1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * MMU support 9 * 10 * Copyright (C) 2006 Qumranet, Inc. 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 12 * 13 * Authors: 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Avi Kivity <avi@qumranet.com> 16 */ 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include "irq.h" 20 #include "ioapic.h" 21 #include "mmu.h" 22 #include "mmu_internal.h" 23 #include "tdp_mmu.h" 24 #include "x86.h" 25 #include "kvm_cache_regs.h" 26 #include "smm.h" 27 #include "kvm_emulate.h" 28 #include "page_track.h" 29 #include "cpuid.h" 30 #include "spte.h" 31 32 #include <linux/kvm_host.h> 33 #include <linux/types.h> 34 #include <linux/string.h> 35 #include <linux/mm.h> 36 #include <linux/highmem.h> 37 #include <linux/moduleparam.h> 38 #include <linux/export.h> 39 #include <linux/swap.h> 40 #include <linux/hugetlb.h> 41 #include <linux/compiler.h> 42 #include <linux/srcu.h> 43 #include <linux/slab.h> 44 #include <linux/sched/signal.h> 45 #include <linux/uaccess.h> 46 #include <linux/hash.h> 47 #include <linux/kern_levels.h> 48 #include <linux/kstrtox.h> 49 #include <linux/kthread.h> 50 #include <linux/wordpart.h> 51 52 #include <asm/page.h> 53 #include <asm/memtype.h> 54 #include <asm/cmpxchg.h> 55 #include <asm/io.h> 56 #include <asm/set_memory.h> 57 #include <asm/spec-ctrl.h> 58 #include <asm/vmx.h> 59 60 #include "trace.h" 61 62 static bool nx_hugepage_mitigation_hard_disabled; 63 64 int __read_mostly nx_huge_pages = -1; 65 static uint __read_mostly nx_huge_pages_recovery_period_ms; 66 #ifdef CONFIG_PREEMPT_RT 67 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */ 68 static uint __read_mostly nx_huge_pages_recovery_ratio = 0; 69 #else 70 static uint __read_mostly nx_huge_pages_recovery_ratio = 60; 71 #endif 72 73 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp); 74 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp); 75 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp); 76 77 static const struct kernel_param_ops nx_huge_pages_ops = { 78 .set = set_nx_huge_pages, 79 .get = get_nx_huge_pages, 80 }; 81 82 static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = { 83 .set = set_nx_huge_pages_recovery_param, 84 .get = param_get_uint, 85 }; 86 87 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644); 88 __MODULE_PARM_TYPE(nx_huge_pages, "bool"); 89 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops, 90 &nx_huge_pages_recovery_ratio, 0644); 91 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint"); 92 module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops, 93 &nx_huge_pages_recovery_period_ms, 0644); 94 __MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint"); 95 96 static bool __read_mostly force_flush_and_sync_on_reuse; 97 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644); 98 99 /* 100 * When setting this variable to true it enables Two-Dimensional-Paging 101 * where the hardware walks 2 page tables: 102 * 1. the guest-virtual to guest-physical 103 * 2. while doing 1. it walks guest-physical to host-physical 104 * If the hardware supports that we don't need to do shadow paging. 105 */ 106 bool tdp_enabled = false; 107 108 static bool __ro_after_init tdp_mmu_allowed; 109 110 #ifdef CONFIG_X86_64 111 bool __read_mostly tdp_mmu_enabled = true; 112 module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0444); 113 #endif 114 115 static int max_huge_page_level __read_mostly; 116 static int tdp_root_level __read_mostly; 117 static int max_tdp_level __read_mostly; 118 119 #define PTE_PREFETCH_NUM 8 120 121 #include <trace/events/kvm.h> 122 123 /* make pte_list_desc fit well in cache lines */ 124 #define PTE_LIST_EXT 14 125 126 /* 127 * struct pte_list_desc is the core data structure used to implement a custom 128 * list for tracking a set of related SPTEs, e.g. all the SPTEs that map a 129 * given GFN when used in the context of rmaps. Using a custom list allows KVM 130 * to optimize for the common case where many GFNs will have at most a handful 131 * of SPTEs pointing at them, i.e. allows packing multiple SPTEs into a small 132 * memory footprint, which in turn improves runtime performance by exploiting 133 * cache locality. 134 * 135 * A list is comprised of one or more pte_list_desc objects (descriptors). 136 * Each individual descriptor stores up to PTE_LIST_EXT SPTEs. If a descriptor 137 * is full and a new SPTEs needs to be added, a new descriptor is allocated and 138 * becomes the head of the list. This means that by definitions, all tail 139 * descriptors are full. 140 * 141 * Note, the meta data fields are deliberately placed at the start of the 142 * structure to optimize the cacheline layout; accessing the descriptor will 143 * touch only a single cacheline so long as @spte_count<=6 (or if only the 144 * descriptors metadata is accessed). 145 */ 146 struct pte_list_desc { 147 struct pte_list_desc *more; 148 /* The number of PTEs stored in _this_ descriptor. */ 149 u32 spte_count; 150 /* The number of PTEs stored in all tails of this descriptor. */ 151 u32 tail_count; 152 u64 *sptes[PTE_LIST_EXT]; 153 }; 154 155 struct kvm_shadow_walk_iterator { 156 u64 addr; 157 hpa_t shadow_addr; 158 u64 *sptep; 159 int level; 160 unsigned index; 161 }; 162 163 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \ 164 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \ 165 (_root), (_addr)); \ 166 shadow_walk_okay(&(_walker)); \ 167 shadow_walk_next(&(_walker))) 168 169 #define for_each_shadow_entry(_vcpu, _addr, _walker) \ 170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 171 shadow_walk_okay(&(_walker)); \ 172 shadow_walk_next(&(_walker))) 173 174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \ 175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 176 shadow_walk_okay(&(_walker)) && \ 177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \ 178 __shadow_walk_next(&(_walker), spte)) 179 180 static struct kmem_cache *pte_list_desc_cache; 181 struct kmem_cache *mmu_page_header_cache; 182 static struct percpu_counter kvm_total_used_mmu_pages; 183 184 static void mmu_spte_set(u64 *sptep, u64 spte); 185 186 struct kvm_mmu_role_regs { 187 const unsigned long cr0; 188 const unsigned long cr4; 189 const u64 efer; 190 }; 191 192 #define CREATE_TRACE_POINTS 193 #include "mmutrace.h" 194 195 /* 196 * Yes, lot's of underscores. They're a hint that you probably shouldn't be 197 * reading from the role_regs. Once the root_role is constructed, it becomes 198 * the single source of truth for the MMU's state. 199 */ 200 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag) \ 201 static inline bool __maybe_unused \ 202 ____is_##reg##_##name(const struct kvm_mmu_role_regs *regs) \ 203 { \ 204 return !!(regs->reg & flag); \ 205 } 206 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG); 207 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP); 208 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE); 209 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE); 210 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP); 211 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP); 212 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE); 213 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57); 214 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX); 215 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA); 216 217 /* 218 * The MMU itself (with a valid role) is the single source of truth for the 219 * MMU. Do not use the regs used to build the MMU/role, nor the vCPU. The 220 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1, 221 * and the vCPU may be incorrect/irrelevant. 222 */ 223 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name) \ 224 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu) \ 225 { \ 226 return !!(mmu->cpu_role. base_or_ext . reg##_##name); \ 227 } 228 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp); 229 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pse); 230 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smep); 231 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smap); 232 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pke); 233 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, la57); 234 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx); 235 BUILD_MMU_ROLE_ACCESSOR(ext, efer, lma); 236 237 static inline bool is_cr0_pg(struct kvm_mmu *mmu) 238 { 239 return mmu->cpu_role.base.level > 0; 240 } 241 242 static inline bool is_cr4_pae(struct kvm_mmu *mmu) 243 { 244 return !mmu->cpu_role.base.has_4_byte_gpte; 245 } 246 247 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu) 248 { 249 struct kvm_mmu_role_regs regs = { 250 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS), 251 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS), 252 .efer = vcpu->arch.efer, 253 }; 254 255 return regs; 256 } 257 258 static unsigned long get_guest_cr3(struct kvm_vcpu *vcpu) 259 { 260 return kvm_read_cr3(vcpu); 261 } 262 263 static inline unsigned long kvm_mmu_get_guest_pgd(struct kvm_vcpu *vcpu, 264 struct kvm_mmu *mmu) 265 { 266 if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && mmu->get_guest_pgd == get_guest_cr3) 267 return kvm_read_cr3(vcpu); 268 269 return mmu->get_guest_pgd(vcpu); 270 } 271 272 static inline bool kvm_available_flush_remote_tlbs_range(void) 273 { 274 #if IS_ENABLED(CONFIG_HYPERV) 275 return kvm_x86_ops.flush_remote_tlbs_range; 276 #else 277 return false; 278 #endif 279 } 280 281 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index); 282 283 /* Flush the range of guest memory mapped by the given SPTE. */ 284 static void kvm_flush_remote_tlbs_sptep(struct kvm *kvm, u64 *sptep) 285 { 286 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 287 gfn_t gfn = kvm_mmu_page_get_gfn(sp, spte_index(sptep)); 288 289 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level); 290 } 291 292 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn, 293 unsigned int access) 294 { 295 u64 spte = make_mmio_spte(vcpu, gfn, access); 296 297 trace_mark_mmio_spte(sptep, gfn, spte); 298 mmu_spte_set(sptep, spte); 299 } 300 301 static gfn_t get_mmio_spte_gfn(u64 spte) 302 { 303 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask; 304 305 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN) 306 & shadow_nonpresent_or_rsvd_mask; 307 308 return gpa >> PAGE_SHIFT; 309 } 310 311 static unsigned get_mmio_spte_access(u64 spte) 312 { 313 return spte & shadow_mmio_access_mask; 314 } 315 316 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte) 317 { 318 u64 kvm_gen, spte_gen, gen; 319 320 gen = kvm_vcpu_memslots(vcpu)->generation; 321 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS)) 322 return false; 323 324 kvm_gen = gen & MMIO_SPTE_GEN_MASK; 325 spte_gen = get_mmio_spte_generation(spte); 326 327 trace_check_mmio_spte(spte, kvm_gen, spte_gen); 328 return likely(kvm_gen == spte_gen); 329 } 330 331 static int is_cpuid_PSE36(void) 332 { 333 return 1; 334 } 335 336 #ifdef CONFIG_X86_64 337 static void __set_spte(u64 *sptep, u64 spte) 338 { 339 WRITE_ONCE(*sptep, spte); 340 } 341 342 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 343 { 344 WRITE_ONCE(*sptep, spte); 345 } 346 347 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 348 { 349 return xchg(sptep, spte); 350 } 351 352 static u64 __get_spte_lockless(u64 *sptep) 353 { 354 return READ_ONCE(*sptep); 355 } 356 #else 357 union split_spte { 358 struct { 359 u32 spte_low; 360 u32 spte_high; 361 }; 362 u64 spte; 363 }; 364 365 static void count_spte_clear(u64 *sptep, u64 spte) 366 { 367 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 368 369 if (is_shadow_present_pte(spte)) 370 return; 371 372 /* Ensure the spte is completely set before we increase the count */ 373 smp_wmb(); 374 sp->clear_spte_count++; 375 } 376 377 static void __set_spte(u64 *sptep, u64 spte) 378 { 379 union split_spte *ssptep, sspte; 380 381 ssptep = (union split_spte *)sptep; 382 sspte = (union split_spte)spte; 383 384 ssptep->spte_high = sspte.spte_high; 385 386 /* 387 * If we map the spte from nonpresent to present, We should store 388 * the high bits firstly, then set present bit, so cpu can not 389 * fetch this spte while we are setting the spte. 390 */ 391 smp_wmb(); 392 393 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 394 } 395 396 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 397 { 398 union split_spte *ssptep, sspte; 399 400 ssptep = (union split_spte *)sptep; 401 sspte = (union split_spte)spte; 402 403 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 404 405 /* 406 * If we map the spte from present to nonpresent, we should clear 407 * present bit firstly to avoid vcpu fetch the old high bits. 408 */ 409 smp_wmb(); 410 411 ssptep->spte_high = sspte.spte_high; 412 count_spte_clear(sptep, spte); 413 } 414 415 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 416 { 417 union split_spte *ssptep, sspte, orig; 418 419 ssptep = (union split_spte *)sptep; 420 sspte = (union split_spte)spte; 421 422 /* xchg acts as a barrier before the setting of the high bits */ 423 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); 424 orig.spte_high = ssptep->spte_high; 425 ssptep->spte_high = sspte.spte_high; 426 count_spte_clear(sptep, spte); 427 428 return orig.spte; 429 } 430 431 /* 432 * The idea using the light way get the spte on x86_32 guest is from 433 * gup_get_pte (mm/gup.c). 434 * 435 * An spte tlb flush may be pending, because kvm_set_pte_rmap 436 * coalesces them and we are running out of the MMU lock. Therefore 437 * we need to protect against in-progress updates of the spte. 438 * 439 * Reading the spte while an update is in progress may get the old value 440 * for the high part of the spte. The race is fine for a present->non-present 441 * change (because the high part of the spte is ignored for non-present spte), 442 * but for a present->present change we must reread the spte. 443 * 444 * All such changes are done in two steps (present->non-present and 445 * non-present->present), hence it is enough to count the number of 446 * present->non-present updates: if it changed while reading the spte, 447 * we might have hit the race. This is done using clear_spte_count. 448 */ 449 static u64 __get_spte_lockless(u64 *sptep) 450 { 451 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 452 union split_spte spte, *orig = (union split_spte *)sptep; 453 int count; 454 455 retry: 456 count = sp->clear_spte_count; 457 smp_rmb(); 458 459 spte.spte_low = orig->spte_low; 460 smp_rmb(); 461 462 spte.spte_high = orig->spte_high; 463 smp_rmb(); 464 465 if (unlikely(spte.spte_low != orig->spte_low || 466 count != sp->clear_spte_count)) 467 goto retry; 468 469 return spte.spte; 470 } 471 #endif 472 473 /* Rules for using mmu_spte_set: 474 * Set the sptep from nonpresent to present. 475 * Note: the sptep being assigned *must* be either not present 476 * or in a state where the hardware will not attempt to update 477 * the spte. 478 */ 479 static void mmu_spte_set(u64 *sptep, u64 new_spte) 480 { 481 WARN_ON_ONCE(is_shadow_present_pte(*sptep)); 482 __set_spte(sptep, new_spte); 483 } 484 485 /* 486 * Update the SPTE (excluding the PFN), but do not track changes in its 487 * accessed/dirty status. 488 */ 489 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte) 490 { 491 u64 old_spte = *sptep; 492 493 WARN_ON_ONCE(!is_shadow_present_pte(new_spte)); 494 check_spte_writable_invariants(new_spte); 495 496 if (!is_shadow_present_pte(old_spte)) { 497 mmu_spte_set(sptep, new_spte); 498 return old_spte; 499 } 500 501 if (!spte_has_volatile_bits(old_spte)) 502 __update_clear_spte_fast(sptep, new_spte); 503 else 504 old_spte = __update_clear_spte_slow(sptep, new_spte); 505 506 WARN_ON_ONCE(spte_to_pfn(old_spte) != spte_to_pfn(new_spte)); 507 508 return old_spte; 509 } 510 511 /* Rules for using mmu_spte_update: 512 * Update the state bits, it means the mapped pfn is not changed. 513 * 514 * Whenever an MMU-writable SPTE is overwritten with a read-only SPTE, remote 515 * TLBs must be flushed. Otherwise rmap_write_protect will find a read-only 516 * spte, even though the writable spte might be cached on a CPU's TLB. 517 * 518 * Returns true if the TLB needs to be flushed 519 */ 520 static bool mmu_spte_update(u64 *sptep, u64 new_spte) 521 { 522 bool flush = false; 523 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte); 524 525 if (!is_shadow_present_pte(old_spte)) 526 return false; 527 528 /* 529 * For the spte updated out of mmu-lock is safe, since 530 * we always atomically update it, see the comments in 531 * spte_has_volatile_bits(). 532 */ 533 if (is_mmu_writable_spte(old_spte) && 534 !is_writable_pte(new_spte)) 535 flush = true; 536 537 /* 538 * Flush TLB when accessed/dirty states are changed in the page tables, 539 * to guarantee consistency between TLB and page tables. 