1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * MMU support 9 * 10 * Copyright (C) 2006 Qumranet, Inc. 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 12 * 13 * Authors: 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Avi Kivity <avi@qumranet.com> 16 */ 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include "irq.h" 20 #include "ioapic.h" 21 #include "mmu.h" 22 #include "mmu_internal.h" 23 #include "tdp_mmu.h" 24 #include "x86.h" 25 #include "kvm_cache_regs.h" 26 #include "smm.h" 27 #include "kvm_emulate.h" 28 #include "page_track.h" 29 #include "cpuid.h" 30 #include "spte.h" 31 32 #include <linux/kvm_host.h> 33 #include <linux/types.h> 34 #include <linux/string.h> 35 #include <linux/mm.h> 36 #include <linux/highmem.h> 37 #include <linux/moduleparam.h> 38 #include <linux/export.h> 39 #include <linux/swap.h> 40 #include <linux/hugetlb.h> 41 #include <linux/compiler.h> 42 #include <linux/srcu.h> 43 #include <linux/slab.h> 44 #include <linux/sched/signal.h> 45 #include <linux/uaccess.h> 46 #include <linux/hash.h> 47 #include <linux/kern_levels.h> 48 #include <linux/kstrtox.h> 49 #include <linux/kthread.h> 50 #include <linux/wordpart.h> 51 52 #include <asm/page.h> 53 #include <asm/memtype.h> 54 #include <asm/cmpxchg.h> 55 #include <asm/io.h> 56 #include <asm/set_memory.h> 57 #include <asm/spec-ctrl.h> 58 #include <asm/vmx.h> 59 60 #include "trace.h" 61 62 static bool nx_hugepage_mitigation_hard_disabled; 63 64 int __read_mostly nx_huge_pages = -1; 65 static uint __read_mostly nx_huge_pages_recovery_period_ms; 66 #ifdef CONFIG_PREEMPT_RT 67 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */ 68 static uint __read_mostly nx_huge_pages_recovery_ratio = 0; 69 #else 70 static uint __read_mostly nx_huge_pages_recovery_ratio = 60; 71 #endif 72 73 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp); 74 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp); 75 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp); 76 77 static const struct kernel_param_ops nx_huge_pages_ops = { 78 .set = set_nx_huge_pages, 79 .get = get_nx_huge_pages, 80 }; 81 82 static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = { 83 .set = set_nx_huge_pages_recovery_param, 84 .get = param_get_uint, 85 }; 86 87 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644); 88 __MODULE_PARM_TYPE(nx_huge_pages, "bool"); 89 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops, 90 &nx_huge_pages_recovery_ratio, 0644); 91 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint"); 92 module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops, 93 &nx_huge_pages_recovery_period_ms, 0644); 94 __MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint"); 95 96 static bool __read_mostly force_flush_and_sync_on_reuse; 97 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644); 98 99 /* 100 * When setting this variable to true it enables Two-Dimensional-Paging 101 * where the hardware walks 2 page tables: 102 * 1. the guest-virtual to guest-physical 103 * 2. while doing 1. it walks guest-physical to host-physical 104 * If the hardware supports that we don't need to do shadow paging. 105 */ 106 bool tdp_enabled = false; 107 108 static bool __ro_after_init tdp_mmu_allowed; 109 110 #ifdef CONFIG_X86_64 111 bool __read_mostly tdp_mmu_enabled = true; 112 module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0444); 113 EXPORT_SYMBOL_FOR_KVM_INTERNAL(tdp_mmu_enabled); 114 #endif 115 116 static int max_huge_page_level __read_mostly; 117 static int tdp_root_level __read_mostly; 118 static int max_tdp_level __read_mostly; 119 120 #define PTE_PREFETCH_NUM 8 121 122 #include <trace/events/kvm.h> 123 124 /* make pte_list_desc fit well in cache lines */ 125 #define PTE_LIST_EXT 14 126 127 /* 128 * struct pte_list_desc is the core data structure used to implement a custom 129 * list for tracking a set of related SPTEs, e.g. all the SPTEs that map a 130 * given GFN when used in the context of rmaps. Using a custom list allows KVM 131 * to optimize for the common case where many GFNs will have at most a handful 132 * of SPTEs pointing at them, i.e. allows packing multiple SPTEs into a small 133 * memory footprint, which in turn improves runtime performance by exploiting 134 * cache locality. 135 * 136 * A list is comprised of one or more pte_list_desc objects (descriptors). 137 * Each individual descriptor stores up to PTE_LIST_EXT SPTEs. If a descriptor 138 * is full and a new SPTEs needs to be added, a new descriptor is allocated and 139 * becomes the head of the list. This means that by definitions, all tail 140 * descriptors are full. 141 * 142 * Note, the meta data fields are deliberately placed at the start of the 143 * structure to optimize the cacheline layout; accessing the descriptor will 144 * touch only a single cacheline so long as @spte_count<=6 (or if only the 145 * descriptors metadata is accessed). 146 */ 147 struct pte_list_desc { 148 struct pte_list_desc *more; 149 /* The number of PTEs stored in _this_ descriptor. */ 150 u32 spte_count; 151 /* The number of PTEs stored in all tails of this descriptor. */ 152 u32 tail_count; 153 u64 *sptes[PTE_LIST_EXT]; 154 }; 155 156 struct kvm_shadow_walk_iterator { 157 u64 addr; 158 hpa_t shadow_addr; 159 u64 *sptep; 160 int level; 161 unsigned index; 162 }; 163 164 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \ 165 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \ 166 (_root), (_addr)); \ 167 shadow_walk_okay(&(_walker)); \ 168 shadow_walk_next(&(_walker))) 169 170 #define for_each_shadow_entry(_vcpu, _addr, _walker) \ 171 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 172 shadow_walk_okay(&(_walker)); \ 173 shadow_walk_next(&(_walker))) 174 175 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \ 176 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 177 shadow_walk_okay(&(_walker)) && \ 178 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \ 179 __shadow_walk_next(&(_walker), spte)) 180 181 static struct kmem_cache *pte_list_desc_cache; 182 struct kmem_cache *mmu_page_header_cache; 183 184 static void mmu_spte_set(u64 *sptep, u64 spte); 185 186 struct kvm_mmu_role_regs { 187 const unsigned long cr0; 188 const unsigned long cr4; 189 const u64 efer; 190 }; 191 192 #define CREATE_TRACE_POINTS 193 #include "mmutrace.h" 194 195 /* 196 * Yes, lot's of underscores. They're a hint that you probably shouldn't be 197 * reading from the role_regs. Once the root_role is constructed, it becomes 198 * the single source of truth for the MMU's state. 199 */ 200 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag) \ 201 static inline bool __maybe_unused \ 202 ____is_##reg##_##name(const struct kvm_mmu_role_regs *regs) \ 203 { \ 204 return !!(regs->reg & flag); \ 205 } 206 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG); 207 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP); 208 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE); 209 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE); 210 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP); 211 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP); 212 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE); 213 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57); 214 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX); 215 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA); 216 217 /* 218 * The MMU itself (with a valid role) is the single source of truth for the 219 * MMU. Do not use the regs used to build the MMU/role, nor the vCPU. The 220 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1, 221 * and the vCPU may be incorrect/irrelevant. 222 */ 223 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name) \ 224 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu) \ 225 { \ 226 return !!(mmu->cpu_role. base_or_ext . reg##_##name); \ 227 } 228 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp); 229 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pse); 230 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smep); 231 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smap); 232 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pke); 233 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, la57); 234 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx); 235 BUILD_MMU_ROLE_ACCESSOR(ext, efer, lma); 236 237 static inline bool is_cr0_pg(struct kvm_mmu *mmu) 238 { 239 return mmu->cpu_role.base.level > 0; 240 } 241 242 static inline bool is_cr4_pae(struct kvm_mmu *mmu) 243 { 244 return !mmu->cpu_role.base.has_4_byte_gpte; 245 } 246 247 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu) 248 { 249 struct kvm_mmu_role_regs regs = { 250 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS), 251 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS), 252 .efer = vcpu->arch.efer, 253 }; 254 255 return regs; 256 } 257 258 static unsigned long get_guest_cr3(struct kvm_vcpu *vcpu) 259 { 260 return kvm_read_cr3(vcpu); 261 } 262 263 static inline unsigned long kvm_mmu_get_guest_pgd(struct kvm_vcpu *vcpu, 264 struct kvm_mmu *mmu) 265 { 266 if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && mmu->get_guest_pgd == get_guest_cr3) 267 return kvm_read_cr3(vcpu); 268 269 return mmu->get_guest_pgd(vcpu); 270 } 271 272 static inline bool kvm_available_flush_remote_tlbs_range(void) 273 { 274 #if IS_ENABLED(CONFIG_HYPERV) 275 return kvm_x86_ops.flush_remote_tlbs_range; 276 #else 277 return false; 278 #endif 279 } 280 281 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index); 282 283 /* Flush the range of guest memory mapped by the given SPTE. */ 284 static void kvm_flush_remote_tlbs_sptep(struct kvm *kvm, u64 *sptep) 285 { 286 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 287 gfn_t gfn = kvm_mmu_page_get_gfn(sp, spte_index(sptep)); 288 289 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level); 290 } 291 292 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn, 293 unsigned int access) 294 { 295 u64 spte = make_mmio_spte(vcpu, gfn, access); 296 297 trace_mark_mmio_spte(sptep, gfn, spte); 298 mmu_spte_set(sptep, spte); 299 } 300 301 static gfn_t get_mmio_spte_gfn(u64 spte) 302 { 303 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask; 304 305 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN) 306 & shadow_nonpresent_or_rsvd_mask; 307 308 return gpa >> PAGE_SHIFT; 309 } 310 311 static unsigned get_mmio_spte_access(u64 spte) 312 { 313 return spte & shadow_mmio_access_mask; 314 } 315 316 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte) 317 { 318 u64 kvm_gen, spte_gen, gen; 319 320 gen = kvm_vcpu_memslots(vcpu)->generation; 321 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS)) 322 return false; 323 324 kvm_gen = gen & MMIO_SPTE_GEN_MASK; 325 spte_gen = get_mmio_spte_generation(spte); 326 327 trace_check_mmio_spte(spte, kvm_gen, spte_gen); 328 return likely(kvm_gen == spte_gen); 329 } 330 331 static int is_cpuid_PSE36(void) 332 { 333 return 1; 334 } 335 336 #ifdef CONFIG_X86_64 337 static void __set_spte(u64 *sptep, u64 spte) 338 { 339 KVM_MMU_WARN_ON(is_ept_ve_possible(spte)); 340 WRITE_ONCE(*sptep, spte); 341 } 342 343 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 344 { 345 KVM_MMU_WARN_ON(is_ept_ve_possible(spte)); 346 WRITE_ONCE(*sptep, spte); 347 } 348 349 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 350 { 351 KVM_MMU_WARN_ON(is_ept_ve_possible(spte)); 352 return xchg(sptep, spte); 353 } 354 355 static u64 __get_spte_lockless(u64 *sptep) 356 { 357 return READ_ONCE(*sptep); 358 } 359 #else 360 union split_spte { 361 struct { 362 u32 spte_low; 363 u32 spte_high; 364 }; 365 u64 spte; 366 }; 367 368 static void count_spte_clear(u64 *sptep, u64 spte) 369 { 370 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 371 372 if (is_shadow_present_pte(spte)) 373 return; 374 375 /* Ensure the spte is completely set before we increase the count */ 376 smp_wmb(); 377 sp->clear_spte_count++; 378 } 379 380 static void __set_spte(u64 *sptep, u64 spte) 381 { 382 union split_spte *ssptep, sspte; 383 384 ssptep = (union split_spte *)sptep; 385 sspte = (union split_spte)spte; 386 387 ssptep->spte_high = sspte.spte_high; 388 389 /* 390 * If we map the spte from nonpresent to present, We should store 391 * the high bits firstly, then set present bit, so cpu can not 392 * fetch this spte while we are setting the spte. 393 */ 394 smp_wmb(); 395 396 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 397 } 398 399 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 400 { 401 union split_spte *ssptep, sspte; 402 403 ssptep = (union split_spte *)sptep; 404 sspte = (union split_spte)spte; 405 406 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 407 408 /* 409 * If we map the spte from present to nonpresent, we should clear 410 * present bit firstly to avoid vcpu fetch the old high bits. 411 */ 412 smp_wmb(); 413 414 ssptep->spte_high = sspte.spte_high; 415 count_spte_clear(sptep, spte); 416 } 417 418 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 419 { 420 union split_spte *ssptep, sspte, orig; 421 422 ssptep = (union split_spte *)sptep; 423 sspte = (union split_spte)spte; 424 425 /* xchg acts as a barrier before the setting of the high bits */ 426 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); 427 orig.spte_high = ssptep->spte_high; 428 ssptep->spte_high = sspte.spte_high; 429 count_spte_clear(sptep, spte); 430 431 return orig.spte; 432 } 433 434 /* 435 * The idea using the light way get the spte on x86_32 guest is from 436 * gup_get_pte (mm/gup.c). 437 * 438 * An spte tlb flush may be pending, because they are coalesced and 439 * we are running out of the MMU lock. Therefore 440 * we need to protect against in-progress updates of the spte. 441 * 442 * Reading the spte while an update is in progress may get the old value 443 * for the high part of the spte. The race is fine for a present->non-present 444 * change (because the high part of the spte is ignored for non-present spte), 445 * but for a present->present change we must reread the spte. 446 * 447 * All such changes are done in two steps (present->non-present and 448 * non-present->present), hence it is enough to count the number of 449 * present->non-present updates: if it changed while reading the spte, 450 * we might have hit the race. This is done using clear_spte_count. 451 */ 452 static u64 __get_spte_lockless(u64 *sptep) 453 { 454 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 455 union split_spte spte, *orig = (union split_spte *)sptep; 456 int count; 457 458 retry: 459 count = sp->clear_spte_count; 460 smp_rmb(); 461 462 spte.spte_low = orig->spte_low; 463 smp_rmb(); 464 465 spte.spte_high = orig->spte_high; 466 smp_rmb(); 467 468 if (unlikely(spte.spte_low != orig->spte_low || 469 count != sp->clear_spte_count)) 470 goto retry; 471 472 return spte.spte; 473 } 474 #endif 475 476 /* Rules for using mmu_spte_set: 477 * Set the sptep from nonpresent to present. 478 * Note: the sptep being assigned *must* be either not present 479 * or in a state where the hardware will not attempt to update 480 * the spte. 481 */ 482 static void mmu_spte_set(u64 *sptep, u64 new_spte) 483 { 484 WARN_ON_ONCE(is_shadow_present_pte(*sptep)); 485 __set_spte(sptep, new_spte); 486 } 487 488 /* Rules for using mmu_spte_update: 489 * Update the state bits, it means the mapped pfn is not changed. 490 * 491 * Returns true if the TLB needs to be flushed 492 */ 493 static bool mmu_spte_update(u64 *sptep, u64 new_spte) 494 { 495 u64 old_spte = *sptep; 496 497 WARN_ON_ONCE(!is_shadow_present_pte(new_spte)); 498 check_spte_writable_invariants(new_spte); 499 500 if (!is_shadow_present_pte(old_spte)) { 501 mmu_spte_set(sptep, new_spte); 502 return false; 503 } 504 505 if (!spte_needs_atomic_update(old_spte)) 506 __update_clear_spte_fast(sptep, new_spte); 507 else 508 old_spte = __update_clear_spte_slow(sptep, new_spte); 509 510 WARN_ON_ONCE(!is_shadow_present_pte(old_spte) || 511 spte_to_pfn(old_spte) != spte_to_pfn(new_spte)); 512 513 return leaf_spte_change_needs_tlb_flush(old_spte, new_spte); 514 } 515 516 /* 517 * Rules for using mmu_spte_clear_track_bits: 518 * It sets the sptep from present to nonpresent, and track the 519 * state bits, it is used to clear the last level sptep. 520 * Returns the old PTE. 521 */ 522 static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep) 523 { 524 u64 old_spte = *sptep; 525 int level = sptep_to_sp(sptep)->role.level; 526 527 if (!is_shadow_present_pte(old_spte) || 528 !spte_needs_atomic_update(old_spte)) 529 __update_clear_spte_fast(sptep, SHADOW_NONPRESENT_VALUE); 530 else 531 old_spte = __update_clear_spte_slow(sptep, SHADOW_NONPRESENT_VALUE); 532 533 if (!is_shadow_present_pte(old_spte)) 534 return old_spte; 535 536 kvm_update_page_stats(kvm, level, -1); 537 return old_spte; 538 } 539 540 /* 541 * Rules for using mmu_spte_clear_no_track: 542 * Directly clear spte without caring the state bits of sptep, 543 * it is used to set the upper level spte. 544 */ 545 static void mmu_spte_clear_no_track(u64 *sptep) 546 { 547 __update_clear_spte_fast(sptep, SHADOW_NONPRESENT_VALUE); 548 } 549 550 static u64 mmu_spte_get_lockless(u64 *sptep) 551 { 552 return __get_spte_lockless(sptep); 553 } 554 555 static inline bool is_tdp_mmu_active(struct kvm_vcpu *vcpu) 556 { 557 return tdp_mmu_enabled && vcpu->arch.mmu->root_role.direct; 558 } 559 560 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) 561 { 562 if (is_tdp_mmu_active(vcpu)) { 563 kvm_tdp_mmu_walk_lockless_begin(); 564 } else { 565 /* 566 * Prevent page table teardown by making any free-er wait during 567 * kvm_flush_remote_tlbs() IPI to all active vcpus. 568 */ 569 local_irq_disable(); 570 571 /* 572 * Make sure a following spte read is not reordered ahead of the write 573 * to vcpu->mode. 574 */ 575 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); 576 } 577 } 578 579 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) 580 { 581 if (is_tdp_mmu_active(vcpu)) { 582 kvm_tdp_mmu_walk_lockless_end(); 583 } else { 584 /* 585 * Make sure the write to vcpu->mode is not reordered in front of 586 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us 587 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. 588 */ 589 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); 590 local_irq_enable(); 591 } 592 } 593 594 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect) 595 { 596 int r; 597 598 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */ 599 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, 600 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM); 601 if (r) 602 return r; 603 if (kvm_has_mirrored_tdp(vcpu->kvm)) { 604 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_external_spt_cache, 605 PT64_ROOT_MAX_LEVEL); 606 if (r) 607 return r; 608 } 609 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache, 610 PT64_ROOT_MAX_LEVEL); 611 if (r) 612 return r; 613 if (maybe_indirect) { 614 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadowed_info_cache, 615 PT64_ROOT_MAX_LEVEL); 616 if (r) 617 return r; 618 } 619 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, 620 PT64_ROOT_MAX_LEVEL); 621 } 622 623 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) 624 { 625 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache); 626 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache); 627 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadowed_info_cache); 628 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_external_spt_cache); 629 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache); 630 } 631 632 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) 633 { 634 kmem_cache_free(pte_list_desc_cache, pte_list_desc); 635 } 636 637 static bool sp_has_gptes(struct kvm_mmu_page *sp); 638 639 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) 640 { 641 if (sp->role.passthrough) 642 return sp->gfn; 643 644 if (sp->shadowed_translation) 645 return sp->shadowed_translation[index] >> PAGE_SHIFT; 646 647 return sp->gfn + (index << ((sp->role.level - 1) * SPTE_LEVEL_BITS)); 648 } 649 650 /* 651 * For leaf SPTEs, fetch the *guest* access permissions being shadowed. Note 652 * that the SPTE itself may have a more constrained access permissions that 653 * what the guest enforces. For example, a guest may create an executable 654 * huge PTE but KVM may disallow execution to mitigate iTLB multihit. 655 */ 656 static u32 kvm_mmu_page_get_access(struct kvm_mmu_page *sp, int index) 657 { 658 if (sp->shadowed_translation) 659 return sp->shadowed_translation[index] & ACC_ALL; 660 661 /* 662 * For direct MMUs (e.g. TDP or non-paging guests) or passthrough SPs, 663 * KVM is not shadowing any guest page tables, so the "guest access 664 * permissions" are just ACC_ALL. 665 * 666 * For direct SPs in indirect MMUs (shadow paging), i.e. when KVM 667 * is shadowing a guest huge page with small pages, the guest access 668 * permissions being shadowed are the access permissions of the huge 669 * page. 670 * 671 * In both cases, sp->role.access contains the correct access bits. 672 */ 673 return sp->role.access; 674 } 675 676 static void kvm_mmu_page_set_translation(struct kvm_mmu_page *sp, int index, 677 gfn_t gfn, unsigned int access) 678 { 679 if (sp->shadowed_translation) { 680 sp->shadowed_translation[index] = (gfn << PAGE_SHIFT) | access; 681 return; 682 } 683 684 WARN_ONCE(access != kvm_mmu_page_get_access(sp, index), 685 "access mismatch under %s page %llx (expected %u, got %u)\n", 686 sp->role.passthrough ? "passthrough" : "direct", 687 sp->gfn, kvm_mmu_page_get_access(sp, index), access); 688 689 WARN_ONCE(gfn != kvm_mmu_page_get_gfn(sp, index), 690 "gfn mismatch under %s page %llx (expected %llx, got %llx)\n", 691 sp->role.passthrough ? "passthrough" : "direct", 692 sp->gfn, kvm_mmu_page_get_gfn(sp, index), gfn); 693 } 694 695 static void kvm_mmu_page_set_access(struct kvm_mmu_page *sp, int index, 696 unsigned int access) 697 { 698 gfn_t gfn = kvm_mmu_page_get_gfn(sp, index); 699 700 kvm_mmu_page_set_translation(sp, index, gfn, access); 701 } 702 703 /* 704 * Return the pointer to the large page information for a given gfn, 705 * handling slots that are not large page aligned. 706 */ 707 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, 708 const struct kvm_memory_slot *slot, int level) 709 { 710 unsigned long idx; 711 712 idx = gfn_to_index(gfn, slot->base_gfn, level); 713 return &slot->arch.lpage_info[level - 2][idx]; 714 } 715 716 /* 717 * The most significant bit in disallow_lpage tracks whether or not memory 718 * attributes are mixed, i.e. not identical for all gfns at the current level. 719 * The lower order bits are used to refcount other cases where a hugepage is 720 * disallowed, e.g. if KVM has shadow a page table at the gfn. 721 */ 722 #define KVM_LPAGE_MIXED_FLAG BIT(31) 723 724 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot, 725 gfn_t gfn, int count) 726 { 727 struct kvm_lpage_info *linfo; 728 int old, i; 729 730 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 731 linfo = lpage_info_slot(gfn, slot, i); 732 733 old = linfo->disallow_lpage; 734 linfo->disallow_lpage += count; 735 WARN_ON_ONCE((old ^ linfo->disallow_lpage) & KVM_LPAGE_MIXED_FLAG); 736 } 737 } 738 739 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 740 { 741 update_gfn_disallow_lpage_count(slot, gfn, 1); 742 } 743 744 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 745 { 746 update_gfn_disallow_lpage_count(slot, gfn, -1); 747 } 748 749 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 750 { 751 struct kvm_memslots *slots; 752 struct kvm_memory_slot *slot; 753 gfn_t gfn; 754 755 kvm->arch.indirect_shadow_pages++; 756 /* 757 * Ensure indirect_shadow_pages is elevated prior to re-reading guest 758 * child PTEs in FNAME(gpte_changed), i.e. guarantee either in-flight 759 * emulated writes are visible before re-reading guest PTEs, or that 760 * an emulated write will see the elevated count and acquire mmu_lock 761 * to update SPTEs. Pairs with the smp_mb() in kvm_mmu_track_write(). 762 */ 763 smp_mb(); 764 765 gfn = sp->gfn; 766 slots = kvm_memslots_for_spte_role(kvm, sp->role); 767 slot = __gfn_to_memslot(slots, gfn); 768 769 /* the non-leaf shadow pages are keeping readonly. */ 770 if (sp->role.level > PG_LEVEL_4K) 771 return __kvm_write_track_add_gfn(kvm, slot, gfn); 772 773 kvm_mmu_gfn_disallow_lpage(slot, gfn); 774 775 if (kvm_mmu_slot_gfn_write_protect(kvm, slot, gfn, PG_LEVEL_4K)) 776 kvm_flush_remote_tlbs_gfn(kvm, gfn, PG_LEVEL_4K); 777 } 778 779 void track_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp, 780 enum kvm_mmu_type mmu_type) 781 { 782 /* 783 * If it's possible to replace the shadow page with an NX huge page, 784 * i.e. if the shadow page is the only thing currently preventing KVM 785 * from using a huge page, add the shadow page to the list of "to be 786 * zapped for NX recovery" pages. Note, the shadow page can already be 787 * on the list if KVM is reusing an existing shadow page, i.e. if KVM 788 * links a shadow page at multiple points. 789 */ 790 if (!list_empty(&sp->possible_nx_huge_page_link)) 791 return; 792 793 ++kvm->stat.nx_lpage_splits; 794 ++kvm->arch.possible_nx_huge_pages[mmu_type].nr_pages; 795 list_add_tail(&sp->possible_nx_huge_page_link, 796 &kvm->arch.possible_nx_huge_pages[mmu_type].pages); 797 } 798 799 static void account_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp, 800 bool nx_huge_page_possible) 801 { 802 sp->nx_huge_page_disallowed = true; 803 804 if (nx_huge_page_possible) 805 track_possible_nx_huge_page(kvm, sp, KVM_SHADOW_MMU); 806 } 807 808 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 809 { 810 struct kvm_memslots *slots; 811 struct kvm_memory_slot *slot; 812 gfn_t gfn; 813 814 kvm->arch.indirect_shadow_pages--; 815 gfn = sp->gfn; 816 slots = kvm_memslots_for_spte_role(kvm, sp->role); 817 slot = __gfn_to_memslot(slots, gfn); 818 if (sp->role.level > PG_LEVEL_4K) 819 return __kvm_write_track_remove_gfn(kvm, slot, gfn); 820 821 kvm_mmu_gfn_allow_lpage(slot, gfn); 822 } 823 824 void untrack_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp, 825 enum kvm_mmu_type mmu_type) 826 { 827 if (list_empty(&sp->possible_nx_huge_page_link)) 828 return; 829 830 --kvm->stat.nx_lpage_splits; 831 --kvm->arch.possible_nx_huge_pages[mmu_type].nr_pages; 832 list_del_init(&sp->possible_nx_huge_page_link); 833 } 834 835 static void unaccount_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 836 { 837 sp->nx_huge_page_disallowed = false; 838 839 untrack_possible_nx_huge_page(kvm, sp, KVM_SHADOW_MMU); 840 } 841 842 static struct kvm_memory_slot *gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, 843 gfn_t gfn, 844 bool no_dirty_log) 845 { 846 struct kvm_memory_slot *slot; 847 848 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 849 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 850 return NULL; 851 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot)) 852 return NULL; 853 854 return slot; 855 } 856 857 /* 858 * About rmap_head encoding: 859 * 860 * If the bit zero of rmap_head->val is clear, then it points to the only spte 861 * in this rmap chain. Otherwise, (rmap_head->val & ~3) points to a struct 862 * pte_list_desc containing more mappings. 863 */ 864 #define KVM_RMAP_MANY BIT(0) 865 866 /* 867 * rmaps and PTE lists are mostly protected by mmu_lock (the shadow MMU always 868 * operates with mmu_lock held for write), but rmaps can be walked without 869 * holding mmu_lock so long as the caller can tolerate SPTEs in the rmap chain 870 * being zapped/dropped _while the rmap is locked_. 871 * 872 * Other than the KVM_RMAP_LOCKED flag, modifications to rmap entries must be 873 * done while holding mmu_lock for write. This allows a task walking rmaps 874 * without holding mmu_lock to concurrently walk the same entries as a task 875 * that is holding mmu_lock but _not_ the rmap lock. Neither task will modify 876 * the rmaps, thus the walks are stable. 877 * 878 * As alluded to above, SPTEs in rmaps are _not_ protected by KVM_RMAP_LOCKED, 879 * only the rmap chains themselves are protected. E.g. holding an rmap's lock 880 * ensures all "struct pte_list_desc" fields are stable. 881 */ 882 #define KVM_RMAP_LOCKED BIT(1) 883 884 static unsigned long __kvm_rmap_lock(struct kvm_rmap_head *rmap_head) 885 { 886 unsigned long old_val, new_val; 887 888 lockdep_assert_preemption_disabled(); 889 890 /* 891 * Elide the lock if the rmap is empty, as lockless walkers (read-only 892 * mode) don't need to (and can't) walk an empty rmap, nor can they add 893 * entries to the rmap. I.e. the only paths that process empty rmaps 894 * do so while holding mmu_lock for write, and are mutually exclusive. 895 */ 896 old_val = atomic_long_read(&rmap_head->val); 897 if (!old_val) 898 return 0; 899 900 do { 901 /* 902 * If the rmap is locked, wait for it to be unlocked before 903 * trying acquire the lock, e.g. to avoid bouncing the cache 904 * line. 905 */ 906 while (old_val & KVM_RMAP_LOCKED) { 907 cpu_relax(); 908 old_val = atomic_long_read(&rmap_head->val); 909 } 910 911 /* 912 * Recheck for an empty rmap, it may have been purged by the 913 * task that held the lock. 914 */ 915 if (!old_val) 916 return 0; 917 918 new_val = old_val | KVM_RMAP_LOCKED; 919 /* 920 * Use try_cmpxchg_acquire() to prevent reads and writes to the rmap 921 * from being reordered outside of the critical section created by 922 * __kvm_rmap_lock(). 923 * 924 * Pairs with the atomic_long_set_release() in kvm_rmap_unlock(). 925 * 926 * For the !old_val case, no ordering is needed, as there is no rmap 927 * to walk. 928 */ 929 } while (!atomic_long_try_cmpxchg_acquire(&rmap_head->val, &old_val, new_val)); 930 931 /* 932 * Return the old value, i.e. _without_ the LOCKED bit set. It's 933 * impossible for the return value to be 0 (see above), i.e. the read- 934 * only unlock flow can't get a false positive and fail to unlock. 935 */ 936 return old_val; 937 } 938 939 static unsigned long kvm_rmap_lock(struct kvm *kvm, 940 struct kvm_rmap_head *rmap_head) 941 { 942 lockdep_assert_held_write(&kvm->mmu_lock); 943 944 return __kvm_rmap_lock(rmap_head); 945 } 946 947 static void __kvm_rmap_unlock(struct kvm_rmap_head *rmap_head, 948 unsigned long val) 949 { 950 KVM_MMU_WARN_ON(val & KVM_RMAP_LOCKED); 951 /* 952 * Ensure that all accesses to the rmap have completed before unlocking 953 * the rmap. 954 * 955 * Pairs with the atomic_long_try_cmpxchg_acquire() in __kvm_rmap_lock(). 956 */ 957 atomic_long_set_release(&rmap_head->val, val); 958 } 959 960 static void kvm_rmap_unlock(struct kvm *kvm, 961 struct kvm_rmap_head *rmap_head, 962 unsigned long new_val) 963 { 964 lockdep_assert_held_write(&kvm->mmu_lock); 965 966 __kvm_rmap_unlock(rmap_head, new_val); 967 } 968 969 static unsigned long kvm_rmap_get(struct kvm_rmap_head *rmap_head) 970 { 971 return atomic_long_read(&rmap_head->val) & ~KVM_RMAP_LOCKED; 972 } 973 974 /* 975 * If mmu_lock isn't held, rmaps can only be locked in read-only mode. The 976 * actual locking is the same, but the caller is disallowed from modifying the 977 * rmap, and so the unlock flow is a nop if the rmap is/was empty. 978 */ 979 static unsigned long kvm_rmap_lock_readonly(struct kvm_rmap_head *rmap_head) 980 { 981 unsigned long rmap_val; 982 983 preempt_disable(); 984 rmap_val = __kvm_rmap_lock(rmap_head); 985 986 if (!rmap_val) 987 preempt_enable(); 988 989 return rmap_val; 990 } 991 992 static void kvm_rmap_unlock_readonly(struct kvm_rmap_head *rmap_head, 993 unsigned long old_val) 994 { 995 if (!old_val) 996 return; 997 998 KVM_MMU_WARN_ON(old_val != kvm_rmap_get(rmap_head)); 999 1000 __kvm_rmap_unlock(rmap_head, old_val); 1001 preempt_enable(); 1002 } 1003 1004 /* 1005 * Returns the number of pointers in the rmap chain, not counting the new one. 1006 */ 1007 static int pte_list_add(struct kvm *kvm, struct kvm_mmu_memory_cache *cache, 1008 u64 *spte, struct kvm_rmap_head *rmap_head) 1009 { 1010 unsigned long old_val, new_val; 1011 struct pte_list_desc *desc; 1012 int count = 0; 1013 1014 old_val = kvm_rmap_lock(kvm, rmap_head); 1015 1016 if (!old_val) { 1017 new_val = (unsigned long)spte; 1018 } else if (!