1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * MMU support 9 * 10 * Copyright (C) 2006 Qumranet, Inc. 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 12 * 13 * Authors: 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Avi Kivity <avi@qumranet.com> 16 */ 17 18 #include "irq.h" 19 #include "ioapic.h" 20 #include "mmu.h" 21 #include "mmu_internal.h" 22 #include "tdp_mmu.h" 23 #include "x86.h" 24 #include "kvm_cache_regs.h" 25 #include "kvm_emulate.h" 26 #include "cpuid.h" 27 #include "spte.h" 28 29 #include <linux/kvm_host.h> 30 #include <linux/types.h> 31 #include <linux/string.h> 32 #include <linux/mm.h> 33 #include <linux/highmem.h> 34 #include <linux/moduleparam.h> 35 #include <linux/export.h> 36 #include <linux/swap.h> 37 #include <linux/hugetlb.h> 38 #include <linux/compiler.h> 39 #include <linux/srcu.h> 40 #include <linux/slab.h> 41 #include <linux/sched/signal.h> 42 #include <linux/uaccess.h> 43 #include <linux/hash.h> 44 #include <linux/kern_levels.h> 45 #include <linux/kthread.h> 46 47 #include <asm/page.h> 48 #include <asm/memtype.h> 49 #include <asm/cmpxchg.h> 50 #include <asm/io.h> 51 #include <asm/set_memory.h> 52 #include <asm/vmx.h> 53 #include <asm/kvm_page_track.h> 54 #include "trace.h" 55 56 extern bool itlb_multihit_kvm_mitigation; 57 58 int __read_mostly nx_huge_pages = -1; 59 static uint __read_mostly nx_huge_pages_recovery_period_ms; 60 #ifdef CONFIG_PREEMPT_RT 61 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */ 62 static uint __read_mostly nx_huge_pages_recovery_ratio = 0; 63 #else 64 static uint __read_mostly nx_huge_pages_recovery_ratio = 60; 65 #endif 66 67 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp); 68 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp); 69 70 static const struct kernel_param_ops nx_huge_pages_ops = { 71 .set = set_nx_huge_pages, 72 .get = param_get_bool, 73 }; 74 75 static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = { 76 .set = set_nx_huge_pages_recovery_param, 77 .get = param_get_uint, 78 }; 79 80 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644); 81 __MODULE_PARM_TYPE(nx_huge_pages, "bool"); 82 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops, 83 &nx_huge_pages_recovery_ratio, 0644); 84 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint"); 85 module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops, 86 &nx_huge_pages_recovery_period_ms, 0644); 87 __MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint"); 88 89 static bool __read_mostly force_flush_and_sync_on_reuse; 90 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644); 91 92 /* 93 * When setting this variable to true it enables Two-Dimensional-Paging 94 * where the hardware walks 2 page tables: 95 * 1. the guest-virtual to guest-physical 96 * 2. while doing 1. it walks guest-physical to host-physical 97 * If the hardware supports that we don't need to do shadow paging. 98 */ 99 bool tdp_enabled = false; 100 101 static int max_huge_page_level __read_mostly; 102 static int tdp_root_level __read_mostly; 103 static int max_tdp_level __read_mostly; 104 105 #ifdef MMU_DEBUG 106 bool dbg = 0; 107 module_param(dbg, bool, 0644); 108 #endif 109 110 #define PTE_PREFETCH_NUM 8 111 112 #include <trace/events/kvm.h> 113 114 /* make pte_list_desc fit well in cache lines */ 115 #define PTE_LIST_EXT 14 116 117 /* 118 * Slight optimization of cacheline layout, by putting `more' and `spte_count' 119 * at the start; then accessing it will only use one single cacheline for 120 * either full (entries==PTE_LIST_EXT) case or entries<=6. 121 */ 122 struct pte_list_desc { 123 struct pte_list_desc *more; 124 /* 125 * Stores number of entries stored in the pte_list_desc. No need to be 126 * u64 but just for easier alignment. When PTE_LIST_EXT, means full. 127 */ 128 u64 spte_count; 129 u64 *sptes[PTE_LIST_EXT]; 130 }; 131 132 struct kvm_shadow_walk_iterator { 133 u64 addr; 134 hpa_t shadow_addr; 135 u64 *sptep; 136 int level; 137 unsigned index; 138 }; 139 140 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \ 141 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \ 142 (_root), (_addr)); \ 143 shadow_walk_okay(&(_walker)); \ 144 shadow_walk_next(&(_walker))) 145 146 #define for_each_shadow_entry(_vcpu, _addr, _walker) \ 147 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 148 shadow_walk_okay(&(_walker)); \ 149 shadow_walk_next(&(_walker))) 150 151 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \ 152 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 153 shadow_walk_okay(&(_walker)) && \ 154 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \ 155 __shadow_walk_next(&(_walker), spte)) 156 157 static struct kmem_cache *pte_list_desc_cache; 158 struct kmem_cache *mmu_page_header_cache; 159 static struct percpu_counter kvm_total_used_mmu_pages; 160 161 static void mmu_spte_set(u64 *sptep, u64 spte); 162 163 struct kvm_mmu_role_regs { 164 const unsigned long cr0; 165 const unsigned long cr4; 166 const u64 efer; 167 }; 168 169 #define CREATE_TRACE_POINTS 170 #include "mmutrace.h" 171 172 /* 173 * Yes, lot's of underscores. They're a hint that you probably shouldn't be 174 * reading from the role_regs. Once the root_role is constructed, it becomes 175 * the single source of truth for the MMU's state. 176 */ 177 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag) \ 178 static inline bool __maybe_unused \ 179 ____is_##reg##_##name(const struct kvm_mmu_role_regs *regs) \ 180 { \ 181 return !!(regs->reg & flag); \ 182 } 183 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG); 184 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP); 185 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE); 186 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE); 187 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP); 188 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP); 189 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE); 190 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57); 191 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX); 192 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA); 193 194 /* 195 * The MMU itself (with a valid role) is the single source of truth for the 196 * MMU. Do not use the regs used to build the MMU/role, nor the vCPU. The 197 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1, 198 * and the vCPU may be incorrect/irrelevant. 199 */ 200 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name) \ 201 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu) \ 202 { \ 203 return !!(mmu->cpu_role. base_or_ext . reg##_##name); \ 204 } 205 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp); 206 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pse); 207 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smep); 208 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smap); 209 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pke); 210 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, la57); 211 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx); 212 BUILD_MMU_ROLE_ACCESSOR(ext, efer, lma); 213 214 static inline bool is_cr0_pg(struct kvm_mmu *mmu) 215 { 216 return mmu->cpu_role.base.level > 0; 217 } 218 219 static inline bool is_cr4_pae(struct kvm_mmu *mmu) 220 { 221 return !mmu->cpu_role.base.has_4_byte_gpte; 222 } 223 224 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu) 225 { 226 struct kvm_mmu_role_regs regs = { 227 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS), 228 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS), 229 .efer = vcpu->arch.efer, 230 }; 231 232 return regs; 233 } 234 235 static inline bool kvm_available_flush_tlb_with_range(void) 236 { 237 return kvm_x86_ops.tlb_remote_flush_with_range; 238 } 239 240 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm, 241 struct kvm_tlb_range *range) 242 { 243 int ret = -ENOTSUPP; 244 245 if (range && kvm_x86_ops.tlb_remote_flush_with_range) 246 ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range); 247 248 if (ret) 249 kvm_flush_remote_tlbs(kvm); 250 } 251 252 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm, 253 u64 start_gfn, u64 pages) 254 { 255 struct kvm_tlb_range range; 256 257 range.start_gfn = start_gfn; 258 range.pages = pages; 259 260 kvm_flush_remote_tlbs_with_range(kvm, &range); 261 } 262 263 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn, 264 unsigned int access) 265 { 266 u64 spte = make_mmio_spte(vcpu, gfn, access); 267 268 trace_mark_mmio_spte(sptep, gfn, spte); 269 mmu_spte_set(sptep, spte); 270 } 271 272 static gfn_t get_mmio_spte_gfn(u64 spte) 273 { 274 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask; 275 276 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN) 277 & shadow_nonpresent_or_rsvd_mask; 278 279 return gpa >> PAGE_SHIFT; 280 } 281 282 static unsigned get_mmio_spte_access(u64 spte) 283 { 284 return spte & shadow_mmio_access_mask; 285 } 286 287 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte) 288 { 289 u64 kvm_gen, spte_gen, gen; 290 291 gen = kvm_vcpu_memslots(vcpu)->generation; 292 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS)) 293 return false; 294 295 kvm_gen = gen & MMIO_SPTE_GEN_MASK; 296 spte_gen = get_mmio_spte_generation(spte); 297 298 trace_check_mmio_spte(spte, kvm_gen, spte_gen); 299 return likely(kvm_gen == spte_gen); 300 } 301 302 static int is_cpuid_PSE36(void) 303 { 304 return 1; 305 } 306 307 #ifdef CONFIG_X86_64 308 static void __set_spte(u64 *sptep, u64 spte) 309 { 310 WRITE_ONCE(*sptep, spte); 311 } 312 313 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 314 { 315 WRITE_ONCE(*sptep, spte); 316 } 317 318 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 319 { 320 return xchg(sptep, spte); 321 } 322 323 static u64 __get_spte_lockless(u64 *sptep) 324 { 325 return READ_ONCE(*sptep); 326 } 327 #else 328 union split_spte { 329 struct { 330 u32 spte_low; 331 u32 spte_high; 332 }; 333 u64 spte; 334 }; 335 336 static void count_spte_clear(u64 *sptep, u64 spte) 337 { 338 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 339 340 if (is_shadow_present_pte(spte)) 341 return; 342 343 /* Ensure the spte is completely set before we increase the count */ 344 smp_wmb(); 345 sp->clear_spte_count++; 346 } 347 348 static void __set_spte(u64 *sptep, u64 spte) 349 { 350 union split_spte *ssptep, sspte; 351 352 ssptep = (union split_spte *)sptep; 353 sspte = (union split_spte)spte; 354 355 ssptep->spte_high = sspte.spte_high; 356 357 /* 358 * If we map the spte from nonpresent to present, We should store 359 * the high bits firstly, then set present bit, so cpu can not 360 * fetch this spte while we are setting the spte. 361 */ 362 smp_wmb(); 363 364 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 365 } 366 367 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 368 { 369 union split_spte *ssptep, sspte; 370 371 ssptep = (union split_spte *)sptep; 372 sspte = (union split_spte)spte; 373 374 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 375 376 /* 377 * If we map the spte from present to nonpresent, we should clear 378 * present bit firstly to avoid vcpu fetch the old high bits. 379 */ 380 smp_wmb(); 381 382 ssptep->spte_high = sspte.spte_high; 383 count_spte_clear(sptep, spte); 384 } 385 386 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 387 { 388 union split_spte *ssptep, sspte, orig; 389 390 ssptep = (union split_spte *)sptep; 391 sspte = (union split_spte)spte; 392 393 /* xchg acts as a barrier before the setting of the high bits */ 394 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); 395 orig.spte_high = ssptep->spte_high; 396 ssptep->spte_high = sspte.spte_high; 397 count_spte_clear(sptep, spte); 398 399 return orig.spte; 400 } 401 402 /* 403 * The idea using the light way get the spte on x86_32 guest is from 404 * gup_get_pte (mm/gup.c). 405 * 406 * An spte tlb flush may be pending, because kvm_set_pte_rmap 407 * coalesces them and we are running out of the MMU lock. Therefore 408 * we need to protect against in-progress updates of the spte. 409 * 410 * Reading the spte while an update is in progress may get the old value 411 * for the high part of the spte. The race is fine for a present->non-present 412 * change (because the high part of the spte is ignored for non-present spte), 413 * but for a present->present change we must reread the spte. 414 * 415 * All such changes are done in two steps (present->non-present and 416 * non-present->present), hence it is enough to count the number of 417 * present->non-present updates: if it changed while reading the spte, 418 * we might have hit the race. This is done using clear_spte_count. 419 */ 420 static u64 __get_spte_lockless(u64 *sptep) 421 { 422 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 423 union split_spte spte, *orig = (union split_spte *)sptep; 424 int count; 425 426 retry: 427 count = sp->clear_spte_count; 428 smp_rmb(); 429 430 spte.spte_low = orig->spte_low; 431 smp_rmb(); 432 433 spte.spte_high = orig->spte_high; 434 smp_rmb(); 435 436 if (unlikely(spte.spte_low != orig->spte_low || 437 count != sp->clear_spte_count)) 438 goto retry; 439 440 return spte.spte; 441 } 442 #endif 443 444 /* Rules for using mmu_spte_set: 445 * Set the sptep from nonpresent to present. 446 * Note: the sptep being assigned *must* be either not present 447 * or in a state where the hardware will not attempt to update 448 * the spte. 449 */ 450 static void mmu_spte_set(u64 *sptep, u64 new_spte) 451 { 452 WARN_ON(is_shadow_present_pte(*sptep)); 453 __set_spte(sptep, new_spte); 454 } 455 456 /* 457 * Update the SPTE (excluding the PFN), but do not track changes in its 458 * accessed/dirty status. 459 */ 460 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte) 461 { 462 u64 old_spte = *sptep; 463 464 WARN_ON(!is_shadow_present_pte(new_spte)); 465 check_spte_writable_invariants(new_spte); 466 467 if (!is_shadow_present_pte(old_spte)) { 468 mmu_spte_set(sptep, new_spte); 469 return old_spte; 470 } 471 472 if (!spte_has_volatile_bits(old_spte)) 473 __update_clear_spte_fast(sptep, new_spte); 474 else 475 old_spte = __update_clear_spte_slow(sptep, new_spte); 476 477 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte)); 478 479 return old_spte; 480 } 481 482 /* Rules for using mmu_spte_update: 483 * Update the state bits, it means the mapped pfn is not changed. 484 * 485 * Whenever an MMU-writable SPTE is overwritten with a read-only SPTE, remote 486 * TLBs must be flushed. Otherwise rmap_write_protect will find a read-only 487 * spte, even though the writable spte might be cached on a CPU's TLB. 488 * 489 * Returns true if the TLB needs to be flushed 490 */ 491 static bool mmu_spte_update(u64 *sptep, u64 new_spte) 492 { 493 bool flush = false; 494 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte); 495 496 if (!is_shadow_present_pte(old_spte)) 497 return false; 498 499 /* 500 * For the spte updated out of mmu-lock is safe, since 501 * we always atomically update it, see the comments in 502 * spte_has_volatile_bits(). 503 */ 504 if (is_mmu_writable_spte(old_spte) && 505 !is_writable_pte(new_spte)) 506 flush = true; 507 508 /* 509 * Flush TLB when accessed/dirty states are changed in the page tables, 510 * to guarantee consistency between TLB and page tables. 511 */ 512 513 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) { 514 flush = true; 515 kvm_set_pfn_accessed(spte_to_pfn(old_spte)); 516 } 517 518 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) { 519 flush = true; 520 kvm_set_pfn_dirty(spte_to_pfn(old_spte)); 521 } 522 523 return flush; 524 } 525 526 /* 527 * Rules for using mmu_spte_clear_track_bits: 528 * It sets the sptep from present to nonpresent, and track the 529 * state bits, it is used to clear the last level sptep. 530 * Returns the old PTE. 531 */ 532 static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep) 533 { 534 kvm_pfn_t pfn; 535 u64 old_spte = *sptep; 536 int level = sptep_to_sp(sptep)->role.level; 537 struct page *page; 538 539 if (!is_shadow_present_pte(old_spte) || 540 !spte_has_volatile_bits(old_spte)) 541 __update_clear_spte_fast(sptep, 0ull); 542 else 543 old_spte = __update_clear_spte_slow(sptep, 0ull); 544 545 if (!is_shadow_present_pte(old_spte)) 546 return old_spte; 547 548 kvm_update_page_stats(kvm, level, -1); 549 550 pfn = spte_to_pfn(old_spte); 551 552 /* 553 * KVM doesn't hold a reference to any pages mapped into the guest, and 554 * instead uses the mmu_notifier to ensure that KVM unmaps any pages 555 * before they are reclaimed. Sanity check that, if the pfn is backed 556 * by a refcounted page, the refcount is elevated. 557 */ 558 page = kvm_pfn_to_refcounted_page(pfn); 559 WARN_ON(page && !page_count(page)); 560 561 if (is_accessed_spte(old_spte)) 562 kvm_set_pfn_accessed(pfn); 563 564 if (is_dirty_spte(old_spte)) 565 kvm_set_pfn_dirty(pfn); 566 567 return old_spte; 568 } 569 570 /* 571 * Rules for using mmu_spte_clear_no_track: 572 * Directly clear spte without caring the state bits of sptep, 573 * it is used to set the upper level spte. 574 */ 575 static void mmu_spte_clear_no_track(u64 *sptep) 576 { 577 __update_clear_spte_fast(sptep, 0ull); 578 } 579 580 static u64 mmu_spte_get_lockless(u64 *sptep) 581 { 582 return __get_spte_lockless(sptep); 583 } 584 585 /* Returns the Accessed status of the PTE and resets it at the same time. */ 586 static bool mmu_spte_age(u64 *sptep) 587 { 588 u64 spte = mmu_spte_get_lockless(sptep); 589 590 if (!is_accessed_spte(spte)) 591 return false; 592 593 if (spte_ad_enabled(spte)) { 594 clear_bit((ffs(shadow_accessed_mask) - 1), 595 (unsigned long *)sptep); 596 } else { 597 /* 598 * Capture the dirty status of the page, so that it doesn't get 599 * lost when the SPTE is marked for access tracking. 600 */ 601 if (is_writable_pte(spte)) 602 kvm_set_pfn_dirty(spte_to_pfn(spte)); 603 604 spte = mark_spte_for_access_track(spte); 605 mmu_spte_update_no_track(sptep, spte); 606 } 607 608 return true; 609 } 610 611 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) 612 { 613 if (is_tdp_mmu(vcpu->arch.mmu)) { 614 kvm_tdp_mmu_walk_lockless_begin(); 615 } else { 616 /* 617 * Prevent page table teardown by making any free-er wait during 618 * kvm_flush_remote_tlbs() IPI to all active vcpus. 619 */ 620 local_irq_disable(); 621 622 /* 623 * Make sure a following spte read is not reordered ahead of the write 624 * to vcpu->mode. 625 */ 626 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); 627 } 628 } 629 630 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) 631 { 632 if (is_tdp_mmu(vcpu->arch.mmu)) { 633 kvm_tdp_mmu_walk_lockless_end(); 634 } else { 635 /* 636 * Make sure the write to vcpu->mode is not reordered in front of 637 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us 638 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. 639 */ 640 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); 641 local_irq_enable(); 642 } 643 } 644 645 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect) 646 { 647 int r; 648 649 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */ 650 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, 651 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM); 652 if (r) 653 return r; 654 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache, 655 PT64_ROOT_MAX_LEVEL); 656 if (r) 657 return r; 658 if (maybe_indirect) { 659 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadowed_info_cache, 660 PT64_ROOT_MAX_LEVEL); 661 if (r) 662 return r; 663 } 664 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, 665 PT64_ROOT_MAX_LEVEL); 666 } 667 668 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) 669 { 670 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache); 671 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache); 672 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadowed_info_cache); 673 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache); 674 } 675 676 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) 677 { 678 kmem_cache_free(pte_list_desc_cache, pte_list_desc); 679 } 680 681 static bool sp_has_gptes(struct kvm_mmu_page *sp); 682 683 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) 684 { 685 if (sp->role.passthrough) 686 return sp->gfn; 687 688 if (!sp->role.direct) 689 return sp->shadowed_translation[index] >> PAGE_SHIFT; 690 691 return sp->gfn + (index << ((sp->role.level - 1) * SPTE_LEVEL_BITS)); 692 } 693 694 /* 695 * For leaf SPTEs, fetch the *guest* access permissions being shadowed. Note 696 * that the SPTE itself may have a more constrained access permissions that 697 * what the guest enforces. For example, a guest may create an executable 698 * huge PTE but KVM may disallow execution to mitigate iTLB multihit. 699 */ 700 static u32 kvm_mmu_page_get_access(struct kvm_mmu_page *sp, int index) 701 { 702 if (sp_has_gptes(sp)) 703 return sp->shadowed_translation[index] & ACC_ALL; 704 705 /* 706 * For direct MMUs (e.g. TDP or non-paging guests) or passthrough SPs, 707 * KVM is not shadowing any guest page tables, so the "guest access 708 * permissions" are just ACC_ALL. 709 * 710 * For direct SPs in indirect MMUs (shadow paging), i.e. when KVM 711 * is shadowing a guest huge page with small pages, the guest access 712 * permissions being shadowed are the access permissions of the huge 713 * page. 714 * 715 * In both cases, sp->role.access contains the correct access bits. 716 */ 717 return sp->role.access; 718 } 719 720 static void kvm_mmu_page_set_translation(struct kvm_mmu_page *sp, int index, 721 gfn_t gfn, unsigned int access) 722 { 723 if (sp_has_gptes(sp)) { 724 sp->shadowed_translation[index] = (gfn << PAGE_SHIFT) | access; 725 return; 726 } 727 728 WARN_ONCE(access != kvm_mmu_page_get_access(sp, index), 729 "access mismatch under %s page %llx (expected %u, got %u)\n", 730 sp->role.passthrough ? "passthrough" : "direct", 731 sp->gfn, kvm_mmu_page_get_access(sp, index), access); 732 733 WARN_ONCE(gfn != kvm_mmu_page_get_gfn(sp, index), 734 "gfn mismatch under %s page %llx (expected %llx, got %llx)\n", 735 sp->role.passthrough ? "passthrough" : "direct", 736 sp->gfn, kvm_mmu_page_get_gfn(sp, index), gfn); 737 } 738 739 static void kvm_mmu_page_set_access(struct kvm_mmu_page *sp, int index, 740 unsigned int access) 741 { 742 gfn_t gfn = kvm_mmu_page_get_gfn(sp, index); 743 744 kvm_mmu_page_set_translation(sp, index, gfn, access); 745 } 746 747 /* 748 * Return the pointer to the large page information for a given gfn, 749 * handling slots that are not large page aligned. 750 */ 751 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, 752 const struct kvm_memory_slot *slot, int level) 753 { 754 unsigned long idx; 755 756 idx = gfn_to_index(gfn, slot->base_gfn, level); 757 return &slot->arch.lpage_info[level - 2][idx]; 758 } 759 760 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot, 761 gfn_t gfn, int count) 762 { 763 struct kvm_lpage_info *linfo; 764 int i; 765 766 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 767 linfo = lpage_info_slot(gfn, slot, i); 768 linfo->disallow_lpage += count; 769 WARN_ON(linfo->disallow_lpage < 0); 770 } 771 } 772 773 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 774 { 775 update_gfn_disallow_lpage_count(slot, gfn, 1); 776 } 777 778 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 779 { 780 update_gfn_disallow_lpage_count(slot, gfn, -1); 781 } 782 783 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 784 { 785 struct kvm_memslots *slots; 786 struct kvm_memory_slot *slot; 787 gfn_t gfn; 788 789 kvm->arch.indirect_shadow_pages++; 790 gfn = sp->gfn; 791 slots = kvm_memslots_for_spte_role(kvm, sp->role); 792 slot = __gfn_to_memslot(slots, gfn); 793 794 /* the non-leaf shadow pages are keeping readonly. */ 795 if (sp->role.level > PG_LEVEL_4K) 796 return kvm_slot_page_track_add_page(kvm, slot, gfn, 797 KVM_PAGE_TRACK_WRITE); 798 799 kvm_mmu_gfn_disallow_lpage(slot, gfn); 800 801 if (kvm_mmu_slot_gfn_write_protect(kvm, slot, gfn, PG_LEVEL_4K)) 802 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1); 803 } 804 805 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) 806 { 807 if (sp->lpage_disallowed) 808 return; 809 810 ++kvm->stat.nx_lpage_splits; 811 list_add_tail(&sp->lpage_disallowed_link, 812 &kvm->arch.lpage_disallowed_mmu_pages); 813 sp->lpage_disallowed = true; 814 } 815 816 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 817 { 818 struct kvm_memslots *slots; 819 struct kvm_memory_slot *slot; 820 gfn_t gfn; 821 822 kvm->arch.indirect_shadow_pages--; 823 gfn = sp->gfn; 824 slots = kvm_memslots_for_spte_role(kvm, sp->role); 825 slot = __gfn_to_memslot(slots, gfn); 826 if (sp->role.level > PG_LEVEL_4K) 827 return kvm_slot_page_track_remove_page(kvm, slot, gfn, 828 KVM_PAGE_TRACK_WRITE); 829 830 kvm_mmu_gfn_allow_lpage(slot, gfn); 831 } 832 833 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) 834 { 835 --kvm->stat.nx_lpage_splits; 836 sp->lpage_disallowed = false; 837 list_del(&sp->lpage_disallowed_link); 838 } 839 840 static struct kvm_memory_slot * 841 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn, 842 bool no_dirty_log) 843 { 844 struct kvm_memory_slot *slot; 845 846 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 847 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 848 return NULL; 849 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot)) 850 return NULL; 851 852 return slot; 853 } 854 855 /* 856 * About rmap_head encoding: 857 * 858 * If the bit zero of rmap_head->val is clear, then it points to the only spte 859 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct 860 * pte_list_desc containing more mappings. 861 */ 862 863 /* 864 * Returns the number of pointers in the rmap chain, not counting the new one. 865 */ 866 static int pte_list_add(struct kvm_mmu_memory_cache *cache, u64 *spte, 867 struct kvm_rmap_head *rmap_head) 868 { 869 struct pte_list_desc *desc; 870 int count = 0; 871 872 if (!rmap_head->val) { 873 rmap_printk("%p %llx 0->1\n", spte, *spte); 874 rmap_head->val = (unsigned long)spte; 875 } else if (!