 4589 static int kvm_tdp_mmu_page_fault(struct kvm_vcpu *vcpu, 4590 struct kvm_page_fault *fault) 4591 { 4592 int r; 4593 4594 if (page_fault_handle_page_track(vcpu, fault)) 4595 return RET_PF_EMULATE; 4596 4597 r = fast_page_fault(vcpu, fault); 4598 if (r != RET_PF_INVALID) 4599 return r; 4600 4601 r = mmu_topup_memory_caches(vcpu, false); 4602 if (r) 4603 return r; 4604 4605 r = kvm_faultin_pfn(vcpu, fault, ACC_ALL); 4606 if (r != RET_PF_CONTINUE) 4607 return r; 4608 4609 r = RET_PF_RETRY; 4610 read_lock(&vcpu->kvm->mmu_lock); 4611 4612 if (is_page_fault_stale(vcpu, fault)) 4613 goto out_unlock; 4614 4615 r = kvm_tdp_mmu_map(vcpu, fault); 4616 4617 out_unlock: 4618 read_unlock(&vcpu->kvm->mmu_lock); 4619 kvm_release_pfn_clean(fault->pfn); 4620 return r; 4621 } 4622 #endif 4623 4624 bool __kvm_mmu_honors_guest_mtrrs(bool vm_has_noncoherent_dma) 4625 { 4626 /* 4627 * If host MTRRs are ignored (shadow_memtype_mask is non-zero), and the 4628 * VM has non-coherent DMA (DMA doesn't snoop CPU caches), KVM's ABI is 4629 * to honor the memtype from the guest's MTRRs so that guest accesses 4630 * to memory that is DMA'd aren't cached against the guest's wishes. 4631 * 4632 * Note, KVM may still ultimately ignore guest MTRRs for certain PFNs, 4633 * e.g. KVM will force UC memtype for host MMIO. 4634 */ 4635 return vm_has_noncoherent_dma && shadow_memtype_mask; 4636 } 4637 4638 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4639 { 4640 /* 4641 * If the guest's MTRRs may be used to compute the "real" memtype, 4642 * restrict the mapping level to ensure KVM uses a consistent memtype 4643 * across the entire mapping. 4644 */ 4645 if (kvm_mmu_honors_guest_mtrrs(vcpu->kvm)) { 4646 for ( ; fault->max_level > PG_LEVEL_4K; --fault->max_level) { 4647 int page_num = KVM_PAGES_PER_HPAGE(fault->max_level); 4648 gfn_t base = gfn_round_for_level(fault->gfn, 4649 fault->max_level); 4650 4651 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num)) 4652 break; 4653 } 4654 } 4655 4656 #ifdef CONFIG_X86_64 4657 if (tdp_mmu_enabled) 4658 return kvm_tdp_mmu_page_fault(vcpu, fault); 4659 #endif 4660 4661 return direct_page_fault(vcpu, fault); 4662 } 4663 4664 static void nonpaging_init_context(struct kvm_mmu *context) 4665 { 4666 context->page_fault = nonpaging_page_fault; 4667 context->gva_to_gpa = nonpaging_gva_to_gpa; 4668 context->sync_spte = NULL; 4669 } 4670 4671 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd, 4672 union kvm_mmu_page_role role) 4673 { 4674 struct kvm_mmu_page *sp; 4675 4676 if (!VALID_PAGE(root->hpa)) 4677 return false; 4678 4679 if (!role.direct && pgd != root->pgd) 4680 return false; 4681 4682 sp = root_to_sp(root->hpa); 4683 if (WARN_ON_ONCE(!sp)) 4684 return false; 4685 4686 return role.word == sp->role.word; 4687 } 4688 4689 /* 4690 * Find out if a previously cached root matching the new pgd/role is available, 4691 * and insert the current root as the MRU in the cache. 4692 * If a matching root is found, it is assigned to kvm_mmu->root and 4693 * true is returned. 4694 * If no match is found, kvm_mmu->root is left invalid, the LRU root is 4695 * evicted to make room for the current root, and false is returned. 4696 */ 4697 static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu, 4698 gpa_t new_pgd, 4699 union kvm_mmu_page_role new_role) 4700 { 4701 uint i; 4702 4703 if (is_root_usable(&mmu->root, new_pgd, new_role)) 4704 return true; 4705 4706 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 4707 /* 4708 * The swaps end up rotating the cache like this: 4709 * C 0 1 2 3 (on entry to the function) 4710 * 0 C 1 2 3 4711 * 1 C 0 2 3 4712 * 2 C 0 1 3 4713 * 3 C 0 1 2 (on exit from the loop) 4714 */ 4715 swap(mmu->root, mmu->prev_roots[i]); 4716 if (is_root_usable(&mmu->root, new_pgd, new_role)) 4717 return true; 4718 } 4719 4720 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 4721 return false; 4722 } 4723 4724 /* 4725 * Find out if a previously cached root matching the new pgd/role is available. 4726 * On entry, mmu->root is invalid. 4727 * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry 4728 * of the cache becomes invalid, and true is returned. 4729 * If no match is found, kvm_mmu->root is left invalid and false is returned. 4730 */ 4731 static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu, 4732 gpa_t new_pgd, 4733 union kvm_mmu_page_role new_role) 4734 { 4735 uint i; 4736 4737 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 4738 if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role)) 4739 goto hit; 4740 4741 return false; 4742 4743 hit: 4744 swap(mmu->root, mmu->prev_roots[i]); 4745 /* Bubble up the remaining roots. */ 4746 for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++) 4747 mmu->prev_roots[i] = mmu->prev_roots[i + 1]; 4748 mmu->prev_roots[i].hpa = INVALID_PAGE; 4749 return true; 4750 } 4751 4752 static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu, 4753 gpa_t new_pgd, union kvm_mmu_page_role new_role) 4754 { 4755 /* 4756 * Limit reuse to 64-bit hosts+VMs without "special" roots in order to 4757 * avoid having to deal with PDPTEs and other complexities. 4758 */ 4759 if (VALID_PAGE(mmu->root.hpa) && !root_to_sp(mmu->root.hpa)) 4760 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 4761 4762 if (VALID_PAGE(mmu->root.hpa)) 4763 return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role); 4764 else 4765 return cached_root_find_without_current(kvm, mmu, new_pgd, new_role); 4766 } 4767 4768 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd) 4769 { 4770 struct kvm_mmu *mmu = vcpu->arch.mmu; 4771 union kvm_mmu_page_role new_role = mmu->root_role; 4772 4773 /* 4774 * Return immediately if no usable root was found, kvm_mmu_reload() 4775 * will establish a valid root prior to the next VM-Enter. 4776 */ 4777 if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role)) 4778 return; 4779 4780 /* 4781 * It's possible that the cached previous root page is obsolete because 4782 * of a change in the MMU generation number. However, changing the 4783 * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, 4784 * which will free the root set here and allocate a new one. 4785 */ 4786 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 4787 4788 if (force_flush_and_sync_on_reuse) { 4789 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 4790 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 4791 } 4792 4793 /* 4794 * The last MMIO access's GVA and GPA are cached in the VCPU. When 4795 * switching to a new CR3, that GVA->GPA mapping may no longer be 4796 * valid. So clear any cached MMIO info even when we don't need to sync 4797 * the shadow page tables. 4798 */ 4799 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 4800 4801 /* 4802 * If this is a direct root page, it doesn't have a write flooding 4803 * count. Otherwise, clear the write flooding count. 4804 */ 4805 if (!new_role.direct) { 4806 struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa); 4807 4808 if (!WARN_ON_ONCE(!sp)) 4809 __clear_sp_write_flooding_count(sp); 4810 } 4811 } 4812 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd); 4813 4814 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, 4815 unsigned int access) 4816 { 4817 if (unlikely(is_mmio_spte(vcpu->kvm, *sptep))) { 4818 if (gfn != get_mmio_spte_gfn(*sptep)) { 4819 mmu_spte_clear_no_track(sptep); 4820 return true; 4821 } 4822 4823 mark_mmio_spte(vcpu, sptep, gfn, access); 4824 return true; 4825 } 4826 4827 return false; 4828 } 4829 4830 #define PTTYPE_EPT 18 /* arbitrary */ 4831 #define PTTYPE PTTYPE_EPT 4832 #include "paging_tmpl.h" 4833 #undef PTTYPE 4834 4835 #define PTTYPE 64 4836 #include "paging_tmpl.h" 4837 #undef PTTYPE 4838 4839 #define PTTYPE 32 4840 #include "paging_tmpl.h" 4841 #undef PTTYPE 4842 4843 static void __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check, 4844 u64 pa_bits_rsvd, int level, bool nx, 4845 bool gbpages, bool pse, bool amd) 4846 { 4847 u64 gbpages_bit_rsvd = 0; 4848 u64 nonleaf_bit8_rsvd = 0; 4849 u64 high_bits_rsvd; 4850 4851 rsvd_check->bad_mt_xwr = 0; 4852 4853 if (!gbpages) 4854 gbpages_bit_rsvd = rsvd_bits(7, 7); 4855 4856 if (level == PT32E_ROOT_LEVEL) 4857 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62); 4858 else 4859 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4860 4861 /* Note, NX doesn't exist in PDPTEs, this is handled below. */ 4862 if (!nx) 4863 high_bits_rsvd |= rsvd_bits(63, 63); 4864 4865 /* 4866 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for 4867 * leaf entries) on AMD CPUs only. 4868 */ 4869 if (amd) 4870 nonleaf_bit8_rsvd = rsvd_bits(8, 8); 4871 4872 switch (level) { 4873 case PT32_ROOT_LEVEL: 4874 /* no rsvd bits for 2 level 4K page table entries */ 4875 rsvd_check->rsvd_bits_mask[0][1] = 0; 4876 rsvd_check->rsvd_bits_mask[0][0] = 0; 4877 rsvd_check->rsvd_bits_mask[1][0] = 4878 rsvd_check->rsvd_bits_mask[0][0]; 4879 4880 if (!pse) { 4881 rsvd_check->rsvd_bits_mask[1][1] = 0; 4882 break; 4883 } 4884 4885 if (is_cpuid_PSE36()) 4886 /* 36bits PSE 4MB page */ 4887 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); 4888 else 4889 /* 32 bits PSE 4MB page */ 4890 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); 4891 break; 4892 case PT32E_ROOT_LEVEL: 4893 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) | 4894 high_bits_rsvd | 4895 rsvd_bits(5, 8) | 4896 rsvd_bits(1, 2); /* PDPTE */ 4897 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */ 4898 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */ 4899 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 4900 rsvd_bits(13, 20); /* large page */ 4901 rsvd_check->rsvd_bits_mask[1][0] = 4902 rsvd_check->rsvd_bits_mask[0][0]; 4903 break; 4904 case PT64_ROOT_5LEVEL: 4905 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | 4906 nonleaf_bit8_rsvd | 4907 rsvd_bits(7, 7); 4908 rsvd_check->rsvd_bits_mask[1][4] = 4909 rsvd_check->rsvd_bits_mask[0][4]; 4910 fallthrough; 4911 case PT64_ROOT_4LEVEL: 4912 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | 4913 nonleaf_bit8_rsvd | 4914 rsvd_bits(7, 7); 4915 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | 4916 gbpages_bit_rsvd; 4917 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; 4918 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 4919 rsvd_check->rsvd_bits_mask[1][3] = 4920 rsvd_check->rsvd_bits_mask[0][3]; 4921 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | 4922 gbpages_bit_rsvd | 4923 rsvd_bits(13, 29); 4924 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 4925 rsvd_bits(13, 20); /* large page */ 4926 rsvd_check->rsvd_bits_mask[1][0] = 4927 rsvd_check->rsvd_bits_mask[0][0]; 4928 break; 4929 } 4930 } 4931 4932 static void reset_guest_rsvds_bits_mask(struct kvm_vcpu *vcpu, 4933 struct kvm_mmu *context) 4934 { 4935 __reset_rsvds_bits_mask(&context->guest_rsvd_check, 4936 vcpu->arch.reserved_gpa_bits, 4937 context->cpu_role.base.level, is_efer_nx(context), 4938 guest_can_use(vcpu, X86_FEATURE_GBPAGES), 4939 is_cr4_pse(context), 4940 guest_cpuid_is_amd_compatible(vcpu)); 4941 } 4942 4943 static void __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check, 4944 u64 pa_bits_rsvd, bool execonly, 4945 int huge_page_level) 4946 { 4947 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4948 u64 large_1g_rsvd = 0, large_2m_rsvd = 0; 4949 u64 bad_mt_xwr; 4950 4951 if (huge_page_level < PG_LEVEL_1G) 4952 large_1g_rsvd = rsvd_bits(7, 7); 4953 if (huge_page_level < PG_LEVEL_2M) 4954 large_2m_rsvd = rsvd_bits(7, 7); 4955 4956 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7); 4957 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7); 4958 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd; 4959 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd; 4960 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 4961 4962 /* large page */ 4963 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4]; 4964 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3]; 4965 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd; 4966 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd; 4967 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0]; 4968 4969 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */ 4970 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */ 4971 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */ 4972 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */ 4973 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */ 4974 if (!execonly) { 4975 /* bits 0..2 must not be 100 unless VMX capabilities allow it */ 4976 bad_mt_xwr |= REPEAT_BYTE(1ull << 4); 4977 } 4978 rsvd_check->bad_mt_xwr = bad_mt_xwr; 4979 } 4980 4981 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, 4982 struct kvm_mmu *context, bool execonly, int huge_page_level) 4983 { 4984 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check, 4985 vcpu->arch.reserved_gpa_bits, execonly, 4986 huge_page_level); 4987 } 4988 4989 static inline u64 reserved_hpa_bits(void) 4990 { 4991 return rsvd_bits(shadow_phys_bits, 63); 4992 } 4993 4994 /* 4995 * the page table on host is the shadow page table for the page 4996 * table in guest or amd nested guest, its mmu features completely 4997 * follow the features in guest. 