1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * MMU support 9 * 10 * Copyright (C) 2006 Qumranet, Inc. 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 12 * 13 * Authors: 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Avi Kivity <avi@qumranet.com> 16 */ 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include "irq.h" 20 #include "ioapic.h" 21 #include "mmu.h" 22 #include "mmu_internal.h" 23 #include "tdp_mmu.h" 24 #include "x86.h" 25 #include "kvm_cache_regs.h" 26 #include "smm.h" 27 #include "kvm_emulate.h" 28 #include "page_track.h" 29 #include "cpuid.h" 30 #include "spte.h" 31 32 #include <linux/kvm_host.h> 33 #include <linux/types.h> 34 #include <linux/string.h> 35 #include <linux/mm.h> 36 #include <linux/highmem.h> 37 #include <linux/moduleparam.h> 38 #include <linux/export.h> 39 #include <linux/swap.h> 40 #include <linux/hugetlb.h> 41 #include <linux/compiler.h> 42 #include <linux/srcu.h> 43 #include <linux/slab.h> 44 #include <linux/sched/signal.h> 45 #include <linux/uaccess.h> 46 #include <linux/hash.h> 47 #include <linux/kern_levels.h> 48 #include <linux/kstrtox.h> 49 #include <linux/kthread.h> 50 #include <linux/wordpart.h> 51 52 #include <asm/page.h> 53 #include <asm/memtype.h> 54 #include <asm/cmpxchg.h> 55 #include <asm/io.h> 56 #include <asm/set_memory.h> 57 #include <asm/spec-ctrl.h> 58 #include <asm/vmx.h> 59 60 #include "trace.h" 61 62 static bool nx_hugepage_mitigation_hard_disabled; 63 64 int __read_mostly nx_huge_pages = -1; 65 static uint __read_mostly nx_huge_pages_recovery_period_ms; 66 #ifdef CONFIG_PREEMPT_RT 67 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */ 68 static uint __read_mostly nx_huge_pages_recovery_ratio = 0; 69 #else 70 static uint __read_mostly nx_huge_pages_recovery_ratio = 60; 71 #endif 72 73 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp); 74 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp); 75 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp); 76 77 static const struct kernel_param_ops nx_huge_pages_ops = { 78 .set = set_nx_huge_pages, 79 .get = get_nx_huge_pages, 80 }; 81 82 static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = { 83 .set = set_nx_huge_pages_recovery_param, 84 .get = param_get_uint, 85 }; 86 87 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644); 88 __MODULE_PARM_TYPE(nx_huge_pages, "bool"); 89 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops, 90 &nx_huge_pages_recovery_ratio, 0644); 91 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint"); 92 module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops, 93 &nx_huge_pages_recovery_period_ms, 0644); 94 __MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint"); 95 96 static bool __read_mostly force_flush_and_sync_on_reuse; 97 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644); 98 99 /* 100 * When setting this variable to true it enables Two-Dimensional-Paging 101 * where the hardware walks 2 page tables: 102 * 1. the guest-virtual to guest-physical 103 * 2. while doing 1. it walks guest-physical to host-physical 104 * If the hardware supports that we don't need to do shadow paging. 105 */ 106 bool tdp_enabled = false; 107 108 static bool __ro_after_init tdp_mmu_allowed; 109 110 #ifdef CONFIG_X86_64 111 bool __read_mostly tdp_mmu_enabled = true; 112 module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0444); 113 #endif 114 115 static int max_huge_page_level __read_mostly; 116 static int tdp_root_level __read_mostly; 117 static int max_tdp_level __read_mostly; 118 119 #define PTE_PREFETCH_NUM 8 120 121 #include <trace/events/kvm.h> 122 123 /* make pte_list_desc fit well in cache lines */ 124 #define PTE_LIST_EXT 14 125 126 /* 127 * struct pte_list_desc is the core data structure used to implement a custom 128 * list for tracking a set of related SPTEs, e.g. all the SPTEs that map a 129 * given GFN when used in the context of rmaps. Using a custom list allows KVM 130 * to optimize for the common case where many GFNs will have at most a handful 131 * of SPTEs pointing at them, i.e. allows packing multiple SPTEs into a small 132 * memory footprint, which in turn improves runtime performance by exploiting 133 * cache locality. 134 * 135 * A list is comprised of one or more pte_list_desc objects (descriptors). 136 * Each individual descriptor stores up to PTE_LIST_EXT SPTEs. If a descriptor 137 * is full and a new SPTEs needs to be added, a new descriptor is allocated and 138 * becomes the head of the list. This means that by definitions, all tail 139 * descriptors are full. 140 * 141 * Note, the meta data fields are deliberately placed at the start of the 142 * structure to optimize the cacheline layout; accessing the descriptor will 143 * touch only a single cacheline so long as @spte_count<=6 (or if only the 144 * descriptors metadata is accessed). 145 */ 146 struct pte_list_desc { 147 struct pte_list_desc *more; 148 /* The number of PTEs stored in _this_ descriptor. */ 149 u32 spte_count; 150 /* The number of PTEs stored in all tails of this descriptor. */ 151 u32 tail_count; 152 u64 *sptes[PTE_LIST_EXT]; 153 }; 154 155 struct kvm_shadow_walk_iterator { 156 u64 addr; 157 hpa_t shadow_addr; 158 u64 *sptep; 159 int level; 160 unsigned index; 161 }; 162 163 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \ 164 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \ 165 (_root), (_addr)); \ 166 shadow_walk_okay(&(_walker)); \ 167 shadow_walk_next(&(_walker))) 168 169 #define for_each_shadow_entry(_vcpu, _addr, _walker) \ 170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 171 shadow_walk_okay(&(_walker)); \ 172 shadow_walk_next(&(_walker))) 173 174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \ 175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 176 shadow_walk_okay(&(_walker)) && \ 177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \ 178 __shadow_walk_next(&(_walker), spte)) 179 180 static struct kmem_cache *pte_list_desc_cache; 181 struct kmem_cache *mmu_page_header_cache; 182 static struct percpu_counter kvm_total_used_mmu_pages; 183 184 static void mmu_spte_set(u64 *sptep, u64 spte); 185 186 struct kvm_mmu_role_regs { 187 const unsigned long cr0; 188 const unsigned long cr4; 189 const u64 efer; 190 }; 191 192 #define CREATE_TRACE_POINTS 193 #include "mmutrace.h" 194 195 /* 196 * Yes, lot's of underscores. They're a hint that you probably shouldn't be 197 * reading from the role_regs. Once the root_role is constructed, it becomes 198 * the single source of truth for the MMU's state. 199 */ 200 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag) \ 201 static inline bool __maybe_unused \ 202 ____is_##reg##_##name(const struct kvm_mmu_role_regs *regs) \ 203 { \ 204 return !!(regs->reg & flag); \ 205 } 206 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG); 207 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP); 208 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE); 209 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE); 210 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP); 211 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP); 212 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE); 213 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57); 214 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX); 215 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA); 216 217 /* 218 * The MMU itself (with a valid role) is the single source of truth for the 219 * MMU. Do not use the regs used to build the MMU/role, nor the vCPU. The 220 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1, 221 * and the vCPU may be incorrect/irrelevant. 222 */ 223 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name) \ 224 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu) \ 225 { \ 226 return !!(mmu->cpu_role. base_or_ext . reg##_##name); \ 227 } 228 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp); 229 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pse); 230 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smep); 231 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smap); 232 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pke); 233 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, la57); 234 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx); 235 BUILD_MMU_ROLE_ACCESSOR(ext, efer, lma); 236 237 static inline bool is_cr0_pg(struct kvm_mmu *mmu) 238 { 239 return mmu->cpu_role.base.level > 0; 240 } 241 242 static inline bool is_cr4_pae(struct kvm_mmu *mmu) 243 { 244 return !mmu->cpu_role.base.has_4_byte_gpte; 245 } 246 247 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu) 248 { 249 struct kvm_mmu_role_regs regs = { 250 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS), 251 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS), 252 .efer = vcpu->arch.efer, 253 }; 254 255 return regs; 256 } 257 258 static unsigned long get_guest_cr3(struct kvm_vcpu *vcpu) 259 { 260 return kvm_read_cr3(vcpu); 261 } 262 263 static inline unsigned long kvm_mmu_get_guest_pgd(struct kvm_vcpu *vcpu, 264 struct kvm_mmu *mmu) 265 { 266 if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && mmu->get_guest_pgd == get_guest_cr3) 267 return kvm_read_cr3(vcpu); 268 269 return mmu->get_guest_pgd(vcpu); 270 } 271 272 static inline bool kvm_available_flush_remote_tlbs_range(void) 273 { 274 #if IS_ENABLED(CONFIG_HYPERV) 275 return kvm_x86_ops.flush_remote_tlbs_range; 276 #else 277 return false; 278 #endif 279 } 280 281 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index); 282 283 /* Flush the range of guest memory mapped by the given SPTE. */ 284 static void kvm_flush_remote_tlbs_sptep(struct kvm *kvm, u64 *sptep) 285 { 286 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 287 gfn_t gfn = kvm_mmu_page_get_gfn(sp, spte_index(sptep)); 288 289 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level); 290 } 291 292 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn, 293 unsigned int access) 294 { 295 u64 spte = make_mmio_spte(vcpu, gfn, access); 296 297 trace_mark_mmio_spte(sptep, gfn, spte); 298 mmu_spte_set(sptep, spte); 299 } 300 301 static gfn_t get_mmio_spte_gfn(u64 spte) 302 { 303 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask; 304 305 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN) 306 & shadow_nonpresent_or_rsvd_mask; 307 308 return gpa >> PAGE_SHIFT; 309 } 310 311 static unsigned get_mmio_spte_access(u64 spte) 312 { 313 return spte & shadow_mmio_access_mask; 314 } 315 316 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte) 317 { 318 u64 kvm_gen, spte_gen, gen; 319 320 gen = kvm_vcpu_memslots(vcpu)->generation; 321 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS)) 322 return false; 323 324 kvm_gen = gen & MMIO_SPTE_GEN_MASK; 325 spte_gen = get_mmio_spte_generation(spte); 326 327 trace_check_mmio_spte(spte, kvm_gen, spte_gen); 328 return likely(kvm_gen == spte_gen); 329 } 330 331 static int is_cpuid_PSE36(void) 332 { 333 return 1; 334 } 335 336 #ifdef CONFIG_X86_64 337 static void __set_spte(u64 *sptep, u64 spte) 338 { 339 KVM_MMU_WARN_ON(is_ept_ve_possible(spte)); 340 WRITE_ONCE(*sptep, spte); 341 } 342 343 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 344 { 345 KVM_MMU_WARN_ON(is_ept_ve_possible(spte)); 346 WRITE_ONCE(*sptep, spte); 347 } 348 349 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 350 { 351 KVM_MMU_WARN_ON(is_ept_ve_possible(spte)); 352 return xchg(sptep, spte); 353 } 354 355 static u64 __get_spte_lockless(u64 *sptep) 356 { 357 return READ_ONCE(*sptep); 358 } 359 #else 360 union split_spte { 361 struct { 362 u32 spte_low; 363 u32 spte_high; 364 }; 365 u64 spte; 366 }; 367 368 static void count_spte_clear(u64 *sptep, u64 spte) 369 { 370 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 371 372 if (is_shadow_present_pte(spte)) 373 return; 374 375 /* Ensure the spte is completely set before we increase the count */ 376 smp_wmb(); 377 sp->clear_spte_count++; 378 } 379 380 static void __set_spte(u64 *sptep, u64 spte) 381 { 382 union split_spte *ssptep, sspte; 383 384 ssptep = (union split_spte *)sptep; 385 sspte = (union split_spte)spte; 386 387 ssptep->spte_high = sspte.spte_high; 388 389 /* 390 * If we map the spte from nonpresent to present, We should store 391 * the high bits firstly, then set present bit, so cpu can not 392 * fetch this spte while we are setting the spte. 393 */ 394 smp_wmb(); 395 396 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 397 } 398 399 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 400 { 401 union split_spte *ssptep, sspte; 402 403 ssptep = (union split_spte *)sptep; 404 sspte = (union split_spte)spte; 405 406 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 407 408 /* 409 * If we map the spte from present to nonpresent, we should clear 410 * present bit firstly to avoid vcpu fetch the old high bits. 411 */ 412 smp_wmb(); 413 414 ssptep->spte_high = sspte.spte_high; 415 count_spte_clear(sptep, spte); 416 } 417 418 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 419 { 420 union split_spte *ssptep, sspte, orig; 421 422 ssptep = (union split_spte *)sptep; 423 sspte = (union split_spte)spte; 424 425 /* xchg acts as a barrier before the setting of the high bits */ 426 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); 427 orig.spte_high = ssptep->spte_high; 428 ssptep->spte_high = sspte.spte_high; 429 count_spte_clear(sptep, spte); 430 431 return orig.spte; 432 } 433 434 /* 435 * The idea using the light way get the spte on x86_32 guest is from 436 * gup_get_pte (mm/gup.c). 437 * 438 * An spte tlb flush may be pending, because they are coalesced and 439 * we are running out of the MMU lock. Therefore 440 * we need to protect against in-progress updates of the spte. 441 * 442 * Reading the spte while an update is in progress may get the old value 443 * for the high part of the spte. The race is fine for a present->non-present 444 * change (because the high part of the spte is ignored for non-present spte), 445 * but for a present->present change we must reread the spte. 446 * 447 * All such changes are done in two steps (present->non-present and 448 * non-present->present), hence it is enough to count the number of 449 * present->non-present updates: if it changed while reading the spte, 450 * we might have hit the race. This is done using clear_spte_count. 451 */ 452 static u64 __get_spte_lockless(u64 *sptep) 453 { 454 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 455 union split_spte spte, *orig = (union split_spte *)sptep; 456 int count; 457 458 retry: 459 count = sp->clear_spte_count; 460 smp_rmb(); 461 462 spte.spte_low = orig->spte_low; 463 smp_rmb(); 464 465 spte.spte_high = orig->spte_high; 466 smp_rmb(); 467 468 if (unlikely(spte.spte_low != orig->spte_low || 469 count != sp->clear_spte_count)) 470 goto retry; 471 472 return spte.spte; 473 } 474 #endif 475 476 /* Rules for using mmu_spte_set: 477 * Set the sptep from nonpresent to present. 478 * Note: the sptep being assigned *must* be either not present 479 * or in a state where the hardware will not attempt to update 480 * the spte. 481 */ 482 static void mmu_spte_set(u64 *sptep, u64 new_spte) 483 { 484 WARN_ON_ONCE(is_shadow_present_pte(*sptep)); 485 __set_spte(sptep, new_spte); 486 } 487 488 /* 489 * Update the SPTE (excluding the PFN), but do not track changes in its 490 * accessed/dirty status. 491 */ 492 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte) 493 { 494 u64 old_spte = *sptep; 495 496 WARN_ON_ONCE(!is_shadow_present_pte(new_spte)); 497 check_spte_writable_invariants(new_spte); 498 499 if (!is_shadow_present_pte(old_spte)) { 500 mmu_spte_set(sptep, new_spte); 501 return old_spte; 502 } 503 504 if (!spte_has_volatile_bits(old_spte)) 505 __update_clear_spte_fast(sptep, new_spte); 506 else 507 old_spte = __update_clear_spte_slow(sptep, new_spte); 508 509 WARN_ON_ONCE(spte_to_pfn(old_spte) != spte_to_pfn(new_spte)); 510 511 return old_spte; 512 } 513 514 /* Rules for using mmu_spte_update: 515 * Update the state bits, it means the mapped pfn is not changed. 516 * 517 * Whenever an MMU-writable SPTE is overwritten with a read-only SPTE, remote 518 * TLBs must be flushed. Otherwise rmap_write_protect will find a read-only 519 * spte, even though the writable spte might be cached on a CPU's TLB. 520 * 521 * Returns true if the TLB needs to be flushed 522 */ 523 static bool mmu_spte_update(u64 *sptep, u64 new_spte) 524 { 525 bool flush = false; 526 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte); 527 528 if (!is_shadow_present_pte(old_spte)) 529 return false; 530 531 /* 532 * For the spte updated out of mmu-lock is safe, since 533 * we always atomically update it, see the comments in 534 * spte_has_volatile_bits(). 535 */ 536 if (is_mmu_writable_spte(old_spte) && 537 !is_writable_pte(new_spte)) 538 flush = true; 539 540 /* 541 * Flush TLB when accessed/dirty states are changed in the page tables, 542 * to guarantee consistency between TLB and page tables. 543 */ 544 545 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) { 546 flush = true; 547 kvm_set_pfn_accessed(spte_to_pfn(old_spte)); 548 } 549 550 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) { 551 flush = true; 552 kvm_set_pfn_dirty(spte_to_pfn(old_spte)); 553 } 554 555 return flush; 556 } 557 558 /* 559 * Rules for using mmu_spte_clear_track_bits: 560 * It sets the sptep from present to nonpresent, and track the 561 * state bits, it is used to clear the last level sptep. 562 * Returns the old PTE. 563 */ 564 static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep) 565 { 566 kvm_pfn_t pfn; 567 u64 old_spte = *sptep; 568 int level = sptep_to_sp(sptep)->role.level; 569 struct page *page; 570 571 if (!is_shadow_present_pte(old_spte) || 572 !spte_has_volatile_bits(old_spte)) 573 __update_clear_spte_fast(sptep, SHADOW_NONPRESENT_VALUE); 574 else 575 old_spte = __update_clear_spte_slow(sptep, SHADOW_NONPRESENT_VALUE); 576 577 if (!is_shadow_present_pte(old_spte)) 578 return old_spte; 579 580 kvm_update_page_stats(kvm, level, -1); 581 582 pfn = spte_to_pfn(old_spte); 583 584 /* 585 * KVM doesn't hold a reference to any pages mapped into the guest, and 586 * instead uses the mmu_notifier to ensure that KVM unmaps any pages 587 * before they are reclaimed. Sanity check that, if the pfn is backed 588 * by a refcounted page, the refcount is elevated. 589 */ 590 page = kvm_pfn_to_refcounted_page(pfn); 591 WARN_ON_ONCE(page && !page_count(page)); 592 593 if (is_accessed_spte(old_spte)) 594 kvm_set_pfn_accessed(pfn); 595 596 if (is_dirty_spte(old_spte)) 597 kvm_set_pfn_dirty(pfn); 598 599 return old_spte; 600 } 601 602 /* 603 * Rules for using mmu_spte_clear_no_track: 604 * Directly clear spte without caring the state bits of sptep, 605 * it is used to set the upper level spte. 606 */ 607 static void mmu_spte_clear_no_track(u64 *sptep) 608 { 609 __update_clear_spte_fast(sptep, SHADOW_NONPRESENT_VALUE); 610 } 611 612 static u64 mmu_spte_get_lockless(u64 *sptep) 613 { 614 return __get_spte_lockless(sptep); 615 } 616 617 static inline bool is_tdp_mmu_active(struct kvm_vcpu *vcpu) 618 { 619 return tdp_mmu_enabled && vcpu->arch.mmu->root_role.direct; 620 } 621 622 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) 623 { 624 if (is_tdp_mmu_active(vcpu)) { 625 kvm_tdp_mmu_walk_lockless_begin(); 626 } else { 627 /* 628 * Prevent page table teardown by making any free-er wait during 629 * kvm_flush_remote_tlbs() IPI to all active vcpus. 630 */ 631 local_irq_disable(); 632 633 /* 634 * Make sure a following spte read is not reordered ahead of the write 635 * to vcpu->mode. 636 */ 637 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); 638 } 639 } 640 641 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) 642 { 643 if (is_tdp_mmu_active(vcpu)) { 644 kvm_tdp_mmu_walk_lockless_end(); 645 } else { 646 /* 647 * Make sure the write to vcpu->mode is not reordered in front of 648 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us 649 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. 650 */ 651 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); 652 local_irq_enable(); 653 } 654 } 655 656 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect) 657 { 658 int r; 659 660 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */ 661 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, 662 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM); 663 if (r) 664 return r; 665 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache, 666 PT64_ROOT_MAX_LEVEL); 667 if (r) 668 return r; 669 if (maybe_indirect) { 670 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadowed_info_cache, 671 PT64_ROOT_MAX_LEVEL); 672 if (r) 673 return r; 674 } 675 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, 676 PT64_ROOT_MAX_LEVEL); 677 } 678 679 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) 680 { 681 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache); 682 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache); 683 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadowed_info_cache); 684 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache); 685 } 686 687 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) 688 { 689 kmem_cache_free(pte_list_desc_cache, pte_list_desc); 690 } 691 692 static bool sp_has_gptes(struct kvm_mmu_page *sp); 693 694 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) 695 { 696 if (sp->role.passthrough) 697 return sp->gfn; 698 699 if (sp->shadowed_translation) 700 return sp->shadowed_translation[index] >> PAGE_SHIFT; 701 702 return sp->gfn + (index << ((sp->role.level - 1) * SPTE_LEVEL_BITS)); 703 } 704 705 /* 706 * For leaf SPTEs, fetch the *guest* access permissions being shadowed. Note 707 * that the SPTE itself may have a more constrained access permissions that 708 * what the guest enforces. For example, a guest may create an executable 709 * huge PTE but KVM may disallow execution to mitigate iTLB multihit. 710 */ 711 static u32 kvm_mmu_page_get_access(struct kvm_mmu_page *sp, int index) 712 { 713 if (sp->shadowed_translation) 714 return sp->shadowed_translation[index] & ACC_ALL; 715 716 /* 717 * For direct MMUs (e.g. TDP or non-paging guests) or passthrough SPs, 718 * KVM is not shadowing any guest page tables, so the "guest access 719 * permissions" are just ACC_ALL. 720 * 721 * For direct SPs in indirect MMUs (shadow paging), i.e. when KVM 722 * is shadowing a guest huge page with small pages, the guest access 723 * permissions being shadowed are the access permissions of the huge 724 * page. 725 * 726 * In both cases, sp->role.access contains the correct access bits. 727 */ 728 return sp->role.access; 729 } 730 731 static void kvm_mmu_page_set_translation(struct kvm_mmu_page *sp, int index, 732 gfn_t gfn, unsigned int access) 733 { 734 if (sp->shadowed_translation) { 735 sp->shadowed_translation[index] = (gfn << PAGE_SHIFT) | access; 736 return; 737 } 738 739 WARN_ONCE(access != kvm_mmu_page_get_access(sp, index), 740 "access mismatch under %s page %llx (expected %u, got %u)\n", 741 sp->role.passthrough ? "passthrough" : "direct", 742 sp->gfn, kvm_mmu_page_get_access(sp, index), access); 743 744 WARN_ONCE(gfn != kvm_mmu_page_get_gfn(sp, index), 745 "gfn mismatch under %s page %llx (expected %llx, got %llx)\n", 746 sp->role.passthrough ? "passthrough" : "direct", 747 sp->gfn, kvm_mmu_page_get_gfn(sp, index), gfn); 748 } 749 750 static void kvm_mmu_page_set_access(struct kvm_mmu_page *sp, int index, 751 unsigned int access) 752 { 753 gfn_t gfn = kvm_mmu_page_get_gfn(sp, index); 754 755 kvm_mmu_page_set_translation(sp, index, gfn, access); 756 } 757 758 /* 759 * Return the pointer to the large page information for a given gfn, 760 * handling slots that are not large page aligned. 761 */ 762 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, 763 const struct kvm_memory_slot *slot, int level) 764 { 765 unsigned long idx; 766 767 idx = gfn_to_index(gfn, slot->base_gfn, level); 768 return &slot->arch.lpage_info[level - 2][idx]; 769 } 770 771 /* 772 * The most significant bit in disallow_lpage tracks whether or not memory 773 * attributes are mixed, i.e. not identical for all gfns at the current level. 774 * The lower order bits are used to refcount other cases where a hugepage is 775 * disallowed, e.g. if KVM has shadow a page table at the gfn. 776 */ 777 #define KVM_LPAGE_MIXED_FLAG BIT(31) 778 779 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot, 780 gfn_t gfn, int count) 781 { 782 struct kvm_lpage_info *linfo; 783 int old, i; 784 785 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 786 linfo = lpage_info_slot(gfn, slot, i); 787 788 old = linfo->disallow_lpage; 789 linfo->disallow_lpage += count; 790 WARN_ON_ONCE((old ^ linfo->disallow_lpage) & KVM_LPAGE_MIXED_FLAG); 791 } 792 } 793 794 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 795 { 796 update_gfn_disallow_lpage_count(slot, gfn, 1); 797 } 798 799 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 800 { 801 update_gfn_disallow_lpage_count(slot, gfn, -1); 802 } 803 804 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 805 { 806 struct kvm_memslots *slots; 807 struct kvm_memory_slot *slot; 808 gfn_t gfn; 809 810 kvm->arch.indirect_shadow_pages++; 811 /* 812 * Ensure indirect_shadow_pages is elevated prior to re-reading guest 813 * child PTEs in FNAME(gpte_changed), i.e. guarantee either in-flight 814 * emulated writes are visible before re-reading guest PTEs, or that 815 * an emulated write will see the elevated count and acquire mmu_lock 816 * to update SPTEs. Pairs with the smp_mb() in kvm_mmu_track_write(). 817 */ 818 smp_mb(); 819 820 gfn = sp->gfn; 821 slots = kvm_memslots_for_spte_role(kvm, sp->role); 822 slot = __gfn_to_memslot(slots, gfn); 823 824 /* the non-leaf shadow pages are keeping readonly. */ 825 if (sp->role.level > PG_LEVEL_4K) 826 return __kvm_write_track_add_gfn(kvm, slot, gfn); 827 828 kvm_mmu_gfn_disallow_lpage(slot, gfn); 829 830 if (kvm_mmu_slot_gfn_write_protect(kvm, slot, gfn, PG_LEVEL_4K)) 831 kvm_flush_remote_tlbs_gfn(kvm, gfn, PG_LEVEL_4K); 832 } 833 834 void track_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 835 { 836 /* 837 * If it's possible to replace the shadow page with an NX huge page, 838 * i.e. if the shadow page is the only thing currently preventing KVM 839 * from using a huge page, add the shadow page to the list of "to be 840 * zapped for NX recovery" pages. Note, the shadow page can already be 841 * on the list if KVM is reusing an existing shadow page, i.e. if KVM 842 * links a shadow page at multiple points. 843 */ 844 if (!list_empty(&sp->possible_nx_huge_page_link)) 845 return; 846 847 ++kvm->stat.nx_lpage_splits; 848 list_add_tail(&sp->possible_nx_huge_page_link, 849 &kvm->arch.possible_nx_huge_pages); 850 } 851 852 static void account_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp, 853 bool nx_huge_page_possible) 854 { 855 sp->nx_huge_page_disallowed = true; 856 857 if (nx_huge_page_possible) 858 track_possible_nx_huge_page(kvm, sp); 859 } 860 861 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 862 { 863 struct kvm_memslots *slots; 864 struct kvm_memory_slot *slot; 865 gfn_t gfn; 866 867 kvm->arch.indirect_shadow_pages--; 868 gfn = sp->gfn; 869 slots = kvm_memslots_for_spte_role(kvm, sp->role); 870 slot = __gfn_to_memslot(slots, gfn); 871 if (sp->role.level > PG_LEVEL_4K) 872 return __kvm_write_track_remove_gfn(kvm, slot, gfn); 873 874 kvm_mmu_gfn_allow_lpage(slot, gfn); 875 } 876 877 void untrack_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 878 { 879 if (list_empty(&sp->possible_nx_huge_page_link)) 880 return; 881 882 --kvm->stat.nx_lpage_splits; 883 list_del_init(&sp->possible_nx_huge_page_link); 884 } 885 886 static void unaccount_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 887 { 888 sp->nx_huge_page_disallowed = false; 889 890 untrack_possible_nx_huge_page(kvm, sp); 891 } 892 893 static struct kvm_memory_slot *gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, 894 gfn_t gfn, 895 bool no_dirty_log) 896 { 897 struct kvm_memory_slot *slot; 898 899 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 900 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 901 return NULL; 902 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot)) 903 return NULL; 904 905 return slot; 906 } 907 908 /* 909 * About rmap_head encoding: 910 * 911 * If the bit zero of rmap_head->val is clear, then it points to the only spte 912 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct 913 * pte_list_desc containing more mappings. 914 */ 915 #define KVM_RMAP_MANY BIT(0) 916 917 /* 918 * Returns the number of pointers in the rmap chain, not counting the new one. 919 */ 920 static int pte_list_add(struct kvm_mmu_memory_cache *cache, u64 *spte, 921 struct kvm_rmap_head *rmap_head) 922 { 923 struct pte_list_desc *desc; 924 int count = 0; 925 926 if (!rmap_head->val) { 927 rmap_head->val = (unsigned long)spte; 928 } else if (!(rmap_head->val & KVM_RMAP_MANY)) { 929 desc = kvm_mmu_memory_cache_alloc(cache); 930 desc->sptes[0] = (u64 *)rmap_head->val; 931 desc->sptes[1] = spte; 932 desc->spte_count = 2; 933 desc->tail_count = 0; 934 rmap_head->val = (unsigned long)desc | KVM_RMAP_MANY; 935 ++count; 936 } else { 937 desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); 938 count = desc->tail_count + desc->spte_count; 939 940 /* 941 * If the previous head is full, allocate a new head descriptor 942 * as tail descriptors are always kept full. 943 */ 944 if (desc->spte_count == PTE_LIST_EXT) { 945 desc = kvm_mmu_memory_cache_alloc(cache); 946 desc->more = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); 947 desc->spte_count = 0; 948 desc->tail_count = count; 949 rmap_head->val = (unsigned long)desc | KVM_RMAP_MANY; 950 } 951 desc->sptes[desc->spte_count++] = spte; 952 } 953 return count; 954 } 955 956 static void pte_list_desc_remove_entry(struct kvm *kvm, 957 struct kvm_rmap_head *rmap_head, 958 struct pte_list_desc *desc, int i) 959 { 960 struct pte_list_desc *head_desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); 961 int j = head_desc->spte_count - 1; 962 963 /* 964 * The head descriptor should never be empty. A new head is added only 965 * when adding an entry and the previous head is full, and heads are 966 * removed (this flow) when they become empty. 967 */ 968 KVM_BUG_ON_DATA_CORRUPTION(j < 0, kvm); 969 970 /* 971 * Replace the to-be-freed SPTE with the last valid entry from the head 972 * descriptor to ensure that tail descriptors are full at all times. 973 * Note, this also means that tail_count is stable for each descriptor. 