(rmap_head->val & 1)) { 876 rmap_printk("%p %llx 1->many\n", spte, *spte); 877 desc = kvm_mmu_memory_cache_alloc(cache); 878 desc->sptes[0] = (u64 *)rmap_head->val; 879 desc->sptes[1] = spte; 880 desc->spte_count = 2; 881 rmap_head->val = (unsigned long)desc | 1; 882 ++count; 883 } else { 884 rmap_printk("%p %llx many->many\n", spte, *spte); 885 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 886 while (desc->spte_count == PTE_LIST_EXT) { 887 count += PTE_LIST_EXT; 888 if (!desc->more) { 889 desc->more = kvm_mmu_memory_cache_alloc(cache); 890 desc = desc->more; 891 desc->spte_count = 0; 892 break; 893 } 894 desc = desc->more; 895 } 896 count += desc->spte_count; 897 desc->sptes[desc->spte_count++] = spte; 898 } 899 return count; 900 } 901 902 static void 903 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head, 904 struct pte_list_desc *desc, int i, 905 struct pte_list_desc *prev_desc) 906 { 907 int j = desc->spte_count - 1; 908 909 desc->sptes[i] = desc->sptes[j]; 910 desc->sptes[j] = NULL; 911 desc->spte_count--; 912 if (desc->spte_count) 913 return; 914 if (!prev_desc && !desc->more) 915 rmap_head->val = 0; 916 else 917 if (prev_desc) 918 prev_desc->more = desc->more; 919 else 920 rmap_head->val = (unsigned long)desc->more | 1; 921 mmu_free_pte_list_desc(desc); 922 } 923 924 static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head) 925 { 926 struct pte_list_desc *desc; 927 struct pte_list_desc *prev_desc; 928 int i; 929 930 if (!rmap_head->val) { 931 pr_err("%s: %p 0->BUG\n", __func__, spte); 932 BUG(); 933 } else if (!(rmap_head->val & 1)) { 934 rmap_printk("%p 1->0\n", spte); 935 if ((u64 *)rmap_head->val != spte) { 936 pr_err("%s: %p 1->BUG\n", __func__, spte); 937 BUG(); 938 } 939 rmap_head->val = 0; 940 } else { 941 rmap_printk("%p many->many\n", spte); 942 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 943 prev_desc = NULL; 944 while (desc) { 945 for (i = 0; i < desc->spte_count; ++i) { 946 if (desc->sptes[i] == spte) { 947 pte_list_desc_remove_entry(rmap_head, 948 desc, i, prev_desc); 949 return; 950 } 951 } 952 prev_desc = desc; 953 desc = desc->more; 954 } 955 pr_err("%s: %p many->many\n", __func__, spte); 956 BUG(); 957 } 958 } 959 960 static void kvm_zap_one_rmap_spte(struct kvm *kvm, 961 struct kvm_rmap_head *rmap_head, u64 *sptep) 962 { 963 mmu_spte_clear_track_bits(kvm, sptep); 964 pte_list_remove(sptep, rmap_head); 965 } 966 967 /* Return true if at least one SPTE was zapped, false otherwise */ 968 static bool kvm_zap_all_rmap_sptes(struct kvm *kvm, 969 struct kvm_rmap_head *rmap_head) 970 { 971 struct pte_list_desc *desc, *next; 972 int i; 973 974 if (!rmap_head->val) 975 return false; 976 977 if (!(rmap_head->val & 1)) { 978 mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val); 979 goto out; 980 } 981 982 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 983 984 for (; desc; desc = next) { 985 for (i = 0; i < desc->spte_count; i++) 986 mmu_spte_clear_track_bits(kvm, desc->sptes[i]); 987 next = desc->more; 988 mmu_free_pte_list_desc(desc); 989 } 990 out: 991 /* rmap_head is meaningless now, remember to reset it */ 992 rmap_head->val = 0; 993 return true; 994 } 995 996 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head) 997 { 998 struct pte_list_desc *desc; 999 unsigned int count = 0; 1000 1001 if (!rmap_head->val) 1002 return 0; 1003 else if (!(rmap_head->val & 1)) 1004 return 1; 1005 1006 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1007 1008 while (desc) { 1009 count += desc->spte_count; 1010 desc = desc->more; 1011 } 1012 1013 return count; 1014 } 1015 1016 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level, 1017 const struct kvm_memory_slot *slot) 1018 { 1019 unsigned long idx; 1020 1021 idx = gfn_to_index(gfn, slot->base_gfn, level); 1022 return &slot->arch.rmap[level - PG_LEVEL_4K][idx]; 1023 } 1024 1025 static bool rmap_can_add(struct kvm_vcpu *vcpu) 1026 { 1027 struct kvm_mmu_memory_cache *mc; 1028 1029 mc = &vcpu->arch.mmu_pte_list_desc_cache; 1030 return kvm_mmu_memory_cache_nr_free_objects(mc); 1031 } 1032 1033 static void rmap_remove(struct kvm *kvm, u64 *spte) 1034 { 1035 struct kvm_memslots *slots; 1036 struct kvm_memory_slot *slot; 1037 struct kvm_mmu_page *sp; 1038 gfn_t gfn; 1039 struct kvm_rmap_head *rmap_head; 1040 1041 sp = sptep_to_sp(spte); 1042 gfn = kvm_mmu_page_get_gfn(sp, spte_index(spte)); 1043 1044 /* 1045 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU 1046 * so we have to determine which memslots to use based on context 1047 * information in sp->role. 1048 */ 1049 slots = kvm_memslots_for_spte_role(kvm, sp->role); 1050 1051 slot = __gfn_to_memslot(slots, gfn); 1052 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1053 1054 pte_list_remove(spte, rmap_head); 1055 } 1056 1057 /* 1058 * Used by the following functions to iterate through the sptes linked by a 1059 * rmap. All fields are private and not assumed to be used outside. 1060 */ 1061 struct rmap_iterator { 1062 /* private fields */ 1063 struct pte_list_desc *desc; /* holds the sptep if not NULL */ 1064 int pos; /* index of the sptep */ 1065 }; 1066 1067 /* 1068 * Iteration must be started by this function. This should also be used after 1069 * removing/dropping sptes from the rmap link because in such cases the 1070 * information in the iterator may not be valid. 1071 * 1072 * Returns sptep if found, NULL otherwise. 1073 */ 1074 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head, 1075 struct rmap_iterator *iter) 1076 { 1077 u64 *sptep; 1078 1079 if (!rmap_head->val) 1080 return NULL; 1081 1082 if (!(rmap_head->val & 1)) { 1083 iter->desc = NULL; 1084 sptep = (u64 *)rmap_head->val; 1085 goto out; 1086 } 1087 1088 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1089 iter->pos = 0; 1090 sptep = iter->desc->sptes[iter->pos]; 1091 out: 1092 BUG_ON(!is_shadow_present_pte(*sptep)); 1093 return sptep; 1094 } 1095 1096 /* 1097 * Must be used with a valid iterator: e.g. after rmap_get_first(). 1098 * 1099 * Returns sptep if found, NULL otherwise. 1100 */ 1101 static u64 *rmap_get_next(struct rmap_iterator *iter) 1102 { 1103 u64 *sptep; 1104 1105 if (iter->desc) { 1106 if (iter->pos < PTE_LIST_EXT - 1) { 1107 ++iter->pos; 1108 sptep = iter->desc->sptes[iter->pos]; 1109 if (sptep) 1110 goto out; 1111 } 1112 1113 iter->desc = iter->desc->more; 1114 1115 if (iter->desc) { 1116 iter->pos = 0; 1117 /* desc->sptes[0] cannot be NULL */ 1118 sptep = iter->desc->sptes[iter->pos]; 1119 goto out; 1120 } 1121 } 1122 1123 return NULL; 1124 out: 1125 BUG_ON(!is_shadow_present_pte(*sptep)); 1126 return sptep; 1127 } 1128 1129 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \ 1130 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \ 1131 _spte_; _spte_ = rmap_get_next(_iter_)) 1132 1133 static void drop_spte(struct kvm *kvm, u64 *sptep) 1134 { 1135 u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep); 1136 1137 if (is_shadow_present_pte(old_spte)) 1138 rmap_remove(kvm, sptep); 1139 } 1140 1141 static void drop_large_spte(struct kvm *kvm, u64 *sptep, bool flush) 1142 { 1143 struct kvm_mmu_page *sp; 1144 1145 sp = sptep_to_sp(sptep); 1146 WARN_ON(sp->role.level == PG_LEVEL_4K); 1147 1148 drop_spte(kvm, sptep); 1149 1150 if (flush) 1151 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn, 1152 KVM_PAGES_PER_HPAGE(sp->role.level)); 1153 } 1154 1155 /* 1156 * Write-protect on the specified @sptep, @pt_protect indicates whether 1157 * spte write-protection is caused by protecting shadow page table. 1158 * 1159 * Note: write protection is difference between dirty logging and spte 1160 * protection: 1161 * - for dirty logging, the spte can be set to writable at anytime if 1162 * its dirty bitmap is properly set. 1163 * - for spte protection, the spte can be writable only after unsync-ing 1164 * shadow page. 1165 * 1166 * Return true if tlb need be flushed. 1167 */ 1168 static bool spte_write_protect(u64 *sptep, bool pt_protect) 1169 { 1170 u64 spte = *sptep; 1171 1172 if (!is_writable_pte(spte) && 1173 !(pt_protect && is_mmu_writable_spte(spte))) 1174 return false; 1175 1176 rmap_printk("spte %p %llx\n", sptep, *sptep); 1177 1178 if (pt_protect) 1179 spte &= ~shadow_mmu_writable_mask; 1180 spte = spte & ~PT_WRITABLE_MASK; 1181 1182 return mmu_spte_update(sptep, spte); 1183 } 1184 1185 static bool rmap_write_protect(struct kvm_rmap_head *rmap_head, 1186 bool pt_protect) 1187 { 1188 u64 *sptep; 1189 struct rmap_iterator iter; 1190 bool flush = false; 1191 1192 for_each_rmap_spte(rmap_head, &iter, sptep) 1193 flush |= spte_write_protect(sptep, pt_protect); 1194 1195 return flush; 1196 } 1197 1198 static bool spte_clear_dirty(u64 *sptep) 1199 { 1200 u64 spte = *sptep; 1201 1202 rmap_printk("spte %p %llx\n", sptep, *sptep); 1203 1204 MMU_WARN_ON(!spte_ad_enabled(spte)); 1205 spte &= ~shadow_dirty_mask; 1206 return mmu_spte_update(sptep, spte); 1207 } 1208 1209 static bool spte_wrprot_for_clear_dirty(u64 *sptep) 1210 { 1211 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT, 1212 (unsigned long *)sptep); 1213 if (was_writable && !spte_ad_enabled(*sptep)) 1214 kvm_set_pfn_dirty(spte_to_pfn(*sptep)); 1215 1216 return was_writable; 1217 } 1218 1219 /* 1220 * Gets the GFN ready for another round of dirty logging by clearing the 1221 * - D bit on ad-enabled SPTEs, and 1222 * - W bit on ad-disabled SPTEs. 1223 * Returns true iff any D or W bits were cleared. 1224 */ 1225 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1226 const struct kvm_memory_slot *slot) 1227 { 1228 u64 *sptep; 1229 struct rmap_iterator iter; 1230 bool flush = false; 1231 1232 for_each_rmap_spte(rmap_head, &iter, sptep) 1233 if (spte_ad_need_write_protect(*sptep)) 1234 flush |= spte_wrprot_for_clear_dirty(sptep); 1235 else 1236 flush |= spte_clear_dirty(sptep); 1237 1238 return flush; 1239 } 1240 1241 /** 1242 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages 1243 * @kvm: kvm instance 1244 * @slot: slot to protect 1245 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1246 * @mask: indicates which pages we should protect 1247 * 1248 * Used when we do not need to care about huge page mappings. 1249 */ 1250 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 1251 struct kvm_memory_slot *slot, 1252 gfn_t gfn_offset, unsigned long mask) 1253 { 1254 struct kvm_rmap_head *rmap_head; 1255 1256 if (is_tdp_mmu_enabled(kvm)) 1257 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1258 slot->base_gfn + gfn_offset, mask, true); 1259 1260 if (!kvm_memslots_have_rmaps(kvm)) 1261 return; 1262 1263 while (mask) { 1264 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1265 PG_LEVEL_4K, slot); 1266 rmap_write_protect(rmap_head, false); 1267 1268 /* clear the first set bit */ 1269 mask &= mask - 1; 1270 } 1271 } 1272 1273 /** 1274 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write 1275 * protect the page if the D-bit isn't supported. 1276 * @kvm: kvm instance 1277 * @slot: slot to clear D-bit 1278 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1279 * @mask: indicates which pages we should clear D-bit 1280 * 1281 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap. 1282 */ 1283 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1284 struct kvm_memory_slot *slot, 1285 gfn_t gfn_offset, unsigned long mask) 1286 { 1287 struct kvm_rmap_head *rmap_head; 1288 1289 if (is_tdp_mmu_enabled(kvm)) 1290 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1291 slot->base_gfn + gfn_offset, mask, false); 1292 1293 if (!kvm_memslots_have_rmaps(kvm)) 1294 return; 1295 1296 while (mask) { 1297 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1298 PG_LEVEL_4K, slot); 1299 __rmap_clear_dirty(kvm, rmap_head, slot); 1300 1301 /* clear the first set bit */ 1302 mask &= mask - 1; 1303 } 1304 } 1305 1306 /** 1307 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected 1308 * PT level pages. 1309 * 1310 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to 1311 * enable dirty logging for them. 1312 * 1313 * We need to care about huge page mappings: e.g. during dirty logging we may 1314 * have such mappings. 1315 */ 1316 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1317 struct kvm_memory_slot *slot, 1318 gfn_t gfn_offset, unsigned long mask) 1319 { 1320 /* 1321 * Huge pages are NOT write protected when we start dirty logging in 1322 * initially-all-set mode; must write protect them here so that they 1323 * are split to 4K on the first write. 1324 * 1325 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn 1326 * of memslot has no such restriction, so the range can cross two large 1327 * pages. 1328 */ 1329 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) { 1330 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask); 1331 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask); 1332 1333 if (READ_ONCE(eager_page_split)) 1334 kvm_mmu_try_split_huge_pages(kvm, slot, start, end, PG_LEVEL_4K); 1335 1336 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M); 1337 1338 /* Cross two large pages? */ 1339 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) != 1340 ALIGN(end << PAGE_SHIFT, PMD_SIZE)) 1341 kvm_mmu_slot_gfn_write_protect(kvm, slot, end, 1342 PG_LEVEL_2M); 1343 } 1344 1345 /* Now handle 4K PTEs. */ 1346 if (kvm_x86_ops.cpu_dirty_log_size) 1347 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask); 1348 else 1349 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 1350 } 1351 1352 int kvm_cpu_dirty_log_size(void) 1353 { 1354 return kvm_x86_ops.cpu_dirty_log_size; 1355 } 1356 1357 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, 1358 struct kvm_memory_slot *slot, u64 gfn, 1359 int min_level) 1360 { 1361 struct kvm_rmap_head *rmap_head; 1362 int i; 1363 bool write_protected = false; 1364 1365 if (kvm_memslots_have_rmaps(kvm)) { 1366 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 1367 rmap_head = gfn_to_rmap(gfn, i, slot); 1368 write_protected |= rmap_write_protect(rmap_head, true); 1369 } 1370 } 1371 1372 if (is_tdp_mmu_enabled(kvm)) 1373 write_protected |= 1374 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level); 1375 1376 return write_protected; 1377 } 1378 1379 static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn) 1380 { 1381 struct kvm_memory_slot *slot; 1382 1383 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1384 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K); 1385 } 1386 1387 static bool __kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1388 const struct kvm_memory_slot *slot) 1389 { 1390 return kvm_zap_all_rmap_sptes(kvm, rmap_head); 1391 } 1392 1393 static bool kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1394 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1395 pte_t unused) 1396 { 1397 return __kvm_zap_rmap(kvm, rmap_head, slot); 1398 } 1399 1400 static bool kvm_set_pte_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1401 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1402 pte_t pte) 1403 { 1404 u64 *sptep; 1405 struct rmap_iterator iter; 1406 bool need_flush = false; 1407 u64 new_spte; 1408 kvm_pfn_t new_pfn; 1409 1410 WARN_ON(pte_huge(pte)); 1411 new_pfn = pte_pfn(pte); 1412 1413 restart: 1414 for_each_rmap_spte(rmap_head, &iter, sptep) { 1415 rmap_printk("spte %p %llx gfn %llx (%d)\n", 1416 sptep, *sptep, gfn, level); 1417 1418 need_flush = true; 1419 1420 if (pte_write(pte)) { 1421 kvm_zap_one_rmap_spte(kvm, rmap_head, sptep); 1422 goto restart; 1423 } else { 1424 new_spte = kvm_mmu_changed_pte_notifier_make_spte( 1425 *sptep, new_pfn); 1426 1427 mmu_spte_clear_track_bits(kvm, sptep); 1428 mmu_spte_set(sptep, new_spte); 1429 } 1430 } 1431 1432 if (need_flush && kvm_available_flush_tlb_with_range()) { 1433 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1); 1434 return false; 1435 } 1436 1437 return need_flush; 1438 } 1439 1440 struct slot_rmap_walk_iterator { 1441 /* input fields. */ 1442 const struct kvm_memory_slot *slot; 1443 gfn_t start_gfn; 1444 gfn_t end_gfn; 1445 int start_level; 1446 int end_level; 1447 1448 /* output fields. */ 1449 gfn_t gfn; 1450 struct kvm_rmap_head *rmap; 1451 int level; 1452 1453 /* private field. */ 1454 struct kvm_rmap_head *end_rmap; 1455 }; 1456 1457 static void 1458 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level) 1459 { 1460 iterator->level = level; 1461 iterator->gfn = iterator->start_gfn; 1462 iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot); 1463 iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot); 1464 } 1465 1466 static void 1467 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator, 1468 const struct kvm_memory_slot *slot, int start_level, 1469 int end_level, gfn_t start_gfn, gfn_t end_gfn) 1470 { 1471 iterator->slot = slot; 1472 iterator->start_level = start_level; 1473 iterator->end_level = end_level; 1474 iterator->start_gfn = start_gfn; 1475 iterator->end_gfn = end_gfn; 1476 1477 rmap_walk_init_level(iterator, iterator->start_level); 1478 } 1479 1480 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator) 1481 { 1482 return !!iterator->rmap; 1483 } 1484 1485 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) 1486 { 1487 while (++iterator->rmap <= iterator->end_rmap) { 1488 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level)); 1489 1490 if (iterator->rmap->val) 1491 return; 1492 } 1493 1494 if (++iterator->level > iterator->end_level) { 1495 iterator->rmap = NULL; 1496 return; 1497 } 1498 1499 rmap_walk_init_level(iterator, iterator->level); 1500 } 1501 1502 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \ 1503 _start_gfn, _end_gfn, _iter_) \ 1504 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \ 1505 _end_level_, _start_gfn, _end_gfn); \ 1506 slot_rmap_walk_okay(_iter_); \ 1507 slot_rmap_walk_next(_iter_)) 1508 1509 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1510 struct kvm_memory_slot *slot, gfn_t gfn, 1511 int level, pte_t pte); 1512 1513 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm, 1514 struct kvm_gfn_range *range, 1515 rmap_handler_t handler) 1516 { 1517 struct slot_rmap_walk_iterator iterator; 1518 bool ret = false; 1519 1520 for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 1521 range->start, range->end - 1, &iterator) 1522 ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn, 1523 iterator.level, range->pte); 1524 1525 return ret; 1526 } 1527 1528 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1529 { 1530 bool flush = false; 1531 1532 if (kvm_memslots_have_rmaps(kvm)) 1533 flush = kvm_handle_gfn_range(kvm, range, kvm_zap_rmap); 1534 1535 if (is_tdp_mmu_enabled(kvm)) 1536 flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush); 1537 1538 return flush; 1539 } 1540 1541 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1542 { 1543 bool flush = false; 1544 1545 if (kvm_memslots_have_rmaps(kvm)) 1546 flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmap); 1547 1548 if (is_tdp_mmu_enabled(kvm)) 1549 flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range); 1550 1551 return flush; 1552 } 1553 1554 static bool kvm_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1555 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1556 pte_t unused) 1557 { 1558 u64 *sptep; 1559 struct rmap_iterator iter; 1560 int young = 0; 1561 1562 for_each_rmap_spte(rmap_head, &iter, sptep) 1563 young |= mmu_spte_age(sptep); 1564 1565 return young; 1566 } 1567 1568 static bool kvm_test_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1569 struct kvm_memory_slot *slot, gfn_t gfn, 1570 int level, pte_t unused) 1571 { 1572 u64 *sptep; 1573 struct rmap_iterator iter; 1574 1575 for_each_rmap_spte(rmap_head, &iter, sptep) 1576 if (is_accessed_spte(*sptep)) 1577 return true; 1578 return false; 1579 } 1580 1581 #define RMAP_RECYCLE_THRESHOLD 1000 1582 1583 static void __rmap_add(struct kvm *kvm, 1584 struct kvm_mmu_memory_cache *cache, 1585 const struct kvm_memory_slot *slot, 1586 u64 *spte, gfn_t gfn, unsigned int access) 1587 { 1588 struct kvm_mmu_page *sp; 1589 struct kvm_rmap_head *rmap_head; 1590 int rmap_count; 1591 1592 sp = sptep_to_sp(spte); 1593 kvm_mmu_page_set_translation(sp, spte_index(spte), gfn, access); 1594 kvm_update_page_stats(kvm, sp->role.level, 1); 1595 1596 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1597 rmap_count = pte_list_add(cache, spte, rmap_head); 1598 1599 if (rmap_count > kvm->stat.max_mmu_rmap_size) 1600 kvm->stat.max_mmu_rmap_size = rmap_count; 1601 if (rmap_count > RMAP_RECYCLE_THRESHOLD) { 1602 kvm_zap_all_rmap_sptes(kvm, rmap_head); 1603 kvm_flush_remote_tlbs_with_address( 1604 kvm, sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level)); 1605 } 1606 } 1607 1608 static void rmap_add(struct kvm_vcpu *vcpu, const struct kvm_memory_slot *slot, 1609 u64 *spte, gfn_t gfn, unsigned int access) 1610 { 1611 struct kvm_mmu_memory_cache *cache = &vcpu->arch.mmu_pte_list_desc_cache; 1612 1613 __rmap_add(vcpu->kvm, cache, slot, spte, gfn, access); 1614 } 1615 1616 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1617 { 1618 bool young = false; 1619 1620 if (kvm_memslots_have_rmaps(kvm)) 1621 young = kvm_handle_gfn_range(kvm, range, kvm_age_rmap); 1622 1623 if (is_tdp_mmu_enabled(kvm)) 1624 young |= kvm_tdp_mmu_age_gfn_range(kvm, range); 1625 1626 return young; 1627 } 1628 1629 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1630 { 1631 bool young = false; 1632 1633 if (kvm_memslots_have_rmaps(kvm)) 1634 young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmap); 1635 1636 if (is_tdp_mmu_enabled(kvm)) 1637 young |= kvm_tdp_mmu_test_age_gfn(kvm, range); 1638 1639 return young; 1640 } 1641 1642 #ifdef MMU_DEBUG 1643 static int is_empty_shadow_page(u64 *spt) 1644 { 1645 u64 *pos; 1646 u64 *end; 1647 1648 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++) 1649 if (is_shadow_present_pte(*pos)) { 1650 printk(KERN_ERR "%s: %p %llx\n", __func__, 1651 pos, *pos); 1652 return 0; 1653 } 1654 return 1; 1655 } 1656 #endif 1657 1658 /* 1659 * This value is the sum of all of the kvm instances's 1660 * kvm->arch.n_used_mmu_pages values. We need a global, 1661 * aggregate version in order to make the slab shrinker 1662 * faster 1663 */ 1664 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr) 1665 { 1666 kvm->arch.n_used_mmu_pages += nr; 1667 percpu_counter_add(&kvm_total_used_mmu_pages, nr); 1668 } 1669 1670 static void kvm_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1671 { 1672 kvm_mod_used_mmu_pages(kvm, +1); 1673 kvm_account_pgtable_pages((void *)sp->spt, +1); 1674 } 1675 1676 static void kvm_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1677 { 1678 kvm_mod_used_mmu_pages(kvm, -1); 1679 kvm_account_pgtable_pages((void *)sp->spt, -1); 1680 } 1681 1682 static void kvm_mmu_free_shadow_page(struct kvm_mmu_page *sp) 1683 { 1684 MMU_WARN_ON(!is_empty_shadow_page(sp->spt)); 1685 hlist_del(&sp->hash_link); 1686 list_del(&sp->link); 1687 free_page((unsigned long)sp->spt); 1688 if (!sp->role.direct) 1689 free_page((unsigned long)sp->shadowed_translation); 1690 kmem_cache_free(mmu_page_header_cache, sp); 1691 } 1692 1693 static unsigned kvm_page_table_hashfn(gfn_t gfn) 1694 { 1695 return hash_64(gfn, KVM_MMU_HASH_SHIFT); 1696 } 1697 1698 static void mmu_page_add_parent_pte(struct kvm_mmu_memory_cache *cache, 1699 struct kvm_mmu_page *sp, u64 *parent_pte) 1700 { 1701 if (!parent_pte) 1702 return; 1703 1704 pte_list_add(cache, parent_pte, &sp->parent_ptes); 1705 } 1706 1707 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp, 1708 u64 *parent_pte) 1709 { 1710 pte_list_remove(parent_pte, &sp->parent_ptes); 1711 } 1712 1713 static void drop_parent_pte(struct kvm_mmu_page *sp, 1714 u64 *parent_pte) 1715 { 1716 mmu_page_remove_parent_pte(sp, parent_pte); 1717 mmu_spte_clear_no_track(parent_pte); 1718 } 1719 1720 static void mark_unsync(u64 *spte); 1721 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) 1722 { 1723 u64 *sptep; 1724 struct rmap_iterator iter; 1725 1726 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) { 1727 mark_unsync(sptep); 1728 } 1729 } 1730 1731 static void mark_unsync(u64 *spte) 1732 { 1733 struct kvm_mmu_page *sp; 1734 1735 sp = sptep_to_sp(spte); 1736 if (__test_and_set_bit(spte_index(spte), sp->unsync_child_bitmap)) 1737 return; 1738 if (sp->unsync_children++) 1739 return; 1740 kvm_mmu_mark_parents_unsync(sp); 1741 } 1742 1743 static int nonpaging_sync_page(struct kvm_vcpu *vcpu, 1744 struct kvm_mmu_page *sp) 1745 { 1746 return -1; 1747 } 1748 1749 #define KVM_PAGE_ARRAY_NR 16 1750 1751 struct kvm_mmu_pages { 1752 struct mmu_page_and_offset { 1753 struct kvm_mmu_page *sp; 1754 unsigned int idx; 1755 } page[KVM_PAGE_ARRAY_NR]; 1756 unsigned int nr; 1757 }; 1758 1759 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, 1760 int idx) 1761 { 1762 int i; 1763 1764 if (sp->unsync) 1765 for (i=0; i < pvec->nr; i++) 1766 if (pvec->page[i].sp == sp) 1767 return 0; 1768 1769 pvec->page[pvec->nr].sp = sp; 1770 pvec->page[pvec->nr].idx = idx; 1771 pvec->nr++; 1772 return (pvec->nr == KVM_PAGE_ARRAY_NR); 1773 } 1774 1775 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx) 1776 { 1777 --sp->unsync_children; 1778 WARN_ON((int)sp->unsync_children < 0); 1779 __clear_bit(idx, sp->unsync_child_bitmap); 1780 } 1781 1782 static int __mmu_unsync_walk(struct kvm_mmu_page *sp, 1783 struct kvm_mmu_pages *pvec) 1784 { 1785 int i, ret, nr_unsync_leaf = 0; 1786 1787 for_each_set_bit(i, sp->unsync_child_bitmap, 512) { 1788 struct kvm_mmu_page *child; 1789 u64 ent = sp->spt[i]; 1790 1791 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) { 1792 clear_unsync_child_bit(sp, i); 1793 continue; 1794 } 1795 1796 child = to_shadow_page(ent & SPTE_BASE_ADDR_MASK); 1797 1798 if (child->unsync_children) { 1799 if (mmu_pages_add(pvec, child, i)) 1800 return -ENOSPC; 1801 1802 ret = __mmu_unsync_walk(child, pvec); 1803 if (!ret) { 1804 clear_unsync_child_bit(sp, i); 1805 continue; 1806 } else if (ret > 0) { 1807 nr_unsync_leaf += ret; 1808 } else 1809 return ret; 1810 } else if (child->unsync) { 1811 nr_unsync_leaf++; 1812 if (mmu_pages_add(pvec, child, i)) 1813 return -ENOSPC; 1814 } else 1815 clear_unsync_child_bit(sp, i); 1816 } 1817 1818 return nr_unsync_leaf; 1819 } 1820 1821 #define INVALID_INDEX (-1) 1822 1823 static int mmu_unsync_walk(struct kvm_mmu_page *sp, 1824 struct kvm_mmu_pages *pvec) 1825 { 1826 pvec->nr = 0; 1827 if (!sp->unsync_children) 1828 return 0; 1829 1830 mmu_pages_add(pvec, sp, INVALID_INDEX); 1831 return __mmu_unsync_walk(sp, pvec); 1832 } 1833 1834 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1835 { 1836 WARN_ON(!sp->unsync); 1837 trace_kvm_mmu_sync_page(sp); 1838 sp->unsync = 0; 1839 --kvm->stat.mmu_unsync; 1840 } 1841 1842 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 1843 struct list_head *invalid_list); 1844 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 1845 struct list_head *invalid_list); 1846 1847 static bool sp_has_gptes(struct kvm_mmu_page *sp) 1848 { 1849 if (sp->role.direct) 1850 return false; 1851 1852 if (sp->role.passthrough) 1853 return false; 1854 1855 return true; 1856 } 1857 1858 #define for_each_valid_sp(_kvm, _sp, _list) \ 1859 hlist_for_each_entry(_sp, _list, hash_link) \ 1860 if (is_obsolete_sp((_kvm), (_sp))) { \ 1861 } else 1862 1863 #define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn) \ 1864 for_each_valid_sp(_kvm, _sp, \ 1865 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \ 1866 if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else 1867 1868 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 1869 struct list_head *invalid_list) 1870 { 1871 int ret = vcpu->arch.mmu->sync_page(vcpu, sp); 1872 1873 if (ret < 0) 1874 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); 1875 return ret; 1876 } 1877 1878 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm, 1879 struct list_head *invalid_list, 1880 bool remote_flush) 1881 { 1882 if (!remote_flush && list_empty(invalid_list)) 1883 return false; 1884 1885 if (!list_empty(invalid_list)) 1886 kvm_mmu_commit_zap_page(kvm, invalid_list); 1887 else 1888 kvm_flush_remote_tlbs(kvm); 1889 return true; 1890 } 1891 1892 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 1893 { 1894 if (sp->role.invalid) 1895 return true; 1896 1897 /* TDP MMU pages due not use the MMU generation. */ 1898 return !sp->tdp_mmu_page && 1899 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); 1900 } 1901 1902 struct mmu_page_path { 1903 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL]; 1904 unsigned int idx[PT64_ROOT_MAX_LEVEL]; 1905 }; 1906 1907 #define for_each_sp(pvec, sp, parents, i) \ 1908 for (i = mmu_pages_first(&pvec, &parents); \ 1909 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \ 1910 i = mmu_pages_next(&pvec, &parents, i)) 1911 1912 static int mmu_pages_next(struct kvm_mmu_pages *pvec, 1913 struct mmu_page_path *parents, 1914 int i) 1915 { 1916 int n; 1917 1918 for (n = i+1; n < pvec->nr; n++) { 1919 struct kvm_mmu_page *sp = pvec->page[n].sp; 1920 unsigned idx = pvec->page[n].idx; 1921 int level = sp->role.level; 1922 1923 parents->idx[level-1] = idx; 1924 if (level == PG_LEVEL_4K) 1925 break; 1926 1927 parents->parent[level-2] = sp; 1928 } 1929 1930 return n; 1931 } 1932 1933 static int mmu_pages_first(struct kvm_mmu_pages *pvec, 1934 struct mmu_page_path *parents) 1935 { 1936 struct kvm_mmu_page *sp; 1937 int level; 1938 1939 if (pvec->nr == 0) 1940 return 0; 1941 1942 WARN_ON(pvec->page[0].idx != INVALID_INDEX); 1943 1944 sp = pvec->page[0].sp; 1945 level = sp->role.level; 1946 WARN_ON(level == PG_LEVEL_4K); 1947 1948 parents->parent[level-2] = sp; 1949 1950 /* Also set up a sentinel. Further entries in pvec are all 1951 * children of sp, so this element is never overwritten. 