540 */ 541 542 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) { 543 flush = true; 544 kvm_set_pfn_accessed(spte_to_pfn(old_spte)); 545 } 546 547 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) { 548 flush = true; 549 kvm_set_pfn_dirty(spte_to_pfn(old_spte)); 550 } 551 552 return flush; 553 } 554 555 /* 556 * Rules for using mmu_spte_clear_track_bits: 557 * It sets the sptep from present to nonpresent, and track the 558 * state bits, it is used to clear the last level sptep. 559 * Returns the old PTE. 560 */ 561 static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep) 562 { 563 kvm_pfn_t pfn; 564 u64 old_spte = *sptep; 565 int level = sptep_to_sp(sptep)->role.level; 566 struct page *page; 567 568 if (!is_shadow_present_pte(old_spte) || 569 !spte_has_volatile_bits(old_spte)) 570 __update_clear_spte_fast(sptep, 0ull); 571 else 572 old_spte = __update_clear_spte_slow(sptep, 0ull); 573 574 if (!is_shadow_present_pte(old_spte)) 575 return old_spte; 576 577 kvm_update_page_stats(kvm, level, -1); 578 579 pfn = spte_to_pfn(old_spte); 580 581 /* 582 * KVM doesn't hold a reference to any pages mapped into the guest, and 583 * instead uses the mmu_notifier to ensure that KVM unmaps any pages 584 * before they are reclaimed. Sanity check that, if the pfn is backed 585 * by a refcounted page, the refcount is elevated. 586 */ 587 page = kvm_pfn_to_refcounted_page(pfn); 588 WARN_ON_ONCE(page && !page_count(page)); 589 590 if (is_accessed_spte(old_spte)) 591 kvm_set_pfn_accessed(pfn); 592 593 if (is_dirty_spte(old_spte)) 594 kvm_set_pfn_dirty(pfn); 595 596 return old_spte; 597 } 598 599 /* 600 * Rules for using mmu_spte_clear_no_track: 601 * Directly clear spte without caring the state bits of sptep, 602 * it is used to set the upper level spte. 603 */ 604 static void mmu_spte_clear_no_track(u64 *sptep) 605 { 606 __update_clear_spte_fast(sptep, 0ull); 607 } 608 609 static u64 mmu_spte_get_lockless(u64 *sptep) 610 { 611 return __get_spte_lockless(sptep); 612 } 613 614 /* Returns the Accessed status of the PTE and resets it at the same time. */ 615 static bool mmu_spte_age(u64 *sptep) 616 { 617 u64 spte = mmu_spte_get_lockless(sptep); 618 619 if (!is_accessed_spte(spte)) 620 return false; 621 622 if (spte_ad_enabled(spte)) { 623 clear_bit((ffs(shadow_accessed_mask) - 1), 624 (unsigned long *)sptep); 625 } else { 626 /* 627 * Capture the dirty status of the page, so that it doesn't get 628 * lost when the SPTE is marked for access tracking. 629 */ 630 if (is_writable_pte(spte)) 631 kvm_set_pfn_dirty(spte_to_pfn(spte)); 632 633 spte = mark_spte_for_access_track(spte); 634 mmu_spte_update_no_track(sptep, spte); 635 } 636 637 return true; 638 } 639 640 static inline bool is_tdp_mmu_active(struct kvm_vcpu *vcpu) 641 { 642 return tdp_mmu_enabled && vcpu->arch.mmu->root_role.direct; 643 } 644 645 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) 646 { 647 if (is_tdp_mmu_active(vcpu)) { 648 kvm_tdp_mmu_walk_lockless_begin(); 649 } else { 650 /* 651 * Prevent page table teardown by making any free-er wait during 652 * kvm_flush_remote_tlbs() IPI to all active vcpus. 653 */ 654 local_irq_disable(); 655 656 /* 657 * Make sure a following spte read is not reordered ahead of the write 658 * to vcpu->mode. 659 */ 660 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); 661 } 662 } 663 664 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) 665 { 666 if (is_tdp_mmu_active(vcpu)) { 667 kvm_tdp_mmu_walk_lockless_end(); 668 } else { 669 /* 670 * Make sure the write to vcpu->mode is not reordered in front of 671 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us 672 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. 673 */ 674 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); 675 local_irq_enable(); 676 } 677 } 678 679 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect) 680 { 681 int r; 682 683 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */ 684 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, 685 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM); 686 if (r) 687 return r; 688 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache, 689 PT64_ROOT_MAX_LEVEL); 690 if (r) 691 return r; 692 if (maybe_indirect) { 693 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadowed_info_cache, 694 PT64_ROOT_MAX_LEVEL); 695 if (r) 696 return r; 697 } 698 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, 699 PT64_ROOT_MAX_LEVEL); 700 } 701 702 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) 703 { 704 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache); 705 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache); 706 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadowed_info_cache); 707 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache); 708 } 709 710 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) 711 { 712 kmem_cache_free(pte_list_desc_cache, pte_list_desc); 713 } 714 715 static bool sp_has_gptes(struct kvm_mmu_page *sp); 716 717 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) 718 { 719 if (sp->role.passthrough) 720 return sp->gfn; 721 722 if (!sp->role.direct) 723 return sp->shadowed_translation[index] >> PAGE_SHIFT; 724 725 return sp->gfn + (index << ((sp->role.level - 1) * SPTE_LEVEL_BITS)); 726 } 727 728 /* 729 * For leaf SPTEs, fetch the *guest* access permissions being shadowed. Note 730 * that the SPTE itself may have a more constrained access permissions that 731 * what the guest enforces. For example, a guest may create an executable 732 * huge PTE but KVM may disallow execution to mitigate iTLB multihit. 733 */ 734 static u32 kvm_mmu_page_get_access(struct kvm_mmu_page *sp, int index) 735 { 736 if (sp_has_gptes(sp)) 737 return sp->shadowed_translation[index] & ACC_ALL; 738 739 /* 740 * For direct MMUs (e.g. TDP or non-paging guests) or passthrough SPs, 741 * KVM is not shadowing any guest page tables, so the "guest access 742 * permissions" are just ACC_ALL. 743 * 744 * For direct SPs in indirect MMUs (shadow paging), i.e. when KVM 745 * is shadowing a guest huge page with small pages, the guest access 746 * permissions being shadowed are the access permissions of the huge 747 * page. 748 * 749 * In both cases, sp->role.access contains the correct access bits. 750 */ 751 return sp->role.access; 752 } 753 754 static void kvm_mmu_page_set_translation(struct kvm_mmu_page *sp, int index, 755 gfn_t gfn, unsigned int access) 756 { 757 if (sp_has_gptes(sp)) { 758 sp->shadowed_translation[index] = (gfn << PAGE_SHIFT) | access; 759 return; 760 } 761 762 WARN_ONCE(access != kvm_mmu_page_get_access(sp, index), 763 "access mismatch under %s page %llx (expected %u, got %u)\n", 764 sp->role.passthrough ? "passthrough" : "direct", 765 sp->gfn, kvm_mmu_page_get_access(sp, index), access); 766 767 WARN_ONCE(gfn != kvm_mmu_page_get_gfn(sp, index), 768 "gfn mismatch under %s page %llx (expected %llx, got %llx)\n", 769 sp->role.passthrough ? "passthrough" : "direct", 770 sp->gfn, kvm_mmu_page_get_gfn(sp, index), gfn); 771 } 772 773 static void kvm_mmu_page_set_access(struct kvm_mmu_page *sp, int index, 774 unsigned int access) 775 { 776 gfn_t gfn = kvm_mmu_page_get_gfn(sp, index); 777 778 kvm_mmu_page_set_translation(sp, index, gfn, access); 779 } 780 781 /* 782 * Return the pointer to the large page information for a given gfn, 783 * handling slots that are not large page aligned. 784 */ 785 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, 786 const struct kvm_memory_slot *slot, int level) 787 { 788 unsigned long idx; 789 790 idx = gfn_to_index(gfn, slot->base_gfn, level); 791 return &slot->arch.lpage_info[level - 2][idx]; 792 } 793 794 /* 795 * The most significant bit in disallow_lpage tracks whether or not memory 796 * attributes are mixed, i.e. not identical for all gfns at the current level. 797 * The lower order bits are used to refcount other cases where a hugepage is 798 * disallowed, e.g. if KVM has shadow a page table at the gfn. 799 */ 800 #define KVM_LPAGE_MIXED_FLAG BIT(31) 801 802 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot, 803 gfn_t gfn, int count) 804 { 805 struct kvm_lpage_info *linfo; 806 int old, i; 807 808 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 809 linfo = lpage_info_slot(gfn, slot, i); 810 811 old = linfo->disallow_lpage; 812 linfo->disallow_lpage += count; 813 WARN_ON_ONCE((old ^ linfo->disallow_lpage) & KVM_LPAGE_MIXED_FLAG); 814 } 815 } 816 817 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 818 { 819 update_gfn_disallow_lpage_count(slot, gfn, 1); 820 } 821 822 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 823 { 824 update_gfn_disallow_lpage_count(slot, gfn, -1); 825 } 826 827 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 828 { 829 struct kvm_memslots *slots; 830 struct kvm_memory_slot *slot; 831 gfn_t gfn; 832 833 kvm->arch.indirect_shadow_pages++; 834 gfn = sp->gfn; 835 slots = kvm_memslots_for_spte_role(kvm, sp->role); 836 slot = __gfn_to_memslot(slots, gfn); 837 838 /* the non-leaf shadow pages are keeping readonly. */ 839 if (sp->role.level > PG_LEVEL_4K) 840 return __kvm_write_track_add_gfn(kvm, slot, gfn); 841 842 kvm_mmu_gfn_disallow_lpage(slot, gfn); 843 844 if (kvm_mmu_slot_gfn_write_protect(kvm, slot, gfn, PG_LEVEL_4K)) 845 kvm_flush_remote_tlbs_gfn(kvm, gfn, PG_LEVEL_4K); 846 } 847 848 void track_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 849 { 850 /* 851 * If it's possible to replace the shadow page with an NX huge page, 852 * i.e. if the shadow page is the only thing currently preventing KVM 853 * from using a huge page, add the shadow page to the list of "to be 854 * zapped for NX recovery" pages. Note, the shadow page can already be 855 * on the list if KVM is reusing an existing shadow page, i.e. if KVM 856 * links a shadow page at multiple points. 857 */ 858 if (!list_empty(&sp->possible_nx_huge_page_link)) 859 return; 860 861 ++kvm->stat.nx_lpage_splits; 862 list_add_tail(&sp->possible_nx_huge_page_link, 863 &kvm->arch.possible_nx_huge_pages); 864 } 865 866 static void account_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp, 867 bool nx_huge_page_possible) 868 { 869 sp->nx_huge_page_disallowed = true; 870 871 if (nx_huge_page_possible) 872 track_possible_nx_huge_page(kvm, sp); 873 } 874 875 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 876 { 877 struct kvm_memslots *slots; 878 struct kvm_memory_slot *slot; 879 gfn_t gfn; 880 881 kvm->arch.indirect_shadow_pages--; 882 gfn = sp->gfn; 883 slots = kvm_memslots_for_spte_role(kvm, sp->role); 884 slot = __gfn_to_memslot(slots, gfn); 885 if (sp->role.level > PG_LEVEL_4K) 886 return __kvm_write_track_remove_gfn(kvm, slot, gfn); 887 888 kvm_mmu_gfn_allow_lpage(slot, gfn); 889 } 890 891 void untrack_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 892 { 893 if (list_empty(&sp->possible_nx_huge_page_link)) 894 return; 895 896 --kvm->stat.nx_lpage_splits; 897 list_del_init(&sp->possible_nx_huge_page_link); 898 } 899 900 static void unaccount_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 901 { 902 sp->nx_huge_page_disallowed = false; 903 904 untrack_possible_nx_huge_page(kvm, sp); 905 } 906 907 static struct kvm_memory_slot *gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, 908 gfn_t gfn, 909 bool no_dirty_log) 910 { 911 struct kvm_memory_slot *slot; 912 913 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 914 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 915 return NULL; 916 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot)) 917 return NULL; 918 919 return slot; 920 } 921 922 /* 923 * About rmap_head encoding: 924 * 925 * If the bit zero of rmap_head->val is clear, then it points to the only spte 926 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct 927 * pte_list_desc containing more mappings. 928 */ 929 930 /* 931 * Returns the number of pointers in the rmap chain, not counting the new one. 932 */ 933 static int pte_list_add(struct kvm_mmu_memory_cache *cache, u64 *spte, 934 struct kvm_rmap_head *rmap_head) 935 { 936 struct pte_list_desc *desc; 937 int count = 0; 938 939 if (!rmap_head->val) { 940 rmap_head->val = (unsigned long)spte; 941 } else if (!(rmap_head->val & 1)) { 942 desc = kvm_mmu_memory_cache_alloc(cache); 943 desc->sptes[0] = (u64 *)rmap_head->val; 944 desc->sptes[1] = spte; 945 desc->spte_count = 2; 946 desc->tail_count = 0; 947 rmap_head->val = (unsigned long)desc | 1; 948 ++count; 949 } else { 950 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 951 count = desc->tail_count + desc->spte_count; 952 953 /* 954 * If the previous head is full, allocate a new head descriptor 955 * as tail descriptors are always kept full. 956 */ 957 if (desc->spte_count == PTE_LIST_EXT) { 958 desc = kvm_mmu_memory_cache_alloc(cache); 959 desc->more = (struct pte_list_desc *)(rmap_head->val & ~1ul); 960 desc->spte_count = 0; 961 desc->tail_count = count; 962 rmap_head->val = (unsigned long)desc | 1; 963 } 964 desc->sptes[desc->spte_count++] = spte; 965 } 966 return count; 967 } 968 969 static void pte_list_desc_remove_entry(struct kvm *kvm, 970 struct kvm_rmap_head *rmap_head, 971 struct pte_list_desc *desc, int i) 972 { 973 struct pte_list_desc *head_desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 974 int j = head_desc->spte_count - 1; 975 976 /* 977 * The head descriptor should never be empty. A new head is added only 978 * when adding an entry and the previous head is full, and heads are 979 * removed (this flow) when they become empty. 980 */ 981 KVM_BUG_ON_DATA_CORRUPTION(j < 0, kvm); 982 983 /* 984 * Replace the to-be-freed SPTE with the last valid entry from the head 985 * descriptor to ensure that tail descriptors are full at all times. 986 * Note, this also means that tail_count is stable for each descriptor. 987 */ 988 desc->sptes[i] = head_desc->sptes[j]; 989 head_desc->sptes[j] = NULL; 990 head_desc->spte_count--; 991 if (head_desc->spte_count) 992 return; 993 994 /* 995 * The head descriptor is empty. If there are no tail descriptors, 996 * nullify the rmap head to mark the list as empty, else point the rmap 997 * head at the next descriptor, i.e. the new head. 998 */ 999 if (!head_desc->more) 1000 rmap_head->val = 0; 1001 else 1002 rmap_head->val = (unsigned long)head_desc->more | 1; 1003 mmu_free_pte_list_desc(head_desc); 1004 } 1005 1006 static void pte_list_remove(struct kvm *kvm, u64 *spte, 1007 struct kvm_rmap_head *rmap_head) 1008 { 1009 struct pte_list_desc *desc; 1010 int i; 1011 1012 if (KVM_BUG_ON_DATA_CORRUPTION(!rmap_head->val, kvm)) 1013 return; 1014 1015 if (!(rmap_head->val & 1)) { 1016 if (KVM_BUG_ON_DATA_CORRUPTION((u64 *)rmap_head->val != spte, kvm)) 1017 return; 1018 1019 rmap_head->val = 0; 1020 } else { 1021 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1022 while (desc) { 1023 for (i = 0; i < desc->spte_count; ++i) { 1024 if (desc->sptes[i] == spte) { 1025 pte_list_desc_remove_entry(kvm, rmap_head, 1026 desc, i); 1027 return; 1028 } 1029 } 1030 desc = desc->more; 1031 } 1032 1033 KVM_BUG_ON_DATA_CORRUPTION(true, kvm); 1034 } 1035 } 1036 1037 static void kvm_zap_one_rmap_spte(struct kvm *kvm, 1038 struct kvm_rmap_head *rmap_head, u64 *sptep) 1039 { 1040 mmu_spte_clear_track_bits(kvm, sptep); 1041 pte_list_remove(kvm, sptep, rmap_head); 1042 } 1043 1044 /* Return true if at least one SPTE was zapped, false otherwise */ 1045 static bool kvm_zap_all_rmap_sptes(struct kvm *kvm, 1046 struct kvm_rmap_head *rmap_head) 1047 { 1048 struct pte_list_desc *desc, *next; 1049 int i; 1050 1051 if (!rmap_head->val) 1052 return false; 1053 1054 if (!(rmap_head->val & 1)) { 1055 mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val); 1056 goto out; 1057 } 1058 1059 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1060 1061 for (; desc; desc = next) { 1062 for (i = 0; i < desc->spte_count; i++) 1063 mmu_spte_clear_track_bits(kvm, desc->sptes[i]); 1064 next = desc->more; 1065 mmu_free_pte_list_desc(desc); 1066 } 1067 out: 1068 /* rmap_head is meaningless now, remember to reset it */ 1069 rmap_head->val = 0; 1070 return true; 1071 } 1072 1073 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head) 1074 { 1075 struct pte_list_desc *desc; 1076 1077 if (!rmap_head->val) 1078 return 0; 1079 else if (!(rmap_head->val & 1)) 1080 return 1; 1081 1082 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1083 return desc->tail_count + desc->spte_count; 1084 } 1085 1086 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level, 1087 const struct kvm_memory_slot *slot) 1088 { 1089 unsigned long idx; 1090 1091 idx = gfn_to_index(gfn, slot->base_gfn, level); 1092 return &slot->arch.rmap[level - PG_LEVEL_4K][idx]; 1093 } 1094 1095 static void rmap_remove(struct kvm *kvm, u64 *spte) 1096 { 1097 struct kvm_memslots *slots; 1098 struct kvm_memory_slot *slot; 1099 struct kvm_mmu_page *sp; 1100 gfn_t gfn; 1101 struct kvm_rmap_head *rmap_head; 1102 1103 sp = sptep_to_sp(spte); 1104 gfn = kvm_mmu_page_get_gfn(sp, spte_index(spte)); 1105 1106 /* 1107 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU 1108 * so we have to determine which memslots to use based on context 1109 * information in sp->role. 1110 */ 1111 slots = kvm_memslots_for_spte_role(kvm, sp->role); 1112 1113 slot = __gfn_to_memslot(slots, gfn); 1114 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1115 1116 pte_list_remove(kvm, spte, rmap_head); 1117 } 1118 1119 /* 1120 * Used by the following functions to iterate through the sptes linked by a 1121 * rmap. All fields are private and not assumed to be used outside. 