974 */ 975 desc->sptes[i] = head_desc->sptes[j]; 976 head_desc->sptes[j] = NULL; 977 head_desc->spte_count--; 978 if (head_desc->spte_count) 979 return; 980 981 /* 982 * The head descriptor is empty. If there are no tail descriptors, 983 * nullify the rmap head to mark the list as empty, else point the rmap 984 * head at the next descriptor, i.e. the new head. 985 */ 986 if (!head_desc->more) 987 rmap_head->val = 0; 988 else 989 rmap_head->val = (unsigned long)head_desc->more | KVM_RMAP_MANY; 990 mmu_free_pte_list_desc(head_desc); 991 } 992 993 static void pte_list_remove(struct kvm *kvm, u64 *spte, 994 struct kvm_rmap_head *rmap_head) 995 { 996 struct pte_list_desc *desc; 997 int i; 998 999 if (KVM_BUG_ON_DATA_CORRUPTION(!rmap_head->val, kvm)) 1000 return; 1001 1002 if (!(rmap_head->val & KVM_RMAP_MANY)) { 1003 if (KVM_BUG_ON_DATA_CORRUPTION((u64 *)rmap_head->val != spte, kvm)) 1004 return; 1005 1006 rmap_head->val = 0; 1007 } else { 1008 desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); 1009 while (desc) { 1010 for (i = 0; i < desc->spte_count; ++i) { 1011 if (desc->sptes[i] == spte) { 1012 pte_list_desc_remove_entry(kvm, rmap_head, 1013 desc, i); 1014 return; 1015 } 1016 } 1017 desc = desc->more; 1018 } 1019 1020 KVM_BUG_ON_DATA_CORRUPTION(true, kvm); 1021 } 1022 } 1023 1024 static void kvm_zap_one_rmap_spte(struct kvm *kvm, 1025 struct kvm_rmap_head *rmap_head, u64 *sptep) 1026 { 1027 mmu_spte_clear_track_bits(kvm, sptep); 1028 pte_list_remove(kvm, sptep, rmap_head); 1029 } 1030 1031 /* Return true if at least one SPTE was zapped, false otherwise */ 1032 static bool kvm_zap_all_rmap_sptes(struct kvm *kvm, 1033 struct kvm_rmap_head *rmap_head) 1034 { 1035 struct pte_list_desc *desc, *next; 1036 int i; 1037 1038 if (!rmap_head->val) 1039 return false; 1040 1041 if (!(rmap_head->val & KVM_RMAP_MANY)) { 1042 mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val); 1043 goto out; 1044 } 1045 1046 desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); 1047 1048 for (; desc; desc = next) { 1049 for (i = 0; i < desc->spte_count; i++) 1050 mmu_spte_clear_track_bits(kvm, desc->sptes[i]); 1051 next = desc->more; 1052 mmu_free_pte_list_desc(desc); 1053 } 1054 out: 1055 /* rmap_head is meaningless now, remember to reset it */ 1056 rmap_head->val = 0; 1057 return true; 1058 } 1059 1060 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head) 1061 { 1062 struct pte_list_desc *desc; 1063 1064 if (!rmap_head->val) 1065 return 0; 1066 else if (!(rmap_head->val & KVM_RMAP_MANY)) 1067 return 1; 1068 1069 desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); 1070 return desc->tail_count + desc->spte_count; 1071 } 1072 1073 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level, 1074 const struct kvm_memory_slot *slot) 1075 { 1076 unsigned long idx; 1077 1078 idx = gfn_to_index(gfn, slot->base_gfn, level); 1079 return &slot->arch.rmap[level - PG_LEVEL_4K][idx]; 1080 } 1081 1082 static void rmap_remove(struct kvm *kvm, u64 *spte) 1083 { 1084 struct kvm_memslots *slots; 1085 struct kvm_memory_slot *slot; 1086 struct kvm_mmu_page *sp; 1087 gfn_t gfn; 1088 struct kvm_rmap_head *rmap_head; 1089 1090 sp = sptep_to_sp(spte); 1091 gfn = kvm_mmu_page_get_gfn(sp, spte_index(spte)); 1092 1093 /* 1094 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU 1095 * so we have to determine which memslots to use based on context 1096 * information in sp->role. 1097 */ 1098 slots = kvm_memslots_for_spte_role(kvm, sp->role); 1099 1100 slot = __gfn_to_memslot(slots, gfn); 1101 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1102 1103 pte_list_remove(kvm, spte, rmap_head); 1104 } 1105 1106 /* 1107 * Used by the following functions to iterate through the sptes linked by a 1108 * rmap. All fields are private and not assumed to be used outside. 1109 */ 1110 struct rmap_iterator { 1111 /* private fields */ 1112 struct pte_list_desc *desc; /* holds the sptep if not NULL */ 1113 int pos; /* index of the sptep */ 1114 }; 1115 1116 /* 1117 * Iteration must be started by this function. This should also be used after 1118 * removing/dropping sptes from the rmap link because in such cases the 1119 * information in the iterator may not be valid. 1120 * 1121 * Returns sptep if found, NULL otherwise. 1122 */ 1123 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head, 1124 struct rmap_iterator *iter) 1125 { 1126 u64 *sptep; 1127 1128 if (!rmap_head->val) 1129 return NULL; 1130 1131 if (!(rmap_head->val & KVM_RMAP_MANY)) { 1132 iter->desc = NULL; 1133 sptep = (u64 *)rmap_head->val; 1134 goto out; 1135 } 1136 1137 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); 1138 iter->pos = 0; 1139 sptep = iter->desc->sptes[iter->pos]; 1140 out: 1141 BUG_ON(!is_shadow_present_pte(*sptep)); 1142 return sptep; 1143 } 1144 1145 /* 1146 * Must be used with a valid iterator: e.g. after rmap_get_first(). 1147 * 1148 * Returns sptep if found, NULL otherwise. 1149 */ 1150 static u64 *rmap_get_next(struct rmap_iterator *iter) 1151 { 1152 u64 *sptep; 1153 1154 if (iter->desc) { 1155 if (iter->pos < PTE_LIST_EXT - 1) { 1156 ++iter->pos; 1157 sptep = iter->desc->sptes[iter->pos]; 1158 if (sptep) 1159 goto out; 1160 } 1161 1162 iter->desc = iter->desc->more; 1163 1164 if (iter->desc) { 1165 iter->pos = 0; 1166 /* desc->sptes[0] cannot be NULL */ 1167 sptep = iter->desc->sptes[iter->pos]; 1168 goto out; 1169 } 1170 } 1171 1172 return NULL; 1173 out: 1174 BUG_ON(!is_shadow_present_pte(*sptep)); 1175 return sptep; 1176 } 1177 1178 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \ 1179 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \ 1180 _spte_; _spte_ = rmap_get_next(_iter_)) 1181 1182 static void drop_spte(struct kvm *kvm, u64 *sptep) 1183 { 1184 u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep); 1185 1186 if (is_shadow_present_pte(old_spte)) 1187 rmap_remove(kvm, sptep); 1188 } 1189 1190 static void drop_large_spte(struct kvm *kvm, u64 *sptep, bool flush) 1191 { 1192 struct kvm_mmu_page *sp; 1193 1194 sp = sptep_to_sp(sptep); 1195 WARN_ON_ONCE(sp->role.level == PG_LEVEL_4K); 1196 1197 drop_spte(kvm, sptep); 1198 1199 if (flush) 1200 kvm_flush_remote_tlbs_sptep(kvm, sptep); 1201 } 1202 1203 /* 1204 * Write-protect on the specified @sptep, @pt_protect indicates whether 1205 * spte write-protection is caused by protecting shadow page table. 1206 * 1207 * Note: write protection is difference between dirty logging and spte 1208 * protection: 1209 * - for dirty logging, the spte can be set to writable at anytime if 1210 * its dirty bitmap is properly set. 1211 * - for spte protection, the spte can be writable only after unsync-ing 1212 * shadow page. 1213 * 1214 * Return true if tlb need be flushed. 1215 */ 1216 static bool spte_write_protect(u64 *sptep, bool pt_protect) 1217 { 1218 u64 spte = *sptep; 1219 1220 if (!is_writable_pte(spte) && 1221 !(pt_protect && is_mmu_writable_spte(spte))) 1222 return false; 1223 1224 if (pt_protect) 1225 spte &= ~shadow_mmu_writable_mask; 1226 spte = spte & ~PT_WRITABLE_MASK; 1227 1228 return mmu_spte_update(sptep, spte); 1229 } 1230 1231 static bool rmap_write_protect(struct kvm_rmap_head *rmap_head, 1232 bool pt_protect) 1233 { 1234 u64 *sptep; 1235 struct rmap_iterator iter; 1236 bool flush = false; 1237 1238 for_each_rmap_spte(rmap_head, &iter, sptep) 1239 flush |= spte_write_protect(sptep, pt_protect); 1240 1241 return flush; 1242 } 1243 1244 static bool spte_clear_dirty(u64 *sptep) 1245 { 1246 u64 spte = *sptep; 1247 1248 KVM_MMU_WARN_ON(!spte_ad_enabled(spte)); 1249 spte &= ~shadow_dirty_mask; 1250 return mmu_spte_update(sptep, spte); 1251 } 1252 1253 static bool spte_wrprot_for_clear_dirty(u64 *sptep) 1254 { 1255 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT, 1256 (unsigned long *)sptep); 1257 if (was_writable && !spte_ad_enabled(*sptep)) 1258 kvm_set_pfn_dirty(spte_to_pfn(*sptep)); 1259 1260 return was_writable; 1261 } 1262 1263 /* 1264 * Gets the GFN ready for another round of dirty logging by clearing the 1265 * - D bit on ad-enabled SPTEs, and 1266 * - W bit on ad-disabled SPTEs. 1267 * Returns true iff any D or W bits were cleared. 1268 */ 1269 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1270 const struct kvm_memory_slot *slot) 1271 { 1272 u64 *sptep; 1273 struct rmap_iterator iter; 1274 bool flush = false; 1275 1276 for_each_rmap_spte(rmap_head, &iter, sptep) 1277 if (spte_ad_need_write_protect(*sptep)) 1278 flush |= spte_wrprot_for_clear_dirty(sptep); 1279 else 1280 flush |= spte_clear_dirty(sptep); 1281 1282 return flush; 1283 } 1284 1285 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 1286 struct kvm_memory_slot *slot, 1287 gfn_t gfn_offset, unsigned long mask) 1288 { 1289 struct kvm_rmap_head *rmap_head; 1290 1291 if (tdp_mmu_enabled) 1292 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1293 slot->base_gfn + gfn_offset, mask, true); 1294 1295 if (!kvm_memslots_have_rmaps(kvm)) 1296 return; 1297 1298 while (mask) { 1299 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1300 PG_LEVEL_4K, slot); 1301 rmap_write_protect(rmap_head, false); 1302 1303 /* clear the first set bit */ 1304 mask &= mask - 1; 1305 } 1306 } 1307 1308 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1309 struct kvm_memory_slot *slot, 1310 gfn_t gfn_offset, unsigned long mask) 1311 { 1312 struct kvm_rmap_head *rmap_head; 1313 1314 if (tdp_mmu_enabled) 1315 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1316 slot->base_gfn + gfn_offset, mask, false); 1317 1318 if (!kvm_memslots_have_rmaps(kvm)) 1319 return; 1320 1321 while (mask) { 1322 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1323 PG_LEVEL_4K, slot); 1324 __rmap_clear_dirty(kvm, rmap_head, slot); 1325 1326 /* clear the first set bit */ 1327 mask &= mask - 1; 1328 } 1329 } 1330 1331 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1332 struct kvm_memory_slot *slot, 1333 gfn_t gfn_offset, unsigned long mask) 1334 { 1335 /* 1336 * If the slot was assumed to be "initially all dirty", write-protect 1337 * huge pages to ensure they are split to 4KiB on the first write (KVM 1338 * dirty logs at 4KiB granularity). If eager page splitting is enabled, 1339 * immediately try to split huge pages, e.g. so that vCPUs don't get 1340 * saddled with the cost of splitting. 1341 * 1342 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn 1343 * of memslot has no such restriction, so the range can cross two large 1344 * pages. 1345 */ 1346 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) { 1347 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask); 1348 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask); 1349 1350 if (READ_ONCE(eager_page_split)) 1351 kvm_mmu_try_split_huge_pages(kvm, slot, start, end + 1, PG_LEVEL_4K); 1352 1353 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M); 1354 1355 /* Cross two large pages? */ 1356 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) != 1357 ALIGN(end << PAGE_SHIFT, PMD_SIZE)) 1358 kvm_mmu_slot_gfn_write_protect(kvm, slot, end, 1359 PG_LEVEL_2M); 1360 } 1361 1362 /* 1363 * (Re)Enable dirty logging for all 4KiB SPTEs that map the GFNs in 1364 * mask. If PML is enabled and the GFN doesn't need to be write- 1365 * protected for other reasons, e.g. shadow paging, clear the Dirty bit. 1366 * Otherwise clear the Writable bit. 1367 * 1368 * Note that kvm_mmu_clear_dirty_pt_masked() is called whenever PML is 1369 * enabled but it chooses between clearing the Dirty bit and Writeable 1370 * bit based on the context. 1371 */ 1372 if (kvm_x86_ops.cpu_dirty_log_size) 1373 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask); 1374 else 1375 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 1376 } 1377 1378 int kvm_cpu_dirty_log_size(void) 1379 { 1380 return kvm_x86_ops.cpu_dirty_log_size; 1381 } 1382 1383 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, 1384 struct kvm_memory_slot *slot, u64 gfn, 1385 int min_level) 1386 { 1387 struct kvm_rmap_head *rmap_head; 1388 int i; 1389 bool write_protected = false; 1390 1391 if (kvm_memslots_have_rmaps(kvm)) { 1392 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 1393 rmap_head = gfn_to_rmap(gfn, i, slot); 1394 write_protected |= rmap_write_protect(rmap_head, true); 1395 } 1396 } 1397 1398 if (tdp_mmu_enabled) 1399 write_protected |= 1400 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level); 1401 1402 return write_protected; 1403 } 1404 1405 static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn) 1406 { 1407 struct kvm_memory_slot *slot; 1408 1409 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1410 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K); 1411 } 1412 1413 static bool kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1414 const struct kvm_memory_slot *slot) 1415 { 1416 return kvm_zap_all_rmap_sptes(kvm, rmap_head); 1417 } 1418 1419 struct slot_rmap_walk_iterator { 1420 /* input fields. */ 1421 const struct kvm_memory_slot *slot; 1422 gfn_t start_gfn; 1423 gfn_t end_gfn; 1424 int start_level; 1425 int end_level; 1426 1427 /* output fields. */ 1428 gfn_t gfn; 1429 struct kvm_rmap_head *rmap; 1430 int level; 1431 1432 /* private field. */ 1433 struct kvm_rmap_head *end_rmap; 1434 }; 1435 1436 static void rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, 1437 int level) 1438 { 1439 iterator->level = level; 1440 iterator->gfn = iterator->start_gfn; 1441 iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot); 1442 iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot); 1443 } 1444 1445 static void slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator, 1446 const struct kvm_memory_slot *slot, 1447 int start_level, int end_level, 1448 gfn_t start_gfn, gfn_t end_gfn) 1449 { 1450 iterator->slot = slot; 1451 iterator->start_level = start_level; 1452 iterator->end_level = end_level; 1453 iterator->start_gfn = start_gfn; 1454 iterator->end_gfn = end_gfn; 1455 1456 rmap_walk_init_level(iterator, iterator->start_level); 1457 } 1458 1459 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator) 1460 { 1461 return !!iterator->rmap; 1462 } 1463 1464 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) 1465 { 1466 while (++iterator->rmap <= iterator->end_rmap) { 1467 iterator->gfn += KVM_PAGES_PER_HPAGE(iterator->level); 1468 1469 if (iterator->rmap->val) 1470 return; 1471 } 1472 1473 if (++iterator->level > iterator->end_level) { 1474 iterator->rmap = NULL; 1475 return; 1476 } 1477 1478 rmap_walk_init_level(iterator, iterator->level); 1479 } 1480 1481 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \ 1482 _start_gfn, _end_gfn, _iter_) \ 1483 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \ 1484 _end_level_, _start_gfn, _end_gfn); \ 1485 slot_rmap_walk_okay(_iter_); \ 1486 slot_rmap_walk_next(_iter_)) 1487 1488 /* The return value indicates if tlb flush on all vcpus is needed. */ 1489 typedef bool (*slot_rmaps_handler) (struct kvm *kvm, 1490 struct kvm_rmap_head *rmap_head, 1491 const struct kvm_memory_slot *slot); 1492 1493 static __always_inline bool __walk_slot_rmaps(struct kvm *kvm, 1494 const struct kvm_memory_slot *slot, 1495 slot_rmaps_handler fn, 1496 int start_level, int end_level, 1497 gfn_t start_gfn, gfn_t end_gfn, 1498 bool can_yield, bool flush_on_yield, 1499 bool flush) 1500 { 1501 struct slot_rmap_walk_iterator iterator; 1502 1503 lockdep_assert_held_write(&kvm->mmu_lock); 1504 1505 for_each_slot_rmap_range(slot, start_level, end_level, start_gfn, 1506 end_gfn, &iterator) { 1507 if (iterator.rmap) 1508 flush |= fn(kvm, iterator.rmap, slot); 1509 1510 if (!can_yield) 1511 continue; 1512 1513 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 1514 if (flush && flush_on_yield) { 1515 kvm_flush_remote_tlbs_range(kvm, start_gfn, 1516 iterator.gfn - start_gfn + 1); 1517 flush = false; 1518 } 1519 cond_resched_rwlock_write(&kvm->mmu_lock); 1520 } 1521 } 1522 1523 return flush; 1524 } 1525 1526 static __always_inline bool walk_slot_rmaps(struct kvm *kvm, 1527 const struct kvm_memory_slot *slot, 1528 slot_rmaps_handler fn, 1529 int start_level, int end_level, 1530 bool flush_on_yield) 1531 { 1532 return __walk_slot_rmaps(kvm, slot, fn, start_level, end_level, 1533 slot->base_gfn, slot->base_gfn + slot->npages - 1, 1534 true, flush_on_yield, false); 1535 } 1536 1537 static __always_inline bool walk_slot_rmaps_4k(struct kvm *kvm, 1538 const struct kvm_memory_slot *slot, 1539 slot_rmaps_handler fn, 1540 bool flush_on_yield) 1541 { 1542 return walk_slot_rmaps(kvm, slot, fn, PG_LEVEL_4K, PG_LEVEL_4K, flush_on_yield); 1543 } 1544 1545 static bool __kvm_rmap_zap_gfn_range(struct kvm *kvm, 1546 const struct kvm_memory_slot *slot, 1547 gfn_t start, gfn_t end, bool can_yield, 1548 bool flush) 1549 { 1550 return __walk_slot_rmaps(kvm, slot, kvm_zap_rmap, 1551 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 1552 start, end - 1, can_yield, true, flush); 1553 } 1554 1555 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1556 { 1557 bool flush = false; 1558 1559 if (kvm_memslots_have_rmaps(kvm)) 1560 flush = __kvm_rmap_zap_gfn_range(kvm, range->slot, 1561 range->start, range->end, 1562 range->may_block, flush); 1563 1564 if (tdp_mmu_enabled) 1565 flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush); 1566 1567 if (kvm_x86_ops.set_apic_access_page_addr && 1568 range->slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT) 1569 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 1570 1571 return flush; 1572 } 1573 1574 #define RMAP_RECYCLE_THRESHOLD 1000 1575 1576 static void __rmap_add(struct kvm *kvm, 1577 struct kvm_mmu_memory_cache *cache, 1578 const struct kvm_memory_slot *slot, 1579 u64 *spte, gfn_t gfn, unsigned int access) 1580 { 1581 struct kvm_mmu_page *sp; 1582 struct kvm_rmap_head *rmap_head; 1583 int rmap_count; 1584 1585 sp = sptep_to_sp(spte); 1586 kvm_mmu_page_set_translation(sp, spte_index(spte), gfn, access); 1587 kvm_update_page_stats(kvm, sp->role.level, 1); 1588 1589 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1590 rmap_count = pte_list_add(cache, spte, rmap_head); 1591 1592 if (rmap_count > kvm->stat.max_mmu_rmap_size) 1593 kvm->stat.max_mmu_rmap_size = rmap_count; 1594 if (rmap_count > RMAP_RECYCLE_THRESHOLD) { 1595 kvm_zap_all_rmap_sptes(kvm, rmap_head); 1596 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level); 1597 } 1598 } 1599 1600 static void rmap_add(struct kvm_vcpu *vcpu, const struct kvm_memory_slot *slot, 1601 u64 *spte, gfn_t gfn, unsigned int access) 1602 { 1603 struct kvm_mmu_memory_cache *cache = &vcpu->arch.mmu_pte_list_desc_cache; 1604 1605 __rmap_add(vcpu->kvm, cache, slot, spte, gfn, access); 1606 } 1607 1608 static bool kvm_rmap_age_gfn_range(struct kvm *kvm, 1609 struct kvm_gfn_range *range, bool test_only) 1610 { 1611 struct slot_rmap_walk_iterator iterator; 1612 struct rmap_iterator iter; 1613 bool young = false; 1614 u64 *sptep; 1615 1616 for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 1617 range->start, range->end - 1, &iterator) { 1618 for_each_rmap_spte(iterator.rmap, &iter, sptep) { 1619 u64 spte = *sptep; 1620 1621 if (!is_accessed_spte(spte)) 1622 continue; 1623 1624 if (test_only) 1625 return true; 1626 1627 if (spte_ad_enabled(spte)) { 1628 clear_bit((ffs(shadow_accessed_mask) - 1), 1629 (unsigned long *)sptep); 1630 } else { 1631 /* 1632 * Capture the dirty status of the page, so that 1633 * it doesn't get lost when the SPTE is marked 1634 * for access tracking. 1635 */ 1636 if (is_writable_pte(spte)) 1637 kvm_set_pfn_dirty(spte_to_pfn(spte)); 1638 1639 spte = mark_spte_for_access_track(spte); 1640 mmu_spte_update_no_track(sptep, spte); 1641 } 1642 young = true; 1643 } 1644 } 1645 return young; 1646 } 1647 1648 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1649 { 1650 bool young = false; 1651 1652 if (kvm_memslots_have_rmaps(kvm)) 1653 young = kvm_rmap_age_gfn_range(kvm, range, false); 1654 1655 if (tdp_mmu_enabled) 1656 young |= kvm_tdp_mmu_age_gfn_range(kvm, range); 1657 1658 return young; 1659 } 1660 1661 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1662 { 1663 bool young = false; 1664 1665 if (kvm_memslots_have_rmaps(kvm)) 1666 young = kvm_rmap_age_gfn_range(kvm, range, true); 1667 1668 if (tdp_mmu_enabled) 1669 young |= kvm_tdp_mmu_test_age_gfn(kvm, range); 1670 1671 return young; 1672 } 1673 1674 static void kvm_mmu_check_sptes_at_free(struct kvm_mmu_page *sp) 1675 { 1676 #ifdef CONFIG_KVM_PROVE_MMU 1677 int i; 1678 1679 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) { 1680 if (KVM_MMU_WARN_ON(is_shadow_present_pte(sp->spt[i]))) 1681 pr_err_ratelimited("SPTE %llx (@ %p) for gfn %llx shadow-present at free", 1682 sp->spt[i], &sp->spt[i], 1683 kvm_mmu_page_get_gfn(sp, i)); 1684 } 1685 #endif 1686 } 1687 1688 /* 1689 * This value is the sum of all of the kvm instances's 1690 * kvm->arch.n_used_mmu_pages values. We need a global, 1691 * aggregate version in order to make the slab shrinker 1692 * faster 1693 */ 1694 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr) 1695 { 1696 kvm->arch.n_used_mmu_pages += nr; 1697 percpu_counter_add(&kvm_total_used_mmu_pages, nr); 1698 } 1699 1700 static void kvm_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1701 { 1702 kvm_mod_used_mmu_pages(kvm, +1); 1703 kvm_account_pgtable_pages((void *)sp->spt, +1); 1704 } 1705 1706 static void kvm_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1707 { 1708 kvm_mod_used_mmu_pages(kvm, -1); 1709 kvm_account_pgtable_pages((void *)sp->spt, -1); 1710 } 1711 1712 static void kvm_mmu_free_shadow_page(struct kvm_mmu_page *sp) 1713 { 1714 kvm_mmu_check_sptes_at_free(sp); 1715 1716 hlist_del(&sp->hash_link); 1717 list_del(&sp->link); 1718 free_page((unsigned long)sp->spt); 1719 free_page((unsigned long)sp->shadowed_translation); 1720 kmem_cache_free(mmu_page_header_cache, sp); 1721 } 1722 1723 static unsigned kvm_page_table_hashfn(gfn_t gfn) 1724 { 1725 return hash_64(gfn, KVM_MMU_HASH_SHIFT); 1726 } 1727 1728 static void mmu_page_add_parent_pte(struct kvm_mmu_memory_cache *cache, 1729 struct kvm_mmu_page *sp, u64 *parent_pte) 1730 { 1731 if (!parent_pte) 1732 return; 1733 1734 pte_list_add(cache, parent_pte, &sp->parent_ptes); 1735 } 1736 1737 static void mmu_page_remove_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 1738 u64 *parent_pte) 1739 { 1740 pte_list_remove(kvm, parent_pte, &sp->parent_ptes); 1741 } 1742 1743 static void drop_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 1744 u64 *parent_pte) 1745 { 1746 mmu_page_remove_parent_pte(kvm, sp, parent_pte); 1747 mmu_spte_clear_no_track(parent_pte); 1748 } 1749 1750 static void mark_unsync(u64 *spte); 1751 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) 1752 { 1753 u64 *sptep; 1754 struct rmap_iterator iter; 1755 1756 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) { 1757 mark_unsync(sptep); 1758 } 1759 } 1760 1761 static void mark_unsync(u64 *spte) 1762 { 1763 struct kvm_mmu_page *sp; 1764 1765 sp = sptep_to_sp(spte); 1766 if (__test_and_set_bit(spte_index(spte), sp->unsync_child_bitmap)) 1767 return; 1768 if (sp->unsync_children++) 1769 return; 1770 kvm_mmu_mark_parents_unsync(sp); 1771 } 1772 1773 #define KVM_PAGE_ARRAY_NR 16 1774 1775 struct kvm_mmu_pages { 1776 struct mmu_page_and_offset { 1777 struct kvm_mmu_page *sp; 1778 unsigned int idx; 1779 } page[KVM_PAGE_ARRAY_NR]; 1780 unsigned int nr; 1781 }; 1782 1783 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, 1784 int idx) 1785 { 1786 int i; 1787 1788 if (sp->unsync) 1789 for (i=0; i < pvec->nr; i++) 1790 if (pvec->page[i].sp == sp) 1791 return 0; 1792 1793 pvec->page[pvec->nr].sp = sp; 1794 pvec->page[pvec->nr].idx = idx; 1795 pvec->nr++; 1796 return (pvec->nr == KVM_PAGE_ARRAY_NR); 1797 } 1798 1799 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx) 1800 { 1801 --sp->unsync_children; 1802 WARN_ON_ONCE((int)sp->unsync_children < 0); 1803 __clear_bit(idx, sp->unsync_child_bitmap); 1804 } 1805 1806 static int __mmu_unsync_walk(struct kvm_mmu_page *sp, 1807 struct kvm_mmu_pages *pvec) 1808 { 1809 int i, ret, nr_unsync_leaf = 0; 1810 1811 for_each_set_bit(i, sp->unsync_child_bitmap, 512) { 1812 struct kvm_mmu_page *child; 1813 u64 ent = sp->spt[i]; 1814 1815 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) { 1816 clear_unsync_child_bit(sp, i); 1817 continue; 1818 } 1819 1820 child = spte_to_child_sp(ent); 1821 1822 if (child->unsync_children) { 1823 if (mmu_pages_add(pvec, child, i)) 1824 return -ENOSPC; 1825 1826 ret = __mmu_unsync_walk(child, pvec); 1827 if (!ret) { 1828 clear_unsync_child_bit(sp, i); 1829 continue; 1830 } else if (ret > 0) { 1831 nr_unsync_leaf += ret; 1832 } else 1833 return ret; 1834 } else if (child->unsync) { 1835 nr_unsync_leaf++; 1836 if (mmu_pages_add(pvec, child, i)) 1837 return -ENOSPC; 1838 } else 1839 clear_unsync_child_bit(sp, i); 1840 } 1841 1842 return nr_unsync_leaf; 1843 } 1844 1845 #define INVALID_INDEX (-1) 1846 1847 static int mmu_unsync_walk(struct kvm_mmu_page *sp, 1848 struct kvm_mmu_pages *pvec) 1849 { 1850 pvec->nr = 0; 1851 if (!sp->unsync_children) 1852 return 0; 1853 1854 mmu_pages_add(pvec, sp, INVALID_INDEX); 1855 return __mmu_unsync_walk(sp, pvec); 1856 } 1857 1858 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1859 { 1860 WARN_ON_ONCE(!sp->unsync); 1861 trace_kvm_mmu_sync_page(sp); 1862 sp->unsync = 0; 1863 --kvm->stat.mmu_unsync; 1864 } 1865 1866 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 1867 struct list_head *invalid_list); 1868 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 1869 struct list_head *invalid_list); 1870 1871 static bool sp_has_gptes(struct kvm_mmu_page *sp) 1872 { 1873 if (sp->role.direct) 1874 return false; 1875 1876 if (sp->role.passthrough) 1877 return false; 1878 1879 return true; 1880 } 1881 1882 #define for_each_valid_sp(_kvm, _sp, _list) \ 1883 hlist_for_each_entry(_sp, _list, hash_link) \ 1884 if (is_obsolete_sp((_kvm), (_sp))) { \ 1885 } else 1886 1887 #define for_each_gfn_valid_sp(_kvm, _sp, _gfn) \ 1888 for_each_valid_sp(_kvm, _sp, \ 1889 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \ 1890 if ((_sp)->gfn != (_gfn)) {} else 1891 1892 #define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn) \ 1893 for_each_gfn_valid_sp(_kvm, _sp, _gfn) \ 1894 if (!sp_has_gptes(_sp)) {} else 1895 1896 static bool kvm_sync_page_check(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 1897 { 1898 union kvm_mmu_page_role root_role = vcpu->arch.mmu->root_role; 1899 1900 /* 1901 * Ignore various flags when verifying that it's safe to sync a shadow 1902 * page using the current MMU context. 1903 * 1904 * - level: not part of the overall MMU role and will never match as the MMU's 1905 * level tracks the root level 1906 * - access: updated based on the new guest PTE 1907 * - quadrant: not part of the overall MMU role (similar to level) 1908 */ 1909 const union kvm_mmu_page_role sync_role_ign = { 1910 .level = 0xf, 1911 .access = 0x7, 1912 .quadrant = 0x3, 1913 .passthrough = 0x1, 1914 }; 1915 1916 /* 1917 * Direct pages can never be unsync, and KVM should never attempt to 1918 * sync a shadow page for a different MMU context, e.g. if the role 1919 * differs then the memslot lookup (SMM vs. non-SMM) will be bogus, the 1920 * reserved bits checks will be wrong, etc... 1921 */ 1922 if (WARN_ON_ONCE(sp->role.direct || !vcpu->arch.mmu->sync_spte || 1923 (sp->role.word ^ root_role.word) & ~sync_role_ign.word)) 1924 return false; 1925 1926 return true; 1927 } 1928 1929 static int kvm_sync_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, int i) 1930 { 1931 /* sp->spt[i] has initial value of shadow page table allocation */ 1932 if (sp->spt[i] == SHADOW_NONPRESENT_VALUE) 1933 return 0; 1934 1935 return vcpu->arch.mmu->sync_spte(vcpu, sp, i); 1936 } 1937 1938 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 1939 { 1940 int flush = 0; 1941 int i; 1942 1943 if (!kvm_sync_page_check(vcpu, sp)) 1944 return -1; 1945 1946 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) { 1947 int ret = kvm_sync_spte(vcpu, sp, i); 1948 1949 if (ret < -1) 1950 return -1; 1951 flush |= ret; 1952 } 1953 1954 /* 1955 * Note, any flush is purely for KVM's correctness, e.g. when dropping 1956 * an existing SPTE or clearing W/A/D bits to ensure an mmu_notifier 1957 * unmap or dirty logging event doesn't fail to flush. The guest is 1958 * responsible for flushing the TLB to ensure any changes in protection 1959 * bits are recognized, i.e. until the guest flushes or page faults on 1960 * a relevant address, KVM is architecturally allowed to let vCPUs use 1961 * cached translations with the old protection bits. 1962 */ 1963 return flush; 1964 } 1965 1966 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 1967 struct list_head *invalid_list) 1968 { 1969 int ret = __kvm_sync_page(vcpu, sp); 1970 1971 if (ret < 0) 1972 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); 1973 return ret; 1974 } 1975 1976 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm, 1977 struct list_head *invalid_list, 1978 bool remote_flush) 1979 { 1980 if (!remote_flush && list_empty(invalid_list)) 1981 return false; 1982 1983 if (!list_empty(invalid_list)) 1984 kvm_mmu_commit_zap_page(kvm, invalid_list); 1985 else 1986 kvm_flush_remote_tlbs(kvm); 1987 return true; 1988 } 1989 1990 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 1991 { 1992 if (sp->role.invalid) 1993 return true; 1994 1995 /* TDP MMU pages do not use the MMU generation. */ 1996 return !is_tdp_mmu_page(sp) && 1997 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); 1998 } 1999 2000 struct mmu_page_path { 2001 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL]; 2002 unsigned int idx[PT64_ROOT_MAX_LEVEL]; 2003 }; 2004 2005 #define for_each_sp(pvec, sp, parents, i) \ 2006 for (i = mmu_pages_first(&pvec, &parents); \ 2007 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \ 2008 i = mmu_pages_next(&pvec, &parents, i)) 2009 2010 static int mmu_pages_next(struct kvm_mmu_pages *pvec, 2011 struct mmu_page_path *parents, 2012 int i) 2013 { 2014 int n; 2015 2016 for (n = i+1; n < pvec->nr; n++) { 2017 struct kvm_mmu_page *sp = pvec->page[n].sp; 2018 unsigned idx = pvec->page[n].idx; 2019 int level = sp->role.level; 2020 2021 parents->idx[level-1] = idx; 2022 if (level == PG_LEVEL_4K) 2023 break; 2024 2025 parents->parent[level-2] = sp; 2026 } 2027 2028 return n; 2029 } 2030 2031 static int mmu_pages_first(struct kvm_mmu_pages *pvec, 2032 struct mmu_page_path *parents) 2033 { 2034 struct kvm_mmu_page *sp; 2035 int level; 2036 2037 if (pvec->nr == 0) 2038 return 0; 2039 2040 WARN_ON_ONCE(pvec->page[0].idx != INVALID_INDEX); 2041 2042 sp = pvec->page[0].sp; 2043 level = sp->role.level; 2044 WARN_ON_ONCE(level == PG_LEVEL_4K); 2045 2046 parents->parent[level-2] = sp; 2047 2048 /* Also set up a sentinel. Further entries in pvec are all 2049 * children of sp, so this element is never overwritten. 