1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * MMU support 9 * 10 * Copyright (C) 2006 Qumranet, Inc. 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 12 * 13 * Authors: 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Avi Kivity <avi@qumranet.com> 16 */ 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include "irq.h" 20 #include "ioapic.h" 21 #include "mmu.h" 22 #include "mmu_internal.h" 23 #include "tdp_mmu.h" 24 #include "x86.h" 25 #include "kvm_cache_regs.h" 26 #include "smm.h" 27 #include "kvm_emulate.h" 28 #include "page_track.h" 29 #include "cpuid.h" 30 #include "spte.h" 31 32 #include <linux/kvm_host.h> 33 #include <linux/types.h> 34 #include <linux/string.h> 35 #include <linux/mm.h> 36 #include <linux/highmem.h> 37 #include <linux/moduleparam.h> 38 #include <linux/export.h> 39 #include <linux/swap.h> 40 #include <linux/hugetlb.h> 41 #include <linux/compiler.h> 42 #include <linux/srcu.h> 43 #include <linux/slab.h> 44 #include <linux/sched/signal.h> 45 #include <linux/uaccess.h> 46 #include <linux/hash.h> 47 #include <linux/kern_levels.h> 48 #include <linux/kstrtox.h> 49 #include <linux/kthread.h> 50 #include <linux/wordpart.h> 51 52 #include <asm/page.h> 53 #include <asm/memtype.h> 54 #include <asm/cmpxchg.h> 55 #include <asm/io.h> 56 #include <asm/set_memory.h> 57 #include <asm/spec-ctrl.h> 58 #include <asm/vmx.h> 59 60 #include "trace.h" 61 62 static bool nx_hugepage_mitigation_hard_disabled; 63 64 int __read_mostly nx_huge_pages = -1; 65 static uint __read_mostly nx_huge_pages_recovery_period_ms; 66 #ifdef CONFIG_PREEMPT_RT 67 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */ 68 static uint __read_mostly nx_huge_pages_recovery_ratio = 0; 69 #else 70 static uint __read_mostly nx_huge_pages_recovery_ratio = 60; 71 #endif 72 73 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp); 74 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp); 75 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp); 76 77 static const struct kernel_param_ops nx_huge_pages_ops = { 78 .set = set_nx_huge_pages, 79 .get = get_nx_huge_pages, 80 }; 81 82 static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = { 83 .set = set_nx_huge_pages_recovery_param, 84 .get = param_get_uint, 85 }; 86 87 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644); 88 __MODULE_PARM_TYPE(nx_huge_pages, "bool"); 89 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops, 90 &nx_huge_pages_recovery_ratio, 0644); 91 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint"); 92 module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops, 93 &nx_huge_pages_recovery_period_ms, 0644); 94 __MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint"); 95 96 static bool __read_mostly force_flush_and_sync_on_reuse; 97 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644); 98 99 /* 100 * When setting this variable to true it enables Two-Dimensional-Paging 101 * where the hardware walks 2 page tables: 102 * 1. the guest-virtual to guest-physical 103 * 2. while doing 1. it walks guest-physical to host-physical 104 * If the hardware supports that we don't need to do shadow paging. 105 */ 106 bool tdp_enabled = false; 107 108 static bool __ro_after_init tdp_mmu_allowed; 109 110 #ifdef CONFIG_X86_64 111 bool __read_mostly tdp_mmu_enabled = true; 112 module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0444); 113 #endif 114 115 static int max_huge_page_level __read_mostly; 116 static int tdp_root_level __read_mostly; 117 static int max_tdp_level __read_mostly; 118 119 #define PTE_PREFETCH_NUM 8 120 121 #include <trace/events/kvm.h> 122 123 /* make pte_list_desc fit well in cache lines */ 124 #define PTE_LIST_EXT 14 125 126 /* 127 * struct pte_list_desc is the core data structure used to implement a custom 128 * list for tracking a set of related SPTEs, e.g. all the SPTEs that map a 129 * given GFN when used in the context of rmaps. Using a custom list allows KVM 130 * to optimize for the common case where many GFNs will have at most a handful 131 * of SPTEs pointing at them, i.e. allows packing multiple SPTEs into a small 132 * memory footprint, which in turn improves runtime performance by exploiting 133 * cache locality. 134 * 135 * A list is comprised of one or more pte_list_desc objects (descriptors). 136 * Each individual descriptor stores up to PTE_LIST_EXT SPTEs. If a descriptor 137 * is full and a new SPTEs needs to be added, a new descriptor is allocated and 138 * becomes the head of the list. This means that by definitions, all tail 139 * descriptors are full. 140 * 141 * Note, the meta data fields are deliberately placed at the start of the 142 * structure to optimize the cacheline layout; accessing the descriptor will 143 * touch only a single cacheline so long as @spte_count<=6 (or if only the 144 * descriptors metadata is accessed). 145 */ 146 struct pte_list_desc { 147 struct pte_list_desc *more; 148 /* The number of PTEs stored in _this_ descriptor. */ 149 u32 spte_count; 150 /* The number of PTEs stored in all tails of this descriptor. */ 151 u32 tail_count; 152 u64 *sptes[PTE_LIST_EXT]; 153 }; 154 155 struct kvm_shadow_walk_iterator { 156 u64 addr; 157 hpa_t shadow_addr; 158 u64 *sptep; 159 int level; 160 unsigned index; 161 }; 162 163 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \ 164 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \ 165 (_root), (_addr)); \ 166 shadow_walk_okay(&(_walker)); \ 167 shadow_walk_next(&(_walker))) 168 169 #define for_each_shadow_entry(_vcpu, _addr, _walker) \ 170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 171 shadow_walk_okay(&(_walker)); \ 172 shadow_walk_next(&(_walker))) 173 174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \ 175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 176 shadow_walk_okay(&(_walker)) && \ 177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \ 178 __shadow_walk_next(&(_walker), spte)) 179 180 static struct kmem_cache *pte_list_desc_cache; 181 struct kmem_cache *mmu_page_header_cache; 182 183 static void mmu_spte_set(u64 *sptep, u64 spte); 184 185 struct kvm_mmu_role_regs { 186 const unsigned long cr0; 187 const unsigned long cr4; 188 const u64 efer; 189 }; 190 191 #define CREATE_TRACE_POINTS 192 #include "mmutrace.h" 193 194 /* 195 * Yes, lot's of underscores. They're a hint that you probably shouldn't be 196 * reading from the role_regs. Once the root_role is constructed, it becomes 197 * the single source of truth for the MMU's state. 198 */ 199 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag) \ 200 static inline bool __maybe_unused \ 201 ____is_##reg##_##name(const struct kvm_mmu_role_regs *regs) \ 202 { \ 203 return !!(regs->reg & flag); \ 204 } 205 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG); 206 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP); 207 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE); 208 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE); 209 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP); 210 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP); 211 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE); 212 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57); 213 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX); 214 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA); 215 216 /* 217 * The MMU itself (with a valid role) is the single source of truth for the 218 * MMU. Do not use the regs used to build the MMU/role, nor the vCPU. The 219 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1, 220 * and the vCPU may be incorrect/irrelevant. 221 */ 222 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name) \ 223 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu) \ 224 { \ 225 return !!(mmu->cpu_role. base_or_ext . reg##_##name); \ 226 } 227 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp); 228 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pse); 229 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smep); 230 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smap); 231 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pke); 232 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, la57); 233 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx); 234 BUILD_MMU_ROLE_ACCESSOR(ext, efer, lma); 235 236 static inline bool is_cr0_pg(struct kvm_mmu *mmu) 237 { 238 return mmu->cpu_role.base.level > 0; 239 } 240 241 static inline bool is_cr4_pae(struct kvm_mmu *mmu) 242 { 243 return !mmu->cpu_role.base.has_4_byte_gpte; 244 } 245 246 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu) 247 { 248 struct kvm_mmu_role_regs regs = { 249 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS), 250 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS), 251 .efer = vcpu->arch.efer, 252 }; 253 254 return regs; 255 } 256 257 static unsigned long get_guest_cr3(struct kvm_vcpu *vcpu) 258 { 259 return kvm_read_cr3(vcpu); 260 } 261 262 static inline unsigned long kvm_mmu_get_guest_pgd(struct kvm_vcpu *vcpu, 263 struct kvm_mmu *mmu) 264 { 265 if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && mmu->get_guest_pgd == get_guest_cr3) 266 return kvm_read_cr3(vcpu); 267 268 return mmu->get_guest_pgd(vcpu); 269 } 270 271 static inline bool kvm_available_flush_remote_tlbs_range(void) 272 { 273 #if IS_ENABLED(CONFIG_HYPERV) 274 return kvm_x86_ops.flush_remote_tlbs_range; 275 #else 276 return false; 277 #endif 278 } 279 280 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index); 281 282 /* Flush the range of guest memory mapped by the given SPTE. */ 283 static void kvm_flush_remote_tlbs_sptep(struct kvm *kvm, u64 *sptep) 284 { 285 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 286 gfn_t gfn = kvm_mmu_page_get_gfn(sp, spte_index(sptep)); 287 288 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level); 289 } 290 291 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn, 292 unsigned int access) 293 { 294 u64 spte = make_mmio_spte(vcpu, gfn, access); 295 296 trace_mark_mmio_spte(sptep, gfn, spte); 297 mmu_spte_set(sptep, spte); 298 } 299 300 static gfn_t get_mmio_spte_gfn(u64 spte) 301 { 302 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask; 303 304 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN) 305 & shadow_nonpresent_or_rsvd_mask; 306 307 return gpa >> PAGE_SHIFT; 308 } 309 310 static unsigned get_mmio_spte_access(u64 spte) 311 { 312 return spte & shadow_mmio_access_mask; 313 } 314 315 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte) 316 { 317 u64 kvm_gen, spte_gen, gen; 318 319 gen = kvm_vcpu_memslots(vcpu)->generation; 320 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS)) 321 return false; 322 323 kvm_gen = gen & MMIO_SPTE_GEN_MASK; 324 spte_gen = get_mmio_spte_generation(spte); 325 326 trace_check_mmio_spte(spte, kvm_gen, spte_gen); 327 return likely(kvm_gen == spte_gen); 328 } 329 330 static int is_cpuid_PSE36(void) 331 { 332 return 1; 333 } 334 335 #ifdef CONFIG_X86_64 336 static void __set_spte(u64 *sptep, u64 spte) 337 { 338 KVM_MMU_WARN_ON(is_ept_ve_possible(spte)); 339 WRITE_ONCE(*sptep, spte); 340 } 341 342 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 343 { 344 KVM_MMU_WARN_ON(is_ept_ve_possible(spte)); 345 WRITE_ONCE(*sptep, spte); 346 } 347 348 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 349 { 350 KVM_MMU_WARN_ON(is_ept_ve_possible(spte)); 351 return xchg(sptep, spte); 352 } 353 354 static u64 __get_spte_lockless(u64 *sptep) 355 { 356 return READ_ONCE(*sptep); 357 } 358 #else 359 union split_spte { 360 struct { 361 u32 spte_low; 362 u32 spte_high; 363 }; 364 u64 spte; 365 }; 366 367 static void count_spte_clear(u64 *sptep, u64 spte) 368 { 369 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 370 371 if (is_shadow_present_pte(spte)) 372 return; 373 374 /* Ensure the spte is completely set before we increase the count */ 375 smp_wmb(); 376 sp->clear_spte_count++; 377 } 378 379 static void __set_spte(u64 *sptep, u64 spte) 380 { 381 union split_spte *ssptep, sspte; 382 383 ssptep = (union split_spte *)sptep; 384 sspte = (union split_spte)spte; 385 386 ssptep->spte_high = sspte.spte_high; 387 388 /* 389 * If we map the spte from nonpresent to present, We should store 390 * the high bits firstly, then set present bit, so cpu can not 391 * fetch this spte while we are setting the spte. 392 */ 393 smp_wmb(); 394 395 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 396 } 397 398 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 399 { 400 union split_spte *ssptep, sspte; 401 402 ssptep = (union split_spte *)sptep; 403 sspte = (union split_spte)spte; 404 405 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 406 407 /* 408 * If we map the spte from present to nonpresent, we should clear 409 * present bit firstly to avoid vcpu fetch the old high bits. 410 */ 411 smp_wmb(); 412 413 ssptep->spte_high = sspte.spte_high; 414 count_spte_clear(sptep, spte); 415 } 416 417 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 418 { 419 union split_spte *ssptep, sspte, orig; 420 421 ssptep = (union split_spte *)sptep; 422 sspte = (union split_spte)spte; 423 424 /* xchg acts as a barrier before the setting of the high bits */ 425 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); 426 orig.spte_high = ssptep->spte_high; 427 ssptep->spte_high = sspte.spte_high; 428 count_spte_clear(sptep, spte); 429 430 return orig.spte; 431 } 432 433 /* 434 * The idea using the light way get the spte on x86_32 guest is from 435 * gup_get_pte (mm/gup.c). 436 * 437 * An spte tlb flush may be pending, because they are coalesced and 438 * we are running out of the MMU lock. Therefore 439 * we need to protect against in-progress updates of the spte. 440 * 441 * Reading the spte while an update is in progress may get the old value 442 * for the high part of the spte. The race is fine for a present->non-present 443 * change (because the high part of the spte is ignored for non-present spte), 444 * but for a present->present change we must reread the spte. 445 * 446 * All such changes are done in two steps (present->non-present and 447 * non-present->present), hence it is enough to count the number of 448 * present->non-present updates: if it changed while reading the spte, 449 * we might have hit the race. This is done using clear_spte_count. 450 */ 451 static u64 __get_spte_lockless(u64 *sptep) 452 { 453 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 454 union split_spte spte, *orig = (union split_spte *)sptep; 455 int count; 456 457 retry: 458 count = sp->clear_spte_count; 459 smp_rmb(); 460 461 spte.spte_low = orig->spte_low; 462 smp_rmb(); 463 464 spte.spte_high = orig->spte_high; 465 smp_rmb(); 466 467 if (unlikely(spte.spte_low != orig->spte_low || 468 count != sp->clear_spte_count)) 469 goto retry; 470 471 return spte.spte; 472 } 473 #endif 474 475 /* Rules for using mmu_spte_set: 476 * Set the sptep from nonpresent to present. 477 * Note: the sptep being assigned *must* be either not present 478 * or in a state where the hardware will not attempt to update 479 * the spte. 480 */ 481 static void mmu_spte_set(u64 *sptep, u64 new_spte) 482 { 483 WARN_ON_ONCE(is_shadow_present_pte(*sptep)); 484 __set_spte(sptep, new_spte); 485 } 486 487 /* Rules for using mmu_spte_update: 488 * Update the state bits, it means the mapped pfn is not changed. 489 * 490 * Returns true if the TLB needs to be flushed 491 */ 492 static bool mmu_spte_update(u64 *sptep, u64 new_spte) 493 { 494 u64 old_spte = *sptep; 495 496 WARN_ON_ONCE(!is_shadow_present_pte(new_spte)); 497 check_spte_writable_invariants(new_spte); 498 499 if (!is_shadow_present_pte(old_spte)) { 500 mmu_spte_set(sptep, new_spte); 501 return false; 502 } 503 504 if (!spte_needs_atomic_update(old_spte)) 505 __update_clear_spte_fast(sptep, new_spte); 506 else 507 old_spte = __update_clear_spte_slow(sptep, new_spte); 508 509 WARN_ON_ONCE(!is_shadow_present_pte(old_spte) || 510 spte_to_pfn(old_spte) != spte_to_pfn(new_spte)); 511 512 return leaf_spte_change_needs_tlb_flush(old_spte, new_spte); 513 } 514 515 /* 516 * Rules for using mmu_spte_clear_track_bits: 517 * It sets the sptep from present to nonpresent, and track the 518 * state bits, it is used to clear the last level sptep. 519 * Returns the old PTE. 520 */ 521 static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep) 522 { 523 u64 old_spte = *sptep; 524 int level = sptep_to_sp(sptep)->role.level; 525 526 if (!is_shadow_present_pte(old_spte) || 527 !spte_needs_atomic_update(old_spte)) 528 __update_clear_spte_fast(sptep, SHADOW_NONPRESENT_VALUE); 529 else 530 old_spte = __update_clear_spte_slow(sptep, SHADOW_NONPRESENT_VALUE); 531 532 if (!is_shadow_present_pte(old_spte)) 533 return old_spte; 534 535 kvm_update_page_stats(kvm, level, -1); 536 return old_spte; 537 } 538 539 /* 540 * Rules for using mmu_spte_clear_no_track: 541 * Directly clear spte without caring the state bits of sptep, 542 * it is used to set the upper level spte. 543 */ 544 static void mmu_spte_clear_no_track(u64 *sptep) 545 { 546 __update_clear_spte_fast(sptep, SHADOW_NONPRESENT_VALUE); 547 } 548 549 static u64 mmu_spte_get_lockless(u64 *sptep) 550 { 551 return __get_spte_lockless(sptep); 552 } 553 554 static inline bool is_tdp_mmu_active(struct kvm_vcpu *vcpu) 555 { 556 return tdp_mmu_enabled && vcpu->arch.mmu->root_role.direct; 557 } 558 559 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) 560 { 561 if (is_tdp_mmu_active(vcpu)) { 562 kvm_tdp_mmu_walk_lockless_begin(); 563 } else { 564 /* 565 * Prevent page table teardown by making any free-er wait during 566 * kvm_flush_remote_tlbs() IPI to all active vcpus. 567 */ 568 local_irq_disable(); 569 570 /* 571 * Make sure a following spte read is not reordered ahead of the write 572 * to vcpu->mode. 573 */ 574 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); 575 } 576 } 577 578 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) 579 { 580 if (is_tdp_mmu_active(vcpu)) { 581 kvm_tdp_mmu_walk_lockless_end(); 582 } else { 583 /* 584 * Make sure the write to vcpu->mode is not reordered in front of 585 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us 586 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. 587 */ 588 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); 589 local_irq_enable(); 590 } 591 } 592 593 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect) 594 { 595 int r; 596 597 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */ 598 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, 599 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM); 600 if (r) 601 return r; 602 if (kvm_has_mirrored_tdp(vcpu->kvm)) { 603 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_external_spt_cache, 604 PT64_ROOT_MAX_LEVEL); 605 if (r) 606 return r; 607 } 608 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache, 609 PT64_ROOT_MAX_LEVEL); 610 if (r) 611 return r; 612 if (maybe_indirect) { 613 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadowed_info_cache, 614 PT64_ROOT_MAX_LEVEL); 615 if (r) 616 return r; 617 } 618 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, 619 PT64_ROOT_MAX_LEVEL); 620 } 621 622 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) 623 { 624 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache); 625 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache); 626 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadowed_info_cache); 627 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_external_spt_cache); 628 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache); 629 } 630 631 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) 632 { 633 kmem_cache_free(pte_list_desc_cache, pte_list_desc); 634 } 635 636 static bool sp_has_gptes(struct kvm_mmu_page *sp); 637 638 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) 639 { 640 if (sp->role.passthrough) 641 return sp->gfn; 642 643 if (sp->shadowed_translation) 644 return sp->shadowed_translation[index] >> PAGE_SHIFT; 645 646 return sp->gfn + (index << ((sp->role.level - 1) * SPTE_LEVEL_BITS)); 647 } 648 649 /* 650 * For leaf SPTEs, fetch the *guest* access permissions being shadowed. Note 651 * that the SPTE itself may have a more constrained access permissions that 652 * what the guest enforces. For example, a guest may create an executable 653 * huge PTE but KVM may disallow execution to mitigate iTLB multihit. 654 */ 655 static u32 kvm_mmu_page_get_access(struct kvm_mmu_page *sp, int index) 656 { 657 if (sp->shadowed_translation) 658 return sp->shadowed_translation[index] & ACC_ALL; 659 660 /* 661 * For direct MMUs (e.g. TDP or non-paging guests) or passthrough SPs, 662 * KVM is not shadowing any guest page tables, so the "guest access 663 * permissions" are just ACC_ALL. 664 * 665 * For direct SPs in indirect MMUs (shadow paging), i.e. when KVM 666 * is shadowing a guest huge page with small pages, the guest access 667 * permissions being shadowed are the access permissions of the huge 668 * page. 669 * 670 * In both cases, sp->role.access contains the correct access bits. 671 */ 672 return sp->role.access; 673 } 674 675 static void kvm_mmu_page_set_translation(struct kvm_mmu_page *sp, int index, 676 gfn_t gfn, unsigned int access) 677 { 678 if (sp->shadowed_translation) { 679 sp->shadowed_translation[index] = (gfn << PAGE_SHIFT) | access; 680 return; 681 } 682 683 WARN_ONCE(access != kvm_mmu_page_get_access(sp, index), 684 "access mismatch under %s page %llx (expected %u, got %u)\n", 685 sp->role.passthrough ? "passthrough" : "direct", 686 sp->gfn, kvm_mmu_page_get_access(sp, index), access); 687 688 WARN_ONCE(gfn != kvm_mmu_page_get_gfn(sp, index), 689 "gfn mismatch under %s page %llx (expected %llx, got %llx)\n", 690 sp->role.passthrough ? "passthrough" : "direct", 691 sp->gfn, kvm_mmu_page_get_gfn(sp, index), gfn); 692 } 693 694 static void kvm_mmu_page_set_access(struct kvm_mmu_page *sp, int index, 695 unsigned int access) 696 { 697 gfn_t gfn = kvm_mmu_page_get_gfn(sp, index); 698 699 kvm_mmu_page_set_translation(sp, index, gfn, access); 700 } 701 702 /* 703 * Return the pointer to the large page information for a given gfn, 704 * handling slots that are not large page aligned. 705 */ 706 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, 707 const struct kvm_memory_slot *slot, int level) 708 { 709 unsigned long idx; 710 711 idx = gfn_to_index(gfn, slot->base_gfn, level); 712 return &slot->arch.lpage_info[level - 2][idx]; 713 } 714 715 /* 716 * The most significant bit in disallow_lpage tracks whether or not memory 717 * attributes are mixed, i.e. not identical for all gfns at the current level. 718 * The lower order bits are used to refcount other cases where a hugepage is 719 * disallowed, e.g. if KVM has shadow a page table at the gfn. 720 */ 721 #define KVM_LPAGE_MIXED_FLAG BIT(31) 722 723 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot, 724 gfn_t gfn, int count) 725 { 726 struct kvm_lpage_info *linfo; 727 int old, i; 728 729 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 730 linfo = lpage_info_slot(gfn, slot, i); 731 732 old = linfo->disallow_lpage; 733 linfo->disallow_lpage += count; 734 WARN_ON_ONCE((old ^ linfo->disallow_lpage) & KVM_LPAGE_MIXED_FLAG); 735 } 736 } 737 738 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 739 { 740 update_gfn_disallow_lpage_count(slot, gfn, 1); 741 } 742 743 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 744 { 745 update_gfn_disallow_lpage_count(slot, gfn, -1); 746 } 747 748 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 749 { 750 struct kvm_memslots *slots; 751 struct kvm_memory_slot *slot; 752 gfn_t gfn; 753 754 kvm->arch.indirect_shadow_pages++; 755 /* 756 * Ensure indirect_shadow_pages is elevated prior to re-reading guest 757 * child PTEs in FNAME(gpte_changed), i.e. guarantee either in-flight 758 * emulated writes are visible before re-reading guest PTEs, or that 759 * an emulated write will see the elevated count and acquire mmu_lock 760 * to update SPTEs. Pairs with the smp_mb() in kvm_mmu_track_write(). 761 */ 762 smp_mb(); 763 764 gfn = sp->gfn; 765 slots = kvm_memslots_for_spte_role(kvm, sp->role); 766 slot = __gfn_to_memslot(slots, gfn); 767 768 /* the non-leaf shadow pages are keeping readonly. */ 769 if (sp->role.level > PG_LEVEL_4K) 770 return __kvm_write_track_add_gfn(kvm, slot, gfn); 771 772 kvm_mmu_gfn_disallow_lpage(slot, gfn); 773 774 if (kvm_mmu_slot_gfn_write_protect(kvm, slot, gfn, PG_LEVEL_4K)) 775 kvm_flush_remote_tlbs_gfn(kvm, gfn, PG_LEVEL_4K); 776 } 777 778 void track_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 779 { 780 /* 781 * If it's possible to replace the shadow page with an NX huge page, 782 * i.e. if the shadow page is the only thing currently preventing KVM 783 * from using a huge page, add the shadow page to the list of "to be 784 * zapped for NX recovery" pages. Note, the shadow page can already be 785 * on the list if KVM is reusing an existing shadow page, i.e. if KVM 786 * links a shadow page at multiple points. 787 */ 788 if (!list_empty(&sp->possible_nx_huge_page_link)) 789 return; 790 791 ++kvm->stat.nx_lpage_splits; 792 list_add_tail(&sp->possible_nx_huge_page_link, 793 &kvm->arch.possible_nx_huge_pages); 794 } 795 796 static void account_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp, 797 bool nx_huge_page_possible) 798 { 799 sp->nx_huge_page_disallowed = true; 800 801 if (nx_huge_page_possible) 802 track_possible_nx_huge_page(kvm, sp); 803 } 804 805 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 806 { 807 struct kvm_memslots *slots; 808 struct kvm_memory_slot *slot; 809 gfn_t gfn; 810 811 kvm->arch.indirect_shadow_pages--; 812 gfn = sp->gfn; 813 slots = kvm_memslots_for_spte_role(kvm, sp->role); 814 slot = __gfn_to_memslot(slots, gfn); 815 if (sp->role.level > PG_LEVEL_4K) 816 return __kvm_write_track_remove_gfn(kvm, slot, gfn); 817 818 kvm_mmu_gfn_allow_lpage(slot, gfn); 819 } 820 821 void untrack_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 822 { 823 if (list_empty(&sp->possible_nx_huge_page_link)) 824 return; 825 826 --kvm->stat.nx_lpage_splits; 827 list_del_init(&sp->possible_nx_huge_page_link); 828 } 829 830 static void unaccount_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 831 { 832 sp->nx_huge_page_disallowed = false; 833 834 untrack_possible_nx_huge_page(kvm, sp); 835 } 836 837 static struct kvm_memory_slot *gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, 838 gfn_t gfn, 839 bool no_dirty_log) 840 { 841 struct kvm_memory_slot *slot; 842 843 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 844 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 845 return NULL; 846 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot)) 847 return NULL; 848 849 return slot; 850 } 851 852 /* 853 * About rmap_head encoding: 854 * 855 * If the bit zero of rmap_head->val is clear, then it points to the only spte 856 * in this rmap chain. Otherwise, (rmap_head->val & ~3) points to a struct 857 * pte_list_desc containing more mappings. 858 */ 859 #define KVM_RMAP_MANY BIT(0) 860 861 /* 862 * rmaps and PTE lists are mostly protected by mmu_lock (the shadow MMU always 863 * operates with mmu_lock held for write), but rmaps can be walked without 864 * holding mmu_lock so long as the caller can tolerate SPTEs in the rmap chain 865 * being zapped/dropped _while the rmap is locked_. 866 * 867 * Other than the KVM_RMAP_LOCKED flag, modifications to rmap entries must be 868 * done while holding mmu_lock for write. This allows a task walking rmaps 869 * without holding mmu_lock to concurrently walk the same entries as a task 870 * that is holding mmu_lock but _not_ the rmap lock. Neither task will modify 871 * the rmaps, thus the walks are stable. 872 * 873 * As alluded to above, SPTEs in rmaps are _not_ protected by KVM_RMAP_LOCKED, 874 * only the rmap chains themselves are protected. E.g. holding an rmap's lock 875 * ensures all "struct pte_list_desc" fields are stable. 876 */ 877 #define KVM_RMAP_LOCKED BIT(1) 878 879 static unsigned long __kvm_rmap_lock(struct kvm_rmap_head *rmap_head) 880 { 881 unsigned long old_val, new_val; 882 883 lockdep_assert_preemption_disabled(); 884 885 /* 886 * Elide the lock if the rmap is empty, as lockless walkers (read-only 887 * mode) don't need to (and can't) walk an empty rmap, nor can they add 888 * entries to the rmap. I.e. the only paths that process empty rmaps 889 * do so while holding mmu_lock for write, and are mutually exclusive. 890 */ 891 old_val = atomic_long_read(&rmap_head->val); 892 if (!old_val) 893 return 0; 894 895 do { 896 /* 897 * If the rmap is locked, wait for it to be unlocked before 898 * trying acquire the lock, e.g. to avoid bouncing the cache 899 * line. 900 */ 901 while (old_val & KVM_RMAP_LOCKED) { 902 cpu_relax(); 903 old_val = atomic_long_read(&rmap_head->val); 904 } 905 906 /* 907 * Recheck for an empty rmap, it may have been purged by the 908 * task that held the lock. 909 */ 910 if (!old_val) 911 return 0; 912 913 new_val = old_val | KVM_RMAP_LOCKED; 914 /* 915 * Use try_cmpxchg_acquire() to prevent reads and writes to the rmap 916 * from being reordered outside of the critical section created by 917 * __kvm_rmap_lock(). 918 * 919 * Pairs with the atomic_long_set_release() in kvm_rmap_unlock(). 920 * 921 * For the !old_val case, no ordering is needed, as there is no rmap 922 * to walk. 923 */ 924 } while (!atomic_long_try_cmpxchg_acquire(&rmap_head->val, &old_val, new_val)); 925 926 /* 927 * Return the old value, i.e. _without_ the LOCKED bit set. It's 928 * impossible for the return value to be 0 (see above), i.e. the read- 929 * only unlock flow can't get a false positive and fail to unlock. 930 */ 931 return old_val; 932 } 933 934 static unsigned long kvm_rmap_lock(struct kvm *kvm, 935 struct kvm_rmap_head *rmap_head) 936 { 937 lockdep_assert_held_write(&kvm->mmu_lock); 938 939 return __kvm_rmap_lock(rmap_head); 940 } 941 942 static void __kvm_rmap_unlock(struct kvm_rmap_head *rmap_head, 943 unsigned long val) 944 { 945 KVM_MMU_WARN_ON(val & KVM_RMAP_LOCKED); 946 /* 947 * Ensure that all accesses to the rmap have completed before unlocking 948 * the rmap. 949 * 950 * Pairs with the atomic_long_try_cmpxchg_acquire() in __kvm_rmap_lock(). 951 */ 952 atomic_long_set_release(&rmap_head->val, val); 953 } 954 955 static void kvm_rmap_unlock(struct kvm *kvm, 956 struct kvm_rmap_head *rmap_head, 957 unsigned long new_val) 958 { 959 lockdep_assert_held_write(&kvm->mmu_lock); 960 961 __kvm_rmap_unlock(rmap_head, new_val); 962 } 963 964 static unsigned long kvm_rmap_get(struct kvm_rmap_head *rmap_head) 965 { 966 return atomic_long_read(&rmap_head->val) & ~KVM_RMAP_LOCKED; 967 } 968 969 /* 970 * If mmu_lock isn't held, rmaps can only be locked in read-only mode. The 971 * actual locking is the same, but the caller is disallowed from modifying the 972 * rmap, and so the unlock flow is a nop if the rmap is/was empty. 