4998 */ 4999 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 5000 struct kvm_mmu *context) 5001 { 5002 /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */ 5003 bool is_amd = true; 5004 /* KVM doesn't use 2-level page tables for the shadow MMU. */ 5005 bool is_pse = false; 5006 struct rsvd_bits_validate *shadow_zero_check; 5007 int i; 5008 5009 WARN_ON_ONCE(context->root_role.level < PT32E_ROOT_LEVEL); 5010 5011 shadow_zero_check = &context->shadow_zero_check; 5012 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 5013 context->root_role.level, 5014 context->root_role.efer_nx, 5015 guest_can_use(vcpu, X86_FEATURE_GBPAGES), 5016 is_pse, is_amd); 5017 5018 if (!shadow_me_mask) 5019 return; 5020 5021 for (i = context->root_role.level; --i >= 0;) { 5022 /* 5023 * So far shadow_me_value is a constant during KVM's life 5024 * time. Bits in shadow_me_value are allowed to be set. 5025 * Bits in shadow_me_mask but not in shadow_me_value are 5026 * not allowed to be set. 5027 */ 5028 shadow_zero_check->rsvd_bits_mask[0][i] |= shadow_me_mask; 5029 shadow_zero_check->rsvd_bits_mask[1][i] |= shadow_me_mask; 5030 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_value; 5031 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_value; 5032 } 5033 5034 } 5035 5036 static inline bool boot_cpu_is_amd(void) 5037 { 5038 WARN_ON_ONCE(!tdp_enabled); 5039 return shadow_x_mask == 0; 5040 } 5041 5042 /* 5043 * the direct page table on host, use as much mmu features as 5044 * possible, however, kvm currently does not do execution-protection. 5045 */ 5046 static void reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context) 5047 { 5048 struct rsvd_bits_validate *shadow_zero_check; 5049 int i; 5050 5051 shadow_zero_check = &context->shadow_zero_check; 5052 5053 if (boot_cpu_is_amd()) 5054 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 5055 context->root_role.level, true, 5056 boot_cpu_has(X86_FEATURE_GBPAGES), 5057 false, true); 5058 else 5059 __reset_rsvds_bits_mask_ept(shadow_zero_check, 5060 reserved_hpa_bits(), false, 5061 max_huge_page_level); 5062 5063 if (!shadow_me_mask) 5064 return; 5065 5066 for (i = context->root_role.level; --i >= 0;) { 5067 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 5068 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 5069 } 5070 } 5071 5072 /* 5073 * as the comments in reset_shadow_zero_bits_mask() except it 5074 * is the shadow page table for intel nested guest. 5075 */ 5076 static void 5077 reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly) 5078 { 5079 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check, 5080 reserved_hpa_bits(), execonly, 5081 max_huge_page_level); 5082 } 5083 5084 #define BYTE_MASK(access) \ 5085 ((1 & (access) ? 2 : 0) | \ 5086 (2 & (access) ? 4 : 0) | \ 5087 (3 & (access) ? 8 : 0) | \ 5088 (4 & (access) ? 16 : 0) | \ 5089 (5 & (access) ? 32 : 0) | \ 5090 (6 & (access) ? 64 : 0) | \ 5091 (7 & (access) ? 128 : 0)) 5092 5093 5094 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept) 5095 { 5096 unsigned byte; 5097 5098 const u8 x = BYTE_MASK(ACC_EXEC_MASK); 5099 const u8 w = BYTE_MASK(ACC_WRITE_MASK); 5100 const u8 u = BYTE_MASK(ACC_USER_MASK); 5101 5102 bool cr4_smep = is_cr4_smep(mmu); 5103 bool cr4_smap = is_cr4_smap(mmu); 5104 bool cr0_wp = is_cr0_wp(mmu); 5105 bool efer_nx = is_efer_nx(mmu); 5106 5107 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { 5108 unsigned pfec = byte << 1; 5109 5110 /* 5111 * Each "*f" variable has a 1 bit for each UWX value 5112 * that causes a fault with the given PFEC. 5113 */ 5114 5115 /* Faults from writes to non-writable pages */ 5116 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0; 5117 /* Faults from user mode accesses to supervisor pages */ 5118 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0; 5119 /* Faults from fetches of non-executable pages*/ 5120 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0; 5121 /* Faults from kernel mode fetches of user pages */ 5122 u8 smepf = 0; 5123 /* Faults from kernel mode accesses of user pages */ 5124 u8 smapf = 0; 5125 5126 if (!ept) { 5127 /* Faults from kernel mode accesses to user pages */ 5128 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u; 5129 5130 /* Not really needed: !nx will cause pte.nx to fault */ 5131 if (!efer_nx) 5132 ff = 0; 5133 5134 /* Allow supervisor writes if !cr0.wp */ 5135 if (!cr0_wp) 5136 wf = (pfec & PFERR_USER_MASK) ? wf : 0; 5137 5138 /* Disallow supervisor fetches of user code if cr4.smep */ 5139 if (cr4_smep) 5140 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0; 5141 5142 /* 5143 * SMAP:kernel-mode data accesses from user-mode 5144 * mappings should fault. A fault is considered 5145 * as a SMAP violation if all of the following 5146 * conditions are true: 5147 * - X86_CR4_SMAP is set in CR4 5148 * - A user page is accessed 5149 * - The access is not a fetch 5150 * - The access is supervisor mode 5151 * - If implicit supervisor access or X86_EFLAGS_AC is clear 5152 * 5153 * Here, we cover the first four conditions. 5154 * The fifth is computed dynamically in permission_fault(); 5155 * PFERR_RSVD_MASK bit will be set in PFEC if the access is 5156 * *not* subject to SMAP restrictions. 5157 */ 5158 if (cr4_smap) 5159 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf; 5160 } 5161 5162 mmu->permissions[byte] = ff | uf | wf | smepf | smapf; 5163 } 5164 } 5165 5166 /* 5167 * PKU is an additional mechanism by which the paging controls access to 5168 * user-mode addresses based on the value in the PKRU register. Protection 5169 * key violations are reported through a bit in the page fault error code. 5170 * Unlike other bits of the error code, the PK bit is not known at the 5171 * call site of e.g. gva_to_gpa; it must be computed directly in 5172 * permission_fault based on two bits of PKRU, on some machine state (CR4, 5173 * CR0, EFER, CPL), and on other bits of the error code and the page tables. 5174 * 5175 * In particular the following conditions come from the error code, the 5176 * page tables and the machine state: 5177 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1 5178 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch) 5179 * - PK is always zero if U=0 in the page tables 5180 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access. 5181 * 5182 * The PKRU bitmask caches the result of these four conditions. The error 5183 * code (minus the P bit) and the page table's U bit form an index into the 5184 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed 5185 * with the two bits of the PKRU register corresponding to the protection key. 5186 * For the first three conditions above the bits will be 00, thus masking 5187 * away both AD and WD. For all reads or if the last condition holds, WD 5188 * only will be masked away. 5189 */ 5190 static void update_pkru_bitmask(struct kvm_mmu *mmu) 5191 { 5192 unsigned bit; 5193 bool wp; 5194 5195 mmu->pkru_mask = 0; 5196 5197 if (!is_cr4_pke(mmu)) 5198 return; 5199 5200 wp = is_cr0_wp(mmu); 5201 5202 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) { 5203 unsigned pfec, pkey_bits; 5204 bool check_pkey, check_write, ff, uf, wf, pte_user; 5205 5206 pfec = bit << 1; 5207 ff = pfec & PFERR_FETCH_MASK; 5208 uf = pfec & PFERR_USER_MASK; 5209 wf = pfec & PFERR_WRITE_MASK; 5210 5211 /* PFEC.RSVD is replaced by ACC_USER_MASK. */ 5212 pte_user = pfec & PFERR_RSVD_MASK; 5213 5214 /* 5215 * Only need to check the access which is not an 5216 * instruction fetch and is to a user page. 5217 */ 5218 check_pkey = (!ff && pte_user); 5219 /* 5220 * write access is controlled by PKRU if it is a 5221 * user access or CR0.WP = 1. 5222 */ 5223 check_write = check_pkey && wf && (uf || wp); 5224 5225 /* PKRU.AD stops both read and write access. */ 5226 pkey_bits = !!check_pkey; 5227 /* PKRU.WD stops write access. */ 5228 pkey_bits |= (!!check_write) << 1; 5229 5230 mmu->pkru_mask |= (pkey_bits & 3) << pfec; 5231 } 5232 } 5233 5234 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu, 5235 struct kvm_mmu *mmu) 5236 { 5237 if (!is_cr0_pg(mmu)) 5238 return; 5239 5240 reset_guest_rsvds_bits_mask(vcpu, mmu); 5241 update_permission_bitmask(mmu, false); 5242 update_pkru_bitmask(mmu); 5243 } 5244 5245 static void paging64_init_context(struct kvm_mmu *context) 5246 { 5247 context->page_fault = paging64_page_fault; 5248 context->gva_to_gpa = paging64_gva_to_gpa; 5249 context->sync_spte = paging64_sync_spte; 5250 } 5251 5252 static void paging32_init_context(struct kvm_mmu *context) 5253 { 5254 context->page_fault = paging32_page_fault; 5255 context->gva_to_gpa = paging32_gva_to_gpa; 5256 context->sync_spte = paging32_sync_spte; 5257 } 5258 5259 static union kvm_cpu_role kvm_calc_cpu_role(struct kvm_vcpu *vcpu, 5260 const struct kvm_mmu_role_regs *regs) 5261 { 5262 union kvm_cpu_role role = {0}; 5263 5264 role.base.access = ACC_ALL; 5265 role.base.smm = is_smm(vcpu); 5266 role.base.guest_mode = is_guest_mode(vcpu); 5267 role.ext.valid = 1; 5268 5269 if (!____is_cr0_pg(regs)) { 5270 role.base.direct = 1; 5271 return role; 5272 } 5273 5274 role.base.efer_nx = ____is_efer_nx(regs); 5275 role.base.cr0_wp = ____is_cr0_wp(regs); 5276 role.base.smep_andnot_wp = ____is_cr4_smep(regs) && !____is_cr0_wp(regs); 5277 role.base.smap_andnot_wp = ____is_cr4_smap(regs) && !____is_cr0_wp(regs); 5278 role.base.has_4_byte_gpte = !____is_cr4_pae(regs); 5279 5280 if (____is_efer_lma(regs)) 5281 role.base.level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL 5282 : PT64_ROOT_4LEVEL; 5283 else if (____is_cr4_pae(regs)) 5284 role.base.level = PT32E_ROOT_LEVEL; 5285 else 5286 role.base.level = PT32_ROOT_LEVEL; 5287 5288 role.ext.cr4_smep = ____is_cr4_smep(regs); 5289 role.ext.cr4_smap = ____is_cr4_smap(regs); 5290 role.ext.cr4_pse = ____is_cr4_pse(regs); 5291 5292 /* PKEY and LA57 are active iff long mode is active. */ 5293 role.ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs); 5294 role.ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs); 5295 role.ext.efer_lma = ____is_efer_lma(regs); 5296 return role; 5297 } 5298 5299 void __kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu, 5300 struct kvm_mmu *mmu) 5301 { 5302 const bool cr0_wp = kvm_is_cr0_bit_set(vcpu, X86_CR0_WP); 5303 5304 BUILD_BUG_ON((KVM_MMU_CR0_ROLE_BITS & KVM_POSSIBLE_CR0_GUEST_BITS) != X86_CR0_WP); 5305 BUILD_BUG_ON((KVM_MMU_CR4_ROLE_BITS & KVM_POSSIBLE_CR4_GUEST_BITS)); 5306 5307 if (is_cr0_wp(mmu) == cr0_wp) 5308 return; 5309 5310 mmu->cpu_role.base.cr0_wp = cr0_wp; 5311 reset_guest_paging_metadata(vcpu, mmu); 5312 } 5313 5314 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu) 5315 { 5316 /* tdp_root_level is architecture forced level, use it if nonzero */ 5317 if (tdp_root_level) 5318 return tdp_root_level; 5319 5320 /* Use 5-level TDP if and only if it's useful/necessary. */ 5321 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48) 5322 return 4; 5323 5324 return max_tdp_level; 5325 } 5326 5327 u8 kvm_mmu_get_max_tdp_level(void) 5328 { 5329 return tdp_root_level ? tdp_root_level : max_tdp_level; 5330 } 5331 5332 static union kvm_mmu_page_role 5333 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, 5334 union kvm_cpu_role cpu_role) 5335 { 5336 union kvm_mmu_page_role role = {0}; 5337 5338 role.access = ACC_ALL; 5339 role.cr0_wp = true; 5340 role.efer_nx = true; 5341 role.smm = cpu_role.base.smm; 5342 role.guest_mode = cpu_role.base.guest_mode; 5343 role.ad_disabled = !kvm_ad_enabled(); 5344 role.level = kvm_mmu_get_tdp_level(vcpu); 5345 role.direct = true; 5346 role.has_4_byte_gpte = false; 5347 5348 return role; 5349 } 5350 5351 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu, 5352 union kvm_cpu_role cpu_role) 5353 { 5354 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5355 union kvm_mmu_page_role root_role = kvm_calc_tdp_mmu_root_page_role(vcpu, cpu_role); 5356 5357 if (cpu_role.as_u64 == context->cpu_role.as_u64 && 5358 root_role.word == context->root_role.word) 5359 return; 5360 5361 context->cpu_role.as_u64 = cpu_role.as_u64; 5362 context->root_role.word = root_role.word; 5363 context->page_fault = kvm_tdp_page_fault; 5364 context->sync_spte = NULL; 5365 context->get_guest_pgd = get_guest_cr3; 5366 context->get_pdptr = kvm_pdptr_read; 5367 context->inject_page_fault = kvm_inject_page_fault; 5368 5369 if (!is_cr0_pg(context)) 5370 context->gva_to_gpa = nonpaging_gva_to_gpa; 5371 else if (is_cr4_pae(context)) 5372 context->gva_to_gpa = paging64_gva_to_gpa; 5373 else 5374 context->gva_to_gpa = paging32_gva_to_gpa; 5375 5376 reset_guest_paging_metadata(vcpu, context); 5377 reset_tdp_shadow_zero_bits_mask(context); 5378 } 5379 5380 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context, 5381 union kvm_cpu_role cpu_role, 5382 union kvm_mmu_page_role root_role) 5383 { 5384 if (cpu_role.as_u64 == context->cpu_role.as_u64 && 5385 root_role.word == context->root_role.word) 5386 return; 5387 5388 context->cpu_role.as_u64 = cpu_role.as_u64; 5389 context->root_role.word = root_role.word; 5390 5391 if (!is_cr0_pg(context)) 5392 nonpaging_init_context(context); 5393 else if (is_cr4_pae(context)) 5394 paging64_init_context(context); 5395 else 5396 paging32_init_context(context); 5397 5398 reset_guest_paging_metadata(vcpu, context); 5399 reset_shadow_zero_bits_mask(vcpu, context); 5400 } 5401 5402 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, 5403 union kvm_cpu_role cpu_role) 5404 { 5405 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5406 union kvm_mmu_page_role root_role; 5407 5408 root_role = cpu_role.base; 5409 5410 /* KVM uses PAE paging whenever the guest isn't using 64-bit paging. */ 5411 root_role.level = max_t(u32, root_role.level, PT32E_ROOT_LEVEL); 5412 5413 /* 5414 * KVM forces EFER.NX=1 when TDP is disabled, reflect it in the MMU role. 5415 * KVM uses NX when TDP is disabled to handle a variety of scenarios, 5416 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and 5417 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0. 5418 * The iTLB multi-hit workaround can be toggled at any time, so assume 5419 * NX can be used by any non-nested shadow MMU to avoid having to reset 5420 * MMU contexts. 5421 */ 5422 root_role.efer_nx = true; 5423 5424 shadow_mmu_init_context(vcpu, context, cpu_role, root_role); 5425 } 5426 5427 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0, 5428 unsigned long cr4, u64 efer, gpa_t nested_cr3) 5429 { 5430 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 5431 struct kvm_mmu_role_regs regs = { 5432 .cr0 = cr0, 5433 .cr4 = cr4 & ~X86_CR4_PKE, 5434 .efer = efer, 5435 }; 5436 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); 5437 union kvm_mmu_page_role root_role; 5438 5439 /* NPT requires CR0.PG=1. */ 5440 WARN_ON_ONCE(cpu_role.base.direct); 5441 5442 root_role = cpu_role.base; 5443 root_role.level = kvm_mmu_get_tdp_level(vcpu); 5444 if (root_role.level == PT64_ROOT_5LEVEL && 5445 cpu_role.base.level == PT64_ROOT_4LEVEL) 5446 root_role.passthrough = 1; 5447 5448 shadow_mmu_init_context(vcpu, context, cpu_role, root_role); 5449 kvm_mmu_new_pgd(vcpu, nested_cr3); 5450 } 5451 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu); 5452 5453 static union kvm_cpu_role 5454 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty, 5455 bool execonly, u8 level) 5456 { 5457 union kvm_cpu_role role = {0}; 5458 5459 /* 5460 * KVM does not support SMM transfer monitors, and consequently does not 5461 * support the "entry to SMM" control either. role.base.smm is always 0. 5462 */ 5463 WARN_ON_ONCE(is_smm(vcpu)); 5464 role.base.level = level; 5465 role.base.has_4_byte_gpte = false; 5466 role.base.direct = false; 5467 role.base.ad_disabled = !accessed_dirty; 5468 role.base.guest_mode = true; 5469 role.base.access = ACC_ALL; 5470 5471 role.ext.word = 0; 5472 role.ext.execonly = execonly; 5473 role.ext.valid = 1; 5474 5475 return role; 5476 } 5477 5478 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, 5479 int huge_page_level, bool accessed_dirty, 5480 gpa_t new_eptp) 5481 { 5482 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 5483 u8 level = vmx_eptp_page_walk_level(new_eptp); 5484 union kvm_cpu_role new_mode = 5485 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty, 5486 execonly, level); 5487 5488 if (new_mode.as_u64 != context->cpu_role.as_u64) { 5489 /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */ 5490 context->cpu_role.as_u64 = new_mode.as_u64; 5491 context->root_role.word = new_mode.base.word; 5492 5493 context->page_fault = ept_page_fault; 5494 context->gva_to_gpa = ept_gva_to_gpa; 5495 context->sync_spte = ept_sync_spte; 5496 5497 update_permission_bitmask(context, true); 5498 context->pkru_mask = 0; 5499 reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level); 5500 reset_ept_shadow_zero_bits_mask(context, execonly); 5501 } 5502 5503 kvm_mmu_new_pgd(vcpu, new_eptp); 5504 } 5505 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); 5506 5507 static void init_kvm_softmmu(struct kvm_vcpu *vcpu, 5508 union kvm_cpu_role cpu_role) 5509 { 5510 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5511 5512 kvm_init_shadow_mmu(vcpu, cpu_role); 5513 5514 context->get_guest_pgd = get_guest_cr3; 5515 context->get_pdptr = kvm_pdptr_read; 5516 context->inject_page_fault = kvm_inject_page_fault; 5517 } 5518 5519 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu, 5520 union kvm_cpu_role new_mode) 5521 { 5522 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; 5523 5524 if (new_mode.as_u64 == g_context->cpu_role.as_u64) 5525 return; 5526 5527 g_context->cpu_role.as_u64 = new_mode.as_u64; 5528 g_context->get_guest_pgd = get_guest_cr3; 5529 g_context->get_pdptr = kvm_pdptr_read; 5530 g_context->inject_page_fault = kvm_inject_page_fault; 5531 5532 /* 5533 * L2 page tables are never shadowed, so there is no need to sync 5534 * SPTEs. 5535 */ 5536 g_context->sync_spte = NULL; 5537 5538 /* 5539 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using 5540 * L1's nested page tables (e.g. EPT12). The nested translation 5541 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using 5542 * L2's page tables as the first level of translation and L1's 5543 * nested page tables as the second level of translation. Basically 5544 * the gva_to_gpa functions between mmu and nested_mmu are swapped. 5545 */ 5546 if (!is_paging(vcpu)) 5547 g_context->gva_to_gpa = nonpaging_gva_to_gpa; 5548 else if (is_long_mode(vcpu)) 5549 g_context->gva_to_gpa = paging64_gva_to_gpa; 5550 else if (is_pae(vcpu)) 5551 g_context->gva_to_gpa = paging64_gva_to_gpa; 5552 else 5553 g_context->gva_to_gpa = paging32_gva_to_gpa; 5554 5555 reset_guest_paging_metadata(vcpu, g_context); 5556 } 5557 5558 void kvm_init_mmu(struct kvm_vcpu *vcpu) 5559 { 5560 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 5561 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); 5562 5563 if (mmu_is_nested(vcpu)) 5564 init_kvm_nested_mmu(vcpu, cpu_role); 5565 else if (tdp_enabled) 5566 init_kvm_tdp_mmu(vcpu, cpu_role); 5567 else 5568 init_kvm_softmmu(vcpu, cpu_role); 5569 } 5570 EXPORT_SYMBOL_GPL(kvm_init_mmu); 5571 5572 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu) 5573 { 5574 /* 5575 * Invalidate all MMU roles to force them to reinitialize as CPUID 5576 * information is factored into reserved bit calculations. 5577 * 5578 * Correctly handling multiple vCPU models with respect to paging and 5579 * physical address properties) in a single VM would require tracking 5580 * all relevant CPUID information in kvm_mmu_page_role. That is very 5581 * undesirable as it would increase the memory requirements for 5582 * gfn_write_track (see struct kvm_mmu_page_role comments). For now 5583 * that problem is swept under the rug; KVM's CPUID API is horrific and 5584 * it's all but impossible to solve it without introducing a new API. 5585 */ 5586 vcpu->arch.root_mmu.root_role.invalid = 1; 5587 vcpu->arch.guest_mmu.root_role.invalid = 1; 5588 vcpu->arch.nested_mmu.root_role.invalid = 1; 5589 vcpu->arch.root_mmu.cpu_role.ext.valid = 0; 5590 vcpu->arch.guest_mmu.cpu_role.ext.valid = 0; 5591 vcpu->arch.nested_mmu.cpu_role.ext.valid = 0; 5592 kvm_mmu_reset_context(vcpu); 5593 5594 /* 5595 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in 5596 * kvm_arch_vcpu_ioctl(). 5597 */ 5598 KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm); 5599 } 5600 5601 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu) 5602 { 5603 kvm_mmu_unload(vcpu); 5604 kvm_init_mmu(vcpu); 5605 } 5606 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); 5607 5608 int kvm_mmu_load(struct kvm_vcpu *vcpu) 5609 { 5610 int r; 5611 5612 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->root_role.direct); 5613 if (r) 5614 goto out; 5615 r = mmu_alloc_special_roots(vcpu); 5616 if (r) 5617 goto out; 5618 if (vcpu->arch.mmu->root_role.direct) 5619 r = mmu_alloc_direct_roots(vcpu); 5620 else 5621 r = mmu_alloc_shadow_roots(vcpu); 5622 if (r) 5623 goto out; 5624 5625 kvm_mmu_sync_roots(vcpu); 5626 5627 kvm_mmu_load_pgd(vcpu); 5628 5629 /* 5630 * Flush any TLB entries for the new root, the provenance of the root 5631 * is unknown. Even if KVM ensures there are no stale TLB entries 5632 * for a freed root, in theory another hypervisor could have left 5633 * stale entries. Flushing on alloc also allows KVM to skip the TLB 5634 * flush when freeing a root (see kvm_tdp_mmu_put_root()). 5635 */ 5636 static_call(kvm_x86_flush_tlb_current)(vcpu); 5637 out: 5638 return r; 5639 } 5640 5641 void kvm_mmu_unload(struct kvm_vcpu *vcpu) 5642 { 5643 struct kvm *kvm = vcpu->kvm; 5644 5645 kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL); 5646 WARN_ON_ONCE(VALID_PAGE(vcpu->arch.root_mmu.root.hpa)); 5647 kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); 5648 WARN_ON_ONCE(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa)); 5649 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 5650 } 5651 5652 static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa) 5653 { 5654 struct kvm_mmu_page *sp; 5655 5656 if (!VALID_PAGE(root_hpa)) 5657 return false; 5658 5659 /* 5660 * When freeing obsolete roots, treat roots as obsolete if they don't 5661 * have an associated shadow page, as it's impossible to determine if 5662 * such roots are fresh or stale. This does mean KVM will get false 5663 * positives and free roots that don't strictly need to be freed, but 5664 * such false positives are relatively rare: 5665 * 5666 * (a) only PAE paging and nested NPT have roots without shadow pages 5667 * (or any shadow paging flavor with a dummy root, see note below) 5668 * (b) remote reloads due to a memslot update obsoletes _all_ roots 5669 * (c) KVM doesn't track previous roots for PAE paging, and the guest 5670 * is unlikely to zap an in-use PGD. 5671 * 5672 * Note! Dummy roots are unique in that they are obsoleted by memslot 5673 * _creation_! See also FNAME(fetch). 