1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * MMU support 9 * 10 * Copyright (C) 2006 Qumranet, Inc. 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 12 * 13 * Authors: 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Avi Kivity <avi@qumranet.com> 16 */ 17 18 #include "irq.h" 19 #include "ioapic.h" 20 #include "mmu.h" 21 #include "mmu_internal.h" 22 #include "tdp_mmu.h" 23 #include "x86.h" 24 #include "kvm_cache_regs.h" 25 #include "kvm_emulate.h" 26 #include "cpuid.h" 27 #include "spte.h" 28 29 #include <linux/kvm_host.h> 30 #include <linux/types.h> 31 #include <linux/string.h> 32 #include <linux/mm.h> 33 #include <linux/highmem.h> 34 #include <linux/moduleparam.h> 35 #include <linux/export.h> 36 #include <linux/swap.h> 37 #include <linux/hugetlb.h> 38 #include <linux/compiler.h> 39 #include <linux/srcu.h> 40 #include <linux/slab.h> 41 #include <linux/sched/signal.h> 42 #include <linux/uaccess.h> 43 #include <linux/hash.h> 44 #include <linux/kern_levels.h> 45 #include <linux/kthread.h> 46 47 #include <asm/page.h> 48 #include <asm/memtype.h> 49 #include <asm/cmpxchg.h> 50 #include <asm/io.h> 51 #include <asm/set_memory.h> 52 #include <asm/vmx.h> 53 #include <asm/kvm_page_track.h> 54 #include "trace.h" 55 56 extern bool itlb_multihit_kvm_mitigation; 57 58 int __read_mostly nx_huge_pages = -1; 59 static uint __read_mostly nx_huge_pages_recovery_period_ms; 60 #ifdef CONFIG_PREEMPT_RT 61 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */ 62 static uint __read_mostly nx_huge_pages_recovery_ratio = 0; 63 #else 64 static uint __read_mostly nx_huge_pages_recovery_ratio = 60; 65 #endif 66 67 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp); 68 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp); 69 70 static const struct kernel_param_ops nx_huge_pages_ops = { 71 .set = set_nx_huge_pages, 72 .get = param_get_bool, 73 }; 74 75 static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = { 76 .set = set_nx_huge_pages_recovery_param, 77 .get = param_get_uint, 78 }; 79 80 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644); 81 __MODULE_PARM_TYPE(nx_huge_pages, "bool"); 82 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops, 83 &nx_huge_pages_recovery_ratio, 0644); 84 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint"); 85 module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops, 86 &nx_huge_pages_recovery_period_ms, 0644); 87 __MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint"); 88 89 static bool __read_mostly force_flush_and_sync_on_reuse; 90 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644); 91 92 /* 93 * When setting this variable to true it enables Two-Dimensional-Paging 94 * where the hardware walks 2 page tables: 95 * 1. the guest-virtual to guest-physical 96 * 2. while doing 1. it walks guest-physical to host-physical 97 * If the hardware supports that we don't need to do shadow paging. 98 */ 99 bool tdp_enabled = false; 100 101 static int max_huge_page_level __read_mostly; 102 static int tdp_root_level __read_mostly; 103 static int max_tdp_level __read_mostly; 104 105 #ifdef MMU_DEBUG 106 bool dbg = 0; 107 module_param(dbg, bool, 0644); 108 #endif 109 110 #define PTE_PREFETCH_NUM 8 111 112 #include <trace/events/kvm.h> 113 114 /* make pte_list_desc fit well in cache lines */ 115 #define PTE_LIST_EXT 14 116 117 /* 118 * Slight optimization of cacheline layout, by putting `more' and `spte_count' 119 * at the start; then accessing it will only use one single cacheline for 120 * either full (entries==PTE_LIST_EXT) case or entries<=6. 121 */ 122 struct pte_list_desc { 123 struct pte_list_desc *more; 124 /* 125 * Stores number of entries stored in the pte_list_desc. No need to be 126 * u64 but just for easier alignment. When PTE_LIST_EXT, means full. 127 */ 128 u64 spte_count; 129 u64 *sptes[PTE_LIST_EXT]; 130 }; 131 132 struct kvm_shadow_walk_iterator { 133 u64 addr; 134 hpa_t shadow_addr; 135 u64 *sptep; 136 int level; 137 unsigned index; 138 }; 139 140 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \ 141 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \ 142 (_root), (_addr)); \ 143 shadow_walk_okay(&(_walker)); \ 144 shadow_walk_next(&(_walker))) 145 146 #define for_each_shadow_entry(_vcpu, _addr, _walker) \ 147 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 148 shadow_walk_okay(&(_walker)); \ 149 shadow_walk_next(&(_walker))) 150 151 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \ 152 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 153 shadow_walk_okay(&(_walker)) && \ 154 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \ 155 __shadow_walk_next(&(_walker), spte)) 156 157 static struct kmem_cache *pte_list_desc_cache; 158 struct kmem_cache *mmu_page_header_cache; 159 static struct percpu_counter kvm_total_used_mmu_pages; 160 161 static void mmu_spte_set(u64 *sptep, u64 spte); 162 163 struct kvm_mmu_role_regs { 164 const unsigned long cr0; 165 const unsigned long cr4; 166 const u64 efer; 167 }; 168 169 #define CREATE_TRACE_POINTS 170 #include "mmutrace.h" 171 172 /* 173 * Yes, lot's of underscores. They're a hint that you probably shouldn't be 174 * reading from the role_regs. Once the root_role is constructed, it becomes 175 * the single source of truth for the MMU's state. 176 */ 177 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag) \ 178 static inline bool __maybe_unused \ 179 ____is_##reg##_##name(const struct kvm_mmu_role_regs *regs) \ 180 { \ 181 return !!(regs->reg & flag); \ 182 } 183 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG); 184 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP); 185 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE); 186 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE); 187 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP); 188 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP); 189 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE); 190 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57); 191 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX); 192 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA); 193 194 /* 195 * The MMU itself (with a valid role) is the single source of truth for the 196 * MMU. Do not use the regs used to build the MMU/role, nor the vCPU. The 197 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1, 198 * and the vCPU may be incorrect/irrelevant. 199 */ 200 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name) \ 201 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu) \ 202 { \ 203 return !!(mmu->cpu_role. base_or_ext . reg##_##name); \ 204 } 205 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp); 206 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pse); 207 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smep); 208 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smap); 209 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pke); 210 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, la57); 211 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx); 212 BUILD_MMU_ROLE_ACCESSOR(ext, efer, lma); 213 214 static inline bool is_cr0_pg(struct kvm_mmu *mmu) 215 { 216 return mmu->cpu_role.base.level > 0; 217 } 218 219 static inline bool is_cr4_pae(struct kvm_mmu *mmu) 220 { 221 return !mmu->cpu_role.base.has_4_byte_gpte; 222 } 223 224 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu) 225 { 226 struct kvm_mmu_role_regs regs = { 227 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS), 228 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS), 229 .efer = vcpu->arch.efer, 230 }; 231 232 return regs; 233 } 234 235 static inline bool kvm_available_flush_tlb_with_range(void) 236 { 237 return kvm_x86_ops.tlb_remote_flush_with_range; 238 } 239 240 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm, 241 struct kvm_tlb_range *range) 242 { 243 int ret = -ENOTSUPP; 244 245 if (range && kvm_x86_ops.tlb_remote_flush_with_range) 246 ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range); 247 248 if (ret) 249 kvm_flush_remote_tlbs(kvm); 250 } 251 252 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm, 253 u64 start_gfn, u64 pages) 254 { 255 struct kvm_tlb_range range; 256 257 range.start_gfn = start_gfn; 258 range.pages = pages; 259 260 kvm_flush_remote_tlbs_with_range(kvm, &range); 261 } 262 263 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn, 264 unsigned int access) 265 { 266 u64 spte = make_mmio_spte(vcpu, gfn, access); 267 268 trace_mark_mmio_spte(sptep, gfn, spte); 269 mmu_spte_set(sptep, spte); 270 } 271 272 static gfn_t get_mmio_spte_gfn(u64 spte) 273 { 274 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask; 275 276 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN) 277 & shadow_nonpresent_or_rsvd_mask; 278 279 return gpa >> PAGE_SHIFT; 280 } 281 282 static unsigned get_mmio_spte_access(u64 spte) 283 { 284 return spte & shadow_mmio_access_mask; 285 } 286 287 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte) 288 { 289 u64 kvm_gen, spte_gen, gen; 290 291 gen = kvm_vcpu_memslots(vcpu)->generation; 292 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS)) 293 return false; 294 295 kvm_gen = gen & MMIO_SPTE_GEN_MASK; 296 spte_gen = get_mmio_spte_generation(spte); 297 298 trace_check_mmio_spte(spte, kvm_gen, spte_gen); 299 return likely(kvm_gen == spte_gen); 300 } 301 302 static int is_cpuid_PSE36(void) 303 { 304 return 1; 305 } 306 307 #ifdef CONFIG_X86_64 308 static void __set_spte(u64 *sptep, u64 spte) 309 { 310 WRITE_ONCE(*sptep, spte); 311 } 312 313 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 314 { 315 WRITE_ONCE(*sptep, spte); 316 } 317 318 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 319 { 320 return xchg(sptep, spte); 321 } 322 323 static u64 __get_spte_lockless(u64 *sptep) 324 { 325 return READ_ONCE(*sptep); 326 } 327 #else 328 union split_spte { 329 struct { 330 u32 spte_low; 331 u32 spte_high; 332 }; 333 u64 spte; 334 }; 335 336 static void count_spte_clear(u64 *sptep, u64 spte) 337 { 338 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 339 340 if (is_shadow_present_pte(spte)) 341 return; 342 343 /* Ensure the spte is completely set before we increase the count */ 344 smp_wmb(); 345 sp->clear_spte_count++; 346 } 347 348 static void __set_spte(u64 *sptep, u64 spte) 349 { 350 union split_spte *ssptep, sspte; 351 352 ssptep = (union split_spte *)sptep; 353 sspte = (union split_spte)spte; 354 355 ssptep->spte_high = sspte.spte_high; 356 357 /* 358 * If we map the spte from nonpresent to present, We should store 359 * the high bits firstly, then set present bit, so cpu can not 360 * fetch this spte while we are setting the spte. 361 */ 362 smp_wmb(); 363 364 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 365 } 366 367 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 368 { 369 union split_spte *ssptep, sspte; 370 371 ssptep = (union split_spte *)sptep; 372 sspte = (union split_spte)spte; 373 374 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 375 376 /* 377 * If we map the spte from present to nonpresent, we should clear 378 * present bit firstly to avoid vcpu fetch the old high bits. 379 */ 380 smp_wmb(); 381 382 ssptep->spte_high = sspte.spte_high; 383 count_spte_clear(sptep, spte); 384 } 385 386 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 387 { 388 union split_spte *ssptep, sspte, orig; 389 390 ssptep = (union split_spte *)sptep; 391 sspte = (union split_spte)spte; 392 393 /* xchg acts as a barrier before the setting of the high bits */ 394 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); 395 orig.spte_high = ssptep->spte_high; 396 ssptep->spte_high = sspte.spte_high; 397 count_spte_clear(sptep, spte); 398 399 return orig.spte; 400 } 401 402 /* 403 * The idea using the light way get the spte on x86_32 guest is from 404 * gup_get_pte (mm/gup.c). 405 * 406 * An spte tlb flush may be pending, because kvm_set_pte_rmap 407 * coalesces them and we are running out of the MMU lock. Therefore 408 * we need to protect against in-progress updates of the spte. 409 * 410 * Reading the spte while an update is in progress may get the old value 411 * for the high part of the spte. The race is fine for a present->non-present 412 * change (because the high part of the spte is ignored for non-present spte), 413 * but for a present->present change we must reread the spte. 414 * 415 * All such changes are done in two steps (present->non-present and 416 * non-present->present), hence it is enough to count the number of 417 * present->non-present updates: if it changed while reading the spte, 418 * we might have hit the race. This is done using clear_spte_count. 419 */ 420 static u64 __get_spte_lockless(u64 *sptep) 421 { 422 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 423 union split_spte spte, *orig = (union split_spte *)sptep; 424 int count; 425 426 retry: 427 count = sp->clear_spte_count; 428 smp_rmb(); 429 430 spte.spte_low = orig->spte_low; 431 smp_rmb(); 432 433 spte.spte_high = orig->spte_high; 434 smp_rmb(); 435 436 if (unlikely(spte.spte_low != orig->spte_low || 437 count != sp->clear_spte_count)) 438 goto retry; 439 440 return spte.spte; 441 } 442 #endif 443 444 /* Rules for using mmu_spte_set: 445 * Set the sptep from nonpresent to present. 446 * Note: the sptep being assigned *must* be either not present 447 * or in a state where the hardware will not attempt to update 448 * the spte. 449 */ 450 static void mmu_spte_set(u64 *sptep, u64 new_spte) 451 { 452 WARN_ON(is_shadow_present_pte(*sptep)); 453 __set_spte(sptep, new_spte); 454 } 455 456 /* 457 * Update the SPTE (excluding the PFN), but do not track changes in its 458 * accessed/dirty status. 459 */ 460 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte) 461 { 462 u64 old_spte = *sptep; 463 464 WARN_ON(!is_shadow_present_pte(new_spte)); 465 check_spte_writable_invariants(new_spte); 466 467 if (!is_shadow_present_pte(old_spte)) { 468 mmu_spte_set(sptep, new_spte); 469 return old_spte; 470 } 471 472 if (!spte_has_volatile_bits(old_spte)) 473 __update_clear_spte_fast(sptep, new_spte); 474 else 475 old_spte = __update_clear_spte_slow(sptep, new_spte); 476 477 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte)); 478 479 return old_spte; 480 } 481 482 /* Rules for using mmu_spte_update: 483 * Update the state bits, it means the mapped pfn is not changed. 484 * 485 * Whenever an MMU-writable SPTE is overwritten with a read-only SPTE, remote 486 * TLBs must be flushed. Otherwise rmap_write_protect will find a read-only 487 * spte, even though the writable spte might be cached on a CPU's TLB. 488 * 489 * Returns true if the TLB needs to be flushed 490 */ 491 static bool mmu_spte_update(u64 *sptep, u64 new_spte) 492 { 493 bool flush = false; 494 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte); 495 496 if (!is_shadow_present_pte(old_spte)) 497 return false; 498 499 /* 500 * For the spte updated out of mmu-lock is safe, since 501 * we always atomically update it, see the comments in 502 * spte_has_volatile_bits(). 503 */ 504 if (is_mmu_writable_spte(old_spte) && 505 !is_writable_pte(new_spte)) 506 flush = true; 507 508 /* 509 * Flush TLB when accessed/dirty states are changed in the page tables, 510 * to guarantee consistency between TLB and page tables. 511 */ 512 513 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) { 514 flush = true; 515 kvm_set_pfn_accessed(spte_to_pfn(old_spte)); 516 } 517 518 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) { 519 flush = true; 520 kvm_set_pfn_dirty(spte_to_pfn(old_spte)); 521 } 522 523 return flush; 524 } 525 526 /* 527 * Rules for using mmu_spte_clear_track_bits: 528 * It sets the sptep from present to nonpresent, and track the 529 * state bits, it is used to clear the last level sptep. 530 * Returns the old PTE. 531 */ 532 static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep) 533 { 534 kvm_pfn_t pfn; 535 u64 old_spte = *sptep; 536 int level = sptep_to_sp(sptep)->role.level; 537 struct page *page; 538 539 if (!is_shadow_present_pte(old_spte) || 540 !spte_has_volatile_bits(old_spte)) 541 __update_clear_spte_fast(sptep, 0ull); 542 else 543 old_spte = __update_clear_spte_slow(sptep, 0ull); 544 545 if (!is_shadow_present_pte(old_spte)) 546 return old_spte; 547 548 kvm_update_page_stats(kvm, level, -1); 549 550 pfn = spte_to_pfn(old_spte); 551 552 /* 553 * KVM doesn't hold a reference to any pages mapped into the guest, and 554 * instead uses the mmu_notifier to ensure that KVM unmaps any pages 555 * before they are reclaimed. Sanity check that, if the pfn is backed 556 * by a refcounted page, the refcount is elevated. 557 */ 558 page = kvm_pfn_to_refcounted_page(pfn); 559 WARN_ON(page && !page_count(page)); 560 561 if (is_accessed_spte(old_spte)) 562 kvm_set_pfn_accessed(pfn); 563 564 if (is_dirty_spte(old_spte)) 565 kvm_set_pfn_dirty(pfn); 566 567 return old_spte; 568 } 569 570 /* 571 * Rules for using mmu_spte_clear_no_track: 572 * Directly clear spte without caring the state bits of sptep, 573 * it is used to set the upper level spte. 574 */ 575 static void mmu_spte_clear_no_track(u64 *sptep) 576 { 577 __update_clear_spte_fast(sptep, 0ull); 578 } 579 580 static u64 mmu_spte_get_lockless(u64 *sptep) 581 { 582 return __get_spte_lockless(sptep); 583 } 584 585 /* Returns the Accessed status of the PTE and resets it at the same time. */ 586 static bool mmu_spte_age(u64 *sptep) 587 { 588 u64 spte = mmu_spte_get_lockless(sptep); 589 590 if (!is_accessed_spte(spte)) 591 return false; 592 593 if (spte_ad_enabled(spte)) { 594 clear_bit((ffs(shadow_accessed_mask) - 1), 595 (unsigned long *)sptep); 596 } else { 597 /* 598 * Capture the dirty status of the page, so that it doesn't get 599 * lost when the SPTE is marked for access tracking. 600 */ 601 if (is_writable_pte(spte)) 602 kvm_set_pfn_dirty(spte_to_pfn(spte)); 603 604 spte = mark_spte_for_access_track(spte); 605 mmu_spte_update_no_track(sptep, spte); 606 } 607 608 return true; 609 } 610 611 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) 612 { 613 if (is_tdp_mmu(vcpu->arch.mmu)) { 614 kvm_tdp_mmu_walk_lockless_begin(); 615 } else { 616 /* 617 * Prevent page table teardown by making any free-er wait during 618 * kvm_flush_remote_tlbs() IPI to all active vcpus. 619 */ 620 local_irq_disable(); 621 622 /* 623 * Make sure a following spte read is not reordered ahead of the write 624 * to vcpu->mode. 625 */ 626 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); 627 } 628 } 629 630 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) 631 { 632 if (is_tdp_mmu(vcpu->arch.mmu)) { 633 kvm_tdp_mmu_walk_lockless_end(); 634 } else { 635 /* 636 * Make sure the write to vcpu->mode is not reordered in front of 637 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us 638 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. 639 */ 640 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); 641 local_irq_enable(); 642 } 643 } 644 645 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect) 646 { 647 int r; 648 649 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */ 650 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, 651 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM); 652 if (r) 653 return r; 654 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache, 655 PT64_ROOT_MAX_LEVEL); 656 if (r) 657 return r; 658 if (maybe_indirect) { 659 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadowed_info_cache, 660 PT64_ROOT_MAX_LEVEL); 661 if (r) 662 return r; 663 } 664 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, 665 PT64_ROOT_MAX_LEVEL); 666 } 667 668 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) 669 { 670 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache); 671 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache); 672 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadowed_info_cache); 673 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache); 674 } 675 676 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) 677 { 678 kmem_cache_free(pte_list_desc_cache, pte_list_desc); 679 } 680 681 static bool sp_has_gptes(struct kvm_mmu_page *sp); 682 683 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) 684 { 685 if (sp->role.passthrough) 686 return sp->gfn; 687 688 if (!sp->role.direct) 689 return sp->shadowed_translation[index] >> PAGE_SHIFT; 690 691 return sp->gfn + (index << ((sp->role.level - 1) * SPTE_LEVEL_BITS)); 692 } 693 694 /* 695 * For leaf SPTEs, fetch the *guest* access permissions being shadowed. Note 696 * that the SPTE itself may have a more constrained access permissions that 697 * what the guest enforces. For example, a guest may create an executable 698 * huge PTE but KVM may disallow execution to mitigate iTLB multihit. 699 */ 700 static u32 kvm_mmu_page_get_access(struct kvm_mmu_page *sp, int index) 701 { 702 if (sp_has_gptes(sp)) 703 return sp->shadowed_translation[index] & ACC_ALL; 704 705 /* 706 * For direct MMUs (e.g. TDP or non-paging guests) or passthrough SPs, 707 * KVM is not shadowing any guest page tables, so the "guest access 708 * permissions" are just ACC_ALL. 709 * 710 * For direct SPs in indirect MMUs (shadow paging), i.e. when KVM 711 * is shadowing a guest huge page with small pages, the guest access 712 * permissions being shadowed are the access permissions of the huge 713 * page. 714 * 715 * In both cases, sp->role.access contains the correct access bits. 716 */ 717 return sp->role.access; 718 } 719 720 static void kvm_mmu_page_set_translation(struct kvm_mmu_page *sp, int index, 721 gfn_t gfn, unsigned int access) 722 { 723 if (sp_has_gptes(sp)) { 724 sp->shadowed_translation[index] = (gfn << PAGE_SHIFT) | access; 725 return; 726 } 727 728 WARN_ONCE(access != kvm_mmu_page_get_access(sp, index), 729 "access mismatch under %s page %llx (expected %u, got %u)\n", 730 sp->role.passthrough ? "passthrough" : "direct", 731 sp->gfn, kvm_mmu_page_get_access(sp, index), access); 732 733 WARN_ONCE(gfn != kvm_mmu_page_get_gfn(sp, index), 734 "gfn mismatch under %s page %llx (expected %llx, got %llx)\n", 735 sp->role.passthrough ? "passthrough" : "direct", 736 sp->gfn, kvm_mmu_page_get_gfn(sp, index), gfn); 737 } 738 739 static void kvm_mmu_page_set_access(struct kvm_mmu_page *sp, int index, 740 unsigned int access) 741 { 742 gfn_t gfn = kvm_mmu_page_get_gfn(sp, index); 743 744 kvm_mmu_page_set_translation(sp, index, gfn, access); 745 } 746 747 /* 748 * Return the pointer to the large page information for a given gfn, 749 * handling slots that are not large page aligned. 750 */ 751 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, 752 const struct kvm_memory_slot *slot, int level) 753 { 754 unsigned long idx; 755 756 idx = gfn_to_index(gfn, slot->base_gfn, level); 757 return &slot->arch.lpage_info[level - 2][idx]; 758 } 759 760 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot, 761 gfn_t gfn, int count) 762 { 763 struct kvm_lpage_info *linfo; 764 int i; 765 766 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 767 linfo = lpage_info_slot(gfn, slot, i); 768 linfo->disallow_lpage += count; 769 WARN_ON(linfo->disallow_lpage < 0); 770 } 771 } 772 773 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 774 { 775 update_gfn_disallow_lpage_count(slot, gfn, 1); 776 } 777 778 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 779 { 780 update_gfn_disallow_lpage_count(slot, gfn, -1); 781 } 782 783 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 784 { 785 struct kvm_memslots *slots; 786 struct kvm_memory_slot *slot; 787 gfn_t gfn; 788 789 kvm->arch.indirect_shadow_pages++; 790 gfn = sp->gfn; 791 slots = kvm_memslots_for_spte_role(kvm, sp->role); 792 slot = __gfn_to_memslot(slots, gfn); 793 794 /* the non-leaf shadow pages are keeping readonly. */ 795 if (sp->role.level > PG_LEVEL_4K) 796 return kvm_slot_page_track_add_page(kvm, slot, gfn, 797 KVM_PAGE_TRACK_WRITE); 798 799 kvm_mmu_gfn_disallow_lpage(slot, gfn); 800 801 if (kvm_mmu_slot_gfn_write_protect(kvm, slot, gfn, PG_LEVEL_4K)) 802 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1); 803 } 804 805 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) 806 { 807 if (sp->lpage_disallowed) 808 return; 809 810 ++kvm->stat.nx_lpage_splits; 811 list_add_tail(&sp->lpage_disallowed_link, 812 &kvm->arch.lpage_disallowed_mmu_pages); 813 sp->lpage_disallowed = true; 814 } 815 816 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 817 { 818 struct kvm_memslots *slots; 819 struct kvm_memory_slot *slot; 820 gfn_t gfn; 821 822 kvm->arch.indirect_shadow_pages--; 823 gfn = sp->gfn; 824 slots = kvm_memslots_for_spte_role(kvm, sp->role); 825 slot = __gfn_to_memslot(slots, gfn); 826 if (sp->role.level > PG_LEVEL_4K) 827 return kvm_slot_page_track_remove_page(kvm, slot, gfn, 828 KVM_PAGE_TRACK_WRITE); 829 830 kvm_mmu_gfn_allow_lpage(slot, gfn); 831 } 832 833 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) 834 { 835 --kvm->stat.nx_lpage_splits; 836 sp->lpage_disallowed = false; 837 list_del(&sp->lpage_disallowed_link); 838 } 839 840 static struct kvm_memory_slot * 841 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn, 842 bool no_dirty_log) 843 { 844 struct kvm_memory_slot *slot; 845 846 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 847 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 848 return NULL; 849 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot)) 850 return NULL; 851 852 return slot; 853 } 854 855 /* 856 * About rmap_head encoding: 857 * 858 * If the bit zero of rmap_head->val is clear, then it points to the only spte 859 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct 860 * pte_list_desc containing more mappings. 861 */ 862 863 /* 864 * Returns the number of pointers in the rmap chain, not counting the new one. 865 */ 866 static int pte_list_add(struct kvm_mmu_memory_cache *cache, u64 *spte, 867 struct kvm_rmap_head *rmap_head) 868 { 869 struct pte_list_desc *desc; 870 int count = 0; 871 872 if (!rmap_head->val) { 873 rmap_printk("%p %llx 0->1\n", spte, *spte); 874 rmap_head->val = (unsigned long)spte; 875 } else if (!