1952 */ 1953 parents->parent[level-1] = NULL; 1954 return mmu_pages_next(pvec, parents, 0); 1955 } 1956 1957 static void mmu_pages_clear_parents(struct mmu_page_path *parents) 1958 { 1959 struct kvm_mmu_page *sp; 1960 unsigned int level = 0; 1961 1962 do { 1963 unsigned int idx = parents->idx[level]; 1964 sp = parents->parent[level]; 1965 if (!sp) 1966 return; 1967 1968 WARN_ON(idx == INVALID_INDEX); 1969 clear_unsync_child_bit(sp, idx); 1970 level++; 1971 } while (!sp->unsync_children); 1972 } 1973 1974 static int mmu_sync_children(struct kvm_vcpu *vcpu, 1975 struct kvm_mmu_page *parent, bool can_yield) 1976 { 1977 int i; 1978 struct kvm_mmu_page *sp; 1979 struct mmu_page_path parents; 1980 struct kvm_mmu_pages pages; 1981 LIST_HEAD(invalid_list); 1982 bool flush = false; 1983 1984 while (mmu_unsync_walk(parent, &pages)) { 1985 bool protected = false; 1986 1987 for_each_sp(pages, sp, parents, i) 1988 protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn); 1989 1990 if (protected) { 1991 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true); 1992 flush = false; 1993 } 1994 1995 for_each_sp(pages, sp, parents, i) { 1996 kvm_unlink_unsync_page(vcpu->kvm, sp); 1997 flush |= kvm_sync_page(vcpu, sp, &invalid_list) > 0; 1998 mmu_pages_clear_parents(&parents); 1999 } 2000 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) { 2001 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2002 if (!can_yield) { 2003 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 2004 return -EINTR; 2005 } 2006 2007 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock); 2008 flush = false; 2009 } 2010 } 2011 2012 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2013 return 0; 2014 } 2015 2016 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) 2017 { 2018 atomic_set(&sp->write_flooding_count, 0); 2019 } 2020 2021 static void clear_sp_write_flooding_count(u64 *spte) 2022 { 2023 __clear_sp_write_flooding_count(sptep_to_sp(spte)); 2024 } 2025 2026 /* 2027 * The vCPU is required when finding indirect shadow pages; the shadow 2028 * page may already exist and syncing it needs the vCPU pointer in 2029 * order to read guest page tables. Direct shadow pages are never 2030 * unsync, thus @vcpu can be NULL if @role.direct is true. 2031 */ 2032 static struct kvm_mmu_page *kvm_mmu_find_shadow_page(struct kvm *kvm, 2033 struct kvm_vcpu *vcpu, 2034 gfn_t gfn, 2035 struct hlist_head *sp_list, 2036 union kvm_mmu_page_role role) 2037 { 2038 struct kvm_mmu_page *sp; 2039 int ret; 2040 int collisions = 0; 2041 LIST_HEAD(invalid_list); 2042 2043 for_each_valid_sp(kvm, sp, sp_list) { 2044 if (sp->gfn != gfn) { 2045 collisions++; 2046 continue; 2047 } 2048 2049 if (sp->role.word != role.word) { 2050 /* 2051 * If the guest is creating an upper-level page, zap 2052 * unsync pages for the same gfn. While it's possible 2053 * the guest is using recursive page tables, in all 2054 * likelihood the guest has stopped using the unsync 2055 * page and is installing a completely unrelated page. 2056 * Unsync pages must not be left as is, because the new 2057 * upper-level page will be write-protected. 2058 */ 2059 if (role.level > PG_LEVEL_4K && sp->unsync) 2060 kvm_mmu_prepare_zap_page(kvm, sp, 2061 &invalid_list); 2062 continue; 2063 } 2064 2065 /* unsync and write-flooding only apply to indirect SPs. */ 2066 if (sp->role.direct) 2067 goto out; 2068 2069 if (sp->unsync) { 2070 if (KVM_BUG_ON(!vcpu, kvm)) 2071 break; 2072 2073 /* 2074 * The page is good, but is stale. kvm_sync_page does 2075 * get the latest guest state, but (unlike mmu_unsync_children) 2076 * it doesn't write-protect the page or mark it synchronized! 2077 * This way the validity of the mapping is ensured, but the 2078 * overhead of write protection is not incurred until the 2079 * guest invalidates the TLB mapping. This allows multiple 2080 * SPs for a single gfn to be unsync. 2081 * 2082 * If the sync fails, the page is zapped. If so, break 2083 * in order to rebuild it. 2084 */ 2085 ret = kvm_sync_page(vcpu, sp, &invalid_list); 2086 if (ret < 0) 2087 break; 2088 2089 WARN_ON(!list_empty(&invalid_list)); 2090 if (ret > 0) 2091 kvm_flush_remote_tlbs(kvm); 2092 } 2093 2094 __clear_sp_write_flooding_count(sp); 2095 2096 goto out; 2097 } 2098 2099 sp = NULL; 2100 ++kvm->stat.mmu_cache_miss; 2101 2102 out: 2103 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2104 2105 if (collisions > kvm->stat.max_mmu_page_hash_collisions) 2106 kvm->stat.max_mmu_page_hash_collisions = collisions; 2107 return sp; 2108 } 2109 2110 /* Caches used when allocating a new shadow page. */ 2111 struct shadow_page_caches { 2112 struct kvm_mmu_memory_cache *page_header_cache; 2113 struct kvm_mmu_memory_cache *shadow_page_cache; 2114 struct kvm_mmu_memory_cache *shadowed_info_cache; 2115 }; 2116 2117 static struct kvm_mmu_page *kvm_mmu_alloc_shadow_page(struct kvm *kvm, 2118 struct shadow_page_caches *caches, 2119 gfn_t gfn, 2120 struct hlist_head *sp_list, 2121 union kvm_mmu_page_role role) 2122 { 2123 struct kvm_mmu_page *sp; 2124 2125 sp = kvm_mmu_memory_cache_alloc(caches->page_header_cache); 2126 sp->spt = kvm_mmu_memory_cache_alloc(caches->shadow_page_cache); 2127 if (!role.direct) 2128 sp->shadowed_translation = kvm_mmu_memory_cache_alloc(caches->shadowed_info_cache); 2129 2130 set_page_private(virt_to_page(sp->spt), (unsigned long)sp); 2131 2132 /* 2133 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages() 2134 * depends on valid pages being added to the head of the list. See 2135 * comments in kvm_zap_obsolete_pages(). 2136 */ 2137 sp->mmu_valid_gen = kvm->arch.mmu_valid_gen; 2138 list_add(&sp->link, &kvm->arch.active_mmu_pages); 2139 kvm_account_mmu_page(kvm, sp); 2140 2141 sp->gfn = gfn; 2142 sp->role = role; 2143 hlist_add_head(&sp->hash_link, sp_list); 2144 if (sp_has_gptes(sp)) 2145 account_shadowed(kvm, sp); 2146 2147 return sp; 2148 } 2149 2150 /* Note, @vcpu may be NULL if @role.direct is true; see kvm_mmu_find_shadow_page. */ 2151 static struct kvm_mmu_page *__kvm_mmu_get_shadow_page(struct kvm *kvm, 2152 struct kvm_vcpu *vcpu, 2153 struct shadow_page_caches *caches, 2154 gfn_t gfn, 2155 union kvm_mmu_page_role role) 2156 { 2157 struct hlist_head *sp_list; 2158 struct kvm_mmu_page *sp; 2159 bool created = false; 2160 2161 sp_list = &kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]; 2162 2163 sp = kvm_mmu_find_shadow_page(kvm, vcpu, gfn, sp_list, role); 2164 if (!sp) { 2165 created = true; 2166 sp = kvm_mmu_alloc_shadow_page(kvm, caches, gfn, sp_list, role); 2167 } 2168 2169 trace_kvm_mmu_get_page(sp, created); 2170 return sp; 2171 } 2172 2173 static struct kvm_mmu_page *kvm_mmu_get_shadow_page(struct kvm_vcpu *vcpu, 2174 gfn_t gfn, 2175 union kvm_mmu_page_role role) 2176 { 2177 struct shadow_page_caches caches = { 2178 .page_header_cache = &vcpu->arch.mmu_page_header_cache, 2179 .shadow_page_cache = &vcpu->arch.mmu_shadow_page_cache, 2180 .shadowed_info_cache = &vcpu->arch.mmu_shadowed_info_cache, 2181 }; 2182 2183 return __kvm_mmu_get_shadow_page(vcpu->kvm, vcpu, &caches, gfn, role); 2184 } 2185 2186 static union kvm_mmu_page_role kvm_mmu_child_role(u64 *sptep, bool direct, 2187 unsigned int access) 2188 { 2189 struct kvm_mmu_page *parent_sp = sptep_to_sp(sptep); 2190 union kvm_mmu_page_role role; 2191 2192 role = parent_sp->role; 2193 role.level--; 2194 role.access = access; 2195 role.direct = direct; 2196 role.passthrough = 0; 2197 2198 /* 2199 * If the guest has 4-byte PTEs then that means it's using 32-bit, 2200 * 2-level, non-PAE paging. KVM shadows such guests with PAE paging 2201 * (i.e. 8-byte PTEs). The difference in PTE size means that KVM must 2202 * shadow each guest page table with multiple shadow page tables, which 2203 * requires extra bookkeeping in the role. 2204 * 2205 * Specifically, to shadow the guest's page directory (which covers a 2206 * 4GiB address space), KVM uses 4 PAE page directories, each mapping 2207 * 1GiB of the address space. @role.quadrant encodes which quarter of 2208 * the address space each maps. 2209 * 2210 * To shadow the guest's page tables (which each map a 4MiB region), KVM 2211 * uses 2 PAE page tables, each mapping a 2MiB region. For these, 2212 * @role.quadrant encodes which half of the region they map. 2213 * 2214 * Concretely, a 4-byte PDE consumes bits 31:22, while an 8-byte PDE 2215 * consumes bits 29:21. To consume bits 31:30, KVM's uses 4 shadow 2216 * PDPTEs; those 4 PAE page directories are pre-allocated and their 2217 * quadrant is assigned in mmu_alloc_root(). A 4-byte PTE consumes 2218 * bits 21:12, while an 8-byte PTE consumes bits 20:12. To consume 2219 * bit 21 in the PTE (the child here), KVM propagates that bit to the 2220 * quadrant, i.e. sets quadrant to '0' or '1'. The parent 8-byte PDE 2221 * covers bit 21 (see above), thus the quadrant is calculated from the 2222 * _least_ significant bit of the PDE index. 2223 */ 2224 if (role.has_4_byte_gpte) { 2225 WARN_ON_ONCE(role.level != PG_LEVEL_4K); 2226 role.quadrant = spte_index(sptep) & 1; 2227 } 2228 2229 return role; 2230 } 2231 2232 static struct kvm_mmu_page *kvm_mmu_get_child_sp(struct kvm_vcpu *vcpu, 2233 u64 *sptep, gfn_t gfn, 2234 bool direct, unsigned int access) 2235 { 2236 union kvm_mmu_page_role role; 2237 2238 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) 2239 return ERR_PTR(-EEXIST); 2240 2241 role = kvm_mmu_child_role(sptep, direct, access); 2242 return kvm_mmu_get_shadow_page(vcpu, gfn, role); 2243 } 2244 2245 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator, 2246 struct kvm_vcpu *vcpu, hpa_t root, 2247 u64 addr) 2248 { 2249 iterator->addr = addr; 2250 iterator->shadow_addr = root; 2251 iterator->level = vcpu->arch.mmu->root_role.level; 2252 2253 if (iterator->level >= PT64_ROOT_4LEVEL && 2254 vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL && 2255 !vcpu->arch.mmu->root_role.direct) 2256 iterator->level = PT32E_ROOT_LEVEL; 2257 2258 if (iterator->level == PT32E_ROOT_LEVEL) { 2259 /* 2260 * prev_root is currently only used for 64-bit hosts. So only 2261 * the active root_hpa is valid here. 2262 */ 2263 BUG_ON(root != vcpu->arch.mmu->root.hpa); 2264 2265 iterator->shadow_addr 2266 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3]; 2267 iterator->shadow_addr &= SPTE_BASE_ADDR_MASK; 2268 --iterator->level; 2269 if (!iterator->shadow_addr) 2270 iterator->level = 0; 2271 } 2272 } 2273 2274 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, 2275 struct kvm_vcpu *vcpu, u64 addr) 2276 { 2277 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa, 2278 addr); 2279 } 2280 2281 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) 2282 { 2283 if (iterator->level < PG_LEVEL_4K) 2284 return false; 2285 2286 iterator->index = SPTE_INDEX(iterator->addr, iterator->level); 2287 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; 2288 return true; 2289 } 2290 2291 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, 2292 u64 spte) 2293 { 2294 if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) { 2295 iterator->level = 0; 2296 return; 2297 } 2298 2299 iterator->shadow_addr = spte & SPTE_BASE_ADDR_MASK; 2300 --iterator->level; 2301 } 2302 2303 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) 2304 { 2305 __shadow_walk_next(iterator, *iterator->sptep); 2306 } 2307 2308 static void __link_shadow_page(struct kvm *kvm, 2309 struct kvm_mmu_memory_cache *cache, u64 *sptep, 2310 struct kvm_mmu_page *sp, bool flush) 2311 { 2312 u64 spte; 2313 2314 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); 2315 2316 /* 2317 * If an SPTE is present already, it must be a leaf and therefore 2318 * a large one. Drop it, and flush the TLB if needed, before 2319 * installing sp. 2320 */ 2321 if (is_shadow_present_pte(*sptep)) 2322 drop_large_spte(kvm, sptep, flush); 2323 2324 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp)); 2325 2326 mmu_spte_set(sptep, spte); 2327 2328 mmu_page_add_parent_pte(cache, sp, sptep); 2329 2330 if (sp->unsync_children || sp->unsync) 2331 mark_unsync(sptep); 2332 } 2333 2334 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, 2335 struct kvm_mmu_page *sp) 2336 { 2337 __link_shadow_page(vcpu->kvm, &vcpu->arch.mmu_pte_list_desc_cache, sptep, sp, true); 2338 } 2339 2340 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2341 unsigned direct_access) 2342 { 2343 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { 2344 struct kvm_mmu_page *child; 2345 2346 /* 2347 * For the direct sp, if the guest pte's dirty bit 2348 * changed form clean to dirty, it will corrupt the 2349 * sp's access: allow writable in the read-only sp, 2350 * so we should update the spte at this point to get 2351 * a new sp with the correct access. 2352 */ 2353 child = to_shadow_page(*sptep & SPTE_BASE_ADDR_MASK); 2354 if (child->role.access == direct_access) 2355 return; 2356 2357 drop_parent_pte(child, sptep); 2358 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1); 2359 } 2360 } 2361 2362 /* Returns the number of zapped non-leaf child shadow pages. */ 2363 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 2364 u64 *spte, struct list_head *invalid_list) 2365 { 2366 u64 pte; 2367 struct kvm_mmu_page *child; 2368 2369 pte = *spte; 2370 if (is_shadow_present_pte(pte)) { 2371 if (is_last_spte(pte, sp->role.level)) { 2372 drop_spte(kvm, spte); 2373 } else { 2374 child = to_shadow_page(pte & SPTE_BASE_ADDR_MASK); 2375 drop_parent_pte(child, spte); 2376 2377 /* 2378 * Recursively zap nested TDP SPs, parentless SPs are 2379 * unlikely to be used again in the near future. This 2380 * avoids retaining a large number of stale nested SPs. 2381 */ 2382 if (tdp_enabled && invalid_list && 2383 child->role.guest_mode && !child->parent_ptes.val) 2384 return kvm_mmu_prepare_zap_page(kvm, child, 2385 invalid_list); 2386 } 2387 } else if (is_mmio_spte(pte)) { 2388 mmu_spte_clear_no_track(spte); 2389 } 2390 return 0; 2391 } 2392 2393 static int kvm_mmu_page_unlink_children(struct kvm *kvm, 2394 struct kvm_mmu_page *sp, 2395 struct list_head *invalid_list) 2396 { 2397 int zapped = 0; 2398 unsigned i; 2399 2400 for (i = 0; i < SPTE_ENT_PER_PAGE; ++i) 2401 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list); 2402 2403 return zapped; 2404 } 2405 2406 static void kvm_mmu_unlink_parents(struct kvm_mmu_page *sp) 2407 { 2408 u64 *sptep; 2409 struct rmap_iterator iter; 2410 2411 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter))) 2412 drop_parent_pte(sp, sptep); 2413 } 2414 2415 static int mmu_zap_unsync_children(struct kvm *kvm, 2416 struct kvm_mmu_page *parent, 2417 struct list_head *invalid_list) 2418 { 2419 int i, zapped = 0; 2420 struct mmu_page_path parents; 2421 struct kvm_mmu_pages pages; 2422 2423 if (parent->role.level == PG_LEVEL_4K) 2424 return 0; 2425 2426 while (mmu_unsync_walk(parent, &pages)) { 2427 struct kvm_mmu_page *sp; 2428 2429 for_each_sp(pages, sp, parents, i) { 2430 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 2431 mmu_pages_clear_parents(&parents); 2432 zapped++; 2433 } 2434 } 2435 2436 return zapped; 2437 } 2438 2439 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm, 2440 struct kvm_mmu_page *sp, 2441 struct list_head *invalid_list, 2442 int *nr_zapped) 2443 { 2444 bool list_unstable, zapped_root = false; 2445 2446 trace_kvm_mmu_prepare_zap_page(sp); 2447 ++kvm->stat.mmu_shadow_zapped; 2448 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list); 2449 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list); 2450 kvm_mmu_unlink_parents(sp); 2451 2452 /* Zapping children means active_mmu_pages has become unstable. */ 2453 list_unstable = *nr_zapped; 2454 2455 if (!sp->role.invalid && sp_has_gptes(sp)) 2456 unaccount_shadowed(kvm, sp); 2457 2458 if (sp->unsync) 2459 kvm_unlink_unsync_page(kvm, sp); 2460 if (!sp->root_count) { 2461 /* Count self */ 2462 (*nr_zapped)++; 2463 2464 /* 2465 * Already invalid pages (previously active roots) are not on 2466 * the active page list. See list_del() in the "else" case of 2467 * !sp->root_count. 2468 */ 2469 if (sp->role.invalid) 2470 list_add(&sp->link, invalid_list); 2471 else 2472 list_move(&sp->link, invalid_list); 2473 kvm_unaccount_mmu_page(kvm, sp); 2474 } else { 2475 /* 2476 * Remove the active root from the active page list, the root 2477 * will be explicitly freed when the root_count hits zero. 2478 */ 2479 list_del(&sp->link); 2480 2481 /* 2482 * Obsolete pages cannot be used on any vCPUs, see the comment 2483 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also 2484 * treats invalid shadow pages as being obsolete. 2485 */ 2486 zapped_root = !is_obsolete_sp(kvm, sp); 2487 } 2488 2489 if (sp->lpage_disallowed) 2490 unaccount_huge_nx_page(kvm, sp); 2491 2492 sp->role.invalid = 1; 2493 2494 /* 2495 * Make the request to free obsolete roots after marking the root 2496 * invalid, otherwise other vCPUs may not see it as invalid. 2497 */ 2498 if (zapped_root) 2499 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 2500 return list_unstable; 2501 } 2502 2503 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 2504 struct list_head *invalid_list) 2505 { 2506 int nr_zapped; 2507 2508 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped); 2509 return nr_zapped; 2510 } 2511 2512 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 2513 struct list_head *invalid_list) 2514 { 2515 struct kvm_mmu_page *sp, *nsp; 2516 2517 if (list_empty(invalid_list)) 2518 return; 2519 2520 /* 2521 * We need to make sure everyone sees our modifications to 2522 * the page tables and see changes to vcpu->mode here. The barrier 2523 * in the kvm_flush_remote_tlbs() achieves this. This pairs 2524 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end. 2525 * 2526 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit 2527 * guest mode and/or lockless shadow page table walks. 2528 */ 2529 kvm_flush_remote_tlbs(kvm); 2530 2531 list_for_each_entry_safe(sp, nsp, invalid_list, link) { 2532 WARN_ON(!sp->role.invalid || sp->root_count); 2533 kvm_mmu_free_shadow_page(sp); 2534 } 2535 } 2536 2537 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm, 2538 unsigned long nr_to_zap) 2539 { 2540 unsigned long total_zapped = 0; 2541 struct kvm_mmu_page *sp, *tmp; 2542 LIST_HEAD(invalid_list); 2543 bool unstable; 2544 int nr_zapped; 2545 2546 if (list_empty(&kvm->arch.active_mmu_pages)) 2547 return 0; 2548 2549 restart: 2550 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) { 2551 /* 2552 * Don't zap active root pages, the page itself can't be freed 2553 * and zapping it will just force vCPUs to realloc and reload. 2554 */ 2555 if (sp->root_count) 2556 continue; 2557 2558 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, 2559 &nr_zapped); 2560 total_zapped += nr_zapped; 2561 if (total_zapped >= nr_to_zap) 2562 break; 2563 2564 if (unstable) 2565 goto restart; 2566 } 2567 2568 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2569 2570 kvm->stat.mmu_recycled += total_zapped; 2571 return total_zapped; 2572 } 2573 2574 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm) 2575 { 2576 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) 2577 return kvm->arch.n_max_mmu_pages - 2578 kvm->arch.n_used_mmu_pages; 2579 2580 return 0; 2581 } 2582 2583 static int make_mmu_pages_available(struct kvm_vcpu *vcpu) 2584 { 2585 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm); 2586 2587 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES)) 2588 return 0; 2589 2590 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail); 2591 2592 /* 2593 * Note, this check is intentionally soft, it only guarantees that one 2594 * page is available, while the caller may end up allocating as many as 2595 * four pages, e.g. for PAE roots or for 5-level paging. Temporarily 2596 * exceeding the (arbitrary by default) limit will not harm the host, 2597 * being too aggressive may unnecessarily kill the guest, and getting an 2598 * exact count is far more trouble than it's worth, especially in the 2599 * page fault paths. 2600 */ 2601 if (!kvm_mmu_available_pages(vcpu->kvm)) 2602 return -ENOSPC; 2603 return 0; 2604 } 2605 2606 /* 2607 * Changing the number of mmu pages allocated to the vm 2608 * Note: if goal_nr_mmu_pages is too small, you will get dead lock 2609 */ 2610 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages) 2611 { 2612 write_lock(&kvm->mmu_lock); 2613 2614 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { 2615 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages - 2616 goal_nr_mmu_pages); 2617 2618 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; 2619 } 2620 2621 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; 2622 2623 write_unlock(&kvm->mmu_lock); 2624 } 2625 2626 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn) 2627 { 2628 struct kvm_mmu_page *sp; 2629 LIST_HEAD(invalid_list); 2630 int r; 2631 2632 pgprintk("%s: looking for gfn %llx\n", __func__, gfn); 2633 r = 0; 2634 write_lock(&kvm->mmu_lock); 2635 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) { 2636 pgprintk("%s: gfn %llx role %x\n", __func__, gfn, 2637 sp->role.word); 2638 r = 1; 2639 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 2640 } 2641 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2642 write_unlock(&kvm->mmu_lock); 2643 2644 return r; 2645 } 2646 2647 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) 2648 { 2649 gpa_t gpa; 2650 int r; 2651 2652 if (vcpu->arch.mmu->root_role.direct) 2653 return 0; 2654 2655 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL); 2656 2657 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); 2658 2659 return r; 2660 } 2661 2662 static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 2663 { 2664 trace_kvm_mmu_unsync_page(sp); 2665 ++kvm->stat.mmu_unsync; 2666 sp->unsync = 1; 2667 2668 kvm_mmu_mark_parents_unsync(sp); 2669 } 2670 2671 /* 2672 * Attempt to unsync any shadow pages that can be reached by the specified gfn, 2673 * KVM is creating a writable mapping for said gfn. Returns 0 if all pages 2674 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must 2675 * be write-protected. 2676 */ 2677 int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot, 2678 gfn_t gfn, bool can_unsync, bool prefetch) 2679 { 2680 struct kvm_mmu_page *sp; 2681 bool locked = false; 2682 2683 /* 2684 * Force write-protection if the page is being tracked. Note, the page 2685 * track machinery is used to write-protect upper-level shadow pages, 2686 * i.e. this guards the role.level == 4K assertion below! 2687 */ 2688 if (kvm_slot_page_track_is_active(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE)) 2689 return -EPERM; 2690 2691 /* 2692 * The page is not write-tracked, mark existing shadow pages unsync 2693 * unless KVM is synchronizing an unsync SP (can_unsync = false). In 2694 * that case, KVM must complete emulation of the guest TLB flush before 2695 * allowing shadow pages to become unsync (writable by the guest). 2696 */ 2697 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) { 2698 if (!can_unsync) 2699 return -EPERM; 2700 2701 if (sp->unsync) 2702 continue; 2703 2704 if (prefetch) 2705 return -EEXIST; 2706 2707 /* 2708 * TDP MMU page faults require an additional spinlock as they 2709 * run with mmu_lock held for read, not write, and the unsync 2710 * logic is not thread safe. Take the spinklock regardless of 2711 * the MMU type to avoid extra conditionals/parameters, there's 2712 * no meaningful penalty if mmu_lock is held for write. 2713 */ 2714 if (!locked) { 2715 locked = true; 2716 spin_lock(&kvm->arch.mmu_unsync_pages_lock); 2717 2718 /* 2719 * Recheck after taking the spinlock, a different vCPU 2720 * may have since marked the page unsync. A false 2721 * positive on the unprotected check above is not 2722 * possible as clearing sp->unsync _must_ hold mmu_lock 2723 * for write, i.e. unsync cannot transition from 0->1 2724 * while this CPU holds mmu_lock for read (or write). 