5674 */ 5675 sp = root_to_sp(root_hpa); 5676 return !sp || is_obsolete_sp(kvm, sp); 5677 } 5678 5679 static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu) 5680 { 5681 unsigned long roots_to_free = 0; 5682 int i; 5683 5684 if (is_obsolete_root(kvm, mmu->root.hpa)) 5685 roots_to_free |= KVM_MMU_ROOT_CURRENT; 5686 5687 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5688 if (is_obsolete_root(kvm, mmu->prev_roots[i].hpa)) 5689 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 5690 } 5691 5692 if (roots_to_free) 5693 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 5694 } 5695 5696 void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu) 5697 { 5698 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu); 5699 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu); 5700 } 5701 5702 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, 5703 int *bytes) 5704 { 5705 u64 gentry = 0; 5706 int r; 5707 5708 /* 5709 * Assume that the pte write on a page table of the same type 5710 * as the current vcpu paging mode since we update the sptes only 5711 * when they have the same mode. 5712 */ 5713 if (is_pae(vcpu) && *bytes == 4) { 5714 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ 5715 *gpa &= ~(gpa_t)7; 5716 *bytes = 8; 5717 } 5718 5719 if (*bytes == 4 || *bytes == 8) { 5720 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes); 5721 if (r) 5722 gentry = 0; 5723 } 5724 5725 return gentry; 5726 } 5727 5728 /* 5729 * If we're seeing too many writes to a page, it may no longer be a page table, 5730 * or we may be forking, in which case it is better to unmap the page. 5731 */ 5732 static bool detect_write_flooding(struct kvm_mmu_page *sp) 5733 { 5734 /* 5735 * Skip write-flooding detected for the sp whose level is 1, because 5736 * it can become unsync, then the guest page is not write-protected. 5737 */ 5738 if (sp->role.level == PG_LEVEL_4K) 5739 return false; 5740 5741 atomic_inc(&sp->write_flooding_count); 5742 return atomic_read(&sp->write_flooding_count) >= 3; 5743 } 5744 5745 /* 5746 * Misaligned accesses are too much trouble to fix up; also, they usually 5747 * indicate a page is not used as a page table. 5748 */ 5749 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, 5750 int bytes) 5751 { 5752 unsigned offset, pte_size, misaligned; 5753 5754 offset = offset_in_page(gpa); 5755 pte_size = sp->role.has_4_byte_gpte ? 4 : 8; 5756 5757 /* 5758 * Sometimes, the OS only writes the last one bytes to update status 5759 * bits, for example, in linux, andb instruction is used in clear_bit(). 5760 */ 5761 if (!(offset & (pte_size - 1)) && bytes == 1) 5762 return false; 5763 5764 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); 5765 misaligned |= bytes < 4; 5766 5767 return misaligned; 5768 } 5769 5770 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) 5771 { 5772 unsigned page_offset, quadrant; 5773 u64 *spte; 5774 int level; 5775 5776 page_offset = offset_in_page(gpa); 5777 level = sp->role.level; 5778 *nspte = 1; 5779 if (sp->role.has_4_byte_gpte) { 5780 page_offset <<= 1; /* 32->64 */ 5781 /* 5782 * A 32-bit pde maps 4MB while the shadow pdes map 5783 * only 2MB. So we need to double the offset again 5784 * and zap two pdes instead of one. 5785 */ 5786 if (level == PT32_ROOT_LEVEL) { 5787 page_offset &= ~7; /* kill rounding error */ 5788 page_offset <<= 1; 5789 *nspte = 2; 5790 } 5791 quadrant = page_offset >> PAGE_SHIFT; 5792 page_offset &= ~PAGE_MASK; 5793 if (quadrant != sp->role.quadrant) 5794 return NULL; 5795 } 5796 5797 spte = &sp->spt[page_offset / sizeof(*spte)]; 5798 return spte; 5799 } 5800 5801 void kvm_mmu_track_write(struct kvm_vcpu *vcpu, gpa_t gpa, const u8 *new, 5802 int bytes) 5803 { 5804 gfn_t gfn = gpa >> PAGE_SHIFT; 5805 struct kvm_mmu_page *sp; 5806 LIST_HEAD(invalid_list); 5807 u64 entry, gentry, *spte; 5808 int npte; 5809 bool flush = false; 5810 5811 /* 5812 * When emulating guest writes, ensure the written value is visible to 5813 * any task that is handling page faults before checking whether or not 5814 * KVM is shadowing a guest PTE. This ensures either KVM will create 5815 * the correct SPTE in the page fault handler, or this task will see 5816 * a non-zero indirect_shadow_pages. Pairs with the smp_mb() in 5817 * account_shadowed(). 5818 */ 5819 smp_mb(); 5820 if (!vcpu->kvm->arch.indirect_shadow_pages) 5821 return; 5822 5823 write_lock(&vcpu->kvm->mmu_lock); 5824 5825 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes); 5826 5827 ++vcpu->kvm->stat.mmu_pte_write; 5828 5829 for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) { 5830 if (detect_write_misaligned(sp, gpa, bytes) || 5831 detect_write_flooding(sp)) { 5832 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); 5833 ++vcpu->kvm->stat.mmu_flooded; 5834 continue; 5835 } 5836 5837 spte = get_written_sptes(sp, gpa, &npte); 5838 if (!spte) 5839 continue; 5840 5841 while (npte--) { 5842 entry = *spte; 5843 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL); 5844 if (gentry && sp->role.level != PG_LEVEL_4K) 5845 ++vcpu->kvm->stat.mmu_pde_zapped; 5846 if (is_shadow_present_pte(entry)) 5847 flush = true; 5848 ++spte; 5849 } 5850 } 5851 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 5852 write_unlock(&vcpu->kvm->mmu_lock); 5853 } 5854 5855 int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 5856 void *insn, int insn_len) 5857 { 5858 int r, emulation_type = EMULTYPE_PF; 5859 bool direct = vcpu->arch.mmu->root_role.direct; 5860 5861 if (WARN_ON_ONCE(!VALID_PAGE(vcpu->arch.mmu->root.hpa))) 5862 return RET_PF_RETRY; 5863 5864 /* 5865 * Except for reserved faults (emulated MMIO is shared-only), set the 5866 * PFERR_PRIVATE_ACCESS flag for software-protected VMs based on the gfn's 5867 * current attributes, which are the source of truth for such VMs. Note, 5868 * this wrong for nested MMUs as the GPA is an L2 GPA, but KVM doesn't 5869 * currently supported nested virtualization (among many other things) 5870 * for software-protected VMs. 5871 */ 5872 if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && 5873 !(error_code & PFERR_RSVD_MASK) && 5874 vcpu->kvm->arch.vm_type == KVM_X86_SW_PROTECTED_VM && 5875 kvm_mem_is_private(vcpu->kvm, gpa_to_gfn(cr2_or_gpa))) 5876 error_code |= PFERR_PRIVATE_ACCESS; 5877 5878 r = RET_PF_INVALID; 5879 if (unlikely(error_code & PFERR_RSVD_MASK)) { 5880 if (WARN_ON_ONCE(error_code & PFERR_PRIVATE_ACCESS)) 5881 return -EFAULT; 5882 5883 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct); 5884 if (r == RET_PF_EMULATE) 5885 goto emulate; 5886 } 5887 5888 if (r == RET_PF_INVALID) { 5889 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, error_code, false, 5890 &emulation_type); 5891 if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm)) 5892 return -EIO; 5893 } 5894 5895 if (r < 0) 5896 return r; 5897 if (r != RET_PF_EMULATE) 5898 return 1; 5899 5900 /* 5901 * Before emulating the instruction, check if the error code 5902 * was due to a RO violation while translating the guest page. 5903 * This can occur when using nested virtualization with nested 5904 * paging in both guests. If true, we simply unprotect the page 5905 * and resume the guest. 5906 */ 5907 if (vcpu->arch.mmu->root_role.direct && 5908 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) { 5909 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa)); 5910 return 1; 5911 } 5912 5913 /* 5914 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still 5915 * optimistically try to just unprotect the page and let the processor 5916 * re-execute the instruction that caused the page fault. Do not allow 5917 * retrying MMIO emulation, as it's not only pointless but could also 5918 * cause us to enter an infinite loop because the processor will keep 5919 * faulting on the non-existent MMIO address. Retrying an instruction 5920 * from a nested guest is also pointless and dangerous as we are only 5921 * explicitly shadowing L1's page tables, i.e. unprotecting something 5922 * for L1 isn't going to magically fix whatever issue cause L2 to fail. 5923 */ 5924 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu)) 5925 emulation_type |= EMULTYPE_ALLOW_RETRY_PF; 5926 emulate: 5927 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn, 5928 insn_len); 5929 } 5930 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); 5931 5932 void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg) 5933 { 5934 u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; 5935 int root_level, leaf, level; 5936 5937 leaf = get_sptes_lockless(vcpu, gpa, sptes, &root_level); 5938 if (unlikely(leaf < 0)) 5939 return; 5940 5941 pr_err("%s %llx", msg, gpa); 5942 for (level = root_level; level >= leaf; level--) 5943 pr_cont(", spte[%d] = 0x%llx", level, sptes[level]); 5944 pr_cont("\n"); 5945 } 5946 EXPORT_SYMBOL_GPL(kvm_mmu_print_sptes); 5947 5948 static void __kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 5949 u64 addr, hpa_t root_hpa) 5950 { 5951 struct kvm_shadow_walk_iterator iterator; 5952 5953 vcpu_clear_mmio_info(vcpu, addr); 5954 5955 /* 5956 * Walking and synchronizing SPTEs both assume they are operating in 5957 * the context of the current MMU, and would need to be reworked if 5958 * this is ever used to sync the guest_mmu, e.g. to emulate INVEPT. 5959 */ 5960 if (WARN_ON_ONCE(mmu != vcpu->arch.mmu)) 5961 return; 5962 5963 if (!VALID_PAGE(root_hpa)) 5964 return; 5965 5966 write_lock(&vcpu->kvm->mmu_lock); 5967 for_each_shadow_entry_using_root(vcpu, root_hpa, addr, iterator) { 5968 struct kvm_mmu_page *sp = sptep_to_sp(iterator.sptep); 5969 5970 if (sp->unsync) { 5971 int ret = kvm_sync_spte(vcpu, sp, iterator.index); 5972 5973 if (ret < 0) 5974 mmu_page_zap_pte(vcpu->kvm, sp, iterator.sptep, NULL); 5975 if (ret) 5976 kvm_flush_remote_tlbs_sptep(vcpu->kvm, iterator.sptep); 5977 } 5978 5979 if (!sp->unsync_children) 5980 break; 5981 } 5982 write_unlock(&vcpu->kvm->mmu_lock); 5983 } 5984 5985 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 5986 u64 addr, unsigned long roots) 5987 { 5988 int i; 5989 5990 WARN_ON_ONCE(roots & ~KVM_MMU_ROOTS_ALL); 5991 5992 /* It's actually a GPA for vcpu->arch.guest_mmu. */ 5993 if (mmu != &vcpu->arch.guest_mmu) { 5994 /* INVLPG on a non-canonical address is a NOP according to the SDM. */ 5995 if (is_noncanonical_address(addr, vcpu)) 5996 return; 5997 5998 static_call(kvm_x86_flush_tlb_gva)(vcpu, addr); 5999 } 6000 6001 if (!mmu->sync_spte) 6002 return; 6003 6004 if (roots & KVM_MMU_ROOT_CURRENT) 6005 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->root.hpa); 6006 6007 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 6008 if (roots & KVM_MMU_ROOT_PREVIOUS(i)) 6009 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->prev_roots[i].hpa); 6010 } 6011 } 6012 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_addr); 6013 6014 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) 6015 { 6016 /* 6017 * INVLPG is required to invalidate any global mappings for the VA, 6018 * irrespective of PCID. Blindly sync all roots as it would take 6019 * roughly the same amount of work/time to determine whether any of the 6020 * previous roots have a global mapping. 