(old_val & KVM_RMAP_MANY)) { 1019 desc = kvm_mmu_memory_cache_alloc(cache); 1020 desc->sptes[0] = (u64 *)old_val; 1021 desc->sptes[1] = spte; 1022 desc->spte_count = 2; 1023 desc->tail_count = 0; 1024 new_val = (unsigned long)desc | KVM_RMAP_MANY; 1025 ++count; 1026 } else { 1027 desc = (struct pte_list_desc *)(old_val & ~KVM_RMAP_MANY); 1028 count = desc->tail_count + desc->spte_count; 1029 1030 /* 1031 * If the previous head is full, allocate a new head descriptor 1032 * as tail descriptors are always kept full. 1033 */ 1034 if (desc->spte_count == PTE_LIST_EXT) { 1035 desc = kvm_mmu_memory_cache_alloc(cache); 1036 desc->more = (struct pte_list_desc *)(old_val & ~KVM_RMAP_MANY); 1037 desc->spte_count = 0; 1038 desc->tail_count = count; 1039 new_val = (unsigned long)desc | KVM_RMAP_MANY; 1040 } else { 1041 new_val = old_val; 1042 } 1043 desc->sptes[desc->spte_count++] = spte; 1044 } 1045 1046 kvm_rmap_unlock(kvm, rmap_head, new_val); 1047 1048 return count; 1049 } 1050 1051 static void pte_list_desc_remove_entry(struct kvm *kvm, unsigned long *rmap_val, 1052 struct pte_list_desc *desc, int i) 1053 { 1054 struct pte_list_desc *head_desc = (struct pte_list_desc *)(*rmap_val & ~KVM_RMAP_MANY); 1055 int j = head_desc->spte_count - 1; 1056 1057 /* 1058 * The head descriptor should never be empty. A new head is added only 1059 * when adding an entry and the previous head is full, and heads are 1060 * removed (this flow) when they become empty. 1061 */ 1062 KVM_BUG_ON_DATA_CORRUPTION(j < 0, kvm); 1063 1064 /* 1065 * Replace the to-be-freed SPTE with the last valid entry from the head 1066 * descriptor to ensure that tail descriptors are full at all times. 1067 * Note, this also means that tail_count is stable for each descriptor. 1068 */ 1069 desc->sptes[i] = head_desc->sptes[j]; 1070 head_desc->sptes[j] = NULL; 1071 head_desc->spte_count--; 1072 if (head_desc->spte_count) 1073 return; 1074 1075 /* 1076 * The head descriptor is empty. If there are no tail descriptors, 1077 * nullify the rmap head to mark the list as empty, else point the rmap 1078 * head at the next descriptor, i.e. the new head. 1079 */ 1080 if (!head_desc->more) 1081 *rmap_val = 0; 1082 else 1083 *rmap_val = (unsigned long)head_desc->more | KVM_RMAP_MANY; 1084 mmu_free_pte_list_desc(head_desc); 1085 } 1086 1087 static void pte_list_remove(struct kvm *kvm, u64 *spte, 1088 struct kvm_rmap_head *rmap_head) 1089 { 1090 struct pte_list_desc *desc; 1091 unsigned long rmap_val; 1092 int i; 1093 1094 rmap_val = kvm_rmap_lock(kvm, rmap_head); 1095 if (KVM_BUG_ON_DATA_CORRUPTION(!rmap_val, kvm)) 1096 goto out; 1097 1098 if (!(rmap_val & KVM_RMAP_MANY)) { 1099 if (KVM_BUG_ON_DATA_CORRUPTION((u64 *)rmap_val != spte, kvm)) 1100 goto out; 1101 1102 rmap_val = 0; 1103 } else { 1104 desc = (struct pte_list_desc *)(rmap_val & ~KVM_RMAP_MANY); 1105 while (desc) { 1106 for (i = 0; i < desc->spte_count; ++i) { 1107 if (desc->sptes[i] == spte) { 1108 pte_list_desc_remove_entry(kvm, &rmap_val, 1109 desc, i); 1110 goto out; 1111 } 1112 } 1113 desc = desc->more; 1114 } 1115 1116 KVM_BUG_ON_DATA_CORRUPTION(true, kvm); 1117 } 1118 1119 out: 1120 kvm_rmap_unlock(kvm, rmap_head, rmap_val); 1121 } 1122 1123 static void kvm_zap_one_rmap_spte(struct kvm *kvm, 1124 struct kvm_rmap_head *rmap_head, u64 *sptep) 1125 { 1126 mmu_spte_clear_track_bits(kvm, sptep); 1127 pte_list_remove(kvm, sptep, rmap_head); 1128 } 1129 1130 /* Return true if at least one SPTE was zapped, false otherwise */ 1131 static bool kvm_zap_all_rmap_sptes(struct kvm *kvm, 1132 struct kvm_rmap_head *rmap_head) 1133 { 1134 struct pte_list_desc *desc, *next; 1135 unsigned long rmap_val; 1136 int i; 1137 1138 rmap_val = kvm_rmap_lock(kvm, rmap_head); 1139 if (!rmap_val) 1140 return false; 1141 1142 if (!(rmap_val & KVM_RMAP_MANY)) { 1143 mmu_spte_clear_track_bits(kvm, (u64 *)rmap_val); 1144 goto out; 1145 } 1146 1147 desc = (struct pte_list_desc *)(rmap_val & ~KVM_RMAP_MANY); 1148 1149 for (; desc; desc = next) { 1150 for (i = 0; i < desc->spte_count; i++) 1151 mmu_spte_clear_track_bits(kvm, desc->sptes[i]); 1152 next = desc->more; 1153 mmu_free_pte_list_desc(desc); 1154 } 1155 out: 1156 /* rmap_head is meaningless now, remember to reset it */ 1157 kvm_rmap_unlock(kvm, rmap_head, 0); 1158 return true; 1159 } 1160 1161 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head) 1162 { 1163 unsigned long rmap_val = kvm_rmap_get(rmap_head); 1164 struct pte_list_desc *desc; 1165 1166 if (!rmap_val) 1167 return 0; 1168 else if (!(rmap_val & KVM_RMAP_MANY)) 1169 return 1; 1170 1171 desc = (struct pte_list_desc *)(rmap_val & ~KVM_RMAP_MANY); 1172 return desc->tail_count + desc->spte_count; 1173 } 1174 1175 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level, 1176 const struct kvm_memory_slot *slot) 1177 { 1178 unsigned long idx; 1179 1180 idx = gfn_to_index(gfn, slot->base_gfn, level); 1181 return &slot->arch.rmap[level - PG_LEVEL_4K][idx]; 1182 } 1183 1184 static void rmap_remove(struct kvm *kvm, u64 *spte) 1185 { 1186 struct kvm_memslots *slots; 1187 struct kvm_memory_slot *slot; 1188 struct kvm_mmu_page *sp; 1189 gfn_t gfn; 1190 struct kvm_rmap_head *rmap_head; 1191 1192 sp = sptep_to_sp(spte); 1193 gfn = kvm_mmu_page_get_gfn(sp, spte_index(spte)); 1194 1195 /* 1196 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU 1197 * so we have to determine which memslots to use based on context 1198 * information in sp->role. 1199 */ 1200 slots = kvm_memslots_for_spte_role(kvm, sp->role); 1201 1202 slot = __gfn_to_memslot(slots, gfn); 1203 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1204 1205 pte_list_remove(kvm, spte, rmap_head); 1206 } 1207 1208 /* 1209 * Used by the following functions to iterate through the sptes linked by a 1210 * rmap. All fields are private and not assumed to be used outside. 1211 */ 1212 struct rmap_iterator { 1213 /* private fields */ 1214 struct rmap_head *head; 1215 struct pte_list_desc *desc; /* holds the sptep if not NULL */ 1216 int pos; /* index of the sptep */ 1217 }; 1218 1219 /* 1220 * Iteration must be started by this function. This should also be used after 1221 * removing/dropping sptes from the rmap link because in such cases the 1222 * information in the iterator may not be valid. 1223 * 1224 * Returns sptep if found, NULL otherwise. 1225 */ 1226 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head, 1227 struct rmap_iterator *iter) 1228 { 1229 unsigned long rmap_val = kvm_rmap_get(rmap_head); 1230 1231 if (!rmap_val) 1232 return NULL; 1233 1234 if (!(rmap_val & KVM_RMAP_MANY)) { 1235 iter->desc = NULL; 1236 return (u64 *)rmap_val; 1237 } 1238 1239 iter->desc = (struct pte_list_desc *)(rmap_val & ~KVM_RMAP_MANY); 1240 iter->pos = 0; 1241 return iter->desc->sptes[iter->pos]; 1242 } 1243 1244 /* 1245 * Must be used with a valid iterator: e.g. after rmap_get_first(). 1246 * 1247 * Returns sptep if found, NULL otherwise. 1248 */ 1249 static u64 *rmap_get_next(struct rmap_iterator *iter) 1250 { 1251 if (iter->desc) { 1252 if (iter->pos < PTE_LIST_EXT - 1) { 1253 ++iter->pos; 1254 if (iter->desc->sptes[iter->pos]) 1255 return iter->desc->sptes[iter->pos]; 1256 } 1257 1258 iter->desc = iter->desc->more; 1259 1260 if (iter->desc) { 1261 iter->pos = 0; 1262 /* desc->sptes[0] cannot be NULL */ 1263 return iter->desc->sptes[iter->pos]; 1264 } 1265 } 1266 1267 return NULL; 1268 } 1269 1270 #define __for_each_rmap_spte(_rmap_head_, _iter_, _sptep_) \ 1271 for (_sptep_ = rmap_get_first(_rmap_head_, _iter_); \ 1272 _sptep_; _sptep_ = rmap_get_next(_iter_)) 1273 1274 #define for_each_rmap_spte(_rmap_head_, _iter_, _sptep_) \ 1275 __for_each_rmap_spte(_rmap_head_, _iter_, _sptep_) \ 1276 if (!WARN_ON_ONCE(!is_shadow_present_pte(*(_sptep_)))) \ 1277 1278 #define for_each_rmap_spte_lockless(_rmap_head_, _iter_, _sptep_, _spte_) \ 1279 __for_each_rmap_spte(_rmap_head_, _iter_, _sptep_) \ 1280 if (is_shadow_present_pte(_spte_ = mmu_spte_get_lockless(sptep))) 1281 1282 static void drop_spte(struct kvm *kvm, u64 *sptep) 1283 { 1284 u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep); 1285 1286 if (is_shadow_present_pte(old_spte)) 1287 rmap_remove(kvm, sptep); 1288 } 1289 1290 static void drop_large_spte(struct kvm *kvm, u64 *sptep, bool flush) 1291 { 1292 struct kvm_mmu_page *sp; 1293 1294 sp = sptep_to_sp(sptep); 1295 WARN_ON_ONCE(sp->role.level == PG_LEVEL_4K); 1296 1297 drop_spte(kvm, sptep); 1298 1299 if (flush) 1300 kvm_flush_remote_tlbs_sptep(kvm, sptep); 1301 } 1302 1303 /* 1304 * Write-protect on the specified @sptep, @pt_protect indicates whether 1305 * spte write-protection is caused by protecting shadow page table. 1306 * 1307 * Note: write protection is difference between dirty logging and spte 1308 * protection: 1309 * - for dirty logging, the spte can be set to writable at anytime if 1310 * its dirty bitmap is properly set. 1311 * - for spte protection, the spte can be writable only after unsync-ing 1312 * shadow page. 1313 * 1314 * Return true if tlb need be flushed. 1315 */ 1316 static bool spte_write_protect(u64 *sptep, bool pt_protect) 1317 { 1318 u64 spte = *sptep; 1319 1320 if (!is_writable_pte(spte) && 1321 !(pt_protect && is_mmu_writable_spte(spte))) 1322 return false; 1323 1324 if (pt_protect) 1325 spte &= ~shadow_mmu_writable_mask; 1326 spte = spte & ~PT_WRITABLE_MASK; 1327 1328 return mmu_spte_update(sptep, spte); 1329 } 1330 1331 static bool rmap_write_protect(struct kvm_rmap_head *rmap_head, 1332 bool pt_protect) 1333 { 1334 u64 *sptep; 1335 struct rmap_iterator iter; 1336 bool flush = false; 1337 1338 for_each_rmap_spte(rmap_head, &iter, sptep) 1339 flush |= spte_write_protect(sptep, pt_protect); 1340 1341 return flush; 1342 } 1343 1344 static bool spte_clear_dirty(u64 *sptep) 1345 { 1346 u64 spte = *sptep; 1347 1348 KVM_MMU_WARN_ON(!spte_ad_enabled(spte)); 1349 spte &= ~shadow_dirty_mask; 1350 return mmu_spte_update(sptep, spte); 1351 } 1352 1353 /* 1354 * Gets the GFN ready for another round of dirty logging by clearing the 1355 * - D bit on ad-enabled SPTEs, and 1356 * - W bit on ad-disabled SPTEs. 1357 * Returns true iff any D or W bits were cleared. 1358 */ 1359 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1360 const struct kvm_memory_slot *slot) 1361 { 1362 u64 *sptep; 1363 struct rmap_iterator iter; 1364 bool flush = false; 1365 1366 for_each_rmap_spte(rmap_head, &iter, sptep) { 1367 if (spte_ad_need_write_protect(*sptep)) 1368 flush |= test_and_clear_bit(PT_WRITABLE_SHIFT, 1369 (unsigned long *)sptep); 1370 else 1371 flush |= spte_clear_dirty(sptep); 1372 } 1373 1374 return flush; 1375 } 1376 1377 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 1378 struct kvm_memory_slot *slot, 1379 gfn_t gfn_offset, unsigned long mask) 1380 { 1381 struct kvm_rmap_head *rmap_head; 1382 1383 if (tdp_mmu_enabled) 1384 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1385 slot->base_gfn + gfn_offset, mask, true); 1386 1387 if (!kvm_memslots_have_rmaps(kvm)) 1388 return; 1389 1390 while (mask) { 1391 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1392 PG_LEVEL_4K, slot); 1393 rmap_write_protect(rmap_head, false); 1394 1395 /* clear the first set bit */ 1396 mask &= mask - 1; 1397 } 1398 } 1399 1400 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1401 struct kvm_memory_slot *slot, 1402 gfn_t gfn_offset, unsigned long mask) 1403 { 1404 struct kvm_rmap_head *rmap_head; 1405 1406 if (tdp_mmu_enabled) 1407 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1408 slot->base_gfn + gfn_offset, mask, false); 1409 1410 if (!kvm_memslots_have_rmaps(kvm)) 1411 return; 1412 1413 while (mask) { 1414 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1415 PG_LEVEL_4K, slot); 1416 __rmap_clear_dirty(kvm, rmap_head, slot); 1417 1418 /* clear the first set bit */ 1419 mask &= mask - 1; 1420 } 1421 } 1422 1423 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1424 struct kvm_memory_slot *slot, 1425 gfn_t gfn_offset, unsigned long mask) 1426 { 1427 /* 1428 * If the slot was assumed to be "initially all dirty", write-protect 1429 * huge pages to ensure they are split to 4KiB on the first write (KVM 1430 * dirty logs at 4KiB granularity). If eager page splitting is enabled, 1431 * immediately try to split huge pages, e.g. so that vCPUs don't get 1432 * saddled with the cost of splitting. 1433 * 1434 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn 1435 * of memslot has no such restriction, so the range can cross two large 1436 * pages. 1437 */ 1438 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) { 1439 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask); 1440 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask); 1441 1442 if (READ_ONCE(eager_page_split)) 1443 kvm_mmu_try_split_huge_pages(kvm, slot, start, end + 1, PG_LEVEL_4K); 1444 1445 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M); 1446 1447 /* Cross two large pages? */ 1448 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) != 1449 ALIGN(end << PAGE_SHIFT, PMD_SIZE)) 1450 kvm_mmu_slot_gfn_write_protect(kvm, slot, end, 1451 PG_LEVEL_2M); 1452 } 1453 1454 /* 1455 * (Re)Enable dirty logging for all 4KiB SPTEs that map the GFNs in 1456 * mask. If PML is enabled and the GFN doesn't need to be write- 1457 * protected for other reasons, e.g. shadow paging, clear the Dirty bit. 1458 * Otherwise clear the Writable bit. 1459 * 1460 * Note that kvm_mmu_clear_dirty_pt_masked() is called whenever PML is 1461 * enabled but it chooses between clearing the Dirty bit and Writeable 1462 * bit based on the context. 1463 */ 1464 if (kvm->arch.cpu_dirty_log_size) 1465 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask); 1466 else 1467 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 1468 } 1469 1470 int kvm_cpu_dirty_log_size(struct kvm *kvm) 1471 { 1472 return kvm->arch.cpu_dirty_log_size; 1473 } 1474 1475 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, 1476 struct kvm_memory_slot *slot, u64 gfn, 1477 int min_level) 1478 { 1479 struct kvm_rmap_head *rmap_head; 1480 int i; 1481 bool write_protected = false; 1482 1483 if (kvm_memslots_have_rmaps(kvm)) { 1484 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 1485 rmap_head = gfn_to_rmap(gfn, i, slot); 1486 write_protected |= rmap_write_protect(rmap_head, true); 1487 } 1488 } 1489 1490 if (tdp_mmu_enabled) 1491 write_protected |= 1492 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level); 1493 1494 return write_protected; 1495 } 1496 1497 static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn) 1498 { 1499 struct kvm_memory_slot *slot; 1500 1501 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1502 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K); 1503 } 1504 1505 static bool kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1506 const struct kvm_memory_slot *slot) 1507 { 1508 return kvm_zap_all_rmap_sptes(kvm, rmap_head); 1509 } 1510 1511 struct slot_rmap_walk_iterator { 1512 /* input fields. */ 1513 const struct kvm_memory_slot *slot; 1514 gfn_t start_gfn; 1515 gfn_t end_gfn; 1516 int start_level; 1517 int end_level; 1518 1519 /* output fields. */ 1520 gfn_t gfn; 1521 struct kvm_rmap_head *rmap; 1522 int level; 1523 1524 /* private field. */ 1525 struct kvm_rmap_head *end_rmap; 1526 }; 1527 1528 static void rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, 1529 int level) 1530 { 1531 iterator->level = level; 1532 iterator->gfn = iterator->start_gfn; 1533 iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot); 1534 iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot); 1535 } 1536 1537 static void slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator, 1538 const struct kvm_memory_slot *slot, 1539 int start_level, int end_level, 1540 gfn_t start_gfn, gfn_t end_gfn) 1541 { 1542 iterator->slot = slot; 1543 iterator->start_level = start_level; 1544 iterator->end_level = end_level; 1545 iterator->start_gfn = start_gfn; 1546 iterator->end_gfn = end_gfn; 1547 1548 rmap_walk_init_level(iterator, iterator->start_level); 1549 } 1550 1551 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator) 1552 { 1553 return !!iterator->rmap; 1554 } 1555 1556 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) 1557 { 1558 while (++iterator->rmap <= iterator->end_rmap) { 1559 iterator->gfn += KVM_PAGES_PER_HPAGE(iterator->level); 1560 1561 if (atomic_long_read(&iterator->rmap->val)) 1562 return; 1563 } 1564 1565 if (++iterator->level > iterator->end_level) { 1566 iterator->rmap = NULL; 1567 return; 1568 } 1569 1570 rmap_walk_init_level(iterator, iterator->level); 1571 } 1572 1573 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \ 1574 _start_gfn, _end_gfn, _iter_) \ 1575 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \ 1576 _end_level_, _start_gfn, _end_gfn); \ 1577 slot_rmap_walk_okay(_iter_); \ 1578 slot_rmap_walk_next(_iter_)) 1579 1580 /* The return value indicates if tlb flush on all vcpus is needed. */ 1581 typedef bool (*slot_rmaps_handler) (struct kvm *kvm, 1582 struct kvm_rmap_head *rmap_head, 1583 const struct kvm_memory_slot *slot); 1584 1585 static __always_inline bool __walk_slot_rmaps(struct kvm *kvm, 1586 const struct kvm_memory_slot *slot, 1587 slot_rmaps_handler fn, 1588 int start_level, int end_level, 1589 gfn_t start_gfn, gfn_t end_gfn, 1590 bool can_yield, bool flush_on_yield, 1591 bool flush) 1592 { 1593 struct slot_rmap_walk_iterator iterator; 1594 1595 lockdep_assert_held_write(&kvm->mmu_lock); 1596 1597 for_each_slot_rmap_range(slot, start_level, end_level, start_gfn, 1598 end_gfn, &iterator) { 1599 if (iterator.rmap) 1600 flush |= fn(kvm, iterator.rmap, slot); 1601 1602 if (!can_yield) 1603 continue; 1604 1605 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 1606 if (flush && flush_on_yield) { 1607 kvm_flush_remote_tlbs_range(kvm, start_gfn, 1608 iterator.gfn - start_gfn + 1); 1609 flush = false; 1610 } 1611 cond_resched_rwlock_write(&kvm->mmu_lock); 1612 } 1613 } 1614 1615 return flush; 1616 } 1617 1618 static __always_inline bool walk_slot_rmaps(struct kvm *kvm, 1619 const struct kvm_memory_slot *slot, 1620 slot_rmaps_handler fn, 1621 int start_level, int end_level, 1622 bool flush_on_yield) 1623 { 1624 return __walk_slot_rmaps(kvm, slot, fn, start_level, end_level, 1625 slot->base_gfn, slot->base_gfn + slot->npages - 1, 1626 true, flush_on_yield, false); 1627 } 1628 1629 static __always_inline bool walk_slot_rmaps_4k(struct kvm *kvm, 1630 const struct kvm_memory_slot *slot, 1631 slot_rmaps_handler fn, 1632 bool flush_on_yield) 1633 { 1634 return walk_slot_rmaps(kvm, slot, fn, PG_LEVEL_4K, PG_LEVEL_4K, flush_on_yield); 1635 } 1636 1637 static bool __kvm_rmap_zap_gfn_range(struct kvm *kvm, 1638 const struct kvm_memory_slot *slot, 1639 gfn_t start, gfn_t end, bool can_yield, 1640 bool flush) 1641 { 1642 return __walk_slot_rmaps(kvm, slot, kvm_zap_rmap, 1643 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 1644 start, end - 1, can_yield, true, flush); 1645 } 1646 1647 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1648 { 1649 bool flush = false; 1650 1651 /* 1652 * To prevent races with vCPUs faulting in a gfn using stale data, 1653 * zapping a gfn range must be protected by mmu_invalidate_in_progress 1654 * (and mmu_invalidate_seq). The only exception is memslot deletion; 1655 * in that case, SRCU synchronization ensures that SPTEs are zapped 1656 * after all vCPUs have unlocked SRCU, guaranteeing that vCPUs see the 1657 * invalid slot. 1658 */ 1659 lockdep_assert_once(kvm->mmu_invalidate_in_progress || 1660 lockdep_is_held(&kvm->slots_lock)); 1661 1662 if (kvm_memslots_have_rmaps(kvm)) 1663 flush = __kvm_rmap_zap_gfn_range(kvm, range->slot, 1664 range->start, range->end, 1665 range->may_block, flush); 1666 1667 if (tdp_mmu_enabled) 1668 flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush); 1669 1670 if (kvm_x86_ops.set_apic_access_page_addr && 1671 range->slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT) 1672 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 1673 1674 return flush; 1675 } 1676 1677 #define RMAP_RECYCLE_THRESHOLD 1000 1678 1679 static void __rmap_add(struct kvm *kvm, 1680 struct kvm_mmu_memory_cache *cache, 1681 const struct kvm_memory_slot *slot, 1682 u64 *spte, gfn_t gfn, unsigned int access) 1683 { 1684 struct kvm_mmu_page *sp; 1685 struct kvm_rmap_head *rmap_head; 1686 int rmap_count; 1687 1688 sp = sptep_to_sp(spte); 1689 kvm_mmu_page_set_translation(sp, spte_index(spte), gfn, access); 1690 kvm_update_page_stats(kvm, sp->role.level, 1); 1691 1692 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1693 rmap_count = pte_list_add(kvm, cache, spte, rmap_head); 1694 1695 if (rmap_count > kvm->stat.max_mmu_rmap_size) 1696 kvm->stat.max_mmu_rmap_size = rmap_count; 1697 if (rmap_count > RMAP_RECYCLE_THRESHOLD) { 1698 kvm_zap_all_rmap_sptes(kvm, rmap_head); 1699 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level); 1700 } 1701 } 1702 1703 static void rmap_add(struct kvm_vcpu *vcpu, const struct kvm_memory_slot *slot, 1704 u64 *spte, gfn_t gfn, unsigned int access) 1705 { 1706 struct kvm_mmu_memory_cache *cache = &vcpu->arch.mmu_pte_list_desc_cache; 1707 1708 __rmap_add(vcpu->kvm, cache, slot, spte, gfn, access); 1709 } 1710 1711 static bool kvm_rmap_age_gfn_range(struct kvm *kvm, 1712 struct kvm_gfn_range *range, 1713 bool test_only) 1714 { 1715 struct kvm_rmap_head *rmap_head; 1716 struct rmap_iterator iter; 1717 unsigned long rmap_val; 1718 bool young = false; 1719 u64 *sptep; 1720 gfn_t gfn; 1721 int level; 1722 u64 spte; 1723 1724 for (level = PG_LEVEL_4K; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) { 1725 for (gfn = range->start; gfn < range->end; 1726 gfn += KVM_PAGES_PER_HPAGE(level)) { 1727 rmap_head = gfn_to_rmap(gfn, level, range->slot); 1728 rmap_val = kvm_rmap_lock_readonly(rmap_head); 1729 1730 for_each_rmap_spte_lockless(rmap_head, &iter, sptep, spte) { 1731 if (!is_accessed_spte(spte)) 1732 continue; 1733 1734 if (test_only) { 1735 kvm_rmap_unlock_readonly(rmap_head, rmap_val); 1736 return true; 1737 } 1738 1739 if (spte_ad_enabled(spte)) 1740 clear_bit((ffs(shadow_accessed_mask) - 1), 1741 (unsigned long *)sptep); 1742 else 1743 /* 1744 * If the following cmpxchg fails, the 1745 * spte is being concurrently modified 1746 * and should most likely stay young. 1747 */ 1748 cmpxchg64(sptep, spte, 1749 mark_spte_for_access_track(spte)); 1750 young = true; 1751 } 1752 1753 kvm_rmap_unlock_readonly(rmap_head, rmap_val); 1754 } 1755 } 1756 return young; 1757 } 1758 1759 static bool kvm_may_have_shadow_mmu_sptes(struct kvm *kvm) 1760 { 1761 return !tdp_mmu_enabled || READ_ONCE(kvm->arch.indirect_shadow_pages); 1762 } 1763 1764 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1765 { 1766 bool young = false; 1767 1768 if (tdp_mmu_enabled) 1769 young = kvm_tdp_mmu_age_gfn_range(kvm, range); 1770 1771 if (kvm_may_have_shadow_mmu_sptes(kvm)) 1772 young |= kvm_rmap_age_gfn_range(kvm, range, false); 1773 1774 return young; 1775 } 1776 1777 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1778 { 1779 bool young = false; 1780 1781 if (tdp_mmu_enabled) 1782 young = kvm_tdp_mmu_test_age_gfn(kvm, range); 1783 1784 if (young) 1785 return young; 1786 1787 if (kvm_may_have_shadow_mmu_sptes(kvm)) 1788 young |= kvm_rmap_age_gfn_range(kvm, range, true); 1789 1790 return young; 1791 } 1792 1793 static void kvm_mmu_check_sptes_at_free(struct kvm_mmu_page *sp) 1794 { 1795 #ifdef CONFIG_KVM_PROVE_MMU 1796 int i; 1797 1798 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) { 1799 if (KVM_MMU_WARN_ON(is_shadow_present_pte(sp->spt[i]))) 1800 pr_err_ratelimited("SPTE %llx (@ %p) for gfn %llx shadow-present at free", 1801 sp->spt[i], &sp->spt[i], 1802 kvm_mmu_page_get_gfn(sp, i)); 1803 } 1804 #endif 1805 } 1806 1807 static void kvm_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1808 { 1809 kvm->arch.n_used_mmu_pages++; 1810 kvm_account_pgtable_pages((void *)sp->spt, +1); 1811 } 1812 1813 static void kvm_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1814 { 1815 kvm->arch.n_used_mmu_pages--; 1816 kvm_account_pgtable_pages((void *)sp->spt, -1); 1817 } 1818 1819 static void kvm_mmu_free_shadow_page(struct kvm_mmu_page *sp) 1820 { 1821 kvm_mmu_check_sptes_at_free(sp); 1822 1823 hlist_del(&sp->hash_link); 1824 list_del(&sp->link); 1825 free_page((unsigned long)sp->spt); 1826 free_page((unsigned long)sp->shadowed_translation); 1827 kmem_cache_free(mmu_page_header_cache, sp); 1828 } 1829 1830 static unsigned kvm_page_table_hashfn(gfn_t gfn) 1831 { 1832 return hash_64(gfn, KVM_MMU_HASH_SHIFT); 1833 } 1834 1835 static void mmu_page_add_parent_pte(struct kvm *kvm, 1836 struct kvm_mmu_memory_cache *cache, 1837 struct kvm_mmu_page *sp, u64 *parent_pte) 1838 { 1839 if (!parent_pte) 1840 return; 1841 1842 pte_list_add(kvm, cache, parent_pte, &sp->parent_ptes); 1843 } 1844 1845 static void mmu_page_remove_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 1846 u64 *parent_pte) 1847 { 1848 pte_list_remove(kvm, parent_pte, &sp->parent_ptes); 1849 } 1850 1851 static void drop_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 1852 u64 *parent_pte) 1853 { 1854 mmu_page_remove_parent_pte(kvm, sp, parent_pte); 1855 mmu_spte_clear_no_track(parent_pte); 1856 } 1857 1858 static void mark_unsync(u64 *spte); 1859 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) 1860 { 1861 u64 *sptep; 1862 struct rmap_iterator iter; 1863 1864 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) { 1865 mark_unsync(sptep); 1866 } 1867 } 1868 1869 static void mark_unsync(u64 *spte) 1870 { 1871 struct kvm_mmu_page *sp; 1872 1873 sp = sptep_to_sp(spte); 1874 if (__test_and_set_bit(spte_index(spte), sp->unsync_child_bitmap)) 1875 return; 1876 if (sp->unsync_children++) 1877 return; 1878 kvm_mmu_mark_parents_unsync(sp); 1879 } 1880 1881 #define KVM_PAGE_ARRAY_NR 16 1882 1883 struct kvm_mmu_pages { 1884 struct mmu_page_and_offset { 1885 struct kvm_mmu_page *sp; 1886 unsigned int idx; 1887 } page[KVM_PAGE_ARRAY_NR]; 1888 unsigned int nr; 1889 }; 1890 1891 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, 1892 int idx) 1893 { 1894 int i; 1895 1896 if (sp->unsync) 1897 for (i=0; i < pvec->nr; i++) 1898 if (pvec->page[i].sp == sp) 1899 return 0; 1900 1901 pvec->page[pvec->nr].sp = sp; 1902 pvec->page[pvec->nr].idx = idx; 1903 pvec->nr++; 1904 return (pvec->nr == KVM_PAGE_ARRAY_NR); 1905 } 1906 1907 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx) 1908 { 1909 --sp->unsync_children; 1910 WARN_ON_ONCE((int)sp->unsync_children < 0); 1911 __clear_bit(idx, sp->unsync_child_bitmap); 1912 } 1913 1914 static int __mmu_unsync_walk(struct kvm_mmu_page *sp, 1915 struct kvm_mmu_pages *pvec) 1916 { 1917 int i, ret, nr_unsync_leaf = 0; 1918 1919 for_each_set_bit(i, sp->unsync_child_bitmap, 512) { 1920 struct kvm_mmu_page *child; 1921 u64 ent = sp->spt[i]; 1922 1923 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) { 1924 clear_unsync_child_bit(sp, i); 1925 continue; 1926 } 1927 1928 child = spte_to_child_sp(ent); 1929 1930 if (child->unsync_children) { 1931 if (mmu_pages_add(pvec, child, i)) 1932 return -ENOSPC; 1933 1934 ret = __mmu_unsync_walk(child, pvec); 1935 if (!ret) { 1936 clear_unsync_child_bit(sp, i); 1937 continue; 1938 } else if (ret > 0) { 1939 nr_unsync_leaf += ret; 1940 } else 1941 return ret; 1942 } else if (child->unsync) { 1943 nr_unsync_leaf++; 1944 if (mmu_pages_add(pvec, child, i)) 1945 return -ENOSPC; 1946 } else 1947 clear_unsync_child_bit(sp, i); 1948 } 1949 1950 return nr_unsync_leaf; 1951 } 1952 1953 #define INVALID_INDEX (-1) 1954 1955 static int mmu_unsync_walk(struct kvm_mmu_page *sp, 1956 struct kvm_mmu_pages *pvec) 1957 { 1958 pvec->nr = 0; 1959 if (!sp->unsync_children) 1960 return 0; 1961 1962 mmu_pages_add(pvec, sp, INVALID_INDEX); 1963 return __mmu_unsync_walk(sp, pvec); 1964 } 1965 1966 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1967 { 1968 WARN_ON_ONCE(!sp->unsync); 1969 trace_kvm_mmu_sync_page(sp); 1970 sp->unsync = 0; 1971 --kvm->stat.mmu_unsync; 1972 } 1973 1974 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 1975 struct list_head *invalid_list); 1976 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 1977 struct list_head *invalid_list); 1978 1979 static bool sp_has_gptes(struct kvm_mmu_page *sp) 1980 { 1981 if (sp->role.direct) 1982 return false; 1983 1984 if (sp->role.passthrough) 1985 return false; 1986 1987 return true; 1988 } 1989 1990 static __ro_after_init HLIST_HEAD(empty_page_hash); 1991 1992 static struct hlist_head *kvm_get_mmu_page_hash(struct kvm *kvm, gfn_t gfn) 1993 { 1994 /* 1995 * Ensure the load of the hash table pointer itself is ordered before 1996 * loads to walk the table. The pointer is set at runtime outside of 1997 * mmu_lock when the TDP MMU is enabled, i.e. when the hash table of 1998 * shadow pages becomes necessary only when KVM needs to shadow L1's 1999 * TDP for an L2 guest. Pairs with the smp_store_release() in 2000 * kvm_mmu_alloc_page_hash(). 2001 */ 2002 struct hlist_head *page_hash = smp_load_acquire(&kvm->arch.mmu_page_hash); 2003 2004 lockdep_assert_held(&kvm->mmu_lock); 2005 2006 if (!page_hash) 2007 return &empty_page_hash; 2008 2009 return &page_hash[kvm_page_table_hashfn(gfn)]; 2010 } 2011 2012 #define for_each_valid_sp(_kvm, _sp, _list) \ 2013 hlist_for_each_entry(_sp, _list, hash_link) \ 2014 if (is_obsolete_sp((_kvm), (_sp))) { \ 2015 } else 2016 2017 #define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn) \ 2018 for_each_valid_sp(_kvm, _sp, kvm_get_mmu_page_hash(_kvm, _gfn)) \ 2019 if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else 2020 2021 static bool kvm_sync_page_check(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 2022 { 2023 union kvm_mmu_page_role root_role = vcpu->arch.mmu->root_role; 2024 2025 /* 2026 * Ignore various flags when verifying that it's safe to sync a shadow 2027 * page using the current MMU context. 