(rmap_head->val & 1)) { 876 rmap_printk("%p %llx 1->many\n", spte, *spte); 877 desc = kvm_mmu_memory_cache_alloc(cache); 878 desc->sptes[0] = (u64 *)rmap_head->val; 879 desc->sptes[1] = spte; 880 desc->spte_count = 2; 881 rmap_head->val = (unsigned long)desc | 1; 882 ++count; 883 } else { 884 rmap_printk("%p %llx many->many\n", spte, *spte); 885 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 886 while (desc->spte_count == PTE_LIST_EXT) { 887 count += PTE_LIST_EXT; 888 if (!desc->more) { 889 desc->more = kvm_mmu_memory_cache_alloc(cache); 890 desc = desc->more; 891 desc->spte_count = 0; 892 break; 893 } 894 desc = desc->more; 895 } 896 count += desc->spte_count; 897 desc->sptes[desc->spte_count++] = spte; 898 } 899 return count; 900 } 901 902 static void 903 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head, 904 struct pte_list_desc *desc, int i, 905 struct pte_list_desc *prev_desc) 906 { 907 int j = desc->spte_count - 1; 908 909 desc->sptes[i] = desc->sptes[j]; 910 desc->sptes[j] = NULL; 911 desc->spte_count--; 912 if (desc->spte_count) 913 return; 914 if (!prev_desc && !desc->more) 915 rmap_head->val = 0; 916 else 917 if (prev_desc) 918 prev_desc->more = desc->more; 919 else 920 rmap_head->val = (unsigned long)desc->more | 1; 921 mmu_free_pte_list_desc(desc); 922 } 923 924 static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head) 925 { 926 struct pte_list_desc *desc; 927 struct pte_list_desc *prev_desc; 928 int i; 929 930 if (!rmap_head->val) { 931 pr_err("%s: %p 0->BUG\n", __func__, spte); 932 BUG(); 933 } else if (!(rmap_head->val & 1)) { 934 rmap_printk("%p 1->0\n", spte); 935 if ((u64 *)rmap_head->val != spte) { 936 pr_err("%s: %p 1->BUG\n", __func__, spte); 937 BUG(); 938 } 939 rmap_head->val = 0; 940 } else { 941 rmap_printk("%p many->many\n", spte); 942 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 943 prev_desc = NULL; 944 while (desc) { 945 for (i = 0; i < desc->spte_count; ++i) { 946 if (desc->sptes[i] == spte) { 947 pte_list_desc_remove_entry(rmap_head, 948 desc, i, prev_desc); 949 return; 950 } 951 } 952 prev_desc = desc; 953 desc = desc->more; 954 } 955 pr_err("%s: %p many->many\n", __func__, spte); 956 BUG(); 957 } 958 } 959 960 static void kvm_zap_one_rmap_spte(struct kvm *kvm, 961 struct kvm_rmap_head *rmap_head, u64 *sptep) 962 { 963 mmu_spte_clear_track_bits(kvm, sptep); 964 pte_list_remove(sptep, rmap_head); 965 } 966 967 /* Return true if at least one SPTE was zapped, false otherwise */ 968 static bool kvm_zap_all_rmap_sptes(struct kvm *kvm, 969 struct kvm_rmap_head *rmap_head) 970 { 971 struct pte_list_desc *desc, *next; 972 int i; 973 974 if (!rmap_head->val) 975 return false; 976 977 if (!(rmap_head->val & 1)) { 978 mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val); 979 goto out; 980 } 981 982 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 983 984 for (; desc; desc = next) { 985 for (i = 0; i < desc->spte_count; i++) 986 mmu_spte_clear_track_bits(kvm, desc->sptes[i]); 987 next = desc->more; 988 mmu_free_pte_list_desc(desc); 989 } 990 out: 991 /* rmap_head is meaningless now, remember to reset it */ 992 rmap_head->val = 0; 993 return true; 994 } 995 996 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head) 997 { 998 struct pte_list_desc *desc; 999 unsigned int count = 0; 1000 1001 if (!rmap_head->val) 1002 return 0; 1003 else if (!(rmap_head->val & 1)) 1004 return 1; 1005 1006 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1007 1008 while (desc) { 1009 count += desc->spte_count; 1010 desc = desc->more; 1011 } 1012 1013 return count; 1014 } 1015 1016 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level, 1017 const struct kvm_memory_slot *slot) 1018 { 1019 unsigned long idx; 1020 1021 idx = gfn_to_index(gfn, slot->base_gfn, level); 1022 return &slot->arch.rmap[level - PG_LEVEL_4K][idx]; 1023 } 1024 1025 static bool rmap_can_add(struct kvm_vcpu *vcpu) 1026 { 1027 struct kvm_mmu_memory_cache *mc; 1028 1029 mc = &vcpu->arch.mmu_pte_list_desc_cache; 1030 return kvm_mmu_memory_cache_nr_free_objects(mc); 1031 } 1032 1033 static void rmap_remove(struct kvm *kvm, u64 *spte) 1034 { 1035 struct kvm_memslots *slots; 1036 struct kvm_memory_slot *slot; 1037 struct kvm_mmu_page *sp; 1038 gfn_t gfn; 1039 struct kvm_rmap_head *rmap_head; 1040 1041 sp = sptep_to_sp(spte); 1042 gfn = kvm_mmu_page_get_gfn(sp, spte_index(spte)); 1043 1044 /* 1045 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU 1046 * so we have to determine which memslots to use based on context 1047 * information in sp->role. 1048 */ 1049 slots = kvm_memslots_for_spte_role(kvm, sp->role); 1050 1051 slot = __gfn_to_memslot(slots, gfn); 1052 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1053 1054 pte_list_remove(spte, rmap_head); 1055 } 1056 1057 /* 1058 * Used by the following functions to iterate through the sptes linked by a 1059 * rmap. All fields are private and not assumed to be used outside. 1060 */ 1061 struct rmap_iterator { 1062 /* private fields */ 1063 struct pte_list_desc *desc; /* holds the sptep if not NULL */ 1064 int pos; /* index of the sptep */ 1065 }; 1066 1067 /* 1068 * Iteration must be started by this function. This should also be used after 1069 * removing/dropping sptes from the rmap link because in such cases the 1070 * information in the iterator may not be valid. 1071 * 1072 * Returns sptep if found, NULL otherwise. 1073 */ 1074 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head, 1075 struct rmap_iterator *iter) 1076 { 1077 u64 *sptep; 1078 1079 if (!rmap_head->val) 1080 return NULL; 1081 1082 if (!(rmap_head->val & 1)) { 1083 iter->desc = NULL; 1084 sptep = (u64 *)rmap_head->val; 1085 goto out; 1086 } 1087 1088 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1089 iter->pos = 0; 1090 sptep = iter->desc->sptes[iter->pos]; 1091 out: 1092 BUG_ON(!is_shadow_present_pte(*sptep)); 1093 return sptep; 1094 } 1095 1096 /* 1097 * Must be used with a valid iterator: e.g. after rmap_get_first(). 1098 * 1099 * Returns sptep if found, NULL otherwise. 1100 */ 1101 static u64 *rmap_get_next(struct rmap_iterator *iter) 1102 { 1103 u64 *sptep; 1104 1105 if (iter->desc) { 1106 if (iter->pos < PTE_LIST_EXT - 1) { 1107 ++iter->pos; 1108 sptep = iter->desc->sptes[iter->pos]; 1109 if (sptep) 1110 goto out; 1111 } 1112 1113 iter->desc = iter->desc->more; 1114 1115 if (iter->desc) { 1116 iter->pos = 0; 1117 /* desc->sptes[0] cannot be NULL */ 1118 sptep = iter->desc->sptes[iter->pos]; 1119 goto out; 1120 } 1121 } 1122 1123 return NULL; 1124 out: 1125 BUG_ON(!is_shadow_present_pte(*sptep)); 1126 return sptep; 1127 } 1128 1129 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \ 1130 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \ 1131 _spte_; _spte_ = rmap_get_next(_iter_)) 1132 1133 static void drop_spte(struct kvm *kvm, u64 *sptep) 1134 { 1135 u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep); 1136 1137 if (is_shadow_present_pte(old_spte)) 1138 rmap_remove(kvm, sptep); 1139 } 1140 1141 static void drop_large_spte(struct kvm *kvm, u64 *sptep, bool flush) 1142 { 1143 struct kvm_mmu_page *sp; 1144 1145 sp = sptep_to_sp(sptep); 1146 WARN_ON(sp->role.level == PG_LEVEL_4K); 1147 1148 drop_spte(kvm, sptep); 1149 1150 if (flush) 1151 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn, 1152 KVM_PAGES_PER_HPAGE(sp->role.level)); 1153 } 1154 1155 /* 1156 * Write-protect on the specified @sptep, @pt_protect indicates whether 1157 * spte write-protection is caused by protecting shadow page table. 1158 * 1159 * Note: write protection is difference between dirty logging and spte 1160 * protection: 1161 * - for dirty logging, the spte can be set to writable at anytime if 1162 * its dirty bitmap is properly set. 1163 * - for spte protection, the spte can be writable only after unsync-ing 1164 * shadow page. 1165 * 1166 * Return true if tlb need be flushed. 1167 */ 1168 static bool spte_write_protect(u64 *sptep, bool pt_protect) 1169 { 1170 u64 spte = *sptep; 1171 1172 if (!is_writable_pte(spte) && 1173 !(pt_protect && is_mmu_writable_spte(spte))) 1174 return false; 1175 1176 rmap_printk("spte %p %llx\n", sptep, *sptep); 1177 1178 if (pt_protect) 1179 spte &= ~shadow_mmu_writable_mask; 1180 spte = spte & ~PT_WRITABLE_MASK; 1181 1182 return mmu_spte_update(sptep, spte); 1183 } 1184 1185 static bool rmap_write_protect(struct kvm_rmap_head *rmap_head, 1186 bool pt_protect) 1187 { 1188 u64 *sptep; 1189 struct rmap_iterator iter; 1190 bool flush = false; 1191 1192 for_each_rmap_spte(rmap_head, &iter, sptep) 1193 flush |= spte_write_protect(sptep, pt_protect); 1194 1195 return flush; 1196 } 1197 1198 static bool spte_clear_dirty(u64 *sptep) 1199 { 1200 u64 spte = *sptep; 1201 1202 rmap_printk("spte %p %llx\n", sptep, *sptep); 1203 1204 MMU_WARN_ON(!spte_ad_enabled(spte)); 1205 spte &= ~shadow_dirty_mask; 1206 return mmu_spte_update(sptep, spte); 1207 } 1208 1209 static bool spte_wrprot_for_clear_dirty(u64 *sptep) 1210 { 1211 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT, 1212 (unsigned long *)sptep); 1213 if (was_writable && !spte_ad_enabled(*sptep)) 1214 kvm_set_pfn_dirty(spte_to_pfn(*sptep)); 1215 1216 return was_writable; 1217 } 1218 1219 /* 1220 * Gets the GFN ready for another round of dirty logging by clearing the 1221 * - D bit on ad-enabled SPTEs, and 1222 * - W bit on ad-disabled SPTEs. 1223 * Returns true iff any D or W bits were cleared. 1224 */ 1225 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1226 const struct kvm_memory_slot *slot) 1227 { 1228 u64 *sptep; 1229 struct rmap_iterator iter; 1230 bool flush = false; 1231 1232 for_each_rmap_spte(rmap_head, &iter, sptep) 1233 if (spte_ad_need_write_protect(*sptep)) 1234 flush |= spte_wrprot_for_clear_dirty(sptep); 1235 else 1236 flush |= spte_clear_dirty(sptep); 1237 1238 return flush; 1239 } 1240 1241 /** 1242 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages 1243 * @kvm: kvm instance 1244 * @slot: slot to protect 1245 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1246 * @mask: indicates which pages we should protect 1247 * 1248 * Used when we do not need to care about huge page mappings. 1249 */ 1250 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 1251 struct kvm_memory_slot *slot, 1252 gfn_t gfn_offset, unsigned long mask) 1253 { 1254 struct kvm_rmap_head *rmap_head; 1255 1256 if (is_tdp_mmu_enabled(kvm)) 1257 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1258 slot->base_gfn + gfn_offset, mask, true); 1259 1260 if (!kvm_memslots_have_rmaps(kvm)) 1261 return; 1262 1263 while (mask) { 1264 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1265 PG_LEVEL_4K, slot); 1266 rmap_write_protect(rmap_head, false); 1267 1268 /* clear the first set bit */ 1269 mask &= mask - 1; 1270 } 1271 } 1272 1273 /** 1274 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write 1275 * protect the page if the D-bit isn't supported. 1276 * @kvm: kvm instance 1277 * @slot: slot to clear D-bit 1278 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1279 * @mask: indicates which pages we should clear D-bit 1280 * 1281 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap. 1282 */ 1283 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1284 struct kvm_memory_slot *slot, 1285 gfn_t gfn_offset, unsigned long mask) 1286 { 1287 struct kvm_rmap_head *rmap_head; 1288 1289 if (is_tdp_mmu_enabled(kvm)) 1290 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1291 slot->base_gfn + gfn_offset, mask, false); 1292 1293 if (!kvm_memslots_have_rmaps(kvm)) 1294 return; 1295 1296 while (mask) { 1297 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1298 PG_LEVEL_4K, slot); 1299 __rmap_clear_dirty(kvm, rmap_head, slot); 1300 1301 /* clear the first set bit */ 1302 mask &= mask - 1; 1303 } 1304 } 1305 1306 /** 1307 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected 1308 * PT level pages. 1309 * 1310 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to 1311 * enable dirty logging for them. 1312 * 1313 * We need to care about huge page mappings: e.g. during dirty logging we may 1314 * have such mappings. 1315 */ 1316 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1317 struct kvm_memory_slot *slot, 1318 gfn_t gfn_offset, unsigned long mask) 1319 { 1320 /* 1321 * Huge pages are NOT write protected when we start dirty logging in 1322 * initially-all-set mode; must write protect them here so that they 1323 * are split to 4K on the first write. 1324 * 1325 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn 1326 * of memslot has no such restriction, so the range can cross two large 1327 * pages. 1328 */ 1329 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) { 1330 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask); 1331 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask); 1332 1333 if (READ_ONCE(eager_page_split)) 1334 kvm_mmu_try_split_huge_pages(kvm, slot, start, end, PG_LEVEL_4K); 1335 1336 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M); 1337 1338 /* Cross two large pages? */ 1339 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) != 1340 ALIGN(end << PAGE_SHIFT, PMD_SIZE)) 1341 kvm_mmu_slot_gfn_write_protect(kvm, slot, end, 1342 PG_LEVEL_2M); 1343 } 1344 1345 /* Now handle 4K PTEs. */ 1346 if (kvm_x86_ops.cpu_dirty_log_size) 1347 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask); 1348 else 1349 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 1350 } 1351 1352 int kvm_cpu_dirty_log_size(void) 1353 { 1354 return kvm_x86_ops.cpu_dirty_log_size; 1355 } 1356 1357 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, 1358 struct kvm_memory_slot *slot, u64 gfn, 1359 int min_level) 1360 { 1361 struct kvm_rmap_head *rmap_head; 1362 int i; 1363 bool write_protected = false; 1364 1365 if (kvm_memslots_have_rmaps(kvm)) { 1366 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 1367 rmap_head = gfn_to_rmap(gfn, i, slot); 1368 write_protected |= rmap_write_protect(rmap_head, true); 1369 } 1370 } 1371 1372 if (is_tdp_mmu_enabled(kvm)) 1373 write_protected |= 1374 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level); 1375 1376 return write_protected; 1377 } 1378 1379 static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn) 1380 { 1381 struct kvm_memory_slot *slot; 1382 1383 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1384 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K); 1385 } 1386 1387 static bool __kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1388 const struct kvm_memory_slot *slot) 1389 { 1390 return kvm_zap_all_rmap_sptes(kvm, rmap_head); 1391 } 1392 1393 static bool kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1394 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1395 pte_t unused) 1396 { 1397 return __kvm_zap_rmap(kvm, rmap_head, slot); 1398 } 1399 1400 static bool kvm_set_pte_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1401 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1402 pte_t pte) 1403 { 1404 u64 *sptep; 1405 struct rmap_iterator iter; 1406 bool need_flush = false; 1407 u64 new_spte; 1408 kvm_pfn_t new_pfn; 1409 1410 WARN_ON(pte_huge(pte)); 1411 new_pfn = pte_pfn(pte); 1412 1413 restart: 1414 for_each_rmap_spte(rmap_head, &iter, sptep) { 1415 rmap_printk("spte %p %llx gfn %llx (%d)\n", 1416 sptep, *sptep, gfn, level); 1417 1418 need_flush = true; 1419 1420 if (pte_write(pte)) { 1421 kvm_zap_one_rmap_spte(kvm, rmap_head, sptep); 1422 goto restart; 1423 } else { 1424 new_spte = kvm_mmu_changed_pte_notifier_make_spte( 1425 *sptep, new_pfn); 1426 1427 mmu_spte_clear_track_bits(kvm, sptep); 1428 mmu_spte_set(sptep, new_spte); 1429 } 1430 } 1431 1432 if (need_flush && kvm_available_flush_tlb_with_range()) { 1433 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1); 1434 return false; 1435 } 1436 1437 return need_flush; 1438 } 1439 1440 struct slot_rmap_walk_iterator { 1441 /* input fields. */ 1442 const struct kvm_memory_slot *slot; 1443 gfn_t start_gfn; 1444 gfn_t end_gfn; 1445 int start_level; 1446 int end_level; 1447 1448 /* output fields. */ 1449 gfn_t gfn; 1450 struct kvm_rmap_head *rmap; 1451 int level; 1452 1453 /* private field. */ 1454 struct kvm_rmap_head *end_rmap; 1455 }; 1456 1457 static void 1458 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level) 1459 { 1460 iterator->level = level; 1461 iterator->gfn = iterator->start_gfn; 1462 iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot); 1463 iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot); 1464 } 1465 1466 static void 1467 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator, 1468 const struct kvm_memory_slot *slot, int start_level, 1469 int end_level, gfn_t start_gfn, gfn_t end_gfn) 1470 { 1471 iterator->slot = slot; 1472 iterator->start_level = start_level; 1473 iterator->end_level = end_level; 1474 iterator->start_gfn = start_gfn; 1475 iterator->end_gfn = end_gfn; 1476 1477 rmap_walk_init_level(iterator, iterator->start_level); 1478 } 1479 1480 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator) 1481 { 1482 return !!iterator->rmap; 1483 } 1484 1485 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) 1486 { 1487 while (++iterator->rmap <= iterator->end_rmap) { 1488 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level)); 1489 1490 if (iterator->rmap->val) 1491 return; 1492 } 1493 1494 if (++iterator->level > iterator->end_level) { 1495 iterator->rmap = NULL; 1496 return; 1497 } 1498 1499 rmap_walk_init_level(iterator, iterator->level); 1500 } 1501 1502 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \ 1503 _start_gfn, _end_gfn, _iter_) \ 1504 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \ 1505 _end_level_, _start_gfn, _end_gfn); \ 1506 slot_rmap_walk_okay(_iter_); \ 1507 slot_rmap_walk_next(_iter_)) 1508 1509 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1510 struct kvm_memory_slot *slot, gfn_t gfn, 1511 int level, pte_t pte); 1512 1513 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm, 1514 struct kvm_gfn_range *range, 1515 rmap_handler_t handler) 1516 { 1517 struct slot_rmap_walk_iterator iterator; 1518 bool ret = false; 1519 1520 for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 1521 range->start, range->end - 1, &iterator) 1522 ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn, 1523 iterator.level, range->pte); 1524 1525 return ret; 1526 } 1527 1528 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1529 { 1530 bool flush = false; 1531 1532 if (kvm_memslots_have_rmaps(kvm)) 1533 flush = kvm_handle_gfn_range(kvm, range, kvm_zap_rmap); 1534 1535 if (is_tdp_mmu_enabled(kvm)) 1536 flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush); 1537 1538 return flush; 1539 } 1540 1541 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1542 { 1543 bool flush = false; 1544 1545 if (kvm_memslots_have_rmaps(kvm)) 1546 flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmap); 1547 1548 if (is_tdp_mmu_enabled(kvm)) 1549 flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range); 1550 1551 return flush; 1552 } 1553 1554 static bool kvm_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1555 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1556 pte_t unused) 1557 { 1558 u64 *sptep; 1559 struct rmap_iterator iter; 1560 int young = 0; 1561 1562 for_each_rmap_spte(rmap_head, &iter, sptep) 1563 young |= mmu_spte_age(sptep); 1564 1565 return young; 1566 } 1567 1568 static bool kvm_test_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1569 struct kvm_memory_slot *slot, gfn_t gfn, 1570 int level, pte_t unused) 1571 { 1572 u64 *sptep; 1573 struct rmap_iterator iter; 1574 1575 for_each_rmap_spte(rmap_head, &iter, sptep) 1576 if (is_accessed_spte(*sptep)) 1577 return true; 1578 return false; 1579 } 1580 1581 #define RMAP_RECYCLE_THRESHOLD 1000 1582 1583 static void __rmap_add(struct kvm *kvm, 1584 struct kvm_mmu_memory_cache *cache, 1585 const struct kvm_memory_slot *slot, 1586 u64 *spte, gfn_t gfn, unsigned int access) 1587 { 1588 struct kvm_mmu_page *sp; 1589 struct kvm_rmap_head *rmap_head; 1590 int rmap_count; 1591 1592 sp = sptep_to_sp(spte); 1593 kvm_mmu_page_set_translation(sp, spte_index(spte), gfn, access); 1594 kvm_update_page_stats(kvm, sp->role.level, 1); 1595 1596 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1597 rmap_count = pte_list_add(cache, spte, rmap_head); 1598 1599 if (rmap_count > kvm->stat.max_mmu_rmap_size) 1600 kvm->stat.max_mmu_rmap_size = rmap_count; 1601 if (rmap_count > RMAP_RECYCLE_THRESHOLD) { 1602 kvm_zap_all_rmap_sptes(kvm, rmap_head); 1603 kvm_flush_remote_tlbs_with_address( 1604 kvm, sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level)); 1605 } 1606 } 1607 1608 static void rmap_add(struct kvm_vcpu *vcpu, const struct kvm_memory_slot *slot, 1609 u64 *spte, gfn_t gfn, unsigned int access) 1610 { 1611 struct kvm_mmu_memory_cache *cache = &vcpu->arch.mmu_pte_list_desc_cache; 1612 1613 __rmap_add(vcpu->kvm, cache, slot, spte, gfn, access); 1614 } 1615 1616 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1617 { 1618 bool young = false; 1619 1620 if (kvm_memslots_have_rmaps(kvm)) 1621 young = kvm_handle_gfn_range(kvm, range, kvm_age_rmap); 1622 1623 if (is_tdp_mmu_enabled(kvm)) 1624 young |= kvm_tdp_mmu_age_gfn_range(kvm, range); 1625 1626 return young; 1627 } 1628 1629 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1630 { 1631 bool young = false; 1632 1633 if (kvm_memslots_have_rmaps(kvm)) 1634 young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmap); 1635 1636 if (is_tdp_mmu_enabled(kvm)) 1637 young |= kvm_tdp_mmu_test_age_gfn(kvm, range); 1638 1639 return young; 1640 } 1641 1642 #ifdef MMU_DEBUG 1643 static int is_empty_shadow_page(u64 *spt) 1644 { 1645 u64 *pos; 1646 u64 *end; 1647 1648 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++) 1649 if (is_shadow_present_pte(*pos)) { 1650 printk(KERN_ERR "%s: %p %llx\n", __func__, 1651 pos, *pos); 1652 return 0; 1653 } 1654 return 1; 1655 } 1656 #endif 1657 1658 /* 1659 * This value is the sum of all of the kvm instances's 1660 * kvm->arch.n_used_mmu_pages values. We need a global, 1661 * aggregate version in order to make the slab shrinker 1662 * faster 1663 */ 1664 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr) 1665 { 1666 kvm->arch.n_used_mmu_pages += nr; 1667 percpu_counter_add(&kvm_total_used_mmu_pages, nr); 1668 } 1669 1670 static void kvm_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1671 { 1672 kvm_mod_used_mmu_pages(kvm, +1); 1673 kvm_account_pgtable_pages((void *)sp->spt, +1); 1674 } 1675 1676 static void kvm_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1677 { 1678 kvm_mod_used_mmu_pages(kvm, -1); 1679 kvm_account_pgtable_pages((void *)sp->spt, -1); 1680 } 1681 1682 static void kvm_mmu_free_shadow_page(struct kvm_mmu_page *sp) 1683 { 1684 MMU_WARN_ON(!is_empty_shadow_page(sp->spt)); 1685 hlist_del(&sp->hash_link); 1686 list_del(&sp->link); 1687 free_page((unsigned long)sp->spt); 1688 if (!sp->role.direct) 1689 free_page((unsigned long)sp->shadowed_translation); 1690 kmem_cache_free(mmu_page_header_cache, sp); 1691 } 1692 1693 static unsigned kvm_page_table_hashfn(gfn_t gfn) 1694 { 1695 return hash_64(gfn, KVM_MMU_HASH_SHIFT); 1696 } 1697 1698 static void mmu_page_add_parent_pte(struct kvm_mmu_memory_cache *cache, 1699 struct kvm_mmu_page *sp, u64 *parent_pte) 1700 { 1701 if (!parent_pte) 1702 return; 1703 1704 pte_list_add(cache, parent_pte, &sp->parent_ptes); 1705 } 1706 1707 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp, 1708 u64 *parent_pte) 1709 { 1710 pte_list_remove(parent_pte, &sp->parent_ptes); 1711 } 1712 1713 static void drop_parent_pte(struct kvm_mmu_page *sp, 1714 u64 *parent_pte) 1715 { 1716 mmu_page_remove_parent_pte(sp, parent_pte); 1717 mmu_spte_clear_no_track(parent_pte); 1718 } 1719 1720 static void mark_unsync(u64 *spte); 1721 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) 1722 { 1723 u64 *sptep; 1724 struct rmap_iterator iter; 1725 1726 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) { 1727 mark_unsync(sptep); 1728 } 1729 } 1730 1731 static void mark_unsync(u64 *spte) 1732 { 1733 struct kvm_mmu_page *sp; 1734 1735 sp = sptep_to_sp(spte); 1736 if (__test_and_set_bit(spte_index(spte), sp->unsync_child_bitmap)) 1737 return; 1738 if (sp->unsync_children++) 1739 return; 1740 kvm_mmu_mark_parents_unsync(sp); 1741 } 1742 1743 static int nonpaging_sync_page(struct kvm_vcpu *vcpu, 1744 struct kvm_mmu_page *sp) 1745 { 1746 return -1; 1747 } 1748 1749 #define KVM_PAGE_ARRAY_NR 16 1750 1751 struct kvm_mmu_pages { 1752 struct mmu_page_and_offset { 1753 struct kvm_mmu_page *sp; 1754 unsigned int idx; 1755 } page[KVM_PAGE_ARRAY_NR]; 1756 unsigned int nr; 1757 }; 1758 1759 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, 1760 int idx) 1761 { 1762 int i; 1763 1764 if (sp->unsync) 1765 for (i=0; i < pvec->nr; i++) 1766 if (pvec->page[i].sp == sp) 1767 return 0; 1768 1769 pvec->page[pvec->nr].sp = sp; 1770 pvec->page[pvec->nr].idx = idx; 1771 pvec->nr++; 1772 return (pvec->nr == KVM_PAGE_ARRAY_NR); 1773 } 1774 1775 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx) 1776 { 1777 --sp->unsync_children; 1778 WARN_ON((int)sp->unsync_children < 0); 1779 __clear_bit(idx, sp->unsync_child_bitmap); 1780 } 1781 1782 static int __mmu_unsync_walk(struct kvm_mmu_page *sp, 1783 struct kvm_mmu_pages *pvec) 1784 { 1785 int i, ret, nr_unsync_leaf = 0; 1786 1787 for_each_set_bit(i, sp->unsync_child_bitmap, 512) { 1788 struct kvm_mmu_page *child; 1789 u64 ent = sp->spt[i]; 1790 1791 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) { 1792 clear_unsync_child_bit(sp, i); 1793 continue; 1794 } 1795 1796 child = to_shadow_page(ent & SPTE_BASE_ADDR_MASK); 1797 1798 if (child->unsync_children) { 1799 if (mmu_pages_add(pvec, child, i)) 1800 return -ENOSPC; 1801 1802 ret = __mmu_unsync_walk(child, pvec); 1803 if (!ret) { 1804 clear_unsync_child_bit(sp, i); 1805 continue; 1806 } else if (ret > 0) { 1807 nr_unsync_leaf += ret; 1808 } else 1809 return ret; 1810 } else if (child->unsync) { 1811 nr_unsync_leaf++; 1812 if (mmu_pages_add(pvec, child, i)) 1813 return -ENOSPC; 1814 } else 1815 clear_unsync_child_bit(sp, i); 1816 } 1817 1818 return nr_unsync_leaf; 1819 } 1820 1821 #define INVALID_INDEX (-1) 1822 1823 static int mmu_unsync_walk(struct kvm_mmu_page *sp, 1824 struct kvm_mmu_pages *pvec) 1825 { 1826 pvec->nr = 0; 1827 if (!sp->unsync_children) 1828 return 0; 1829 1830 mmu_pages_add(pvec, sp, INVALID_INDEX); 1831 return __mmu_unsync_walk(sp, pvec); 1832 } 1833 1834 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1835 { 1836 WARN_ON(!sp->unsync); 1837 trace_kvm_mmu_sync_page(sp); 1838 sp->unsync = 0; 1839 --kvm->stat.mmu_unsync; 1840 } 1841 1842 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 1843 struct list_head *invalid_list); 1844 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 1845 struct list_head *invalid_list); 1846 1847 static bool sp_has_gptes(struct kvm_mmu_page *sp) 1848 { 1849 if (sp->role.direct) 1850 return false; 1851 1852 if (sp->role.passthrough) 1853 return false; 1854 1855 return true; 1856 } 1857 1858 #define for_each_valid_sp(_kvm, _sp, _list) \ 1859 hlist_for_each_entry(_sp, _list, hash_link) \ 1860 if (is_obsolete_sp((_kvm), (_sp))) { \ 1861 } else 1862 1863 #define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn) \ 1864 for_each_valid_sp(_kvm, _sp, \ 1865 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \ 1866 if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else 1867 1868 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 1869 struct list_head *invalid_list) 1870 { 1871 int ret = vcpu->arch.mmu->sync_page(vcpu, sp); 1872 1873 if (ret < 0) 1874 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); 1875 return ret; 1876 } 1877 1878 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm, 1879 struct list_head *invalid_list, 1880 bool remote_flush) 1881 { 1882 if (!remote_flush && list_empty(invalid_list)) 1883 return false; 1884 1885 if (!list_empty(invalid_list)) 1886 kvm_mmu_commit_zap_page(kvm, invalid_list); 1887 else 1888 kvm_flush_remote_tlbs(kvm); 1889 return true; 1890 } 1891 1892 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 1893 { 1894 if (sp->role.invalid) 1895 return true; 1896 1897 /* TDP MMU pages due not use the MMU generation. */ 1898 return !sp->tdp_mmu_page && 1899 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); 1900 } 1901 1902 struct mmu_page_path { 1903 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL]; 1904 unsigned int idx[PT64_ROOT_MAX_LEVEL]; 1905 }; 1906 1907 #define for_each_sp(pvec, sp, parents, i) \ 1908 for (i = mmu_pages_first(&pvec, &parents); \ 1909 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \ 1910 i = mmu_pages_next(&pvec, &parents, i)) 1911 1912 static int mmu_pages_next(struct kvm_mmu_pages *pvec, 1913 struct mmu_page_path *parents, 1914 int i) 1915 { 1916 int n; 1917 1918 for (n = i+1; n < pvec->nr; n++) { 1919 struct kvm_mmu_page *sp = pvec->page[n].sp; 1920 unsigned idx = pvec->page[n].idx; 1921 int level = sp->role.level; 1922 1923 parents->idx[level-1] = idx; 1924 if (level == PG_LEVEL_4K) 1925 break; 1926 1927 parents->parent[level-2] = sp; 1928 } 1929 1930 return n; 1931 } 1932 1933 static int mmu_pages_first(struct kvm_mmu_pages *pvec, 1934 struct mmu_page_path *parents) 1935 { 1936 struct kvm_mmu_page *sp; 1937 int level; 1938 1939 if (pvec->nr == 0) 1940 return 0; 1941 1942 WARN_ON(pvec->page[0].idx != INVALID_INDEX); 1943 1944 sp = pvec->page[0].sp; 1945 level = sp->role.level; 1946 WARN_ON(level == PG_LEVEL_4K); 1947 1948 parents->parent[level-2] = sp; 1949 1950 /* Also set up a sentinel. Further entries in pvec are all 1951 * children of sp, so this element is never overwritten. 