6021 * 6022 * Mappings not reachable via the current or previous cached roots will 6023 * be synced when switching to that new cr3, so nothing needs to be 6024 * done here for them. 6025 */ 6026 kvm_mmu_invalidate_addr(vcpu, vcpu->arch.walk_mmu, gva, KVM_MMU_ROOTS_ALL); 6027 ++vcpu->stat.invlpg; 6028 } 6029 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); 6030 6031 6032 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid) 6033 { 6034 struct kvm_mmu *mmu = vcpu->arch.mmu; 6035 unsigned long roots = 0; 6036 uint i; 6037 6038 if (pcid == kvm_get_active_pcid(vcpu)) 6039 roots |= KVM_MMU_ROOT_CURRENT; 6040 6041 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 6042 if (VALID_PAGE(mmu->prev_roots[i].hpa) && 6043 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) 6044 roots |= KVM_MMU_ROOT_PREVIOUS(i); 6045 } 6046 6047 if (roots) 6048 kvm_mmu_invalidate_addr(vcpu, mmu, gva, roots); 6049 ++vcpu->stat.invlpg; 6050 6051 /* 6052 * Mappings not reachable via the current cr3 or the prev_roots will be 6053 * synced when switching to that cr3, so nothing needs to be done here 6054 * for them. 6055 */ 6056 } 6057 6058 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 6059 int tdp_max_root_level, int tdp_huge_page_level) 6060 { 6061 tdp_enabled = enable_tdp; 6062 tdp_root_level = tdp_forced_root_level; 6063 max_tdp_level = tdp_max_root_level; 6064 6065 #ifdef CONFIG_X86_64 6066 tdp_mmu_enabled = tdp_mmu_allowed && tdp_enabled; 6067 #endif 6068 /* 6069 * max_huge_page_level reflects KVM's MMU capabilities irrespective 6070 * of kernel support, e.g. KVM may be capable of using 1GB pages when 6071 * the kernel is not. But, KVM never creates a page size greater than 6072 * what is used by the kernel for any given HVA, i.e. the kernel's 6073 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust(). 6074 */ 6075 if (tdp_enabled) 6076 max_huge_page_level = tdp_huge_page_level; 6077 else if (boot_cpu_has(X86_FEATURE_GBPAGES)) 6078 max_huge_page_level = PG_LEVEL_1G; 6079 else 6080 max_huge_page_level = PG_LEVEL_2M; 6081 } 6082 EXPORT_SYMBOL_GPL(kvm_configure_mmu); 6083 6084 /* The return value indicates if tlb flush on all vcpus is needed. */ 6085 typedef bool (*slot_rmaps_handler) (struct kvm *kvm, 6086 struct kvm_rmap_head *rmap_head, 6087 const struct kvm_memory_slot *slot); 6088 6089 static __always_inline bool __walk_slot_rmaps(struct kvm *kvm, 6090 const struct kvm_memory_slot *slot, 6091 slot_rmaps_handler fn, 6092 int start_level, int end_level, 6093 gfn_t start_gfn, gfn_t end_gfn, 6094 bool flush_on_yield, bool flush) 6095 { 6096 struct slot_rmap_walk_iterator iterator; 6097 6098 lockdep_assert_held_write(&kvm->mmu_lock); 6099 6100 for_each_slot_rmap_range(slot, start_level, end_level, start_gfn, 6101 end_gfn, &iterator) { 6102 if (iterator.rmap) 6103 flush |= fn(kvm, iterator.rmap, slot); 6104 6105 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 6106 if (flush && flush_on_yield) { 6107 kvm_flush_remote_tlbs_range(kvm, start_gfn, 6108 iterator.gfn - start_gfn + 1); 6109 flush = false; 6110 } 6111 cond_resched_rwlock_write(&kvm->mmu_lock); 6112 } 6113 } 6114 6115 return flush; 6116 } 6117 6118 static __always_inline bool walk_slot_rmaps(struct kvm *kvm, 6119 const struct kvm_memory_slot *slot, 6120 slot_rmaps_handler fn, 6121 int start_level, int end_level, 6122 bool flush_on_yield) 6123 { 6124 return __walk_slot_rmaps(kvm, slot, fn, start_level, end_level, 6125 slot->base_gfn, slot->base_gfn + slot->npages - 1, 6126 flush_on_yield, false); 6127 } 6128 6129 static __always_inline bool walk_slot_rmaps_4k(struct kvm *kvm, 6130 const struct kvm_memory_slot *slot, 6131 slot_rmaps_handler fn, 6132 bool flush_on_yield) 6133 { 6134 return walk_slot_rmaps(kvm, slot, fn, PG_LEVEL_4K, PG_LEVEL_4K, flush_on_yield); 6135 } 6136 6137 static void free_mmu_pages(struct kvm_mmu *mmu) 6138 { 6139 if (!tdp_enabled && mmu->pae_root) 6140 set_memory_encrypted((unsigned long)mmu->pae_root, 1); 6141 free_page((unsigned long)mmu->pae_root); 6142 free_page((unsigned long)mmu->pml4_root); 6143 free_page((unsigned long)mmu->pml5_root); 6144 } 6145 6146 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 6147 { 6148 struct page *page; 6149 int i; 6150 6151 mmu->root.hpa = INVALID_PAGE; 6152 mmu->root.pgd = 0; 6153 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 6154 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 6155 6156 /* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */ 6157 if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu) 6158 return 0; 6159 6160 /* 6161 * When using PAE paging, the four PDPTEs are treated as 'root' pages, 6162 * while the PDP table is a per-vCPU construct that's allocated at MMU 6163 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on 6164 * x86_64. Therefore we need to allocate the PDP table in the first 6165 * 4GB of memory, which happens to fit the DMA32 zone. TDP paging 6166 * generally doesn't use PAE paging and can skip allocating the PDP 6167 * table. The main exception, handled here, is SVM's 32-bit NPT. The 6168 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit 6169 * KVM; that horror is handled on-demand by mmu_alloc_special_roots(). 6170 */ 6171 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL) 6172 return 0; 6173 6174 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32); 6175 if (!page) 6176 return -ENOMEM; 6177 6178 mmu->pae_root = page_address(page); 6179 6180 /* 6181 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to 6182 * get the CPU to treat the PDPTEs as encrypted. Decrypt the page so 6183 * that KVM's writes and the CPU's reads get along. Note, this is 6184 * only necessary when using shadow paging, as 64-bit NPT can get at 6185 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported 6186 * by 32-bit kernels (when KVM itself uses 32-bit NPT). 6187 */ 6188 if (!tdp_enabled) 6189 set_memory_decrypted((unsigned long)mmu->pae_root, 1); 6190 else 6191 WARN_ON_ONCE(shadow_me_value); 6192 6193 for (i = 0; i < 4; ++i) 6194 mmu->pae_root[i] = INVALID_PAE_ROOT; 6195 6196 return 0; 6197 } 6198 6199 int kvm_mmu_create(struct kvm_vcpu *vcpu) 6200 { 6201 int ret; 6202 6203 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache; 6204 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO; 6205 6206 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache; 6207 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO; 6208 6209 vcpu->arch.mmu_shadow_page_cache.init_value = 6210 SHADOW_NONPRESENT_VALUE; 6211 if (!vcpu->arch.mmu_shadow_page_cache.init_value) 6212 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO; 6213 6214 vcpu->arch.mmu = &vcpu->arch.root_mmu; 6215 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; 6216 6217 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu); 6218 if (ret) 6219 return ret; 6220 6221 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu); 6222 if (ret) 6223 goto fail_allocate_root; 6224 6225 return ret; 6226 fail_allocate_root: 6227 free_mmu_pages(&vcpu->arch.guest_mmu); 6228 return ret; 6229 } 6230 6231 #define BATCH_ZAP_PAGES 10 6232 static void kvm_zap_obsolete_pages(struct kvm *kvm) 6233 { 6234 struct kvm_mmu_page *sp, *node; 6235 int nr_zapped, batch = 0; 6236 bool unstable; 6237 6238 restart: 6239 list_for_each_entry_safe_reverse(sp, node, 6240 &kvm->arch.active_mmu_pages, link) { 6241 /* 6242 * No obsolete valid page exists before a newly created page 6243 * since active_mmu_pages is a FIFO list. 6244 */ 6245 if (!is_obsolete_sp(kvm, sp)) 6246 break; 6247 6248 /* 6249 * Invalid pages should never land back on the list of active 6250 * pages. Skip the bogus page, otherwise we'll get stuck in an 6251 * infinite loop if the page gets put back on the list (again). 6252 */ 6253 if (WARN_ON_ONCE(sp->role.invalid)) 6254 continue; 6255 6256 /* 6257 * No need to flush the TLB since we're only zapping shadow 6258 * pages with an obsolete generation number and all vCPUS have 6259 * loaded a new root, i.e. the shadow pages being zapped cannot 6260 * be in active use by the guest. 6261 */ 6262 if (batch >= BATCH_ZAP_PAGES && 6263 cond_resched_rwlock_write(&kvm->mmu_lock)) { 6264 batch = 0; 6265 goto restart; 6266 } 6267 6268 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, 6269 &kvm->arch.zapped_obsolete_pages, &nr_zapped); 6270 batch += nr_zapped; 6271 6272 if (unstable) 6273 goto restart; 6274 } 6275 6276 /* 6277 * Kick all vCPUs (via remote TLB flush) before freeing the page tables 6278 * to ensure KVM is not in the middle of a lockless shadow page table 6279 * walk, which may reference the pages. The remote TLB flush itself is 6280 * not required and is simply a convenient way to kick vCPUs as needed. 6281 * KVM performs a local TLB flush when allocating a new root (see 6282 * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are 6283 * running with an obsolete MMU. 6284 */ 6285 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages); 6286 } 6287 6288 /* 6289 * Fast invalidate all shadow pages and use lock-break technique 6290 * to zap obsolete pages. 6291 * 6292 * It's required when memslot is being deleted or VM is being 6293 * destroyed, in these cases, we should ensure that KVM MMU does 6294 * not use any resource of the being-deleted slot or all slots 6295 * after calling the function. 6296 */ 6297 static void kvm_mmu_zap_all_fast(struct kvm *kvm) 6298 { 6299 lockdep_assert_held(&kvm->slots_lock); 6300 6301 write_lock(&kvm->mmu_lock); 6302 trace_kvm_mmu_zap_all_fast(kvm); 6303 6304 /* 6305 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is 6306 * held for the entire duration of zapping obsolete pages, it's 6307 * impossible for there to be multiple invalid generations associated 6308 * with *valid* shadow pages at any given time, i.e. there is exactly 6309 * one valid generation and (at most) one invalid generation. 6310 */ 6311 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1; 6312 6313 /* 6314 * In order to ensure all vCPUs drop their soon-to-be invalid roots, 6315 * invalidating TDP MMU roots must be done while holding mmu_lock for 6316 * write and in the same critical section as making the reload request, 6317 * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield. 6318 */ 6319 if (tdp_mmu_enabled) 6320 kvm_tdp_mmu_invalidate_all_roots(kvm); 6321 6322 /* 6323 * Notify all vcpus to reload its shadow page table and flush TLB. 6324 * Then all vcpus will switch to new shadow page table with the new 6325 * mmu_valid_gen. 6326 * 6327 * Note: we need to do this under the protection of mmu_lock, 6328 * otherwise, vcpu would purge shadow page but miss tlb flush. 