1122 */ 1123 struct rmap_iterator { 1124 /* private fields */ 1125 struct pte_list_desc *desc; /* holds the sptep if not NULL */ 1126 int pos; /* index of the sptep */ 1127 }; 1128 1129 /* 1130 * Iteration must be started by this function. This should also be used after 1131 * removing/dropping sptes from the rmap link because in such cases the 1132 * information in the iterator may not be valid. 1133 * 1134 * Returns sptep if found, NULL otherwise. 1135 */ 1136 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head, 1137 struct rmap_iterator *iter) 1138 { 1139 u64 *sptep; 1140 1141 if (!rmap_head->val) 1142 return NULL; 1143 1144 if (!(rmap_head->val & 1)) { 1145 iter->desc = NULL; 1146 sptep = (u64 *)rmap_head->val; 1147 goto out; 1148 } 1149 1150 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1151 iter->pos = 0; 1152 sptep = iter->desc->sptes[iter->pos]; 1153 out: 1154 BUG_ON(!is_shadow_present_pte(*sptep)); 1155 return sptep; 1156 } 1157 1158 /* 1159 * Must be used with a valid iterator: e.g. after rmap_get_first(). 1160 * 1161 * Returns sptep if found, NULL otherwise. 1162 */ 1163 static u64 *rmap_get_next(struct rmap_iterator *iter) 1164 { 1165 u64 *sptep; 1166 1167 if (iter->desc) { 1168 if (iter->pos < PTE_LIST_EXT - 1) { 1169 ++iter->pos; 1170 sptep = iter->desc->sptes[iter->pos]; 1171 if (sptep) 1172 goto out; 1173 } 1174 1175 iter->desc = iter->desc->more; 1176 1177 if (iter->desc) { 1178 iter->pos = 0; 1179 /* desc->sptes[0] cannot be NULL */ 1180 sptep = iter->desc->sptes[iter->pos]; 1181 goto out; 1182 } 1183 } 1184 1185 return NULL; 1186 out: 1187 BUG_ON(!is_shadow_present_pte(*sptep)); 1188 return sptep; 1189 } 1190 1191 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \ 1192 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \ 1193 _spte_; _spte_ = rmap_get_next(_iter_)) 1194 1195 static void drop_spte(struct kvm *kvm, u64 *sptep) 1196 { 1197 u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep); 1198 1199 if (is_shadow_present_pte(old_spte)) 1200 rmap_remove(kvm, sptep); 1201 } 1202 1203 static void drop_large_spte(struct kvm *kvm, u64 *sptep, bool flush) 1204 { 1205 struct kvm_mmu_page *sp; 1206 1207 sp = sptep_to_sp(sptep); 1208 WARN_ON_ONCE(sp->role.level == PG_LEVEL_4K); 1209 1210 drop_spte(kvm, sptep); 1211 1212 if (flush) 1213 kvm_flush_remote_tlbs_sptep(kvm, sptep); 1214 } 1215 1216 /* 1217 * Write-protect on the specified @sptep, @pt_protect indicates whether 1218 * spte write-protection is caused by protecting shadow page table. 1219 * 1220 * Note: write protection is difference between dirty logging and spte 1221 * protection: 1222 * - for dirty logging, the spte can be set to writable at anytime if 1223 * its dirty bitmap is properly set. 1224 * - for spte protection, the spte can be writable only after unsync-ing 1225 * shadow page. 1226 * 1227 * Return true if tlb need be flushed. 1228 */ 1229 static bool spte_write_protect(u64 *sptep, bool pt_protect) 1230 { 1231 u64 spte = *sptep; 1232 1233 if (!is_writable_pte(spte) && 1234 !(pt_protect && is_mmu_writable_spte(spte))) 1235 return false; 1236 1237 if (pt_protect) 1238 spte &= ~shadow_mmu_writable_mask; 1239 spte = spte & ~PT_WRITABLE_MASK; 1240 1241 return mmu_spte_update(sptep, spte); 1242 } 1243 1244 static bool rmap_write_protect(struct kvm_rmap_head *rmap_head, 1245 bool pt_protect) 1246 { 1247 u64 *sptep; 1248 struct rmap_iterator iter; 1249 bool flush = false; 1250 1251 for_each_rmap_spte(rmap_head, &iter, sptep) 1252 flush |= spte_write_protect(sptep, pt_protect); 1253 1254 return flush; 1255 } 1256 1257 static bool spte_clear_dirty(u64 *sptep) 1258 { 1259 u64 spte = *sptep; 1260 1261 KVM_MMU_WARN_ON(!spte_ad_enabled(spte)); 1262 spte &= ~shadow_dirty_mask; 1263 return mmu_spte_update(sptep, spte); 1264 } 1265 1266 static bool spte_wrprot_for_clear_dirty(u64 *sptep) 1267 { 1268 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT, 1269 (unsigned long *)sptep); 1270 if (was_writable && !spte_ad_enabled(*sptep)) 1271 kvm_set_pfn_dirty(spte_to_pfn(*sptep)); 1272 1273 return was_writable; 1274 } 1275 1276 /* 1277 * Gets the GFN ready for another round of dirty logging by clearing the 1278 * - D bit on ad-enabled SPTEs, and 1279 * - W bit on ad-disabled SPTEs. 1280 * Returns true iff any D or W bits were cleared. 1281 */ 1282 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1283 const struct kvm_memory_slot *slot) 1284 { 1285 u64 *sptep; 1286 struct rmap_iterator iter; 1287 bool flush = false; 1288 1289 for_each_rmap_spte(rmap_head, &iter, sptep) 1290 if (spte_ad_need_write_protect(*sptep)) 1291 flush |= spte_wrprot_for_clear_dirty(sptep); 1292 else 1293 flush |= spte_clear_dirty(sptep); 1294 1295 return flush; 1296 } 1297 1298 /** 1299 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages 1300 * @kvm: kvm instance 1301 * @slot: slot to protect 1302 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1303 * @mask: indicates which pages we should protect 1304 * 1305 * Used when we do not need to care about huge page mappings. 1306 */ 1307 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 1308 struct kvm_memory_slot *slot, 1309 gfn_t gfn_offset, unsigned long mask) 1310 { 1311 struct kvm_rmap_head *rmap_head; 1312 1313 if (tdp_mmu_enabled) 1314 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1315 slot->base_gfn + gfn_offset, mask, true); 1316 1317 if (!kvm_memslots_have_rmaps(kvm)) 1318 return; 1319 1320 while (mask) { 1321 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1322 PG_LEVEL_4K, slot); 1323 rmap_write_protect(rmap_head, false); 1324 1325 /* clear the first set bit */ 1326 mask &= mask - 1; 1327 } 1328 } 1329 1330 /** 1331 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write 1332 * protect the page if the D-bit isn't supported. 1333 * @kvm: kvm instance 1334 * @slot: slot to clear D-bit 1335 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1336 * @mask: indicates which pages we should clear D-bit 1337 * 1338 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap. 1339 */ 1340 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1341 struct kvm_memory_slot *slot, 1342 gfn_t gfn_offset, unsigned long mask) 1343 { 1344 struct kvm_rmap_head *rmap_head; 1345 1346 if (tdp_mmu_enabled) 1347 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1348 slot->base_gfn + gfn_offset, mask, false); 1349 1350 if (!kvm_memslots_have_rmaps(kvm)) 1351 return; 1352 1353 while (mask) { 1354 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1355 PG_LEVEL_4K, slot); 1356 __rmap_clear_dirty(kvm, rmap_head, slot); 1357 1358 /* clear the first set bit */ 1359 mask &= mask - 1; 1360 } 1361 } 1362 1363 /** 1364 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected 1365 * PT level pages. 1366 * 1367 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to 1368 * enable dirty logging for them. 1369 * 1370 * We need to care about huge page mappings: e.g. during dirty logging we may 1371 * have such mappings. 1372 */ 1373 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1374 struct kvm_memory_slot *slot, 1375 gfn_t gfn_offset, unsigned long mask) 1376 { 1377 /* 1378 * Huge pages are NOT write protected when we start dirty logging in 1379 * initially-all-set mode; must write protect them here so that they 1380 * are split to 4K on the first write. 1381 * 1382 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn 1383 * of memslot has no such restriction, so the range can cross two large 1384 * pages. 1385 */ 1386 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) { 1387 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask); 1388 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask); 1389 1390 if (READ_ONCE(eager_page_split)) 1391 kvm_mmu_try_split_huge_pages(kvm, slot, start, end + 1, PG_LEVEL_4K); 1392 1393 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M); 1394 1395 /* Cross two large pages? */ 1396 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) != 1397 ALIGN(end << PAGE_SHIFT, PMD_SIZE)) 1398 kvm_mmu_slot_gfn_write_protect(kvm, slot, end, 1399 PG_LEVEL_2M); 1400 } 1401 1402 /* Now handle 4K PTEs. */ 1403 if (kvm_x86_ops.cpu_dirty_log_size) 1404 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask); 1405 else 1406 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 1407 } 1408 1409 int kvm_cpu_dirty_log_size(void) 1410 { 1411 return kvm_x86_ops.cpu_dirty_log_size; 1412 } 1413 1414 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, 1415 struct kvm_memory_slot *slot, u64 gfn, 1416 int min_level) 1417 { 1418 struct kvm_rmap_head *rmap_head; 1419 int i; 1420 bool write_protected = false; 1421 1422 if (kvm_memslots_have_rmaps(kvm)) { 1423 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 1424 rmap_head = gfn_to_rmap(gfn, i, slot); 1425 write_protected |= rmap_write_protect(rmap_head, true); 1426 } 1427 } 1428 1429 if (tdp_mmu_enabled) 1430 write_protected |= 1431 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level); 1432 1433 return write_protected; 1434 } 1435 1436 static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn) 1437 { 1438 struct kvm_memory_slot *slot; 1439 1440 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1441 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K); 1442 } 1443 1444 static bool __kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1445 const struct kvm_memory_slot *slot) 1446 { 1447 return kvm_zap_all_rmap_sptes(kvm, rmap_head); 1448 } 1449 1450 static bool kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1451 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1452 pte_t unused) 1453 { 1454 return __kvm_zap_rmap(kvm, rmap_head, slot); 1455 } 1456 1457 static bool kvm_set_pte_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1458 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1459 pte_t pte) 1460 { 1461 u64 *sptep; 1462 struct rmap_iterator iter; 1463 bool need_flush = false; 1464 u64 new_spte; 1465 kvm_pfn_t new_pfn; 1466 1467 WARN_ON_ONCE(pte_huge(pte)); 1468 new_pfn = pte_pfn(pte); 1469 1470 restart: 1471 for_each_rmap_spte(rmap_head, &iter, sptep) { 1472 need_flush = true; 1473 1474 if (pte_write(pte)) { 1475 kvm_zap_one_rmap_spte(kvm, rmap_head, sptep); 1476 goto restart; 1477 } else { 1478 new_spte = kvm_mmu_changed_pte_notifier_make_spte( 1479 *sptep, new_pfn); 1480 1481 mmu_spte_clear_track_bits(kvm, sptep); 1482 mmu_spte_set(sptep, new_spte); 1483 } 1484 } 1485 1486 if (need_flush && kvm_available_flush_remote_tlbs_range()) { 1487 kvm_flush_remote_tlbs_gfn(kvm, gfn, level); 1488 return false; 1489 } 1490 1491 return need_flush; 1492 } 1493 1494 struct slot_rmap_walk_iterator { 1495 /* input fields. */ 1496 const struct kvm_memory_slot *slot; 1497 gfn_t start_gfn; 1498 gfn_t end_gfn; 1499 int start_level; 1500 int end_level; 1501 1502 /* output fields. */ 1503 gfn_t gfn; 1504 struct kvm_rmap_head *rmap; 1505 int level; 1506 1507 /* private field. */ 1508 struct kvm_rmap_head *end_rmap; 1509 }; 1510 1511 static void rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, 1512 int level) 1513 { 1514 iterator->level = level; 1515 iterator->gfn = iterator->start_gfn; 1516 iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot); 1517 iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot); 1518 } 1519 1520 static void slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator, 1521 const struct kvm_memory_slot *slot, 1522 int start_level, int end_level, 1523 gfn_t start_gfn, gfn_t end_gfn) 1524 { 1525 iterator->slot = slot; 1526 iterator->start_level = start_level; 1527 iterator->end_level = end_level; 1528 iterator->start_gfn = start_gfn; 1529 iterator->end_gfn = end_gfn; 1530 1531 rmap_walk_init_level(iterator, iterator->start_level); 1532 } 1533 1534 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator) 1535 { 1536 return !!iterator->rmap; 1537 } 1538 1539 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) 1540 { 1541 while (++iterator->rmap <= iterator->end_rmap) { 1542 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level)); 1543 1544 if (iterator->rmap->val) 1545 return; 1546 } 1547 1548 if (++iterator->level > iterator->end_level) { 1549 iterator->rmap = NULL; 1550 return; 1551 } 1552 1553 rmap_walk_init_level(iterator, iterator->level); 1554 } 1555 1556 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \ 1557 _start_gfn, _end_gfn, _iter_) \ 1558 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \ 1559 _end_level_, _start_gfn, _end_gfn); \ 1560 slot_rmap_walk_okay(_iter_); \ 1561 slot_rmap_walk_next(_iter_)) 1562 1563 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1564 struct kvm_memory_slot *slot, gfn_t gfn, 1565 int level, pte_t pte); 1566 1567 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm, 1568 struct kvm_gfn_range *range, 1569 rmap_handler_t handler) 1570 { 1571 struct slot_rmap_walk_iterator iterator; 1572 bool ret = false; 1573 1574 for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 1575 range->start, range->end - 1, &iterator) 1576 ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn, 1577 iterator.level, range->arg.pte); 1578 1579 return ret; 1580 } 1581 1582 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1583 { 1584 bool flush = false; 1585 1586 if (kvm_memslots_have_rmaps(kvm)) 1587 flush = kvm_handle_gfn_range(kvm, range, kvm_zap_rmap); 1588 1589 if (tdp_mmu_enabled) 1590 flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush); 1591 1592 if (kvm_x86_ops.set_apic_access_page_addr && 1593 range->slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT) 1594 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 1595 1596 return flush; 1597 } 1598 1599 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1600 { 1601 bool flush = false; 1602 1603 if (kvm_memslots_have_rmaps(kvm)) 1604 flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmap); 1605 1606 if (tdp_mmu_enabled) 1607 flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range); 1608 1609 return flush; 1610 } 1611 1612 static bool kvm_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1613 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1614 pte_t unused) 1615 { 1616 u64 *sptep; 1617 struct rmap_iterator iter; 1618 int young = 0; 1619 1620 for_each_rmap_spte(rmap_head, &iter, sptep) 1621 young |= mmu_spte_age(sptep); 1622 1623 return young; 1624 } 1625 1626 static bool kvm_test_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1627 struct kvm_memory_slot *slot, gfn_t gfn, 1628 int level, pte_t unused) 1629 { 1630 u64 *sptep; 1631 struct rmap_iterator iter; 1632 1633 for_each_rmap_spte(rmap_head, &iter, sptep) 1634 if (is_accessed_spte(*sptep)) 1635 return true; 1636 return false; 1637 } 1638 1639 #define RMAP_RECYCLE_THRESHOLD 1000 1640 1641 static void __rmap_add(struct kvm *kvm, 1642 struct kvm_mmu_memory_cache *cache, 1643 const struct kvm_memory_slot *slot, 1644 u64 *spte, gfn_t gfn, unsigned int access) 1645 { 1646 struct kvm_mmu_page *sp; 1647 struct kvm_rmap_head *rmap_head; 1648 int rmap_count; 1649 1650 sp = sptep_to_sp(spte); 1651 kvm_mmu_page_set_translation(sp, spte_index(spte), gfn, access); 1652 kvm_update_page_stats(kvm, sp->role.level, 1); 1653 1654 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1655 rmap_count = pte_list_add(cache, spte, rmap_head); 1656 1657 if (rmap_count > kvm->stat.max_mmu_rmap_size) 1658 kvm->stat.max_mmu_rmap_size = rmap_count; 1659 if (rmap_count > RMAP_RECYCLE_THRESHOLD) { 1660 kvm_zap_all_rmap_sptes(kvm, rmap_head); 1661 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level); 1662 } 1663 } 1664 1665 static void rmap_add(struct kvm_vcpu *vcpu, const struct kvm_memory_slot *slot, 1666 u64 *spte, gfn_t gfn, unsigned int access) 1667 { 1668 struct kvm_mmu_memory_cache *cache = &vcpu->arch.mmu_pte_list_desc_cache; 1669 1670 __rmap_add(vcpu->kvm, cache, slot, spte, gfn, access); 1671 } 1672 1673 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1674 { 1675 bool young = false; 1676 1677 if (kvm_memslots_have_rmaps(kvm)) 1678 young = kvm_handle_gfn_range(kvm, range, kvm_age_rmap); 1679 1680 if (tdp_mmu_enabled) 1681 young |= kvm_tdp_mmu_age_gfn_range(kvm, range); 1682 1683 return young; 1684 } 1685 1686 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1687 { 1688 bool young = false; 1689 1690 if (kvm_memslots_have_rmaps(kvm)) 1691 young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmap); 1692 1693 if (tdp_mmu_enabled) 1694 young |= kvm_tdp_mmu_test_age_gfn(kvm, range); 1695 1696 return young; 1697 } 1698 1699 static void kvm_mmu_check_sptes_at_free(struct kvm_mmu_page *sp) 1700 { 1701 #ifdef CONFIG_KVM_PROVE_MMU 1702 int i; 1703 1704 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) { 1705 if (KVM_MMU_WARN_ON(is_shadow_present_pte(sp->spt[i]))) 1706 pr_err_ratelimited("SPTE %llx (@ %p) for gfn %llx shadow-present at free", 1707 sp->spt[i], &sp->spt[i], 1708 kvm_mmu_page_get_gfn(sp, i)); 1709 } 1710 #endif 1711 } 1712 1713 /* 1714 * This value is the sum of all of the kvm instances's 1715 * kvm->arch.n_used_mmu_pages values. We need a global, 1716 * aggregate version in order to make the slab shrinker 1717 * faster 1718 */ 1719 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr) 1720 { 1721 kvm->arch.n_used_mmu_pages += nr; 1722 percpu_counter_add(&kvm_total_used_mmu_pages, nr); 1723 } 1724 1725 static void kvm_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1726 { 1727 kvm_mod_used_mmu_pages(kvm, +1); 1728 kvm_account_pgtable_pages((void *)sp->spt, +1); 1729 } 1730 1731 static void kvm_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1732 { 1733 kvm_mod_used_mmu_pages(kvm, -1); 1734 kvm_account_pgtable_pages((void *)sp->spt, -1); 1735 } 1736 1737 static void kvm_mmu_free_shadow_page(struct kvm_mmu_page *sp) 1738 { 1739 kvm_mmu_check_sptes_at_free(sp); 1740 1741 hlist_del(&sp->hash_link); 1742 list_del(&sp->link); 1743 free_page((unsigned long)sp->spt); 1744 if (!sp->role.direct) 1745 free_page((unsigned long)sp->shadowed_translation); 1746 kmem_cache_free(mmu_page_header_cache, sp); 1747 } 1748 1749 static unsigned kvm_page_table_hashfn(gfn_t gfn) 1750 { 1751 return hash_64(gfn, KVM_MMU_HASH_SHIFT); 1752 } 1753 1754 static void mmu_page_add_parent_pte(struct kvm_mmu_memory_cache *cache, 1755 struct kvm_mmu_page *sp, u64 *parent_pte) 1756 { 1757 if (!parent_pte) 1758 return; 1759 1760 pte_list_add(cache, parent_pte, &sp->parent_ptes); 1761 } 1762 1763 static void mmu_page_remove_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 1764 u64 *parent_pte) 1765 { 1766 pte_list_remove(kvm, parent_pte, &sp->parent_ptes); 1767 } 1768 1769 static void drop_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 1770 u64 *parent_pte) 1771 { 1772 mmu_page_remove_parent_pte(kvm, sp, parent_pte); 1773 mmu_spte_clear_no_track(parent_pte); 1774 } 1775 1776 static void mark_unsync(u64 *spte); 1777 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) 1778 { 1779 u64 *sptep; 1780 struct rmap_iterator iter; 1781 1782 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) { 1783 mark_unsync(sptep); 1784 } 1785 } 1786 1787 static void mark_unsync(u64 *spte) 1788 { 1789 struct kvm_mmu_page *sp; 1790 1791 sp = sptep_to_sp(spte); 1792 if (__test_and_set_bit(spte_index(spte), sp->unsync_child_bitmap)) 1793 return; 1794 if (sp->unsync_children++) 1795 return; 1796 kvm_mmu_mark_parents_unsync(sp); 1797 } 1798 1799 #define KVM_PAGE_ARRAY_NR 16 1800 1801 struct kvm_mmu_pages { 1802 struct mmu_page_and_offset { 1803 struct kvm_mmu_page *sp; 1804 unsigned int idx; 1805 } page[KVM_PAGE_ARRAY_NR]; 1806 unsigned int nr; 1807 }; 1808 1809 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, 1810 int idx) 1811 { 1812 int i; 1813 1814 if (sp->unsync) 1815 for (i=0; i < pvec->nr; i++) 1816 if (pvec->page[i].sp == sp) 1817 return 0; 1818 1819 pvec->page[pvec->nr].sp = sp; 1820 pvec->page[pvec->nr].idx = idx; 1821 pvec->nr++; 1822 return (pvec->nr == KVM_PAGE_ARRAY_NR); 1823 } 1824 1825 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx) 1826 { 1827 --sp->unsync_children; 1828 WARN_ON_ONCE((int)sp->unsync_children < 0); 1829 __clear_bit(idx, sp->unsync_child_bitmap); 1830 } 1831 1832 static int __mmu_unsync_walk(struct kvm_mmu_page *sp, 1833 struct kvm_mmu_pages *pvec) 1834 { 1835 int i, ret, nr_unsync_leaf = 0; 1836 1837 for_each_set_bit(i, sp->unsync_child_bitmap, 512) { 1838 struct kvm_mmu_page *child; 1839 u64 ent = sp->spt[i]; 1840 1841 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) { 1842 clear_unsync_child_bit(sp, i); 1843 continue; 1844 } 1845 1846 child = spte_to_child_sp(ent); 1847 1848 if (child->unsync_children) { 1849 if (mmu_pages_add(pvec, child, i)) 1850 return -ENOSPC; 1851 1852 ret = __mmu_unsync_walk(child, pvec); 1853 if (!ret) { 1854 clear_unsync_child_bit(sp, i); 1855 continue; 1856 } else if (ret > 0) { 1857 nr_unsync_leaf += ret; 1858 } else 1859 return ret; 1860 } else if (child->unsync) { 1861 nr_unsync_leaf++; 1862 if (mmu_pages_add(pvec, child, i)) 1863 return -ENOSPC; 1864 } else 1865 clear_unsync_child_bit(sp, i); 1866 } 1867 1868 return nr_unsync_leaf; 1869 } 1870 1871 #define INVALID_INDEX (-1) 1872 1873 static int mmu_unsync_walk(struct kvm_mmu_page *sp, 1874 struct kvm_mmu_pages *pvec) 1875 { 1876 pvec->nr = 0; 1877 if (!sp->unsync_children) 1878 return 0; 1879 1880 mmu_pages_add(pvec, sp, INVALID_INDEX); 1881 return __mmu_unsync_walk(sp, pvec); 1882 } 1883 1884 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1885 { 1886 WARN_ON_ONCE(!sp->unsync); 1887 trace_kvm_mmu_sync_page(sp); 1888 sp->unsync = 0; 1889 --kvm->stat.mmu_unsync; 1890 } 1891 1892 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 1893 struct list_head *invalid_list); 1894 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 1895 struct list_head *invalid_list); 1896 1897 static bool sp_has_gptes(struct kvm_mmu_page *sp) 1898 { 1899 if (sp->role.direct) 1900 return false; 1901 1902 if (sp->role.passthrough) 1903 return false; 1904 1905 return true; 1906 } 1907 1908 #define for_each_valid_sp(_kvm, _sp, _list) \ 1909 hlist_for_each_entry(_sp, _list, hash_link) \ 1910 if (is_obsolete_sp((_kvm), (_sp))) { \ 1911 } else 1912 1913 #define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn) \ 1914 for_each_valid_sp(_kvm, _sp, \ 1915 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \ 1916 if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else 1917 1918 static bool kvm_sync_page_check(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 1919 { 1920 union kvm_mmu_page_role root_role = vcpu->arch.mmu->root_role; 1921 1922 /* 1923 * Ignore various flags when verifying that it's safe to sync a shadow 1924 * page using the current MMU context. 1925 * 1926 * - level: not part of the overall MMU role and will never match as the MMU's 1927 * level tracks the root level 1928 * - access: updated based on the new guest PTE 1929 * - quadrant: not part of the overall MMU role (similar to level) 1930 */ 1931 const union kvm_mmu_page_role sync_role_ign = { 1932 .level = 0xf, 1933 .access = 0x7, 1934 .quadrant = 0x3, 1935 .passthrough = 0x1, 1936 }; 1937 1938 /* 1939 * Direct pages can never be unsync, and KVM should never attempt to 1940 * sync a shadow page for a different MMU context, e.g. if the role 1941 * differs then the memslot lookup (SMM vs. non-SMM) will be bogus, the 1942 * reserved bits checks will be wrong, etc... 1943 */ 1944 if (WARN_ON_ONCE(sp->role.direct || !vcpu->arch.mmu->sync_spte || 1945 (sp->role.word ^ root_role.word) & ~sync_role_ign.word)) 1946 return false; 1947 1948 return true; 1949 } 1950 1951 static int kvm_sync_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, int i) 1952 { 1953 if (!sp->spt[i]) 1954 return 0; 1955 1956 return vcpu->arch.mmu->sync_spte(vcpu, sp, i); 1957 } 1958 1959 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 1960 { 1961 int flush = 0; 1962 int i; 1963 1964 if (!kvm_sync_page_check(vcpu, sp)) 1965 return -1; 1966 1967 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) { 1968 int ret = kvm_sync_spte(vcpu, sp, i); 1969 1970 if (ret < -1) 1971 return -1; 1972 flush |= ret; 1973 } 1974 1975 /* 1976 * Note, any flush is purely for KVM's correctness, e.g. when dropping 1977 * an existing SPTE or clearing W/A/D bits to ensure an mmu_notifier 1978 * unmap or dirty logging event doesn't fail to flush. The guest is 1979 * responsible for flushing the TLB to ensure any changes in protection 1980 * bits are recognized, i.e. until the guest flushes or page faults on 1981 * a relevant address, KVM is architecturally allowed to let vCPUs use 1982 * cached translations with the old protection bits. 1983 */ 1984 return flush; 1985 } 1986 1987 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 1988 struct list_head *invalid_list) 1989 { 1990 int ret = __kvm_sync_page(vcpu, sp); 1991 1992 if (ret < 0) 1993 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); 1994 return ret; 1995 } 1996 1997 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm, 1998 struct list_head *invalid_list, 1999 bool remote_flush) 2000 { 2001 if (!remote_flush && list_empty(invalid_list)) 2002 return false; 2003 2004 if (!list_empty(invalid_list)) 2005 kvm_mmu_commit_zap_page(kvm, invalid_list); 2006 else 2007 kvm_flush_remote_tlbs(kvm); 2008 return true; 2009 } 2010 2011 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 2012 { 2013 if (sp->role.invalid) 2014 return true; 2015 2016 /* TDP MMU pages do not use the MMU generation. */ 2017 return !is_tdp_mmu_page(sp) && 2018 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); 2019 } 2020 2021 struct mmu_page_path { 2022 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL]; 2023 unsigned int idx[PT64_ROOT_MAX_LEVEL]; 2024 }; 2025 2026 #define for_each_sp(pvec, sp, parents, i) \ 2027 for (i = mmu_pages_first(&pvec, &parents); \ 2028 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \ 2029 i = mmu_pages_next(&pvec, &parents, i)) 2030 2031 static int mmu_pages_next(struct kvm_mmu_pages *pvec, 2032 struct mmu_page_path *parents, 2033 int i) 2034 { 2035 int n; 2036 2037 for (n = i+1; n < pvec->nr; n++) { 2038 struct kvm_mmu_page *sp = pvec->page[n].sp; 2039 unsigned idx = pvec->page[n].idx; 2040 int level = sp->role.level; 2041 2042 parents->idx[level-1] = idx; 2043 if (level == PG_LEVEL_4K) 2044 break; 2045 2046 parents->parent[level-2] = sp; 2047 } 2048 2049 return n; 2050 } 2051 2052 static int mmu_pages_first(struct kvm_mmu_pages *pvec, 2053 struct mmu_page_path *parents) 2054 { 2055 struct kvm_mmu_page *sp; 2056 int level; 2057 2058 if (pvec->nr == 0) 2059 return 0; 2060 2061 WARN_ON_ONCE(pvec->page[0].idx != INVALID_INDEX); 2062 2063 sp = pvec->page[0].sp; 2064 level = sp->role.level; 2065 WARN_ON_ONCE(level == PG_LEVEL_4K); 2066 2067 parents->parent[level-2] = sp; 2068 2069 /* Also set up a sentinel. Further entries in pvec are all 2070 * children of sp, so this element is never overwritten. 2071 */ 2072 parents->parent[level-1] = NULL; 2073 return mmu_pages_next(pvec, parents, 0); 2074 } 2075 2076 static void mmu_pages_clear_parents(struct mmu_page_path *parents) 2077 { 2078 struct kvm_mmu_page *sp; 2079 unsigned int level = 0; 2080 2081 do { 2082 unsigned int idx = parents->idx[level]; 2083 sp = parents->parent[level]; 2084 if (!sp) 2085 return; 2086 2087 WARN_ON_ONCE(idx == INVALID_INDEX); 2088 clear_unsync_child_bit(sp, idx); 2089 level++; 2090 } while (!sp->unsync_children); 2091 } 2092 2093 static int mmu_sync_children(struct kvm_vcpu *vcpu, 2094 struct kvm_mmu_page *parent, bool can_yield) 2095 { 2096 int i; 2097 struct kvm_mmu_page *sp; 2098 struct mmu_page_path parents; 2099 struct kvm_mmu_pages pages; 2100 LIST_HEAD(invalid_list); 2101 bool flush = false; 2102 2103 while (mmu_unsync_walk(parent, &pages)) { 2104 bool protected = false; 2105 2106 for_each_sp(pages, sp, parents, i) 2107 protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn); 2108 2109 if (protected) { 2110 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true); 2111 flush = false; 2112 } 2113 2114 for_each_sp(pages, sp, parents, i) { 2115 kvm_unlink_unsync_page(vcpu->kvm, sp); 2116 flush |= kvm_sync_page(vcpu, sp, &invalid_list) > 0; 2117 mmu_pages_clear_parents(&parents); 2118 } 2119 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) { 2120 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2121 if (!can_yield) { 2122 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 2123 return -EINTR; 2124 } 2125 2126 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock); 2127 flush = false; 2128 } 2129 } 2130 2131 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2132 return 0; 2133 } 2134 2135 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) 2136 { 2137 atomic_set(&sp->write_flooding_count, 0); 2138 } 2139 2140 static void clear_sp_write_flooding_count(u64 *spte) 2141 { 2142 __clear_sp_write_flooding_count(sptep_to_sp(spte)); 2143 } 2144 2145 /* 2146 * The vCPU is required when finding indirect shadow pages; the shadow 2147 * page may already exist and syncing it needs the vCPU pointer in 2148 * order to read guest page tables. Direct shadow pages are never 2149 * unsync, thus @vcpu can be NULL if @role.direct is true. 2150 */ 2151 static struct kvm_mmu_page *kvm_mmu_find_shadow_page(struct kvm *kvm, 2152 struct kvm_vcpu *vcpu, 2153 gfn_t gfn, 2154 struct hlist_head *sp_list, 2155 union kvm_mmu_page_role role) 2156 { 2157 struct kvm_mmu_page *sp; 2158 int ret; 2159 int collisions = 0; 2160 LIST_HEAD(invalid_list); 2161 2162 for_each_valid_sp(kvm, sp, sp_list) { 2163 if (sp->gfn != gfn) { 2164 collisions++; 2165 continue; 2166 } 2167 2168 if (sp->role.word != role.word) { 2169 /* 2170 * If the guest is creating an upper-level page, zap 2171 * unsync pages for the same gfn. While it's possible 2172 * the guest is using recursive page tables, in all 2173 * likelihood the guest has stopped using the unsync 2174 * page and is installing a completely unrelated page. 2175 * Unsync pages must not be left as is, because the new 2176 * upper-level page will be write-protected. 2177 */ 2178 if (role.level > PG_LEVEL_4K && sp->unsync) 2179 kvm_mmu_prepare_zap_page(kvm, sp, 2180 &invalid_list); 2181 continue; 2182 } 2183 2184 /* unsync and write-flooding only apply to indirect SPs. */ 2185 if (sp->role.direct) 2186 goto out; 2187 2188 if (sp->unsync) { 2189 if (KVM_BUG_ON(!vcpu, kvm)) 2190 break; 2191 2192 /* 2193 * The page is good, but is stale. kvm_sync_page does 2194 * get the latest guest state, but (unlike mmu_unsync_children) 2195 * it doesn't write-protect the page or mark it synchronized! 2196 * This way the validity of the mapping is ensured, but the 2197 * overhead of write protection is not incurred until the 2198 * guest invalidates the TLB mapping. This allows multiple 2199 * SPs for a single gfn to be unsync. 2200 * 2201 * If the sync fails, the page is zapped. If so, break 2202 * in order to rebuild it. 2203 */ 2204 ret = kvm_sync_page(vcpu, sp, &invalid_list); 2205 if (ret < 0) 2206 break; 2207 2208 WARN_ON_ONCE(!list_empty(&invalid_list)); 2209 if (ret > 0) 2210 kvm_flush_remote_tlbs(kvm); 2211 } 2212 2213 __clear_sp_write_flooding_count(sp); 2214 2215 goto out; 2216 } 2217 2218 sp = NULL; 2219 ++kvm->stat.mmu_cache_miss; 2220 2221 out: 2222 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2223 2224 if (collisions > kvm->stat.max_mmu_page_hash_collisions) 2225 kvm->stat.max_mmu_page_hash_collisions = collisions; 2226 return sp; 2227 } 2228 2229 /* Caches used when allocating a new shadow page. */ 2230 struct shadow_page_caches { 2231 struct kvm_mmu_memory_cache *page_header_cache; 2232 struct kvm_mmu_memory_cache *shadow_page_cache; 2233 struct kvm_mmu_memory_cache *shadowed_info_cache; 2234 }; 2235 2236 static struct kvm_mmu_page *kvm_mmu_alloc_shadow_page(struct kvm *kvm, 2237 struct shadow_page_caches *caches, 2238 gfn_t gfn, 2239 struct hlist_head *sp_list, 2240 union kvm_mmu_page_role role) 2241 { 2242 struct kvm_mmu_page *sp; 2243 2244 sp = kvm_mmu_memory_cache_alloc(caches->page_header_cache); 2245 sp->spt = kvm_mmu_memory_cache_alloc(caches->shadow_page_cache); 2246 if (!role.direct) 2247 sp->shadowed_translation = kvm_mmu_memory_cache_alloc(caches->shadowed_info_cache); 2248 2249 set_page_private(virt_to_page(sp->spt), (unsigned long)sp); 2250 2251 INIT_LIST_HEAD(&sp->possible_nx_huge_page_link); 2252 2253 /* 2254 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages() 2255 * depends on valid pages being added to the head of the list. See 2256 * comments in kvm_zap_obsolete_pages(). 