2050 */ 2051 parents->parent[level-1] = NULL; 2052 return mmu_pages_next(pvec, parents, 0); 2053 } 2054 2055 static void mmu_pages_clear_parents(struct mmu_page_path *parents) 2056 { 2057 struct kvm_mmu_page *sp; 2058 unsigned int level = 0; 2059 2060 do { 2061 unsigned int idx = parents->idx[level]; 2062 sp = parents->parent[level]; 2063 if (!sp) 2064 return; 2065 2066 WARN_ON_ONCE(idx == INVALID_INDEX); 2067 clear_unsync_child_bit(sp, idx); 2068 level++; 2069 } while (!sp->unsync_children); 2070 } 2071 2072 static int mmu_sync_children(struct kvm_vcpu *vcpu, 2073 struct kvm_mmu_page *parent, bool can_yield) 2074 { 2075 int i; 2076 struct kvm_mmu_page *sp; 2077 struct mmu_page_path parents; 2078 struct kvm_mmu_pages pages; 2079 LIST_HEAD(invalid_list); 2080 bool flush = false; 2081 2082 while (mmu_unsync_walk(parent, &pages)) { 2083 bool protected = false; 2084 2085 for_each_sp(pages, sp, parents, i) 2086 protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn); 2087 2088 if (protected) { 2089 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true); 2090 flush = false; 2091 } 2092 2093 for_each_sp(pages, sp, parents, i) { 2094 kvm_unlink_unsync_page(vcpu->kvm, sp); 2095 flush |= kvm_sync_page(vcpu, sp, &invalid_list) > 0; 2096 mmu_pages_clear_parents(&parents); 2097 } 2098 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) { 2099 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2100 if (!can_yield) { 2101 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 2102 return -EINTR; 2103 } 2104 2105 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock); 2106 flush = false; 2107 } 2108 } 2109 2110 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2111 return 0; 2112 } 2113 2114 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) 2115 { 2116 atomic_set(&sp->write_flooding_count, 0); 2117 } 2118 2119 static void clear_sp_write_flooding_count(u64 *spte) 2120 { 2121 __clear_sp_write_flooding_count(sptep_to_sp(spte)); 2122 } 2123 2124 /* 2125 * The vCPU is required when finding indirect shadow pages; the shadow 2126 * page may already exist and syncing it needs the vCPU pointer in 2127 * order to read guest page tables. Direct shadow pages are never 2128 * unsync, thus @vcpu can be NULL if @role.direct is true. 2129 */ 2130 static struct kvm_mmu_page *kvm_mmu_find_shadow_page(struct kvm *kvm, 2131 struct kvm_vcpu *vcpu, 2132 gfn_t gfn, 2133 struct hlist_head *sp_list, 2134 union kvm_mmu_page_role role) 2135 { 2136 struct kvm_mmu_page *sp; 2137 int ret; 2138 int collisions = 0; 2139 LIST_HEAD(invalid_list); 2140 2141 for_each_valid_sp(kvm, sp, sp_list) { 2142 if (sp->gfn != gfn) { 2143 collisions++; 2144 continue; 2145 } 2146 2147 if (sp->role.word != role.word) { 2148 /* 2149 * If the guest is creating an upper-level page, zap 2150 * unsync pages for the same gfn. While it's possible 2151 * the guest is using recursive page tables, in all 2152 * likelihood the guest has stopped using the unsync 2153 * page and is installing a completely unrelated page. 2154 * Unsync pages must not be left as is, because the new 2155 * upper-level page will be write-protected. 2156 */ 2157 if (role.level > PG_LEVEL_4K && sp->unsync) 2158 kvm_mmu_prepare_zap_page(kvm, sp, 2159 &invalid_list); 2160 continue; 2161 } 2162 2163 /* unsync and write-flooding only apply to indirect SPs. */ 2164 if (sp->role.direct) 2165 goto out; 2166 2167 if (sp->unsync) { 2168 if (KVM_BUG_ON(!vcpu, kvm)) 2169 break; 2170 2171 /* 2172 * The page is good, but is stale. kvm_sync_page does 2173 * get the latest guest state, but (unlike mmu_unsync_children) 2174 * it doesn't write-protect the page or mark it synchronized! 2175 * This way the validity of the mapping is ensured, but the 2176 * overhead of write protection is not incurred until the 2177 * guest invalidates the TLB mapping. This allows multiple 2178 * SPs for a single gfn to be unsync. 2179 * 2180 * If the sync fails, the page is zapped. If so, break 2181 * in order to rebuild it. 2182 */ 2183 ret = kvm_sync_page(vcpu, sp, &invalid_list); 2184 if (ret < 0) 2185 break; 2186 2187 WARN_ON_ONCE(!list_empty(&invalid_list)); 2188 if (ret > 0) 2189 kvm_flush_remote_tlbs(kvm); 2190 } 2191 2192 __clear_sp_write_flooding_count(sp); 2193 2194 goto out; 2195 } 2196 2197 sp = NULL; 2198 ++kvm->stat.mmu_cache_miss; 2199 2200 out: 2201 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2202 2203 if (collisions > kvm->stat.max_mmu_page_hash_collisions) 2204 kvm->stat.max_mmu_page_hash_collisions = collisions; 2205 return sp; 2206 } 2207 2208 /* Caches used when allocating a new shadow page. */ 2209 struct shadow_page_caches { 2210 struct kvm_mmu_memory_cache *page_header_cache; 2211 struct kvm_mmu_memory_cache *shadow_page_cache; 2212 struct kvm_mmu_memory_cache *shadowed_info_cache; 2213 }; 2214 2215 static struct kvm_mmu_page *kvm_mmu_alloc_shadow_page(struct kvm *kvm, 2216 struct shadow_page_caches *caches, 2217 gfn_t gfn, 2218 struct hlist_head *sp_list, 2219 union kvm_mmu_page_role role) 2220 { 2221 struct kvm_mmu_page *sp; 2222 2223 sp = kvm_mmu_memory_cache_alloc(caches->page_header_cache); 2224 sp->spt = kvm_mmu_memory_cache_alloc(caches->shadow_page_cache); 2225 if (!role.direct && role.level <= KVM_MAX_HUGEPAGE_LEVEL) 2226 sp->shadowed_translation = kvm_mmu_memory_cache_alloc(caches->shadowed_info_cache); 2227 2228 set_page_private(virt_to_page(sp->spt), (unsigned long)sp); 2229 2230 INIT_LIST_HEAD(&sp->possible_nx_huge_page_link); 2231 2232 /* 2233 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages() 2234 * depends on valid pages being added to the head of the list. See 2235 * comments in kvm_zap_obsolete_pages(). 2236 */ 2237 sp->mmu_valid_gen = kvm->arch.mmu_valid_gen; 2238 list_add(&sp->link, &kvm->arch.active_mmu_pages); 2239 kvm_account_mmu_page(kvm, sp); 2240 2241 sp->gfn = gfn; 2242 sp->role = role; 2243 hlist_add_head(&sp->hash_link, sp_list); 2244 if (sp_has_gptes(sp)) 2245 account_shadowed(kvm, sp); 2246 2247 return sp; 2248 } 2249 2250 /* Note, @vcpu may be NULL if @role.direct is true; see kvm_mmu_find_shadow_page. */ 2251 static struct kvm_mmu_page *__kvm_mmu_get_shadow_page(struct kvm *kvm, 2252 struct kvm_vcpu *vcpu, 2253 struct shadow_page_caches *caches, 2254 gfn_t gfn, 2255 union kvm_mmu_page_role role) 2256 { 2257 struct hlist_head *sp_list; 2258 struct kvm_mmu_page *sp; 2259 bool created = false; 2260 2261 sp_list = &kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]; 2262 2263 sp = kvm_mmu_find_shadow_page(kvm, vcpu, gfn, sp_list, role); 2264 if (!sp) { 2265 created = true; 2266 sp = kvm_mmu_alloc_shadow_page(kvm, caches, gfn, sp_list, role); 2267 } 2268 2269 trace_kvm_mmu_get_page(sp, created); 2270 return sp; 2271 } 2272 2273 static struct kvm_mmu_page *kvm_mmu_get_shadow_page(struct kvm_vcpu *vcpu, 2274 gfn_t gfn, 2275 union kvm_mmu_page_role role) 2276 { 2277 struct shadow_page_caches caches = { 2278 .page_header_cache = &vcpu->arch.mmu_page_header_cache, 2279 .shadow_page_cache = &vcpu->arch.mmu_shadow_page_cache, 2280 .shadowed_info_cache = &vcpu->arch.mmu_shadowed_info_cache, 2281 }; 2282 2283 return __kvm_mmu_get_shadow_page(vcpu->kvm, vcpu, &caches, gfn, role); 2284 } 2285 2286 static union kvm_mmu_page_role kvm_mmu_child_role(u64 *sptep, bool direct, 2287 unsigned int access) 2288 { 2289 struct kvm_mmu_page *parent_sp = sptep_to_sp(sptep); 2290 union kvm_mmu_page_role role; 2291 2292 role = parent_sp->role; 2293 role.level--; 2294 role.access = access; 2295 role.direct = direct; 2296 role.passthrough = 0; 2297 2298 /* 2299 * If the guest has 4-byte PTEs then that means it's using 32-bit, 2300 * 2-level, non-PAE paging. KVM shadows such guests with PAE paging 2301 * (i.e. 8-byte PTEs). The difference in PTE size means that KVM must 2302 * shadow each guest page table with multiple shadow page tables, which 2303 * requires extra bookkeeping in the role. 2304 * 2305 * Specifically, to shadow the guest's page directory (which covers a 2306 * 4GiB address space), KVM uses 4 PAE page directories, each mapping 2307 * 1GiB of the address space. @role.quadrant encodes which quarter of 2308 * the address space each maps. 2309 * 2310 * To shadow the guest's page tables (which each map a 4MiB region), KVM 2311 * uses 2 PAE page tables, each mapping a 2MiB region. For these, 2312 * @role.quadrant encodes which half of the region they map. 2313 * 2314 * Concretely, a 4-byte PDE consumes bits 31:22, while an 8-byte PDE 2315 * consumes bits 29:21. To consume bits 31:30, KVM's uses 4 shadow 2316 * PDPTEs; those 4 PAE page directories are pre-allocated and their 2317 * quadrant is assigned in mmu_alloc_root(). A 4-byte PTE consumes 2318 * bits 21:12, while an 8-byte PTE consumes bits 20:12. To consume 2319 * bit 21 in the PTE (the child here), KVM propagates that bit to the 2320 * quadrant, i.e. sets quadrant to '0' or '1'. The parent 8-byte PDE 2321 * covers bit 21 (see above), thus the quadrant is calculated from the 2322 * _least_ significant bit of the PDE index. 2323 */ 2324 if (role.has_4_byte_gpte) { 2325 WARN_ON_ONCE(role.level != PG_LEVEL_4K); 2326 role.quadrant = spte_index(sptep) & 1; 2327 } 2328 2329 return role; 2330 } 2331 2332 static struct kvm_mmu_page *kvm_mmu_get_child_sp(struct kvm_vcpu *vcpu, 2333 u64 *sptep, gfn_t gfn, 2334 bool direct, unsigned int access) 2335 { 2336 union kvm_mmu_page_role role; 2337 2338 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) 2339 return ERR_PTR(-EEXIST); 2340 2341 role = kvm_mmu_child_role(sptep, direct, access); 2342 return kvm_mmu_get_shadow_page(vcpu, gfn, role); 2343 } 2344 2345 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator, 2346 struct kvm_vcpu *vcpu, hpa_t root, 2347 u64 addr) 2348 { 2349 iterator->addr = addr; 2350 iterator->shadow_addr = root; 2351 iterator->level = vcpu->arch.mmu->root_role.level; 2352 2353 if (iterator->level >= PT64_ROOT_4LEVEL && 2354 vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL && 2355 !vcpu->arch.mmu->root_role.direct) 2356 iterator->level = PT32E_ROOT_LEVEL; 2357 2358 if (iterator->level == PT32E_ROOT_LEVEL) { 2359 /* 2360 * prev_root is currently only used for 64-bit hosts. So only 2361 * the active root_hpa is valid here. 2362 */ 2363 BUG_ON(root != vcpu->arch.mmu->root.hpa); 2364 2365 iterator->shadow_addr 2366 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3]; 2367 iterator->shadow_addr &= SPTE_BASE_ADDR_MASK; 2368 --iterator->level; 2369 if (!iterator->shadow_addr) 2370 iterator->level = 0; 2371 } 2372 } 2373 2374 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, 2375 struct kvm_vcpu *vcpu, u64 addr) 2376 { 2377 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa, 2378 addr); 2379 } 2380 2381 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) 2382 { 2383 if (iterator->level < PG_LEVEL_4K) 2384 return false; 2385 2386 iterator->index = SPTE_INDEX(iterator->addr, iterator->level); 2387 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; 2388 return true; 2389 } 2390 2391 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, 2392 u64 spte) 2393 { 2394 if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) { 2395 iterator->level = 0; 2396 return; 2397 } 2398 2399 iterator->shadow_addr = spte & SPTE_BASE_ADDR_MASK; 2400 --iterator->level; 2401 } 2402 2403 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) 2404 { 2405 __shadow_walk_next(iterator, *iterator->sptep); 2406 } 2407 2408 static void __link_shadow_page(struct kvm *kvm, 2409 struct kvm_mmu_memory_cache *cache, u64 *sptep, 2410 struct kvm_mmu_page *sp, bool flush) 2411 { 2412 u64 spte; 2413 2414 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); 2415 2416 /* 2417 * If an SPTE is present already, it must be a leaf and therefore 2418 * a large one. Drop it, and flush the TLB if needed, before 2419 * installing sp. 2420 */ 2421 if (is_shadow_present_pte(*sptep)) 2422 drop_large_spte(kvm, sptep, flush); 2423 2424 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp)); 2425 2426 mmu_spte_set(sptep, spte); 2427 2428 mmu_page_add_parent_pte(cache, sp, sptep); 2429 2430 /* 2431 * The non-direct sub-pagetable must be updated before linking. For 2432 * L1 sp, the pagetable is updated via kvm_sync_page() in 2433 * kvm_mmu_find_shadow_page() without write-protecting the gfn, 2434 * so sp->unsync can be true or false. For higher level non-direct 2435 * sp, the pagetable is updated/synced via mmu_sync_children() in 2436 * FNAME(fetch)(), so sp->unsync_children can only be false. 2437 * WARN_ON_ONCE() if anything happens unexpectedly. 2438 */ 2439 if (WARN_ON_ONCE(sp->unsync_children) || sp->unsync) 2440 mark_unsync(sptep); 2441 } 2442 2443 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, 2444 struct kvm_mmu_page *sp) 2445 { 2446 __link_shadow_page(vcpu->kvm, &vcpu->arch.mmu_pte_list_desc_cache, sptep, sp, true); 2447 } 2448 2449 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2450 unsigned direct_access) 2451 { 2452 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { 2453 struct kvm_mmu_page *child; 2454 2455 /* 2456 * For the direct sp, if the guest pte's dirty bit 2457 * changed form clean to dirty, it will corrupt the 2458 * sp's access: allow writable in the read-only sp, 2459 * so we should update the spte at this point to get 2460 * a new sp with the correct access. 2461 */ 2462 child = spte_to_child_sp(*sptep); 2463 if (child->role.access == direct_access) 2464 return; 2465 2466 drop_parent_pte(vcpu->kvm, child, sptep); 2467 kvm_flush_remote_tlbs_sptep(vcpu->kvm, sptep); 2468 } 2469 } 2470 2471 /* Returns the number of zapped non-leaf child shadow pages. */ 2472 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 2473 u64 *spte, struct list_head *invalid_list) 2474 { 2475 u64 pte; 2476 struct kvm_mmu_page *child; 2477 2478 pte = *spte; 2479 if (is_shadow_present_pte(pte)) { 2480 if (is_last_spte(pte, sp->role.level)) { 2481 drop_spte(kvm, spte); 2482 } else { 2483 child = spte_to_child_sp(pte); 2484 drop_parent_pte(kvm, child, spte); 2485 2486 /* 2487 * Recursively zap nested TDP SPs, parentless SPs are 2488 * unlikely to be used again in the near future. This 2489 * avoids retaining a large number of stale nested SPs. 2490 */ 2491 if (tdp_enabled && invalid_list && 2492 child->role.guest_mode && !child->parent_ptes.val) 2493 return kvm_mmu_prepare_zap_page(kvm, child, 2494 invalid_list); 2495 } 2496 } else if (is_mmio_spte(kvm, pte)) { 2497 mmu_spte_clear_no_track(spte); 2498 } 2499 return 0; 2500 } 2501 2502 static int kvm_mmu_page_unlink_children(struct kvm *kvm, 2503 struct kvm_mmu_page *sp, 2504 struct list_head *invalid_list) 2505 { 2506 int zapped = 0; 2507 unsigned i; 2508 2509 for (i = 0; i < SPTE_ENT_PER_PAGE; ++i) 2510 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list); 2511 2512 return zapped; 2513 } 2514 2515 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp) 2516 { 2517 u64 *sptep; 2518 struct rmap_iterator iter; 2519 2520 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter))) 2521 drop_parent_pte(kvm, sp, sptep); 2522 } 2523 2524 static int mmu_zap_unsync_children(struct kvm *kvm, 2525 struct kvm_mmu_page *parent, 2526 struct list_head *invalid_list) 2527 { 2528 int i, zapped = 0; 2529 struct mmu_page_path parents; 2530 struct kvm_mmu_pages pages; 2531 2532 if (parent->role.level == PG_LEVEL_4K) 2533 return 0; 2534 2535 while (mmu_unsync_walk(parent, &pages)) { 2536 struct kvm_mmu_page *sp; 2537 2538 for_each_sp(pages, sp, parents, i) { 2539 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 2540 mmu_pages_clear_parents(&parents); 2541 zapped++; 2542 } 2543 } 2544 2545 return zapped; 2546 } 2547 2548 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm, 2549 struct kvm_mmu_page *sp, 2550 struct list_head *invalid_list, 2551 int *nr_zapped) 2552 { 2553 bool list_unstable, zapped_root = false; 2554 2555 lockdep_assert_held_write(&kvm->mmu_lock); 2556 trace_kvm_mmu_prepare_zap_page(sp); 2557 ++kvm->stat.mmu_shadow_zapped; 2558 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list); 2559 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list); 2560 kvm_mmu_unlink_parents(kvm, sp); 2561 2562 /* Zapping children means active_mmu_pages has become unstable. */ 2563 list_unstable = *nr_zapped; 2564 2565 if (!sp->role.invalid && sp_has_gptes(sp)) 2566 unaccount_shadowed(kvm, sp); 2567 2568 if (sp->unsync) 2569 kvm_unlink_unsync_page(kvm, sp); 2570 if (!sp->root_count) { 2571 /* Count self */ 2572 (*nr_zapped)++; 2573 2574 /* 2575 * Already invalid pages (previously active roots) are not on 2576 * the active page list. See list_del() in the "else" case of 2577 * !sp->root_count. 2578 */ 2579 if (sp->role.invalid) 2580 list_add(&sp->link, invalid_list); 2581 else 2582 list_move(&sp->link, invalid_list); 2583 kvm_unaccount_mmu_page(kvm, sp); 2584 } else { 2585 /* 2586 * Remove the active root from the active page list, the root 2587 * will be explicitly freed when the root_count hits zero. 2588 */ 2589 list_del(&sp->link); 2590 2591 /* 2592 * Obsolete pages cannot be used on any vCPUs, see the comment 2593 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also 2594 * treats invalid shadow pages as being obsolete. 2595 */ 2596 zapped_root = !is_obsolete_sp(kvm, sp); 2597 } 2598 2599 if (sp->nx_huge_page_disallowed) 2600 unaccount_nx_huge_page(kvm, sp); 2601 2602 sp->role.invalid = 1; 2603 2604 /* 2605 * Make the request to free obsolete roots after marking the root 2606 * invalid, otherwise other vCPUs may not see it as invalid. 2607 */ 2608 if (zapped_root) 2609 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 2610 return list_unstable; 2611 } 2612 2613 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 2614 struct list_head *invalid_list) 2615 { 2616 int nr_zapped; 2617 2618 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped); 2619 return nr_zapped; 2620 } 2621 2622 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 2623 struct list_head *invalid_list) 2624 { 2625 struct kvm_mmu_page *sp, *nsp; 2626 2627 if (list_empty(invalid_list)) 2628 return; 2629 2630 /* 2631 * We need to make sure everyone sees our modifications to 2632 * the page tables and see changes to vcpu->mode here. The barrier 2633 * in the kvm_flush_remote_tlbs() achieves this. This pairs 2634 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end. 2635 * 2636 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit 2637 * guest mode and/or lockless shadow page table walks. 2638 */ 2639 kvm_flush_remote_tlbs(kvm); 2640 2641 list_for_each_entry_safe(sp, nsp, invalid_list, link) { 2642 WARN_ON_ONCE(!sp->role.invalid || sp->root_count); 2643 kvm_mmu_free_shadow_page(sp); 2644 } 2645 } 2646 2647 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm, 2648 unsigned long nr_to_zap) 2649 { 2650 unsigned long total_zapped = 0; 2651 struct kvm_mmu_page *sp, *tmp; 2652 LIST_HEAD(invalid_list); 2653 bool unstable; 2654 int nr_zapped; 2655 2656 if (list_empty(&kvm->arch.active_mmu_pages)) 2657 return 0; 2658 2659 restart: 2660 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) { 2661 /* 2662 * Don't zap active root pages, the page itself can't be freed 2663 * and zapping it will just force vCPUs to realloc and reload. 2664 */ 2665 if (sp->root_count) 2666 continue; 2667 2668 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, 2669 &nr_zapped); 2670 total_zapped += nr_zapped; 2671 if (total_zapped >= nr_to_zap) 2672 break; 2673 2674 if (unstable) 2675 goto restart; 2676 } 2677 2678 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2679 2680 kvm->stat.mmu_recycled += total_zapped; 2681 return total_zapped; 2682 } 2683 2684 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm) 2685 { 2686 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) 2687 return kvm->arch.n_max_mmu_pages - 2688 kvm->arch.n_used_mmu_pages; 2689 2690 return 0; 2691 } 2692 2693 static int make_mmu_pages_available(struct kvm_vcpu *vcpu) 2694 { 2695 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm); 2696 2697 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES)) 2698 return 0; 2699 2700 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail); 2701 2702 /* 2703 * Note, this check is intentionally soft, it only guarantees that one 2704 * page is available, while the caller may end up allocating as many as 2705 * four pages, e.g. for PAE roots or for 5-level paging. Temporarily 2706 * exceeding the (arbitrary by default) limit will not harm the host, 2707 * being too aggressive may unnecessarily kill the guest, and getting an 2708 * exact count is far more trouble than it's worth, especially in the 2709 * page fault paths. 2710 */ 2711 if (!kvm_mmu_available_pages(vcpu->kvm)) 2712 return -ENOSPC; 2713 return 0; 2714 } 2715 2716 /* 2717 * Changing the number of mmu pages allocated to the vm 2718 * Note: if goal_nr_mmu_pages is too small, you will get dead lock 2719 */ 2720 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages) 2721 { 2722 write_lock(&kvm->mmu_lock); 2723 2724 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { 2725 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages - 2726 goal_nr_mmu_pages); 2727 2728 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; 2729 } 2730 2731 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; 2732 2733 write_unlock(&kvm->mmu_lock); 2734 } 2735 2736 bool __kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 2737 bool always_retry) 2738 { 2739 struct kvm *kvm = vcpu->kvm; 2740 LIST_HEAD(invalid_list); 2741 struct kvm_mmu_page *sp; 2742 gpa_t gpa = cr2_or_gpa; 2743 bool r = false; 2744 2745 /* 2746 * Bail early if there aren't any write-protected shadow pages to avoid 2747 * unnecessarily taking mmu_lock lock, e.g. if the gfn is write-tracked 2748 * by a third party. Reading indirect_shadow_pages without holding 2749 * mmu_lock is safe, as this is purely an optimization, i.e. a false 2750 * positive is benign, and a false negative will simply result in KVM 2751 * skipping the unprotect+retry path, which is also an optimization. 2752 */ 2753 if (!READ_ONCE(kvm->arch.indirect_shadow_pages)) 2754 goto out; 2755 2756 if (!vcpu->arch.mmu->root_role.direct) { 2757 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 2758 if (gpa == INVALID_GPA) 2759 goto out; 2760 } 2761 2762 write_lock(&kvm->mmu_lock); 2763 for_each_gfn_valid_sp_with_gptes(kvm, sp, gpa_to_gfn(gpa)) 2764 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 2765 2766 /* 2767 * Snapshot the result before zapping, as zapping will remove all list 2768 * entries, i.e. checking the list later would yield a false negative. 2769 */ 2770 r = !list_empty(&invalid_list); 2771 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2772 write_unlock(&kvm->mmu_lock); 2773 2774 out: 2775 if (r || always_retry) { 2776 vcpu->arch.last_retry_eip = kvm_rip_read(vcpu); 2777 vcpu->arch.last_retry_addr = cr2_or_gpa; 2778 } 2779 return r; 2780 } 2781 2782 static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 2783 { 2784 trace_kvm_mmu_unsync_page(sp); 2785 ++kvm->stat.mmu_unsync; 2786 sp->unsync = 1; 2787 2788 kvm_mmu_mark_parents_unsync(sp); 2789 } 2790 2791 /* 2792 * Attempt to unsync any shadow pages that can be reached by the specified gfn, 2793 * KVM is creating a writable mapping for said gfn. Returns 0 if all pages 2794 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must 2795 * be write-protected. 2796 */ 2797 int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot, 2798 gfn_t gfn, bool can_unsync, bool prefetch) 2799 { 2800 struct kvm_mmu_page *sp; 2801 bool locked = false; 2802 2803 /* 2804 * Force write-protection if the page is being tracked. Note, the page 2805 * track machinery is used to write-protect upper-level shadow pages, 2806 * i.e. this guards the role.level == 4K assertion below! 2807 */ 2808 if (kvm_gfn_is_write_tracked(kvm, slot, gfn)) 2809 return -EPERM; 2810 2811 /* 2812 * The page is not write-tracked, mark existing shadow pages unsync 2813 * unless KVM is synchronizing an unsync SP (can_unsync = false). In 2814 * that case, KVM must complete emulation of the guest TLB flush before 2815 * allowing shadow pages to become unsync (writable by the guest). 2816 */ 2817 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) { 2818 if (!can_unsync) 2819 return -EPERM; 2820 2821 if (sp->unsync) 2822 continue; 2823 2824 if (prefetch) 2825 return -EEXIST; 2826 2827 /* 2828 * TDP MMU page faults require an additional spinlock as they 2829 * run with mmu_lock held for read, not write, and the unsync 2830 * logic is not thread safe. Take the spinklock regardless of 2831 * the MMU type to avoid extra conditionals/parameters, there's 2832 * no meaningful penalty if mmu_lock is held for write. 2833 */ 2834 if (!locked) { 2835 locked = true; 2836 spin_lock(&kvm->arch.mmu_unsync_pages_lock); 2837 2838 /* 2839 * Recheck after taking the spinlock, a different vCPU 2840 * may have since marked the page unsync. A false 2841 * negative on the unprotected check above is not 2842 * possible as clearing sp->unsync _must_ hold mmu_lock 2843 * for write, i.e. unsync cannot transition from 1->0 2844 * while this CPU holds mmu_lock for read (or write). 2845 */ 2846 if (READ_ONCE(sp->unsync)) 2847 continue; 2848 } 2849 2850 WARN_ON_ONCE(sp->role.level != PG_LEVEL_4K); 2851 kvm_unsync_page(kvm, sp); 2852 } 2853 if (locked) 2854 spin_unlock(&kvm->arch.mmu_unsync_pages_lock); 2855 2856 /* 2857 * We need to ensure that the marking of unsync pages is visible 2858 * before the SPTE is updated to allow writes because 2859 * kvm_mmu_sync_roots() checks the unsync flags without holding 2860 * the MMU lock and so can race with this. If the SPTE was updated 2861 * before the page had been marked as unsync-ed, something like the 2862 * following could happen: 2863 * 2864 * CPU 1 CPU 2 2865 * --------------------------------------------------------------------- 2866 * 1.2 Host updates SPTE 2867 * to be writable 2868 * 2.1 Guest writes a GPTE for GVA X. 2869 * (GPTE being in the guest page table shadowed 2870 * by the SP from CPU 1.) 2871 * This reads SPTE during the page table walk. 2872 * Since SPTE.W is read as 1, there is no 2873 * fault. 2874 * 2875 * 2.2 Guest issues TLB flush. 2876 * That causes a VM Exit. 2877 * 2878 * 2.3 Walking of unsync pages sees sp->unsync is 2879 * false and skips the page. 2880 * 2881 * 2.4 Guest accesses GVA X. 2882 * Since the mapping in the SP was not updated, 2883 * so the old mapping for GVA X incorrectly 2884 * gets used. 2885 * 1.1 Host marks SP 2886 * as unsync 2887 * (sp->unsync = true) 2888 * 2889 * The write barrier below ensures that 1.1 happens before 1.2 and thus 2890 * the situation in 2.4 does not arise. It pairs with the read barrier 2891 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3. 2892 */ 2893 smp_wmb(); 2894 2895 return 0; 2896 } 2897 2898 static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, 2899 u64 *sptep, unsigned int pte_access, gfn_t gfn, 2900 kvm_pfn_t pfn, struct kvm_page_fault *fault) 2901 { 2902 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 2903 int level = sp->role.level; 2904 int was_rmapped = 0; 2905 int ret = RET_PF_FIXED; 2906 bool flush = false; 2907 bool wrprot; 2908 u64 spte; 2909 2910 /* Prefetching always gets a writable pfn. */ 2911 bool host_writable = !fault || fault->map_writable; 2912 bool prefetch = !fault || fault->prefetch; 2913 bool write_fault = fault && fault->write; 2914 2915 if (unlikely(is_noslot_pfn(pfn))) { 2916 vcpu->stat.pf_mmio_spte_created++; 2917 mark_mmio_spte(vcpu, sptep, gfn, pte_access); 2918 return RET_PF_EMULATE; 2919 } 2920 2921 if (is_shadow_present_pte(*sptep)) { 2922 /* 2923 * If we overwrite a PTE page pointer with a 2MB PMD, unlink 2924 * the parent of the now unreachable PTE. 2925 */ 2926 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) { 2927 struct kvm_mmu_page *child; 2928 u64 pte = *sptep; 2929 2930 child = spte_to_child_sp(pte); 2931 drop_parent_pte(vcpu->kvm, child, sptep); 2932 flush = true; 2933 } else if (pfn != spte_to_pfn(*sptep)) { 2934 drop_spte(vcpu->kvm, sptep); 2935 flush = true; 2936 } else 2937 was_rmapped = 1; 2938 } 2939 2940 wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch, 2941 true, host_writable, &spte); 2942 2943 if (*sptep == spte) { 2944 ret = RET_PF_SPURIOUS; 2945 } else { 2946 flush |= mmu_spte_update(sptep, spte); 2947 trace_kvm_mmu_set_spte(level, gfn, sptep); 2948 } 2949 2950 if (wrprot && write_fault) 2951 ret = RET_PF_WRITE_PROTECTED; 2952 2953 if (flush) 2954 kvm_flush_remote_tlbs_gfn(vcpu->kvm, gfn, level); 2955 2956 if (!was_rmapped) { 2957 WARN_ON_ONCE(ret == RET_PF_SPURIOUS); 2958 rmap_add(vcpu, slot, sptep, gfn, pte_access); 2959 } else { 2960 /* Already rmapped but the pte_access bits may have changed. */ 2961 kvm_mmu_page_set_access(sp, spte_index(sptep), pte_access); 2962 } 2963 2964 return ret; 2965 } 2966 2967 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu, 2968 struct kvm_mmu_page *sp, 2969 u64 *start, u64 *end) 2970 { 2971 struct page *pages[PTE_PREFETCH_NUM]; 2972 struct kvm_memory_slot *slot; 2973 unsigned int access = sp->role.access; 2974 int i, ret; 2975 gfn_t gfn; 2976 2977 gfn = kvm_mmu_page_get_gfn(sp, spte_index(start)); 2978 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK); 2979 if (!slot) 2980 return -1; 2981 2982 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start); 2983 if (ret <= 0) 2984 return -1; 2985 2986 for (i = 0; i < ret; i++, gfn++, start++) { 2987 mmu_set_spte(vcpu, slot, start, access, gfn, 2988 page_to_pfn(pages[i]), NULL); 2989 put_page(pages[i]); 2990 } 2991 2992 return 0; 2993 } 2994 2995 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, 2996 struct kvm_mmu_page *sp, u64 *sptep) 2997 { 2998 u64 *spte, *start = NULL; 2999 int i; 3000 3001 WARN_ON_ONCE(!sp->role.direct); 3002 3003 i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1); 3004 spte = sp->spt + i; 3005 3006 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 3007 if (is_shadow_present_pte(*spte) || spte == sptep) { 3008 if (!start) 3009 continue; 3010 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0) 3011 return; 3012 start = NULL; 3013 } else if (!start) 3014 start = spte; 3015 } 3016 if (start) 3017 direct_pte_prefetch_many(vcpu, sp, start, spte); 3018 } 3019 3020 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) 3021 { 3022 struct kvm_mmu_page *sp; 3023 3024 sp = sptep_to_sp(sptep); 3025 3026 /* 3027 * Without accessed bits, there's no way to distinguish between 3028 * actually accessed translations and prefetched, so disable pte 3029 * prefetch if accessed bits aren't available. 