2028 * 2029 * - level: not part of the overall MMU role and will never match as the MMU's 2030 * level tracks the root level 2031 * - access: updated based on the new guest PTE 2032 * - quadrant: not part of the overall MMU role (similar to level) 2033 */ 2034 const union kvm_mmu_page_role sync_role_ign = { 2035 .level = 0xf, 2036 .access = 0x7, 2037 .quadrant = 0x3, 2038 .passthrough = 0x1, 2039 }; 2040 2041 /* 2042 * Direct pages can never be unsync, and KVM should never attempt to 2043 * sync a shadow page for a different MMU context, e.g. if the role 2044 * differs then the memslot lookup (SMM vs. non-SMM) will be bogus, the 2045 * reserved bits checks will be wrong, etc... 2046 */ 2047 if (WARN_ON_ONCE(sp->role.direct || !vcpu->arch.mmu->sync_spte || 2048 (sp->role.word ^ root_role.word) & ~sync_role_ign.word)) 2049 return false; 2050 2051 return true; 2052 } 2053 2054 static int kvm_sync_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, int i) 2055 { 2056 /* sp->spt[i] has initial value of shadow page table allocation */ 2057 if (sp->spt[i] == SHADOW_NONPRESENT_VALUE) 2058 return 0; 2059 2060 return vcpu->arch.mmu->sync_spte(vcpu, sp, i); 2061 } 2062 2063 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 2064 { 2065 int flush = 0; 2066 int i; 2067 2068 if (!kvm_sync_page_check(vcpu, sp)) 2069 return -1; 2070 2071 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) { 2072 int ret = kvm_sync_spte(vcpu, sp, i); 2073 2074 if (ret < -1) 2075 return -1; 2076 flush |= ret; 2077 } 2078 2079 /* 2080 * Note, any flush is purely for KVM's correctness, e.g. when dropping 2081 * an existing SPTE or clearing W/A/D bits to ensure an mmu_notifier 2082 * unmap or dirty logging event doesn't fail to flush. The guest is 2083 * responsible for flushing the TLB to ensure any changes in protection 2084 * bits are recognized, i.e. until the guest flushes or page faults on 2085 * a relevant address, KVM is architecturally allowed to let vCPUs use 2086 * cached translations with the old protection bits. 2087 */ 2088 return flush; 2089 } 2090 2091 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 2092 struct list_head *invalid_list) 2093 { 2094 int ret = __kvm_sync_page(vcpu, sp); 2095 2096 if (ret < 0) 2097 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); 2098 return ret; 2099 } 2100 2101 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm, 2102 struct list_head *invalid_list, 2103 bool remote_flush) 2104 { 2105 if (!remote_flush && list_empty(invalid_list)) 2106 return false; 2107 2108 if (!list_empty(invalid_list)) 2109 kvm_mmu_commit_zap_page(kvm, invalid_list); 2110 else 2111 kvm_flush_remote_tlbs(kvm); 2112 return true; 2113 } 2114 2115 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 2116 { 2117 if (sp->role.invalid) 2118 return true; 2119 2120 /* TDP MMU pages do not use the MMU generation. */ 2121 return !is_tdp_mmu_page(sp) && 2122 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); 2123 } 2124 2125 struct mmu_page_path { 2126 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL]; 2127 unsigned int idx[PT64_ROOT_MAX_LEVEL]; 2128 }; 2129 2130 #define for_each_sp(pvec, sp, parents, i) \ 2131 for (i = mmu_pages_first(&pvec, &parents); \ 2132 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \ 2133 i = mmu_pages_next(&pvec, &parents, i)) 2134 2135 static int mmu_pages_next(struct kvm_mmu_pages *pvec, 2136 struct mmu_page_path *parents, 2137 int i) 2138 { 2139 int n; 2140 2141 for (n = i+1; n < pvec->nr; n++) { 2142 struct kvm_mmu_page *sp = pvec->page[n].sp; 2143 unsigned idx = pvec->page[n].idx; 2144 int level = sp->role.level; 2145 2146 parents->idx[level-1] = idx; 2147 if (level == PG_LEVEL_4K) 2148 break; 2149 2150 parents->parent[level-2] = sp; 2151 } 2152 2153 return n; 2154 } 2155 2156 static int mmu_pages_first(struct kvm_mmu_pages *pvec, 2157 struct mmu_page_path *parents) 2158 { 2159 struct kvm_mmu_page *sp; 2160 int level; 2161 2162 if (pvec->nr == 0) 2163 return 0; 2164 2165 WARN_ON_ONCE(pvec->page[0].idx != INVALID_INDEX); 2166 2167 sp = pvec->page[0].sp; 2168 level = sp->role.level; 2169 WARN_ON_ONCE(level == PG_LEVEL_4K); 2170 2171 parents->parent[level-2] = sp; 2172 2173 /* Also set up a sentinel. Further entries in pvec are all 2174 * children of sp, so this element is never overwritten. 2175 */ 2176 parents->parent[level-1] = NULL; 2177 return mmu_pages_next(pvec, parents, 0); 2178 } 2179 2180 static void mmu_pages_clear_parents(struct mmu_page_path *parents) 2181 { 2182 struct kvm_mmu_page *sp; 2183 unsigned int level = 0; 2184 2185 do { 2186 unsigned int idx = parents->idx[level]; 2187 sp = parents->parent[level]; 2188 if (!sp) 2189 return; 2190 2191 WARN_ON_ONCE(idx == INVALID_INDEX); 2192 clear_unsync_child_bit(sp, idx); 2193 level++; 2194 } while (!sp->unsync_children); 2195 } 2196 2197 static int mmu_sync_children(struct kvm_vcpu *vcpu, 2198 struct kvm_mmu_page *parent, bool can_yield) 2199 { 2200 int i; 2201 struct kvm_mmu_page *sp; 2202 struct mmu_page_path parents; 2203 struct kvm_mmu_pages pages; 2204 LIST_HEAD(invalid_list); 2205 bool flush = false; 2206 2207 while (mmu_unsync_walk(parent, &pages)) { 2208 bool protected = false; 2209 2210 for_each_sp(pages, sp, parents, i) 2211 protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn); 2212 2213 if (protected) { 2214 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true); 2215 flush = false; 2216 } 2217 2218 for_each_sp(pages, sp, parents, i) { 2219 kvm_unlink_unsync_page(vcpu->kvm, sp); 2220 flush |= kvm_sync_page(vcpu, sp, &invalid_list) > 0; 2221 mmu_pages_clear_parents(&parents); 2222 } 2223 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) { 2224 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2225 if (!can_yield) { 2226 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 2227 return -EINTR; 2228 } 2229 2230 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock); 2231 flush = false; 2232 } 2233 } 2234 2235 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2236 return 0; 2237 } 2238 2239 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) 2240 { 2241 atomic_set(&sp->write_flooding_count, 0); 2242 } 2243 2244 static void clear_sp_write_flooding_count(u64 *spte) 2245 { 2246 __clear_sp_write_flooding_count(sptep_to_sp(spte)); 2247 } 2248 2249 /* 2250 * The vCPU is required when finding indirect shadow pages; the shadow 2251 * page may already exist and syncing it needs the vCPU pointer in 2252 * order to read guest page tables. Direct shadow pages are never 2253 * unsync, thus @vcpu can be NULL if @role.direct is true. 2254 */ 2255 static struct kvm_mmu_page *kvm_mmu_find_shadow_page(struct kvm *kvm, 2256 struct kvm_vcpu *vcpu, 2257 gfn_t gfn, 2258 struct hlist_head *sp_list, 2259 union kvm_mmu_page_role role) 2260 { 2261 struct kvm_mmu_page *sp; 2262 int ret; 2263 int collisions = 0; 2264 LIST_HEAD(invalid_list); 2265 2266 for_each_valid_sp(kvm, sp, sp_list) { 2267 if (sp->gfn != gfn) { 2268 collisions++; 2269 continue; 2270 } 2271 2272 if (sp->role.word != role.word) { 2273 /* 2274 * If the guest is creating an upper-level page, zap 2275 * unsync pages for the same gfn. While it's possible 2276 * the guest is using recursive page tables, in all 2277 * likelihood the guest has stopped using the unsync 2278 * page and is installing a completely unrelated page. 2279 * Unsync pages must not be left as is, because the new 2280 * upper-level page will be write-protected. 2281 */ 2282 if (role.level > PG_LEVEL_4K && sp->unsync) 2283 kvm_mmu_prepare_zap_page(kvm, sp, 2284 &invalid_list); 2285 continue; 2286 } 2287 2288 /* unsync and write-flooding only apply to indirect SPs. */ 2289 if (sp->role.direct) 2290 goto out; 2291 2292 if (sp->unsync) { 2293 if (KVM_BUG_ON(!vcpu, kvm)) 2294 break; 2295 2296 /* 2297 * The page is good, but is stale. kvm_sync_page does 2298 * get the latest guest state, but (unlike mmu_unsync_children) 2299 * it doesn't write-protect the page or mark it synchronized! 2300 * This way the validity of the mapping is ensured, but the 2301 * overhead of write protection is not incurred until the 2302 * guest invalidates the TLB mapping. This allows multiple 2303 * SPs for a single gfn to be unsync. 2304 * 2305 * If the sync fails, the page is zapped. If so, break 2306 * in order to rebuild it. 2307 */ 2308 ret = kvm_sync_page(vcpu, sp, &invalid_list); 2309 if (ret < 0) 2310 break; 2311 2312 WARN_ON_ONCE(!list_empty(&invalid_list)); 2313 if (ret > 0) 2314 kvm_flush_remote_tlbs(kvm); 2315 } 2316 2317 __clear_sp_write_flooding_count(sp); 2318 2319 goto out; 2320 } 2321 2322 sp = NULL; 2323 ++kvm->stat.mmu_cache_miss; 2324 2325 out: 2326 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2327 2328 if (collisions > kvm->stat.max_mmu_page_hash_collisions) 2329 kvm->stat.max_mmu_page_hash_collisions = collisions; 2330 return sp; 2331 } 2332 2333 /* Caches used when allocating a new shadow page. */ 2334 struct shadow_page_caches { 2335 struct kvm_mmu_memory_cache *page_header_cache; 2336 struct kvm_mmu_memory_cache *shadow_page_cache; 2337 struct kvm_mmu_memory_cache *shadowed_info_cache; 2338 }; 2339 2340 static struct kvm_mmu_page *kvm_mmu_alloc_shadow_page(struct kvm *kvm, 2341 struct shadow_page_caches *caches, 2342 gfn_t gfn, 2343 struct hlist_head *sp_list, 2344 union kvm_mmu_page_role role) 2345 { 2346 struct kvm_mmu_page *sp; 2347 2348 sp = kvm_mmu_memory_cache_alloc(caches->page_header_cache); 2349 sp->spt = kvm_mmu_memory_cache_alloc(caches->shadow_page_cache); 2350 if (!role.direct && role.level <= KVM_MAX_HUGEPAGE_LEVEL) 2351 sp->shadowed_translation = kvm_mmu_memory_cache_alloc(caches->shadowed_info_cache); 2352 2353 set_page_private(virt_to_page(sp->spt), (unsigned long)sp); 2354 2355 INIT_LIST_HEAD(&sp->possible_nx_huge_page_link); 2356 2357 /* 2358 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages() 2359 * depends on valid pages being added to the head of the list. See 2360 * comments in kvm_zap_obsolete_pages(). 2361 */ 2362 sp->mmu_valid_gen = kvm->arch.mmu_valid_gen; 2363 list_add(&sp->link, &kvm->arch.active_mmu_pages); 2364 kvm_account_mmu_page(kvm, sp); 2365 2366 sp->gfn = gfn; 2367 sp->role = role; 2368 hlist_add_head(&sp->hash_link, sp_list); 2369 if (sp_has_gptes(sp)) 2370 account_shadowed(kvm, sp); 2371 2372 return sp; 2373 } 2374 2375 /* Note, @vcpu may be NULL if @role.direct is true; see kvm_mmu_find_shadow_page. */ 2376 static struct kvm_mmu_page *__kvm_mmu_get_shadow_page(struct kvm *kvm, 2377 struct kvm_vcpu *vcpu, 2378 struct shadow_page_caches *caches, 2379 gfn_t gfn, 2380 union kvm_mmu_page_role role) 2381 { 2382 struct hlist_head *sp_list; 2383 struct kvm_mmu_page *sp; 2384 bool created = false; 2385 2386 /* 2387 * No need for memory barriers, unlike in kvm_get_mmu_page_hash(), as 2388 * mmu_page_hash must be set prior to creating the first shadow root, 2389 * i.e. reaching this point is fully serialized by slots_arch_lock. 2390 */ 2391 BUG_ON(!kvm->arch.mmu_page_hash); 2392 sp_list = &kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]; 2393 2394 sp = kvm_mmu_find_shadow_page(kvm, vcpu, gfn, sp_list, role); 2395 if (!sp) { 2396 created = true; 2397 sp = kvm_mmu_alloc_shadow_page(kvm, caches, gfn, sp_list, role); 2398 } 2399 2400 trace_kvm_mmu_get_page(sp, created); 2401 return sp; 2402 } 2403 2404 static struct kvm_mmu_page *kvm_mmu_get_shadow_page(struct kvm_vcpu *vcpu, 2405 gfn_t gfn, 2406 union kvm_mmu_page_role role) 2407 { 2408 struct shadow_page_caches caches = { 2409 .page_header_cache = &vcpu->arch.mmu_page_header_cache, 2410 .shadow_page_cache = &vcpu->arch.mmu_shadow_page_cache, 2411 .shadowed_info_cache = &vcpu->arch.mmu_shadowed_info_cache, 2412 }; 2413 2414 return __kvm_mmu_get_shadow_page(vcpu->kvm, vcpu, &caches, gfn, role); 2415 } 2416 2417 static union kvm_mmu_page_role kvm_mmu_child_role(u64 *sptep, bool direct, 2418 unsigned int access) 2419 { 2420 struct kvm_mmu_page *parent_sp = sptep_to_sp(sptep); 2421 union kvm_mmu_page_role role; 2422 2423 role = parent_sp->role; 2424 role.level--; 2425 role.access = access; 2426 role.direct = direct; 2427 role.passthrough = 0; 2428 2429 /* 2430 * If the guest has 4-byte PTEs then that means it's using 32-bit, 2431 * 2-level, non-PAE paging. KVM shadows such guests with PAE paging 2432 * (i.e. 8-byte PTEs). The difference in PTE size means that KVM must 2433 * shadow each guest page table with multiple shadow page tables, which 2434 * requires extra bookkeeping in the role. 2435 * 2436 * Specifically, to shadow the guest's page directory (which covers a 2437 * 4GiB address space), KVM uses 4 PAE page directories, each mapping 2438 * 1GiB of the address space. @role.quadrant encodes which quarter of 2439 * the address space each maps. 2440 * 2441 * To shadow the guest's page tables (which each map a 4MiB region), KVM 2442 * uses 2 PAE page tables, each mapping a 2MiB region. For these, 2443 * @role.quadrant encodes which half of the region they map. 2444 * 2445 * Concretely, a 4-byte PDE consumes bits 31:22, while an 8-byte PDE 2446 * consumes bits 29:21. To consume bits 31:30, KVM's uses 4 shadow 2447 * PDPTEs; those 4 PAE page directories are pre-allocated and their 2448 * quadrant is assigned in mmu_alloc_root(). A 4-byte PTE consumes 2449 * bits 21:12, while an 8-byte PTE consumes bits 20:12. To consume 2450 * bit 21 in the PTE (the child here), KVM propagates that bit to the 2451 * quadrant, i.e. sets quadrant to '0' or '1'. The parent 8-byte PDE 2452 * covers bit 21 (see above), thus the quadrant is calculated from the 2453 * _least_ significant bit of the PDE index. 2454 */ 2455 if (role.has_4_byte_gpte) { 2456 WARN_ON_ONCE(role.level != PG_LEVEL_4K); 2457 role.quadrant = spte_index(sptep) & 1; 2458 } 2459 2460 return role; 2461 } 2462 2463 static struct kvm_mmu_page *kvm_mmu_get_child_sp(struct kvm_vcpu *vcpu, 2464 u64 *sptep, gfn_t gfn, 2465 bool direct, unsigned int access) 2466 { 2467 union kvm_mmu_page_role role; 2468 2469 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) 2470 return ERR_PTR(-EEXIST); 2471 2472 role = kvm_mmu_child_role(sptep, direct, access); 2473 return kvm_mmu_get_shadow_page(vcpu, gfn, role); 2474 } 2475 2476 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator, 2477 struct kvm_vcpu *vcpu, hpa_t root, 2478 u64 addr) 2479 { 2480 iterator->addr = addr; 2481 iterator->shadow_addr = root; 2482 iterator->level = vcpu->arch.mmu->root_role.level; 2483 2484 if (iterator->level >= PT64_ROOT_4LEVEL && 2485 vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL && 2486 !vcpu->arch.mmu->root_role.direct) 2487 iterator->level = PT32E_ROOT_LEVEL; 2488 2489 if (iterator->level == PT32E_ROOT_LEVEL) { 2490 /* 2491 * prev_root is currently only used for 64-bit hosts. So only 2492 * the active root_hpa is valid here. 2493 */ 2494 BUG_ON(root != vcpu->arch.mmu->root.hpa); 2495 2496 iterator->shadow_addr 2497 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3]; 2498 iterator->shadow_addr &= SPTE_BASE_ADDR_MASK; 2499 --iterator->level; 2500 if (!iterator->shadow_addr) 2501 iterator->level = 0; 2502 } 2503 } 2504 2505 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, 2506 struct kvm_vcpu *vcpu, u64 addr) 2507 { 2508 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa, 2509 addr); 2510 } 2511 2512 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) 2513 { 2514 if (iterator->level < PG_LEVEL_4K) 2515 return false; 2516 2517 iterator->index = SPTE_INDEX(iterator->addr, iterator->level); 2518 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; 2519 return true; 2520 } 2521 2522 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, 2523 u64 spte) 2524 { 2525 if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) { 2526 iterator->level = 0; 2527 return; 2528 } 2529 2530 iterator->shadow_addr = spte & SPTE_BASE_ADDR_MASK; 2531 --iterator->level; 2532 } 2533 2534 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) 2535 { 2536 __shadow_walk_next(iterator, *iterator->sptep); 2537 } 2538 2539 static void __link_shadow_page(struct kvm *kvm, 2540 struct kvm_mmu_memory_cache *cache, u64 *sptep, 2541 struct kvm_mmu_page *sp, bool flush) 2542 { 2543 u64 spte; 2544 2545 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); 2546 2547 /* 2548 * If an SPTE is present already, it must be a leaf and therefore 2549 * a large one. Drop it, and flush the TLB if needed, before 2550 * installing sp. 2551 */ 2552 if (is_shadow_present_pte(*sptep)) 2553 drop_large_spte(kvm, sptep, flush); 2554 2555 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp)); 2556 2557 mmu_spte_set(sptep, spte); 2558 2559 mmu_page_add_parent_pte(kvm, cache, sp, sptep); 2560 2561 /* 2562 * The non-direct sub-pagetable must be updated before linking. For 2563 * L1 sp, the pagetable is updated via kvm_sync_page() in 2564 * kvm_mmu_find_shadow_page() without write-protecting the gfn, 2565 * so sp->unsync can be true or false. For higher level non-direct 2566 * sp, the pagetable is updated/synced via mmu_sync_children() in 2567 * FNAME(fetch)(), so sp->unsync_children can only be false. 2568 * WARN_ON_ONCE() if anything happens unexpectedly. 2569 */ 2570 if (WARN_ON_ONCE(sp->unsync_children) || sp->unsync) 2571 mark_unsync(sptep); 2572 } 2573 2574 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, 2575 struct kvm_mmu_page *sp) 2576 { 2577 __link_shadow_page(vcpu->kvm, &vcpu->arch.mmu_pte_list_desc_cache, sptep, sp, true); 2578 } 2579 2580 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2581 unsigned direct_access) 2582 { 2583 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { 2584 struct kvm_mmu_page *child; 2585 2586 /* 2587 * For the direct sp, if the guest pte's dirty bit 2588 * changed form clean to dirty, it will corrupt the 2589 * sp's access: allow writable in the read-only sp, 2590 * so we should update the spte at this point to get 2591 * a new sp with the correct access. 2592 */ 2593 child = spte_to_child_sp(*sptep); 2594 if (child->role.access == direct_access) 2595 return; 2596 2597 drop_parent_pte(vcpu->kvm, child, sptep); 2598 kvm_flush_remote_tlbs_sptep(vcpu->kvm, sptep); 2599 } 2600 } 2601 2602 /* Returns the number of zapped non-leaf child shadow pages. */ 2603 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 2604 u64 *spte, struct list_head *invalid_list) 2605 { 2606 u64 pte; 2607 struct kvm_mmu_page *child; 2608 2609 pte = *spte; 2610 if (is_shadow_present_pte(pte)) { 2611 if (is_last_spte(pte, sp->role.level)) { 2612 drop_spte(kvm, spte); 2613 } else { 2614 child = spte_to_child_sp(pte); 2615 drop_parent_pte(kvm, child, spte); 2616 2617 /* 2618 * Recursively zap nested TDP SPs, parentless SPs are 2619 * unlikely to be used again in the near future. This 2620 * avoids retaining a large number of stale nested SPs. 2621 */ 2622 if (tdp_enabled && invalid_list && 2623 child->role.guest_mode && 2624 !atomic_long_read(&child->parent_ptes.val)) 2625 return kvm_mmu_prepare_zap_page(kvm, child, 2626 invalid_list); 2627 } 2628 } else if (is_mmio_spte(kvm, pte)) { 2629 mmu_spte_clear_no_track(spte); 2630 } 2631 return 0; 2632 } 2633 2634 static int kvm_mmu_page_unlink_children(struct kvm *kvm, 2635 struct kvm_mmu_page *sp, 2636 struct list_head *invalid_list) 2637 { 2638 int zapped = 0; 2639 unsigned i; 2640 2641 for (i = 0; i < SPTE_ENT_PER_PAGE; ++i) 2642 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list); 2643 2644 return zapped; 2645 } 2646 2647 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp) 2648 { 2649 u64 *sptep; 2650 struct rmap_iterator iter; 2651 2652 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter))) 2653 drop_parent_pte(kvm, sp, sptep); 2654 } 2655 2656 static int mmu_zap_unsync_children(struct kvm *kvm, 2657 struct kvm_mmu_page *parent, 2658 struct list_head *invalid_list) 2659 { 2660 int i, zapped = 0; 2661 struct mmu_page_path parents; 2662 struct kvm_mmu_pages pages; 2663 2664 if (parent->role.level == PG_LEVEL_4K) 2665 return 0; 2666 2667 while (mmu_unsync_walk(parent, &pages)) { 2668 struct kvm_mmu_page *sp; 2669 2670 for_each_sp(pages, sp, parents, i) { 2671 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 2672 mmu_pages_clear_parents(&parents); 2673 zapped++; 2674 } 2675 } 2676 2677 return zapped; 2678 } 2679 2680 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm, 2681 struct kvm_mmu_page *sp, 2682 struct list_head *invalid_list, 2683 int *nr_zapped) 2684 { 2685 bool list_unstable, zapped_root = false; 2686 2687 lockdep_assert_held_write(&kvm->mmu_lock); 2688 trace_kvm_mmu_prepare_zap_page(sp); 2689 ++kvm->stat.mmu_shadow_zapped; 2690 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list); 2691 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list); 2692 kvm_mmu_unlink_parents(kvm, sp); 2693 2694 /* Zapping children means active_mmu_pages has become unstable. */ 2695 list_unstable = *nr_zapped; 2696 2697 if (!sp->role.invalid && sp_has_gptes(sp)) 2698 unaccount_shadowed(kvm, sp); 2699 2700 if (sp->unsync) 2701 kvm_unlink_unsync_page(kvm, sp); 2702 if (!sp->root_count) { 2703 /* Count self */ 2704 (*nr_zapped)++; 2705 2706 /* 2707 * Already invalid pages (previously active roots) are not on 2708 * the active page list. See list_del() in the "else" case of 2709 * !sp->root_count. 2710 */ 2711 if (sp->role.invalid) 2712 list_add(&sp->link, invalid_list); 2713 else 2714 list_move(&sp->link, invalid_list); 2715 kvm_unaccount_mmu_page(kvm, sp); 2716 } else { 2717 /* 2718 * Remove the active root from the active page list, the root 2719 * will be explicitly freed when the root_count hits zero. 2720 */ 2721 list_del(&sp->link); 2722 2723 /* 2724 * Obsolete pages cannot be used on any vCPUs, see the comment 2725 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also 2726 * treats invalid shadow pages as being obsolete. 2727 */ 2728 zapped_root = !is_obsolete_sp(kvm, sp); 2729 } 2730 2731 if (sp->nx_huge_page_disallowed) 2732 unaccount_nx_huge_page(kvm, sp); 2733 2734 sp->role.invalid = 1; 2735 2736 /* 2737 * Make the request to free obsolete roots after marking the root 2738 * invalid, otherwise other vCPUs may not see it as invalid. 2739 */ 2740 if (zapped_root) 2741 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 2742 return list_unstable; 2743 } 2744 2745 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 2746 struct list_head *invalid_list) 2747 { 2748 int nr_zapped; 2749 2750 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped); 2751 return nr_zapped; 2752 } 2753 2754 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 2755 struct list_head *invalid_list) 2756 { 2757 struct kvm_mmu_page *sp, *nsp; 2758 2759 if (list_empty(invalid_list)) 2760 return; 2761 2762 /* 2763 * We need to make sure everyone sees our modifications to 2764 * the page tables and see changes to vcpu->mode here. The barrier 2765 * in the kvm_flush_remote_tlbs() achieves this. This pairs 2766 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end. 2767 * 2768 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit 2769 * guest mode and/or lockless shadow page table walks. 2770 */ 2771 kvm_flush_remote_tlbs(kvm); 2772 2773 list_for_each_entry_safe(sp, nsp, invalid_list, link) { 2774 WARN_ON_ONCE(!sp->role.invalid || sp->root_count); 2775 kvm_mmu_free_shadow_page(sp); 2776 } 2777 } 2778 2779 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm, 2780 unsigned long nr_to_zap) 2781 { 2782 unsigned long total_zapped = 0; 2783 struct kvm_mmu_page *sp, *tmp; 2784 LIST_HEAD(invalid_list); 2785 bool unstable; 2786 int nr_zapped; 2787 2788 if (list_empty(&kvm->arch.active_mmu_pages)) 2789 return 0; 2790 2791 restart: 2792 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) { 2793 /* 2794 * Don't zap active root pages, the page itself can't be freed 2795 * and zapping it will just force vCPUs to realloc and reload. 2796 */ 2797 if (sp->root_count) 2798 continue; 2799 2800 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, 2801 &nr_zapped); 2802 total_zapped += nr_zapped; 2803 if (total_zapped >= nr_to_zap) 2804 break; 2805 2806 if (unstable) 2807 goto restart; 2808 } 2809 2810 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2811 2812 kvm->stat.mmu_recycled += total_zapped; 2813 return total_zapped; 2814 } 2815 2816 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm) 2817 { 2818 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) 2819 return kvm->arch.n_max_mmu_pages - 2820 kvm->arch.n_used_mmu_pages; 2821 2822 return 0; 2823 } 2824 2825 static int make_mmu_pages_available(struct kvm_vcpu *vcpu) 2826 { 2827 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm); 2828 2829 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES)) 2830 return 0; 2831 2832 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail); 2833 2834 /* 2835 * Note, this check is intentionally soft, it only guarantees that one 2836 * page is available, while the caller may end up allocating as many as 2837 * four pages, e.g. for PAE roots or for 5-level paging. Temporarily 2838 * exceeding the (arbitrary by default) limit will not harm the host, 2839 * being too aggressive may unnecessarily kill the guest, and getting an 2840 * exact count is far more trouble than it's worth, especially in the 2841 * page fault paths. 2842 */ 2843 if (!kvm_mmu_available_pages(vcpu->kvm)) 2844 return -ENOSPC; 2845 return 0; 2846 } 2847 2848 /* 2849 * Changing the number of mmu pages allocated to the vm 2850 * Note: if goal_nr_mmu_pages is too small, you will get dead lock 2851 */ 2852 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages) 2853 { 2854 write_lock(&kvm->mmu_lock); 2855 2856 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { 2857 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages - 2858 goal_nr_mmu_pages); 2859 2860 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; 2861 } 2862 2863 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; 2864 2865 write_unlock(&kvm->mmu_lock); 2866 } 2867 2868 bool __kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 2869 bool always_retry) 2870 { 2871 struct kvm *kvm = vcpu->kvm; 2872 LIST_HEAD(invalid_list); 2873 struct kvm_mmu_page *sp; 2874 gpa_t gpa = cr2_or_gpa; 2875 bool r = false; 2876 2877 /* 2878 * Bail early if there aren't any write-protected shadow pages to avoid 2879 * unnecessarily taking mmu_lock lock, e.g. if the gfn is write-tracked 2880 * by a third party. Reading indirect_shadow_pages without holding 2881 * mmu_lock is safe, as this is purely an optimization, i.e. a false 2882 * positive is benign, and a false negative will simply result in KVM 2883 * skipping the unprotect+retry path, which is also an optimization. 2884 */ 2885 if (!READ_ONCE(kvm->arch.indirect_shadow_pages)) 2886 goto out; 2887 2888 if (!vcpu->arch.mmu->root_role.direct) { 2889 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 2890 if (gpa == INVALID_GPA) 2891 goto out; 2892 } 2893 2894 write_lock(&kvm->mmu_lock); 2895 for_each_gfn_valid_sp_with_gptes(kvm, sp, gpa_to_gfn(gpa)) 2896 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 2897 2898 /* 2899 * Snapshot the result before zapping, as zapping will remove all list 2900 * entries, i.e. checking the list later would yield a false negative. 2901 */ 2902 r = !list_empty(&invalid_list); 2903 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2904 write_unlock(&kvm->mmu_lock); 2905 2906 out: 2907 if (r || always_retry) { 2908 vcpu->arch.last_retry_eip = kvm_rip_read(vcpu); 2909 vcpu->arch.last_retry_addr = cr2_or_gpa; 2910 } 2911 return r; 2912 } 2913 2914 static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 2915 { 2916 trace_kvm_mmu_unsync_page(sp); 2917 ++kvm->stat.mmu_unsync; 2918 sp->unsync = 1; 2919 2920 kvm_mmu_mark_parents_unsync(sp); 2921 } 2922 2923 /* 2924 * Attempt to unsync any shadow pages that can be reached by the specified gfn, 2925 * KVM is creating a writable mapping for said gfn. Returns 0 if all pages 2926 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must 2927 * be write-protected. 2928 */ 2929 int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot, 2930 gfn_t gfn, bool synchronizing, bool prefetch) 2931 { 2932 struct kvm_mmu_page *sp; 2933 bool locked = false; 2934 2935 /* 2936 * Force write-protection if the page is being tracked. Note, the page 2937 * track machinery is used to write-protect upper-level shadow pages, 2938 * i.e. this guards the role.level == 4K assertion below! 2939 */ 2940 if (kvm_gfn_is_write_tracked(kvm, slot, gfn)) 2941 return -EPERM; 2942 2943 /* 2944 * The page is not write-tracked, mark existing shadow pages unsync 2945 * unless KVM is synchronizing an unsync SP. In that case, KVM must 2946 * complete emulation of the guest TLB flush before allowing shadow 2947 * pages to become unsync (writable by the guest). 2948 */ 2949 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) { 2950 if (synchronizing) 2951 return -EPERM; 2952 2953 if (sp->unsync) 2954 continue; 2955 2956 if (prefetch) 2957 return -EEXIST; 2958 2959 /* 2960 * TDP MMU page faults require an additional spinlock as they 2961 * run with mmu_lock held for read, not write, and the unsync 2962 * logic is not thread safe. Take the spinklock regardless of 2963 * the MMU type to avoid extra conditionals/parameters, there's 2964 * no meaningful penalty if mmu_lock is held for write. 2965 */ 2966 if (!locked) { 2967 locked = true; 2968 spin_lock(&kvm->arch.mmu_unsync_pages_lock); 2969 2970 /* 2971 * Recheck after taking the spinlock, a different vCPU 2972 * may have since marked the page unsync. A false 2973 * negative on the unprotected check above is not 2974 * possible as clearing sp->unsync _must_ hold mmu_lock 2975 * for write, i.e. unsync cannot transition from 1->0 2976 * while this CPU holds mmu_lock for read (or write). 2977 */ 2978 if (READ_ONCE(sp->unsync)) 2979 continue; 2980 } 2981 2982 WARN_ON_ONCE(sp->role.level != PG_LEVEL_4K); 2983 kvm_unsync_page(kvm, sp); 2984 } 2985 if (locked) 2986 spin_unlock(&kvm->arch.mmu_unsync_pages_lock); 2987 2988 /* 2989 * We need to ensure that the marking of unsync pages is visible 2990 * before the SPTE is updated to allow writes because 2991 * kvm_mmu_sync_roots() checks the unsync flags without holding 2992 * the MMU lock and so can race with this. If the SPTE was updated 2993 * before the page had been marked as unsync-ed, something like the 2994 * following could happen: 2995 * 2996 * CPU 1 CPU 2 2997 * --------------------------------------------------------------------- 2998 * 1.2 Host updates SPTE 2999 * to be writable 3000 * 2.1 Guest writes a GPTE for GVA X. 3001 * (GPTE being in the guest page table shadowed 3002 * by the SP from CPU 1.) 3003 * This reads SPTE during the page table walk. 3004 * Since SPTE.W is read as 1, there is no 3005 * fault. 3006 * 3007 * 2.2 Guest issues TLB flush. 3008 * That causes a VM Exit. 3009 * 3010 * 2.3 Walking of unsync pages sees sp->unsync is 3011 * false and skips the page. 3012 * 3013 * 2.4 Guest accesses GVA X. 3014 * Since the mapping in the SP was not updated, 3015 * so the old mapping for GVA X incorrectly 3016 * gets used. 3017 * 1.1 Host marks SP 3018 * as unsync 3019 * (sp->unsync = true) 3020 * 3021 * The write barrier below ensures that 1.1 happens before 1.2 and thus 3022 * the situation in 2.4 does not arise. It pairs with the read barrier 3023 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3. 3024 */ 3025 smp_wmb(); 3026 3027 return 0; 3028 } 3029 3030 static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, 3031 u64 *sptep, unsigned int pte_access, gfn_t gfn, 3032 kvm_pfn_t pfn, struct kvm_page_fault *fault) 3033 { 3034 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 3035 int level = sp->role.level; 3036 int was_rmapped = 0; 3037 int ret = RET_PF_FIXED; 3038 bool flush = false; 3039 bool wrprot; 3040 u64 spte; 3041 3042 /* Prefetching always gets a writable pfn. */ 3043 bool host_writable = !fault || fault->map_writable; 3044 bool prefetch = !fault || fault->prefetch; 3045 bool write_fault = fault && fault->write; 3046 3047 if (unlikely(is_noslot_pfn(pfn))) { 3048 vcpu->stat.pf_mmio_spte_created++; 3049 mark_mmio_spte(vcpu, sptep, gfn, pte_access); 3050 return RET_PF_EMULATE; 3051 } 3052 3053 if (is_shadow_present_pte(*sptep)) { 3054 if (prefetch && is_last_spte(*sptep, level) && 3055 pfn == spte_to_pfn(*sptep)) 3056 return RET_PF_SPURIOUS; 3057 3058 /* 3059 * If we overwrite a PTE page pointer with a 2MB PMD, unlink 3060 * the parent of the now unreachable PTE. 3061 */ 3062 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) { 3063 struct kvm_mmu_page *child; 3064 u64 pte = *sptep; 3065 3066 child = spte_to_child_sp(pte); 3067 drop_parent_pte(vcpu->kvm, child, sptep); 3068 flush = true; 3069 } else if (WARN_ON_ONCE(pfn != spte_to_pfn(*sptep))) { 3070 drop_spte(vcpu->kvm, sptep); 3071 flush = true; 3072 } else 3073 was_rmapped = 1; 3074 } 3075 3076 wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch, 3077 false, host_writable, &spte); 3078 3079 if (*sptep == spte) { 3080 ret = RET_PF_SPURIOUS; 3081 } else { 3082 flush |= mmu_spte_update(sptep, spte); 3083 trace_kvm_mmu_set_spte(level, gfn, sptep); 3084 } 3085 3086 if (wrprot && write_fault) 3087 ret = RET_PF_WRITE_PROTECTED; 3088 3089 if (flush) 3090 kvm_flush_remote_tlbs_gfn(vcpu->kvm, gfn, level); 3091 3092 if (!was_rmapped) { 3093 WARN_ON_ONCE(ret == RET_PF_SPURIOUS); 3094 rmap_add(vcpu, slot, sptep, gfn, pte_access); 3095 } else { 3096 /* Already rmapped but the pte_access bits may have changed. */ 3097 kvm_mmu_page_set_access(sp, spte_index(sptep), pte_access); 3098 } 3099 3100 return ret; 3101 } 3102 3103 static bool kvm_mmu_prefetch_sptes(struct kvm_vcpu *vcpu, gfn_t gfn, u64 *sptep, 3104 int nr_pages, unsigned int access) 3105 { 3106 struct page *pages[PTE_PREFETCH_NUM]; 3107 struct kvm_memory_slot *slot; 3108 int i; 3109 3110 if (WARN_ON_ONCE(nr_pages > PTE_PREFETCH_NUM)) 3111 return false; 3112 3113 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK); 3114 if (!slot) 3115 return false; 3116 3117 nr_pages = kvm_prefetch_pages(slot, gfn, pages, nr_pages); 3118 if (nr_pages <= 0) 3119 return false; 3120 3121 for (i = 0; i < nr_pages; i++, gfn++, sptep++) { 3122 mmu_set_spte(vcpu, slot, sptep, access, gfn, 3123 page_to_pfn(pages[i]), NULL); 3124 3125 /* 3126 * KVM always prefetches writable pages from the primary MMU, 3127 * and KVM can make its SPTE writable in the fast page handler, 3128 * without notifying the primary MMU. Mark pages/folios dirty 3129 * now to ensure file data is written back if it ends up being 3130 * written by the guest. Because KVM's prefetching GUPs 3131 * writable PTEs, the probability of unnecessary writeback is 3132 * extremely low. 3133 */ 3134 kvm_release_page_dirty(pages[i]); 3135 } 3136 3137 return true; 3138 } 3139 3140 static bool direct_pte_prefetch_many(struct kvm_vcpu *vcpu, 3141 struct kvm_mmu_page *sp, 3142 u64 *start, u64 *end) 3143 { 3144 gfn_t gfn = kvm_mmu_page_get_gfn(sp, spte_index(start)); 3145 unsigned int access = sp->role.access; 3146 3147 return kvm_mmu_prefetch_sptes(vcpu, gfn, start, end - start, access); 3148 } 3149 3150 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, 3151 struct kvm_mmu_page *sp, u64 *sptep) 3152 { 3153 u64 *spte, *start = NULL; 3154 int i; 3155 3156 WARN_ON_ONCE(!sp->role.direct); 3157 3158 i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1); 3159 spte = sp->spt + i; 3160 3161 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 3162 if (is_shadow_present_pte(*spte) || spte == sptep) { 3163 if (!start) 3164 continue; 3165 if (!direct_pte_prefetch_many(vcpu, sp, start, spte)) 3166 return; 3167 3168 start = NULL; 3169 } else if (!start) 3170 start = spte; 3171 } 3172 if (start) 3173 direct_pte_prefetch_many(vcpu, sp, start, spte); 3174 } 3175 3176 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) 3177 { 3178 struct kvm_mmu_page *sp; 3179 3180 sp = sptep_to_sp(sptep); 3181 3182 /* 3183 * Without accessed bits, there's no way to distinguish between 3184 * actually accessed translations and prefetched, so disable pte 3185 * prefetch if accessed bits aren't available. 