2725 */ 2726 if (READ_ONCE(sp->unsync)) 2727 continue; 2728 } 2729 2730 WARN_ON(sp->role.level != PG_LEVEL_4K); 2731 kvm_unsync_page(kvm, sp); 2732 } 2733 if (locked) 2734 spin_unlock(&kvm->arch.mmu_unsync_pages_lock); 2735 2736 /* 2737 * We need to ensure that the marking of unsync pages is visible 2738 * before the SPTE is updated to allow writes because 2739 * kvm_mmu_sync_roots() checks the unsync flags without holding 2740 * the MMU lock and so can race with this. If the SPTE was updated 2741 * before the page had been marked as unsync-ed, something like the 2742 * following could happen: 2743 * 2744 * CPU 1 CPU 2 2745 * --------------------------------------------------------------------- 2746 * 1.2 Host updates SPTE 2747 * to be writable 2748 * 2.1 Guest writes a GPTE for GVA X. 2749 * (GPTE being in the guest page table shadowed 2750 * by the SP from CPU 1.) 2751 * This reads SPTE during the page table walk. 2752 * Since SPTE.W is read as 1, there is no 2753 * fault. 2754 * 2755 * 2.2 Guest issues TLB flush. 2756 * That causes a VM Exit. 2757 * 2758 * 2.3 Walking of unsync pages sees sp->unsync is 2759 * false and skips the page. 2760 * 2761 * 2.4 Guest accesses GVA X. 2762 * Since the mapping in the SP was not updated, 2763 * so the old mapping for GVA X incorrectly 2764 * gets used. 2765 * 1.1 Host marks SP 2766 * as unsync 2767 * (sp->unsync = true) 2768 * 2769 * The write barrier below ensures that 1.1 happens before 1.2 and thus 2770 * the situation in 2.4 does not arise. It pairs with the read barrier 2771 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3. 2772 */ 2773 smp_wmb(); 2774 2775 return 0; 2776 } 2777 2778 static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, 2779 u64 *sptep, unsigned int pte_access, gfn_t gfn, 2780 kvm_pfn_t pfn, struct kvm_page_fault *fault) 2781 { 2782 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 2783 int level = sp->role.level; 2784 int was_rmapped = 0; 2785 int ret = RET_PF_FIXED; 2786 bool flush = false; 2787 bool wrprot; 2788 u64 spte; 2789 2790 /* Prefetching always gets a writable pfn. */ 2791 bool host_writable = !fault || fault->map_writable; 2792 bool prefetch = !fault || fault->prefetch; 2793 bool write_fault = fault && fault->write; 2794 2795 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__, 2796 *sptep, write_fault, gfn); 2797 2798 if (unlikely(is_noslot_pfn(pfn))) { 2799 vcpu->stat.pf_mmio_spte_created++; 2800 mark_mmio_spte(vcpu, sptep, gfn, pte_access); 2801 return RET_PF_EMULATE; 2802 } 2803 2804 if (is_shadow_present_pte(*sptep)) { 2805 /* 2806 * If we overwrite a PTE page pointer with a 2MB PMD, unlink 2807 * the parent of the now unreachable PTE. 2808 */ 2809 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) { 2810 struct kvm_mmu_page *child; 2811 u64 pte = *sptep; 2812 2813 child = to_shadow_page(pte & SPTE_BASE_ADDR_MASK); 2814 drop_parent_pte(child, sptep); 2815 flush = true; 2816 } else if (pfn != spte_to_pfn(*sptep)) { 2817 pgprintk("hfn old %llx new %llx\n", 2818 spte_to_pfn(*sptep), pfn); 2819 drop_spte(vcpu->kvm, sptep); 2820 flush = true; 2821 } else 2822 was_rmapped = 1; 2823 } 2824 2825 wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch, 2826 true, host_writable, &spte); 2827 2828 if (*sptep == spte) { 2829 ret = RET_PF_SPURIOUS; 2830 } else { 2831 flush |= mmu_spte_update(sptep, spte); 2832 trace_kvm_mmu_set_spte(level, gfn, sptep); 2833 } 2834 2835 if (wrprot) { 2836 if (write_fault) 2837 ret = RET_PF_EMULATE; 2838 } 2839 2840 if (flush) 2841 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 2842 KVM_PAGES_PER_HPAGE(level)); 2843 2844 pgprintk("%s: setting spte %llx\n", __func__, *sptep); 2845 2846 if (!was_rmapped) { 2847 WARN_ON_ONCE(ret == RET_PF_SPURIOUS); 2848 rmap_add(vcpu, slot, sptep, gfn, pte_access); 2849 } else { 2850 /* Already rmapped but the pte_access bits may have changed. */ 2851 kvm_mmu_page_set_access(sp, spte_index(sptep), pte_access); 2852 } 2853 2854 return ret; 2855 } 2856 2857 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu, 2858 struct kvm_mmu_page *sp, 2859 u64 *start, u64 *end) 2860 { 2861 struct page *pages[PTE_PREFETCH_NUM]; 2862 struct kvm_memory_slot *slot; 2863 unsigned int access = sp->role.access; 2864 int i, ret; 2865 gfn_t gfn; 2866 2867 gfn = kvm_mmu_page_get_gfn(sp, spte_index(start)); 2868 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK); 2869 if (!slot) 2870 return -1; 2871 2872 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start); 2873 if (ret <= 0) 2874 return -1; 2875 2876 for (i = 0; i < ret; i++, gfn++, start++) { 2877 mmu_set_spte(vcpu, slot, start, access, gfn, 2878 page_to_pfn(pages[i]), NULL); 2879 put_page(pages[i]); 2880 } 2881 2882 return 0; 2883 } 2884 2885 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, 2886 struct kvm_mmu_page *sp, u64 *sptep) 2887 { 2888 u64 *spte, *start = NULL; 2889 int i; 2890 2891 WARN_ON(!sp->role.direct); 2892 2893 i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1); 2894 spte = sp->spt + i; 2895 2896 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 2897 if (is_shadow_present_pte(*spte) || spte == sptep) { 2898 if (!start) 2899 continue; 2900 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0) 2901 return; 2902 start = NULL; 2903 } else if (!start) 2904 start = spte; 2905 } 2906 if (start) 2907 direct_pte_prefetch_many(vcpu, sp, start, spte); 2908 } 2909 2910 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) 2911 { 2912 struct kvm_mmu_page *sp; 2913 2914 sp = sptep_to_sp(sptep); 2915 2916 /* 2917 * Without accessed bits, there's no way to distinguish between 2918 * actually accessed translations and prefetched, so disable pte 2919 * prefetch if accessed bits aren't available. 2920 */ 2921 if (sp_ad_disabled(sp)) 2922 return; 2923 2924 if (sp->role.level > PG_LEVEL_4K) 2925 return; 2926 2927 /* 2928 * If addresses are being invalidated, skip prefetching to avoid 2929 * accidentally prefetching those addresses. 2930 */ 2931 if (unlikely(vcpu->kvm->mmu_invalidate_in_progress)) 2932 return; 2933 2934 __direct_pte_prefetch(vcpu, sp, sptep); 2935 } 2936 2937 /* 2938 * Lookup the mapping level for @gfn in the current mm. 2939 * 2940 * WARNING! Use of host_pfn_mapping_level() requires the caller and the end 2941 * consumer to be tied into KVM's handlers for MMU notifier events! 2942 * 2943 * There are several ways to safely use this helper: 2944 * 2945 * - Check mmu_invalidate_retry_hva() after grabbing the mapping level, before 2946 * consuming it. In this case, mmu_lock doesn't need to be held during the 2947 * lookup, but it does need to be held while checking the MMU notifier. 2948 * 2949 * - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation 2950 * event for the hva. This can be done by explicit checking the MMU notifier 2951 * or by ensuring that KVM already has a valid mapping that covers the hva. 2952 * 2953 * - Do not use the result to install new mappings, e.g. use the host mapping 2954 * level only to decide whether or not to zap an entry. In this case, it's 2955 * not required to hold mmu_lock (though it's highly likely the caller will 2956 * want to hold mmu_lock anyways, e.g. to modify SPTEs). 2957 * 2958 * Note! The lookup can still race with modifications to host page tables, but 2959 * the above "rules" ensure KVM will not _consume_ the result of the walk if a 2960 * race with the primary MMU occurs. 2961 */ 2962 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, 2963 const struct kvm_memory_slot *slot) 2964 { 2965 int level = PG_LEVEL_4K; 2966 unsigned long hva; 2967 unsigned long flags; 2968 pgd_t pgd; 2969 p4d_t p4d; 2970 pud_t pud; 2971 pmd_t pmd; 2972 2973 /* 2974 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot() 2975 * is not solely for performance, it's also necessary to avoid the 2976 * "writable" check in __gfn_to_hva_many(), which will always fail on 2977 * read-only memslots due to gfn_to_hva() assuming writes. Earlier 2978 * page fault steps have already verified the guest isn't writing a 2979 * read-only memslot. 2980 */ 2981 hva = __gfn_to_hva_memslot(slot, gfn); 2982 2983 /* 2984 * Disable IRQs to prevent concurrent tear down of host page tables, 2985 * e.g. if the primary MMU promotes a P*D to a huge page and then frees 2986 * the original page table. 2987 */ 2988 local_irq_save(flags); 2989 2990 /* 2991 * Read each entry once. As above, a non-leaf entry can be promoted to 2992 * a huge page _during_ this walk. Re-reading the entry could send the 2993 * walk into the weeks, e.g. p*d_large() returns false (sees the old 2994 * value) and then p*d_offset() walks into the target huge page instead 2995 * of the old page table (sees the new value). 2996 */ 2997 pgd = READ_ONCE(*pgd_offset(kvm->mm, hva)); 2998 if (pgd_none(pgd)) 2999 goto out; 3000 3001 p4d = READ_ONCE(*p4d_offset(&pgd, hva)); 3002 if (p4d_none(p4d) || !p4d_present(p4d)) 3003 goto out; 3004 3005 pud = READ_ONCE(*pud_offset(&p4d, hva)); 3006 if (pud_none(pud) || !pud_present(pud)) 3007 goto out; 3008 3009 if (pud_large(pud)) { 3010 level = PG_LEVEL_1G; 3011 goto out; 3012 } 3013 3014 pmd = READ_ONCE(*pmd_offset(&pud, hva)); 3015 if (pmd_none(pmd) || !pmd_present(pmd)) 3016 goto out; 3017 3018 if (pmd_large(pmd)) 3019 level = PG_LEVEL_2M; 3020 3021 out: 3022 local_irq_restore(flags); 3023 return level; 3024 } 3025 3026 int kvm_mmu_max_mapping_level(struct kvm *kvm, 3027 const struct kvm_memory_slot *slot, gfn_t gfn, 3028 int max_level) 3029 { 3030 struct kvm_lpage_info *linfo; 3031 int host_level; 3032 3033 max_level = min(max_level, max_huge_page_level); 3034 for ( ; max_level > PG_LEVEL_4K; max_level--) { 3035 linfo = lpage_info_slot(gfn, slot, max_level); 3036 if (!linfo->disallow_lpage) 3037 break; 3038 } 3039 3040 if (max_level == PG_LEVEL_4K) 3041 return PG_LEVEL_4K; 3042 3043 host_level = host_pfn_mapping_level(kvm, gfn, slot); 3044 return min(host_level, max_level); 3045 } 3046 3047 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3048 { 3049 struct kvm_memory_slot *slot = fault->slot; 3050 kvm_pfn_t mask; 3051 3052 fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled; 3053 3054 if (unlikely(fault->max_level == PG_LEVEL_4K)) 3055 return; 3056 3057 if (is_error_noslot_pfn(fault->pfn)) 3058 return; 3059 3060 if (kvm_slot_dirty_track_enabled(slot)) 3061 return; 3062 3063 /* 3064 * Enforce the iTLB multihit workaround after capturing the requested 3065 * level, which will be used to do precise, accurate accounting. 3066 */ 3067 fault->req_level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, 3068 fault->gfn, fault->max_level); 3069 if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed) 3070 return; 3071 3072 /* 3073 * mmu_invalidate_retry() was successful and mmu_lock is held, so 3074 * the pmd can't be split from under us. 3075 */ 3076 fault->goal_level = fault->req_level; 3077 mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1; 3078 VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask)); 3079 fault->pfn &= ~mask; 3080 } 3081 3082 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level) 3083 { 3084 if (cur_level > PG_LEVEL_4K && 3085 cur_level == fault->goal_level && 3086 is_shadow_present_pte(spte) && 3087 !is_large_pte(spte)) { 3088 /* 3089 * A small SPTE exists for this pfn, but FNAME(fetch) 3090 * and __direct_map would like to create a large PTE 3091 * instead: just force them to go down another level, 3092 * patching back for them into pfn the next 9 bits of 3093 * the address. 3094 */ 3095 u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) - 3096 KVM_PAGES_PER_HPAGE(cur_level - 1); 3097 fault->pfn |= fault->gfn & page_mask; 3098 fault->goal_level--; 3099 } 3100 } 3101 3102 static int __direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3103 { 3104 struct kvm_shadow_walk_iterator it; 3105 struct kvm_mmu_page *sp; 3106 int ret; 3107 gfn_t base_gfn = fault->gfn; 3108 3109 kvm_mmu_hugepage_adjust(vcpu, fault); 3110 3111 trace_kvm_mmu_spte_requested(fault); 3112 for_each_shadow_entry(vcpu, fault->addr, it) { 3113 /* 3114 * We cannot overwrite existing page tables with an NX 3115 * large page, as the leaf could be executable. 3116 */ 3117 if (fault->nx_huge_page_workaround_enabled) 3118 disallowed_hugepage_adjust(fault, *it.sptep, it.level); 3119 3120 base_gfn = fault->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1); 3121 if (it.level == fault->goal_level) 3122 break; 3123 3124 sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, true, ACC_ALL); 3125 if (sp == ERR_PTR(-EEXIST)) 3126 continue; 3127 3128 link_shadow_page(vcpu, it.sptep, sp); 3129 if (fault->is_tdp && fault->huge_page_disallowed && 3130 fault->req_level >= it.level) 3131 account_huge_nx_page(vcpu->kvm, sp); 3132 } 3133 3134 if (WARN_ON_ONCE(it.level != fault->goal_level)) 3135 return -EFAULT; 3136 3137 ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL, 3138 base_gfn, fault->pfn, fault); 3139 if (ret == RET_PF_SPURIOUS) 3140 return ret; 3141 3142 direct_pte_prefetch(vcpu, it.sptep); 3143 return ret; 3144 } 3145 3146 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk) 3147 { 3148 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk); 3149 } 3150 3151 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn) 3152 { 3153 /* 3154 * Do not cache the mmio info caused by writing the readonly gfn 3155 * into the spte otherwise read access on readonly gfn also can 3156 * caused mmio page fault and treat it as mmio access. 3157 */ 3158 if (pfn == KVM_PFN_ERR_RO_FAULT) 3159 return RET_PF_EMULATE; 3160 3161 if (pfn == KVM_PFN_ERR_HWPOISON) { 3162 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current); 3163 return RET_PF_RETRY; 3164 } 3165 3166 return -EFAULT; 3167 } 3168 3169 static int handle_abnormal_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, 3170 unsigned int access) 3171 { 3172 /* The pfn is invalid, report the error! */ 3173 if (unlikely(is_error_pfn(fault->pfn))) 3174 return kvm_handle_bad_page(vcpu, fault->gfn, fault->pfn); 3175 3176 if (unlikely(!fault->slot)) { 3177 gva_t gva = fault->is_tdp ? 0 : fault->addr; 3178 3179 vcpu_cache_mmio_info(vcpu, gva, fault->gfn, 3180 access & shadow_mmio_access_mask); 3181 /* 3182 * If MMIO caching is disabled, emulate immediately without 3183 * touching the shadow page tables as attempting to install an 3184 * MMIO SPTE will just be an expensive nop. Do not cache MMIO 3185 * whose gfn is greater than host.MAXPHYADDR, any guest that 3186 * generates such gfns is running nested and is being tricked 3187 * by L0 userspace (you can observe gfn > L1.MAXPHYADDR if 3188 * and only if L1's MAXPHYADDR is inaccurate with respect to 3189 * the hardware's). 3190 */ 3191 if (unlikely(!enable_mmio_caching) || 3192 unlikely(fault->gfn > kvm_mmu_max_gfn())) 3193 return RET_PF_EMULATE; 3194 } 3195 3196 return RET_PF_CONTINUE; 3197 } 3198 3199 static bool page_fault_can_be_fast(struct kvm_page_fault *fault) 3200 { 3201 /* 3202 * Page faults with reserved bits set, i.e. faults on MMIO SPTEs, only 3203 * reach the common page fault handler if the SPTE has an invalid MMIO 3204 * generation number. Refreshing the MMIO generation needs to go down 3205 * the slow path. Note, EPT Misconfigs do NOT set the PRESENT flag! 3206 */ 3207 if (fault->rsvd) 3208 return false; 3209 3210 /* 3211 * #PF can be fast if: 3212 * 3213 * 1. The shadow page table entry is not present and A/D bits are 3214 * disabled _by KVM_, which could mean that the fault is potentially 3215 * caused by access tracking (if enabled). If A/D bits are enabled 3216 * by KVM, but disabled by L1 for L2, KVM is forced to disable A/D 3217 * bits for L2 and employ access tracking, but the fast page fault 3218 * mechanism only supports direct MMUs. 3219 * 2. The shadow page table entry is present, the access is a write, 3220 * and no reserved bits are set (MMIO SPTEs cannot be "fixed"), i.e. 3221 * the fault was caused by a write-protection violation. If the 3222 * SPTE is MMU-writable (determined later), the fault can be fixed 3223 * by setting the Writable bit, which can be done out of mmu_lock. 3224 */ 3225 if (!fault->present) 3226 return !kvm_ad_enabled(); 3227 3228 /* 3229 * Note, instruction fetches and writes are mutually exclusive, ignore 3230 * the "exec" flag. 3231 */ 3232 return fault->write; 3233 } 3234 3235 /* 3236 * Returns true if the SPTE was fixed successfully. Otherwise, 3237 * someone else modified the SPTE from its original value. 3238 */ 3239 static bool 3240 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, 3241 u64 *sptep, u64 old_spte, u64 new_spte) 3242 { 3243 /* 3244 * Theoretically we could also set dirty bit (and flush TLB) here in 3245 * order to eliminate unnecessary PML logging. See comments in 3246 * set_spte. But fast_page_fault is very unlikely to happen with PML 3247 * enabled, so we do not do this. This might result in the same GPA 3248 * to be logged in PML buffer again when the write really happens, and 3249 * eventually to be called by mark_page_dirty twice. But it's also no 3250 * harm. This also avoids the TLB flush needed after setting dirty bit 3251 * so non-PML cases won't be impacted. 3252 * 3253 * Compare with set_spte where instead shadow_dirty_mask is set. 3254 */ 3255 if (!try_cmpxchg64(sptep, &old_spte, new_spte)) 3256 return false; 3257 3258 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) 3259 mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn); 3260 3261 return true; 3262 } 3263 3264 static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte) 3265 { 3266 if (fault->exec) 3267 return is_executable_pte(spte); 3268 3269 if (fault->write) 3270 return is_writable_pte(spte); 3271 3272 /* Fault was on Read access */ 3273 return spte & PT_PRESENT_MASK; 3274 } 3275 3276 /* 3277 * Returns the last level spte pointer of the shadow page walk for the given 3278 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no 3279 * walk could be performed, returns NULL and *spte does not contain valid data. 3280 * 3281 * Contract: 3282 * - Must be called between walk_shadow_page_lockless_{begin,end}. 3283 * - The returned sptep must not be used after walk_shadow_page_lockless_end. 3284 */ 3285 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte) 3286 { 3287 struct kvm_shadow_walk_iterator iterator; 3288 u64 old_spte; 3289 u64 *sptep = NULL; 3290 3291 for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) { 3292 sptep = iterator.sptep; 3293 *spte = old_spte; 3294 } 3295 3296 return sptep; 3297 } 3298 3299 /* 3300 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS. 3301 */ 3302 static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3303 { 3304 struct kvm_mmu_page *sp; 3305 int ret = RET_PF_INVALID; 3306 u64 spte = 0ull; 3307 u64 *sptep = NULL; 3308 uint retry_count = 0; 3309 3310 if (!page_fault_can_be_fast(fault)) 3311 return ret; 3312 3313 walk_shadow_page_lockless_begin(vcpu); 3314 3315 do { 3316 u64 new_spte; 3317 3318 if (is_tdp_mmu(vcpu->arch.mmu)) 3319 sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->addr, &spte); 3320 else 3321 sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte); 3322 3323 if (!is_shadow_present_pte(spte)) 3324 break; 3325 3326 sp = sptep_to_sp(sptep); 3327 if (!is_last_spte(spte, sp->role.level)) 3328 break; 3329 3330 /* 3331 * Check whether the memory access that caused the fault would 3332 * still cause it if it were to be performed right now. If not, 3333 * then this is a spurious fault caused by TLB lazily flushed, 3334 * or some other CPU has already fixed the PTE after the 3335 * current CPU took the fault. 3336 * 3337 * Need not check the access of upper level table entries since 3338 * they are always ACC_ALL. 3339 */ 3340 if (is_access_allowed(fault, spte)) { 3341 ret = RET_PF_SPURIOUS; 3342 break; 3343 } 3344 3345 new_spte = spte; 3346 3347 /* 3348 * KVM only supports fixing page faults outside of MMU lock for 3349 * direct MMUs, nested MMUs are always indirect, and KVM always 3350 * uses A/D bits for non-nested MMUs. Thus, if A/D bits are 3351 * enabled, the SPTE can't be an access-tracked SPTE. 3352 */ 3353 if (unlikely(!kvm_ad_enabled()) && is_access_track_spte(spte)) 3354 new_spte = restore_acc_track_spte(new_spte); 3355 3356 /* 3357 * To keep things simple, only SPTEs that are MMU-writable can 3358 * be made fully writable outside of mmu_lock, e.g. only SPTEs 3359 * that were write-protected for dirty-logging or access 3360 * tracking are handled here. Don't bother checking if the 3361 * SPTE is writable to prioritize running with A/D bits enabled. 3362 * The is_access_allowed() check above handles the common case 3363 * of the fault being spurious, and the SPTE is known to be 3364 * shadow-present, i.e. except for access tracking restoration 3365 * making the new SPTE writable, the check is wasteful. 3366 */ 3367 if (fault->write && is_mmu_writable_spte(spte)) { 3368 new_spte |= PT_WRITABLE_MASK; 3369 3370 /* 3371 * Do not fix write-permission on the large spte when 3372 * dirty logging is enabled. Since we only dirty the 3373 * first page into the dirty-bitmap in 3374 * fast_pf_fix_direct_spte(), other pages are missed 3375 * if its slot has dirty logging enabled. 3376 * 3377 * Instead, we let the slow page fault path create a 3378 * normal spte to fix the access. 3379 */ 3380 if (sp->role.level > PG_LEVEL_4K && 3381 kvm_slot_dirty_track_enabled(fault->slot)) 3382 break; 3383 } 3384 3385 /* Verify that the fault can be handled in the fast path */ 3386 if (new_spte == spte || 3387 !is_access_allowed(fault, new_spte)) 3388 break; 3389 3390 /* 3391 * Currently, fast page fault only works for direct mapping 3392 * since the gfn is not stable for indirect shadow page. See 3393 * Documentation/virt/kvm/locking.rst to get more detail. 3394 */ 3395 if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) { 3396 ret = RET_PF_FIXED; 3397 break; 3398 } 3399 3400 if (++retry_count > 4) { 3401 printk_once(KERN_WARNING 3402 "kvm: Fast #PF retrying more than 4 times.\n"); 3403 break; 3404 } 3405 3406 } while (true); 3407 3408 trace_fast_page_fault(vcpu, fault, sptep, spte, ret); 3409 walk_shadow_page_lockless_end(vcpu); 3410 3411 if (ret != RET_PF_INVALID) 3412 vcpu->stat.pf_fast++; 3413 3414 return ret; 3415 } 3416 3417 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa, 3418 struct list_head *invalid_list) 3419 { 3420 struct kvm_mmu_page *sp; 3421 3422 if (!VALID_PAGE(*root_hpa)) 3423 return; 3424 3425 sp = to_shadow_page(*root_hpa & SPTE_BASE_ADDR_MASK); 3426 if (WARN_ON(!sp)) 3427 return; 3428 3429 if (is_tdp_mmu_page(sp)) 3430 kvm_tdp_mmu_put_root(kvm, sp, false); 3431 else if (!--sp->root_count && sp->role.invalid) 3432 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 3433 3434 *root_hpa = INVALID_PAGE; 3435 } 3436 3437 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */ 3438 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, 3439 ulong roots_to_free) 3440 { 3441 int i; 3442 LIST_HEAD(invalid_list); 3443 bool free_active_root; 3444 3445 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG); 3446 3447 /* Before acquiring the MMU lock, see if we need to do any real work. */ 3448 free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT) 3449 && VALID_PAGE(mmu->root.hpa); 3450 3451 if (!free_active_root) { 3452 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3453 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) && 3454 VALID_PAGE(mmu->prev_roots[i].hpa)) 3455 break; 3456 3457 if (i == KVM_MMU_NUM_PREV_ROOTS) 3458 return; 3459 } 3460 3461 write_lock(&kvm->mmu_lock); 3462 3463 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3464 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) 3465 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa, 3466 &invalid_list); 3467 3468 if (free_active_root) { 3469 if (to_shadow_page(mmu->root.hpa)) { 3470 mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list); 3471 } else if (mmu->pae_root) { 3472 for (i = 0; i < 4; ++i) { 3473 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i])) 3474 continue; 3475 3476 mmu_free_root_page(kvm, &mmu->pae_root[i], 3477 &invalid_list); 3478 mmu->pae_root[i] = INVALID_PAE_ROOT; 3479 } 3480 } 3481 mmu->root.hpa = INVALID_PAGE; 3482 mmu->root.pgd = 0; 3483 } 3484 3485 kvm_mmu_commit_zap_page(kvm, &invalid_list); 3486 write_unlock(&kvm->mmu_lock); 3487 } 3488 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots); 3489 3490 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu) 3491 { 3492 unsigned long roots_to_free = 0; 3493 hpa_t root_hpa; 3494 int i; 3495 3496 /* 3497 * This should not be called while L2 is active, L2 can't invalidate 3498 * _only_ its own roots, e.g. INVVPID unconditionally exits. 3499 */ 3500 WARN_ON_ONCE(mmu->root_role.guest_mode); 3501 3502 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 3503 root_hpa = mmu->prev_roots[i].hpa; 3504 if (!VALID_PAGE(root_hpa)) 3505 continue; 3506 3507 if (!to_shadow_page(root_hpa) || 3508 to_shadow_page(root_hpa)->role.guest_mode) 3509 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 3510 } 3511 3512 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 3513 } 3514 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots); 3515 3516 3517 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn) 3518 { 3519 int ret = 0; 3520 3521 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) { 3522 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 3523 ret = 1; 3524 } 3525 3526 return ret; 3527 } 3528 3529 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, int quadrant, 3530 u8 level) 3531 { 3532 union kvm_mmu_page_role role = vcpu->arch.mmu->root_role; 3533 struct kvm_mmu_page *sp; 3534 3535 role.level = level; 3536 role.quadrant = quadrant; 3537 3538 WARN_ON_ONCE(quadrant && !role.has_4_byte_gpte); 3539 WARN_ON_ONCE(role.direct && role.has_4_byte_gpte); 3540 3541 sp = kvm_mmu_get_shadow_page(vcpu, gfn, role); 3542 ++sp->root_count; 3543 3544 return __pa(sp->spt); 3545 } 3546 3547 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) 3548 { 3549 struct kvm_mmu *mmu = vcpu->arch.mmu; 3550 u8 shadow_root_level = mmu->root_role.level; 3551 hpa_t root; 3552 unsigned i; 3553 int r; 3554 3555 write_lock(&vcpu->kvm->mmu_lock); 3556 r = make_mmu_pages_available(vcpu); 3557 if (r < 0) 3558 goto out_unlock; 3559 3560 if (is_tdp_mmu_enabled(vcpu->kvm)) { 3561 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu); 3562 mmu->root.hpa = root; 3563 } else if (shadow_root_level >= PT64_ROOT_4LEVEL) { 3564 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level); 3565 mmu->root.hpa = root; 3566 } else if (shadow_root_level == PT32E_ROOT_LEVEL) { 3567 if (WARN_ON_ONCE(!mmu->pae_root)) { 3568 r = -EIO; 3569 goto out_unlock; 3570 } 3571 3572 for (i = 0; i < 4; ++i) { 3573 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3574 3575 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 0, 3576 PT32_ROOT_LEVEL); 3577 mmu->pae_root[i] = root | PT_PRESENT_MASK | 3578 shadow_me_value; 3579 } 3580 mmu->root.hpa = __pa(mmu->pae_root); 3581 } else { 3582 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level); 3583 r = -EIO; 3584 goto out_unlock; 3585 } 3586 3587 /* root.pgd is ignored for direct MMUs. */ 3588 mmu->root.pgd = 0; 3589 out_unlock: 3590 write_unlock(&vcpu->kvm->mmu_lock); 3591 return r; 3592 } 3593 3594 static int mmu_first_shadow_root_alloc(struct kvm *kvm) 3595 { 3596 struct kvm_memslots *slots; 3597 struct kvm_memory_slot *slot; 3598 int r = 0, i, bkt; 3599 3600 /* 3601 * Check if this is the first shadow root being allocated before 3602 * taking the lock. 3603 */ 3604 if (kvm_shadow_root_allocated(kvm)) 3605 return 0; 3606 3607 mutex_lock(&kvm->slots_arch_lock); 3608 3609 /* Recheck, under the lock, whether this is the first shadow root. */ 3610 if (kvm_shadow_root_allocated(kvm)) 3611 goto out_unlock; 3612 3613 /* 3614 * Check if anything actually needs to be allocated, e.g. all metadata 3615 * will be allocated upfront if TDP is disabled. 