1952 */ 1953 parents->parent[level-1] = NULL; 1954 return mmu_pages_next(pvec, parents, 0); 1955 } 1956 1957 static void mmu_pages_clear_parents(struct mmu_page_path *parents) 1958 { 1959 struct kvm_mmu_page *sp; 1960 unsigned int level = 0; 1961 1962 do { 1963 unsigned int idx = parents->idx[level]; 1964 sp = parents->parent[level]; 1965 if (!sp) 1966 return; 1967 1968 WARN_ON(idx == INVALID_INDEX); 1969 clear_unsync_child_bit(sp, idx); 1970 level++; 1971 } while (!sp->unsync_children); 1972 } 1973 1974 static int mmu_sync_children(struct kvm_vcpu *vcpu, 1975 struct kvm_mmu_page *parent, bool can_yield) 1976 { 1977 int i; 1978 struct kvm_mmu_page *sp; 1979 struct mmu_page_path parents; 1980 struct kvm_mmu_pages pages; 1981 LIST_HEAD(invalid_list); 1982 bool flush = false; 1983 1984 while (mmu_unsync_walk(parent, &pages)) { 1985 bool protected = false; 1986 1987 for_each_sp(pages, sp, parents, i) 1988 protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn); 1989 1990 if (protected) { 1991 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true); 1992 flush = false; 1993 } 1994 1995 for_each_sp(pages, sp, parents, i) { 1996 kvm_unlink_unsync_page(vcpu->kvm, sp); 1997 flush |= kvm_sync_page(vcpu, sp, &invalid_list) > 0; 1998 mmu_pages_clear_parents(&parents); 1999 } 2000 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) { 2001 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2002 if (!can_yield) { 2003 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 2004 return -EINTR; 2005 } 2006 2007 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock); 2008 flush = false; 2009 } 2010 } 2011 2012 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2013 return 0; 2014 } 2015 2016 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) 2017 { 2018 atomic_set(&sp->write_flooding_count, 0); 2019 } 2020 2021 static void clear_sp_write_flooding_count(u64 *spte) 2022 { 2023 __clear_sp_write_flooding_count(sptep_to_sp(spte)); 2024 } 2025 2026 /* 2027 * The vCPU is required when finding indirect shadow pages; the shadow 2028 * page may already exist and syncing it needs the vCPU pointer in 2029 * order to read guest page tables. Direct shadow pages are never 2030 * unsync, thus @vcpu can be NULL if @role.direct is true. 2031 */ 2032 static struct kvm_mmu_page *kvm_mmu_find_shadow_page(struct kvm *kvm, 2033 struct kvm_vcpu *vcpu, 2034 gfn_t gfn, 2035 struct hlist_head *sp_list, 2036 union kvm_mmu_page_role role) 2037 { 2038 struct kvm_mmu_page *sp; 2039 int ret; 2040 int collisions = 0; 2041 LIST_HEAD(invalid_list); 2042 2043 for_each_valid_sp(kvm, sp, sp_list) { 2044 if (sp->gfn != gfn) { 2045 collisions++; 2046 continue; 2047 } 2048 2049 if (sp->role.word != role.word) { 2050 /* 2051 * If the guest is creating an upper-level page, zap 2052 * unsync pages for the same gfn. While it's possible 2053 * the guest is using recursive page tables, in all 2054 * likelihood the guest has stopped using the unsync 2055 * page and is installing a completely unrelated page. 2056 * Unsync pages must not be left as is, because the new 2057 * upper-level page will be write-protected. 2058 */ 2059 if (role.level > PG_LEVEL_4K && sp->unsync) 2060 kvm_mmu_prepare_zap_page(kvm, sp, 2061 &invalid_list); 2062 continue; 2063 } 2064 2065 /* unsync and write-flooding only apply to indirect SPs. */ 2066 if (sp->role.direct) 2067 goto out; 2068 2069 if (sp->unsync) { 2070 if (KVM_BUG_ON(!vcpu, kvm)) 2071 break; 2072 2073 /* 2074 * The page is good, but is stale. kvm_sync_page does 2075 * get the latest guest state, but (unlike mmu_unsync_children) 2076 * it doesn't write-protect the page or mark it synchronized! 2077 * This way the validity of the mapping is ensured, but the 2078 * overhead of write protection is not incurred until the 2079 * guest invalidates the TLB mapping. This allows multiple 2080 * SPs for a single gfn to be unsync. 2081 * 2082 * If the sync fails, the page is zapped. If so, break 2083 * in order to rebuild it. 2084 */ 2085 ret = kvm_sync_page(vcpu, sp, &invalid_list); 2086 if (ret < 0) 2087 break; 2088 2089 WARN_ON(!list_empty(&invalid_list)); 2090 if (ret > 0) 2091 kvm_flush_remote_tlbs(kvm); 2092 } 2093 2094 __clear_sp_write_flooding_count(sp); 2095 2096 goto out; 2097 } 2098 2099 sp = NULL; 2100 ++kvm->stat.mmu_cache_miss; 2101 2102 out: 2103 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2104 2105 if (collisions > kvm->stat.max_mmu_page_hash_collisions) 2106 kvm->stat.max_mmu_page_hash_collisions = collisions; 2107 return sp; 2108 } 2109 2110 /* Caches used when allocating a new shadow page. */ 2111 struct shadow_page_caches { 2112 struct kvm_mmu_memory_cache *page_header_cache; 2113 struct kvm_mmu_memory_cache *shadow_page_cache; 2114 struct kvm_mmu_memory_cache *shadowed_info_cache; 2115 }; 2116 2117 static struct kvm_mmu_page *kvm_mmu_alloc_shadow_page(struct kvm *kvm, 2118 struct shadow_page_caches *caches, 2119 gfn_t gfn, 2120 struct hlist_head *sp_list, 2121 union kvm_mmu_page_role role) 2122 { 2123 struct kvm_mmu_page *sp; 2124 2125 sp = kvm_mmu_memory_cache_alloc(caches->page_header_cache); 2126 sp->spt = kvm_mmu_memory_cache_alloc(caches->shadow_page_cache); 2127 if (!role.direct) 2128 sp->shadowed_translation = kvm_mmu_memory_cache_alloc(caches->shadowed_info_cache); 2129 2130 set_page_private(virt_to_page(sp->spt), (unsigned long)sp); 2131 2132 /* 2133 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages() 2134 * depends on valid pages being added to the head of the list. See 2135 * comments in kvm_zap_obsolete_pages(). 2136 */ 2137 sp->mmu_valid_gen = kvm->arch.mmu_valid_gen; 2138 list_add(&sp->link, &kvm->arch.active_mmu_pages); 2139 kvm_account_mmu_page(kvm, sp); 2140 2141 sp->gfn = gfn; 2142 sp->role = role; 2143 hlist_add_head(&sp->hash_link, sp_list); 2144 if (sp_has_gptes(sp)) 2145 account_shadowed(kvm, sp); 2146 2147 return sp; 2148 } 2149 2150 /* Note, @vcpu may be NULL if @role.direct is true; see kvm_mmu_find_shadow_page. */ 2151 static struct kvm_mmu_page *__kvm_mmu_get_shadow_page(struct kvm *kvm, 2152 struct kvm_vcpu *vcpu, 2153 struct shadow_page_caches *caches, 2154 gfn_t gfn, 2155 union kvm_mmu_page_role role) 2156 { 2157 struct hlist_head *sp_list; 2158 struct kvm_mmu_page *sp; 2159 bool created = false; 2160 2161 sp_list = &kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]; 2162 2163 sp = kvm_mmu_find_shadow_page(kvm, vcpu, gfn, sp_list, role); 2164 if (!sp) { 2165 created = true; 2166 sp = kvm_mmu_alloc_shadow_page(kvm, caches, gfn, sp_list, role); 2167 } 2168 2169 trace_kvm_mmu_get_page(sp, created); 2170 return sp; 2171 } 2172 2173 static struct kvm_mmu_page *kvm_mmu_get_shadow_page(struct kvm_vcpu *vcpu, 2174 gfn_t gfn, 2175 union kvm_mmu_page_role role) 2176 { 2177 struct shadow_page_caches caches = { 2178 .page_header_cache = &vcpu->arch.mmu_page_header_cache, 2179 .shadow_page_cache = &vcpu->arch.mmu_shadow_page_cache, 2180 .shadowed_info_cache = &vcpu->arch.mmu_shadowed_info_cache, 2181 }; 2182 2183 return __kvm_mmu_get_shadow_page(vcpu->kvm, vcpu, &caches, gfn, role); 2184 } 2185 2186 static union kvm_mmu_page_role kvm_mmu_child_role(u64 *sptep, bool direct, 2187 unsigned int access) 2188 { 2189 struct kvm_mmu_page *parent_sp = sptep_to_sp(sptep); 2190 union kvm_mmu_page_role role; 2191 2192 role = parent_sp->role; 2193 role.level--; 2194 role.access = access; 2195 role.direct = direct; 2196 role.passthrough = 0; 2197 2198 /* 2199 * If the guest has 4-byte PTEs then that means it's using 32-bit, 2200 * 2-level, non-PAE paging. KVM shadows such guests with PAE paging 2201 * (i.e. 8-byte PTEs). The difference in PTE size means that KVM must 2202 * shadow each guest page table with multiple shadow page tables, which 2203 * requires extra bookkeeping in the role. 2204 * 2205 * Specifically, to shadow the guest's page directory (which covers a 2206 * 4GiB address space), KVM uses 4 PAE page directories, each mapping 2207 * 1GiB of the address space. @role.quadrant encodes which quarter of 2208 * the address space each maps. 2209 * 2210 * To shadow the guest's page tables (which each map a 4MiB region), KVM 2211 * uses 2 PAE page tables, each mapping a 2MiB region. For these, 2212 * @role.quadrant encodes which half of the region they map. 2213 * 2214 * Concretely, a 4-byte PDE consumes bits 31:22, while an 8-byte PDE 2215 * consumes bits 29:21. To consume bits 31:30, KVM's uses 4 shadow 2216 * PDPTEs; those 4 PAE page directories are pre-allocated and their 2217 * quadrant is assigned in mmu_alloc_root(). A 4-byte PTE consumes 2218 * bits 21:12, while an 8-byte PTE consumes bits 20:12. To consume 2219 * bit 21 in the PTE (the child here), KVM propagates that bit to the 2220 * quadrant, i.e. sets quadrant to '0' or '1'. The parent 8-byte PDE 2221 * covers bit 21 (see above), thus the quadrant is calculated from the 2222 * _least_ significant bit of the PDE index. 2223 */ 2224 if (role.has_4_byte_gpte) { 2225 WARN_ON_ONCE(role.level != PG_LEVEL_4K); 2226 role.quadrant = spte_index(sptep) & 1; 2227 } 2228 2229 return role; 2230 } 2231 2232 static struct kvm_mmu_page *kvm_mmu_get_child_sp(struct kvm_vcpu *vcpu, 2233 u64 *sptep, gfn_t gfn, 2234 bool direct, unsigned int access) 2235 { 2236 union kvm_mmu_page_role role; 2237 2238 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) 2239 return ERR_PTR(-EEXIST); 2240 2241 role = kvm_mmu_child_role(sptep, direct, access); 2242 return kvm_mmu_get_shadow_page(vcpu, gfn, role); 2243 } 2244 2245 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator, 2246 struct kvm_vcpu *vcpu, hpa_t root, 2247 u64 addr) 2248 { 2249 iterator->addr = addr; 2250 iterator->shadow_addr = root; 2251 iterator->level = vcpu->arch.mmu->root_role.level; 2252 2253 if (iterator->level >= PT64_ROOT_4LEVEL && 2254 vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL && 2255 !vcpu->arch.mmu->root_role.direct) 2256 iterator->level = PT32E_ROOT_LEVEL; 2257 2258 if (iterator->level == PT32E_ROOT_LEVEL) { 2259 /* 2260 * prev_root is currently only used for 64-bit hosts. So only 2261 * the active root_hpa is valid here. 2262 */ 2263 BUG_ON(root != vcpu->arch.mmu->root.hpa); 2264 2265 iterator->shadow_addr 2266 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3]; 2267 iterator->shadow_addr &= SPTE_BASE_ADDR_MASK; 2268 --iterator->level; 2269 if (!iterator->shadow_addr) 2270 iterator->level = 0; 2271 } 2272 } 2273 2274 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, 2275 struct kvm_vcpu *vcpu, u64 addr) 2276 { 2277 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa, 2278 addr); 2279 } 2280 2281 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) 2282 { 2283 if (iterator->level < PG_LEVEL_4K) 2284 return false; 2285 2286 iterator->index = SPTE_INDEX(iterator->addr, iterator->level); 2287 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; 2288 return true; 2289 } 2290 2291 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, 2292 u64 spte) 2293 { 2294 if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) { 2295 iterator->level = 0; 2296 return; 2297 } 2298 2299 iterator->shadow_addr = spte & SPTE_BASE_ADDR_MASK; 2300 --iterator->level; 2301 } 2302 2303 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) 2304 { 2305 __shadow_walk_next(iterator, *iterator->sptep); 2306 } 2307 2308 static void __link_shadow_page(struct kvm *kvm, 2309 struct kvm_mmu_memory_cache *cache, u64 *sptep, 2310 struct kvm_mmu_page *sp, bool flush) 2311 { 2312 u64 spte; 2313 2314 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); 2315 2316 /* 2317 * If an SPTE is present already, it must be a leaf and therefore 2318 * a large one. Drop it, and flush the TLB if needed, before 2319 * installing sp. 2320 */ 2321 if (is_shadow_present_pte(*sptep)) 2322 drop_large_spte(kvm, sptep, flush); 2323 2324 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp)); 2325 2326 mmu_spte_set(sptep, spte); 2327 2328 mmu_page_add_parent_pte(cache, sp, sptep); 2329 2330 if (sp->unsync_children || sp->unsync) 2331 mark_unsync(sptep); 2332 } 2333 2334 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, 2335 struct kvm_mmu_page *sp) 2336 { 2337 __link_shadow_page(vcpu->kvm, &vcpu->arch.mmu_pte_list_desc_cache, sptep, sp, true); 2338 } 2339 2340 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2341 unsigned direct_access) 2342 { 2343 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { 2344 struct kvm_mmu_page *child; 2345 2346 /* 2347 * For the direct sp, if the guest pte's dirty bit 2348 * changed form clean to dirty, it will corrupt the 2349 * sp's access: allow writable in the read-only sp, 2350 * so we should update the spte at this point to get 2351 * a new sp with the correct access. 2352 */ 2353 child = to_shadow_page(*sptep & SPTE_BASE_ADDR_MASK); 2354 if (child->role.access == direct_access) 2355 return; 2356 2357 drop_parent_pte(child, sptep); 2358 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1); 2359 } 2360 } 2361 2362 /* Returns the number of zapped non-leaf child shadow pages. */ 2363 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 2364 u64 *spte, struct list_head *invalid_list) 2365 { 2366 u64 pte; 2367 struct kvm_mmu_page *child; 2368 2369 pte = *spte; 2370 if (is_shadow_present_pte(pte)) { 2371 if (is_last_spte(pte, sp->role.level)) { 2372 drop_spte(kvm, spte); 2373 } else { 2374 child = to_shadow_page(pte & SPTE_BASE_ADDR_MASK); 2375 drop_parent_pte(child, spte); 2376 2377 /* 2378 * Recursively zap nested TDP SPs, parentless SPs are 2379 * unlikely to be used again in the near future. This 2380 * avoids retaining a large number of stale nested SPs. 2381 */ 2382 if (tdp_enabled && invalid_list && 2383 child->role.guest_mode && !child->parent_ptes.val) 2384 return kvm_mmu_prepare_zap_page(kvm, child, 2385 invalid_list); 2386 } 2387 } else if (is_mmio_spte(pte)) { 2388 mmu_spte_clear_no_track(spte); 2389 } 2390 return 0; 2391 } 2392 2393 static int kvm_mmu_page_unlink_children(struct kvm *kvm, 2394 struct kvm_mmu_page *sp, 2395 struct list_head *invalid_list) 2396 { 2397 int zapped = 0; 2398 unsigned i; 2399 2400 for (i = 0; i < SPTE_ENT_PER_PAGE; ++i) 2401 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list); 2402 2403 return zapped; 2404 } 2405 2406 static void kvm_mmu_unlink_parents(struct kvm_mmu_page *sp) 2407 { 2408 u64 *sptep; 2409 struct rmap_iterator iter; 2410 2411 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter))) 2412 drop_parent_pte(sp, sptep); 2413 } 2414 2415 static int mmu_zap_unsync_children(struct kvm *kvm, 2416 struct kvm_mmu_page *parent, 2417 struct list_head *invalid_list) 2418 { 2419 int i, zapped = 0; 2420 struct mmu_page_path parents; 2421 struct kvm_mmu_pages pages; 2422 2423 if (parent->role.level == PG_LEVEL_4K) 2424 return 0; 2425 2426 while (mmu_unsync_walk(parent, &pages)) { 2427 struct kvm_mmu_page *sp; 2428 2429 for_each_sp(pages, sp, parents, i) { 2430 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 2431 mmu_pages_clear_parents(&parents); 2432 zapped++; 2433 } 2434 } 2435 2436 return zapped; 2437 } 2438 2439 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm, 2440 struct kvm_mmu_page *sp, 2441 struct list_head *invalid_list, 2442 int *nr_zapped) 2443 { 2444 bool list_unstable, zapped_root = false; 2445 2446 lockdep_assert_held_write(&kvm->mmu_lock); 2447 trace_kvm_mmu_prepare_zap_page(sp); 2448 ++kvm->stat.mmu_shadow_zapped; 2449 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list); 2450 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list); 2451 kvm_mmu_unlink_parents(sp); 2452 2453 /* Zapping children means active_mmu_pages has become unstable. */ 2454 list_unstable = *nr_zapped; 2455 2456 if (!sp->role.invalid && sp_has_gptes(sp)) 2457 unaccount_shadowed(kvm, sp); 2458 2459 if (sp->unsync) 2460 kvm_unlink_unsync_page(kvm, sp); 2461 if (!sp->root_count) { 2462 /* Count self */ 2463 (*nr_zapped)++; 2464 2465 /* 2466 * Already invalid pages (previously active roots) are not on 2467 * the active page list. See list_del() in the "else" case of 2468 * !sp->root_count. 2469 */ 2470 if (sp->role.invalid) 2471 list_add(&sp->link, invalid_list); 2472 else 2473 list_move(&sp->link, invalid_list); 2474 kvm_unaccount_mmu_page(kvm, sp); 2475 } else { 2476 /* 2477 * Remove the active root from the active page list, the root 2478 * will be explicitly freed when the root_count hits zero. 2479 */ 2480 list_del(&sp->link); 2481 2482 /* 2483 * Obsolete pages cannot be used on any vCPUs, see the comment 2484 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also 2485 * treats invalid shadow pages as being obsolete. 2486 */ 2487 zapped_root = !is_obsolete_sp(kvm, sp); 2488 } 2489 2490 if (sp->lpage_disallowed) 2491 unaccount_huge_nx_page(kvm, sp); 2492 2493 sp->role.invalid = 1; 2494 2495 /* 2496 * Make the request to free obsolete roots after marking the root 2497 * invalid, otherwise other vCPUs may not see it as invalid. 2498 */ 2499 if (zapped_root) 2500 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 2501 return list_unstable; 2502 } 2503 2504 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 2505 struct list_head *invalid_list) 2506 { 2507 int nr_zapped; 2508 2509 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped); 2510 return nr_zapped; 2511 } 2512 2513 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 2514 struct list_head *invalid_list) 2515 { 2516 struct kvm_mmu_page *sp, *nsp; 2517 2518 if (list_empty(invalid_list)) 2519 return; 2520 2521 /* 2522 * We need to make sure everyone sees our modifications to 2523 * the page tables and see changes to vcpu->mode here. The barrier 2524 * in the kvm_flush_remote_tlbs() achieves this. This pairs 2525 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end. 2526 * 2527 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit 2528 * guest mode and/or lockless shadow page table walks. 2529 */ 2530 kvm_flush_remote_tlbs(kvm); 2531 2532 list_for_each_entry_safe(sp, nsp, invalid_list, link) { 2533 WARN_ON(!sp->role.invalid || sp->root_count); 2534 kvm_mmu_free_shadow_page(sp); 2535 } 2536 } 2537 2538 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm, 2539 unsigned long nr_to_zap) 2540 { 2541 unsigned long total_zapped = 0; 2542 struct kvm_mmu_page *sp, *tmp; 2543 LIST_HEAD(invalid_list); 2544 bool unstable; 2545 int nr_zapped; 2546 2547 if (list_empty(&kvm->arch.active_mmu_pages)) 2548 return 0; 2549 2550 restart: 2551 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) { 2552 /* 2553 * Don't zap active root pages, the page itself can't be freed 2554 * and zapping it will just force vCPUs to realloc and reload. 2555 */ 2556 if (sp->root_count) 2557 continue; 2558 2559 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, 2560 &nr_zapped); 2561 total_zapped += nr_zapped; 2562 if (total_zapped >= nr_to_zap) 2563 break; 2564 2565 if (unstable) 2566 goto restart; 2567 } 2568 2569 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2570 2571 kvm->stat.mmu_recycled += total_zapped; 2572 return total_zapped; 2573 } 2574 2575 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm) 2576 { 2577 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) 2578 return kvm->arch.n_max_mmu_pages - 2579 kvm->arch.n_used_mmu_pages; 2580 2581 return 0; 2582 } 2583 2584 static int make_mmu_pages_available(struct kvm_vcpu *vcpu) 2585 { 2586 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm); 2587 2588 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES)) 2589 return 0; 2590 2591 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail); 2592 2593 /* 2594 * Note, this check is intentionally soft, it only guarantees that one 2595 * page is available, while the caller may end up allocating as many as 2596 * four pages, e.g. for PAE roots or for 5-level paging. Temporarily 2597 * exceeding the (arbitrary by default) limit will not harm the host, 2598 * being too aggressive may unnecessarily kill the guest, and getting an 2599 * exact count is far more trouble than it's worth, especially in the 2600 * page fault paths. 2601 */ 2602 if (!kvm_mmu_available_pages(vcpu->kvm)) 2603 return -ENOSPC; 2604 return 0; 2605 } 2606 2607 /* 2608 * Changing the number of mmu pages allocated to the vm 2609 * Note: if goal_nr_mmu_pages is too small, you will get dead lock 2610 */ 2611 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages) 2612 { 2613 write_lock(&kvm->mmu_lock); 2614 2615 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { 2616 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages - 2617 goal_nr_mmu_pages); 2618 2619 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; 2620 } 2621 2622 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; 2623 2624 write_unlock(&kvm->mmu_lock); 2625 } 2626 2627 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn) 2628 { 2629 struct kvm_mmu_page *sp; 2630 LIST_HEAD(invalid_list); 2631 int r; 2632 2633 pgprintk("%s: looking for gfn %llx\n", __func__, gfn); 2634 r = 0; 2635 write_lock(&kvm->mmu_lock); 2636 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) { 2637 pgprintk("%s: gfn %llx role %x\n", __func__, gfn, 2638 sp->role.word); 2639 r = 1; 2640 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 2641 } 2642 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2643 write_unlock(&kvm->mmu_lock); 2644 2645 return r; 2646 } 2647 2648 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) 2649 { 2650 gpa_t gpa; 2651 int r; 2652 2653 if (vcpu->arch.mmu->root_role.direct) 2654 return 0; 2655 2656 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL); 2657 2658 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); 2659 2660 return r; 2661 } 2662 2663 static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 2664 { 2665 trace_kvm_mmu_unsync_page(sp); 2666 ++kvm->stat.mmu_unsync; 2667 sp->unsync = 1; 2668 2669 kvm_mmu_mark_parents_unsync(sp); 2670 } 2671 2672 /* 2673 * Attempt to unsync any shadow pages that can be reached by the specified gfn, 2674 * KVM is creating a writable mapping for said gfn. Returns 0 if all pages 2675 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must 2676 * be write-protected. 2677 */ 2678 int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot, 2679 gfn_t gfn, bool can_unsync, bool prefetch) 2680 { 2681 struct kvm_mmu_page *sp; 2682 bool locked = false; 2683 2684 /* 2685 * Force write-protection if the page is being tracked. Note, the page 2686 * track machinery is used to write-protect upper-level shadow pages, 2687 * i.e. this guards the role.level == 4K assertion below! 2688 */ 2689 if (kvm_slot_page_track_is_active(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE)) 2690 return -EPERM; 2691 2692 /* 2693 * The page is not write-tracked, mark existing shadow pages unsync 2694 * unless KVM is synchronizing an unsync SP (can_unsync = false). In 2695 * that case, KVM must complete emulation of the guest TLB flush before 2696 * allowing shadow pages to become unsync (writable by the guest). 2697 */ 2698 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) { 2699 if (!can_unsync) 2700 return -EPERM; 2701 2702 if (sp->unsync) 2703 continue; 2704 2705 if (prefetch) 2706 return -EEXIST; 2707 2708 /* 2709 * TDP MMU page faults require an additional spinlock as they 2710 * run with mmu_lock held for read, not write, and the unsync 2711 * logic is not thread safe. Take the spinklock regardless of 2712 * the MMU type to avoid extra conditionals/parameters, there's 2713 * no meaningful penalty if mmu_lock is held for write. 2714 */ 2715 if (!locked) { 2716 locked = true; 2717 spin_lock(&kvm->arch.mmu_unsync_pages_lock); 2718 2719 /* 2720 * Recheck after taking the spinlock, a different vCPU 2721 * may have since marked the page unsync. A false 2722 * positive on the unprotected check above is not 2723 * possible as clearing sp->unsync _must_ hold mmu_lock 2724 * for write, i.e. unsync cannot transition from 0->1 2725 * while this CPU holds mmu_lock for read (or write). 