2257 */ 2258 sp->mmu_valid_gen = kvm->arch.mmu_valid_gen; 2259 list_add(&sp->link, &kvm->arch.active_mmu_pages); 2260 kvm_account_mmu_page(kvm, sp); 2261 2262 sp->gfn = gfn; 2263 sp->role = role; 2264 hlist_add_head(&sp->hash_link, sp_list); 2265 if (sp_has_gptes(sp)) 2266 account_shadowed(kvm, sp); 2267 2268 return sp; 2269 } 2270 2271 /* Note, @vcpu may be NULL if @role.direct is true; see kvm_mmu_find_shadow_page. */ 2272 static struct kvm_mmu_page *__kvm_mmu_get_shadow_page(struct kvm *kvm, 2273 struct kvm_vcpu *vcpu, 2274 struct shadow_page_caches *caches, 2275 gfn_t gfn, 2276 union kvm_mmu_page_role role) 2277 { 2278 struct hlist_head *sp_list; 2279 struct kvm_mmu_page *sp; 2280 bool created = false; 2281 2282 sp_list = &kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]; 2283 2284 sp = kvm_mmu_find_shadow_page(kvm, vcpu, gfn, sp_list, role); 2285 if (!sp) { 2286 created = true; 2287 sp = kvm_mmu_alloc_shadow_page(kvm, caches, gfn, sp_list, role); 2288 } 2289 2290 trace_kvm_mmu_get_page(sp, created); 2291 return sp; 2292 } 2293 2294 static struct kvm_mmu_page *kvm_mmu_get_shadow_page(struct kvm_vcpu *vcpu, 2295 gfn_t gfn, 2296 union kvm_mmu_page_role role) 2297 { 2298 struct shadow_page_caches caches = { 2299 .page_header_cache = &vcpu->arch.mmu_page_header_cache, 2300 .shadow_page_cache = &vcpu->arch.mmu_shadow_page_cache, 2301 .shadowed_info_cache = &vcpu->arch.mmu_shadowed_info_cache, 2302 }; 2303 2304 return __kvm_mmu_get_shadow_page(vcpu->kvm, vcpu, &caches, gfn, role); 2305 } 2306 2307 static union kvm_mmu_page_role kvm_mmu_child_role(u64 *sptep, bool direct, 2308 unsigned int access) 2309 { 2310 struct kvm_mmu_page *parent_sp = sptep_to_sp(sptep); 2311 union kvm_mmu_page_role role; 2312 2313 role = parent_sp->role; 2314 role.level--; 2315 role.access = access; 2316 role.direct = direct; 2317 role.passthrough = 0; 2318 2319 /* 2320 * If the guest has 4-byte PTEs then that means it's using 32-bit, 2321 * 2-level, non-PAE paging. KVM shadows such guests with PAE paging 2322 * (i.e. 8-byte PTEs). The difference in PTE size means that KVM must 2323 * shadow each guest page table with multiple shadow page tables, which 2324 * requires extra bookkeeping in the role. 2325 * 2326 * Specifically, to shadow the guest's page directory (which covers a 2327 * 4GiB address space), KVM uses 4 PAE page directories, each mapping 2328 * 1GiB of the address space. @role.quadrant encodes which quarter of 2329 * the address space each maps. 2330 * 2331 * To shadow the guest's page tables (which each map a 4MiB region), KVM 2332 * uses 2 PAE page tables, each mapping a 2MiB region. For these, 2333 * @role.quadrant encodes which half of the region they map. 2334 * 2335 * Concretely, a 4-byte PDE consumes bits 31:22, while an 8-byte PDE 2336 * consumes bits 29:21. To consume bits 31:30, KVM's uses 4 shadow 2337 * PDPTEs; those 4 PAE page directories are pre-allocated and their 2338 * quadrant is assigned in mmu_alloc_root(). A 4-byte PTE consumes 2339 * bits 21:12, while an 8-byte PTE consumes bits 20:12. To consume 2340 * bit 21 in the PTE (the child here), KVM propagates that bit to the 2341 * quadrant, i.e. sets quadrant to '0' or '1'. The parent 8-byte PDE 2342 * covers bit 21 (see above), thus the quadrant is calculated from the 2343 * _least_ significant bit of the PDE index. 2344 */ 2345 if (role.has_4_byte_gpte) { 2346 WARN_ON_ONCE(role.level != PG_LEVEL_4K); 2347 role.quadrant = spte_index(sptep) & 1; 2348 } 2349 2350 return role; 2351 } 2352 2353 static struct kvm_mmu_page *kvm_mmu_get_child_sp(struct kvm_vcpu *vcpu, 2354 u64 *sptep, gfn_t gfn, 2355 bool direct, unsigned int access) 2356 { 2357 union kvm_mmu_page_role role; 2358 2359 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) 2360 return ERR_PTR(-EEXIST); 2361 2362 role = kvm_mmu_child_role(sptep, direct, access); 2363 return kvm_mmu_get_shadow_page(vcpu, gfn, role); 2364 } 2365 2366 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator, 2367 struct kvm_vcpu *vcpu, hpa_t root, 2368 u64 addr) 2369 { 2370 iterator->addr = addr; 2371 iterator->shadow_addr = root; 2372 iterator->level = vcpu->arch.mmu->root_role.level; 2373 2374 if (iterator->level >= PT64_ROOT_4LEVEL && 2375 vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL && 2376 !vcpu->arch.mmu->root_role.direct) 2377 iterator->level = PT32E_ROOT_LEVEL; 2378 2379 if (iterator->level == PT32E_ROOT_LEVEL) { 2380 /* 2381 * prev_root is currently only used for 64-bit hosts. So only 2382 * the active root_hpa is valid here. 2383 */ 2384 BUG_ON(root != vcpu->arch.mmu->root.hpa); 2385 2386 iterator->shadow_addr 2387 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3]; 2388 iterator->shadow_addr &= SPTE_BASE_ADDR_MASK; 2389 --iterator->level; 2390 if (!iterator->shadow_addr) 2391 iterator->level = 0; 2392 } 2393 } 2394 2395 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, 2396 struct kvm_vcpu *vcpu, u64 addr) 2397 { 2398 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa, 2399 addr); 2400 } 2401 2402 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) 2403 { 2404 if (iterator->level < PG_LEVEL_4K) 2405 return false; 2406 2407 iterator->index = SPTE_INDEX(iterator->addr, iterator->level); 2408 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; 2409 return true; 2410 } 2411 2412 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, 2413 u64 spte) 2414 { 2415 if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) { 2416 iterator->level = 0; 2417 return; 2418 } 2419 2420 iterator->shadow_addr = spte & SPTE_BASE_ADDR_MASK; 2421 --iterator->level; 2422 } 2423 2424 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) 2425 { 2426 __shadow_walk_next(iterator, *iterator->sptep); 2427 } 2428 2429 static void __link_shadow_page(struct kvm *kvm, 2430 struct kvm_mmu_memory_cache *cache, u64 *sptep, 2431 struct kvm_mmu_page *sp, bool flush) 2432 { 2433 u64 spte; 2434 2435 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); 2436 2437 /* 2438 * If an SPTE is present already, it must be a leaf and therefore 2439 * a large one. Drop it, and flush the TLB if needed, before 2440 * installing sp. 2441 */ 2442 if (is_shadow_present_pte(*sptep)) 2443 drop_large_spte(kvm, sptep, flush); 2444 2445 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp)); 2446 2447 mmu_spte_set(sptep, spte); 2448 2449 mmu_page_add_parent_pte(cache, sp, sptep); 2450 2451 /* 2452 * The non-direct sub-pagetable must be updated before linking. For 2453 * L1 sp, the pagetable is updated via kvm_sync_page() in 2454 * kvm_mmu_find_shadow_page() without write-protecting the gfn, 2455 * so sp->unsync can be true or false. For higher level non-direct 2456 * sp, the pagetable is updated/synced via mmu_sync_children() in 2457 * FNAME(fetch)(), so sp->unsync_children can only be false. 2458 * WARN_ON_ONCE() if anything happens unexpectedly. 2459 */ 2460 if (WARN_ON_ONCE(sp->unsync_children) || sp->unsync) 2461 mark_unsync(sptep); 2462 } 2463 2464 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, 2465 struct kvm_mmu_page *sp) 2466 { 2467 __link_shadow_page(vcpu->kvm, &vcpu->arch.mmu_pte_list_desc_cache, sptep, sp, true); 2468 } 2469 2470 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2471 unsigned direct_access) 2472 { 2473 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { 2474 struct kvm_mmu_page *child; 2475 2476 /* 2477 * For the direct sp, if the guest pte's dirty bit 2478 * changed form clean to dirty, it will corrupt the 2479 * sp's access: allow writable in the read-only sp, 2480 * so we should update the spte at this point to get 2481 * a new sp with the correct access. 2482 */ 2483 child = spte_to_child_sp(*sptep); 2484 if (child->role.access == direct_access) 2485 return; 2486 2487 drop_parent_pte(vcpu->kvm, child, sptep); 2488 kvm_flush_remote_tlbs_sptep(vcpu->kvm, sptep); 2489 } 2490 } 2491 2492 /* Returns the number of zapped non-leaf child shadow pages. */ 2493 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 2494 u64 *spte, struct list_head *invalid_list) 2495 { 2496 u64 pte; 2497 struct kvm_mmu_page *child; 2498 2499 pte = *spte; 2500 if (is_shadow_present_pte(pte)) { 2501 if (is_last_spte(pte, sp->role.level)) { 2502 drop_spte(kvm, spte); 2503 } else { 2504 child = spte_to_child_sp(pte); 2505 drop_parent_pte(kvm, child, spte); 2506 2507 /* 2508 * Recursively zap nested TDP SPs, parentless SPs are 2509 * unlikely to be used again in the near future. This 2510 * avoids retaining a large number of stale nested SPs. 2511 */ 2512 if (tdp_enabled && invalid_list && 2513 child->role.guest_mode && !child->parent_ptes.val) 2514 return kvm_mmu_prepare_zap_page(kvm, child, 2515 invalid_list); 2516 } 2517 } else if (is_mmio_spte(pte)) { 2518 mmu_spte_clear_no_track(spte); 2519 } 2520 return 0; 2521 } 2522 2523 static int kvm_mmu_page_unlink_children(struct kvm *kvm, 2524 struct kvm_mmu_page *sp, 2525 struct list_head *invalid_list) 2526 { 2527 int zapped = 0; 2528 unsigned i; 2529 2530 for (i = 0; i < SPTE_ENT_PER_PAGE; ++i) 2531 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list); 2532 2533 return zapped; 2534 } 2535 2536 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp) 2537 { 2538 u64 *sptep; 2539 struct rmap_iterator iter; 2540 2541 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter))) 2542 drop_parent_pte(kvm, sp, sptep); 2543 } 2544 2545 static int mmu_zap_unsync_children(struct kvm *kvm, 2546 struct kvm_mmu_page *parent, 2547 struct list_head *invalid_list) 2548 { 2549 int i, zapped = 0; 2550 struct mmu_page_path parents; 2551 struct kvm_mmu_pages pages; 2552 2553 if (parent->role.level == PG_LEVEL_4K) 2554 return 0; 2555 2556 while (mmu_unsync_walk(parent, &pages)) { 2557 struct kvm_mmu_page *sp; 2558 2559 for_each_sp(pages, sp, parents, i) { 2560 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 2561 mmu_pages_clear_parents(&parents); 2562 zapped++; 2563 } 2564 } 2565 2566 return zapped; 2567 } 2568 2569 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm, 2570 struct kvm_mmu_page *sp, 2571 struct list_head *invalid_list, 2572 int *nr_zapped) 2573 { 2574 bool list_unstable, zapped_root = false; 2575 2576 lockdep_assert_held_write(&kvm->mmu_lock); 2577 trace_kvm_mmu_prepare_zap_page(sp); 2578 ++kvm->stat.mmu_shadow_zapped; 2579 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list); 2580 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list); 2581 kvm_mmu_unlink_parents(kvm, sp); 2582 2583 /* Zapping children means active_mmu_pages has become unstable. */ 2584 list_unstable = *nr_zapped; 2585 2586 if (!sp->role.invalid && sp_has_gptes(sp)) 2587 unaccount_shadowed(kvm, sp); 2588 2589 if (sp->unsync) 2590 kvm_unlink_unsync_page(kvm, sp); 2591 if (!sp->root_count) { 2592 /* Count self */ 2593 (*nr_zapped)++; 2594 2595 /* 2596 * Already invalid pages (previously active roots) are not on 2597 * the active page list. See list_del() in the "else" case of 2598 * !sp->root_count. 2599 */ 2600 if (sp->role.invalid) 2601 list_add(&sp->link, invalid_list); 2602 else 2603 list_move(&sp->link, invalid_list); 2604 kvm_unaccount_mmu_page(kvm, sp); 2605 } else { 2606 /* 2607 * Remove the active root from the active page list, the root 2608 * will be explicitly freed when the root_count hits zero. 2609 */ 2610 list_del(&sp->link); 2611 2612 /* 2613 * Obsolete pages cannot be used on any vCPUs, see the comment 2614 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also 2615 * treats invalid shadow pages as being obsolete. 2616 */ 2617 zapped_root = !is_obsolete_sp(kvm, sp); 2618 } 2619 2620 if (sp->nx_huge_page_disallowed) 2621 unaccount_nx_huge_page(kvm, sp); 2622 2623 sp->role.invalid = 1; 2624 2625 /* 2626 * Make the request to free obsolete roots after marking the root 2627 * invalid, otherwise other vCPUs may not see it as invalid. 2628 */ 2629 if (zapped_root) 2630 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 2631 return list_unstable; 2632 } 2633 2634 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 2635 struct list_head *invalid_list) 2636 { 2637 int nr_zapped; 2638 2639 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped); 2640 return nr_zapped; 2641 } 2642 2643 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 2644 struct list_head *invalid_list) 2645 { 2646 struct kvm_mmu_page *sp, *nsp; 2647 2648 if (list_empty(invalid_list)) 2649 return; 2650 2651 /* 2652 * We need to make sure everyone sees our modifications to 2653 * the page tables and see changes to vcpu->mode here. The barrier 2654 * in the kvm_flush_remote_tlbs() achieves this. This pairs 2655 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end. 2656 * 2657 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit 2658 * guest mode and/or lockless shadow page table walks. 2659 */ 2660 kvm_flush_remote_tlbs(kvm); 2661 2662 list_for_each_entry_safe(sp, nsp, invalid_list, link) { 2663 WARN_ON_ONCE(!sp->role.invalid || sp->root_count); 2664 kvm_mmu_free_shadow_page(sp); 2665 } 2666 } 2667 2668 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm, 2669 unsigned long nr_to_zap) 2670 { 2671 unsigned long total_zapped = 0; 2672 struct kvm_mmu_page *sp, *tmp; 2673 LIST_HEAD(invalid_list); 2674 bool unstable; 2675 int nr_zapped; 2676 2677 if (list_empty(&kvm->arch.active_mmu_pages)) 2678 return 0; 2679 2680 restart: 2681 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) { 2682 /* 2683 * Don't zap active root pages, the page itself can't be freed 2684 * and zapping it will just force vCPUs to realloc and reload. 2685 */ 2686 if (sp->root_count) 2687 continue; 2688 2689 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, 2690 &nr_zapped); 2691 total_zapped += nr_zapped; 2692 if (total_zapped >= nr_to_zap) 2693 break; 2694 2695 if (unstable) 2696 goto restart; 2697 } 2698 2699 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2700 2701 kvm->stat.mmu_recycled += total_zapped; 2702 return total_zapped; 2703 } 2704 2705 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm) 2706 { 2707 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) 2708 return kvm->arch.n_max_mmu_pages - 2709 kvm->arch.n_used_mmu_pages; 2710 2711 return 0; 2712 } 2713 2714 static int make_mmu_pages_available(struct kvm_vcpu *vcpu) 2715 { 2716 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm); 2717 2718 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES)) 2719 return 0; 2720 2721 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail); 2722 2723 /* 2724 * Note, this check is intentionally soft, it only guarantees that one 2725 * page is available, while the caller may end up allocating as many as 2726 * four pages, e.g. for PAE roots or for 5-level paging. Temporarily 2727 * exceeding the (arbitrary by default) limit will not harm the host, 2728 * being too aggressive may unnecessarily kill the guest, and getting an 2729 * exact count is far more trouble than it's worth, especially in the 2730 * page fault paths. 2731 */ 2732 if (!kvm_mmu_available_pages(vcpu->kvm)) 2733 return -ENOSPC; 2734 return 0; 2735 } 2736 2737 /* 2738 * Changing the number of mmu pages allocated to the vm 2739 * Note: if goal_nr_mmu_pages is too small, you will get dead lock 2740 */ 2741 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages) 2742 { 2743 write_lock(&kvm->mmu_lock); 2744 2745 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { 2746 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages - 2747 goal_nr_mmu_pages); 2748 2749 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; 2750 } 2751 2752 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; 2753 2754 write_unlock(&kvm->mmu_lock); 2755 } 2756 2757 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn) 2758 { 2759 struct kvm_mmu_page *sp; 2760 LIST_HEAD(invalid_list); 2761 int r; 2762 2763 r = 0; 2764 write_lock(&kvm->mmu_lock); 2765 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) { 2766 r = 1; 2767 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 2768 } 2769 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2770 write_unlock(&kvm->mmu_lock); 2771 2772 return r; 2773 } 2774 2775 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) 2776 { 2777 gpa_t gpa; 2778 int r; 2779 2780 if (vcpu->arch.mmu->root_role.direct) 2781 return 0; 2782 2783 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL); 2784 2785 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); 2786 2787 return r; 2788 } 2789 2790 static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 2791 { 2792 trace_kvm_mmu_unsync_page(sp); 2793 ++kvm->stat.mmu_unsync; 2794 sp->unsync = 1; 2795 2796 kvm_mmu_mark_parents_unsync(sp); 2797 } 2798 2799 /* 2800 * Attempt to unsync any shadow pages that can be reached by the specified gfn, 2801 * KVM is creating a writable mapping for said gfn. Returns 0 if all pages 2802 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must 2803 * be write-protected. 2804 */ 2805 int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot, 2806 gfn_t gfn, bool can_unsync, bool prefetch) 2807 { 2808 struct kvm_mmu_page *sp; 2809 bool locked = false; 2810 2811 /* 2812 * Force write-protection if the page is being tracked. Note, the page 2813 * track machinery is used to write-protect upper-level shadow pages, 2814 * i.e. this guards the role.level == 4K assertion below! 2815 */ 2816 if (kvm_gfn_is_write_tracked(kvm, slot, gfn)) 2817 return -EPERM; 2818 2819 /* 2820 * The page is not write-tracked, mark existing shadow pages unsync 2821 * unless KVM is synchronizing an unsync SP (can_unsync = false). In 2822 * that case, KVM must complete emulation of the guest TLB flush before 2823 * allowing shadow pages to become unsync (writable by the guest). 2824 */ 2825 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) { 2826 if (!can_unsync) 2827 return -EPERM; 2828 2829 if (sp->unsync) 2830 continue; 2831 2832 if (prefetch) 2833 return -EEXIST; 2834 2835 /* 2836 * TDP MMU page faults require an additional spinlock as they 2837 * run with mmu_lock held for read, not write, and the unsync 2838 * logic is not thread safe. Take the spinklock regardless of 2839 * the MMU type to avoid extra conditionals/parameters, there's 2840 * no meaningful penalty if mmu_lock is held for write. 2841 */ 2842 if (!locked) { 2843 locked = true; 2844 spin_lock(&kvm->arch.mmu_unsync_pages_lock); 2845 2846 /* 2847 * Recheck after taking the spinlock, a different vCPU 2848 * may have since marked the page unsync. A false 2849 * negative on the unprotected check above is not 2850 * possible as clearing sp->unsync _must_ hold mmu_lock 2851 * for write, i.e. unsync cannot transition from 1->0 2852 * while this CPU holds mmu_lock for read (or write). 