3186 */ 3187 if (sp_ad_disabled(sp)) 3188 return; 3189 3190 if (sp->role.level > PG_LEVEL_4K) 3191 return; 3192 3193 /* 3194 * If addresses are being invalidated, skip prefetching to avoid 3195 * accidentally prefetching those addresses. 3196 */ 3197 if (unlikely(vcpu->kvm->mmu_invalidate_in_progress)) 3198 return; 3199 3200 __direct_pte_prefetch(vcpu, sp, sptep); 3201 } 3202 3203 /* 3204 * Lookup the mapping level for @gfn in the current mm. 3205 * 3206 * WARNING! Use of host_pfn_mapping_level() requires the caller and the end 3207 * consumer to be tied into KVM's handlers for MMU notifier events! 3208 * 3209 * There are several ways to safely use this helper: 3210 * 3211 * - Check mmu_invalidate_retry_gfn() after grabbing the mapping level, before 3212 * consuming it. In this case, mmu_lock doesn't need to be held during the 3213 * lookup, but it does need to be held while checking the MMU notifier. 3214 * 3215 * - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation 3216 * event for the hva. This can be done by explicit checking the MMU notifier 3217 * or by ensuring that KVM already has a valid mapping that covers the hva. 3218 * 3219 * - Do not use the result to install new mappings, e.g. use the host mapping 3220 * level only to decide whether or not to zap an entry. In this case, it's 3221 * not required to hold mmu_lock (though it's highly likely the caller will 3222 * want to hold mmu_lock anyways, e.g. to modify SPTEs). 3223 * 3224 * Note! The lookup can still race with modifications to host page tables, but 3225 * the above "rules" ensure KVM will not _consume_ the result of the walk if a 3226 * race with the primary MMU occurs. 3227 */ 3228 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, 3229 const struct kvm_memory_slot *slot) 3230 { 3231 int level = PG_LEVEL_4K; 3232 unsigned long hva; 3233 unsigned long flags; 3234 pgd_t pgd; 3235 p4d_t p4d; 3236 pud_t pud; 3237 pmd_t pmd; 3238 3239 /* 3240 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot() 3241 * is not solely for performance, it's also necessary to avoid the 3242 * "writable" check in __gfn_to_hva_many(), which will always fail on 3243 * read-only memslots due to gfn_to_hva() assuming writes. Earlier 3244 * page fault steps have already verified the guest isn't writing a 3245 * read-only memslot. 3246 */ 3247 hva = __gfn_to_hva_memslot(slot, gfn); 3248 3249 /* 3250 * Disable IRQs to prevent concurrent tear down of host page tables, 3251 * e.g. if the primary MMU promotes a P*D to a huge page and then frees 3252 * the original page table. 3253 */ 3254 local_irq_save(flags); 3255 3256 /* 3257 * Read each entry once. As above, a non-leaf entry can be promoted to 3258 * a huge page _during_ this walk. Re-reading the entry could send the 3259 * walk into the weeks, e.g. p*d_leaf() returns false (sees the old 3260 * value) and then p*d_offset() walks into the target huge page instead 3261 * of the old page table (sees the new value). 3262 */ 3263 pgd = READ_ONCE(*pgd_offset(kvm->mm, hva)); 3264 if (pgd_none(pgd)) 3265 goto out; 3266 3267 p4d = READ_ONCE(*p4d_offset(&pgd, hva)); 3268 if (p4d_none(p4d) || !p4d_present(p4d)) 3269 goto out; 3270 3271 pud = READ_ONCE(*pud_offset(&p4d, hva)); 3272 if (pud_none(pud) || !pud_present(pud)) 3273 goto out; 3274 3275 if (pud_leaf(pud)) { 3276 level = PG_LEVEL_1G; 3277 goto out; 3278 } 3279 3280 pmd = READ_ONCE(*pmd_offset(&pud, hva)); 3281 if (pmd_none(pmd) || !pmd_present(pmd)) 3282 goto out; 3283 3284 if (pmd_leaf(pmd)) 3285 level = PG_LEVEL_2M; 3286 3287 out: 3288 local_irq_restore(flags); 3289 return level; 3290 } 3291 3292 static u8 kvm_max_level_for_order(int order) 3293 { 3294 BUILD_BUG_ON(KVM_MAX_HUGEPAGE_LEVEL > PG_LEVEL_1G); 3295 3296 KVM_MMU_WARN_ON(order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G) && 3297 order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M) && 3298 order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K)); 3299 3300 if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G)) 3301 return PG_LEVEL_1G; 3302 3303 if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M)) 3304 return PG_LEVEL_2M; 3305 3306 return PG_LEVEL_4K; 3307 } 3308 3309 static u8 kvm_gmem_max_mapping_level(struct kvm *kvm, struct kvm_page_fault *fault, 3310 const struct kvm_memory_slot *slot, gfn_t gfn, 3311 bool is_private) 3312 { 3313 u8 max_level, coco_level; 3314 kvm_pfn_t pfn; 3315 3316 /* For faults, use the gmem information that was resolved earlier. */ 3317 if (fault) { 3318 pfn = fault->pfn; 3319 max_level = fault->max_level; 3320 } else { 3321 /* TODO: Call into guest_memfd once hugepages are supported. */ 3322 WARN_ONCE(1, "Get pfn+order from guest_memfd"); 3323 pfn = KVM_PFN_ERR_FAULT; 3324 max_level = PG_LEVEL_4K; 3325 } 3326 3327 if (max_level == PG_LEVEL_4K) 3328 return max_level; 3329 3330 /* 3331 * CoCo may influence the max mapping level, e.g. due to RMP or S-EPT 3332 * restrictions. A return of '0' means "no additional restrictions", to 3333 * allow for using an optional "ret0" static call. 3334 */ 3335 coco_level = kvm_x86_call(gmem_max_mapping_level)(kvm, pfn, is_private); 3336 if (coco_level) 3337 max_level = min(max_level, coco_level); 3338 3339 return max_level; 3340 } 3341 3342 int kvm_mmu_max_mapping_level(struct kvm *kvm, struct kvm_page_fault *fault, 3343 const struct kvm_memory_slot *slot, gfn_t gfn) 3344 { 3345 struct kvm_lpage_info *linfo; 3346 int host_level, max_level; 3347 bool is_private; 3348 3349 lockdep_assert_held(&kvm->mmu_lock); 3350 3351 if (fault) { 3352 max_level = fault->max_level; 3353 is_private = fault->is_private; 3354 } else { 3355 max_level = PG_LEVEL_NUM; 3356 is_private = kvm_mem_is_private(kvm, gfn); 3357 } 3358 3359 max_level = min(max_level, max_huge_page_level); 3360 for ( ; max_level > PG_LEVEL_4K; max_level--) { 3361 linfo = lpage_info_slot(gfn, slot, max_level); 3362 if (!linfo->disallow_lpage) 3363 break; 3364 } 3365 3366 if (max_level == PG_LEVEL_4K) 3367 return PG_LEVEL_4K; 3368 3369 if (is_private || kvm_memslot_is_gmem_only(slot)) 3370 host_level = kvm_gmem_max_mapping_level(kvm, fault, slot, gfn, 3371 is_private); 3372 else 3373 host_level = host_pfn_mapping_level(kvm, gfn, slot); 3374 return min(host_level, max_level); 3375 } 3376 3377 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3378 { 3379 struct kvm_memory_slot *slot = fault->slot; 3380 kvm_pfn_t mask; 3381 3382 fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled; 3383 3384 if (unlikely(fault->max_level == PG_LEVEL_4K)) 3385 return; 3386 3387 if (is_error_noslot_pfn(fault->pfn)) 3388 return; 3389 3390 if (kvm_slot_dirty_track_enabled(slot)) 3391 return; 3392 3393 /* 3394 * Enforce the iTLB multihit workaround after capturing the requested 3395 * level, which will be used to do precise, accurate accounting. 3396 */ 3397 fault->req_level = kvm_mmu_max_mapping_level(vcpu->kvm, fault, 3398 fault->slot, fault->gfn); 3399 if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed) 3400 return; 3401 3402 /* 3403 * mmu_invalidate_retry() was successful and mmu_lock is held, so 3404 * the pmd can't be split from under us. 3405 */ 3406 fault->goal_level = fault->req_level; 3407 mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1; 3408 VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask)); 3409 fault->pfn &= ~mask; 3410 } 3411 3412 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level) 3413 { 3414 if (cur_level > PG_LEVEL_4K && 3415 cur_level == fault->goal_level && 3416 is_shadow_present_pte(spte) && 3417 !is_large_pte(spte) && 3418 spte_to_child_sp(spte)->nx_huge_page_disallowed) { 3419 /* 3420 * A small SPTE exists for this pfn, but FNAME(fetch), 3421 * direct_map(), or kvm_tdp_mmu_map() would like to create a 3422 * large PTE instead: just force them to go down another level, 3423 * patching back for them into pfn the next 9 bits of the 3424 * address. 3425 */ 3426 u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) - 3427 KVM_PAGES_PER_HPAGE(cur_level - 1); 3428 fault->pfn |= fault->gfn & page_mask; 3429 fault->goal_level--; 3430 } 3431 } 3432 3433 static int direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3434 { 3435 struct kvm_shadow_walk_iterator it; 3436 struct kvm_mmu_page *sp; 3437 int ret; 3438 gfn_t base_gfn = fault->gfn; 3439 3440 kvm_mmu_hugepage_adjust(vcpu, fault); 3441 3442 trace_kvm_mmu_spte_requested(fault); 3443 for_each_shadow_entry(vcpu, fault->addr, it) { 3444 /* 3445 * We cannot overwrite existing page tables with an NX 3446 * large page, as the leaf could be executable. 3447 */ 3448 if (fault->nx_huge_page_workaround_enabled) 3449 disallowed_hugepage_adjust(fault, *it.sptep, it.level); 3450 3451 base_gfn = gfn_round_for_level(fault->gfn, it.level); 3452 if (it.level == fault->goal_level) 3453 break; 3454 3455 sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, true, ACC_ALL); 3456 if (sp == ERR_PTR(-EEXIST)) 3457 continue; 3458 3459 link_shadow_page(vcpu, it.sptep, sp); 3460 if (fault->huge_page_disallowed) 3461 account_nx_huge_page(vcpu->kvm, sp, 3462 fault->req_level >= it.level); 3463 } 3464 3465 if (WARN_ON_ONCE(it.level != fault->goal_level)) 3466 return -EFAULT; 3467 3468 ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL, 3469 base_gfn, fault->pfn, fault); 3470 if (ret == RET_PF_SPURIOUS) 3471 return ret; 3472 3473 direct_pte_prefetch(vcpu, it.sptep); 3474 return ret; 3475 } 3476 3477 static void kvm_send_hwpoison_signal(struct kvm_memory_slot *slot, gfn_t gfn) 3478 { 3479 unsigned long hva = gfn_to_hva_memslot(slot, gfn); 3480 3481 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva, PAGE_SHIFT, current); 3482 } 3483 3484 static int kvm_handle_error_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3485 { 3486 if (is_sigpending_pfn(fault->pfn)) { 3487 kvm_handle_signal_exit(vcpu); 3488 return -EINTR; 3489 } 3490 3491 /* 3492 * Do not cache the mmio info caused by writing the readonly gfn 3493 * into the spte otherwise read access on readonly gfn also can 3494 * caused mmio page fault and treat it as mmio access. 3495 */ 3496 if (fault->pfn == KVM_PFN_ERR_RO_FAULT) 3497 return RET_PF_EMULATE; 3498 3499 if (fault->pfn == KVM_PFN_ERR_HWPOISON) { 3500 kvm_send_hwpoison_signal(fault->slot, fault->gfn); 3501 return RET_PF_RETRY; 3502 } 3503 3504 return -EFAULT; 3505 } 3506 3507 static int kvm_handle_noslot_fault(struct kvm_vcpu *vcpu, 3508 struct kvm_page_fault *fault, 3509 unsigned int access) 3510 { 3511 gva_t gva = fault->is_tdp ? 0 : fault->addr; 3512 3513 if (fault->is_private) { 3514 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 3515 return -EFAULT; 3516 } 3517 3518 vcpu_cache_mmio_info(vcpu, gva, fault->gfn, 3519 access & shadow_mmio_access_mask); 3520 3521 fault->slot = NULL; 3522 fault->pfn = KVM_PFN_NOSLOT; 3523 fault->map_writable = false; 3524 3525 /* 3526 * If MMIO caching is disabled, emulate immediately without 3527 * touching the shadow page tables as attempting to install an 3528 * MMIO SPTE will just be an expensive nop. 3529 */ 3530 if (unlikely(!enable_mmio_caching)) 3531 return RET_PF_EMULATE; 3532 3533 /* 3534 * Do not create an MMIO SPTE for a gfn greater than host.MAXPHYADDR, 3535 * any guest that generates such gfns is running nested and is being 3536 * tricked by L0 userspace (you can observe gfn > L1.MAXPHYADDR if and 3537 * only if L1's MAXPHYADDR is inaccurate with respect to the 3538 * hardware's). 3539 */ 3540 if (unlikely(fault->gfn > kvm_mmu_max_gfn())) 3541 return RET_PF_EMULATE; 3542 3543 return RET_PF_CONTINUE; 3544 } 3545 3546 static bool page_fault_can_be_fast(struct kvm *kvm, struct kvm_page_fault *fault) 3547 { 3548 /* 3549 * Page faults with reserved bits set, i.e. faults on MMIO SPTEs, only 3550 * reach the common page fault handler if the SPTE has an invalid MMIO 3551 * generation number. Refreshing the MMIO generation needs to go down 3552 * the slow path. Note, EPT Misconfigs do NOT set the PRESENT flag! 3553 */ 3554 if (fault->rsvd) 3555 return false; 3556 3557 /* 3558 * For hardware-protected VMs, certain conditions like attempting to 3559 * perform a write to a page which is not in the state that the guest 3560 * expects it to be in can result in a nested/extended #PF. In this 3561 * case, the below code might misconstrue this situation as being the 3562 * result of a write-protected access, and treat it as a spurious case 3563 * rather than taking any action to satisfy the real source of the #PF 3564 * such as generating a KVM_EXIT_MEMORY_FAULT. This can lead to the 3565 * guest spinning on a #PF indefinitely, so don't attempt the fast path 3566 * in this case. 3567 * 3568 * Note that the kvm_mem_is_private() check might race with an 3569 * attribute update, but this will either result in the guest spinning 3570 * on RET_PF_SPURIOUS until the update completes, or an actual spurious 3571 * case might go down the slow path. Either case will resolve itself. 3572 */ 3573 if (kvm->arch.has_private_mem && 3574 fault->is_private != kvm_mem_is_private(kvm, fault->gfn)) 3575 return false; 3576 3577 /* 3578 * #PF can be fast if: 3579 * 3580 * 1. The shadow page table entry is not present and A/D bits are 3581 * disabled _by KVM_, which could mean that the fault is potentially 3582 * caused by access tracking (if enabled). If A/D bits are enabled 3583 * by KVM, but disabled by L1 for L2, KVM is forced to disable A/D 3584 * bits for L2 and employ access tracking, but the fast page fault 3585 * mechanism only supports direct MMUs. 3586 * 2. The shadow page table entry is present, the access is a write, 3587 * and no reserved bits are set (MMIO SPTEs cannot be "fixed"), i.e. 3588 * the fault was caused by a write-protection violation. If the 3589 * SPTE is MMU-writable (determined later), the fault can be fixed 3590 * by setting the Writable bit, which can be done out of mmu_lock. 3591 */ 3592 if (!fault->present) 3593 return !kvm_ad_enabled; 3594 3595 /* 3596 * Note, instruction fetches and writes are mutually exclusive, ignore 3597 * the "exec" flag. 3598 */ 3599 return fault->write; 3600 } 3601 3602 /* 3603 * Returns true if the SPTE was fixed successfully. Otherwise, 3604 * someone else modified the SPTE from its original value. 3605 */ 3606 static bool fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, 3607 struct kvm_page_fault *fault, 3608 u64 *sptep, u64 old_spte, u64 new_spte) 3609 { 3610 /* 3611 * Theoretically we could also set dirty bit (and flush TLB) here in 3612 * order to eliminate unnecessary PML logging. See comments in 3613 * set_spte. But fast_page_fault is very unlikely to happen with PML 3614 * enabled, so we do not do this. This might result in the same GPA 3615 * to be logged in PML buffer again when the write really happens, and 3616 * eventually to be called by mark_page_dirty twice. But it's also no 3617 * harm. This also avoids the TLB flush needed after setting dirty bit 3618 * so non-PML cases won't be impacted. 3619 * 3620 * Compare with make_spte() where instead shadow_dirty_mask is set. 3621 */ 3622 if (!try_cmpxchg64(sptep, &old_spte, new_spte)) 3623 return false; 3624 3625 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) 3626 mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn); 3627 3628 return true; 3629 } 3630 3631 /* 3632 * Returns the last level spte pointer of the shadow page walk for the given 3633 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no 3634 * walk could be performed, returns NULL and *spte does not contain valid data. 3635 * 3636 * Contract: 3637 * - Must be called between walk_shadow_page_lockless_{begin,end}. 3638 * - The returned sptep must not be used after walk_shadow_page_lockless_end. 3639 */ 3640 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte) 3641 { 3642 struct kvm_shadow_walk_iterator iterator; 3643 u64 old_spte; 3644 u64 *sptep = NULL; 3645 3646 for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) { 3647 sptep = iterator.sptep; 3648 *spte = old_spte; 3649 } 3650 3651 return sptep; 3652 } 3653 3654 /* 3655 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS. 3656 */ 3657 static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3658 { 3659 struct kvm_mmu_page *sp; 3660 int ret = RET_PF_INVALID; 3661 u64 spte; 3662 u64 *sptep; 3663 uint retry_count = 0; 3664 3665 if (!page_fault_can_be_fast(vcpu->kvm, fault)) 3666 return ret; 3667 3668 walk_shadow_page_lockless_begin(vcpu); 3669 3670 do { 3671 u64 new_spte; 3672 3673 if (tdp_mmu_enabled) 3674 sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->gfn, &spte); 3675 else 3676 sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte); 3677 3678 /* 3679 * It's entirely possible for the mapping to have been zapped 3680 * by a different task, but the root page should always be 3681 * available as the vCPU holds a reference to its root(s). 3682 */ 3683 if (WARN_ON_ONCE(!sptep)) 3684 spte = FROZEN_SPTE; 3685 3686 if (!is_shadow_present_pte(spte)) 3687 break; 3688 3689 sp = sptep_to_sp(sptep); 3690 if (!is_last_spte(spte, sp->role.level)) 3691 break; 3692 3693 /* 3694 * Check whether the memory access that caused the fault would 3695 * still cause it if it were to be performed right now. If not, 3696 * then this is a spurious fault caused by TLB lazily flushed, 3697 * or some other CPU has already fixed the PTE after the 3698 * current CPU took the fault. 3699 * 3700 * Need not check the access of upper level table entries since 3701 * they are always ACC_ALL. 3702 */ 3703 if (is_access_allowed(fault, spte)) { 3704 ret = RET_PF_SPURIOUS; 3705 break; 3706 } 3707 3708 new_spte = spte; 3709 3710 /* 3711 * KVM only supports fixing page faults outside of MMU lock for 3712 * direct MMUs, nested MMUs are always indirect, and KVM always 3713 * uses A/D bits for non-nested MMUs. Thus, if A/D bits are 3714 * enabled, the SPTE can't be an access-tracked SPTE. 3715 */ 3716 if (unlikely(!kvm_ad_enabled) && is_access_track_spte(spte)) 3717 new_spte = restore_acc_track_spte(new_spte) | 3718 shadow_accessed_mask; 3719 3720 /* 3721 * To keep things simple, only SPTEs that are MMU-writable can 3722 * be made fully writable outside of mmu_lock, e.g. only SPTEs 3723 * that were write-protected for dirty-logging or access 3724 * tracking are handled here. Don't bother checking if the 3725 * SPTE is writable to prioritize running with A/D bits enabled. 3726 * The is_access_allowed() check above handles the common case 3727 * of the fault being spurious, and the SPTE is known to be 3728 * shadow-present, i.e. except for access tracking restoration 3729 * making the new SPTE writable, the check is wasteful. 3730 */ 3731 if (fault->write && is_mmu_writable_spte(spte)) { 3732 new_spte |= PT_WRITABLE_MASK; 3733 3734 /* 3735 * Do not fix write-permission on the large spte when 3736 * dirty logging is enabled. Since we only dirty the 3737 * first page into the dirty-bitmap in 3738 * fast_pf_fix_direct_spte(), other pages are missed 3739 * if its slot has dirty logging enabled. 3740 * 3741 * Instead, we let the slow page fault path create a 3742 * normal spte to fix the access. 3743 */ 3744 if (sp->role.level > PG_LEVEL_4K && 3745 kvm_slot_dirty_track_enabled(fault->slot)) 3746 break; 3747 } 3748 3749 /* Verify that the fault can be handled in the fast path */ 3750 if (new_spte == spte || 3751 !is_access_allowed(fault, new_spte)) 3752 break; 3753 3754 /* 3755 * Currently, fast page fault only works for direct mapping 3756 * since the gfn is not stable for indirect shadow page. See 3757 * Documentation/virt/kvm/locking.rst to get more detail. 3758 */ 3759 if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) { 3760 ret = RET_PF_FIXED; 3761 break; 3762 } 3763 3764 if (++retry_count > 4) { 3765 pr_warn_once("Fast #PF retrying more than 4 times.\n"); 3766 break; 3767 } 3768 3769 } while (true); 3770 3771 trace_fast_page_fault(vcpu, fault, sptep, spte, ret); 3772 walk_shadow_page_lockless_end(vcpu); 3773 3774 if (ret != RET_PF_INVALID) 3775 vcpu->stat.pf_fast++; 3776 3777 return ret; 3778 } 3779 3780 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa, 3781 struct list_head *invalid_list) 3782 { 3783 struct kvm_mmu_page *sp; 3784 3785 if (!VALID_PAGE(*root_hpa)) 3786 return; 3787 3788 sp = root_to_sp(*root_hpa); 3789 if (WARN_ON_ONCE(!sp)) 3790 return; 3791 3792 if (is_tdp_mmu_page(sp)) { 3793 lockdep_assert_held_read(&kvm->mmu_lock); 3794 kvm_tdp_mmu_put_root(kvm, sp); 3795 } else { 3796 lockdep_assert_held_write(&kvm->mmu_lock); 3797 if (!--sp->root_count && sp->role.invalid) 3798 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 3799 } 3800 3801 *root_hpa = INVALID_PAGE; 3802 } 3803 3804 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */ 3805 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, 3806 ulong roots_to_free) 3807 { 3808 bool is_tdp_mmu = tdp_mmu_enabled && mmu->root_role.direct; 3809 int i; 3810 LIST_HEAD(invalid_list); 3811 bool free_active_root; 3812 3813 WARN_ON_ONCE(roots_to_free & ~KVM_MMU_ROOTS_ALL); 3814 3815 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG); 3816 3817 /* Before acquiring the MMU lock, see if we need to do any real work. */ 3818 free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT) 3819 && VALID_PAGE(mmu->root.hpa); 3820 3821 if (!free_active_root) { 3822 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3823 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) && 3824 VALID_PAGE(mmu->prev_roots[i].hpa)) 3825 break; 3826 3827 if (i == KVM_MMU_NUM_PREV_ROOTS) 3828 return; 3829 } 3830 3831 if (is_tdp_mmu) 3832 read_lock(&kvm->mmu_lock); 3833 else 3834 write_lock(&kvm->mmu_lock); 3835 3836 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3837 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) 3838 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa, 3839 &invalid_list); 3840 3841 if (free_active_root) { 3842 if (kvm_mmu_is_dummy_root(mmu->root.hpa)) { 3843 /* Nothing to cleanup for dummy roots. */ 3844 } else if (root_to_sp(mmu->root.hpa)) { 3845 mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list); 3846 } else if (mmu->pae_root) { 3847 for (i = 0; i < 4; ++i) { 3848 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i])) 3849 continue; 3850 3851 mmu_free_root_page(kvm, &mmu->pae_root[i], 3852 &invalid_list); 3853 mmu->pae_root[i] = INVALID_PAE_ROOT; 3854 } 3855 } 3856 mmu->root.hpa = INVALID_PAGE; 3857 mmu->root.pgd = 0; 3858 } 3859 3860 if (is_tdp_mmu) { 3861 read_unlock(&kvm->mmu_lock); 3862 WARN_ON_ONCE(!list_empty(&invalid_list)); 3863 } else { 3864 kvm_mmu_commit_zap_page(kvm, &invalid_list); 3865 write_unlock(&kvm->mmu_lock); 3866 } 3867 } 3868 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_free_roots); 3869 3870 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu) 3871 { 3872 unsigned long roots_to_free = 0; 3873 struct kvm_mmu_page *sp; 3874 hpa_t root_hpa; 3875 int i; 3876 3877 /* 3878 * This should not be called while L2 is active, L2 can't invalidate 3879 * _only_ its own roots, e.g. INVVPID unconditionally exits. 3880 */ 3881 WARN_ON_ONCE(mmu->root_role.guest_mode); 3882 3883 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 3884 root_hpa = mmu->prev_roots[i].hpa; 3885 if (!VALID_PAGE(root_hpa)) 3886 continue; 3887 3888 sp = root_to_sp(root_hpa); 3889 if (!sp || sp->role.guest_mode) 3890 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 3891 } 3892 3893 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 3894 } 3895 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_free_guest_mode_roots); 3896 3897 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, int quadrant, 3898 u8 level) 3899 { 3900 union kvm_mmu_page_role role = vcpu->arch.mmu->root_role; 3901 struct kvm_mmu_page *sp; 3902 3903 role.level = level; 3904 role.quadrant = quadrant; 3905 3906 WARN_ON_ONCE(quadrant && !role.has_4_byte_gpte); 3907 WARN_ON_ONCE(role.direct && role.has_4_byte_gpte); 3908 3909 sp = kvm_mmu_get_shadow_page(vcpu, gfn, role); 3910 ++sp->root_count; 3911 3912 return __pa(sp->spt); 3913 } 3914 3915 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) 3916 { 3917 struct kvm_mmu *mmu = vcpu->arch.mmu; 3918 u8 shadow_root_level = mmu->root_role.level; 3919 hpa_t root; 3920 unsigned i; 3921 int r; 3922 3923 if (tdp_mmu_enabled) { 3924 if (kvm_has_mirrored_tdp(vcpu->kvm) && 3925 !VALID_PAGE(mmu->mirror_root_hpa)) 3926 kvm_tdp_mmu_alloc_root(vcpu, true); 3927 kvm_tdp_mmu_alloc_root(vcpu, false); 3928 return 0; 3929 } 3930 3931 write_lock(&vcpu->kvm->mmu_lock); 3932 r = make_mmu_pages_available(vcpu); 3933 if (r < 0) 3934 goto out_unlock; 3935 3936 if (shadow_root_level >= PT64_ROOT_4LEVEL) { 3937 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level); 3938 mmu->root.hpa = root; 3939 } else if (shadow_root_level == PT32E_ROOT_LEVEL) { 3940 if (WARN_ON_ONCE(!mmu->pae_root)) { 3941 r = -EIO; 3942 goto out_unlock; 3943 } 3944 3945 for (i = 0; i < 4; ++i) { 3946 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3947 3948 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 0, 3949 PT32_ROOT_LEVEL); 3950 mmu->pae_root[i] = root | PT_PRESENT_MASK | 3951 shadow_me_value; 3952 } 3953 mmu->root.hpa = __pa(mmu->pae_root); 3954 } else { 3955 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level); 3956 r = -EIO; 3957 goto out_unlock; 3958 } 3959 3960 /* root.pgd is ignored for direct MMUs. */ 3961 mmu->root.pgd = 0; 3962 out_unlock: 3963 write_unlock(&vcpu->kvm->mmu_lock); 3964 return r; 3965 } 3966 3967 static int kvm_mmu_alloc_page_hash(struct kvm *kvm) 3968 { 3969 struct hlist_head *h; 3970 3971 if (kvm->arch.mmu_page_hash) 3972 return 0; 3973 3974 h = kvcalloc(KVM_NUM_MMU_PAGES, sizeof(*h), GFP_KERNEL_ACCOUNT); 3975 if (!h) 3976 return -ENOMEM; 3977 3978 /* 3979 * Ensure the hash table pointer is set only after all stores to zero 3980 * the memory are retired. Pairs with the smp_load_acquire() in 3981 * kvm_get_mmu_page_hash(). Note, mmu_lock must be held for write to 3982 * add (or remove) shadow pages, and so readers are guaranteed to see 3983 * an empty list for their current mmu_lock critical section. 3984 */ 3985 smp_store_release(&kvm->arch.mmu_page_hash, h); 3986 return 0; 3987 } 3988 3989 static int mmu_first_shadow_root_alloc(struct kvm *kvm) 3990 { 3991 struct kvm_memslots *slots; 3992 struct kvm_memory_slot *slot; 3993 int r = 0, i, bkt; 3994 3995 /* 3996 * Check if this is the first shadow root being allocated before 3997 * taking the lock. 3998 */ 3999 if (kvm_shadow_root_allocated(kvm)) 4000 return 0; 4001 4002 mutex_lock(&kvm->slots_arch_lock); 4003 4004 /* Recheck, under the lock, whether this is the first shadow root. */ 4005 if (kvm_shadow_root_allocated(kvm)) 4006 goto out_unlock; 4007 4008 r = kvm_mmu_alloc_page_hash(kvm); 4009 if (r) 4010 goto out_unlock; 4011 4012 /* 4013 * Check if memslot metadata actually needs to be allocated, e.g. all 4014 * metadata will be allocated upfront if TDP is disabled. 4015 */ 4016 if (kvm_memslots_have_rmaps(kvm) && 4017 kvm_page_track_write_tracking_enabled(kvm)) 4018 goto out_success; 4019 4020 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 4021 slots = __kvm_memslots(kvm, i); 4022 kvm_for_each_memslot(slot, bkt, slots) { 4023 /* 4024 * Both of these functions are no-ops if the target is 4025 * already allocated, so unconditionally calling both 4026 * is safe. Intentionally do NOT free allocations on 4027 * failure to avoid having to track which allocations 4028 * were made now versus when the memslot was created. 4029 * The metadata is guaranteed to be freed when the slot 4030 * is freed, and will be kept/used if userspace retries 4031 * KVM_RUN instead of killing the VM. 4032 */ 4033 r = memslot_rmap_alloc(slot, slot->npages); 4034 if (r) 4035 goto out_unlock; 4036 r = kvm_page_track_write_tracking_alloc(slot); 4037 if (r) 4038 goto out_unlock; 4039 } 4040 } 4041 4042 /* 4043 * Ensure that shadow_root_allocated becomes true strictly after 4044 * all the related pointers are set. 4045 */ 4046 out_success: 4047 smp_store_release(&kvm->arch.shadow_root_allocated, true); 4048 4049 out_unlock: 4050 mutex_unlock(&kvm->slots_arch_lock); 4051 return r; 4052 } 4053 4054 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) 4055 { 4056 struct kvm_mmu *mmu = vcpu->arch.mmu; 4057 u64 pdptrs[4], pm_mask; 4058 gfn_t root_gfn, root_pgd; 4059 int quadrant, i, r; 4060 hpa_t root; 4061 4062 root_pgd = kvm_mmu_get_guest_pgd(vcpu, mmu); 4063 root_gfn = (root_pgd & __PT_BASE_ADDR_MASK) >> PAGE_SHIFT; 4064 4065 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) { 4066 mmu->root.hpa = kvm_mmu_get_dummy_root(); 4067 return 0; 4068 } 4069 4070 /* 4071 * On SVM, reading PDPTRs might access guest memory, which might fault 4072 * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock. 4073 */ 4074 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { 4075 for (i = 0; i < 4; ++i) { 4076 pdptrs[i] = mmu->get_pdptr(vcpu, i); 4077 if (!(pdptrs[i] & PT_PRESENT_MASK)) 4078 continue; 4079 4080 if (!kvm_vcpu_is_visible_gfn(vcpu, pdptrs[i] >> PAGE_SHIFT)) 4081 pdptrs[i] = 0; 4082 } 4083 } 4084 4085 r = mmu_first_shadow_root_alloc(vcpu->kvm); 4086 if (r) 4087 return r; 4088 4089 write_lock(&vcpu->kvm->mmu_lock); 4090 r = make_mmu_pages_available(vcpu); 4091 if (r < 0) 4092 goto out_unlock; 4093 4094 /* 4095 * Do we shadow a long mode page table? If so we need to 4096 * write-protect the guests page table root. 4097 */ 4098 if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { 4099 root = mmu_alloc_root(vcpu, root_gfn, 0, 4100 mmu->root_role.level); 4101 mmu->root.hpa = root; 4102 goto set_root_pgd; 4103 } 4104 4105 if (WARN_ON_ONCE(!mmu->pae_root)) { 4106 r = -EIO; 4107 goto out_unlock; 4108 } 4109 4110 /* 4111 * We shadow a 32 bit page table. This may be a legacy 2-level 4112 * or a PAE 3-level page table. In either case we need to be aware that 4113 * the shadow page table may be a PAE or a long mode page table. 