2726 */ 2727 if (READ_ONCE(sp->unsync)) 2728 continue; 2729 } 2730 2731 WARN_ON(sp->role.level != PG_LEVEL_4K); 2732 kvm_unsync_page(kvm, sp); 2733 } 2734 if (locked) 2735 spin_unlock(&kvm->arch.mmu_unsync_pages_lock); 2736 2737 /* 2738 * We need to ensure that the marking of unsync pages is visible 2739 * before the SPTE is updated to allow writes because 2740 * kvm_mmu_sync_roots() checks the unsync flags without holding 2741 * the MMU lock and so can race with this. If the SPTE was updated 2742 * before the page had been marked as unsync-ed, something like the 2743 * following could happen: 2744 * 2745 * CPU 1 CPU 2 2746 * --------------------------------------------------------------------- 2747 * 1.2 Host updates SPTE 2748 * to be writable 2749 * 2.1 Guest writes a GPTE for GVA X. 2750 * (GPTE being in the guest page table shadowed 2751 * by the SP from CPU 1.) 2752 * This reads SPTE during the page table walk. 2753 * Since SPTE.W is read as 1, there is no 2754 * fault. 2755 * 2756 * 2.2 Guest issues TLB flush. 2757 * That causes a VM Exit. 2758 * 2759 * 2.3 Walking of unsync pages sees sp->unsync is 2760 * false and skips the page. 2761 * 2762 * 2.4 Guest accesses GVA X. 2763 * Since the mapping in the SP was not updated, 2764 * so the old mapping for GVA X incorrectly 2765 * gets used. 2766 * 1.1 Host marks SP 2767 * as unsync 2768 * (sp->unsync = true) 2769 * 2770 * The write barrier below ensures that 1.1 happens before 1.2 and thus 2771 * the situation in 2.4 does not arise. It pairs with the read barrier 2772 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3. 2773 */ 2774 smp_wmb(); 2775 2776 return 0; 2777 } 2778 2779 static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, 2780 u64 *sptep, unsigned int pte_access, gfn_t gfn, 2781 kvm_pfn_t pfn, struct kvm_page_fault *fault) 2782 { 2783 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 2784 int level = sp->role.level; 2785 int was_rmapped = 0; 2786 int ret = RET_PF_FIXED; 2787 bool flush = false; 2788 bool wrprot; 2789 u64 spte; 2790 2791 /* Prefetching always gets a writable pfn. */ 2792 bool host_writable = !fault || fault->map_writable; 2793 bool prefetch = !fault || fault->prefetch; 2794 bool write_fault = fault && fault->write; 2795 2796 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__, 2797 *sptep, write_fault, gfn); 2798 2799 if (unlikely(is_noslot_pfn(pfn))) { 2800 vcpu->stat.pf_mmio_spte_created++; 2801 mark_mmio_spte(vcpu, sptep, gfn, pte_access); 2802 return RET_PF_EMULATE; 2803 } 2804 2805 if (is_shadow_present_pte(*sptep)) { 2806 /* 2807 * If we overwrite a PTE page pointer with a 2MB PMD, unlink 2808 * the parent of the now unreachable PTE. 2809 */ 2810 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) { 2811 struct kvm_mmu_page *child; 2812 u64 pte = *sptep; 2813 2814 child = to_shadow_page(pte & SPTE_BASE_ADDR_MASK); 2815 drop_parent_pte(child, sptep); 2816 flush = true; 2817 } else if (pfn != spte_to_pfn(*sptep)) { 2818 pgprintk("hfn old %llx new %llx\n", 2819 spte_to_pfn(*sptep), pfn); 2820 drop_spte(vcpu->kvm, sptep); 2821 flush = true; 2822 } else 2823 was_rmapped = 1; 2824 } 2825 2826 wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch, 2827 true, host_writable, &spte); 2828 2829 if (*sptep == spte) { 2830 ret = RET_PF_SPURIOUS; 2831 } else { 2832 flush |= mmu_spte_update(sptep, spte); 2833 trace_kvm_mmu_set_spte(level, gfn, sptep); 2834 } 2835 2836 if (wrprot) { 2837 if (write_fault) 2838 ret = RET_PF_EMULATE; 2839 } 2840 2841 if (flush) 2842 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 2843 KVM_PAGES_PER_HPAGE(level)); 2844 2845 pgprintk("%s: setting spte %llx\n", __func__, *sptep); 2846 2847 if (!was_rmapped) { 2848 WARN_ON_ONCE(ret == RET_PF_SPURIOUS); 2849 rmap_add(vcpu, slot, sptep, gfn, pte_access); 2850 } else { 2851 /* Already rmapped but the pte_access bits may have changed. */ 2852 kvm_mmu_page_set_access(sp, spte_index(sptep), pte_access); 2853 } 2854 2855 return ret; 2856 } 2857 2858 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu, 2859 struct kvm_mmu_page *sp, 2860 u64 *start, u64 *end) 2861 { 2862 struct page *pages[PTE_PREFETCH_NUM]; 2863 struct kvm_memory_slot *slot; 2864 unsigned int access = sp->role.access; 2865 int i, ret; 2866 gfn_t gfn; 2867 2868 gfn = kvm_mmu_page_get_gfn(sp, spte_index(start)); 2869 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK); 2870 if (!slot) 2871 return -1; 2872 2873 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start); 2874 if (ret <= 0) 2875 return -1; 2876 2877 for (i = 0; i < ret; i++, gfn++, start++) { 2878 mmu_set_spte(vcpu, slot, start, access, gfn, 2879 page_to_pfn(pages[i]), NULL); 2880 put_page(pages[i]); 2881 } 2882 2883 return 0; 2884 } 2885 2886 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, 2887 struct kvm_mmu_page *sp, u64 *sptep) 2888 { 2889 u64 *spte, *start = NULL; 2890 int i; 2891 2892 WARN_ON(!sp->role.direct); 2893 2894 i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1); 2895 spte = sp->spt + i; 2896 2897 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 2898 if (is_shadow_present_pte(*spte) || spte == sptep) { 2899 if (!start) 2900 continue; 2901 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0) 2902 return; 2903 start = NULL; 2904 } else if (!start) 2905 start = spte; 2906 } 2907 if (start) 2908 direct_pte_prefetch_many(vcpu, sp, start, spte); 2909 } 2910 2911 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) 2912 { 2913 struct kvm_mmu_page *sp; 2914 2915 sp = sptep_to_sp(sptep); 2916 2917 /* 2918 * Without accessed bits, there's no way to distinguish between 2919 * actually accessed translations and prefetched, so disable pte 2920 * prefetch if accessed bits aren't available. 2921 */ 2922 if (sp_ad_disabled(sp)) 2923 return; 2924 2925 if (sp->role.level > PG_LEVEL_4K) 2926 return; 2927 2928 /* 2929 * If addresses are being invalidated, skip prefetching to avoid 2930 * accidentally prefetching those addresses. 2931 */ 2932 if (unlikely(vcpu->kvm->mmu_invalidate_in_progress)) 2933 return; 2934 2935 __direct_pte_prefetch(vcpu, sp, sptep); 2936 } 2937 2938 /* 2939 * Lookup the mapping level for @gfn in the current mm. 2940 * 2941 * WARNING! Use of host_pfn_mapping_level() requires the caller and the end 2942 * consumer to be tied into KVM's handlers for MMU notifier events! 2943 * 2944 * There are several ways to safely use this helper: 2945 * 2946 * - Check mmu_invalidate_retry_hva() after grabbing the mapping level, before 2947 * consuming it. In this case, mmu_lock doesn't need to be held during the 2948 * lookup, but it does need to be held while checking the MMU notifier. 2949 * 2950 * - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation 2951 * event for the hva. This can be done by explicit checking the MMU notifier 2952 * or by ensuring that KVM already has a valid mapping that covers the hva. 2953 * 2954 * - Do not use the result to install new mappings, e.g. use the host mapping 2955 * level only to decide whether or not to zap an entry. In this case, it's 2956 * not required to hold mmu_lock (though it's highly likely the caller will 2957 * want to hold mmu_lock anyways, e.g. to modify SPTEs). 2958 * 2959 * Note! The lookup can still race with modifications to host page tables, but 2960 * the above "rules" ensure KVM will not _consume_ the result of the walk if a 2961 * race with the primary MMU occurs. 2962 */ 2963 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, 2964 const struct kvm_memory_slot *slot) 2965 { 2966 int level = PG_LEVEL_4K; 2967 unsigned long hva; 2968 unsigned long flags; 2969 pgd_t pgd; 2970 p4d_t p4d; 2971 pud_t pud; 2972 pmd_t pmd; 2973 2974 /* 2975 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot() 2976 * is not solely for performance, it's also necessary to avoid the 2977 * "writable" check in __gfn_to_hva_many(), which will always fail on 2978 * read-only memslots due to gfn_to_hva() assuming writes. Earlier 2979 * page fault steps have already verified the guest isn't writing a 2980 * read-only memslot. 2981 */ 2982 hva = __gfn_to_hva_memslot(slot, gfn); 2983 2984 /* 2985 * Disable IRQs to prevent concurrent tear down of host page tables, 2986 * e.g. if the primary MMU promotes a P*D to a huge page and then frees 2987 * the original page table. 2988 */ 2989 local_irq_save(flags); 2990 2991 /* 2992 * Read each entry once. As above, a non-leaf entry can be promoted to 2993 * a huge page _during_ this walk. Re-reading the entry could send the 2994 * walk into the weeks, e.g. p*d_large() returns false (sees the old 2995 * value) and then p*d_offset() walks into the target huge page instead 2996 * of the old page table (sees the new value). 2997 */ 2998 pgd = READ_ONCE(*pgd_offset(kvm->mm, hva)); 2999 if (pgd_none(pgd)) 3000 goto out; 3001 3002 p4d = READ_ONCE(*p4d_offset(&pgd, hva)); 3003 if (p4d_none(p4d) || !p4d_present(p4d)) 3004 goto out; 3005 3006 pud = READ_ONCE(*pud_offset(&p4d, hva)); 3007 if (pud_none(pud) || !pud_present(pud)) 3008 goto out; 3009 3010 if (pud_large(pud)) { 3011 level = PG_LEVEL_1G; 3012 goto out; 3013 } 3014 3015 pmd = READ_ONCE(*pmd_offset(&pud, hva)); 3016 if (pmd_none(pmd) || !pmd_present(pmd)) 3017 goto out; 3018 3019 if (pmd_large(pmd)) 3020 level = PG_LEVEL_2M; 3021 3022 out: 3023 local_irq_restore(flags); 3024 return level; 3025 } 3026 3027 int kvm_mmu_max_mapping_level(struct kvm *kvm, 3028 const struct kvm_memory_slot *slot, gfn_t gfn, 3029 int max_level) 3030 { 3031 struct kvm_lpage_info *linfo; 3032 int host_level; 3033 3034 max_level = min(max_level, max_huge_page_level); 3035 for ( ; max_level > PG_LEVEL_4K; max_level--) { 3036 linfo = lpage_info_slot(gfn, slot, max_level); 3037 if (!linfo->disallow_lpage) 3038 break; 3039 } 3040 3041 if (max_level == PG_LEVEL_4K) 3042 return PG_LEVEL_4K; 3043 3044 host_level = host_pfn_mapping_level(kvm, gfn, slot); 3045 return min(host_level, max_level); 3046 } 3047 3048 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3049 { 3050 struct kvm_memory_slot *slot = fault->slot; 3051 kvm_pfn_t mask; 3052 3053 fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled; 3054 3055 if (unlikely(fault->max_level == PG_LEVEL_4K)) 3056 return; 3057 3058 if (is_error_noslot_pfn(fault->pfn)) 3059 return; 3060 3061 if (kvm_slot_dirty_track_enabled(slot)) 3062 return; 3063 3064 /* 3065 * Enforce the iTLB multihit workaround after capturing the requested 3066 * level, which will be used to do precise, accurate accounting. 3067 */ 3068 fault->req_level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, 3069 fault->gfn, fault->max_level); 3070 if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed) 3071 return; 3072 3073 /* 3074 * mmu_invalidate_retry() was successful and mmu_lock is held, so 3075 * the pmd can't be split from under us. 3076 */ 3077 fault->goal_level = fault->req_level; 3078 mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1; 3079 VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask)); 3080 fault->pfn &= ~mask; 3081 } 3082 3083 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level) 3084 { 3085 if (cur_level > PG_LEVEL_4K && 3086 cur_level == fault->goal_level && 3087 is_shadow_present_pte(spte) && 3088 !is_large_pte(spte)) { 3089 /* 3090 * A small SPTE exists for this pfn, but FNAME(fetch) 3091 * and __direct_map would like to create a large PTE 3092 * instead: just force them to go down another level, 3093 * patching back for them into pfn the next 9 bits of 3094 * the address. 3095 */ 3096 u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) - 3097 KVM_PAGES_PER_HPAGE(cur_level - 1); 3098 fault->pfn |= fault->gfn & page_mask; 3099 fault->goal_level--; 3100 } 3101 } 3102 3103 static int __direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3104 { 3105 struct kvm_shadow_walk_iterator it; 3106 struct kvm_mmu_page *sp; 3107 int ret; 3108 gfn_t base_gfn = fault->gfn; 3109 3110 kvm_mmu_hugepage_adjust(vcpu, fault); 3111 3112 trace_kvm_mmu_spte_requested(fault); 3113 for_each_shadow_entry(vcpu, fault->addr, it) { 3114 /* 3115 * We cannot overwrite existing page tables with an NX 3116 * large page, as the leaf could be executable. 3117 */ 3118 if (fault->nx_huge_page_workaround_enabled) 3119 disallowed_hugepage_adjust(fault, *it.sptep, it.level); 3120 3121 base_gfn = fault->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1); 3122 if (it.level == fault->goal_level) 3123 break; 3124 3125 sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, true, ACC_ALL); 3126 if (sp == ERR_PTR(-EEXIST)) 3127 continue; 3128 3129 link_shadow_page(vcpu, it.sptep, sp); 3130 if (fault->is_tdp && fault->huge_page_disallowed && 3131 fault->req_level >= it.level) 3132 account_huge_nx_page(vcpu->kvm, sp); 3133 } 3134 3135 if (WARN_ON_ONCE(it.level != fault->goal_level)) 3136 return -EFAULT; 3137 3138 ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL, 3139 base_gfn, fault->pfn, fault); 3140 if (ret == RET_PF_SPURIOUS) 3141 return ret; 3142 3143 direct_pte_prefetch(vcpu, it.sptep); 3144 return ret; 3145 } 3146 3147 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk) 3148 { 3149 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk); 3150 } 3151 3152 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn) 3153 { 3154 /* 3155 * Do not cache the mmio info caused by writing the readonly gfn 3156 * into the spte otherwise read access on readonly gfn also can 3157 * caused mmio page fault and treat it as mmio access. 3158 */ 3159 if (pfn == KVM_PFN_ERR_RO_FAULT) 3160 return RET_PF_EMULATE; 3161 3162 if (pfn == KVM_PFN_ERR_HWPOISON) { 3163 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current); 3164 return RET_PF_RETRY; 3165 } 3166 3167 return -EFAULT; 3168 } 3169 3170 static int handle_abnormal_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, 3171 unsigned int access) 3172 { 3173 /* The pfn is invalid, report the error! */ 3174 if (unlikely(is_error_pfn(fault->pfn))) 3175 return kvm_handle_bad_page(vcpu, fault->gfn, fault->pfn); 3176 3177 if (unlikely(!fault->slot)) { 3178 gva_t gva = fault->is_tdp ? 0 : fault->addr; 3179 3180 vcpu_cache_mmio_info(vcpu, gva, fault->gfn, 3181 access & shadow_mmio_access_mask); 3182 /* 3183 * If MMIO caching is disabled, emulate immediately without 3184 * touching the shadow page tables as attempting to install an 3185 * MMIO SPTE will just be an expensive nop. Do not cache MMIO 3186 * whose gfn is greater than host.MAXPHYADDR, any guest that 3187 * generates such gfns is running nested and is being tricked 3188 * by L0 userspace (you can observe gfn > L1.MAXPHYADDR if 3189 * and only if L1's MAXPHYADDR is inaccurate with respect to 3190 * the hardware's). 3191 */ 3192 if (unlikely(!enable_mmio_caching) || 3193 unlikely(fault->gfn > kvm_mmu_max_gfn())) 3194 return RET_PF_EMULATE; 3195 } 3196 3197 return RET_PF_CONTINUE; 3198 } 3199 3200 static bool page_fault_can_be_fast(struct kvm_page_fault *fault) 3201 { 3202 /* 3203 * Page faults with reserved bits set, i.e. faults on MMIO SPTEs, only 3204 * reach the common page fault handler if the SPTE has an invalid MMIO 3205 * generation number. Refreshing the MMIO generation needs to go down 3206 * the slow path. Note, EPT Misconfigs do NOT set the PRESENT flag! 3207 */ 3208 if (fault->rsvd) 3209 return false; 3210 3211 /* 3212 * #PF can be fast if: 3213 * 3214 * 1. The shadow page table entry is not present and A/D bits are 3215 * disabled _by KVM_, which could mean that the fault is potentially 3216 * caused by access tracking (if enabled). If A/D bits are enabled 3217 * by KVM, but disabled by L1 for L2, KVM is forced to disable A/D 3218 * bits for L2 and employ access tracking, but the fast page fault 3219 * mechanism only supports direct MMUs. 3220 * 2. The shadow page table entry is present, the access is a write, 3221 * and no reserved bits are set (MMIO SPTEs cannot be "fixed"), i.e. 3222 * the fault was caused by a write-protection violation. If the 3223 * SPTE is MMU-writable (determined later), the fault can be fixed 3224 * by setting the Writable bit, which can be done out of mmu_lock. 3225 */ 3226 if (!fault->present) 3227 return !kvm_ad_enabled(); 3228 3229 /* 3230 * Note, instruction fetches and writes are mutually exclusive, ignore 3231 * the "exec" flag. 3232 */ 3233 return fault->write; 3234 } 3235 3236 /* 3237 * Returns true if the SPTE was fixed successfully. Otherwise, 3238 * someone else modified the SPTE from its original value. 3239 */ 3240 static bool 3241 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, 3242 u64 *sptep, u64 old_spte, u64 new_spte) 3243 { 3244 /* 3245 * Theoretically we could also set dirty bit (and flush TLB) here in 3246 * order to eliminate unnecessary PML logging. See comments in 3247 * set_spte. But fast_page_fault is very unlikely to happen with PML 3248 * enabled, so we do not do this. This might result in the same GPA 3249 * to be logged in PML buffer again when the write really happens, and 3250 * eventually to be called by mark_page_dirty twice. But it's also no 3251 * harm. This also avoids the TLB flush needed after setting dirty bit 3252 * so non-PML cases won't be impacted. 3253 * 3254 * Compare with set_spte where instead shadow_dirty_mask is set. 3255 */ 3256 if (!try_cmpxchg64(sptep, &old_spte, new_spte)) 3257 return false; 3258 3259 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) 3260 mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn); 3261 3262 return true; 3263 } 3264 3265 static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte) 3266 { 3267 if (fault->exec) 3268 return is_executable_pte(spte); 3269 3270 if (fault->write) 3271 return is_writable_pte(spte); 3272 3273 /* Fault was on Read access */ 3274 return spte & PT_PRESENT_MASK; 3275 } 3276 3277 /* 3278 * Returns the last level spte pointer of the shadow page walk for the given 3279 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no 3280 * walk could be performed, returns NULL and *spte does not contain valid data. 3281 * 3282 * Contract: 3283 * - Must be called between walk_shadow_page_lockless_{begin,end}. 3284 * - The returned sptep must not be used after walk_shadow_page_lockless_end. 3285 */ 3286 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte) 3287 { 3288 struct kvm_shadow_walk_iterator iterator; 3289 u64 old_spte; 3290 u64 *sptep = NULL; 3291 3292 for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) { 3293 sptep = iterator.sptep; 3294 *spte = old_spte; 3295 } 3296 3297 return sptep; 3298 } 3299 3300 /* 3301 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS. 3302 */ 3303 static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3304 { 3305 struct kvm_mmu_page *sp; 3306 int ret = RET_PF_INVALID; 3307 u64 spte = 0ull; 3308 u64 *sptep = NULL; 3309 uint retry_count = 0; 3310 3311 if (!page_fault_can_be_fast(fault)) 3312 return ret; 3313 3314 walk_shadow_page_lockless_begin(vcpu); 3315 3316 do { 3317 u64 new_spte; 3318 3319 if (is_tdp_mmu(vcpu->arch.mmu)) 3320 sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->addr, &spte); 3321 else 3322 sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte); 3323 3324 if (!is_shadow_present_pte(spte)) 3325 break; 3326 3327 sp = sptep_to_sp(sptep); 3328 if (!is_last_spte(spte, sp->role.level)) 3329 break; 3330 3331 /* 3332 * Check whether the memory access that caused the fault would 3333 * still cause it if it were to be performed right now. If not, 3334 * then this is a spurious fault caused by TLB lazily flushed, 3335 * or some other CPU has already fixed the PTE after the 3336 * current CPU took the fault. 3337 * 3338 * Need not check the access of upper level table entries since 3339 * they are always ACC_ALL. 3340 */ 3341 if (is_access_allowed(fault, spte)) { 3342 ret = RET_PF_SPURIOUS; 3343 break; 3344 } 3345 3346 new_spte = spte; 3347 3348 /* 3349 * KVM only supports fixing page faults outside of MMU lock for 3350 * direct MMUs, nested MMUs are always indirect, and KVM always 3351 * uses A/D bits for non-nested MMUs. Thus, if A/D bits are 3352 * enabled, the SPTE can't be an access-tracked SPTE. 3353 */ 3354 if (unlikely(!kvm_ad_enabled()) && is_access_track_spte(spte)) 3355 new_spte = restore_acc_track_spte(new_spte); 3356 3357 /* 3358 * To keep things simple, only SPTEs that are MMU-writable can 3359 * be made fully writable outside of mmu_lock, e.g. only SPTEs 3360 * that were write-protected for dirty-logging or access 3361 * tracking are handled here. Don't bother checking if the 3362 * SPTE is writable to prioritize running with A/D bits enabled. 3363 * The is_access_allowed() check above handles the common case 3364 * of the fault being spurious, and the SPTE is known to be 3365 * shadow-present, i.e. except for access tracking restoration 3366 * making the new SPTE writable, the check is wasteful. 3367 */ 3368 if (fault->write && is_mmu_writable_spte(spte)) { 3369 new_spte |= PT_WRITABLE_MASK; 3370 3371 /* 3372 * Do not fix write-permission on the large spte when 3373 * dirty logging is enabled. Since we only dirty the 3374 * first page into the dirty-bitmap in 3375 * fast_pf_fix_direct_spte(), other pages are missed 3376 * if its slot has dirty logging enabled. 3377 * 3378 * Instead, we let the slow page fault path create a 3379 * normal spte to fix the access. 3380 */ 3381 if (sp->role.level > PG_LEVEL_4K && 3382 kvm_slot_dirty_track_enabled(fault->slot)) 3383 break; 3384 } 3385 3386 /* Verify that the fault can be handled in the fast path */ 3387 if (new_spte == spte || 3388 !is_access_allowed(fault, new_spte)) 3389 break; 3390 3391 /* 3392 * Currently, fast page fault only works for direct mapping 3393 * since the gfn is not stable for indirect shadow page. See 3394 * Documentation/virt/kvm/locking.rst to get more detail. 3395 */ 3396 if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) { 3397 ret = RET_PF_FIXED; 3398 break; 3399 } 3400 3401 if (++retry_count > 4) { 3402 printk_once(KERN_WARNING 3403 "kvm: Fast #PF retrying more than 4 times.\n"); 3404 break; 3405 } 3406 3407 } while (true); 3408 3409 trace_fast_page_fault(vcpu, fault, sptep, spte, ret); 3410 walk_shadow_page_lockless_end(vcpu); 3411 3412 if (ret != RET_PF_INVALID) 3413 vcpu->stat.pf_fast++; 3414 3415 return ret; 3416 } 3417 3418 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa, 3419 struct list_head *invalid_list) 3420 { 3421 struct kvm_mmu_page *sp; 3422 3423 if (!VALID_PAGE(*root_hpa)) 3424 return; 3425 3426 sp = to_shadow_page(*root_hpa & SPTE_BASE_ADDR_MASK); 3427 if (WARN_ON(!sp)) 3428 return; 3429 3430 if (is_tdp_mmu_page(sp)) 3431 kvm_tdp_mmu_put_root(kvm, sp, false); 3432 else if (!--sp->root_count && sp->role.invalid) 3433 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 3434 3435 *root_hpa = INVALID_PAGE; 3436 } 3437 3438 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */ 3439 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, 3440 ulong roots_to_free) 3441 { 3442 int i; 3443 LIST_HEAD(invalid_list); 3444 bool free_active_root; 3445 3446 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG); 3447 3448 /* Before acquiring the MMU lock, see if we need to do any real work. */ 3449 free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT) 3450 && VALID_PAGE(mmu->root.hpa); 3451 3452 if (!free_active_root) { 3453 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3454 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) && 3455 VALID_PAGE(mmu->prev_roots[i].hpa)) 3456 break; 3457 3458 if (i == KVM_MMU_NUM_PREV_ROOTS) 3459 return; 3460 } 3461 3462 write_lock(&kvm->mmu_lock); 3463 3464 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3465 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) 3466 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa, 3467 &invalid_list); 3468 3469 if (free_active_root) { 3470 if (to_shadow_page(mmu->root.hpa)) { 3471 mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list); 3472 } else if (mmu->pae_root) { 3473 for (i = 0; i < 4; ++i) { 3474 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i])) 3475 continue; 3476 3477 mmu_free_root_page(kvm, &mmu->pae_root[i], 3478 &invalid_list); 3479 mmu->pae_root[i] = INVALID_PAE_ROOT; 3480 } 3481 } 3482 mmu->root.hpa = INVALID_PAGE; 3483 mmu->root.pgd = 0; 3484 } 3485 3486 kvm_mmu_commit_zap_page(kvm, &invalid_list); 3487 write_unlock(&kvm->mmu_lock); 3488 } 3489 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots); 3490 3491 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu) 3492 { 3493 unsigned long roots_to_free = 0; 3494 hpa_t root_hpa; 3495 int i; 3496 3497 /* 3498 * This should not be called while L2 is active, L2 can't invalidate 3499 * _only_ its own roots, e.g. INVVPID unconditionally exits. 3500 */ 3501 WARN_ON_ONCE(mmu->root_role.guest_mode); 3502 3503 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 3504 root_hpa = mmu->prev_roots[i].hpa; 3505 if (!VALID_PAGE(root_hpa)) 3506 continue; 3507 3508 if (!to_shadow_page(root_hpa) || 3509 to_shadow_page(root_hpa)->role.guest_mode) 3510 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 3511 } 3512 3513 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 3514 } 3515 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots); 3516 3517 3518 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn) 3519 { 3520 int ret = 0; 3521 3522 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) { 3523 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 3524 ret = 1; 3525 } 3526 3527 return ret; 3528 } 3529 3530 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, int quadrant, 3531 u8 level) 3532 { 3533 union kvm_mmu_page_role role = vcpu->arch.mmu->root_role; 3534 struct kvm_mmu_page *sp; 3535 3536 role.level = level; 3537 role.quadrant = quadrant; 3538 3539 WARN_ON_ONCE(quadrant && !role.has_4_byte_gpte); 3540 WARN_ON_ONCE(role.direct && role.has_4_byte_gpte); 3541 3542 sp = kvm_mmu_get_shadow_page(vcpu, gfn, role); 3543 ++sp->root_count; 3544 3545 return __pa(sp->spt); 3546 } 3547 3548 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) 3549 { 3550 struct kvm_mmu *mmu = vcpu->arch.mmu; 3551 u8 shadow_root_level = mmu->root_role.level; 3552 hpa_t root; 3553 unsigned i; 3554 int r; 3555 3556 write_lock(&vcpu->kvm->mmu_lock); 3557 r = make_mmu_pages_available(vcpu); 3558 if (r < 0) 3559 goto out_unlock; 3560 3561 if (is_tdp_mmu_enabled(vcpu->kvm)) { 3562 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu); 3563 mmu->root.hpa = root; 3564 } else if (shadow_root_level >= PT64_ROOT_4LEVEL) { 3565 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level); 3566 mmu->root.hpa = root; 3567 } else if (shadow_root_level == PT32E_ROOT_LEVEL) { 3568 if (WARN_ON_ONCE(!mmu->pae_root)) { 3569 r = -EIO; 3570 goto out_unlock; 3571 } 3572 3573 for (i = 0; i < 4; ++i) { 3574 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3575 3576 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 0, 3577 PT32_ROOT_LEVEL); 3578 mmu->pae_root[i] = root | PT_PRESENT_MASK | 3579 shadow_me_value; 3580 } 3581 mmu->root.hpa = __pa(mmu->pae_root); 3582 } else { 3583 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level); 3584 r = -EIO; 3585 goto out_unlock; 3586 } 3587 3588 /* root.pgd is ignored for direct MMUs. */ 3589 mmu->root.pgd = 0; 3590 out_unlock: 3591 write_unlock(&vcpu->kvm->mmu_lock); 3592 return r; 3593 } 3594 3595 static int mmu_first_shadow_root_alloc(struct kvm *kvm) 3596 { 3597 struct kvm_memslots *slots; 3598 struct kvm_memory_slot *slot; 3599 int r = 0, i, bkt; 3600 3601 /* 3602 * Check if this is the first shadow root being allocated before 3603 * taking the lock. 3604 */ 3605 if (kvm_shadow_root_allocated(kvm)) 3606 return 0; 3607 3608 mutex_lock(&kvm->slots_arch_lock); 3609 3610 /* Recheck, under the lock, whether this is the first shadow root. */ 3611 if (kvm_shadow_root_allocated(kvm)) 3612 goto out_unlock; 3613 3614 /* 3615 * Check if anything actually needs to be allocated, e.g. all metadata 3616 * will be allocated upfront if TDP is disabled. 