2853 */ 2854 if (READ_ONCE(sp->unsync)) 2855 continue; 2856 } 2857 2858 WARN_ON_ONCE(sp->role.level != PG_LEVEL_4K); 2859 kvm_unsync_page(kvm, sp); 2860 } 2861 if (locked) 2862 spin_unlock(&kvm->arch.mmu_unsync_pages_lock); 2863 2864 /* 2865 * We need to ensure that the marking of unsync pages is visible 2866 * before the SPTE is updated to allow writes because 2867 * kvm_mmu_sync_roots() checks the unsync flags without holding 2868 * the MMU lock and so can race with this. If the SPTE was updated 2869 * before the page had been marked as unsync-ed, something like the 2870 * following could happen: 2871 * 2872 * CPU 1 CPU 2 2873 * --------------------------------------------------------------------- 2874 * 1.2 Host updates SPTE 2875 * to be writable 2876 * 2.1 Guest writes a GPTE for GVA X. 2877 * (GPTE being in the guest page table shadowed 2878 * by the SP from CPU 1.) 2879 * This reads SPTE during the page table walk. 2880 * Since SPTE.W is read as 1, there is no 2881 * fault. 2882 * 2883 * 2.2 Guest issues TLB flush. 2884 * That causes a VM Exit. 2885 * 2886 * 2.3 Walking of unsync pages sees sp->unsync is 2887 * false and skips the page. 2888 * 2889 * 2.4 Guest accesses GVA X. 2890 * Since the mapping in the SP was not updated, 2891 * so the old mapping for GVA X incorrectly 2892 * gets used. 2893 * 1.1 Host marks SP 2894 * as unsync 2895 * (sp->unsync = true) 2896 * 2897 * The write barrier below ensures that 1.1 happens before 1.2 and thus 2898 * the situation in 2.4 does not arise. It pairs with the read barrier 2899 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3. 2900 */ 2901 smp_wmb(); 2902 2903 return 0; 2904 } 2905 2906 static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, 2907 u64 *sptep, unsigned int pte_access, gfn_t gfn, 2908 kvm_pfn_t pfn, struct kvm_page_fault *fault) 2909 { 2910 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 2911 int level = sp->role.level; 2912 int was_rmapped = 0; 2913 int ret = RET_PF_FIXED; 2914 bool flush = false; 2915 bool wrprot; 2916 u64 spte; 2917 2918 /* Prefetching always gets a writable pfn. */ 2919 bool host_writable = !fault || fault->map_writable; 2920 bool prefetch = !fault || fault->prefetch; 2921 bool write_fault = fault && fault->write; 2922 2923 if (unlikely(is_noslot_pfn(pfn))) { 2924 vcpu->stat.pf_mmio_spte_created++; 2925 mark_mmio_spte(vcpu, sptep, gfn, pte_access); 2926 return RET_PF_EMULATE; 2927 } 2928 2929 if (is_shadow_present_pte(*sptep)) { 2930 /* 2931 * If we overwrite a PTE page pointer with a 2MB PMD, unlink 2932 * the parent of the now unreachable PTE. 2933 */ 2934 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) { 2935 struct kvm_mmu_page *child; 2936 u64 pte = *sptep; 2937 2938 child = spte_to_child_sp(pte); 2939 drop_parent_pte(vcpu->kvm, child, sptep); 2940 flush = true; 2941 } else if (pfn != spte_to_pfn(*sptep)) { 2942 drop_spte(vcpu->kvm, sptep); 2943 flush = true; 2944 } else 2945 was_rmapped = 1; 2946 } 2947 2948 wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch, 2949 true, host_writable, &spte); 2950 2951 if (*sptep == spte) { 2952 ret = RET_PF_SPURIOUS; 2953 } else { 2954 flush |= mmu_spte_update(sptep, spte); 2955 trace_kvm_mmu_set_spte(level, gfn, sptep); 2956 } 2957 2958 if (wrprot) { 2959 if (write_fault) 2960 ret = RET_PF_EMULATE; 2961 } 2962 2963 if (flush) 2964 kvm_flush_remote_tlbs_gfn(vcpu->kvm, gfn, level); 2965 2966 if (!was_rmapped) { 2967 WARN_ON_ONCE(ret == RET_PF_SPURIOUS); 2968 rmap_add(vcpu, slot, sptep, gfn, pte_access); 2969 } else { 2970 /* Already rmapped but the pte_access bits may have changed. */ 2971 kvm_mmu_page_set_access(sp, spte_index(sptep), pte_access); 2972 } 2973 2974 return ret; 2975 } 2976 2977 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu, 2978 struct kvm_mmu_page *sp, 2979 u64 *start, u64 *end) 2980 { 2981 struct page *pages[PTE_PREFETCH_NUM]; 2982 struct kvm_memory_slot *slot; 2983 unsigned int access = sp->role.access; 2984 int i, ret; 2985 gfn_t gfn; 2986 2987 gfn = kvm_mmu_page_get_gfn(sp, spte_index(start)); 2988 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK); 2989 if (!slot) 2990 return -1; 2991 2992 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start); 2993 if (ret <= 0) 2994 return -1; 2995 2996 for (i = 0; i < ret; i++, gfn++, start++) { 2997 mmu_set_spte(vcpu, slot, start, access, gfn, 2998 page_to_pfn(pages[i]), NULL); 2999 put_page(pages[i]); 3000 } 3001 3002 return 0; 3003 } 3004 3005 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, 3006 struct kvm_mmu_page *sp, u64 *sptep) 3007 { 3008 u64 *spte, *start = NULL; 3009 int i; 3010 3011 WARN_ON_ONCE(!sp->role.direct); 3012 3013 i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1); 3014 spte = sp->spt + i; 3015 3016 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 3017 if (is_shadow_present_pte(*spte) || spte == sptep) { 3018 if (!start) 3019 continue; 3020 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0) 3021 return; 3022 start = NULL; 3023 } else if (!start) 3024 start = spte; 3025 } 3026 if (start) 3027 direct_pte_prefetch_many(vcpu, sp, start, spte); 3028 } 3029 3030 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) 3031 { 3032 struct kvm_mmu_page *sp; 3033 3034 sp = sptep_to_sp(sptep); 3035 3036 /* 3037 * Without accessed bits, there's no way to distinguish between 3038 * actually accessed translations and prefetched, so disable pte 3039 * prefetch if accessed bits aren't available. 3040 */ 3041 if (sp_ad_disabled(sp)) 3042 return; 3043 3044 if (sp->role.level > PG_LEVEL_4K) 3045 return; 3046 3047 /* 3048 * If addresses are being invalidated, skip prefetching to avoid 3049 * accidentally prefetching those addresses. 3050 */ 3051 if (unlikely(vcpu->kvm->mmu_invalidate_in_progress)) 3052 return; 3053 3054 __direct_pte_prefetch(vcpu, sp, sptep); 3055 } 3056 3057 /* 3058 * Lookup the mapping level for @gfn in the current mm. 3059 * 3060 * WARNING! Use of host_pfn_mapping_level() requires the caller and the end 3061 * consumer to be tied into KVM's handlers for MMU notifier events! 3062 * 3063 * There are several ways to safely use this helper: 3064 * 3065 * - Check mmu_invalidate_retry_gfn() after grabbing the mapping level, before 3066 * consuming it. In this case, mmu_lock doesn't need to be held during the 3067 * lookup, but it does need to be held while checking the MMU notifier. 3068 * 3069 * - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation 3070 * event for the hva. This can be done by explicit checking the MMU notifier 3071 * or by ensuring that KVM already has a valid mapping that covers the hva. 3072 * 3073 * - Do not use the result to install new mappings, e.g. use the host mapping 3074 * level only to decide whether or not to zap an entry. In this case, it's 3075 * not required to hold mmu_lock (though it's highly likely the caller will 3076 * want to hold mmu_lock anyways, e.g. to modify SPTEs). 3077 * 3078 * Note! The lookup can still race with modifications to host page tables, but 3079 * the above "rules" ensure KVM will not _consume_ the result of the walk if a 3080 * race with the primary MMU occurs. 3081 */ 3082 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, 3083 const struct kvm_memory_slot *slot) 3084 { 3085 int level = PG_LEVEL_4K; 3086 unsigned long hva; 3087 unsigned long flags; 3088 pgd_t pgd; 3089 p4d_t p4d; 3090 pud_t pud; 3091 pmd_t pmd; 3092 3093 /* 3094 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot() 3095 * is not solely for performance, it's also necessary to avoid the 3096 * "writable" check in __gfn_to_hva_many(), which will always fail on 3097 * read-only memslots due to gfn_to_hva() assuming writes. Earlier 3098 * page fault steps have already verified the guest isn't writing a 3099 * read-only memslot. 3100 */ 3101 hva = __gfn_to_hva_memslot(slot, gfn); 3102 3103 /* 3104 * Disable IRQs to prevent concurrent tear down of host page tables, 3105 * e.g. if the primary MMU promotes a P*D to a huge page and then frees 3106 * the original page table. 3107 */ 3108 local_irq_save(flags); 3109 3110 /* 3111 * Read each entry once. As above, a non-leaf entry can be promoted to 3112 * a huge page _during_ this walk. Re-reading the entry could send the 3113 * walk into the weeks, e.g. p*d_leaf() returns false (sees the old 3114 * value) and then p*d_offset() walks into the target huge page instead 3115 * of the old page table (sees the new value). 3116 */ 3117 pgd = READ_ONCE(*pgd_offset(kvm->mm, hva)); 3118 if (pgd_none(pgd)) 3119 goto out; 3120 3121 p4d = READ_ONCE(*p4d_offset(&pgd, hva)); 3122 if (p4d_none(p4d) || !p4d_present(p4d)) 3123 goto out; 3124 3125 pud = READ_ONCE(*pud_offset(&p4d, hva)); 3126 if (pud_none(pud) || !pud_present(pud)) 3127 goto out; 3128 3129 if (pud_leaf(pud)) { 3130 level = PG_LEVEL_1G; 3131 goto out; 3132 } 3133 3134 pmd = READ_ONCE(*pmd_offset(&pud, hva)); 3135 if (pmd_none(pmd) || !pmd_present(pmd)) 3136 goto out; 3137 3138 if (pmd_leaf(pmd)) 3139 level = PG_LEVEL_2M; 3140 3141 out: 3142 local_irq_restore(flags); 3143 return level; 3144 } 3145 3146 static int __kvm_mmu_max_mapping_level(struct kvm *kvm, 3147 const struct kvm_memory_slot *slot, 3148 gfn_t gfn, int max_level, bool is_private) 3149 { 3150 struct kvm_lpage_info *linfo; 3151 int host_level; 3152 3153 max_level = min(max_level, max_huge_page_level); 3154 for ( ; max_level > PG_LEVEL_4K; max_level--) { 3155 linfo = lpage_info_slot(gfn, slot, max_level); 3156 if (!linfo->disallow_lpage) 3157 break; 3158 } 3159 3160 if (is_private) 3161 return max_level; 3162 3163 if (max_level == PG_LEVEL_4K) 3164 return PG_LEVEL_4K; 3165 3166 host_level = host_pfn_mapping_level(kvm, gfn, slot); 3167 return min(host_level, max_level); 3168 } 3169 3170 int kvm_mmu_max_mapping_level(struct kvm *kvm, 3171 const struct kvm_memory_slot *slot, gfn_t gfn, 3172 int max_level) 3173 { 3174 bool is_private = kvm_slot_can_be_private(slot) && 3175 kvm_mem_is_private(kvm, gfn); 3176 3177 return __kvm_mmu_max_mapping_level(kvm, slot, gfn, max_level, is_private); 3178 } 3179 3180 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3181 { 3182 struct kvm_memory_slot *slot = fault->slot; 3183 kvm_pfn_t mask; 3184 3185 fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled; 3186 3187 if (unlikely(fault->max_level == PG_LEVEL_4K)) 3188 return; 3189 3190 if (is_error_noslot_pfn(fault->pfn)) 3191 return; 3192 3193 if (kvm_slot_dirty_track_enabled(slot)) 3194 return; 3195 3196 /* 3197 * Enforce the iTLB multihit workaround after capturing the requested 3198 * level, which will be used to do precise, accurate accounting. 3199 */ 3200 fault->req_level = __kvm_mmu_max_mapping_level(vcpu->kvm, slot, 3201 fault->gfn, fault->max_level, 3202 fault->is_private); 3203 if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed) 3204 return; 3205 3206 /* 3207 * mmu_invalidate_retry() was successful and mmu_lock is held, so 3208 * the pmd can't be split from under us. 3209 */ 3210 fault->goal_level = fault->req_level; 3211 mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1; 3212 VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask)); 3213 fault->pfn &= ~mask; 3214 } 3215 3216 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level) 3217 { 3218 if (cur_level > PG_LEVEL_4K && 3219 cur_level == fault->goal_level && 3220 is_shadow_present_pte(spte) && 3221 !is_large_pte(spte) && 3222 spte_to_child_sp(spte)->nx_huge_page_disallowed) { 3223 /* 3224 * A small SPTE exists for this pfn, but FNAME(fetch), 3225 * direct_map(), or kvm_tdp_mmu_map() would like to create a 3226 * large PTE instead: just force them to go down another level, 3227 * patching back for them into pfn the next 9 bits of the 3228 * address. 3229 */ 3230 u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) - 3231 KVM_PAGES_PER_HPAGE(cur_level - 1); 3232 fault->pfn |= fault->gfn & page_mask; 3233 fault->goal_level--; 3234 } 3235 } 3236 3237 static int direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3238 { 3239 struct kvm_shadow_walk_iterator it; 3240 struct kvm_mmu_page *sp; 3241 int ret; 3242 gfn_t base_gfn = fault->gfn; 3243 3244 kvm_mmu_hugepage_adjust(vcpu, fault); 3245 3246 trace_kvm_mmu_spte_requested(fault); 3247 for_each_shadow_entry(vcpu, fault->addr, it) { 3248 /* 3249 * We cannot overwrite existing page tables with an NX 3250 * large page, as the leaf could be executable. 3251 */ 3252 if (fault->nx_huge_page_workaround_enabled) 3253 disallowed_hugepage_adjust(fault, *it.sptep, it.level); 3254 3255 base_gfn = gfn_round_for_level(fault->gfn, it.level); 3256 if (it.level == fault->goal_level) 3257 break; 3258 3259 sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, true, ACC_ALL); 3260 if (sp == ERR_PTR(-EEXIST)) 3261 continue; 3262 3263 link_shadow_page(vcpu, it.sptep, sp); 3264 if (fault->huge_page_disallowed) 3265 account_nx_huge_page(vcpu->kvm, sp, 3266 fault->req_level >= it.level); 3267 } 3268 3269 if (WARN_ON_ONCE(it.level != fault->goal_level)) 3270 return -EFAULT; 3271 3272 ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL, 3273 base_gfn, fault->pfn, fault); 3274 if (ret == RET_PF_SPURIOUS) 3275 return ret; 3276 3277 direct_pte_prefetch(vcpu, it.sptep); 3278 return ret; 3279 } 3280 3281 static void kvm_send_hwpoison_signal(struct kvm_memory_slot *slot, gfn_t gfn) 3282 { 3283 unsigned long hva = gfn_to_hva_memslot(slot, gfn); 3284 3285 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva, PAGE_SHIFT, current); 3286 } 3287 3288 static int kvm_handle_error_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3289 { 3290 if (is_sigpending_pfn(fault->pfn)) { 3291 kvm_handle_signal_exit(vcpu); 3292 return -EINTR; 3293 } 3294 3295 /* 3296 * Do not cache the mmio info caused by writing the readonly gfn 3297 * into the spte otherwise read access on readonly gfn also can 3298 * caused mmio page fault and treat it as mmio access. 3299 */ 3300 if (fault->pfn == KVM_PFN_ERR_RO_FAULT) 3301 return RET_PF_EMULATE; 3302 3303 if (fault->pfn == KVM_PFN_ERR_HWPOISON) { 3304 kvm_send_hwpoison_signal(fault->slot, fault->gfn); 3305 return RET_PF_RETRY; 3306 } 3307 3308 return -EFAULT; 3309 } 3310 3311 static int kvm_handle_noslot_fault(struct kvm_vcpu *vcpu, 3312 struct kvm_page_fault *fault, 3313 unsigned int access) 3314 { 3315 gva_t gva = fault->is_tdp ? 0 : fault->addr; 3316 3317 vcpu_cache_mmio_info(vcpu, gva, fault->gfn, 3318 access & shadow_mmio_access_mask); 3319 3320 /* 3321 * If MMIO caching is disabled, emulate immediately without 3322 * touching the shadow page tables as attempting to install an 3323 * MMIO SPTE will just be an expensive nop. 3324 */ 3325 if (unlikely(!enable_mmio_caching)) 3326 return RET_PF_EMULATE; 3327 3328 /* 3329 * Do not create an MMIO SPTE for a gfn greater than host.MAXPHYADDR, 3330 * any guest that generates such gfns is running nested and is being 3331 * tricked by L0 userspace (you can observe gfn > L1.MAXPHYADDR if and 3332 * only if L1's MAXPHYADDR is inaccurate with respect to the 3333 * hardware's). 3334 */ 3335 if (unlikely(fault->gfn > kvm_mmu_max_gfn())) 3336 return RET_PF_EMULATE; 3337 3338 return RET_PF_CONTINUE; 3339 } 3340 3341 static bool page_fault_can_be_fast(struct kvm_page_fault *fault) 3342 { 3343 /* 3344 * Page faults with reserved bits set, i.e. faults on MMIO SPTEs, only 3345 * reach the common page fault handler if the SPTE has an invalid MMIO 3346 * generation number. Refreshing the MMIO generation needs to go down 3347 * the slow path. Note, EPT Misconfigs do NOT set the PRESENT flag! 3348 */ 3349 if (fault->rsvd) 3350 return false; 3351 3352 /* 3353 * #PF can be fast if: 3354 * 3355 * 1. The shadow page table entry is not present and A/D bits are 3356 * disabled _by KVM_, which could mean that the fault is potentially 3357 * caused by access tracking (if enabled). If A/D bits are enabled 3358 * by KVM, but disabled by L1 for L2, KVM is forced to disable A/D 3359 * bits for L2 and employ access tracking, but the fast page fault 3360 * mechanism only supports direct MMUs. 3361 * 2. The shadow page table entry is present, the access is a write, 3362 * and no reserved bits are set (MMIO SPTEs cannot be "fixed"), i.e. 3363 * the fault was caused by a write-protection violation. If the 3364 * SPTE is MMU-writable (determined later), the fault can be fixed 3365 * by setting the Writable bit, which can be done out of mmu_lock. 3366 */ 3367 if (!fault->present) 3368 return !kvm_ad_enabled(); 3369 3370 /* 3371 * Note, instruction fetches and writes are mutually exclusive, ignore 3372 * the "exec" flag. 3373 */ 3374 return fault->write; 3375 } 3376 3377 /* 3378 * Returns true if the SPTE was fixed successfully. Otherwise, 3379 * someone else modified the SPTE from its original value. 