4114 */ 4115 pm_mask = PT_PRESENT_MASK | shadow_me_value; 4116 if (mmu->root_role.level >= PT64_ROOT_4LEVEL) { 4117 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; 4118 4119 if (WARN_ON_ONCE(!mmu->pml4_root)) { 4120 r = -EIO; 4121 goto out_unlock; 4122 } 4123 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask; 4124 4125 if (mmu->root_role.level == PT64_ROOT_5LEVEL) { 4126 if (WARN_ON_ONCE(!mmu->pml5_root)) { 4127 r = -EIO; 4128 goto out_unlock; 4129 } 4130 mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask; 4131 } 4132 } 4133 4134 for (i = 0; i < 4; ++i) { 4135 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 4136 4137 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { 4138 if (!(pdptrs[i] & PT_PRESENT_MASK)) { 4139 mmu->pae_root[i] = INVALID_PAE_ROOT; 4140 continue; 4141 } 4142 root_gfn = pdptrs[i] >> PAGE_SHIFT; 4143 } 4144 4145 /* 4146 * If shadowing 32-bit non-PAE page tables, each PAE page 4147 * directory maps one quarter of the guest's non-PAE page 4148 * directory. Othwerise each PAE page direct shadows one guest 4149 * PAE page directory so that quadrant should be 0. 4150 */ 4151 quadrant = (mmu->cpu_role.base.level == PT32_ROOT_LEVEL) ? i : 0; 4152 4153 root = mmu_alloc_root(vcpu, root_gfn, quadrant, PT32_ROOT_LEVEL); 4154 mmu->pae_root[i] = root | pm_mask; 4155 } 4156 4157 if (mmu->root_role.level == PT64_ROOT_5LEVEL) 4158 mmu->root.hpa = __pa(mmu->pml5_root); 4159 else if (mmu->root_role.level == PT64_ROOT_4LEVEL) 4160 mmu->root.hpa = __pa(mmu->pml4_root); 4161 else 4162 mmu->root.hpa = __pa(mmu->pae_root); 4163 4164 set_root_pgd: 4165 mmu->root.pgd = root_pgd; 4166 out_unlock: 4167 write_unlock(&vcpu->kvm->mmu_lock); 4168 4169 return r; 4170 } 4171 4172 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu) 4173 { 4174 struct kvm_mmu *mmu = vcpu->arch.mmu; 4175 bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL; 4176 u64 *pml5_root = NULL; 4177 u64 *pml4_root = NULL; 4178 u64 *pae_root; 4179 4180 /* 4181 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP 4182 * tables are allocated and initialized at root creation as there is no 4183 * equivalent level in the guest's NPT to shadow. Allocate the tables 4184 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare. 4185 */ 4186 if (mmu->root_role.direct || 4187 mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL || 4188 mmu->root_role.level < PT64_ROOT_4LEVEL) 4189 return 0; 4190 4191 /* 4192 * NPT, the only paging mode that uses this horror, uses a fixed number 4193 * of levels for the shadow page tables, e.g. all MMUs are 4-level or 4194 * all MMus are 5-level. Thus, this can safely require that pml5_root 4195 * is allocated if the other roots are valid and pml5 is needed, as any 4196 * prior MMU would also have required pml5. 4197 */ 4198 if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root)) 4199 return 0; 4200 4201 /* 4202 * The special roots should always be allocated in concert. Yell and 4203 * bail if KVM ends up in a state where only one of the roots is valid. 4204 */ 4205 if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root || 4206 (need_pml5 && mmu->pml5_root))) 4207 return -EIO; 4208 4209 /* 4210 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and 4211 * doesn't need to be decrypted. 4212 */ 4213 pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 4214 if (!pae_root) 4215 return -ENOMEM; 4216 4217 #ifdef CONFIG_X86_64 4218 pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 4219 if (!pml4_root) 4220 goto err_pml4; 4221 4222 if (need_pml5) { 4223 pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 4224 if (!pml5_root) 4225 goto err_pml5; 4226 } 4227 #endif 4228 4229 mmu->pae_root = pae_root; 4230 mmu->pml4_root = pml4_root; 4231 mmu->pml5_root = pml5_root; 4232 4233 return 0; 4234 4235 #ifdef CONFIG_X86_64 4236 err_pml5: 4237 free_page((unsigned long)pml4_root); 4238 err_pml4: 4239 free_page((unsigned long)pae_root); 4240 return -ENOMEM; 4241 #endif 4242 } 4243 4244 static bool is_unsync_root(hpa_t root) 4245 { 4246 struct kvm_mmu_page *sp; 4247 4248 if (!VALID_PAGE(root) || kvm_mmu_is_dummy_root(root)) 4249 return false; 4250 4251 /* 4252 * The read barrier orders the CPU's read of SPTE.W during the page table 4253 * walk before the reads of sp->unsync/sp->unsync_children here. 4254 * 4255 * Even if another CPU was marking the SP as unsync-ed simultaneously, 4256 * any guest page table changes are not guaranteed to be visible anyway 4257 * until this VCPU issues a TLB flush strictly after those changes are 4258 * made. We only need to ensure that the other CPU sets these flags 4259 * before any actual changes to the page tables are made. The comments 4260 * in mmu_try_to_unsync_pages() describe what could go wrong if this 4261 * requirement isn't satisfied. 4262 */ 4263 smp_rmb(); 4264 sp = root_to_sp(root); 4265 4266 /* 4267 * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the 4268 * PDPTEs for a given PAE root need to be synchronized individually. 4269 */ 4270 if (WARN_ON_ONCE(!sp)) 4271 return false; 4272 4273 if (sp->unsync || sp->unsync_children) 4274 return true; 4275 4276 return false; 4277 } 4278 4279 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) 4280 { 4281 int i; 4282 struct kvm_mmu_page *sp; 4283 4284 if (vcpu->arch.mmu->root_role.direct) 4285 return; 4286 4287 if (!VALID_PAGE(vcpu->arch.mmu->root.hpa)) 4288 return; 4289 4290 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 4291 4292 if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { 4293 hpa_t root = vcpu->arch.mmu->root.hpa; 4294 4295 if (!is_unsync_root(root)) 4296 return; 4297 4298 sp = root_to_sp(root); 4299 4300 write_lock(&vcpu->kvm->mmu_lock); 4301 mmu_sync_children(vcpu, sp, true); 4302 write_unlock(&vcpu->kvm->mmu_lock); 4303 return; 4304 } 4305 4306 write_lock(&vcpu->kvm->mmu_lock); 4307 4308 for (i = 0; i < 4; ++i) { 4309 hpa_t root = vcpu->arch.mmu->pae_root[i]; 4310 4311 if (IS_VALID_PAE_ROOT(root)) { 4312 sp = spte_to_child_sp(root); 4313 mmu_sync_children(vcpu, sp, true); 4314 } 4315 } 4316 4317 write_unlock(&vcpu->kvm->mmu_lock); 4318 } 4319 4320 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu) 4321 { 4322 unsigned long roots_to_free = 0; 4323 int i; 4324 4325 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 4326 if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa)) 4327 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 4328 4329 /* sync prev_roots by simply freeing them */ 4330 kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free); 4331 } 4332 4333 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 4334 gpa_t vaddr, u64 access, 4335 struct x86_exception *exception) 4336 { 4337 if (exception) 4338 exception->error_code = 0; 4339 return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception); 4340 } 4341 4342 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct) 4343 { 4344 /* 4345 * A nested guest cannot use the MMIO cache if it is using nested 4346 * page tables, because cr2 is a nGPA while the cache stores GPAs. 4347 */ 4348 if (mmu_is_nested(vcpu)) 4349 return false; 4350 4351 if (direct) 4352 return vcpu_match_mmio_gpa(vcpu, addr); 4353 4354 return vcpu_match_mmio_gva(vcpu, addr); 4355 } 4356 4357 /* 4358 * Return the level of the lowest level SPTE added to sptes. 4359 * That SPTE may be non-present. 4360 * 4361 * Must be called between walk_shadow_page_lockless_{begin,end}. 4362 */ 4363 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level) 4364 { 4365 struct kvm_shadow_walk_iterator iterator; 4366 int leaf = -1; 4367 u64 spte; 4368 4369 for (shadow_walk_init(&iterator, vcpu, addr), 4370 *root_level = iterator.level; 4371 shadow_walk_okay(&iterator); 4372 __shadow_walk_next(&iterator, spte)) { 4373 leaf = iterator.level; 4374 spte = mmu_spte_get_lockless(iterator.sptep); 4375 4376 sptes[leaf] = spte; 4377 } 4378 4379 return leaf; 4380 } 4381 4382 static int get_sptes_lockless(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, 4383 int *root_level) 4384 { 4385 int leaf; 4386 4387 walk_shadow_page_lockless_begin(vcpu); 4388 4389 if (is_tdp_mmu_active(vcpu)) 4390 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, root_level); 4391 else 4392 leaf = get_walk(vcpu, addr, sptes, root_level); 4393 4394 walk_shadow_page_lockless_end(vcpu); 4395 return leaf; 4396 } 4397 4398 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */ 4399 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) 4400 { 4401 u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; 4402 struct rsvd_bits_validate *rsvd_check; 4403 int root, leaf, level; 4404 bool reserved = false; 4405 4406 leaf = get_sptes_lockless(vcpu, addr, sptes, &root); 4407 if (unlikely(leaf < 0)) { 4408 *sptep = 0ull; 4409 return reserved; 4410 } 4411 4412 *sptep = sptes[leaf]; 4413 4414 /* 4415 * Skip reserved bits checks on the terminal leaf if it's not a valid 4416 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by 4417 * design, always have reserved bits set. The purpose of the checks is 4418 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs. 4419 */ 4420 if (!is_shadow_present_pte(sptes[leaf])) 4421 leaf++; 4422 4423 rsvd_check = &vcpu->arch.mmu->shadow_zero_check; 4424 4425 for (level = root; level >= leaf; level--) 4426 reserved |= is_rsvd_spte(rsvd_check, sptes[level], level); 4427 4428 if (reserved) { 4429 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n", 4430 __func__, addr); 4431 for (level = root; level >= leaf; level--) 4432 pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx", 4433 sptes[level], level, 4434 get_rsvd_bits(rsvd_check, sptes[level], level)); 4435 } 4436 4437 return reserved; 4438 } 4439 4440 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct) 4441 { 4442 u64 spte; 4443 bool reserved; 4444 4445 if (mmio_info_in_cache(vcpu, addr, direct)) 4446 return RET_PF_EMULATE; 4447 4448 reserved = get_mmio_spte(vcpu, addr, &spte); 4449 if (WARN_ON_ONCE(reserved)) 4450 return -EINVAL; 4451 4452 if (is_mmio_spte(vcpu->kvm, spte)) { 4453 gfn_t gfn = get_mmio_spte_gfn(spte); 4454 unsigned int access = get_mmio_spte_access(spte); 4455 4456 if (!check_mmio_spte(vcpu, spte)) 4457 return RET_PF_INVALID; 4458 4459 if (direct) 4460 addr = 0; 4461 4462 trace_handle_mmio_page_fault(addr, gfn, access); 4463 vcpu_cache_mmio_info(vcpu, addr, gfn, access); 4464 return RET_PF_EMULATE; 4465 } 4466 4467 /* 4468 * If the page table is zapped by other cpus, let CPU fault again on 4469 * the address. 4470 */ 4471 return RET_PF_RETRY; 4472 } 4473 4474 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu, 4475 struct kvm_page_fault *fault) 4476 { 4477 if (unlikely(fault->rsvd)) 4478 return false; 4479 4480 if (!fault->present || !fault->write) 4481 return false; 4482 4483 /* 4484 * guest is writing the page which is write tracked which can 4485 * not be fixed by page fault handler. 4486 */ 4487 if (kvm_gfn_is_write_tracked(vcpu->kvm, fault->slot, fault->gfn)) 4488 return true; 4489 4490 return false; 4491 } 4492 4493 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr) 4494 { 4495 struct kvm_shadow_walk_iterator iterator; 4496 u64 spte; 4497 4498 walk_shadow_page_lockless_begin(vcpu); 4499 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) 4500 clear_sp_write_flooding_count(iterator.sptep); 4501 walk_shadow_page_lockless_end(vcpu); 4502 } 4503 4504 static u32 alloc_apf_token(struct kvm_vcpu *vcpu) 4505 { 4506 /* make sure the token value is not 0 */ 4507 u32 id = vcpu->arch.apf.id; 4508 4509 if (id << 12 == 0) 4510 vcpu->arch.apf.id = 1; 4511 4512 return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; 4513 } 4514 4515 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, 4516 struct kvm_page_fault *fault) 4517 { 4518 struct kvm_arch_async_pf arch; 4519 4520 arch.token = alloc_apf_token(vcpu); 4521 arch.gfn = fault->gfn; 4522 arch.error_code = fault->error_code; 4523 arch.direct_map = vcpu->arch.mmu->root_role.direct; 4524 arch.cr3 = kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu); 4525 4526 return kvm_setup_async_pf(vcpu, fault->addr, 4527 kvm_vcpu_gfn_to_hva(vcpu, fault->gfn), &arch); 4528 } 4529 4530 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 4531 { 4532 int r; 4533 4534 if (WARN_ON_ONCE(work->arch.error_code & PFERR_PRIVATE_ACCESS)) 4535 return; 4536 4537 if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) || 4538 work->wakeup_all) 4539 return; 4540 4541 r = kvm_mmu_reload(vcpu); 4542 if (unlikely(r)) 4543 return; 4544 4545 if (!vcpu->arch.mmu->root_role.direct && 4546 work->arch.cr3 != kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu)) 4547 return; 4548 4549 r = kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, work->arch.error_code, 4550 true, NULL, NULL); 4551 4552 /* 4553 * Account fixed page faults, otherwise they'll never be counted, but 4554 * ignore stats for all other return times. Page-ready "faults" aren't 4555 * truly spurious and never trigger emulation 4556 */ 4557 if (r == RET_PF_FIXED) 4558 vcpu->stat.pf_fixed++; 4559 } 4560 4561 static void kvm_mmu_finish_page_fault(struct kvm_vcpu *vcpu, 4562 struct kvm_page_fault *fault, int r) 4563 { 4564 kvm_release_faultin_page(vcpu->kvm, fault->refcounted_page, 4565 r == RET_PF_RETRY, fault->map_writable); 4566 } 4567 4568 static int kvm_mmu_faultin_pfn_gmem(struct kvm_vcpu *vcpu, 4569 struct kvm_page_fault *fault) 4570 { 4571 int max_order, r; 4572 4573 if (!kvm_slot_has_gmem(fault->slot)) { 4574 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 4575 return -EFAULT; 4576 } 4577 4578 r = kvm_gmem_get_pfn(vcpu->kvm, fault->slot, fault->gfn, &fault->pfn, 4579 &fault->refcounted_page, &max_order); 4580 if (r) { 4581 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 4582 return r; 4583 } 4584 4585 fault->map_writable = !(fault->slot->flags & KVM_MEM_READONLY); 4586 fault->max_level = kvm_max_level_for_order(max_order); 4587 4588 return RET_PF_CONTINUE; 4589 } 4590 4591 static int __kvm_mmu_faultin_pfn(struct kvm_vcpu *vcpu, 4592 struct kvm_page_fault *fault) 4593 { 4594 unsigned int foll = fault->write ? FOLL_WRITE : 0; 4595 4596 if (fault->is_private || kvm_memslot_is_gmem_only(fault->slot)) 4597 return kvm_mmu_faultin_pfn_gmem(vcpu, fault); 4598 4599 foll |= FOLL_NOWAIT; 4600 fault->pfn = __kvm_faultin_pfn(fault->slot, fault->gfn, foll, 4601 &fault->map_writable, &fault->refcounted_page); 4602 4603 /* 4604 * If resolving the page failed because I/O is needed to fault-in the 4605 * page, then either set up an asynchronous #PF to do the I/O, or if 4606 * doing an async #PF isn't possible, retry with I/O allowed. All 4607 * other failures are terminal, i.e. retrying won't help. 4608 */ 4609 if (fault->pfn != KVM_PFN_ERR_NEEDS_IO) 4610 return RET_PF_CONTINUE; 4611 4612 if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) { 4613 trace_kvm_try_async_get_page(fault->addr, fault->gfn); 4614 if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) { 4615 trace_kvm_async_pf_repeated_fault(fault->addr, fault->gfn); 4616 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 4617 return RET_PF_RETRY; 4618 } else if (kvm_arch_setup_async_pf(vcpu, fault)) { 4619 return RET_PF_RETRY; 4620 } 4621 } 4622 4623 /* 4624 * Allow gup to bail on pending non-fatal signals when it's also allowed 4625 * to wait for IO. Note, gup always bails if it is unable to quickly 4626 * get a page and a fatal signal, i.e. SIGKILL, is pending. 4627 */ 4628 foll |= FOLL_INTERRUPTIBLE; 4629 foll &= ~FOLL_NOWAIT; 4630 fault->pfn = __kvm_faultin_pfn(fault->slot, fault->gfn, foll, 4631 &fault->map_writable, &fault->refcounted_page); 4632 4633 return RET_PF_CONTINUE; 4634 } 4635 4636 static int kvm_mmu_faultin_pfn(struct kvm_vcpu *vcpu, 4637 struct kvm_page_fault *fault, unsigned int access) 4638 { 4639 struct kvm_memory_slot *slot = fault->slot; 4640 struct kvm *kvm = vcpu->kvm; 4641 int ret; 4642 4643 if (KVM_BUG_ON(kvm_is_gfn_alias(kvm, fault->gfn), kvm)) 4644 return -EFAULT; 4645 4646 /* 4647 * Note that the mmu_invalidate_seq also serves to detect a concurrent 4648 * change in attributes. is_page_fault_stale() will detect an 4649 * invalidation relate to fault->fn and resume the guest without 4650 * installing a mapping in the page tables. 4651 */ 4652 fault->mmu_seq = vcpu->kvm->mmu_invalidate_seq; 4653 smp_rmb(); 4654 4655 /* 4656 * Now that we have a snapshot of mmu_invalidate_seq we can check for a 4657 * private vs. shared mismatch. 4658 */ 4659 if (fault->is_private != kvm_mem_is_private(kvm, fault->gfn)) { 4660 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 4661 return -EFAULT; 4662 } 4663 4664 if (unlikely(!slot)) 4665 return kvm_handle_noslot_fault(vcpu, fault, access); 4666 4667 /* 4668 * Retry the page fault if the gfn hit a memslot that is being deleted 4669 * or moved. This ensures any existing SPTEs for the old memslot will 4670 * be zapped before KVM inserts a new MMIO SPTE for the gfn. Punt the 4671 * error to userspace if this is a prefault, as KVM's prefaulting ABI 4672 * doesn't provide the same forward progress guarantees as KVM_RUN. 4673 */ 4674 if (slot->flags & KVM_MEMSLOT_INVALID) { 4675 if (fault->prefetch) 4676 return -EAGAIN; 4677 4678 return RET_PF_RETRY; 4679 } 4680 4681 if (slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT) { 4682 /* 4683 * Don't map L1's APIC access page into L2, KVM doesn't support 4684 * using APICv/AVIC to accelerate L2 accesses to L1's APIC, 4685 * i.e. the access needs to be emulated. Emulating access to 4686 * L1's APIC is also correct if L1 is accelerating L2's own 4687 * virtual APIC, but for some reason L1 also maps _L1's_ APIC 4688 * into L2. Note, vcpu_is_mmio_gpa() always treats access to 4689 * the APIC as MMIO. Allow an MMIO SPTE to be created, as KVM 4690 * uses different roots for L1 vs. L2, i.e. there is no danger 4691 * of breaking APICv/AVIC for L1. 4692 */ 4693 if (is_guest_mode(vcpu)) 4694 return kvm_handle_noslot_fault(vcpu, fault, access); 4695 4696 /* 4697 * If the APIC access page exists but is disabled, go directly 4698 * to emulation without caching the MMIO access or creating a 4699 * MMIO SPTE. That way the cache doesn't need to be purged 4700 * when the AVIC is re-enabled. 4701 */ 4702 if (!kvm_apicv_activated(vcpu->kvm)) 4703 return RET_PF_EMULATE; 4704 } 4705 4706 /* 4707 * Check for a relevant mmu_notifier invalidation event before getting 4708 * the pfn from the primary MMU, and before acquiring mmu_lock. 4709 * 4710 * For mmu_lock, if there is an in-progress invalidation and the kernel 4711 * allows preemption, the invalidation task may drop mmu_lock and yield 4712 * in response to mmu_lock being contended, which is *very* counter- 4713 * productive as this vCPU can't actually make forward progress until 4714 * the invalidation completes. 4715 * 4716 * Retrying now can also avoid unnessary lock contention in the primary 4717 * MMU, as the primary MMU doesn't necessarily hold a single lock for 4718 * the duration of the invalidation, i.e. faulting in a conflicting pfn 4719 * can cause the invalidation to take longer by holding locks that are 4720 * needed to complete the invalidation. 4721 * 4722 * Do the pre-check even for non-preemtible kernels, i.e. even if KVM 4723 * will never yield mmu_lock in response to contention, as this vCPU is 4724 * *guaranteed* to need to retry, i.e. waiting until mmu_lock is held 4725 * to detect retry guarantees the worst case latency for the vCPU. 4726 */ 4727 if (mmu_invalidate_retry_gfn_unsafe(kvm, fault->mmu_seq, fault->gfn)) 4728 return RET_PF_RETRY; 4729 4730 ret = __kvm_mmu_faultin_pfn(vcpu, fault); 4731 if (ret != RET_PF_CONTINUE) 4732 return ret; 4733 4734 if (unlikely(is_error_pfn(fault->pfn))) 4735 return kvm_handle_error_pfn(vcpu, fault); 4736 4737 if (WARN_ON_ONCE(!fault->slot || is_noslot_pfn(fault->pfn))) 4738 return kvm_handle_noslot_fault(vcpu, fault, access); 4739 4740 /* 4741 * Check again for a relevant mmu_notifier invalidation event purely to 4742 * avoid contending mmu_lock. Most invalidations will be detected by 4743 * the previous check, but checking is extremely cheap relative to the 4744 * overall cost of failing to detect the invalidation until after 4745 * mmu_lock is acquired. 4746 */ 4747 if (mmu_invalidate_retry_gfn_unsafe(kvm, fault->mmu_seq, fault->gfn)) { 4748 kvm_mmu_finish_page_fault(vcpu, fault, RET_PF_RETRY); 4749 return RET_PF_RETRY; 4750 } 4751 4752 return RET_PF_CONTINUE; 4753 } 4754 4755 /* 4756 * Returns true if the page fault is stale and needs to be retried, i.e. if the 4757 * root was invalidated by a memslot update or a relevant mmu_notifier fired. 4758 */ 4759 static bool is_page_fault_stale(struct kvm_vcpu *vcpu, 4760 struct kvm_page_fault *fault) 4761 { 4762 struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa); 4763 4764 /* Special roots, e.g. pae_root, are not backed by shadow pages. */ 4765 if (sp && is_obsolete_sp(vcpu->kvm, sp)) 4766 return true; 4767 4768 /* 4769 * Roots without an associated shadow page are considered invalid if 4770 * there is a pending request to free obsolete roots. The request is 4771 * only a hint that the current root _may_ be obsolete and needs to be 4772 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a 4773 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs 4774 * to reload even if no vCPU is actively using the root. 4775 */ 4776 if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 4777 return true; 4778 4779 /* 4780 * Check for a relevant mmu_notifier invalidation event one last time 4781 * now that mmu_lock is held, as the "unsafe" checks performed without 4782 * holding mmu_lock can get false negatives. 4783 */ 4784 return fault->slot && 4785 mmu_invalidate_retry_gfn(vcpu->kvm, fault->mmu_seq, fault->gfn); 4786 } 4787 4788 static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4789 { 4790 int r; 4791 4792 /* Dummy roots are used only for shadowing bad guest roots. */ 4793 if (WARN_ON_ONCE(kvm_mmu_is_dummy_root(vcpu->arch.mmu->root.hpa))) 4794 return RET_PF_RETRY; 4795 4796 if (page_fault_handle_page_track(vcpu, fault)) 4797 return RET_PF_WRITE_PROTECTED; 4798 4799 r = fast_page_fault(vcpu, fault); 4800 if (r != RET_PF_INVALID) 4801 return r; 4802 4803 r = mmu_topup_memory_caches(vcpu, false); 4804 if (r) 4805 return r; 4806 4807 r = kvm_mmu_faultin_pfn(vcpu, fault, ACC_ALL); 4808 if (r != RET_PF_CONTINUE) 4809 return r; 4810 4811 r = RET_PF_RETRY; 4812 write_lock(&vcpu->kvm->mmu_lock); 4813 4814 if (is_page_fault_stale(vcpu, fault)) 4815 goto out_unlock; 4816 4817 r = make_mmu_pages_available(vcpu); 4818 if (r) 4819 goto out_unlock; 4820 4821 r = direct_map(vcpu, fault); 4822 4823 out_unlock: 4824 kvm_mmu_finish_page_fault(vcpu, fault, r); 4825 write_unlock(&vcpu->kvm->mmu_lock); 4826 return r; 4827 } 4828 4829 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, 4830 struct kvm_page_fault *fault) 4831 { 4832 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */ 4833 fault->max_level = PG_LEVEL_2M; 4834 return direct_page_fault(vcpu, fault); 4835 } 4836 4837 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, 4838 u64 fault_address, char *insn, int insn_len) 4839 { 4840 int r = 1; 4841 u32 flags = vcpu->arch.apf.host_apf_flags; 4842 4843 #ifndef CONFIG_X86_64 4844 /* A 64-bit CR2 should be impossible on 32-bit KVM. */ 4845 if (WARN_ON_ONCE(fault_address >> 32)) 4846 return -EFAULT; 4847 #endif 4848 /* 4849 * Legacy #PF exception only have a 32-bit error code. Simply drop the 4850 * upper bits as KVM doesn't use them for #PF (because they are never 4851 * set), and to ensure there are no collisions with KVM-defined bits. 4852 */ 4853 if (WARN_ON_ONCE(error_code >> 32)) 4854 error_code = lower_32_bits(error_code); 4855 4856 /* 4857 * Restrict KVM-defined flags to bits 63:32 so that it's impossible for 4858 * them to conflict with #PF error codes, which are limited to 32 bits. 4859 */ 4860 BUILD_BUG_ON(lower_32_bits(PFERR_SYNTHETIC_MASK)); 4861 4862 vcpu->arch.l1tf_flush_l1d = true; 4863 if (!flags) { 4864 trace_kvm_page_fault(vcpu, fault_address, error_code); 4865 4866 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn, 4867 insn_len); 4868 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) { 4869 vcpu->arch.apf.host_apf_flags = 0; 4870 local_irq_disable(); 4871 kvm_async_pf_task_wait_schedule(fault_address); 4872 local_irq_enable(); 4873 } else { 4874 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags); 4875 } 4876 4877 return r; 4878 } 4879 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_handle_page_fault); 4880 4881 #ifdef CONFIG_X86_64 4882 static int kvm_tdp_mmu_page_fault(struct kvm_vcpu *vcpu, 4883 struct kvm_page_fault *fault) 4884 { 4885 int r; 4886 4887 if (page_fault_handle_page_track(vcpu, fault)) 4888 return RET_PF_WRITE_PROTECTED; 4889 4890 r = fast_page_fault(vcpu, fault); 4891 if (r != RET_PF_INVALID) 4892 return r; 4893 4894 r = mmu_topup_memory_caches(vcpu, false); 4895 if (r) 4896 return r; 4897 4898 r = kvm_mmu_faultin_pfn(vcpu, fault, ACC_ALL); 4899 if (r != RET_PF_CONTINUE) 4900 return r; 4901 4902 r = RET_PF_RETRY; 4903 read_lock(&vcpu->kvm->mmu_lock); 4904 4905 if (is_page_fault_stale(vcpu, fault)) 4906 goto out_unlock; 4907 4908 r = kvm_tdp_mmu_map(vcpu, fault); 4909 4910 out_unlock: 4911 kvm_mmu_finish_page_fault(vcpu, fault, r); 4912 read_unlock(&vcpu->kvm->mmu_lock); 4913 return r; 4914 } 4915 #endif 4916 4917 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4918 { 4919 #ifdef CONFIG_X86_64 4920 if (tdp_mmu_enabled) 4921 return kvm_tdp_mmu_page_fault(vcpu, fault); 4922 #endif 4923 4924 return direct_page_fault(vcpu, fault); 4925 } 4926 4927 int kvm_tdp_map_page(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code, u8 *level) 4928 { 4929 int r; 4930 4931 /* 4932 * Restrict to TDP page fault, since that's the only case where the MMU 4933 * is indexed by GPA. 4934 */ 4935 if (vcpu->arch.mmu->page_fault != kvm_tdp_page_fault) 4936 return -EOPNOTSUPP; 4937 4938 do { 4939 if (signal_pending(current)) 4940 return -EINTR; 4941 4942 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) 4943 return -EIO; 4944 4945 cond_resched(); 4946 r = kvm_mmu_do_page_fault(vcpu, gpa, error_code, true, NULL, level); 4947 } while (r == RET_PF_RETRY); 4948 4949 if (r < 0) 4950 return r; 4951 4952 switch (r) { 4953 case RET_PF_FIXED: 4954 case RET_PF_SPURIOUS: 4955 case RET_PF_WRITE_PROTECTED: 4956 return 0; 4957 4958 case RET_PF_EMULATE: 4959 return -ENOENT; 4960 4961 case RET_PF_RETRY: 4962 case RET_PF_CONTINUE: 4963 case RET_PF_INVALID: 4964 default: 4965 WARN_ONCE(1, "could not fix page fault during prefault"); 4966 return -EIO; 4967 } 4968 } 4969 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_tdp_map_page); 4970 4971 long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu, 4972 struct kvm_pre_fault_memory *range) 4973 { 4974 u64 error_code = PFERR_GUEST_FINAL_MASK; 4975 u8 level = PG_LEVEL_4K; 4976 u64 direct_bits; 4977 u64 end; 4978 int r; 4979 4980 if (!vcpu->kvm->arch.pre_fault_allowed) 4981 return -EOPNOTSUPP; 4982 4983 if (kvm_is_gfn_alias(vcpu->kvm, gpa_to_gfn(range->gpa))) 4984 return -EINVAL; 4985 4986 /* 4987 * reload is efficient when called repeatedly, so we can do it on 4988 * every iteration. 4989 */ 4990 r = kvm_mmu_reload(vcpu); 4991 if (r) 4992 return r; 4993 4994 direct_bits = 0; 4995 if (kvm_arch_has_private_mem(vcpu->kvm) && 4996 kvm_mem_is_private(vcpu->kvm, gpa_to_gfn(range->gpa))) 4997 error_code |= PFERR_PRIVATE_ACCESS; 4998 else 4999 direct_bits = gfn_to_gpa(kvm_gfn_direct_bits(vcpu->kvm)); 5000 5001 /* 5002 * Shadow paging uses GVA for kvm page fault, so restrict to 5003 * two-dimensional paging. 5004 */ 5005 r = kvm_tdp_map_page(vcpu, range->gpa | direct_bits, error_code, &level); 5006 if (r < 0) 5007 return r; 5008 5009 /* 5010 * If the mapping that covers range->gpa can use a huge page, it 5011 * may start below it or end after range->gpa + range->size. 5012 */ 5013 end = (range->gpa & KVM_HPAGE_MASK(level)) + KVM_HPAGE_SIZE(level); 5014 return min(range->size, end - range->gpa); 5015 } 5016 5017 static void nonpaging_init_context(struct kvm_mmu *context) 5018 { 5019 context->page_fault = nonpaging_page_fault; 5020 context->gva_to_gpa = nonpaging_gva_to_gpa; 5021 context->sync_spte = NULL; 5022 } 5023 5024 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd, 5025 union kvm_mmu_page_role role) 5026 { 5027 struct kvm_mmu_page *sp; 5028 5029 if (!VALID_PAGE(root->hpa)) 5030 return false; 5031 5032 if (!role.direct && pgd != root->pgd) 5033 return false; 5034 5035 sp = root_to_sp(root->hpa); 5036 if (WARN_ON_ONCE(!sp)) 5037 return false; 5038 5039 return role.word == sp->role.word; 5040 } 5041 5042 /* 5043 * Find out if a previously cached root matching the new pgd/role is available, 5044 * and insert the current root as the MRU in the cache. 5045 * If a matching root is found, it is assigned to kvm_mmu->root and 5046 * true is returned. 5047 * If no match is found, kvm_mmu->root is left invalid, the LRU root is 5048 * evicted to make room for the current root, and false is returned. 5049 */ 5050 static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu, 5051 gpa_t new_pgd, 5052 union kvm_mmu_page_role new_role) 5053 { 5054 uint i; 5055 5056 if (is_root_usable(&mmu->root, new_pgd, new_role)) 5057 return true; 5058 5059 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5060 /* 5061 * The swaps end up rotating the cache like this: 5062 * C 0 1 2 3 (on entry to the function) 5063 * 0 C 1 2 3 5064 * 1 C 0 2 3 5065 * 2 C 0 1 3 5066 * 3 C 0 1 2 (on exit from the loop) 5067 */ 5068 swap(mmu->root, mmu->prev_roots[i]); 5069 if (is_root_usable(&mmu->root, new_pgd, new_role)) 5070 return true; 5071 } 5072 5073 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 5074 return false; 5075 } 5076 5077 /* 5078 * Find out if a previously cached root matching the new pgd/role is available. 5079 * On entry, mmu->root is invalid. 5080 * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry 5081 * of the cache becomes invalid, and true is returned. 5082 * If no match is found, kvm_mmu->root is left invalid and false is returned. 5083 */ 5084 static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu, 5085 gpa_t new_pgd, 5086 union kvm_mmu_page_role new_role) 5087 { 5088 uint i; 5089 5090 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5091 if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role)) 5092 goto hit; 5093 5094 return false; 5095 5096 hit: 5097 swap(mmu->root, mmu->prev_roots[i]); 5098 /* Bubble up the remaining roots. */ 5099 for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++) 5100 mmu->prev_roots[i] = mmu->prev_roots[i + 1]; 5101 mmu->prev_roots[i].hpa = INVALID_PAGE; 5102 return true; 5103 } 5104 5105 static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu, 5106 gpa_t new_pgd, union kvm_mmu_page_role new_role) 5107 { 5108 /* 5109 * Limit reuse to 64-bit hosts+VMs without "special" roots in order to 5110 * avoid having to deal with PDPTEs and other complexities. 5111 */ 5112 if (VALID_PAGE(mmu->root.hpa) && !root_to_sp(mmu->root.hpa)) 5113 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 5114 5115 if (VALID_PAGE(mmu->root.hpa)) 5116 return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role); 5117 else 5118 return cached_root_find_without_current(kvm, mmu, new_pgd, new_role); 5119 } 5120 5121 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd) 5122 { 5123 struct kvm_mmu *mmu = vcpu->arch.mmu; 5124 union kvm_mmu_page_role new_role = mmu->root_role; 5125 5126 /* 5127 * Return immediately if no usable root was found, kvm_mmu_reload() 5128 * will establish a valid root prior to the next VM-Enter. 