3617 */ 3618 if (kvm_memslots_have_rmaps(kvm) && 3619 kvm_page_track_write_tracking_enabled(kvm)) 3620 goto out_success; 3621 3622 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 3623 slots = __kvm_memslots(kvm, i); 3624 kvm_for_each_memslot(slot, bkt, slots) { 3625 /* 3626 * Both of these functions are no-ops if the target is 3627 * already allocated, so unconditionally calling both 3628 * is safe. Intentionally do NOT free allocations on 3629 * failure to avoid having to track which allocations 3630 * were made now versus when the memslot was created. 3631 * The metadata is guaranteed to be freed when the slot 3632 * is freed, and will be kept/used if userspace retries 3633 * KVM_RUN instead of killing the VM. 3634 */ 3635 r = memslot_rmap_alloc(slot, slot->npages); 3636 if (r) 3637 goto out_unlock; 3638 r = kvm_page_track_write_tracking_alloc(slot); 3639 if (r) 3640 goto out_unlock; 3641 } 3642 } 3643 3644 /* 3645 * Ensure that shadow_root_allocated becomes true strictly after 3646 * all the related pointers are set. 3647 */ 3648 out_success: 3649 smp_store_release(&kvm->arch.shadow_root_allocated, true); 3650 3651 out_unlock: 3652 mutex_unlock(&kvm->slots_arch_lock); 3653 return r; 3654 } 3655 3656 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) 3657 { 3658 struct kvm_mmu *mmu = vcpu->arch.mmu; 3659 u64 pdptrs[4], pm_mask; 3660 gfn_t root_gfn, root_pgd; 3661 int quadrant, i, r; 3662 hpa_t root; 3663 3664 root_pgd = mmu->get_guest_pgd(vcpu); 3665 root_gfn = root_pgd >> PAGE_SHIFT; 3666 3667 if (mmu_check_root(vcpu, root_gfn)) 3668 return 1; 3669 3670 /* 3671 * On SVM, reading PDPTRs might access guest memory, which might fault 3672 * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock. 3673 */ 3674 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { 3675 for (i = 0; i < 4; ++i) { 3676 pdptrs[i] = mmu->get_pdptr(vcpu, i); 3677 if (!(pdptrs[i] & PT_PRESENT_MASK)) 3678 continue; 3679 3680 if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT)) 3681 return 1; 3682 } 3683 } 3684 3685 r = mmu_first_shadow_root_alloc(vcpu->kvm); 3686 if (r) 3687 return r; 3688 3689 write_lock(&vcpu->kvm->mmu_lock); 3690 r = make_mmu_pages_available(vcpu); 3691 if (r < 0) 3692 goto out_unlock; 3693 3694 /* 3695 * Do we shadow a long mode page table? If so we need to 3696 * write-protect the guests page table root. 3697 */ 3698 if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { 3699 root = mmu_alloc_root(vcpu, root_gfn, 0, 3700 mmu->root_role.level); 3701 mmu->root.hpa = root; 3702 goto set_root_pgd; 3703 } 3704 3705 if (WARN_ON_ONCE(!mmu->pae_root)) { 3706 r = -EIO; 3707 goto out_unlock; 3708 } 3709 3710 /* 3711 * We shadow a 32 bit page table. This may be a legacy 2-level 3712 * or a PAE 3-level page table. In either case we need to be aware that 3713 * the shadow page table may be a PAE or a long mode page table. 3714 */ 3715 pm_mask = PT_PRESENT_MASK | shadow_me_value; 3716 if (mmu->root_role.level >= PT64_ROOT_4LEVEL) { 3717 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; 3718 3719 if (WARN_ON_ONCE(!mmu->pml4_root)) { 3720 r = -EIO; 3721 goto out_unlock; 3722 } 3723 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask; 3724 3725 if (mmu->root_role.level == PT64_ROOT_5LEVEL) { 3726 if (WARN_ON_ONCE(!mmu->pml5_root)) { 3727 r = -EIO; 3728 goto out_unlock; 3729 } 3730 mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask; 3731 } 3732 } 3733 3734 for (i = 0; i < 4; ++i) { 3735 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3736 3737 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { 3738 if (!(pdptrs[i] & PT_PRESENT_MASK)) { 3739 mmu->pae_root[i] = INVALID_PAE_ROOT; 3740 continue; 3741 } 3742 root_gfn = pdptrs[i] >> PAGE_SHIFT; 3743 } 3744 3745 /* 3746 * If shadowing 32-bit non-PAE page tables, each PAE page 3747 * directory maps one quarter of the guest's non-PAE page 3748 * directory. Othwerise each PAE page direct shadows one guest 3749 * PAE page directory so that quadrant should be 0. 3750 */ 3751 quadrant = (mmu->cpu_role.base.level == PT32_ROOT_LEVEL) ? i : 0; 3752 3753 root = mmu_alloc_root(vcpu, root_gfn, quadrant, PT32_ROOT_LEVEL); 3754 mmu->pae_root[i] = root | pm_mask; 3755 } 3756 3757 if (mmu->root_role.level == PT64_ROOT_5LEVEL) 3758 mmu->root.hpa = __pa(mmu->pml5_root); 3759 else if (mmu->root_role.level == PT64_ROOT_4LEVEL) 3760 mmu->root.hpa = __pa(mmu->pml4_root); 3761 else 3762 mmu->root.hpa = __pa(mmu->pae_root); 3763 3764 set_root_pgd: 3765 mmu->root.pgd = root_pgd; 3766 out_unlock: 3767 write_unlock(&vcpu->kvm->mmu_lock); 3768 3769 return r; 3770 } 3771 3772 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu) 3773 { 3774 struct kvm_mmu *mmu = vcpu->arch.mmu; 3775 bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL; 3776 u64 *pml5_root = NULL; 3777 u64 *pml4_root = NULL; 3778 u64 *pae_root; 3779 3780 /* 3781 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP 3782 * tables are allocated and initialized at root creation as there is no 3783 * equivalent level in the guest's NPT to shadow. Allocate the tables 3784 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare. 3785 */ 3786 if (mmu->root_role.direct || 3787 mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL || 3788 mmu->root_role.level < PT64_ROOT_4LEVEL) 3789 return 0; 3790 3791 /* 3792 * NPT, the only paging mode that uses this horror, uses a fixed number 3793 * of levels for the shadow page tables, e.g. all MMUs are 4-level or 3794 * all MMus are 5-level. Thus, this can safely require that pml5_root 3795 * is allocated if the other roots are valid and pml5 is needed, as any 3796 * prior MMU would also have required pml5. 3797 */ 3798 if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root)) 3799 return 0; 3800 3801 /* 3802 * The special roots should always be allocated in concert. Yell and 3803 * bail if KVM ends up in a state where only one of the roots is valid. 3804 */ 3805 if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root || 3806 (need_pml5 && mmu->pml5_root))) 3807 return -EIO; 3808 3809 /* 3810 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and 3811 * doesn't need to be decrypted. 3812 */ 3813 pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3814 if (!pae_root) 3815 return -ENOMEM; 3816 3817 #ifdef CONFIG_X86_64 3818 pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3819 if (!pml4_root) 3820 goto err_pml4; 3821 3822 if (need_pml5) { 3823 pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3824 if (!pml5_root) 3825 goto err_pml5; 3826 } 3827 #endif 3828 3829 mmu->pae_root = pae_root; 3830 mmu->pml4_root = pml4_root; 3831 mmu->pml5_root = pml5_root; 3832 3833 return 0; 3834 3835 #ifdef CONFIG_X86_64 3836 err_pml5: 3837 free_page((unsigned long)pml4_root); 3838 err_pml4: 3839 free_page((unsigned long)pae_root); 3840 return -ENOMEM; 3841 #endif 3842 } 3843 3844 static bool is_unsync_root(hpa_t root) 3845 { 3846 struct kvm_mmu_page *sp; 3847 3848 if (!VALID_PAGE(root)) 3849 return false; 3850 3851 /* 3852 * The read barrier orders the CPU's read of SPTE.W during the page table 3853 * walk before the reads of sp->unsync/sp->unsync_children here. 3854 * 3855 * Even if another CPU was marking the SP as unsync-ed simultaneously, 3856 * any guest page table changes are not guaranteed to be visible anyway 3857 * until this VCPU issues a TLB flush strictly after those changes are 3858 * made. We only need to ensure that the other CPU sets these flags 3859 * before any actual changes to the page tables are made. The comments 3860 * in mmu_try_to_unsync_pages() describe what could go wrong if this 3861 * requirement isn't satisfied. 3862 */ 3863 smp_rmb(); 3864 sp = to_shadow_page(root); 3865 3866 /* 3867 * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the 3868 * PDPTEs for a given PAE root need to be synchronized individually. 3869 */ 3870 if (WARN_ON_ONCE(!sp)) 3871 return false; 3872 3873 if (sp->unsync || sp->unsync_children) 3874 return true; 3875 3876 return false; 3877 } 3878 3879 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) 3880 { 3881 int i; 3882 struct kvm_mmu_page *sp; 3883 3884 if (vcpu->arch.mmu->root_role.direct) 3885 return; 3886 3887 if (!VALID_PAGE(vcpu->arch.mmu->root.hpa)) 3888 return; 3889 3890 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 3891 3892 if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { 3893 hpa_t root = vcpu->arch.mmu->root.hpa; 3894 sp = to_shadow_page(root); 3895 3896 if (!is_unsync_root(root)) 3897 return; 3898 3899 write_lock(&vcpu->kvm->mmu_lock); 3900 mmu_sync_children(vcpu, sp, true); 3901 write_unlock(&vcpu->kvm->mmu_lock); 3902 return; 3903 } 3904 3905 write_lock(&vcpu->kvm->mmu_lock); 3906 3907 for (i = 0; i < 4; ++i) { 3908 hpa_t root = vcpu->arch.mmu->pae_root[i]; 3909 3910 if (IS_VALID_PAE_ROOT(root)) { 3911 root &= SPTE_BASE_ADDR_MASK; 3912 sp = to_shadow_page(root); 3913 mmu_sync_children(vcpu, sp, true); 3914 } 3915 } 3916 3917 write_unlock(&vcpu->kvm->mmu_lock); 3918 } 3919 3920 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu) 3921 { 3922 unsigned long roots_to_free = 0; 3923 int i; 3924 3925 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3926 if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa)) 3927 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 3928 3929 /* sync prev_roots by simply freeing them */ 3930 kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free); 3931 } 3932 3933 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 3934 gpa_t vaddr, u64 access, 3935 struct x86_exception *exception) 3936 { 3937 if (exception) 3938 exception->error_code = 0; 3939 return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception); 3940 } 3941 3942 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct) 3943 { 3944 /* 3945 * A nested guest cannot use the MMIO cache if it is using nested 3946 * page tables, because cr2 is a nGPA while the cache stores GPAs. 3947 */ 3948 if (mmu_is_nested(vcpu)) 3949 return false; 3950 3951 if (direct) 3952 return vcpu_match_mmio_gpa(vcpu, addr); 3953 3954 return vcpu_match_mmio_gva(vcpu, addr); 3955 } 3956 3957 /* 3958 * Return the level of the lowest level SPTE added to sptes. 3959 * That SPTE may be non-present. 3960 * 3961 * Must be called between walk_shadow_page_lockless_{begin,end}. 3962 */ 3963 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level) 3964 { 3965 struct kvm_shadow_walk_iterator iterator; 3966 int leaf = -1; 3967 u64 spte; 3968 3969 for (shadow_walk_init(&iterator, vcpu, addr), 3970 *root_level = iterator.level; 3971 shadow_walk_okay(&iterator); 3972 __shadow_walk_next(&iterator, spte)) { 3973 leaf = iterator.level; 3974 spte = mmu_spte_get_lockless(iterator.sptep); 3975 3976 sptes[leaf] = spte; 3977 } 3978 3979 return leaf; 3980 } 3981 3982 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */ 3983 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) 3984 { 3985 u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; 3986 struct rsvd_bits_validate *rsvd_check; 3987 int root, leaf, level; 3988 bool reserved = false; 3989 3990 walk_shadow_page_lockless_begin(vcpu); 3991 3992 if (is_tdp_mmu(vcpu->arch.mmu)) 3993 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root); 3994 else 3995 leaf = get_walk(vcpu, addr, sptes, &root); 3996 3997 walk_shadow_page_lockless_end(vcpu); 3998 3999 if (unlikely(leaf < 0)) { 4000 *sptep = 0ull; 4001 return reserved; 4002 } 4003 4004 *sptep = sptes[leaf]; 4005 4006 /* 4007 * Skip reserved bits checks on the terminal leaf if it's not a valid 4008 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by 4009 * design, always have reserved bits set. The purpose of the checks is 4010 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs. 4011 */ 4012 if (!is_shadow_present_pte(sptes[leaf])) 4013 leaf++; 4014 4015 rsvd_check = &vcpu->arch.mmu->shadow_zero_check; 4016 4017 for (level = root; level >= leaf; level--) 4018 reserved |= is_rsvd_spte(rsvd_check, sptes[level], level); 4019 4020 if (reserved) { 4021 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n", 4022 __func__, addr); 4023 for (level = root; level >= leaf; level--) 4024 pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx", 4025 sptes[level], level, 4026 get_rsvd_bits(rsvd_check, sptes[level], level)); 4027 } 4028 4029 return reserved; 4030 } 4031 4032 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct) 4033 { 4034 u64 spte; 4035 bool reserved; 4036 4037 if (mmio_info_in_cache(vcpu, addr, direct)) 4038 return RET_PF_EMULATE; 4039 4040 reserved = get_mmio_spte(vcpu, addr, &spte); 4041 if (WARN_ON(reserved)) 4042 return -EINVAL; 4043 4044 if (is_mmio_spte(spte)) { 4045 gfn_t gfn = get_mmio_spte_gfn(spte); 4046 unsigned int access = get_mmio_spte_access(spte); 4047 4048 if (!check_mmio_spte(vcpu, spte)) 4049 return RET_PF_INVALID; 4050 4051 if (direct) 4052 addr = 0; 4053 4054 trace_handle_mmio_page_fault(addr, gfn, access); 4055 vcpu_cache_mmio_info(vcpu, addr, gfn, access); 4056 return RET_PF_EMULATE; 4057 } 4058 4059 /* 4060 * If the page table is zapped by other cpus, let CPU fault again on 4061 * the address. 4062 */ 4063 return RET_PF_RETRY; 4064 } 4065 4066 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu, 4067 struct kvm_page_fault *fault) 4068 { 4069 if (unlikely(fault->rsvd)) 4070 return false; 4071 4072 if (!fault->present || !fault->write) 4073 return false; 4074 4075 /* 4076 * guest is writing the page which is write tracked which can 4077 * not be fixed by page fault handler. 4078 */ 4079 if (kvm_slot_page_track_is_active(vcpu->kvm, fault->slot, fault->gfn, KVM_PAGE_TRACK_WRITE)) 4080 return true; 4081 4082 return false; 4083 } 4084 4085 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr) 4086 { 4087 struct kvm_shadow_walk_iterator iterator; 4088 u64 spte; 4089 4090 walk_shadow_page_lockless_begin(vcpu); 4091 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) 4092 clear_sp_write_flooding_count(iterator.sptep); 4093 walk_shadow_page_lockless_end(vcpu); 4094 } 4095 4096 static u32 alloc_apf_token(struct kvm_vcpu *vcpu) 4097 { 4098 /* make sure the token value is not 0 */ 4099 u32 id = vcpu->arch.apf.id; 4100 4101 if (id << 12 == 0) 4102 vcpu->arch.apf.id = 1; 4103 4104 return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; 4105 } 4106 4107 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 4108 gfn_t gfn) 4109 { 4110 struct kvm_arch_async_pf arch; 4111 4112 arch.token = alloc_apf_token(vcpu); 4113 arch.gfn = gfn; 4114 arch.direct_map = vcpu->arch.mmu->root_role.direct; 4115 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu); 4116 4117 return kvm_setup_async_pf(vcpu, cr2_or_gpa, 4118 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch); 4119 } 4120 4121 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 4122 { 4123 int r; 4124 4125 if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) || 4126 work->wakeup_all) 4127 return; 4128 4129 r = kvm_mmu_reload(vcpu); 4130 if (unlikely(r)) 4131 return; 4132 4133 if (!vcpu->arch.mmu->root_role.direct && 4134 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu)) 4135 return; 4136 4137 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true); 4138 } 4139 4140 static int kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4141 { 4142 struct kvm_memory_slot *slot = fault->slot; 4143 bool async; 4144 4145 /* 4146 * Retry the page fault if the gfn hit a memslot that is being deleted 4147 * or moved. This ensures any existing SPTEs for the old memslot will 4148 * be zapped before KVM inserts a new MMIO SPTE for the gfn. 4149 */ 4150 if (slot && (slot->flags & KVM_MEMSLOT_INVALID)) 4151 return RET_PF_RETRY; 4152 4153 if (!kvm_is_visible_memslot(slot)) { 4154 /* Don't expose private memslots to L2. */ 4155 if (is_guest_mode(vcpu)) { 4156 fault->slot = NULL; 4157 fault->pfn = KVM_PFN_NOSLOT; 4158 fault->map_writable = false; 4159 return RET_PF_CONTINUE; 4160 } 4161 /* 4162 * If the APIC access page exists but is disabled, go directly 4163 * to emulation without caching the MMIO access or creating a 4164 * MMIO SPTE. That way the cache doesn't need to be purged 4165 * when the AVIC is re-enabled. 4166 */ 4167 if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT && 4168 !kvm_apicv_activated(vcpu->kvm)) 4169 return RET_PF_EMULATE; 4170 } 4171 4172 async = false; 4173 fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, &async, 4174 fault->write, &fault->map_writable, 4175 &fault->hva); 4176 if (!async) 4177 return RET_PF_CONTINUE; /* *pfn has correct page already */ 4178 4179 if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) { 4180 trace_kvm_try_async_get_page(fault->addr, fault->gfn); 4181 if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) { 4182 trace_kvm_async_pf_repeated_fault(fault->addr, fault->gfn); 4183 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 4184 return RET_PF_RETRY; 4185 } else if (kvm_arch_setup_async_pf(vcpu, fault->addr, fault->gfn)) { 4186 return RET_PF_RETRY; 4187 } 4188 } 4189 4190 fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, NULL, 4191 fault->write, &fault->map_writable, 4192 &fault->hva); 4193 return RET_PF_CONTINUE; 4194 } 4195 4196 /* 4197 * Returns true if the page fault is stale and needs to be retried, i.e. if the 4198 * root was invalidated by a memslot update or a relevant mmu_notifier fired. 4199 */ 4200 static bool is_page_fault_stale(struct kvm_vcpu *vcpu, 4201 struct kvm_page_fault *fault, int mmu_seq) 4202 { 4203 struct kvm_mmu_page *sp = to_shadow_page(vcpu->arch.mmu->root.hpa); 4204 4205 /* Special roots, e.g. pae_root, are not backed by shadow pages. */ 4206 if (sp && is_obsolete_sp(vcpu->kvm, sp)) 4207 return true; 4208 4209 /* 4210 * Roots without an associated shadow page are considered invalid if 4211 * there is a pending request to free obsolete roots. The request is 4212 * only a hint that the current root _may_ be obsolete and needs to be 4213 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a 4214 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs 4215 * to reload even if no vCPU is actively using the root. 4216 */ 4217 if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 4218 return true; 4219 4220 return fault->slot && 4221 mmu_invalidate_retry_hva(vcpu->kvm, mmu_seq, fault->hva); 4222 } 4223 4224 static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4225 { 4226 bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu); 4227 4228 unsigned long mmu_seq; 4229 int r; 4230 4231 fault->gfn = fault->addr >> PAGE_SHIFT; 4232 fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn); 4233 4234 if (page_fault_handle_page_track(vcpu, fault)) 4235 return RET_PF_EMULATE; 4236 4237 r = fast_page_fault(vcpu, fault); 4238 if (r != RET_PF_INVALID) 4239 return r; 4240 4241 r = mmu_topup_memory_caches(vcpu, false); 4242 if (r) 4243 return r; 4244 4245 mmu_seq = vcpu->kvm->mmu_invalidate_seq; 4246 smp_rmb(); 4247 4248 r = kvm_faultin_pfn(vcpu, fault); 4249 if (r != RET_PF_CONTINUE) 4250 return r; 4251 4252 r = handle_abnormal_pfn(vcpu, fault, ACC_ALL); 4253 if (r != RET_PF_CONTINUE) 4254 return r; 4255 4256 r = RET_PF_RETRY; 4257 4258 if (is_tdp_mmu_fault) 4259 read_lock(&vcpu->kvm->mmu_lock); 4260 else 4261 write_lock(&vcpu->kvm->mmu_lock); 4262 4263 if (is_page_fault_stale(vcpu, fault, mmu_seq)) 4264 goto out_unlock; 4265 4266 if (is_tdp_mmu_fault) { 4267 r = kvm_tdp_mmu_map(vcpu, fault); 4268 } else { 4269 r = make_mmu_pages_available(vcpu); 4270 if (r) 4271 goto out_unlock; 4272 r = __direct_map(vcpu, fault); 4273 } 4274 4275 out_unlock: 4276 if (is_tdp_mmu_fault) 4277 read_unlock(&vcpu->kvm->mmu_lock); 4278 else 4279 write_unlock(&vcpu->kvm->mmu_lock); 4280 kvm_release_pfn_clean(fault->pfn); 4281 return r; 4282 } 4283 4284 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, 4285 struct kvm_page_fault *fault) 4286 { 4287 pgprintk("%s: gva %lx error %x\n", __func__, fault->addr, fault->error_code); 4288 4289 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */ 4290 fault->max_level = PG_LEVEL_2M; 4291 return direct_page_fault(vcpu, fault); 4292 } 4293 4294 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, 4295 u64 fault_address, char *insn, int insn_len) 4296 { 4297 int r = 1; 4298 u32 flags = vcpu->arch.apf.host_apf_flags; 4299 4300 #ifndef CONFIG_X86_64 4301 /* A 64-bit CR2 should be impossible on 32-bit KVM. */ 4302 if (WARN_ON_ONCE(fault_address >> 32)) 4303 return -EFAULT; 4304 #endif 4305 4306 vcpu->arch.l1tf_flush_l1d = true; 4307 if (!flags) { 4308 trace_kvm_page_fault(vcpu, fault_address, error_code); 4309 4310 if (kvm_event_needs_reinjection(vcpu)) 4311 kvm_mmu_unprotect_page_virt(vcpu, fault_address); 4312 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn, 4313 insn_len); 4314 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) { 4315 vcpu->arch.apf.host_apf_flags = 0; 4316 local_irq_disable(); 4317 kvm_async_pf_task_wait_schedule(fault_address); 4318 local_irq_enable(); 4319 } else { 4320 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags); 4321 } 4322 4323 return r; 4324 } 4325 EXPORT_SYMBOL_GPL(kvm_handle_page_fault); 4326 4327 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4328 { 4329 /* 4330 * If the guest's MTRRs may be used to compute the "real" memtype, 4331 * restrict the mapping level to ensure KVM uses a consistent memtype 4332 * across the entire mapping. If the host MTRRs are ignored by TDP 4333 * (shadow_memtype_mask is non-zero), and the VM has non-coherent DMA 4334 * (DMA doesn't snoop CPU caches), KVM's ABI is to honor the memtype 4335 * from the guest's MTRRs so that guest accesses to memory that is 4336 * DMA'd aren't cached against the guest's wishes. 4337 * 4338 * Note, KVM may still ultimately ignore guest MTRRs for certain PFNs, 4339 * e.g. KVM will force UC memtype for host MMIO. 4340 */ 4341 if (shadow_memtype_mask && kvm_arch_has_noncoherent_dma(vcpu->kvm)) { 4342 for ( ; fault->max_level > PG_LEVEL_4K; --fault->max_level) { 4343 int page_num = KVM_PAGES_PER_HPAGE(fault->max_level); 4344 gfn_t base = (fault->addr >> PAGE_SHIFT) & ~(page_num - 1); 4345 4346 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num)) 4347 break; 4348 } 4349 } 4350 4351 return direct_page_fault(vcpu, fault); 4352 } 4353 4354 static void nonpaging_init_context(struct kvm_mmu *context) 4355 { 4356 context->page_fault = nonpaging_page_fault; 4357 context->gva_to_gpa = nonpaging_gva_to_gpa; 4358 context->sync_page = nonpaging_sync_page; 4359 context->invlpg = NULL; 4360 } 4361 4362 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd, 4363 union kvm_mmu_page_role role) 4364 { 4365 return (role.direct || pgd == root->pgd) && 4366 VALID_PAGE(root->hpa) && 4367 role.word == to_shadow_page(root->hpa)->role.word; 4368 } 4369 4370 /* 4371 * Find out if a previously cached root matching the new pgd/role is available, 4372 * and insert the current root as the MRU in the cache. 4373 * If a matching root is found, it is assigned to kvm_mmu->root and 4374 * true is returned. 4375 * If no match is found, kvm_mmu->root is left invalid, the LRU root is 4376 * evicted to make room for the current root, and false is returned. 4377 */ 4378 static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu, 4379 gpa_t new_pgd, 4380 union kvm_mmu_page_role new_role) 4381 { 4382 uint i; 4383 4384 if (is_root_usable(&mmu->root, new_pgd, new_role)) 4385 return true; 4386 4387 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 4388 /* 4389 * The swaps end up rotating the cache like this: 4390 * C 0 1 2 3 (on entry to the function) 4391 * 0 C 1 2 3 4392 * 1 C 0 2 3 4393 * 2 C 0 1 3 4394 * 3 C 0 1 2 (on exit from the loop) 4395 */ 4396 swap(mmu->root, mmu->prev_roots[i]); 4397 if (is_root_usable(&mmu->root, new_pgd, new_role)) 4398 return true; 4399 } 4400 4401 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 4402 return false; 4403 } 4404 4405 /* 4406 * Find out if a previously cached root matching the new pgd/role is available. 4407 * On entry, mmu->root is invalid. 4408 * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry 4409 * of the cache becomes invalid, and true is returned. 4410 * If no match is found, kvm_mmu->root is left invalid and false is returned. 4411 */ 4412 static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu, 4413 gpa_t new_pgd, 4414 union kvm_mmu_page_role new_role) 4415 { 4416 uint i; 4417 4418 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 4419 if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role)) 4420 goto hit; 4421 4422 return false; 4423 4424 hit: 4425 swap(mmu->root, mmu->prev_roots[i]); 4426 /* Bubble up the remaining roots. */ 4427 for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++) 4428 mmu->prev_roots[i] = mmu->prev_roots[i + 1]; 4429 mmu->prev_roots[i].hpa = INVALID_PAGE; 4430 return true; 4431 } 4432 4433 static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu, 4434 gpa_t new_pgd, union kvm_mmu_page_role new_role) 4435 { 4436 /* 4437 * For now, limit the caching to 64-bit hosts+VMs in order to avoid 4438 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs 4439 * later if necessary. 