6329 */ 6330 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 6331 6332 kvm_zap_obsolete_pages(kvm); 6333 6334 write_unlock(&kvm->mmu_lock); 6335 6336 /* 6337 * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before 6338 * returning to the caller, e.g. if the zap is in response to a memslot 6339 * deletion, mmu_notifier callbacks will be unable to reach the SPTEs 6340 * associated with the deleted memslot once the update completes, and 6341 * Deferring the zap until the final reference to the root is put would 6342 * lead to use-after-free. 6343 */ 6344 if (tdp_mmu_enabled) 6345 kvm_tdp_mmu_zap_invalidated_roots(kvm); 6346 } 6347 6348 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm) 6349 { 6350 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages)); 6351 } 6352 6353 void kvm_mmu_init_vm(struct kvm *kvm) 6354 { 6355 kvm->arch.shadow_mmio_value = shadow_mmio_value; 6356 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 6357 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 6358 INIT_LIST_HEAD(&kvm->arch.possible_nx_huge_pages); 6359 spin_lock_init(&kvm->arch.mmu_unsync_pages_lock); 6360 6361 if (tdp_mmu_enabled) 6362 kvm_mmu_init_tdp_mmu(kvm); 6363 6364 kvm->arch.split_page_header_cache.kmem_cache = mmu_page_header_cache; 6365 kvm->arch.split_page_header_cache.gfp_zero = __GFP_ZERO; 6366 6367 kvm->arch.split_shadow_page_cache.gfp_zero = __GFP_ZERO; 6368 6369 kvm->arch.split_desc_cache.kmem_cache = pte_list_desc_cache; 6370 kvm->arch.split_desc_cache.gfp_zero = __GFP_ZERO; 6371 } 6372 6373 static void mmu_free_vm_memory_caches(struct kvm *kvm) 6374 { 6375 kvm_mmu_free_memory_cache(&kvm->arch.split_desc_cache); 6376 kvm_mmu_free_memory_cache(&kvm->arch.split_page_header_cache); 6377 kvm_mmu_free_memory_cache(&kvm->arch.split_shadow_page_cache); 6378 } 6379 6380 void kvm_mmu_uninit_vm(struct kvm *kvm) 6381 { 6382 if (tdp_mmu_enabled) 6383 kvm_mmu_uninit_tdp_mmu(kvm); 6384 6385 mmu_free_vm_memory_caches(kvm); 6386 } 6387 6388 static bool kvm_rmap_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 6389 { 6390 const struct kvm_memory_slot *memslot; 6391 struct kvm_memslots *slots; 6392 struct kvm_memslot_iter iter; 6393 bool flush = false; 6394 gfn_t start, end; 6395 int i; 6396 6397 if (!kvm_memslots_have_rmaps(kvm)) 6398 return flush; 6399 6400 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 6401 slots = __kvm_memslots(kvm, i); 6402 6403 kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) { 6404 memslot = iter.slot; 6405 start = max(gfn_start, memslot->base_gfn); 6406 end = min(gfn_end, memslot->base_gfn + memslot->npages); 6407 if (WARN_ON_ONCE(start >= end)) 6408 continue; 6409 6410 flush = __walk_slot_rmaps(kvm, memslot, __kvm_zap_rmap, 6411 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 6412 start, end - 1, true, flush); 6413 } 6414 } 6415 6416 return flush; 6417 } 6418 6419 /* 6420 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end 6421 * (not including it) 6422 */ 6423 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 6424 { 6425 bool flush; 6426 6427 if (WARN_ON_ONCE(gfn_end <= gfn_start)) 6428 return; 6429 6430 write_lock(&kvm->mmu_lock); 6431 6432 kvm_mmu_invalidate_begin(kvm); 6433 6434 kvm_mmu_invalidate_range_add(kvm, gfn_start, gfn_end); 6435 6436 flush = kvm_rmap_zap_gfn_range(kvm, gfn_start, gfn_end); 6437 6438 if (tdp_mmu_enabled) 6439 flush = kvm_tdp_mmu_zap_leafs(kvm, gfn_start, gfn_end, flush); 6440 6441 if (flush) 6442 kvm_flush_remote_tlbs_range(kvm, gfn_start, gfn_end - gfn_start); 6443 6444 kvm_mmu_invalidate_end(kvm); 6445 6446 write_unlock(&kvm->mmu_lock); 6447 } 6448 6449 static bool slot_rmap_write_protect(struct kvm *kvm, 6450 struct kvm_rmap_head *rmap_head, 6451 const struct kvm_memory_slot *slot) 6452 { 6453 return rmap_write_protect(rmap_head, false); 6454 } 6455 6456 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 6457 const struct kvm_memory_slot *memslot, 6458 int start_level) 6459 { 6460 if (kvm_memslots_have_rmaps(kvm)) { 6461 write_lock(&kvm->mmu_lock); 6462 walk_slot_rmaps(kvm, memslot, slot_rmap_write_protect, 6463 start_level, KVM_MAX_HUGEPAGE_LEVEL, false); 6464 write_unlock(&kvm->mmu_lock); 6465 } 6466 6467 if (tdp_mmu_enabled) { 6468 read_lock(&kvm->mmu_lock); 6469 kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level); 6470 read_unlock(&kvm->mmu_lock); 6471 } 6472 } 6473 6474 static inline bool need_topup(struct kvm_mmu_memory_cache *cache, int min) 6475 { 6476 return kvm_mmu_memory_cache_nr_free_objects(cache) < min; 6477 } 6478 6479 static bool need_topup_split_caches_or_resched(struct kvm *kvm) 6480 { 6481 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) 6482 return true; 6483 6484 /* 6485 * In the worst case, SPLIT_DESC_CACHE_MIN_NR_OBJECTS descriptors are needed 6486 * to split a single huge page. Calculating how many are actually needed 6487 * is possible but not worth the complexity. 6488 */ 6489 return need_topup(&kvm->arch.split_desc_cache, SPLIT_DESC_CACHE_MIN_NR_OBJECTS) || 6490 need_topup(&kvm->arch.split_page_header_cache, 1) || 6491 need_topup(&kvm->arch.split_shadow_page_cache, 1); 6492 } 6493 6494 static int topup_split_caches(struct kvm *kvm) 6495 { 6496 /* 6497 * Allocating rmap list entries when splitting huge pages for nested 6498 * MMUs is uncommon as KVM needs to use a list if and only if there is 6499 * more than one rmap entry for a gfn, i.e. requires an L1 gfn to be 6500 * aliased by multiple L2 gfns and/or from multiple nested roots with 6501 * different roles. Aliasing gfns when using TDP is atypical for VMMs; 6502 * a few gfns are often aliased during boot, e.g. when remapping BIOS, 6503 * but aliasing rarely occurs post-boot or for many gfns. If there is 6504 * only one rmap entry, rmap->val points directly at that one entry and 6505 * doesn't need to allocate a list. Buffer the cache by the default 6506 * capacity so that KVM doesn't have to drop mmu_lock to topup if KVM 6507 * encounters an aliased gfn or two. 6508 */ 6509 const int capacity = SPLIT_DESC_CACHE_MIN_NR_OBJECTS + 6510 KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE; 6511 int r; 6512 6513 lockdep_assert_held(&kvm->slots_lock); 6514 6515 r = __kvm_mmu_topup_memory_cache(&kvm->arch.split_desc_cache, capacity, 6516 SPLIT_DESC_CACHE_MIN_NR_OBJECTS); 6517 if (r) 6518 return r; 6519 6520 r = kvm_mmu_topup_memory_cache(&kvm->arch.split_page_header_cache, 1); 6521 if (r) 6522 return r; 6523 6524 return kvm_mmu_topup_memory_cache(&kvm->arch.split_shadow_page_cache, 1); 6525 } 6526 6527 static struct kvm_mmu_page *shadow_mmu_get_sp_for_split(struct kvm *kvm, u64 *huge_sptep) 6528 { 6529 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); 6530 struct shadow_page_caches caches = {}; 6531 union kvm_mmu_page_role role; 6532 unsigned int access; 6533 gfn_t gfn; 6534 6535 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep)); 6536 access = kvm_mmu_page_get_access(huge_sp, spte_index(huge_sptep)); 6537 6538 /* 6539 * Note, huge page splitting always uses direct shadow pages, regardless 6540 * of whether the huge page itself is mapped by a direct or indirect 6541 * shadow page, since the huge page region itself is being directly 6542 * mapped with smaller pages. 6543 */ 6544 role = kvm_mmu_child_role(huge_sptep, /*direct=*/true, access); 6545 6546 /* Direct SPs do not require a shadowed_info_cache. */ 6547 caches.page_header_cache = &kvm->arch.split_page_header_cache; 6548 caches.shadow_page_cache = &kvm->arch.split_shadow_page_cache; 6549 6550 /* Safe to pass NULL for vCPU since requesting a direct SP. */ 6551 return __kvm_mmu_get_shadow_page(kvm, NULL, &caches, gfn, role); 6552 } 6553 6554 static void shadow_mmu_split_huge_page(struct kvm *kvm, 6555 const struct kvm_memory_slot *slot, 6556 u64 *huge_sptep) 6557 6558 { 6559 struct kvm_mmu_memory_cache *cache = &kvm->arch.split_desc_cache; 6560 u64 huge_spte = READ_ONCE(*huge_sptep); 6561 struct kvm_mmu_page *sp; 6562 bool flush = false; 6563 u64 *sptep, spte; 6564 gfn_t gfn; 6565 int index; 6566 6567 sp = shadow_mmu_get_sp_for_split(kvm, huge_sptep); 6568 6569 for (index = 0; index < SPTE_ENT_PER_PAGE; index++) { 6570 sptep = &sp->spt[index]; 6571 gfn = kvm_mmu_page_get_gfn(sp, index); 6572 6573 /* 6574 * The SP may already have populated SPTEs, e.g. if this huge 6575 * page is aliased by multiple sptes with the same access 6576 * permissions. These entries are guaranteed to map the same 6577 * gfn-to-pfn translation since the SP is direct, so no need to 6578 * modify them. 6579 * 6580 * However, if a given SPTE points to a lower level page table, 6581 * that lower level page table may only be partially populated. 6582 * Installing such SPTEs would effectively unmap a potion of the 6583 * huge page. Unmapping guest memory always requires a TLB flush 6584 * since a subsequent operation on the unmapped regions would 6585 * fail to detect the need to flush. 6586 */ 6587 if (is_shadow_present_pte(*sptep)) { 6588 flush |= !is_last_spte(*sptep, sp->role.level); 6589 continue; 6590 } 6591 6592 spte = make_huge_page_split_spte(kvm, huge_spte, sp->role, index); 6593 mmu_spte_set(sptep, spte); 6594 __rmap_add(kvm, cache, slot, sptep, gfn, sp->role.access); 6595 } 6596 6597 __link_shadow_page(kvm, cache, huge_sptep, sp, flush); 6598 } 6599 6600 static int shadow_mmu_try_split_huge_page(struct kvm *kvm, 6601 const struct kvm_memory_slot *slot, 6602 u64 *huge_sptep) 6603 { 6604 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); 6605 int level, r = 0; 6606 gfn_t gfn; 6607 u64 spte; 6608 6609 /* Grab information for the tracepoint before dropping the MMU lock. */ 6610 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep)); 6611 level = huge_sp->role.level; 6612 spte = *huge_sptep; 6613 6614 if (kvm_mmu_available_pages(kvm) <= KVM_MIN_FREE_MMU_PAGES) { 6615 r = -ENOSPC; 6616 goto out; 6617 } 6618 6619 if (need_topup_split_caches_or_resched(kvm)) { 6620 write_unlock(&kvm->mmu_lock); 6621 cond_resched(); 6622 /* 6623 * If the topup succeeds, return -EAGAIN to indicate that the 6624 * rmap iterator should be restarted because the MMU lock was 6625 * dropped. 6626 */ 6627 r = topup_split_caches(kvm) ?: -EAGAIN; 6628 write_lock(&kvm->mmu_lock); 6629 goto out; 6630 } 6631 6632 shadow_mmu_split_huge_page(kvm, slot, huge_sptep); 6633 6634 out: 6635 trace_kvm_mmu_split_huge_page(gfn, spte, level, r); 6636 return r; 6637 } 6638 6639 static bool shadow_mmu_try_split_huge_pages(struct kvm *kvm, 6640 struct kvm_rmap_head *rmap_head, 6641 const struct kvm_memory_slot *slot) 6642 { 6643 struct rmap_iterator iter; 6644 struct kvm_mmu_page *sp; 6645 u64 *huge_sptep; 6646 int r; 6647 6648 restart: 6649 for_each_rmap_spte(rmap_head, &iter, huge_sptep) { 6650 sp = sptep_to_sp(huge_sptep); 6651 6652 /* TDP MMU is enabled, so rmap only contains nested MMU SPs. */ 6653 if (WARN_ON_ONCE(!sp->role.guest_mode)) 6654 continue; 6655 6656 /* The rmaps should never contain non-leaf SPTEs. */ 6657 if (WARN_ON_ONCE(!is_large_pte(*huge_sptep))) 6658 continue; 6659 6660 /* SPs with level >PG_LEVEL_4K should never by unsync. */ 6661 if (WARN_ON_ONCE(sp->unsync)) 6662 continue; 6663 6664 /* Don't bother splitting huge pages on invalid SPs. */ 6665 if (sp->role.invalid) 6666 continue; 6667 6668 r = shadow_mmu_try_split_huge_page(kvm, slot, huge_sptep); 6669 6670 /* 6671 * The split succeeded or needs to be retried because the MMU 6672 * lock was dropped. Either way, restart the iterator to get it 6673 * back into a consistent state. 6674 */ 6675 if (!r || r == -EAGAIN) 6676 goto restart; 6677 6678 /* The split failed and shouldn't be retried (e.g. -ENOMEM). */ 6679 break; 6680 } 6681 6682 return false; 6683 } 6684 6685 static void kvm_shadow_mmu_try_split_huge_pages(struct kvm *kvm, 6686 const struct kvm_memory_slot *slot, 6687 gfn_t start, gfn_t end, 6688 int target_level) 6689 { 6690 int level; 6691 6692 /* 6693 * Split huge pages starting with KVM_MAX_HUGEPAGE_LEVEL and working 6694 * down to the target level. This ensures pages are recursively split 6695 * all the way to the target level. There's no need to split pages 6696 * already at the target level. 6697 */ 6698 for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--) 6699 __walk_slot_rmaps(kvm, slot, shadow_mmu_try_split_huge_pages, 6700 level, level, start, end - 1, true, false); 6701 } 6702 6703 /* Must be called with the mmu_lock held in write-mode. */ 6704 void kvm_mmu_try_split_huge_pages(struct kvm *kvm, 6705 const struct kvm_memory_slot *memslot, 6706 u64 start, u64 end, 6707 int target_level) 6708 { 6709 if (!tdp_mmu_enabled) 6710 return; 6711 6712 if (kvm_memslots_have_rmaps(kvm)) 6713 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); 6714 6715 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, false); 6716 6717 /* 6718 * A TLB flush is unnecessary at this point for the same reasons as in 6719 * kvm_mmu_slot_try_split_huge_pages(). 6720 */ 6721 } 6722 6723 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, 6724 const struct kvm_memory_slot *memslot, 6725 int target_level) 6726 { 6727 u64 start = memslot->base_gfn; 6728 u64 end = start + memslot->npages; 6729 6730 if (!tdp_mmu_enabled) 6731 return; 6732 6733 if (kvm_memslots_have_rmaps(kvm)) { 6734 write_lock(&kvm->mmu_lock); 6735 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); 6736 write_unlock(&kvm->mmu_lock); 6737 } 6738 6739 read_lock(&kvm->mmu_lock); 6740 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true); 6741 read_unlock(&kvm->mmu_lock); 6742 6743 /* 6744 * No TLB flush is necessary here. KVM will flush TLBs after 6745 * write-protecting and/or clearing dirty on the newly split SPTEs to 6746 * ensure that guest writes are reflected in the dirty log before the 6747 * ioctl to enable dirty logging on this memslot completes. Since the 6748 * split SPTEs retain the write and dirty bits of the huge SPTE, it is 6749 * safe for KVM to decide if a TLB flush is necessary based on the split 6750 * SPTEs. 