973 */ 974 static unsigned long kvm_rmap_lock_readonly(struct kvm_rmap_head *rmap_head) 975 { 976 unsigned long rmap_val; 977 978 preempt_disable(); 979 rmap_val = __kvm_rmap_lock(rmap_head); 980 981 if (!rmap_val) 982 preempt_enable(); 983 984 return rmap_val; 985 } 986 987 static void kvm_rmap_unlock_readonly(struct kvm_rmap_head *rmap_head, 988 unsigned long old_val) 989 { 990 if (!old_val) 991 return; 992 993 KVM_MMU_WARN_ON(old_val != kvm_rmap_get(rmap_head)); 994 995 __kvm_rmap_unlock(rmap_head, old_val); 996 preempt_enable(); 997 } 998 999 /* 1000 * Returns the number of pointers in the rmap chain, not counting the new one. 1001 */ 1002 static int pte_list_add(struct kvm *kvm, struct kvm_mmu_memory_cache *cache, 1003 u64 *spte, struct kvm_rmap_head *rmap_head) 1004 { 1005 unsigned long old_val, new_val; 1006 struct pte_list_desc *desc; 1007 int count = 0; 1008 1009 old_val = kvm_rmap_lock(kvm, rmap_head); 1010 1011 if (!old_val) { 1012 new_val = (unsigned long)spte; 1013 } else if (!(old_val & KVM_RMAP_MANY)) { 1014 desc = kvm_mmu_memory_cache_alloc(cache); 1015 desc->sptes[0] = (u64 *)old_val; 1016 desc->sptes[1] = spte; 1017 desc->spte_count = 2; 1018 desc->tail_count = 0; 1019 new_val = (unsigned long)desc | KVM_RMAP_MANY; 1020 ++count; 1021 } else { 1022 desc = (struct pte_list_desc *)(old_val & ~KVM_RMAP_MANY); 1023 count = desc->tail_count + desc->spte_count; 1024 1025 /* 1026 * If the previous head is full, allocate a new head descriptor 1027 * as tail descriptors are always kept full. 1028 */ 1029 if (desc->spte_count == PTE_LIST_EXT) { 1030 desc = kvm_mmu_memory_cache_alloc(cache); 1031 desc->more = (struct pte_list_desc *)(old_val & ~KVM_RMAP_MANY); 1032 desc->spte_count = 0; 1033 desc->tail_count = count; 1034 new_val = (unsigned long)desc | KVM_RMAP_MANY; 1035 } else { 1036 new_val = old_val; 1037 } 1038 desc->sptes[desc->spte_count++] = spte; 1039 } 1040 1041 kvm_rmap_unlock(kvm, rmap_head, new_val); 1042 1043 return count; 1044 } 1045 1046 static void pte_list_desc_remove_entry(struct kvm *kvm, unsigned long *rmap_val, 1047 struct pte_list_desc *desc, int i) 1048 { 1049 struct pte_list_desc *head_desc = (struct pte_list_desc *)(*rmap_val & ~KVM_RMAP_MANY); 1050 int j = head_desc->spte_count - 1; 1051 1052 /* 1053 * The head descriptor should never be empty. A new head is added only 1054 * when adding an entry and the previous head is full, and heads are 1055 * removed (this flow) when they become empty. 1056 */ 1057 KVM_BUG_ON_DATA_CORRUPTION(j < 0, kvm); 1058 1059 /* 1060 * Replace the to-be-freed SPTE with the last valid entry from the head 1061 * descriptor to ensure that tail descriptors are full at all times. 1062 * Note, this also means that tail_count is stable for each descriptor. 1063 */ 1064 desc->sptes[i] = head_desc->sptes[j]; 1065 head_desc->sptes[j] = NULL; 1066 head_desc->spte_count--; 1067 if (head_desc->spte_count) 1068 return; 1069 1070 /* 1071 * The head descriptor is empty. If there are no tail descriptors, 1072 * nullify the rmap head to mark the list as empty, else point the rmap 1073 * head at the next descriptor, i.e. the new head. 1074 */ 1075 if (!head_desc->more) 1076 *rmap_val = 0; 1077 else 1078 *rmap_val = (unsigned long)head_desc->more | KVM_RMAP_MANY; 1079 mmu_free_pte_list_desc(head_desc); 1080 } 1081 1082 static void pte_list_remove(struct kvm *kvm, u64 *spte, 1083 struct kvm_rmap_head *rmap_head) 1084 { 1085 struct pte_list_desc *desc; 1086 unsigned long rmap_val; 1087 int i; 1088 1089 rmap_val = kvm_rmap_lock(kvm, rmap_head); 1090 if (KVM_BUG_ON_DATA_CORRUPTION(!rmap_val, kvm)) 1091 goto out; 1092 1093 if (!(rmap_val & KVM_RMAP_MANY)) { 1094 if (KVM_BUG_ON_DATA_CORRUPTION((u64 *)rmap_val != spte, kvm)) 1095 goto out; 1096 1097 rmap_val = 0; 1098 } else { 1099 desc = (struct pte_list_desc *)(rmap_val & ~KVM_RMAP_MANY); 1100 while (desc) { 1101 for (i = 0; i < desc->spte_count; ++i) { 1102 if (desc->sptes[i] == spte) { 1103 pte_list_desc_remove_entry(kvm, &rmap_val, 1104 desc, i); 1105 goto out; 1106 } 1107 } 1108 desc = desc->more; 1109 } 1110 1111 KVM_BUG_ON_DATA_CORRUPTION(true, kvm); 1112 } 1113 1114 out: 1115 kvm_rmap_unlock(kvm, rmap_head, rmap_val); 1116 } 1117 1118 static void kvm_zap_one_rmap_spte(struct kvm *kvm, 1119 struct kvm_rmap_head *rmap_head, u64 *sptep) 1120 { 1121 mmu_spte_clear_track_bits(kvm, sptep); 1122 pte_list_remove(kvm, sptep, rmap_head); 1123 } 1124 1125 /* Return true if at least one SPTE was zapped, false otherwise */ 1126 static bool kvm_zap_all_rmap_sptes(struct kvm *kvm, 1127 struct kvm_rmap_head *rmap_head) 1128 { 1129 struct pte_list_desc *desc, *next; 1130 unsigned long rmap_val; 1131 int i; 1132 1133 rmap_val = kvm_rmap_lock(kvm, rmap_head); 1134 if (!rmap_val) 1135 return false; 1136 1137 if (!(rmap_val & KVM_RMAP_MANY)) { 1138 mmu_spte_clear_track_bits(kvm, (u64 *)rmap_val); 1139 goto out; 1140 } 1141 1142 desc = (struct pte_list_desc *)(rmap_val & ~KVM_RMAP_MANY); 1143 1144 for (; desc; desc = next) { 1145 for (i = 0; i < desc->spte_count; i++) 1146 mmu_spte_clear_track_bits(kvm, desc->sptes[i]); 1147 next = desc->more; 1148 mmu_free_pte_list_desc(desc); 1149 } 1150 out: 1151 /* rmap_head is meaningless now, remember to reset it */ 1152 kvm_rmap_unlock(kvm, rmap_head, 0); 1153 return true; 1154 } 1155 1156 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head) 1157 { 1158 unsigned long rmap_val = kvm_rmap_get(rmap_head); 1159 struct pte_list_desc *desc; 1160 1161 if (!rmap_val) 1162 return 0; 1163 else if (!(rmap_val & KVM_RMAP_MANY)) 1164 return 1; 1165 1166 desc = (struct pte_list_desc *)(rmap_val & ~KVM_RMAP_MANY); 1167 return desc->tail_count + desc->spte_count; 1168 } 1169 1170 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level, 1171 const struct kvm_memory_slot *slot) 1172 { 1173 unsigned long idx; 1174 1175 idx = gfn_to_index(gfn, slot->base_gfn, level); 1176 return &slot->arch.rmap[level - PG_LEVEL_4K][idx]; 1177 } 1178 1179 static void rmap_remove(struct kvm *kvm, u64 *spte) 1180 { 1181 struct kvm_memslots *slots; 1182 struct kvm_memory_slot *slot; 1183 struct kvm_mmu_page *sp; 1184 gfn_t gfn; 1185 struct kvm_rmap_head *rmap_head; 1186 1187 sp = sptep_to_sp(spte); 1188 gfn = kvm_mmu_page_get_gfn(sp, spte_index(spte)); 1189 1190 /* 1191 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU 1192 * so we have to determine which memslots to use based on context 1193 * information in sp->role. 1194 */ 1195 slots = kvm_memslots_for_spte_role(kvm, sp->role); 1196 1197 slot = __gfn_to_memslot(slots, gfn); 1198 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1199 1200 pte_list_remove(kvm, spte, rmap_head); 1201 } 1202 1203 /* 1204 * Used by the following functions to iterate through the sptes linked by a 1205 * rmap. All fields are private and not assumed to be used outside. 1206 */ 1207 struct rmap_iterator { 1208 /* private fields */ 1209 struct rmap_head *head; 1210 struct pte_list_desc *desc; /* holds the sptep if not NULL */ 1211 int pos; /* index of the sptep */ 1212 }; 1213 1214 /* 1215 * Iteration must be started by this function. This should also be used after 1216 * removing/dropping sptes from the rmap link because in such cases the 1217 * information in the iterator may not be valid. 1218 * 1219 * Returns sptep if found, NULL otherwise. 1220 */ 1221 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head, 1222 struct rmap_iterator *iter) 1223 { 1224 unsigned long rmap_val = kvm_rmap_get(rmap_head); 1225 1226 if (!rmap_val) 1227 return NULL; 1228 1229 if (!(rmap_val & KVM_RMAP_MANY)) { 1230 iter->desc = NULL; 1231 return (u64 *)rmap_val; 1232 } 1233 1234 iter->desc = (struct pte_list_desc *)(rmap_val & ~KVM_RMAP_MANY); 1235 iter->pos = 0; 1236 return iter->desc->sptes[iter->pos]; 1237 } 1238 1239 /* 1240 * Must be used with a valid iterator: e.g. after rmap_get_first(). 1241 * 1242 * Returns sptep if found, NULL otherwise. 1243 */ 1244 static u64 *rmap_get_next(struct rmap_iterator *iter) 1245 { 1246 if (iter->desc) { 1247 if (iter->pos < PTE_LIST_EXT - 1) { 1248 ++iter->pos; 1249 if (iter->desc->sptes[iter->pos]) 1250 return iter->desc->sptes[iter->pos]; 1251 } 1252 1253 iter->desc = iter->desc->more; 1254 1255 if (iter->desc) { 1256 iter->pos = 0; 1257 /* desc->sptes[0] cannot be NULL */ 1258 return iter->desc->sptes[iter->pos]; 1259 } 1260 } 1261 1262 return NULL; 1263 } 1264 1265 #define __for_each_rmap_spte(_rmap_head_, _iter_, _sptep_) \ 1266 for (_sptep_ = rmap_get_first(_rmap_head_, _iter_); \ 1267 _sptep_; _sptep_ = rmap_get_next(_iter_)) 1268 1269 #define for_each_rmap_spte(_rmap_head_, _iter_, _sptep_) \ 1270 __for_each_rmap_spte(_rmap_head_, _iter_, _sptep_) \ 1271 if (!WARN_ON_ONCE(!is_shadow_present_pte(*(_sptep_)))) \ 1272 1273 #define for_each_rmap_spte_lockless(_rmap_head_, _iter_, _sptep_, _spte_) \ 1274 __for_each_rmap_spte(_rmap_head_, _iter_, _sptep_) \ 1275 if (is_shadow_present_pte(_spte_ = mmu_spte_get_lockless(sptep))) 1276 1277 static void drop_spte(struct kvm *kvm, u64 *sptep) 1278 { 1279 u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep); 1280 1281 if (is_shadow_present_pte(old_spte)) 1282 rmap_remove(kvm, sptep); 1283 } 1284 1285 static void drop_large_spte(struct kvm *kvm, u64 *sptep, bool flush) 1286 { 1287 struct kvm_mmu_page *sp; 1288 1289 sp = sptep_to_sp(sptep); 1290 WARN_ON_ONCE(sp->role.level == PG_LEVEL_4K); 1291 1292 drop_spte(kvm, sptep); 1293 1294 if (flush) 1295 kvm_flush_remote_tlbs_sptep(kvm, sptep); 1296 } 1297 1298 /* 1299 * Write-protect on the specified @sptep, @pt_protect indicates whether 1300 * spte write-protection is caused by protecting shadow page table. 1301 * 1302 * Note: write protection is difference between dirty logging and spte 1303 * protection: 1304 * - for dirty logging, the spte can be set to writable at anytime if 1305 * its dirty bitmap is properly set. 1306 * - for spte protection, the spte can be writable only after unsync-ing 1307 * shadow page. 1308 * 1309 * Return true if tlb need be flushed. 1310 */ 1311 static bool spte_write_protect(u64 *sptep, bool pt_protect) 1312 { 1313 u64 spte = *sptep; 1314 1315 if (!is_writable_pte(spte) && 1316 !(pt_protect && is_mmu_writable_spte(spte))) 1317 return false; 1318 1319 if (pt_protect) 1320 spte &= ~shadow_mmu_writable_mask; 1321 spte = spte & ~PT_WRITABLE_MASK; 1322 1323 return mmu_spte_update(sptep, spte); 1324 } 1325 1326 static bool rmap_write_protect(struct kvm_rmap_head *rmap_head, 1327 bool pt_protect) 1328 { 1329 u64 *sptep; 1330 struct rmap_iterator iter; 1331 bool flush = false; 1332 1333 for_each_rmap_spte(rmap_head, &iter, sptep) 1334 flush |= spte_write_protect(sptep, pt_protect); 1335 1336 return flush; 1337 } 1338 1339 static bool spte_clear_dirty(u64 *sptep) 1340 { 1341 u64 spte = *sptep; 1342 1343 KVM_MMU_WARN_ON(!spte_ad_enabled(spte)); 1344 spte &= ~shadow_dirty_mask; 1345 return mmu_spte_update(sptep, spte); 1346 } 1347 1348 /* 1349 * Gets the GFN ready for another round of dirty logging by clearing the 1350 * - D bit on ad-enabled SPTEs, and 1351 * - W bit on ad-disabled SPTEs. 1352 * Returns true iff any D or W bits were cleared. 1353 */ 1354 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1355 const struct kvm_memory_slot *slot) 1356 { 1357 u64 *sptep; 1358 struct rmap_iterator iter; 1359 bool flush = false; 1360 1361 for_each_rmap_spte(rmap_head, &iter, sptep) { 1362 if (spte_ad_need_write_protect(*sptep)) 1363 flush |= test_and_clear_bit(PT_WRITABLE_SHIFT, 1364 (unsigned long *)sptep); 1365 else 1366 flush |= spte_clear_dirty(sptep); 1367 } 1368 1369 return flush; 1370 } 1371 1372 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 1373 struct kvm_memory_slot *slot, 1374 gfn_t gfn_offset, unsigned long mask) 1375 { 1376 struct kvm_rmap_head *rmap_head; 1377 1378 if (tdp_mmu_enabled) 1379 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1380 slot->base_gfn + gfn_offset, mask, true); 1381 1382 if (!kvm_memslots_have_rmaps(kvm)) 1383 return; 1384 1385 while (mask) { 1386 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1387 PG_LEVEL_4K, slot); 1388 rmap_write_protect(rmap_head, false); 1389 1390 /* clear the first set bit */ 1391 mask &= mask - 1; 1392 } 1393 } 1394 1395 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1396 struct kvm_memory_slot *slot, 1397 gfn_t gfn_offset, unsigned long mask) 1398 { 1399 struct kvm_rmap_head *rmap_head; 1400 1401 if (tdp_mmu_enabled) 1402 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1403 slot->base_gfn + gfn_offset, mask, false); 1404 1405 if (!kvm_memslots_have_rmaps(kvm)) 1406 return; 1407 1408 while (mask) { 1409 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1410 PG_LEVEL_4K, slot); 1411 __rmap_clear_dirty(kvm, rmap_head, slot); 1412 1413 /* clear the first set bit */ 1414 mask &= mask - 1; 1415 } 1416 } 1417 1418 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1419 struct kvm_memory_slot *slot, 1420 gfn_t gfn_offset, unsigned long mask) 1421 { 1422 /* 1423 * If the slot was assumed to be "initially all dirty", write-protect 1424 * huge pages to ensure they are split to 4KiB on the first write (KVM 1425 * dirty logs at 4KiB granularity). If eager page splitting is enabled, 1426 * immediately try to split huge pages, e.g. so that vCPUs don't get 1427 * saddled with the cost of splitting. 1428 * 1429 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn 1430 * of memslot has no such restriction, so the range can cross two large 1431 * pages. 1432 */ 1433 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) { 1434 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask); 1435 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask); 1436 1437 if (READ_ONCE(eager_page_split)) 1438 kvm_mmu_try_split_huge_pages(kvm, slot, start, end + 1, PG_LEVEL_4K); 1439 1440 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M); 1441 1442 /* Cross two large pages? */ 1443 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) != 1444 ALIGN(end << PAGE_SHIFT, PMD_SIZE)) 1445 kvm_mmu_slot_gfn_write_protect(kvm, slot, end, 1446 PG_LEVEL_2M); 1447 } 1448 1449 /* 1450 * (Re)Enable dirty logging for all 4KiB SPTEs that map the GFNs in 1451 * mask. If PML is enabled and the GFN doesn't need to be write- 1452 * protected for other reasons, e.g. shadow paging, clear the Dirty bit. 1453 * Otherwise clear the Writable bit. 1454 * 1455 * Note that kvm_mmu_clear_dirty_pt_masked() is called whenever PML is 1456 * enabled but it chooses between clearing the Dirty bit and Writeable 1457 * bit based on the context. 1458 */ 1459 if (kvm_x86_ops.cpu_dirty_log_size) 1460 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask); 1461 else 1462 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 1463 } 1464 1465 int kvm_cpu_dirty_log_size(void) 1466 { 1467 return kvm_x86_ops.cpu_dirty_log_size; 1468 } 1469 1470 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, 1471 struct kvm_memory_slot *slot, u64 gfn, 1472 int min_level) 1473 { 1474 struct kvm_rmap_head *rmap_head; 1475 int i; 1476 bool write_protected = false; 1477 1478 if (kvm_memslots_have_rmaps(kvm)) { 1479 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 1480 rmap_head = gfn_to_rmap(gfn, i, slot); 1481 write_protected |= rmap_write_protect(rmap_head, true); 1482 } 1483 } 1484 1485 if (tdp_mmu_enabled) 1486 write_protected |= 1487 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level); 1488 1489 return write_protected; 1490 } 1491 1492 static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn) 1493 { 1494 struct kvm_memory_slot *slot; 1495 1496 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1497 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K); 1498 } 1499 1500 static bool kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1501 const struct kvm_memory_slot *slot) 1502 { 1503 return kvm_zap_all_rmap_sptes(kvm, rmap_head); 1504 } 1505 1506 struct slot_rmap_walk_iterator { 1507 /* input fields. */ 1508 const struct kvm_memory_slot *slot; 1509 gfn_t start_gfn; 1510 gfn_t end_gfn; 1511 int start_level; 1512 int end_level; 1513 1514 /* output fields. */ 1515 gfn_t gfn; 1516 struct kvm_rmap_head *rmap; 1517 int level; 1518 1519 /* private field. */ 1520 struct kvm_rmap_head *end_rmap; 1521 }; 1522 1523 static void rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, 1524 int level) 1525 { 1526 iterator->level = level; 1527 iterator->gfn = iterator->start_gfn; 1528 iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot); 1529 iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot); 1530 } 1531 1532 static void slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator, 1533 const struct kvm_memory_slot *slot, 1534 int start_level, int end_level, 1535 gfn_t start_gfn, gfn_t end_gfn) 1536 { 1537 iterator->slot = slot; 1538 iterator->start_level = start_level; 1539 iterator->end_level = end_level; 1540 iterator->start_gfn = start_gfn; 1541 iterator->end_gfn = end_gfn; 1542 1543 rmap_walk_init_level(iterator, iterator->start_level); 1544 } 1545 1546 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator) 1547 { 1548 return !!iterator->rmap; 1549 } 1550 1551 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) 1552 { 1553 while (++iterator->rmap <= iterator->end_rmap) { 1554 iterator->gfn += KVM_PAGES_PER_HPAGE(iterator->level); 1555 1556 if (atomic_long_read(&iterator->rmap->val)) 1557 return; 1558 } 1559 1560 if (++iterator->level > iterator->end_level) { 1561 iterator->rmap = NULL; 1562 return; 1563 } 1564 1565 rmap_walk_init_level(iterator, iterator->level); 1566 } 1567 1568 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \ 1569 _start_gfn, _end_gfn, _iter_) \ 1570 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \ 1571 _end_level_, _start_gfn, _end_gfn); \ 1572 slot_rmap_walk_okay(_iter_); \ 1573 slot_rmap_walk_next(_iter_)) 1574 1575 /* The return value indicates if tlb flush on all vcpus is needed. */ 1576 typedef bool (*slot_rmaps_handler) (struct kvm *kvm, 1577 struct kvm_rmap_head *rmap_head, 1578 const struct kvm_memory_slot *slot); 1579 1580 static __always_inline bool __walk_slot_rmaps(struct kvm *kvm, 1581 const struct kvm_memory_slot *slot, 1582 slot_rmaps_handler fn, 1583 int start_level, int end_level, 1584 gfn_t start_gfn, gfn_t end_gfn, 1585 bool can_yield, bool flush_on_yield, 1586 bool flush) 1587 { 1588 struct slot_rmap_walk_iterator iterator; 1589 1590 lockdep_assert_held_write(&kvm->mmu_lock); 1591 1592 for_each_slot_rmap_range(slot, start_level, end_level, start_gfn, 1593 end_gfn, &iterator) { 1594 if (iterator.rmap) 1595 flush |= fn(kvm, iterator.rmap, slot); 1596 1597 if (!can_yield) 1598 continue; 1599 1600 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 1601 if (flush && flush_on_yield) { 1602 kvm_flush_remote_tlbs_range(kvm, start_gfn, 1603 iterator.gfn - start_gfn + 1); 1604 flush = false; 1605 } 1606 cond_resched_rwlock_write(&kvm->mmu_lock); 1607 } 1608 } 1609 1610 return flush; 1611 } 1612 1613 static __always_inline bool walk_slot_rmaps(struct kvm *kvm, 1614 const struct kvm_memory_slot *slot, 1615 slot_rmaps_handler fn, 1616 int start_level, int end_level, 1617 bool flush_on_yield) 1618 { 1619 return __walk_slot_rmaps(kvm, slot, fn, start_level, end_level, 1620 slot->base_gfn, slot->base_gfn + slot->npages - 1, 1621 true, flush_on_yield, false); 1622 } 1623 1624 static __always_inline bool walk_slot_rmaps_4k(struct kvm *kvm, 1625 const struct kvm_memory_slot *slot, 1626 slot_rmaps_handler fn, 1627 bool flush_on_yield) 1628 { 1629 return walk_slot_rmaps(kvm, slot, fn, PG_LEVEL_4K, PG_LEVEL_4K, flush_on_yield); 1630 } 1631 1632 static bool __kvm_rmap_zap_gfn_range(struct kvm *kvm, 1633 const struct kvm_memory_slot *slot, 1634 gfn_t start, gfn_t end, bool can_yield, 1635 bool flush) 1636 { 1637 return __walk_slot_rmaps(kvm, slot, kvm_zap_rmap, 1638 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 1639 start, end - 1, can_yield, true, flush); 1640 } 1641 1642 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1643 { 1644 bool flush = false; 1645 1646 /* 1647 * To prevent races with vCPUs faulting in a gfn using stale data, 1648 * zapping a gfn range must be protected by mmu_invalidate_in_progress 1649 * (and mmu_invalidate_seq). The only exception is memslot deletion; 1650 * in that case, SRCU synchronization ensures that SPTEs are zapped 1651 * after all vCPUs have unlocked SRCU, guaranteeing that vCPUs see the 1652 * invalid slot. 1653 */ 1654 lockdep_assert_once(kvm->mmu_invalidate_in_progress || 1655 lockdep_is_held(&kvm->slots_lock)); 1656 1657 if (kvm_memslots_have_rmaps(kvm)) 1658 flush = __kvm_rmap_zap_gfn_range(kvm, range->slot, 1659 range->start, range->end, 1660 range->may_block, flush); 1661 1662 if (tdp_mmu_enabled) 1663 flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush); 1664 1665 if (kvm_x86_ops.set_apic_access_page_addr && 1666 range->slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT) 1667 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 1668 1669 return flush; 1670 } 1671 1672 #define RMAP_RECYCLE_THRESHOLD 1000 1673 1674 static void __rmap_add(struct kvm *kvm, 1675 struct kvm_mmu_memory_cache *cache, 1676 const struct kvm_memory_slot *slot, 1677 u64 *spte, gfn_t gfn, unsigned int access) 1678 { 1679 struct kvm_mmu_page *sp; 1680 struct kvm_rmap_head *rmap_head; 1681 int rmap_count; 1682 1683 sp = sptep_to_sp(spte); 1684 kvm_mmu_page_set_translation(sp, spte_index(spte), gfn, access); 1685 kvm_update_page_stats(kvm, sp->role.level, 1); 1686 1687 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1688 rmap_count = pte_list_add(kvm, cache, spte, rmap_head); 1689 1690 if (rmap_count > kvm->stat.max_mmu_rmap_size) 1691 kvm->stat.max_mmu_rmap_size = rmap_count; 1692 if (rmap_count > RMAP_RECYCLE_THRESHOLD) { 1693 kvm_zap_all_rmap_sptes(kvm, rmap_head); 1694 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level); 1695 } 1696 } 1697 1698 static void rmap_add(struct kvm_vcpu *vcpu, const struct kvm_memory_slot *slot, 1699 u64 *spte, gfn_t gfn, unsigned int access) 1700 { 1701 struct kvm_mmu_memory_cache *cache = &vcpu->arch.mmu_pte_list_desc_cache; 1702 1703 __rmap_add(vcpu->kvm, cache, slot, spte, gfn, access); 1704 } 1705 1706 static bool kvm_rmap_age_gfn_range(struct kvm *kvm, 1707 struct kvm_gfn_range *range, 1708 bool test_only) 1709 { 1710 struct kvm_rmap_head *rmap_head; 1711 struct rmap_iterator iter; 1712 unsigned long rmap_val; 1713 bool young = false; 1714 u64 *sptep; 1715 gfn_t gfn; 1716 int level; 1717 u64 spte; 1718 1719 for (level = PG_LEVEL_4K; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) { 1720 for (gfn = range->start; gfn < range->end; 1721 gfn += KVM_PAGES_PER_HPAGE(level)) { 1722 rmap_head = gfn_to_rmap(gfn, level, range->slot); 1723 rmap_val = kvm_rmap_lock_readonly(rmap_head); 1724 1725 for_each_rmap_spte_lockless(rmap_head, &iter, sptep, spte) { 1726 if (!is_accessed_spte(spte)) 1727 continue; 1728 1729 if (test_only) { 1730 kvm_rmap_unlock_readonly(rmap_head, rmap_val); 1731 return true; 1732 } 1733 1734 if (spte_ad_enabled(spte)) 1735 clear_bit((ffs(shadow_accessed_mask) - 1), 1736 (unsigned long *)sptep); 1737 else 1738 /* 1739 * If the following cmpxchg fails, the 1740 * spte is being concurrently modified 1741 * and should most likely stay young. 1742 */ 1743 cmpxchg64(sptep, spte, 1744 mark_spte_for_access_track(spte)); 1745 young = true; 1746 } 1747 1748 kvm_rmap_unlock_readonly(rmap_head, rmap_val); 1749 } 1750 } 1751 return young; 1752 } 1753 1754 static bool kvm_may_have_shadow_mmu_sptes(struct kvm *kvm) 1755 { 1756 return !tdp_mmu_enabled || READ_ONCE(kvm->arch.indirect_shadow_pages); 1757 } 1758 1759 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1760 { 1761 bool young = false; 1762 1763 if (tdp_mmu_enabled) 1764 young = kvm_tdp_mmu_age_gfn_range(kvm, range); 1765 1766 if (kvm_may_have_shadow_mmu_sptes(kvm)) 1767 young |= kvm_rmap_age_gfn_range(kvm, range, false); 1768 1769 return young; 1770 } 1771 1772 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1773 { 1774 bool young = false; 1775 1776 if (tdp_mmu_enabled) 1777 young = kvm_tdp_mmu_test_age_gfn(kvm, range); 1778 1779 if (young) 1780 return young; 1781 1782 if (kvm_may_have_shadow_mmu_sptes(kvm)) 1783 young |= kvm_rmap_age_gfn_range(kvm, range, true); 1784 1785 return young; 1786 } 1787 1788 static void kvm_mmu_check_sptes_at_free(struct kvm_mmu_page *sp) 1789 { 1790 #ifdef CONFIG_KVM_PROVE_MMU 1791 int i; 1792 1793 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) { 1794 if (KVM_MMU_WARN_ON(is_shadow_present_pte(sp->spt[i]))) 1795 pr_err_ratelimited("SPTE %llx (@ %p) for gfn %llx shadow-present at free", 1796 sp->spt[i], &sp->spt[i], 1797 kvm_mmu_page_get_gfn(sp, i)); 1798 } 1799 #endif 1800 } 1801 1802 static void kvm_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1803 { 1804 kvm->arch.n_used_mmu_pages++; 1805 kvm_account_pgtable_pages((void *)sp->spt, +1); 1806 } 1807 1808 static void kvm_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1809 { 1810 kvm->arch.n_used_mmu_pages--; 1811 kvm_account_pgtable_pages((void *)sp->spt, -1); 1812 } 1813 1814 static void kvm_mmu_free_shadow_page(struct kvm_mmu_page *sp) 1815 { 1816 kvm_mmu_check_sptes_at_free(sp); 1817 1818 hlist_del(&sp->hash_link); 1819 list_del(&sp->link); 1820 free_page((unsigned long)sp->spt); 1821 free_page((unsigned long)sp->shadowed_translation); 1822 kmem_cache_free(mmu_page_header_cache, sp); 1823 } 1824 1825 static unsigned kvm_page_table_hashfn(gfn_t gfn) 1826 { 1827 return hash_64(gfn, KVM_MMU_HASH_SHIFT); 1828 } 1829 1830 static void mmu_page_add_parent_pte(struct kvm *kvm, 1831 struct kvm_mmu_memory_cache *cache, 1832 struct kvm_mmu_page *sp, u64 *parent_pte) 1833 { 1834 if (!parent_pte) 1835 return; 1836 1837 pte_list_add(kvm, cache, parent_pte, &sp->parent_ptes); 1838 } 1839 1840 static void mmu_page_remove_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 1841 u64 *parent_pte) 1842 { 1843 pte_list_remove(kvm, parent_pte, &sp->parent_ptes); 1844 } 1845 1846 static void drop_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 1847 u64 *parent_pte) 1848 { 1849 mmu_page_remove_parent_pte(kvm, sp, parent_pte); 1850 mmu_spte_clear_no_track(parent_pte); 1851 } 1852 1853 static void mark_unsync(u64 *spte); 1854 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) 1855 { 1856 u64 *sptep; 1857 struct rmap_iterator iter; 1858 1859 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) { 1860 mark_unsync(sptep); 1861 } 1862 } 1863 1864 static void mark_unsync(u64 *spte) 1865 { 1866 struct kvm_mmu_page *sp; 1867 1868 sp = sptep_to_sp(spte); 1869 if (__test_and_set_bit(spte_index(spte), sp->unsync_child_bitmap)) 1870 return; 1871 if (sp->unsync_children++) 1872 return; 1873 kvm_mmu_mark_parents_unsync(sp); 1874 } 1875 1876 #define KVM_PAGE_ARRAY_NR 16 1877 1878 struct kvm_mmu_pages { 1879 struct mmu_page_and_offset { 1880 struct kvm_mmu_page *sp; 1881 unsigned int idx; 1882 } page[KVM_PAGE_ARRAY_NR]; 1883 unsigned int nr; 1884 }; 1885 1886 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, 1887 int idx) 1888 { 1889 int i; 1890 1891 if (sp->unsync) 1892 for (i=0; i < pvec->nr; i++) 1893 if (pvec->page[i].sp == sp) 1894 return 0; 1895 1896 pvec->page[pvec->nr].sp = sp; 1897 pvec->page[pvec->nr].idx = idx; 1898 pvec->nr++; 1899 return (pvec->nr == KVM_PAGE_ARRAY_NR); 1900 } 1901 1902 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx) 1903 { 1904 --sp->unsync_children; 1905 WARN_ON_ONCE((int)sp->unsync_children < 0); 1906 __clear_bit(idx, sp->unsync_child_bitmap); 1907 } 1908 1909 static int __mmu_unsync_walk(struct kvm_mmu_page *sp, 1910 struct kvm_mmu_pages *pvec) 1911 { 1912 int i, ret, nr_unsync_leaf = 0; 1913 1914 for_each_set_bit(i, sp->unsync_child_bitmap, 512) { 1915 struct kvm_mmu_page *child; 1916 u64 ent = sp->spt[i]; 1917 1918 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) { 1919 clear_unsync_child_bit(sp, i); 1920 continue; 1921 } 1922 1923 child = spte_to_child_sp(ent); 1924 1925 if (child->unsync_children) { 1926 if (mmu_pages_add(pvec, child, i)) 1927 return -ENOSPC; 1928 1929 ret = __mmu_unsync_walk(child, pvec); 1930 if (!ret) { 1931 clear_unsync_child_bit(sp, i); 1932 continue; 1933 } else if (ret > 0) { 1934 nr_unsync_leaf += ret; 1935 } else 1936 return ret; 1937 } else if (child->unsync) { 1938 nr_unsync_leaf++; 1939 if (mmu_pages_add(pvec, child, i)) 1940 return -ENOSPC; 1941 } else 1942 clear_unsync_child_bit(sp, i); 1943 } 1944 1945 return nr_unsync_leaf; 1946 } 1947 1948 #define INVALID_INDEX (-1) 1949 1950 static int mmu_unsync_walk(struct kvm_mmu_page *sp, 1951 struct kvm_mmu_pages *pvec) 1952 { 1953 pvec->nr = 0; 1954 if (!sp->unsync_children) 1955 return 0; 1956 1957 mmu_pages_add(pvec, sp, INVALID_INDEX); 1958 return __mmu_unsync_walk(sp, pvec); 1959 } 1960 1961 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1962 { 1963 WARN_ON_ONCE(!sp->unsync); 1964 trace_kvm_mmu_sync_page(sp); 1965 sp->unsync = 0; 1966 --kvm->stat.mmu_unsync; 1967 } 1968 1969 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 1970 struct list_head *invalid_list); 1971 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 1972 struct list_head *invalid_list); 1973 1974 static bool sp_has_gptes(struct kvm_mmu_page *sp) 1975 { 1976 if (sp->role.direct) 1977 return false; 1978 1979 if (sp->role.passthrough) 1980 return false; 1981 1982 return true; 1983 } 1984 1985 #define for_each_valid_sp(_kvm, _sp, _list) \ 1986 hlist_for_each_entry(_sp, _list, hash_link) \ 1987 if (is_obsolete_sp((_kvm), (_sp))) { \ 1988 } else 1989 1990 #define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn) \ 1991 for_each_valid_sp(_kvm, _sp, \ 1992 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \ 1993 if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else 1994 1995 static bool kvm_sync_page_check(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 1996 { 1997 union kvm_mmu_page_role root_role = vcpu->arch.mmu->root_role; 1998 1999 /* 2000 * Ignore various flags when verifying that it's safe to sync a shadow 2001 * page using the current MMU context. 