3030 */ 3031 if (sp_ad_disabled(sp)) 3032 return; 3033 3034 if (sp->role.level > PG_LEVEL_4K) 3035 return; 3036 3037 /* 3038 * If addresses are being invalidated, skip prefetching to avoid 3039 * accidentally prefetching those addresses. 3040 */ 3041 if (unlikely(vcpu->kvm->mmu_invalidate_in_progress)) 3042 return; 3043 3044 __direct_pte_prefetch(vcpu, sp, sptep); 3045 } 3046 3047 /* 3048 * Lookup the mapping level for @gfn in the current mm. 3049 * 3050 * WARNING! Use of host_pfn_mapping_level() requires the caller and the end 3051 * consumer to be tied into KVM's handlers for MMU notifier events! 3052 * 3053 * There are several ways to safely use this helper: 3054 * 3055 * - Check mmu_invalidate_retry_gfn() after grabbing the mapping level, before 3056 * consuming it. In this case, mmu_lock doesn't need to be held during the 3057 * lookup, but it does need to be held while checking the MMU notifier. 3058 * 3059 * - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation 3060 * event for the hva. This can be done by explicit checking the MMU notifier 3061 * or by ensuring that KVM already has a valid mapping that covers the hva. 3062 * 3063 * - Do not use the result to install new mappings, e.g. use the host mapping 3064 * level only to decide whether or not to zap an entry. In this case, it's 3065 * not required to hold mmu_lock (though it's highly likely the caller will 3066 * want to hold mmu_lock anyways, e.g. to modify SPTEs). 3067 * 3068 * Note! The lookup can still race with modifications to host page tables, but 3069 * the above "rules" ensure KVM will not _consume_ the result of the walk if a 3070 * race with the primary MMU occurs. 3071 */ 3072 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, 3073 const struct kvm_memory_slot *slot) 3074 { 3075 int level = PG_LEVEL_4K; 3076 unsigned long hva; 3077 unsigned long flags; 3078 pgd_t pgd; 3079 p4d_t p4d; 3080 pud_t pud; 3081 pmd_t pmd; 3082 3083 /* 3084 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot() 3085 * is not solely for performance, it's also necessary to avoid the 3086 * "writable" check in __gfn_to_hva_many(), which will always fail on 3087 * read-only memslots due to gfn_to_hva() assuming writes. Earlier 3088 * page fault steps have already verified the guest isn't writing a 3089 * read-only memslot. 3090 */ 3091 hva = __gfn_to_hva_memslot(slot, gfn); 3092 3093 /* 3094 * Disable IRQs to prevent concurrent tear down of host page tables, 3095 * e.g. if the primary MMU promotes a P*D to a huge page and then frees 3096 * the original page table. 3097 */ 3098 local_irq_save(flags); 3099 3100 /* 3101 * Read each entry once. As above, a non-leaf entry can be promoted to 3102 * a huge page _during_ this walk. Re-reading the entry could send the 3103 * walk into the weeks, e.g. p*d_leaf() returns false (sees the old 3104 * value) and then p*d_offset() walks into the target huge page instead 3105 * of the old page table (sees the new value). 3106 */ 3107 pgd = READ_ONCE(*pgd_offset(kvm->mm, hva)); 3108 if (pgd_none(pgd)) 3109 goto out; 3110 3111 p4d = READ_ONCE(*p4d_offset(&pgd, hva)); 3112 if (p4d_none(p4d) || !p4d_present(p4d)) 3113 goto out; 3114 3115 pud = READ_ONCE(*pud_offset(&p4d, hva)); 3116 if (pud_none(pud) || !pud_present(pud)) 3117 goto out; 3118 3119 if (pud_leaf(pud)) { 3120 level = PG_LEVEL_1G; 3121 goto out; 3122 } 3123 3124 pmd = READ_ONCE(*pmd_offset(&pud, hva)); 3125 if (pmd_none(pmd) || !pmd_present(pmd)) 3126 goto out; 3127 3128 if (pmd_leaf(pmd)) 3129 level = PG_LEVEL_2M; 3130 3131 out: 3132 local_irq_restore(flags); 3133 return level; 3134 } 3135 3136 static int __kvm_mmu_max_mapping_level(struct kvm *kvm, 3137 const struct kvm_memory_slot *slot, 3138 gfn_t gfn, int max_level, bool is_private) 3139 { 3140 struct kvm_lpage_info *linfo; 3141 int host_level; 3142 3143 max_level = min(max_level, max_huge_page_level); 3144 for ( ; max_level > PG_LEVEL_4K; max_level--) { 3145 linfo = lpage_info_slot(gfn, slot, max_level); 3146 if (!linfo->disallow_lpage) 3147 break; 3148 } 3149 3150 if (is_private) 3151 return max_level; 3152 3153 if (max_level == PG_LEVEL_4K) 3154 return PG_LEVEL_4K; 3155 3156 host_level = host_pfn_mapping_level(kvm, gfn, slot); 3157 return min(host_level, max_level); 3158 } 3159 3160 int kvm_mmu_max_mapping_level(struct kvm *kvm, 3161 const struct kvm_memory_slot *slot, gfn_t gfn, 3162 int max_level) 3163 { 3164 bool is_private = kvm_slot_can_be_private(slot) && 3165 kvm_mem_is_private(kvm, gfn); 3166 3167 return __kvm_mmu_max_mapping_level(kvm, slot, gfn, max_level, is_private); 3168 } 3169 3170 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3171 { 3172 struct kvm_memory_slot *slot = fault->slot; 3173 kvm_pfn_t mask; 3174 3175 fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled; 3176 3177 if (unlikely(fault->max_level == PG_LEVEL_4K)) 3178 return; 3179 3180 if (is_error_noslot_pfn(fault->pfn)) 3181 return; 3182 3183 if (kvm_slot_dirty_track_enabled(slot)) 3184 return; 3185 3186 /* 3187 * Enforce the iTLB multihit workaround after capturing the requested 3188 * level, which will be used to do precise, accurate accounting. 3189 */ 3190 fault->req_level = __kvm_mmu_max_mapping_level(vcpu->kvm, slot, 3191 fault->gfn, fault->max_level, 3192 fault->is_private); 3193 if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed) 3194 return; 3195 3196 /* 3197 * mmu_invalidate_retry() was successful and mmu_lock is held, so 3198 * the pmd can't be split from under us. 3199 */ 3200 fault->goal_level = fault->req_level; 3201 mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1; 3202 VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask)); 3203 fault->pfn &= ~mask; 3204 } 3205 3206 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level) 3207 { 3208 if (cur_level > PG_LEVEL_4K && 3209 cur_level == fault->goal_level && 3210 is_shadow_present_pte(spte) && 3211 !is_large_pte(spte) && 3212 spte_to_child_sp(spte)->nx_huge_page_disallowed) { 3213 /* 3214 * A small SPTE exists for this pfn, but FNAME(fetch), 3215 * direct_map(), or kvm_tdp_mmu_map() would like to create a 3216 * large PTE instead: just force them to go down another level, 3217 * patching back for them into pfn the next 9 bits of the 3218 * address. 3219 */ 3220 u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) - 3221 KVM_PAGES_PER_HPAGE(cur_level - 1); 3222 fault->pfn |= fault->gfn & page_mask; 3223 fault->goal_level--; 3224 } 3225 } 3226 3227 static int direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3228 { 3229 struct kvm_shadow_walk_iterator it; 3230 struct kvm_mmu_page *sp; 3231 int ret; 3232 gfn_t base_gfn = fault->gfn; 3233 3234 kvm_mmu_hugepage_adjust(vcpu, fault); 3235 3236 trace_kvm_mmu_spte_requested(fault); 3237 for_each_shadow_entry(vcpu, fault->addr, it) { 3238 /* 3239 * We cannot overwrite existing page tables with an NX 3240 * large page, as the leaf could be executable. 3241 */ 3242 if (fault->nx_huge_page_workaround_enabled) 3243 disallowed_hugepage_adjust(fault, *it.sptep, it.level); 3244 3245 base_gfn = gfn_round_for_level(fault->gfn, it.level); 3246 if (it.level == fault->goal_level) 3247 break; 3248 3249 sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, true, ACC_ALL); 3250 if (sp == ERR_PTR(-EEXIST)) 3251 continue; 3252 3253 link_shadow_page(vcpu, it.sptep, sp); 3254 if (fault->huge_page_disallowed) 3255 account_nx_huge_page(vcpu->kvm, sp, 3256 fault->req_level >= it.level); 3257 } 3258 3259 if (WARN_ON_ONCE(it.level != fault->goal_level)) 3260 return -EFAULT; 3261 3262 ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL, 3263 base_gfn, fault->pfn, fault); 3264 if (ret == RET_PF_SPURIOUS) 3265 return ret; 3266 3267 direct_pte_prefetch(vcpu, it.sptep); 3268 return ret; 3269 } 3270 3271 static void kvm_send_hwpoison_signal(struct kvm_memory_slot *slot, gfn_t gfn) 3272 { 3273 unsigned long hva = gfn_to_hva_memslot(slot, gfn); 3274 3275 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva, PAGE_SHIFT, current); 3276 } 3277 3278 static int kvm_handle_error_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3279 { 3280 if (is_sigpending_pfn(fault->pfn)) { 3281 kvm_handle_signal_exit(vcpu); 3282 return -EINTR; 3283 } 3284 3285 /* 3286 * Do not cache the mmio info caused by writing the readonly gfn 3287 * into the spte otherwise read access on readonly gfn also can 3288 * caused mmio page fault and treat it as mmio access. 3289 */ 3290 if (fault->pfn == KVM_PFN_ERR_RO_FAULT) 3291 return RET_PF_EMULATE; 3292 3293 if (fault->pfn == KVM_PFN_ERR_HWPOISON) { 3294 kvm_send_hwpoison_signal(fault->slot, fault->gfn); 3295 return RET_PF_RETRY; 3296 } 3297 3298 return -EFAULT; 3299 } 3300 3301 static int kvm_handle_noslot_fault(struct kvm_vcpu *vcpu, 3302 struct kvm_page_fault *fault, 3303 unsigned int access) 3304 { 3305 gva_t gva = fault->is_tdp ? 0 : fault->addr; 3306 3307 if (fault->is_private) { 3308 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 3309 return -EFAULT; 3310 } 3311 3312 vcpu_cache_mmio_info(vcpu, gva, fault->gfn, 3313 access & shadow_mmio_access_mask); 3314 3315 fault->slot = NULL; 3316 fault->pfn = KVM_PFN_NOSLOT; 3317 fault->map_writable = false; 3318 fault->hva = KVM_HVA_ERR_BAD; 3319 3320 /* 3321 * If MMIO caching is disabled, emulate immediately without 3322 * touching the shadow page tables as attempting to install an 3323 * MMIO SPTE will just be an expensive nop. 3324 */ 3325 if (unlikely(!enable_mmio_caching)) 3326 return RET_PF_EMULATE; 3327 3328 /* 3329 * Do not create an MMIO SPTE for a gfn greater than host.MAXPHYADDR, 3330 * any guest that generates such gfns is running nested and is being 3331 * tricked by L0 userspace (you can observe gfn > L1.MAXPHYADDR if and 3332 * only if L1's MAXPHYADDR is inaccurate with respect to the 3333 * hardware's). 3334 */ 3335 if (unlikely(fault->gfn > kvm_mmu_max_gfn())) 3336 return RET_PF_EMULATE; 3337 3338 return RET_PF_CONTINUE; 3339 } 3340 3341 static bool page_fault_can_be_fast(struct kvm *kvm, struct kvm_page_fault *fault) 3342 { 3343 /* 3344 * Page faults with reserved bits set, i.e. faults on MMIO SPTEs, only 3345 * reach the common page fault handler if the SPTE has an invalid MMIO 3346 * generation number. Refreshing the MMIO generation needs to go down 3347 * the slow path. Note, EPT Misconfigs do NOT set the PRESENT flag! 3348 */ 3349 if (fault->rsvd) 3350 return false; 3351 3352 /* 3353 * For hardware-protected VMs, certain conditions like attempting to 3354 * perform a write to a page which is not in the state that the guest 3355 * expects it to be in can result in a nested/extended #PF. In this 3356 * case, the below code might misconstrue this situation as being the 3357 * result of a write-protected access, and treat it as a spurious case 3358 * rather than taking any action to satisfy the real source of the #PF 3359 * such as generating a KVM_EXIT_MEMORY_FAULT. This can lead to the 3360 * guest spinning on a #PF indefinitely, so don't attempt the fast path 3361 * in this case. 3362 * 3363 * Note that the kvm_mem_is_private() check might race with an 3364 * attribute update, but this will either result in the guest spinning 3365 * on RET_PF_SPURIOUS until the update completes, or an actual spurious 3366 * case might go down the slow path. Either case will resolve itself. 3367 */ 3368 if (kvm->arch.has_private_mem && 3369 fault->is_private != kvm_mem_is_private(kvm, fault->gfn)) 3370 return false; 3371 3372 /* 3373 * #PF can be fast if: 3374 * 3375 * 1. The shadow page table entry is not present and A/D bits are 3376 * disabled _by KVM_, which could mean that the fault is potentially 3377 * caused by access tracking (if enabled). If A/D bits are enabled 3378 * by KVM, but disabled by L1 for L2, KVM is forced to disable A/D 3379 * bits for L2 and employ access tracking, but the fast page fault 3380 * mechanism only supports direct MMUs. 3381 * 2. The shadow page table entry is present, the access is a write, 3382 * and no reserved bits are set (MMIO SPTEs cannot be "fixed"), i.e. 3383 * the fault was caused by a write-protection violation. If the 3384 * SPTE is MMU-writable (determined later), the fault can be fixed 3385 * by setting the Writable bit, which can be done out of mmu_lock. 3386 */ 3387 if (!fault->present) 3388 return !kvm_ad_enabled(); 3389 3390 /* 3391 * Note, instruction fetches and writes are mutually exclusive, ignore 3392 * the "exec" flag. 3393 */ 3394 return fault->write; 3395 } 3396 3397 /* 3398 * Returns true if the SPTE was fixed successfully. Otherwise, 3399 * someone else modified the SPTE from its original value. 3400 */ 3401 static bool fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, 3402 struct kvm_page_fault *fault, 3403 u64 *sptep, u64 old_spte, u64 new_spte) 3404 { 3405 /* 3406 * Theoretically we could also set dirty bit (and flush TLB) here in 3407 * order to eliminate unnecessary PML logging. See comments in 3408 * set_spte. But fast_page_fault is very unlikely to happen with PML 3409 * enabled, so we do not do this. This might result in the same GPA 3410 * to be logged in PML buffer again when the write really happens, and 3411 * eventually to be called by mark_page_dirty twice. But it's also no 3412 * harm. This also avoids the TLB flush needed after setting dirty bit 3413 * so non-PML cases won't be impacted. 3414 * 3415 * Compare with set_spte where instead shadow_dirty_mask is set. 3416 */ 3417 if (!try_cmpxchg64(sptep, &old_spte, new_spte)) 3418 return false; 3419 3420 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) 3421 mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn); 3422 3423 return true; 3424 } 3425 3426 static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte) 3427 { 3428 if (fault->exec) 3429 return is_executable_pte(spte); 3430 3431 if (fault->write) 3432 return is_writable_pte(spte); 3433 3434 /* Fault was on Read access */ 3435 return spte & PT_PRESENT_MASK; 3436 } 3437 3438 /* 3439 * Returns the last level spte pointer of the shadow page walk for the given 3440 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no 3441 * walk could be performed, returns NULL and *spte does not contain valid data. 3442 * 3443 * Contract: 3444 * - Must be called between walk_shadow_page_lockless_{begin,end}. 3445 * - The returned sptep must not be used after walk_shadow_page_lockless_end. 3446 */ 3447 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte) 3448 { 3449 struct kvm_shadow_walk_iterator iterator; 3450 u64 old_spte; 3451 u64 *sptep = NULL; 3452 3453 for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) { 3454 sptep = iterator.sptep; 3455 *spte = old_spte; 3456 } 3457 3458 return sptep; 3459 } 3460 3461 /* 3462 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS. 3463 */ 3464 static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3465 { 3466 struct kvm_mmu_page *sp; 3467 int ret = RET_PF_INVALID; 3468 u64 spte; 3469 u64 *sptep; 3470 uint retry_count = 0; 3471 3472 if (!page_fault_can_be_fast(vcpu->kvm, fault)) 3473 return ret; 3474 3475 walk_shadow_page_lockless_begin(vcpu); 3476 3477 do { 3478 u64 new_spte; 3479 3480 if (tdp_mmu_enabled) 3481 sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->gfn, &spte); 3482 else 3483 sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte); 3484 3485 /* 3486 * It's entirely possible for the mapping to have been zapped 3487 * by a different task, but the root page should always be 3488 * available as the vCPU holds a reference to its root(s). 3489 */ 3490 if (WARN_ON_ONCE(!sptep)) 3491 spte = FROZEN_SPTE; 3492 3493 if (!is_shadow_present_pte(spte)) 3494 break; 3495 3496 sp = sptep_to_sp(sptep); 3497 if (!is_last_spte(spte, sp->role.level)) 3498 break; 3499 3500 /* 3501 * Check whether the memory access that caused the fault would 3502 * still cause it if it were to be performed right now. If not, 3503 * then this is a spurious fault caused by TLB lazily flushed, 3504 * or some other CPU has already fixed the PTE after the 3505 * current CPU took the fault. 3506 * 3507 * Need not check the access of upper level table entries since 3508 * they are always ACC_ALL. 3509 */ 3510 if (is_access_allowed(fault, spte)) { 3511 ret = RET_PF_SPURIOUS; 3512 break; 3513 } 3514 3515 new_spte = spte; 3516 3517 /* 3518 * KVM only supports fixing page faults outside of MMU lock for 3519 * direct MMUs, nested MMUs are always indirect, and KVM always 3520 * uses A/D bits for non-nested MMUs. Thus, if A/D bits are 3521 * enabled, the SPTE can't be an access-tracked SPTE. 3522 */ 3523 if (unlikely(!kvm_ad_enabled()) && is_access_track_spte(spte)) 3524 new_spte = restore_acc_track_spte(new_spte); 3525 3526 /* 3527 * To keep things simple, only SPTEs that are MMU-writable can 3528 * be made fully writable outside of mmu_lock, e.g. only SPTEs 3529 * that were write-protected for dirty-logging or access 3530 * tracking are handled here. Don't bother checking if the 3531 * SPTE is writable to prioritize running with A/D bits enabled. 3532 * The is_access_allowed() check above handles the common case 3533 * of the fault being spurious, and the SPTE is known to be 3534 * shadow-present, i.e. except for access tracking restoration 3535 * making the new SPTE writable, the check is wasteful. 3536 */ 3537 if (fault->write && is_mmu_writable_spte(spte)) { 3538 new_spte |= PT_WRITABLE_MASK; 3539 3540 /* 3541 * Do not fix write-permission on the large spte when 3542 * dirty logging is enabled. Since we only dirty the 3543 * first page into the dirty-bitmap in 3544 * fast_pf_fix_direct_spte(), other pages are missed 3545 * if its slot has dirty logging enabled. 3546 * 3547 * Instead, we let the slow page fault path create a 3548 * normal spte to fix the access. 3549 */ 3550 if (sp->role.level > PG_LEVEL_4K && 3551 kvm_slot_dirty_track_enabled(fault->slot)) 3552 break; 3553 } 3554 3555 /* Verify that the fault can be handled in the fast path */ 3556 if (new_spte == spte || 3557 !is_access_allowed(fault, new_spte)) 3558 break; 3559 3560 /* 3561 * Currently, fast page fault only works for direct mapping 3562 * since the gfn is not stable for indirect shadow page. See 3563 * Documentation/virt/kvm/locking.rst to get more detail. 3564 */ 3565 if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) { 3566 ret = RET_PF_FIXED; 3567 break; 3568 } 3569 3570 if (++retry_count > 4) { 3571 pr_warn_once("Fast #PF retrying more than 4 times.\n"); 3572 break; 3573 } 3574 3575 } while (true); 3576 3577 trace_fast_page_fault(vcpu, fault, sptep, spte, ret); 3578 walk_shadow_page_lockless_end(vcpu); 3579 3580 if (ret != RET_PF_INVALID) 3581 vcpu->stat.pf_fast++; 3582 3583 return ret; 3584 } 3585 3586 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa, 3587 struct list_head *invalid_list) 3588 { 3589 struct kvm_mmu_page *sp; 3590 3591 if (!VALID_PAGE(*root_hpa)) 3592 return; 3593 3594 sp = root_to_sp(*root_hpa); 3595 if (WARN_ON_ONCE(!sp)) 3596 return; 3597 3598 if (is_tdp_mmu_page(sp)) { 3599 lockdep_assert_held_read(&kvm->mmu_lock); 3600 kvm_tdp_mmu_put_root(kvm, sp); 3601 } else { 3602 lockdep_assert_held_write(&kvm->mmu_lock); 3603 if (!--sp->root_count && sp->role.invalid) 3604 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 3605 } 3606 3607 *root_hpa = INVALID_PAGE; 3608 } 3609 3610 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */ 3611 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, 3612 ulong roots_to_free) 3613 { 3614 bool is_tdp_mmu = tdp_mmu_enabled && mmu->root_role.direct; 3615 int i; 3616 LIST_HEAD(invalid_list); 3617 bool free_active_root; 3618 3619 WARN_ON_ONCE(roots_to_free & ~KVM_MMU_ROOTS_ALL); 3620 3621 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG); 3622 3623 /* Before acquiring the MMU lock, see if we need to do any real work. */ 3624 free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT) 3625 && VALID_PAGE(mmu->root.hpa); 3626 3627 if (!free_active_root) { 3628 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3629 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) && 3630 VALID_PAGE(mmu->prev_roots[i].hpa)) 3631 break; 3632 3633 if (i == KVM_MMU_NUM_PREV_ROOTS) 3634 return; 3635 } 3636 3637 if (is_tdp_mmu) 3638 read_lock(&kvm->mmu_lock); 3639 else 3640 write_lock(&kvm->mmu_lock); 3641 3642 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3643 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) 3644 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa, 3645 &invalid_list); 3646 3647 if (free_active_root) { 3648 if (kvm_mmu_is_dummy_root(mmu->root.hpa)) { 3649 /* Nothing to cleanup for dummy roots. */ 3650 } else if (root_to_sp(mmu->root.hpa)) { 3651 mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list); 3652 } else if (mmu->pae_root) { 3653 for (i = 0; i < 4; ++i) { 3654 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i])) 3655 continue; 3656 3657 mmu_free_root_page(kvm, &mmu->pae_root[i], 3658 &invalid_list); 3659 mmu->pae_root[i] = INVALID_PAE_ROOT; 3660 } 3661 } 3662 mmu->root.hpa = INVALID_PAGE; 3663 mmu->root.pgd = 0; 3664 } 3665 3666 if (is_tdp_mmu) { 3667 read_unlock(&kvm->mmu_lock); 3668 WARN_ON_ONCE(!list_empty(&invalid_list)); 3669 } else { 3670 kvm_mmu_commit_zap_page(kvm, &invalid_list); 3671 write_unlock(&kvm->mmu_lock); 3672 } 3673 } 3674 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots); 3675 3676 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu) 3677 { 3678 unsigned long roots_to_free = 0; 3679 struct kvm_mmu_page *sp; 3680 hpa_t root_hpa; 3681 int i; 3682 3683 /* 3684 * This should not be called while L2 is active, L2 can't invalidate 3685 * _only_ its own roots, e.g. INVVPID unconditionally exits. 3686 */ 3687 WARN_ON_ONCE(mmu->root_role.guest_mode); 3688 3689 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 3690 root_hpa = mmu->prev_roots[i].hpa; 3691 if (!VALID_PAGE(root_hpa)) 3692 continue; 3693 3694 sp = root_to_sp(root_hpa); 3695 if (!sp || sp->role.guest_mode) 3696 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 3697 } 3698 3699 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 3700 } 3701 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots); 3702 3703 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, int quadrant, 3704 u8 level) 3705 { 3706 union kvm_mmu_page_role role = vcpu->arch.mmu->root_role; 3707 struct kvm_mmu_page *sp; 3708 3709 role.level = level; 3710 role.quadrant = quadrant; 3711 3712 WARN_ON_ONCE(quadrant && !role.has_4_byte_gpte); 3713 WARN_ON_ONCE(role.direct && role.has_4_byte_gpte); 3714 3715 sp = kvm_mmu_get_shadow_page(vcpu, gfn, role); 3716 ++sp->root_count; 3717 3718 return __pa(sp->spt); 3719 } 3720 3721 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) 3722 { 3723 struct kvm_mmu *mmu = vcpu->arch.mmu; 3724 u8 shadow_root_level = mmu->root_role.level; 3725 hpa_t root; 3726 unsigned i; 3727 int r; 3728 3729 if (tdp_mmu_enabled) 3730 return kvm_tdp_mmu_alloc_root(vcpu); 3731 3732 write_lock(&vcpu->kvm->mmu_lock); 3733 r = make_mmu_pages_available(vcpu); 3734 if (r < 0) 3735 goto out_unlock; 3736 3737 if (shadow_root_level >= PT64_ROOT_4LEVEL) { 3738 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level); 3739 mmu->root.hpa = root; 3740 } else if (shadow_root_level == PT32E_ROOT_LEVEL) { 3741 if (WARN_ON_ONCE(!mmu->pae_root)) { 3742 r = -EIO; 3743 goto out_unlock; 3744 } 3745 3746 for (i = 0; i < 4; ++i) { 3747 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3748 3749 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 0, 3750 PT32_ROOT_LEVEL); 3751 mmu->pae_root[i] = root | PT_PRESENT_MASK | 3752 shadow_me_value; 3753 } 3754 mmu->root.hpa = __pa(mmu->pae_root); 3755 } else { 3756 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level); 3757 r = -EIO; 3758 goto out_unlock; 3759 } 3760 3761 /* root.pgd is ignored for direct MMUs. */ 3762 mmu->root.pgd = 0; 3763 out_unlock: 3764 write_unlock(&vcpu->kvm->mmu_lock); 3765 return r; 3766 } 3767 3768 static int mmu_first_shadow_root_alloc(struct kvm *kvm) 3769 { 3770 struct kvm_memslots *slots; 3771 struct kvm_memory_slot *slot; 3772 int r = 0, i, bkt; 3773 3774 /* 3775 * Check if this is the first shadow root being allocated before 3776 * taking the lock. 3777 */ 3778 if (kvm_shadow_root_allocated(kvm)) 3779 return 0; 3780 3781 mutex_lock(&kvm->slots_arch_lock); 3782 3783 /* Recheck, under the lock, whether this is the first shadow root. */ 3784 if (kvm_shadow_root_allocated(kvm)) 3785 goto out_unlock; 3786 3787 /* 3788 * Check if anything actually needs to be allocated, e.g. all metadata 3789 * will be allocated upfront if TDP is disabled. 3790 */ 3791 if (kvm_memslots_have_rmaps(kvm) && 3792 kvm_page_track_write_tracking_enabled(kvm)) 3793 goto out_success; 3794 3795 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 3796 slots = __kvm_memslots(kvm, i); 3797 kvm_for_each_memslot(slot, bkt, slots) { 3798 /* 3799 * Both of these functions are no-ops if the target is 3800 * already allocated, so unconditionally calling both 3801 * is safe. Intentionally do NOT free allocations on 3802 * failure to avoid having to track which allocations 3803 * were made now versus when the memslot was created. 3804 * The metadata is guaranteed to be freed when the slot 3805 * is freed, and will be kept/used if userspace retries 3806 * KVM_RUN instead of killing the VM. 3807 */ 3808 r = memslot_rmap_alloc(slot, slot->npages); 3809 if (r) 3810 goto out_unlock; 3811 r = kvm_page_track_write_tracking_alloc(slot); 3812 if (r) 3813 goto out_unlock; 3814 } 3815 } 3816 3817 /* 3818 * Ensure that shadow_root_allocated becomes true strictly after 3819 * all the related pointers are set. 3820 */ 3821 out_success: 3822 smp_store_release(&kvm->arch.shadow_root_allocated, true); 3823 3824 out_unlock: 3825 mutex_unlock(&kvm->slots_arch_lock); 3826 return r; 3827 } 3828 3829 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) 3830 { 3831 struct kvm_mmu *mmu = vcpu->arch.mmu; 3832 u64 pdptrs[4], pm_mask; 3833 gfn_t root_gfn, root_pgd; 3834 int quadrant, i, r; 3835 hpa_t root; 3836 3837 root_pgd = kvm_mmu_get_guest_pgd(vcpu, mmu); 3838 root_gfn = (root_pgd & __PT_BASE_ADDR_MASK) >> PAGE_SHIFT; 3839 3840 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) { 3841 mmu->root.hpa = kvm_mmu_get_dummy_root(); 3842 return 0; 3843 } 3844 3845 /* 3846 * On SVM, reading PDPTRs might access guest memory, which might fault 3847 * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock. 3848 */ 3849 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { 3850 for (i = 0; i < 4; ++i) { 3851 pdptrs[i] = mmu->get_pdptr(vcpu, i); 3852 if (!(pdptrs[i] & PT_PRESENT_MASK)) 3853 continue; 3854 3855 if (!kvm_vcpu_is_visible_gfn(vcpu, pdptrs[i] >> PAGE_SHIFT)) 3856 pdptrs[i] = 0; 3857 } 3858 } 3859 3860 r = mmu_first_shadow_root_alloc(vcpu->kvm); 3861 if (r) 3862 return r; 3863 3864 write_lock(&vcpu->kvm->mmu_lock); 3865 r = make_mmu_pages_available(vcpu); 3866 if (r < 0) 3867 goto out_unlock; 3868 3869 /* 3870 * Do we shadow a long mode page table? If so we need to 3871 * write-protect the guests page table root. 3872 */ 3873 if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { 3874 root = mmu_alloc_root(vcpu, root_gfn, 0, 3875 mmu->root_role.level); 3876 mmu->root.hpa = root; 3877 goto set_root_pgd; 3878 } 3879 3880 if (WARN_ON_ONCE(!mmu->pae_root)) { 3881 r = -EIO; 3882 goto out_unlock; 3883 } 3884 3885 /* 3886 * We shadow a 32 bit page table. This may be a legacy 2-level 3887 * or a PAE 3-level page table. In either case we need to be aware that 3888 * the shadow page table may be a PAE or a long mode page table. 3889 */ 3890 pm_mask = PT_PRESENT_MASK | shadow_me_value; 3891 if (mmu->root_role.level >= PT64_ROOT_4LEVEL) { 3892 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; 3893 3894 if (WARN_ON_ONCE(!mmu->pml4_root)) { 3895 r = -EIO; 3896 goto out_unlock; 3897 } 3898 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask; 3899 3900 if (mmu->root_role.level == PT64_ROOT_5LEVEL) { 3901 if (WARN_ON_ONCE(!mmu->pml5_root)) { 3902 r = -EIO; 3903 goto out_unlock; 3904 } 3905 mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask; 3906 } 3907 } 3908 3909 for (i = 0; i < 4; ++i) { 3910 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3911 3912 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { 3913 if (!(pdptrs[i] & PT_PRESENT_MASK)) { 3914 mmu->pae_root[i] = INVALID_PAE_ROOT; 3915 continue; 3916 } 3917 root_gfn = pdptrs[i] >> PAGE_SHIFT; 3918 } 3919 3920 /* 3921 * If shadowing 32-bit non-PAE page tables, each PAE page 3922 * directory maps one quarter of the guest's non-PAE page 3923 * directory. Othwerise each PAE page direct shadows one guest 3924 * PAE page directory so that quadrant should be 0. 3925 */ 3926 quadrant = (mmu->cpu_role.base.level == PT32_ROOT_LEVEL) ? i : 0; 3927 3928 root = mmu_alloc_root(vcpu, root_gfn, quadrant, PT32_ROOT_LEVEL); 3929 mmu->pae_root[i] = root | pm_mask; 3930 } 3931 3932 if (mmu->root_role.level == PT64_ROOT_5LEVEL) 3933 mmu->root.hpa = __pa(mmu->pml5_root); 3934 else if (mmu->root_role.level == PT64_ROOT_4LEVEL) 3935 mmu->root.hpa = __pa(mmu->pml4_root); 3936 else 3937 mmu->root.hpa = __pa(mmu->pae_root); 3938 3939 set_root_pgd: 3940 mmu->root.pgd = root_pgd; 3941 out_unlock: 3942 write_unlock(&vcpu->kvm->mmu_lock); 3943 3944 return r; 3945 } 3946 3947 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu) 3948 { 3949 struct kvm_mmu *mmu = vcpu->arch.mmu; 3950 bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL; 3951 u64 *pml5_root = NULL; 3952 u64 *pml4_root = NULL; 3953 u64 *pae_root; 3954 3955 /* 3956 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP 3957 * tables are allocated and initialized at root creation as there is no 3958 * equivalent level in the guest's NPT to shadow. Allocate the tables 3959 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare. 3960 */ 3961 if (mmu->root_role.direct || 3962 mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL || 3963 mmu->root_role.level < PT64_ROOT_4LEVEL) 3964 return 0; 3965 3966 /* 3967 * NPT, the only paging mode that uses this horror, uses a fixed number 3968 * of levels for the shadow page tables, e.g. all MMUs are 4-level or 3969 * all MMus are 5-level. Thus, this can safely require that pml5_root 3970 * is allocated if the other roots are valid and pml5 is needed, as any 3971 * prior MMU would also have required pml5. 3972 */ 3973 if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root)) 3974 return 0; 3975 3976 /* 3977 * The special roots should always be allocated in concert. Yell and 3978 * bail if KVM ends up in a state where only one of the roots is valid. 