3616 */ 3617 if (kvm_memslots_have_rmaps(kvm) && 3618 kvm_page_track_write_tracking_enabled(kvm)) 3619 goto out_success; 3620 3621 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 3622 slots = __kvm_memslots(kvm, i); 3623 kvm_for_each_memslot(slot, bkt, slots) { 3624 /* 3625 * Both of these functions are no-ops if the target is 3626 * already allocated, so unconditionally calling both 3627 * is safe. Intentionally do NOT free allocations on 3628 * failure to avoid having to track which allocations 3629 * were made now versus when the memslot was created. 3630 * The metadata is guaranteed to be freed when the slot 3631 * is freed, and will be kept/used if userspace retries 3632 * KVM_RUN instead of killing the VM. 3633 */ 3634 r = memslot_rmap_alloc(slot, slot->npages); 3635 if (r) 3636 goto out_unlock; 3637 r = kvm_page_track_write_tracking_alloc(slot); 3638 if (r) 3639 goto out_unlock; 3640 } 3641 } 3642 3643 /* 3644 * Ensure that shadow_root_allocated becomes true strictly after 3645 * all the related pointers are set. 3646 */ 3647 out_success: 3648 smp_store_release(&kvm->arch.shadow_root_allocated, true); 3649 3650 out_unlock: 3651 mutex_unlock(&kvm->slots_arch_lock); 3652 return r; 3653 } 3654 3655 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) 3656 { 3657 struct kvm_mmu *mmu = vcpu->arch.mmu; 3658 u64 pdptrs[4], pm_mask; 3659 gfn_t root_gfn, root_pgd; 3660 int quadrant, i, r; 3661 hpa_t root; 3662 3663 root_pgd = mmu->get_guest_pgd(vcpu); 3664 root_gfn = root_pgd >> PAGE_SHIFT; 3665 3666 if (mmu_check_root(vcpu, root_gfn)) 3667 return 1; 3668 3669 /* 3670 * On SVM, reading PDPTRs might access guest memory, which might fault 3671 * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock. 3672 */ 3673 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { 3674 for (i = 0; i < 4; ++i) { 3675 pdptrs[i] = mmu->get_pdptr(vcpu, i); 3676 if (!(pdptrs[i] & PT_PRESENT_MASK)) 3677 continue; 3678 3679 if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT)) 3680 return 1; 3681 } 3682 } 3683 3684 r = mmu_first_shadow_root_alloc(vcpu->kvm); 3685 if (r) 3686 return r; 3687 3688 write_lock(&vcpu->kvm->mmu_lock); 3689 r = make_mmu_pages_available(vcpu); 3690 if (r < 0) 3691 goto out_unlock; 3692 3693 /* 3694 * Do we shadow a long mode page table? If so we need to 3695 * write-protect the guests page table root. 3696 */ 3697 if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { 3698 root = mmu_alloc_root(vcpu, root_gfn, 0, 3699 mmu->root_role.level); 3700 mmu->root.hpa = root; 3701 goto set_root_pgd; 3702 } 3703 3704 if (WARN_ON_ONCE(!mmu->pae_root)) { 3705 r = -EIO; 3706 goto out_unlock; 3707 } 3708 3709 /* 3710 * We shadow a 32 bit page table. This may be a legacy 2-level 3711 * or a PAE 3-level page table. In either case we need to be aware that 3712 * the shadow page table may be a PAE or a long mode page table. 3713 */ 3714 pm_mask = PT_PRESENT_MASK | shadow_me_value; 3715 if (mmu->root_role.level >= PT64_ROOT_4LEVEL) { 3716 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; 3717 3718 if (WARN_ON_ONCE(!mmu->pml4_root)) { 3719 r = -EIO; 3720 goto out_unlock; 3721 } 3722 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask; 3723 3724 if (mmu->root_role.level == PT64_ROOT_5LEVEL) { 3725 if (WARN_ON_ONCE(!mmu->pml5_root)) { 3726 r = -EIO; 3727 goto out_unlock; 3728 } 3729 mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask; 3730 } 3731 } 3732 3733 for (i = 0; i < 4; ++i) { 3734 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3735 3736 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { 3737 if (!(pdptrs[i] & PT_PRESENT_MASK)) { 3738 mmu->pae_root[i] = INVALID_PAE_ROOT; 3739 continue; 3740 } 3741 root_gfn = pdptrs[i] >> PAGE_SHIFT; 3742 } 3743 3744 /* 3745 * If shadowing 32-bit non-PAE page tables, each PAE page 3746 * directory maps one quarter of the guest's non-PAE page 3747 * directory. Othwerise each PAE page direct shadows one guest 3748 * PAE page directory so that quadrant should be 0. 3749 */ 3750 quadrant = (mmu->cpu_role.base.level == PT32_ROOT_LEVEL) ? i : 0; 3751 3752 root = mmu_alloc_root(vcpu, root_gfn, quadrant, PT32_ROOT_LEVEL); 3753 mmu->pae_root[i] = root | pm_mask; 3754 } 3755 3756 if (mmu->root_role.level == PT64_ROOT_5LEVEL) 3757 mmu->root.hpa = __pa(mmu->pml5_root); 3758 else if (mmu->root_role.level == PT64_ROOT_4LEVEL) 3759 mmu->root.hpa = __pa(mmu->pml4_root); 3760 else 3761 mmu->root.hpa = __pa(mmu->pae_root); 3762 3763 set_root_pgd: 3764 mmu->root.pgd = root_pgd; 3765 out_unlock: 3766 write_unlock(&vcpu->kvm->mmu_lock); 3767 3768 return r; 3769 } 3770 3771 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu) 3772 { 3773 struct kvm_mmu *mmu = vcpu->arch.mmu; 3774 bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL; 3775 u64 *pml5_root = NULL; 3776 u64 *pml4_root = NULL; 3777 u64 *pae_root; 3778 3779 /* 3780 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP 3781 * tables are allocated and initialized at root creation as there is no 3782 * equivalent level in the guest's NPT to shadow. Allocate the tables 3783 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare. 3784 */ 3785 if (mmu->root_role.direct || 3786 mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL || 3787 mmu->root_role.level < PT64_ROOT_4LEVEL) 3788 return 0; 3789 3790 /* 3791 * NPT, the only paging mode that uses this horror, uses a fixed number 3792 * of levels for the shadow page tables, e.g. all MMUs are 4-level or 3793 * all MMus are 5-level. Thus, this can safely require that pml5_root 3794 * is allocated if the other roots are valid and pml5 is needed, as any 3795 * prior MMU would also have required pml5. 3796 */ 3797 if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root)) 3798 return 0; 3799 3800 /* 3801 * The special roots should always be allocated in concert. Yell and 3802 * bail if KVM ends up in a state where only one of the roots is valid. 3803 */ 3804 if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root || 3805 (need_pml5 && mmu->pml5_root))) 3806 return -EIO; 3807 3808 /* 3809 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and 3810 * doesn't need to be decrypted. 3811 */ 3812 pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3813 if (!pae_root) 3814 return -ENOMEM; 3815 3816 #ifdef CONFIG_X86_64 3817 pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3818 if (!pml4_root) 3819 goto err_pml4; 3820 3821 if (need_pml5) { 3822 pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3823 if (!pml5_root) 3824 goto err_pml5; 3825 } 3826 #endif 3827 3828 mmu->pae_root = pae_root; 3829 mmu->pml4_root = pml4_root; 3830 mmu->pml5_root = pml5_root; 3831 3832 return 0; 3833 3834 #ifdef CONFIG_X86_64 3835 err_pml5: 3836 free_page((unsigned long)pml4_root); 3837 err_pml4: 3838 free_page((unsigned long)pae_root); 3839 return -ENOMEM; 3840 #endif 3841 } 3842 3843 static bool is_unsync_root(hpa_t root) 3844 { 3845 struct kvm_mmu_page *sp; 3846 3847 if (!VALID_PAGE(root)) 3848 return false; 3849 3850 /* 3851 * The read barrier orders the CPU's read of SPTE.W during the page table 3852 * walk before the reads of sp->unsync/sp->unsync_children here. 3853 * 3854 * Even if another CPU was marking the SP as unsync-ed simultaneously, 3855 * any guest page table changes are not guaranteed to be visible anyway 3856 * until this VCPU issues a TLB flush strictly after those changes are 3857 * made. We only need to ensure that the other CPU sets these flags 3858 * before any actual changes to the page tables are made. The comments 3859 * in mmu_try_to_unsync_pages() describe what could go wrong if this 3860 * requirement isn't satisfied. 3861 */ 3862 smp_rmb(); 3863 sp = to_shadow_page(root); 3864 3865 /* 3866 * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the 3867 * PDPTEs for a given PAE root need to be synchronized individually. 3868 */ 3869 if (WARN_ON_ONCE(!sp)) 3870 return false; 3871 3872 if (sp->unsync || sp->unsync_children) 3873 return true; 3874 3875 return false; 3876 } 3877 3878 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) 3879 { 3880 int i; 3881 struct kvm_mmu_page *sp; 3882 3883 if (vcpu->arch.mmu->root_role.direct) 3884 return; 3885 3886 if (!VALID_PAGE(vcpu->arch.mmu->root.hpa)) 3887 return; 3888 3889 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 3890 3891 if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { 3892 hpa_t root = vcpu->arch.mmu->root.hpa; 3893 sp = to_shadow_page(root); 3894 3895 if (!is_unsync_root(root)) 3896 return; 3897 3898 write_lock(&vcpu->kvm->mmu_lock); 3899 mmu_sync_children(vcpu, sp, true); 3900 write_unlock(&vcpu->kvm->mmu_lock); 3901 return; 3902 } 3903 3904 write_lock(&vcpu->kvm->mmu_lock); 3905 3906 for (i = 0; i < 4; ++i) { 3907 hpa_t root = vcpu->arch.mmu->pae_root[i]; 3908 3909 if (IS_VALID_PAE_ROOT(root)) { 3910 root &= SPTE_BASE_ADDR_MASK; 3911 sp = to_shadow_page(root); 3912 mmu_sync_children(vcpu, sp, true); 3913 } 3914 } 3915 3916 write_unlock(&vcpu->kvm->mmu_lock); 3917 } 3918 3919 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu) 3920 { 3921 unsigned long roots_to_free = 0; 3922 int i; 3923 3924 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3925 if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa)) 3926 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 3927 3928 /* sync prev_roots by simply freeing them */ 3929 kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free); 3930 } 3931 3932 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 3933 gpa_t vaddr, u64 access, 3934 struct x86_exception *exception) 3935 { 3936 if (exception) 3937 exception->error_code = 0; 3938 return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception); 3939 } 3940 3941 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct) 3942 { 3943 /* 3944 * A nested guest cannot use the MMIO cache if it is using nested 3945 * page tables, because cr2 is a nGPA while the cache stores GPAs. 3946 */ 3947 if (mmu_is_nested(vcpu)) 3948 return false; 3949 3950 if (direct) 3951 return vcpu_match_mmio_gpa(vcpu, addr); 3952 3953 return vcpu_match_mmio_gva(vcpu, addr); 3954 } 3955 3956 /* 3957 * Return the level of the lowest level SPTE added to sptes. 3958 * That SPTE may be non-present. 3959 * 3960 * Must be called between walk_shadow_page_lockless_{begin,end}. 3961 */ 3962 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level) 3963 { 3964 struct kvm_shadow_walk_iterator iterator; 3965 int leaf = -1; 3966 u64 spte; 3967 3968 for (shadow_walk_init(&iterator, vcpu, addr), 3969 *root_level = iterator.level; 3970 shadow_walk_okay(&iterator); 3971 __shadow_walk_next(&iterator, spte)) { 3972 leaf = iterator.level; 3973 spte = mmu_spte_get_lockless(iterator.sptep); 3974 3975 sptes[leaf] = spte; 3976 } 3977 3978 return leaf; 3979 } 3980 3981 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */ 3982 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) 3983 { 3984 u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; 3985 struct rsvd_bits_validate *rsvd_check; 3986 int root, leaf, level; 3987 bool reserved = false; 3988 3989 walk_shadow_page_lockless_begin(vcpu); 3990 3991 if (is_tdp_mmu(vcpu->arch.mmu)) 3992 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root); 3993 else 3994 leaf = get_walk(vcpu, addr, sptes, &root); 3995 3996 walk_shadow_page_lockless_end(vcpu); 3997 3998 if (unlikely(leaf < 0)) { 3999 *sptep = 0ull; 4000 return reserved; 4001 } 4002 4003 *sptep = sptes[leaf]; 4004 4005 /* 4006 * Skip reserved bits checks on the terminal leaf if it's not a valid 4007 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by 4008 * design, always have reserved bits set. The purpose of the checks is 4009 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs. 4010 */ 4011 if (!is_shadow_present_pte(sptes[leaf])) 4012 leaf++; 4013 4014 rsvd_check = &vcpu->arch.mmu->shadow_zero_check; 4015 4016 for (level = root; level >= leaf; level--) 4017 reserved |= is_rsvd_spte(rsvd_check, sptes[level], level); 4018 4019 if (reserved) { 4020 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n", 4021 __func__, addr); 4022 for (level = root; level >= leaf; level--) 4023 pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx", 4024 sptes[level], level, 4025 get_rsvd_bits(rsvd_check, sptes[level], level)); 4026 } 4027 4028 return reserved; 4029 } 4030 4031 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct) 4032 { 4033 u64 spte; 4034 bool reserved; 4035 4036 if (mmio_info_in_cache(vcpu, addr, direct)) 4037 return RET_PF_EMULATE; 4038 4039 reserved = get_mmio_spte(vcpu, addr, &spte); 4040 if (WARN_ON(reserved)) 4041 return -EINVAL; 4042 4043 if (is_mmio_spte(spte)) { 4044 gfn_t gfn = get_mmio_spte_gfn(spte); 4045 unsigned int access = get_mmio_spte_access(spte); 4046 4047 if (!check_mmio_spte(vcpu, spte)) 4048 return RET_PF_INVALID; 4049 4050 if (direct) 4051 addr = 0; 4052 4053 trace_handle_mmio_page_fault(addr, gfn, access); 4054 vcpu_cache_mmio_info(vcpu, addr, gfn, access); 4055 return RET_PF_EMULATE; 4056 } 4057 4058 /* 4059 * If the page table is zapped by other cpus, let CPU fault again on 4060 * the address. 4061 */ 4062 return RET_PF_RETRY; 4063 } 4064 4065 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu, 4066 struct kvm_page_fault *fault) 4067 { 4068 if (unlikely(fault->rsvd)) 4069 return false; 4070 4071 if (!fault->present || !fault->write) 4072 return false; 4073 4074 /* 4075 * guest is writing the page which is write tracked which can 4076 * not be fixed by page fault handler. 4077 */ 4078 if (kvm_slot_page_track_is_active(vcpu->kvm, fault->slot, fault->gfn, KVM_PAGE_TRACK_WRITE)) 4079 return true; 4080 4081 return false; 4082 } 4083 4084 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr) 4085 { 4086 struct kvm_shadow_walk_iterator iterator; 4087 u64 spte; 4088 4089 walk_shadow_page_lockless_begin(vcpu); 4090 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) 4091 clear_sp_write_flooding_count(iterator.sptep); 4092 walk_shadow_page_lockless_end(vcpu); 4093 } 4094 4095 static u32 alloc_apf_token(struct kvm_vcpu *vcpu) 4096 { 4097 /* make sure the token value is not 0 */ 4098 u32 id = vcpu->arch.apf.id; 4099 4100 if (id << 12 == 0) 4101 vcpu->arch.apf.id = 1; 4102 4103 return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; 4104 } 4105 4106 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 4107 gfn_t gfn) 4108 { 4109 struct kvm_arch_async_pf arch; 4110 4111 arch.token = alloc_apf_token(vcpu); 4112 arch.gfn = gfn; 4113 arch.direct_map = vcpu->arch.mmu->root_role.direct; 4114 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu); 4115 4116 return kvm_setup_async_pf(vcpu, cr2_or_gpa, 4117 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch); 4118 } 4119 4120 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 4121 { 4122 int r; 4123 4124 if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) || 4125 work->wakeup_all) 4126 return; 4127 4128 r = kvm_mmu_reload(vcpu); 4129 if (unlikely(r)) 4130 return; 4131 4132 if (!vcpu->arch.mmu->root_role.direct && 4133 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu)) 4134 return; 4135 4136 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true); 4137 } 4138 4139 static int kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4140 { 4141 struct kvm_memory_slot *slot = fault->slot; 4142 bool async; 4143 4144 /* 4145 * Retry the page fault if the gfn hit a memslot that is being deleted 4146 * or moved. This ensures any existing SPTEs for the old memslot will 4147 * be zapped before KVM inserts a new MMIO SPTE for the gfn. 4148 */ 4149 if (slot && (slot->flags & KVM_MEMSLOT_INVALID)) 4150 return RET_PF_RETRY; 4151 4152 if (!kvm_is_visible_memslot(slot)) { 4153 /* Don't expose private memslots to L2. */ 4154 if (is_guest_mode(vcpu)) { 4155 fault->slot = NULL; 4156 fault->pfn = KVM_PFN_NOSLOT; 4157 fault->map_writable = false; 4158 return RET_PF_CONTINUE; 4159 } 4160 /* 4161 * If the APIC access page exists but is disabled, go directly 4162 * to emulation without caching the MMIO access or creating a 4163 * MMIO SPTE. That way the cache doesn't need to be purged 4164 * when the AVIC is re-enabled. 4165 */ 4166 if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT && 4167 !kvm_apicv_activated(vcpu->kvm)) 4168 return RET_PF_EMULATE; 4169 } 4170 4171 async = false; 4172 fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, &async, 4173 fault->write, &fault->map_writable, 4174 &fault->hva); 4175 if (!async) 4176 return RET_PF_CONTINUE; /* *pfn has correct page already */ 4177 4178 if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) { 4179 trace_kvm_try_async_get_page(fault->addr, fault->gfn); 4180 if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) { 4181 trace_kvm_async_pf_repeated_fault(fault->addr, fault->gfn); 4182 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 4183 return RET_PF_RETRY; 4184 } else if (kvm_arch_setup_async_pf(vcpu, fault->addr, fault->gfn)) { 4185 return RET_PF_RETRY; 4186 } 4187 } 4188 4189 fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, NULL, 4190 fault->write, &fault->map_writable, 4191 &fault->hva); 4192 return RET_PF_CONTINUE; 4193 } 4194 4195 /* 4196 * Returns true if the page fault is stale and needs to be retried, i.e. if the 4197 * root was invalidated by a memslot update or a relevant mmu_notifier fired. 4198 */ 4199 static bool is_page_fault_stale(struct kvm_vcpu *vcpu, 4200 struct kvm_page_fault *fault, int mmu_seq) 4201 { 4202 struct kvm_mmu_page *sp = to_shadow_page(vcpu->arch.mmu->root.hpa); 4203 4204 /* Special roots, e.g. pae_root, are not backed by shadow pages. */ 4205 if (sp && is_obsolete_sp(vcpu->kvm, sp)) 4206 return true; 4207 4208 /* 4209 * Roots without an associated shadow page are considered invalid if 4210 * there is a pending request to free obsolete roots. The request is 4211 * only a hint that the current root _may_ be obsolete and needs to be 4212 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a 4213 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs 4214 * to reload even if no vCPU is actively using the root. 4215 */ 4216 if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 4217 return true; 4218 4219 return fault->slot && 4220 mmu_invalidate_retry_hva(vcpu->kvm, mmu_seq, fault->hva); 4221 } 4222 4223 static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4224 { 4225 bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu); 4226 4227 unsigned long mmu_seq; 4228 int r; 4229 4230 fault->gfn = fault->addr >> PAGE_SHIFT; 4231 fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn); 4232 4233 if (page_fault_handle_page_track(vcpu, fault)) 4234 return RET_PF_EMULATE; 4235 4236 r = fast_page_fault(vcpu, fault); 4237 if (r != RET_PF_INVALID) 4238 return r; 4239 4240 r = mmu_topup_memory_caches(vcpu, false); 4241 if (r) 4242 return r; 4243 4244 mmu_seq = vcpu->kvm->mmu_invalidate_seq; 4245 smp_rmb(); 4246 4247 r = kvm_faultin_pfn(vcpu, fault); 4248 if (r != RET_PF_CONTINUE) 4249 return r; 4250 4251 r = handle_abnormal_pfn(vcpu, fault, ACC_ALL); 4252 if (r != RET_PF_CONTINUE) 4253 return r; 4254 4255 r = RET_PF_RETRY; 4256 4257 if (is_tdp_mmu_fault) 4258 read_lock(&vcpu->kvm->mmu_lock); 4259 else 4260 write_lock(&vcpu->kvm->mmu_lock); 4261 4262 if (is_page_fault_stale(vcpu, fault, mmu_seq)) 4263 goto out_unlock; 4264 4265 r = make_mmu_pages_available(vcpu); 4266 if (r) 4267 goto out_unlock; 4268 4269 if (is_tdp_mmu_fault) 4270 r = kvm_tdp_mmu_map(vcpu, fault); 4271 else 4272 r = __direct_map(vcpu, fault); 4273 4274 out_unlock: 4275 if (is_tdp_mmu_fault) 4276 read_unlock(&vcpu->kvm->mmu_lock); 4277 else 4278 write_unlock(&vcpu->kvm->mmu_lock); 4279 kvm_release_pfn_clean(fault->pfn); 4280 return r; 4281 } 4282 4283 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, 4284 struct kvm_page_fault *fault) 4285 { 4286 pgprintk("%s: gva %lx error %x\n", __func__, fault->addr, fault->error_code); 4287 4288 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */ 4289 fault->max_level = PG_LEVEL_2M; 4290 return direct_page_fault(vcpu, fault); 4291 } 4292 4293 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, 4294 u64 fault_address, char *insn, int insn_len) 4295 { 4296 int r = 1; 4297 u32 flags = vcpu->arch.apf.host_apf_flags; 4298 4299 #ifndef CONFIG_X86_64 4300 /* A 64-bit CR2 should be impossible on 32-bit KVM. */ 4301 if (WARN_ON_ONCE(fault_address >> 32)) 4302 return -EFAULT; 4303 #endif 4304 4305 vcpu->arch.l1tf_flush_l1d = true; 4306 if (!flags) { 4307 trace_kvm_page_fault(vcpu, fault_address, error_code); 4308 4309 if (kvm_event_needs_reinjection(vcpu)) 4310 kvm_mmu_unprotect_page_virt(vcpu, fault_address); 4311 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn, 4312 insn_len); 4313 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) { 4314 vcpu->arch.apf.host_apf_flags = 0; 4315 local_irq_disable(); 4316 kvm_async_pf_task_wait_schedule(fault_address); 4317 local_irq_enable(); 4318 } else { 4319 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags); 4320 } 4321 4322 return r; 4323 } 4324 EXPORT_SYMBOL_GPL(kvm_handle_page_fault); 4325 4326 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4327 { 4328 /* 4329 * If the guest's MTRRs may be used to compute the "real" memtype, 4330 * restrict the mapping level to ensure KVM uses a consistent memtype 4331 * across the entire mapping. If the host MTRRs are ignored by TDP 4332 * (shadow_memtype_mask is non-zero), and the VM has non-coherent DMA 4333 * (DMA doesn't snoop CPU caches), KVM's ABI is to honor the memtype 4334 * from the guest's MTRRs so that guest accesses to memory that is 4335 * DMA'd aren't cached against the guest's wishes. 4336 * 4337 * Note, KVM may still ultimately ignore guest MTRRs for certain PFNs, 4338 * e.g. KVM will force UC memtype for host MMIO. 4339 */ 4340 if (shadow_memtype_mask && kvm_arch_has_noncoherent_dma(vcpu->kvm)) { 4341 for ( ; fault->max_level > PG_LEVEL_4K; --fault->max_level) { 4342 int page_num = KVM_PAGES_PER_HPAGE(fault->max_level); 4343 gfn_t base = (fault->addr >> PAGE_SHIFT) & ~(page_num - 1); 4344 4345 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num)) 4346 break; 4347 } 4348 } 4349 4350 return direct_page_fault(vcpu, fault); 4351 } 4352 4353 static void nonpaging_init_context(struct kvm_mmu *context) 4354 { 4355 context->page_fault = nonpaging_page_fault; 4356 context->gva_to_gpa = nonpaging_gva_to_gpa; 4357 context->sync_page = nonpaging_sync_page; 4358 context->invlpg = NULL; 4359 } 4360 4361 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd, 4362 union kvm_mmu_page_role role) 4363 { 4364 return (role.direct || pgd == root->pgd) && 4365 VALID_PAGE(root->hpa) && 4366 role.word == to_shadow_page(root->hpa)->role.word; 4367 } 4368 4369 /* 4370 * Find out if a previously cached root matching the new pgd/role is available, 4371 * and insert the current root as the MRU in the cache. 4372 * If a matching root is found, it is assigned to kvm_mmu->root and 4373 * true is returned. 4374 * If no match is found, kvm_mmu->root is left invalid, the LRU root is 4375 * evicted to make room for the current root, and false is returned. 4376 */ 4377 static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu, 4378 gpa_t new_pgd, 4379 union kvm_mmu_page_role new_role) 4380 { 4381 uint i; 4382 4383 if (is_root_usable(&mmu->root, new_pgd, new_role)) 4384 return true; 4385 4386 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 4387 /* 4388 * The swaps end up rotating the cache like this: 4389 * C 0 1 2 3 (on entry to the function) 4390 * 0 C 1 2 3 4391 * 1 C 0 2 3 4392 * 2 C 0 1 3 4393 * 3 C 0 1 2 (on exit from the loop) 4394 */ 4395 swap(mmu->root, mmu->prev_roots[i]); 4396 if (is_root_usable(&mmu->root, new_pgd, new_role)) 4397 return true; 4398 } 4399 4400 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 4401 return false; 4402 } 4403 4404 /* 4405 * Find out if a previously cached root matching the new pgd/role is available. 4406 * On entry, mmu->root is invalid. 4407 * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry 4408 * of the cache becomes invalid, and true is returned. 4409 * If no match is found, kvm_mmu->root is left invalid and false is returned. 4410 */ 4411 static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu, 4412 gpa_t new_pgd, 4413 union kvm_mmu_page_role new_role) 4414 { 4415 uint i; 4416 4417 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 4418 if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role)) 4419 goto hit; 4420 4421 return false; 4422 4423 hit: 4424 swap(mmu->root, mmu->prev_roots[i]); 4425 /* Bubble up the remaining roots. */ 4426 for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++) 4427 mmu->prev_roots[i] = mmu->prev_roots[i + 1]; 4428 mmu->prev_roots[i].hpa = INVALID_PAGE; 4429 return true; 4430 } 4431 4432 static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu, 4433 gpa_t new_pgd, union kvm_mmu_page_role new_role) 4434 { 4435 /* 4436 * For now, limit the caching to 64-bit hosts+VMs in order to avoid 4437 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs 4438 * later if necessary. 