2002 * 2003 * - level: not part of the overall MMU role and will never match as the MMU's 2004 * level tracks the root level 2005 * - access: updated based on the new guest PTE 2006 * - quadrant: not part of the overall MMU role (similar to level) 2007 */ 2008 const union kvm_mmu_page_role sync_role_ign = { 2009 .level = 0xf, 2010 .access = 0x7, 2011 .quadrant = 0x3, 2012 .passthrough = 0x1, 2013 }; 2014 2015 /* 2016 * Direct pages can never be unsync, and KVM should never attempt to 2017 * sync a shadow page for a different MMU context, e.g. if the role 2018 * differs then the memslot lookup (SMM vs. non-SMM) will be bogus, the 2019 * reserved bits checks will be wrong, etc... 2020 */ 2021 if (WARN_ON_ONCE(sp->role.direct || !vcpu->arch.mmu->sync_spte || 2022 (sp->role.word ^ root_role.word) & ~sync_role_ign.word)) 2023 return false; 2024 2025 return true; 2026 } 2027 2028 static int kvm_sync_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, int i) 2029 { 2030 /* sp->spt[i] has initial value of shadow page table allocation */ 2031 if (sp->spt[i] == SHADOW_NONPRESENT_VALUE) 2032 return 0; 2033 2034 return vcpu->arch.mmu->sync_spte(vcpu, sp, i); 2035 } 2036 2037 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 2038 { 2039 int flush = 0; 2040 int i; 2041 2042 if (!kvm_sync_page_check(vcpu, sp)) 2043 return -1; 2044 2045 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) { 2046 int ret = kvm_sync_spte(vcpu, sp, i); 2047 2048 if (ret < -1) 2049 return -1; 2050 flush |= ret; 2051 } 2052 2053 /* 2054 * Note, any flush is purely for KVM's correctness, e.g. when dropping 2055 * an existing SPTE or clearing W/A/D bits to ensure an mmu_notifier 2056 * unmap or dirty logging event doesn't fail to flush. The guest is 2057 * responsible for flushing the TLB to ensure any changes in protection 2058 * bits are recognized, i.e. until the guest flushes or page faults on 2059 * a relevant address, KVM is architecturally allowed to let vCPUs use 2060 * cached translations with the old protection bits. 2061 */ 2062 return flush; 2063 } 2064 2065 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 2066 struct list_head *invalid_list) 2067 { 2068 int ret = __kvm_sync_page(vcpu, sp); 2069 2070 if (ret < 0) 2071 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); 2072 return ret; 2073 } 2074 2075 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm, 2076 struct list_head *invalid_list, 2077 bool remote_flush) 2078 { 2079 if (!remote_flush && list_empty(invalid_list)) 2080 return false; 2081 2082 if (!list_empty(invalid_list)) 2083 kvm_mmu_commit_zap_page(kvm, invalid_list); 2084 else 2085 kvm_flush_remote_tlbs(kvm); 2086 return true; 2087 } 2088 2089 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 2090 { 2091 if (sp->role.invalid) 2092 return true; 2093 2094 /* TDP MMU pages do not use the MMU generation. */ 2095 return !is_tdp_mmu_page(sp) && 2096 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); 2097 } 2098 2099 struct mmu_page_path { 2100 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL]; 2101 unsigned int idx[PT64_ROOT_MAX_LEVEL]; 2102 }; 2103 2104 #define for_each_sp(pvec, sp, parents, i) \ 2105 for (i = mmu_pages_first(&pvec, &parents); \ 2106 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \ 2107 i = mmu_pages_next(&pvec, &parents, i)) 2108 2109 static int mmu_pages_next(struct kvm_mmu_pages *pvec, 2110 struct mmu_page_path *parents, 2111 int i) 2112 { 2113 int n; 2114 2115 for (n = i+1; n < pvec->nr; n++) { 2116 struct kvm_mmu_page *sp = pvec->page[n].sp; 2117 unsigned idx = pvec->page[n].idx; 2118 int level = sp->role.level; 2119 2120 parents->idx[level-1] = idx; 2121 if (level == PG_LEVEL_4K) 2122 break; 2123 2124 parents->parent[level-2] = sp; 2125 } 2126 2127 return n; 2128 } 2129 2130 static int mmu_pages_first(struct kvm_mmu_pages *pvec, 2131 struct mmu_page_path *parents) 2132 { 2133 struct kvm_mmu_page *sp; 2134 int level; 2135 2136 if (pvec->nr == 0) 2137 return 0; 2138 2139 WARN_ON_ONCE(pvec->page[0].idx != INVALID_INDEX); 2140 2141 sp = pvec->page[0].sp; 2142 level = sp->role.level; 2143 WARN_ON_ONCE(level == PG_LEVEL_4K); 2144 2145 parents->parent[level-2] = sp; 2146 2147 /* Also set up a sentinel. Further entries in pvec are all 2148 * children of sp, so this element is never overwritten. 2149 */ 2150 parents->parent[level-1] = NULL; 2151 return mmu_pages_next(pvec, parents, 0); 2152 } 2153 2154 static void mmu_pages_clear_parents(struct mmu_page_path *parents) 2155 { 2156 struct kvm_mmu_page *sp; 2157 unsigned int level = 0; 2158 2159 do { 2160 unsigned int idx = parents->idx[level]; 2161 sp = parents->parent[level]; 2162 if (!sp) 2163 return; 2164 2165 WARN_ON_ONCE(idx == INVALID_INDEX); 2166 clear_unsync_child_bit(sp, idx); 2167 level++; 2168 } while (!sp->unsync_children); 2169 } 2170 2171 static int mmu_sync_children(struct kvm_vcpu *vcpu, 2172 struct kvm_mmu_page *parent, bool can_yield) 2173 { 2174 int i; 2175 struct kvm_mmu_page *sp; 2176 struct mmu_page_path parents; 2177 struct kvm_mmu_pages pages; 2178 LIST_HEAD(invalid_list); 2179 bool flush = false; 2180 2181 while (mmu_unsync_walk(parent, &pages)) { 2182 bool protected = false; 2183 2184 for_each_sp(pages, sp, parents, i) 2185 protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn); 2186 2187 if (protected) { 2188 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true); 2189 flush = false; 2190 } 2191 2192 for_each_sp(pages, sp, parents, i) { 2193 kvm_unlink_unsync_page(vcpu->kvm, sp); 2194 flush |= kvm_sync_page(vcpu, sp, &invalid_list) > 0; 2195 mmu_pages_clear_parents(&parents); 2196 } 2197 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) { 2198 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2199 if (!can_yield) { 2200 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 2201 return -EINTR; 2202 } 2203 2204 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock); 2205 flush = false; 2206 } 2207 } 2208 2209 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2210 return 0; 2211 } 2212 2213 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) 2214 { 2215 atomic_set(&sp->write_flooding_count, 0); 2216 } 2217 2218 static void clear_sp_write_flooding_count(u64 *spte) 2219 { 2220 __clear_sp_write_flooding_count(sptep_to_sp(spte)); 2221 } 2222 2223 /* 2224 * The vCPU is required when finding indirect shadow pages; the shadow 2225 * page may already exist and syncing it needs the vCPU pointer in 2226 * order to read guest page tables. Direct shadow pages are never 2227 * unsync, thus @vcpu can be NULL if @role.direct is true. 2228 */ 2229 static struct kvm_mmu_page *kvm_mmu_find_shadow_page(struct kvm *kvm, 2230 struct kvm_vcpu *vcpu, 2231 gfn_t gfn, 2232 struct hlist_head *sp_list, 2233 union kvm_mmu_page_role role) 2234 { 2235 struct kvm_mmu_page *sp; 2236 int ret; 2237 int collisions = 0; 2238 LIST_HEAD(invalid_list); 2239 2240 for_each_valid_sp(kvm, sp, sp_list) { 2241 if (sp->gfn != gfn) { 2242 collisions++; 2243 continue; 2244 } 2245 2246 if (sp->role.word != role.word) { 2247 /* 2248 * If the guest is creating an upper-level page, zap 2249 * unsync pages for the same gfn. While it's possible 2250 * the guest is using recursive page tables, in all 2251 * likelihood the guest has stopped using the unsync 2252 * page and is installing a completely unrelated page. 2253 * Unsync pages must not be left as is, because the new 2254 * upper-level page will be write-protected. 2255 */ 2256 if (role.level > PG_LEVEL_4K && sp->unsync) 2257 kvm_mmu_prepare_zap_page(kvm, sp, 2258 &invalid_list); 2259 continue; 2260 } 2261 2262 /* unsync and write-flooding only apply to indirect SPs. */ 2263 if (sp->role.direct) 2264 goto out; 2265 2266 if (sp->unsync) { 2267 if (KVM_BUG_ON(!vcpu, kvm)) 2268 break; 2269 2270 /* 2271 * The page is good, but is stale. kvm_sync_page does 2272 * get the latest guest state, but (unlike mmu_unsync_children) 2273 * it doesn't write-protect the page or mark it synchronized! 2274 * This way the validity of the mapping is ensured, but the 2275 * overhead of write protection is not incurred until the 2276 * guest invalidates the TLB mapping. This allows multiple 2277 * SPs for a single gfn to be unsync. 2278 * 2279 * If the sync fails, the page is zapped. If so, break 2280 * in order to rebuild it. 2281 */ 2282 ret = kvm_sync_page(vcpu, sp, &invalid_list); 2283 if (ret < 0) 2284 break; 2285 2286 WARN_ON_ONCE(!list_empty(&invalid_list)); 2287 if (ret > 0) 2288 kvm_flush_remote_tlbs(kvm); 2289 } 2290 2291 __clear_sp_write_flooding_count(sp); 2292 2293 goto out; 2294 } 2295 2296 sp = NULL; 2297 ++kvm->stat.mmu_cache_miss; 2298 2299 out: 2300 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2301 2302 if (collisions > kvm->stat.max_mmu_page_hash_collisions) 2303 kvm->stat.max_mmu_page_hash_collisions = collisions; 2304 return sp; 2305 } 2306 2307 /* Caches used when allocating a new shadow page. */ 2308 struct shadow_page_caches { 2309 struct kvm_mmu_memory_cache *page_header_cache; 2310 struct kvm_mmu_memory_cache *shadow_page_cache; 2311 struct kvm_mmu_memory_cache *shadowed_info_cache; 2312 }; 2313 2314 static struct kvm_mmu_page *kvm_mmu_alloc_shadow_page(struct kvm *kvm, 2315 struct shadow_page_caches *caches, 2316 gfn_t gfn, 2317 struct hlist_head *sp_list, 2318 union kvm_mmu_page_role role) 2319 { 2320 struct kvm_mmu_page *sp; 2321 2322 sp = kvm_mmu_memory_cache_alloc(caches->page_header_cache); 2323 sp->spt = kvm_mmu_memory_cache_alloc(caches->shadow_page_cache); 2324 if (!role.direct && role.level <= KVM_MAX_HUGEPAGE_LEVEL) 2325 sp->shadowed_translation = kvm_mmu_memory_cache_alloc(caches->shadowed_info_cache); 2326 2327 set_page_private(virt_to_page(sp->spt), (unsigned long)sp); 2328 2329 INIT_LIST_HEAD(&sp->possible_nx_huge_page_link); 2330 2331 /* 2332 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages() 2333 * depends on valid pages being added to the head of the list. See 2334 * comments in kvm_zap_obsolete_pages(). 2335 */ 2336 sp->mmu_valid_gen = kvm->arch.mmu_valid_gen; 2337 list_add(&sp->link, &kvm->arch.active_mmu_pages); 2338 kvm_account_mmu_page(kvm, sp); 2339 2340 sp->gfn = gfn; 2341 sp->role = role; 2342 hlist_add_head(&sp->hash_link, sp_list); 2343 if (sp_has_gptes(sp)) 2344 account_shadowed(kvm, sp); 2345 2346 return sp; 2347 } 2348 2349 /* Note, @vcpu may be NULL if @role.direct is true; see kvm_mmu_find_shadow_page. */ 2350 static struct kvm_mmu_page *__kvm_mmu_get_shadow_page(struct kvm *kvm, 2351 struct kvm_vcpu *vcpu, 2352 struct shadow_page_caches *caches, 2353 gfn_t gfn, 2354 union kvm_mmu_page_role role) 2355 { 2356 struct hlist_head *sp_list; 2357 struct kvm_mmu_page *sp; 2358 bool created = false; 2359 2360 sp_list = &kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]; 2361 2362 sp = kvm_mmu_find_shadow_page(kvm, vcpu, gfn, sp_list, role); 2363 if (!sp) { 2364 created = true; 2365 sp = kvm_mmu_alloc_shadow_page(kvm, caches, gfn, sp_list, role); 2366 } 2367 2368 trace_kvm_mmu_get_page(sp, created); 2369 return sp; 2370 } 2371 2372 static struct kvm_mmu_page *kvm_mmu_get_shadow_page(struct kvm_vcpu *vcpu, 2373 gfn_t gfn, 2374 union kvm_mmu_page_role role) 2375 { 2376 struct shadow_page_caches caches = { 2377 .page_header_cache = &vcpu->arch.mmu_page_header_cache, 2378 .shadow_page_cache = &vcpu->arch.mmu_shadow_page_cache, 2379 .shadowed_info_cache = &vcpu->arch.mmu_shadowed_info_cache, 2380 }; 2381 2382 return __kvm_mmu_get_shadow_page(vcpu->kvm, vcpu, &caches, gfn, role); 2383 } 2384 2385 static union kvm_mmu_page_role kvm_mmu_child_role(u64 *sptep, bool direct, 2386 unsigned int access) 2387 { 2388 struct kvm_mmu_page *parent_sp = sptep_to_sp(sptep); 2389 union kvm_mmu_page_role role; 2390 2391 role = parent_sp->role; 2392 role.level--; 2393 role.access = access; 2394 role.direct = direct; 2395 role.passthrough = 0; 2396 2397 /* 2398 * If the guest has 4-byte PTEs then that means it's using 32-bit, 2399 * 2-level, non-PAE paging. KVM shadows such guests with PAE paging 2400 * (i.e. 8-byte PTEs). The difference in PTE size means that KVM must 2401 * shadow each guest page table with multiple shadow page tables, which 2402 * requires extra bookkeeping in the role. 2403 * 2404 * Specifically, to shadow the guest's page directory (which covers a 2405 * 4GiB address space), KVM uses 4 PAE page directories, each mapping 2406 * 1GiB of the address space. @role.quadrant encodes which quarter of 2407 * the address space each maps. 2408 * 2409 * To shadow the guest's page tables (which each map a 4MiB region), KVM 2410 * uses 2 PAE page tables, each mapping a 2MiB region. For these, 2411 * @role.quadrant encodes which half of the region they map. 2412 * 2413 * Concretely, a 4-byte PDE consumes bits 31:22, while an 8-byte PDE 2414 * consumes bits 29:21. To consume bits 31:30, KVM's uses 4 shadow 2415 * PDPTEs; those 4 PAE page directories are pre-allocated and their 2416 * quadrant is assigned in mmu_alloc_root(). A 4-byte PTE consumes 2417 * bits 21:12, while an 8-byte PTE consumes bits 20:12. To consume 2418 * bit 21 in the PTE (the child here), KVM propagates that bit to the 2419 * quadrant, i.e. sets quadrant to '0' or '1'. The parent 8-byte PDE 2420 * covers bit 21 (see above), thus the quadrant is calculated from the 2421 * _least_ significant bit of the PDE index. 2422 */ 2423 if (role.has_4_byte_gpte) { 2424 WARN_ON_ONCE(role.level != PG_LEVEL_4K); 2425 role.quadrant = spte_index(sptep) & 1; 2426 } 2427 2428 return role; 2429 } 2430 2431 static struct kvm_mmu_page *kvm_mmu_get_child_sp(struct kvm_vcpu *vcpu, 2432 u64 *sptep, gfn_t gfn, 2433 bool direct, unsigned int access) 2434 { 2435 union kvm_mmu_page_role role; 2436 2437 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) 2438 return ERR_PTR(-EEXIST); 2439 2440 role = kvm_mmu_child_role(sptep, direct, access); 2441 return kvm_mmu_get_shadow_page(vcpu, gfn, role); 2442 } 2443 2444 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator, 2445 struct kvm_vcpu *vcpu, hpa_t root, 2446 u64 addr) 2447 { 2448 iterator->addr = addr; 2449 iterator->shadow_addr = root; 2450 iterator->level = vcpu->arch.mmu->root_role.level; 2451 2452 if (iterator->level >= PT64_ROOT_4LEVEL && 2453 vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL && 2454 !vcpu->arch.mmu->root_role.direct) 2455 iterator->level = PT32E_ROOT_LEVEL; 2456 2457 if (iterator->level == PT32E_ROOT_LEVEL) { 2458 /* 2459 * prev_root is currently only used for 64-bit hosts. So only 2460 * the active root_hpa is valid here. 2461 */ 2462 BUG_ON(root != vcpu->arch.mmu->root.hpa); 2463 2464 iterator->shadow_addr 2465 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3]; 2466 iterator->shadow_addr &= SPTE_BASE_ADDR_MASK; 2467 --iterator->level; 2468 if (!iterator->shadow_addr) 2469 iterator->level = 0; 2470 } 2471 } 2472 2473 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, 2474 struct kvm_vcpu *vcpu, u64 addr) 2475 { 2476 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa, 2477 addr); 2478 } 2479 2480 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) 2481 { 2482 if (iterator->level < PG_LEVEL_4K) 2483 return false; 2484 2485 iterator->index = SPTE_INDEX(iterator->addr, iterator->level); 2486 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; 2487 return true; 2488 } 2489 2490 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, 2491 u64 spte) 2492 { 2493 if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) { 2494 iterator->level = 0; 2495 return; 2496 } 2497 2498 iterator->shadow_addr = spte & SPTE_BASE_ADDR_MASK; 2499 --iterator->level; 2500 } 2501 2502 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) 2503 { 2504 __shadow_walk_next(iterator, *iterator->sptep); 2505 } 2506 2507 static void __link_shadow_page(struct kvm *kvm, 2508 struct kvm_mmu_memory_cache *cache, u64 *sptep, 2509 struct kvm_mmu_page *sp, bool flush) 2510 { 2511 u64 spte; 2512 2513 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); 2514 2515 /* 2516 * If an SPTE is present already, it must be a leaf and therefore 2517 * a large one. Drop it, and flush the TLB if needed, before 2518 * installing sp. 2519 */ 2520 if (is_shadow_present_pte(*sptep)) 2521 drop_large_spte(kvm, sptep, flush); 2522 2523 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp)); 2524 2525 mmu_spte_set(sptep, spte); 2526 2527 mmu_page_add_parent_pte(kvm, cache, sp, sptep); 2528 2529 /* 2530 * The non-direct sub-pagetable must be updated before linking. For 2531 * L1 sp, the pagetable is updated via kvm_sync_page() in 2532 * kvm_mmu_find_shadow_page() without write-protecting the gfn, 2533 * so sp->unsync can be true or false. For higher level non-direct 2534 * sp, the pagetable is updated/synced via mmu_sync_children() in 2535 * FNAME(fetch)(), so sp->unsync_children can only be false. 2536 * WARN_ON_ONCE() if anything happens unexpectedly. 2537 */ 2538 if (WARN_ON_ONCE(sp->unsync_children) || sp->unsync) 2539 mark_unsync(sptep); 2540 } 2541 2542 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, 2543 struct kvm_mmu_page *sp) 2544 { 2545 __link_shadow_page(vcpu->kvm, &vcpu->arch.mmu_pte_list_desc_cache, sptep, sp, true); 2546 } 2547 2548 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2549 unsigned direct_access) 2550 { 2551 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { 2552 struct kvm_mmu_page *child; 2553 2554 /* 2555 * For the direct sp, if the guest pte's dirty bit 2556 * changed form clean to dirty, it will corrupt the 2557 * sp's access: allow writable in the read-only sp, 2558 * so we should update the spte at this point to get 2559 * a new sp with the correct access. 2560 */ 2561 child = spte_to_child_sp(*sptep); 2562 if (child->role.access == direct_access) 2563 return; 2564 2565 drop_parent_pte(vcpu->kvm, child, sptep); 2566 kvm_flush_remote_tlbs_sptep(vcpu->kvm, sptep); 2567 } 2568 } 2569 2570 /* Returns the number of zapped non-leaf child shadow pages. */ 2571 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 2572 u64 *spte, struct list_head *invalid_list) 2573 { 2574 u64 pte; 2575 struct kvm_mmu_page *child; 2576 2577 pte = *spte; 2578 if (is_shadow_present_pte(pte)) { 2579 if (is_last_spte(pte, sp->role.level)) { 2580 drop_spte(kvm, spte); 2581 } else { 2582 child = spte_to_child_sp(pte); 2583 drop_parent_pte(kvm, child, spte); 2584 2585 /* 2586 * Recursively zap nested TDP SPs, parentless SPs are 2587 * unlikely to be used again in the near future. This 2588 * avoids retaining a large number of stale nested SPs. 2589 */ 2590 if (tdp_enabled && invalid_list && 2591 child->role.guest_mode && 2592 !atomic_long_read(&child->parent_ptes.val)) 2593 return kvm_mmu_prepare_zap_page(kvm, child, 2594 invalid_list); 2595 } 2596 } else if (is_mmio_spte(kvm, pte)) { 2597 mmu_spte_clear_no_track(spte); 2598 } 2599 return 0; 2600 } 2601 2602 static int kvm_mmu_page_unlink_children(struct kvm *kvm, 2603 struct kvm_mmu_page *sp, 2604 struct list_head *invalid_list) 2605 { 2606 int zapped = 0; 2607 unsigned i; 2608 2609 for (i = 0; i < SPTE_ENT_PER_PAGE; ++i) 2610 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list); 2611 2612 return zapped; 2613 } 2614 2615 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp) 2616 { 2617 u64 *sptep; 2618 struct rmap_iterator iter; 2619 2620 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter))) 2621 drop_parent_pte(kvm, sp, sptep); 2622 } 2623 2624 static int mmu_zap_unsync_children(struct kvm *kvm, 2625 struct kvm_mmu_page *parent, 2626 struct list_head *invalid_list) 2627 { 2628 int i, zapped = 0; 2629 struct mmu_page_path parents; 2630 struct kvm_mmu_pages pages; 2631 2632 if (parent->role.level == PG_LEVEL_4K) 2633 return 0; 2634 2635 while (mmu_unsync_walk(parent, &pages)) { 2636 struct kvm_mmu_page *sp; 2637 2638 for_each_sp(pages, sp, parents, i) { 2639 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 2640 mmu_pages_clear_parents(&parents); 2641 zapped++; 2642 } 2643 } 2644 2645 return zapped; 2646 } 2647 2648 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm, 2649 struct kvm_mmu_page *sp, 2650 struct list_head *invalid_list, 2651 int *nr_zapped) 2652 { 2653 bool list_unstable, zapped_root = false; 2654 2655 lockdep_assert_held_write(&kvm->mmu_lock); 2656 trace_kvm_mmu_prepare_zap_page(sp); 2657 ++kvm->stat.mmu_shadow_zapped; 2658 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list); 2659 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list); 2660 kvm_mmu_unlink_parents(kvm, sp); 2661 2662 /* Zapping children means active_mmu_pages has become unstable. */ 2663 list_unstable = *nr_zapped; 2664 2665 if (!sp->role.invalid && sp_has_gptes(sp)) 2666 unaccount_shadowed(kvm, sp); 2667 2668 if (sp->unsync) 2669 kvm_unlink_unsync_page(kvm, sp); 2670 if (!sp->root_count) { 2671 /* Count self */ 2672 (*nr_zapped)++; 2673 2674 /* 2675 * Already invalid pages (previously active roots) are not on 2676 * the active page list. See list_del() in the "else" case of 2677 * !sp->root_count. 2678 */ 2679 if (sp->role.invalid) 2680 list_add(&sp->link, invalid_list); 2681 else 2682 list_move(&sp->link, invalid_list); 2683 kvm_unaccount_mmu_page(kvm, sp); 2684 } else { 2685 /* 2686 * Remove the active root from the active page list, the root 2687 * will be explicitly freed when the root_count hits zero. 2688 */ 2689 list_del(&sp->link); 2690 2691 /* 2692 * Obsolete pages cannot be used on any vCPUs, see the comment 2693 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also 2694 * treats invalid shadow pages as being obsolete. 2695 */ 2696 zapped_root = !is_obsolete_sp(kvm, sp); 2697 } 2698 2699 if (sp->nx_huge_page_disallowed) 2700 unaccount_nx_huge_page(kvm, sp); 2701 2702 sp->role.invalid = 1; 2703 2704 /* 2705 * Make the request to free obsolete roots after marking the root 2706 * invalid, otherwise other vCPUs may not see it as invalid. 2707 */ 2708 if (zapped_root) 2709 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 2710 return list_unstable; 2711 } 2712 2713 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 2714 struct list_head *invalid_list) 2715 { 2716 int nr_zapped; 2717 2718 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped); 2719 return nr_zapped; 2720 } 2721 2722 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 2723 struct list_head *invalid_list) 2724 { 2725 struct kvm_mmu_page *sp, *nsp; 2726 2727 if (list_empty(invalid_list)) 2728 return; 2729 2730 /* 2731 * We need to make sure everyone sees our modifications to 2732 * the page tables and see changes to vcpu->mode here. The barrier 2733 * in the kvm_flush_remote_tlbs() achieves this. This pairs 2734 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end. 2735 * 2736 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit 2737 * guest mode and/or lockless shadow page table walks. 2738 */ 2739 kvm_flush_remote_tlbs(kvm); 2740 2741 list_for_each_entry_safe(sp, nsp, invalid_list, link) { 2742 WARN_ON_ONCE(!sp->role.invalid || sp->root_count); 2743 kvm_mmu_free_shadow_page(sp); 2744 } 2745 } 2746 2747 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm, 2748 unsigned long nr_to_zap) 2749 { 2750 unsigned long total_zapped = 0; 2751 struct kvm_mmu_page *sp, *tmp; 2752 LIST_HEAD(invalid_list); 2753 bool unstable; 2754 int nr_zapped; 2755 2756 if (list_empty(&kvm->arch.active_mmu_pages)) 2757 return 0; 2758 2759 restart: 2760 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) { 2761 /* 2762 * Don't zap active root pages, the page itself can't be freed 2763 * and zapping it will just force vCPUs to realloc and reload. 2764 */ 2765 if (sp->root_count) 2766 continue; 2767 2768 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, 2769 &nr_zapped); 2770 total_zapped += nr_zapped; 2771 if (total_zapped >= nr_to_zap) 2772 break; 2773 2774 if (unstable) 2775 goto restart; 2776 } 2777 2778 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2779 2780 kvm->stat.mmu_recycled += total_zapped; 2781 return total_zapped; 2782 } 2783 2784 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm) 2785 { 2786 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) 2787 return kvm->arch.n_max_mmu_pages - 2788 kvm->arch.n_used_mmu_pages; 2789 2790 return 0; 2791 } 2792 2793 static int make_mmu_pages_available(struct kvm_vcpu *vcpu) 2794 { 2795 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm); 2796 2797 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES)) 2798 return 0; 2799 2800 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail); 2801 2802 /* 2803 * Note, this check is intentionally soft, it only guarantees that one 2804 * page is available, while the caller may end up allocating as many as 2805 * four pages, e.g. for PAE roots or for 5-level paging. Temporarily 2806 * exceeding the (arbitrary by default) limit will not harm the host, 2807 * being too aggressive may unnecessarily kill the guest, and getting an 2808 * exact count is far more trouble than it's worth, especially in the 2809 * page fault paths. 2810 */ 2811 if (!kvm_mmu_available_pages(vcpu->kvm)) 2812 return -ENOSPC; 2813 return 0; 2814 } 2815 2816 /* 2817 * Changing the number of mmu pages allocated to the vm 2818 * Note: if goal_nr_mmu_pages is too small, you will get dead lock 2819 */ 2820 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages) 2821 { 2822 write_lock(&kvm->mmu_lock); 2823 2824 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { 2825 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages - 2826 goal_nr_mmu_pages); 2827 2828 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; 2829 } 2830 2831 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; 2832 2833 write_unlock(&kvm->mmu_lock); 2834 } 2835 2836 bool __kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 2837 bool always_retry) 2838 { 2839 struct kvm *kvm = vcpu->kvm; 2840 LIST_HEAD(invalid_list); 2841 struct kvm_mmu_page *sp; 2842 gpa_t gpa = cr2_or_gpa; 2843 bool r = false; 2844 2845 /* 2846 * Bail early if there aren't any write-protected shadow pages to avoid 2847 * unnecessarily taking mmu_lock lock, e.g. if the gfn is write-tracked 2848 * by a third party. Reading indirect_shadow_pages without holding 2849 * mmu_lock is safe, as this is purely an optimization, i.e. a false 2850 * positive is benign, and a false negative will simply result in KVM 2851 * skipping the unprotect+retry path, which is also an optimization. 2852 */ 2853 if (!READ_ONCE(kvm->arch.indirect_shadow_pages)) 2854 goto out; 2855 2856 if (!vcpu->arch.mmu->root_role.direct) { 2857 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 2858 if (gpa == INVALID_GPA) 2859 goto out; 2860 } 2861 2862 write_lock(&kvm->mmu_lock); 2863 for_each_gfn_valid_sp_with_gptes(kvm, sp, gpa_to_gfn(gpa)) 2864 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 2865 2866 /* 2867 * Snapshot the result before zapping, as zapping will remove all list 2868 * entries, i.e. checking the list later would yield a false negative. 2869 */ 2870 r = !list_empty(&invalid_list); 2871 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2872 write_unlock(&kvm->mmu_lock); 2873 2874 out: 2875 if (r || always_retry) { 2876 vcpu->arch.last_retry_eip = kvm_rip_read(vcpu); 2877 vcpu->arch.last_retry_addr = cr2_or_gpa; 2878 } 2879 return r; 2880 } 2881 2882 static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 2883 { 2884 trace_kvm_mmu_unsync_page(sp); 2885 ++kvm->stat.mmu_unsync; 2886 sp->unsync = 1; 2887 2888 kvm_mmu_mark_parents_unsync(sp); 2889 } 2890 2891 /* 2892 * Attempt to unsync any shadow pages that can be reached by the specified gfn, 2893 * KVM is creating a writable mapping for said gfn. Returns 0 if all pages 2894 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must 2895 * be write-protected. 2896 */ 2897 int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot, 2898 gfn_t gfn, bool synchronizing, bool prefetch) 2899 { 2900 struct kvm_mmu_page *sp; 2901 bool locked = false; 2902 2903 /* 2904 * Force write-protection if the page is being tracked. Note, the page 2905 * track machinery is used to write-protect upper-level shadow pages, 2906 * i.e. this guards the role.level == 4K assertion below! 2907 */ 2908 if (kvm_gfn_is_write_tracked(kvm, slot, gfn)) 2909 return -EPERM; 2910 2911 /* 2912 * The page is not write-tracked, mark existing shadow pages unsync 2913 * unless KVM is synchronizing an unsync SP. In that case, KVM must 2914 * complete emulation of the guest TLB flush before allowing shadow 2915 * pages to become unsync (writable by the guest). 2916 */ 2917 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) { 2918 if (synchronizing) 2919 return -EPERM; 2920 2921 if (sp->unsync) 2922 continue; 2923 2924 if (prefetch) 2925 return -EEXIST; 2926 2927 /* 2928 * TDP MMU page faults require an additional spinlock as they 2929 * run with mmu_lock held for read, not write, and the unsync 2930 * logic is not thread safe. Take the spinklock regardless of 2931 * the MMU type to avoid extra conditionals/parameters, there's 2932 * no meaningful penalty if mmu_lock is held for write. 2933 */ 2934 if (!locked) { 2935 locked = true; 2936 spin_lock(&kvm->arch.mmu_unsync_pages_lock); 2937 2938 /* 2939 * Recheck after taking the spinlock, a different vCPU 2940 * may have since marked the page unsync. A false 2941 * negative on the unprotected check above is not 2942 * possible as clearing sp->unsync _must_ hold mmu_lock 2943 * for write, i.e. unsync cannot transition from 1->0 2944 * while this CPU holds mmu_lock for read (or write). 2945 */ 2946 if (READ_ONCE(sp->unsync)) 2947 continue; 2948 } 2949 2950 WARN_ON_ONCE(sp->role.level != PG_LEVEL_4K); 2951 kvm_unsync_page(kvm, sp); 2952 } 2953 if (locked) 2954 spin_unlock(&kvm->arch.mmu_unsync_pages_lock); 2955 2956 /* 2957 * We need to ensure that the marking of unsync pages is visible 2958 * before the SPTE is updated to allow writes because 2959 * kvm_mmu_sync_roots() checks the unsync flags without holding 2960 * the MMU lock and so can race with this. If the SPTE was updated 2961 * before the page had been marked as unsync-ed, something like the 2962 * following could happen: 2963 * 2964 * CPU 1 CPU 2 2965 * --------------------------------------------------------------------- 2966 * 1.2 Host updates SPTE 2967 * to be writable 2968 * 2.1 Guest writes a GPTE for GVA X. 2969 * (GPTE being in the guest page table shadowed 2970 * by the SP from CPU 1.) 2971 * This reads SPTE during the page table walk. 2972 * Since SPTE.W is read as 1, there is no 2973 * fault. 2974 * 2975 * 2.2 Guest issues TLB flush. 2976 * That causes a VM Exit. 2977 * 2978 * 2.3 Walking of unsync pages sees sp->unsync is 2979 * false and skips the page. 2980 * 2981 * 2.4 Guest accesses GVA X. 2982 * Since the mapping in the SP was not updated, 2983 * so the old mapping for GVA X incorrectly 2984 * gets used. 2985 * 1.1 Host marks SP 2986 * as unsync 2987 * (sp->unsync = true) 2988 * 2989 * The write barrier below ensures that 1.1 happens before 1.2 and thus 2990 * the situation in 2.4 does not arise. It pairs with the read barrier 2991 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3. 