5129 */ 5130 if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role)) 5131 return; 5132 5133 /* 5134 * It's possible that the cached previous root page is obsolete because 5135 * of a change in the MMU generation number. However, changing the 5136 * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, 5137 * which will free the root set here and allocate a new one. 5138 */ 5139 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 5140 5141 if (force_flush_and_sync_on_reuse) { 5142 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 5143 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 5144 } 5145 5146 /* 5147 * The last MMIO access's GVA and GPA are cached in the VCPU. When 5148 * switching to a new CR3, that GVA->GPA mapping may no longer be 5149 * valid. So clear any cached MMIO info even when we don't need to sync 5150 * the shadow page tables. 5151 */ 5152 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 5153 5154 /* 5155 * If this is a direct root page, it doesn't have a write flooding 5156 * count. Otherwise, clear the write flooding count. 5157 */ 5158 if (!new_role.direct) { 5159 struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa); 5160 5161 if (!WARN_ON_ONCE(!sp)) 5162 __clear_sp_write_flooding_count(sp); 5163 } 5164 } 5165 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_new_pgd); 5166 5167 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, 5168 unsigned int access) 5169 { 5170 if (unlikely(is_mmio_spte(vcpu->kvm, *sptep))) { 5171 if (gfn != get_mmio_spte_gfn(*sptep)) { 5172 mmu_spte_clear_no_track(sptep); 5173 return true; 5174 } 5175 5176 mark_mmio_spte(vcpu, sptep, gfn, access); 5177 return true; 5178 } 5179 5180 return false; 5181 } 5182 5183 #define PTTYPE_EPT 18 /* arbitrary */ 5184 #define PTTYPE PTTYPE_EPT 5185 #include "paging_tmpl.h" 5186 #undef PTTYPE 5187 5188 #define PTTYPE 64 5189 #include "paging_tmpl.h" 5190 #undef PTTYPE 5191 5192 #define PTTYPE 32 5193 #include "paging_tmpl.h" 5194 #undef PTTYPE 5195 5196 static void __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check, 5197 u64 pa_bits_rsvd, int level, bool nx, 5198 bool gbpages, bool pse, bool amd) 5199 { 5200 u64 gbpages_bit_rsvd = 0; 5201 u64 nonleaf_bit8_rsvd = 0; 5202 u64 high_bits_rsvd; 5203 5204 rsvd_check->bad_mt_xwr = 0; 5205 5206 if (!gbpages) 5207 gbpages_bit_rsvd = rsvd_bits(7, 7); 5208 5209 if (level == PT32E_ROOT_LEVEL) 5210 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62); 5211 else 5212 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 5213 5214 /* Note, NX doesn't exist in PDPTEs, this is handled below. */ 5215 if (!nx) 5216 high_bits_rsvd |= rsvd_bits(63, 63); 5217 5218 /* 5219 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for 5220 * leaf entries) on AMD CPUs only. 5221 */ 5222 if (amd) 5223 nonleaf_bit8_rsvd = rsvd_bits(8, 8); 5224 5225 switch (level) { 5226 case PT32_ROOT_LEVEL: 5227 /* no rsvd bits for 2 level 4K page table entries */ 5228 rsvd_check->rsvd_bits_mask[0][1] = 0; 5229 rsvd_check->rsvd_bits_mask[0][0] = 0; 5230 rsvd_check->rsvd_bits_mask[1][0] = 5231 rsvd_check->rsvd_bits_mask[0][0]; 5232 5233 if (!pse) { 5234 rsvd_check->rsvd_bits_mask[1][1] = 0; 5235 break; 5236 } 5237 5238 if (is_cpuid_PSE36()) 5239 /* 36bits PSE 4MB page */ 5240 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); 5241 else 5242 /* 32 bits PSE 4MB page */ 5243 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); 5244 break; 5245 case PT32E_ROOT_LEVEL: 5246 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) | 5247 high_bits_rsvd | 5248 rsvd_bits(5, 8) | 5249 rsvd_bits(1, 2); /* PDPTE */ 5250 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */ 5251 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */ 5252 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 5253 rsvd_bits(13, 20); /* large page */ 5254 rsvd_check->rsvd_bits_mask[1][0] = 5255 rsvd_check->rsvd_bits_mask[0][0]; 5256 break; 5257 case PT64_ROOT_5LEVEL: 5258 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | 5259 nonleaf_bit8_rsvd | 5260 rsvd_bits(7, 7); 5261 rsvd_check->rsvd_bits_mask[1][4] = 5262 rsvd_check->rsvd_bits_mask[0][4]; 5263 fallthrough; 5264 case PT64_ROOT_4LEVEL: 5265 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | 5266 nonleaf_bit8_rsvd | 5267 rsvd_bits(7, 7); 5268 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | 5269 gbpages_bit_rsvd; 5270 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; 5271 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 5272 rsvd_check->rsvd_bits_mask[1][3] = 5273 rsvd_check->rsvd_bits_mask[0][3]; 5274 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | 5275 gbpages_bit_rsvd | 5276 rsvd_bits(13, 29); 5277 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 5278 rsvd_bits(13, 20); /* large page */ 5279 rsvd_check->rsvd_bits_mask[1][0] = 5280 rsvd_check->rsvd_bits_mask[0][0]; 5281 break; 5282 } 5283 } 5284 5285 static void reset_guest_rsvds_bits_mask(struct kvm_vcpu *vcpu, 5286 struct kvm_mmu *context) 5287 { 5288 __reset_rsvds_bits_mask(&context->guest_rsvd_check, 5289 vcpu->arch.reserved_gpa_bits, 5290 context->cpu_role.base.level, is_efer_nx(context), 5291 guest_cpu_cap_has(vcpu, X86_FEATURE_GBPAGES), 5292 is_cr4_pse(context), 5293 guest_cpuid_is_amd_compatible(vcpu)); 5294 } 5295 5296 static void __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check, 5297 u64 pa_bits_rsvd, bool execonly, 5298 int huge_page_level) 5299 { 5300 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 5301 u64 large_1g_rsvd = 0, large_2m_rsvd = 0; 5302 u64 bad_mt_xwr; 5303 5304 if (huge_page_level < PG_LEVEL_1G) 5305 large_1g_rsvd = rsvd_bits(7, 7); 5306 if (huge_page_level < PG_LEVEL_2M) 5307 large_2m_rsvd = rsvd_bits(7, 7); 5308 5309 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7); 5310 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7); 5311 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd; 5312 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd; 5313 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 5314 5315 /* large page */ 5316 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4]; 5317 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3]; 5318 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd; 5319 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd; 5320 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0]; 5321 5322 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */ 5323 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */ 5324 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */ 5325 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */ 5326 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */ 5327 if (!execonly) { 5328 /* bits 0..2 must not be 100 unless VMX capabilities allow it */ 5329 bad_mt_xwr |= REPEAT_BYTE(1ull << 4); 5330 } 5331 rsvd_check->bad_mt_xwr = bad_mt_xwr; 5332 } 5333 5334 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, 5335 struct kvm_mmu *context, bool execonly, int huge_page_level) 5336 { 5337 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check, 5338 vcpu->arch.reserved_gpa_bits, execonly, 5339 huge_page_level); 5340 } 5341 5342 static inline u64 reserved_hpa_bits(void) 5343 { 5344 return rsvd_bits(kvm_host.maxphyaddr, 63); 5345 } 5346 5347 /* 5348 * the page table on host is the shadow page table for the page 5349 * table in guest or amd nested guest, its mmu features completely 5350 * follow the features in guest. 5351 */ 5352 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 5353 struct kvm_mmu *context) 5354 { 5355 /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */ 5356 bool is_amd = true; 5357 /* KVM doesn't use 2-level page tables for the shadow MMU. */ 5358 bool is_pse = false; 5359 struct rsvd_bits_validate *shadow_zero_check; 5360 int i; 5361 5362 WARN_ON_ONCE(context->root_role.level < PT32E_ROOT_LEVEL); 5363 5364 shadow_zero_check = &context->shadow_zero_check; 5365 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 5366 context->root_role.level, 5367 context->root_role.efer_nx, 5368 guest_cpu_cap_has(vcpu, X86_FEATURE_GBPAGES), 5369 is_pse, is_amd); 5370 5371 if (!shadow_me_mask) 5372 return; 5373 5374 for (i = context->root_role.level; --i >= 0;) { 5375 /* 5376 * So far shadow_me_value is a constant during KVM's life 5377 * time. Bits in shadow_me_value are allowed to be set. 5378 * Bits in shadow_me_mask but not in shadow_me_value are 5379 * not allowed to be set. 5380 */ 5381 shadow_zero_check->rsvd_bits_mask[0][i] |= shadow_me_mask; 5382 shadow_zero_check->rsvd_bits_mask[1][i] |= shadow_me_mask; 5383 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_value; 5384 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_value; 5385 } 5386 5387 } 5388 5389 static inline bool boot_cpu_is_amd(void) 5390 { 5391 WARN_ON_ONCE(!tdp_enabled); 5392 return shadow_x_mask == 0; 5393 } 5394 5395 /* 5396 * the direct page table on host, use as much mmu features as 5397 * possible, however, kvm currently does not do execution-protection. 5398 */ 5399 static void reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context) 5400 { 5401 struct rsvd_bits_validate *shadow_zero_check; 5402 int i; 5403 5404 shadow_zero_check = &context->shadow_zero_check; 5405 5406 if (boot_cpu_is_amd()) 5407 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 5408 context->root_role.level, true, 5409 boot_cpu_has(X86_FEATURE_GBPAGES), 5410 false, true); 5411 else 5412 __reset_rsvds_bits_mask_ept(shadow_zero_check, 5413 reserved_hpa_bits(), false, 5414 max_huge_page_level); 5415 5416 if (!shadow_me_mask) 5417 return; 5418 5419 for (i = context->root_role.level; --i >= 0;) { 5420 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 5421 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 5422 } 5423 } 5424 5425 /* 5426 * as the comments in reset_shadow_zero_bits_mask() except it 5427 * is the shadow page table for intel nested guest. 5428 */ 5429 static void 5430 reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly) 5431 { 5432 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check, 5433 reserved_hpa_bits(), execonly, 5434 max_huge_page_level); 5435 } 5436 5437 #define BYTE_MASK(access) \ 5438 ((1 & (access) ? 2 : 0) | \ 5439 (2 & (access) ? 4 : 0) | \ 5440 (3 & (access) ? 8 : 0) | \ 5441 (4 & (access) ? 16 : 0) | \ 5442 (5 & (access) ? 32 : 0) | \ 5443 (6 & (access) ? 64 : 0) | \ 5444 (7 & (access) ? 128 : 0)) 5445 5446 5447 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept) 5448 { 5449 unsigned byte; 5450 5451 const u8 x = BYTE_MASK(ACC_EXEC_MASK); 5452 const u8 w = BYTE_MASK(ACC_WRITE_MASK); 5453 const u8 u = BYTE_MASK(ACC_USER_MASK); 5454 5455 bool cr4_smep = is_cr4_smep(mmu); 5456 bool cr4_smap = is_cr4_smap(mmu); 5457 bool cr0_wp = is_cr0_wp(mmu); 5458 bool efer_nx = is_efer_nx(mmu); 5459 5460 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { 5461 unsigned pfec = byte << 1; 5462 5463 /* 5464 * Each "*f" variable has a 1 bit for each UWX value 5465 * that causes a fault with the given PFEC. 5466 */ 5467 5468 /* Faults from writes to non-writable pages */ 5469 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0; 5470 /* Faults from user mode accesses to supervisor pages */ 5471 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0; 5472 /* Faults from fetches of non-executable pages*/ 5473 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0; 5474 /* Faults from kernel mode fetches of user pages */ 5475 u8 smepf = 0; 5476 /* Faults from kernel mode accesses of user pages */ 5477 u8 smapf = 0; 5478 5479 if (!ept) { 5480 /* Faults from kernel mode accesses to user pages */ 5481 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u; 5482 5483 /* Not really needed: !nx will cause pte.nx to fault */ 5484 if (!efer_nx) 5485 ff = 0; 5486 5487 /* Allow supervisor writes if !cr0.wp */ 5488 if (!cr0_wp) 5489 wf = (pfec & PFERR_USER_MASK) ? wf : 0; 5490 5491 /* Disallow supervisor fetches of user code if cr4.smep */ 5492 if (cr4_smep) 5493 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0; 5494 5495 /* 5496 * SMAP:kernel-mode data accesses from user-mode 5497 * mappings should fault. A fault is considered 5498 * as a SMAP violation if all of the following 5499 * conditions are true: 5500 * - X86_CR4_SMAP is set in CR4 5501 * - A user page is accessed 5502 * - The access is not a fetch 5503 * - The access is supervisor mode 5504 * - If implicit supervisor access or X86_EFLAGS_AC is clear 5505 * 5506 * Here, we cover the first four conditions. 5507 * The fifth is computed dynamically in permission_fault(); 5508 * PFERR_RSVD_MASK bit will be set in PFEC if the access is 5509 * *not* subject to SMAP restrictions. 5510 */ 5511 if (cr4_smap) 5512 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf; 5513 } 5514 5515 mmu->permissions[byte] = ff | uf | wf | smepf | smapf; 5516 } 5517 } 5518 5519 /* 5520 * PKU is an additional mechanism by which the paging controls access to 5521 * user-mode addresses based on the value in the PKRU register. Protection 5522 * key violations are reported through a bit in the page fault error code. 5523 * Unlike other bits of the error code, the PK bit is not known at the 5524 * call site of e.g. gva_to_gpa; it must be computed directly in 5525 * permission_fault based on two bits of PKRU, on some machine state (CR4, 5526 * CR0, EFER, CPL), and on other bits of the error code and the page tables. 5527 * 5528 * In particular the following conditions come from the error code, the 5529 * page tables and the machine state: 5530 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1 5531 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch) 5532 * - PK is always zero if U=0 in the page tables 5533 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access. 5534 * 5535 * The PKRU bitmask caches the result of these four conditions. The error 5536 * code (minus the P bit) and the page table's U bit form an index into the 5537 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed 5538 * with the two bits of the PKRU register corresponding to the protection key. 5539 * For the first three conditions above the bits will be 00, thus masking 5540 * away both AD and WD. For all reads or if the last condition holds, WD 5541 * only will be masked away. 5542 */ 5543 static void update_pkru_bitmask(struct kvm_mmu *mmu) 5544 { 5545 unsigned bit; 5546 bool wp; 5547 5548 mmu->pkru_mask = 0; 5549 5550 if (!is_cr4_pke(mmu)) 5551 return; 5552 5553 wp = is_cr0_wp(mmu); 5554 5555 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) { 5556 unsigned pfec, pkey_bits; 5557 bool check_pkey, check_write, ff, uf, wf, pte_user; 5558 5559 pfec = bit << 1; 5560 ff = pfec & PFERR_FETCH_MASK; 5561 uf = pfec & PFERR_USER_MASK; 5562 wf = pfec & PFERR_WRITE_MASK; 5563 5564 /* PFEC.RSVD is replaced by ACC_USER_MASK. */ 5565 pte_user = pfec & PFERR_RSVD_MASK; 5566 5567 /* 5568 * Only need to check the access which is not an 5569 * instruction fetch and is to a user page. 5570 */ 5571 check_pkey = (!ff && pte_user); 5572 /* 5573 * write access is controlled by PKRU if it is a 5574 * user access or CR0.WP = 1. 5575 */ 5576 check_write = check_pkey && wf && (uf || wp); 5577 5578 /* PKRU.AD stops both read and write access. */ 5579 pkey_bits = !!check_pkey; 5580 /* PKRU.WD stops write access. */ 5581 pkey_bits |= (!!check_write) << 1; 5582 5583 mmu->pkru_mask |= (pkey_bits & 3) << pfec; 5584 } 5585 } 5586 5587 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu, 5588 struct kvm_mmu *mmu) 5589 { 5590 if (!is_cr0_pg(mmu)) 5591 return; 5592 5593 reset_guest_rsvds_bits_mask(vcpu, mmu); 5594 update_permission_bitmask(mmu, false); 5595 update_pkru_bitmask(mmu); 5596 } 5597 5598 static void paging64_init_context(struct kvm_mmu *context) 5599 { 5600 context->page_fault = paging64_page_fault; 5601 context->gva_to_gpa = paging64_gva_to_gpa; 5602 context->sync_spte = paging64_sync_spte; 5603 } 5604 5605 static void paging32_init_context(struct kvm_mmu *context) 5606 { 5607 context->page_fault = paging32_page_fault; 5608 context->gva_to_gpa = paging32_gva_to_gpa; 5609 context->sync_spte = paging32_sync_spte; 5610 } 5611 5612 static union kvm_cpu_role kvm_calc_cpu_role(struct kvm_vcpu *vcpu, 5613 const struct kvm_mmu_role_regs *regs) 5614 { 5615 union kvm_cpu_role role = {0}; 5616 5617 role.base.access = ACC_ALL; 5618 role.base.smm = is_smm(vcpu); 5619 role.base.guest_mode = is_guest_mode(vcpu); 5620 role.ext.valid = 1; 5621 5622 if (!____is_cr0_pg(regs)) { 5623 role.base.direct = 1; 5624 return role; 5625 } 5626 5627 role.base.efer_nx = ____is_efer_nx(regs); 5628 role.base.cr0_wp = ____is_cr0_wp(regs); 5629 role.base.smep_andnot_wp = ____is_cr4_smep(regs) && !____is_cr0_wp(regs); 5630 role.base.smap_andnot_wp = ____is_cr4_smap(regs) && !____is_cr0_wp(regs); 5631 role.base.has_4_byte_gpte = !____is_cr4_pae(regs); 5632 5633 if (____is_efer_lma(regs)) 5634 role.base.level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL 5635 : PT64_ROOT_4LEVEL; 5636 else if (____is_cr4_pae(regs)) 5637 role.base.level = PT32E_ROOT_LEVEL; 5638 else 5639 role.base.level = PT32_ROOT_LEVEL; 5640 5641 role.ext.cr4_smep = ____is_cr4_smep(regs); 5642 role.ext.cr4_smap = ____is_cr4_smap(regs); 5643 role.ext.cr4_pse = ____is_cr4_pse(regs); 5644 5645 /* PKEY and LA57 are active iff long mode is active. */ 5646 role.ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs); 5647 role.ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs); 5648 role.ext.efer_lma = ____is_efer_lma(regs); 5649 return role; 5650 } 5651 5652 void __kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu, 5653 struct kvm_mmu *mmu) 5654 { 5655 const bool cr0_wp = kvm_is_cr0_bit_set(vcpu, X86_CR0_WP); 5656 5657 BUILD_BUG_ON((KVM_MMU_CR0_ROLE_BITS & KVM_POSSIBLE_CR0_GUEST_BITS) != X86_CR0_WP); 5658 BUILD_BUG_ON((KVM_MMU_CR4_ROLE_BITS & KVM_POSSIBLE_CR4_GUEST_BITS)); 5659 5660 if (is_cr0_wp(mmu) == cr0_wp) 5661 return; 5662 5663 mmu->cpu_role.base.cr0_wp = cr0_wp; 5664 reset_guest_paging_metadata(vcpu, mmu); 5665 } 5666 5667 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu) 5668 { 5669 int maxpa; 5670 5671 if (vcpu->kvm->arch.vm_type == KVM_X86_TDX_VM) 5672 maxpa = cpuid_query_maxguestphyaddr(vcpu); 5673 else 5674 maxpa = cpuid_maxphyaddr(vcpu); 5675 5676 /* tdp_root_level is architecture forced level, use it if nonzero */ 5677 if (tdp_root_level) 5678 return tdp_root_level; 5679 5680 /* Use 5-level TDP if and only if it's useful/necessary. */ 5681 if (max_tdp_level == 5 && maxpa <= 48) 5682 return 4; 5683 5684 return max_tdp_level; 5685 } 5686 5687 u8 kvm_mmu_get_max_tdp_level(void) 5688 { 5689 return tdp_root_level ? tdp_root_level : max_tdp_level; 5690 } 5691 5692 static union kvm_mmu_page_role 5693 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, 5694 union kvm_cpu_role cpu_role) 5695 { 5696 union kvm_mmu_page_role role = {0}; 5697 5698 role.access = ACC_ALL; 5699 role.cr0_wp = true; 5700 role.efer_nx = true; 5701 role.smm = cpu_role.base.smm; 5702 role.guest_mode = cpu_role.base.guest_mode; 5703 role.ad_disabled = !kvm_ad_enabled; 5704 role.level = kvm_mmu_get_tdp_level(vcpu); 5705 role.direct = true; 5706 role.has_4_byte_gpte = false; 5707 5708 return role; 5709 } 5710 5711 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu, 5712 union kvm_cpu_role cpu_role) 5713 { 5714 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5715 union kvm_mmu_page_role root_role = kvm_calc_tdp_mmu_root_page_role(vcpu, cpu_role); 5716 5717 if (cpu_role.as_u64 == context->cpu_role.as_u64 && 5718 root_role.word == context->root_role.word) 5719 return; 5720 5721 context->cpu_role.as_u64 = cpu_role.as_u64; 5722 context->root_role.word = root_role.word; 5723 context->page_fault = kvm_tdp_page_fault; 5724 context->sync_spte = NULL; 5725 context->get_guest_pgd = get_guest_cr3; 5726 context->get_pdptr = kvm_pdptr_read; 5727 context->inject_page_fault = kvm_inject_page_fault; 5728 5729 if (!is_cr0_pg(context)) 5730 context->gva_to_gpa = nonpaging_gva_to_gpa; 5731 else if (is_cr4_pae(context)) 5732 context->gva_to_gpa = paging64_gva_to_gpa; 5733 else 5734 context->gva_to_gpa = paging32_gva_to_gpa; 5735 5736 reset_guest_paging_metadata(vcpu, context); 5737 reset_tdp_shadow_zero_bits_mask(context); 5738 } 5739 5740 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context, 5741 union kvm_cpu_role cpu_role, 5742 union kvm_mmu_page_role root_role) 5743 { 5744 if (cpu_role.as_u64 == context->cpu_role.as_u64 && 5745 root_role.word == context->root_role.word) 5746 return; 5747 5748 context->cpu_role.as_u64 = cpu_role.as_u64; 5749 context->root_role.word = root_role.word; 5750 5751 if (!is_cr0_pg(context)) 5752 nonpaging_init_context(context); 5753 else if (is_cr4_pae(context)) 5754 paging64_init_context(context); 5755 else 5756 paging32_init_context(context); 5757 5758 reset_guest_paging_metadata(vcpu, context); 5759 reset_shadow_zero_bits_mask(vcpu, context); 5760 } 5761 5762 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, 5763 union kvm_cpu_role cpu_role) 5764 { 5765 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5766 union kvm_mmu_page_role root_role; 5767 5768 root_role = cpu_role.base; 5769 5770 /* KVM uses PAE paging whenever the guest isn't using 64-bit paging. */ 5771 root_role.level = max_t(u32, root_role.level, PT32E_ROOT_LEVEL); 5772 5773 /* 5774 * KVM forces EFER.NX=1 when TDP is disabled, reflect it in the MMU role. 5775 * KVM uses NX when TDP is disabled to handle a variety of scenarios, 5776 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and 5777 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0. 5778 * The iTLB multi-hit workaround can be toggled at any time, so assume 5779 * NX can be used by any non-nested shadow MMU to avoid having to reset 5780 * MMU contexts. 5781 */ 5782 root_role.efer_nx = true; 5783 5784 shadow_mmu_init_context(vcpu, context, cpu_role, root_role); 5785 } 5786 5787 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0, 5788 unsigned long cr4, u64 efer, gpa_t nested_cr3) 5789 { 5790 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 5791 struct kvm_mmu_role_regs regs = { 5792 .cr0 = cr0, 5793 .cr4 = cr4 & ~X86_CR4_PKE, 5794 .efer = efer, 5795 }; 5796 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); 5797 union kvm_mmu_page_role root_role; 5798 5799 /* NPT requires CR0.PG=1. */ 5800 WARN_ON_ONCE(cpu_role.base.direct || !cpu_role.base.guest_mode); 5801 5802 root_role = cpu_role.base; 5803 root_role.level = kvm_mmu_get_tdp_level(vcpu); 5804 if (root_role.level == PT64_ROOT_5LEVEL && 5805 cpu_role.base.level == PT64_ROOT_4LEVEL) 5806 root_role.passthrough = 1; 5807 5808 shadow_mmu_init_context(vcpu, context, cpu_role, root_role); 5809 kvm_mmu_new_pgd(vcpu, nested_cr3); 5810 } 5811 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_init_shadow_npt_mmu); 5812 5813 static union kvm_cpu_role 5814 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty, 5815 bool execonly, u8 level) 5816 { 5817 union kvm_cpu_role role = {0}; 5818 5819 /* 5820 * KVM does not support SMM transfer monitors, and consequently does not 5821 * support the "entry to SMM" control either. role.base.smm is always 0. 5822 */ 5823 WARN_ON_ONCE(is_smm(vcpu)); 5824 role.base.level = level; 5825 role.base.has_4_byte_gpte = false; 5826 role.base.direct = false; 5827 role.base.ad_disabled = !accessed_dirty; 5828 role.base.guest_mode = true; 5829 role.base.access = ACC_ALL; 5830 5831 role.ext.word = 0; 5832 role.ext.execonly = execonly; 5833 role.ext.valid = 1; 5834 5835 return role; 5836 } 5837 5838 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, 5839 int huge_page_level, bool accessed_dirty, 5840 gpa_t new_eptp) 5841 { 5842 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 5843 u8 level = vmx_eptp_page_walk_level(new_eptp); 5844 union kvm_cpu_role new_mode = 5845 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty, 5846 execonly, level); 5847 5848 if (new_mode.as_u64 != context->cpu_role.as_u64) { 5849 /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */ 5850 context->cpu_role.as_u64 = new_mode.as_u64; 5851 context->root_role.word = new_mode.base.word; 5852 5853 context->page_fault = ept_page_fault; 5854 context->gva_to_gpa = ept_gva_to_gpa; 5855 context->sync_spte = ept_sync_spte; 5856 5857 update_permission_bitmask(context, true); 5858 context->pkru_mask = 0; 5859 reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level); 5860 reset_ept_shadow_zero_bits_mask(context, execonly); 5861 } 5862 5863 kvm_mmu_new_pgd(vcpu, new_eptp); 5864 } 5865 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_init_shadow_ept_mmu); 5866 5867 static void init_kvm_softmmu(struct kvm_vcpu *vcpu, 5868 union kvm_cpu_role cpu_role) 5869 { 5870 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5871 5872 kvm_init_shadow_mmu(vcpu, cpu_role); 5873 5874 context->get_guest_pgd = get_guest_cr3; 5875 context->get_pdptr = kvm_pdptr_read; 5876 context->inject_page_fault = kvm_inject_page_fault; 5877 } 5878 5879 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu, 5880 union kvm_cpu_role new_mode) 5881 { 5882 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; 5883 5884 if (new_mode.as_u64 == g_context->cpu_role.as_u64) 5885 return; 5886 5887 g_context->cpu_role.as_u64 = new_mode.as_u64; 5888 g_context->get_guest_pgd = get_guest_cr3; 5889 g_context->get_pdptr = kvm_pdptr_read; 5890 g_context->inject_page_fault = kvm_inject_page_fault; 5891 5892 /* 5893 * L2 page tables are never shadowed, so there is no need to sync 5894 * SPTEs. 5895 */ 5896 g_context->sync_spte = NULL; 5897 5898 /* 5899 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using 5900 * L1's nested page tables (e.g. EPT12). The nested translation 5901 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using 5902 * L2's page tables as the first level of translation and L1's 5903 * nested page tables as the second level of translation. Basically 5904 * the gva_to_gpa functions between mmu and nested_mmu are swapped. 5905 */ 5906 if (!is_paging(vcpu)) 5907 g_context->gva_to_gpa = nonpaging_gva_to_gpa; 5908 else if (is_long_mode(vcpu)) 5909 g_context->gva_to_gpa = paging64_gva_to_gpa; 5910 else if (is_pae(vcpu)) 5911 g_context->gva_to_gpa = paging64_gva_to_gpa; 5912 else 5913 g_context->gva_to_gpa = paging32_gva_to_gpa; 5914 5915 reset_guest_paging_metadata(vcpu, g_context); 5916 } 5917 5918 void kvm_init_mmu(struct kvm_vcpu *vcpu) 5919 { 5920 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 5921 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); 5922 5923 if (mmu_is_nested(vcpu)) 5924 init_kvm_nested_mmu(vcpu, cpu_role); 5925 else if (tdp_enabled) 5926 init_kvm_tdp_mmu(vcpu, cpu_role); 5927 else 5928 init_kvm_softmmu(vcpu, cpu_role); 5929 } 5930 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_init_mmu); 5931 5932 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu) 5933 { 5934 /* 5935 * Invalidate all MMU roles to force them to reinitialize as CPUID 5936 * information is factored into reserved bit calculations. 5937 * 5938 * Correctly handling multiple vCPU models with respect to paging and 5939 * physical address properties) in a single VM would require tracking 5940 * all relevant CPUID information in kvm_mmu_page_role. That is very 5941 * undesirable as it would increase the memory requirements for 5942 * gfn_write_track (see struct kvm_mmu_page_role comments). For now 5943 * that problem is swept under the rug; KVM's CPUID API is horrific and 5944 * it's all but impossible to solve it without introducing a new API. 5945 */ 5946 vcpu->arch.root_mmu.root_role.invalid = 1; 5947 vcpu->arch.guest_mmu.root_role.invalid = 1; 5948 vcpu->arch.nested_mmu.root_role.invalid = 1; 5949 vcpu->arch.root_mmu.cpu_role.ext.valid = 0; 5950 vcpu->arch.guest_mmu.cpu_role.ext.valid = 0; 5951 vcpu->arch.nested_mmu.cpu_role.ext.valid = 0; 5952 kvm_mmu_reset_context(vcpu); 5953 5954 /* 5955 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in 5956 * kvm_arch_vcpu_ioctl(). 5957 */ 5958 KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm); 5959 } 5960 5961 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu) 5962 { 5963 kvm_mmu_unload(vcpu); 5964 kvm_init_mmu(vcpu); 5965 } 5966 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_reset_context); 5967 5968 int kvm_mmu_load(struct kvm_vcpu *vcpu) 5969 { 5970 int r; 5971 5972 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->root_role.direct); 5973 if (r) 5974 goto out; 5975 r = mmu_alloc_special_roots(vcpu); 5976 if (r) 5977 goto out; 5978 if (vcpu->arch.mmu->root_role.direct) 5979 r = mmu_alloc_direct_roots(vcpu); 5980 else 5981 r = mmu_alloc_shadow_roots(vcpu); 5982 if (r) 5983 goto out; 5984 5985 kvm_mmu_sync_roots(vcpu); 5986 5987 kvm_mmu_load_pgd(vcpu); 5988 5989 /* 5990 * Flush any TLB entries for the new root, the provenance of the root 5991 * is unknown. Even if KVM ensures there are no stale TLB entries 5992 * for a freed root, in theory another hypervisor could have left 5993 * stale entries. Flushing on alloc also allows KVM to skip the TLB 5994 * flush when freeing a root (see kvm_tdp_mmu_put_root()). 5995 */ 5996 kvm_x86_call(flush_tlb_current)(vcpu); 5997 out: 5998 return r; 5999 } 6000 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_load); 6001 6002 void kvm_mmu_unload(struct kvm_vcpu *vcpu) 6003 { 6004 struct kvm *kvm = vcpu->kvm; 6005 6006 kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL); 6007 WARN_ON_ONCE(VALID_PAGE(vcpu->arch.root_mmu.root.hpa)); 6008 kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); 6009 WARN_ON_ONCE(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa)); 6010 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 6011 } 6012 6013 static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa) 6014 { 6015 struct kvm_mmu_page *sp; 6016 6017 if (!VALID_PAGE(root_hpa)) 6018 return false; 6019 6020 /* 6021 * When freeing obsolete roots, treat roots as obsolete if they don't 6022 * have an associated shadow page, as it's impossible to determine if 6023 * such roots are fresh or stale. This does mean KVM will get false 6024 * positives and free roots that don't strictly need to be freed, but 6025 * such false positives are relatively rare: 6026 * 6027 * (a) only PAE paging and nested NPT have roots without shadow pages 6028 * (or any shadow paging flavor with a dummy root, see note below) 6029 * (b) remote reloads due to a memslot update obsoletes _all_ roots 6030 * (c) KVM doesn't track previous roots for PAE paging, and the guest 6031 * is unlikely to zap an in-use PGD. 6032 * 6033 * Note! Dummy roots are unique in that they are obsoleted by memslot 6034 * _creation_! See also FNAME(fetch). 6035 */ 6036 sp = root_to_sp(root_hpa); 6037 return !sp || is_obsolete_sp(kvm, sp); 6038 } 6039 6040 static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu) 6041 { 6042 unsigned long roots_to_free = 0; 6043 int i; 6044 6045 if (is_obsolete_root(kvm, mmu->root.hpa)) 6046 roots_to_free |= KVM_MMU_ROOT_CURRENT; 6047 6048 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 6049 if (is_obsolete_root(kvm, mmu->prev_roots[i].hpa)) 6050 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 6051 } 6052 6053 if (roots_to_free) 6054 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 6055 } 6056 6057 void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu) 6058 { 6059 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu); 6060 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu); 6061 } 6062 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_free_obsolete_roots); 6063 6064 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, 6065 int *bytes) 6066 { 6067 u64 gentry = 0; 6068 int r; 6069 6070 /* 6071 * Assume that the pte write on a page table of the same type 6072 * as the current vcpu paging mode since we update the sptes only 6073 * when they have the same mode. 6074 */ 6075 if (is_pae(vcpu) && *bytes == 4) { 6076 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ 6077 *gpa &= ~(gpa_t)7; 6078 *bytes = 8; 6079 } 6080 6081 if (*bytes == 4 || *bytes == 8) { 6082 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes); 6083 if (r) 6084 gentry = 0; 6085 } 6086 6087 return gentry; 6088 } 6089 6090 /* 6091 * If we're seeing too many writes to a page, it may no longer be a page table, 6092 * or we may be forking, in which case it is better to unmap the page. 6093 */ 6094 static bool detect_write_flooding(struct kvm_mmu_page *sp) 6095 { 6096 /* 6097 * Skip write-flooding detected for the sp whose level is 1, because 6098 * it can become unsync, then the guest page is not write-protected. 