4439 */ 4440 if (VALID_PAGE(mmu->root.hpa) && !to_shadow_page(mmu->root.hpa)) 4441 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 4442 4443 if (VALID_PAGE(mmu->root.hpa)) 4444 return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role); 4445 else 4446 return cached_root_find_without_current(kvm, mmu, new_pgd, new_role); 4447 } 4448 4449 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd) 4450 { 4451 struct kvm_mmu *mmu = vcpu->arch.mmu; 4452 union kvm_mmu_page_role new_role = mmu->root_role; 4453 4454 if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role)) { 4455 /* kvm_mmu_ensure_valid_pgd will set up a new root. */ 4456 return; 4457 } 4458 4459 /* 4460 * It's possible that the cached previous root page is obsolete because 4461 * of a change in the MMU generation number. However, changing the 4462 * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, 4463 * which will free the root set here and allocate a new one. 4464 */ 4465 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 4466 4467 if (force_flush_and_sync_on_reuse) { 4468 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 4469 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 4470 } 4471 4472 /* 4473 * The last MMIO access's GVA and GPA are cached in the VCPU. When 4474 * switching to a new CR3, that GVA->GPA mapping may no longer be 4475 * valid. So clear any cached MMIO info even when we don't need to sync 4476 * the shadow page tables. 4477 */ 4478 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 4479 4480 /* 4481 * If this is a direct root page, it doesn't have a write flooding 4482 * count. Otherwise, clear the write flooding count. 4483 */ 4484 if (!new_role.direct) 4485 __clear_sp_write_flooding_count( 4486 to_shadow_page(vcpu->arch.mmu->root.hpa)); 4487 } 4488 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd); 4489 4490 static unsigned long get_cr3(struct kvm_vcpu *vcpu) 4491 { 4492 return kvm_read_cr3(vcpu); 4493 } 4494 4495 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, 4496 unsigned int access) 4497 { 4498 if (unlikely(is_mmio_spte(*sptep))) { 4499 if (gfn != get_mmio_spte_gfn(*sptep)) { 4500 mmu_spte_clear_no_track(sptep); 4501 return true; 4502 } 4503 4504 mark_mmio_spte(vcpu, sptep, gfn, access); 4505 return true; 4506 } 4507 4508 return false; 4509 } 4510 4511 #define PTTYPE_EPT 18 /* arbitrary */ 4512 #define PTTYPE PTTYPE_EPT 4513 #include "paging_tmpl.h" 4514 #undef PTTYPE 4515 4516 #define PTTYPE 64 4517 #include "paging_tmpl.h" 4518 #undef PTTYPE 4519 4520 #define PTTYPE 32 4521 #include "paging_tmpl.h" 4522 #undef PTTYPE 4523 4524 static void 4525 __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check, 4526 u64 pa_bits_rsvd, int level, bool nx, bool gbpages, 4527 bool pse, bool amd) 4528 { 4529 u64 gbpages_bit_rsvd = 0; 4530 u64 nonleaf_bit8_rsvd = 0; 4531 u64 high_bits_rsvd; 4532 4533 rsvd_check->bad_mt_xwr = 0; 4534 4535 if (!gbpages) 4536 gbpages_bit_rsvd = rsvd_bits(7, 7); 4537 4538 if (level == PT32E_ROOT_LEVEL) 4539 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62); 4540 else 4541 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4542 4543 /* Note, NX doesn't exist in PDPTEs, this is handled below. */ 4544 if (!nx) 4545 high_bits_rsvd |= rsvd_bits(63, 63); 4546 4547 /* 4548 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for 4549 * leaf entries) on AMD CPUs only. 4550 */ 4551 if (amd) 4552 nonleaf_bit8_rsvd = rsvd_bits(8, 8); 4553 4554 switch (level) { 4555 case PT32_ROOT_LEVEL: 4556 /* no rsvd bits for 2 level 4K page table entries */ 4557 rsvd_check->rsvd_bits_mask[0][1] = 0; 4558 rsvd_check->rsvd_bits_mask[0][0] = 0; 4559 rsvd_check->rsvd_bits_mask[1][0] = 4560 rsvd_check->rsvd_bits_mask[0][0]; 4561 4562 if (!pse) { 4563 rsvd_check->rsvd_bits_mask[1][1] = 0; 4564 break; 4565 } 4566 4567 if (is_cpuid_PSE36()) 4568 /* 36bits PSE 4MB page */ 4569 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); 4570 else 4571 /* 32 bits PSE 4MB page */ 4572 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); 4573 break; 4574 case PT32E_ROOT_LEVEL: 4575 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) | 4576 high_bits_rsvd | 4577 rsvd_bits(5, 8) | 4578 rsvd_bits(1, 2); /* PDPTE */ 4579 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */ 4580 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */ 4581 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 4582 rsvd_bits(13, 20); /* large page */ 4583 rsvd_check->rsvd_bits_mask[1][0] = 4584 rsvd_check->rsvd_bits_mask[0][0]; 4585 break; 4586 case PT64_ROOT_5LEVEL: 4587 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | 4588 nonleaf_bit8_rsvd | 4589 rsvd_bits(7, 7); 4590 rsvd_check->rsvd_bits_mask[1][4] = 4591 rsvd_check->rsvd_bits_mask[0][4]; 4592 fallthrough; 4593 case PT64_ROOT_4LEVEL: 4594 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | 4595 nonleaf_bit8_rsvd | 4596 rsvd_bits(7, 7); 4597 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | 4598 gbpages_bit_rsvd; 4599 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; 4600 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 4601 rsvd_check->rsvd_bits_mask[1][3] = 4602 rsvd_check->rsvd_bits_mask[0][3]; 4603 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | 4604 gbpages_bit_rsvd | 4605 rsvd_bits(13, 29); 4606 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 4607 rsvd_bits(13, 20); /* large page */ 4608 rsvd_check->rsvd_bits_mask[1][0] = 4609 rsvd_check->rsvd_bits_mask[0][0]; 4610 break; 4611 } 4612 } 4613 4614 static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu) 4615 { 4616 /* 4617 * If TDP is enabled, let the guest use GBPAGES if they're supported in 4618 * hardware. The hardware page walker doesn't let KVM disable GBPAGES, 4619 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA 4620 * walk for performance and complexity reasons. Not to mention KVM 4621 * _can't_ solve the problem because GVA->GPA walks aren't visible to 4622 * KVM once a TDP translation is installed. Mimic hardware behavior so 4623 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF. 4624 */ 4625 return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) : 4626 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES); 4627 } 4628 4629 static void reset_guest_rsvds_bits_mask(struct kvm_vcpu *vcpu, 4630 struct kvm_mmu *context) 4631 { 4632 __reset_rsvds_bits_mask(&context->guest_rsvd_check, 4633 vcpu->arch.reserved_gpa_bits, 4634 context->cpu_role.base.level, is_efer_nx(context), 4635 guest_can_use_gbpages(vcpu), 4636 is_cr4_pse(context), 4637 guest_cpuid_is_amd_or_hygon(vcpu)); 4638 } 4639 4640 static void 4641 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check, 4642 u64 pa_bits_rsvd, bool execonly, int huge_page_level) 4643 { 4644 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4645 u64 large_1g_rsvd = 0, large_2m_rsvd = 0; 4646 u64 bad_mt_xwr; 4647 4648 if (huge_page_level < PG_LEVEL_1G) 4649 large_1g_rsvd = rsvd_bits(7, 7); 4650 if (huge_page_level < PG_LEVEL_2M) 4651 large_2m_rsvd = rsvd_bits(7, 7); 4652 4653 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7); 4654 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7); 4655 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd; 4656 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd; 4657 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 4658 4659 /* large page */ 4660 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4]; 4661 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3]; 4662 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd; 4663 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd; 4664 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0]; 4665 4666 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */ 4667 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */ 4668 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */ 4669 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */ 4670 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */ 4671 if (!execonly) { 4672 /* bits 0..2 must not be 100 unless VMX capabilities allow it */ 4673 bad_mt_xwr |= REPEAT_BYTE(1ull << 4); 4674 } 4675 rsvd_check->bad_mt_xwr = bad_mt_xwr; 4676 } 4677 4678 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, 4679 struct kvm_mmu *context, bool execonly, int huge_page_level) 4680 { 4681 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check, 4682 vcpu->arch.reserved_gpa_bits, execonly, 4683 huge_page_level); 4684 } 4685 4686 static inline u64 reserved_hpa_bits(void) 4687 { 4688 return rsvd_bits(shadow_phys_bits, 63); 4689 } 4690 4691 /* 4692 * the page table on host is the shadow page table for the page 4693 * table in guest or amd nested guest, its mmu features completely 4694 * follow the features in guest. 4695 */ 4696 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 4697 struct kvm_mmu *context) 4698 { 4699 /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */ 4700 bool is_amd = true; 4701 /* KVM doesn't use 2-level page tables for the shadow MMU. */ 4702 bool is_pse = false; 4703 struct rsvd_bits_validate *shadow_zero_check; 4704 int i; 4705 4706 WARN_ON_ONCE(context->root_role.level < PT32E_ROOT_LEVEL); 4707 4708 shadow_zero_check = &context->shadow_zero_check; 4709 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 4710 context->root_role.level, 4711 context->root_role.efer_nx, 4712 guest_can_use_gbpages(vcpu), is_pse, is_amd); 4713 4714 if (!shadow_me_mask) 4715 return; 4716 4717 for (i = context->root_role.level; --i >= 0;) { 4718 /* 4719 * So far shadow_me_value is a constant during KVM's life 4720 * time. Bits in shadow_me_value are allowed to be set. 4721 * Bits in shadow_me_mask but not in shadow_me_value are 4722 * not allowed to be set. 4723 */ 4724 shadow_zero_check->rsvd_bits_mask[0][i] |= shadow_me_mask; 4725 shadow_zero_check->rsvd_bits_mask[1][i] |= shadow_me_mask; 4726 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_value; 4727 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_value; 4728 } 4729 4730 } 4731 4732 static inline bool boot_cpu_is_amd(void) 4733 { 4734 WARN_ON_ONCE(!tdp_enabled); 4735 return shadow_x_mask == 0; 4736 } 4737 4738 /* 4739 * the direct page table on host, use as much mmu features as 4740 * possible, however, kvm currently does not do execution-protection. 4741 */ 4742 static void 4743 reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context) 4744 { 4745 struct rsvd_bits_validate *shadow_zero_check; 4746 int i; 4747 4748 shadow_zero_check = &context->shadow_zero_check; 4749 4750 if (boot_cpu_is_amd()) 4751 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 4752 context->root_role.level, true, 4753 boot_cpu_has(X86_FEATURE_GBPAGES), 4754 false, true); 4755 else 4756 __reset_rsvds_bits_mask_ept(shadow_zero_check, 4757 reserved_hpa_bits(), false, 4758 max_huge_page_level); 4759 4760 if (!shadow_me_mask) 4761 return; 4762 4763 for (i = context->root_role.level; --i >= 0;) { 4764 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 4765 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 4766 } 4767 } 4768 4769 /* 4770 * as the comments in reset_shadow_zero_bits_mask() except it 4771 * is the shadow page table for intel nested guest. 4772 */ 4773 static void 4774 reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly) 4775 { 4776 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check, 4777 reserved_hpa_bits(), execonly, 4778 max_huge_page_level); 4779 } 4780 4781 #define BYTE_MASK(access) \ 4782 ((1 & (access) ? 2 : 0) | \ 4783 (2 & (access) ? 4 : 0) | \ 4784 (3 & (access) ? 8 : 0) | \ 4785 (4 & (access) ? 16 : 0) | \ 4786 (5 & (access) ? 32 : 0) | \ 4787 (6 & (access) ? 64 : 0) | \ 4788 (7 & (access) ? 128 : 0)) 4789 4790 4791 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept) 4792 { 4793 unsigned byte; 4794 4795 const u8 x = BYTE_MASK(ACC_EXEC_MASK); 4796 const u8 w = BYTE_MASK(ACC_WRITE_MASK); 4797 const u8 u = BYTE_MASK(ACC_USER_MASK); 4798 4799 bool cr4_smep = is_cr4_smep(mmu); 4800 bool cr4_smap = is_cr4_smap(mmu); 4801 bool cr0_wp = is_cr0_wp(mmu); 4802 bool efer_nx = is_efer_nx(mmu); 4803 4804 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { 4805 unsigned pfec = byte << 1; 4806 4807 /* 4808 * Each "*f" variable has a 1 bit for each UWX value 4809 * that causes a fault with the given PFEC. 4810 */ 4811 4812 /* Faults from writes to non-writable pages */ 4813 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0; 4814 /* Faults from user mode accesses to supervisor pages */ 4815 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0; 4816 /* Faults from fetches of non-executable pages*/ 4817 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0; 4818 /* Faults from kernel mode fetches of user pages */ 4819 u8 smepf = 0; 4820 /* Faults from kernel mode accesses of user pages */ 4821 u8 smapf = 0; 4822 4823 if (!ept) { 4824 /* Faults from kernel mode accesses to user pages */ 4825 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u; 4826 4827 /* Not really needed: !nx will cause pte.nx to fault */ 4828 if (!efer_nx) 4829 ff = 0; 4830 4831 /* Allow supervisor writes if !cr0.wp */ 4832 if (!cr0_wp) 4833 wf = (pfec & PFERR_USER_MASK) ? wf : 0; 4834 4835 /* Disallow supervisor fetches of user code if cr4.smep */ 4836 if (cr4_smep) 4837 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0; 4838 4839 /* 4840 * SMAP:kernel-mode data accesses from user-mode 4841 * mappings should fault. A fault is considered 4842 * as a SMAP violation if all of the following 4843 * conditions are true: 4844 * - X86_CR4_SMAP is set in CR4 4845 * - A user page is accessed 4846 * - The access is not a fetch 4847 * - The access is supervisor mode 4848 * - If implicit supervisor access or X86_EFLAGS_AC is clear 4849 * 4850 * Here, we cover the first four conditions. 4851 * The fifth is computed dynamically in permission_fault(); 4852 * PFERR_RSVD_MASK bit will be set in PFEC if the access is 4853 * *not* subject to SMAP restrictions. 4854 */ 4855 if (cr4_smap) 4856 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf; 4857 } 4858 4859 mmu->permissions[byte] = ff | uf | wf | smepf | smapf; 4860 } 4861 } 4862 4863 /* 4864 * PKU is an additional mechanism by which the paging controls access to 4865 * user-mode addresses based on the value in the PKRU register. Protection 4866 * key violations are reported through a bit in the page fault error code. 4867 * Unlike other bits of the error code, the PK bit is not known at the 4868 * call site of e.g. gva_to_gpa; it must be computed directly in 4869 * permission_fault based on two bits of PKRU, on some machine state (CR4, 4870 * CR0, EFER, CPL), and on other bits of the error code and the page tables. 4871 * 4872 * In particular the following conditions come from the error code, the 4873 * page tables and the machine state: 4874 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1 4875 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch) 4876 * - PK is always zero if U=0 in the page tables 4877 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access. 4878 * 4879 * The PKRU bitmask caches the result of these four conditions. The error 4880 * code (minus the P bit) and the page table's U bit form an index into the 4881 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed 4882 * with the two bits of the PKRU register corresponding to the protection key. 4883 * For the first three conditions above the bits will be 00, thus masking 4884 * away both AD and WD. For all reads or if the last condition holds, WD 4885 * only will be masked away. 4886 */ 4887 static void update_pkru_bitmask(struct kvm_mmu *mmu) 4888 { 4889 unsigned bit; 4890 bool wp; 4891 4892 mmu->pkru_mask = 0; 4893 4894 if (!is_cr4_pke(mmu)) 4895 return; 4896 4897 wp = is_cr0_wp(mmu); 4898 4899 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) { 4900 unsigned pfec, pkey_bits; 4901 bool check_pkey, check_write, ff, uf, wf, pte_user; 4902 4903 pfec = bit << 1; 4904 ff = pfec & PFERR_FETCH_MASK; 4905 uf = pfec & PFERR_USER_MASK; 4906 wf = pfec & PFERR_WRITE_MASK; 4907 4908 /* PFEC.RSVD is replaced by ACC_USER_MASK. */ 4909 pte_user = pfec & PFERR_RSVD_MASK; 4910 4911 /* 4912 * Only need to check the access which is not an 4913 * instruction fetch and is to a user page. 4914 */ 4915 check_pkey = (!ff && pte_user); 4916 /* 4917 * write access is controlled by PKRU if it is a 4918 * user access or CR0.WP = 1. 4919 */ 4920 check_write = check_pkey && wf && (uf || wp); 4921 4922 /* PKRU.AD stops both read and write access. */ 4923 pkey_bits = !!check_pkey; 4924 /* PKRU.WD stops write access. */ 4925 pkey_bits |= (!!check_write) << 1; 4926 4927 mmu->pkru_mask |= (pkey_bits & 3) << pfec; 4928 } 4929 } 4930 4931 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu, 4932 struct kvm_mmu *mmu) 4933 { 4934 if (!is_cr0_pg(mmu)) 4935 return; 4936 4937 reset_guest_rsvds_bits_mask(vcpu, mmu); 4938 update_permission_bitmask(mmu, false); 4939 update_pkru_bitmask(mmu); 4940 } 4941 4942 static void paging64_init_context(struct kvm_mmu *context) 4943 { 4944 context->page_fault = paging64_page_fault; 4945 context->gva_to_gpa = paging64_gva_to_gpa; 4946 context->sync_page = paging64_sync_page; 4947 context->invlpg = paging64_invlpg; 4948 } 4949 4950 static void paging32_init_context(struct kvm_mmu *context) 4951 { 4952 context->page_fault = paging32_page_fault; 4953 context->gva_to_gpa = paging32_gva_to_gpa; 4954 context->sync_page = paging32_sync_page; 4955 context->invlpg = paging32_invlpg; 4956 } 4957 4958 static union kvm_cpu_role 4959 kvm_calc_cpu_role(struct kvm_vcpu *vcpu, const struct kvm_mmu_role_regs *regs) 4960 { 4961 union kvm_cpu_role role = {0}; 4962 4963 role.base.access = ACC_ALL; 4964 role.base.smm = is_smm(vcpu); 4965 role.base.guest_mode = is_guest_mode(vcpu); 4966 role.ext.valid = 1; 4967 4968 if (!____is_cr0_pg(regs)) { 4969 role.base.direct = 1; 4970 return role; 4971 } 4972 4973 role.base.efer_nx = ____is_efer_nx(regs); 4974 role.base.cr0_wp = ____is_cr0_wp(regs); 4975 role.base.smep_andnot_wp = ____is_cr4_smep(regs) && !____is_cr0_wp(regs); 4976 role.base.smap_andnot_wp = ____is_cr4_smap(regs) && !____is_cr0_wp(regs); 4977 role.base.has_4_byte_gpte = !____is_cr4_pae(regs); 4978 4979 if (____is_efer_lma(regs)) 4980 role.base.level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL 4981 : PT64_ROOT_4LEVEL; 4982 else if (____is_cr4_pae(regs)) 4983 role.base.level = PT32E_ROOT_LEVEL; 4984 else 4985 role.base.level = PT32_ROOT_LEVEL; 4986 4987 role.ext.cr4_smep = ____is_cr4_smep(regs); 4988 role.ext.cr4_smap = ____is_cr4_smap(regs); 4989 role.ext.cr4_pse = ____is_cr4_pse(regs); 4990 4991 /* PKEY and LA57 are active iff long mode is active. */ 4992 role.ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs); 4993 role.ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs); 4994 role.ext.efer_lma = ____is_efer_lma(regs); 4995 return role; 4996 } 4997 4998 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu) 4999 { 5000 /* tdp_root_level is architecture forced level, use it if nonzero */ 5001 if (tdp_root_level) 5002 return tdp_root_level; 5003 5004 /* Use 5-level TDP if and only if it's useful/necessary. */ 5005 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48) 5006 return 4; 5007 5008 return max_tdp_level; 5009 } 5010 5011 static union kvm_mmu_page_role 5012 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, 5013 union kvm_cpu_role cpu_role) 5014 { 5015 union kvm_mmu_page_role role = {0}; 5016 5017 role.access = ACC_ALL; 5018 role.cr0_wp = true; 5019 role.efer_nx = true; 5020 role.smm = cpu_role.base.smm; 5021 role.guest_mode = cpu_role.base.guest_mode; 5022 role.ad_disabled = !kvm_ad_enabled(); 5023 role.level = kvm_mmu_get_tdp_level(vcpu); 5024 role.direct = true; 5025 role.has_4_byte_gpte = false; 5026 5027 return role; 5028 } 5029 5030 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu, 5031 union kvm_cpu_role cpu_role) 5032 { 5033 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5034 union kvm_mmu_page_role root_role = kvm_calc_tdp_mmu_root_page_role(vcpu, cpu_role); 5035 5036 if (cpu_role.as_u64 == context->cpu_role.as_u64 && 5037 root_role.word == context->root_role.word) 5038 return; 5039 5040 context->cpu_role.as_u64 = cpu_role.as_u64; 5041 context->root_role.word = root_role.word; 5042 context->page_fault = kvm_tdp_page_fault; 5043 context->sync_page = nonpaging_sync_page; 5044 context->invlpg = NULL; 5045 context->get_guest_pgd = get_cr3; 5046 context->get_pdptr = kvm_pdptr_read; 5047 context->inject_page_fault = kvm_inject_page_fault; 5048 5049 if (!is_cr0_pg(context)) 5050 context->gva_to_gpa = nonpaging_gva_to_gpa; 5051 else if (is_cr4_pae(context)) 5052 context->gva_to_gpa = paging64_gva_to_gpa; 5053 else 5054 context->gva_to_gpa = paging32_gva_to_gpa; 5055 5056 reset_guest_paging_metadata(vcpu, context); 5057 reset_tdp_shadow_zero_bits_mask(context); 5058 } 5059 5060 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context, 5061 union kvm_cpu_role cpu_role, 5062 union kvm_mmu_page_role root_role) 5063 { 5064 if (cpu_role.as_u64 == context->cpu_role.as_u64 && 5065 root_role.word == context->root_role.word) 5066 return; 5067 5068 context->cpu_role.as_u64 = cpu_role.as_u64; 5069 context->root_role.word = root_role.word; 5070 5071 if (!is_cr0_pg(context)) 5072 nonpaging_init_context(context); 5073 else if (is_cr4_pae(context)) 5074 paging64_init_context(context); 5075 else 5076 paging32_init_context(context); 5077 5078 reset_guest_paging_metadata(vcpu, context); 5079 reset_shadow_zero_bits_mask(vcpu, context); 5080 } 5081 5082 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, 5083 union kvm_cpu_role cpu_role) 5084 { 5085 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5086 union kvm_mmu_page_role root_role; 5087 5088 root_role = cpu_role.base; 5089 5090 /* KVM uses PAE paging whenever the guest isn't using 64-bit paging. */ 5091 root_role.level = max_t(u32, root_role.level, PT32E_ROOT_LEVEL); 5092 5093 /* 5094 * KVM forces EFER.NX=1 when TDP is disabled, reflect it in the MMU role. 5095 * KVM uses NX when TDP is disabled to handle a variety of scenarios, 5096 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and 5097 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0. 5098 * The iTLB multi-hit workaround can be toggled at any time, so assume 5099 * NX can be used by any non-nested shadow MMU to avoid having to reset 5100 * MMU contexts. 5101 */ 5102 root_role.efer_nx = true; 5103 5104 shadow_mmu_init_context(vcpu, context, cpu_role, root_role); 5105 } 5106 5107 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0, 5108 unsigned long cr4, u64 efer, gpa_t nested_cr3) 5109 { 5110 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 5111 struct kvm_mmu_role_regs regs = { 5112 .cr0 = cr0, 5113 .cr4 = cr4 & ~X86_CR4_PKE, 5114 .efer = efer, 5115 }; 5116 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); 5117 union kvm_mmu_page_role root_role; 5118 5119 /* NPT requires CR0.PG=1. */ 5120 WARN_ON_ONCE(cpu_role.base.direct); 5121 5122 root_role = cpu_role.base; 5123 root_role.level = kvm_mmu_get_tdp_level(vcpu); 5124 if (root_role.level == PT64_ROOT_5LEVEL && 5125 cpu_role.base.level == PT64_ROOT_4LEVEL) 5126 root_role.passthrough = 1; 5127 5128 shadow_mmu_init_context(vcpu, context, cpu_role, root_role); 5129 kvm_mmu_new_pgd(vcpu, nested_cr3); 5130 } 5131 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu); 5132 5133 static union kvm_cpu_role 5134 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty, 5135 bool execonly, u8 level) 5136 { 5137 union kvm_cpu_role role = {0}; 5138 5139 /* 5140 * KVM does not support SMM transfer monitors, and consequently does not 5141 * support the "entry to SMM" control either. role.base.smm is always 0. 5142 */ 5143 WARN_ON_ONCE(is_smm(vcpu)); 5144 role.base.level = level; 5145 role.base.has_4_byte_gpte = false; 5146 role.base.direct = false; 5147 role.base.ad_disabled = !accessed_dirty; 5148 role.base.guest_mode = true; 5149 role.base.access = ACC_ALL; 5150 5151 role.ext.word = 0; 5152 role.ext.execonly = execonly; 5153 role.ext.valid = 1; 5154 5155 return role; 5156 } 5157 5158 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, 5159 int huge_page_level, bool accessed_dirty, 5160 gpa_t new_eptp) 5161 { 5162 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 5163 u8 level = vmx_eptp_page_walk_level(new_eptp); 5164 union kvm_cpu_role new_mode = 5165 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty, 5166 execonly, level); 5167 5168 if (new_mode.as_u64 != context->cpu_role.as_u64) { 5169 /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */ 5170 context->cpu_role.as_u64 = new_mode.as_u64; 5171 context->root_role.word = new_mode.base.word; 5172 5173 context->page_fault = ept_page_fault; 5174 context->gva_to_gpa = ept_gva_to_gpa; 5175 context->sync_page = ept_sync_page; 5176 context->invlpg = ept_invlpg; 5177 5178 update_permission_bitmask(context, true); 5179 context->pkru_mask = 0; 5180 reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level); 5181 reset_ept_shadow_zero_bits_mask(context, execonly); 5182 } 5183 5184 kvm_mmu_new_pgd(vcpu, new_eptp); 5185 } 5186 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); 5187 5188 static void init_kvm_softmmu(struct kvm_vcpu *vcpu, 5189 union kvm_cpu_role cpu_role) 5190 { 5191 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5192 5193 kvm_init_shadow_mmu(vcpu, cpu_role); 5194 5195 context->get_guest_pgd = get_cr3; 5196 context->get_pdptr = kvm_pdptr_read; 5197 context->inject_page_fault = kvm_inject_page_fault; 5198 } 5199 5200 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu, 5201 union kvm_cpu_role new_mode) 5202 { 5203 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; 5204 5205 if (new_mode.as_u64 == g_context->cpu_role.as_u64) 5206 return; 5207 5208 g_context->cpu_role.as_u64 = new_mode.as_u64; 5209 g_context->get_guest_pgd = get_cr3; 5210 g_context->get_pdptr = kvm_pdptr_read; 5211 g_context->inject_page_fault = kvm_inject_page_fault; 5212 5213 /* 5214 * L2 page tables are never shadowed, so there is no need to sync 5215 * SPTEs. 5216 */ 5217 g_context->invlpg = NULL; 5218 5219 /* 5220 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using 5221 * L1's nested page tables (e.g. EPT12). The nested translation 5222 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using 5223 * L2's page tables as the first level of translation and L1's 5224 * nested page tables as the second level of translation. Basically 5225 * the gva_to_gpa functions between mmu and nested_mmu are swapped. 5226 */ 5227 if (!is_paging(vcpu)) 5228 g_context->gva_to_gpa = nonpaging_gva_to_gpa; 5229 else if (is_long_mode(vcpu)) 5230 g_context->gva_to_gpa = paging64_gva_to_gpa; 5231 else if (is_pae(vcpu)) 5232 g_context->gva_to_gpa = paging64_gva_to_gpa; 5233 else 5234 g_context->gva_to_gpa = paging32_gva_to_gpa; 5235 5236 reset_guest_paging_metadata(vcpu, g_context); 5237 } 5238 5239 void kvm_init_mmu(struct kvm_vcpu *vcpu) 5240 { 5241 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 5242 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); 5243 5244 if (mmu_is_nested(vcpu)) 5245 init_kvm_nested_mmu(vcpu, cpu_role); 5246 else if (tdp_enabled) 5247 init_kvm_tdp_mmu(vcpu, cpu_role); 5248 else 5249 init_kvm_softmmu(vcpu, cpu_role); 5250 } 5251 EXPORT_SYMBOL_GPL(kvm_init_mmu); 5252 5253 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu) 5254 { 5255 /* 5256 * Invalidate all MMU roles to force them to reinitialize as CPUID 5257 * information is factored into reserved bit calculations. 