3979 */ 3980 if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root || 3981 (need_pml5 && mmu->pml5_root))) 3982 return -EIO; 3983 3984 /* 3985 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and 3986 * doesn't need to be decrypted. 3987 */ 3988 pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3989 if (!pae_root) 3990 return -ENOMEM; 3991 3992 #ifdef CONFIG_X86_64 3993 pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3994 if (!pml4_root) 3995 goto err_pml4; 3996 3997 if (need_pml5) { 3998 pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3999 if (!pml5_root) 4000 goto err_pml5; 4001 } 4002 #endif 4003 4004 mmu->pae_root = pae_root; 4005 mmu->pml4_root = pml4_root; 4006 mmu->pml5_root = pml5_root; 4007 4008 return 0; 4009 4010 #ifdef CONFIG_X86_64 4011 err_pml5: 4012 free_page((unsigned long)pml4_root); 4013 err_pml4: 4014 free_page((unsigned long)pae_root); 4015 return -ENOMEM; 4016 #endif 4017 } 4018 4019 static bool is_unsync_root(hpa_t root) 4020 { 4021 struct kvm_mmu_page *sp; 4022 4023 if (!VALID_PAGE(root) || kvm_mmu_is_dummy_root(root)) 4024 return false; 4025 4026 /* 4027 * The read barrier orders the CPU's read of SPTE.W during the page table 4028 * walk before the reads of sp->unsync/sp->unsync_children here. 4029 * 4030 * Even if another CPU was marking the SP as unsync-ed simultaneously, 4031 * any guest page table changes are not guaranteed to be visible anyway 4032 * until this VCPU issues a TLB flush strictly after those changes are 4033 * made. We only need to ensure that the other CPU sets these flags 4034 * before any actual changes to the page tables are made. The comments 4035 * in mmu_try_to_unsync_pages() describe what could go wrong if this 4036 * requirement isn't satisfied. 4037 */ 4038 smp_rmb(); 4039 sp = root_to_sp(root); 4040 4041 /* 4042 * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the 4043 * PDPTEs for a given PAE root need to be synchronized individually. 4044 */ 4045 if (WARN_ON_ONCE(!sp)) 4046 return false; 4047 4048 if (sp->unsync || sp->unsync_children) 4049 return true; 4050 4051 return false; 4052 } 4053 4054 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) 4055 { 4056 int i; 4057 struct kvm_mmu_page *sp; 4058 4059 if (vcpu->arch.mmu->root_role.direct) 4060 return; 4061 4062 if (!VALID_PAGE(vcpu->arch.mmu->root.hpa)) 4063 return; 4064 4065 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 4066 4067 if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { 4068 hpa_t root = vcpu->arch.mmu->root.hpa; 4069 4070 if (!is_unsync_root(root)) 4071 return; 4072 4073 sp = root_to_sp(root); 4074 4075 write_lock(&vcpu->kvm->mmu_lock); 4076 mmu_sync_children(vcpu, sp, true); 4077 write_unlock(&vcpu->kvm->mmu_lock); 4078 return; 4079 } 4080 4081 write_lock(&vcpu->kvm->mmu_lock); 4082 4083 for (i = 0; i < 4; ++i) { 4084 hpa_t root = vcpu->arch.mmu->pae_root[i]; 4085 4086 if (IS_VALID_PAE_ROOT(root)) { 4087 sp = spte_to_child_sp(root); 4088 mmu_sync_children(vcpu, sp, true); 4089 } 4090 } 4091 4092 write_unlock(&vcpu->kvm->mmu_lock); 4093 } 4094 4095 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu) 4096 { 4097 unsigned long roots_to_free = 0; 4098 int i; 4099 4100 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 4101 if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa)) 4102 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 4103 4104 /* sync prev_roots by simply freeing them */ 4105 kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free); 4106 } 4107 4108 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 4109 gpa_t vaddr, u64 access, 4110 struct x86_exception *exception) 4111 { 4112 if (exception) 4113 exception->error_code = 0; 4114 return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception); 4115 } 4116 4117 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct) 4118 { 4119 /* 4120 * A nested guest cannot use the MMIO cache if it is using nested 4121 * page tables, because cr2 is a nGPA while the cache stores GPAs. 4122 */ 4123 if (mmu_is_nested(vcpu)) 4124 return false; 4125 4126 if (direct) 4127 return vcpu_match_mmio_gpa(vcpu, addr); 4128 4129 return vcpu_match_mmio_gva(vcpu, addr); 4130 } 4131 4132 /* 4133 * Return the level of the lowest level SPTE added to sptes. 4134 * That SPTE may be non-present. 4135 * 4136 * Must be called between walk_shadow_page_lockless_{begin,end}. 4137 */ 4138 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level) 4139 { 4140 struct kvm_shadow_walk_iterator iterator; 4141 int leaf = -1; 4142 u64 spte; 4143 4144 for (shadow_walk_init(&iterator, vcpu, addr), 4145 *root_level = iterator.level; 4146 shadow_walk_okay(&iterator); 4147 __shadow_walk_next(&iterator, spte)) { 4148 leaf = iterator.level; 4149 spte = mmu_spte_get_lockless(iterator.sptep); 4150 4151 sptes[leaf] = spte; 4152 } 4153 4154 return leaf; 4155 } 4156 4157 static int get_sptes_lockless(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, 4158 int *root_level) 4159 { 4160 int leaf; 4161 4162 walk_shadow_page_lockless_begin(vcpu); 4163 4164 if (is_tdp_mmu_active(vcpu)) 4165 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, root_level); 4166 else 4167 leaf = get_walk(vcpu, addr, sptes, root_level); 4168 4169 walk_shadow_page_lockless_end(vcpu); 4170 return leaf; 4171 } 4172 4173 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */ 4174 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) 4175 { 4176 u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; 4177 struct rsvd_bits_validate *rsvd_check; 4178 int root, leaf, level; 4179 bool reserved = false; 4180 4181 leaf = get_sptes_lockless(vcpu, addr, sptes, &root); 4182 if (unlikely(leaf < 0)) { 4183 *sptep = 0ull; 4184 return reserved; 4185 } 4186 4187 *sptep = sptes[leaf]; 4188 4189 /* 4190 * Skip reserved bits checks on the terminal leaf if it's not a valid 4191 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by 4192 * design, always have reserved bits set. The purpose of the checks is 4193 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs. 4194 */ 4195 if (!is_shadow_present_pte(sptes[leaf])) 4196 leaf++; 4197 4198 rsvd_check = &vcpu->arch.mmu->shadow_zero_check; 4199 4200 for (level = root; level >= leaf; level--) 4201 reserved |= is_rsvd_spte(rsvd_check, sptes[level], level); 4202 4203 if (reserved) { 4204 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n", 4205 __func__, addr); 4206 for (level = root; level >= leaf; level--) 4207 pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx", 4208 sptes[level], level, 4209 get_rsvd_bits(rsvd_check, sptes[level], level)); 4210 } 4211 4212 return reserved; 4213 } 4214 4215 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct) 4216 { 4217 u64 spte; 4218 bool reserved; 4219 4220 if (mmio_info_in_cache(vcpu, addr, direct)) 4221 return RET_PF_EMULATE; 4222 4223 reserved = get_mmio_spte(vcpu, addr, &spte); 4224 if (WARN_ON_ONCE(reserved)) 4225 return -EINVAL; 4226 4227 if (is_mmio_spte(vcpu->kvm, spte)) { 4228 gfn_t gfn = get_mmio_spte_gfn(spte); 4229 unsigned int access = get_mmio_spte_access(spte); 4230 4231 if (!check_mmio_spte(vcpu, spte)) 4232 return RET_PF_INVALID; 4233 4234 if (direct) 4235 addr = 0; 4236 4237 trace_handle_mmio_page_fault(addr, gfn, access); 4238 vcpu_cache_mmio_info(vcpu, addr, gfn, access); 4239 return RET_PF_EMULATE; 4240 } 4241 4242 /* 4243 * If the page table is zapped by other cpus, let CPU fault again on 4244 * the address. 4245 */ 4246 return RET_PF_RETRY; 4247 } 4248 4249 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu, 4250 struct kvm_page_fault *fault) 4251 { 4252 if (unlikely(fault->rsvd)) 4253 return false; 4254 4255 if (!fault->present || !fault->write) 4256 return false; 4257 4258 /* 4259 * guest is writing the page which is write tracked which can 4260 * not be fixed by page fault handler. 4261 */ 4262 if (kvm_gfn_is_write_tracked(vcpu->kvm, fault->slot, fault->gfn)) 4263 return true; 4264 4265 return false; 4266 } 4267 4268 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr) 4269 { 4270 struct kvm_shadow_walk_iterator iterator; 4271 u64 spte; 4272 4273 walk_shadow_page_lockless_begin(vcpu); 4274 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) 4275 clear_sp_write_flooding_count(iterator.sptep); 4276 walk_shadow_page_lockless_end(vcpu); 4277 } 4278 4279 static u32 alloc_apf_token(struct kvm_vcpu *vcpu) 4280 { 4281 /* make sure the token value is not 0 */ 4282 u32 id = vcpu->arch.apf.id; 4283 4284 if (id << 12 == 0) 4285 vcpu->arch.apf.id = 1; 4286 4287 return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; 4288 } 4289 4290 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, 4291 struct kvm_page_fault *fault) 4292 { 4293 struct kvm_arch_async_pf arch; 4294 4295 arch.token = alloc_apf_token(vcpu); 4296 arch.gfn = fault->gfn; 4297 arch.error_code = fault->error_code; 4298 arch.direct_map = vcpu->arch.mmu->root_role.direct; 4299 arch.cr3 = kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu); 4300 4301 return kvm_setup_async_pf(vcpu, fault->addr, 4302 kvm_vcpu_gfn_to_hva(vcpu, fault->gfn), &arch); 4303 } 4304 4305 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 4306 { 4307 int r; 4308 4309 if (WARN_ON_ONCE(work->arch.error_code & PFERR_PRIVATE_ACCESS)) 4310 return; 4311 4312 if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) || 4313 work->wakeup_all) 4314 return; 4315 4316 r = kvm_mmu_reload(vcpu); 4317 if (unlikely(r)) 4318 return; 4319 4320 if (!vcpu->arch.mmu->root_role.direct && 4321 work->arch.cr3 != kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu)) 4322 return; 4323 4324 r = kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, work->arch.error_code, 4325 true, NULL, NULL); 4326 4327 /* 4328 * Account fixed page faults, otherwise they'll never be counted, but 4329 * ignore stats for all other return times. Page-ready "faults" aren't 4330 * truly spurious and never trigger emulation 4331 */ 4332 if (r == RET_PF_FIXED) 4333 vcpu->stat.pf_fixed++; 4334 } 4335 4336 static inline u8 kvm_max_level_for_order(int order) 4337 { 4338 BUILD_BUG_ON(KVM_MAX_HUGEPAGE_LEVEL > PG_LEVEL_1G); 4339 4340 KVM_MMU_WARN_ON(order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G) && 4341 order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M) && 4342 order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K)); 4343 4344 if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G)) 4345 return PG_LEVEL_1G; 4346 4347 if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M)) 4348 return PG_LEVEL_2M; 4349 4350 return PG_LEVEL_4K; 4351 } 4352 4353 static u8 kvm_max_private_mapping_level(struct kvm *kvm, kvm_pfn_t pfn, 4354 u8 max_level, int gmem_order) 4355 { 4356 u8 req_max_level; 4357 4358 if (max_level == PG_LEVEL_4K) 4359 return PG_LEVEL_4K; 4360 4361 max_level = min(kvm_max_level_for_order(gmem_order), max_level); 4362 if (max_level == PG_LEVEL_4K) 4363 return PG_LEVEL_4K; 4364 4365 req_max_level = kvm_x86_call(private_max_mapping_level)(kvm, pfn); 4366 if (req_max_level) 4367 max_level = min(max_level, req_max_level); 4368 4369 return max_level; 4370 } 4371 4372 static int kvm_faultin_pfn_private(struct kvm_vcpu *vcpu, 4373 struct kvm_page_fault *fault) 4374 { 4375 int max_order, r; 4376 4377 if (!kvm_slot_can_be_private(fault->slot)) { 4378 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 4379 return -EFAULT; 4380 } 4381 4382 r = kvm_gmem_get_pfn(vcpu->kvm, fault->slot, fault->gfn, &fault->pfn, 4383 &max_order); 4384 if (r) { 4385 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 4386 return r; 4387 } 4388 4389 fault->map_writable = !(fault->slot->flags & KVM_MEM_READONLY); 4390 fault->max_level = kvm_max_private_mapping_level(vcpu->kvm, fault->pfn, 4391 fault->max_level, max_order); 4392 4393 return RET_PF_CONTINUE; 4394 } 4395 4396 static int __kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4397 { 4398 bool async; 4399 4400 if (fault->is_private) 4401 return kvm_faultin_pfn_private(vcpu, fault); 4402 4403 async = false; 4404 fault->pfn = __gfn_to_pfn_memslot(fault->slot, fault->gfn, false, false, 4405 &async, fault->write, 4406 &fault->map_writable, &fault->hva); 4407 if (!async) 4408 return RET_PF_CONTINUE; /* *pfn has correct page already */ 4409 4410 if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) { 4411 trace_kvm_try_async_get_page(fault->addr, fault->gfn); 4412 if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) { 4413 trace_kvm_async_pf_repeated_fault(fault->addr, fault->gfn); 4414 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 4415 return RET_PF_RETRY; 4416 } else if (kvm_arch_setup_async_pf(vcpu, fault)) { 4417 return RET_PF_RETRY; 4418 } 4419 } 4420 4421 /* 4422 * Allow gup to bail on pending non-fatal signals when it's also allowed 4423 * to wait for IO. Note, gup always bails if it is unable to quickly 4424 * get a page and a fatal signal, i.e. SIGKILL, is pending. 4425 */ 4426 fault->pfn = __gfn_to_pfn_memslot(fault->slot, fault->gfn, false, true, 4427 NULL, fault->write, 4428 &fault->map_writable, &fault->hva); 4429 return RET_PF_CONTINUE; 4430 } 4431 4432 static int kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, 4433 unsigned int access) 4434 { 4435 struct kvm_memory_slot *slot = fault->slot; 4436 int ret; 4437 4438 /* 4439 * Note that the mmu_invalidate_seq also serves to detect a concurrent 4440 * change in attributes. is_page_fault_stale() will detect an 4441 * invalidation relate to fault->fn and resume the guest without 4442 * installing a mapping in the page tables. 4443 */ 4444 fault->mmu_seq = vcpu->kvm->mmu_invalidate_seq; 4445 smp_rmb(); 4446 4447 /* 4448 * Now that we have a snapshot of mmu_invalidate_seq we can check for a 4449 * private vs. shared mismatch. 4450 */ 4451 if (fault->is_private != kvm_mem_is_private(vcpu->kvm, fault->gfn)) { 4452 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 4453 return -EFAULT; 4454 } 4455 4456 if (unlikely(!slot)) 4457 return kvm_handle_noslot_fault(vcpu, fault, access); 4458 4459 /* 4460 * Retry the page fault if the gfn hit a memslot that is being deleted 4461 * or moved. This ensures any existing SPTEs for the old memslot will 4462 * be zapped before KVM inserts a new MMIO SPTE for the gfn. 4463 */ 4464 if (slot->flags & KVM_MEMSLOT_INVALID) 4465 return RET_PF_RETRY; 4466 4467 if (slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT) { 4468 /* 4469 * Don't map L1's APIC access page into L2, KVM doesn't support 4470 * using APICv/AVIC to accelerate L2 accesses to L1's APIC, 4471 * i.e. the access needs to be emulated. Emulating access to 4472 * L1's APIC is also correct if L1 is accelerating L2's own 4473 * virtual APIC, but for some reason L1 also maps _L1's_ APIC 4474 * into L2. Note, vcpu_is_mmio_gpa() always treats access to 4475 * the APIC as MMIO. Allow an MMIO SPTE to be created, as KVM 4476 * uses different roots for L1 vs. L2, i.e. there is no danger 4477 * of breaking APICv/AVIC for L1. 4478 */ 4479 if (is_guest_mode(vcpu)) 4480 return kvm_handle_noslot_fault(vcpu, fault, access); 4481 4482 /* 4483 * If the APIC access page exists but is disabled, go directly 4484 * to emulation without caching the MMIO access or creating a 4485 * MMIO SPTE. That way the cache doesn't need to be purged 4486 * when the AVIC is re-enabled. 4487 */ 4488 if (!kvm_apicv_activated(vcpu->kvm)) 4489 return RET_PF_EMULATE; 4490 } 4491 4492 /* 4493 * Check for a relevant mmu_notifier invalidation event before getting 4494 * the pfn from the primary MMU, and before acquiring mmu_lock. 4495 * 4496 * For mmu_lock, if there is an in-progress invalidation and the kernel 4497 * allows preemption, the invalidation task may drop mmu_lock and yield 4498 * in response to mmu_lock being contended, which is *very* counter- 4499 * productive as this vCPU can't actually make forward progress until 4500 * the invalidation completes. 4501 * 4502 * Retrying now can also avoid unnessary lock contention in the primary 4503 * MMU, as the primary MMU doesn't necessarily hold a single lock for 4504 * the duration of the invalidation, i.e. faulting in a conflicting pfn 4505 * can cause the invalidation to take longer by holding locks that are 4506 * needed to complete the invalidation. 4507 * 4508 * Do the pre-check even for non-preemtible kernels, i.e. even if KVM 4509 * will never yield mmu_lock in response to contention, as this vCPU is 4510 * *guaranteed* to need to retry, i.e. waiting until mmu_lock is held 4511 * to detect retry guarantees the worst case latency for the vCPU. 4512 */ 4513 if (mmu_invalidate_retry_gfn_unsafe(vcpu->kvm, fault->mmu_seq, fault->gfn)) 4514 return RET_PF_RETRY; 4515 4516 ret = __kvm_faultin_pfn(vcpu, fault); 4517 if (ret != RET_PF_CONTINUE) 4518 return ret; 4519 4520 if (unlikely(is_error_pfn(fault->pfn))) 4521 return kvm_handle_error_pfn(vcpu, fault); 4522 4523 if (WARN_ON_ONCE(!fault->slot || is_noslot_pfn(fault->pfn))) 4524 return kvm_handle_noslot_fault(vcpu, fault, access); 4525 4526 /* 4527 * Check again for a relevant mmu_notifier invalidation event purely to 4528 * avoid contending mmu_lock. Most invalidations will be detected by 4529 * the previous check, but checking is extremely cheap relative to the 4530 * overall cost of failing to detect the invalidation until after 4531 * mmu_lock is acquired. 4532 */ 4533 if (mmu_invalidate_retry_gfn_unsafe(vcpu->kvm, fault->mmu_seq, fault->gfn)) { 4534 kvm_release_pfn_clean(fault->pfn); 4535 return RET_PF_RETRY; 4536 } 4537 4538 return RET_PF_CONTINUE; 4539 } 4540 4541 /* 4542 * Returns true if the page fault is stale and needs to be retried, i.e. if the 4543 * root was invalidated by a memslot update or a relevant mmu_notifier fired. 4544 */ 4545 static bool is_page_fault_stale(struct kvm_vcpu *vcpu, 4546 struct kvm_page_fault *fault) 4547 { 4548 struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa); 4549 4550 /* Special roots, e.g. pae_root, are not backed by shadow pages. */ 4551 if (sp && is_obsolete_sp(vcpu->kvm, sp)) 4552 return true; 4553 4554 /* 4555 * Roots without an associated shadow page are considered invalid if 4556 * there is a pending request to free obsolete roots. The request is 4557 * only a hint that the current root _may_ be obsolete and needs to be 4558 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a 4559 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs 4560 * to reload even if no vCPU is actively using the root. 4561 */ 4562 if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 4563 return true; 4564 4565 /* 4566 * Check for a relevant mmu_notifier invalidation event one last time 4567 * now that mmu_lock is held, as the "unsafe" checks performed without 4568 * holding mmu_lock can get false negatives. 4569 */ 4570 return fault->slot && 4571 mmu_invalidate_retry_gfn(vcpu->kvm, fault->mmu_seq, fault->gfn); 4572 } 4573 4574 static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4575 { 4576 int r; 4577 4578 /* Dummy roots are used only for shadowing bad guest roots. */ 4579 if (WARN_ON_ONCE(kvm_mmu_is_dummy_root(vcpu->arch.mmu->root.hpa))) 4580 return RET_PF_RETRY; 4581 4582 if (page_fault_handle_page_track(vcpu, fault)) 4583 return RET_PF_WRITE_PROTECTED; 4584 4585 r = fast_page_fault(vcpu, fault); 4586 if (r != RET_PF_INVALID) 4587 return r; 4588 4589 r = mmu_topup_memory_caches(vcpu, false); 4590 if (r) 4591 return r; 4592 4593 r = kvm_faultin_pfn(vcpu, fault, ACC_ALL); 4594 if (r != RET_PF_CONTINUE) 4595 return r; 4596 4597 r = RET_PF_RETRY; 4598 write_lock(&vcpu->kvm->mmu_lock); 4599 4600 if (is_page_fault_stale(vcpu, fault)) 4601 goto out_unlock; 4602 4603 r = make_mmu_pages_available(vcpu); 4604 if (r) 4605 goto out_unlock; 4606 4607 r = direct_map(vcpu, fault); 4608 4609 out_unlock: 4610 write_unlock(&vcpu->kvm->mmu_lock); 4611 kvm_release_pfn_clean(fault->pfn); 4612 return r; 4613 } 4614 4615 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, 4616 struct kvm_page_fault *fault) 4617 { 4618 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */ 4619 fault->max_level = PG_LEVEL_2M; 4620 return direct_page_fault(vcpu, fault); 4621 } 4622 4623 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, 4624 u64 fault_address, char *insn, int insn_len) 4625 { 4626 int r = 1; 4627 u32 flags = vcpu->arch.apf.host_apf_flags; 4628 4629 #ifndef CONFIG_X86_64 4630 /* A 64-bit CR2 should be impossible on 32-bit KVM. */ 4631 if (WARN_ON_ONCE(fault_address >> 32)) 4632 return -EFAULT; 4633 #endif 4634 /* 4635 * Legacy #PF exception only have a 32-bit error code. Simply drop the 4636 * upper bits as KVM doesn't use them for #PF (because they are never 4637 * set), and to ensure there are no collisions with KVM-defined bits. 4638 */ 4639 if (WARN_ON_ONCE(error_code >> 32)) 4640 error_code = lower_32_bits(error_code); 4641 4642 /* 4643 * Restrict KVM-defined flags to bits 63:32 so that it's impossible for 4644 * them to conflict with #PF error codes, which are limited to 32 bits. 4645 */ 4646 BUILD_BUG_ON(lower_32_bits(PFERR_SYNTHETIC_MASK)); 4647 4648 vcpu->arch.l1tf_flush_l1d = true; 4649 if (!flags) { 4650 trace_kvm_page_fault(vcpu, fault_address, error_code); 4651 4652 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn, 4653 insn_len); 4654 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) { 4655 vcpu->arch.apf.host_apf_flags = 0; 4656 local_irq_disable(); 4657 kvm_async_pf_task_wait_schedule(fault_address); 4658 local_irq_enable(); 4659 } else { 4660 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags); 4661 } 4662 4663 return r; 4664 } 4665 EXPORT_SYMBOL_GPL(kvm_handle_page_fault); 4666 4667 #ifdef CONFIG_X86_64 4668 static int kvm_tdp_mmu_page_fault(struct kvm_vcpu *vcpu, 4669 struct kvm_page_fault *fault) 4670 { 4671 int r; 4672 4673 if (page_fault_handle_page_track(vcpu, fault)) 4674 return RET_PF_WRITE_PROTECTED; 4675 4676 r = fast_page_fault(vcpu, fault); 4677 if (r != RET_PF_INVALID) 4678 return r; 4679 4680 r = mmu_topup_memory_caches(vcpu, false); 4681 if (r) 4682 return r; 4683 4684 r = kvm_faultin_pfn(vcpu, fault, ACC_ALL); 4685 if (r != RET_PF_CONTINUE) 4686 return r; 4687 4688 r = RET_PF_RETRY; 4689 read_lock(&vcpu->kvm->mmu_lock); 4690 4691 if (is_page_fault_stale(vcpu, fault)) 4692 goto out_unlock; 4693 4694 r = kvm_tdp_mmu_map(vcpu, fault); 4695 4696 out_unlock: 4697 read_unlock(&vcpu->kvm->mmu_lock); 4698 kvm_release_pfn_clean(fault->pfn); 4699 return r; 4700 } 4701 #endif 4702 4703 bool kvm_mmu_may_ignore_guest_pat(void) 4704 { 4705 /* 4706 * When EPT is enabled (shadow_memtype_mask is non-zero), and the VM 4707 * has non-coherent DMA (DMA doesn't snoop CPU caches), KVM's ABI is to 4708 * honor the memtype from the guest's PAT so that guest accesses to 4709 * memory that is DMA'd aren't cached against the guest's wishes. As a 4710 * result, KVM _may_ ignore guest PAT, whereas without non-coherent DMA, 4711 * KVM _always_ ignores guest PAT (when EPT is enabled). 4712 */ 4713 return shadow_memtype_mask; 4714 } 4715 4716 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4717 { 4718 #ifdef CONFIG_X86_64 4719 if (tdp_mmu_enabled) 4720 return kvm_tdp_mmu_page_fault(vcpu, fault); 4721 #endif 4722 4723 return direct_page_fault(vcpu, fault); 4724 } 4725 4726 static int kvm_tdp_map_page(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code, 4727 u8 *level) 4728 { 4729 int r; 4730 4731 /* 4732 * Restrict to TDP page fault, since that's the only case where the MMU 4733 * is indexed by GPA. 4734 */ 4735 if (vcpu->arch.mmu->page_fault != kvm_tdp_page_fault) 4736 return -EOPNOTSUPP; 4737 4738 do { 4739 if (signal_pending(current)) 4740 return -EINTR; 4741 cond_resched(); 4742 r = kvm_mmu_do_page_fault(vcpu, gpa, error_code, true, NULL, level); 4743 } while (r == RET_PF_RETRY); 4744 4745 if (r < 0) 4746 return r; 4747 4748 switch (r) { 4749 case RET_PF_FIXED: 4750 case RET_PF_SPURIOUS: 4751 case RET_PF_WRITE_PROTECTED: 4752 return 0; 4753 4754 case RET_PF_EMULATE: 4755 return -ENOENT; 4756 4757 case RET_PF_RETRY: 4758 case RET_PF_CONTINUE: 4759 case RET_PF_INVALID: 4760 default: 4761 WARN_ONCE(1, "could not fix page fault during prefault"); 4762 return -EIO; 4763 } 4764 } 4765 4766 long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu, 4767 struct kvm_pre_fault_memory *range) 4768 { 4769 u64 error_code = PFERR_GUEST_FINAL_MASK; 4770 u8 level = PG_LEVEL_4K; 4771 u64 end; 4772 int r; 4773 4774 if (!vcpu->kvm->arch.pre_fault_allowed) 4775 return -EOPNOTSUPP; 4776 4777 /* 4778 * reload is efficient when called repeatedly, so we can do it on 4779 * every iteration. 4780 */ 4781 r = kvm_mmu_reload(vcpu); 4782 if (r) 4783 return r; 4784 4785 if (kvm_arch_has_private_mem(vcpu->kvm) && 4786 kvm_mem_is_private(vcpu->kvm, gpa_to_gfn(range->gpa))) 4787 error_code |= PFERR_PRIVATE_ACCESS; 4788 4789 /* 4790 * Shadow paging uses GVA for kvm page fault, so restrict to 4791 * two-dimensional paging. 4792 */ 4793 r = kvm_tdp_map_page(vcpu, range->gpa, error_code, &level); 4794 if (r < 0) 4795 return r; 4796 4797 /* 4798 * If the mapping that covers range->gpa can use a huge page, it 4799 * may start below it or end after range->gpa + range->size. 4800 */ 4801 end = (range->gpa & KVM_HPAGE_MASK(level)) + KVM_HPAGE_SIZE(level); 4802 return min(range->size, end - range->gpa); 4803 } 4804 4805 static void nonpaging_init_context(struct kvm_mmu *context) 4806 { 4807 context->page_fault = nonpaging_page_fault; 4808 context->gva_to_gpa = nonpaging_gva_to_gpa; 4809 context->sync_spte = NULL; 4810 } 4811 4812 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd, 4813 union kvm_mmu_page_role role) 4814 { 4815 struct kvm_mmu_page *sp; 4816 4817 if (!VALID_PAGE(root->hpa)) 4818 return false; 4819 4820 if (!role.direct && pgd != root->pgd) 4821 return false; 4822 4823 sp = root_to_sp(root->hpa); 4824 if (WARN_ON_ONCE(!sp)) 4825 return false; 4826 4827 return role.word == sp->role.word; 4828 } 4829 4830 /* 4831 * Find out if a previously cached root matching the new pgd/role is available, 4832 * and insert the current root as the MRU in the cache. 4833 * If a matching root is found, it is assigned to kvm_mmu->root and 4834 * true is returned. 4835 * If no match is found, kvm_mmu->root is left invalid, the LRU root is 4836 * evicted to make room for the current root, and false is returned. 4837 */ 4838 static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu, 4839 gpa_t new_pgd, 4840 union kvm_mmu_page_role new_role) 4841 { 4842 uint i; 4843 4844 if (is_root_usable(&mmu->root, new_pgd, new_role)) 4845 return true; 4846 4847 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 4848 /* 4849 * The swaps end up rotating the cache like this: 4850 * C 0 1 2 3 (on entry to the function) 4851 * 0 C 1 2 3 4852 * 1 C 0 2 3 4853 * 2 C 0 1 3 4854 * 3 C 0 1 2 (on exit from the loop) 4855 */ 4856 swap(mmu->root, mmu->prev_roots[i]); 4857 if (is_root_usable(&mmu->root, new_pgd, new_role)) 4858 return true; 4859 } 4860 4861 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 4862 return false; 4863 } 4864 4865 /* 4866 * Find out if a previously cached root matching the new pgd/role is available. 4867 * On entry, mmu->root is invalid. 4868 * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry 4869 * of the cache becomes invalid, and true is returned. 4870 * If no match is found, kvm_mmu->root is left invalid and false is returned. 4871 */ 4872 static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu, 4873 gpa_t new_pgd, 4874 union kvm_mmu_page_role new_role) 4875 { 4876 uint i; 4877 4878 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 4879 if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role)) 4880 goto hit; 4881 4882 return false; 4883 4884 hit: 4885 swap(mmu->root, mmu->prev_roots[i]); 4886 /* Bubble up the remaining roots. */ 4887 for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++) 4888 mmu->prev_roots[i] = mmu->prev_roots[i + 1]; 4889 mmu->prev_roots[i].hpa = INVALID_PAGE; 4890 return true; 4891 } 4892 4893 static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu, 4894 gpa_t new_pgd, union kvm_mmu_page_role new_role) 4895 { 4896 /* 4897 * Limit reuse to 64-bit hosts+VMs without "special" roots in order to 4898 * avoid having to deal with PDPTEs and other complexities. 4899 */ 4900 if (VALID_PAGE(mmu->root.hpa) && !root_to_sp(mmu->root.hpa)) 4901 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 4902 4903 if (VALID_PAGE(mmu->root.hpa)) 4904 return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role); 4905 else 4906 return cached_root_find_without_current(kvm, mmu, new_pgd, new_role); 4907 } 4908 4909 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd) 4910 { 4911 struct kvm_mmu *mmu = vcpu->arch.mmu; 4912 union kvm_mmu_page_role new_role = mmu->root_role; 4913 4914 /* 4915 * Return immediately if no usable root was found, kvm_mmu_reload() 4916 * will establish a valid root prior to the next VM-Enter. 4917 */ 4918 if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role)) 4919 return; 4920 4921 /* 4922 * It's possible that the cached previous root page is obsolete because 4923 * of a change in the MMU generation number. However, changing the 4924 * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, 4925 * which will free the root set here and allocate a new one. 4926 */ 4927 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 4928 4929 if (force_flush_and_sync_on_reuse) { 4930 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 4931 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 4932 } 4933 4934 /* 4935 * The last MMIO access's GVA and GPA are cached in the VCPU. When 4936 * switching to a new CR3, that GVA->GPA mapping may no longer be 4937 * valid. So clear any cached MMIO info even when we don't need to sync 4938 * the shadow page tables. 4939 */ 4940 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 4941 4942 /* 4943 * If this is a direct root page, it doesn't have a write flooding 4944 * count. Otherwise, clear the write flooding count. 