4440 */ 4441 if (VALID_PAGE(mmu->root.hpa) && !to_shadow_page(mmu->root.hpa)) 4442 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 4443 4444 if (VALID_PAGE(mmu->root.hpa)) 4445 return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role); 4446 else 4447 return cached_root_find_without_current(kvm, mmu, new_pgd, new_role); 4448 } 4449 4450 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd) 4451 { 4452 struct kvm_mmu *mmu = vcpu->arch.mmu; 4453 union kvm_mmu_page_role new_role = mmu->root_role; 4454 4455 if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role)) { 4456 /* kvm_mmu_ensure_valid_pgd will set up a new root. */ 4457 return; 4458 } 4459 4460 /* 4461 * It's possible that the cached previous root page is obsolete because 4462 * of a change in the MMU generation number. However, changing the 4463 * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, 4464 * which will free the root set here and allocate a new one. 4465 */ 4466 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 4467 4468 if (force_flush_and_sync_on_reuse) { 4469 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 4470 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 4471 } 4472 4473 /* 4474 * The last MMIO access's GVA and GPA are cached in the VCPU. When 4475 * switching to a new CR3, that GVA->GPA mapping may no longer be 4476 * valid. So clear any cached MMIO info even when we don't need to sync 4477 * the shadow page tables. 4478 */ 4479 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 4480 4481 /* 4482 * If this is a direct root page, it doesn't have a write flooding 4483 * count. Otherwise, clear the write flooding count. 4484 */ 4485 if (!new_role.direct) 4486 __clear_sp_write_flooding_count( 4487 to_shadow_page(vcpu->arch.mmu->root.hpa)); 4488 } 4489 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd); 4490 4491 static unsigned long get_cr3(struct kvm_vcpu *vcpu) 4492 { 4493 return kvm_read_cr3(vcpu); 4494 } 4495 4496 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, 4497 unsigned int access) 4498 { 4499 if (unlikely(is_mmio_spte(*sptep))) { 4500 if (gfn != get_mmio_spte_gfn(*sptep)) { 4501 mmu_spte_clear_no_track(sptep); 4502 return true; 4503 } 4504 4505 mark_mmio_spte(vcpu, sptep, gfn, access); 4506 return true; 4507 } 4508 4509 return false; 4510 } 4511 4512 #define PTTYPE_EPT 18 /* arbitrary */ 4513 #define PTTYPE PTTYPE_EPT 4514 #include "paging_tmpl.h" 4515 #undef PTTYPE 4516 4517 #define PTTYPE 64 4518 #include "paging_tmpl.h" 4519 #undef PTTYPE 4520 4521 #define PTTYPE 32 4522 #include "paging_tmpl.h" 4523 #undef PTTYPE 4524 4525 static void 4526 __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check, 4527 u64 pa_bits_rsvd, int level, bool nx, bool gbpages, 4528 bool pse, bool amd) 4529 { 4530 u64 gbpages_bit_rsvd = 0; 4531 u64 nonleaf_bit8_rsvd = 0; 4532 u64 high_bits_rsvd; 4533 4534 rsvd_check->bad_mt_xwr = 0; 4535 4536 if (!gbpages) 4537 gbpages_bit_rsvd = rsvd_bits(7, 7); 4538 4539 if (level == PT32E_ROOT_LEVEL) 4540 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62); 4541 else 4542 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4543 4544 /* Note, NX doesn't exist in PDPTEs, this is handled below. */ 4545 if (!nx) 4546 high_bits_rsvd |= rsvd_bits(63, 63); 4547 4548 /* 4549 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for 4550 * leaf entries) on AMD CPUs only. 4551 */ 4552 if (amd) 4553 nonleaf_bit8_rsvd = rsvd_bits(8, 8); 4554 4555 switch (level) { 4556 case PT32_ROOT_LEVEL: 4557 /* no rsvd bits for 2 level 4K page table entries */ 4558 rsvd_check->rsvd_bits_mask[0][1] = 0; 4559 rsvd_check->rsvd_bits_mask[0][0] = 0; 4560 rsvd_check->rsvd_bits_mask[1][0] = 4561 rsvd_check->rsvd_bits_mask[0][0]; 4562 4563 if (!pse) { 4564 rsvd_check->rsvd_bits_mask[1][1] = 0; 4565 break; 4566 } 4567 4568 if (is_cpuid_PSE36()) 4569 /* 36bits PSE 4MB page */ 4570 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); 4571 else 4572 /* 32 bits PSE 4MB page */ 4573 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); 4574 break; 4575 case PT32E_ROOT_LEVEL: 4576 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) | 4577 high_bits_rsvd | 4578 rsvd_bits(5, 8) | 4579 rsvd_bits(1, 2); /* PDPTE */ 4580 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */ 4581 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */ 4582 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 4583 rsvd_bits(13, 20); /* large page */ 4584 rsvd_check->rsvd_bits_mask[1][0] = 4585 rsvd_check->rsvd_bits_mask[0][0]; 4586 break; 4587 case PT64_ROOT_5LEVEL: 4588 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | 4589 nonleaf_bit8_rsvd | 4590 rsvd_bits(7, 7); 4591 rsvd_check->rsvd_bits_mask[1][4] = 4592 rsvd_check->rsvd_bits_mask[0][4]; 4593 fallthrough; 4594 case PT64_ROOT_4LEVEL: 4595 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | 4596 nonleaf_bit8_rsvd | 4597 rsvd_bits(7, 7); 4598 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | 4599 gbpages_bit_rsvd; 4600 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; 4601 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 4602 rsvd_check->rsvd_bits_mask[1][3] = 4603 rsvd_check->rsvd_bits_mask[0][3]; 4604 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | 4605 gbpages_bit_rsvd | 4606 rsvd_bits(13, 29); 4607 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 4608 rsvd_bits(13, 20); /* large page */ 4609 rsvd_check->rsvd_bits_mask[1][0] = 4610 rsvd_check->rsvd_bits_mask[0][0]; 4611 break; 4612 } 4613 } 4614 4615 static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu) 4616 { 4617 /* 4618 * If TDP is enabled, let the guest use GBPAGES if they're supported in 4619 * hardware. The hardware page walker doesn't let KVM disable GBPAGES, 4620 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA 4621 * walk for performance and complexity reasons. Not to mention KVM 4622 * _can't_ solve the problem because GVA->GPA walks aren't visible to 4623 * KVM once a TDP translation is installed. Mimic hardware behavior so 4624 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF. 4625 */ 4626 return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) : 4627 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES); 4628 } 4629 4630 static void reset_guest_rsvds_bits_mask(struct kvm_vcpu *vcpu, 4631 struct kvm_mmu *context) 4632 { 4633 __reset_rsvds_bits_mask(&context->guest_rsvd_check, 4634 vcpu->arch.reserved_gpa_bits, 4635 context->cpu_role.base.level, is_efer_nx(context), 4636 guest_can_use_gbpages(vcpu), 4637 is_cr4_pse(context), 4638 guest_cpuid_is_amd_or_hygon(vcpu)); 4639 } 4640 4641 static void 4642 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check, 4643 u64 pa_bits_rsvd, bool execonly, int huge_page_level) 4644 { 4645 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4646 u64 large_1g_rsvd = 0, large_2m_rsvd = 0; 4647 u64 bad_mt_xwr; 4648 4649 if (huge_page_level < PG_LEVEL_1G) 4650 large_1g_rsvd = rsvd_bits(7, 7); 4651 if (huge_page_level < PG_LEVEL_2M) 4652 large_2m_rsvd = rsvd_bits(7, 7); 4653 4654 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7); 4655 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7); 4656 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd; 4657 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd; 4658 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 4659 4660 /* large page */ 4661 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4]; 4662 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3]; 4663 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd; 4664 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd; 4665 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0]; 4666 4667 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */ 4668 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */ 4669 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */ 4670 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */ 4671 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */ 4672 if (!execonly) { 4673 /* bits 0..2 must not be 100 unless VMX capabilities allow it */ 4674 bad_mt_xwr |= REPEAT_BYTE(1ull << 4); 4675 } 4676 rsvd_check->bad_mt_xwr = bad_mt_xwr; 4677 } 4678 4679 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, 4680 struct kvm_mmu *context, bool execonly, int huge_page_level) 4681 { 4682 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check, 4683 vcpu->arch.reserved_gpa_bits, execonly, 4684 huge_page_level); 4685 } 4686 4687 static inline u64 reserved_hpa_bits(void) 4688 { 4689 return rsvd_bits(shadow_phys_bits, 63); 4690 } 4691 4692 /* 4693 * the page table on host is the shadow page table for the page 4694 * table in guest or amd nested guest, its mmu features completely 4695 * follow the features in guest. 4696 */ 4697 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 4698 struct kvm_mmu *context) 4699 { 4700 /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */ 4701 bool is_amd = true; 4702 /* KVM doesn't use 2-level page tables for the shadow MMU. */ 4703 bool is_pse = false; 4704 struct rsvd_bits_validate *shadow_zero_check; 4705 int i; 4706 4707 WARN_ON_ONCE(context->root_role.level < PT32E_ROOT_LEVEL); 4708 4709 shadow_zero_check = &context->shadow_zero_check; 4710 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 4711 context->root_role.level, 4712 context->root_role.efer_nx, 4713 guest_can_use_gbpages(vcpu), is_pse, is_amd); 4714 4715 if (!shadow_me_mask) 4716 return; 4717 4718 for (i = context->root_role.level; --i >= 0;) { 4719 /* 4720 * So far shadow_me_value is a constant during KVM's life 4721 * time. Bits in shadow_me_value are allowed to be set. 4722 * Bits in shadow_me_mask but not in shadow_me_value are 4723 * not allowed to be set. 4724 */ 4725 shadow_zero_check->rsvd_bits_mask[0][i] |= shadow_me_mask; 4726 shadow_zero_check->rsvd_bits_mask[1][i] |= shadow_me_mask; 4727 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_value; 4728 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_value; 4729 } 4730 4731 } 4732 4733 static inline bool boot_cpu_is_amd(void) 4734 { 4735 WARN_ON_ONCE(!tdp_enabled); 4736 return shadow_x_mask == 0; 4737 } 4738 4739 /* 4740 * the direct page table on host, use as much mmu features as 4741 * possible, however, kvm currently does not do execution-protection. 4742 */ 4743 static void 4744 reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context) 4745 { 4746 struct rsvd_bits_validate *shadow_zero_check; 4747 int i; 4748 4749 shadow_zero_check = &context->shadow_zero_check; 4750 4751 if (boot_cpu_is_amd()) 4752 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 4753 context->root_role.level, true, 4754 boot_cpu_has(X86_FEATURE_GBPAGES), 4755 false, true); 4756 else 4757 __reset_rsvds_bits_mask_ept(shadow_zero_check, 4758 reserved_hpa_bits(), false, 4759 max_huge_page_level); 4760 4761 if (!shadow_me_mask) 4762 return; 4763 4764 for (i = context->root_role.level; --i >= 0;) { 4765 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 4766 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 4767 } 4768 } 4769 4770 /* 4771 * as the comments in reset_shadow_zero_bits_mask() except it 4772 * is the shadow page table for intel nested guest. 4773 */ 4774 static void 4775 reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly) 4776 { 4777 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check, 4778 reserved_hpa_bits(), execonly, 4779 max_huge_page_level); 4780 } 4781 4782 #define BYTE_MASK(access) \ 4783 ((1 & (access) ? 2 : 0) | \ 4784 (2 & (access) ? 4 : 0) | \ 4785 (3 & (access) ? 8 : 0) | \ 4786 (4 & (access) ? 16 : 0) | \ 4787 (5 & (access) ? 32 : 0) | \ 4788 (6 & (access) ? 64 : 0) | \ 4789 (7 & (access) ? 128 : 0)) 4790 4791 4792 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept) 4793 { 4794 unsigned byte; 4795 4796 const u8 x = BYTE_MASK(ACC_EXEC_MASK); 4797 const u8 w = BYTE_MASK(ACC_WRITE_MASK); 4798 const u8 u = BYTE_MASK(ACC_USER_MASK); 4799 4800 bool cr4_smep = is_cr4_smep(mmu); 4801 bool cr4_smap = is_cr4_smap(mmu); 4802 bool cr0_wp = is_cr0_wp(mmu); 4803 bool efer_nx = is_efer_nx(mmu); 4804 4805 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { 4806 unsigned pfec = byte << 1; 4807 4808 /* 4809 * Each "*f" variable has a 1 bit for each UWX value 4810 * that causes a fault with the given PFEC. 4811 */ 4812 4813 /* Faults from writes to non-writable pages */ 4814 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0; 4815 /* Faults from user mode accesses to supervisor pages */ 4816 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0; 4817 /* Faults from fetches of non-executable pages*/ 4818 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0; 4819 /* Faults from kernel mode fetches of user pages */ 4820 u8 smepf = 0; 4821 /* Faults from kernel mode accesses of user pages */ 4822 u8 smapf = 0; 4823 4824 if (!ept) { 4825 /* Faults from kernel mode accesses to user pages */ 4826 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u; 4827 4828 /* Not really needed: !nx will cause pte.nx to fault */ 4829 if (!efer_nx) 4830 ff = 0; 4831 4832 /* Allow supervisor writes if !cr0.wp */ 4833 if (!cr0_wp) 4834 wf = (pfec & PFERR_USER_MASK) ? wf : 0; 4835 4836 /* Disallow supervisor fetches of user code if cr4.smep */ 4837 if (cr4_smep) 4838 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0; 4839 4840 /* 4841 * SMAP:kernel-mode data accesses from user-mode 4842 * mappings should fault. A fault is considered 4843 * as a SMAP violation if all of the following 4844 * conditions are true: 4845 * - X86_CR4_SMAP is set in CR4 4846 * - A user page is accessed 4847 * - The access is not a fetch 4848 * - The access is supervisor mode 4849 * - If implicit supervisor access or X86_EFLAGS_AC is clear 4850 * 4851 * Here, we cover the first four conditions. 4852 * The fifth is computed dynamically in permission_fault(); 4853 * PFERR_RSVD_MASK bit will be set in PFEC if the access is 4854 * *not* subject to SMAP restrictions. 4855 */ 4856 if (cr4_smap) 4857 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf; 4858 } 4859 4860 mmu->permissions[byte] = ff | uf | wf | smepf | smapf; 4861 } 4862 } 4863 4864 /* 4865 * PKU is an additional mechanism by which the paging controls access to 4866 * user-mode addresses based on the value in the PKRU register. Protection 4867 * key violations are reported through a bit in the page fault error code. 4868 * Unlike other bits of the error code, the PK bit is not known at the 4869 * call site of e.g. gva_to_gpa; it must be computed directly in 4870 * permission_fault based on two bits of PKRU, on some machine state (CR4, 4871 * CR0, EFER, CPL), and on other bits of the error code and the page tables. 4872 * 4873 * In particular the following conditions come from the error code, the 4874 * page tables and the machine state: 4875 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1 4876 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch) 4877 * - PK is always zero if U=0 in the page tables 4878 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access. 4879 * 4880 * The PKRU bitmask caches the result of these four conditions. The error 4881 * code (minus the P bit) and the page table's U bit form an index into the 4882 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed 4883 * with the two bits of the PKRU register corresponding to the protection key. 4884 * For the first three conditions above the bits will be 00, thus masking 4885 * away both AD and WD. For all reads or if the last condition holds, WD 4886 * only will be masked away. 4887 */ 4888 static void update_pkru_bitmask(struct kvm_mmu *mmu) 4889 { 4890 unsigned bit; 4891 bool wp; 4892 4893 mmu->pkru_mask = 0; 4894 4895 if (!is_cr4_pke(mmu)) 4896 return; 4897 4898 wp = is_cr0_wp(mmu); 4899 4900 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) { 4901 unsigned pfec, pkey_bits; 4902 bool check_pkey, check_write, ff, uf, wf, pte_user; 4903 4904 pfec = bit << 1; 4905 ff = pfec & PFERR_FETCH_MASK; 4906 uf = pfec & PFERR_USER_MASK; 4907 wf = pfec & PFERR_WRITE_MASK; 4908 4909 /* PFEC.RSVD is replaced by ACC_USER_MASK. */ 4910 pte_user = pfec & PFERR_RSVD_MASK; 4911 4912 /* 4913 * Only need to check the access which is not an 4914 * instruction fetch and is to a user page. 4915 */ 4916 check_pkey = (!ff && pte_user); 4917 /* 4918 * write access is controlled by PKRU if it is a 4919 * user access or CR0.WP = 1. 4920 */ 4921 check_write = check_pkey && wf && (uf || wp); 4922 4923 /* PKRU.AD stops both read and write access. */ 4924 pkey_bits = !!check_pkey; 4925 /* PKRU.WD stops write access. */ 4926 pkey_bits |= (!!check_write) << 1; 4927 4928 mmu->pkru_mask |= (pkey_bits & 3) << pfec; 4929 } 4930 } 4931 4932 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu, 4933 struct kvm_mmu *mmu) 4934 { 4935 if (!is_cr0_pg(mmu)) 4936 return; 4937 4938 reset_guest_rsvds_bits_mask(vcpu, mmu); 4939 update_permission_bitmask(mmu, false); 4940 update_pkru_bitmask(mmu); 4941 } 4942 4943 static void paging64_init_context(struct kvm_mmu *context) 4944 { 4945 context->page_fault = paging64_page_fault; 4946 context->gva_to_gpa = paging64_gva_to_gpa; 4947 context->sync_page = paging64_sync_page; 4948 context->invlpg = paging64_invlpg; 4949 } 4950 4951 static void paging32_init_context(struct kvm_mmu *context) 4952 { 4953 context->page_fault = paging32_page_fault; 4954 context->gva_to_gpa = paging32_gva_to_gpa; 4955 context->sync_page = paging32_sync_page; 4956 context->invlpg = paging32_invlpg; 4957 } 4958 4959 static union kvm_cpu_role 4960 kvm_calc_cpu_role(struct kvm_vcpu *vcpu, const struct kvm_mmu_role_regs *regs) 4961 { 4962 union kvm_cpu_role role = {0}; 4963 4964 role.base.access = ACC_ALL; 4965 role.base.smm = is_smm(vcpu); 4966 role.base.guest_mode = is_guest_mode(vcpu); 4967 role.ext.valid = 1; 4968 4969 if (!____is_cr0_pg(regs)) { 4970 role.base.direct = 1; 4971 return role; 4972 } 4973 4974 role.base.efer_nx = ____is_efer_nx(regs); 4975 role.base.cr0_wp = ____is_cr0_wp(regs); 4976 role.base.smep_andnot_wp = ____is_cr4_smep(regs) && !____is_cr0_wp(regs); 4977 role.base.smap_andnot_wp = ____is_cr4_smap(regs) && !____is_cr0_wp(regs); 4978 role.base.has_4_byte_gpte = !____is_cr4_pae(regs); 4979 4980 if (____is_efer_lma(regs)) 4981 role.base.level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL 4982 : PT64_ROOT_4LEVEL; 4983 else if (____is_cr4_pae(regs)) 4984 role.base.level = PT32E_ROOT_LEVEL; 4985 else 4986 role.base.level = PT32_ROOT_LEVEL; 4987 4988 role.ext.cr4_smep = ____is_cr4_smep(regs); 4989 role.ext.cr4_smap = ____is_cr4_smap(regs); 4990 role.ext.cr4_pse = ____is_cr4_pse(regs); 4991 4992 /* PKEY and LA57 are active iff long mode is active. */ 4993 role.ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs); 4994 role.ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs); 4995 role.ext.efer_lma = ____is_efer_lma(regs); 4996 return role; 4997 } 4998 4999 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu) 5000 { 5001 /* tdp_root_level is architecture forced level, use it if nonzero */ 5002 if (tdp_root_level) 5003 return tdp_root_level; 5004 5005 /* Use 5-level TDP if and only if it's useful/necessary. */ 5006 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48) 5007 return 4; 5008 5009 return max_tdp_level; 5010 } 5011 5012 static union kvm_mmu_page_role 5013 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, 5014 union kvm_cpu_role cpu_role) 5015 { 5016 union kvm_mmu_page_role role = {0}; 5017 5018 role.access = ACC_ALL; 5019 role.cr0_wp = true; 5020 role.efer_nx = true; 5021 role.smm = cpu_role.base.smm; 5022 role.guest_mode = cpu_role.base.guest_mode; 5023 role.ad_disabled = !kvm_ad_enabled(); 5024 role.level = kvm_mmu_get_tdp_level(vcpu); 5025 role.direct = true; 5026 role.has_4_byte_gpte = false; 5027 5028 return role; 5029 } 5030 5031 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu, 5032 union kvm_cpu_role cpu_role) 5033 { 5034 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5035 union kvm_mmu_page_role root_role = kvm_calc_tdp_mmu_root_page_role(vcpu, cpu_role); 5036 5037 if (cpu_role.as_u64 == context->cpu_role.as_u64 && 5038 root_role.word == context->root_role.word) 5039 return; 5040 5041 context->cpu_role.as_u64 = cpu_role.as_u64; 5042 context->root_role.word = root_role.word; 5043 context->page_fault = kvm_tdp_page_fault; 5044 context->sync_page = nonpaging_sync_page; 5045 context->invlpg = NULL; 5046 context->get_guest_pgd = get_cr3; 5047 context->get_pdptr = kvm_pdptr_read; 5048 context->inject_page_fault = kvm_inject_page_fault; 5049 5050 if (!is_cr0_pg(context)) 5051 context->gva_to_gpa = nonpaging_gva_to_gpa; 5052 else if (is_cr4_pae(context)) 5053 context->gva_to_gpa = paging64_gva_to_gpa; 5054 else 5055 context->gva_to_gpa = paging32_gva_to_gpa; 5056 5057 reset_guest_paging_metadata(vcpu, context); 5058 reset_tdp_shadow_zero_bits_mask(context); 5059 } 5060 5061 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context, 5062 union kvm_cpu_role cpu_role, 5063 union kvm_mmu_page_role root_role) 5064 { 5065 if (cpu_role.as_u64 == context->cpu_role.as_u64 && 5066 root_role.word == context->root_role.word) 5067 return; 5068 5069 context->cpu_role.as_u64 = cpu_role.as_u64; 5070 context->root_role.word = root_role.word; 5071 5072 if (!is_cr0_pg(context)) 5073 nonpaging_init_context(context); 5074 else if (is_cr4_pae(context)) 5075 paging64_init_context(context); 5076 else 5077 paging32_init_context(context); 5078 5079 reset_guest_paging_metadata(vcpu, context); 5080 reset_shadow_zero_bits_mask(vcpu, context); 5081 } 5082 5083 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, 5084 union kvm_cpu_role cpu_role) 5085 { 5086 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5087 union kvm_mmu_page_role root_role; 5088 5089 root_role = cpu_role.base; 5090 5091 /* KVM uses PAE paging whenever the guest isn't using 64-bit paging. */ 5092 root_role.level = max_t(u32, root_role.level, PT32E_ROOT_LEVEL); 5093 5094 /* 5095 * KVM forces EFER.NX=1 when TDP is disabled, reflect it in the MMU role. 5096 * KVM uses NX when TDP is disabled to handle a variety of scenarios, 5097 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and 5098 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0. 5099 * The iTLB multi-hit workaround can be toggled at any time, so assume 5100 * NX can be used by any non-nested shadow MMU to avoid having to reset 5101 * MMU contexts. 5102 */ 5103 root_role.efer_nx = true; 5104 5105 shadow_mmu_init_context(vcpu, context, cpu_role, root_role); 5106 } 5107 5108 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0, 5109 unsigned long cr4, u64 efer, gpa_t nested_cr3) 5110 { 5111 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 5112 struct kvm_mmu_role_regs regs = { 5113 .cr0 = cr0, 5114 .cr4 = cr4 & ~X86_CR4_PKE, 5115 .efer = efer, 5116 }; 5117 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); 5118 union kvm_mmu_page_role root_role; 5119 5120 /* NPT requires CR0.PG=1. */ 5121 WARN_ON_ONCE(cpu_role.base.direct); 5122 5123 root_role = cpu_role.base; 5124 root_role.level = kvm_mmu_get_tdp_level(vcpu); 5125 if (root_role.level == PT64_ROOT_5LEVEL && 5126 cpu_role.base.level == PT64_ROOT_4LEVEL) 5127 root_role.passthrough = 1; 5128 5129 shadow_mmu_init_context(vcpu, context, cpu_role, root_role); 5130 kvm_mmu_new_pgd(vcpu, nested_cr3); 5131 } 5132 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu); 5133 5134 static union kvm_cpu_role 5135 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty, 5136 bool execonly, u8 level) 5137 { 5138 union kvm_cpu_role role = {0}; 5139 5140 /* 5141 * KVM does not support SMM transfer monitors, and consequently does not 5142 * support the "entry to SMM" control either. role.base.smm is always 0. 5143 */ 5144 WARN_ON_ONCE(is_smm(vcpu)); 5145 role.base.level = level; 5146 role.base.has_4_byte_gpte = false; 5147 role.base.direct = false; 5148 role.base.ad_disabled = !accessed_dirty; 5149 role.base.guest_mode = true; 5150 role.base.access = ACC_ALL; 5151 5152 role.ext.word = 0; 5153 role.ext.execonly = execonly; 5154 role.ext.valid = 1; 5155 5156 return role; 5157 } 5158 5159 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, 5160 int huge_page_level, bool accessed_dirty, 5161 gpa_t new_eptp) 5162 { 5163 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 5164 u8 level = vmx_eptp_page_walk_level(new_eptp); 5165 union kvm_cpu_role new_mode = 5166 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty, 5167 execonly, level); 5168 5169 if (new_mode.as_u64 != context->cpu_role.as_u64) { 5170 /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */ 5171 context->cpu_role.as_u64 = new_mode.as_u64; 5172 context->root_role.word = new_mode.base.word; 5173 5174 context->page_fault = ept_page_fault; 5175 context->gva_to_gpa = ept_gva_to_gpa; 5176 context->sync_page = ept_sync_page; 5177 context->invlpg = ept_invlpg; 5178 5179 update_permission_bitmask(context, true); 5180 context->pkru_mask = 0; 5181 reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level); 5182 reset_ept_shadow_zero_bits_mask(context, execonly); 5183 } 5184 5185 kvm_mmu_new_pgd(vcpu, new_eptp); 5186 } 5187 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); 5188 5189 static void init_kvm_softmmu(struct kvm_vcpu *vcpu, 5190 union kvm_cpu_role cpu_role) 5191 { 5192 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5193 5194 kvm_init_shadow_mmu(vcpu, cpu_role); 5195 5196 context->get_guest_pgd = get_cr3; 5197 context->get_pdptr = kvm_pdptr_read; 5198 context->inject_page_fault = kvm_inject_page_fault; 5199 } 5200 5201 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu, 5202 union kvm_cpu_role new_mode) 5203 { 5204 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; 5205 5206 if (new_mode.as_u64 == g_context->cpu_role.as_u64) 5207 return; 5208 5209 g_context->cpu_role.as_u64 = new_mode.as_u64; 5210 g_context->get_guest_pgd = get_cr3; 5211 g_context->get_pdptr = kvm_pdptr_read; 5212 g_context->inject_page_fault = kvm_inject_page_fault; 5213 5214 /* 5215 * L2 page tables are never shadowed, so there is no need to sync 5216 * SPTEs. 5217 */ 5218 g_context->invlpg = NULL; 5219 5220 /* 5221 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using 5222 * L1's nested page tables (e.g. EPT12). The nested translation 5223 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using 5224 * L2's page tables as the first level of translation and L1's 5225 * nested page tables as the second level of translation. Basically 5226 * the gva_to_gpa functions between mmu and nested_mmu are swapped. 