5258 * 5259 * Correctly handling multiple vCPU models with respect to paging and 5260 * physical address properties) in a single VM would require tracking 5261 * all relevant CPUID information in kvm_mmu_page_role. That is very 5262 * undesirable as it would increase the memory requirements for 5263 * gfn_track (see struct kvm_mmu_page_role comments). For now that 5264 * problem is swept under the rug; KVM's CPUID API is horrific and 5265 * it's all but impossible to solve it without introducing a new API. 5266 */ 5267 vcpu->arch.root_mmu.root_role.word = 0; 5268 vcpu->arch.guest_mmu.root_role.word = 0; 5269 vcpu->arch.nested_mmu.root_role.word = 0; 5270 vcpu->arch.root_mmu.cpu_role.ext.valid = 0; 5271 vcpu->arch.guest_mmu.cpu_role.ext.valid = 0; 5272 vcpu->arch.nested_mmu.cpu_role.ext.valid = 0; 5273 kvm_mmu_reset_context(vcpu); 5274 5275 /* 5276 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in 5277 * kvm_arch_vcpu_ioctl(). 5278 */ 5279 KVM_BUG_ON(vcpu->arch.last_vmentry_cpu != -1, vcpu->kvm); 5280 } 5281 5282 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu) 5283 { 5284 kvm_mmu_unload(vcpu); 5285 kvm_init_mmu(vcpu); 5286 } 5287 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); 5288 5289 int kvm_mmu_load(struct kvm_vcpu *vcpu) 5290 { 5291 int r; 5292 5293 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->root_role.direct); 5294 if (r) 5295 goto out; 5296 r = mmu_alloc_special_roots(vcpu); 5297 if (r) 5298 goto out; 5299 if (vcpu->arch.mmu->root_role.direct) 5300 r = mmu_alloc_direct_roots(vcpu); 5301 else 5302 r = mmu_alloc_shadow_roots(vcpu); 5303 if (r) 5304 goto out; 5305 5306 kvm_mmu_sync_roots(vcpu); 5307 5308 kvm_mmu_load_pgd(vcpu); 5309 5310 /* 5311 * Flush any TLB entries for the new root, the provenance of the root 5312 * is unknown. Even if KVM ensures there are no stale TLB entries 5313 * for a freed root, in theory another hypervisor could have left 5314 * stale entries. Flushing on alloc also allows KVM to skip the TLB 5315 * flush when freeing a root (see kvm_tdp_mmu_put_root()). 5316 */ 5317 static_call(kvm_x86_flush_tlb_current)(vcpu); 5318 out: 5319 return r; 5320 } 5321 5322 void kvm_mmu_unload(struct kvm_vcpu *vcpu) 5323 { 5324 struct kvm *kvm = vcpu->kvm; 5325 5326 kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL); 5327 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root.hpa)); 5328 kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); 5329 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa)); 5330 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 5331 } 5332 5333 static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa) 5334 { 5335 struct kvm_mmu_page *sp; 5336 5337 if (!VALID_PAGE(root_hpa)) 5338 return false; 5339 5340 /* 5341 * When freeing obsolete roots, treat roots as obsolete if they don't 5342 * have an associated shadow page. This does mean KVM will get false 5343 * positives and free roots that don't strictly need to be freed, but 5344 * such false positives are relatively rare: 5345 * 5346 * (a) only PAE paging and nested NPT has roots without shadow pages 5347 * (b) remote reloads due to a memslot update obsoletes _all_ roots 5348 * (c) KVM doesn't track previous roots for PAE paging, and the guest 5349 * is unlikely to zap an in-use PGD. 5350 */ 5351 sp = to_shadow_page(root_hpa); 5352 return !sp || is_obsolete_sp(kvm, sp); 5353 } 5354 5355 static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu) 5356 { 5357 unsigned long roots_to_free = 0; 5358 int i; 5359 5360 if (is_obsolete_root(kvm, mmu->root.hpa)) 5361 roots_to_free |= KVM_MMU_ROOT_CURRENT; 5362 5363 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5364 if (is_obsolete_root(kvm, mmu->prev_roots[i].hpa)) 5365 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 5366 } 5367 5368 if (roots_to_free) 5369 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 5370 } 5371 5372 void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu) 5373 { 5374 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu); 5375 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu); 5376 } 5377 5378 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, 5379 int *bytes) 5380 { 5381 u64 gentry = 0; 5382 int r; 5383 5384 /* 5385 * Assume that the pte write on a page table of the same type 5386 * as the current vcpu paging mode since we update the sptes only 5387 * when they have the same mode. 5388 */ 5389 if (is_pae(vcpu) && *bytes == 4) { 5390 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ 5391 *gpa &= ~(gpa_t)7; 5392 *bytes = 8; 5393 } 5394 5395 if (*bytes == 4 || *bytes == 8) { 5396 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes); 5397 if (r) 5398 gentry = 0; 5399 } 5400 5401 return gentry; 5402 } 5403 5404 /* 5405 * If we're seeing too many writes to a page, it may no longer be a page table, 5406 * or we may be forking, in which case it is better to unmap the page. 5407 */ 5408 static bool detect_write_flooding(struct kvm_mmu_page *sp) 5409 { 5410 /* 5411 * Skip write-flooding detected for the sp whose level is 1, because 5412 * it can become unsync, then the guest page is not write-protected. 5413 */ 5414 if (sp->role.level == PG_LEVEL_4K) 5415 return false; 5416 5417 atomic_inc(&sp->write_flooding_count); 5418 return atomic_read(&sp->write_flooding_count) >= 3; 5419 } 5420 5421 /* 5422 * Misaligned accesses are too much trouble to fix up; also, they usually 5423 * indicate a page is not used as a page table. 5424 */ 5425 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, 5426 int bytes) 5427 { 5428 unsigned offset, pte_size, misaligned; 5429 5430 pgprintk("misaligned: gpa %llx bytes %d role %x\n", 5431 gpa, bytes, sp->role.word); 5432 5433 offset = offset_in_page(gpa); 5434 pte_size = sp->role.has_4_byte_gpte ? 4 : 8; 5435 5436 /* 5437 * Sometimes, the OS only writes the last one bytes to update status 5438 * bits, for example, in linux, andb instruction is used in clear_bit(). 5439 */ 5440 if (!(offset & (pte_size - 1)) && bytes == 1) 5441 return false; 5442 5443 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); 5444 misaligned |= bytes < 4; 5445 5446 return misaligned; 5447 } 5448 5449 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) 5450 { 5451 unsigned page_offset, quadrant; 5452 u64 *spte; 5453 int level; 5454 5455 page_offset = offset_in_page(gpa); 5456 level = sp->role.level; 5457 *nspte = 1; 5458 if (sp->role.has_4_byte_gpte) { 5459 page_offset <<= 1; /* 32->64 */ 5460 /* 5461 * A 32-bit pde maps 4MB while the shadow pdes map 5462 * only 2MB. So we need to double the offset again 5463 * and zap two pdes instead of one. 5464 */ 5465 if (level == PT32_ROOT_LEVEL) { 5466 page_offset &= ~7; /* kill rounding error */ 5467 page_offset <<= 1; 5468 *nspte = 2; 5469 } 5470 quadrant = page_offset >> PAGE_SHIFT; 5471 page_offset &= ~PAGE_MASK; 5472 if (quadrant != sp->role.quadrant) 5473 return NULL; 5474 } 5475 5476 spte = &sp->spt[page_offset / sizeof(*spte)]; 5477 return spte; 5478 } 5479 5480 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, 5481 const u8 *new, int bytes, 5482 struct kvm_page_track_notifier_node *node) 5483 { 5484 gfn_t gfn = gpa >> PAGE_SHIFT; 5485 struct kvm_mmu_page *sp; 5486 LIST_HEAD(invalid_list); 5487 u64 entry, gentry, *spte; 5488 int npte; 5489 bool flush = false; 5490 5491 /* 5492 * If we don't have indirect shadow pages, it means no page is 5493 * write-protected, so we can exit simply. 5494 */ 5495 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages)) 5496 return; 5497 5498 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes); 5499 5500 write_lock(&vcpu->kvm->mmu_lock); 5501 5502 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes); 5503 5504 ++vcpu->kvm->stat.mmu_pte_write; 5505 5506 for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) { 5507 if (detect_write_misaligned(sp, gpa, bytes) || 5508 detect_write_flooding(sp)) { 5509 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); 5510 ++vcpu->kvm->stat.mmu_flooded; 5511 continue; 5512 } 5513 5514 spte = get_written_sptes(sp, gpa, &npte); 5515 if (!spte) 5516 continue; 5517 5518 while (npte--) { 5519 entry = *spte; 5520 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL); 5521 if (gentry && sp->role.level != PG_LEVEL_4K) 5522 ++vcpu->kvm->stat.mmu_pde_zapped; 5523 if (is_shadow_present_pte(entry)) 5524 flush = true; 5525 ++spte; 5526 } 5527 } 5528 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 5529 write_unlock(&vcpu->kvm->mmu_lock); 5530 } 5531 5532 int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 5533 void *insn, int insn_len) 5534 { 5535 int r, emulation_type = EMULTYPE_PF; 5536 bool direct = vcpu->arch.mmu->root_role.direct; 5537 5538 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root.hpa))) 5539 return RET_PF_RETRY; 5540 5541 r = RET_PF_INVALID; 5542 if (unlikely(error_code & PFERR_RSVD_MASK)) { 5543 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct); 5544 if (r == RET_PF_EMULATE) 5545 goto emulate; 5546 } 5547 5548 if (r == RET_PF_INVALID) { 5549 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, 5550 lower_32_bits(error_code), false); 5551 if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm)) 5552 return -EIO; 5553 } 5554 5555 if (r < 0) 5556 return r; 5557 if (r != RET_PF_EMULATE) 5558 return 1; 5559 5560 /* 5561 * Before emulating the instruction, check if the error code 5562 * was due to a RO violation while translating the guest page. 5563 * This can occur when using nested virtualization with nested 5564 * paging in both guests. If true, we simply unprotect the page 5565 * and resume the guest. 5566 */ 5567 if (vcpu->arch.mmu->root_role.direct && 5568 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) { 5569 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa)); 5570 return 1; 5571 } 5572 5573 /* 5574 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still 5575 * optimistically try to just unprotect the page and let the processor 5576 * re-execute the instruction that caused the page fault. Do not allow 5577 * retrying MMIO emulation, as it's not only pointless but could also 5578 * cause us to enter an infinite loop because the processor will keep 5579 * faulting on the non-existent MMIO address. Retrying an instruction 5580 * from a nested guest is also pointless and dangerous as we are only 5581 * explicitly shadowing L1's page tables, i.e. unprotecting something 5582 * for L1 isn't going to magically fix whatever issue cause L2 to fail. 5583 */ 5584 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu)) 5585 emulation_type |= EMULTYPE_ALLOW_RETRY_PF; 5586 emulate: 5587 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn, 5588 insn_len); 5589 } 5590 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); 5591 5592 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 5593 gva_t gva, hpa_t root_hpa) 5594 { 5595 int i; 5596 5597 /* It's actually a GPA for vcpu->arch.guest_mmu. */ 5598 if (mmu != &vcpu->arch.guest_mmu) { 5599 /* INVLPG on a non-canonical address is a NOP according to the SDM. */ 5600 if (is_noncanonical_address(gva, vcpu)) 5601 return; 5602 5603 static_call(kvm_x86_flush_tlb_gva)(vcpu, gva); 5604 } 5605 5606 if (!mmu->invlpg) 5607 return; 5608 5609 if (root_hpa == INVALID_PAGE) { 5610 mmu->invlpg(vcpu, gva, mmu->root.hpa); 5611 5612 /* 5613 * INVLPG is required to invalidate any global mappings for the VA, 5614 * irrespective of PCID. Since it would take us roughly similar amount 5615 * of work to determine whether any of the prev_root mappings of the VA 5616 * is marked global, or to just sync it blindly, so we might as well 5617 * just always sync it. 5618 * 5619 * Mappings not reachable via the current cr3 or the prev_roots will be 5620 * synced when switching to that cr3, so nothing needs to be done here 5621 * for them. 5622 */ 5623 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5624 if (VALID_PAGE(mmu->prev_roots[i].hpa)) 5625 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); 5626 } else { 5627 mmu->invlpg(vcpu, gva, root_hpa); 5628 } 5629 } 5630 5631 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) 5632 { 5633 kvm_mmu_invalidate_gva(vcpu, vcpu->arch.walk_mmu, gva, INVALID_PAGE); 5634 ++vcpu->stat.invlpg; 5635 } 5636 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); 5637 5638 5639 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid) 5640 { 5641 struct kvm_mmu *mmu = vcpu->arch.mmu; 5642 bool tlb_flush = false; 5643 uint i; 5644 5645 if (pcid == kvm_get_active_pcid(vcpu)) { 5646 if (mmu->invlpg) 5647 mmu->invlpg(vcpu, gva, mmu->root.hpa); 5648 tlb_flush = true; 5649 } 5650 5651 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5652 if (VALID_PAGE(mmu->prev_roots[i].hpa) && 5653 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) { 5654 if (mmu->invlpg) 5655 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); 5656 tlb_flush = true; 5657 } 5658 } 5659 5660 if (tlb_flush) 5661 static_call(kvm_x86_flush_tlb_gva)(vcpu, gva); 5662 5663 ++vcpu->stat.invlpg; 5664 5665 /* 5666 * Mappings not reachable via the current cr3 or the prev_roots will be 5667 * synced when switching to that cr3, so nothing needs to be done here 5668 * for them. 5669 */ 5670 } 5671 5672 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 5673 int tdp_max_root_level, int tdp_huge_page_level) 5674 { 5675 tdp_enabled = enable_tdp; 5676 tdp_root_level = tdp_forced_root_level; 5677 max_tdp_level = tdp_max_root_level; 5678 5679 /* 5680 * max_huge_page_level reflects KVM's MMU capabilities irrespective 5681 * of kernel support, e.g. KVM may be capable of using 1GB pages when 5682 * the kernel is not. But, KVM never creates a page size greater than 5683 * what is used by the kernel for any given HVA, i.e. the kernel's 5684 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust(). 5685 */ 5686 if (tdp_enabled) 5687 max_huge_page_level = tdp_huge_page_level; 5688 else if (boot_cpu_has(X86_FEATURE_GBPAGES)) 5689 max_huge_page_level = PG_LEVEL_1G; 5690 else 5691 max_huge_page_level = PG_LEVEL_2M; 5692 } 5693 EXPORT_SYMBOL_GPL(kvm_configure_mmu); 5694 5695 /* The return value indicates if tlb flush on all vcpus is needed. */ 5696 typedef bool (*slot_level_handler) (struct kvm *kvm, 5697 struct kvm_rmap_head *rmap_head, 5698 const struct kvm_memory_slot *slot); 5699 5700 /* The caller should hold mmu-lock before calling this function. */ 5701 static __always_inline bool 5702 slot_handle_level_range(struct kvm *kvm, const struct kvm_memory_slot *memslot, 5703 slot_level_handler fn, int start_level, int end_level, 5704 gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield, 5705 bool flush) 5706 { 5707 struct slot_rmap_walk_iterator iterator; 5708 5709 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn, 5710 end_gfn, &iterator) { 5711 if (iterator.rmap) 5712 flush |= fn(kvm, iterator.rmap, memslot); 5713 5714 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 5715 if (flush && flush_on_yield) { 5716 kvm_flush_remote_tlbs_with_address(kvm, 5717 start_gfn, 5718 iterator.gfn - start_gfn + 1); 5719 flush = false; 5720 } 5721 cond_resched_rwlock_write(&kvm->mmu_lock); 5722 } 5723 } 5724 5725 return flush; 5726 } 5727 5728 static __always_inline bool 5729 slot_handle_level(struct kvm *kvm, const struct kvm_memory_slot *memslot, 5730 slot_level_handler fn, int start_level, int end_level, 5731 bool flush_on_yield) 5732 { 5733 return slot_handle_level_range(kvm, memslot, fn, start_level, 5734 end_level, memslot->base_gfn, 5735 memslot->base_gfn + memslot->npages - 1, 5736 flush_on_yield, false); 5737 } 5738 5739 static __always_inline bool 5740 slot_handle_level_4k(struct kvm *kvm, const struct kvm_memory_slot *memslot, 5741 slot_level_handler fn, bool flush_on_yield) 5742 { 5743 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K, 5744 PG_LEVEL_4K, flush_on_yield); 5745 } 5746 5747 static void free_mmu_pages(struct kvm_mmu *mmu) 5748 { 5749 if (!tdp_enabled && mmu->pae_root) 5750 set_memory_encrypted((unsigned long)mmu->pae_root, 1); 5751 free_page((unsigned long)mmu->pae_root); 5752 free_page((unsigned long)mmu->pml4_root); 5753 free_page((unsigned long)mmu->pml5_root); 5754 } 5755 5756 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 5757 { 5758 struct page *page; 5759 int i; 5760 5761 mmu->root.hpa = INVALID_PAGE; 5762 mmu->root.pgd = 0; 5763 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5764 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 5765 5766 /* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */ 5767 if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu) 5768 return 0; 5769 5770 /* 5771 * When using PAE paging, the four PDPTEs are treated as 'root' pages, 5772 * while the PDP table is a per-vCPU construct that's allocated at MMU 5773 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on 5774 * x86_64. Therefore we need to allocate the PDP table in the first 5775 * 4GB of memory, which happens to fit the DMA32 zone. TDP paging 5776 * generally doesn't use PAE paging and can skip allocating the PDP 5777 * table. The main exception, handled here, is SVM's 32-bit NPT. The 5778 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit 5779 * KVM; that horror is handled on-demand by mmu_alloc_special_roots(). 5780 */ 5781 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL) 5782 return 0; 5783 5784 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32); 5785 if (!page) 5786 return -ENOMEM; 5787 5788 mmu->pae_root = page_address(page); 5789 5790 /* 5791 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to 5792 * get the CPU to treat the PDPTEs as encrypted. Decrypt the page so 5793 * that KVM's writes and the CPU's reads get along. Note, this is 5794 * only necessary when using shadow paging, as 64-bit NPT can get at 5795 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported 5796 * by 32-bit kernels (when KVM itself uses 32-bit NPT). 5797 */ 5798 if (!tdp_enabled) 5799 set_memory_decrypted((unsigned long)mmu->pae_root, 1); 5800 else 5801 WARN_ON_ONCE(shadow_me_value); 5802 5803 for (i = 0; i < 4; ++i) 5804 mmu->pae_root[i] = INVALID_PAE_ROOT; 5805 5806 return 0; 5807 } 5808 5809 int kvm_mmu_create(struct kvm_vcpu *vcpu) 5810 { 5811 int ret; 5812 5813 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache; 5814 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO; 5815 5816 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache; 5817 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO; 5818 5819 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO; 5820 5821 vcpu->arch.mmu = &vcpu->arch.root_mmu; 5822 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; 5823 5824 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu); 5825 if (ret) 5826 return ret; 5827 5828 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu); 5829 if (ret) 5830 goto fail_allocate_root; 5831 5832 return ret; 5833 fail_allocate_root: 5834 free_mmu_pages(&vcpu->arch.guest_mmu); 5835 return ret; 5836 } 5837 5838 #define BATCH_ZAP_PAGES 10 5839 static void kvm_zap_obsolete_pages(struct kvm *kvm) 5840 { 5841 struct kvm_mmu_page *sp, *node; 5842 int nr_zapped, batch = 0; 5843 bool unstable; 5844 5845 restart: 5846 list_for_each_entry_safe_reverse(sp, node, 5847 &kvm->arch.active_mmu_pages, link) { 5848 /* 5849 * No obsolete valid page exists before a newly created page 5850 * since active_mmu_pages is a FIFO list. 5851 */ 5852 if (!is_obsolete_sp(kvm, sp)) 5853 break; 5854 5855 /* 5856 * Invalid pages should never land back on the list of active 5857 * pages. Skip the bogus page, otherwise we'll get stuck in an 5858 * infinite loop if the page gets put back on the list (again). 5859 */ 5860 if (WARN_ON(sp->role.invalid)) 5861 continue; 5862 5863 /* 5864 * No need to flush the TLB since we're only zapping shadow 5865 * pages with an obsolete generation number and all vCPUS have 5866 * loaded a new root, i.e. the shadow pages being zapped cannot 5867 * be in active use by the guest. 5868 */ 5869 if (batch >= BATCH_ZAP_PAGES && 5870 cond_resched_rwlock_write(&kvm->mmu_lock)) { 5871 batch = 0; 5872 goto restart; 5873 } 5874 5875 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, 5876 &kvm->arch.zapped_obsolete_pages, &nr_zapped); 5877 batch += nr_zapped; 5878 5879 if (unstable) 5880 goto restart; 5881 } 5882 5883 /* 5884 * Kick all vCPUs (via remote TLB flush) before freeing the page tables 5885 * to ensure KVM is not in the middle of a lockless shadow page table 5886 * walk, which may reference the pages. The remote TLB flush itself is 5887 * not required and is simply a convenient way to kick vCPUs as needed. 5888 * KVM performs a local TLB flush when allocating a new root (see 5889 * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are 5890 * running with an obsolete MMU. 5891 */ 5892 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages); 5893 } 5894 5895 /* 5896 * Fast invalidate all shadow pages and use lock-break technique 5897 * to zap obsolete pages. 5898 * 5899 * It's required when memslot is being deleted or VM is being 5900 * destroyed, in these cases, we should ensure that KVM MMU does 5901 * not use any resource of the being-deleted slot or all slots 5902 * after calling the function. 5903 */ 5904 static void kvm_mmu_zap_all_fast(struct kvm *kvm) 5905 { 5906 lockdep_assert_held(&kvm->slots_lock); 5907 5908 write_lock(&kvm->mmu_lock); 5909 trace_kvm_mmu_zap_all_fast(kvm); 5910 5911 /* 5912 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is 5913 * held for the entire duration of zapping obsolete pages, it's 5914 * impossible for there to be multiple invalid generations associated 5915 * with *valid* shadow pages at any given time, i.e. there is exactly 5916 * one valid generation and (at most) one invalid generation. 5917 */ 5918 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1; 5919 5920 /* 5921 * In order to ensure all vCPUs drop their soon-to-be invalid roots, 5922 * invalidating TDP MMU roots must be done while holding mmu_lock for 5923 * write and in the same critical section as making the reload request, 5924 * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield. 5925 */ 5926 if (is_tdp_mmu_enabled(kvm)) 5927 kvm_tdp_mmu_invalidate_all_roots(kvm); 5928 5929 /* 5930 * Notify all vcpus to reload its shadow page table and flush TLB. 5931 * Then all vcpus will switch to new shadow page table with the new 5932 * mmu_valid_gen. 5933 * 5934 * Note: we need to do this under the protection of mmu_lock, 5935 * otherwise, vcpu would purge shadow page but miss tlb flush. 5936 */ 5937 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 5938 5939 kvm_zap_obsolete_pages(kvm); 5940 5941 write_unlock(&kvm->mmu_lock); 5942 5943 /* 5944 * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before 5945 * returning to the caller, e.g. if the zap is in response to a memslot 5946 * deletion, mmu_notifier callbacks will be unable to reach the SPTEs 5947 * associated with the deleted memslot once the update completes, and 5948 * Deferring the zap until the final reference to the root is put would 5949 * lead to use-after-free. 5950 */ 5951 if (is_tdp_mmu_enabled(kvm)) 5952 kvm_tdp_mmu_zap_invalidated_roots(kvm); 5953 } 5954 5955 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm) 5956 { 5957 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages)); 5958 } 5959 5960 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm, 5961 struct kvm_memory_slot *slot, 5962 struct kvm_page_track_notifier_node *node) 5963 { 5964 kvm_mmu_zap_all_fast(kvm); 5965 } 5966 5967 int kvm_mmu_init_vm(struct kvm *kvm) 5968 { 5969 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 5970 int r; 5971 5972 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 5973 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 5974 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages); 5975 spin_lock_init(&kvm->arch.mmu_unsync_pages_lock); 5976 5977 r = kvm_mmu_init_tdp_mmu(kvm); 5978 if (r < 0) 5979 return r; 5980 5981 node->track_write = kvm_mmu_pte_write; 5982 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot; 5983 kvm_page_track_register_notifier(kvm, node); 5984 5985 kvm->arch.split_page_header_cache.kmem_cache = mmu_page_header_cache; 5986 kvm->arch.split_page_header_cache.gfp_zero = __GFP_ZERO; 5987 5988 kvm->arch.split_shadow_page_cache.gfp_zero = __GFP_ZERO; 5989 5990 kvm->arch.split_desc_cache.kmem_cache = pte_list_desc_cache; 5991 kvm->arch.split_desc_cache.gfp_zero = __GFP_ZERO; 5992 5993 return 0; 5994 } 5995 5996 static void mmu_free_vm_memory_caches(struct kvm *kvm) 5997 { 5998 kvm_mmu_free_memory_cache(&kvm->arch.split_desc_cache); 5999 kvm_mmu_free_memory_cache(&kvm->arch.split_page_header_cache); 6000 kvm_mmu_free_memory_cache(&kvm->arch.split_shadow_page_cache); 6001 } 6002 6003 void kvm_mmu_uninit_vm(struct kvm *kvm) 6004 { 6005 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 6006 6007 kvm_page_track_unregister_notifier(kvm, node); 6008 6009 kvm_mmu_uninit_tdp_mmu(kvm); 6010 6011 mmu_free_vm_memory_caches(kvm); 6012 } 6013 6014 static bool kvm_rmap_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 6015 { 6016 const struct kvm_memory_slot *memslot; 6017 struct kvm_memslots *slots; 6018 struct kvm_memslot_iter iter; 6019 bool flush = false; 6020 gfn_t start, end; 6021 int i; 6022 6023 if (!kvm_memslots_have_rmaps(kvm)) 6024 return flush; 6025 6026 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 6027 slots = __kvm_memslots(kvm, i); 6028 6029 kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) { 6030 memslot = iter.slot; 6031 start = max(gfn_start, memslot->base_gfn); 6032 end = min(gfn_end, memslot->base_gfn + memslot->npages); 6033 if (WARN_ON_ONCE(start >= end)) 6034 continue; 6035 6036 flush = slot_handle_level_range(kvm, memslot, __kvm_zap_rmap, 6037 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 6038 start, end - 1, true, flush); 6039 } 6040 } 6041 6042 return flush; 6043 } 6044 6045 /* 6046 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end 6047 * (not including it) 6048 */ 6049 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 6050 { 6051 bool flush; 6052 int i; 6053 6054 if (WARN_ON_ONCE(gfn_end <= gfn_start)) 6055 return; 6056 6057 write_lock(&kvm->mmu_lock); 6058 6059 kvm_mmu_invalidate_begin(kvm, gfn_start, gfn_end); 6060 6061 flush = kvm_rmap_zap_gfn_range(kvm, gfn_start, gfn_end); 6062 6063 if (is_tdp_mmu_enabled(kvm)) { 6064 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 6065 flush = kvm_tdp_mmu_zap_leafs(kvm, i, gfn_start, 6066 gfn_end, true, flush); 6067 } 6068 6069 if (flush) 6070 kvm_flush_remote_tlbs_with_address(kvm, gfn_start, 6071 gfn_end - gfn_start); 6072 6073 kvm_mmu_invalidate_end(kvm, gfn_start, gfn_end); 6074 6075 write_unlock(&kvm->mmu_lock); 6076 } 6077 6078 static bool slot_rmap_write_protect(struct kvm *kvm, 6079 struct kvm_rmap_head *rmap_head, 6080 const struct kvm_memory_slot *slot) 6081 { 6082 return rmap_write_protect(rmap_head, false); 6083 } 6084 6085 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 6086 const struct kvm_memory_slot *memslot, 6087 int start_level) 6088 { 6089 if (kvm_memslots_have_rmaps(kvm)) { 6090 write_lock(&kvm->mmu_lock); 6091 slot_handle_level(kvm, memslot, slot_rmap_write_protect, 6092 start_level, KVM_MAX_HUGEPAGE_LEVEL, false); 6093 write_unlock(&kvm->mmu_lock); 6094 } 6095 6096 if (is_tdp_mmu_enabled(kvm)) { 6097 read_lock(&kvm->mmu_lock); 6098 kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level); 6099 read_unlock(&kvm->mmu_lock); 6100 } 6101 } 6102 6103 static inline bool need_topup(struct kvm_mmu_memory_cache *cache, int min) 6104 { 6105 return kvm_mmu_memory_cache_nr_free_objects(cache) < min; 6106 } 6107 6108 static bool need_topup_split_caches_or_resched(struct kvm *kvm) 6109 { 6110 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) 6111 return true; 6112 6113 /* 6114 * In the worst case, SPLIT_DESC_CACHE_MIN_NR_OBJECTS descriptors are needed 6115 * to split a single huge page. Calculating how many are actually needed 6116 * is possible but not worth the complexity. 