4945 */ 4946 if (!new_role.direct) { 4947 struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa); 4948 4949 if (!WARN_ON_ONCE(!sp)) 4950 __clear_sp_write_flooding_count(sp); 4951 } 4952 } 4953 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd); 4954 4955 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, 4956 unsigned int access) 4957 { 4958 if (unlikely(is_mmio_spte(vcpu->kvm, *sptep))) { 4959 if (gfn != get_mmio_spte_gfn(*sptep)) { 4960 mmu_spte_clear_no_track(sptep); 4961 return true; 4962 } 4963 4964 mark_mmio_spte(vcpu, sptep, gfn, access); 4965 return true; 4966 } 4967 4968 return false; 4969 } 4970 4971 #define PTTYPE_EPT 18 /* arbitrary */ 4972 #define PTTYPE PTTYPE_EPT 4973 #include "paging_tmpl.h" 4974 #undef PTTYPE 4975 4976 #define PTTYPE 64 4977 #include "paging_tmpl.h" 4978 #undef PTTYPE 4979 4980 #define PTTYPE 32 4981 #include "paging_tmpl.h" 4982 #undef PTTYPE 4983 4984 static void __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check, 4985 u64 pa_bits_rsvd, int level, bool nx, 4986 bool gbpages, bool pse, bool amd) 4987 { 4988 u64 gbpages_bit_rsvd = 0; 4989 u64 nonleaf_bit8_rsvd = 0; 4990 u64 high_bits_rsvd; 4991 4992 rsvd_check->bad_mt_xwr = 0; 4993 4994 if (!gbpages) 4995 gbpages_bit_rsvd = rsvd_bits(7, 7); 4996 4997 if (level == PT32E_ROOT_LEVEL) 4998 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62); 4999 else 5000 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 5001 5002 /* Note, NX doesn't exist in PDPTEs, this is handled below. */ 5003 if (!nx) 5004 high_bits_rsvd |= rsvd_bits(63, 63); 5005 5006 /* 5007 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for 5008 * leaf entries) on AMD CPUs only. 5009 */ 5010 if (amd) 5011 nonleaf_bit8_rsvd = rsvd_bits(8, 8); 5012 5013 switch (level) { 5014 case PT32_ROOT_LEVEL: 5015 /* no rsvd bits for 2 level 4K page table entries */ 5016 rsvd_check->rsvd_bits_mask[0][1] = 0; 5017 rsvd_check->rsvd_bits_mask[0][0] = 0; 5018 rsvd_check->rsvd_bits_mask[1][0] = 5019 rsvd_check->rsvd_bits_mask[0][0]; 5020 5021 if (!pse) { 5022 rsvd_check->rsvd_bits_mask[1][1] = 0; 5023 break; 5024 } 5025 5026 if (is_cpuid_PSE36()) 5027 /* 36bits PSE 4MB page */ 5028 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); 5029 else 5030 /* 32 bits PSE 4MB page */ 5031 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); 5032 break; 5033 case PT32E_ROOT_LEVEL: 5034 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) | 5035 high_bits_rsvd | 5036 rsvd_bits(5, 8) | 5037 rsvd_bits(1, 2); /* PDPTE */ 5038 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */ 5039 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */ 5040 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 5041 rsvd_bits(13, 20); /* large page */ 5042 rsvd_check->rsvd_bits_mask[1][0] = 5043 rsvd_check->rsvd_bits_mask[0][0]; 5044 break; 5045 case PT64_ROOT_5LEVEL: 5046 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | 5047 nonleaf_bit8_rsvd | 5048 rsvd_bits(7, 7); 5049 rsvd_check->rsvd_bits_mask[1][4] = 5050 rsvd_check->rsvd_bits_mask[0][4]; 5051 fallthrough; 5052 case PT64_ROOT_4LEVEL: 5053 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | 5054 nonleaf_bit8_rsvd | 5055 rsvd_bits(7, 7); 5056 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | 5057 gbpages_bit_rsvd; 5058 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; 5059 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 5060 rsvd_check->rsvd_bits_mask[1][3] = 5061 rsvd_check->rsvd_bits_mask[0][3]; 5062 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | 5063 gbpages_bit_rsvd | 5064 rsvd_bits(13, 29); 5065 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 5066 rsvd_bits(13, 20); /* large page */ 5067 rsvd_check->rsvd_bits_mask[1][0] = 5068 rsvd_check->rsvd_bits_mask[0][0]; 5069 break; 5070 } 5071 } 5072 5073 static void reset_guest_rsvds_bits_mask(struct kvm_vcpu *vcpu, 5074 struct kvm_mmu *context) 5075 { 5076 __reset_rsvds_bits_mask(&context->guest_rsvd_check, 5077 vcpu->arch.reserved_gpa_bits, 5078 context->cpu_role.base.level, is_efer_nx(context), 5079 guest_can_use(vcpu, X86_FEATURE_GBPAGES), 5080 is_cr4_pse(context), 5081 guest_cpuid_is_amd_compatible(vcpu)); 5082 } 5083 5084 static void __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check, 5085 u64 pa_bits_rsvd, bool execonly, 5086 int huge_page_level) 5087 { 5088 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 5089 u64 large_1g_rsvd = 0, large_2m_rsvd = 0; 5090 u64 bad_mt_xwr; 5091 5092 if (huge_page_level < PG_LEVEL_1G) 5093 large_1g_rsvd = rsvd_bits(7, 7); 5094 if (huge_page_level < PG_LEVEL_2M) 5095 large_2m_rsvd = rsvd_bits(7, 7); 5096 5097 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7); 5098 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7); 5099 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd; 5100 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd; 5101 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 5102 5103 /* large page */ 5104 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4]; 5105 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3]; 5106 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd; 5107 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd; 5108 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0]; 5109 5110 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */ 5111 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */ 5112 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */ 5113 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */ 5114 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */ 5115 if (!execonly) { 5116 /* bits 0..2 must not be 100 unless VMX capabilities allow it */ 5117 bad_mt_xwr |= REPEAT_BYTE(1ull << 4); 5118 } 5119 rsvd_check->bad_mt_xwr = bad_mt_xwr; 5120 } 5121 5122 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, 5123 struct kvm_mmu *context, bool execonly, int huge_page_level) 5124 { 5125 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check, 5126 vcpu->arch.reserved_gpa_bits, execonly, 5127 huge_page_level); 5128 } 5129 5130 static inline u64 reserved_hpa_bits(void) 5131 { 5132 return rsvd_bits(kvm_host.maxphyaddr, 63); 5133 } 5134 5135 /* 5136 * the page table on host is the shadow page table for the page 5137 * table in guest or amd nested guest, its mmu features completely 5138 * follow the features in guest. 5139 */ 5140 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 5141 struct kvm_mmu *context) 5142 { 5143 /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */ 5144 bool is_amd = true; 5145 /* KVM doesn't use 2-level page tables for the shadow MMU. */ 5146 bool is_pse = false; 5147 struct rsvd_bits_validate *shadow_zero_check; 5148 int i; 5149 5150 WARN_ON_ONCE(context->root_role.level < PT32E_ROOT_LEVEL); 5151 5152 shadow_zero_check = &context->shadow_zero_check; 5153 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 5154 context->root_role.level, 5155 context->root_role.efer_nx, 5156 guest_can_use(vcpu, X86_FEATURE_GBPAGES), 5157 is_pse, is_amd); 5158 5159 if (!shadow_me_mask) 5160 return; 5161 5162 for (i = context->root_role.level; --i >= 0;) { 5163 /* 5164 * So far shadow_me_value is a constant during KVM's life 5165 * time. Bits in shadow_me_value are allowed to be set. 5166 * Bits in shadow_me_mask but not in shadow_me_value are 5167 * not allowed to be set. 5168 */ 5169 shadow_zero_check->rsvd_bits_mask[0][i] |= shadow_me_mask; 5170 shadow_zero_check->rsvd_bits_mask[1][i] |= shadow_me_mask; 5171 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_value; 5172 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_value; 5173 } 5174 5175 } 5176 5177 static inline bool boot_cpu_is_amd(void) 5178 { 5179 WARN_ON_ONCE(!tdp_enabled); 5180 return shadow_x_mask == 0; 5181 } 5182 5183 /* 5184 * the direct page table on host, use as much mmu features as 5185 * possible, however, kvm currently does not do execution-protection. 5186 */ 5187 static void reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context) 5188 { 5189 struct rsvd_bits_validate *shadow_zero_check; 5190 int i; 5191 5192 shadow_zero_check = &context->shadow_zero_check; 5193 5194 if (boot_cpu_is_amd()) 5195 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 5196 context->root_role.level, true, 5197 boot_cpu_has(X86_FEATURE_GBPAGES), 5198 false, true); 5199 else 5200 __reset_rsvds_bits_mask_ept(shadow_zero_check, 5201 reserved_hpa_bits(), false, 5202 max_huge_page_level); 5203 5204 if (!shadow_me_mask) 5205 return; 5206 5207 for (i = context->root_role.level; --i >= 0;) { 5208 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 5209 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 5210 } 5211 } 5212 5213 /* 5214 * as the comments in reset_shadow_zero_bits_mask() except it 5215 * is the shadow page table for intel nested guest. 5216 */ 5217 static void 5218 reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly) 5219 { 5220 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check, 5221 reserved_hpa_bits(), execonly, 5222 max_huge_page_level); 5223 } 5224 5225 #define BYTE_MASK(access) \ 5226 ((1 & (access) ? 2 : 0) | \ 5227 (2 & (access) ? 4 : 0) | \ 5228 (3 & (access) ? 8 : 0) | \ 5229 (4 & (access) ? 16 : 0) | \ 5230 (5 & (access) ? 32 : 0) | \ 5231 (6 & (access) ? 64 : 0) | \ 5232 (7 & (access) ? 128 : 0)) 5233 5234 5235 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept) 5236 { 5237 unsigned byte; 5238 5239 const u8 x = BYTE_MASK(ACC_EXEC_MASK); 5240 const u8 w = BYTE_MASK(ACC_WRITE_MASK); 5241 const u8 u = BYTE_MASK(ACC_USER_MASK); 5242 5243 bool cr4_smep = is_cr4_smep(mmu); 5244 bool cr4_smap = is_cr4_smap(mmu); 5245 bool cr0_wp = is_cr0_wp(mmu); 5246 bool efer_nx = is_efer_nx(mmu); 5247 5248 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { 5249 unsigned pfec = byte << 1; 5250 5251 /* 5252 * Each "*f" variable has a 1 bit for each UWX value 5253 * that causes a fault with the given PFEC. 5254 */ 5255 5256 /* Faults from writes to non-writable pages */ 5257 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0; 5258 /* Faults from user mode accesses to supervisor pages */ 5259 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0; 5260 /* Faults from fetches of non-executable pages*/ 5261 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0; 5262 /* Faults from kernel mode fetches of user pages */ 5263 u8 smepf = 0; 5264 /* Faults from kernel mode accesses of user pages */ 5265 u8 smapf = 0; 5266 5267 if (!ept) { 5268 /* Faults from kernel mode accesses to user pages */ 5269 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u; 5270 5271 /* Not really needed: !nx will cause pte.nx to fault */ 5272 if (!efer_nx) 5273 ff = 0; 5274 5275 /* Allow supervisor writes if !cr0.wp */ 5276 if (!cr0_wp) 5277 wf = (pfec & PFERR_USER_MASK) ? wf : 0; 5278 5279 /* Disallow supervisor fetches of user code if cr4.smep */ 5280 if (cr4_smep) 5281 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0; 5282 5283 /* 5284 * SMAP:kernel-mode data accesses from user-mode 5285 * mappings should fault. A fault is considered 5286 * as a SMAP violation if all of the following 5287 * conditions are true: 5288 * - X86_CR4_SMAP is set in CR4 5289 * - A user page is accessed 5290 * - The access is not a fetch 5291 * - The access is supervisor mode 5292 * - If implicit supervisor access or X86_EFLAGS_AC is clear 5293 * 5294 * Here, we cover the first four conditions. 5295 * The fifth is computed dynamically in permission_fault(); 5296 * PFERR_RSVD_MASK bit will be set in PFEC if the access is 5297 * *not* subject to SMAP restrictions. 5298 */ 5299 if (cr4_smap) 5300 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf; 5301 } 5302 5303 mmu->permissions[byte] = ff | uf | wf | smepf | smapf; 5304 } 5305 } 5306 5307 /* 5308 * PKU is an additional mechanism by which the paging controls access to 5309 * user-mode addresses based on the value in the PKRU register. Protection 5310 * key violations are reported through a bit in the page fault error code. 5311 * Unlike other bits of the error code, the PK bit is not known at the 5312 * call site of e.g. gva_to_gpa; it must be computed directly in 5313 * permission_fault based on two bits of PKRU, on some machine state (CR4, 5314 * CR0, EFER, CPL), and on other bits of the error code and the page tables. 5315 * 5316 * In particular the following conditions come from the error code, the 5317 * page tables and the machine state: 5318 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1 5319 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch) 5320 * - PK is always zero if U=0 in the page tables 5321 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access. 5322 * 5323 * The PKRU bitmask caches the result of these four conditions. The error 5324 * code (minus the P bit) and the page table's U bit form an index into the 5325 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed 5326 * with the two bits of the PKRU register corresponding to the protection key. 5327 * For the first three conditions above the bits will be 00, thus masking 5328 * away both AD and WD. For all reads or if the last condition holds, WD 5329 * only will be masked away. 5330 */ 5331 static void update_pkru_bitmask(struct kvm_mmu *mmu) 5332 { 5333 unsigned bit; 5334 bool wp; 5335 5336 mmu->pkru_mask = 0; 5337 5338 if (!is_cr4_pke(mmu)) 5339 return; 5340 5341 wp = is_cr0_wp(mmu); 5342 5343 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) { 5344 unsigned pfec, pkey_bits; 5345 bool check_pkey, check_write, ff, uf, wf, pte_user; 5346 5347 pfec = bit << 1; 5348 ff = pfec & PFERR_FETCH_MASK; 5349 uf = pfec & PFERR_USER_MASK; 5350 wf = pfec & PFERR_WRITE_MASK; 5351 5352 /* PFEC.RSVD is replaced by ACC_USER_MASK. */ 5353 pte_user = pfec & PFERR_RSVD_MASK; 5354 5355 /* 5356 * Only need to check the access which is not an 5357 * instruction fetch and is to a user page. 5358 */ 5359 check_pkey = (!ff && pte_user); 5360 /* 5361 * write access is controlled by PKRU if it is a 5362 * user access or CR0.WP = 1. 5363 */ 5364 check_write = check_pkey && wf && (uf || wp); 5365 5366 /* PKRU.AD stops both read and write access. */ 5367 pkey_bits = !!check_pkey; 5368 /* PKRU.WD stops write access. */ 5369 pkey_bits |= (!!check_write) << 1; 5370 5371 mmu->pkru_mask |= (pkey_bits & 3) << pfec; 5372 } 5373 } 5374 5375 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu, 5376 struct kvm_mmu *mmu) 5377 { 5378 if (!is_cr0_pg(mmu)) 5379 return; 5380 5381 reset_guest_rsvds_bits_mask(vcpu, mmu); 5382 update_permission_bitmask(mmu, false); 5383 update_pkru_bitmask(mmu); 5384 } 5385 5386 static void paging64_init_context(struct kvm_mmu *context) 5387 { 5388 context->page_fault = paging64_page_fault; 5389 context->gva_to_gpa = paging64_gva_to_gpa; 5390 context->sync_spte = paging64_sync_spte; 5391 } 5392 5393 static void paging32_init_context(struct kvm_mmu *context) 5394 { 5395 context->page_fault = paging32_page_fault; 5396 context->gva_to_gpa = paging32_gva_to_gpa; 5397 context->sync_spte = paging32_sync_spte; 5398 } 5399 5400 static union kvm_cpu_role kvm_calc_cpu_role(struct kvm_vcpu *vcpu, 5401 const struct kvm_mmu_role_regs *regs) 5402 { 5403 union kvm_cpu_role role = {0}; 5404 5405 role.base.access = ACC_ALL; 5406 role.base.smm = is_smm(vcpu); 5407 role.base.guest_mode = is_guest_mode(vcpu); 5408 role.ext.valid = 1; 5409 5410 if (!____is_cr0_pg(regs)) { 5411 role.base.direct = 1; 5412 return role; 5413 } 5414 5415 role.base.efer_nx = ____is_efer_nx(regs); 5416 role.base.cr0_wp = ____is_cr0_wp(regs); 5417 role.base.smep_andnot_wp = ____is_cr4_smep(regs) && !____is_cr0_wp(regs); 5418 role.base.smap_andnot_wp = ____is_cr4_smap(regs) && !____is_cr0_wp(regs); 5419 role.base.has_4_byte_gpte = !____is_cr4_pae(regs); 5420 5421 if (____is_efer_lma(regs)) 5422 role.base.level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL 5423 : PT64_ROOT_4LEVEL; 5424 else if (____is_cr4_pae(regs)) 5425 role.base.level = PT32E_ROOT_LEVEL; 5426 else 5427 role.base.level = PT32_ROOT_LEVEL; 5428 5429 role.ext.cr4_smep = ____is_cr4_smep(regs); 5430 role.ext.cr4_smap = ____is_cr4_smap(regs); 5431 role.ext.cr4_pse = ____is_cr4_pse(regs); 5432 5433 /* PKEY and LA57 are active iff long mode is active. */ 5434 role.ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs); 5435 role.ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs); 5436 role.ext.efer_lma = ____is_efer_lma(regs); 5437 return role; 5438 } 5439 5440 void __kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu, 5441 struct kvm_mmu *mmu) 5442 { 5443 const bool cr0_wp = kvm_is_cr0_bit_set(vcpu, X86_CR0_WP); 5444 5445 BUILD_BUG_ON((KVM_MMU_CR0_ROLE_BITS & KVM_POSSIBLE_CR0_GUEST_BITS) != X86_CR0_WP); 5446 BUILD_BUG_ON((KVM_MMU_CR4_ROLE_BITS & KVM_POSSIBLE_CR4_GUEST_BITS)); 5447 5448 if (is_cr0_wp(mmu) == cr0_wp) 5449 return; 5450 5451 mmu->cpu_role.base.cr0_wp = cr0_wp; 5452 reset_guest_paging_metadata(vcpu, mmu); 5453 } 5454 5455 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu) 5456 { 5457 /* tdp_root_level is architecture forced level, use it if nonzero */ 5458 if (tdp_root_level) 5459 return tdp_root_level; 5460 5461 /* Use 5-level TDP if and only if it's useful/necessary. */ 5462 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48) 5463 return 4; 5464 5465 return max_tdp_level; 5466 } 5467 5468 u8 kvm_mmu_get_max_tdp_level(void) 5469 { 5470 return tdp_root_level ? tdp_root_level : max_tdp_level; 5471 } 5472 5473 static union kvm_mmu_page_role 5474 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, 5475 union kvm_cpu_role cpu_role) 5476 { 5477 union kvm_mmu_page_role role = {0}; 5478 5479 role.access = ACC_ALL; 5480 role.cr0_wp = true; 5481 role.efer_nx = true; 5482 role.smm = cpu_role.base.smm; 5483 role.guest_mode = cpu_role.base.guest_mode; 5484 role.ad_disabled = !kvm_ad_enabled(); 5485 role.level = kvm_mmu_get_tdp_level(vcpu); 5486 role.direct = true; 5487 role.has_4_byte_gpte = false; 5488 5489 return role; 5490 } 5491 5492 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu, 5493 union kvm_cpu_role cpu_role) 5494 { 5495 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5496 union kvm_mmu_page_role root_role = kvm_calc_tdp_mmu_root_page_role(vcpu, cpu_role); 5497 5498 if (cpu_role.as_u64 == context->cpu_role.as_u64 && 5499 root_role.word == context->root_role.word) 5500 return; 5501 5502 context->cpu_role.as_u64 = cpu_role.as_u64; 5503 context->root_role.word = root_role.word; 5504 context->page_fault = kvm_tdp_page_fault; 5505 context->sync_spte = NULL; 5506 context->get_guest_pgd = get_guest_cr3; 5507 context->get_pdptr = kvm_pdptr_read; 5508 context->inject_page_fault = kvm_inject_page_fault; 5509 5510 if (!is_cr0_pg(context)) 5511 context->gva_to_gpa = nonpaging_gva_to_gpa; 5512 else if (is_cr4_pae(context)) 5513 context->gva_to_gpa = paging64_gva_to_gpa; 5514 else 5515 context->gva_to_gpa = paging32_gva_to_gpa; 5516 5517 reset_guest_paging_metadata(vcpu, context); 5518 reset_tdp_shadow_zero_bits_mask(context); 5519 } 5520 5521 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context, 5522 union kvm_cpu_role cpu_role, 5523 union kvm_mmu_page_role root_role) 5524 { 5525 if (cpu_role.as_u64 == context->cpu_role.as_u64 && 5526 root_role.word == context->root_role.word) 5527 return; 5528 5529 context->cpu_role.as_u64 = cpu_role.as_u64; 5530 context->root_role.word = root_role.word; 5531 5532 if (!is_cr0_pg(context)) 5533 nonpaging_init_context(context); 5534 else if (is_cr4_pae(context)) 5535 paging64_init_context(context); 5536 else 5537 paging32_init_context(context); 5538 5539 reset_guest_paging_metadata(vcpu, context); 5540 reset_shadow_zero_bits_mask(vcpu, context); 5541 } 5542 5543 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, 5544 union kvm_cpu_role cpu_role) 5545 { 5546 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5547 union kvm_mmu_page_role root_role; 5548 5549 root_role = cpu_role.base; 5550 5551 /* KVM uses PAE paging whenever the guest isn't using 64-bit paging. */ 5552 root_role.level = max_t(u32, root_role.level, PT32E_ROOT_LEVEL); 5553 5554 /* 5555 * KVM forces EFER.NX=1 when TDP is disabled, reflect it in the MMU role. 5556 * KVM uses NX when TDP is disabled to handle a variety of scenarios, 5557 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and 5558 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0. 5559 * The iTLB multi-hit workaround can be toggled at any time, so assume 5560 * NX can be used by any non-nested shadow MMU to avoid having to reset 5561 * MMU contexts. 5562 */ 5563 root_role.efer_nx = true; 5564 5565 shadow_mmu_init_context(vcpu, context, cpu_role, root_role); 5566 } 5567 5568 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0, 5569 unsigned long cr4, u64 efer, gpa_t nested_cr3) 5570 { 5571 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 5572 struct kvm_mmu_role_regs regs = { 5573 .cr0 = cr0, 5574 .cr4 = cr4 & ~X86_CR4_PKE, 5575 .efer = efer, 5576 }; 5577 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); 5578 union kvm_mmu_page_role root_role; 5579 5580 /* NPT requires CR0.PG=1. */ 5581 WARN_ON_ONCE(cpu_role.base.direct); 5582 5583 root_role = cpu_role.base; 5584 root_role.level = kvm_mmu_get_tdp_level(vcpu); 5585 if (root_role.level == PT64_ROOT_5LEVEL && 5586 cpu_role.base.level == PT64_ROOT_4LEVEL) 5587 root_role.passthrough = 1; 5588 5589 shadow_mmu_init_context(vcpu, context, cpu_role, root_role); 5590 kvm_mmu_new_pgd(vcpu, nested_cr3); 5591 } 5592 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu); 5593 5594 static union kvm_cpu_role 5595 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty, 5596 bool execonly, u8 level) 5597 { 5598 union kvm_cpu_role role = {0}; 5599 5600 /* 5601 * KVM does not support SMM transfer monitors, and consequently does not 5602 * support the "entry to SMM" control either. role.base.smm is always 0. 5603 */ 5604 WARN_ON_ONCE(is_smm(vcpu)); 5605 role.base.level = level; 5606 role.base.has_4_byte_gpte = false; 5607 role.base.direct = false; 5608 role.base.ad_disabled = !accessed_dirty; 5609 role.base.guest_mode = true; 5610 role.base.access = ACC_ALL; 5611 5612 role.ext.word = 0; 5613 role.ext.execonly = execonly; 5614 role.ext.valid = 1; 5615 5616 return role; 5617 } 5618 5619 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, 5620 int huge_page_level, bool accessed_dirty, 5621 gpa_t new_eptp) 5622 { 5623 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 5624 u8 level = vmx_eptp_page_walk_level(new_eptp); 5625 union kvm_cpu_role new_mode = 5626 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty, 5627 execonly, level); 5628 5629 if (new_mode.as_u64 != context->cpu_role.as_u64) { 5630 /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */ 5631 context->cpu_role.as_u64 = new_mode.as_u64; 5632 context->root_role.word = new_mode.base.word; 5633 5634 context->page_fault = ept_page_fault; 5635 context->gva_to_gpa = ept_gva_to_gpa; 5636 context->sync_spte = ept_sync_spte; 5637 5638 update_permission_bitmask(context, true); 5639 context->pkru_mask = 0; 5640 reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level); 5641 reset_ept_shadow_zero_bits_mask(context, execonly); 5642 } 5643 5644 kvm_mmu_new_pgd(vcpu, new_eptp); 5645 } 5646 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); 5647 5648 static void init_kvm_softmmu(struct kvm_vcpu *vcpu, 5649 union kvm_cpu_role cpu_role) 5650 { 5651 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5652 5653 kvm_init_shadow_mmu(vcpu, cpu_role); 5654 5655 context->get_guest_pgd = get_guest_cr3; 5656 context->get_pdptr = kvm_pdptr_read; 5657 context->inject_page_fault = kvm_inject_page_fault; 5658 } 5659 5660 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu, 5661 union kvm_cpu_role new_mode) 5662 { 5663 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; 5664 5665 if (new_mode.as_u64 == g_context->cpu_role.as_u64) 5666 return; 5667 5668 g_context->cpu_role.as_u64 = new_mode.as_u64; 5669 g_context->get_guest_pgd = get_guest_cr3; 5670 g_context->get_pdptr = kvm_pdptr_read; 5671 g_context->inject_page_fault = kvm_inject_page_fault; 5672 5673 /* 5674 * L2 page tables are never shadowed, so there is no need to sync 5675 * SPTEs. 5676 */ 5677 g_context->sync_spte = NULL; 5678 5679 /* 5680 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using 5681 * L1's nested page tables (e.g. EPT12). The nested translation 5682 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using 5683 * L2's page tables as the first level of translation and L1's 5684 * nested page tables as the second level of translation. Basically 5685 * the gva_to_gpa functions between mmu and nested_mmu are swapped. 5686 */ 5687 if (!is_paging(vcpu)) 5688 g_context->gva_to_gpa = nonpaging_gva_to_gpa; 5689 else if (is_long_mode(vcpu)) 5690 g_context->gva_to_gpa = paging64_gva_to_gpa; 5691 else if (is_pae(vcpu)) 5692 g_context->gva_to_gpa = paging64_gva_to_gpa; 5693 else 5694 g_context->gva_to_gpa = paging32_gva_to_gpa; 5695 5696 reset_guest_paging_metadata(vcpu, g_context); 5697 } 5698 5699 void kvm_init_mmu(struct kvm_vcpu *vcpu) 5700 { 5701 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 5702 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); 5703 5704 if (mmu_is_nested(vcpu)) 5705 init_kvm_nested_mmu(vcpu, cpu_role); 5706 else if (tdp_enabled) 5707 init_kvm_tdp_mmu(vcpu, cpu_role); 5708 else 5709 init_kvm_softmmu(vcpu, cpu_role); 5710 } 5711 EXPORT_SYMBOL_GPL(kvm_init_mmu); 5712 5713 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu) 5714 { 5715 /* 5716 * Invalidate all MMU roles to force them to reinitialize as CPUID 5717 * information is factored into reserved bit calculations. 5718 * 5719 * Correctly handling multiple vCPU models with respect to paging and 5720 * physical address properties) in a single VM would require tracking 5721 * all relevant CPUID information in kvm_mmu_page_role. That is very 5722 * undesirable as it would increase the memory requirements for 5723 * gfn_write_track (see struct kvm_mmu_page_role comments). For now 5724 * that problem is swept under the rug; KVM's CPUID API is horrific and 5725 * it's all but impossible to solve it without introducing a new API. 5726 */ 5727 vcpu->arch.root_mmu.root_role.invalid = 1; 5728 vcpu->arch.guest_mmu.root_role.invalid = 1; 5729 vcpu->arch.nested_mmu.root_role.invalid = 1; 5730 vcpu->arch.root_mmu.cpu_role.ext.valid = 0; 5731 vcpu->arch.guest_mmu.cpu_role.ext.valid = 0; 5732 vcpu->arch.nested_mmu.cpu_role.ext.valid = 0; 5733 kvm_mmu_reset_context(vcpu); 5734 5735 /* 5736 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in 5737 * kvm_arch_vcpu_ioctl(). 5738 */ 5739 KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm); 5740 } 5741 5742 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu) 5743 { 5744 kvm_mmu_unload(vcpu); 5745 kvm_init_mmu(vcpu); 5746 } 5747 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); 5748 5749 int kvm_mmu_load(struct kvm_vcpu *vcpu) 5750 { 5751 int r; 5752 5753 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->root_role.direct); 5754 if (r) 5755 goto out; 5756 r = mmu_alloc_special_roots(vcpu); 5757 if (r) 5758 goto out; 5759 if (vcpu->arch.mmu->root_role.direct) 5760 r = mmu_alloc_direct_roots(vcpu); 5761 else 5762 r = mmu_alloc_shadow_roots(vcpu); 5763 if (r) 5764 goto out; 5765 5766 kvm_mmu_sync_roots(vcpu); 5767 5768 kvm_mmu_load_pgd(vcpu); 5769 5770 /* 5771 * Flush any TLB entries for the new root, the provenance of the root 5772 * is unknown. Even if KVM ensures there are no stale TLB entries 5773 * for a freed root, in theory another hypervisor could have left 5774 * stale entries. Flushing on alloc also allows KVM to skip the TLB 5775 * flush when freeing a root (see kvm_tdp_mmu_put_root()). 5776 */ 5777 kvm_x86_call(flush_tlb_current)(vcpu); 5778 out: 5779 return r; 5780 } 5781 5782 void kvm_mmu_unload(struct kvm_vcpu *vcpu) 5783 { 5784 struct kvm *kvm = vcpu->kvm; 5785 5786 kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL); 5787 WARN_ON_ONCE(VALID_PAGE(vcpu->arch.root_mmu.root.hpa)); 5788 kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); 5789 WARN_ON_ONCE(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa)); 5790 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 5791 } 5792 5793 static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa) 5794 { 5795 struct kvm_mmu_page *sp; 5796 5797 if (!VALID_PAGE(root_hpa)) 5798 return false; 5799 5800 /* 5801 * When freeing obsolete roots, treat roots as obsolete if they don't 5802 * have an associated shadow page, as it's impossible to determine if 5803 * such roots are fresh or stale. This does mean KVM will get false 5804 * positives and free roots that don't strictly need to be freed, but 5805 * such false positives are relatively rare: 5806 * 5807 * (a) only PAE paging and nested NPT have roots without shadow pages 5808 * (or any shadow paging flavor with a dummy root, see note below) 5809 * (b) remote reloads due to a memslot update obsoletes _all_ roots 5810 * (c) KVM doesn't track previous roots for PAE paging, and the guest 5811 * is unlikely to zap an in-use PGD. 5812 * 5813 * Note! Dummy roots are unique in that they are obsoleted by memslot 5814 * _creation_! See also FNAME(fetch). 5815 */ 5816 sp = root_to_sp(root_hpa); 5817 return !sp || is_obsolete_sp(kvm, sp); 5818 } 5819 5820 static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu) 5821 { 5822 unsigned long roots_to_free = 0; 5823 int i; 5824 5825 if (is_obsolete_root(kvm, mmu->root.hpa)) 5826 roots_to_free |= KVM_MMU_ROOT_CURRENT; 5827 5828 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5829 if (is_obsolete_root(kvm, mmu->prev_roots[i].hpa)) 5830 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 5831 } 5832 5833 if (roots_to_free) 5834 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 5835 } 5836 5837 void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu) 5838 { 5839 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu); 5840 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu); 5841 } 5842 5843 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, 5844 int *bytes) 5845 { 5846 u64 gentry = 0; 5847 int r; 5848 5849 /* 5850 * Assume that the pte write on a page table of the same type 5851 * as the current vcpu paging mode since we update the sptes only 5852 * when they have the same mode. 5853 */ 5854 if (is_pae(vcpu) && *bytes == 4) { 5855 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ 5856 *gpa &= ~(gpa_t)7; 5857 *bytes = 8; 5858 } 5859 5860 if (*bytes == 4 || *bytes == 8) { 5861 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes); 5862 if (r) 5863 gentry = 0; 5864 } 5865 5866 return gentry; 5867 } 5868 5869 /* 5870 * If we're seeing too many writes to a page, it may no longer be a page table, 5871 * or we may be forking, in which case it is better to unmap the page. 5872 */ 5873 static bool detect_write_flooding(struct kvm_mmu_page *sp) 5874 { 5875 /* 5876 * Skip write-flooding detected for the sp whose level is 1, because 5877 * it can become unsync, then the guest page is not write-protected. 5878 */ 5879 if (sp->role.level == PG_LEVEL_4K) 5880 return false; 5881 5882 atomic_inc(&sp->write_flooding_count); 5883 return atomic_read(&sp->write_flooding_count) >= 3; 5884 } 5885 5886 /* 5887 * Misaligned accesses are too much trouble to fix up; also, they usually 5888 * indicate a page is not used as a page table. 