2992 */ 2993 smp_wmb(); 2994 2995 return 0; 2996 } 2997 2998 static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, 2999 u64 *sptep, unsigned int pte_access, gfn_t gfn, 3000 kvm_pfn_t pfn, struct kvm_page_fault *fault) 3001 { 3002 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 3003 int level = sp->role.level; 3004 int was_rmapped = 0; 3005 int ret = RET_PF_FIXED; 3006 bool flush = false; 3007 bool wrprot; 3008 u64 spte; 3009 3010 /* Prefetching always gets a writable pfn. */ 3011 bool host_writable = !fault || fault->map_writable; 3012 bool prefetch = !fault || fault->prefetch; 3013 bool write_fault = fault && fault->write; 3014 3015 if (unlikely(is_noslot_pfn(pfn))) { 3016 vcpu->stat.pf_mmio_spte_created++; 3017 mark_mmio_spte(vcpu, sptep, gfn, pte_access); 3018 return RET_PF_EMULATE; 3019 } 3020 3021 if (is_shadow_present_pte(*sptep)) { 3022 if (prefetch) 3023 return RET_PF_SPURIOUS; 3024 3025 /* 3026 * If we overwrite a PTE page pointer with a 2MB PMD, unlink 3027 * the parent of the now unreachable PTE. 3028 */ 3029 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) { 3030 struct kvm_mmu_page *child; 3031 u64 pte = *sptep; 3032 3033 child = spte_to_child_sp(pte); 3034 drop_parent_pte(vcpu->kvm, child, sptep); 3035 flush = true; 3036 } else if (pfn != spte_to_pfn(*sptep)) { 3037 drop_spte(vcpu->kvm, sptep); 3038 flush = true; 3039 } else 3040 was_rmapped = 1; 3041 } 3042 3043 wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch, 3044 false, host_writable, &spte); 3045 3046 if (*sptep == spte) { 3047 ret = RET_PF_SPURIOUS; 3048 } else { 3049 flush |= mmu_spte_update(sptep, spte); 3050 trace_kvm_mmu_set_spte(level, gfn, sptep); 3051 } 3052 3053 if (wrprot && write_fault) 3054 ret = RET_PF_WRITE_PROTECTED; 3055 3056 if (flush) 3057 kvm_flush_remote_tlbs_gfn(vcpu->kvm, gfn, level); 3058 3059 if (!was_rmapped) { 3060 WARN_ON_ONCE(ret == RET_PF_SPURIOUS); 3061 rmap_add(vcpu, slot, sptep, gfn, pte_access); 3062 } else { 3063 /* Already rmapped but the pte_access bits may have changed. */ 3064 kvm_mmu_page_set_access(sp, spte_index(sptep), pte_access); 3065 } 3066 3067 return ret; 3068 } 3069 3070 static bool kvm_mmu_prefetch_sptes(struct kvm_vcpu *vcpu, gfn_t gfn, u64 *sptep, 3071 int nr_pages, unsigned int access) 3072 { 3073 struct page *pages[PTE_PREFETCH_NUM]; 3074 struct kvm_memory_slot *slot; 3075 int i; 3076 3077 if (WARN_ON_ONCE(nr_pages > PTE_PREFETCH_NUM)) 3078 return false; 3079 3080 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK); 3081 if (!slot) 3082 return false; 3083 3084 nr_pages = kvm_prefetch_pages(slot, gfn, pages, nr_pages); 3085 if (nr_pages <= 0) 3086 return false; 3087 3088 for (i = 0; i < nr_pages; i++, gfn++, sptep++) { 3089 mmu_set_spte(vcpu, slot, sptep, access, gfn, 3090 page_to_pfn(pages[i]), NULL); 3091 3092 /* 3093 * KVM always prefetches writable pages from the primary MMU, 3094 * and KVM can make its SPTE writable in the fast page handler, 3095 * without notifying the primary MMU. Mark pages/folios dirty 3096 * now to ensure file data is written back if it ends up being 3097 * written by the guest. Because KVM's prefetching GUPs 3098 * writable PTEs, the probability of unnecessary writeback is 3099 * extremely low. 3100 */ 3101 kvm_release_page_dirty(pages[i]); 3102 } 3103 3104 return true; 3105 } 3106 3107 static bool direct_pte_prefetch_many(struct kvm_vcpu *vcpu, 3108 struct kvm_mmu_page *sp, 3109 u64 *start, u64 *end) 3110 { 3111 gfn_t gfn = kvm_mmu_page_get_gfn(sp, spte_index(start)); 3112 unsigned int access = sp->role.access; 3113 3114 return kvm_mmu_prefetch_sptes(vcpu, gfn, start, end - start, access); 3115 } 3116 3117 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, 3118 struct kvm_mmu_page *sp, u64 *sptep) 3119 { 3120 u64 *spte, *start = NULL; 3121 int i; 3122 3123 WARN_ON_ONCE(!sp->role.direct); 3124 3125 i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1); 3126 spte = sp->spt + i; 3127 3128 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 3129 if (is_shadow_present_pte(*spte) || spte == sptep) { 3130 if (!start) 3131 continue; 3132 if (!direct_pte_prefetch_many(vcpu, sp, start, spte)) 3133 return; 3134 3135 start = NULL; 3136 } else if (!start) 3137 start = spte; 3138 } 3139 if (start) 3140 direct_pte_prefetch_many(vcpu, sp, start, spte); 3141 } 3142 3143 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) 3144 { 3145 struct kvm_mmu_page *sp; 3146 3147 sp = sptep_to_sp(sptep); 3148 3149 /* 3150 * Without accessed bits, there's no way to distinguish between 3151 * actually accessed translations and prefetched, so disable pte 3152 * prefetch if accessed bits aren't available. 3153 */ 3154 if (sp_ad_disabled(sp)) 3155 return; 3156 3157 if (sp->role.level > PG_LEVEL_4K) 3158 return; 3159 3160 /* 3161 * If addresses are being invalidated, skip prefetching to avoid 3162 * accidentally prefetching those addresses. 3163 */ 3164 if (unlikely(vcpu->kvm->mmu_invalidate_in_progress)) 3165 return; 3166 3167 __direct_pte_prefetch(vcpu, sp, sptep); 3168 } 3169 3170 /* 3171 * Lookup the mapping level for @gfn in the current mm. 3172 * 3173 * WARNING! Use of host_pfn_mapping_level() requires the caller and the end 3174 * consumer to be tied into KVM's handlers for MMU notifier events! 3175 * 3176 * There are several ways to safely use this helper: 3177 * 3178 * - Check mmu_invalidate_retry_gfn() after grabbing the mapping level, before 3179 * consuming it. In this case, mmu_lock doesn't need to be held during the 3180 * lookup, but it does need to be held while checking the MMU notifier. 3181 * 3182 * - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation 3183 * event for the hva. This can be done by explicit checking the MMU notifier 3184 * or by ensuring that KVM already has a valid mapping that covers the hva. 3185 * 3186 * - Do not use the result to install new mappings, e.g. use the host mapping 3187 * level only to decide whether or not to zap an entry. In this case, it's 3188 * not required to hold mmu_lock (though it's highly likely the caller will 3189 * want to hold mmu_lock anyways, e.g. to modify SPTEs). 3190 * 3191 * Note! The lookup can still race with modifications to host page tables, but 3192 * the above "rules" ensure KVM will not _consume_ the result of the walk if a 3193 * race with the primary MMU occurs. 3194 */ 3195 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, 3196 const struct kvm_memory_slot *slot) 3197 { 3198 int level = PG_LEVEL_4K; 3199 unsigned long hva; 3200 unsigned long flags; 3201 pgd_t pgd; 3202 p4d_t p4d; 3203 pud_t pud; 3204 pmd_t pmd; 3205 3206 /* 3207 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot() 3208 * is not solely for performance, it's also necessary to avoid the 3209 * "writable" check in __gfn_to_hva_many(), which will always fail on 3210 * read-only memslots due to gfn_to_hva() assuming writes. Earlier 3211 * page fault steps have already verified the guest isn't writing a 3212 * read-only memslot. 3213 */ 3214 hva = __gfn_to_hva_memslot(slot, gfn); 3215 3216 /* 3217 * Disable IRQs to prevent concurrent tear down of host page tables, 3218 * e.g. if the primary MMU promotes a P*D to a huge page and then frees 3219 * the original page table. 3220 */ 3221 local_irq_save(flags); 3222 3223 /* 3224 * Read each entry once. As above, a non-leaf entry can be promoted to 3225 * a huge page _during_ this walk. Re-reading the entry could send the 3226 * walk into the weeks, e.g. p*d_leaf() returns false (sees the old 3227 * value) and then p*d_offset() walks into the target huge page instead 3228 * of the old page table (sees the new value). 3229 */ 3230 pgd = READ_ONCE(*pgd_offset(kvm->mm, hva)); 3231 if (pgd_none(pgd)) 3232 goto out; 3233 3234 p4d = READ_ONCE(*p4d_offset(&pgd, hva)); 3235 if (p4d_none(p4d) || !p4d_present(p4d)) 3236 goto out; 3237 3238 pud = READ_ONCE(*pud_offset(&p4d, hva)); 3239 if (pud_none(pud) || !pud_present(pud)) 3240 goto out; 3241 3242 if (pud_leaf(pud)) { 3243 level = PG_LEVEL_1G; 3244 goto out; 3245 } 3246 3247 pmd = READ_ONCE(*pmd_offset(&pud, hva)); 3248 if (pmd_none(pmd) || !pmd_present(pmd)) 3249 goto out; 3250 3251 if (pmd_leaf(pmd)) 3252 level = PG_LEVEL_2M; 3253 3254 out: 3255 local_irq_restore(flags); 3256 return level; 3257 } 3258 3259 static int __kvm_mmu_max_mapping_level(struct kvm *kvm, 3260 const struct kvm_memory_slot *slot, 3261 gfn_t gfn, int max_level, bool is_private) 3262 { 3263 struct kvm_lpage_info *linfo; 3264 int host_level; 3265 3266 max_level = min(max_level, max_huge_page_level); 3267 for ( ; max_level > PG_LEVEL_4K; max_level--) { 3268 linfo = lpage_info_slot(gfn, slot, max_level); 3269 if (!linfo->disallow_lpage) 3270 break; 3271 } 3272 3273 if (is_private) 3274 return max_level; 3275 3276 if (max_level == PG_LEVEL_4K) 3277 return PG_LEVEL_4K; 3278 3279 host_level = host_pfn_mapping_level(kvm, gfn, slot); 3280 return min(host_level, max_level); 3281 } 3282 3283 int kvm_mmu_max_mapping_level(struct kvm *kvm, 3284 const struct kvm_memory_slot *slot, gfn_t gfn) 3285 { 3286 bool is_private = kvm_slot_can_be_private(slot) && 3287 kvm_mem_is_private(kvm, gfn); 3288 3289 return __kvm_mmu_max_mapping_level(kvm, slot, gfn, PG_LEVEL_NUM, is_private); 3290 } 3291 3292 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3293 { 3294 struct kvm_memory_slot *slot = fault->slot; 3295 kvm_pfn_t mask; 3296 3297 fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled; 3298 3299 if (unlikely(fault->max_level == PG_LEVEL_4K)) 3300 return; 3301 3302 if (is_error_noslot_pfn(fault->pfn)) 3303 return; 3304 3305 if (kvm_slot_dirty_track_enabled(slot)) 3306 return; 3307 3308 /* 3309 * Enforce the iTLB multihit workaround after capturing the requested 3310 * level, which will be used to do precise, accurate accounting. 3311 */ 3312 fault->req_level = __kvm_mmu_max_mapping_level(vcpu->kvm, slot, 3313 fault->gfn, fault->max_level, 3314 fault->is_private); 3315 if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed) 3316 return; 3317 3318 /* 3319 * mmu_invalidate_retry() was successful and mmu_lock is held, so 3320 * the pmd can't be split from under us. 3321 */ 3322 fault->goal_level = fault->req_level; 3323 mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1; 3324 VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask)); 3325 fault->pfn &= ~mask; 3326 } 3327 3328 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level) 3329 { 3330 if (cur_level > PG_LEVEL_4K && 3331 cur_level == fault->goal_level && 3332 is_shadow_present_pte(spte) && 3333 !is_large_pte(spte) && 3334 spte_to_child_sp(spte)->nx_huge_page_disallowed) { 3335 /* 3336 * A small SPTE exists for this pfn, but FNAME(fetch), 3337 * direct_map(), or kvm_tdp_mmu_map() would like to create a 3338 * large PTE instead: just force them to go down another level, 3339 * patching back for them into pfn the next 9 bits of the 3340 * address. 3341 */ 3342 u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) - 3343 KVM_PAGES_PER_HPAGE(cur_level - 1); 3344 fault->pfn |= fault->gfn & page_mask; 3345 fault->goal_level--; 3346 } 3347 } 3348 3349 static int direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3350 { 3351 struct kvm_shadow_walk_iterator it; 3352 struct kvm_mmu_page *sp; 3353 int ret; 3354 gfn_t base_gfn = fault->gfn; 3355 3356 kvm_mmu_hugepage_adjust(vcpu, fault); 3357 3358 trace_kvm_mmu_spte_requested(fault); 3359 for_each_shadow_entry(vcpu, fault->addr, it) { 3360 /* 3361 * We cannot overwrite existing page tables with an NX 3362 * large page, as the leaf could be executable. 3363 */ 3364 if (fault->nx_huge_page_workaround_enabled) 3365 disallowed_hugepage_adjust(fault, *it.sptep, it.level); 3366 3367 base_gfn = gfn_round_for_level(fault->gfn, it.level); 3368 if (it.level == fault->goal_level) 3369 break; 3370 3371 sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, true, ACC_ALL); 3372 if (sp == ERR_PTR(-EEXIST)) 3373 continue; 3374 3375 link_shadow_page(vcpu, it.sptep, sp); 3376 if (fault->huge_page_disallowed) 3377 account_nx_huge_page(vcpu->kvm, sp, 3378 fault->req_level >= it.level); 3379 } 3380 3381 if (WARN_ON_ONCE(it.level != fault->goal_level)) 3382 return -EFAULT; 3383 3384 ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL, 3385 base_gfn, fault->pfn, fault); 3386 if (ret == RET_PF_SPURIOUS) 3387 return ret; 3388 3389 direct_pte_prefetch(vcpu, it.sptep); 3390 return ret; 3391 } 3392 3393 static void kvm_send_hwpoison_signal(struct kvm_memory_slot *slot, gfn_t gfn) 3394 { 3395 unsigned long hva = gfn_to_hva_memslot(slot, gfn); 3396 3397 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva, PAGE_SHIFT, current); 3398 } 3399 3400 static int kvm_handle_error_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3401 { 3402 if (is_sigpending_pfn(fault->pfn)) { 3403 kvm_handle_signal_exit(vcpu); 3404 return -EINTR; 3405 } 3406 3407 /* 3408 * Do not cache the mmio info caused by writing the readonly gfn 3409 * into the spte otherwise read access on readonly gfn also can 3410 * caused mmio page fault and treat it as mmio access. 3411 */ 3412 if (fault->pfn == KVM_PFN_ERR_RO_FAULT) 3413 return RET_PF_EMULATE; 3414 3415 if (fault->pfn == KVM_PFN_ERR_HWPOISON) { 3416 kvm_send_hwpoison_signal(fault->slot, fault->gfn); 3417 return RET_PF_RETRY; 3418 } 3419 3420 return -EFAULT; 3421 } 3422 3423 static int kvm_handle_noslot_fault(struct kvm_vcpu *vcpu, 3424 struct kvm_page_fault *fault, 3425 unsigned int access) 3426 { 3427 gva_t gva = fault->is_tdp ? 0 : fault->addr; 3428 3429 if (fault->is_private) { 3430 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 3431 return -EFAULT; 3432 } 3433 3434 vcpu_cache_mmio_info(vcpu, gva, fault->gfn, 3435 access & shadow_mmio_access_mask); 3436 3437 fault->slot = NULL; 3438 fault->pfn = KVM_PFN_NOSLOT; 3439 fault->map_writable = false; 3440 3441 /* 3442 * If MMIO caching is disabled, emulate immediately without 3443 * touching the shadow page tables as attempting to install an 3444 * MMIO SPTE will just be an expensive nop. 3445 */ 3446 if (unlikely(!enable_mmio_caching)) 3447 return RET_PF_EMULATE; 3448 3449 /* 3450 * Do not create an MMIO SPTE for a gfn greater than host.MAXPHYADDR, 3451 * any guest that generates such gfns is running nested and is being 3452 * tricked by L0 userspace (you can observe gfn > L1.MAXPHYADDR if and 3453 * only if L1's MAXPHYADDR is inaccurate with respect to the 3454 * hardware's). 3455 */ 3456 if (unlikely(fault->gfn > kvm_mmu_max_gfn())) 3457 return RET_PF_EMULATE; 3458 3459 return RET_PF_CONTINUE; 3460 } 3461 3462 static bool page_fault_can_be_fast(struct kvm *kvm, struct kvm_page_fault *fault) 3463 { 3464 /* 3465 * Page faults with reserved bits set, i.e. faults on MMIO SPTEs, only 3466 * reach the common page fault handler if the SPTE has an invalid MMIO 3467 * generation number. Refreshing the MMIO generation needs to go down 3468 * the slow path. Note, EPT Misconfigs do NOT set the PRESENT flag! 3469 */ 3470 if (fault->rsvd) 3471 return false; 3472 3473 /* 3474 * For hardware-protected VMs, certain conditions like attempting to 3475 * perform a write to a page which is not in the state that the guest 3476 * expects it to be in can result in a nested/extended #PF. In this 3477 * case, the below code might misconstrue this situation as being the 3478 * result of a write-protected access, and treat it as a spurious case 3479 * rather than taking any action to satisfy the real source of the #PF 3480 * such as generating a KVM_EXIT_MEMORY_FAULT. This can lead to the 3481 * guest spinning on a #PF indefinitely, so don't attempt the fast path 3482 * in this case. 3483 * 3484 * Note that the kvm_mem_is_private() check might race with an 3485 * attribute update, but this will either result in the guest spinning 3486 * on RET_PF_SPURIOUS until the update completes, or an actual spurious 3487 * case might go down the slow path. Either case will resolve itself. 3488 */ 3489 if (kvm->arch.has_private_mem && 3490 fault->is_private != kvm_mem_is_private(kvm, fault->gfn)) 3491 return false; 3492 3493 /* 3494 * #PF can be fast if: 3495 * 3496 * 1. The shadow page table entry is not present and A/D bits are 3497 * disabled _by KVM_, which could mean that the fault is potentially 3498 * caused by access tracking (if enabled). If A/D bits are enabled 3499 * by KVM, but disabled by L1 for L2, KVM is forced to disable A/D 3500 * bits for L2 and employ access tracking, but the fast page fault 3501 * mechanism only supports direct MMUs. 3502 * 2. The shadow page table entry is present, the access is a write, 3503 * and no reserved bits are set (MMIO SPTEs cannot be "fixed"), i.e. 3504 * the fault was caused by a write-protection violation. If the 3505 * SPTE is MMU-writable (determined later), the fault can be fixed 3506 * by setting the Writable bit, which can be done out of mmu_lock. 3507 */ 3508 if (!fault->present) 3509 return !kvm_ad_enabled; 3510 3511 /* 3512 * Note, instruction fetches and writes are mutually exclusive, ignore 3513 * the "exec" flag. 3514 */ 3515 return fault->write; 3516 } 3517 3518 /* 3519 * Returns true if the SPTE was fixed successfully. Otherwise, 3520 * someone else modified the SPTE from its original value. 3521 */ 3522 static bool fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, 3523 struct kvm_page_fault *fault, 3524 u64 *sptep, u64 old_spte, u64 new_spte) 3525 { 3526 /* 3527 * Theoretically we could also set dirty bit (and flush TLB) here in 3528 * order to eliminate unnecessary PML logging. See comments in 3529 * set_spte. But fast_page_fault is very unlikely to happen with PML 3530 * enabled, so we do not do this. This might result in the same GPA 3531 * to be logged in PML buffer again when the write really happens, and 3532 * eventually to be called by mark_page_dirty twice. But it's also no 3533 * harm. This also avoids the TLB flush needed after setting dirty bit 3534 * so non-PML cases won't be impacted. 3535 * 3536 * Compare with make_spte() where instead shadow_dirty_mask is set. 3537 */ 3538 if (!try_cmpxchg64(sptep, &old_spte, new_spte)) 3539 return false; 3540 3541 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) 3542 mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn); 3543 3544 return true; 3545 } 3546 3547 /* 3548 * Returns the last level spte pointer of the shadow page walk for the given 3549 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no 3550 * walk could be performed, returns NULL and *spte does not contain valid data. 3551 * 3552 * Contract: 3553 * - Must be called between walk_shadow_page_lockless_{begin,end}. 3554 * - The returned sptep must not be used after walk_shadow_page_lockless_end. 3555 */ 3556 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte) 3557 { 3558 struct kvm_shadow_walk_iterator iterator; 3559 u64 old_spte; 3560 u64 *sptep = NULL; 3561 3562 for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) { 3563 sptep = iterator.sptep; 3564 *spte = old_spte; 3565 } 3566 3567 return sptep; 3568 } 3569 3570 /* 3571 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS. 3572 */ 3573 static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3574 { 3575 struct kvm_mmu_page *sp; 3576 int ret = RET_PF_INVALID; 3577 u64 spte; 3578 u64 *sptep; 3579 uint retry_count = 0; 3580 3581 if (!page_fault_can_be_fast(vcpu->kvm, fault)) 3582 return ret; 3583 3584 walk_shadow_page_lockless_begin(vcpu); 3585 3586 do { 3587 u64 new_spte; 3588 3589 if (tdp_mmu_enabled) 3590 sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->gfn, &spte); 3591 else 3592 sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte); 3593 3594 /* 3595 * It's entirely possible for the mapping to have been zapped 3596 * by a different task, but the root page should always be 3597 * available as the vCPU holds a reference to its root(s). 3598 */ 3599 if (WARN_ON_ONCE(!sptep)) 3600 spte = FROZEN_SPTE; 3601 3602 if (!is_shadow_present_pte(spte)) 3603 break; 3604 3605 sp = sptep_to_sp(sptep); 3606 if (!is_last_spte(spte, sp->role.level)) 3607 break; 3608 3609 /* 3610 * Check whether the memory access that caused the fault would 3611 * still cause it if it were to be performed right now. If not, 3612 * then this is a spurious fault caused by TLB lazily flushed, 3613 * or some other CPU has already fixed the PTE after the 3614 * current CPU took the fault. 3615 * 3616 * Need not check the access of upper level table entries since 3617 * they are always ACC_ALL. 3618 */ 3619 if (is_access_allowed(fault, spte)) { 3620 ret = RET_PF_SPURIOUS; 3621 break; 3622 } 3623 3624 new_spte = spte; 3625 3626 /* 3627 * KVM only supports fixing page faults outside of MMU lock for 3628 * direct MMUs, nested MMUs are always indirect, and KVM always 3629 * uses A/D bits for non-nested MMUs. Thus, if A/D bits are 3630 * enabled, the SPTE can't be an access-tracked SPTE. 3631 */ 3632 if (unlikely(!kvm_ad_enabled) && is_access_track_spte(spte)) 3633 new_spte = restore_acc_track_spte(new_spte) | 3634 shadow_accessed_mask; 3635 3636 /* 3637 * To keep things simple, only SPTEs that are MMU-writable can 3638 * be made fully writable outside of mmu_lock, e.g. only SPTEs 3639 * that were write-protected for dirty-logging or access 3640 * tracking are handled here. Don't bother checking if the 3641 * SPTE is writable to prioritize running with A/D bits enabled. 3642 * The is_access_allowed() check above handles the common case 3643 * of the fault being spurious, and the SPTE is known to be 3644 * shadow-present, i.e. except for access tracking restoration 3645 * making the new SPTE writable, the check is wasteful. 3646 */ 3647 if (fault->write && is_mmu_writable_spte(spte)) { 3648 new_spte |= PT_WRITABLE_MASK; 3649 3650 /* 3651 * Do not fix write-permission on the large spte when 3652 * dirty logging is enabled. Since we only dirty the 3653 * first page into the dirty-bitmap in 3654 * fast_pf_fix_direct_spte(), other pages are missed 3655 * if its slot has dirty logging enabled. 3656 * 3657 * Instead, we let the slow page fault path create a 3658 * normal spte to fix the access. 3659 */ 3660 if (sp->role.level > PG_LEVEL_4K && 3661 kvm_slot_dirty_track_enabled(fault->slot)) 3662 break; 3663 } 3664 3665 /* Verify that the fault can be handled in the fast path */ 3666 if (new_spte == spte || 3667 !is_access_allowed(fault, new_spte)) 3668 break; 3669 3670 /* 3671 * Currently, fast page fault only works for direct mapping 3672 * since the gfn is not stable for indirect shadow page. See 3673 * Documentation/virt/kvm/locking.rst to get more detail. 3674 */ 3675 if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) { 3676 ret = RET_PF_FIXED; 3677 break; 3678 } 3679 3680 if (++retry_count > 4) { 3681 pr_warn_once("Fast #PF retrying more than 4 times.\n"); 3682 break; 3683 } 3684 3685 } while (true); 3686 3687 trace_fast_page_fault(vcpu, fault, sptep, spte, ret); 3688 walk_shadow_page_lockless_end(vcpu); 3689 3690 if (ret != RET_PF_INVALID) 3691 vcpu->stat.pf_fast++; 3692 3693 return ret; 3694 } 3695 3696 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa, 3697 struct list_head *invalid_list) 3698 { 3699 struct kvm_mmu_page *sp; 3700 3701 if (!VALID_PAGE(*root_hpa)) 3702 return; 3703 3704 sp = root_to_sp(*root_hpa); 3705 if (WARN_ON_ONCE(!sp)) 3706 return; 3707 3708 if (is_tdp_mmu_page(sp)) { 3709 lockdep_assert_held_read(&kvm->mmu_lock); 3710 kvm_tdp_mmu_put_root(kvm, sp); 3711 } else { 3712 lockdep_assert_held_write(&kvm->mmu_lock); 3713 if (!--sp->root_count && sp->role.invalid) 3714 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 3715 } 3716 3717 *root_hpa = INVALID_PAGE; 3718 } 3719 3720 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */ 3721 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, 3722 ulong roots_to_free) 3723 { 3724 bool is_tdp_mmu = tdp_mmu_enabled && mmu->root_role.direct; 3725 int i; 3726 LIST_HEAD(invalid_list); 3727 bool free_active_root; 3728 3729 WARN_ON_ONCE(roots_to_free & ~KVM_MMU_ROOTS_ALL); 3730 3731 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG); 3732 3733 /* Before acquiring the MMU lock, see if we need to do any real work. */ 3734 free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT) 3735 && VALID_PAGE(mmu->root.hpa); 3736 3737 if (!free_active_root) { 3738 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3739 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) && 3740 VALID_PAGE(mmu->prev_roots[i].hpa)) 3741 break; 3742 3743 if (i == KVM_MMU_NUM_PREV_ROOTS) 3744 return; 3745 } 3746 3747 if (is_tdp_mmu) 3748 read_lock(&kvm->mmu_lock); 3749 else 3750 write_lock(&kvm->mmu_lock); 3751 3752 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3753 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) 3754 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa, 3755 &invalid_list); 3756 3757 if (free_active_root) { 3758 if (kvm_mmu_is_dummy_root(mmu->root.hpa)) { 3759 /* Nothing to cleanup for dummy roots. */ 3760 } else if (root_to_sp(mmu->root.hpa)) { 3761 mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list); 3762 } else if (mmu->pae_root) { 3763 for (i = 0; i < 4; ++i) { 3764 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i])) 3765 continue; 3766 3767 mmu_free_root_page(kvm, &mmu->pae_root[i], 3768 &invalid_list); 3769 mmu->pae_root[i] = INVALID_PAE_ROOT; 3770 } 3771 } 3772 mmu->root.hpa = INVALID_PAGE; 3773 mmu->root.pgd = 0; 3774 } 3775 3776 if (is_tdp_mmu) { 3777 read_unlock(&kvm->mmu_lock); 3778 WARN_ON_ONCE(!list_empty(&invalid_list)); 3779 } else { 3780 kvm_mmu_commit_zap_page(kvm, &invalid_list); 3781 write_unlock(&kvm->mmu_lock); 3782 } 3783 } 3784 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots); 3785 3786 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu) 3787 { 3788 unsigned long roots_to_free = 0; 3789 struct kvm_mmu_page *sp; 3790 hpa_t root_hpa; 3791 int i; 3792 3793 /* 3794 * This should not be called while L2 is active, L2 can't invalidate 3795 * _only_ its own roots, e.g. INVVPID unconditionally exits. 3796 */ 3797 WARN_ON_ONCE(mmu->root_role.guest_mode); 3798 3799 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 3800 root_hpa = mmu->prev_roots[i].hpa; 3801 if (!VALID_PAGE(root_hpa)) 3802 continue; 3803 3804 sp = root_to_sp(root_hpa); 3805 if (!sp || sp->role.guest_mode) 3806 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 3807 } 3808 3809 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 3810 } 3811 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots); 3812 3813 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, int quadrant, 3814 u8 level) 3815 { 3816 union kvm_mmu_page_role role = vcpu->arch.mmu->root_role; 3817 struct kvm_mmu_page *sp; 3818 3819 role.level = level; 3820 role.quadrant = quadrant; 3821 3822 WARN_ON_ONCE(quadrant && !role.has_4_byte_gpte); 3823 WARN_ON_ONCE(role.direct && role.has_4_byte_gpte); 3824 3825 sp = kvm_mmu_get_shadow_page(vcpu, gfn, role); 3826 ++sp->root_count; 3827 3828 return __pa(sp->spt); 3829 } 3830 3831 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) 3832 { 3833 struct kvm_mmu *mmu = vcpu->arch.mmu; 3834 u8 shadow_root_level = mmu->root_role.level; 3835 hpa_t root; 3836 unsigned i; 3837 int r; 3838 3839 if (tdp_mmu_enabled) { 3840 if (kvm_has_mirrored_tdp(vcpu->kvm) && 3841 !VALID_PAGE(mmu->mirror_root_hpa)) 3842 kvm_tdp_mmu_alloc_root(vcpu, true); 3843 kvm_tdp_mmu_alloc_root(vcpu, false); 3844 return 0; 3845 } 3846 3847 write_lock(&vcpu->kvm->mmu_lock); 3848 r = make_mmu_pages_available(vcpu); 3849 if (r < 0) 3850 goto out_unlock; 3851 3852 if (shadow_root_level >= PT64_ROOT_4LEVEL) { 3853 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level); 3854 mmu->root.hpa = root; 3855 } else if (shadow_root_level == PT32E_ROOT_LEVEL) { 3856 if (WARN_ON_ONCE(!mmu->pae_root)) { 3857 r = -EIO; 3858 goto out_unlock; 3859 } 3860 3861 for (i = 0; i < 4; ++i) { 3862 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3863 3864 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 0, 3865 PT32_ROOT_LEVEL); 3866 mmu->pae_root[i] = root | PT_PRESENT_MASK | 3867 shadow_me_value; 3868 } 3869 mmu->root.hpa = __pa(mmu->pae_root); 3870 } else { 3871 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level); 3872 r = -EIO; 3873 goto out_unlock; 3874 } 3875 3876 /* root.pgd is ignored for direct MMUs. */ 3877 mmu->root.pgd = 0; 3878 out_unlock: 3879 write_unlock(&vcpu->kvm->mmu_lock); 3880 return r; 3881 } 3882 3883 static int mmu_first_shadow_root_alloc(struct kvm *kvm) 3884 { 3885 struct kvm_memslots *slots; 3886 struct kvm_memory_slot *slot; 3887 int r = 0, i, bkt; 3888 3889 /* 3890 * Check if this is the first shadow root being allocated before 3891 * taking the lock. 3892 */ 3893 if (kvm_shadow_root_allocated(kvm)) 3894 return 0; 3895 3896 mutex_lock(&kvm->slots_arch_lock); 3897 3898 /* Recheck, under the lock, whether this is the first shadow root. */ 3899 if (kvm_shadow_root_allocated(kvm)) 3900 goto out_unlock; 3901 3902 /* 3903 * Check if anything actually needs to be allocated, e.g. all metadata 3904 * will be allocated upfront if TDP is disabled. 3905 */ 3906 if (kvm_memslots_have_rmaps(kvm) && 3907 kvm_page_track_write_tracking_enabled(kvm)) 3908 goto out_success; 3909 3910 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 3911 slots = __kvm_memslots(kvm, i); 3912 kvm_for_each_memslot(slot, bkt, slots) { 3913 /* 3914 * Both of these functions are no-ops if the target is 3915 * already allocated, so unconditionally calling both 3916 * is safe. Intentionally do NOT free allocations on 3917 * failure to avoid having to track which allocations 3918 * were made now versus when the memslot was created. 3919 * The metadata is guaranteed to be freed when the slot 3920 * is freed, and will be kept/used if userspace retries 3921 * KVM_RUN instead of killing the VM. 3922 */ 3923 r = memslot_rmap_alloc(slot, slot->npages); 3924 if (r) 3925 goto out_unlock; 3926 r = kvm_page_track_write_tracking_alloc(slot); 3927 if (r) 3928 goto out_unlock; 3929 } 3930 } 3931 3932 /* 3933 * Ensure that shadow_root_allocated becomes true strictly after 3934 * all the related pointers are set. 3935 */ 3936 out_success: 3937 smp_store_release(&kvm->arch.shadow_root_allocated, true); 3938 3939 out_unlock: 3940 mutex_unlock(&kvm->slots_arch_lock); 3941 return r; 3942 } 3943 3944 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) 3945 { 3946 struct kvm_mmu *mmu = vcpu->arch.mmu; 3947 u64 pdptrs[4], pm_mask; 3948 gfn_t root_gfn, root_pgd; 3949 int quadrant, i, r; 3950 hpa_t root; 3951 3952 root_pgd = kvm_mmu_get_guest_pgd(vcpu, mmu); 3953 root_gfn = (root_pgd & __PT_BASE_ADDR_MASK) >> PAGE_SHIFT; 3954 3955 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) { 3956 mmu->root.hpa = kvm_mmu_get_dummy_root(); 3957 return 0; 3958 } 3959 3960 /* 3961 * On SVM, reading PDPTRs might access guest memory, which might fault 3962 * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock. 3963 */ 3964 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { 3965 for (i = 0; i < 4; ++i) { 3966 pdptrs[i] = mmu->get_pdptr(vcpu, i); 3967 if (!(pdptrs[i] & PT_PRESENT_MASK)) 3968 continue; 3969 3970 if (!kvm_vcpu_is_visible_gfn(vcpu, pdptrs[i] >> PAGE_SHIFT)) 3971 pdptrs[i] = 0; 3972 } 3973 } 3974 3975 r = mmu_first_shadow_root_alloc(vcpu->kvm); 3976 if (r) 3977 return r; 3978 3979 write_lock(&vcpu->kvm->mmu_lock); 3980 r = make_mmu_pages_available(vcpu); 3981 if (r < 0) 3982 goto out_unlock; 3983 3984 /* 3985 * Do we shadow a long mode page table? If so we need to 3986 * write-protect the guests page table root. 3987 */ 3988 if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { 3989 root = mmu_alloc_root(vcpu, root_gfn, 0, 3990 mmu->root_role.level); 3991 mmu->root.hpa = root; 3992 goto set_root_pgd; 3993 } 3994 3995 if (WARN_ON_ONCE(!mmu->pae_root)) { 3996 r = -EIO; 3997 goto out_unlock; 3998 } 3999 4000 /* 4001 * We shadow a 32 bit page table. This may be a legacy 2-level 4002 * or a PAE 3-level page table. In either case we need to be aware that 4003 * the shadow page table may be a PAE or a long mode page table. 4004 */ 4005 pm_mask = PT_PRESENT_MASK | shadow_me_value; 4006 if (mmu->root_role.level >= PT64_ROOT_4LEVEL) { 4007 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; 4008 4009 if (WARN_ON_ONCE(!mmu->pml4_root)) { 4010 r = -EIO; 4011 goto out_unlock; 4012 } 4013 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask; 4014 4015 if (mmu->root_role.level == PT64_ROOT_5LEVEL) { 4016 if (WARN_ON_ONCE(!mmu->pml5_root)) { 4017 r = -EIO; 4018 goto out_unlock; 4019 } 4020 mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask; 4021 } 4022 } 4023 4024 for (i = 0; i < 4; ++i) { 4025 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 4026 4027 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { 4028 if (!