6751 */ 6752 } 6753 6754 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, 6755 struct kvm_rmap_head *rmap_head, 6756 const struct kvm_memory_slot *slot) 6757 { 6758 u64 *sptep; 6759 struct rmap_iterator iter; 6760 int need_tlb_flush = 0; 6761 struct kvm_mmu_page *sp; 6762 6763 restart: 6764 for_each_rmap_spte(rmap_head, &iter, sptep) { 6765 sp = sptep_to_sp(sptep); 6766 6767 /* 6768 * We cannot do huge page mapping for indirect shadow pages, 6769 * which are found on the last rmap (level = 1) when not using 6770 * tdp; such shadow pages are synced with the page table in 6771 * the guest, and the guest page table is using 4K page size 6772 * mapping if the indirect sp has level = 1. 6773 */ 6774 if (sp->role.direct && 6775 sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn, 6776 PG_LEVEL_NUM)) { 6777 kvm_zap_one_rmap_spte(kvm, rmap_head, sptep); 6778 6779 if (kvm_available_flush_remote_tlbs_range()) 6780 kvm_flush_remote_tlbs_sptep(kvm, sptep); 6781 else 6782 need_tlb_flush = 1; 6783 6784 goto restart; 6785 } 6786 } 6787 6788 return need_tlb_flush; 6789 } 6790 6791 static void kvm_rmap_zap_collapsible_sptes(struct kvm *kvm, 6792 const struct kvm_memory_slot *slot) 6793 { 6794 /* 6795 * Note, use KVM_MAX_HUGEPAGE_LEVEL - 1 since there's no need to zap 6796 * pages that are already mapped at the maximum hugepage level. 6797 */ 6798 if (walk_slot_rmaps(kvm, slot, kvm_mmu_zap_collapsible_spte, 6799 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL - 1, true)) 6800 kvm_flush_remote_tlbs_memslot(kvm, slot); 6801 } 6802 6803 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, 6804 const struct kvm_memory_slot *slot) 6805 { 6806 if (kvm_memslots_have_rmaps(kvm)) { 6807 write_lock(&kvm->mmu_lock); 6808 kvm_rmap_zap_collapsible_sptes(kvm, slot); 6809 write_unlock(&kvm->mmu_lock); 6810 } 6811 6812 if (tdp_mmu_enabled) { 6813 read_lock(&kvm->mmu_lock); 6814 kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot); 6815 read_unlock(&kvm->mmu_lock); 6816 } 6817 } 6818 6819 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 6820 const struct kvm_memory_slot *memslot) 6821 { 6822 if (kvm_memslots_have_rmaps(kvm)) { 6823 write_lock(&kvm->mmu_lock); 6824 /* 6825 * Clear dirty bits only on 4k SPTEs since the legacy MMU only 6826 * support dirty logging at a 4k granularity. 6827 */ 6828 walk_slot_rmaps_4k(kvm, memslot, __rmap_clear_dirty, false); 6829 write_unlock(&kvm->mmu_lock); 6830 } 6831 6832 if (tdp_mmu_enabled) { 6833 read_lock(&kvm->mmu_lock); 6834 kvm_tdp_mmu_clear_dirty_slot(kvm, memslot); 6835 read_unlock(&kvm->mmu_lock); 6836 } 6837 6838 /* 6839 * The caller will flush the TLBs after this function returns. 6840 * 6841 * It's also safe to flush TLBs out of mmu lock here as currently this 6842 * function is only used for dirty logging, in which case flushing TLB 6843 * out of mmu lock also guarantees no dirty pages will be lost in 6844 * dirty_bitmap. 6845 */ 6846 } 6847 6848 static void kvm_mmu_zap_all(struct kvm *kvm) 6849 { 6850 struct kvm_mmu_page *sp, *node; 6851 LIST_HEAD(invalid_list); 6852 int ign; 6853 6854 write_lock(&kvm->mmu_lock); 6855 restart: 6856 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) { 6857 if (WARN_ON_ONCE(sp->role.invalid)) 6858 continue; 6859 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign)) 6860 goto restart; 6861 if (cond_resched_rwlock_write(&kvm->mmu_lock)) 6862 goto restart; 6863 } 6864 6865 kvm_mmu_commit_zap_page(kvm, &invalid_list); 6866 6867 if (tdp_mmu_enabled) 6868 kvm_tdp_mmu_zap_all(kvm); 6869 6870 write_unlock(&kvm->mmu_lock); 6871 } 6872 6873 void kvm_arch_flush_shadow_all(struct kvm *kvm) 6874 { 6875 kvm_mmu_zap_all(kvm); 6876 } 6877 6878 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 6879 struct kvm_memory_slot *slot) 6880 { 6881 kvm_mmu_zap_all_fast(kvm); 6882 } 6883 6884 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen) 6885 { 6886 WARN_ON_ONCE(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 6887 6888 gen &= MMIO_SPTE_GEN_MASK; 6889 6890 /* 6891 * Generation numbers are incremented in multiples of the number of 6892 * address spaces in order to provide unique generations across all 6893 * address spaces. Strip what is effectively the address space 6894 * modifier prior to checking for a wrap of the MMIO generation so 6895 * that a wrap in any address space is detected. 6896 */ 6897 gen &= ~((u64)kvm_arch_nr_memslot_as_ids(kvm) - 1); 6898 6899 /* 6900 * The very rare case: if the MMIO generation number has wrapped, 6901 * zap all shadow pages. 6902 */ 6903 if (unlikely(gen == 0)) { 6904 kvm_debug_ratelimited("zapping shadow pages for mmio generation wraparound\n"); 6905 kvm_mmu_zap_all_fast(kvm); 6906 } 6907 } 6908 6909 static unsigned long mmu_shrink_scan(struct shrinker *shrink, 6910 struct shrink_control *sc) 6911 { 6912 struct kvm *kvm; 6913 int nr_to_scan = sc->nr_to_scan; 6914 unsigned long freed = 0; 6915 6916 mutex_lock(&kvm_lock); 6917 6918 list_for_each_entry(kvm, &vm_list, vm_list) { 6919 int idx; 6920 LIST_HEAD(invalid_list); 6921 6922 /* 6923 * Never scan more than sc->nr_to_scan VM instances. 6924 * Will not hit this condition practically since we do not try 6925 * to shrink more than one VM and it is very unlikely to see 6926 * !n_used_mmu_pages so many times. 6927 */ 6928 if (!nr_to_scan--) 6929 break; 6930 /* 6931 * n_used_mmu_pages is accessed without holding kvm->mmu_lock 6932 * here. We may skip a VM instance errorneosly, but we do not 6933 * want to shrink a VM that only started to populate its MMU 6934 * anyway. 6935 */ 6936 if (!kvm->arch.n_used_mmu_pages && 6937 !kvm_has_zapped_obsolete_pages(kvm)) 6938 continue; 6939 6940 idx = srcu_read_lock(&kvm->srcu); 6941 write_lock(&kvm->mmu_lock); 6942 6943 if (kvm_has_zapped_obsolete_pages(kvm)) { 6944 kvm_mmu_commit_zap_page(kvm, 6945 &kvm->arch.zapped_obsolete_pages); 6946 goto unlock; 6947 } 6948 6949 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan); 6950 6951 unlock: 6952 write_unlock(&kvm->mmu_lock); 6953 srcu_read_unlock(&kvm->srcu, idx); 6954 6955 /* 6956 * unfair on small ones 6957 * per-vm shrinkers cry out 6958 * sadness comes quickly 6959 */ 6960 list_move_tail(&kvm->vm_list, &vm_list); 6961 break; 6962 } 6963 6964 mutex_unlock(&kvm_lock); 6965 return freed; 6966 } 6967 6968 static unsigned long mmu_shrink_count(struct shrinker *shrink, 6969 struct shrink_control *sc) 6970 { 6971 return percpu_counter_read_positive(&kvm_total_used_mmu_pages); 6972 } 6973 6974 static struct shrinker *mmu_shrinker; 6975 6976 static void mmu_destroy_caches(void) 6977 { 6978 kmem_cache_destroy(pte_list_desc_cache); 6979 kmem_cache_destroy(mmu_page_header_cache); 6980 } 6981 6982 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp) 6983 { 6984 if (nx_hugepage_mitigation_hard_disabled) 6985 return sysfs_emit(buffer, "never\n"); 6986 6987 return param_get_bool(buffer, kp); 6988 } 6989 6990 static bool get_nx_auto_mode(void) 6991 { 6992 /* Return true when CPU has the bug, and mitigations are ON */ 6993 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off(); 6994 } 6995 6996 static void __set_nx_huge_pages(bool val) 6997 { 6998 nx_huge_pages = itlb_multihit_kvm_mitigation = val; 6999 } 7000 7001 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp) 7002 { 7003 bool old_val = nx_huge_pages; 7004 bool new_val; 7005 7006 if (nx_hugepage_mitigation_hard_disabled) 7007 return -EPERM; 7008 7009 /* In "auto" mode deploy workaround only if CPU has the bug. */ 7010 if (sysfs_streq(val, "off")) { 7011 new_val = 0; 7012 } else if (sysfs_streq(val, "force")) { 7013 new_val = 1; 7014 } else if (sysfs_streq(val, "auto")) { 7015 new_val = get_nx_auto_mode(); 7016 } else if (sysfs_streq(val, "never")) { 7017 new_val = 0; 7018 7019 mutex_lock(&kvm_lock); 7020 if (!list_empty(&vm_list)) { 7021 mutex_unlock(&kvm_lock); 7022 return -EBUSY; 7023 } 7024 nx_hugepage_mitigation_hard_disabled = true; 7025 mutex_unlock(&kvm_lock); 7026 } else if (kstrtobool(val, &new_val) < 0) { 7027 return -EINVAL; 7028 } 7029 7030 __set_nx_huge_pages(new_val); 7031 7032 if (new_val != old_val) { 7033 struct kvm *kvm; 7034 7035 mutex_lock(&kvm_lock); 7036 7037 list_for_each_entry(kvm, &vm_list, vm_list) { 7038 mutex_lock(&kvm->slots_lock); 7039 kvm_mmu_zap_all_fast(kvm); 7040 mutex_unlock(&kvm->slots_lock); 7041 7042 wake_up_process(kvm->arch.nx_huge_page_recovery_thread); 7043 } 7044 mutex_unlock(&kvm_lock); 7045 } 7046 7047 return 0; 7048 } 7049 7050 /* 7051 * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as 7052 * its default value of -1 is technically undefined behavior for a boolean. 7053 * Forward the module init call to SPTE code so that it too can handle module 7054 * params that need to be resolved/snapshot. 7055 */ 7056 void __init kvm_mmu_x86_module_init(void) 7057 { 7058 if (nx_huge_pages == -1) 7059 __set_nx_huge_pages(get_nx_auto_mode()); 7060 7061 /* 7062 * Snapshot userspace's desire to enable the TDP MMU. Whether or not the 7063 * TDP MMU is actually enabled is determined in kvm_configure_mmu() 7064 * when the vendor module is loaded. 7065 */ 7066 tdp_mmu_allowed = tdp_mmu_enabled; 7067 7068 kvm_mmu_spte_module_init(); 7069 } 7070 7071 /* 7072 * The bulk of the MMU initialization is deferred until the vendor module is 7073 * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need 7074 * to be reset when a potentially different vendor module is loaded. 7075 */ 7076 int kvm_mmu_vendor_module_init(void) 7077 { 7078 int ret = -ENOMEM; 7079 7080 /* 7081 * MMU roles use union aliasing which is, generally speaking, an 7082 * undefined behavior. However, we supposedly know how compilers behave 7083 * and the current status quo is unlikely to change. Guardians below are 7084 * supposed to let us know if the assumption becomes false. 7085 */ 7086 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32)); 7087 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32)); 7088 BUILD_BUG_ON(sizeof(union kvm_cpu_role) != sizeof(u64)); 7089 7090 kvm_mmu_reset_all_pte_masks(); 7091 7092 pte_list_desc_cache = KMEM_CACHE(pte_list_desc, SLAB_ACCOUNT); 7093 if (!pte_list_desc_cache) 7094 goto out; 7095 7096 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", 7097 sizeof(struct kvm_mmu_page), 7098 0, SLAB_ACCOUNT, NULL); 7099 if (!mmu_page_header_cache) 7100 goto out; 7101 7102 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL)) 7103 goto out; 7104 7105 mmu_shrinker = shrinker_alloc(0, "x86-mmu"); 7106 if (!mmu_shrinker) 7107 goto out_shrinker; 7108 7109 mmu_shrinker->count_objects = mmu_shrink_count; 7110 mmu_shrinker->scan_objects = mmu_shrink_scan; 7111 mmu_shrinker->seeks = DEFAULT_SEEKS * 10; 7112 7113 shrinker_register(mmu_shrinker); 7114 7115 return 0; 7116 7117 out_shrinker: 7118 percpu_counter_destroy(&kvm_total_used_mmu_pages); 7119 out: 7120 mmu_destroy_caches(); 7121 return ret; 7122 } 7123 7124 void kvm_mmu_destroy(struct kvm_vcpu *vcpu) 7125 { 7126 kvm_mmu_unload(vcpu); 7127 free_mmu_pages(&vcpu->arch.root_mmu); 7128 free_mmu_pages(&vcpu->arch.guest_mmu); 7129 mmu_free_memory_caches(vcpu); 7130 } 7131 7132 void kvm_mmu_vendor_module_exit(void) 7133 { 7134 mmu_destroy_caches(); 7135 percpu_counter_destroy(&kvm_total_used_mmu_pages); 7136 shrinker_free(mmu_shrinker); 7137 } 7138 7139 /* 7140 * Calculate the effective recovery period, accounting for '0' meaning "let KVM 7141 * select a halving time of 1 hour". Returns true if recovery is enabled. 7142 */ 7143 static bool calc_nx_huge_pages_recovery_period(uint *period) 7144 { 7145 /* 7146 * Use READ_ONCE to get the params, this may be called outside of the 7147 * param setters, e.g. by the kthread to compute its next timeout. 