5889 */ 5890 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, 5891 int bytes) 5892 { 5893 unsigned offset, pte_size, misaligned; 5894 5895 offset = offset_in_page(gpa); 5896 pte_size = sp->role.has_4_byte_gpte ? 4 : 8; 5897 5898 /* 5899 * Sometimes, the OS only writes the last one bytes to update status 5900 * bits, for example, in linux, andb instruction is used in clear_bit(). 5901 */ 5902 if (!(offset & (pte_size - 1)) && bytes == 1) 5903 return false; 5904 5905 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); 5906 misaligned |= bytes < 4; 5907 5908 return misaligned; 5909 } 5910 5911 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) 5912 { 5913 unsigned page_offset, quadrant; 5914 u64 *spte; 5915 int level; 5916 5917 page_offset = offset_in_page(gpa); 5918 level = sp->role.level; 5919 *nspte = 1; 5920 if (sp->role.has_4_byte_gpte) { 5921 page_offset <<= 1; /* 32->64 */ 5922 /* 5923 * A 32-bit pde maps 4MB while the shadow pdes map 5924 * only 2MB. So we need to double the offset again 5925 * and zap two pdes instead of one. 5926 */ 5927 if (level == PT32_ROOT_LEVEL) { 5928 page_offset &= ~7; /* kill rounding error */ 5929 page_offset <<= 1; 5930 *nspte = 2; 5931 } 5932 quadrant = page_offset >> PAGE_SHIFT; 5933 page_offset &= ~PAGE_MASK; 5934 if (quadrant != sp->role.quadrant) 5935 return NULL; 5936 } 5937 5938 spte = &sp->spt[page_offset / sizeof(*spte)]; 5939 return spte; 5940 } 5941 5942 void kvm_mmu_track_write(struct kvm_vcpu *vcpu, gpa_t gpa, const u8 *new, 5943 int bytes) 5944 { 5945 gfn_t gfn = gpa >> PAGE_SHIFT; 5946 struct kvm_mmu_page *sp; 5947 LIST_HEAD(invalid_list); 5948 u64 entry, gentry, *spte; 5949 int npte; 5950 bool flush = false; 5951 5952 /* 5953 * When emulating guest writes, ensure the written value is visible to 5954 * any task that is handling page faults before checking whether or not 5955 * KVM is shadowing a guest PTE. This ensures either KVM will create 5956 * the correct SPTE in the page fault handler, or this task will see 5957 * a non-zero indirect_shadow_pages. Pairs with the smp_mb() in 5958 * account_shadowed(). 5959 */ 5960 smp_mb(); 5961 if (!vcpu->kvm->arch.indirect_shadow_pages) 5962 return; 5963 5964 write_lock(&vcpu->kvm->mmu_lock); 5965 5966 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes); 5967 5968 ++vcpu->kvm->stat.mmu_pte_write; 5969 5970 for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) { 5971 if (detect_write_misaligned(sp, gpa, bytes) || 5972 detect_write_flooding(sp)) { 5973 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); 5974 ++vcpu->kvm->stat.mmu_flooded; 5975 continue; 5976 } 5977 5978 spte = get_written_sptes(sp, gpa, &npte); 5979 if (!spte) 5980 continue; 5981 5982 while (npte--) { 5983 entry = *spte; 5984 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL); 5985 if (gentry && sp->role.level != PG_LEVEL_4K) 5986 ++vcpu->kvm->stat.mmu_pde_zapped; 5987 if (is_shadow_present_pte(entry)) 5988 flush = true; 5989 ++spte; 5990 } 5991 } 5992 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 5993 write_unlock(&vcpu->kvm->mmu_lock); 5994 } 5995 5996 static bool is_write_to_guest_page_table(u64 error_code) 5997 { 5998 const u64 mask = PFERR_GUEST_PAGE_MASK | PFERR_WRITE_MASK | PFERR_PRESENT_MASK; 5999 6000 return (error_code & mask) == mask; 6001 } 6002 6003 static int kvm_mmu_write_protect_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 6004 u64 error_code, int *emulation_type) 6005 { 6006 bool direct = vcpu->arch.mmu->root_role.direct; 6007 6008 /* 6009 * Do not try to unprotect and retry if the vCPU re-faulted on the same 6010 * RIP with the same address that was previously unprotected, as doing 6011 * so will likely put the vCPU into an infinite. E.g. if the vCPU uses 6012 * a non-page-table modifying instruction on the PDE that points to the 6013 * instruction, then unprotecting the gfn will unmap the instruction's 6014 * code, i.e. make it impossible for the instruction to ever complete. 6015 */ 6016 if (vcpu->arch.last_retry_eip == kvm_rip_read(vcpu) && 6017 vcpu->arch.last_retry_addr == cr2_or_gpa) 6018 return RET_PF_EMULATE; 6019 6020 /* 6021 * Reset the unprotect+retry values that guard against infinite loops. 6022 * The values will be refreshed if KVM explicitly unprotects a gfn and 6023 * retries, in all other cases it's safe to retry in the future even if 6024 * the next page fault happens on the same RIP+address. 6025 */ 6026 vcpu->arch.last_retry_eip = 0; 6027 vcpu->arch.last_retry_addr = 0; 6028 6029 /* 6030 * It should be impossible to reach this point with an MMIO cache hit, 6031 * as RET_PF_WRITE_PROTECTED is returned if and only if there's a valid, 6032 * writable memslot, and creating a memslot should invalidate the MMIO 6033 * cache by way of changing the memslot generation. WARN and disallow 6034 * retry if MMIO is detected, as retrying MMIO emulation is pointless 6035 * and could put the vCPU into an infinite loop because the processor 6036 * will keep faulting on the non-existent MMIO address. 6037 */ 6038 if (WARN_ON_ONCE(mmio_info_in_cache(vcpu, cr2_or_gpa, direct))) 6039 return RET_PF_EMULATE; 6040 6041 /* 6042 * Before emulating the instruction, check to see if the access was due 6043 * to a read-only violation while the CPU was walking non-nested NPT 6044 * page tables, i.e. for a direct MMU, for _guest_ page tables in L1. 6045 * If L1 is sharing (a subset of) its page tables with L2, e.g. by 6046 * having nCR3 share lower level page tables with hCR3, then when KVM 6047 * (L0) write-protects the nested NPTs, i.e. npt12 entries, KVM is also 6048 * unknowingly write-protecting L1's guest page tables, which KVM isn't 6049 * shadowing. 6050 * 6051 * Because the CPU (by default) walks NPT page tables using a write 6052 * access (to ensure the CPU can do A/D updates), page walks in L1 can 6053 * trigger write faults for the above case even when L1 isn't modifying 6054 * PTEs. As a result, KVM will unnecessarily emulate (or at least, try 6055 * to emulate) an excessive number of L1 instructions; because L1's MMU 6056 * isn't shadowed by KVM, there is no need to write-protect L1's gPTEs 6057 * and thus no need to emulate in order to guarantee forward progress. 6058 * 6059 * Try to unprotect the gfn, i.e. zap any shadow pages, so that L1 can 6060 * proceed without triggering emulation. If one or more shadow pages 6061 * was zapped, skip emulation and resume L1 to let it natively execute 6062 * the instruction. If no shadow pages were zapped, then the write- 6063 * fault is due to something else entirely, i.e. KVM needs to emulate, 6064 * as resuming the guest will put it into an infinite loop. 6065 * 6066 * Note, this code also applies to Intel CPUs, even though it is *very* 6067 * unlikely that an L1 will share its page tables (IA32/PAE/paging64 6068 * format) with L2's page tables (EPT format). 6069 * 6070 * For indirect MMUs, i.e. if KVM is shadowing the current MMU, try to 6071 * unprotect the gfn and retry if an event is awaiting reinjection. If 6072 * KVM emulates multiple instructions before completing event injection, 6073 * the event could be delayed beyond what is architecturally allowed, 6074 * e.g. KVM could inject an IRQ after the TPR has been raised. 6075 */ 6076 if (((direct && is_write_to_guest_page_table(error_code)) || 6077 (!direct && kvm_event_needs_reinjection(vcpu))) && 6078 kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa)) 6079 return RET_PF_RETRY; 6080 6081 /* 6082 * The gfn is write-protected, but if KVM detects its emulating an 6083 * instruction that is unlikely to be used to modify page tables, or if 6084 * emulation fails, KVM can try to unprotect the gfn and let the CPU 6085 * re-execute the instruction that caused the page fault. Do not allow 6086 * retrying an instruction from a nested guest as KVM is only explicitly 6087 * shadowing L1's page tables, i.e. unprotecting something for L1 isn't 6088 * going to magically fix whatever issue caused L2 to fail. 6089 */ 6090 if (!is_guest_mode(vcpu)) 6091 *emulation_type |= EMULTYPE_ALLOW_RETRY_PF; 6092 6093 return RET_PF_EMULATE; 6094 } 6095 6096 int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 6097 void *insn, int insn_len) 6098 { 6099 int r, emulation_type = EMULTYPE_PF; 6100 bool direct = vcpu->arch.mmu->root_role.direct; 6101 6102 if (WARN_ON_ONCE(!VALID_PAGE(vcpu->arch.mmu->root.hpa))) 6103 return RET_PF_RETRY; 6104 6105 /* 6106 * Except for reserved faults (emulated MMIO is shared-only), set the 6107 * PFERR_PRIVATE_ACCESS flag for software-protected VMs based on the gfn's 6108 * current attributes, which are the source of truth for such VMs. Note, 6109 * this wrong for nested MMUs as the GPA is an L2 GPA, but KVM doesn't 6110 * currently supported nested virtualization (among many other things) 6111 * for software-protected VMs. 6112 */ 6113 if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && 6114 !(error_code & PFERR_RSVD_MASK) && 6115 vcpu->kvm->arch.vm_type == KVM_X86_SW_PROTECTED_VM && 6116 kvm_mem_is_private(vcpu->kvm, gpa_to_gfn(cr2_or_gpa))) 6117 error_code |= PFERR_PRIVATE_ACCESS; 6118 6119 r = RET_PF_INVALID; 6120 if (unlikely(error_code & PFERR_RSVD_MASK)) { 6121 if (WARN_ON_ONCE(error_code & PFERR_PRIVATE_ACCESS)) 6122 return -EFAULT; 6123 6124 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct); 6125 if (r == RET_PF_EMULATE) 6126 goto emulate; 6127 } 6128 6129 if (r == RET_PF_INVALID) { 6130 vcpu->stat.pf_taken++; 6131 6132 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, error_code, false, 6133 &emulation_type, NULL); 6134 if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm)) 6135 return -EIO; 6136 } 6137 6138 if (r < 0) 6139 return r; 6140 6141 if (r == RET_PF_WRITE_PROTECTED) 6142 r = kvm_mmu_write_protect_fault(vcpu, cr2_or_gpa, error_code, 6143 &emulation_type); 6144 6145 if (r == RET_PF_FIXED) 6146 vcpu->stat.pf_fixed++; 6147 else if (r == RET_PF_EMULATE) 6148 vcpu->stat.pf_emulate++; 6149 else if (r == RET_PF_SPURIOUS) 6150 vcpu->stat.pf_spurious++; 6151 6152 if (r != RET_PF_EMULATE) 6153 return 1; 6154 6155 emulate: 6156 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn, 6157 insn_len); 6158 } 6159 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); 6160 6161 void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg) 6162 { 6163 u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; 6164 int root_level, leaf, level; 6165 6166 leaf = get_sptes_lockless(vcpu, gpa, sptes, &root_level); 6167 if (unlikely(leaf < 0)) 6168 return; 6169 6170 pr_err("%s %llx", msg, gpa); 6171 for (level = root_level; level >= leaf; level--) 6172 pr_cont(", spte[%d] = 0x%llx", level, sptes[level]); 6173 pr_cont("\n"); 6174 } 6175 EXPORT_SYMBOL_GPL(kvm_mmu_print_sptes); 6176 6177 static void __kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 6178 u64 addr, hpa_t root_hpa) 6179 { 6180 struct kvm_shadow_walk_iterator iterator; 6181 6182 vcpu_clear_mmio_info(vcpu, addr); 6183 6184 /* 6185 * Walking and synchronizing SPTEs both assume they are operating in 6186 * the context of the current MMU, and would need to be reworked if 6187 * this is ever used to sync the guest_mmu, e.g. to emulate INVEPT. 6188 */ 6189 if (WARN_ON_ONCE(mmu != vcpu->arch.mmu)) 6190 return; 6191 6192 if (!VALID_PAGE(root_hpa)) 6193 return; 6194 6195 write_lock(&vcpu->kvm->mmu_lock); 6196 for_each_shadow_entry_using_root(vcpu, root_hpa, addr, iterator) { 6197 struct kvm_mmu_page *sp = sptep_to_sp(iterator.sptep); 6198 6199 if (sp->unsync) { 6200 int ret = kvm_sync_spte(vcpu, sp, iterator.index); 6201 6202 if (ret < 0) 6203 mmu_page_zap_pte(vcpu->kvm, sp, iterator.sptep, NULL); 6204 if (ret) 6205 kvm_flush_remote_tlbs_sptep(vcpu->kvm, iterator.sptep); 6206 } 6207 6208 if (!sp->unsync_children) 6209 break; 6210 } 6211 write_unlock(&vcpu->kvm->mmu_lock); 6212 } 6213 6214 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 6215 u64 addr, unsigned long roots) 6216 { 6217 int i; 6218 6219 WARN_ON_ONCE(roots & ~KVM_MMU_ROOTS_ALL); 6220 6221 /* It's actually a GPA for vcpu->arch.guest_mmu. */ 6222 if (mmu != &vcpu->arch.guest_mmu) { 6223 /* INVLPG on a non-canonical address is a NOP according to the SDM. */ 6224 if (is_noncanonical_address(addr, vcpu)) 6225 return; 6226 6227 kvm_x86_call(flush_tlb_gva)(vcpu, addr); 6228 } 6229 6230 if (!mmu->sync_spte) 6231 return; 6232 6233 if (roots & KVM_MMU_ROOT_CURRENT) 6234 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->root.hpa); 6235 6236 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 6237 if (roots & KVM_MMU_ROOT_PREVIOUS(i)) 6238 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->prev_roots[i].hpa); 6239 } 6240 } 6241 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_addr); 6242 6243 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) 6244 { 6245 /* 6246 * INVLPG is required to invalidate any global mappings for the VA, 6247 * irrespective of PCID. Blindly sync all roots as it would take 6248 * roughly the same amount of work/time to determine whether any of the 6249 * previous roots have a global mapping. 6250 * 6251 * Mappings not reachable via the current or previous cached roots will 6252 * be synced when switching to that new cr3, so nothing needs to be 6253 * done here for them. 6254 */ 6255 kvm_mmu_invalidate_addr(vcpu, vcpu->arch.walk_mmu, gva, KVM_MMU_ROOTS_ALL); 6256 ++vcpu->stat.invlpg; 6257 } 6258 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); 6259 6260 6261 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid) 6262 { 6263 struct kvm_mmu *mmu = vcpu->arch.mmu; 6264 unsigned long roots = 0; 6265 uint i; 6266 6267 if (pcid == kvm_get_active_pcid(vcpu)) 6268 roots |= KVM_MMU_ROOT_CURRENT; 6269 6270 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 6271 if (VALID_PAGE(mmu->prev_roots[i].hpa) && 6272 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) 6273 roots |= KVM_MMU_ROOT_PREVIOUS(i); 6274 } 6275 6276 if (roots) 6277 kvm_mmu_invalidate_addr(vcpu, mmu, gva, roots); 6278 ++vcpu->stat.invlpg; 6279 6280 /* 6281 * Mappings not reachable via the current cr3 or the prev_roots will be 6282 * synced when switching to that cr3, so nothing needs to be done here 6283 * for them. 6284 */ 6285 } 6286 6287 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 6288 int tdp_max_root_level, int tdp_huge_page_level) 6289 { 6290 tdp_enabled = enable_tdp; 6291 tdp_root_level = tdp_forced_root_level; 6292 max_tdp_level = tdp_max_root_level; 6293 6294 #ifdef CONFIG_X86_64 6295 tdp_mmu_enabled = tdp_mmu_allowed && tdp_enabled; 6296 #endif 6297 /* 6298 * max_huge_page_level reflects KVM's MMU capabilities irrespective 6299 * of kernel support, e.g. KVM may be capable of using 1GB pages when 6300 * the kernel is not. But, KVM never creates a page size greater than 6301 * what is used by the kernel for any given HVA, i.e. the kernel's 6302 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust(). 6303 */ 6304 if (tdp_enabled) 6305 max_huge_page_level = tdp_huge_page_level; 6306 else if (boot_cpu_has(X86_FEATURE_GBPAGES)) 6307 max_huge_page_level = PG_LEVEL_1G; 6308 else 6309 max_huge_page_level = PG_LEVEL_2M; 6310 } 6311 EXPORT_SYMBOL_GPL(kvm_configure_mmu); 6312 6313 static void free_mmu_pages(struct kvm_mmu *mmu) 6314 { 6315 if (!tdp_enabled && mmu->pae_root) 6316 set_memory_encrypted((unsigned long)mmu->pae_root, 1); 6317 free_page((unsigned long)mmu->pae_root); 6318 free_page((unsigned long)mmu->pml4_root); 6319 free_page((unsigned long)mmu->pml5_root); 6320 } 6321 6322 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 6323 { 6324 struct page *page; 6325 int i; 6326 6327 mmu->root.hpa = INVALID_PAGE; 6328 mmu->root.pgd = 0; 6329 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 6330 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 6331 6332 /* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */ 6333 if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu) 6334 return 0; 6335 6336 /* 6337 * When using PAE paging, the four PDPTEs are treated as 'root' pages, 6338 * while the PDP table is a per-vCPU construct that's allocated at MMU 6339 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on 6340 * x86_64. Therefore we need to allocate the PDP table in the first 6341 * 4GB of memory, which happens to fit the DMA32 zone. TDP paging 6342 * generally doesn't use PAE paging and can skip allocating the PDP 6343 * table. The main exception, handled here, is SVM's 32-bit NPT. The 6344 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit 6345 * KVM; that horror is handled on-demand by mmu_alloc_special_roots(). 6346 */ 6347 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL) 6348 return 0; 6349 6350 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32); 6351 if (!page) 6352 return -ENOMEM; 6353 6354 mmu->pae_root = page_address(page); 6355 6356 /* 6357 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to 6358 * get the CPU to treat the PDPTEs as encrypted. Decrypt the page so 6359 * that KVM's writes and the CPU's reads get along. Note, this is 6360 * only necessary when using shadow paging, as 64-bit NPT can get at 6361 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported 6362 * by 32-bit kernels (when KVM itself uses 32-bit NPT). 6363 */ 6364 if (!tdp_enabled) 6365 set_memory_decrypted((unsigned long)mmu->pae_root, 1); 6366 else 6367 WARN_ON_ONCE(shadow_me_value); 6368 6369 for (i = 0; i < 4; ++i) 6370 mmu->pae_root[i] = INVALID_PAE_ROOT; 6371 6372 return 0; 6373 } 6374 6375 int kvm_mmu_create(struct kvm_vcpu *vcpu) 6376 { 6377 int ret; 6378 6379 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache; 6380 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO; 6381 6382 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache; 6383 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO; 6384 6385 vcpu->arch.mmu_shadow_page_cache.init_value = 6386 SHADOW_NONPRESENT_VALUE; 6387 if (!vcpu->arch.mmu_shadow_page_cache.init_value) 6388 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO; 6389 6390 vcpu->arch.mmu = &vcpu->arch.root_mmu; 6391 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; 6392 6393 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu); 6394 if (ret) 6395 return ret; 6396 6397 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu); 6398 if (ret) 6399 goto fail_allocate_root; 6400 6401 return ret; 6402 fail_allocate_root: 6403 free_mmu_pages(&vcpu->arch.guest_mmu); 6404 return ret; 6405 } 6406 6407 #define BATCH_ZAP_PAGES 10 6408 static void kvm_zap_obsolete_pages(struct kvm *kvm) 6409 { 6410 struct kvm_mmu_page *sp, *node; 6411 int nr_zapped, batch = 0; 6412 bool unstable; 6413 6414 restart: 6415 list_for_each_entry_safe_reverse(sp, node, 6416 &kvm->arch.active_mmu_pages, link) { 6417 /* 6418 * No obsolete valid page exists before a newly created page 6419 * since active_mmu_pages is a FIFO list. 6420 */ 6421 if (!is_obsolete_sp(kvm, sp)) 6422 break; 6423 6424 /* 6425 * Invalid pages should never land back on the list of active 6426 * pages. Skip the bogus page, otherwise we'll get stuck in an 6427 * infinite loop if the page gets put back on the list (again). 6428 */ 6429 if (WARN_ON_ONCE(sp->role.invalid)) 6430 continue; 6431 6432 /* 6433 * No need to flush the TLB since we're only zapping shadow 6434 * pages with an obsolete generation number and all vCPUS have 6435 * loaded a new root, i.e. the shadow pages being zapped cannot 6436 * be in active use by the guest. 6437 */ 6438 if (batch >= BATCH_ZAP_PAGES && 6439 cond_resched_rwlock_write(&kvm->mmu_lock)) { 6440 batch = 0; 6441 goto restart; 6442 } 6443 6444 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, 6445 &kvm->arch.zapped_obsolete_pages, &nr_zapped); 6446 batch += nr_zapped; 6447 6448 if (unstable) 6449 goto restart; 6450 } 6451 6452 /* 6453 * Kick all vCPUs (via remote TLB flush) before freeing the page tables 6454 * to ensure KVM is not in the middle of a lockless shadow page table 6455 * walk, which may reference the pages. The remote TLB flush itself is 6456 * not required and is simply a convenient way to kick vCPUs as needed. 6457 * KVM performs a local TLB flush when allocating a new root (see 6458 * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are 6459 * running with an obsolete MMU. 6460 */ 6461 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages); 6462 } 6463 6464 /* 6465 * Fast invalidate all shadow pages and use lock-break technique 6466 * to zap obsolete pages. 6467 * 6468 * It's required when memslot is being deleted or VM is being 6469 * destroyed, in these cases, we should ensure that KVM MMU does 6470 * not use any resource of the being-deleted slot or all slots 6471 * after calling the function. 6472 */ 6473 static void kvm_mmu_zap_all_fast(struct kvm *kvm) 6474 { 6475 lockdep_assert_held(&kvm->slots_lock); 6476 6477 write_lock(&kvm->mmu_lock); 6478 trace_kvm_mmu_zap_all_fast(kvm); 6479 6480 /* 6481 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is 6482 * held for the entire duration of zapping obsolete pages, it's 6483 * impossible for there to be multiple invalid generations associated 6484 * with *valid* shadow pages at any given time, i.e. there is exactly 6485 * one valid generation and (at most) one invalid generation. 6486 */ 6487 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1; 6488 6489 /* 6490 * In order to ensure all vCPUs drop their soon-to-be invalid roots, 6491 * invalidating TDP MMU roots must be done while holding mmu_lock for 6492 * write and in the same critical section as making the reload request, 6493 * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield. 6494 */ 6495 if (tdp_mmu_enabled) 6496 kvm_tdp_mmu_invalidate_all_roots(kvm); 6497 6498 /* 6499 * Notify all vcpus to reload its shadow page table and flush TLB. 6500 * Then all vcpus will switch to new shadow page table with the new 6501 * mmu_valid_gen. 6502 * 6503 * Note: we need to do this under the protection of mmu_lock, 6504 * otherwise, vcpu would purge shadow page but miss tlb flush. 6505 */ 6506 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 6507 6508 kvm_zap_obsolete_pages(kvm); 6509 6510 write_unlock(&kvm->mmu_lock); 6511 6512 /* 6513 * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before 6514 * returning to the caller, e.g. if the zap is in response to a memslot 6515 * deletion, mmu_notifier callbacks will be unable to reach the SPTEs 6516 * associated with the deleted memslot once the update completes, and 6517 * Deferring the zap until the final reference to the root is put would 6518 * lead to use-after-free. 6519 */ 6520 if (tdp_mmu_enabled) 6521 kvm_tdp_mmu_zap_invalidated_roots(kvm); 6522 } 6523 6524 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm) 6525 { 6526 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages)); 6527 } 6528 6529 void kvm_mmu_init_vm(struct kvm *kvm) 6530 { 6531 kvm->arch.shadow_mmio_value = shadow_mmio_value; 6532 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 6533 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 6534 INIT_LIST_HEAD(&kvm->arch.possible_nx_huge_pages); 6535 spin_lock_init(&kvm->arch.mmu_unsync_pages_lock); 6536 6537 if (tdp_mmu_enabled) 6538 kvm_mmu_init_tdp_mmu(kvm); 6539 6540 kvm->arch.split_page_header_cache.kmem_cache = mmu_page_header_cache; 6541 kvm->arch.split_page_header_cache.gfp_zero = __GFP_ZERO; 6542 6543 kvm->arch.split_shadow_page_cache.gfp_zero = __GFP_ZERO; 6544 6545 kvm->arch.split_desc_cache.kmem_cache = pte_list_desc_cache; 6546 kvm->arch.split_desc_cache.gfp_zero = __GFP_ZERO; 6547 } 6548 6549 static void mmu_free_vm_memory_caches(struct kvm *kvm) 6550 { 6551 kvm_mmu_free_memory_cache(&kvm->arch.split_desc_cache); 6552 kvm_mmu_free_memory_cache(&kvm->arch.split_page_header_cache); 6553 kvm_mmu_free_memory_cache(&kvm->arch.split_shadow_page_cache); 6554 } 6555 6556 void kvm_mmu_uninit_vm(struct kvm *kvm) 6557 { 6558 if (tdp_mmu_enabled) 6559 kvm_mmu_uninit_tdp_mmu(kvm); 6560 6561 mmu_free_vm_memory_caches(kvm); 6562 } 6563 6564 static bool kvm_rmap_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 6565 { 6566 const struct kvm_memory_slot *memslot; 6567 struct kvm_memslots *slots; 6568 struct kvm_memslot_iter iter; 6569 bool flush = false; 6570 gfn_t start, end; 6571 int i; 6572 6573 if (!kvm_memslots_have_rmaps(kvm)) 6574 return flush; 6575 6576 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 6577 slots = __kvm_memslots(kvm, i); 6578 6579 kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) { 6580 memslot = iter.slot; 6581 start = max(gfn_start, memslot->base_gfn); 6582 end = min(gfn_end, memslot->base_gfn + memslot->npages); 6583 if (WARN_ON_ONCE(start >= end)) 6584 continue; 6585 6586 flush = __kvm_rmap_zap_gfn_range(kvm, memslot, start, 6587 end, true, flush); 6588 } 6589 } 6590 6591 return flush; 6592 } 6593 6594 /* 6595 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end 6596 * (not including it) 6597 */ 6598 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 6599 { 6600 bool flush; 6601 6602 if (WARN_ON_ONCE(gfn_end <= gfn_start)) 6603 return; 6604 6605 write_lock(&kvm->mmu_lock); 6606 6607 kvm_mmu_invalidate_begin(kvm); 6608 6609 kvm_mmu_invalidate_range_add(kvm, gfn_start, gfn_end); 6610 6611 flush = kvm_rmap_zap_gfn_range(kvm, gfn_start, gfn_end); 6612 6613 if (tdp_mmu_enabled) 6614 flush = kvm_tdp_mmu_zap_leafs(kvm, gfn_start, gfn_end, flush); 6615 6616 if (flush) 6617 kvm_flush_remote_tlbs_range(kvm, gfn_start, gfn_end - gfn_start); 6618 6619 kvm_mmu_invalidate_end(kvm); 6620 6621 write_unlock(&kvm->mmu_lock); 6622 } 6623 6624 static bool slot_rmap_write_protect(struct kvm *kvm, 6625 struct kvm_rmap_head *rmap_head, 6626 const struct kvm_memory_slot *slot) 6627 { 6628 return rmap_write_protect(rmap_head, false); 6629 } 6630 6631 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 6632 const struct kvm_memory_slot *memslot, 6633 int start_level) 6634 { 6635 if (kvm_memslots_have_rmaps(kvm)) { 6636 write_lock(&kvm->mmu_lock); 6637 walk_slot_rmaps(kvm, memslot, slot_rmap_write_protect, 6638 start_level, KVM_MAX_HUGEPAGE_LEVEL, false); 6639 write_unlock(&kvm->mmu_lock); 6640 } 6641 6642 if (tdp_mmu_enabled) { 6643 read_lock(&kvm->mmu_lock); 6644 kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level); 6645 read_unlock(&kvm->mmu_lock); 6646 } 6647 } 6648 6649 static inline bool need_topup(struct kvm_mmu_memory_cache *cache, int min) 6650 { 6651 return kvm_mmu_memory_cache_nr_free_objects(cache) < min; 6652 } 6653 6654 static bool need_topup_split_caches_or_resched(struct kvm *kvm) 6655 { 6656 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) 6657 return true; 6658 6659 /* 6660 * In the worst case, SPLIT_DESC_CACHE_MIN_NR_OBJECTS descriptors are needed 6661 * to split a single huge page. Calculating how many are actually needed 6662 * is possible but not worth the complexity. 6663 */ 6664 return need_topup(&kvm->arch.split_desc_cache, SPLIT_DESC_CACHE_MIN_NR_OBJECTS) || 6665 need_topup(&kvm->arch.split_page_header_cache, 1) || 6666 need_topup(&kvm->arch.split_shadow_page_cache, 1); 6667 } 6668 6669 static int topup_split_caches(struct kvm *kvm) 6670 { 6671 /* 6672 * Allocating rmap list entries when splitting huge pages for nested 6673 * MMUs is uncommon as KVM needs to use a list if and only if there is 6674 * more than one rmap entry for a gfn, i.e. requires an L1 gfn to be 6675 * aliased by multiple L2 gfns and/or from multiple nested roots with 6676 * different roles. Aliasing gfns when using TDP is atypical for VMMs; 6677 * a few gfns are often aliased during boot, e.g. when remapping BIOS, 6678 * but aliasing rarely occurs post-boot or for many gfns. If there is 6679 * only one rmap entry, rmap->val points directly at that one entry and 6680 * doesn't need to allocate a list. Buffer the cache by the default 6681 * capacity so that KVM doesn't have to drop mmu_lock to topup if KVM 6682 * encounters an aliased gfn or two. 6683 */ 6684 const int capacity = SPLIT_DESC_CACHE_MIN_NR_OBJECTS + 6685 KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE; 6686 int r; 6687 6688 lockdep_assert_held(&kvm->slots_lock); 6689 6690 r = __kvm_mmu_topup_memory_cache(&kvm->arch.split_desc_cache, capacity, 6691 SPLIT_DESC_CACHE_MIN_NR_OBJECTS); 6692 if (r) 6693 return r; 6694 6695 r = kvm_mmu_topup_memory_cache(&kvm->arch.split_page_header_cache, 1); 6696 if (r) 6697 return r; 6698 6699 return kvm_mmu_topup_memory_cache(&kvm->arch.split_shadow_page_cache, 1); 6700 } 6701 6702 static struct kvm_mmu_page *shadow_mmu_get_sp_for_split(struct kvm *kvm, u64 *huge_sptep) 6703 { 6704 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); 6705 struct shadow_page_caches caches = {}; 6706 union kvm_mmu_page_role role; 6707 unsigned int access; 6708 gfn_t gfn; 6709 6710 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep)); 6711 access = kvm_mmu_page_get_access(huge_sp, spte_index(huge_sptep)); 6712 6713 /* 6714 * Note, huge page splitting always uses direct shadow pages, regardless 6715 * of whether the huge page itself is mapped by a direct or indirect 6716 * shadow page, since the huge page region itself is being directly 6717 * mapped with smaller pages. 6718 */ 6719 role = kvm_mmu_child_role(huge_sptep, /*direct=*/true, access); 6720 6721 /* Direct SPs do not require a shadowed_info_cache. */ 6722 caches.page_header_cache = &kvm->arch.split_page_header_cache; 6723 caches.shadow_page_cache = &kvm->arch.split_shadow_page_cache; 6724 6725 /* Safe to pass NULL for vCPU since requesting a direct SP. */ 6726 return __kvm_mmu_get_shadow_page(kvm, NULL, &caches, gfn, role); 6727 } 6728 6729 static void shadow_mmu_split_huge_page(struct kvm *kvm, 6730 const struct kvm_memory_slot *slot, 6731 u64 *huge_sptep) 6732 6733 { 6734 struct kvm_mmu_memory_cache *cache = &kvm->arch.split_desc_cache; 6735 u64 huge_spte = READ_ONCE(*huge_sptep); 6736 struct kvm_mmu_page *sp; 6737 bool flush = false; 6738 u64 *sptep, spte; 6739 gfn_t gfn; 6740 int index; 6741 6742 sp = shadow_mmu_get_sp_for_split(kvm, huge_sptep); 6743 6744 for (index = 0; index < SPTE_ENT_PER_PAGE; index++) { 6745 sptep = &sp->spt[index]; 6746 gfn = kvm_mmu_page_get_gfn(sp, index); 6747 6748 /* 6749 * The SP may already have populated SPTEs, e.g. if this huge 6750 * page is aliased by multiple sptes with the same access 6751 * permissions. These entries are guaranteed to map the same 6752 * gfn-to-pfn translation since the SP is direct, so no need to 6753 * modify them. 6754 * 6755 * However, if a given SPTE points to a lower level page table, 6756 * that lower level page table may only be partially populated. 