(pdptrs[i] & PT_PRESENT_MASK)) { 4029 mmu->pae_root[i] = INVALID_PAE_ROOT; 4030 continue; 4031 } 4032 root_gfn = pdptrs[i] >> PAGE_SHIFT; 4033 } 4034 4035 /* 4036 * If shadowing 32-bit non-PAE page tables, each PAE page 4037 * directory maps one quarter of the guest's non-PAE page 4038 * directory. Othwerise each PAE page direct shadows one guest 4039 * PAE page directory so that quadrant should be 0. 4040 */ 4041 quadrant = (mmu->cpu_role.base.level == PT32_ROOT_LEVEL) ? i : 0; 4042 4043 root = mmu_alloc_root(vcpu, root_gfn, quadrant, PT32_ROOT_LEVEL); 4044 mmu->pae_root[i] = root | pm_mask; 4045 } 4046 4047 if (mmu->root_role.level == PT64_ROOT_5LEVEL) 4048 mmu->root.hpa = __pa(mmu->pml5_root); 4049 else if (mmu->root_role.level == PT64_ROOT_4LEVEL) 4050 mmu->root.hpa = __pa(mmu->pml4_root); 4051 else 4052 mmu->root.hpa = __pa(mmu->pae_root); 4053 4054 set_root_pgd: 4055 mmu->root.pgd = root_pgd; 4056 out_unlock: 4057 write_unlock(&vcpu->kvm->mmu_lock); 4058 4059 return r; 4060 } 4061 4062 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu) 4063 { 4064 struct kvm_mmu *mmu = vcpu->arch.mmu; 4065 bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL; 4066 u64 *pml5_root = NULL; 4067 u64 *pml4_root = NULL; 4068 u64 *pae_root; 4069 4070 /* 4071 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP 4072 * tables are allocated and initialized at root creation as there is no 4073 * equivalent level in the guest's NPT to shadow. Allocate the tables 4074 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare. 4075 */ 4076 if (mmu->root_role.direct || 4077 mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL || 4078 mmu->root_role.level < PT64_ROOT_4LEVEL) 4079 return 0; 4080 4081 /* 4082 * NPT, the only paging mode that uses this horror, uses a fixed number 4083 * of levels for the shadow page tables, e.g. all MMUs are 4-level or 4084 * all MMus are 5-level. Thus, this can safely require that pml5_root 4085 * is allocated if the other roots are valid and pml5 is needed, as any 4086 * prior MMU would also have required pml5. 4087 */ 4088 if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root)) 4089 return 0; 4090 4091 /* 4092 * The special roots should always be allocated in concert. Yell and 4093 * bail if KVM ends up in a state where only one of the roots is valid. 4094 */ 4095 if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root || 4096 (need_pml5 && mmu->pml5_root))) 4097 return -EIO; 4098 4099 /* 4100 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and 4101 * doesn't need to be decrypted. 4102 */ 4103 pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 4104 if (!pae_root) 4105 return -ENOMEM; 4106 4107 #ifdef CONFIG_X86_64 4108 pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 4109 if (!pml4_root) 4110 goto err_pml4; 4111 4112 if (need_pml5) { 4113 pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 4114 if (!pml5_root) 4115 goto err_pml5; 4116 } 4117 #endif 4118 4119 mmu->pae_root = pae_root; 4120 mmu->pml4_root = pml4_root; 4121 mmu->pml5_root = pml5_root; 4122 4123 return 0; 4124 4125 #ifdef CONFIG_X86_64 4126 err_pml5: 4127 free_page((unsigned long)pml4_root); 4128 err_pml4: 4129 free_page((unsigned long)pae_root); 4130 return -ENOMEM; 4131 #endif 4132 } 4133 4134 static bool is_unsync_root(hpa_t root) 4135 { 4136 struct kvm_mmu_page *sp; 4137 4138 if (!VALID_PAGE(root) || kvm_mmu_is_dummy_root(root)) 4139 return false; 4140 4141 /* 4142 * The read barrier orders the CPU's read of SPTE.W during the page table 4143 * walk before the reads of sp->unsync/sp->unsync_children here. 4144 * 4145 * Even if another CPU was marking the SP as unsync-ed simultaneously, 4146 * any guest page table changes are not guaranteed to be visible anyway 4147 * until this VCPU issues a TLB flush strictly after those changes are 4148 * made. We only need to ensure that the other CPU sets these flags 4149 * before any actual changes to the page tables are made. The comments 4150 * in mmu_try_to_unsync_pages() describe what could go wrong if this 4151 * requirement isn't satisfied. 4152 */ 4153 smp_rmb(); 4154 sp = root_to_sp(root); 4155 4156 /* 4157 * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the 4158 * PDPTEs for a given PAE root need to be synchronized individually. 4159 */ 4160 if (WARN_ON_ONCE(!sp)) 4161 return false; 4162 4163 if (sp->unsync || sp->unsync_children) 4164 return true; 4165 4166 return false; 4167 } 4168 4169 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) 4170 { 4171 int i; 4172 struct kvm_mmu_page *sp; 4173 4174 if (vcpu->arch.mmu->root_role.direct) 4175 return; 4176 4177 if (!VALID_PAGE(vcpu->arch.mmu->root.hpa)) 4178 return; 4179 4180 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 4181 4182 if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { 4183 hpa_t root = vcpu->arch.mmu->root.hpa; 4184 4185 if (!is_unsync_root(root)) 4186 return; 4187 4188 sp = root_to_sp(root); 4189 4190 write_lock(&vcpu->kvm->mmu_lock); 4191 mmu_sync_children(vcpu, sp, true); 4192 write_unlock(&vcpu->kvm->mmu_lock); 4193 return; 4194 } 4195 4196 write_lock(&vcpu->kvm->mmu_lock); 4197 4198 for (i = 0; i < 4; ++i) { 4199 hpa_t root = vcpu->arch.mmu->pae_root[i]; 4200 4201 if (IS_VALID_PAE_ROOT(root)) { 4202 sp = spte_to_child_sp(root); 4203 mmu_sync_children(vcpu, sp, true); 4204 } 4205 } 4206 4207 write_unlock(&vcpu->kvm->mmu_lock); 4208 } 4209 4210 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu) 4211 { 4212 unsigned long roots_to_free = 0; 4213 int i; 4214 4215 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 4216 if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa)) 4217 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 4218 4219 /* sync prev_roots by simply freeing them */ 4220 kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free); 4221 } 4222 4223 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 4224 gpa_t vaddr, u64 access, 4225 struct x86_exception *exception) 4226 { 4227 if (exception) 4228 exception->error_code = 0; 4229 return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception); 4230 } 4231 4232 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct) 4233 { 4234 /* 4235 * A nested guest cannot use the MMIO cache if it is using nested 4236 * page tables, because cr2 is a nGPA while the cache stores GPAs. 4237 */ 4238 if (mmu_is_nested(vcpu)) 4239 return false; 4240 4241 if (direct) 4242 return vcpu_match_mmio_gpa(vcpu, addr); 4243 4244 return vcpu_match_mmio_gva(vcpu, addr); 4245 } 4246 4247 /* 4248 * Return the level of the lowest level SPTE added to sptes. 4249 * That SPTE may be non-present. 4250 * 4251 * Must be called between walk_shadow_page_lockless_{begin,end}. 4252 */ 4253 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level) 4254 { 4255 struct kvm_shadow_walk_iterator iterator; 4256 int leaf = -1; 4257 u64 spte; 4258 4259 for (shadow_walk_init(&iterator, vcpu, addr), 4260 *root_level = iterator.level; 4261 shadow_walk_okay(&iterator); 4262 __shadow_walk_next(&iterator, spte)) { 4263 leaf = iterator.level; 4264 spte = mmu_spte_get_lockless(iterator.sptep); 4265 4266 sptes[leaf] = spte; 4267 } 4268 4269 return leaf; 4270 } 4271 4272 static int get_sptes_lockless(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, 4273 int *root_level) 4274 { 4275 int leaf; 4276 4277 walk_shadow_page_lockless_begin(vcpu); 4278 4279 if (is_tdp_mmu_active(vcpu)) 4280 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, root_level); 4281 else 4282 leaf = get_walk(vcpu, addr, sptes, root_level); 4283 4284 walk_shadow_page_lockless_end(vcpu); 4285 return leaf; 4286 } 4287 4288 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */ 4289 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) 4290 { 4291 u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; 4292 struct rsvd_bits_validate *rsvd_check; 4293 int root, leaf, level; 4294 bool reserved = false; 4295 4296 leaf = get_sptes_lockless(vcpu, addr, sptes, &root); 4297 if (unlikely(leaf < 0)) { 4298 *sptep = 0ull; 4299 return reserved; 4300 } 4301 4302 *sptep = sptes[leaf]; 4303 4304 /* 4305 * Skip reserved bits checks on the terminal leaf if it's not a valid 4306 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by 4307 * design, always have reserved bits set. The purpose of the checks is 4308 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs. 4309 */ 4310 if (!is_shadow_present_pte(sptes[leaf])) 4311 leaf++; 4312 4313 rsvd_check = &vcpu->arch.mmu->shadow_zero_check; 4314 4315 for (level = root; level >= leaf; level--) 4316 reserved |= is_rsvd_spte(rsvd_check, sptes[level], level); 4317 4318 if (reserved) { 4319 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n", 4320 __func__, addr); 4321 for (level = root; level >= leaf; level--) 4322 pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx", 4323 sptes[level], level, 4324 get_rsvd_bits(rsvd_check, sptes[level], level)); 4325 } 4326 4327 return reserved; 4328 } 4329 4330 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct) 4331 { 4332 u64 spte; 4333 bool reserved; 4334 4335 if (mmio_info_in_cache(vcpu, addr, direct)) 4336 return RET_PF_EMULATE; 4337 4338 reserved = get_mmio_spte(vcpu, addr, &spte); 4339 if (WARN_ON_ONCE(reserved)) 4340 return -EINVAL; 4341 4342 if (is_mmio_spte(vcpu->kvm, spte)) { 4343 gfn_t gfn = get_mmio_spte_gfn(spte); 4344 unsigned int access = get_mmio_spte_access(spte); 4345 4346 if (!check_mmio_spte(vcpu, spte)) 4347 return RET_PF_INVALID; 4348 4349 if (direct) 4350 addr = 0; 4351 4352 trace_handle_mmio_page_fault(addr, gfn, access); 4353 vcpu_cache_mmio_info(vcpu, addr, gfn, access); 4354 return RET_PF_EMULATE; 4355 } 4356 4357 /* 4358 * If the page table is zapped by other cpus, let CPU fault again on 4359 * the address. 4360 */ 4361 return RET_PF_RETRY; 4362 } 4363 4364 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu, 4365 struct kvm_page_fault *fault) 4366 { 4367 if (unlikely(fault->rsvd)) 4368 return false; 4369 4370 if (!fault->present || !fault->write) 4371 return false; 4372 4373 /* 4374 * guest is writing the page which is write tracked which can 4375 * not be fixed by page fault handler. 4376 */ 4377 if (kvm_gfn_is_write_tracked(vcpu->kvm, fault->slot, fault->gfn)) 4378 return true; 4379 4380 return false; 4381 } 4382 4383 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr) 4384 { 4385 struct kvm_shadow_walk_iterator iterator; 4386 u64 spte; 4387 4388 walk_shadow_page_lockless_begin(vcpu); 4389 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) 4390 clear_sp_write_flooding_count(iterator.sptep); 4391 walk_shadow_page_lockless_end(vcpu); 4392 } 4393 4394 static u32 alloc_apf_token(struct kvm_vcpu *vcpu) 4395 { 4396 /* make sure the token value is not 0 */ 4397 u32 id = vcpu->arch.apf.id; 4398 4399 if (id << 12 == 0) 4400 vcpu->arch.apf.id = 1; 4401 4402 return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; 4403 } 4404 4405 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, 4406 struct kvm_page_fault *fault) 4407 { 4408 struct kvm_arch_async_pf arch; 4409 4410 arch.token = alloc_apf_token(vcpu); 4411 arch.gfn = fault->gfn; 4412 arch.error_code = fault->error_code; 4413 arch.direct_map = vcpu->arch.mmu->root_role.direct; 4414 arch.cr3 = kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu); 4415 4416 return kvm_setup_async_pf(vcpu, fault->addr, 4417 kvm_vcpu_gfn_to_hva(vcpu, fault->gfn), &arch); 4418 } 4419 4420 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 4421 { 4422 int r; 4423 4424 if (WARN_ON_ONCE(work->arch.error_code & PFERR_PRIVATE_ACCESS)) 4425 return; 4426 4427 if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) || 4428 work->wakeup_all) 4429 return; 4430 4431 r = kvm_mmu_reload(vcpu); 4432 if (unlikely(r)) 4433 return; 4434 4435 if (!vcpu->arch.mmu->root_role.direct && 4436 work->arch.cr3 != kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu)) 4437 return; 4438 4439 r = kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, work->arch.error_code, 4440 true, NULL, NULL); 4441 4442 /* 4443 * Account fixed page faults, otherwise they'll never be counted, but 4444 * ignore stats for all other return times. Page-ready "faults" aren't 4445 * truly spurious and never trigger emulation 4446 */ 4447 if (r == RET_PF_FIXED) 4448 vcpu->stat.pf_fixed++; 4449 } 4450 4451 static inline u8 kvm_max_level_for_order(int order) 4452 { 4453 BUILD_BUG_ON(KVM_MAX_HUGEPAGE_LEVEL > PG_LEVEL_1G); 4454 4455 KVM_MMU_WARN_ON(order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G) && 4456 order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M) && 4457 order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K)); 4458 4459 if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G)) 4460 return PG_LEVEL_1G; 4461 4462 if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M)) 4463 return PG_LEVEL_2M; 4464 4465 return PG_LEVEL_4K; 4466 } 4467 4468 static u8 kvm_max_private_mapping_level(struct kvm *kvm, kvm_pfn_t pfn, 4469 u8 max_level, int gmem_order) 4470 { 4471 u8 req_max_level; 4472 4473 if (max_level == PG_LEVEL_4K) 4474 return PG_LEVEL_4K; 4475 4476 max_level = min(kvm_max_level_for_order(gmem_order), max_level); 4477 if (max_level == PG_LEVEL_4K) 4478 return PG_LEVEL_4K; 4479 4480 req_max_level = kvm_x86_call(private_max_mapping_level)(kvm, pfn); 4481 if (req_max_level) 4482 max_level = min(max_level, req_max_level); 4483 4484 return max_level; 4485 } 4486 4487 static void kvm_mmu_finish_page_fault(struct kvm_vcpu *vcpu, 4488 struct kvm_page_fault *fault, int r) 4489 { 4490 kvm_release_faultin_page(vcpu->kvm, fault->refcounted_page, 4491 r == RET_PF_RETRY, fault->map_writable); 4492 } 4493 4494 static int kvm_mmu_faultin_pfn_private(struct kvm_vcpu *vcpu, 4495 struct kvm_page_fault *fault) 4496 { 4497 int max_order, r; 4498 4499 if (!kvm_slot_can_be_private(fault->slot)) { 4500 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 4501 return -EFAULT; 4502 } 4503 4504 r = kvm_gmem_get_pfn(vcpu->kvm, fault->slot, fault->gfn, &fault->pfn, 4505 &fault->refcounted_page, &max_order); 4506 if (r) { 4507 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 4508 return r; 4509 } 4510 4511 fault->map_writable = !(fault->slot->flags & KVM_MEM_READONLY); 4512 fault->max_level = kvm_max_private_mapping_level(vcpu->kvm, fault->pfn, 4513 fault->max_level, max_order); 4514 4515 return RET_PF_CONTINUE; 4516 } 4517 4518 static int __kvm_mmu_faultin_pfn(struct kvm_vcpu *vcpu, 4519 struct kvm_page_fault *fault) 4520 { 4521 unsigned int foll = fault->write ? FOLL_WRITE : 0; 4522 4523 if (fault->is_private) 4524 return kvm_mmu_faultin_pfn_private(vcpu, fault); 4525 4526 foll |= FOLL_NOWAIT; 4527 fault->pfn = __kvm_faultin_pfn(fault->slot, fault->gfn, foll, 4528 &fault->map_writable, &fault->refcounted_page); 4529 4530 /* 4531 * If resolving the page failed because I/O is needed to fault-in the 4532 * page, then either set up an asynchronous #PF to do the I/O, or if 4533 * doing an async #PF isn't possible, retry with I/O allowed. All 4534 * other failures are terminal, i.e. retrying won't help. 4535 */ 4536 if (fault->pfn != KVM_PFN_ERR_NEEDS_IO) 4537 return RET_PF_CONTINUE; 4538 4539 if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) { 4540 trace_kvm_try_async_get_page(fault->addr, fault->gfn); 4541 if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) { 4542 trace_kvm_async_pf_repeated_fault(fault->addr, fault->gfn); 4543 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 4544 return RET_PF_RETRY; 4545 } else if (kvm_arch_setup_async_pf(vcpu, fault)) { 4546 return RET_PF_RETRY; 4547 } 4548 } 4549 4550 /* 4551 * Allow gup to bail on pending non-fatal signals when it's also allowed 4552 * to wait for IO. Note, gup always bails if it is unable to quickly 4553 * get a page and a fatal signal, i.e. SIGKILL, is pending. 4554 */ 4555 foll |= FOLL_INTERRUPTIBLE; 4556 foll &= ~FOLL_NOWAIT; 4557 fault->pfn = __kvm_faultin_pfn(fault->slot, fault->gfn, foll, 4558 &fault->map_writable, &fault->refcounted_page); 4559 4560 return RET_PF_CONTINUE; 4561 } 4562 4563 static int kvm_mmu_faultin_pfn(struct kvm_vcpu *vcpu, 4564 struct kvm_page_fault *fault, unsigned int access) 4565 { 4566 struct kvm_memory_slot *slot = fault->slot; 4567 struct kvm *kvm = vcpu->kvm; 4568 int ret; 4569 4570 if (KVM_BUG_ON(kvm_is_gfn_alias(kvm, fault->gfn), kvm)) 4571 return -EFAULT; 4572 4573 /* 4574 * Note that the mmu_invalidate_seq also serves to detect a concurrent 4575 * change in attributes. is_page_fault_stale() will detect an 4576 * invalidation relate to fault->fn and resume the guest without 4577 * installing a mapping in the page tables. 4578 */ 4579 fault->mmu_seq = vcpu->kvm->mmu_invalidate_seq; 4580 smp_rmb(); 4581 4582 /* 4583 * Now that we have a snapshot of mmu_invalidate_seq we can check for a 4584 * private vs. shared mismatch. 4585 */ 4586 if (fault->is_private != kvm_mem_is_private(kvm, fault->gfn)) { 4587 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 4588 return -EFAULT; 4589 } 4590 4591 if (unlikely(!slot)) 4592 return kvm_handle_noslot_fault(vcpu, fault, access); 4593 4594 /* 4595 * Retry the page fault if the gfn hit a memslot that is being deleted 4596 * or moved. This ensures any existing SPTEs for the old memslot will 4597 * be zapped before KVM inserts a new MMIO SPTE for the gfn. 4598 */ 4599 if (slot->flags & KVM_MEMSLOT_INVALID) 4600 return RET_PF_RETRY; 4601 4602 if (slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT) { 4603 /* 4604 * Don't map L1's APIC access page into L2, KVM doesn't support 4605 * using APICv/AVIC to accelerate L2 accesses to L1's APIC, 4606 * i.e. the access needs to be emulated. Emulating access to 4607 * L1's APIC is also correct if L1 is accelerating L2's own 4608 * virtual APIC, but for some reason L1 also maps _L1's_ APIC 4609 * into L2. Note, vcpu_is_mmio_gpa() always treats access to 4610 * the APIC as MMIO. Allow an MMIO SPTE to be created, as KVM 4611 * uses different roots for L1 vs. L2, i.e. there is no danger 4612 * of breaking APICv/AVIC for L1. 4613 */ 4614 if (is_guest_mode(vcpu)) 4615 return kvm_handle_noslot_fault(vcpu, fault, access); 4616 4617 /* 4618 * If the APIC access page exists but is disabled, go directly 4619 * to emulation without caching the MMIO access or creating a 4620 * MMIO SPTE. That way the cache doesn't need to be purged 4621 * when the AVIC is re-enabled. 4622 */ 4623 if (!kvm_apicv_activated(vcpu->kvm)) 4624 return RET_PF_EMULATE; 4625 } 4626 4627 /* 4628 * Check for a relevant mmu_notifier invalidation event before getting 4629 * the pfn from the primary MMU, and before acquiring mmu_lock. 4630 * 4631 * For mmu_lock, if there is an in-progress invalidation and the kernel 4632 * allows preemption, the invalidation task may drop mmu_lock and yield 4633 * in response to mmu_lock being contended, which is *very* counter- 4634 * productive as this vCPU can't actually make forward progress until 4635 * the invalidation completes. 4636 * 4637 * Retrying now can also avoid unnessary lock contention in the primary 4638 * MMU, as the primary MMU doesn't necessarily hold a single lock for 4639 * the duration of the invalidation, i.e. faulting in a conflicting pfn 4640 * can cause the invalidation to take longer by holding locks that are 4641 * needed to complete the invalidation. 4642 * 4643 * Do the pre-check even for non-preemtible kernels, i.e. even if KVM 4644 * will never yield mmu_lock in response to contention, as this vCPU is 4645 * *guaranteed* to need to retry, i.e. waiting until mmu_lock is held 4646 * to detect retry guarantees the worst case latency for the vCPU. 4647 */ 4648 if (mmu_invalidate_retry_gfn_unsafe(kvm, fault->mmu_seq, fault->gfn)) 4649 return RET_PF_RETRY; 4650 4651 ret = __kvm_mmu_faultin_pfn(vcpu, fault); 4652 if (ret != RET_PF_CONTINUE) 4653 return ret; 4654 4655 if (unlikely(is_error_pfn(fault->pfn))) 4656 return kvm_handle_error_pfn(vcpu, fault); 4657 4658 if (WARN_ON_ONCE(!fault->slot || is_noslot_pfn(fault->pfn))) 4659 return kvm_handle_noslot_fault(vcpu, fault, access); 4660 4661 /* 4662 * Check again for a relevant mmu_notifier invalidation event purely to 4663 * avoid contending mmu_lock. Most invalidations will be detected by 4664 * the previous check, but checking is extremely cheap relative to the 4665 * overall cost of failing to detect the invalidation until after 4666 * mmu_lock is acquired. 4667 */ 4668 if (mmu_invalidate_retry_gfn_unsafe(kvm, fault->mmu_seq, fault->gfn)) { 4669 kvm_mmu_finish_page_fault(vcpu, fault, RET_PF_RETRY); 4670 return RET_PF_RETRY; 4671 } 4672 4673 return RET_PF_CONTINUE; 4674 } 4675 4676 /* 4677 * Returns true if the page fault is stale and needs to be retried, i.e. if the 4678 * root was invalidated by a memslot update or a relevant mmu_notifier fired. 4679 */ 4680 static bool is_page_fault_stale(struct kvm_vcpu *vcpu, 4681 struct kvm_page_fault *fault) 4682 { 4683 struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa); 4684 4685 /* Special roots, e.g. pae_root, are not backed by shadow pages. */ 4686 if (sp && is_obsolete_sp(vcpu->kvm, sp)) 4687 return true; 4688 4689 /* 4690 * Roots without an associated shadow page are considered invalid if 4691 * there is a pending request to free obsolete roots. The request is 4692 * only a hint that the current root _may_ be obsolete and needs to be 4693 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a 4694 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs 4695 * to reload even if no vCPU is actively using the root. 4696 */ 4697 if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 4698 return true; 4699 4700 /* 4701 * Check for a relevant mmu_notifier invalidation event one last time 4702 * now that mmu_lock is held, as the "unsafe" checks performed without 4703 * holding mmu_lock can get false negatives. 4704 */ 4705 return fault->slot && 4706 mmu_invalidate_retry_gfn(vcpu->kvm, fault->mmu_seq, fault->gfn); 4707 } 4708 4709 static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4710 { 4711 int r; 4712 4713 /* Dummy roots are used only for shadowing bad guest roots. */ 4714 if (WARN_ON_ONCE(kvm_mmu_is_dummy_root(vcpu->arch.mmu->root.hpa))) 4715 return RET_PF_RETRY; 4716 4717 if (page_fault_handle_page_track(vcpu, fault)) 4718 return RET_PF_WRITE_PROTECTED; 4719 4720 r = fast_page_fault(vcpu, fault); 4721 if (r != RET_PF_INVALID) 4722 return r; 4723 4724 r = mmu_topup_memory_caches(vcpu, false); 4725 if (r) 4726 return r; 4727 4728 r = kvm_mmu_faultin_pfn(vcpu, fault, ACC_ALL); 4729 if (r != RET_PF_CONTINUE) 4730 return r; 4731 4732 r = RET_PF_RETRY; 4733 write_lock(&vcpu->kvm->mmu_lock); 4734 4735 if (is_page_fault_stale(vcpu, fault)) 4736 goto out_unlock; 4737 4738 r = make_mmu_pages_available(vcpu); 4739 if (r) 4740 goto out_unlock; 4741 4742 r = direct_map(vcpu, fault); 4743 4744 out_unlock: 4745 kvm_mmu_finish_page_fault(vcpu, fault, r); 4746 write_unlock(&vcpu->kvm->mmu_lock); 4747 return r; 4748 } 4749 4750 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, 4751 struct kvm_page_fault *fault) 4752 { 4753 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */ 4754 fault->max_level = PG_LEVEL_2M; 4755 return direct_page_fault(vcpu, fault); 4756 } 4757 4758 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, 4759 u64 fault_address, char *insn, int insn_len) 4760 { 4761 int r = 1; 4762 u32 flags = vcpu->arch.apf.host_apf_flags; 4763 4764 #ifndef CONFIG_X86_64 4765 /* A 64-bit CR2 should be impossible on 32-bit KVM. */ 4766 if (WARN_ON_ONCE(fault_address >> 32)) 4767 return -EFAULT; 4768 #endif 4769 /* 4770 * Legacy #PF exception only have a 32-bit error code. Simply drop the 4771 * upper bits as KVM doesn't use them for #PF (because they are never 4772 * set), and to ensure there are no collisions with KVM-defined bits. 4773 */ 4774 if (WARN_ON_ONCE(error_code >> 32)) 4775 error_code = lower_32_bits(error_code); 4776 4777 /* 4778 * Restrict KVM-defined flags to bits 63:32 so that it's impossible for 4779 * them to conflict with #PF error codes, which are limited to 32 bits. 4780 */ 4781 BUILD_BUG_ON(lower_32_bits(PFERR_SYNTHETIC_MASK)); 4782 4783 vcpu->arch.l1tf_flush_l1d = true; 4784 if (!flags) { 4785 trace_kvm_page_fault(vcpu, fault_address, error_code); 4786 4787 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn, 4788 insn_len); 4789 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) { 4790 vcpu->arch.apf.host_apf_flags = 0; 4791 local_irq_disable(); 4792 kvm_async_pf_task_wait_schedule(fault_address); 4793 local_irq_enable(); 4794 } else { 4795 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags); 4796 } 4797 4798 return r; 4799 } 4800 EXPORT_SYMBOL_GPL(kvm_handle_page_fault); 4801 4802 #ifdef CONFIG_X86_64 4803 static int kvm_tdp_mmu_page_fault(struct kvm_vcpu *vcpu, 4804 struct kvm_page_fault *fault) 4805 { 4806 int r; 4807 4808 if (page_fault_handle_page_track(vcpu, fault)) 4809 return RET_PF_WRITE_PROTECTED; 4810 4811 r = fast_page_fault(vcpu, fault); 4812 if (r != RET_PF_INVALID) 4813 return r; 4814 4815 r = mmu_topup_memory_caches(vcpu, false); 4816 if (r) 4817 return r; 4818 4819 r = kvm_mmu_faultin_pfn(vcpu, fault, ACC_ALL); 4820 if (r != RET_PF_CONTINUE) 4821 return r; 4822 4823 r = RET_PF_RETRY; 4824 read_lock(&vcpu->kvm->mmu_lock); 4825 4826 if (is_page_fault_stale(vcpu, fault)) 4827 goto out_unlock; 4828 4829 r = kvm_tdp_mmu_map(vcpu, fault); 4830 4831 out_unlock: 4832 kvm_mmu_finish_page_fault(vcpu, fault, r); 4833 read_unlock(&vcpu->kvm->mmu_lock); 4834 return r; 4835 } 4836 #endif 4837 4838 bool kvm_mmu_may_ignore_guest_pat(void) 4839 { 4840 /* 4841 * When EPT is enabled (shadow_memtype_mask is non-zero), and the VM 4842 * has non-coherent DMA (DMA doesn't snoop CPU caches), KVM's ABI is to 4843 * honor the memtype from the guest's PAT so that guest accesses to 4844 * memory that is DMA'd aren't cached against the guest's wishes. As a 4845 * result, KVM _may_ ignore guest PAT, whereas without non-coherent DMA, 4846 * KVM _always_ ignores guest PAT (when EPT is enabled). 4847 */ 4848 return shadow_memtype_mask; 4849 } 4850 4851 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4852 { 4853 #ifdef CONFIG_X86_64 4854 if (tdp_mmu_enabled) 4855 return kvm_tdp_mmu_page_fault(vcpu, fault); 4856 #endif 4857 4858 return direct_page_fault(vcpu, fault); 4859 } 4860 4861 static int kvm_tdp_map_page(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code, 4862 u8 *level) 4863 { 4864 int r; 4865 4866 /* 4867 * Restrict to TDP page fault, since that's the only case where the MMU 4868 * is indexed by GPA. 4869 */ 4870 if (vcpu->arch.mmu->page_fault != kvm_tdp_page_fault) 4871 return -EOPNOTSUPP; 4872 4873 do { 4874 if (signal_pending(current)) 4875 return -EINTR; 4876 cond_resched(); 4877 r = kvm_mmu_do_page_fault(vcpu, gpa, error_code, true, NULL, level); 4878 } while (r == RET_PF_RETRY); 4879 4880 if (r < 0) 4881 return r; 4882 4883 switch (r) { 4884 case RET_PF_FIXED: 4885 case RET_PF_SPURIOUS: 4886 case RET_PF_WRITE_PROTECTED: 4887 return 0; 4888 4889 case RET_PF_EMULATE: 4890 return -ENOENT; 4891 4892 case RET_PF_RETRY: 4893 case RET_PF_CONTINUE: 4894 case RET_PF_INVALID: 4895 default: 4896 WARN_ONCE(1, "could not fix page fault during prefault"); 4897 return -EIO; 4898 } 4899 } 4900 4901 long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu, 4902 struct kvm_pre_fault_memory *range) 4903 { 4904 u64 error_code = PFERR_GUEST_FINAL_MASK; 4905 u8 level = PG_LEVEL_4K; 4906 u64 end; 4907 int r; 4908 4909 if (!vcpu->kvm->arch.pre_fault_allowed) 4910 return -EOPNOTSUPP; 4911 4912 /* 4913 * reload is efficient when called repeatedly, so we can do it on 4914 * every iteration. 4915 */ 4916 r = kvm_mmu_reload(vcpu); 4917 if (r) 4918 return r; 4919 4920 if (kvm_arch_has_private_mem(vcpu->kvm) && 4921 kvm_mem_is_private(vcpu->kvm, gpa_to_gfn(range->gpa))) 4922 error_code |= PFERR_PRIVATE_ACCESS; 4923 4924 /* 4925 * Shadow paging uses GVA for kvm page fault, so restrict to 4926 * two-dimensional paging. 4927 */ 4928 r = kvm_tdp_map_page(vcpu, range->gpa, error_code, &level); 4929 if (r < 0) 4930 return r; 4931 4932 /* 4933 * If the mapping that covers range->gpa can use a huge page, it 4934 * may start below it or end after range->gpa + range->size. 4935 */ 4936 end = (range->gpa & KVM_HPAGE_MASK(level)) + KVM_HPAGE_SIZE(level); 4937 return min(range->size, end - range->gpa); 4938 } 4939 4940 static void nonpaging_init_context(struct kvm_mmu *context) 4941 { 4942 context->page_fault = nonpaging_page_fault; 4943 context->gva_to_gpa = nonpaging_gva_to_gpa; 4944 context->sync_spte = NULL; 4945 } 4946 4947 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd, 4948 union kvm_mmu_page_role role) 4949 { 4950 struct kvm_mmu_page *sp; 4951 4952 if (!VALID_PAGE(root->hpa)) 4953 return false; 4954 4955 if (!role.direct && pgd != root->pgd) 4956 return false; 4957 4958 sp = root_to_sp(root->hpa); 4959 if (WARN_ON_ONCE(!sp)) 4960 return false; 4961 4962 return role.word == sp->role.word; 4963 } 4964 4965 /* 4966 * Find out if a previously cached root matching the new pgd/role is available, 4967 * and insert the current root as the MRU in the cache. 4968 * If a matching root is found, it is assigned to kvm_mmu->root and 4969 * true is returned. 4970 * If no match is found, kvm_mmu->root is left invalid, the LRU root is 4971 * evicted to make room for the current root, and false is returned. 4972 */ 4973 static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu, 4974 gpa_t new_pgd, 4975 union kvm_mmu_page_role new_role) 4976 { 4977 uint i; 4978 4979 if (is_root_usable(&mmu->root, new_pgd, new_role)) 4980 return true; 4981 4982 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 4983 /* 4984 * The swaps end up rotating the cache like this: 4985 * C 0 1 2 3 (on entry to the function) 4986 * 0 C 1 2 3 4987 * 1 C 0 2 3 4988 * 2 C 0 1 3 4989 * 3 C 0 1 2 (on exit from the loop) 4990 */ 4991 swap(mmu->root, mmu->prev_roots[i]); 4992 if (is_root_usable(&mmu->root, new_pgd, new_role)) 4993 return true; 4994 } 4995 4996 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 4997 return false; 4998 } 4999 5000 /* 5001 * Find out if a previously cached root matching the new pgd/role is available. 5002 * On entry, mmu->root is invalid. 5003 * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry 5004 * of the cache becomes invalid, and true is returned. 5005 * If no match is found, kvm_mmu->root is left invalid and false is returned. 5006 */ 5007 static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu, 5008 gpa_t new_pgd, 5009 union kvm_mmu_page_role new_role) 5010 { 5011 uint i; 5012 5013 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5014 if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role)) 5015 goto hit; 5016 5017 return false; 5018 5019 hit: 5020 swap(mmu->root, mmu->prev_roots[i]); 5021 /* Bubble up the remaining roots. */ 5022 for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++) 5023 mmu->prev_roots[i] = mmu->prev_roots[i + 1]; 5024 mmu->prev_roots[i].hpa = INVALID_PAGE; 5025 return true; 5026 } 5027 5028 static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu, 5029 gpa_t new_pgd, union kvm_mmu_page_role new_role) 5030 { 5031 /* 5032 * Limit reuse to 64-bit hosts+VMs without "special" roots in order to 5033 * avoid having to deal with PDPTEs and other complexities. 