7148 */ 7149 bool enabled = READ_ONCE(nx_huge_pages); 7150 uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 7151 7152 if (!enabled || !ratio) 7153 return false; 7154 7155 *period = READ_ONCE(nx_huge_pages_recovery_period_ms); 7156 if (!*period) { 7157 /* Make sure the period is not less than one second. */ 7158 ratio = min(ratio, 3600u); 7159 *period = 60 * 60 * 1000 / ratio; 7160 } 7161 return true; 7162 } 7163 7164 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp) 7165 { 7166 bool was_recovery_enabled, is_recovery_enabled; 7167 uint old_period, new_period; 7168 int err; 7169 7170 if (nx_hugepage_mitigation_hard_disabled) 7171 return -EPERM; 7172 7173 was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period); 7174 7175 err = param_set_uint(val, kp); 7176 if (err) 7177 return err; 7178 7179 is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period); 7180 7181 if (is_recovery_enabled && 7182 (!was_recovery_enabled || old_period > new_period)) { 7183 struct kvm *kvm; 7184 7185 mutex_lock(&kvm_lock); 7186 7187 list_for_each_entry(kvm, &vm_list, vm_list) 7188 wake_up_process(kvm->arch.nx_huge_page_recovery_thread); 7189 7190 mutex_unlock(&kvm_lock); 7191 } 7192 7193 return err; 7194 } 7195 7196 static void kvm_recover_nx_huge_pages(struct kvm *kvm) 7197 { 7198 unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits; 7199 struct kvm_memory_slot *slot; 7200 int rcu_idx; 7201 struct kvm_mmu_page *sp; 7202 unsigned int ratio; 7203 LIST_HEAD(invalid_list); 7204 bool flush = false; 7205 ulong to_zap; 7206 7207 rcu_idx = srcu_read_lock(&kvm->srcu); 7208 write_lock(&kvm->mmu_lock); 7209 7210 /* 7211 * Zapping TDP MMU shadow pages, including the remote TLB flush, must 7212 * be done under RCU protection, because the pages are freed via RCU 7213 * callback. 7214 */ 7215 rcu_read_lock(); 7216 7217 ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 7218 to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0; 7219 for ( ; to_zap; --to_zap) { 7220 if (list_empty(&kvm->arch.possible_nx_huge_pages)) 7221 break; 7222 7223 /* 7224 * We use a separate list instead of just using active_mmu_pages 7225 * because the number of shadow pages that be replaced with an 7226 * NX huge page is expected to be relatively small compared to 7227 * the total number of shadow pages. And because the TDP MMU 7228 * doesn't use active_mmu_pages. 7229 */ 7230 sp = list_first_entry(&kvm->arch.possible_nx_huge_pages, 7231 struct kvm_mmu_page, 7232 possible_nx_huge_page_link); 7233 WARN_ON_ONCE(!sp->nx_huge_page_disallowed); 7234 WARN_ON_ONCE(!sp->role.direct); 7235 7236 /* 7237 * Unaccount and do not attempt to recover any NX Huge Pages 7238 * that are being dirty tracked, as they would just be faulted 7239 * back in as 4KiB pages. The NX Huge Pages in this slot will be 7240 * recovered, along with all the other huge pages in the slot, 7241 * when dirty logging is disabled. 7242 * 7243 * Since gfn_to_memslot() is relatively expensive, it helps to 7244 * skip it if it the test cannot possibly return true. On the 7245 * other hand, if any memslot has logging enabled, chances are 7246 * good that all of them do, in which case unaccount_nx_huge_page() 7247 * is much cheaper than zapping the page. 7248 * 7249 * If a memslot update is in progress, reading an incorrect value 7250 * of kvm->nr_memslots_dirty_logging is not a problem: if it is 7251 * becoming zero, gfn_to_memslot() will be done unnecessarily; if 7252 * it is becoming nonzero, the page will be zapped unnecessarily. 7253 * Either way, this only affects efficiency in racy situations, 7254 * and not correctness. 7255 */ 7256 slot = NULL; 7257 if (atomic_read(&kvm->nr_memslots_dirty_logging)) { 7258 struct kvm_memslots *slots; 7259 7260 slots = kvm_memslots_for_spte_role(kvm, sp->role); 7261 slot = __gfn_to_memslot(slots, sp->gfn); 7262 WARN_ON_ONCE(!slot); 7263 } 7264 7265 if (slot && kvm_slot_dirty_track_enabled(slot)) 7266 unaccount_nx_huge_page(kvm, sp); 7267 else if (is_tdp_mmu_page(sp)) 7268 flush |= kvm_tdp_mmu_zap_sp(kvm, sp); 7269 else 7270 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 7271 WARN_ON_ONCE(sp->nx_huge_page_disallowed); 7272 7273 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 7274 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7275 rcu_read_unlock(); 7276 7277 cond_resched_rwlock_write(&kvm->mmu_lock); 7278 flush = false; 7279 7280 rcu_read_lock(); 7281 } 7282 } 7283 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7284 7285 rcu_read_unlock(); 7286 7287 write_unlock(&kvm->mmu_lock); 7288 srcu_read_unlock(&kvm->srcu, rcu_idx); 7289 } 7290 7291 static long get_nx_huge_page_recovery_timeout(u64 start_time) 7292 { 7293 bool enabled; 7294 uint period; 7295 7296 enabled = calc_nx_huge_pages_recovery_period(&period); 7297 7298 return enabled ? start_time + msecs_to_jiffies(period) - get_jiffies_64() 7299 : MAX_SCHEDULE_TIMEOUT; 7300 } 7301 7302 static int kvm_nx_huge_page_recovery_worker(struct kvm *kvm, uintptr_t data) 7303 { 7304 u64 start_time; 7305 long remaining_time; 7306 7307 while (true) { 7308 start_time = get_jiffies_64(); 7309 remaining_time = get_nx_huge_page_recovery_timeout(start_time); 7310 7311 set_current_state(TASK_INTERRUPTIBLE); 7312 while (!kthread_should_stop() && remaining_time > 0) { 7313 schedule_timeout(remaining_time); 7314 remaining_time = get_nx_huge_page_recovery_timeout(start_time); 7315 set_current_state(TASK_INTERRUPTIBLE); 7316 } 7317 7318 set_current_state(TASK_RUNNING); 7319 7320 if (kthread_should_stop()) 7321 return 0; 7322 7323 kvm_recover_nx_huge_pages(kvm); 7324 } 7325 } 7326 7327 int kvm_mmu_post_init_vm(struct kvm *kvm) 7328 { 7329 int err; 7330 7331 if (nx_hugepage_mitigation_hard_disabled) 7332 return 0; 7333 7334 err = kvm_vm_create_worker_thread(kvm, kvm_nx_huge_page_recovery_worker, 0, 7335 "kvm-nx-lpage-recovery", 7336 &kvm->arch.nx_huge_page_recovery_thread); 7337 if (!err) 7338 kthread_unpark(kvm->arch.nx_huge_page_recovery_thread); 7339 7340 return err; 7341 } 7342 7343 void kvm_mmu_pre_destroy_vm(struct kvm *kvm) 7344 { 7345 if (kvm->arch.nx_huge_page_recovery_thread) 7346 kthread_stop(kvm->arch.nx_huge_page_recovery_thread); 7347 } 7348 7349 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 7350 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm, 7351 struct kvm_gfn_range *range) 7352 { 7353 /* 7354 * Zap SPTEs even if the slot can't be mapped PRIVATE. KVM x86 only 7355 * supports KVM_MEMORY_ATTRIBUTE_PRIVATE, and so it *seems* like KVM 7356 * can simply ignore such slots. But if userspace is making memory 7357 * PRIVATE, then KVM must prevent the guest from accessing the memory 7358 * as shared. And if userspace is making memory SHARED and this point 7359 * is reached, then at least one page within the range was previously 7360 * PRIVATE, i.e. the slot's possible hugepage ranges are changing. 7361 * Zapping SPTEs in this case ensures KVM will reassess whether or not 7362 * a hugepage can be used for affected ranges. 7363 */ 7364 if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm))) 7365 return false; 7366 7367 return kvm_unmap_gfn_range(kvm, range); 7368 } 7369 7370 static bool hugepage_test_mixed(struct kvm_memory_slot *slot, gfn_t gfn, 7371 int level) 7372 { 7373 return lpage_info_slot(gfn, slot, level)->disallow_lpage & KVM_LPAGE_MIXED_FLAG; 7374 } 7375 7376 static void hugepage_clear_mixed(struct kvm_memory_slot *slot, gfn_t gfn, 7377 int level) 7378 { 7379 lpage_info_slot(gfn, slot, level)->disallow_lpage &= ~KVM_LPAGE_MIXED_FLAG; 7380 } 7381 7382 static void hugepage_set_mixed(struct kvm_memory_slot *slot, gfn_t gfn, 7383 int level) 7384 { 7385 lpage_info_slot(gfn, slot, level)->disallow_lpage |= KVM_LPAGE_MIXED_FLAG; 7386 } 7387 7388 static bool hugepage_has_attrs(struct kvm *kvm, struct kvm_memory_slot *slot, 7389 gfn_t gfn, int level, unsigned long attrs) 7390 { 7391 const unsigned long start = gfn; 7392 const unsigned long end = start + KVM_PAGES_PER_HPAGE(level); 7393 7394 if (level == PG_LEVEL_2M) 7395 return kvm_range_has_memory_attributes(kvm, start, end, attrs); 7396 7397 for (gfn = start; gfn < end; gfn += KVM_PAGES_PER_HPAGE(level - 1)) { 7398 if (hugepage_test_mixed(slot, gfn, level - 1) || 7399 attrs != kvm_get_memory_attributes(kvm, gfn)) 7400 return false; 7401 } 7402 return true; 7403 } 7404 7405 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm, 7406 struct kvm_gfn_range *range) 7407 { 7408 unsigned long attrs = range->arg.attributes; 7409 struct kvm_memory_slot *slot = range->slot; 7410 int level; 7411 7412 lockdep_assert_held_write(&kvm->mmu_lock); 7413 lockdep_assert_held(&kvm->slots_lock); 7414 7415 /* 7416 * Calculate which ranges can be mapped with hugepages even if the slot 7417 * can't map memory PRIVATE. KVM mustn't create a SHARED hugepage over 7418 * a range that has PRIVATE GFNs, and conversely converting a range to 7419 * SHARED may now allow hugepages. 7420 */ 7421 if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm))) 7422 return false; 7423 7424 /* 7425 * The sequence matters here: upper levels consume the result of lower 7426 * level's scanning. 7427 */ 7428 for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) { 7429 gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level); 7430 gfn_t gfn = gfn_round_for_level(range->start, level); 7431 7432 /* Process the head page if it straddles the range. */ 7433 if (gfn != range->start || gfn + nr_pages > range->end) { 7434 /* 7435 * Skip mixed tracking if the aligned gfn isn't covered 7436 * by the memslot, KVM can't use a hugepage due to the 7437 * misaligned address regardless of memory attributes. 7438 */ 7439 if (gfn >= slot->base_gfn && 7440 gfn + nr_pages <= slot->base_gfn + slot->npages) { 7441 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs)) 7442 hugepage_clear_mixed(slot, gfn, level); 7443 else 7444 hugepage_set_mixed(slot, gfn, level); 7445 } 7446 gfn += nr_pages; 7447 } 7448 7449 /* 7450 * Pages entirely covered by the range are guaranteed to have 7451 * only the attributes which were just set. 7452 */ 7453 for ( ; gfn + nr_pages <= range->end; gfn += nr_pages) 7454 hugepage_clear_mixed(slot, gfn, level); 7455 7456 /* 7457 * Process the last tail page if it straddles the range and is 7458 * contained by the memslot. Like the head page, KVM can't 7459 * create a hugepage if the slot size is misaligned. 7460 */ 7461 if (gfn < range->end && 7462 (gfn + nr_pages) <= (slot->base_gfn + slot->npages)) { 7463 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs)) 7464 hugepage_clear_mixed(slot, gfn, level); 7465 else 7466 hugepage_set_mixed(slot, gfn, level); 7467 } 7468 } 7469 return false; 7470 } 7471 7472 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm, 7473 struct kvm_memory_slot *slot) 7474 { 7475 int level; 7476 7477 if (!kvm_arch_has_private_mem(kvm)) 7478 return; 7479 7480 for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) { 7481 /* 7482 * Don't bother tracking mixed attributes for pages that can't 7483 * be huge due to alignment, i.e. process only pages that are 7484 * entirely contained by the memslot. 7485 */ 7486 gfn_t end = gfn_round_for_level(slot->base_gfn + slot->npages, level); 7487 gfn_t start = gfn_round_for_level(slot->base_gfn, level); 7488 gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level); 7489 gfn_t gfn; 7490 7491 if (start < slot->base_gfn) 7492 start += nr_pages; 7493 7494 /* 7495 * Unlike setting attributes, every potential hugepage needs to 7496 * be manually checked as the attributes may already be mixed. 7497 */ 7498 for (gfn = start; gfn < end; gfn += nr_pages) { 7499 unsigned long attrs = kvm_get_memory_attributes(kvm, gfn); 7500 7501 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs)) 7502 hugepage_clear_mixed(slot, gfn, level); 7503 else 7504 hugepage_set_mixed(slot, gfn, level); 7505 } 7506 } 7507 } 7508 #endif 7509