6099 */ 6100 if (sp->role.level == PG_LEVEL_4K) 6101 return false; 6102 6103 atomic_inc(&sp->write_flooding_count); 6104 return atomic_read(&sp->write_flooding_count) >= 3; 6105 } 6106 6107 /* 6108 * Misaligned accesses are too much trouble to fix up; also, they usually 6109 * indicate a page is not used as a page table. 6110 */ 6111 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, 6112 int bytes) 6113 { 6114 unsigned offset, pte_size, misaligned; 6115 6116 offset = offset_in_page(gpa); 6117 pte_size = sp->role.has_4_byte_gpte ? 4 : 8; 6118 6119 /* 6120 * Sometimes, the OS only writes the last one bytes to update status 6121 * bits, for example, in linux, andb instruction is used in clear_bit(). 6122 */ 6123 if (!(offset & (pte_size - 1)) && bytes == 1) 6124 return false; 6125 6126 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); 6127 misaligned |= bytes < 4; 6128 6129 return misaligned; 6130 } 6131 6132 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) 6133 { 6134 unsigned page_offset, quadrant; 6135 u64 *spte; 6136 int level; 6137 6138 page_offset = offset_in_page(gpa); 6139 level = sp->role.level; 6140 *nspte = 1; 6141 if (sp->role.has_4_byte_gpte) { 6142 page_offset <<= 1; /* 32->64 */ 6143 /* 6144 * A 32-bit pde maps 4MB while the shadow pdes map 6145 * only 2MB. So we need to double the offset again 6146 * and zap two pdes instead of one. 6147 */ 6148 if (level == PT32_ROOT_LEVEL) { 6149 page_offset &= ~7; /* kill rounding error */ 6150 page_offset <<= 1; 6151 *nspte = 2; 6152 } 6153 quadrant = page_offset >> PAGE_SHIFT; 6154 page_offset &= ~PAGE_MASK; 6155 if (quadrant != sp->role.quadrant) 6156 return NULL; 6157 } 6158 6159 spte = &sp->spt[page_offset / sizeof(*spte)]; 6160 return spte; 6161 } 6162 6163 void kvm_mmu_track_write(struct kvm_vcpu *vcpu, gpa_t gpa, const u8 *new, 6164 int bytes) 6165 { 6166 gfn_t gfn = gpa >> PAGE_SHIFT; 6167 struct kvm_mmu_page *sp; 6168 LIST_HEAD(invalid_list); 6169 u64 entry, gentry, *spte; 6170 int npte; 6171 bool flush = false; 6172 6173 /* 6174 * When emulating guest writes, ensure the written value is visible to 6175 * any task that is handling page faults before checking whether or not 6176 * KVM is shadowing a guest PTE. This ensures either KVM will create 6177 * the correct SPTE in the page fault handler, or this task will see 6178 * a non-zero indirect_shadow_pages. Pairs with the smp_mb() in 6179 * account_shadowed(). 6180 */ 6181 smp_mb(); 6182 if (!vcpu->kvm->arch.indirect_shadow_pages) 6183 return; 6184 6185 write_lock(&vcpu->kvm->mmu_lock); 6186 6187 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes); 6188 6189 ++vcpu->kvm->stat.mmu_pte_write; 6190 6191 for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) { 6192 if (detect_write_misaligned(sp, gpa, bytes) || 6193 detect_write_flooding(sp)) { 6194 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); 6195 ++vcpu->kvm->stat.mmu_flooded; 6196 continue; 6197 } 6198 6199 spte = get_written_sptes(sp, gpa, &npte); 6200 if (!spte) 6201 continue; 6202 6203 while (npte--) { 6204 entry = *spte; 6205 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL); 6206 if (gentry && sp->role.level != PG_LEVEL_4K) 6207 ++vcpu->kvm->stat.mmu_pde_zapped; 6208 if (is_shadow_present_pte(entry)) 6209 flush = true; 6210 ++spte; 6211 } 6212 } 6213 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 6214 write_unlock(&vcpu->kvm->mmu_lock); 6215 } 6216 6217 static bool is_write_to_guest_page_table(u64 error_code) 6218 { 6219 const u64 mask = PFERR_GUEST_PAGE_MASK | PFERR_WRITE_MASK | PFERR_PRESENT_MASK; 6220 6221 return (error_code & mask) == mask; 6222 } 6223 6224 static int kvm_mmu_write_protect_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 6225 u64 error_code, int *emulation_type) 6226 { 6227 bool direct = vcpu->arch.mmu->root_role.direct; 6228 6229 /* 6230 * Do not try to unprotect and retry if the vCPU re-faulted on the same 6231 * RIP with the same address that was previously unprotected, as doing 6232 * so will likely put the vCPU into an infinite. E.g. if the vCPU uses 6233 * a non-page-table modifying instruction on the PDE that points to the 6234 * instruction, then unprotecting the gfn will unmap the instruction's 6235 * code, i.e. make it impossible for the instruction to ever complete. 6236 */ 6237 if (vcpu->arch.last_retry_eip == kvm_rip_read(vcpu) && 6238 vcpu->arch.last_retry_addr == cr2_or_gpa) 6239 return RET_PF_EMULATE; 6240 6241 /* 6242 * Reset the unprotect+retry values that guard against infinite loops. 6243 * The values will be refreshed if KVM explicitly unprotects a gfn and 6244 * retries, in all other cases it's safe to retry in the future even if 6245 * the next page fault happens on the same RIP+address. 6246 */ 6247 vcpu->arch.last_retry_eip = 0; 6248 vcpu->arch.last_retry_addr = 0; 6249 6250 /* 6251 * It should be impossible to reach this point with an MMIO cache hit, 6252 * as RET_PF_WRITE_PROTECTED is returned if and only if there's a valid, 6253 * writable memslot, and creating a memslot should invalidate the MMIO 6254 * cache by way of changing the memslot generation. WARN and disallow 6255 * retry if MMIO is detected, as retrying MMIO emulation is pointless 6256 * and could put the vCPU into an infinite loop because the processor 6257 * will keep faulting on the non-existent MMIO address. 6258 */ 6259 if (WARN_ON_ONCE(mmio_info_in_cache(vcpu, cr2_or_gpa, direct))) 6260 return RET_PF_EMULATE; 6261 6262 /* 6263 * Before emulating the instruction, check to see if the access was due 6264 * to a read-only violation while the CPU was walking non-nested NPT 6265 * page tables, i.e. for a direct MMU, for _guest_ page tables in L1. 6266 * If L1 is sharing (a subset of) its page tables with L2, e.g. by 6267 * having nCR3 share lower level page tables with hCR3, then when KVM 6268 * (L0) write-protects the nested NPTs, i.e. npt12 entries, KVM is also 6269 * unknowingly write-protecting L1's guest page tables, which KVM isn't 6270 * shadowing. 6271 * 6272 * Because the CPU (by default) walks NPT page tables using a write 6273 * access (to ensure the CPU can do A/D updates), page walks in L1 can 6274 * trigger write faults for the above case even when L1 isn't modifying 6275 * PTEs. As a result, KVM will unnecessarily emulate (or at least, try 6276 * to emulate) an excessive number of L1 instructions; because L1's MMU 6277 * isn't shadowed by KVM, there is no need to write-protect L1's gPTEs 6278 * and thus no need to emulate in order to guarantee forward progress. 6279 * 6280 * Try to unprotect the gfn, i.e. zap any shadow pages, so that L1 can 6281 * proceed without triggering emulation. If one or more shadow pages 6282 * was zapped, skip emulation and resume L1 to let it natively execute 6283 * the instruction. If no shadow pages were zapped, then the write- 6284 * fault is due to something else entirely, i.e. KVM needs to emulate, 6285 * as resuming the guest will put it into an infinite loop. 6286 * 6287 * Note, this code also applies to Intel CPUs, even though it is *very* 6288 * unlikely that an L1 will share its page tables (IA32/PAE/paging64 6289 * format) with L2's page tables (EPT format). 6290 * 6291 * For indirect MMUs, i.e. if KVM is shadowing the current MMU, try to 6292 * unprotect the gfn and retry if an event is awaiting reinjection. If 6293 * KVM emulates multiple instructions before completing event injection, 6294 * the event could be delayed beyond what is architecturally allowed, 6295 * e.g. KVM could inject an IRQ after the TPR has been raised. 6296 */ 6297 if (((direct && is_write_to_guest_page_table(error_code)) || 6298 (!direct && kvm_event_needs_reinjection(vcpu))) && 6299 kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa)) 6300 return RET_PF_RETRY; 6301 6302 /* 6303 * The gfn is write-protected, but if KVM detects its emulating an 6304 * instruction that is unlikely to be used to modify page tables, or if 6305 * emulation fails, KVM can try to unprotect the gfn and let the CPU 6306 * re-execute the instruction that caused the page fault. Do not allow 6307 * retrying an instruction from a nested guest as KVM is only explicitly 6308 * shadowing L1's page tables, i.e. unprotecting something for L1 isn't 6309 * going to magically fix whatever issue caused L2 to fail. 6310 */ 6311 if (!is_guest_mode(vcpu)) 6312 *emulation_type |= EMULTYPE_ALLOW_RETRY_PF; 6313 6314 return RET_PF_EMULATE; 6315 } 6316 6317 int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 6318 void *insn, int insn_len) 6319 { 6320 int r, emulation_type = EMULTYPE_PF; 6321 bool direct = vcpu->arch.mmu->root_role.direct; 6322 6323 if (WARN_ON_ONCE(!VALID_PAGE(vcpu->arch.mmu->root.hpa))) 6324 return RET_PF_RETRY; 6325 6326 /* 6327 * Except for reserved faults (emulated MMIO is shared-only), set the 6328 * PFERR_PRIVATE_ACCESS flag for software-protected VMs based on the gfn's 6329 * current attributes, which are the source of truth for such VMs. Note, 6330 * this wrong for nested MMUs as the GPA is an L2 GPA, but KVM doesn't 6331 * currently supported nested virtualization (among many other things) 6332 * for software-protected VMs. 6333 */ 6334 if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && 6335 !(error_code & PFERR_RSVD_MASK) && 6336 vcpu->kvm->arch.vm_type == KVM_X86_SW_PROTECTED_VM && 6337 kvm_mem_is_private(vcpu->kvm, gpa_to_gfn(cr2_or_gpa))) 6338 error_code |= PFERR_PRIVATE_ACCESS; 6339 6340 r = RET_PF_INVALID; 6341 if (unlikely(error_code & PFERR_RSVD_MASK)) { 6342 if (WARN_ON_ONCE(error_code & PFERR_PRIVATE_ACCESS)) 6343 return -EFAULT; 6344 6345 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct); 6346 if (r == RET_PF_EMULATE) 6347 goto emulate; 6348 } 6349 6350 if (r == RET_PF_INVALID) { 6351 vcpu->stat.pf_taken++; 6352 6353 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, error_code, false, 6354 &emulation_type, NULL); 6355 if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm)) 6356 return -EIO; 6357 } 6358 6359 if (r < 0) 6360 return r; 6361 6362 if (r == RET_PF_WRITE_PROTECTED) 6363 r = kvm_mmu_write_protect_fault(vcpu, cr2_or_gpa, error_code, 6364 &emulation_type); 6365 6366 if (r == RET_PF_FIXED) 6367 vcpu->stat.pf_fixed++; 6368 else if (r == RET_PF_EMULATE) 6369 vcpu->stat.pf_emulate++; 6370 else if (r == RET_PF_SPURIOUS) 6371 vcpu->stat.pf_spurious++; 6372 6373 /* 6374 * None of handle_mmio_page_fault(), kvm_mmu_do_page_fault(), or 6375 * kvm_mmu_write_protect_fault() return RET_PF_CONTINUE. 6376 * kvm_mmu_do_page_fault() only uses RET_PF_CONTINUE internally to 6377 * indicate continuing the page fault handling until to the final 6378 * page table mapping phase. 6379 */ 6380 WARN_ON_ONCE(r == RET_PF_CONTINUE); 6381 if (r != RET_PF_EMULATE) 6382 return r; 6383 6384 emulate: 6385 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn, 6386 insn_len); 6387 } 6388 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_page_fault); 6389 6390 void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg) 6391 { 6392 u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; 6393 int root_level, leaf, level; 6394 6395 leaf = get_sptes_lockless(vcpu, gpa, sptes, &root_level); 6396 if (unlikely(leaf < 0)) 6397 return; 6398 6399 pr_err("%s %llx", msg, gpa); 6400 for (level = root_level; level >= leaf; level--) 6401 pr_cont(", spte[%d] = 0x%llx", level, sptes[level]); 6402 pr_cont("\n"); 6403 } 6404 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_print_sptes); 6405 6406 static void __kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 6407 u64 addr, hpa_t root_hpa) 6408 { 6409 struct kvm_shadow_walk_iterator iterator; 6410 6411 vcpu_clear_mmio_info(vcpu, addr); 6412 6413 /* 6414 * Walking and synchronizing SPTEs both assume they are operating in 6415 * the context of the current MMU, and would need to be reworked if 6416 * this is ever used to sync the guest_mmu, e.g. to emulate INVEPT. 6417 */ 6418 if (WARN_ON_ONCE(mmu != vcpu->arch.mmu)) 6419 return; 6420 6421 if (!VALID_PAGE(root_hpa)) 6422 return; 6423 6424 write_lock(&vcpu->kvm->mmu_lock); 6425 for_each_shadow_entry_using_root(vcpu, root_hpa, addr, iterator) { 6426 struct kvm_mmu_page *sp = sptep_to_sp(iterator.sptep); 6427 6428 if (sp->unsync) { 6429 int ret = kvm_sync_spte(vcpu, sp, iterator.index); 6430 6431 if (ret < 0) 6432 mmu_page_zap_pte(vcpu->kvm, sp, iterator.sptep, NULL); 6433 if (ret) 6434 kvm_flush_remote_tlbs_sptep(vcpu->kvm, iterator.sptep); 6435 } 6436 6437 if (!sp->unsync_children) 6438 break; 6439 } 6440 write_unlock(&vcpu->kvm->mmu_lock); 6441 } 6442 6443 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 6444 u64 addr, unsigned long roots) 6445 { 6446 int i; 6447 6448 WARN_ON_ONCE(roots & ~KVM_MMU_ROOTS_ALL); 6449 6450 /* It's actually a GPA for vcpu->arch.guest_mmu. */ 6451 if (mmu != &vcpu->arch.guest_mmu) { 6452 /* INVLPG on a non-canonical address is a NOP according to the SDM. */ 6453 if (is_noncanonical_invlpg_address(addr, vcpu)) 6454 return; 6455 6456 kvm_x86_call(flush_tlb_gva)(vcpu, addr); 6457 } 6458 6459 if (!mmu->sync_spte) 6460 return; 6461 6462 if (roots & KVM_MMU_ROOT_CURRENT) 6463 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->root.hpa); 6464 6465 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 6466 if (roots & KVM_MMU_ROOT_PREVIOUS(i)) 6467 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->prev_roots[i].hpa); 6468 } 6469 } 6470 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_invalidate_addr); 6471 6472 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) 6473 { 6474 /* 6475 * INVLPG is required to invalidate any global mappings for the VA, 6476 * irrespective of PCID. Blindly sync all roots as it would take 6477 * roughly the same amount of work/time to determine whether any of the 6478 * previous roots have a global mapping. 6479 * 6480 * Mappings not reachable via the current or previous cached roots will 6481 * be synced when switching to that new cr3, so nothing needs to be 6482 * done here for them. 6483 */ 6484 kvm_mmu_invalidate_addr(vcpu, vcpu->arch.walk_mmu, gva, KVM_MMU_ROOTS_ALL); 6485 ++vcpu->stat.invlpg; 6486 } 6487 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_mmu_invlpg); 6488 6489 6490 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid) 6491 { 6492 struct kvm_mmu *mmu = vcpu->arch.mmu; 6493 unsigned long roots = 0; 6494 uint i; 6495 6496 if (pcid == kvm_get_active_pcid(vcpu)) 6497 roots |= KVM_MMU_ROOT_CURRENT; 6498 6499 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 6500 if (VALID_PAGE(mmu->prev_roots[i].hpa) && 6501 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) 6502 roots |= KVM_MMU_ROOT_PREVIOUS(i); 6503 } 6504 6505 if (roots) 6506 kvm_mmu_invalidate_addr(vcpu, mmu, gva, roots); 6507 ++vcpu->stat.invlpg; 6508 6509 /* 6510 * Mappings not reachable via the current cr3 or the prev_roots will be 6511 * synced when switching to that cr3, so nothing needs to be done here 6512 * for them. 6513 */ 6514 } 6515 6516 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 6517 int tdp_max_root_level, int tdp_huge_page_level) 6518 { 6519 tdp_enabled = enable_tdp; 6520 tdp_root_level = tdp_forced_root_level; 6521 max_tdp_level = tdp_max_root_level; 6522 6523 #ifdef CONFIG_X86_64 6524 tdp_mmu_enabled = tdp_mmu_allowed && tdp_enabled; 6525 #endif 6526 /* 6527 * max_huge_page_level reflects KVM's MMU capabilities irrespective 6528 * of kernel support, e.g. KVM may be capable of using 1GB pages when 6529 * the kernel is not. But, KVM never creates a page size greater than 6530 * what is used by the kernel for any given HVA, i.e. the kernel's 6531 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust(). 6532 */ 6533 if (tdp_enabled) 6534 max_huge_page_level = tdp_huge_page_level; 6535 else if (boot_cpu_has(X86_FEATURE_GBPAGES)) 6536 max_huge_page_level = PG_LEVEL_1G; 6537 else 6538 max_huge_page_level = PG_LEVEL_2M; 6539 } 6540 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_configure_mmu); 6541 6542 static void free_mmu_pages(struct kvm_mmu *mmu) 6543 { 6544 if (!tdp_enabled && mmu->pae_root) 6545 set_memory_encrypted((unsigned long)mmu->pae_root, 1); 6546 free_page((unsigned long)mmu->pae_root); 6547 free_page((unsigned long)mmu->pml4_root); 6548 free_page((unsigned long)mmu->pml5_root); 6549 } 6550 6551 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 6552 { 6553 struct page *page; 6554 int i; 6555 6556 mmu->root.hpa = INVALID_PAGE; 6557 mmu->root.pgd = 0; 6558 mmu->mirror_root_hpa = INVALID_PAGE; 6559 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 6560 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 6561 6562 /* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */ 6563 if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu) 6564 return 0; 6565 6566 /* 6567 * When using PAE paging, the four PDPTEs are treated as 'root' pages, 6568 * while the PDP table is a per-vCPU construct that's allocated at MMU 6569 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on 6570 * x86_64. Therefore we need to allocate the PDP table in the first 6571 * 4GB of memory, which happens to fit the DMA32 zone. TDP paging 6572 * generally doesn't use PAE paging and can skip allocating the PDP 6573 * table. The main exception, handled here, is SVM's 32-bit NPT. The 6574 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit 6575 * KVM; that horror is handled on-demand by mmu_alloc_special_roots(). 6576 */ 6577 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL) 6578 return 0; 6579 6580 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32); 6581 if (!page) 6582 return -ENOMEM; 6583 6584 mmu->pae_root = page_address(page); 6585 6586 /* 6587 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to 6588 * get the CPU to treat the PDPTEs as encrypted. Decrypt the page so 6589 * that KVM's writes and the CPU's reads get along. Note, this is 6590 * only necessary when using shadow paging, as 64-bit NPT can get at 6591 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported 6592 * by 32-bit kernels (when KVM itself uses 32-bit NPT). 6593 */ 6594 if (!tdp_enabled) 6595 set_memory_decrypted((unsigned long)mmu->pae_root, 1); 6596 else 6597 WARN_ON_ONCE(shadow_me_value); 6598 6599 for (i = 0; i < 4; ++i) 6600 mmu->pae_root[i] = INVALID_PAE_ROOT; 6601 6602 return 0; 6603 } 6604 6605 int kvm_mmu_create(struct kvm_vcpu *vcpu) 6606 { 6607 int ret; 6608 6609 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache; 6610 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO; 6611 6612 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache; 6613 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO; 6614 6615 vcpu->arch.mmu_shadow_page_cache.init_value = 6616 SHADOW_NONPRESENT_VALUE; 6617 if (!vcpu->arch.mmu_shadow_page_cache.init_value) 6618 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO; 6619 6620 vcpu->arch.mmu = &vcpu->arch.root_mmu; 6621 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; 6622 6623 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu); 6624 if (ret) 6625 return ret; 6626 6627 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu); 6628 if (ret) 6629 goto fail_allocate_root; 6630 6631 return ret; 6632 fail_allocate_root: 6633 free_mmu_pages(&vcpu->arch.guest_mmu); 6634 return ret; 6635 } 6636 6637 #define BATCH_ZAP_PAGES 10 6638 static void kvm_zap_obsolete_pages(struct kvm *kvm) 6639 { 6640 struct kvm_mmu_page *sp, *node; 6641 int nr_zapped, batch = 0; 6642 LIST_HEAD(invalid_list); 6643 bool unstable; 6644 6645 lockdep_assert_held(&kvm->slots_lock); 6646 6647 restart: 6648 list_for_each_entry_safe_reverse(sp, node, 6649 &kvm->arch.active_mmu_pages, link) { 6650 /* 6651 * No obsolete valid page exists before a newly created page 6652 * since active_mmu_pages is a FIFO list. 6653 */ 6654 if (!is_obsolete_sp(kvm, sp)) 6655 break; 6656 6657 /* 6658 * Invalid pages should never land back on the list of active 6659 * pages. Skip the bogus page, otherwise we'll get stuck in an 6660 * infinite loop if the page gets put back on the list (again). 6661 */ 6662 if (WARN_ON_ONCE(sp->role.invalid)) 6663 continue; 6664 6665 /* 6666 * No need to flush the TLB since we're only zapping shadow 6667 * pages with an obsolete generation number and all vCPUS have 6668 * loaded a new root, i.e. the shadow pages being zapped cannot 6669 * be in active use by the guest. 6670 */ 6671 if (batch >= BATCH_ZAP_PAGES && 6672 cond_resched_rwlock_write(&kvm->mmu_lock)) { 6673 batch = 0; 6674 goto restart; 6675 } 6676 6677 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, 6678 &invalid_list, &nr_zapped); 6679 batch += nr_zapped; 6680 6681 if (unstable) 6682 goto restart; 6683 } 6684 6685 /* 6686 * Kick all vCPUs (via remote TLB flush) before freeing the page tables 6687 * to ensure KVM is not in the middle of a lockless shadow page table 6688 * walk, which may reference the pages. The remote TLB flush itself is 6689 * not required and is simply a convenient way to kick vCPUs as needed. 6690 * KVM performs a local TLB flush when allocating a new root (see 6691 * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are 6692 * running with an obsolete MMU. 6693 */ 6694 kvm_mmu_commit_zap_page(kvm, &invalid_list); 6695 } 6696 6697 /* 6698 * Fast invalidate all shadow pages and use lock-break technique 6699 * to zap obsolete pages. 6700 * 6701 * It's required when memslot is being deleted or VM is being 6702 * destroyed, in these cases, we should ensure that KVM MMU does 6703 * not use any resource of the being-deleted slot or all slots 6704 * after calling the function. 6705 */ 6706 static void kvm_mmu_zap_all_fast(struct kvm *kvm) 6707 { 6708 lockdep_assert_held(&kvm->slots_lock); 6709 6710 write_lock(&kvm->mmu_lock); 6711 trace_kvm_mmu_zap_all_fast(kvm); 6712 6713 /* 6714 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is 6715 * held for the entire duration of zapping obsolete pages, it's 6716 * impossible for there to be multiple invalid generations associated 6717 * with *valid* shadow pages at any given time, i.e. there is exactly 6718 * one valid generation and (at most) one invalid generation. 6719 */ 6720 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1; 6721 6722 /* 6723 * In order to ensure all vCPUs drop their soon-to-be invalid roots, 6724 * invalidating TDP MMU roots must be done while holding mmu_lock for 6725 * write and in the same critical section as making the reload request, 6726 * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield. 6727 */ 6728 if (tdp_mmu_enabled) { 6729 /* 6730 * External page tables don't support fast zapping, therefore 6731 * their mirrors must be invalidated separately by the caller. 6732 */ 6733 kvm_tdp_mmu_invalidate_roots(kvm, KVM_DIRECT_ROOTS); 6734 } 6735 6736 /* 6737 * Notify all vcpus to reload its shadow page table and flush TLB. 6738 * Then all vcpus will switch to new shadow page table with the new 6739 * mmu_valid_gen. 6740 * 6741 * Note: we need to do this under the protection of mmu_lock, 6742 * otherwise, vcpu would purge shadow page but miss tlb flush. 6743 */ 6744 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 6745 6746 kvm_zap_obsolete_pages(kvm); 6747 6748 write_unlock(&kvm->mmu_lock); 6749 6750 /* 6751 * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before 6752 * returning to the caller, e.g. if the zap is in response to a memslot 6753 * deletion, mmu_notifier callbacks will be unable to reach the SPTEs 6754 * associated with the deleted memslot once the update completes, and 6755 * Deferring the zap until the final reference to the root is put would 6756 * lead to use-after-free. 6757 */ 6758 if (tdp_mmu_enabled) 6759 kvm_tdp_mmu_zap_invalidated_roots(kvm, true); 6760 } 6761 6762 int kvm_mmu_init_vm(struct kvm *kvm) 6763 { 6764 int r, i; 6765 6766 kvm->arch.shadow_mmio_value = shadow_mmio_value; 6767 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 6768 for (i = 0; i < KVM_NR_MMU_TYPES; ++i) 6769 INIT_LIST_HEAD(&kvm->arch.possible_nx_huge_pages[i].pages); 6770 spin_lock_init(&kvm->arch.mmu_unsync_pages_lock); 6771 6772 if (tdp_mmu_enabled) { 6773 kvm_mmu_init_tdp_mmu(kvm); 6774 } else { 6775 r = kvm_mmu_alloc_page_hash(kvm); 6776 if (r) 6777 return r; 6778 } 6779 6780 kvm->arch.split_page_header_cache.kmem_cache = mmu_page_header_cache; 6781 kvm->arch.split_page_header_cache.gfp_zero = __GFP_ZERO; 6782 6783 kvm->arch.split_shadow_page_cache.gfp_zero = __GFP_ZERO; 6784 6785 kvm->arch.split_desc_cache.kmem_cache = pte_list_desc_cache; 6786 kvm->arch.split_desc_cache.gfp_zero = __GFP_ZERO; 6787 return 0; 6788 } 6789 6790 static void mmu_free_vm_memory_caches(struct kvm *kvm) 6791 { 6792 kvm_mmu_free_memory_cache(&kvm->arch.split_desc_cache); 6793 kvm_mmu_free_memory_cache(&kvm->arch.split_page_header_cache); 6794 kvm_mmu_free_memory_cache(&kvm->arch.split_shadow_page_cache); 6795 } 6796 6797 void kvm_mmu_uninit_vm(struct kvm *kvm) 6798 { 6799 kvfree(kvm->arch.mmu_page_hash); 6800 6801 if (tdp_mmu_enabled) 6802 kvm_mmu_uninit_tdp_mmu(kvm); 6803 6804 mmu_free_vm_memory_caches(kvm); 6805 } 6806 6807 static bool kvm_rmap_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 6808 { 6809 const struct kvm_memory_slot *memslot; 6810 struct kvm_memslots *slots; 6811 struct kvm_memslot_iter iter; 6812 bool flush = false; 6813 gfn_t start, end; 6814 int i; 6815 6816 if (!kvm_memslots_have_rmaps(kvm)) 6817 return flush; 6818 6819 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 6820 slots = __kvm_memslots(kvm, i); 6821 6822 kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) { 6823 memslot = iter.slot; 6824 start = max(gfn_start, memslot->base_gfn); 6825 end = min(gfn_end, memslot->base_gfn + memslot->npages); 6826 if (WARN_ON_ONCE(start >= end)) 6827 continue; 6828 6829 flush = __kvm_rmap_zap_gfn_range(kvm, memslot, start, 6830 end, true, flush); 6831 } 6832 } 6833 6834 return flush; 6835 } 6836 6837 /* 6838 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end 6839 * (not including it) 6840 */ 6841 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 6842 { 6843 bool flush; 6844 6845 if (WARN_ON_ONCE(gfn_end <= gfn_start)) 6846 return; 6847 6848 write_lock(&kvm->mmu_lock); 6849 6850 kvm_mmu_invalidate_begin(kvm); 6851 6852 kvm_mmu_invalidate_range_add(kvm, gfn_start, gfn_end); 6853 6854 flush = kvm_rmap_zap_gfn_range(kvm, gfn_start, gfn_end); 6855 6856 if (tdp_mmu_enabled) 6857 flush = kvm_tdp_mmu_zap_leafs(kvm, gfn_start, gfn_end, flush); 6858 6859 if (flush) 6860 kvm_flush_remote_tlbs_range(kvm, gfn_start, gfn_end - gfn_start); 6861 6862 kvm_mmu_invalidate_end(kvm); 6863 6864 write_unlock(&kvm->mmu_lock); 6865 } 6866 6867 static bool slot_rmap_write_protect(struct kvm *kvm, 6868 struct kvm_rmap_head *rmap_head, 6869 const struct kvm_memory_slot *slot) 6870 { 6871 return rmap_write_protect(rmap_head, false); 6872 } 6873 6874 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 6875 const struct kvm_memory_slot *memslot, 6876 int start_level) 6877 { 6878 if (kvm_memslots_have_rmaps(kvm)) { 6879 write_lock(&kvm->mmu_lock); 6880 walk_slot_rmaps(kvm, memslot, slot_rmap_write_protect, 6881 start_level, KVM_MAX_HUGEPAGE_LEVEL, false); 6882 write_unlock(&kvm->mmu_lock); 6883 } 6884 6885 if (tdp_mmu_enabled) { 6886 read_lock(&kvm->mmu_lock); 6887 kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level); 6888 read_unlock(&kvm->mmu_lock); 6889 } 6890 } 6891 6892 static inline bool need_topup(struct kvm_mmu_memory_cache *cache, int min) 6893 { 6894 return kvm_mmu_memory_cache_nr_free_objects(cache) < min; 6895 } 6896 6897 static bool need_topup_split_caches_or_resched(struct kvm *kvm) 6898 { 6899 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) 6900 return true; 6901 6902 /* 6903 * In the worst case, SPLIT_DESC_CACHE_MIN_NR_OBJECTS descriptors are needed 6904 * to split a single huge page. Calculating how many are actually needed 6905 * is possible but not worth the complexity. 6906 */ 6907 return need_topup(&kvm->arch.split_desc_cache, SPLIT_DESC_CACHE_MIN_NR_OBJECTS) || 6908 need_topup(&kvm->arch.split_page_header_cache, 1) || 6909 need_topup(&kvm->arch.split_shadow_page_cache, 1); 6910 } 6911 6912 static int topup_split_caches(struct kvm *kvm) 6913 { 6914 /* 6915 * Allocating rmap list entries when splitting huge pages for nested 6916 * MMUs is uncommon as KVM needs to use a list if and only if there is 6917 * more than one rmap entry for a gfn, i.e. requires an L1 gfn to be 6918 * aliased by multiple L2 gfns and/or from multiple nested roots with 6919 * different roles. Aliasing gfns when using TDP is atypical for VMMs; 6920 * a few gfns are often aliased during boot, e.g. when remapping BIOS, 6921 * but aliasing rarely occurs post-boot or for many gfns. If there is 6922 * only one rmap entry, rmap->val points directly at that one entry and 6923 * doesn't need to allocate a list. Buffer the cache by the default 6924 * capacity so that KVM doesn't have to drop mmu_lock to topup if KVM 6925 * encounters an aliased gfn or two. 6926 */ 6927 const int capacity = SPLIT_DESC_CACHE_MIN_NR_OBJECTS + 6928 KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE; 6929 int r; 6930 6931 lockdep_assert_held(&kvm->slots_lock); 6932 6933 r = __kvm_mmu_topup_memory_cache(&kvm->arch.split_desc_cache, capacity, 6934 SPLIT_DESC_CACHE_MIN_NR_OBJECTS); 6935 if (r) 6936 return r; 6937 6938 r = kvm_mmu_topup_memory_cache(&kvm->arch.split_page_header_cache, 1); 6939 if (r) 6940 return r; 6941 6942 return kvm_mmu_topup_memory_cache(&kvm->arch.split_shadow_page_cache, 1); 6943 } 6944 6945 static struct kvm_mmu_page *shadow_mmu_get_sp_for_split(struct kvm *kvm, u64 *huge_sptep) 6946 { 6947 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); 6948 struct shadow_page_caches caches = {}; 6949 union kvm_mmu_page_role role; 6950 unsigned int access; 6951 gfn_t gfn; 6952 6953 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep)); 6954 access = kvm_mmu_page_get_access(huge_sp, spte_index(huge_sptep)); 6955 6956 /* 6957 * Note, huge page splitting always uses direct shadow pages, regardless 6958 * of whether the huge page itself is mapped by a direct or indirect 6959 * shadow page, since the huge page region itself is being directly 6960 * mapped with smaller pages. 6961 */ 6962 role = kvm_mmu_child_role(huge_sptep, /*direct=*/true, access); 6963 6964 /* Direct SPs do not require a shadowed_info_cache. */ 6965 caches.page_header_cache = &kvm->arch.split_page_header_cache; 6966 caches.shadow_page_cache = &kvm->arch.split_shadow_page_cache; 6967 6968 /* Safe to pass NULL for vCPU since requesting a direct SP. */ 6969 return __kvm_mmu_get_shadow_page(kvm, NULL, &caches, gfn, role); 6970 } 6971 6972 static void shadow_mmu_split_huge_page(struct kvm *kvm, 6973 const struct kvm_memory_slot *slot, 6974 u64 *huge_sptep) 6975 6976 { 6977 struct kvm_mmu_memory_cache *cache = &kvm->arch.split_desc_cache; 6978 u64 huge_spte = READ_ONCE(*huge_sptep); 6979 struct kvm_mmu_page *sp; 6980 bool flush = false; 6981 u64 *sptep, spte; 6982 gfn_t gfn; 6983 int index; 6984 6985 sp = shadow_mmu_get_sp_for_split(kvm, huge_sptep); 6986 6987 for (index = 0; index < SPTE_ENT_PER_PAGE; index++) { 6988 sptep = &sp->spt[index]; 6989 gfn = kvm_mmu_page_get_gfn(sp, index); 6990 6991 /* 6992 * The SP may already have populated SPTEs, e.g. if this huge 6993 * page is aliased by multiple sptes with the same access 6994 * permissions. These entries are guaranteed to map the same 6995 * gfn-to-pfn translation since the SP is direct, so no need to 6996 * modify them. 6997 * 6998 * However, if a given SPTE points to a lower level page table, 6999 * that lower level page table may only be partially populated. 