5034 */ 5035 if (VALID_PAGE(mmu->root.hpa) && !root_to_sp(mmu->root.hpa)) 5036 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 5037 5038 if (VALID_PAGE(mmu->root.hpa)) 5039 return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role); 5040 else 5041 return cached_root_find_without_current(kvm, mmu, new_pgd, new_role); 5042 } 5043 5044 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd) 5045 { 5046 struct kvm_mmu *mmu = vcpu->arch.mmu; 5047 union kvm_mmu_page_role new_role = mmu->root_role; 5048 5049 /* 5050 * Return immediately if no usable root was found, kvm_mmu_reload() 5051 * will establish a valid root prior to the next VM-Enter. 5052 */ 5053 if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role)) 5054 return; 5055 5056 /* 5057 * It's possible that the cached previous root page is obsolete because 5058 * of a change in the MMU generation number. However, changing the 5059 * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, 5060 * which will free the root set here and allocate a new one. 5061 */ 5062 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 5063 5064 if (force_flush_and_sync_on_reuse) { 5065 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 5066 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 5067 } 5068 5069 /* 5070 * The last MMIO access's GVA and GPA are cached in the VCPU. When 5071 * switching to a new CR3, that GVA->GPA mapping may no longer be 5072 * valid. So clear any cached MMIO info even when we don't need to sync 5073 * the shadow page tables. 5074 */ 5075 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 5076 5077 /* 5078 * If this is a direct root page, it doesn't have a write flooding 5079 * count. Otherwise, clear the write flooding count. 5080 */ 5081 if (!new_role.direct) { 5082 struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa); 5083 5084 if (!WARN_ON_ONCE(!sp)) 5085 __clear_sp_write_flooding_count(sp); 5086 } 5087 } 5088 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd); 5089 5090 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, 5091 unsigned int access) 5092 { 5093 if (unlikely(is_mmio_spte(vcpu->kvm, *sptep))) { 5094 if (gfn != get_mmio_spte_gfn(*sptep)) { 5095 mmu_spte_clear_no_track(sptep); 5096 return true; 5097 } 5098 5099 mark_mmio_spte(vcpu, sptep, gfn, access); 5100 return true; 5101 } 5102 5103 return false; 5104 } 5105 5106 #define PTTYPE_EPT 18 /* arbitrary */ 5107 #define PTTYPE PTTYPE_EPT 5108 #include "paging_tmpl.h" 5109 #undef PTTYPE 5110 5111 #define PTTYPE 64 5112 #include "paging_tmpl.h" 5113 #undef PTTYPE 5114 5115 #define PTTYPE 32 5116 #include "paging_tmpl.h" 5117 #undef PTTYPE 5118 5119 static void __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check, 5120 u64 pa_bits_rsvd, int level, bool nx, 5121 bool gbpages, bool pse, bool amd) 5122 { 5123 u64 gbpages_bit_rsvd = 0; 5124 u64 nonleaf_bit8_rsvd = 0; 5125 u64 high_bits_rsvd; 5126 5127 rsvd_check->bad_mt_xwr = 0; 5128 5129 if (!gbpages) 5130 gbpages_bit_rsvd = rsvd_bits(7, 7); 5131 5132 if (level == PT32E_ROOT_LEVEL) 5133 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62); 5134 else 5135 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 5136 5137 /* Note, NX doesn't exist in PDPTEs, this is handled below. */ 5138 if (!nx) 5139 high_bits_rsvd |= rsvd_bits(63, 63); 5140 5141 /* 5142 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for 5143 * leaf entries) on AMD CPUs only. 5144 */ 5145 if (amd) 5146 nonleaf_bit8_rsvd = rsvd_bits(8, 8); 5147 5148 switch (level) { 5149 case PT32_ROOT_LEVEL: 5150 /* no rsvd bits for 2 level 4K page table entries */ 5151 rsvd_check->rsvd_bits_mask[0][1] = 0; 5152 rsvd_check->rsvd_bits_mask[0][0] = 0; 5153 rsvd_check->rsvd_bits_mask[1][0] = 5154 rsvd_check->rsvd_bits_mask[0][0]; 5155 5156 if (!pse) { 5157 rsvd_check->rsvd_bits_mask[1][1] = 0; 5158 break; 5159 } 5160 5161 if (is_cpuid_PSE36()) 5162 /* 36bits PSE 4MB page */ 5163 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); 5164 else 5165 /* 32 bits PSE 4MB page */ 5166 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); 5167 break; 5168 case PT32E_ROOT_LEVEL: 5169 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) | 5170 high_bits_rsvd | 5171 rsvd_bits(5, 8) | 5172 rsvd_bits(1, 2); /* PDPTE */ 5173 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */ 5174 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */ 5175 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 5176 rsvd_bits(13, 20); /* large page */ 5177 rsvd_check->rsvd_bits_mask[1][0] = 5178 rsvd_check->rsvd_bits_mask[0][0]; 5179 break; 5180 case PT64_ROOT_5LEVEL: 5181 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | 5182 nonleaf_bit8_rsvd | 5183 rsvd_bits(7, 7); 5184 rsvd_check->rsvd_bits_mask[1][4] = 5185 rsvd_check->rsvd_bits_mask[0][4]; 5186 fallthrough; 5187 case PT64_ROOT_4LEVEL: 5188 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | 5189 nonleaf_bit8_rsvd | 5190 rsvd_bits(7, 7); 5191 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | 5192 gbpages_bit_rsvd; 5193 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; 5194 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 5195 rsvd_check->rsvd_bits_mask[1][3] = 5196 rsvd_check->rsvd_bits_mask[0][3]; 5197 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | 5198 gbpages_bit_rsvd | 5199 rsvd_bits(13, 29); 5200 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 5201 rsvd_bits(13, 20); /* large page */ 5202 rsvd_check->rsvd_bits_mask[1][0] = 5203 rsvd_check->rsvd_bits_mask[0][0]; 5204 break; 5205 } 5206 } 5207 5208 static void reset_guest_rsvds_bits_mask(struct kvm_vcpu *vcpu, 5209 struct kvm_mmu *context) 5210 { 5211 __reset_rsvds_bits_mask(&context->guest_rsvd_check, 5212 vcpu->arch.reserved_gpa_bits, 5213 context->cpu_role.base.level, is_efer_nx(context), 5214 guest_cpu_cap_has(vcpu, X86_FEATURE_GBPAGES), 5215 is_cr4_pse(context), 5216 guest_cpuid_is_amd_compatible(vcpu)); 5217 } 5218 5219 static void __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check, 5220 u64 pa_bits_rsvd, bool execonly, 5221 int huge_page_level) 5222 { 5223 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 5224 u64 large_1g_rsvd = 0, large_2m_rsvd = 0; 5225 u64 bad_mt_xwr; 5226 5227 if (huge_page_level < PG_LEVEL_1G) 5228 large_1g_rsvd = rsvd_bits(7, 7); 5229 if (huge_page_level < PG_LEVEL_2M) 5230 large_2m_rsvd = rsvd_bits(7, 7); 5231 5232 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7); 5233 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7); 5234 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd; 5235 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd; 5236 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 5237 5238 /* large page */ 5239 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4]; 5240 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3]; 5241 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd; 5242 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd; 5243 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0]; 5244 5245 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */ 5246 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */ 5247 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */ 5248 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */ 5249 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */ 5250 if (!execonly) { 5251 /* bits 0..2 must not be 100 unless VMX capabilities allow it */ 5252 bad_mt_xwr |= REPEAT_BYTE(1ull << 4); 5253 } 5254 rsvd_check->bad_mt_xwr = bad_mt_xwr; 5255 } 5256 5257 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, 5258 struct kvm_mmu *context, bool execonly, int huge_page_level) 5259 { 5260 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check, 5261 vcpu->arch.reserved_gpa_bits, execonly, 5262 huge_page_level); 5263 } 5264 5265 static inline u64 reserved_hpa_bits(void) 5266 { 5267 return rsvd_bits(kvm_host.maxphyaddr, 63); 5268 } 5269 5270 /* 5271 * the page table on host is the shadow page table for the page 5272 * table in guest or amd nested guest, its mmu features completely 5273 * follow the features in guest. 5274 */ 5275 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 5276 struct kvm_mmu *context) 5277 { 5278 /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */ 5279 bool is_amd = true; 5280 /* KVM doesn't use 2-level page tables for the shadow MMU. */ 5281 bool is_pse = false; 5282 struct rsvd_bits_validate *shadow_zero_check; 5283 int i; 5284 5285 WARN_ON_ONCE(context->root_role.level < PT32E_ROOT_LEVEL); 5286 5287 shadow_zero_check = &context->shadow_zero_check; 5288 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 5289 context->root_role.level, 5290 context->root_role.efer_nx, 5291 guest_cpu_cap_has(vcpu, X86_FEATURE_GBPAGES), 5292 is_pse, is_amd); 5293 5294 if (!shadow_me_mask) 5295 return; 5296 5297 for (i = context->root_role.level; --i >= 0;) { 5298 /* 5299 * So far shadow_me_value is a constant during KVM's life 5300 * time. Bits in shadow_me_value are allowed to be set. 5301 * Bits in shadow_me_mask but not in shadow_me_value are 5302 * not allowed to be set. 5303 */ 5304 shadow_zero_check->rsvd_bits_mask[0][i] |= shadow_me_mask; 5305 shadow_zero_check->rsvd_bits_mask[1][i] |= shadow_me_mask; 5306 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_value; 5307 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_value; 5308 } 5309 5310 } 5311 5312 static inline bool boot_cpu_is_amd(void) 5313 { 5314 WARN_ON_ONCE(!tdp_enabled); 5315 return shadow_x_mask == 0; 5316 } 5317 5318 /* 5319 * the direct page table on host, use as much mmu features as 5320 * possible, however, kvm currently does not do execution-protection. 5321 */ 5322 static void reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context) 5323 { 5324 struct rsvd_bits_validate *shadow_zero_check; 5325 int i; 5326 5327 shadow_zero_check = &context->shadow_zero_check; 5328 5329 if (boot_cpu_is_amd()) 5330 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 5331 context->root_role.level, true, 5332 boot_cpu_has(X86_FEATURE_GBPAGES), 5333 false, true); 5334 else 5335 __reset_rsvds_bits_mask_ept(shadow_zero_check, 5336 reserved_hpa_bits(), false, 5337 max_huge_page_level); 5338 5339 if (!shadow_me_mask) 5340 return; 5341 5342 for (i = context->root_role.level; --i >= 0;) { 5343 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 5344 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 5345 } 5346 } 5347 5348 /* 5349 * as the comments in reset_shadow_zero_bits_mask() except it 5350 * is the shadow page table for intel nested guest. 5351 */ 5352 static void 5353 reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly) 5354 { 5355 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check, 5356 reserved_hpa_bits(), execonly, 5357 max_huge_page_level); 5358 } 5359 5360 #define BYTE_MASK(access) \ 5361 ((1 & (access) ? 2 : 0) | \ 5362 (2 & (access) ? 4 : 0) | \ 5363 (3 & (access) ? 8 : 0) | \ 5364 (4 & (access) ? 16 : 0) | \ 5365 (5 & (access) ? 32 : 0) | \ 5366 (6 & (access) ? 64 : 0) | \ 5367 (7 & (access) ? 128 : 0)) 5368 5369 5370 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept) 5371 { 5372 unsigned byte; 5373 5374 const u8 x = BYTE_MASK(ACC_EXEC_MASK); 5375 const u8 w = BYTE_MASK(ACC_WRITE_MASK); 5376 const u8 u = BYTE_MASK(ACC_USER_MASK); 5377 5378 bool cr4_smep = is_cr4_smep(mmu); 5379 bool cr4_smap = is_cr4_smap(mmu); 5380 bool cr0_wp = is_cr0_wp(mmu); 5381 bool efer_nx = is_efer_nx(mmu); 5382 5383 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { 5384 unsigned pfec = byte << 1; 5385 5386 /* 5387 * Each "*f" variable has a 1 bit for each UWX value 5388 * that causes a fault with the given PFEC. 5389 */ 5390 5391 /* Faults from writes to non-writable pages */ 5392 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0; 5393 /* Faults from user mode accesses to supervisor pages */ 5394 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0; 5395 /* Faults from fetches of non-executable pages*/ 5396 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0; 5397 /* Faults from kernel mode fetches of user pages */ 5398 u8 smepf = 0; 5399 /* Faults from kernel mode accesses of user pages */ 5400 u8 smapf = 0; 5401 5402 if (!ept) { 5403 /* Faults from kernel mode accesses to user pages */ 5404 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u; 5405 5406 /* Not really needed: !nx will cause pte.nx to fault */ 5407 if (!efer_nx) 5408 ff = 0; 5409 5410 /* Allow supervisor writes if !cr0.wp */ 5411 if (!cr0_wp) 5412 wf = (pfec & PFERR_USER_MASK) ? wf : 0; 5413 5414 /* Disallow supervisor fetches of user code if cr4.smep */ 5415 if (cr4_smep) 5416 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0; 5417 5418 /* 5419 * SMAP:kernel-mode data accesses from user-mode 5420 * mappings should fault. A fault is considered 5421 * as a SMAP violation if all of the following 5422 * conditions are true: 5423 * - X86_CR4_SMAP is set in CR4 5424 * - A user page is accessed 5425 * - The access is not a fetch 5426 * - The access is supervisor mode 5427 * - If implicit supervisor access or X86_EFLAGS_AC is clear 5428 * 5429 * Here, we cover the first four conditions. 5430 * The fifth is computed dynamically in permission_fault(); 5431 * PFERR_RSVD_MASK bit will be set in PFEC if the access is 5432 * *not* subject to SMAP restrictions. 5433 */ 5434 if (cr4_smap) 5435 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf; 5436 } 5437 5438 mmu->permissions[byte] = ff | uf | wf | smepf | smapf; 5439 } 5440 } 5441 5442 /* 5443 * PKU is an additional mechanism by which the paging controls access to 5444 * user-mode addresses based on the value in the PKRU register. Protection 5445 * key violations are reported through a bit in the page fault error code. 5446 * Unlike other bits of the error code, the PK bit is not known at the 5447 * call site of e.g. gva_to_gpa; it must be computed directly in 5448 * permission_fault based on two bits of PKRU, on some machine state (CR4, 5449 * CR0, EFER, CPL), and on other bits of the error code and the page tables. 5450 * 5451 * In particular the following conditions come from the error code, the 5452 * page tables and the machine state: 5453 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1 5454 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch) 5455 * - PK is always zero if U=0 in the page tables 5456 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access. 5457 * 5458 * The PKRU bitmask caches the result of these four conditions. The error 5459 * code (minus the P bit) and the page table's U bit form an index into the 5460 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed 5461 * with the two bits of the PKRU register corresponding to the protection key. 5462 * For the first three conditions above the bits will be 00, thus masking 5463 * away both AD and WD. For all reads or if the last condition holds, WD 5464 * only will be masked away. 5465 */ 5466 static void update_pkru_bitmask(struct kvm_mmu *mmu) 5467 { 5468 unsigned bit; 5469 bool wp; 5470 5471 mmu->pkru_mask = 0; 5472 5473 if (!is_cr4_pke(mmu)) 5474 return; 5475 5476 wp = is_cr0_wp(mmu); 5477 5478 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) { 5479 unsigned pfec, pkey_bits; 5480 bool check_pkey, check_write, ff, uf, wf, pte_user; 5481 5482 pfec = bit << 1; 5483 ff = pfec & PFERR_FETCH_MASK; 5484 uf = pfec & PFERR_USER_MASK; 5485 wf = pfec & PFERR_WRITE_MASK; 5486 5487 /* PFEC.RSVD is replaced by ACC_USER_MASK. */ 5488 pte_user = pfec & PFERR_RSVD_MASK; 5489 5490 /* 5491 * Only need to check the access which is not an 5492 * instruction fetch and is to a user page. 5493 */ 5494 check_pkey = (!ff && pte_user); 5495 /* 5496 * write access is controlled by PKRU if it is a 5497 * user access or CR0.WP = 1. 5498 */ 5499 check_write = check_pkey && wf && (uf || wp); 5500 5501 /* PKRU.AD stops both read and write access. */ 5502 pkey_bits = !!check_pkey; 5503 /* PKRU.WD stops write access. */ 5504 pkey_bits |= (!!check_write) << 1; 5505 5506 mmu->pkru_mask |= (pkey_bits & 3) << pfec; 5507 } 5508 } 5509 5510 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu, 5511 struct kvm_mmu *mmu) 5512 { 5513 if (!is_cr0_pg(mmu)) 5514 return; 5515 5516 reset_guest_rsvds_bits_mask(vcpu, mmu); 5517 update_permission_bitmask(mmu, false); 5518 update_pkru_bitmask(mmu); 5519 } 5520 5521 static void paging64_init_context(struct kvm_mmu *context) 5522 { 5523 context->page_fault = paging64_page_fault; 5524 context->gva_to_gpa = paging64_gva_to_gpa; 5525 context->sync_spte = paging64_sync_spte; 5526 } 5527 5528 static void paging32_init_context(struct kvm_mmu *context) 5529 { 5530 context->page_fault = paging32_page_fault; 5531 context->gva_to_gpa = paging32_gva_to_gpa; 5532 context->sync_spte = paging32_sync_spte; 5533 } 5534 5535 static union kvm_cpu_role kvm_calc_cpu_role(struct kvm_vcpu *vcpu, 5536 const struct kvm_mmu_role_regs *regs) 5537 { 5538 union kvm_cpu_role role = {0}; 5539 5540 role.base.access = ACC_ALL; 5541 role.base.smm = is_smm(vcpu); 5542 role.base.guest_mode = is_guest_mode(vcpu); 5543 role.ext.valid = 1; 5544 5545 if (!____is_cr0_pg(regs)) { 5546 role.base.direct = 1; 5547 return role; 5548 } 5549 5550 role.base.efer_nx = ____is_efer_nx(regs); 5551 role.base.cr0_wp = ____is_cr0_wp(regs); 5552 role.base.smep_andnot_wp = ____is_cr4_smep(regs) && !____is_cr0_wp(regs); 5553 role.base.smap_andnot_wp = ____is_cr4_smap(regs) && !____is_cr0_wp(regs); 5554 role.base.has_4_byte_gpte = !____is_cr4_pae(regs); 5555 5556 if (____is_efer_lma(regs)) 5557 role.base.level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL 5558 : PT64_ROOT_4LEVEL; 5559 else if (____is_cr4_pae(regs)) 5560 role.base.level = PT32E_ROOT_LEVEL; 5561 else 5562 role.base.level = PT32_ROOT_LEVEL; 5563 5564 role.ext.cr4_smep = ____is_cr4_smep(regs); 5565 role.ext.cr4_smap = ____is_cr4_smap(regs); 5566 role.ext.cr4_pse = ____is_cr4_pse(regs); 5567 5568 /* PKEY and LA57 are active iff long mode is active. */ 5569 role.ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs); 5570 role.ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs); 5571 role.ext.efer_lma = ____is_efer_lma(regs); 5572 return role; 5573 } 5574 5575 void __kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu, 5576 struct kvm_mmu *mmu) 5577 { 5578 const bool cr0_wp = kvm_is_cr0_bit_set(vcpu, X86_CR0_WP); 5579 5580 BUILD_BUG_ON((KVM_MMU_CR0_ROLE_BITS & KVM_POSSIBLE_CR0_GUEST_BITS) != X86_CR0_WP); 5581 BUILD_BUG_ON((KVM_MMU_CR4_ROLE_BITS & KVM_POSSIBLE_CR4_GUEST_BITS)); 5582 5583 if (is_cr0_wp(mmu) == cr0_wp) 5584 return; 5585 5586 mmu->cpu_role.base.cr0_wp = cr0_wp; 5587 reset_guest_paging_metadata(vcpu, mmu); 5588 } 5589 5590 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu) 5591 { 5592 /* tdp_root_level is architecture forced level, use it if nonzero */ 5593 if (tdp_root_level) 5594 return tdp_root_level; 5595 5596 /* Use 5-level TDP if and only if it's useful/necessary. */ 5597 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48) 5598 return 4; 5599 5600 return max_tdp_level; 5601 } 5602 5603 u8 kvm_mmu_get_max_tdp_level(void) 5604 { 5605 return tdp_root_level ? tdp_root_level : max_tdp_level; 5606 } 5607 5608 static union kvm_mmu_page_role 5609 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, 5610 union kvm_cpu_role cpu_role) 5611 { 5612 union kvm_mmu_page_role role = {0}; 5613 5614 role.access = ACC_ALL; 5615 role.cr0_wp = true; 5616 role.efer_nx = true; 5617 role.smm = cpu_role.base.smm; 5618 role.guest_mode = cpu_role.base.guest_mode; 5619 role.ad_disabled = !kvm_ad_enabled; 5620 role.level = kvm_mmu_get_tdp_level(vcpu); 5621 role.direct = true; 5622 role.has_4_byte_gpte = false; 5623 5624 return role; 5625 } 5626 5627 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu, 5628 union kvm_cpu_role cpu_role) 5629 { 5630 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5631 union kvm_mmu_page_role root_role = kvm_calc_tdp_mmu_root_page_role(vcpu, cpu_role); 5632 5633 if (cpu_role.as_u64 == context->cpu_role.as_u64 && 5634 root_role.word == context->root_role.word) 5635 return; 5636 5637 context->cpu_role.as_u64 = cpu_role.as_u64; 5638 context->root_role.word = root_role.word; 5639 context->page_fault = kvm_tdp_page_fault; 5640 context->sync_spte = NULL; 5641 context->get_guest_pgd = get_guest_cr3; 5642 context->get_pdptr = kvm_pdptr_read; 5643 context->inject_page_fault = kvm_inject_page_fault; 5644 5645 if (!is_cr0_pg(context)) 5646 context->gva_to_gpa = nonpaging_gva_to_gpa; 5647 else if (is_cr4_pae(context)) 5648 context->gva_to_gpa = paging64_gva_to_gpa; 5649 else 5650 context->gva_to_gpa = paging32_gva_to_gpa; 5651 5652 reset_guest_paging_metadata(vcpu, context); 5653 reset_tdp_shadow_zero_bits_mask(context); 5654 } 5655 5656 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context, 5657 union kvm_cpu_role cpu_role, 5658 union kvm_mmu_page_role root_role) 5659 { 5660 if (cpu_role.as_u64 == context->cpu_role.as_u64 && 5661 root_role.word == context->root_role.word) 5662 return; 5663 5664 context->cpu_role.as_u64 = cpu_role.as_u64; 5665 context->root_role.word = root_role.word; 5666 5667 if (!is_cr0_pg(context)) 5668 nonpaging_init_context(context); 5669 else if (is_cr4_pae(context)) 5670 paging64_init_context(context); 5671 else 5672 paging32_init_context(context); 5673 5674 reset_guest_paging_metadata(vcpu, context); 5675 reset_shadow_zero_bits_mask(vcpu, context); 5676 } 5677 5678 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, 5679 union kvm_cpu_role cpu_role) 5680 { 5681 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5682 union kvm_mmu_page_role root_role; 5683 5684 root_role = cpu_role.base; 5685 5686 /* KVM uses PAE paging whenever the guest isn't using 64-bit paging. */ 5687 root_role.level = max_t(u32, root_role.level, PT32E_ROOT_LEVEL); 5688 5689 /* 5690 * KVM forces EFER.NX=1 when TDP is disabled, reflect it in the MMU role. 5691 * KVM uses NX when TDP is disabled to handle a variety of scenarios, 5692 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and 5693 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0. 5694 * The iTLB multi-hit workaround can be toggled at any time, so assume 5695 * NX can be used by any non-nested shadow MMU to avoid having to reset 5696 * MMU contexts. 5697 */ 5698 root_role.efer_nx = true; 5699 5700 shadow_mmu_init_context(vcpu, context, cpu_role, root_role); 5701 } 5702 5703 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0, 5704 unsigned long cr4, u64 efer, gpa_t nested_cr3) 5705 { 5706 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 5707 struct kvm_mmu_role_regs regs = { 5708 .cr0 = cr0, 5709 .cr4 = cr4 & ~X86_CR4_PKE, 5710 .efer = efer, 5711 }; 5712 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); 5713 union kvm_mmu_page_role root_role; 5714 5715 /* NPT requires CR0.PG=1. */ 5716 WARN_ON_ONCE(cpu_role.base.direct || !cpu_role.base.guest_mode); 5717 5718 root_role = cpu_role.base; 5719 root_role.level = kvm_mmu_get_tdp_level(vcpu); 5720 if (root_role.level == PT64_ROOT_5LEVEL && 5721 cpu_role.base.level == PT64_ROOT_4LEVEL) 5722 root_role.passthrough = 1; 5723 5724 shadow_mmu_init_context(vcpu, context, cpu_role, root_role); 5725 kvm_mmu_new_pgd(vcpu, nested_cr3); 5726 } 5727 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu); 5728 5729 static union kvm_cpu_role 5730 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty, 5731 bool execonly, u8 level) 5732 { 5733 union kvm_cpu_role role = {0}; 5734 5735 /* 5736 * KVM does not support SMM transfer monitors, and consequently does not 5737 * support the "entry to SMM" control either. role.base.smm is always 0. 5738 */ 5739 WARN_ON_ONCE(is_smm(vcpu)); 5740 role.base.level = level; 5741 role.base.has_4_byte_gpte = false; 5742 role.base.direct = false; 5743 role.base.ad_disabled = !accessed_dirty; 5744 role.base.guest_mode = true; 5745 role.base.access = ACC_ALL; 5746 5747 role.ext.word = 0; 5748 role.ext.execonly = execonly; 5749 role.ext.valid = 1; 5750 5751 return role; 5752 } 5753 5754 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, 5755 int huge_page_level, bool accessed_dirty, 5756 gpa_t new_eptp) 5757 { 5758 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 5759 u8 level = vmx_eptp_page_walk_level(new_eptp); 5760 union kvm_cpu_role new_mode = 5761 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty, 5762 execonly, level); 5763 5764 if (new_mode.as_u64 != context->cpu_role.as_u64) { 5765 /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */ 5766 context->cpu_role.as_u64 = new_mode.as_u64; 5767 context->root_role.word = new_mode.base.word; 5768 5769 context->page_fault = ept_page_fault; 5770 context->gva_to_gpa = ept_gva_to_gpa; 5771 context->sync_spte = ept_sync_spte; 5772 5773 update_permission_bitmask(context, true); 5774 context->pkru_mask = 0; 5775 reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level); 5776 reset_ept_shadow_zero_bits_mask(context, execonly); 5777 } 5778 5779 kvm_mmu_new_pgd(vcpu, new_eptp); 5780 } 5781 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); 5782 5783 static void init_kvm_softmmu(struct kvm_vcpu *vcpu, 5784 union kvm_cpu_role cpu_role) 5785 { 5786 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5787 5788 kvm_init_shadow_mmu(vcpu, cpu_role); 5789 5790 context->get_guest_pgd = get_guest_cr3; 5791 context->get_pdptr = kvm_pdptr_read; 5792 context->inject_page_fault = kvm_inject_page_fault; 5793 } 5794 5795 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu, 5796 union kvm_cpu_role new_mode) 5797 { 5798 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; 5799 5800 if (new_mode.as_u64 == g_context->cpu_role.as_u64) 5801 return; 5802 5803 g_context->cpu_role.as_u64 = new_mode.as_u64; 5804 g_context->get_guest_pgd = get_guest_cr3; 5805 g_context->get_pdptr = kvm_pdptr_read; 5806 g_context->inject_page_fault = kvm_inject_page_fault; 5807 5808 /* 5809 * L2 page tables are never shadowed, so there is no need to sync 5810 * SPTEs. 5811 */ 5812 g_context->sync_spte = NULL; 5813 5814 /* 5815 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using 5816 * L1's nested page tables (e.g. EPT12). The nested translation 5817 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using 5818 * L2's page tables as the first level of translation and L1's 5819 * nested page tables as the second level of translation. Basically 5820 * the gva_to_gpa functions between mmu and nested_mmu are swapped. 5821 */ 5822 if (!is_paging(vcpu)) 5823 g_context->gva_to_gpa = nonpaging_gva_to_gpa; 5824 else if (is_long_mode(vcpu)) 5825 g_context->gva_to_gpa = paging64_gva_to_gpa; 5826 else if (is_pae(vcpu)) 5827 g_context->gva_to_gpa = paging64_gva_to_gpa; 5828 else 5829 g_context->gva_to_gpa = paging32_gva_to_gpa; 5830 5831 reset_guest_paging_metadata(vcpu, g_context); 5832 } 5833 5834 void kvm_init_mmu(struct kvm_vcpu *vcpu) 5835 { 5836 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 5837 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); 5838 5839 if (mmu_is_nested(vcpu)) 5840 init_kvm_nested_mmu(vcpu, cpu_role); 5841 else if (tdp_enabled) 5842 init_kvm_tdp_mmu(vcpu, cpu_role); 5843 else 5844 init_kvm_softmmu(vcpu, cpu_role); 5845 } 5846 EXPORT_SYMBOL_GPL(kvm_init_mmu); 5847 5848 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu) 5849 { 5850 /* 5851 * Invalidate all MMU roles to force them to reinitialize as CPUID 5852 * information is factored into reserved bit calculations. 5853 * 5854 * Correctly handling multiple vCPU models with respect to paging and 5855 * physical address properties) in a single VM would require tracking 5856 * all relevant CPUID information in kvm_mmu_page_role. That is very 5857 * undesirable as it would increase the memory requirements for 5858 * gfn_write_track (see struct kvm_mmu_page_role comments). For now 5859 * that problem is swept under the rug; KVM's CPUID API is horrific and 5860 * it's all but impossible to solve it without introducing a new API. 5861 */ 5862 vcpu->arch.root_mmu.root_role.invalid = 1; 5863 vcpu->arch.guest_mmu.root_role.invalid = 1; 5864 vcpu->arch.nested_mmu.root_role.invalid = 1; 5865 vcpu->arch.root_mmu.cpu_role.ext.valid = 0; 5866 vcpu->arch.guest_mmu.cpu_role.ext.valid = 0; 5867 vcpu->arch.nested_mmu.cpu_role.ext.valid = 0; 5868 kvm_mmu_reset_context(vcpu); 5869 5870 /* 5871 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in 5872 * kvm_arch_vcpu_ioctl(). 5873 */ 5874 KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm); 5875 } 5876 5877 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu) 5878 { 5879 kvm_mmu_unload(vcpu); 5880 kvm_init_mmu(vcpu); 5881 } 5882 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); 5883 5884 int kvm_mmu_load(struct kvm_vcpu *vcpu) 5885 { 5886 int r; 5887 5888 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->root_role.direct); 5889 if (r) 5890 goto out; 5891 r = mmu_alloc_special_roots(vcpu); 5892 if (r) 5893 goto out; 5894 if (vcpu->arch.mmu->root_role.direct) 5895 r = mmu_alloc_direct_roots(vcpu); 5896 else 5897 r = mmu_alloc_shadow_roots(vcpu); 5898 if (r) 5899 goto out; 5900 5901 kvm_mmu_sync_roots(vcpu); 5902 5903 kvm_mmu_load_pgd(vcpu); 5904 5905 /* 5906 * Flush any TLB entries for the new root, the provenance of the root 5907 * is unknown. Even if KVM ensures there are no stale TLB entries 5908 * for a freed root, in theory another hypervisor could have left 5909 * stale entries. Flushing on alloc also allows KVM to skip the TLB 5910 * flush when freeing a root (see kvm_tdp_mmu_put_root()). 5911 */ 5912 kvm_x86_call(flush_tlb_current)(vcpu); 5913 out: 5914 return r; 5915 } 5916 5917 void kvm_mmu_unload(struct kvm_vcpu *vcpu) 5918 { 5919 struct kvm *kvm = vcpu->kvm; 5920 5921 kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL); 5922 WARN_ON_ONCE(VALID_PAGE(vcpu->arch.root_mmu.root.hpa)); 5923 kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); 5924 WARN_ON_ONCE(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa)); 5925 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 5926 } 5927 5928 static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa) 5929 { 5930 struct kvm_mmu_page *sp; 5931 5932 if (!VALID_PAGE(root_hpa)) 5933 return false; 5934 5935 /* 5936 * When freeing obsolete roots, treat roots as obsolete if they don't 5937 * have an associated shadow page, as it's impossible to determine if 5938 * such roots are fresh or stale. This does mean KVM will get false 5939 * positives and free roots that don't strictly need to be freed, but 5940 * such false positives are relatively rare: 5941 * 5942 * (a) only PAE paging and nested NPT have roots without shadow pages 5943 * (or any shadow paging flavor with a dummy root, see note below) 5944 * (b) remote reloads due to a memslot update obsoletes _all_ roots 5945 * (c) KVM doesn't track previous roots for PAE paging, and the guest 5946 * is unlikely to zap an in-use PGD. 5947 * 5948 * Note! Dummy roots are unique in that they are obsoleted by memslot 5949 * _creation_! See also FNAME(fetch). 