3380 */ 3381 static bool fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, 3382 struct kvm_page_fault *fault, 3383 u64 *sptep, u64 old_spte, u64 new_spte) 3384 { 3385 /* 3386 * Theoretically we could also set dirty bit (and flush TLB) here in 3387 * order to eliminate unnecessary PML logging. See comments in 3388 * set_spte. But fast_page_fault is very unlikely to happen with PML 3389 * enabled, so we do not do this. This might result in the same GPA 3390 * to be logged in PML buffer again when the write really happens, and 3391 * eventually to be called by mark_page_dirty twice. But it's also no 3392 * harm. This also avoids the TLB flush needed after setting dirty bit 3393 * so non-PML cases won't be impacted. 3394 * 3395 * Compare with set_spte where instead shadow_dirty_mask is set. 3396 */ 3397 if (!try_cmpxchg64(sptep, &old_spte, new_spte)) 3398 return false; 3399 3400 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) 3401 mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn); 3402 3403 return true; 3404 } 3405 3406 static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte) 3407 { 3408 if (fault->exec) 3409 return is_executable_pte(spte); 3410 3411 if (fault->write) 3412 return is_writable_pte(spte); 3413 3414 /* Fault was on Read access */ 3415 return spte & PT_PRESENT_MASK; 3416 } 3417 3418 /* 3419 * Returns the last level spte pointer of the shadow page walk for the given 3420 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no 3421 * walk could be performed, returns NULL and *spte does not contain valid data. 3422 * 3423 * Contract: 3424 * - Must be called between walk_shadow_page_lockless_{begin,end}. 3425 * - The returned sptep must not be used after walk_shadow_page_lockless_end. 3426 */ 3427 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte) 3428 { 3429 struct kvm_shadow_walk_iterator iterator; 3430 u64 old_spte; 3431 u64 *sptep = NULL; 3432 3433 for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) { 3434 sptep = iterator.sptep; 3435 *spte = old_spte; 3436 } 3437 3438 return sptep; 3439 } 3440 3441 /* 3442 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS. 3443 */ 3444 static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3445 { 3446 struct kvm_mmu_page *sp; 3447 int ret = RET_PF_INVALID; 3448 u64 spte; 3449 u64 *sptep; 3450 uint retry_count = 0; 3451 3452 if (!page_fault_can_be_fast(fault)) 3453 return ret; 3454 3455 walk_shadow_page_lockless_begin(vcpu); 3456 3457 do { 3458 u64 new_spte; 3459 3460 if (tdp_mmu_enabled) 3461 sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->addr, &spte); 3462 else 3463 sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte); 3464 3465 /* 3466 * It's entirely possible for the mapping to have been zapped 3467 * by a different task, but the root page should always be 3468 * available as the vCPU holds a reference to its root(s). 3469 */ 3470 if (WARN_ON_ONCE(!sptep)) 3471 spte = REMOVED_SPTE; 3472 3473 if (!is_shadow_present_pte(spte)) 3474 break; 3475 3476 sp = sptep_to_sp(sptep); 3477 if (!is_last_spte(spte, sp->role.level)) 3478 break; 3479 3480 /* 3481 * Check whether the memory access that caused the fault would 3482 * still cause it if it were to be performed right now. If not, 3483 * then this is a spurious fault caused by TLB lazily flushed, 3484 * or some other CPU has already fixed the PTE after the 3485 * current CPU took the fault. 3486 * 3487 * Need not check the access of upper level table entries since 3488 * they are always ACC_ALL. 3489 */ 3490 if (is_access_allowed(fault, spte)) { 3491 ret = RET_PF_SPURIOUS; 3492 break; 3493 } 3494 3495 new_spte = spte; 3496 3497 /* 3498 * KVM only supports fixing page faults outside of MMU lock for 3499 * direct MMUs, nested MMUs are always indirect, and KVM always 3500 * uses A/D bits for non-nested MMUs. Thus, if A/D bits are 3501 * enabled, the SPTE can't be an access-tracked SPTE. 3502 */ 3503 if (unlikely(!kvm_ad_enabled()) && is_access_track_spte(spte)) 3504 new_spte = restore_acc_track_spte(new_spte); 3505 3506 /* 3507 * To keep things simple, only SPTEs that are MMU-writable can 3508 * be made fully writable outside of mmu_lock, e.g. only SPTEs 3509 * that were write-protected for dirty-logging or access 3510 * tracking are handled here. Don't bother checking if the 3511 * SPTE is writable to prioritize running with A/D bits enabled. 3512 * The is_access_allowed() check above handles the common case 3513 * of the fault being spurious, and the SPTE is known to be 3514 * shadow-present, i.e. except for access tracking restoration 3515 * making the new SPTE writable, the check is wasteful. 3516 */ 3517 if (fault->write && is_mmu_writable_spte(spte)) { 3518 new_spte |= PT_WRITABLE_MASK; 3519 3520 /* 3521 * Do not fix write-permission on the large spte when 3522 * dirty logging is enabled. Since we only dirty the 3523 * first page into the dirty-bitmap in 3524 * fast_pf_fix_direct_spte(), other pages are missed 3525 * if its slot has dirty logging enabled. 3526 * 3527 * Instead, we let the slow page fault path create a 3528 * normal spte to fix the access. 3529 */ 3530 if (sp->role.level > PG_LEVEL_4K && 3531 kvm_slot_dirty_track_enabled(fault->slot)) 3532 break; 3533 } 3534 3535 /* Verify that the fault can be handled in the fast path */ 3536 if (new_spte == spte || 3537 !is_access_allowed(fault, new_spte)) 3538 break; 3539 3540 /* 3541 * Currently, fast page fault only works for direct mapping 3542 * since the gfn is not stable for indirect shadow page. See 3543 * Documentation/virt/kvm/locking.rst to get more detail. 3544 */ 3545 if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) { 3546 ret = RET_PF_FIXED; 3547 break; 3548 } 3549 3550 if (++retry_count > 4) { 3551 pr_warn_once("Fast #PF retrying more than 4 times.\n"); 3552 break; 3553 } 3554 3555 } while (true); 3556 3557 trace_fast_page_fault(vcpu, fault, sptep, spte, ret); 3558 walk_shadow_page_lockless_end(vcpu); 3559 3560 if (ret != RET_PF_INVALID) 3561 vcpu->stat.pf_fast++; 3562 3563 return ret; 3564 } 3565 3566 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa, 3567 struct list_head *invalid_list) 3568 { 3569 struct kvm_mmu_page *sp; 3570 3571 if (!VALID_PAGE(*root_hpa)) 3572 return; 3573 3574 sp = root_to_sp(*root_hpa); 3575 if (WARN_ON_ONCE(!sp)) 3576 return; 3577 3578 if (is_tdp_mmu_page(sp)) { 3579 lockdep_assert_held_read(&kvm->mmu_lock); 3580 kvm_tdp_mmu_put_root(kvm, sp); 3581 } else { 3582 lockdep_assert_held_write(&kvm->mmu_lock); 3583 if (!--sp->root_count && sp->role.invalid) 3584 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 3585 } 3586 3587 *root_hpa = INVALID_PAGE; 3588 } 3589 3590 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */ 3591 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, 3592 ulong roots_to_free) 3593 { 3594 bool is_tdp_mmu = tdp_mmu_enabled && mmu->root_role.direct; 3595 int i; 3596 LIST_HEAD(invalid_list); 3597 bool free_active_root; 3598 3599 WARN_ON_ONCE(roots_to_free & ~KVM_MMU_ROOTS_ALL); 3600 3601 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG); 3602 3603 /* Before acquiring the MMU lock, see if we need to do any real work. */ 3604 free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT) 3605 && VALID_PAGE(mmu->root.hpa); 3606 3607 if (!free_active_root) { 3608 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3609 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) && 3610 VALID_PAGE(mmu->prev_roots[i].hpa)) 3611 break; 3612 3613 if (i == KVM_MMU_NUM_PREV_ROOTS) 3614 return; 3615 } 3616 3617 if (is_tdp_mmu) 3618 read_lock(&kvm->mmu_lock); 3619 else 3620 write_lock(&kvm->mmu_lock); 3621 3622 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3623 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) 3624 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa, 3625 &invalid_list); 3626 3627 if (free_active_root) { 3628 if (kvm_mmu_is_dummy_root(mmu->root.hpa)) { 3629 /* Nothing to cleanup for dummy roots. */ 3630 } else if (root_to_sp(mmu->root.hpa)) { 3631 mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list); 3632 } else if (mmu->pae_root) { 3633 for (i = 0; i < 4; ++i) { 3634 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i])) 3635 continue; 3636 3637 mmu_free_root_page(kvm, &mmu->pae_root[i], 3638 &invalid_list); 3639 mmu->pae_root[i] = INVALID_PAE_ROOT; 3640 } 3641 } 3642 mmu->root.hpa = INVALID_PAGE; 3643 mmu->root.pgd = 0; 3644 } 3645 3646 if (is_tdp_mmu) { 3647 read_unlock(&kvm->mmu_lock); 3648 WARN_ON_ONCE(!list_empty(&invalid_list)); 3649 } else { 3650 kvm_mmu_commit_zap_page(kvm, &invalid_list); 3651 write_unlock(&kvm->mmu_lock); 3652 } 3653 } 3654 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots); 3655 3656 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu) 3657 { 3658 unsigned long roots_to_free = 0; 3659 struct kvm_mmu_page *sp; 3660 hpa_t root_hpa; 3661 int i; 3662 3663 /* 3664 * This should not be called while L2 is active, L2 can't invalidate 3665 * _only_ its own roots, e.g. INVVPID unconditionally exits. 3666 */ 3667 WARN_ON_ONCE(mmu->root_role.guest_mode); 3668 3669 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 3670 root_hpa = mmu->prev_roots[i].hpa; 3671 if (!VALID_PAGE(root_hpa)) 3672 continue; 3673 3674 sp = root_to_sp(root_hpa); 3675 if (!sp || sp->role.guest_mode) 3676 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 3677 } 3678 3679 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 3680 } 3681 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots); 3682 3683 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, int quadrant, 3684 u8 level) 3685 { 3686 union kvm_mmu_page_role role = vcpu->arch.mmu->root_role; 3687 struct kvm_mmu_page *sp; 3688 3689 role.level = level; 3690 role.quadrant = quadrant; 3691 3692 WARN_ON_ONCE(quadrant && !role.has_4_byte_gpte); 3693 WARN_ON_ONCE(role.direct && role.has_4_byte_gpte); 3694 3695 sp = kvm_mmu_get_shadow_page(vcpu, gfn, role); 3696 ++sp->root_count; 3697 3698 return __pa(sp->spt); 3699 } 3700 3701 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) 3702 { 3703 struct kvm_mmu *mmu = vcpu->arch.mmu; 3704 u8 shadow_root_level = mmu->root_role.level; 3705 hpa_t root; 3706 unsigned i; 3707 int r; 3708 3709 if (tdp_mmu_enabled) 3710 return kvm_tdp_mmu_alloc_root(vcpu); 3711 3712 write_lock(&vcpu->kvm->mmu_lock); 3713 r = make_mmu_pages_available(vcpu); 3714 if (r < 0) 3715 goto out_unlock; 3716 3717 if (shadow_root_level >= PT64_ROOT_4LEVEL) { 3718 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level); 3719 mmu->root.hpa = root; 3720 } else if (shadow_root_level == PT32E_ROOT_LEVEL) { 3721 if (WARN_ON_ONCE(!mmu->pae_root)) { 3722 r = -EIO; 3723 goto out_unlock; 3724 } 3725 3726 for (i = 0; i < 4; ++i) { 3727 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3728 3729 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 0, 3730 PT32_ROOT_LEVEL); 3731 mmu->pae_root[i] = root | PT_PRESENT_MASK | 3732 shadow_me_value; 3733 } 3734 mmu->root.hpa = __pa(mmu->pae_root); 3735 } else { 3736 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level); 3737 r = -EIO; 3738 goto out_unlock; 3739 } 3740 3741 /* root.pgd is ignored for direct MMUs. */ 3742 mmu->root.pgd = 0; 3743 out_unlock: 3744 write_unlock(&vcpu->kvm->mmu_lock); 3745 return r; 3746 } 3747 3748 static int mmu_first_shadow_root_alloc(struct kvm *kvm) 3749 { 3750 struct kvm_memslots *slots; 3751 struct kvm_memory_slot *slot; 3752 int r = 0, i, bkt; 3753 3754 /* 3755 * Check if this is the first shadow root being allocated before 3756 * taking the lock. 3757 */ 3758 if (kvm_shadow_root_allocated(kvm)) 3759 return 0; 3760 3761 mutex_lock(&kvm->slots_arch_lock); 3762 3763 /* Recheck, under the lock, whether this is the first shadow root. */ 3764 if (kvm_shadow_root_allocated(kvm)) 3765 goto out_unlock; 3766 3767 /* 3768 * Check if anything actually needs to be allocated, e.g. all metadata 3769 * will be allocated upfront if TDP is disabled. 3770 */ 3771 if (kvm_memslots_have_rmaps(kvm) && 3772 kvm_page_track_write_tracking_enabled(kvm)) 3773 goto out_success; 3774 3775 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 3776 slots = __kvm_memslots(kvm, i); 3777 kvm_for_each_memslot(slot, bkt, slots) { 3778 /* 3779 * Both of these functions are no-ops if the target is 3780 * already allocated, so unconditionally calling both 3781 * is safe. Intentionally do NOT free allocations on 3782 * failure to avoid having to track which allocations 3783 * were made now versus when the memslot was created. 3784 * The metadata is guaranteed to be freed when the slot 3785 * is freed, and will be kept/used if userspace retries 3786 * KVM_RUN instead of killing the VM. 3787 */ 3788 r = memslot_rmap_alloc(slot, slot->npages); 3789 if (r) 3790 goto out_unlock; 3791 r = kvm_page_track_write_tracking_alloc(slot); 3792 if (r) 3793 goto out_unlock; 3794 } 3795 } 3796 3797 /* 3798 * Ensure that shadow_root_allocated becomes true strictly after 3799 * all the related pointers are set. 3800 */ 3801 out_success: 3802 smp_store_release(&kvm->arch.shadow_root_allocated, true); 3803 3804 out_unlock: 3805 mutex_unlock(&kvm->slots_arch_lock); 3806 return r; 3807 } 3808 3809 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) 3810 { 3811 struct kvm_mmu *mmu = vcpu->arch.mmu; 3812 u64 pdptrs[4], pm_mask; 3813 gfn_t root_gfn, root_pgd; 3814 int quadrant, i, r; 3815 hpa_t root; 3816 3817 root_pgd = kvm_mmu_get_guest_pgd(vcpu, mmu); 3818 root_gfn = (root_pgd & __PT_BASE_ADDR_MASK) >> PAGE_SHIFT; 3819 3820 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) { 3821 mmu->root.hpa = kvm_mmu_get_dummy_root(); 3822 return 0; 3823 } 3824 3825 /* 3826 * On SVM, reading PDPTRs might access guest memory, which might fault 3827 * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock. 3828 */ 3829 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { 3830 for (i = 0; i < 4; ++i) { 3831 pdptrs[i] = mmu->get_pdptr(vcpu, i); 3832 if (!(pdptrs[i] & PT_PRESENT_MASK)) 3833 continue; 3834 3835 if (!kvm_vcpu_is_visible_gfn(vcpu, pdptrs[i] >> PAGE_SHIFT)) 3836 pdptrs[i] = 0; 3837 } 3838 } 3839 3840 r = mmu_first_shadow_root_alloc(vcpu->kvm); 3841 if (r) 3842 return r; 3843 3844 write_lock(&vcpu->kvm->mmu_lock); 3845 r = make_mmu_pages_available(vcpu); 3846 if (r < 0) 3847 goto out_unlock; 3848 3849 /* 3850 * Do we shadow a long mode page table? If so we need to 3851 * write-protect the guests page table root. 3852 */ 3853 if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { 3854 root = mmu_alloc_root(vcpu, root_gfn, 0, 3855 mmu->root_role.level); 3856 mmu->root.hpa = root; 3857 goto set_root_pgd; 3858 } 3859 3860 if (WARN_ON_ONCE(!mmu->pae_root)) { 3861 r = -EIO; 3862 goto out_unlock; 3863 } 3864 3865 /* 3866 * We shadow a 32 bit page table. This may be a legacy 2-level 3867 * or a PAE 3-level page table. In either case we need to be aware that 3868 * the shadow page table may be a PAE or a long mode page table. 3869 */ 3870 pm_mask = PT_PRESENT_MASK | shadow_me_value; 3871 if (mmu->root_role.level >= PT64_ROOT_4LEVEL) { 3872 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; 3873 3874 if (WARN_ON_ONCE(!mmu->pml4_root)) { 3875 r = -EIO; 3876 goto out_unlock; 3877 } 3878 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask; 3879 3880 if (mmu->root_role.level == PT64_ROOT_5LEVEL) { 3881 if (WARN_ON_ONCE(!mmu->pml5_root)) { 3882 r = -EIO; 3883 goto out_unlock; 3884 } 3885 mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask; 3886 } 3887 } 3888 3889 for (i = 0; i < 4; ++i) { 3890 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3891 3892 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { 3893 if (!(pdptrs[i] & PT_PRESENT_MASK)) { 3894 mmu->pae_root[i] = INVALID_PAE_ROOT; 3895 continue; 3896 } 3897 root_gfn = pdptrs[i] >> PAGE_SHIFT; 3898 } 3899 3900 /* 3901 * If shadowing 32-bit non-PAE page tables, each PAE page 3902 * directory maps one quarter of the guest's non-PAE page 3903 * directory. Othwerise each PAE page direct shadows one guest 3904 * PAE page directory so that quadrant should be 0. 3905 */ 3906 quadrant = (mmu->cpu_role.base.level == PT32_ROOT_LEVEL) ? i : 0; 3907 3908 root = mmu_alloc_root(vcpu, root_gfn, quadrant, PT32_ROOT_LEVEL); 3909 mmu->pae_root[i] = root | pm_mask; 3910 } 3911 3912 if (mmu->root_role.level == PT64_ROOT_5LEVEL) 3913 mmu->root.hpa = __pa(mmu->pml5_root); 3914 else if (mmu->root_role.level == PT64_ROOT_4LEVEL) 3915 mmu->root.hpa = __pa(mmu->pml4_root); 3916 else 3917 mmu->root.hpa = __pa(mmu->pae_root); 3918 3919 set_root_pgd: 3920 mmu->root.pgd = root_pgd; 3921 out_unlock: 3922 write_unlock(&vcpu->kvm->mmu_lock); 3923 3924 return r; 3925 } 3926 3927 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu) 3928 { 3929 struct kvm_mmu *mmu = vcpu->arch.mmu; 3930 bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL; 3931 u64 *pml5_root = NULL; 3932 u64 *pml4_root = NULL; 3933 u64 *pae_root; 3934 3935 /* 3936 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP 3937 * tables are allocated and initialized at root creation as there is no 3938 * equivalent level in the guest's NPT to shadow. Allocate the tables 3939 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare. 3940 */ 3941 if (mmu->root_role.direct || 3942 mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL || 3943 mmu->root_role.level < PT64_ROOT_4LEVEL) 3944 return 0; 3945 3946 /* 3947 * NPT, the only paging mode that uses this horror, uses a fixed number 3948 * of levels for the shadow page tables, e.g. all MMUs are 4-level or 3949 * all MMus are 5-level. Thus, this can safely require that pml5_root 3950 * is allocated if the other roots are valid and pml5 is needed, as any 3951 * prior MMU would also have required pml5. 