6757 * Installing such SPTEs would effectively unmap a potion of the 6758 * huge page. Unmapping guest memory always requires a TLB flush 6759 * since a subsequent operation on the unmapped regions would 6760 * fail to detect the need to flush. 6761 */ 6762 if (is_shadow_present_pte(*sptep)) { 6763 flush |= !is_last_spte(*sptep, sp->role.level); 6764 continue; 6765 } 6766 6767 spte = make_huge_page_split_spte(kvm, huge_spte, sp->role, index); 6768 mmu_spte_set(sptep, spte); 6769 __rmap_add(kvm, cache, slot, sptep, gfn, sp->role.access); 6770 } 6771 6772 __link_shadow_page(kvm, cache, huge_sptep, sp, flush); 6773 } 6774 6775 static int shadow_mmu_try_split_huge_page(struct kvm *kvm, 6776 const struct kvm_memory_slot *slot, 6777 u64 *huge_sptep) 6778 { 6779 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); 6780 int level, r = 0; 6781 gfn_t gfn; 6782 u64 spte; 6783 6784 /* Grab information for the tracepoint before dropping the MMU lock. */ 6785 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep)); 6786 level = huge_sp->role.level; 6787 spte = *huge_sptep; 6788 6789 if (kvm_mmu_available_pages(kvm) <= KVM_MIN_FREE_MMU_PAGES) { 6790 r = -ENOSPC; 6791 goto out; 6792 } 6793 6794 if (need_topup_split_caches_or_resched(kvm)) { 6795 write_unlock(&kvm->mmu_lock); 6796 cond_resched(); 6797 /* 6798 * If the topup succeeds, return -EAGAIN to indicate that the 6799 * rmap iterator should be restarted because the MMU lock was 6800 * dropped. 6801 */ 6802 r = topup_split_caches(kvm) ?: -EAGAIN; 6803 write_lock(&kvm->mmu_lock); 6804 goto out; 6805 } 6806 6807 shadow_mmu_split_huge_page(kvm, slot, huge_sptep); 6808 6809 out: 6810 trace_kvm_mmu_split_huge_page(gfn, spte, level, r); 6811 return r; 6812 } 6813 6814 static bool shadow_mmu_try_split_huge_pages(struct kvm *kvm, 6815 struct kvm_rmap_head *rmap_head, 6816 const struct kvm_memory_slot *slot) 6817 { 6818 struct rmap_iterator iter; 6819 struct kvm_mmu_page *sp; 6820 u64 *huge_sptep; 6821 int r; 6822 6823 restart: 6824 for_each_rmap_spte(rmap_head, &iter, huge_sptep) { 6825 sp = sptep_to_sp(huge_sptep); 6826 6827 /* TDP MMU is enabled, so rmap only contains nested MMU SPs. */ 6828 if (WARN_ON_ONCE(!sp->role.guest_mode)) 6829 continue; 6830 6831 /* The rmaps should never contain non-leaf SPTEs. */ 6832 if (WARN_ON_ONCE(!is_large_pte(*huge_sptep))) 6833 continue; 6834 6835 /* SPs with level >PG_LEVEL_4K should never by unsync. */ 6836 if (WARN_ON_ONCE(sp->unsync)) 6837 continue; 6838 6839 /* Don't bother splitting huge pages on invalid SPs. */ 6840 if (sp->role.invalid) 6841 continue; 6842 6843 r = shadow_mmu_try_split_huge_page(kvm, slot, huge_sptep); 6844 6845 /* 6846 * The split succeeded or needs to be retried because the MMU 6847 * lock was dropped. Either way, restart the iterator to get it 6848 * back into a consistent state. 6849 */ 6850 if (!r || r == -EAGAIN) 6851 goto restart; 6852 6853 /* The split failed and shouldn't be retried (e.g. -ENOMEM). */ 6854 break; 6855 } 6856 6857 return false; 6858 } 6859 6860 static void kvm_shadow_mmu_try_split_huge_pages(struct kvm *kvm, 6861 const struct kvm_memory_slot *slot, 6862 gfn_t start, gfn_t end, 6863 int target_level) 6864 { 6865 int level; 6866 6867 /* 6868 * Split huge pages starting with KVM_MAX_HUGEPAGE_LEVEL and working 6869 * down to the target level. This ensures pages are recursively split 6870 * all the way to the target level. There's no need to split pages 6871 * already at the target level. 6872 */ 6873 for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--) 6874 __walk_slot_rmaps(kvm, slot, shadow_mmu_try_split_huge_pages, 6875 level, level, start, end - 1, true, true, false); 6876 } 6877 6878 /* Must be called with the mmu_lock held in write-mode. */ 6879 void kvm_mmu_try_split_huge_pages(struct kvm *kvm, 6880 const struct kvm_memory_slot *memslot, 6881 u64 start, u64 end, 6882 int target_level) 6883 { 6884 if (!tdp_mmu_enabled) 6885 return; 6886 6887 if (kvm_memslots_have_rmaps(kvm)) 6888 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); 6889 6890 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, false); 6891 6892 /* 6893 * A TLB flush is unnecessary at this point for the same reasons as in 6894 * kvm_mmu_slot_try_split_huge_pages(). 6895 */ 6896 } 6897 6898 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, 6899 const struct kvm_memory_slot *memslot, 6900 int target_level) 6901 { 6902 u64 start = memslot->base_gfn; 6903 u64 end = start + memslot->npages; 6904 6905 if (!tdp_mmu_enabled) 6906 return; 6907 6908 if (kvm_memslots_have_rmaps(kvm)) { 6909 write_lock(&kvm->mmu_lock); 6910 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); 6911 write_unlock(&kvm->mmu_lock); 6912 } 6913 6914 read_lock(&kvm->mmu_lock); 6915 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true); 6916 read_unlock(&kvm->mmu_lock); 6917 6918 /* 6919 * No TLB flush is necessary here. KVM will flush TLBs after 6920 * write-protecting and/or clearing dirty on the newly split SPTEs to 6921 * ensure that guest writes are reflected in the dirty log before the 6922 * ioctl to enable dirty logging on this memslot completes. Since the 6923 * split SPTEs retain the write and dirty bits of the huge SPTE, it is 6924 * safe for KVM to decide if a TLB flush is necessary based on the split 6925 * SPTEs. 6926 */ 6927 } 6928 6929 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, 6930 struct kvm_rmap_head *rmap_head, 6931 const struct kvm_memory_slot *slot) 6932 { 6933 u64 *sptep; 6934 struct rmap_iterator iter; 6935 int need_tlb_flush = 0; 6936 struct kvm_mmu_page *sp; 6937 6938 restart: 6939 for_each_rmap_spte(rmap_head, &iter, sptep) { 6940 sp = sptep_to_sp(sptep); 6941 6942 /* 6943 * We cannot do huge page mapping for indirect shadow pages, 6944 * which are found on the last rmap (level = 1) when not using 6945 * tdp; such shadow pages are synced with the page table in 6946 * the guest, and the guest page table is using 4K page size 6947 * mapping if the indirect sp has level = 1. 6948 */ 6949 if (sp->role.direct && 6950 sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn, 6951 PG_LEVEL_NUM)) { 6952 kvm_zap_one_rmap_spte(kvm, rmap_head, sptep); 6953 6954 if (kvm_available_flush_remote_tlbs_range()) 6955 kvm_flush_remote_tlbs_sptep(kvm, sptep); 6956 else 6957 need_tlb_flush = 1; 6958 6959 goto restart; 6960 } 6961 } 6962 6963 return need_tlb_flush; 6964 } 6965 EXPORT_SYMBOL_GPL(kvm_zap_gfn_range); 6966 6967 static void kvm_rmap_zap_collapsible_sptes(struct kvm *kvm, 6968 const struct kvm_memory_slot *slot) 6969 { 6970 /* 6971 * Note, use KVM_MAX_HUGEPAGE_LEVEL - 1 since there's no need to zap 6972 * pages that are already mapped at the maximum hugepage level. 6973 */ 6974 if (walk_slot_rmaps(kvm, slot, kvm_mmu_zap_collapsible_spte, 6975 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL - 1, true)) 6976 kvm_flush_remote_tlbs_memslot(kvm, slot); 6977 } 6978 6979 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, 6980 const struct kvm_memory_slot *slot) 6981 { 6982 if (kvm_memslots_have_rmaps(kvm)) { 6983 write_lock(&kvm->mmu_lock); 6984 kvm_rmap_zap_collapsible_sptes(kvm, slot); 6985 write_unlock(&kvm->mmu_lock); 6986 } 6987 6988 if (tdp_mmu_enabled) { 6989 read_lock(&kvm->mmu_lock); 6990 kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot); 6991 read_unlock(&kvm->mmu_lock); 6992 } 6993 } 6994 6995 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 6996 const struct kvm_memory_slot *memslot) 6997 { 6998 if (kvm_memslots_have_rmaps(kvm)) { 6999 write_lock(&kvm->mmu_lock); 7000 /* 7001 * Clear dirty bits only on 4k SPTEs since the legacy MMU only 7002 * support dirty logging at a 4k granularity. 7003 */ 7004 walk_slot_rmaps_4k(kvm, memslot, __rmap_clear_dirty, false); 7005 write_unlock(&kvm->mmu_lock); 7006 } 7007 7008 if (tdp_mmu_enabled) { 7009 read_lock(&kvm->mmu_lock); 7010 kvm_tdp_mmu_clear_dirty_slot(kvm, memslot); 7011 read_unlock(&kvm->mmu_lock); 7012 } 7013 7014 /* 7015 * The caller will flush the TLBs after this function returns. 7016 * 7017 * It's also safe to flush TLBs out of mmu lock here as currently this 7018 * function is only used for dirty logging, in which case flushing TLB 7019 * out of mmu lock also guarantees no dirty pages will be lost in 7020 * dirty_bitmap. 7021 */ 7022 } 7023 7024 static void kvm_mmu_zap_all(struct kvm *kvm) 7025 { 7026 struct kvm_mmu_page *sp, *node; 7027 LIST_HEAD(invalid_list); 7028 int ign; 7029 7030 write_lock(&kvm->mmu_lock); 7031 restart: 7032 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) { 7033 if (WARN_ON_ONCE(sp->role.invalid)) 7034 continue; 7035 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign)) 7036 goto restart; 7037 if (cond_resched_rwlock_write(&kvm->mmu_lock)) 7038 goto restart; 7039 } 7040 7041 kvm_mmu_commit_zap_page(kvm, &invalid_list); 7042 7043 if (tdp_mmu_enabled) 7044 kvm_tdp_mmu_zap_all(kvm); 7045 7046 write_unlock(&kvm->mmu_lock); 7047 } 7048 7049 void kvm_arch_flush_shadow_all(struct kvm *kvm) 7050 { 7051 kvm_mmu_zap_all(kvm); 7052 } 7053 7054 static void kvm_mmu_zap_memslot_pages_and_flush(struct kvm *kvm, 7055 struct kvm_memory_slot *slot, 7056 bool flush) 7057 { 7058 LIST_HEAD(invalid_list); 7059 unsigned long i; 7060 7061 if (list_empty(&kvm->arch.active_mmu_pages)) 7062 goto out_flush; 7063 7064 /* 7065 * Since accounting information is stored in struct kvm_arch_memory_slot, 7066 * shadow pages deletion (e.g. unaccount_shadowed()) requires that all 7067 * gfns with a shadow page have a corresponding memslot. Do so before 7068 * the memslot goes away. 7069 */ 7070 for (i = 0; i < slot->npages; i++) { 7071 struct kvm_mmu_page *sp; 7072 gfn_t gfn = slot->base_gfn + i; 7073 7074 for_each_gfn_valid_sp(kvm, sp, gfn) 7075 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 7076 7077 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 7078 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7079 flush = false; 7080 cond_resched_rwlock_write(&kvm->mmu_lock); 7081 } 7082 } 7083 7084 out_flush: 7085 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7086 } 7087 7088 static void kvm_mmu_zap_memslot(struct kvm *kvm, 7089 struct kvm_memory_slot *slot) 7090 { 7091 struct kvm_gfn_range range = { 7092 .slot = slot, 7093 .start = slot->base_gfn, 7094 .end = slot->base_gfn + slot->npages, 7095 .may_block = true, 7096 }; 7097 bool flush; 7098 7099 write_lock(&kvm->mmu_lock); 7100 flush = kvm_unmap_gfn_range(kvm, &range); 7101 kvm_mmu_zap_memslot_pages_and_flush(kvm, slot, flush); 7102 write_unlock(&kvm->mmu_lock); 7103 } 7104 7105 static inline bool kvm_memslot_flush_zap_all(struct kvm *kvm) 7106 { 7107 return kvm->arch.vm_type == KVM_X86_DEFAULT_VM && 7108 kvm_check_has_quirk(kvm, KVM_X86_QUIRK_SLOT_ZAP_ALL); 7109 } 7110 7111 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 7112 struct kvm_memory_slot *slot) 7113 { 7114 if (kvm_memslot_flush_zap_all(kvm)) 7115 kvm_mmu_zap_all_fast(kvm); 7116 else 7117 kvm_mmu_zap_memslot(kvm, slot); 7118 } 7119 7120 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen) 7121 { 7122 WARN_ON_ONCE(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 7123 7124 gen &= MMIO_SPTE_GEN_MASK; 7125 7126 /* 7127 * Generation numbers are incremented in multiples of the number of 7128 * address spaces in order to provide unique generations across all 7129 * address spaces. Strip what is effectively the address space 7130 * modifier prior to checking for a wrap of the MMIO generation so 7131 * that a wrap in any address space is detected. 7132 */ 7133 gen &= ~((u64)kvm_arch_nr_memslot_as_ids(kvm) - 1); 7134 7135 /* 7136 * The very rare case: if the MMIO generation number has wrapped, 7137 * zap all shadow pages. 7138 */ 7139 if (unlikely(gen == 0)) { 7140 kvm_debug_ratelimited("zapping shadow pages for mmio generation wraparound\n"); 7141 kvm_mmu_zap_all_fast(kvm); 7142 } 7143 } 7144 7145 static unsigned long mmu_shrink_scan(struct shrinker *shrink, 7146 struct shrink_control *sc) 7147 { 7148 struct kvm *kvm; 7149 int nr_to_scan = sc->nr_to_scan; 7150 unsigned long freed = 0; 7151 7152 mutex_lock(&kvm_lock); 7153 7154 list_for_each_entry(kvm, &vm_list, vm_list) { 7155 int idx; 7156 7157 /* 7158 * Never scan more than sc->nr_to_scan VM instances. 7159 * Will not hit this condition practically since we do not try 7160 * to shrink more than one VM and it is very unlikely to see 7161 * !n_used_mmu_pages so many times. 7162 */ 7163 if (!nr_to_scan--) 7164 break; 7165 /* 7166 * n_used_mmu_pages is accessed without holding kvm->mmu_lock 7167 * here. We may skip a VM instance errorneosly, but we do not 7168 * want to shrink a VM that only started to populate its MMU 7169 * anyway. 7170 */ 7171 if (!kvm->arch.n_used_mmu_pages && 7172 !kvm_has_zapped_obsolete_pages(kvm)) 7173 continue; 7174 7175 idx = srcu_read_lock(&kvm->srcu); 7176 write_lock(&kvm->mmu_lock); 7177 7178 if (kvm_has_zapped_obsolete_pages(kvm)) { 7179 kvm_mmu_commit_zap_page(kvm, 7180 &kvm->arch.zapped_obsolete_pages); 7181 goto unlock; 7182 } 7183 7184 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan); 7185 7186 unlock: 7187 write_unlock(&kvm->mmu_lock); 7188 srcu_read_unlock(&kvm->srcu, idx); 7189 7190 /* 7191 * unfair on small ones 7192 * per-vm shrinkers cry out 7193 * sadness comes quickly 7194 */ 7195 list_move_tail(&kvm->vm_list, &vm_list); 7196 break; 7197 } 7198 7199 mutex_unlock(&kvm_lock); 7200 return freed; 7201 } 7202 7203 static unsigned long mmu_shrink_count(struct shrinker *shrink, 7204 struct shrink_control *sc) 7205 { 7206 return percpu_counter_read_positive(&kvm_total_used_mmu_pages); 7207 } 7208 7209 static struct shrinker *mmu_shrinker; 7210 7211 static void mmu_destroy_caches(void) 7212 { 7213 kmem_cache_destroy(pte_list_desc_cache); 7214 kmem_cache_destroy(mmu_page_header_cache); 7215 } 7216 7217 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp) 7218 { 7219 if (nx_hugepage_mitigation_hard_disabled) 7220 return sysfs_emit(buffer, "never\n"); 7221 7222 return param_get_bool(buffer, kp); 7223 } 7224 7225 static bool get_nx_auto_mode(void) 7226 { 7227 /* Return true when CPU has the bug, and mitigations are ON */ 7228 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off(); 7229 } 7230 7231 static void __set_nx_huge_pages(bool val) 7232 { 7233 nx_huge_pages = itlb_multihit_kvm_mitigation = val; 7234 } 7235 7236 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp) 7237 { 7238 bool old_val = nx_huge_pages; 7239 bool new_val; 7240 7241 if (nx_hugepage_mitigation_hard_disabled) 7242 return -EPERM; 7243 7244 /* In "auto" mode deploy workaround only if CPU has the bug. */ 7245 if (sysfs_streq(val, "off")) { 7246 new_val = 0; 7247 } else if (sysfs_streq(val, "force")) { 7248 new_val = 1; 7249 } else if (sysfs_streq(val, "auto")) { 7250 new_val = get_nx_auto_mode(); 7251 } else if (sysfs_streq(val, "never")) { 7252 new_val = 0; 7253 7254 mutex_lock(&kvm_lock); 7255 if (!list_empty(&vm_list)) { 7256 mutex_unlock(&kvm_lock); 7257 return -EBUSY; 7258 } 7259 nx_hugepage_mitigation_hard_disabled = true; 7260 mutex_unlock(&kvm_lock); 7261 } else if (kstrtobool(val, &new_val) < 0) { 7262 return -EINVAL; 7263 } 7264 7265 __set_nx_huge_pages(new_val); 7266 7267 if (new_val != old_val) { 7268 struct kvm *kvm; 7269 7270 mutex_lock(&kvm_lock); 7271 7272 list_for_each_entry(kvm, &vm_list, vm_list) { 7273 mutex_lock(&kvm->slots_lock); 7274 kvm_mmu_zap_all_fast(kvm); 7275 mutex_unlock(&kvm->slots_lock); 7276 7277 wake_up_process(kvm->arch.nx_huge_page_recovery_thread); 7278 } 7279 mutex_unlock(&kvm_lock); 7280 } 7281 7282 return 0; 7283 } 7284 7285 /* 7286 * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as 7287 * its default value of -1 is technically undefined behavior for a boolean. 7288 * Forward the module init call to SPTE code so that it too can handle module 7289 * params that need to be resolved/snapshot. 7290 */ 7291 void __init kvm_mmu_x86_module_init(void) 7292 { 7293 if (nx_huge_pages == -1) 7294 __set_nx_huge_pages(get_nx_auto_mode()); 7295 7296 /* 7297 * Snapshot userspace's desire to enable the TDP MMU. Whether or not the 7298 * TDP MMU is actually enabled is determined in kvm_configure_mmu() 7299 * when the vendor module is loaded. 7300 */ 7301 tdp_mmu_allowed = tdp_mmu_enabled; 7302 7303 kvm_mmu_spte_module_init(); 7304 } 7305 7306 /* 7307 * The bulk of the MMU initialization is deferred until the vendor module is 7308 * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need 7309 * to be reset when a potentially different vendor module is loaded. 7310 */ 7311 int kvm_mmu_vendor_module_init(void) 7312 { 7313 int ret = -ENOMEM; 7314 7315 /* 7316 * MMU roles use union aliasing which is, generally speaking, an 7317 * undefined behavior. However, we supposedly know how compilers behave 7318 * and the current status quo is unlikely to change. Guardians below are 7319 * supposed to let us know if the assumption becomes false. 7320 */ 7321 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32)); 7322 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32)); 7323 BUILD_BUG_ON(sizeof(union kvm_cpu_role) != sizeof(u64)); 7324 7325 kvm_mmu_reset_all_pte_masks(); 7326 7327 pte_list_desc_cache = KMEM_CACHE(pte_list_desc, SLAB_ACCOUNT); 7328 if (!pte_list_desc_cache) 7329 goto out; 7330 7331 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", 7332 sizeof(struct kvm_mmu_page), 7333 0, SLAB_ACCOUNT, NULL); 7334 if (!mmu_page_header_cache) 7335 goto out; 7336 7337 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL)) 7338 goto out; 7339 7340 mmu_shrinker = shrinker_alloc(0, "x86-mmu"); 7341 if (!mmu_shrinker) 7342 goto out_shrinker; 7343 7344 mmu_shrinker->count_objects = mmu_shrink_count; 7345 mmu_shrinker->scan_objects = mmu_shrink_scan; 7346 mmu_shrinker->seeks = DEFAULT_SEEKS * 10; 7347 7348 shrinker_register(mmu_shrinker); 7349 7350 return 0; 7351 7352 out_shrinker: 7353 percpu_counter_destroy(&kvm_total_used_mmu_pages); 7354 out: 7355 mmu_destroy_caches(); 7356 return ret; 7357 } 7358 7359 void kvm_mmu_destroy(struct kvm_vcpu *vcpu) 7360 { 7361 kvm_mmu_unload(vcpu); 7362 free_mmu_pages(&vcpu->arch.root_mmu); 7363 free_mmu_pages(&vcpu->arch.guest_mmu); 7364 mmu_free_memory_caches(vcpu); 7365 } 7366 7367 void kvm_mmu_vendor_module_exit(void) 7368 { 7369 mmu_destroy_caches(); 7370 percpu_counter_destroy(&kvm_total_used_mmu_pages); 7371 shrinker_free(mmu_shrinker); 7372 } 7373 7374 /* 7375 * Calculate the effective recovery period, accounting for '0' meaning "let KVM 7376 * select a halving time of 1 hour". Returns true if recovery is enabled. 7377 */ 7378 static bool calc_nx_huge_pages_recovery_period(uint *period) 7379 { 7380 /* 7381 * Use READ_ONCE to get the params, this may be called outside of the 7382 * param setters, e.g. by the kthread to compute its next timeout. 7383 */ 7384 bool enabled = READ_ONCE(nx_huge_pages); 7385 uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 7386 7387 if (!enabled || !ratio) 7388 return false; 7389 7390 *period = READ_ONCE(nx_huge_pages_recovery_period_ms); 7391 if (!*period) { 7392 /* Make sure the period is not less than one second. */ 7393 ratio = min(ratio, 3600u); 7394 *period = 60 * 60 * 1000 / ratio; 7395 } 7396 return true; 7397 } 7398 7399 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp) 7400 { 7401 bool was_recovery_enabled, is_recovery_enabled; 7402 uint old_period, new_period; 7403 int err; 7404 7405 if (nx_hugepage_mitigation_hard_disabled) 7406 return -EPERM; 7407 7408 was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period); 7409 7410 err = param_set_uint(val, kp); 7411 if (err) 7412 return err; 7413 7414 is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period); 7415 7416 if (is_recovery_enabled && 7417 (!was_recovery_enabled || old_period > new_period)) { 7418 struct kvm *kvm; 7419 7420 mutex_lock(&kvm_lock); 7421 7422 list_for_each_entry(kvm, &vm_list, vm_list) 7423 wake_up_process(kvm->arch.nx_huge_page_recovery_thread); 7424 7425 mutex_unlock(&kvm_lock); 7426 } 7427 7428 return err; 7429 } 7430 7431 static void kvm_recover_nx_huge_pages(struct kvm *kvm) 7432 { 7433 unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits; 7434 struct kvm_memory_slot *slot; 7435 int rcu_idx; 7436 struct kvm_mmu_page *sp; 7437 unsigned int ratio; 7438 LIST_HEAD(invalid_list); 7439 bool flush = false; 7440 ulong to_zap; 7441 7442 rcu_idx = srcu_read_lock(&kvm->srcu); 7443 write_lock(&kvm->mmu_lock); 7444 7445 /* 7446 * Zapping TDP MMU shadow pages, including the remote TLB flush, must 7447 * be done under RCU protection, because the pages are freed via RCU 7448 * callback. 7449 */ 7450 rcu_read_lock(); 7451 7452 ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 7453 to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0; 7454 for ( ; to_zap; --to_zap) { 7455 if (list_empty(&kvm->arch.possible_nx_huge_pages)) 7456 break; 7457 7458 /* 7459 * We use a separate list instead of just using active_mmu_pages 7460 * because the number of shadow pages that be replaced with an 7461 * NX huge page is expected to be relatively small compared to 7462 * the total number of shadow pages. And because the TDP MMU 7463 * doesn't use active_mmu_pages. 7464 */ 7465 sp = list_first_entry(&kvm->arch.possible_nx_huge_pages, 7466 struct kvm_mmu_page, 7467 possible_nx_huge_page_link); 7468 WARN_ON_ONCE(!sp->nx_huge_page_disallowed); 7469 WARN_ON_ONCE(!sp->role.direct); 7470 7471 /* 7472 * Unaccount and do not attempt to recover any NX Huge Pages 7473 * that are being dirty tracked, as they would just be faulted 7474 * back in as 4KiB pages. The NX Huge Pages in this slot will be 7475 * recovered, along with all the other huge pages in the slot, 7476 * when dirty logging is disabled. 7477 * 7478 * Since gfn_to_memslot() is relatively expensive, it helps to 7479 * skip it if it the test cannot possibly return true. On the 7480 * other hand, if any memslot has logging enabled, chances are 7481 * good that all of them do, in which case unaccount_nx_huge_page() 7482 * is much cheaper than zapping the page. 7483 * 7484 * If a memslot update is in progress, reading an incorrect value 7485 * of kvm->nr_memslots_dirty_logging is not a problem: if it is 7486 * becoming zero, gfn_to_memslot() will be done unnecessarily; if 7487 * it is becoming nonzero, the page will be zapped unnecessarily. 7488 * Either way, this only affects efficiency in racy situations, 7489 * and not correctness. 7490 */ 7491 slot = NULL; 7492 if (atomic_read(&kvm->nr_memslots_dirty_logging)) { 7493 struct kvm_memslots *slots; 7494 7495 slots = kvm_memslots_for_spte_role(kvm, sp->role); 7496 slot = __gfn_to_memslot(slots, sp->gfn); 7497 WARN_ON_ONCE(!slot); 7498 } 7499 7500 if (slot && kvm_slot_dirty_track_enabled(slot)) 7501 unaccount_nx_huge_page(kvm, sp); 7502 else if (is_tdp_mmu_page(sp)) 7503 flush |= kvm_tdp_mmu_zap_sp(kvm, sp); 7504 else 7505 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 7506 WARN_ON_ONCE(sp->nx_huge_page_disallowed); 7507 7508 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 7509 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7510 rcu_read_unlock(); 7511 7512 cond_resched_rwlock_write(&kvm->mmu_lock); 7513 flush = false; 7514 7515 rcu_read_lock(); 7516 } 7517 } 7518 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7519 7520 rcu_read_unlock(); 7521 7522 write_unlock(&kvm->mmu_lock); 7523 srcu_read_unlock(&kvm->srcu, rcu_idx); 7524 } 7525 7526 static long get_nx_huge_page_recovery_timeout(u64 start_time) 7527 { 7528 bool enabled; 7529 uint period; 7530 7531 enabled = calc_nx_huge_pages_recovery_period(&period); 7532 7533 return enabled ? start_time + msecs_to_jiffies(period) - get_jiffies_64() 7534 : MAX_SCHEDULE_TIMEOUT; 7535 } 7536 7537 static int kvm_nx_huge_page_recovery_worker(struct kvm *kvm, uintptr_t data) 7538 { 7539 u64 start_time; 7540 long remaining_time; 7541 7542 while (true) { 7543 start_time = get_jiffies_64(); 7544 remaining_time = get_nx_huge_page_recovery_timeout(start_time); 7545 7546 set_current_state(TASK_INTERRUPTIBLE); 7547 while (!kthread_should_stop() && remaining_time > 0) { 7548 schedule_timeout(remaining_time); 7549 remaining_time = get_nx_huge_page_recovery_timeout(start_time); 7550 set_current_state(TASK_INTERRUPTIBLE); 7551 } 7552 7553 set_current_state(TASK_RUNNING); 7554 7555 if (kthread_should_stop()) 7556 return 0; 7557 7558 kvm_recover_nx_huge_pages(kvm); 7559 } 7560 } 7561 7562 int kvm_mmu_post_init_vm(struct kvm *kvm) 7563 { 7564 int err; 7565 7566 if (nx_hugepage_mitigation_hard_disabled) 7567 return 0; 7568 7569 err = kvm_vm_create_worker_thread(kvm, kvm_nx_huge_page_recovery_worker, 0, 7570 "kvm-nx-lpage-recovery", 7571 &kvm->arch.nx_huge_page_recovery_thread); 7572 if (!err) 7573 kthread_unpark(kvm->arch.nx_huge_page_recovery_thread); 7574 7575 return err; 7576 } 7577 7578 void kvm_mmu_pre_destroy_vm(struct kvm *kvm) 7579 { 7580 if (kvm->arch.nx_huge_page_recovery_thread) 7581 kthread_stop(kvm->arch.nx_huge_page_recovery_thread); 7582 } 7583 7584 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 7585 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm, 7586 struct kvm_gfn_range *range) 7587 { 7588 /* 7589 * Zap SPTEs even if the slot can't be mapped PRIVATE. KVM x86 only 7590 * supports KVM_MEMORY_ATTRIBUTE_PRIVATE, and so it *seems* like KVM 7591 * can simply ignore such slots. But if userspace is making memory 7592 * PRIVATE, then KVM must prevent the guest from accessing the memory 7593 * as shared. And if userspace is making memory SHARED and this point 7594 * is reached, then at least one page within the range was previously 7595 * PRIVATE, i.e. the slot's possible hugepage ranges are changing. 7596 * Zapping SPTEs in this case ensures KVM will reassess whether or not 7597 * a hugepage can be used for affected ranges. 7598 */ 7599 if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm))) 7600 return false; 7601 7602 return kvm_unmap_gfn_range(kvm, range); 7603 } 7604 7605 static bool hugepage_test_mixed(struct kvm_memory_slot *slot, gfn_t gfn, 7606 int level) 7607 { 7608 return lpage_info_slot(gfn, slot, level)->disallow_lpage & KVM_LPAGE_MIXED_FLAG; 7609 } 7610 7611 static void hugepage_clear_mixed(struct kvm_memory_slot *slot, gfn_t gfn, 7612 int level) 7613 { 7614 lpage_info_slot(gfn, slot, level)->disallow_lpage &= ~KVM_LPAGE_MIXED_FLAG; 7615 } 7616 7617 static void hugepage_set_mixed(struct kvm_memory_slot *slot, gfn_t gfn, 7618 int level) 7619 { 7620 lpage_info_slot(gfn, slot, level)->disallow_lpage |= KVM_LPAGE_MIXED_FLAG; 7621 } 7622 7623 static bool hugepage_has_attrs(struct kvm *kvm, struct kvm_memory_slot *slot, 7624 gfn_t gfn, int level, unsigned long attrs) 7625 { 7626 const unsigned long start = gfn; 7627 const unsigned long end = start + KVM_PAGES_PER_HPAGE(level); 7628 7629 if (level == PG_LEVEL_2M) 7630 return kvm_range_has_memory_attributes(kvm, start, end, ~0, attrs); 7631 7632 for (gfn = start; gfn < end; gfn += KVM_PAGES_PER_HPAGE(level - 1)) { 7633 if (hugepage_test_mixed(slot, gfn, level - 1) || 7634 attrs != kvm_get_memory_attributes(kvm, gfn)) 7635 return false; 7636 } 7637 return true; 7638 } 7639 7640 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm, 7641 struct kvm_gfn_range *range) 7642 { 7643 unsigned long attrs = range->arg.attributes; 7644 struct kvm_memory_slot *slot = range->slot; 7645 int level; 7646 7647 lockdep_assert_held_write(&kvm->mmu_lock); 7648 lockdep_assert_held(&kvm->slots_lock); 7649 7650 /* 7651 * Calculate which ranges can be mapped with hugepages even if the slot 7652 * can't map memory PRIVATE. KVM mustn't create a SHARED hugepage over 7653 * a range that has PRIVATE GFNs, and conversely converting a range to 7654 * SHARED may now allow hugepages. 7655 */ 7656 if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm))) 7657 return false; 7658 7659 /* 7660 * The sequence matters here: upper levels consume the result of lower 7661 * level's scanning. 7662 */ 7663 for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) { 7664 gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level); 7665 gfn_t gfn = gfn_round_for_level(range->start, level); 7666 7667 /* Process the head page if it straddles the range. */ 7668 if (gfn != range->start || gfn + nr_pages > range->end) { 7669 /* 7670 * Skip mixed tracking if the aligned gfn isn't covered 7671 * by the memslot, KVM can't use a hugepage due to the 7672 * misaligned address regardless of memory attributes. 7673 */ 7674 if (gfn >= slot->base_gfn && 7675 gfn + nr_pages <= slot->base_gfn + slot->npages) { 7676 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs)) 7677 hugepage_clear_mixed(slot, gfn, level); 7678 else 7679 hugepage_set_mixed(slot, gfn, level); 7680 } 7681 gfn += nr_pages; 7682 } 7683 7684 /* 7685 * Pages entirely covered by the range are guaranteed to have 7686 * only the attributes which were just set. 7687 */ 7688 for ( ; gfn + nr_pages <= range->end; gfn += nr_pages) 7689 hugepage_clear_mixed(slot, gfn, level); 7690 7691 /* 7692 * Process the last tail page if it straddles the range and is 7693 * contained by the memslot. Like the head page, KVM can't 7694 * create a hugepage if the slot size is misaligned. 7695 */ 7696 if (gfn < range->end && 7697 (gfn + nr_pages) <= (slot->base_gfn + slot->npages)) { 7698 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs)) 7699 hugepage_clear_mixed(slot, gfn, level); 7700 else 7701 hugepage_set_mixed(slot, gfn, level); 7702 } 7703 } 7704 return false; 7705 } 7706 7707 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm, 7708 struct kvm_memory_slot *slot) 7709 { 7710 int level; 7711 7712 if (!kvm_arch_has_private_mem(kvm)) 7713 return; 7714 7715 for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) { 7716 /* 7717 * Don't bother tracking mixed attributes for pages that can't 7718 * be huge due to alignment, i.e. process only pages that are 7719 * entirely contained by the memslot. 7720 */ 7721 gfn_t end = gfn_round_for_level(slot->base_gfn + slot->npages, level); 7722 gfn_t start = gfn_round_for_level(slot->base_gfn, level); 7723 gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level); 7724 gfn_t gfn; 7725 7726 if (start < slot->base_gfn) 7727 start += nr_pages; 7728 7729 /* 7730 * Unlike setting attributes, every potential hugepage needs to 7731 * be manually checked as the attributes may already be mixed. 7732 */ 7733 for (gfn = start; gfn < end; gfn += nr_pages) { 7734 unsigned long attrs = kvm_get_memory_attributes(kvm, gfn); 7735 7736 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs)) 7737 hugepage_clear_mixed(slot, gfn, level); 7738 else 7739 hugepage_set_mixed(slot, gfn, level); 7740 } 7741 } 7742 } 7743 #endif 7744