5950 */ 5951 sp = root_to_sp(root_hpa); 5952 return !sp || is_obsolete_sp(kvm, sp); 5953 } 5954 5955 static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu) 5956 { 5957 unsigned long roots_to_free = 0; 5958 int i; 5959 5960 if (is_obsolete_root(kvm, mmu->root.hpa)) 5961 roots_to_free |= KVM_MMU_ROOT_CURRENT; 5962 5963 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5964 if (is_obsolete_root(kvm, mmu->prev_roots[i].hpa)) 5965 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 5966 } 5967 5968 if (roots_to_free) 5969 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 5970 } 5971 5972 void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu) 5973 { 5974 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu); 5975 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu); 5976 } 5977 5978 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, 5979 int *bytes) 5980 { 5981 u64 gentry = 0; 5982 int r; 5983 5984 /* 5985 * Assume that the pte write on a page table of the same type 5986 * as the current vcpu paging mode since we update the sptes only 5987 * when they have the same mode. 5988 */ 5989 if (is_pae(vcpu) && *bytes == 4) { 5990 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ 5991 *gpa &= ~(gpa_t)7; 5992 *bytes = 8; 5993 } 5994 5995 if (*bytes == 4 || *bytes == 8) { 5996 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes); 5997 if (r) 5998 gentry = 0; 5999 } 6000 6001 return gentry; 6002 } 6003 6004 /* 6005 * If we're seeing too many writes to a page, it may no longer be a page table, 6006 * or we may be forking, in which case it is better to unmap the page. 6007 */ 6008 static bool detect_write_flooding(struct kvm_mmu_page *sp) 6009 { 6010 /* 6011 * Skip write-flooding detected for the sp whose level is 1, because 6012 * it can become unsync, then the guest page is not write-protected. 6013 */ 6014 if (sp->role.level == PG_LEVEL_4K) 6015 return false; 6016 6017 atomic_inc(&sp->write_flooding_count); 6018 return atomic_read(&sp->write_flooding_count) >= 3; 6019 } 6020 6021 /* 6022 * Misaligned accesses are too much trouble to fix up; also, they usually 6023 * indicate a page is not used as a page table. 6024 */ 6025 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, 6026 int bytes) 6027 { 6028 unsigned offset, pte_size, misaligned; 6029 6030 offset = offset_in_page(gpa); 6031 pte_size = sp->role.has_4_byte_gpte ? 4 : 8; 6032 6033 /* 6034 * Sometimes, the OS only writes the last one bytes to update status 6035 * bits, for example, in linux, andb instruction is used in clear_bit(). 6036 */ 6037 if (!(offset & (pte_size - 1)) && bytes == 1) 6038 return false; 6039 6040 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); 6041 misaligned |= bytes < 4; 6042 6043 return misaligned; 6044 } 6045 6046 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) 6047 { 6048 unsigned page_offset, quadrant; 6049 u64 *spte; 6050 int level; 6051 6052 page_offset = offset_in_page(gpa); 6053 level = sp->role.level; 6054 *nspte = 1; 6055 if (sp->role.has_4_byte_gpte) { 6056 page_offset <<= 1; /* 32->64 */ 6057 /* 6058 * A 32-bit pde maps 4MB while the shadow pdes map 6059 * only 2MB. So we need to double the offset again 6060 * and zap two pdes instead of one. 6061 */ 6062 if (level == PT32_ROOT_LEVEL) { 6063 page_offset &= ~7; /* kill rounding error */ 6064 page_offset <<= 1; 6065 *nspte = 2; 6066 } 6067 quadrant = page_offset >> PAGE_SHIFT; 6068 page_offset &= ~PAGE_MASK; 6069 if (quadrant != sp->role.quadrant) 6070 return NULL; 6071 } 6072 6073 spte = &sp->spt[page_offset / sizeof(*spte)]; 6074 return spte; 6075 } 6076 6077 void kvm_mmu_track_write(struct kvm_vcpu *vcpu, gpa_t gpa, const u8 *new, 6078 int bytes) 6079 { 6080 gfn_t gfn = gpa >> PAGE_SHIFT; 6081 struct kvm_mmu_page *sp; 6082 LIST_HEAD(invalid_list); 6083 u64 entry, gentry, *spte; 6084 int npte; 6085 bool flush = false; 6086 6087 /* 6088 * When emulating guest writes, ensure the written value is visible to 6089 * any task that is handling page faults before checking whether or not 6090 * KVM is shadowing a guest PTE. This ensures either KVM will create 6091 * the correct SPTE in the page fault handler, or this task will see 6092 * a non-zero indirect_shadow_pages. Pairs with the smp_mb() in 6093 * account_shadowed(). 6094 */ 6095 smp_mb(); 6096 if (!vcpu->kvm->arch.indirect_shadow_pages) 6097 return; 6098 6099 write_lock(&vcpu->kvm->mmu_lock); 6100 6101 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes); 6102 6103 ++vcpu->kvm->stat.mmu_pte_write; 6104 6105 for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) { 6106 if (detect_write_misaligned(sp, gpa, bytes) || 6107 detect_write_flooding(sp)) { 6108 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); 6109 ++vcpu->kvm->stat.mmu_flooded; 6110 continue; 6111 } 6112 6113 spte = get_written_sptes(sp, gpa, &npte); 6114 if (!spte) 6115 continue; 6116 6117 while (npte--) { 6118 entry = *spte; 6119 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL); 6120 if (gentry && sp->role.level != PG_LEVEL_4K) 6121 ++vcpu->kvm->stat.mmu_pde_zapped; 6122 if (is_shadow_present_pte(entry)) 6123 flush = true; 6124 ++spte; 6125 } 6126 } 6127 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 6128 write_unlock(&vcpu->kvm->mmu_lock); 6129 } 6130 6131 static bool is_write_to_guest_page_table(u64 error_code) 6132 { 6133 const u64 mask = PFERR_GUEST_PAGE_MASK | PFERR_WRITE_MASK | PFERR_PRESENT_MASK; 6134 6135 return (error_code & mask) == mask; 6136 } 6137 6138 static int kvm_mmu_write_protect_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 6139 u64 error_code, int *emulation_type) 6140 { 6141 bool direct = vcpu->arch.mmu->root_role.direct; 6142 6143 /* 6144 * Do not try to unprotect and retry if the vCPU re-faulted on the same 6145 * RIP with the same address that was previously unprotected, as doing 6146 * so will likely put the vCPU into an infinite. E.g. if the vCPU uses 6147 * a non-page-table modifying instruction on the PDE that points to the 6148 * instruction, then unprotecting the gfn will unmap the instruction's 6149 * code, i.e. make it impossible for the instruction to ever complete. 6150 */ 6151 if (vcpu->arch.last_retry_eip == kvm_rip_read(vcpu) && 6152 vcpu->arch.last_retry_addr == cr2_or_gpa) 6153 return RET_PF_EMULATE; 6154 6155 /* 6156 * Reset the unprotect+retry values that guard against infinite loops. 6157 * The values will be refreshed if KVM explicitly unprotects a gfn and 6158 * retries, in all other cases it's safe to retry in the future even if 6159 * the next page fault happens on the same RIP+address. 6160 */ 6161 vcpu->arch.last_retry_eip = 0; 6162 vcpu->arch.last_retry_addr = 0; 6163 6164 /* 6165 * It should be impossible to reach this point with an MMIO cache hit, 6166 * as RET_PF_WRITE_PROTECTED is returned if and only if there's a valid, 6167 * writable memslot, and creating a memslot should invalidate the MMIO 6168 * cache by way of changing the memslot generation. WARN and disallow 6169 * retry if MMIO is detected, as retrying MMIO emulation is pointless 6170 * and could put the vCPU into an infinite loop because the processor 6171 * will keep faulting on the non-existent MMIO address. 6172 */ 6173 if (WARN_ON_ONCE(mmio_info_in_cache(vcpu, cr2_or_gpa, direct))) 6174 return RET_PF_EMULATE; 6175 6176 /* 6177 * Before emulating the instruction, check to see if the access was due 6178 * to a read-only violation while the CPU was walking non-nested NPT 6179 * page tables, i.e. for a direct MMU, for _guest_ page tables in L1. 6180 * If L1 is sharing (a subset of) its page tables with L2, e.g. by 6181 * having nCR3 share lower level page tables with hCR3, then when KVM 6182 * (L0) write-protects the nested NPTs, i.e. npt12 entries, KVM is also 6183 * unknowingly write-protecting L1's guest page tables, which KVM isn't 6184 * shadowing. 6185 * 6186 * Because the CPU (by default) walks NPT page tables using a write 6187 * access (to ensure the CPU can do A/D updates), page walks in L1 can 6188 * trigger write faults for the above case even when L1 isn't modifying 6189 * PTEs. As a result, KVM will unnecessarily emulate (or at least, try 6190 * to emulate) an excessive number of L1 instructions; because L1's MMU 6191 * isn't shadowed by KVM, there is no need to write-protect L1's gPTEs 6192 * and thus no need to emulate in order to guarantee forward progress. 6193 * 6194 * Try to unprotect the gfn, i.e. zap any shadow pages, so that L1 can 6195 * proceed without triggering emulation. If one or more shadow pages 6196 * was zapped, skip emulation and resume L1 to let it natively execute 6197 * the instruction. If no shadow pages were zapped, then the write- 6198 * fault is due to something else entirely, i.e. KVM needs to emulate, 6199 * as resuming the guest will put it into an infinite loop. 6200 * 6201 * Note, this code also applies to Intel CPUs, even though it is *very* 6202 * unlikely that an L1 will share its page tables (IA32/PAE/paging64 6203 * format) with L2's page tables (EPT format). 6204 * 6205 * For indirect MMUs, i.e. if KVM is shadowing the current MMU, try to 6206 * unprotect the gfn and retry if an event is awaiting reinjection. If 6207 * KVM emulates multiple instructions before completing event injection, 6208 * the event could be delayed beyond what is architecturally allowed, 6209 * e.g. KVM could inject an IRQ after the TPR has been raised. 6210 */ 6211 if (((direct && is_write_to_guest_page_table(error_code)) || 6212 (!direct && kvm_event_needs_reinjection(vcpu))) && 6213 kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa)) 6214 return RET_PF_RETRY; 6215 6216 /* 6217 * The gfn is write-protected, but if KVM detects its emulating an 6218 * instruction that is unlikely to be used to modify page tables, or if 6219 * emulation fails, KVM can try to unprotect the gfn and let the CPU 6220 * re-execute the instruction that caused the page fault. Do not allow 6221 * retrying an instruction from a nested guest as KVM is only explicitly 6222 * shadowing L1's page tables, i.e. unprotecting something for L1 isn't 6223 * going to magically fix whatever issue caused L2 to fail. 6224 */ 6225 if (!is_guest_mode(vcpu)) 6226 *emulation_type |= EMULTYPE_ALLOW_RETRY_PF; 6227 6228 return RET_PF_EMULATE; 6229 } 6230 6231 int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 6232 void *insn, int insn_len) 6233 { 6234 int r, emulation_type = EMULTYPE_PF; 6235 bool direct = vcpu->arch.mmu->root_role.direct; 6236 6237 if (WARN_ON_ONCE(!VALID_PAGE(vcpu->arch.mmu->root.hpa))) 6238 return RET_PF_RETRY; 6239 6240 /* 6241 * Except for reserved faults (emulated MMIO is shared-only), set the 6242 * PFERR_PRIVATE_ACCESS flag for software-protected VMs based on the gfn's 6243 * current attributes, which are the source of truth for such VMs. Note, 6244 * this wrong for nested MMUs as the GPA is an L2 GPA, but KVM doesn't 6245 * currently supported nested virtualization (among many other things) 6246 * for software-protected VMs. 6247 */ 6248 if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && 6249 !(error_code & PFERR_RSVD_MASK) && 6250 vcpu->kvm->arch.vm_type == KVM_X86_SW_PROTECTED_VM && 6251 kvm_mem_is_private(vcpu->kvm, gpa_to_gfn(cr2_or_gpa))) 6252 error_code |= PFERR_PRIVATE_ACCESS; 6253 6254 r = RET_PF_INVALID; 6255 if (unlikely(error_code & PFERR_RSVD_MASK)) { 6256 if (WARN_ON_ONCE(error_code & PFERR_PRIVATE_ACCESS)) 6257 return -EFAULT; 6258 6259 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct); 6260 if (r == RET_PF_EMULATE) 6261 goto emulate; 6262 } 6263 6264 if (r == RET_PF_INVALID) { 6265 vcpu->stat.pf_taken++; 6266 6267 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, error_code, false, 6268 &emulation_type, NULL); 6269 if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm)) 6270 return -EIO; 6271 } 6272 6273 if (r < 0) 6274 return r; 6275 6276 if (r == RET_PF_WRITE_PROTECTED) 6277 r = kvm_mmu_write_protect_fault(vcpu, cr2_or_gpa, error_code, 6278 &emulation_type); 6279 6280 if (r == RET_PF_FIXED) 6281 vcpu->stat.pf_fixed++; 6282 else if (r == RET_PF_EMULATE) 6283 vcpu->stat.pf_emulate++; 6284 else if (r == RET_PF_SPURIOUS) 6285 vcpu->stat.pf_spurious++; 6286 6287 /* 6288 * None of handle_mmio_page_fault(), kvm_mmu_do_page_fault(), or 6289 * kvm_mmu_write_protect_fault() return RET_PF_CONTINUE. 6290 * kvm_mmu_do_page_fault() only uses RET_PF_CONTINUE internally to 6291 * indicate continuing the page fault handling until to the final 6292 * page table mapping phase. 6293 */ 6294 WARN_ON_ONCE(r == RET_PF_CONTINUE); 6295 if (r != RET_PF_EMULATE) 6296 return r; 6297 6298 emulate: 6299 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn, 6300 insn_len); 6301 } 6302 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); 6303 6304 void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg) 6305 { 6306 u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; 6307 int root_level, leaf, level; 6308 6309 leaf = get_sptes_lockless(vcpu, gpa, sptes, &root_level); 6310 if (unlikely(leaf < 0)) 6311 return; 6312 6313 pr_err("%s %llx", msg, gpa); 6314 for (level = root_level; level >= leaf; level--) 6315 pr_cont(", spte[%d] = 0x%llx", level, sptes[level]); 6316 pr_cont("\n"); 6317 } 6318 EXPORT_SYMBOL_GPL(kvm_mmu_print_sptes); 6319 6320 static void __kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 6321 u64 addr, hpa_t root_hpa) 6322 { 6323 struct kvm_shadow_walk_iterator iterator; 6324 6325 vcpu_clear_mmio_info(vcpu, addr); 6326 6327 /* 6328 * Walking and synchronizing SPTEs both assume they are operating in 6329 * the context of the current MMU, and would need to be reworked if 6330 * this is ever used to sync the guest_mmu, e.g. to emulate INVEPT. 6331 */ 6332 if (WARN_ON_ONCE(mmu != vcpu->arch.mmu)) 6333 return; 6334 6335 if (!VALID_PAGE(root_hpa)) 6336 return; 6337 6338 write_lock(&vcpu->kvm->mmu_lock); 6339 for_each_shadow_entry_using_root(vcpu, root_hpa, addr, iterator) { 6340 struct kvm_mmu_page *sp = sptep_to_sp(iterator.sptep); 6341 6342 if (sp->unsync) { 6343 int ret = kvm_sync_spte(vcpu, sp, iterator.index); 6344 6345 if (ret < 0) 6346 mmu_page_zap_pte(vcpu->kvm, sp, iterator.sptep, NULL); 6347 if (ret) 6348 kvm_flush_remote_tlbs_sptep(vcpu->kvm, iterator.sptep); 6349 } 6350 6351 if (!sp->unsync_children) 6352 break; 6353 } 6354 write_unlock(&vcpu->kvm->mmu_lock); 6355 } 6356 6357 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 6358 u64 addr, unsigned long roots) 6359 { 6360 int i; 6361 6362 WARN_ON_ONCE(roots & ~KVM_MMU_ROOTS_ALL); 6363 6364 /* It's actually a GPA for vcpu->arch.guest_mmu. */ 6365 if (mmu != &vcpu->arch.guest_mmu) { 6366 /* INVLPG on a non-canonical address is a NOP according to the SDM. */ 6367 if (is_noncanonical_invlpg_address(addr, vcpu)) 6368 return; 6369 6370 kvm_x86_call(flush_tlb_gva)(vcpu, addr); 6371 } 6372 6373 if (!mmu->sync_spte) 6374 return; 6375 6376 if (roots & KVM_MMU_ROOT_CURRENT) 6377 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->root.hpa); 6378 6379 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 6380 if (roots & KVM_MMU_ROOT_PREVIOUS(i)) 6381 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->prev_roots[i].hpa); 6382 } 6383 } 6384 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_addr); 6385 6386 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) 6387 { 6388 /* 6389 * INVLPG is required to invalidate any global mappings for the VA, 6390 * irrespective of PCID. Blindly sync all roots as it would take 6391 * roughly the same amount of work/time to determine whether any of the 6392 * previous roots have a global mapping. 6393 * 6394 * Mappings not reachable via the current or previous cached roots will 6395 * be synced when switching to that new cr3, so nothing needs to be 6396 * done here for them. 6397 */ 6398 kvm_mmu_invalidate_addr(vcpu, vcpu->arch.walk_mmu, gva, KVM_MMU_ROOTS_ALL); 6399 ++vcpu->stat.invlpg; 6400 } 6401 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); 6402 6403 6404 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid) 6405 { 6406 struct kvm_mmu *mmu = vcpu->arch.mmu; 6407 unsigned long roots = 0; 6408 uint i; 6409 6410 if (pcid == kvm_get_active_pcid(vcpu)) 6411 roots |= KVM_MMU_ROOT_CURRENT; 6412 6413 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 6414 if (VALID_PAGE(mmu->prev_roots[i].hpa) && 6415 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) 6416 roots |= KVM_MMU_ROOT_PREVIOUS(i); 6417 } 6418 6419 if (roots) 6420 kvm_mmu_invalidate_addr(vcpu, mmu, gva, roots); 6421 ++vcpu->stat.invlpg; 6422 6423 /* 6424 * Mappings not reachable via the current cr3 or the prev_roots will be 6425 * synced when switching to that cr3, so nothing needs to be done here 6426 * for them. 6427 */ 6428 } 6429 6430 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 6431 int tdp_max_root_level, int tdp_huge_page_level) 6432 { 6433 tdp_enabled = enable_tdp; 6434 tdp_root_level = tdp_forced_root_level; 6435 max_tdp_level = tdp_max_root_level; 6436 6437 #ifdef CONFIG_X86_64 6438 tdp_mmu_enabled = tdp_mmu_allowed && tdp_enabled; 6439 #endif 6440 /* 6441 * max_huge_page_level reflects KVM's MMU capabilities irrespective 6442 * of kernel support, e.g. KVM may be capable of using 1GB pages when 6443 * the kernel is not. But, KVM never creates a page size greater than 6444 * what is used by the kernel for any given HVA, i.e. the kernel's 6445 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust(). 6446 */ 6447 if (tdp_enabled) 6448 max_huge_page_level = tdp_huge_page_level; 6449 else if (boot_cpu_has(X86_FEATURE_GBPAGES)) 6450 max_huge_page_level = PG_LEVEL_1G; 6451 else 6452 max_huge_page_level = PG_LEVEL_2M; 6453 } 6454 EXPORT_SYMBOL_GPL(kvm_configure_mmu); 6455 6456 static void free_mmu_pages(struct kvm_mmu *mmu) 6457 { 6458 if (!tdp_enabled && mmu->pae_root) 6459 set_memory_encrypted((unsigned long)mmu->pae_root, 1); 6460 free_page((unsigned long)mmu->pae_root); 6461 free_page((unsigned long)mmu->pml4_root); 6462 free_page((unsigned long)mmu->pml5_root); 6463 } 6464 6465 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 6466 { 6467 struct page *page; 6468 int i; 6469 6470 mmu->root.hpa = INVALID_PAGE; 6471 mmu->root.pgd = 0; 6472 mmu->mirror_root_hpa = INVALID_PAGE; 6473 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 6474 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 6475 6476 /* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */ 6477 if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu) 6478 return 0; 6479 6480 /* 6481 * When using PAE paging, the four PDPTEs are treated as 'root' pages, 6482 * while the PDP table is a per-vCPU construct that's allocated at MMU 6483 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on 6484 * x86_64. Therefore we need to allocate the PDP table in the first 6485 * 4GB of memory, which happens to fit the DMA32 zone. TDP paging 6486 * generally doesn't use PAE paging and can skip allocating the PDP 6487 * table. The main exception, handled here, is SVM's 32-bit NPT. The 6488 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit 6489 * KVM; that horror is handled on-demand by mmu_alloc_special_roots(). 6490 */ 6491 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL) 6492 return 0; 6493 6494 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32); 6495 if (!page) 6496 return -ENOMEM; 6497 6498 mmu->pae_root = page_address(page); 6499 6500 /* 6501 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to 6502 * get the CPU to treat the PDPTEs as encrypted. Decrypt the page so 6503 * that KVM's writes and the CPU's reads get along. Note, this is 6504 * only necessary when using shadow paging, as 64-bit NPT can get at 6505 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported 6506 * by 32-bit kernels (when KVM itself uses 32-bit NPT). 6507 */ 6508 if (!tdp_enabled) 6509 set_memory_decrypted((unsigned long)mmu->pae_root, 1); 6510 else 6511 WARN_ON_ONCE(shadow_me_value); 6512 6513 for (i = 0; i < 4; ++i) 6514 mmu->pae_root[i] = INVALID_PAE_ROOT; 6515 6516 return 0; 6517 } 6518 6519 int kvm_mmu_create(struct kvm_vcpu *vcpu) 6520 { 6521 int ret; 6522 6523 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache; 6524 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO; 6525 6526 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache; 6527 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO; 6528 6529 vcpu->arch.mmu_shadow_page_cache.init_value = 6530 SHADOW_NONPRESENT_VALUE; 6531 if (!vcpu->arch.mmu_shadow_page_cache.init_value) 6532 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO; 6533 6534 vcpu->arch.mmu = &vcpu->arch.root_mmu; 6535 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; 6536 6537 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu); 6538 if (ret) 6539 return ret; 6540 6541 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu); 6542 if (ret) 6543 goto fail_allocate_root; 6544 6545 return ret; 6546 fail_allocate_root: 6547 free_mmu_pages(&vcpu->arch.guest_mmu); 6548 return ret; 6549 } 6550 6551 #define BATCH_ZAP_PAGES 10 6552 static void kvm_zap_obsolete_pages(struct kvm *kvm) 6553 { 6554 struct kvm_mmu_page *sp, *node; 6555 int nr_zapped, batch = 0; 6556 LIST_HEAD(invalid_list); 6557 bool unstable; 6558 6559 lockdep_assert_held(&kvm->slots_lock); 6560 6561 restart: 6562 list_for_each_entry_safe_reverse(sp, node, 6563 &kvm->arch.active_mmu_pages, link) { 6564 /* 6565 * No obsolete valid page exists before a newly created page 6566 * since active_mmu_pages is a FIFO list. 6567 */ 6568 if (!is_obsolete_sp(kvm, sp)) 6569 break; 6570 6571 /* 6572 * Invalid pages should never land back on the list of active 6573 * pages. Skip the bogus page, otherwise we'll get stuck in an 6574 * infinite loop if the page gets put back on the list (again). 6575 */ 6576 if (WARN_ON_ONCE(sp->role.invalid)) 6577 continue; 6578 6579 /* 6580 * No need to flush the TLB since we're only zapping shadow 6581 * pages with an obsolete generation number and all vCPUS have 6582 * loaded a new root, i.e. the shadow pages being zapped cannot 6583 * be in active use by the guest. 6584 */ 6585 if (batch >= BATCH_ZAP_PAGES && 6586 cond_resched_rwlock_write(&kvm->mmu_lock)) { 6587 batch = 0; 6588 goto restart; 6589 } 6590 6591 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, 6592 &invalid_list, &nr_zapped); 6593 batch += nr_zapped; 6594 6595 if (unstable) 6596 goto restart; 6597 } 6598 6599 /* 6600 * Kick all vCPUs (via remote TLB flush) before freeing the page tables 6601 * to ensure KVM is not in the middle of a lockless shadow page table 6602 * walk, which may reference the pages. The remote TLB flush itself is 6603 * not required and is simply a convenient way to kick vCPUs as needed. 6604 * KVM performs a local TLB flush when allocating a new root (see 6605 * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are 6606 * running with an obsolete MMU. 6607 */ 6608 kvm_mmu_commit_zap_page(kvm, &invalid_list); 6609 } 6610 6611 /* 6612 * Fast invalidate all shadow pages and use lock-break technique 6613 * to zap obsolete pages. 6614 * 6615 * It's required when memslot is being deleted or VM is being 6616 * destroyed, in these cases, we should ensure that KVM MMU does 6617 * not use any resource of the being-deleted slot or all slots 6618 * after calling the function. 6619 */ 6620 static void kvm_mmu_zap_all_fast(struct kvm *kvm) 6621 { 6622 lockdep_assert_held(&kvm->slots_lock); 6623 6624 write_lock(&kvm->mmu_lock); 6625 trace_kvm_mmu_zap_all_fast(kvm); 6626 6627 /* 6628 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is 6629 * held for the entire duration of zapping obsolete pages, it's 6630 * impossible for there to be multiple invalid generations associated 6631 * with *valid* shadow pages at any given time, i.e. there is exactly 6632 * one valid generation and (at most) one invalid generation. 6633 */ 6634 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1; 6635 6636 /* 6637 * In order to ensure all vCPUs drop their soon-to-be invalid roots, 6638 * invalidating TDP MMU roots must be done while holding mmu_lock for 6639 * write and in the same critical section as making the reload request, 6640 * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield. 6641 */ 6642 if (tdp_mmu_enabled) { 6643 /* 6644 * External page tables don't support fast zapping, therefore 6645 * their mirrors must be invalidated separately by the caller. 6646 */ 6647 kvm_tdp_mmu_invalidate_roots(kvm, KVM_DIRECT_ROOTS); 6648 } 6649 6650 /* 6651 * Notify all vcpus to reload its shadow page table and flush TLB. 6652 * Then all vcpus will switch to new shadow page table with the new 6653 * mmu_valid_gen. 6654 * 6655 * Note: we need to do this under the protection of mmu_lock, 6656 * otherwise, vcpu would purge shadow page but miss tlb flush. 6657 */ 6658 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 6659 6660 kvm_zap_obsolete_pages(kvm); 6661 6662 write_unlock(&kvm->mmu_lock); 6663 6664 /* 6665 * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before 6666 * returning to the caller, e.g. if the zap is in response to a memslot 6667 * deletion, mmu_notifier callbacks will be unable to reach the SPTEs 6668 * associated with the deleted memslot once the update completes, and 6669 * Deferring the zap until the final reference to the root is put would 6670 * lead to use-after-free. 6671 */ 6672 if (tdp_mmu_enabled) 6673 kvm_tdp_mmu_zap_invalidated_roots(kvm, true); 6674 } 6675 6676 void kvm_mmu_init_vm(struct kvm *kvm) 6677 { 6678 kvm->arch.shadow_mmio_value = shadow_mmio_value; 6679 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 6680 INIT_LIST_HEAD(&kvm->arch.possible_nx_huge_pages); 6681 spin_lock_init(&kvm->arch.mmu_unsync_pages_lock); 6682 6683 if (tdp_mmu_enabled) 6684 kvm_mmu_init_tdp_mmu(kvm); 6685 6686 kvm->arch.split_page_header_cache.kmem_cache = mmu_page_header_cache; 6687 kvm->arch.split_page_header_cache.gfp_zero = __GFP_ZERO; 6688 6689 kvm->arch.split_shadow_page_cache.gfp_zero = __GFP_ZERO; 6690 6691 kvm->arch.split_desc_cache.kmem_cache = pte_list_desc_cache; 6692 kvm->arch.split_desc_cache.gfp_zero = __GFP_ZERO; 6693 } 6694 6695 static void mmu_free_vm_memory_caches(struct kvm *kvm) 6696 { 6697 kvm_mmu_free_memory_cache(&kvm->arch.split_desc_cache); 6698 kvm_mmu_free_memory_cache(&kvm->arch.split_page_header_cache); 6699 kvm_mmu_free_memory_cache(&kvm->arch.split_shadow_page_cache); 6700 } 6701 6702 void kvm_mmu_uninit_vm(struct kvm *kvm) 6703 { 6704 if (tdp_mmu_enabled) 6705 kvm_mmu_uninit_tdp_mmu(kvm); 6706 6707 mmu_free_vm_memory_caches(kvm); 6708 } 6709 6710 static bool kvm_rmap_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 6711 { 6712 const struct kvm_memory_slot *memslot; 6713 struct kvm_memslots *slots; 6714 struct kvm_memslot_iter iter; 6715 bool flush = false; 6716 gfn_t start, end; 6717 int i; 6718 6719 if (!kvm_memslots_have_rmaps(kvm)) 6720 return flush; 6721 6722 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 6723 slots = __kvm_memslots(kvm, i); 6724 6725 kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) { 6726 memslot = iter.slot; 6727 start = max(gfn_start, memslot->base_gfn); 6728 end = min(gfn_end, memslot->base_gfn + memslot->npages); 6729 if (WARN_ON_ONCE(start >= end)) 6730 continue; 6731 6732 flush = __kvm_rmap_zap_gfn_range(kvm, memslot, start, 6733 end, true, flush); 6734 } 6735 } 6736 6737 return flush; 6738 } 6739 6740 /* 6741 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end 6742 * (not including it) 6743 */ 6744 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 6745 { 6746 bool flush; 6747 6748 if (WARN_ON_ONCE(gfn_end <= gfn_start)) 6749 return; 6750 6751 write_lock(&kvm->mmu_lock); 6752 6753 kvm_mmu_invalidate_begin(kvm); 6754 6755 kvm_mmu_invalidate_range_add(kvm, gfn_start, gfn_end); 6756 6757 flush = kvm_rmap_zap_gfn_range(kvm, gfn_start, gfn_end); 6758 6759 if (tdp_mmu_enabled) 6760 flush = kvm_tdp_mmu_zap_leafs(kvm, gfn_start, gfn_end, flush); 6761 6762 if (flush) 6763 kvm_flush_remote_tlbs_range(kvm, gfn_start, gfn_end - gfn_start); 6764 6765 kvm_mmu_invalidate_end(kvm); 6766 6767 write_unlock(&kvm->mmu_lock); 6768 } 6769 6770 static bool slot_rmap_write_protect(struct kvm *kvm, 6771 struct kvm_rmap_head *rmap_head, 6772 const struct kvm_memory_slot *slot) 6773 { 6774 return rmap_write_protect(rmap_head, false); 6775 } 6776 6777 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 6778 const struct kvm_memory_slot *memslot, 6779 int start_level) 6780 { 6781 if (kvm_memslots_have_rmaps(kvm)) { 6782 write_lock(&kvm->mmu_lock); 6783 walk_slot_rmaps(kvm, memslot, slot_rmap_write_protect, 6784 start_level, KVM_MAX_HUGEPAGE_LEVEL, false); 6785 write_unlock(&kvm->mmu_lock); 6786 } 6787 6788 if (tdp_mmu_enabled) { 6789 read_lock(&kvm->mmu_lock); 6790 kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level); 6791 read_unlock(&kvm->mmu_lock); 6792 } 6793 } 6794 6795 static inline bool need_topup(struct kvm_mmu_memory_cache *cache, int min) 6796 { 6797 return kvm_mmu_memory_cache_nr_free_objects(cache) < min; 6798 } 6799 6800 static bool need_topup_split_caches_or_resched(struct kvm *kvm) 6801 { 6802 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) 6803 return true; 6804 6805 /* 6806 * In the worst case, SPLIT_DESC_CACHE_MIN_NR_OBJECTS descriptors are needed 6807 * to split a single huge page. Calculating how many are actually needed 6808 * is possible but not worth the complexity. 6809 */ 6810 return need_topup(&kvm->arch.split_desc_cache, SPLIT_DESC_CACHE_MIN_NR_OBJECTS) || 6811 need_topup(&kvm->arch.split_page_header_cache, 1) || 6812 need_topup(&kvm->arch.split_shadow_page_cache, 1); 6813 } 6814 6815 static int topup_split_caches(struct kvm *kvm) 6816 { 6817 /* 6818 * Allocating rmap list entries when splitting huge pages for nested 6819 * MMUs is uncommon as KVM needs to use a list if and only if there is 6820 * more than one rmap entry for a gfn, i.e. requires an L1 gfn to be 6821 * aliased by multiple L2 gfns and/or from multiple nested roots with 6822 * different roles. Aliasing gfns when using TDP is atypical for VMMs; 6823 * a few gfns are often aliased during boot, e.g. when remapping BIOS, 6824 * but aliasing rarely occurs post-boot or for many gfns. If there is 6825 * only one rmap entry, rmap->val points directly at that one entry and 6826 * doesn't need to allocate a list. Buffer the cache by the default 6827 * capacity so that KVM doesn't have to drop mmu_lock to topup if KVM 6828 * encounters an aliased gfn or two. 6829 */ 6830 const int capacity = SPLIT_DESC_CACHE_MIN_NR_OBJECTS + 6831 KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE; 6832 int r; 6833 6834 lockdep_assert_held(&kvm->slots_lock); 6835 6836 r = __kvm_mmu_topup_memory_cache(&kvm->arch.split_desc_cache, capacity, 6837 SPLIT_DESC_CACHE_MIN_NR_OBJECTS); 6838 if (r) 6839 return r; 6840 6841 r = kvm_mmu_topup_memory_cache(&kvm->arch.split_page_header_cache, 1); 6842 if (r) 6843 return r; 6844 6845 return kvm_mmu_topup_memory_cache(&kvm->arch.split_shadow_page_cache, 1); 6846 } 6847 6848 static struct kvm_mmu_page *shadow_mmu_get_sp_for_split(struct kvm *kvm, u64 *huge_sptep) 6849 { 6850 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); 6851 struct shadow_page_caches caches = {}; 6852 union kvm_mmu_page_role role; 6853 unsigned int access; 6854 gfn_t gfn; 6855 6856 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep)); 6857 access = kvm_mmu_page_get_access(huge_sp, spte_index(huge_sptep)); 6858 6859 /* 6860 * Note, huge page splitting always uses direct shadow pages, regardless 6861 * of whether the huge page itself is mapped by a direct or indirect 6862 * shadow page, since the huge page region itself is being directly 6863 * mapped with smaller pages. 