7000 * Installing such SPTEs would effectively unmap a potion of the 7001 * huge page. Unmapping guest memory always requires a TLB flush 7002 * since a subsequent operation on the unmapped regions would 7003 * fail to detect the need to flush. 7004 */ 7005 if (is_shadow_present_pte(*sptep)) { 7006 flush |= !is_last_spte(*sptep, sp->role.level); 7007 continue; 7008 } 7009 7010 spte = make_small_spte(kvm, huge_spte, sp->role, index); 7011 mmu_spte_set(sptep, spte); 7012 __rmap_add(kvm, cache, slot, sptep, gfn, sp->role.access); 7013 } 7014 7015 __link_shadow_page(kvm, cache, huge_sptep, sp, flush); 7016 } 7017 7018 static int shadow_mmu_try_split_huge_page(struct kvm *kvm, 7019 const struct kvm_memory_slot *slot, 7020 u64 *huge_sptep) 7021 { 7022 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); 7023 int level, r = 0; 7024 gfn_t gfn; 7025 u64 spte; 7026 7027 /* Grab information for the tracepoint before dropping the MMU lock. */ 7028 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep)); 7029 level = huge_sp->role.level; 7030 spte = *huge_sptep; 7031 7032 if (kvm_mmu_available_pages(kvm) <= KVM_MIN_FREE_MMU_PAGES) { 7033 r = -ENOSPC; 7034 goto out; 7035 } 7036 7037 if (need_topup_split_caches_or_resched(kvm)) { 7038 write_unlock(&kvm->mmu_lock); 7039 cond_resched(); 7040 /* 7041 * If the topup succeeds, return -EAGAIN to indicate that the 7042 * rmap iterator should be restarted because the MMU lock was 7043 * dropped. 7044 */ 7045 r = topup_split_caches(kvm) ?: -EAGAIN; 7046 write_lock(&kvm->mmu_lock); 7047 goto out; 7048 } 7049 7050 shadow_mmu_split_huge_page(kvm, slot, huge_sptep); 7051 7052 out: 7053 trace_kvm_mmu_split_huge_page(gfn, spte, level, r); 7054 return r; 7055 } 7056 7057 static bool shadow_mmu_try_split_huge_pages(struct kvm *kvm, 7058 struct kvm_rmap_head *rmap_head, 7059 const struct kvm_memory_slot *slot) 7060 { 7061 struct rmap_iterator iter; 7062 struct kvm_mmu_page *sp; 7063 u64 *huge_sptep; 7064 int r; 7065 7066 restart: 7067 for_each_rmap_spte(rmap_head, &iter, huge_sptep) { 7068 sp = sptep_to_sp(huge_sptep); 7069 7070 /* TDP MMU is enabled, so rmap only contains nested MMU SPs. */ 7071 if (WARN_ON_ONCE(!sp->role.guest_mode)) 7072 continue; 7073 7074 /* The rmaps should never contain non-leaf SPTEs. */ 7075 if (WARN_ON_ONCE(!is_large_pte(*huge_sptep))) 7076 continue; 7077 7078 /* SPs with level >PG_LEVEL_4K should never by unsync. */ 7079 if (WARN_ON_ONCE(sp->unsync)) 7080 continue; 7081 7082 /* Don't bother splitting huge pages on invalid SPs. */ 7083 if (sp->role.invalid) 7084 continue; 7085 7086 r = shadow_mmu_try_split_huge_page(kvm, slot, huge_sptep); 7087 7088 /* 7089 * The split succeeded or needs to be retried because the MMU 7090 * lock was dropped. Either way, restart the iterator to get it 7091 * back into a consistent state. 7092 */ 7093 if (!r || r == -EAGAIN) 7094 goto restart; 7095 7096 /* The split failed and shouldn't be retried (e.g. -ENOMEM). */ 7097 break; 7098 } 7099 7100 return false; 7101 } 7102 7103 static void kvm_shadow_mmu_try_split_huge_pages(struct kvm *kvm, 7104 const struct kvm_memory_slot *slot, 7105 gfn_t start, gfn_t end, 7106 int target_level) 7107 { 7108 int level; 7109 7110 /* 7111 * Split huge pages starting with KVM_MAX_HUGEPAGE_LEVEL and working 7112 * down to the target level. This ensures pages are recursively split 7113 * all the way to the target level. There's no need to split pages 7114 * already at the target level. 7115 */ 7116 for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--) 7117 __walk_slot_rmaps(kvm, slot, shadow_mmu_try_split_huge_pages, 7118 level, level, start, end - 1, true, true, false); 7119 } 7120 7121 /* Must be called with the mmu_lock held in write-mode. */ 7122 void kvm_mmu_try_split_huge_pages(struct kvm *kvm, 7123 const struct kvm_memory_slot *memslot, 7124 u64 start, u64 end, 7125 int target_level) 7126 { 7127 if (!tdp_mmu_enabled) 7128 return; 7129 7130 if (kvm_memslots_have_rmaps(kvm)) 7131 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); 7132 7133 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, false); 7134 7135 /* 7136 * A TLB flush is unnecessary at this point for the same reasons as in 7137 * kvm_mmu_slot_try_split_huge_pages(). 7138 */ 7139 } 7140 7141 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, 7142 const struct kvm_memory_slot *memslot, 7143 int target_level) 7144 { 7145 u64 start = memslot->base_gfn; 7146 u64 end = start + memslot->npages; 7147 7148 if (!tdp_mmu_enabled) 7149 return; 7150 7151 if (kvm_memslots_have_rmaps(kvm)) { 7152 write_lock(&kvm->mmu_lock); 7153 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); 7154 write_unlock(&kvm->mmu_lock); 7155 } 7156 7157 read_lock(&kvm->mmu_lock); 7158 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true); 7159 read_unlock(&kvm->mmu_lock); 7160 7161 /* 7162 * No TLB flush is necessary here. KVM will flush TLBs after 7163 * write-protecting and/or clearing dirty on the newly split SPTEs to 7164 * ensure that guest writes are reflected in the dirty log before the 7165 * ioctl to enable dirty logging on this memslot completes. Since the 7166 * split SPTEs retain the write and dirty bits of the huge SPTE, it is 7167 * safe for KVM to decide if a TLB flush is necessary based on the split 7168 * SPTEs. 7169 */ 7170 } 7171 7172 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, 7173 struct kvm_rmap_head *rmap_head, 7174 const struct kvm_memory_slot *slot) 7175 { 7176 u64 *sptep; 7177 struct rmap_iterator iter; 7178 int need_tlb_flush = 0; 7179 struct kvm_mmu_page *sp; 7180 7181 restart: 7182 for_each_rmap_spte(rmap_head, &iter, sptep) { 7183 sp = sptep_to_sp(sptep); 7184 7185 /* 7186 * We cannot do huge page mapping for indirect shadow pages, 7187 * which are found on the last rmap (level = 1) when not using 7188 * tdp; such shadow pages are synced with the page table in 7189 * the guest, and the guest page table is using 4K page size 7190 * mapping if the indirect sp has level = 1. 7191 */ 7192 if (sp->role.direct && 7193 sp->role.level < kvm_mmu_max_mapping_level(kvm, NULL, slot, sp->gfn)) { 7194 kvm_zap_one_rmap_spte(kvm, rmap_head, sptep); 7195 7196 if (kvm_available_flush_remote_tlbs_range()) 7197 kvm_flush_remote_tlbs_sptep(kvm, sptep); 7198 else 7199 need_tlb_flush = 1; 7200 7201 goto restart; 7202 } 7203 } 7204 7205 return need_tlb_flush; 7206 } 7207 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_zap_gfn_range); 7208 7209 static void kvm_rmap_zap_collapsible_sptes(struct kvm *kvm, 7210 const struct kvm_memory_slot *slot) 7211 { 7212 /* 7213 * Note, use KVM_MAX_HUGEPAGE_LEVEL - 1 since there's no need to zap 7214 * pages that are already mapped at the maximum hugepage level. 7215 */ 7216 if (walk_slot_rmaps(kvm, slot, kvm_mmu_zap_collapsible_spte, 7217 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL - 1, true)) 7218 kvm_flush_remote_tlbs_memslot(kvm, slot); 7219 } 7220 7221 void kvm_mmu_recover_huge_pages(struct kvm *kvm, 7222 const struct kvm_memory_slot *slot) 7223 { 7224 if (kvm_memslots_have_rmaps(kvm)) { 7225 write_lock(&kvm->mmu_lock); 7226 kvm_rmap_zap_collapsible_sptes(kvm, slot); 7227 write_unlock(&kvm->mmu_lock); 7228 } 7229 7230 if (tdp_mmu_enabled) { 7231 read_lock(&kvm->mmu_lock); 7232 kvm_tdp_mmu_recover_huge_pages(kvm, slot); 7233 read_unlock(&kvm->mmu_lock); 7234 } 7235 } 7236 7237 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 7238 const struct kvm_memory_slot *memslot) 7239 { 7240 if (kvm_memslots_have_rmaps(kvm)) { 7241 write_lock(&kvm->mmu_lock); 7242 /* 7243 * Clear dirty bits only on 4k SPTEs since the legacy MMU only 7244 * support dirty logging at a 4k granularity. 7245 */ 7246 walk_slot_rmaps_4k(kvm, memslot, __rmap_clear_dirty, false); 7247 write_unlock(&kvm->mmu_lock); 7248 } 7249 7250 if (tdp_mmu_enabled) { 7251 read_lock(&kvm->mmu_lock); 7252 kvm_tdp_mmu_clear_dirty_slot(kvm, memslot); 7253 read_unlock(&kvm->mmu_lock); 7254 } 7255 7256 /* 7257 * The caller will flush the TLBs after this function returns. 7258 * 7259 * It's also safe to flush TLBs out of mmu lock here as currently this 7260 * function is only used for dirty logging, in which case flushing TLB 7261 * out of mmu lock also guarantees no dirty pages will be lost in 7262 * dirty_bitmap. 7263 */ 7264 } 7265 7266 static void kvm_mmu_zap_all(struct kvm *kvm) 7267 { 7268 struct kvm_mmu_page *sp, *node; 7269 LIST_HEAD(invalid_list); 7270 int ign; 7271 7272 write_lock(&kvm->mmu_lock); 7273 restart: 7274 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) { 7275 if (WARN_ON_ONCE(sp->role.invalid)) 7276 continue; 7277 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign)) 7278 goto restart; 7279 if (cond_resched_rwlock_write(&kvm->mmu_lock)) 7280 goto restart; 7281 } 7282 7283 kvm_mmu_commit_zap_page(kvm, &invalid_list); 7284 7285 if (tdp_mmu_enabled) 7286 kvm_tdp_mmu_zap_all(kvm); 7287 7288 write_unlock(&kvm->mmu_lock); 7289 } 7290 7291 void kvm_arch_flush_shadow_all(struct kvm *kvm) 7292 { 7293 kvm_mmu_zap_all(kvm); 7294 } 7295 7296 static void kvm_mmu_zap_memslot_pages_and_flush(struct kvm *kvm, 7297 struct kvm_memory_slot *slot, 7298 bool flush) 7299 { 7300 LIST_HEAD(invalid_list); 7301 unsigned long i; 7302 7303 if (list_empty(&kvm->arch.active_mmu_pages)) 7304 goto out_flush; 7305 7306 /* 7307 * Since accounting information is stored in struct kvm_arch_memory_slot, 7308 * all MMU pages that are shadowing guest PTEs must be zapped before the 7309 * memslot is deleted, as freeing such pages after the memslot is freed 7310 * will result in use-after-free, e.g. in unaccount_shadowed(). 7311 */ 7312 for (i = 0; i < slot->npages; i++) { 7313 struct kvm_mmu_page *sp; 7314 gfn_t gfn = slot->base_gfn + i; 7315 7316 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) 7317 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 7318 7319 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 7320 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7321 flush = false; 7322 cond_resched_rwlock_write(&kvm->mmu_lock); 7323 } 7324 } 7325 7326 out_flush: 7327 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7328 } 7329 7330 static void kvm_mmu_zap_memslot(struct kvm *kvm, 7331 struct kvm_memory_slot *slot) 7332 { 7333 struct kvm_gfn_range range = { 7334 .slot = slot, 7335 .start = slot->base_gfn, 7336 .end = slot->base_gfn + slot->npages, 7337 .may_block = true, 7338 .attr_filter = KVM_FILTER_PRIVATE | KVM_FILTER_SHARED, 7339 }; 7340 bool flush; 7341 7342 write_lock(&kvm->mmu_lock); 7343 flush = kvm_unmap_gfn_range(kvm, &range); 7344 kvm_mmu_zap_memslot_pages_and_flush(kvm, slot, flush); 7345 write_unlock(&kvm->mmu_lock); 7346 } 7347 7348 static inline bool kvm_memslot_flush_zap_all(struct kvm *kvm) 7349 { 7350 return kvm->arch.vm_type == KVM_X86_DEFAULT_VM && 7351 kvm_check_has_quirk(kvm, KVM_X86_QUIRK_SLOT_ZAP_ALL); 7352 } 7353 7354 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 7355 struct kvm_memory_slot *slot) 7356 { 7357 if (kvm_memslot_flush_zap_all(kvm)) 7358 kvm_mmu_zap_all_fast(kvm); 7359 else 7360 kvm_mmu_zap_memslot(kvm, slot); 7361 } 7362 7363 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen) 7364 { 7365 WARN_ON_ONCE(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 7366 7367 gen &= MMIO_SPTE_GEN_MASK; 7368 7369 /* 7370 * Generation numbers are incremented in multiples of the number of 7371 * address spaces in order to provide unique generations across all 7372 * address spaces. Strip what is effectively the address space 7373 * modifier prior to checking for a wrap of the MMIO generation so 7374 * that a wrap in any address space is detected. 7375 */ 7376 gen &= ~((u64)kvm_arch_nr_memslot_as_ids(kvm) - 1); 7377 7378 /* 7379 * The very rare case: if the MMIO generation number has wrapped, 7380 * zap all shadow pages. 7381 */ 7382 if (unlikely(gen == 0)) { 7383 kvm_debug_ratelimited("zapping shadow pages for mmio generation wraparound\n"); 7384 kvm_mmu_zap_all_fast(kvm); 7385 } 7386 } 7387 7388 static void mmu_destroy_caches(void) 7389 { 7390 kmem_cache_destroy(pte_list_desc_cache); 7391 kmem_cache_destroy(mmu_page_header_cache); 7392 } 7393 7394 static void kvm_wake_nx_recovery_thread(struct kvm *kvm) 7395 { 7396 /* 7397 * The NX recovery thread is spawned on-demand at the first KVM_RUN and 7398 * may not be valid even though the VM is globally visible. Do nothing, 7399 * as such a VM can't have any possible NX huge pages. 7400 */ 7401 struct vhost_task *nx_thread = READ_ONCE(kvm->arch.nx_huge_page_recovery_thread); 7402 7403 if (nx_thread) 7404 vhost_task_wake(nx_thread); 7405 } 7406 7407 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp) 7408 { 7409 if (nx_hugepage_mitigation_hard_disabled) 7410 return sysfs_emit(buffer, "never\n"); 7411 7412 return param_get_bool(buffer, kp); 7413 } 7414 7415 static bool get_nx_auto_mode(void) 7416 { 7417 /* Return true when CPU has the bug, and mitigations are ON */ 7418 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off(); 7419 } 7420 7421 static void __set_nx_huge_pages(bool val) 7422 { 7423 nx_huge_pages = itlb_multihit_kvm_mitigation = val; 7424 } 7425 7426 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp) 7427 { 7428 bool old_val = nx_huge_pages; 7429 bool new_val; 7430 7431 if (nx_hugepage_mitigation_hard_disabled) 7432 return -EPERM; 7433 7434 /* In "auto" mode deploy workaround only if CPU has the bug. */ 7435 if (sysfs_streq(val, "off")) { 7436 new_val = 0; 7437 } else if (sysfs_streq(val, "force")) { 7438 new_val = 1; 7439 } else if (sysfs_streq(val, "auto")) { 7440 new_val = get_nx_auto_mode(); 7441 } else if (sysfs_streq(val, "never")) { 7442 new_val = 0; 7443 7444 mutex_lock(&kvm_lock); 7445 if (!list_empty(&vm_list)) { 7446 mutex_unlock(&kvm_lock); 7447 return -EBUSY; 7448 } 7449 nx_hugepage_mitigation_hard_disabled = true; 7450 mutex_unlock(&kvm_lock); 7451 } else if (kstrtobool(val, &new_val) < 0) { 7452 return -EINVAL; 7453 } 7454 7455 __set_nx_huge_pages(new_val); 7456 7457 if (new_val != old_val) { 7458 struct kvm *kvm; 7459 7460 mutex_lock(&kvm_lock); 7461 7462 list_for_each_entry(kvm, &vm_list, vm_list) { 7463 mutex_lock(&kvm->slots_lock); 7464 kvm_mmu_zap_all_fast(kvm); 7465 mutex_unlock(&kvm->slots_lock); 7466 7467 kvm_wake_nx_recovery_thread(kvm); 7468 } 7469 mutex_unlock(&kvm_lock); 7470 } 7471 7472 return 0; 7473 } 7474 7475 /* 7476 * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as 7477 * its default value of -1 is technically undefined behavior for a boolean. 7478 * Forward the module init call to SPTE code so that it too can handle module 7479 * params that need to be resolved/snapshot. 7480 */ 7481 void __init kvm_mmu_x86_module_init(void) 7482 { 7483 if (nx_huge_pages == -1) 7484 __set_nx_huge_pages(get_nx_auto_mode()); 7485 7486 /* 7487 * Snapshot userspace's desire to enable the TDP MMU. Whether or not the 7488 * TDP MMU is actually enabled is determined in kvm_configure_mmu() 7489 * when the vendor module is loaded. 7490 */ 7491 tdp_mmu_allowed = tdp_mmu_enabled; 7492 7493 kvm_mmu_spte_module_init(); 7494 } 7495 7496 /* 7497 * The bulk of the MMU initialization is deferred until the vendor module is 7498 * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need 7499 * to be reset when a potentially different vendor module is loaded. 7500 */ 7501 int kvm_mmu_vendor_module_init(void) 7502 { 7503 int ret = -ENOMEM; 7504 7505 /* 7506 * MMU roles use union aliasing which is, generally speaking, an 7507 * undefined behavior. However, we supposedly know how compilers behave 7508 * and the current status quo is unlikely to change. Guardians below are 7509 * supposed to let us know if the assumption becomes false. 7510 */ 7511 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32)); 7512 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32)); 7513 BUILD_BUG_ON(sizeof(union kvm_cpu_role) != sizeof(u64)); 7514 7515 kvm_mmu_reset_all_pte_masks(); 7516 7517 pte_list_desc_cache = KMEM_CACHE(pte_list_desc, SLAB_ACCOUNT); 7518 if (!pte_list_desc_cache) 7519 goto out; 7520 7521 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", 7522 sizeof(struct kvm_mmu_page), 7523 0, SLAB_ACCOUNT, NULL); 7524 if (!mmu_page_header_cache) 7525 goto out; 7526 7527 return 0; 7528 7529 out: 7530 mmu_destroy_caches(); 7531 return ret; 7532 } 7533 7534 void kvm_mmu_destroy(struct kvm_vcpu *vcpu) 7535 { 7536 kvm_mmu_unload(vcpu); 7537 if (tdp_mmu_enabled) { 7538 read_lock(&vcpu->kvm->mmu_lock); 7539 mmu_free_root_page(vcpu->kvm, &vcpu->arch.mmu->mirror_root_hpa, 7540 NULL); 7541 read_unlock(&vcpu->kvm->mmu_lock); 7542 } 7543 free_mmu_pages(&vcpu->arch.root_mmu); 7544 free_mmu_pages(&vcpu->arch.guest_mmu); 7545 mmu_free_memory_caches(vcpu); 7546 } 7547 7548 void kvm_mmu_vendor_module_exit(void) 7549 { 7550 mmu_destroy_caches(); 7551 } 7552 7553 /* 7554 * Calculate the effective recovery period, accounting for '0' meaning "let KVM 7555 * select a halving time of 1 hour". Returns true if recovery is enabled. 7556 */ 7557 static bool calc_nx_huge_pages_recovery_period(uint *period) 7558 { 7559 /* 7560 * Use READ_ONCE to get the params, this may be called outside of the 7561 * param setters, e.g. by the kthread to compute its next timeout. 7562 */ 7563 bool enabled = READ_ONCE(nx_huge_pages); 7564 uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 7565 7566 if (!enabled || !ratio) 7567 return false; 7568 7569 *period = READ_ONCE(nx_huge_pages_recovery_period_ms); 7570 if (!*period) { 7571 /* Make sure the period is not less than one second. */ 7572 ratio = min(ratio, 3600u); 7573 *period = 60 * 60 * 1000 / ratio; 7574 } 7575 return true; 7576 } 7577 7578 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp) 7579 { 7580 bool was_recovery_enabled, is_recovery_enabled; 7581 uint old_period, new_period; 7582 int err; 7583 7584 if (nx_hugepage_mitigation_hard_disabled) 7585 return -EPERM; 7586 7587 was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period); 7588 7589 err = param_set_uint(val, kp); 7590 if (err) 7591 return err; 7592 7593 is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period); 7594 7595 if (is_recovery_enabled && 7596 (!was_recovery_enabled || old_period > new_period)) { 7597 struct kvm *kvm; 7598 7599 mutex_lock(&kvm_lock); 7600 7601 list_for_each_entry(kvm, &vm_list, vm_list) 7602 kvm_wake_nx_recovery_thread(kvm); 7603 7604 mutex_unlock(&kvm_lock); 7605 } 7606 7607 return err; 7608 } 7609 7610 static unsigned long nx_huge_pages_to_zap(struct kvm *kvm, 7611 enum kvm_mmu_type mmu_type) 7612 { 7613 unsigned long pages = READ_ONCE(kvm->arch.possible_nx_huge_pages[mmu_type].nr_pages); 7614 unsigned int ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 7615 7616 return ratio ? DIV_ROUND_UP(pages, ratio) : 0; 7617 } 7618 7619 static bool kvm_mmu_sp_dirty_logging_enabled(struct kvm *kvm, 7620 struct kvm_mmu_page *sp) 7621 { 7622 struct kvm_memory_slot *slot; 7623 7624 /* 7625 * Skip the memslot lookup if dirty tracking can't possibly be enabled, 7626 * as memslot lookups are relatively expensive. 7627 * 7628 * If a memslot update is in progress, reading an incorrect value of 7629 * kvm->nr_memslots_dirty_logging is not a problem: if it is becoming 7630 * zero, KVM will do an unnecessary memslot lookup; if it is becoming 7631 * nonzero, the page will be zapped unnecessarily. Either way, this 7632 * only affects efficiency in racy situations, and not correctness. 7633 */ 7634 if (!atomic_read(&kvm->nr_memslots_dirty_logging)) 7635 return false; 7636 7637 slot = __gfn_to_memslot(kvm_memslots_for_spte_role(kvm, sp->role), sp->gfn); 7638 if (WARN_ON_ONCE(!slot)) 7639 return false; 7640 7641 return kvm_slot_dirty_track_enabled(slot); 7642 } 7643 7644 static void kvm_recover_nx_huge_pages(struct kvm *kvm, 7645 const enum kvm_mmu_type mmu_type) 7646 { 7647 #ifdef CONFIG_X86_64 7648 const bool is_tdp_mmu = mmu_type == KVM_TDP_MMU; 7649 spinlock_t *tdp_mmu_pages_lock = &kvm->arch.tdp_mmu_pages_lock; 7650 #else 7651 const bool is_tdp_mmu = false; 7652 spinlock_t *tdp_mmu_pages_lock = NULL; 7653 #endif 7654 unsigned long to_zap = nx_huge_pages_to_zap(kvm, mmu_type); 7655 struct list_head *nx_huge_pages; 7656 struct kvm_mmu_page *sp; 7657 LIST_HEAD(invalid_list); 7658 bool flush = false; 7659 int rcu_idx; 7660 7661 nx_huge_pages = &kvm->arch.possible_nx_huge_pages[mmu_type].pages; 7662 7663 rcu_idx = srcu_read_lock(&kvm->srcu); 7664 if (is_tdp_mmu) 7665 read_lock(&kvm->mmu_lock); 7666 else 7667 write_lock(&kvm->mmu_lock); 7668 7669 /* 7670 * Zapping TDP MMU shadow pages, including the remote TLB flush, must 7671 * be done under RCU protection, because the pages are freed via RCU 7672 * callback. 7673 */ 7674 rcu_read_lock(); 7675 7676 for ( ; to_zap; --to_zap) { 7677 if (is_tdp_mmu) 7678 spin_lock(tdp_mmu_pages_lock); 7679 7680 if (list_empty(nx_huge_pages)) { 7681 if (is_tdp_mmu) 7682 spin_unlock(tdp_mmu_pages_lock); 7683 break; 7684 } 7685 7686 /* 7687 * We use a separate list instead of just using active_mmu_pages 7688 * because the number of shadow pages that be replaced with an 7689 * NX huge page is expected to be relatively small compared to 7690 * the total number of shadow pages. And because the TDP MMU 7691 * doesn't use active_mmu_pages. 7692 */ 7693 sp = list_first_entry(nx_huge_pages, 7694 struct kvm_mmu_page, 7695 possible_nx_huge_page_link); 7696 WARN_ON_ONCE(!sp->nx_huge_page_disallowed); 7697 WARN_ON_ONCE(!sp->role.direct); 7698 7699 unaccount_nx_huge_page(kvm, sp); 7700 7701 if (is_tdp_mmu) 7702 spin_unlock(tdp_mmu_pages_lock); 7703 7704 /* 7705 * Do not attempt to recover any NX Huge Pages that are being 7706 * dirty tracked, as they would just be faulted back in as 4KiB 7707 * pages. The NX Huge Pages in this slot will be recovered, 7708 * along with all the other huge pages in the slot, when dirty 7709 * logging is disabled. 7710 */ 7711 if (!kvm_mmu_sp_dirty_logging_enabled(kvm, sp)) { 7712 if (is_tdp_mmu) 7713 flush |= kvm_tdp_mmu_zap_possible_nx_huge_page(kvm, sp); 7714 else 7715 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 7716 7717 } 7718 7719 WARN_ON_ONCE(sp->nx_huge_page_disallowed); 7720 7721 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 7722 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7723 rcu_read_unlock(); 7724 7725 if (is_tdp_mmu) 7726 cond_resched_rwlock_read(&kvm->mmu_lock); 7727 else 7728 cond_resched_rwlock_write(&kvm->mmu_lock); 7729 7730 flush = false; 7731 rcu_read_lock(); 7732 } 7733 } 7734 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7735 7736 rcu_read_unlock(); 7737 7738 if (is_tdp_mmu) 7739 read_unlock(&kvm->mmu_lock); 7740 else 7741 write_unlock(&kvm->mmu_lock); 7742 srcu_read_unlock(&kvm->srcu, rcu_idx); 7743 } 7744 7745 static void kvm_nx_huge_page_recovery_worker_kill(void *data) 7746 { 7747 } 7748 7749 static bool kvm_nx_huge_page_recovery_worker(void *data) 7750 { 7751 struct kvm *kvm = data; 7752 long remaining_time; 7753 bool enabled; 7754 uint period; 7755 int i; 7756 7757 enabled = calc_nx_huge_pages_recovery_period(&period); 7758 if (!enabled) 7759 return false; 7760 7761 remaining_time = kvm->arch.nx_huge_page_last + msecs_to_jiffies(period) 7762 - get_jiffies_64(); 7763 if (remaining_time > 0) { 7764 schedule_timeout(remaining_time); 7765 /* check for signals and come back */ 7766 return true; 7767 } 7768 7769 __set_current_state(TASK_RUNNING); 7770 for (i = 0; i < KVM_NR_MMU_TYPES; ++i) 7771 kvm_recover_nx_huge_pages(kvm, i); 7772 kvm->arch.nx_huge_page_last = get_jiffies_64(); 7773 return true; 7774 } 7775 7776 static int kvm_mmu_start_lpage_recovery(struct once *once) 7777 { 7778 struct kvm_arch *ka = container_of(once, struct kvm_arch, nx_once); 7779 struct kvm *kvm = container_of(ka, struct kvm, arch); 7780 struct vhost_task *nx_thread; 7781 7782 kvm->arch.nx_huge_page_last = get_jiffies_64(); 7783 nx_thread = vhost_task_create(kvm_nx_huge_page_recovery_worker, 7784 kvm_nx_huge_page_recovery_worker_kill, 7785 kvm, "kvm-nx-lpage-recovery"); 7786 7787 if (IS_ERR(nx_thread)) 7788 return PTR_ERR(nx_thread); 7789 7790 vhost_task_start(nx_thread); 7791 7792 /* Make the task visible only once it is fully started. */ 7793 WRITE_ONCE(kvm->arch.nx_huge_page_recovery_thread, nx_thread); 7794 return 0; 7795 } 7796 7797 int kvm_mmu_post_init_vm(struct kvm *kvm) 7798 { 7799 if (nx_hugepage_mitigation_hard_disabled) 7800 return 0; 7801 7802 return call_once(&kvm->arch.nx_once, kvm_mmu_start_lpage_recovery); 7803 } 7804 7805 void kvm_mmu_pre_destroy_vm(struct kvm *kvm) 7806 { 7807 if (kvm->arch.nx_huge_page_recovery_thread) 7808 vhost_task_stop(kvm->arch.nx_huge_page_recovery_thread); 7809 } 7810 7811 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 7812 static bool hugepage_test_mixed(struct kvm_memory_slot *slot, gfn_t gfn, 7813 int level) 7814 { 7815 return lpage_info_slot(gfn, slot, level)->disallow_lpage & KVM_LPAGE_MIXED_FLAG; 7816 } 7817 7818 static void hugepage_clear_mixed(struct kvm_memory_slot *slot, gfn_t gfn, 7819 int level) 7820 { 7821 lpage_info_slot(gfn, slot, level)->disallow_lpage &= ~KVM_LPAGE_MIXED_FLAG; 7822 } 7823 7824 static void hugepage_set_mixed(struct kvm_memory_slot *slot, gfn_t gfn, 7825 int level) 7826 { 7827 lpage_info_slot(gfn, slot, level)->disallow_lpage |= KVM_LPAGE_MIXED_FLAG; 7828 } 7829 7830 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm, 7831 struct kvm_gfn_range *range) 7832 { 7833 struct kvm_memory_slot *slot = range->slot; 7834 int level; 7835 7836 /* 7837 * Zap SPTEs even if the slot can't be mapped PRIVATE. KVM x86 only 7838 * supports KVM_MEMORY_ATTRIBUTE_PRIVATE, and so it *seems* like KVM 7839 * can simply ignore such slots. But if userspace is making memory 7840 * PRIVATE, then KVM must prevent the guest from accessing the memory 7841 * as shared. And if userspace is making memory SHARED and this point 7842 * is reached, then at least one page within the range was previously 7843 * PRIVATE, i.e. the slot's possible hugepage ranges are changing. 7844 * Zapping SPTEs in this case ensures KVM will reassess whether or not 7845 * a hugepage can be used for affected ranges. 7846 */ 7847 if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm))) 7848 return false; 7849 7850 if (WARN_ON_ONCE(range->end <= range->start)) 7851 return false; 7852 7853 /* 7854 * If the head and tail pages of the range currently allow a hugepage, 7855 * i.e. reside fully in the slot and don't have mixed attributes, then 7856 * add each corresponding hugepage range to the ongoing invalidation, 7857 * e.g. to prevent KVM from creating a hugepage in response to a fault 7858 * for a gfn whose attributes aren't changing. Note, only the range 7859 * of gfns whose attributes are being modified needs to be explicitly 7860 * unmapped, as that will unmap any existing hugepages. 7861 */ 7862 for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) { 7863 gfn_t start = gfn_round_for_level(range->start, level); 7864 gfn_t end = gfn_round_for_level(range->end - 1, level); 7865 gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level); 7866 7867 if ((start != range->start || start + nr_pages > range->end) && 7868 start >= slot->base_gfn && 7869 start + nr_pages <= slot->base_gfn + slot->npages && 7870 !hugepage_test_mixed(slot, start, level)) 7871 kvm_mmu_invalidate_range_add(kvm, start, start + nr_pages); 7872 7873 if (end == start) 7874 continue; 7875 7876 if ((end + nr_pages) > range->end && 7877 (end + nr_pages) <= (slot->base_gfn + slot->npages) && 7878 !hugepage_test_mixed(slot, end, level)) 7879 kvm_mmu_invalidate_range_add(kvm, end, end + nr_pages); 7880 } 7881 7882 /* Unmap the old attribute page. */ 7883 if (range->arg.attributes & KVM_MEMORY_ATTRIBUTE_PRIVATE) 7884 range->attr_filter = KVM_FILTER_SHARED; 7885 else 7886 range->attr_filter = KVM_FILTER_PRIVATE; 7887 7888 return kvm_unmap_gfn_range(kvm, range); 7889 } 7890 7891 7892 7893 static bool hugepage_has_attrs(struct kvm *kvm, struct kvm_memory_slot *slot, 7894 gfn_t gfn, int level, unsigned long attrs) 7895 { 7896 const unsigned long start = gfn; 7897 const unsigned long end = start + KVM_PAGES_PER_HPAGE(level); 7898 7899 if (level == PG_LEVEL_2M) 7900 return kvm_range_has_memory_attributes(kvm, start, end, ~0, attrs); 7901 7902 for (gfn = start; gfn < end; gfn += KVM_PAGES_PER_HPAGE(level - 1)) { 7903 if (hugepage_test_mixed(slot, gfn, level - 1) || 7904 attrs != kvm_get_memory_attributes(kvm, gfn)) 7905 return false; 7906 } 7907 return true; 7908 } 7909 7910 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm, 7911 struct kvm_gfn_range *range) 7912 { 7913 unsigned long attrs = range->arg.attributes; 7914 struct kvm_memory_slot *slot = range->slot; 7915 int level; 7916 7917 lockdep_assert_held_write(&kvm->mmu_lock); 7918 lockdep_assert_held(&kvm->slots_lock); 7919 7920 /* 7921 * Calculate which ranges can be mapped with hugepages even if the slot 7922 * can't map memory PRIVATE. KVM mustn't create a SHARED hugepage over 7923 * a range that has PRIVATE GFNs, and conversely converting a range to 7924 * SHARED may now allow hugepages. 7925 */ 7926 if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm))) 7927 return false; 7928 7929 /* 7930 * The sequence matters here: upper levels consume the result of lower 7931 * level's scanning. 7932 */ 7933 for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) { 7934 gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level); 7935 gfn_t gfn = gfn_round_for_level(range->start, level); 7936 7937 /* Process the head page if it straddles the range. */ 7938 if (gfn != range->start || gfn + nr_pages > range->end) { 7939 /* 7940 * Skip mixed tracking if the aligned gfn isn't covered 7941 * by the memslot, KVM can't use a hugepage due to the 7942 * misaligned address regardless of memory attributes. 7943 */ 7944 if (gfn >= slot->base_gfn && 7945 gfn + nr_pages <= slot->base_gfn + slot->npages) { 7946 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs)) 7947 hugepage_clear_mixed(slot, gfn, level); 7948 else 7949 hugepage_set_mixed(slot, gfn, level); 7950 } 7951 gfn += nr_pages; 7952 } 7953 7954 /* 7955 * Pages entirely covered by the range are guaranteed to have 7956 * only the attributes which were just set. 7957 */ 7958 for ( ; gfn + nr_pages <= range->end; gfn += nr_pages) 7959 hugepage_clear_mixed(slot, gfn, level); 7960 7961 /* 7962 * Process the last tail page if it straddles the range and is 7963 * contained by the memslot. Like the head page, KVM can't 7964 * create a hugepage if the slot size is misaligned. 7965 */ 7966 if (gfn < range->end && 7967 (gfn + nr_pages) <= (slot->base_gfn + slot->npages)) { 7968 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs)) 7969 hugepage_clear_mixed(slot, gfn, level); 7970 else 7971 hugepage_set_mixed(slot, gfn, level); 7972 } 7973 } 7974 return false; 7975 } 7976 7977 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm, 7978 struct kvm_memory_slot *slot) 7979 { 7980 int level; 7981 7982 if (!kvm_arch_has_private_mem(kvm)) 7983 return; 7984 7985 for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) { 7986 /* 7987 * Don't bother tracking mixed attributes for pages that can't 7988 * be huge due to alignment, i.e. process only pages that are 7989 * entirely contained by the memslot. 7990 */ 7991 gfn_t end = gfn_round_for_level(slot->base_gfn + slot->npages, level); 7992 gfn_t start = gfn_round_for_level(slot->base_gfn, level); 7993 gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level); 7994 gfn_t gfn; 7995 7996 if (start < slot->base_gfn) 7997 start += nr_pages; 7998 7999 /* 8000 * Unlike setting attributes, every potential hugepage needs to 8001 * be manually checked as the attributes may already be mixed. 8002 */ 8003 for (gfn = start; gfn < end; gfn += nr_pages) { 8004 unsigned long attrs = kvm_get_memory_attributes(kvm, gfn); 8005 8006 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs)) 8007 hugepage_clear_mixed(slot, gfn, level); 8008 else 8009 hugepage_set_mixed(slot, gfn, level); 8010 } 8011 } 8012 } 8013 #endif 8014