6117 */ 6118 return need_topup(&kvm->arch.split_desc_cache, SPLIT_DESC_CACHE_MIN_NR_OBJECTS) || 6119 need_topup(&kvm->arch.split_page_header_cache, 1) || 6120 need_topup(&kvm->arch.split_shadow_page_cache, 1); 6121 } 6122 6123 static int topup_split_caches(struct kvm *kvm) 6124 { 6125 /* 6126 * Allocating rmap list entries when splitting huge pages for nested 6127 * MMUs is uncommon as KVM needs to use a list if and only if there is 6128 * more than one rmap entry for a gfn, i.e. requires an L1 gfn to be 6129 * aliased by multiple L2 gfns and/or from multiple nested roots with 6130 * different roles. Aliasing gfns when using TDP is atypical for VMMs; 6131 * a few gfns are often aliased during boot, e.g. when remapping BIOS, 6132 * but aliasing rarely occurs post-boot or for many gfns. If there is 6133 * only one rmap entry, rmap->val points directly at that one entry and 6134 * doesn't need to allocate a list. Buffer the cache by the default 6135 * capacity so that KVM doesn't have to drop mmu_lock to topup if KVM 6136 * encounters an aliased gfn or two. 6137 */ 6138 const int capacity = SPLIT_DESC_CACHE_MIN_NR_OBJECTS + 6139 KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE; 6140 int r; 6141 6142 lockdep_assert_held(&kvm->slots_lock); 6143 6144 r = __kvm_mmu_topup_memory_cache(&kvm->arch.split_desc_cache, capacity, 6145 SPLIT_DESC_CACHE_MIN_NR_OBJECTS); 6146 if (r) 6147 return r; 6148 6149 r = kvm_mmu_topup_memory_cache(&kvm->arch.split_page_header_cache, 1); 6150 if (r) 6151 return r; 6152 6153 return kvm_mmu_topup_memory_cache(&kvm->arch.split_shadow_page_cache, 1); 6154 } 6155 6156 static struct kvm_mmu_page *shadow_mmu_get_sp_for_split(struct kvm *kvm, u64 *huge_sptep) 6157 { 6158 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); 6159 struct shadow_page_caches caches = {}; 6160 union kvm_mmu_page_role role; 6161 unsigned int access; 6162 gfn_t gfn; 6163 6164 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep)); 6165 access = kvm_mmu_page_get_access(huge_sp, spte_index(huge_sptep)); 6166 6167 /* 6168 * Note, huge page splitting always uses direct shadow pages, regardless 6169 * of whether the huge page itself is mapped by a direct or indirect 6170 * shadow page, since the huge page region itself is being directly 6171 * mapped with smaller pages. 6172 */ 6173 role = kvm_mmu_child_role(huge_sptep, /*direct=*/true, access); 6174 6175 /* Direct SPs do not require a shadowed_info_cache. */ 6176 caches.page_header_cache = &kvm->arch.split_page_header_cache; 6177 caches.shadow_page_cache = &kvm->arch.split_shadow_page_cache; 6178 6179 /* Safe to pass NULL for vCPU since requesting a direct SP. */ 6180 return __kvm_mmu_get_shadow_page(kvm, NULL, &caches, gfn, role); 6181 } 6182 6183 static void shadow_mmu_split_huge_page(struct kvm *kvm, 6184 const struct kvm_memory_slot *slot, 6185 u64 *huge_sptep) 6186 6187 { 6188 struct kvm_mmu_memory_cache *cache = &kvm->arch.split_desc_cache; 6189 u64 huge_spte = READ_ONCE(*huge_sptep); 6190 struct kvm_mmu_page *sp; 6191 bool flush = false; 6192 u64 *sptep, spte; 6193 gfn_t gfn; 6194 int index; 6195 6196 sp = shadow_mmu_get_sp_for_split(kvm, huge_sptep); 6197 6198 for (index = 0; index < SPTE_ENT_PER_PAGE; index++) { 6199 sptep = &sp->spt[index]; 6200 gfn = kvm_mmu_page_get_gfn(sp, index); 6201 6202 /* 6203 * The SP may already have populated SPTEs, e.g. if this huge 6204 * page is aliased by multiple sptes with the same access 6205 * permissions. These entries are guaranteed to map the same 6206 * gfn-to-pfn translation since the SP is direct, so no need to 6207 * modify them. 6208 * 6209 * However, if a given SPTE points to a lower level page table, 6210 * that lower level page table may only be partially populated. 6211 * Installing such SPTEs would effectively unmap a potion of the 6212 * huge page. Unmapping guest memory always requires a TLB flush 6213 * since a subsequent operation on the unmapped regions would 6214 * fail to detect the need to flush. 6215 */ 6216 if (is_shadow_present_pte(*sptep)) { 6217 flush |= !is_last_spte(*sptep, sp->role.level); 6218 continue; 6219 } 6220 6221 spte = make_huge_page_split_spte(kvm, huge_spte, sp->role, index); 6222 mmu_spte_set(sptep, spte); 6223 __rmap_add(kvm, cache, slot, sptep, gfn, sp->role.access); 6224 } 6225 6226 __link_shadow_page(kvm, cache, huge_sptep, sp, flush); 6227 } 6228 6229 static int shadow_mmu_try_split_huge_page(struct kvm *kvm, 6230 const struct kvm_memory_slot *slot, 6231 u64 *huge_sptep) 6232 { 6233 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); 6234 int level, r = 0; 6235 gfn_t gfn; 6236 u64 spte; 6237 6238 /* Grab information for the tracepoint before dropping the MMU lock. */ 6239 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep)); 6240 level = huge_sp->role.level; 6241 spte = *huge_sptep; 6242 6243 if (kvm_mmu_available_pages(kvm) <= KVM_MIN_FREE_MMU_PAGES) { 6244 r = -ENOSPC; 6245 goto out; 6246 } 6247 6248 if (need_topup_split_caches_or_resched(kvm)) { 6249 write_unlock(&kvm->mmu_lock); 6250 cond_resched(); 6251 /* 6252 * If the topup succeeds, return -EAGAIN to indicate that the 6253 * rmap iterator should be restarted because the MMU lock was 6254 * dropped. 6255 */ 6256 r = topup_split_caches(kvm) ?: -EAGAIN; 6257 write_lock(&kvm->mmu_lock); 6258 goto out; 6259 } 6260 6261 shadow_mmu_split_huge_page(kvm, slot, huge_sptep); 6262 6263 out: 6264 trace_kvm_mmu_split_huge_page(gfn, spte, level, r); 6265 return r; 6266 } 6267 6268 static bool shadow_mmu_try_split_huge_pages(struct kvm *kvm, 6269 struct kvm_rmap_head *rmap_head, 6270 const struct kvm_memory_slot *slot) 6271 { 6272 struct rmap_iterator iter; 6273 struct kvm_mmu_page *sp; 6274 u64 *huge_sptep; 6275 int r; 6276 6277 restart: 6278 for_each_rmap_spte(rmap_head, &iter, huge_sptep) { 6279 sp = sptep_to_sp(huge_sptep); 6280 6281 /* TDP MMU is enabled, so rmap only contains nested MMU SPs. */ 6282 if (WARN_ON_ONCE(!sp->role.guest_mode)) 6283 continue; 6284 6285 /* The rmaps should never contain non-leaf SPTEs. */ 6286 if (WARN_ON_ONCE(!is_large_pte(*huge_sptep))) 6287 continue; 6288 6289 /* SPs with level >PG_LEVEL_4K should never by unsync. */ 6290 if (WARN_ON_ONCE(sp->unsync)) 6291 continue; 6292 6293 /* Don't bother splitting huge pages on invalid SPs. */ 6294 if (sp->role.invalid) 6295 continue; 6296 6297 r = shadow_mmu_try_split_huge_page(kvm, slot, huge_sptep); 6298 6299 /* 6300 * The split succeeded or needs to be retried because the MMU 6301 * lock was dropped. Either way, restart the iterator to get it 6302 * back into a consistent state. 6303 */ 6304 if (!r || r == -EAGAIN) 6305 goto restart; 6306 6307 /* The split failed and shouldn't be retried (e.g. -ENOMEM). */ 6308 break; 6309 } 6310 6311 return false; 6312 } 6313 6314 static void kvm_shadow_mmu_try_split_huge_pages(struct kvm *kvm, 6315 const struct kvm_memory_slot *slot, 6316 gfn_t start, gfn_t end, 6317 int target_level) 6318 { 6319 int level; 6320 6321 /* 6322 * Split huge pages starting with KVM_MAX_HUGEPAGE_LEVEL and working 6323 * down to the target level. This ensures pages are recursively split 6324 * all the way to the target level. There's no need to split pages 6325 * already at the target level. 6326 */ 6327 for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--) { 6328 slot_handle_level_range(kvm, slot, shadow_mmu_try_split_huge_pages, 6329 level, level, start, end - 1, true, false); 6330 } 6331 } 6332 6333 /* Must be called with the mmu_lock held in write-mode. */ 6334 void kvm_mmu_try_split_huge_pages(struct kvm *kvm, 6335 const struct kvm_memory_slot *memslot, 6336 u64 start, u64 end, 6337 int target_level) 6338 { 6339 if (!is_tdp_mmu_enabled(kvm)) 6340 return; 6341 6342 if (kvm_memslots_have_rmaps(kvm)) 6343 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); 6344 6345 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, false); 6346 6347 /* 6348 * A TLB flush is unnecessary at this point for the same resons as in 6349 * kvm_mmu_slot_try_split_huge_pages(). 6350 */ 6351 } 6352 6353 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, 6354 const struct kvm_memory_slot *memslot, 6355 int target_level) 6356 { 6357 u64 start = memslot->base_gfn; 6358 u64 end = start + memslot->npages; 6359 6360 if (!is_tdp_mmu_enabled(kvm)) 6361 return; 6362 6363 if (kvm_memslots_have_rmaps(kvm)) { 6364 write_lock(&kvm->mmu_lock); 6365 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); 6366 write_unlock(&kvm->mmu_lock); 6367 } 6368 6369 read_lock(&kvm->mmu_lock); 6370 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true); 6371 read_unlock(&kvm->mmu_lock); 6372 6373 /* 6374 * No TLB flush is necessary here. KVM will flush TLBs after 6375 * write-protecting and/or clearing dirty on the newly split SPTEs to 6376 * ensure that guest writes are reflected in the dirty log before the 6377 * ioctl to enable dirty logging on this memslot completes. Since the 6378 * split SPTEs retain the write and dirty bits of the huge SPTE, it is 6379 * safe for KVM to decide if a TLB flush is necessary based on the split 6380 * SPTEs. 6381 */ 6382 } 6383 6384 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, 6385 struct kvm_rmap_head *rmap_head, 6386 const struct kvm_memory_slot *slot) 6387 { 6388 u64 *sptep; 6389 struct rmap_iterator iter; 6390 int need_tlb_flush = 0; 6391 struct kvm_mmu_page *sp; 6392 6393 restart: 6394 for_each_rmap_spte(rmap_head, &iter, sptep) { 6395 sp = sptep_to_sp(sptep); 6396 6397 /* 6398 * We cannot do huge page mapping for indirect shadow pages, 6399 * which are found on the last rmap (level = 1) when not using 6400 * tdp; such shadow pages are synced with the page table in 6401 * the guest, and the guest page table is using 4K page size 6402 * mapping if the indirect sp has level = 1. 6403 */ 6404 if (sp->role.direct && 6405 sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn, 6406 PG_LEVEL_NUM)) { 6407 kvm_zap_one_rmap_spte(kvm, rmap_head, sptep); 6408 6409 if (kvm_available_flush_tlb_with_range()) 6410 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn, 6411 KVM_PAGES_PER_HPAGE(sp->role.level)); 6412 else 6413 need_tlb_flush = 1; 6414 6415 goto restart; 6416 } 6417 } 6418 6419 return need_tlb_flush; 6420 } 6421 6422 static void kvm_rmap_zap_collapsible_sptes(struct kvm *kvm, 6423 const struct kvm_memory_slot *slot) 6424 { 6425 /* 6426 * Note, use KVM_MAX_HUGEPAGE_LEVEL - 1 since there's no need to zap 6427 * pages that are already mapped at the maximum hugepage level. 6428 */ 6429 if (slot_handle_level(kvm, slot, kvm_mmu_zap_collapsible_spte, 6430 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL - 1, true)) 6431 kvm_arch_flush_remote_tlbs_memslot(kvm, slot); 6432 } 6433 6434 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, 6435 const struct kvm_memory_slot *slot) 6436 { 6437 if (kvm_memslots_have_rmaps(kvm)) { 6438 write_lock(&kvm->mmu_lock); 6439 kvm_rmap_zap_collapsible_sptes(kvm, slot); 6440 write_unlock(&kvm->mmu_lock); 6441 } 6442 6443 if (is_tdp_mmu_enabled(kvm)) { 6444 read_lock(&kvm->mmu_lock); 6445 kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot); 6446 read_unlock(&kvm->mmu_lock); 6447 } 6448 } 6449 6450 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 6451 const struct kvm_memory_slot *memslot) 6452 { 6453 /* 6454 * All current use cases for flushing the TLBs for a specific memslot 6455 * related to dirty logging, and many do the TLB flush out of mmu_lock. 6456 * The interaction between the various operations on memslot must be 6457 * serialized by slots_locks to ensure the TLB flush from one operation 6458 * is observed by any other operation on the same memslot. 6459 */ 6460 lockdep_assert_held(&kvm->slots_lock); 6461 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn, 6462 memslot->npages); 6463 } 6464 6465 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 6466 const struct kvm_memory_slot *memslot) 6467 { 6468 if (kvm_memslots_have_rmaps(kvm)) { 6469 write_lock(&kvm->mmu_lock); 6470 /* 6471 * Clear dirty bits only on 4k SPTEs since the legacy MMU only 6472 * support dirty logging at a 4k granularity. 6473 */ 6474 slot_handle_level_4k(kvm, memslot, __rmap_clear_dirty, false); 6475 write_unlock(&kvm->mmu_lock); 6476 } 6477 6478 if (is_tdp_mmu_enabled(kvm)) { 6479 read_lock(&kvm->mmu_lock); 6480 kvm_tdp_mmu_clear_dirty_slot(kvm, memslot); 6481 read_unlock(&kvm->mmu_lock); 6482 } 6483 6484 /* 6485 * The caller will flush the TLBs after this function returns. 6486 * 6487 * It's also safe to flush TLBs out of mmu lock here as currently this 6488 * function is only used for dirty logging, in which case flushing TLB 6489 * out of mmu lock also guarantees no dirty pages will be lost in 6490 * dirty_bitmap. 6491 */ 6492 } 6493 6494 void kvm_mmu_zap_all(struct kvm *kvm) 6495 { 6496 struct kvm_mmu_page *sp, *node; 6497 LIST_HEAD(invalid_list); 6498 int ign; 6499 6500 write_lock(&kvm->mmu_lock); 6501 restart: 6502 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) { 6503 if (WARN_ON(sp->role.invalid)) 6504 continue; 6505 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign)) 6506 goto restart; 6507 if (cond_resched_rwlock_write(&kvm->mmu_lock)) 6508 goto restart; 6509 } 6510 6511 kvm_mmu_commit_zap_page(kvm, &invalid_list); 6512 6513 if (is_tdp_mmu_enabled(kvm)) 6514 kvm_tdp_mmu_zap_all(kvm); 6515 6516 write_unlock(&kvm->mmu_lock); 6517 } 6518 6519 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen) 6520 { 6521 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 6522 6523 gen &= MMIO_SPTE_GEN_MASK; 6524 6525 /* 6526 * Generation numbers are incremented in multiples of the number of 6527 * address spaces in order to provide unique generations across all 6528 * address spaces. Strip what is effectively the address space 6529 * modifier prior to checking for a wrap of the MMIO generation so 6530 * that a wrap in any address space is detected. 6531 */ 6532 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1); 6533 6534 /* 6535 * The very rare case: if the MMIO generation number has wrapped, 6536 * zap all shadow pages. 6537 */ 6538 if (unlikely(gen == 0)) { 6539 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n"); 6540 kvm_mmu_zap_all_fast(kvm); 6541 } 6542 } 6543 6544 static unsigned long 6545 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 6546 { 6547 struct kvm *kvm; 6548 int nr_to_scan = sc->nr_to_scan; 6549 unsigned long freed = 0; 6550 6551 mutex_lock(&kvm_lock); 6552 6553 list_for_each_entry(kvm, &vm_list, vm_list) { 6554 int idx; 6555 LIST_HEAD(invalid_list); 6556 6557 /* 6558 * Never scan more than sc->nr_to_scan VM instances. 6559 * Will not hit this condition practically since we do not try 6560 * to shrink more than one VM and it is very unlikely to see 6561 * !n_used_mmu_pages so many times. 6562 */ 6563 if (!nr_to_scan--) 6564 break; 6565 /* 6566 * n_used_mmu_pages is accessed without holding kvm->mmu_lock 6567 * here. We may skip a VM instance errorneosly, but we do not 6568 * want to shrink a VM that only started to populate its MMU 6569 * anyway. 6570 */ 6571 if (!kvm->arch.n_used_mmu_pages && 6572 !kvm_has_zapped_obsolete_pages(kvm)) 6573 continue; 6574 6575 idx = srcu_read_lock(&kvm->srcu); 6576 write_lock(&kvm->mmu_lock); 6577 6578 if (kvm_has_zapped_obsolete_pages(kvm)) { 6579 kvm_mmu_commit_zap_page(kvm, 6580 &kvm->arch.zapped_obsolete_pages); 6581 goto unlock; 6582 } 6583 6584 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan); 6585 6586 unlock: 6587 write_unlock(&kvm->mmu_lock); 6588 srcu_read_unlock(&kvm->srcu, idx); 6589 6590 /* 6591 * unfair on small ones 6592 * per-vm shrinkers cry out 6593 * sadness comes quickly 6594 */ 6595 list_move_tail(&kvm->vm_list, &vm_list); 6596 break; 6597 } 6598 6599 mutex_unlock(&kvm_lock); 6600 return freed; 6601 } 6602 6603 static unsigned long 6604 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 6605 { 6606 return percpu_counter_read_positive(&kvm_total_used_mmu_pages); 6607 } 6608 6609 static struct shrinker mmu_shrinker = { 6610 .count_objects = mmu_shrink_count, 6611 .scan_objects = mmu_shrink_scan, 6612 .seeks = DEFAULT_SEEKS * 10, 6613 }; 6614 6615 static void mmu_destroy_caches(void) 6616 { 6617 kmem_cache_destroy(pte_list_desc_cache); 6618 kmem_cache_destroy(mmu_page_header_cache); 6619 } 6620 6621 static bool get_nx_auto_mode(void) 6622 { 6623 /* Return true when CPU has the bug, and mitigations are ON */ 6624 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off(); 6625 } 6626 6627 static void __set_nx_huge_pages(bool val) 6628 { 6629 nx_huge_pages = itlb_multihit_kvm_mitigation = val; 6630 } 6631 6632 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp) 6633 { 6634 bool old_val = nx_huge_pages; 6635 bool new_val; 6636 6637 /* In "auto" mode deploy workaround only if CPU has the bug. */ 6638 if (sysfs_streq(val, "off")) 6639 new_val = 0; 6640 else if (sysfs_streq(val, "force")) 6641 new_val = 1; 6642 else if (sysfs_streq(val, "auto")) 6643 new_val = get_nx_auto_mode(); 6644 else if (strtobool(val, &new_val) < 0) 6645 return -EINVAL; 6646 6647 __set_nx_huge_pages(new_val); 6648 6649 if (new_val != old_val) { 6650 struct kvm *kvm; 6651 6652 mutex_lock(&kvm_lock); 6653 6654 list_for_each_entry(kvm, &vm_list, vm_list) { 6655 mutex_lock(&kvm->slots_lock); 6656 kvm_mmu_zap_all_fast(kvm); 6657 mutex_unlock(&kvm->slots_lock); 6658 6659 wake_up_process(kvm->arch.nx_lpage_recovery_thread); 6660 } 6661 mutex_unlock(&kvm_lock); 6662 } 6663 6664 return 0; 6665 } 6666 6667 /* 6668 * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as 6669 * its default value of -1 is technically undefined behavior for a boolean. 6670 * Forward the module init call to SPTE code so that it too can handle module 6671 * params that need to be resolved/snapshot. 6672 */ 6673 void __init kvm_mmu_x86_module_init(void) 6674 { 6675 if (nx_huge_pages == -1) 6676 __set_nx_huge_pages(get_nx_auto_mode()); 6677 6678 kvm_mmu_spte_module_init(); 6679 } 6680 6681 /* 6682 * The bulk of the MMU initialization is deferred until the vendor module is 6683 * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need 6684 * to be reset when a potentially different vendor module is loaded. 6685 */ 6686 int kvm_mmu_vendor_module_init(void) 6687 { 6688 int ret = -ENOMEM; 6689 6690 /* 6691 * MMU roles use union aliasing which is, generally speaking, an 6692 * undefined behavior. However, we supposedly know how compilers behave 6693 * and the current status quo is unlikely to change. Guardians below are 6694 * supposed to let us know if the assumption becomes false. 6695 */ 6696 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32)); 6697 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32)); 6698 BUILD_BUG_ON(sizeof(union kvm_cpu_role) != sizeof(u64)); 6699 6700 kvm_mmu_reset_all_pte_masks(); 6701 6702 pte_list_desc_cache = kmem_cache_create("pte_list_desc", 6703 sizeof(struct pte_list_desc), 6704 0, SLAB_ACCOUNT, NULL); 6705 if (!pte_list_desc_cache) 6706 goto out; 6707 6708 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", 6709 sizeof(struct kvm_mmu_page), 6710 0, SLAB_ACCOUNT, NULL); 6711 if (!mmu_page_header_cache) 6712 goto out; 6713 6714 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL)) 6715 goto out; 6716 6717 ret = register_shrinker(&mmu_shrinker, "x86-mmu"); 6718 if (ret) 6719 goto out_shrinker; 6720 6721 return 0; 6722 6723 out_shrinker: 6724 percpu_counter_destroy(&kvm_total_used_mmu_pages); 6725 out: 6726 mmu_destroy_caches(); 6727 return ret; 6728 } 6729 6730 void kvm_mmu_destroy(struct kvm_vcpu *vcpu) 6731 { 6732 kvm_mmu_unload(vcpu); 6733 free_mmu_pages(&vcpu->arch.root_mmu); 6734 free_mmu_pages(&vcpu->arch.guest_mmu); 6735 mmu_free_memory_caches(vcpu); 6736 } 6737 6738 void kvm_mmu_vendor_module_exit(void) 6739 { 6740 mmu_destroy_caches(); 6741 percpu_counter_destroy(&kvm_total_used_mmu_pages); 6742 unregister_shrinker(&mmu_shrinker); 6743 } 6744 6745 /* 6746 * Calculate the effective recovery period, accounting for '0' meaning "let KVM 6747 * select a halving time of 1 hour". Returns true if recovery is enabled. 6748 */ 6749 static bool calc_nx_huge_pages_recovery_period(uint *period) 6750 { 6751 /* 6752 * Use READ_ONCE to get the params, this may be called outside of the 6753 * param setters, e.g. by the kthread to compute its next timeout. 6754 */ 6755 bool enabled = READ_ONCE(nx_huge_pages); 6756 uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 6757 6758 if (!enabled || !ratio) 6759 return false; 6760 6761 *period = READ_ONCE(nx_huge_pages_recovery_period_ms); 6762 if (!*period) { 6763 /* Make sure the period is not less than one second. */ 6764 ratio = min(ratio, 3600u); 6765 *period = 60 * 60 * 1000 / ratio; 6766 } 6767 return true; 6768 } 6769 6770 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp) 6771 { 6772 bool was_recovery_enabled, is_recovery_enabled; 6773 uint old_period, new_period; 6774 int err; 6775 6776 was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period); 6777 6778 err = param_set_uint(val, kp); 6779 if (err) 6780 return err; 6781 6782 is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period); 6783 6784 if (is_recovery_enabled && 6785 (!was_recovery_enabled || old_period > new_period)) { 6786 struct kvm *kvm; 6787 6788 mutex_lock(&kvm_lock); 6789 6790 list_for_each_entry(kvm, &vm_list, vm_list) 6791 wake_up_process(kvm->arch.nx_lpage_recovery_thread); 6792 6793 mutex_unlock(&kvm_lock); 6794 } 6795 6796 return err; 6797 } 6798 6799 static void kvm_recover_nx_lpages(struct kvm *kvm) 6800 { 6801 unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits; 6802 int rcu_idx; 6803 struct kvm_mmu_page *sp; 6804 unsigned int ratio; 6805 LIST_HEAD(invalid_list); 6806 bool flush = false; 6807 ulong to_zap; 6808 6809 rcu_idx = srcu_read_lock(&kvm->srcu); 6810 write_lock(&kvm->mmu_lock); 6811 6812 /* 6813 * Zapping TDP MMU shadow pages, including the remote TLB flush, must 6814 * be done under RCU protection, because the pages are freed via RCU 6815 * callback. 6816 */ 6817 rcu_read_lock(); 6818 6819 ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 6820 to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0; 6821 for ( ; to_zap; --to_zap) { 6822 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) 6823 break; 6824 6825 /* 6826 * We use a separate list instead of just using active_mmu_pages 6827 * because the number of lpage_disallowed pages is expected to 6828 * be relatively small compared to the total. 6829 */ 6830 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages, 6831 struct kvm_mmu_page, 6832 lpage_disallowed_link); 6833 WARN_ON_ONCE(!sp->lpage_disallowed); 6834 if (is_tdp_mmu_page(sp)) { 6835 flush |= kvm_tdp_mmu_zap_sp(kvm, sp); 6836 } else { 6837 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 6838 WARN_ON_ONCE(sp->lpage_disallowed); 6839 } 6840 6841 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 6842 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 6843 rcu_read_unlock(); 6844 6845 cond_resched_rwlock_write(&kvm->mmu_lock); 6846 flush = false; 6847 6848 rcu_read_lock(); 6849 } 6850 } 6851 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 6852 6853 rcu_read_unlock(); 6854 6855 write_unlock(&kvm->mmu_lock); 6856 srcu_read_unlock(&kvm->srcu, rcu_idx); 6857 } 6858 6859 static long get_nx_lpage_recovery_timeout(u64 start_time) 6860 { 6861 bool enabled; 6862 uint period; 6863 6864 enabled = calc_nx_huge_pages_recovery_period(&period); 6865 6866 return enabled ? start_time + msecs_to_jiffies(period) - get_jiffies_64() 6867 : MAX_SCHEDULE_TIMEOUT; 6868 } 6869 6870 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data) 6871 { 6872 u64 start_time; 6873 long remaining_time; 6874 6875 while (true) { 6876 start_time = get_jiffies_64(); 6877 remaining_time = get_nx_lpage_recovery_timeout(start_time); 6878 6879 set_current_state(TASK_INTERRUPTIBLE); 6880 while (!kthread_should_stop() && remaining_time > 0) { 6881 schedule_timeout(remaining_time); 6882 remaining_time = get_nx_lpage_recovery_timeout(start_time); 6883 set_current_state(TASK_INTERRUPTIBLE); 6884 } 6885 6886 set_current_state(TASK_RUNNING); 6887 6888 if (kthread_should_stop()) 6889 return 0; 6890 6891 kvm_recover_nx_lpages(kvm); 6892 } 6893 } 6894 6895 int kvm_mmu_post_init_vm(struct kvm *kvm) 6896 { 6897 int err; 6898 6899 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0, 6900 "kvm-nx-lpage-recovery", 6901 &kvm->arch.nx_lpage_recovery_thread); 6902 if (!err) 6903 kthread_unpark(kvm->arch.nx_lpage_recovery_thread); 6904 6905 return err; 6906 } 6907 6908 void kvm_mmu_pre_destroy_vm(struct kvm *kvm) 6909 { 6910 if (kvm->arch.nx_lpage_recovery_thread) 6911 kthread_stop(kvm->arch.nx_lpage_recovery_thread); 6912 } 6913