6864 */ 6865 role = kvm_mmu_child_role(huge_sptep, /*direct=*/true, access); 6866 6867 /* Direct SPs do not require a shadowed_info_cache. */ 6868 caches.page_header_cache = &kvm->arch.split_page_header_cache; 6869 caches.shadow_page_cache = &kvm->arch.split_shadow_page_cache; 6870 6871 /* Safe to pass NULL for vCPU since requesting a direct SP. */ 6872 return __kvm_mmu_get_shadow_page(kvm, NULL, &caches, gfn, role); 6873 } 6874 6875 static void shadow_mmu_split_huge_page(struct kvm *kvm, 6876 const struct kvm_memory_slot *slot, 6877 u64 *huge_sptep) 6878 6879 { 6880 struct kvm_mmu_memory_cache *cache = &kvm->arch.split_desc_cache; 6881 u64 huge_spte = READ_ONCE(*huge_sptep); 6882 struct kvm_mmu_page *sp; 6883 bool flush = false; 6884 u64 *sptep, spte; 6885 gfn_t gfn; 6886 int index; 6887 6888 sp = shadow_mmu_get_sp_for_split(kvm, huge_sptep); 6889 6890 for (index = 0; index < SPTE_ENT_PER_PAGE; index++) { 6891 sptep = &sp->spt[index]; 6892 gfn = kvm_mmu_page_get_gfn(sp, index); 6893 6894 /* 6895 * The SP may already have populated SPTEs, e.g. if this huge 6896 * page is aliased by multiple sptes with the same access 6897 * permissions. These entries are guaranteed to map the same 6898 * gfn-to-pfn translation since the SP is direct, so no need to 6899 * modify them. 6900 * 6901 * However, if a given SPTE points to a lower level page table, 6902 * that lower level page table may only be partially populated. 6903 * Installing such SPTEs would effectively unmap a potion of the 6904 * huge page. Unmapping guest memory always requires a TLB flush 6905 * since a subsequent operation on the unmapped regions would 6906 * fail to detect the need to flush. 6907 */ 6908 if (is_shadow_present_pte(*sptep)) { 6909 flush |= !is_last_spte(*sptep, sp->role.level); 6910 continue; 6911 } 6912 6913 spte = make_small_spte(kvm, huge_spte, sp->role, index); 6914 mmu_spte_set(sptep, spte); 6915 __rmap_add(kvm, cache, slot, sptep, gfn, sp->role.access); 6916 } 6917 6918 __link_shadow_page(kvm, cache, huge_sptep, sp, flush); 6919 } 6920 6921 static int shadow_mmu_try_split_huge_page(struct kvm *kvm, 6922 const struct kvm_memory_slot *slot, 6923 u64 *huge_sptep) 6924 { 6925 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); 6926 int level, r = 0; 6927 gfn_t gfn; 6928 u64 spte; 6929 6930 /* Grab information for the tracepoint before dropping the MMU lock. */ 6931 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep)); 6932 level = huge_sp->role.level; 6933 spte = *huge_sptep; 6934 6935 if (kvm_mmu_available_pages(kvm) <= KVM_MIN_FREE_MMU_PAGES) { 6936 r = -ENOSPC; 6937 goto out; 6938 } 6939 6940 if (need_topup_split_caches_or_resched(kvm)) { 6941 write_unlock(&kvm->mmu_lock); 6942 cond_resched(); 6943 /* 6944 * If the topup succeeds, return -EAGAIN to indicate that the 6945 * rmap iterator should be restarted because the MMU lock was 6946 * dropped. 6947 */ 6948 r = topup_split_caches(kvm) ?: -EAGAIN; 6949 write_lock(&kvm->mmu_lock); 6950 goto out; 6951 } 6952 6953 shadow_mmu_split_huge_page(kvm, slot, huge_sptep); 6954 6955 out: 6956 trace_kvm_mmu_split_huge_page(gfn, spte, level, r); 6957 return r; 6958 } 6959 6960 static bool shadow_mmu_try_split_huge_pages(struct kvm *kvm, 6961 struct kvm_rmap_head *rmap_head, 6962 const struct kvm_memory_slot *slot) 6963 { 6964 struct rmap_iterator iter; 6965 struct kvm_mmu_page *sp; 6966 u64 *huge_sptep; 6967 int r; 6968 6969 restart: 6970 for_each_rmap_spte(rmap_head, &iter, huge_sptep) { 6971 sp = sptep_to_sp(huge_sptep); 6972 6973 /* TDP MMU is enabled, so rmap only contains nested MMU SPs. */ 6974 if (WARN_ON_ONCE(!sp->role.guest_mode)) 6975 continue; 6976 6977 /* The rmaps should never contain non-leaf SPTEs. */ 6978 if (WARN_ON_ONCE(!is_large_pte(*huge_sptep))) 6979 continue; 6980 6981 /* SPs with level >PG_LEVEL_4K should never by unsync. */ 6982 if (WARN_ON_ONCE(sp->unsync)) 6983 continue; 6984 6985 /* Don't bother splitting huge pages on invalid SPs. */ 6986 if (sp->role.invalid) 6987 continue; 6988 6989 r = shadow_mmu_try_split_huge_page(kvm, slot, huge_sptep); 6990 6991 /* 6992 * The split succeeded or needs to be retried because the MMU 6993 * lock was dropped. Either way, restart the iterator to get it 6994 * back into a consistent state. 6995 */ 6996 if (!r || r == -EAGAIN) 6997 goto restart; 6998 6999 /* The split failed and shouldn't be retried (e.g. -ENOMEM). */ 7000 break; 7001 } 7002 7003 return false; 7004 } 7005 7006 static void kvm_shadow_mmu_try_split_huge_pages(struct kvm *kvm, 7007 const struct kvm_memory_slot *slot, 7008 gfn_t start, gfn_t end, 7009 int target_level) 7010 { 7011 int level; 7012 7013 /* 7014 * Split huge pages starting with KVM_MAX_HUGEPAGE_LEVEL and working 7015 * down to the target level. This ensures pages are recursively split 7016 * all the way to the target level. There's no need to split pages 7017 * already at the target level. 7018 */ 7019 for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--) 7020 __walk_slot_rmaps(kvm, slot, shadow_mmu_try_split_huge_pages, 7021 level, level, start, end - 1, true, true, false); 7022 } 7023 7024 /* Must be called with the mmu_lock held in write-mode. */ 7025 void kvm_mmu_try_split_huge_pages(struct kvm *kvm, 7026 const struct kvm_memory_slot *memslot, 7027 u64 start, u64 end, 7028 int target_level) 7029 { 7030 if (!tdp_mmu_enabled) 7031 return; 7032 7033 if (kvm_memslots_have_rmaps(kvm)) 7034 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); 7035 7036 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, false); 7037 7038 /* 7039 * A TLB flush is unnecessary at this point for the same reasons as in 7040 * kvm_mmu_slot_try_split_huge_pages(). 7041 */ 7042 } 7043 7044 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, 7045 const struct kvm_memory_slot *memslot, 7046 int target_level) 7047 { 7048 u64 start = memslot->base_gfn; 7049 u64 end = start + memslot->npages; 7050 7051 if (!tdp_mmu_enabled) 7052 return; 7053 7054 if (kvm_memslots_have_rmaps(kvm)) { 7055 write_lock(&kvm->mmu_lock); 7056 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); 7057 write_unlock(&kvm->mmu_lock); 7058 } 7059 7060 read_lock(&kvm->mmu_lock); 7061 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true); 7062 read_unlock(&kvm->mmu_lock); 7063 7064 /* 7065 * No TLB flush is necessary here. KVM will flush TLBs after 7066 * write-protecting and/or clearing dirty on the newly split SPTEs to 7067 * ensure that guest writes are reflected in the dirty log before the 7068 * ioctl to enable dirty logging on this memslot completes. Since the 7069 * split SPTEs retain the write and dirty bits of the huge SPTE, it is 7070 * safe for KVM to decide if a TLB flush is necessary based on the split 7071 * SPTEs. 7072 */ 7073 } 7074 7075 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, 7076 struct kvm_rmap_head *rmap_head, 7077 const struct kvm_memory_slot *slot) 7078 { 7079 u64 *sptep; 7080 struct rmap_iterator iter; 7081 int need_tlb_flush = 0; 7082 struct kvm_mmu_page *sp; 7083 7084 restart: 7085 for_each_rmap_spte(rmap_head, &iter, sptep) { 7086 sp = sptep_to_sp(sptep); 7087 7088 /* 7089 * We cannot do huge page mapping for indirect shadow pages, 7090 * which are found on the last rmap (level = 1) when not using 7091 * tdp; such shadow pages are synced with the page table in 7092 * the guest, and the guest page table is using 4K page size 7093 * mapping if the indirect sp has level = 1. 7094 */ 7095 if (sp->role.direct && 7096 sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn)) { 7097 kvm_zap_one_rmap_spte(kvm, rmap_head, sptep); 7098 7099 if (kvm_available_flush_remote_tlbs_range()) 7100 kvm_flush_remote_tlbs_sptep(kvm, sptep); 7101 else 7102 need_tlb_flush = 1; 7103 7104 goto restart; 7105 } 7106 } 7107 7108 return need_tlb_flush; 7109 } 7110 EXPORT_SYMBOL_GPL(kvm_zap_gfn_range); 7111 7112 static void kvm_rmap_zap_collapsible_sptes(struct kvm *kvm, 7113 const struct kvm_memory_slot *slot) 7114 { 7115 /* 7116 * Note, use KVM_MAX_HUGEPAGE_LEVEL - 1 since there's no need to zap 7117 * pages that are already mapped at the maximum hugepage level. 7118 */ 7119 if (walk_slot_rmaps(kvm, slot, kvm_mmu_zap_collapsible_spte, 7120 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL - 1, true)) 7121 kvm_flush_remote_tlbs_memslot(kvm, slot); 7122 } 7123 7124 void kvm_mmu_recover_huge_pages(struct kvm *kvm, 7125 const struct kvm_memory_slot *slot) 7126 { 7127 if (kvm_memslots_have_rmaps(kvm)) { 7128 write_lock(&kvm->mmu_lock); 7129 kvm_rmap_zap_collapsible_sptes(kvm, slot); 7130 write_unlock(&kvm->mmu_lock); 7131 } 7132 7133 if (tdp_mmu_enabled) { 7134 read_lock(&kvm->mmu_lock); 7135 kvm_tdp_mmu_recover_huge_pages(kvm, slot); 7136 read_unlock(&kvm->mmu_lock); 7137 } 7138 } 7139 7140 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 7141 const struct kvm_memory_slot *memslot) 7142 { 7143 if (kvm_memslots_have_rmaps(kvm)) { 7144 write_lock(&kvm->mmu_lock); 7145 /* 7146 * Clear dirty bits only on 4k SPTEs since the legacy MMU only 7147 * support dirty logging at a 4k granularity. 7148 */ 7149 walk_slot_rmaps_4k(kvm, memslot, __rmap_clear_dirty, false); 7150 write_unlock(&kvm->mmu_lock); 7151 } 7152 7153 if (tdp_mmu_enabled) { 7154 read_lock(&kvm->mmu_lock); 7155 kvm_tdp_mmu_clear_dirty_slot(kvm, memslot); 7156 read_unlock(&kvm->mmu_lock); 7157 } 7158 7159 /* 7160 * The caller will flush the TLBs after this function returns. 7161 * 7162 * It's also safe to flush TLBs out of mmu lock here as currently this 7163 * function is only used for dirty logging, in which case flushing TLB 7164 * out of mmu lock also guarantees no dirty pages will be lost in 7165 * dirty_bitmap. 7166 */ 7167 } 7168 7169 static void kvm_mmu_zap_all(struct kvm *kvm) 7170 { 7171 struct kvm_mmu_page *sp, *node; 7172 LIST_HEAD(invalid_list); 7173 int ign; 7174 7175 write_lock(&kvm->mmu_lock); 7176 restart: 7177 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) { 7178 if (WARN_ON_ONCE(sp->role.invalid)) 7179 continue; 7180 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign)) 7181 goto restart; 7182 if (cond_resched_rwlock_write(&kvm->mmu_lock)) 7183 goto restart; 7184 } 7185 7186 kvm_mmu_commit_zap_page(kvm, &invalid_list); 7187 7188 if (tdp_mmu_enabled) 7189 kvm_tdp_mmu_zap_all(kvm); 7190 7191 write_unlock(&kvm->mmu_lock); 7192 } 7193 7194 void kvm_arch_flush_shadow_all(struct kvm *kvm) 7195 { 7196 kvm_mmu_zap_all(kvm); 7197 } 7198 7199 static void kvm_mmu_zap_memslot_pages_and_flush(struct kvm *kvm, 7200 struct kvm_memory_slot *slot, 7201 bool flush) 7202 { 7203 LIST_HEAD(invalid_list); 7204 unsigned long i; 7205 7206 if (list_empty(&kvm->arch.active_mmu_pages)) 7207 goto out_flush; 7208 7209 /* 7210 * Since accounting information is stored in struct kvm_arch_memory_slot, 7211 * all MMU pages that are shadowing guest PTEs must be zapped before the 7212 * memslot is deleted, as freeing such pages after the memslot is freed 7213 * will result in use-after-free, e.g. in unaccount_shadowed(). 7214 */ 7215 for (i = 0; i < slot->npages; i++) { 7216 struct kvm_mmu_page *sp; 7217 gfn_t gfn = slot->base_gfn + i; 7218 7219 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) 7220 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 7221 7222 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 7223 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7224 flush = false; 7225 cond_resched_rwlock_write(&kvm->mmu_lock); 7226 } 7227 } 7228 7229 out_flush: 7230 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7231 } 7232 7233 static void kvm_mmu_zap_memslot(struct kvm *kvm, 7234 struct kvm_memory_slot *slot) 7235 { 7236 struct kvm_gfn_range range = { 7237 .slot = slot, 7238 .start = slot->base_gfn, 7239 .end = slot->base_gfn + slot->npages, 7240 .may_block = true, 7241 }; 7242 bool flush; 7243 7244 write_lock(&kvm->mmu_lock); 7245 flush = kvm_unmap_gfn_range(kvm, &range); 7246 kvm_mmu_zap_memslot_pages_and_flush(kvm, slot, flush); 7247 write_unlock(&kvm->mmu_lock); 7248 } 7249 7250 static inline bool kvm_memslot_flush_zap_all(struct kvm *kvm) 7251 { 7252 return kvm->arch.vm_type == KVM_X86_DEFAULT_VM && 7253 kvm_check_has_quirk(kvm, KVM_X86_QUIRK_SLOT_ZAP_ALL); 7254 } 7255 7256 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 7257 struct kvm_memory_slot *slot) 7258 { 7259 if (kvm_memslot_flush_zap_all(kvm)) 7260 kvm_mmu_zap_all_fast(kvm); 7261 else 7262 kvm_mmu_zap_memslot(kvm, slot); 7263 } 7264 7265 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen) 7266 { 7267 WARN_ON_ONCE(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 7268 7269 gen &= MMIO_SPTE_GEN_MASK; 7270 7271 /* 7272 * Generation numbers are incremented in multiples of the number of 7273 * address spaces in order to provide unique generations across all 7274 * address spaces. Strip what is effectively the address space 7275 * modifier prior to checking for a wrap of the MMIO generation so 7276 * that a wrap in any address space is detected. 7277 */ 7278 gen &= ~((u64)kvm_arch_nr_memslot_as_ids(kvm) - 1); 7279 7280 /* 7281 * The very rare case: if the MMIO generation number has wrapped, 7282 * zap all shadow pages. 7283 */ 7284 if (unlikely(gen == 0)) { 7285 kvm_debug_ratelimited("zapping shadow pages for mmio generation wraparound\n"); 7286 kvm_mmu_zap_all_fast(kvm); 7287 } 7288 } 7289 7290 static void mmu_destroy_caches(void) 7291 { 7292 kmem_cache_destroy(pte_list_desc_cache); 7293 kmem_cache_destroy(mmu_page_header_cache); 7294 } 7295 7296 static void kvm_wake_nx_recovery_thread(struct kvm *kvm) 7297 { 7298 /* 7299 * The NX recovery thread is spawned on-demand at the first KVM_RUN and 7300 * may not be valid even though the VM is globally visible. Do nothing, 7301 * as such a VM can't have any possible NX huge pages. 7302 */ 7303 struct vhost_task *nx_thread = READ_ONCE(kvm->arch.nx_huge_page_recovery_thread); 7304 7305 if (nx_thread) 7306 vhost_task_wake(nx_thread); 7307 } 7308 7309 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp) 7310 { 7311 if (nx_hugepage_mitigation_hard_disabled) 7312 return sysfs_emit(buffer, "never\n"); 7313 7314 return param_get_bool(buffer, kp); 7315 } 7316 7317 static bool get_nx_auto_mode(void) 7318 { 7319 /* Return true when CPU has the bug, and mitigations are ON */ 7320 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off(); 7321 } 7322 7323 static void __set_nx_huge_pages(bool val) 7324 { 7325 nx_huge_pages = itlb_multihit_kvm_mitigation = val; 7326 } 7327 7328 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp) 7329 { 7330 bool old_val = nx_huge_pages; 7331 bool new_val; 7332 7333 if (nx_hugepage_mitigation_hard_disabled) 7334 return -EPERM; 7335 7336 /* In "auto" mode deploy workaround only if CPU has the bug. */ 7337 if (sysfs_streq(val, "off")) { 7338 new_val = 0; 7339 } else if (sysfs_streq(val, "force")) { 7340 new_val = 1; 7341 } else if (sysfs_streq(val, "auto")) { 7342 new_val = get_nx_auto_mode(); 7343 } else if (sysfs_streq(val, "never")) { 7344 new_val = 0; 7345 7346 mutex_lock(&kvm_lock); 7347 if (!list_empty(&vm_list)) { 7348 mutex_unlock(&kvm_lock); 7349 return -EBUSY; 7350 } 7351 nx_hugepage_mitigation_hard_disabled = true; 7352 mutex_unlock(&kvm_lock); 7353 } else if (kstrtobool(val, &new_val) < 0) { 7354 return -EINVAL; 7355 } 7356 7357 __set_nx_huge_pages(new_val); 7358 7359 if (new_val != old_val) { 7360 struct kvm *kvm; 7361 7362 mutex_lock(&kvm_lock); 7363 7364 list_for_each_entry(kvm, &vm_list, vm_list) { 7365 mutex_lock(&kvm->slots_lock); 7366 kvm_mmu_zap_all_fast(kvm); 7367 mutex_unlock(&kvm->slots_lock); 7368 7369 kvm_wake_nx_recovery_thread(kvm); 7370 } 7371 mutex_unlock(&kvm_lock); 7372 } 7373 7374 return 0; 7375 } 7376 7377 /* 7378 * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as 7379 * its default value of -1 is technically undefined behavior for a boolean. 7380 * Forward the module init call to SPTE code so that it too can handle module 7381 * params that need to be resolved/snapshot. 7382 */ 7383 void __init kvm_mmu_x86_module_init(void) 7384 { 7385 if (nx_huge_pages == -1) 7386 __set_nx_huge_pages(get_nx_auto_mode()); 7387 7388 /* 7389 * Snapshot userspace's desire to enable the TDP MMU. Whether or not the 7390 * TDP MMU is actually enabled is determined in kvm_configure_mmu() 7391 * when the vendor module is loaded. 7392 */ 7393 tdp_mmu_allowed = tdp_mmu_enabled; 7394 7395 kvm_mmu_spte_module_init(); 7396 } 7397 7398 /* 7399 * The bulk of the MMU initialization is deferred until the vendor module is 7400 * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need 7401 * to be reset when a potentially different vendor module is loaded. 7402 */ 7403 int kvm_mmu_vendor_module_init(void) 7404 { 7405 int ret = -ENOMEM; 7406 7407 /* 7408 * MMU roles use union aliasing which is, generally speaking, an 7409 * undefined behavior. However, we supposedly know how compilers behave 7410 * and the current status quo is unlikely to change. Guardians below are 7411 * supposed to let us know if the assumption becomes false. 7412 */ 7413 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32)); 7414 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32)); 7415 BUILD_BUG_ON(sizeof(union kvm_cpu_role) != sizeof(u64)); 7416 7417 kvm_mmu_reset_all_pte_masks(); 7418 7419 pte_list_desc_cache = KMEM_CACHE(pte_list_desc, SLAB_ACCOUNT); 7420 if (!pte_list_desc_cache) 7421 goto out; 7422 7423 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", 7424 sizeof(struct kvm_mmu_page), 7425 0, SLAB_ACCOUNT, NULL); 7426 if (!mmu_page_header_cache) 7427 goto out; 7428 7429 return 0; 7430 7431 out: 7432 mmu_destroy_caches(); 7433 return ret; 7434 } 7435 7436 void kvm_mmu_destroy(struct kvm_vcpu *vcpu) 7437 { 7438 kvm_mmu_unload(vcpu); 7439 if (tdp_mmu_enabled) { 7440 read_lock(&vcpu->kvm->mmu_lock); 7441 mmu_free_root_page(vcpu->kvm, &vcpu->arch.mmu->mirror_root_hpa, 7442 NULL); 7443 read_unlock(&vcpu->kvm->mmu_lock); 7444 } 7445 free_mmu_pages(&vcpu->arch.root_mmu); 7446 free_mmu_pages(&vcpu->arch.guest_mmu); 7447 mmu_free_memory_caches(vcpu); 7448 } 7449 7450 void kvm_mmu_vendor_module_exit(void) 7451 { 7452 mmu_destroy_caches(); 7453 } 7454 7455 /* 7456 * Calculate the effective recovery period, accounting for '0' meaning "let KVM 7457 * select a halving time of 1 hour". Returns true if recovery is enabled. 7458 */ 7459 static bool calc_nx_huge_pages_recovery_period(uint *period) 7460 { 7461 /* 7462 * Use READ_ONCE to get the params, this may be called outside of the 7463 * param setters, e.g. by the kthread to compute its next timeout. 7464 */ 7465 bool enabled = READ_ONCE(nx_huge_pages); 7466 uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 7467 7468 if (!enabled || !ratio) 7469 return false; 7470 7471 *period = READ_ONCE(nx_huge_pages_recovery_period_ms); 7472 if (!*period) { 7473 /* Make sure the period is not less than one second. */ 7474 ratio = min(ratio, 3600u); 7475 *period = 60 * 60 * 1000 / ratio; 7476 } 7477 return true; 7478 } 7479 7480 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp) 7481 { 7482 bool was_recovery_enabled, is_recovery_enabled; 7483 uint old_period, new_period; 7484 int err; 7485 7486 if (nx_hugepage_mitigation_hard_disabled) 7487 return -EPERM; 7488 7489 was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period); 7490 7491 err = param_set_uint(val, kp); 7492 if (err) 7493 return err; 7494 7495 is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period); 7496 7497 if (is_recovery_enabled && 7498 (!was_recovery_enabled || old_period > new_period)) { 7499 struct kvm *kvm; 7500 7501 mutex_lock(&kvm_lock); 7502 7503 list_for_each_entry(kvm, &vm_list, vm_list) 7504 kvm_wake_nx_recovery_thread(kvm); 7505 7506 mutex_unlock(&kvm_lock); 7507 } 7508 7509 return err; 7510 } 7511 7512 static void kvm_recover_nx_huge_pages(struct kvm *kvm) 7513 { 7514 unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits; 7515 struct kvm_memory_slot *slot; 7516 int rcu_idx; 7517 struct kvm_mmu_page *sp; 7518 unsigned int ratio; 7519 LIST_HEAD(invalid_list); 7520 bool flush = false; 7521 ulong to_zap; 7522 7523 rcu_idx = srcu_read_lock(&kvm->srcu); 7524 write_lock(&kvm->mmu_lock); 7525 7526 /* 7527 * Zapping TDP MMU shadow pages, including the remote TLB flush, must 7528 * be done under RCU protection, because the pages are freed via RCU 7529 * callback. 7530 */ 7531 rcu_read_lock(); 7532 7533 ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 7534 to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0; 7535 for ( ; to_zap; --to_zap) { 7536 if (list_empty(&kvm->arch.possible_nx_huge_pages)) 7537 break; 7538 7539 /* 7540 * We use a separate list instead of just using active_mmu_pages 7541 * because the number of shadow pages that be replaced with an 7542 * NX huge page is expected to be relatively small compared to 7543 * the total number of shadow pages. And because the TDP MMU 7544 * doesn't use active_mmu_pages. 7545 */ 7546 sp = list_first_entry(&kvm->arch.possible_nx_huge_pages, 7547 struct kvm_mmu_page, 7548 possible_nx_huge_page_link); 7549 WARN_ON_ONCE(!sp->nx_huge_page_disallowed); 7550 WARN_ON_ONCE(!sp->role.direct); 7551 7552 /* 7553 * Unaccount and do not attempt to recover any NX Huge Pages 7554 * that are being dirty tracked, as they would just be faulted 7555 * back in as 4KiB pages. The NX Huge Pages in this slot will be 7556 * recovered, along with all the other huge pages in the slot, 7557 * when dirty logging is disabled. 7558 * 7559 * Since gfn_to_memslot() is relatively expensive, it helps to 7560 * skip it if it the test cannot possibly return true. On the 7561 * other hand, if any memslot has logging enabled, chances are 7562 * good that all of them do, in which case unaccount_nx_huge_page() 7563 * is much cheaper than zapping the page. 7564 * 7565 * If a memslot update is in progress, reading an incorrect value 7566 * of kvm->nr_memslots_dirty_logging is not a problem: if it is 7567 * becoming zero, gfn_to_memslot() will be done unnecessarily; if 7568 * it is becoming nonzero, the page will be zapped unnecessarily. 7569 * Either way, this only affects efficiency in racy situations, 7570 * and not correctness. 7571 */ 7572 slot = NULL; 7573 if (atomic_read(&kvm->nr_memslots_dirty_logging)) { 7574 struct kvm_memslots *slots; 7575 7576 slots = kvm_memslots_for_spte_role(kvm, sp->role); 7577 slot = __gfn_to_memslot(slots, sp->gfn); 7578 WARN_ON_ONCE(!slot); 7579 } 7580 7581 if (slot && kvm_slot_dirty_track_enabled(slot)) 7582 unaccount_nx_huge_page(kvm, sp); 7583 else if (is_tdp_mmu_page(sp)) 7584 flush |= kvm_tdp_mmu_zap_sp(kvm, sp); 7585 else 7586 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 7587 WARN_ON_ONCE(sp->nx_huge_page_disallowed); 7588 7589 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 7590 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7591 rcu_read_unlock(); 7592 7593 cond_resched_rwlock_write(&kvm->mmu_lock); 7594 flush = false; 7595 7596 rcu_read_lock(); 7597 } 7598 } 7599 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7600 7601 rcu_read_unlock(); 7602 7603 write_unlock(&kvm->mmu_lock); 7604 srcu_read_unlock(&kvm->srcu, rcu_idx); 7605 } 7606 7607 static void kvm_nx_huge_page_recovery_worker_kill(void *data) 7608 { 7609 } 7610 7611 static bool kvm_nx_huge_page_recovery_worker(void *data) 7612 { 7613 struct kvm *kvm = data; 7614 bool enabled; 7615 uint period; 7616 long remaining_time; 7617 7618 enabled = calc_nx_huge_pages_recovery_period(&period); 7619 if (!enabled) 7620 return false; 7621 7622 remaining_time = kvm->arch.nx_huge_page_last + msecs_to_jiffies(period) 7623 - get_jiffies_64(); 7624 if (remaining_time > 0) { 7625 schedule_timeout(remaining_time); 7626 /* check for signals and come back */ 7627 return true; 7628 } 7629 7630 __set_current_state(TASK_RUNNING); 7631 kvm_recover_nx_huge_pages(kvm); 7632 kvm->arch.nx_huge_page_last = get_jiffies_64(); 7633 return true; 7634 } 7635 7636 static int kvm_mmu_start_lpage_recovery(struct once *once) 7637 { 7638 struct kvm_arch *ka = container_of(once, struct kvm_arch, nx_once); 7639 struct kvm *kvm = container_of(ka, struct kvm, arch); 7640 struct vhost_task *nx_thread; 7641 7642 kvm->arch.nx_huge_page_last = get_jiffies_64(); 7643 nx_thread = vhost_task_create(kvm_nx_huge_page_recovery_worker, 7644 kvm_nx_huge_page_recovery_worker_kill, 7645 kvm, "kvm-nx-lpage-recovery"); 7646 7647 if (IS_ERR(nx_thread)) 7648 return PTR_ERR(nx_thread); 7649 7650 vhost_task_start(nx_thread); 7651 7652 /* Make the task visible only once it is fully started. */ 7653 WRITE_ONCE(kvm->arch.nx_huge_page_recovery_thread, nx_thread); 7654 return 0; 7655 } 7656 7657 int kvm_mmu_post_init_vm(struct kvm *kvm) 7658 { 7659 if (nx_hugepage_mitigation_hard_disabled) 7660 return 0; 7661 7662 return call_once(&kvm->arch.nx_once, kvm_mmu_start_lpage_recovery); 7663 } 7664 7665 void kvm_mmu_pre_destroy_vm(struct kvm *kvm) 7666 { 7667 if (kvm->arch.nx_huge_page_recovery_thread) 7668 vhost_task_stop(kvm->arch.nx_huge_page_recovery_thread); 7669 } 7670 7671 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 7672 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm, 7673 struct kvm_gfn_range *range) 7674 { 7675 /* 7676 * Zap SPTEs even if the slot can't be mapped PRIVATE. KVM x86 only 7677 * supports KVM_MEMORY_ATTRIBUTE_PRIVATE, and so it *seems* like KVM 7678 * can simply ignore such slots. But if userspace is making memory 7679 * PRIVATE, then KVM must prevent the guest from accessing the memory 7680 * as shared. And if userspace is making memory SHARED and this point 7681 * is reached, then at least one page within the range was previously 7682 * PRIVATE, i.e. the slot's possible hugepage ranges are changing. 7683 * Zapping SPTEs in this case ensures KVM will reassess whether or not 7684 * a hugepage can be used for affected ranges. 7685 */ 7686 if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm))) 7687 return false; 7688 7689 /* Unmap the old attribute page. */ 7690 if (range->arg.attributes & KVM_MEMORY_ATTRIBUTE_PRIVATE) 7691 range->attr_filter = KVM_FILTER_SHARED; 7692 else 7693 range->attr_filter = KVM_FILTER_PRIVATE; 7694 7695 return kvm_unmap_gfn_range(kvm, range); 7696 } 7697 7698 static bool hugepage_test_mixed(struct kvm_memory_slot *slot, gfn_t gfn, 7699 int level) 7700 { 7701 return lpage_info_slot(gfn, slot, level)->disallow_lpage & KVM_LPAGE_MIXED_FLAG; 7702 } 7703 7704 static void hugepage_clear_mixed(struct kvm_memory_slot *slot, gfn_t gfn, 7705 int level) 7706 { 7707 lpage_info_slot(gfn, slot, level)->disallow_lpage &= ~KVM_LPAGE_MIXED_FLAG; 7708 } 7709 7710 static void hugepage_set_mixed(struct kvm_memory_slot *slot, gfn_t gfn, 7711 int level) 7712 { 7713 lpage_info_slot(gfn, slot, level)->disallow_lpage |= KVM_LPAGE_MIXED_FLAG; 7714 } 7715 7716 static bool hugepage_has_attrs(struct kvm *kvm, struct kvm_memory_slot *slot, 7717 gfn_t gfn, int level, unsigned long attrs) 7718 { 7719 const unsigned long start = gfn; 7720 const unsigned long end = start + KVM_PAGES_PER_HPAGE(level); 7721 7722 if (level == PG_LEVEL_2M) 7723 return kvm_range_has_memory_attributes(kvm, start, end, ~0, attrs); 7724 7725 for (gfn = start; gfn < end; gfn += KVM_PAGES_PER_HPAGE(level - 1)) { 7726 if (hugepage_test_mixed(slot, gfn, level - 1) || 7727 attrs != kvm_get_memory_attributes(kvm, gfn)) 7728 return false; 7729 } 7730 return true; 7731 } 7732 7733 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm, 7734 struct kvm_gfn_range *range) 7735 { 7736 unsigned long attrs = range->arg.attributes; 7737 struct kvm_memory_slot *slot = range->slot; 7738 int level; 7739 7740 lockdep_assert_held_write(&kvm->mmu_lock); 7741 lockdep_assert_held(&kvm->slots_lock); 7742 7743 /* 7744 * Calculate which ranges can be mapped with hugepages even if the slot 7745 * can't map memory PRIVATE. KVM mustn't create a SHARED hugepage over 7746 * a range that has PRIVATE GFNs, and conversely converting a range to 7747 * SHARED may now allow hugepages. 7748 */ 7749 if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm))) 7750 return false; 7751 7752 /* 7753 * The sequence matters here: upper levels consume the result of lower 7754 * level's scanning. 7755 */ 7756 for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) { 7757 gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level); 7758 gfn_t gfn = gfn_round_for_level(range->start, level); 7759 7760 /* Process the head page if it straddles the range. */ 7761 if (gfn != range->start || gfn + nr_pages > range->end) { 7762 /* 7763 * Skip mixed tracking if the aligned gfn isn't covered 7764 * by the memslot, KVM can't use a hugepage due to the 7765 * misaligned address regardless of memory attributes. 7766 */ 7767 if (gfn >= slot->base_gfn && 7768 gfn + nr_pages <= slot->base_gfn + slot->npages) { 7769 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs)) 7770 hugepage_clear_mixed(slot, gfn, level); 7771 else 7772 hugepage_set_mixed(slot, gfn, level); 7773 } 7774 gfn += nr_pages; 7775 } 7776 7777 /* 7778 * Pages entirely covered by the range are guaranteed to have 7779 * only the attributes which were just set. 7780 */ 7781 for ( ; gfn + nr_pages <= range->end; gfn += nr_pages) 7782 hugepage_clear_mixed(slot, gfn, level); 7783 7784 /* 7785 * Process the last tail page if it straddles the range and is 7786 * contained by the memslot. Like the head page, KVM can't 7787 * create a hugepage if the slot size is misaligned. 7788 */ 7789 if (gfn < range->end && 7790 (gfn + nr_pages) <= (slot->base_gfn + slot->npages)) { 7791 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs)) 7792 hugepage_clear_mixed(slot, gfn, level); 7793 else 7794 hugepage_set_mixed(slot, gfn, level); 7795 } 7796 } 7797 return false; 7798 } 7799 7800 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm, 7801 struct kvm_memory_slot *slot) 7802 { 7803 int level; 7804 7805 if (!kvm_arch_has_private_mem(kvm)) 7806 return; 7807 7808 for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) { 7809 /* 7810 * Don't bother tracking mixed attributes for pages that can't 7811 * be huge due to alignment, i.e. process only pages that are 7812 * entirely contained by the memslot. 7813 */ 7814 gfn_t end = gfn_round_for_level(slot->base_gfn + slot->npages, level); 7815 gfn_t start = gfn_round_for_level(slot->base_gfn, level); 7816 gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level); 7817 gfn_t gfn; 7818 7819 if (start < slot->base_gfn) 7820 start += nr_pages; 7821 7822 /* 7823 * Unlike setting attributes, every potential hugepage needs to 7824 * be manually checked as the attributes may already be mixed. 7825 */ 7826 for (gfn = start; gfn < end; gfn += nr_pages) { 7827 unsigned long attrs = kvm_get_memory_attributes(kvm, gfn); 7828 7829 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs)) 7830 hugepage_clear_mixed(slot, gfn, level); 7831 else 7832 hugepage_set_mixed(slot, gfn, level); 7833 } 7834 } 7835 } 7836 #endif 7837