5227 */ 5228 if (!is_paging(vcpu)) 5229 g_context->gva_to_gpa = nonpaging_gva_to_gpa; 5230 else if (is_long_mode(vcpu)) 5231 g_context->gva_to_gpa = paging64_gva_to_gpa; 5232 else if (is_pae(vcpu)) 5233 g_context->gva_to_gpa = paging64_gva_to_gpa; 5234 else 5235 g_context->gva_to_gpa = paging32_gva_to_gpa; 5236 5237 reset_guest_paging_metadata(vcpu, g_context); 5238 } 5239 5240 void kvm_init_mmu(struct kvm_vcpu *vcpu) 5241 { 5242 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 5243 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); 5244 5245 if (mmu_is_nested(vcpu)) 5246 init_kvm_nested_mmu(vcpu, cpu_role); 5247 else if (tdp_enabled) 5248 init_kvm_tdp_mmu(vcpu, cpu_role); 5249 else 5250 init_kvm_softmmu(vcpu, cpu_role); 5251 } 5252 EXPORT_SYMBOL_GPL(kvm_init_mmu); 5253 5254 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu) 5255 { 5256 /* 5257 * Invalidate all MMU roles to force them to reinitialize as CPUID 5258 * information is factored into reserved bit calculations. 5259 * 5260 * Correctly handling multiple vCPU models with respect to paging and 5261 * physical address properties) in a single VM would require tracking 5262 * all relevant CPUID information in kvm_mmu_page_role. That is very 5263 * undesirable as it would increase the memory requirements for 5264 * gfn_track (see struct kvm_mmu_page_role comments). For now that 5265 * problem is swept under the rug; KVM's CPUID API is horrific and 5266 * it's all but impossible to solve it without introducing a new API. 5267 */ 5268 vcpu->arch.root_mmu.root_role.word = 0; 5269 vcpu->arch.guest_mmu.root_role.word = 0; 5270 vcpu->arch.nested_mmu.root_role.word = 0; 5271 vcpu->arch.root_mmu.cpu_role.ext.valid = 0; 5272 vcpu->arch.guest_mmu.cpu_role.ext.valid = 0; 5273 vcpu->arch.nested_mmu.cpu_role.ext.valid = 0; 5274 kvm_mmu_reset_context(vcpu); 5275 5276 /* 5277 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in 5278 * kvm_arch_vcpu_ioctl(). 5279 */ 5280 KVM_BUG_ON(vcpu->arch.last_vmentry_cpu != -1, vcpu->kvm); 5281 } 5282 5283 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu) 5284 { 5285 kvm_mmu_unload(vcpu); 5286 kvm_init_mmu(vcpu); 5287 } 5288 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); 5289 5290 int kvm_mmu_load(struct kvm_vcpu *vcpu) 5291 { 5292 int r; 5293 5294 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->root_role.direct); 5295 if (r) 5296 goto out; 5297 r = mmu_alloc_special_roots(vcpu); 5298 if (r) 5299 goto out; 5300 if (vcpu->arch.mmu->root_role.direct) 5301 r = mmu_alloc_direct_roots(vcpu); 5302 else 5303 r = mmu_alloc_shadow_roots(vcpu); 5304 if (r) 5305 goto out; 5306 5307 kvm_mmu_sync_roots(vcpu); 5308 5309 kvm_mmu_load_pgd(vcpu); 5310 5311 /* 5312 * Flush any TLB entries for the new root, the provenance of the root 5313 * is unknown. Even if KVM ensures there are no stale TLB entries 5314 * for a freed root, in theory another hypervisor could have left 5315 * stale entries. Flushing on alloc also allows KVM to skip the TLB 5316 * flush when freeing a root (see kvm_tdp_mmu_put_root()). 5317 */ 5318 static_call(kvm_x86_flush_tlb_current)(vcpu); 5319 out: 5320 return r; 5321 } 5322 5323 void kvm_mmu_unload(struct kvm_vcpu *vcpu) 5324 { 5325 struct kvm *kvm = vcpu->kvm; 5326 5327 kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL); 5328 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root.hpa)); 5329 kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); 5330 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa)); 5331 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 5332 } 5333 5334 static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa) 5335 { 5336 struct kvm_mmu_page *sp; 5337 5338 if (!VALID_PAGE(root_hpa)) 5339 return false; 5340 5341 /* 5342 * When freeing obsolete roots, treat roots as obsolete if they don't 5343 * have an associated shadow page. This does mean KVM will get false 5344 * positives and free roots that don't strictly need to be freed, but 5345 * such false positives are relatively rare: 5346 * 5347 * (a) only PAE paging and nested NPT has roots without shadow pages 5348 * (b) remote reloads due to a memslot update obsoletes _all_ roots 5349 * (c) KVM doesn't track previous roots for PAE paging, and the guest 5350 * is unlikely to zap an in-use PGD. 5351 */ 5352 sp = to_shadow_page(root_hpa); 5353 return !sp || is_obsolete_sp(kvm, sp); 5354 } 5355 5356 static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu) 5357 { 5358 unsigned long roots_to_free = 0; 5359 int i; 5360 5361 if (is_obsolete_root(kvm, mmu->root.hpa)) 5362 roots_to_free |= KVM_MMU_ROOT_CURRENT; 5363 5364 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5365 if (is_obsolete_root(kvm, mmu->prev_roots[i].hpa)) 5366 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 5367 } 5368 5369 if (roots_to_free) 5370 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 5371 } 5372 5373 void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu) 5374 { 5375 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu); 5376 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu); 5377 } 5378 5379 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, 5380 int *bytes) 5381 { 5382 u64 gentry = 0; 5383 int r; 5384 5385 /* 5386 * Assume that the pte write on a page table of the same type 5387 * as the current vcpu paging mode since we update the sptes only 5388 * when they have the same mode. 5389 */ 5390 if (is_pae(vcpu) && *bytes == 4) { 5391 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ 5392 *gpa &= ~(gpa_t)7; 5393 *bytes = 8; 5394 } 5395 5396 if (*bytes == 4 || *bytes == 8) { 5397 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes); 5398 if (r) 5399 gentry = 0; 5400 } 5401 5402 return gentry; 5403 } 5404 5405 /* 5406 * If we're seeing too many writes to a page, it may no longer be a page table, 5407 * or we may be forking, in which case it is better to unmap the page. 5408 */ 5409 static bool detect_write_flooding(struct kvm_mmu_page *sp) 5410 { 5411 /* 5412 * Skip write-flooding detected for the sp whose level is 1, because 5413 * it can become unsync, then the guest page is not write-protected. 5414 */ 5415 if (sp->role.level == PG_LEVEL_4K) 5416 return false; 5417 5418 atomic_inc(&sp->write_flooding_count); 5419 return atomic_read(&sp->write_flooding_count) >= 3; 5420 } 5421 5422 /* 5423 * Misaligned accesses are too much trouble to fix up; also, they usually 5424 * indicate a page is not used as a page table. 5425 */ 5426 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, 5427 int bytes) 5428 { 5429 unsigned offset, pte_size, misaligned; 5430 5431 pgprintk("misaligned: gpa %llx bytes %d role %x\n", 5432 gpa, bytes, sp->role.word); 5433 5434 offset = offset_in_page(gpa); 5435 pte_size = sp->role.has_4_byte_gpte ? 4 : 8; 5436 5437 /* 5438 * Sometimes, the OS only writes the last one bytes to update status 5439 * bits, for example, in linux, andb instruction is used in clear_bit(). 5440 */ 5441 if (!(offset & (pte_size - 1)) && bytes == 1) 5442 return false; 5443 5444 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); 5445 misaligned |= bytes < 4; 5446 5447 return misaligned; 5448 } 5449 5450 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) 5451 { 5452 unsigned page_offset, quadrant; 5453 u64 *spte; 5454 int level; 5455 5456 page_offset = offset_in_page(gpa); 5457 level = sp->role.level; 5458 *nspte = 1; 5459 if (sp->role.has_4_byte_gpte) { 5460 page_offset <<= 1; /* 32->64 */ 5461 /* 5462 * A 32-bit pde maps 4MB while the shadow pdes map 5463 * only 2MB. So we need to double the offset again 5464 * and zap two pdes instead of one. 5465 */ 5466 if (level == PT32_ROOT_LEVEL) { 5467 page_offset &= ~7; /* kill rounding error */ 5468 page_offset <<= 1; 5469 *nspte = 2; 5470 } 5471 quadrant = page_offset >> PAGE_SHIFT; 5472 page_offset &= ~PAGE_MASK; 5473 if (quadrant != sp->role.quadrant) 5474 return NULL; 5475 } 5476 5477 spte = &sp->spt[page_offset / sizeof(*spte)]; 5478 return spte; 5479 } 5480 5481 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, 5482 const u8 *new, int bytes, 5483 struct kvm_page_track_notifier_node *node) 5484 { 5485 gfn_t gfn = gpa >> PAGE_SHIFT; 5486 struct kvm_mmu_page *sp; 5487 LIST_HEAD(invalid_list); 5488 u64 entry, gentry, *spte; 5489 int npte; 5490 bool flush = false; 5491 5492 /* 5493 * If we don't have indirect shadow pages, it means no page is 5494 * write-protected, so we can exit simply. 5495 */ 5496 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages)) 5497 return; 5498 5499 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes); 5500 5501 write_lock(&vcpu->kvm->mmu_lock); 5502 5503 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes); 5504 5505 ++vcpu->kvm->stat.mmu_pte_write; 5506 5507 for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) { 5508 if (detect_write_misaligned(sp, gpa, bytes) || 5509 detect_write_flooding(sp)) { 5510 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); 5511 ++vcpu->kvm->stat.mmu_flooded; 5512 continue; 5513 } 5514 5515 spte = get_written_sptes(sp, gpa, &npte); 5516 if (!spte) 5517 continue; 5518 5519 while (npte--) { 5520 entry = *spte; 5521 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL); 5522 if (gentry && sp->role.level != PG_LEVEL_4K) 5523 ++vcpu->kvm->stat.mmu_pde_zapped; 5524 if (is_shadow_present_pte(entry)) 5525 flush = true; 5526 ++spte; 5527 } 5528 } 5529 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 5530 write_unlock(&vcpu->kvm->mmu_lock); 5531 } 5532 5533 int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 5534 void *insn, int insn_len) 5535 { 5536 int r, emulation_type = EMULTYPE_PF; 5537 bool direct = vcpu->arch.mmu->root_role.direct; 5538 5539 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root.hpa))) 5540 return RET_PF_RETRY; 5541 5542 r = RET_PF_INVALID; 5543 if (unlikely(error_code & PFERR_RSVD_MASK)) { 5544 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct); 5545 if (r == RET_PF_EMULATE) 5546 goto emulate; 5547 } 5548 5549 if (r == RET_PF_INVALID) { 5550 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, 5551 lower_32_bits(error_code), false); 5552 if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm)) 5553 return -EIO; 5554 } 5555 5556 if (r < 0) 5557 return r; 5558 if (r != RET_PF_EMULATE) 5559 return 1; 5560 5561 /* 5562 * Before emulating the instruction, check if the error code 5563 * was due to a RO violation while translating the guest page. 5564 * This can occur when using nested virtualization with nested 5565 * paging in both guests. If true, we simply unprotect the page 5566 * and resume the guest. 5567 */ 5568 if (vcpu->arch.mmu->root_role.direct && 5569 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) { 5570 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa)); 5571 return 1; 5572 } 5573 5574 /* 5575 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still 5576 * optimistically try to just unprotect the page and let the processor 5577 * re-execute the instruction that caused the page fault. Do not allow 5578 * retrying MMIO emulation, as it's not only pointless but could also 5579 * cause us to enter an infinite loop because the processor will keep 5580 * faulting on the non-existent MMIO address. Retrying an instruction 5581 * from a nested guest is also pointless and dangerous as we are only 5582 * explicitly shadowing L1's page tables, i.e. unprotecting something 5583 * for L1 isn't going to magically fix whatever issue cause L2 to fail. 5584 */ 5585 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu)) 5586 emulation_type |= EMULTYPE_ALLOW_RETRY_PF; 5587 emulate: 5588 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn, 5589 insn_len); 5590 } 5591 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); 5592 5593 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 5594 gva_t gva, hpa_t root_hpa) 5595 { 5596 int i; 5597 5598 /* It's actually a GPA for vcpu->arch.guest_mmu. */ 5599 if (mmu != &vcpu->arch.guest_mmu) { 5600 /* INVLPG on a non-canonical address is a NOP according to the SDM. */ 5601 if (is_noncanonical_address(gva, vcpu)) 5602 return; 5603 5604 static_call(kvm_x86_flush_tlb_gva)(vcpu, gva); 5605 } 5606 5607 if (!mmu->invlpg) 5608 return; 5609 5610 if (root_hpa == INVALID_PAGE) { 5611 mmu->invlpg(vcpu, gva, mmu->root.hpa); 5612 5613 /* 5614 * INVLPG is required to invalidate any global mappings for the VA, 5615 * irrespective of PCID. Since it would take us roughly similar amount 5616 * of work to determine whether any of the prev_root mappings of the VA 5617 * is marked global, or to just sync it blindly, so we might as well 5618 * just always sync it. 5619 * 5620 * Mappings not reachable via the current cr3 or the prev_roots will be 5621 * synced when switching to that cr3, so nothing needs to be done here 5622 * for them. 5623 */ 5624 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5625 if (VALID_PAGE(mmu->prev_roots[i].hpa)) 5626 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); 5627 } else { 5628 mmu->invlpg(vcpu, gva, root_hpa); 5629 } 5630 } 5631 5632 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) 5633 { 5634 kvm_mmu_invalidate_gva(vcpu, vcpu->arch.walk_mmu, gva, INVALID_PAGE); 5635 ++vcpu->stat.invlpg; 5636 } 5637 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); 5638 5639 5640 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid) 5641 { 5642 struct kvm_mmu *mmu = vcpu->arch.mmu; 5643 bool tlb_flush = false; 5644 uint i; 5645 5646 if (pcid == kvm_get_active_pcid(vcpu)) { 5647 if (mmu->invlpg) 5648 mmu->invlpg(vcpu, gva, mmu->root.hpa); 5649 tlb_flush = true; 5650 } 5651 5652 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5653 if (VALID_PAGE(mmu->prev_roots[i].hpa) && 5654 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) { 5655 if (mmu->invlpg) 5656 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); 5657 tlb_flush = true; 5658 } 5659 } 5660 5661 if (tlb_flush) 5662 static_call(kvm_x86_flush_tlb_gva)(vcpu, gva); 5663 5664 ++vcpu->stat.invlpg; 5665 5666 /* 5667 * Mappings not reachable via the current cr3 or the prev_roots will be 5668 * synced when switching to that cr3, so nothing needs to be done here 5669 * for them. 5670 */ 5671 } 5672 5673 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 5674 int tdp_max_root_level, int tdp_huge_page_level) 5675 { 5676 tdp_enabled = enable_tdp; 5677 tdp_root_level = tdp_forced_root_level; 5678 max_tdp_level = tdp_max_root_level; 5679 5680 /* 5681 * max_huge_page_level reflects KVM's MMU capabilities irrespective 5682 * of kernel support, e.g. KVM may be capable of using 1GB pages when 5683 * the kernel is not. But, KVM never creates a page size greater than 5684 * what is used by the kernel for any given HVA, i.e. the kernel's 5685 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust(). 5686 */ 5687 if (tdp_enabled) 5688 max_huge_page_level = tdp_huge_page_level; 5689 else if (boot_cpu_has(X86_FEATURE_GBPAGES)) 5690 max_huge_page_level = PG_LEVEL_1G; 5691 else 5692 max_huge_page_level = PG_LEVEL_2M; 5693 } 5694 EXPORT_SYMBOL_GPL(kvm_configure_mmu); 5695 5696 /* The return value indicates if tlb flush on all vcpus is needed. */ 5697 typedef bool (*slot_level_handler) (struct kvm *kvm, 5698 struct kvm_rmap_head *rmap_head, 5699 const struct kvm_memory_slot *slot); 5700 5701 /* The caller should hold mmu-lock before calling this function. */ 5702 static __always_inline bool 5703 slot_handle_level_range(struct kvm *kvm, const struct kvm_memory_slot *memslot, 5704 slot_level_handler fn, int start_level, int end_level, 5705 gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield, 5706 bool flush) 5707 { 5708 struct slot_rmap_walk_iterator iterator; 5709 5710 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn, 5711 end_gfn, &iterator) { 5712 if (iterator.rmap) 5713 flush |= fn(kvm, iterator.rmap, memslot); 5714 5715 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 5716 if (flush && flush_on_yield) { 5717 kvm_flush_remote_tlbs_with_address(kvm, 5718 start_gfn, 5719 iterator.gfn - start_gfn + 1); 5720 flush = false; 5721 } 5722 cond_resched_rwlock_write(&kvm->mmu_lock); 5723 } 5724 } 5725 5726 return flush; 5727 } 5728 5729 static __always_inline bool 5730 slot_handle_level(struct kvm *kvm, const struct kvm_memory_slot *memslot, 5731 slot_level_handler fn, int start_level, int end_level, 5732 bool flush_on_yield) 5733 { 5734 return slot_handle_level_range(kvm, memslot, fn, start_level, 5735 end_level, memslot->base_gfn, 5736 memslot->base_gfn + memslot->npages - 1, 5737 flush_on_yield, false); 5738 } 5739 5740 static __always_inline bool 5741 slot_handle_level_4k(struct kvm *kvm, const struct kvm_memory_slot *memslot, 5742 slot_level_handler fn, bool flush_on_yield) 5743 { 5744 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K, 5745 PG_LEVEL_4K, flush_on_yield); 5746 } 5747 5748 static void free_mmu_pages(struct kvm_mmu *mmu) 5749 { 5750 if (!tdp_enabled && mmu->pae_root) 5751 set_memory_encrypted((unsigned long)mmu->pae_root, 1); 5752 free_page((unsigned long)mmu->pae_root); 5753 free_page((unsigned long)mmu->pml4_root); 5754 free_page((unsigned long)mmu->pml5_root); 5755 } 5756 5757 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 5758 { 5759 struct page *page; 5760 int i; 5761 5762 mmu->root.hpa = INVALID_PAGE; 5763 mmu->root.pgd = 0; 5764 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5765 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 5766 5767 /* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */ 5768 if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu) 5769 return 0; 5770 5771 /* 5772 * When using PAE paging, the four PDPTEs are treated as 'root' pages, 5773 * while the PDP table is a per-vCPU construct that's allocated at MMU 5774 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on 5775 * x86_64. Therefore we need to allocate the PDP table in the first 5776 * 4GB of memory, which happens to fit the DMA32 zone. TDP paging 5777 * generally doesn't use PAE paging and can skip allocating the PDP 5778 * table. The main exception, handled here, is SVM's 32-bit NPT. The 5779 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit 5780 * KVM; that horror is handled on-demand by mmu_alloc_special_roots(). 5781 */ 5782 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL) 5783 return 0; 5784 5785 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32); 5786 if (!page) 5787 return -ENOMEM; 5788 5789 mmu->pae_root = page_address(page); 5790 5791 /* 5792 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to 5793 * get the CPU to treat the PDPTEs as encrypted. Decrypt the page so 5794 * that KVM's writes and the CPU's reads get along. Note, this is 5795 * only necessary when using shadow paging, as 64-bit NPT can get at 5796 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported 5797 * by 32-bit kernels (when KVM itself uses 32-bit NPT). 5798 */ 5799 if (!tdp_enabled) 5800 set_memory_decrypted((unsigned long)mmu->pae_root, 1); 5801 else 5802 WARN_ON_ONCE(shadow_me_value); 5803 5804 for (i = 0; i < 4; ++i) 5805 mmu->pae_root[i] = INVALID_PAE_ROOT; 5806 5807 return 0; 5808 } 5809 5810 int kvm_mmu_create(struct kvm_vcpu *vcpu) 5811 { 5812 int ret; 5813 5814 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache; 5815 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO; 5816 5817 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache; 5818 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO; 5819 5820 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO; 5821 5822 vcpu->arch.mmu = &vcpu->arch.root_mmu; 5823 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; 5824 5825 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu); 5826 if (ret) 5827 return ret; 5828 5829 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu); 5830 if (ret) 5831 goto fail_allocate_root; 5832 5833 return ret; 5834 fail_allocate_root: 5835 free_mmu_pages(&vcpu->arch.guest_mmu); 5836 return ret; 5837 } 5838 5839 #define BATCH_ZAP_PAGES 10 5840 static void kvm_zap_obsolete_pages(struct kvm *kvm) 5841 { 5842 struct kvm_mmu_page *sp, *node; 5843 int nr_zapped, batch = 0; 5844 bool unstable; 5845 5846 restart: 5847 list_for_each_entry_safe_reverse(sp, node, 5848 &kvm->arch.active_mmu_pages, link) { 5849 /* 5850 * No obsolete valid page exists before a newly created page 5851 * since active_mmu_pages is a FIFO list. 5852 */ 5853 if (!is_obsolete_sp(kvm, sp)) 5854 break; 5855 5856 /* 5857 * Invalid pages should never land back on the list of active 5858 * pages. Skip the bogus page, otherwise we'll get stuck in an 5859 * infinite loop if the page gets put back on the list (again). 5860 */ 5861 if (WARN_ON(sp->role.invalid)) 5862 continue; 5863 5864 /* 5865 * No need to flush the TLB since we're only zapping shadow 5866 * pages with an obsolete generation number and all vCPUS have 5867 * loaded a new root, i.e. the shadow pages being zapped cannot 5868 * be in active use by the guest. 5869 */ 5870 if (batch >= BATCH_ZAP_PAGES && 5871 cond_resched_rwlock_write(&kvm->mmu_lock)) { 5872 batch = 0; 5873 goto restart; 5874 } 5875 5876 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, 5877 &kvm->arch.zapped_obsolete_pages, &nr_zapped); 5878 batch += nr_zapped; 5879 5880 if (unstable) 5881 goto restart; 5882 } 5883 5884 /* 5885 * Kick all vCPUs (via remote TLB flush) before freeing the page tables 5886 * to ensure KVM is not in the middle of a lockless shadow page table 5887 * walk, which may reference the pages. The remote TLB flush itself is 5888 * not required and is simply a convenient way to kick vCPUs as needed. 5889 * KVM performs a local TLB flush when allocating a new root (see 5890 * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are 5891 * running with an obsolete MMU. 5892 */ 5893 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages); 5894 } 5895 5896 /* 5897 * Fast invalidate all shadow pages and use lock-break technique 5898 * to zap obsolete pages. 5899 * 5900 * It's required when memslot is being deleted or VM is being 5901 * destroyed, in these cases, we should ensure that KVM MMU does 5902 * not use any resource of the being-deleted slot or all slots 5903 * after calling the function. 5904 */ 5905 static void kvm_mmu_zap_all_fast(struct kvm *kvm) 5906 { 5907 lockdep_assert_held(&kvm->slots_lock); 5908 5909 write_lock(&kvm->mmu_lock); 5910 trace_kvm_mmu_zap_all_fast(kvm); 5911 5912 /* 5913 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is 5914 * held for the entire duration of zapping obsolete pages, it's 5915 * impossible for there to be multiple invalid generations associated 5916 * with *valid* shadow pages at any given time, i.e. there is exactly 5917 * one valid generation and (at most) one invalid generation. 5918 */ 5919 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1; 5920 5921 /* 5922 * In order to ensure all vCPUs drop their soon-to-be invalid roots, 5923 * invalidating TDP MMU roots must be done while holding mmu_lock for 5924 * write and in the same critical section as making the reload request, 5925 * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield. 5926 */ 5927 if (is_tdp_mmu_enabled(kvm)) 5928 kvm_tdp_mmu_invalidate_all_roots(kvm); 5929 5930 /* 5931 * Notify all vcpus to reload its shadow page table and flush TLB. 5932 * Then all vcpus will switch to new shadow page table with the new 5933 * mmu_valid_gen. 5934 * 5935 * Note: we need to do this under the protection of mmu_lock, 5936 * otherwise, vcpu would purge shadow page but miss tlb flush. 5937 */ 5938 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 5939 5940 kvm_zap_obsolete_pages(kvm); 5941 5942 write_unlock(&kvm->mmu_lock); 5943 5944 /* 5945 * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before 5946 * returning to the caller, e.g. if the zap is in response to a memslot 5947 * deletion, mmu_notifier callbacks will be unable to reach the SPTEs 5948 * associated with the deleted memslot once the update completes, and 5949 * Deferring the zap until the final reference to the root is put would 5950 * lead to use-after-free. 5951 */ 5952 if (is_tdp_mmu_enabled(kvm)) 5953 kvm_tdp_mmu_zap_invalidated_roots(kvm); 5954 } 5955 5956 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm) 5957 { 5958 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages)); 5959 } 5960 5961 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm, 5962 struct kvm_memory_slot *slot, 5963 struct kvm_page_track_notifier_node *node) 5964 { 5965 kvm_mmu_zap_all_fast(kvm); 5966 } 5967 5968 int kvm_mmu_init_vm(struct kvm *kvm) 5969 { 5970 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 5971 int r; 5972 5973 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 5974 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 5975 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages); 5976 spin_lock_init(&kvm->arch.mmu_unsync_pages_lock); 5977 5978 r = kvm_mmu_init_tdp_mmu(kvm); 5979 if (r < 0) 5980 return r; 5981 5982 node->track_write = kvm_mmu_pte_write; 5983 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot; 5984 kvm_page_track_register_notifier(kvm, node); 5985 5986 kvm->arch.split_page_header_cache.kmem_cache = mmu_page_header_cache; 5987 kvm->arch.split_page_header_cache.gfp_zero = __GFP_ZERO; 5988 5989 kvm->arch.split_shadow_page_cache.gfp_zero = __GFP_ZERO; 5990 5991 kvm->arch.split_desc_cache.kmem_cache = pte_list_desc_cache; 5992 kvm->arch.split_desc_cache.gfp_zero = __GFP_ZERO; 5993 5994 return 0; 5995 } 5996 5997 static void mmu_free_vm_memory_caches(struct kvm *kvm) 5998 { 5999 kvm_mmu_free_memory_cache(&kvm->arch.split_desc_cache); 6000 kvm_mmu_free_memory_cache(&kvm->arch.split_page_header_cache); 6001 kvm_mmu_free_memory_cache(&kvm->arch.split_shadow_page_cache); 6002 } 6003 6004 void kvm_mmu_uninit_vm(struct kvm *kvm) 6005 { 6006 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 6007 6008 kvm_page_track_unregister_notifier(kvm, node); 6009 6010 kvm_mmu_uninit_tdp_mmu(kvm); 6011 6012 mmu_free_vm_memory_caches(kvm); 6013 } 6014 6015 static bool kvm_rmap_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 6016 { 6017 const struct kvm_memory_slot *memslot; 6018 struct kvm_memslots *slots; 6019 struct kvm_memslot_iter iter; 6020 bool flush = false; 6021 gfn_t start, end; 6022 int i; 6023 6024 if (!kvm_memslots_have_rmaps(kvm)) 6025 return flush; 6026 6027 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 6028 slots = __kvm_memslots(kvm, i); 6029 6030 kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) { 6031 memslot = iter.slot; 6032 start = max(gfn_start, memslot->base_gfn); 6033 end = min(gfn_end, memslot->base_gfn + memslot->npages); 6034 if (WARN_ON_ONCE(start >= end)) 6035 continue; 6036 6037 flush = slot_handle_level_range(kvm, memslot, __kvm_zap_rmap, 6038 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 6039 start, end - 1, true, flush); 6040 } 6041 } 6042 6043 return flush; 6044 } 6045 6046 /* 6047 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end 6048 * (not including it) 6049 */ 6050 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 6051 { 6052 bool flush; 6053 int i; 6054 6055 if (WARN_ON_ONCE(gfn_end <= gfn_start)) 6056 return; 6057 6058 write_lock(&kvm->mmu_lock); 6059 6060 kvm_mmu_invalidate_begin(kvm, 0, -1ul); 6061 6062 flush = kvm_rmap_zap_gfn_range(kvm, gfn_start, gfn_end); 6063 6064 if (is_tdp_mmu_enabled(kvm)) { 6065 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 6066 flush = kvm_tdp_mmu_zap_leafs(kvm, i, gfn_start, 6067 gfn_end, true, flush); 6068 } 6069 6070 if (flush) 6071 kvm_flush_remote_tlbs_with_address(kvm, gfn_start, 6072 gfn_end - gfn_start); 6073 6074 kvm_mmu_invalidate_end(kvm, 0, -1ul); 6075 6076 write_unlock(&kvm->mmu_lock); 6077 } 6078 6079 static bool slot_rmap_write_protect(struct kvm *kvm, 6080 struct kvm_rmap_head *rmap_head, 6081 const struct kvm_memory_slot *slot) 6082 { 6083 return rmap_write_protect(rmap_head, false); 6084 } 6085 6086 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 6087 const struct kvm_memory_slot *memslot, 6088 int start_level) 6089 { 6090 if (kvm_memslots_have_rmaps(kvm)) { 6091 write_lock(&kvm->mmu_lock); 6092 slot_handle_level(kvm, memslot, slot_rmap_write_protect, 6093 start_level, KVM_MAX_HUGEPAGE_LEVEL, false); 6094 write_unlock(&kvm->mmu_lock); 6095 } 6096 6097 if (is_tdp_mmu_enabled(kvm)) { 6098 read_lock(&kvm->mmu_lock); 6099 kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level); 6100 read_unlock(&kvm->mmu_lock); 6101 } 6102 } 6103 6104 static inline bool need_topup(struct kvm_mmu_memory_cache *cache, int min) 6105 { 6106 return kvm_mmu_memory_cache_nr_free_objects(cache) < min; 6107 } 6108 6109 static bool need_topup_split_caches_or_resched(struct kvm *kvm) 6110 { 6111 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) 6112 return true; 6113 6114 /* 6115 * In the worst case, SPLIT_DESC_CACHE_MIN_NR_OBJECTS descriptors are needed 6116 * to split a single huge page. Calculating how many are actually needed 6117 * is possible but not worth the complexity. 6118 */ 6119 return need_topup(&kvm->arch.split_desc_cache, SPLIT_DESC_CACHE_MIN_NR_OBJECTS) || 6120 need_topup(&kvm->arch.split_page_header_cache, 1) || 6121 need_topup(&kvm->arch.split_shadow_page_cache, 1); 6122 } 6123 6124 static int topup_split_caches(struct kvm *kvm) 6125 { 6126 /* 6127 * Allocating rmap list entries when splitting huge pages for nested 6128 * MMUs is uncommon as KVM needs to use a list if and only if there is 6129 * more than one rmap entry for a gfn, i.e. requires an L1 gfn to be 6130 * aliased by multiple L2 gfns and/or from multiple nested roots with 6131 * different roles. Aliasing gfns when using TDP is atypical for VMMs; 6132 * a few gfns are often aliased during boot, e.g. when remapping BIOS, 6133 * but aliasing rarely occurs post-boot or for many gfns. If there is 6134 * only one rmap entry, rmap->val points directly at that one entry and 6135 * doesn't need to allocate a list. Buffer the cache by the default 6136 * capacity so that KVM doesn't have to drop mmu_lock to topup if KVM 6137 * encounters an aliased gfn or two. 6138 */ 6139 const int capacity = SPLIT_DESC_CACHE_MIN_NR_OBJECTS + 6140 KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE; 6141 int r; 6142 6143 lockdep_assert_held(&kvm->slots_lock); 6144 6145 r = __kvm_mmu_topup_memory_cache(&kvm->arch.split_desc_cache, capacity, 6146 SPLIT_DESC_CACHE_MIN_NR_OBJECTS); 6147 if (r) 6148 return r; 6149 6150 r = kvm_mmu_topup_memory_cache(&kvm->arch.split_page_header_cache, 1); 6151 if (r) 6152 return r; 6153 6154 return kvm_mmu_topup_memory_cache(&kvm->arch.split_shadow_page_cache, 1); 6155 } 6156 6157 static struct kvm_mmu_page *shadow_mmu_get_sp_for_split(struct kvm *kvm, u64 *huge_sptep) 6158 { 6159 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); 6160 struct shadow_page_caches caches = {}; 6161 union kvm_mmu_page_role role; 6162 unsigned int access; 6163 gfn_t gfn; 6164 6165 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep)); 6166 access = kvm_mmu_page_get_access(huge_sp, spte_index(huge_sptep)); 6167 6168 /* 6169 * Note, huge page splitting always uses direct shadow pages, regardless 6170 * of whether the huge page itself is mapped by a direct or indirect 6171 * shadow page, since the huge page region itself is being directly 6172 * mapped with smaller pages. 6173 */ 6174 role = kvm_mmu_child_role(huge_sptep, /*direct=*/true, access); 6175 6176 /* Direct SPs do not require a shadowed_info_cache. */ 6177 caches.page_header_cache = &kvm->arch.split_page_header_cache; 6178 caches.shadow_page_cache = &kvm->arch.split_shadow_page_cache; 6179 6180 /* Safe to pass NULL for vCPU since requesting a direct SP. */ 6181 return __kvm_mmu_get_shadow_page(kvm, NULL, &caches, gfn, role); 6182 } 6183 6184 static void shadow_mmu_split_huge_page(struct kvm *kvm, 6185 const struct kvm_memory_slot *slot, 6186 u64 *huge_sptep) 6187 6188 { 6189 struct kvm_mmu_memory_cache *cache = &kvm->arch.split_desc_cache; 6190 u64 huge_spte = READ_ONCE(*huge_sptep); 6191 struct kvm_mmu_page *sp; 6192 bool flush = false; 6193 u64 *sptep, spte; 6194 gfn_t gfn; 6195 int index; 6196 6197 sp = shadow_mmu_get_sp_for_split(kvm, huge_sptep); 6198 6199 for (index = 0; index < SPTE_ENT_PER_PAGE; index++) { 6200 sptep = &sp->spt[index]; 6201 gfn = kvm_mmu_page_get_gfn(sp, index); 6202 6203 /* 6204 * The SP may already have populated SPTEs, e.g. if this huge 6205 * page is aliased by multiple sptes with the same access 6206 * permissions. These entries are guaranteed to map the same 6207 * gfn-to-pfn translation since the SP is direct, so no need to 6208 * modify them. 6209 * 6210 * However, if a given SPTE points to a lower level page table, 6211 * that lower level page table may only be partially populated. 6212 * Installing such SPTEs would effectively unmap a potion of the 6213 * huge page. Unmapping guest memory always requires a TLB flush 6214 * since a subsequent operation on the unmapped regions would 6215 * fail to detect the need to flush. 6216 */ 6217 if (is_shadow_present_pte(*sptep)) { 6218 flush |= !is_last_spte(*sptep, sp->role.level); 6219 continue; 6220 } 6221 6222 spte = make_huge_page_split_spte(kvm, huge_spte, sp->role, index); 6223 mmu_spte_set(sptep, spte); 6224 __rmap_add(kvm, cache, slot, sptep, gfn, sp->role.access); 6225 } 6226 6227 __link_shadow_page(kvm, cache, huge_sptep, sp, flush); 6228 } 6229 6230 static int shadow_mmu_try_split_huge_page(struct kvm *kvm, 6231 const struct kvm_memory_slot *slot, 6232 u64 *huge_sptep) 6233 { 6234 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); 6235 int level, r = 0; 6236 gfn_t gfn; 6237 u64 spte; 6238 6239 /* Grab information for the tracepoint before dropping the MMU lock. */ 6240 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep)); 6241 level = huge_sp->role.level; 6242 spte = *huge_sptep; 6243 6244 if (kvm_mmu_available_pages(kvm) <= KVM_MIN_FREE_MMU_PAGES) { 6245 r = -ENOSPC; 6246 goto out; 6247 } 6248 6249 if (need_topup_split_caches_or_resched(kvm)) { 6250 write_unlock(&kvm->mmu_lock); 6251 cond_resched(); 6252 /* 6253 * If the topup succeeds, return -EAGAIN to indicate that the 6254 * rmap iterator should be restarted because the MMU lock was 6255 * dropped. 6256 */ 6257 r = topup_split_caches(kvm) ?: -EAGAIN; 6258 write_lock(&kvm->mmu_lock); 6259 goto out; 6260 } 6261 6262 shadow_mmu_split_huge_page(kvm, slot, huge_sptep); 6263 6264 out: 6265 trace_kvm_mmu_split_huge_page(gfn, spte, level, r); 6266 return r; 6267 } 6268 6269 static bool shadow_mmu_try_split_huge_pages(struct kvm *kvm, 6270 struct kvm_rmap_head *rmap_head, 6271 const struct kvm_memory_slot *slot) 6272 { 6273 struct rmap_iterator iter; 6274 struct kvm_mmu_page *sp; 6275 u64 *huge_sptep; 6276 int r; 6277 6278 restart: 6279 for_each_rmap_spte(rmap_head, &iter, huge_sptep) { 6280 sp = sptep_to_sp(huge_sptep); 6281 6282 /* TDP MMU is enabled, so rmap only contains nested MMU SPs. */ 6283 if (WARN_ON_ONCE(!sp->role.guest_mode)) 6284 continue; 6285 6286 /* The rmaps should never contain non-leaf SPTEs. */ 6287 if (WARN_ON_ONCE(!is_large_pte(*huge_sptep))) 6288 continue; 6289 6290 /* SPs with level >PG_LEVEL_4K should never by unsync. */ 6291 if (WARN_ON_ONCE(sp->unsync)) 6292 continue; 6293 6294 /* Don't bother splitting huge pages on invalid SPs. */ 6295 if (sp->role.invalid) 6296 continue; 6297 6298 r = shadow_mmu_try_split_huge_page(kvm, slot, huge_sptep); 6299 6300 /* 6301 * The split succeeded or needs to be retried because the MMU 6302 * lock was dropped. Either way, restart the iterator to get it 6303 * back into a consistent state. 6304 */ 6305 if (!r || r == -EAGAIN) 6306 goto restart; 6307 6308 /* The split failed and shouldn't be retried (e.g. -ENOMEM). */ 6309 break; 6310 } 6311 6312 return false; 6313 } 6314 6315 static void kvm_shadow_mmu_try_split_huge_pages(struct kvm *kvm, 6316 const struct kvm_memory_slot *slot, 6317 gfn_t start, gfn_t end, 6318 int target_level) 6319 { 6320 int level; 6321 6322 /* 6323 * Split huge pages starting with KVM_MAX_HUGEPAGE_LEVEL and working 6324 * down to the target level. This ensures pages are recursively split 6325 * all the way to the target level. There's no need to split pages 6326 * already at the target level. 6327 */ 6328 for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--) { 6329 slot_handle_level_range(kvm, slot, shadow_mmu_try_split_huge_pages, 6330 level, level, start, end - 1, true, false); 6331 } 6332 } 6333 6334 /* Must be called with the mmu_lock held in write-mode. */ 6335 void kvm_mmu_try_split_huge_pages(struct kvm *kvm, 6336 const struct kvm_memory_slot *memslot, 6337 u64 start, u64 end, 6338 int target_level) 6339 { 6340 if (!is_tdp_mmu_enabled(kvm)) 6341 return; 6342 6343 if (kvm_memslots_have_rmaps(kvm)) 6344 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); 6345 6346 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, false); 6347 6348 /* 6349 * A TLB flush is unnecessary at this point for the same resons as in 6350 * kvm_mmu_slot_try_split_huge_pages(). 6351 */ 6352 } 6353 6354 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, 6355 const struct kvm_memory_slot *memslot, 6356 int target_level) 6357 { 6358 u64 start = memslot->base_gfn; 6359 u64 end = start + memslot->npages; 6360 6361 if (!is_tdp_mmu_enabled(kvm)) 6362 return; 6363 6364 if (kvm_memslots_have_rmaps(kvm)) { 6365 write_lock(&kvm->mmu_lock); 6366 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); 6367 write_unlock(&kvm->mmu_lock); 6368 } 6369 6370 read_lock(&kvm->mmu_lock); 6371 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true); 6372 read_unlock(&kvm->mmu_lock); 6373 6374 /* 6375 * No TLB flush is necessary here. KVM will flush TLBs after 6376 * write-protecting and/or clearing dirty on the newly split SPTEs to 6377 * ensure that guest writes are reflected in the dirty log before the 6378 * ioctl to enable dirty logging on this memslot completes. Since the 6379 * split SPTEs retain the write and dirty bits of the huge SPTE, it is 6380 * safe for KVM to decide if a TLB flush is necessary based on the split 6381 * SPTEs. 6382 */ 6383 } 6384 6385 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, 6386 struct kvm_rmap_head *rmap_head, 6387 const struct kvm_memory_slot *slot) 6388 { 6389 u64 *sptep; 6390 struct rmap_iterator iter; 6391 int need_tlb_flush = 0; 6392 struct kvm_mmu_page *sp; 6393 6394 restart: 6395 for_each_rmap_spte(rmap_head, &iter, sptep) { 6396 sp = sptep_to_sp(sptep); 6397 6398 /* 6399 * We cannot do huge page mapping for indirect shadow pages, 6400 * which are found on the last rmap (level = 1) when not using 6401 * tdp; such shadow pages are synced with the page table in 6402 * the guest, and the guest page table is using 4K page size 6403 * mapping if the indirect sp has level = 1. 6404 */ 6405 if (sp->role.direct && 6406 sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn, 6407 PG_LEVEL_NUM)) { 6408 kvm_zap_one_rmap_spte(kvm, rmap_head, sptep); 6409 6410 if (kvm_available_flush_tlb_with_range()) 6411 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn, 6412 KVM_PAGES_PER_HPAGE(sp->role.level)); 6413 else 6414 need_tlb_flush = 1; 6415 6416 goto restart; 6417 } 6418 } 6419 6420 return need_tlb_flush; 6421 } 6422 6423 static void kvm_rmap_zap_collapsible_sptes(struct kvm *kvm, 6424 const struct kvm_memory_slot *slot) 6425 { 6426 /* 6427 * Note, use KVM_MAX_HUGEPAGE_LEVEL - 1 since there's no need to zap 6428 * pages that are already mapped at the maximum hugepage level. 6429 */ 6430 if (slot_handle_level(kvm, slot, kvm_mmu_zap_collapsible_spte, 6431 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL - 1, true)) 6432 kvm_arch_flush_remote_tlbs_memslot(kvm, slot); 6433 } 6434 6435 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, 6436 const struct kvm_memory_slot *slot) 6437 { 6438 if (kvm_memslots_have_rmaps(kvm)) { 6439 write_lock(&kvm->mmu_lock); 6440 kvm_rmap_zap_collapsible_sptes(kvm, slot); 6441 write_unlock(&kvm->mmu_lock); 6442 } 6443 6444 if (is_tdp_mmu_enabled(kvm)) { 6445 read_lock(&kvm->mmu_lock); 6446 kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot); 6447 read_unlock(&kvm->mmu_lock); 6448 } 6449 } 6450 6451 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 6452 const struct kvm_memory_slot *memslot) 6453 { 6454 /* 6455 * All current use cases for flushing the TLBs for a specific memslot 6456 * related to dirty logging, and many do the TLB flush out of mmu_lock. 6457 * The interaction between the various operations on memslot must be 6458 * serialized by slots_locks to ensure the TLB flush from one operation 6459 * is observed by any other operation on the same memslot. 6460 */ 6461 lockdep_assert_held(&kvm->slots_lock); 6462 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn, 6463 memslot->npages); 6464 } 6465 6466 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 6467 const struct kvm_memory_slot *memslot) 6468 { 6469 if (kvm_memslots_have_rmaps(kvm)) { 6470 write_lock(&kvm->mmu_lock); 6471 /* 6472 * Clear dirty bits only on 4k SPTEs since the legacy MMU only 6473 * support dirty logging at a 4k granularity. 6474 */ 6475 slot_handle_level_4k(kvm, memslot, __rmap_clear_dirty, false); 6476 write_unlock(&kvm->mmu_lock); 6477 } 6478 6479 if (is_tdp_mmu_enabled(kvm)) { 6480 read_lock(&kvm->mmu_lock); 6481 kvm_tdp_mmu_clear_dirty_slot(kvm, memslot); 6482 read_unlock(&kvm->mmu_lock); 6483 } 6484 6485 /* 6486 * The caller will flush the TLBs after this function returns. 6487 * 6488 * It's also safe to flush TLBs out of mmu lock here as currently this 6489 * function is only used for dirty logging, in which case flushing TLB 6490 * out of mmu lock also guarantees no dirty pages will be lost in 6491 * dirty_bitmap. 6492 */ 6493 } 6494 6495 void kvm_mmu_zap_all(struct kvm *kvm) 6496 { 6497 struct kvm_mmu_page *sp, *node; 6498 LIST_HEAD(invalid_list); 6499 int ign; 6500 6501 write_lock(&kvm->mmu_lock); 6502 restart: 6503 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) { 6504 if (WARN_ON(sp->role.invalid)) 6505 continue; 6506 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign)) 6507 goto restart; 6508 if (cond_resched_rwlock_write(&kvm->mmu_lock)) 6509 goto restart; 6510 } 6511 6512 kvm_mmu_commit_zap_page(kvm, &invalid_list); 6513 6514 if (is_tdp_mmu_enabled(kvm)) 6515 kvm_tdp_mmu_zap_all(kvm); 6516 6517 write_unlock(&kvm->mmu_lock); 6518 } 6519 6520 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen) 6521 { 6522 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 6523 6524 gen &= MMIO_SPTE_GEN_MASK; 6525 6526 /* 6527 * Generation numbers are incremented in multiples of the number of 6528 * address spaces in order to provide unique generations across all 6529 * address spaces. Strip what is effectively the address space 6530 * modifier prior to checking for a wrap of the MMIO generation so 6531 * that a wrap in any address space is detected. 6532 */ 6533 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1); 6534 6535 /* 6536 * The very rare case: if the MMIO generation number has wrapped, 6537 * zap all shadow pages. 6538 */ 6539 if (unlikely(gen == 0)) { 6540 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n"); 6541 kvm_mmu_zap_all_fast(kvm); 6542 } 6543 } 6544 6545 static unsigned long 6546 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 6547 { 6548 struct kvm *kvm; 6549 int nr_to_scan = sc->nr_to_scan; 6550 unsigned long freed = 0; 6551 6552 mutex_lock(&kvm_lock); 6553 6554 list_for_each_entry(kvm, &vm_list, vm_list) { 6555 int idx; 6556 LIST_HEAD(invalid_list); 6557 6558 /* 6559 * Never scan more than sc->nr_to_scan VM instances. 6560 * Will not hit this condition practically since we do not try 6561 * to shrink more than one VM and it is very unlikely to see 6562 * !n_used_mmu_pages so many times. 6563 */ 6564 if (!nr_to_scan--) 6565 break; 6566 /* 6567 * n_used_mmu_pages is accessed without holding kvm->mmu_lock 6568 * here. We may skip a VM instance errorneosly, but we do not 6569 * want to shrink a VM that only started to populate its MMU 6570 * anyway. 6571 */ 6572 if (!kvm->arch.n_used_mmu_pages && 6573 !kvm_has_zapped_obsolete_pages(kvm)) 6574 continue; 6575 6576 idx = srcu_read_lock(&kvm->srcu); 6577 write_lock(&kvm->mmu_lock); 6578 6579 if (kvm_has_zapped_obsolete_pages(kvm)) { 6580 kvm_mmu_commit_zap_page(kvm, 6581 &kvm->arch.zapped_obsolete_pages); 6582 goto unlock; 6583 } 6584 6585 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan); 6586 6587 unlock: 6588 write_unlock(&kvm->mmu_lock); 6589 srcu_read_unlock(&kvm->srcu, idx); 6590 6591 /* 6592 * unfair on small ones 6593 * per-vm shrinkers cry out 6594 * sadness comes quickly 6595 */ 6596 list_move_tail(&kvm->vm_list, &vm_list); 6597 break; 6598 } 6599 6600 mutex_unlock(&kvm_lock); 6601 return freed; 6602 } 6603 6604 static unsigned long 6605 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 6606 { 6607 return percpu_counter_read_positive(&kvm_total_used_mmu_pages); 6608 } 6609 6610 static struct shrinker mmu_shrinker = { 6611 .count_objects = mmu_shrink_count, 6612 .scan_objects = mmu_shrink_scan, 6613 .seeks = DEFAULT_SEEKS * 10, 6614 }; 6615 6616 static void mmu_destroy_caches(void) 6617 { 6618 kmem_cache_destroy(pte_list_desc_cache); 6619 kmem_cache_destroy(mmu_page_header_cache); 6620 } 6621 6622 static bool get_nx_auto_mode(void) 6623 { 6624 /* Return true when CPU has the bug, and mitigations are ON */ 6625 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off(); 6626 } 6627 6628 static void __set_nx_huge_pages(bool val) 6629 { 6630 nx_huge_pages = itlb_multihit_kvm_mitigation = val; 6631 } 6632 6633 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp) 6634 { 6635 bool old_val = nx_huge_pages; 6636 bool new_val; 6637 6638 /* In "auto" mode deploy workaround only if CPU has the bug. */ 6639 if (sysfs_streq(val, "off")) 6640 new_val = 0; 6641 else if (sysfs_streq(val, "force")) 6642 new_val = 1; 6643 else if (sysfs_streq(val, "auto")) 6644 new_val = get_nx_auto_mode(); 6645 else if (strtobool(val, &new_val) < 0) 6646 return -EINVAL; 6647 6648 __set_nx_huge_pages(new_val); 6649 6650 if (new_val != old_val) { 6651 struct kvm *kvm; 6652 6653 mutex_lock(&kvm_lock); 6654 6655 list_for_each_entry(kvm, &vm_list, vm_list) { 6656 mutex_lock(&kvm->slots_lock); 6657 kvm_mmu_zap_all_fast(kvm); 6658 mutex_unlock(&kvm->slots_lock); 6659 6660 wake_up_process(kvm->arch.nx_lpage_recovery_thread); 6661 } 6662 mutex_unlock(&kvm_lock); 6663 } 6664 6665 return 0; 6666 } 6667 6668 /* 6669 * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as 6670 * its default value of -1 is technically undefined behavior for a boolean. 6671 * Forward the module init call to SPTE code so that it too can handle module 6672 * params that need to be resolved/snapshot. 6673 */ 6674 void __init kvm_mmu_x86_module_init(void) 6675 { 6676 if (nx_huge_pages == -1) 6677 __set_nx_huge_pages(get_nx_auto_mode()); 6678 6679 kvm_mmu_spte_module_init(); 6680 } 6681 6682 /* 6683 * The bulk of the MMU initialization is deferred until the vendor module is 6684 * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need 6685 * to be reset when a potentially different vendor module is loaded. 6686 */ 6687 int kvm_mmu_vendor_module_init(void) 6688 { 6689 int ret = -ENOMEM; 6690 6691 /* 6692 * MMU roles use union aliasing which is, generally speaking, an 6693 * undefined behavior. However, we supposedly know how compilers behave 6694 * and the current status quo is unlikely to change. Guardians below are 6695 * supposed to let us know if the assumption becomes false. 6696 */ 6697 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32)); 6698 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32)); 6699 BUILD_BUG_ON(sizeof(union kvm_cpu_role) != sizeof(u64)); 6700 6701 kvm_mmu_reset_all_pte_masks(); 6702 6703 pte_list_desc_cache = kmem_cache_create("pte_list_desc", 6704 sizeof(struct pte_list_desc), 6705 0, SLAB_ACCOUNT, NULL); 6706 if (!pte_list_desc_cache) 6707 goto out; 6708 6709 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", 6710 sizeof(struct kvm_mmu_page), 6711 0, SLAB_ACCOUNT, NULL); 6712 if (!mmu_page_header_cache) 6713 goto out; 6714 6715 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL)) 6716 goto out; 6717 6718 ret = register_shrinker(&mmu_shrinker, "x86-mmu"); 6719 if (ret) 6720 goto out_shrinker; 6721 6722 return 0; 6723 6724 out_shrinker: 6725 percpu_counter_destroy(&kvm_total_used_mmu_pages); 6726 out: 6727 mmu_destroy_caches(); 6728 return ret; 6729 } 6730 6731 void kvm_mmu_destroy(struct kvm_vcpu *vcpu) 6732 { 6733 kvm_mmu_unload(vcpu); 6734 free_mmu_pages(&vcpu->arch.root_mmu); 6735 free_mmu_pages(&vcpu->arch.guest_mmu); 6736 mmu_free_memory_caches(vcpu); 6737 } 6738 6739 void kvm_mmu_vendor_module_exit(void) 6740 { 6741 mmu_destroy_caches(); 6742 percpu_counter_destroy(&kvm_total_used_mmu_pages); 6743 unregister_shrinker(&mmu_shrinker); 6744 } 6745 6746 /* 6747 * Calculate the effective recovery period, accounting for '0' meaning "let KVM 6748 * select a halving time of 1 hour". Returns true if recovery is enabled. 6749 */ 6750 static bool calc_nx_huge_pages_recovery_period(uint *period) 6751 { 6752 /* 6753 * Use READ_ONCE to get the params, this may be called outside of the 6754 * param setters, e.g. by the kthread to compute its next timeout. 6755 */ 6756 bool enabled = READ_ONCE(nx_huge_pages); 6757 uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 6758 6759 if (!enabled || !ratio) 6760 return false; 6761 6762 *period = READ_ONCE(nx_huge_pages_recovery_period_ms); 6763 if (!*period) { 6764 /* Make sure the period is not less than one second. */ 6765 ratio = min(ratio, 3600u); 6766 *period = 60 * 60 * 1000 / ratio; 6767 } 6768 return true; 6769 } 6770 6771 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp) 6772 { 6773 bool was_recovery_enabled, is_recovery_enabled; 6774 uint old_period, new_period; 6775 int err; 6776 6777 was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period); 6778 6779 err = param_set_uint(val, kp); 6780 if (err) 6781 return err; 6782 6783 is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period); 6784 6785 if (is_recovery_enabled && 6786 (!was_recovery_enabled || old_period > new_period)) { 6787 struct kvm *kvm; 6788 6789 mutex_lock(&kvm_lock); 6790 6791 list_for_each_entry(kvm, &vm_list, vm_list) 6792 wake_up_process(kvm->arch.nx_lpage_recovery_thread); 6793 6794 mutex_unlock(&kvm_lock); 6795 } 6796 6797 return err; 6798 } 6799 6800 static void kvm_recover_nx_lpages(struct kvm *kvm) 6801 { 6802 unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits; 6803 int rcu_idx; 6804 struct kvm_mmu_page *sp; 6805 unsigned int ratio; 6806 LIST_HEAD(invalid_list); 6807 bool flush = false; 6808 ulong to_zap; 6809 6810 rcu_idx = srcu_read_lock(&kvm->srcu); 6811 write_lock(&kvm->mmu_lock); 6812 6813 /* 6814 * Zapping TDP MMU shadow pages, including the remote TLB flush, must 6815 * be done under RCU protection, because the pages are freed via RCU 6816 * callback. 6817 */ 6818 rcu_read_lock(); 6819 6820 ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 6821 to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0; 6822 for ( ; to_zap; --to_zap) { 6823 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) 6824 break; 6825 6826 /* 6827 * We use a separate list instead of just using active_mmu_pages 6828 * because the number of lpage_disallowed pages is expected to 6829 * be relatively small compared to the total. 6830 */ 6831 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages, 6832 struct kvm_mmu_page, 6833 lpage_disallowed_link); 6834 WARN_ON_ONCE(!sp->lpage_disallowed); 6835 if (is_tdp_mmu_page(sp)) { 6836 flush |= kvm_tdp_mmu_zap_sp(kvm, sp); 6837 } else { 6838 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 6839 WARN_ON_ONCE(sp->lpage_disallowed); 6840 } 6841 6842 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 6843 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 6844 rcu_read_unlock(); 6845 6846 cond_resched_rwlock_write(&kvm->mmu_lock); 6847 flush = false; 6848 6849 rcu_read_lock(); 6850 } 6851 } 6852 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 6853 6854 rcu_read_unlock(); 6855 6856 write_unlock(&kvm->mmu_lock); 6857 srcu_read_unlock(&kvm->srcu, rcu_idx); 6858 } 6859 6860 static long get_nx_lpage_recovery_timeout(u64 start_time) 6861 { 6862 bool enabled; 6863 uint period; 6864 6865 enabled = calc_nx_huge_pages_recovery_period(&period); 6866 6867 return enabled ? start_time + msecs_to_jiffies(period) - get_jiffies_64() 6868 : MAX_SCHEDULE_TIMEOUT; 6869 } 6870 6871 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data) 6872 { 6873 u64 start_time; 6874 long remaining_time; 6875 6876 while (true) { 6877 start_time = get_jiffies_64(); 6878 remaining_time = get_nx_lpage_recovery_timeout(start_time); 6879 6880 set_current_state(TASK_INTERRUPTIBLE); 6881 while (!kthread_should_stop() && remaining_time > 0) { 6882 schedule_timeout(remaining_time); 6883 remaining_time = get_nx_lpage_recovery_timeout(start_time); 6884 set_current_state(TASK_INTERRUPTIBLE); 6885 } 6886 6887 set_current_state(TASK_RUNNING); 6888 6889 if (kthread_should_stop()) 6890 return 0; 6891 6892 kvm_recover_nx_lpages(kvm); 6893 } 6894 } 6895 6896 int kvm_mmu_post_init_vm(struct kvm *kvm) 6897 { 6898 int err; 6899 6900 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0, 6901 "kvm-nx-lpage-recovery", 6902 &kvm->arch.nx_lpage_recovery_thread); 6903 if (!err) 6904 kthread_unpark(kvm->arch.nx_lpage_recovery_thread); 6905 6906 return err; 6907 } 6908 6909 void kvm_mmu_pre_destroy_vm(struct kvm *kvm) 6910 { 6911 if (kvm->arch.nx_lpage_recovery_thread) 6912 kthread_stop(kvm->arch.nx_lpage_recovery_thread); 6913 } 6914