3952 */ 3953 if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root)) 3954 return 0; 3955 3956 /* 3957 * The special roots should always be allocated in concert. Yell and 3958 * bail if KVM ends up in a state where only one of the roots is valid. 3959 */ 3960 if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root || 3961 (need_pml5 && mmu->pml5_root))) 3962 return -EIO; 3963 3964 /* 3965 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and 3966 * doesn't need to be decrypted. 3967 */ 3968 pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3969 if (!pae_root) 3970 return -ENOMEM; 3971 3972 #ifdef CONFIG_X86_64 3973 pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3974 if (!pml4_root) 3975 goto err_pml4; 3976 3977 if (need_pml5) { 3978 pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3979 if (!pml5_root) 3980 goto err_pml5; 3981 } 3982 #endif 3983 3984 mmu->pae_root = pae_root; 3985 mmu->pml4_root = pml4_root; 3986 mmu->pml5_root = pml5_root; 3987 3988 return 0; 3989 3990 #ifdef CONFIG_X86_64 3991 err_pml5: 3992 free_page((unsigned long)pml4_root); 3993 err_pml4: 3994 free_page((unsigned long)pae_root); 3995 return -ENOMEM; 3996 #endif 3997 } 3998 3999 static bool is_unsync_root(hpa_t root) 4000 { 4001 struct kvm_mmu_page *sp; 4002 4003 if (!VALID_PAGE(root) || kvm_mmu_is_dummy_root(root)) 4004 return false; 4005 4006 /* 4007 * The read barrier orders the CPU's read of SPTE.W during the page table 4008 * walk before the reads of sp->unsync/sp->unsync_children here. 4009 * 4010 * Even if another CPU was marking the SP as unsync-ed simultaneously, 4011 * any guest page table changes are not guaranteed to be visible anyway 4012 * until this VCPU issues a TLB flush strictly after those changes are 4013 * made. We only need to ensure that the other CPU sets these flags 4014 * before any actual changes to the page tables are made. The comments 4015 * in mmu_try_to_unsync_pages() describe what could go wrong if this 4016 * requirement isn't satisfied. 4017 */ 4018 smp_rmb(); 4019 sp = root_to_sp(root); 4020 4021 /* 4022 * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the 4023 * PDPTEs for a given PAE root need to be synchronized individually. 4024 */ 4025 if (WARN_ON_ONCE(!sp)) 4026 return false; 4027 4028 if (sp->unsync || sp->unsync_children) 4029 return true; 4030 4031 return false; 4032 } 4033 4034 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) 4035 { 4036 int i; 4037 struct kvm_mmu_page *sp; 4038 4039 if (vcpu->arch.mmu->root_role.direct) 4040 return; 4041 4042 if (!VALID_PAGE(vcpu->arch.mmu->root.hpa)) 4043 return; 4044 4045 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 4046 4047 if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { 4048 hpa_t root = vcpu->arch.mmu->root.hpa; 4049 4050 if (!is_unsync_root(root)) 4051 return; 4052 4053 sp = root_to_sp(root); 4054 4055 write_lock(&vcpu->kvm->mmu_lock); 4056 mmu_sync_children(vcpu, sp, true); 4057 write_unlock(&vcpu->kvm->mmu_lock); 4058 return; 4059 } 4060 4061 write_lock(&vcpu->kvm->mmu_lock); 4062 4063 for (i = 0; i < 4; ++i) { 4064 hpa_t root = vcpu->arch.mmu->pae_root[i]; 4065 4066 if (IS_VALID_PAE_ROOT(root)) { 4067 sp = spte_to_child_sp(root); 4068 mmu_sync_children(vcpu, sp, true); 4069 } 4070 } 4071 4072 write_unlock(&vcpu->kvm->mmu_lock); 4073 } 4074 4075 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu) 4076 { 4077 unsigned long roots_to_free = 0; 4078 int i; 4079 4080 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 4081 if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa)) 4082 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 4083 4084 /* sync prev_roots by simply freeing them */ 4085 kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free); 4086 } 4087 4088 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 4089 gpa_t vaddr, u64 access, 4090 struct x86_exception *exception) 4091 { 4092 if (exception) 4093 exception->error_code = 0; 4094 return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception); 4095 } 4096 4097 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct) 4098 { 4099 /* 4100 * A nested guest cannot use the MMIO cache if it is using nested 4101 * page tables, because cr2 is a nGPA while the cache stores GPAs. 4102 */ 4103 if (mmu_is_nested(vcpu)) 4104 return false; 4105 4106 if (direct) 4107 return vcpu_match_mmio_gpa(vcpu, addr); 4108 4109 return vcpu_match_mmio_gva(vcpu, addr); 4110 } 4111 4112 /* 4113 * Return the level of the lowest level SPTE added to sptes. 4114 * That SPTE may be non-present. 4115 * 4116 * Must be called between walk_shadow_page_lockless_{begin,end}. 4117 */ 4118 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level) 4119 { 4120 struct kvm_shadow_walk_iterator iterator; 4121 int leaf = -1; 4122 u64 spte; 4123 4124 for (shadow_walk_init(&iterator, vcpu, addr), 4125 *root_level = iterator.level; 4126 shadow_walk_okay(&iterator); 4127 __shadow_walk_next(&iterator, spte)) { 4128 leaf = iterator.level; 4129 spte = mmu_spte_get_lockless(iterator.sptep); 4130 4131 sptes[leaf] = spte; 4132 } 4133 4134 return leaf; 4135 } 4136 4137 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */ 4138 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) 4139 { 4140 u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; 4141 struct rsvd_bits_validate *rsvd_check; 4142 int root, leaf, level; 4143 bool reserved = false; 4144 4145 walk_shadow_page_lockless_begin(vcpu); 4146 4147 if (is_tdp_mmu_active(vcpu)) 4148 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root); 4149 else 4150 leaf = get_walk(vcpu, addr, sptes, &root); 4151 4152 walk_shadow_page_lockless_end(vcpu); 4153 4154 if (unlikely(leaf < 0)) { 4155 *sptep = 0ull; 4156 return reserved; 4157 } 4158 4159 *sptep = sptes[leaf]; 4160 4161 /* 4162 * Skip reserved bits checks on the terminal leaf if it's not a valid 4163 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by 4164 * design, always have reserved bits set. The purpose of the checks is 4165 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs. 4166 */ 4167 if (!is_shadow_present_pte(sptes[leaf])) 4168 leaf++; 4169 4170 rsvd_check = &vcpu->arch.mmu->shadow_zero_check; 4171 4172 for (level = root; level >= leaf; level--) 4173 reserved |= is_rsvd_spte(rsvd_check, sptes[level], level); 4174 4175 if (reserved) { 4176 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n", 4177 __func__, addr); 4178 for (level = root; level >= leaf; level--) 4179 pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx", 4180 sptes[level], level, 4181 get_rsvd_bits(rsvd_check, sptes[level], level)); 4182 } 4183 4184 return reserved; 4185 } 4186 4187 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct) 4188 { 4189 u64 spte; 4190 bool reserved; 4191 4192 if (mmio_info_in_cache(vcpu, addr, direct)) 4193 return RET_PF_EMULATE; 4194 4195 reserved = get_mmio_spte(vcpu, addr, &spte); 4196 if (WARN_ON_ONCE(reserved)) 4197 return -EINVAL; 4198 4199 if (is_mmio_spte(spte)) { 4200 gfn_t gfn = get_mmio_spte_gfn(spte); 4201 unsigned int access = get_mmio_spte_access(spte); 4202 4203 if (!check_mmio_spte(vcpu, spte)) 4204 return RET_PF_INVALID; 4205 4206 if (direct) 4207 addr = 0; 4208 4209 trace_handle_mmio_page_fault(addr, gfn, access); 4210 vcpu_cache_mmio_info(vcpu, addr, gfn, access); 4211 return RET_PF_EMULATE; 4212 } 4213 4214 /* 4215 * If the page table is zapped by other cpus, let CPU fault again on 4216 * the address. 4217 */ 4218 return RET_PF_RETRY; 4219 } 4220 4221 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu, 4222 struct kvm_page_fault *fault) 4223 { 4224 if (unlikely(fault->rsvd)) 4225 return false; 4226 4227 if (!fault->present || !fault->write) 4228 return false; 4229 4230 /* 4231 * guest is writing the page which is write tracked which can 4232 * not be fixed by page fault handler. 4233 */ 4234 if (kvm_gfn_is_write_tracked(vcpu->kvm, fault->slot, fault->gfn)) 4235 return true; 4236 4237 return false; 4238 } 4239 4240 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr) 4241 { 4242 struct kvm_shadow_walk_iterator iterator; 4243 u64 spte; 4244 4245 walk_shadow_page_lockless_begin(vcpu); 4246 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) 4247 clear_sp_write_flooding_count(iterator.sptep); 4248 walk_shadow_page_lockless_end(vcpu); 4249 } 4250 4251 static u32 alloc_apf_token(struct kvm_vcpu *vcpu) 4252 { 4253 /* make sure the token value is not 0 */ 4254 u32 id = vcpu->arch.apf.id; 4255 4256 if (id << 12 == 0) 4257 vcpu->arch.apf.id = 1; 4258 4259 return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; 4260 } 4261 4262 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 4263 gfn_t gfn) 4264 { 4265 struct kvm_arch_async_pf arch; 4266 4267 arch.token = alloc_apf_token(vcpu); 4268 arch.gfn = gfn; 4269 arch.direct_map = vcpu->arch.mmu->root_role.direct; 4270 arch.cr3 = kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu); 4271 4272 return kvm_setup_async_pf(vcpu, cr2_or_gpa, 4273 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch); 4274 } 4275 4276 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 4277 { 4278 int r; 4279 4280 if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) || 4281 work->wakeup_all) 4282 return; 4283 4284 r = kvm_mmu_reload(vcpu); 4285 if (unlikely(r)) 4286 return; 4287 4288 if (!vcpu->arch.mmu->root_role.direct && 4289 work->arch.cr3 != kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu)) 4290 return; 4291 4292 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true, NULL); 4293 } 4294 4295 static inline u8 kvm_max_level_for_order(int order) 4296 { 4297 BUILD_BUG_ON(KVM_MAX_HUGEPAGE_LEVEL > PG_LEVEL_1G); 4298 4299 KVM_MMU_WARN_ON(order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G) && 4300 order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M) && 4301 order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K)); 4302 4303 if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G)) 4304 return PG_LEVEL_1G; 4305 4306 if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M)) 4307 return PG_LEVEL_2M; 4308 4309 return PG_LEVEL_4K; 4310 } 4311 4312 static void kvm_mmu_prepare_memory_fault_exit(struct kvm_vcpu *vcpu, 4313 struct kvm_page_fault *fault) 4314 { 4315 kvm_prepare_memory_fault_exit(vcpu, fault->gfn << PAGE_SHIFT, 4316 PAGE_SIZE, fault->write, fault->exec, 4317 fault->is_private); 4318 } 4319 4320 static int kvm_faultin_pfn_private(struct kvm_vcpu *vcpu, 4321 struct kvm_page_fault *fault) 4322 { 4323 int max_order, r; 4324 4325 if (!kvm_slot_can_be_private(fault->slot)) { 4326 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 4327 return -EFAULT; 4328 } 4329 4330 r = kvm_gmem_get_pfn(vcpu->kvm, fault->slot, fault->gfn, &fault->pfn, 4331 &max_order); 4332 if (r) { 4333 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 4334 return r; 4335 } 4336 4337 fault->max_level = min(kvm_max_level_for_order(max_order), 4338 fault->max_level); 4339 fault->map_writable = !(fault->slot->flags & KVM_MEM_READONLY); 4340 4341 return RET_PF_CONTINUE; 4342 } 4343 4344 static int __kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4345 { 4346 struct kvm_memory_slot *slot = fault->slot; 4347 bool async; 4348 4349 /* 4350 * Retry the page fault if the gfn hit a memslot that is being deleted 4351 * or moved. This ensures any existing SPTEs for the old memslot will 4352 * be zapped before KVM inserts a new MMIO SPTE for the gfn. 4353 */ 4354 if (slot && (slot->flags & KVM_MEMSLOT_INVALID)) 4355 return RET_PF_RETRY; 4356 4357 if (!kvm_is_visible_memslot(slot)) { 4358 /* Don't expose private memslots to L2. */ 4359 if (is_guest_mode(vcpu)) { 4360 fault->slot = NULL; 4361 fault->pfn = KVM_PFN_NOSLOT; 4362 fault->map_writable = false; 4363 return RET_PF_CONTINUE; 4364 } 4365 /* 4366 * If the APIC access page exists but is disabled, go directly 4367 * to emulation without caching the MMIO access or creating a 4368 * MMIO SPTE. That way the cache doesn't need to be purged 4369 * when the AVIC is re-enabled. 4370 */ 4371 if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT && 4372 !kvm_apicv_activated(vcpu->kvm)) 4373 return RET_PF_EMULATE; 4374 } 4375 4376 if (fault->is_private != kvm_mem_is_private(vcpu->kvm, fault->gfn)) { 4377 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 4378 return -EFAULT; 4379 } 4380 4381 if (fault->is_private) 4382 return kvm_faultin_pfn_private(vcpu, fault); 4383 4384 async = false; 4385 fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, false, &async, 4386 fault->write, &fault->map_writable, 4387 &fault->hva); 4388 if (!async) 4389 return RET_PF_CONTINUE; /* *pfn has correct page already */ 4390 4391 if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) { 4392 trace_kvm_try_async_get_page(fault->addr, fault->gfn); 4393 if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) { 4394 trace_kvm_async_pf_repeated_fault(fault->addr, fault->gfn); 4395 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 4396 return RET_PF_RETRY; 4397 } else if (kvm_arch_setup_async_pf(vcpu, fault->addr, fault->gfn)) { 4398 return RET_PF_RETRY; 4399 } 4400 } 4401 4402 /* 4403 * Allow gup to bail on pending non-fatal signals when it's also allowed 4404 * to wait for IO. Note, gup always bails if it is unable to quickly 4405 * get a page and a fatal signal, i.e. SIGKILL, is pending. 4406 */ 4407 fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, true, NULL, 4408 fault->write, &fault->map_writable, 4409 &fault->hva); 4410 return RET_PF_CONTINUE; 4411 } 4412 4413 static int kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, 4414 unsigned int access) 4415 { 4416 int ret; 4417 4418 fault->mmu_seq = vcpu->kvm->mmu_invalidate_seq; 4419 smp_rmb(); 4420 4421 /* 4422 * Check for a relevant mmu_notifier invalidation event before getting 4423 * the pfn from the primary MMU, and before acquiring mmu_lock. 4424 * 4425 * For mmu_lock, if there is an in-progress invalidation and the kernel 4426 * allows preemption, the invalidation task may drop mmu_lock and yield 4427 * in response to mmu_lock being contended, which is *very* counter- 4428 * productive as this vCPU can't actually make forward progress until 4429 * the invalidation completes. 4430 * 4431 * Retrying now can also avoid unnessary lock contention in the primary 4432 * MMU, as the primary MMU doesn't necessarily hold a single lock for 4433 * the duration of the invalidation, i.e. faulting in a conflicting pfn 4434 * can cause the invalidation to take longer by holding locks that are 4435 * needed to complete the invalidation. 4436 * 4437 * Do the pre-check even for non-preemtible kernels, i.e. even if KVM 4438 * will never yield mmu_lock in response to contention, as this vCPU is 4439 * *guaranteed* to need to retry, i.e. waiting until mmu_lock is held 4440 * to detect retry guarantees the worst case latency for the vCPU. 4441 */ 4442 if (fault->slot && 4443 mmu_invalidate_retry_gfn_unsafe(vcpu->kvm, fault->mmu_seq, fault->gfn)) 4444 return RET_PF_RETRY; 4445 4446 ret = __kvm_faultin_pfn(vcpu, fault); 4447 if (ret != RET_PF_CONTINUE) 4448 return ret; 4449 4450 if (unlikely(is_error_pfn(fault->pfn))) 4451 return kvm_handle_error_pfn(vcpu, fault); 4452 4453 if (unlikely(!fault->slot)) 4454 return kvm_handle_noslot_fault(vcpu, fault, access); 4455 4456 /* 4457 * Check again for a relevant mmu_notifier invalidation event purely to 4458 * avoid contending mmu_lock. Most invalidations will be detected by 4459 * the previous check, but checking is extremely cheap relative to the 4460 * overall cost of failing to detect the invalidation until after 4461 * mmu_lock is acquired. 4462 */ 4463 if (mmu_invalidate_retry_gfn_unsafe(vcpu->kvm, fault->mmu_seq, fault->gfn)) { 4464 kvm_release_pfn_clean(fault->pfn); 4465 return RET_PF_RETRY; 4466 } 4467 4468 return RET_PF_CONTINUE; 4469 } 4470 4471 /* 4472 * Returns true if the page fault is stale and needs to be retried, i.e. if the 4473 * root was invalidated by a memslot update or a relevant mmu_notifier fired. 4474 */ 4475 static bool is_page_fault_stale(struct kvm_vcpu *vcpu, 4476 struct kvm_page_fault *fault) 4477 { 4478 struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa); 4479 4480 /* Special roots, e.g. pae_root, are not backed by shadow pages. */ 4481 if (sp && is_obsolete_sp(vcpu->kvm, sp)) 4482 return true; 4483 4484 /* 4485 * Roots without an associated shadow page are considered invalid if 4486 * there is a pending request to free obsolete roots. The request is 4487 * only a hint that the current root _may_ be obsolete and needs to be 4488 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a 4489 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs 4490 * to reload even if no vCPU is actively using the root. 4491 */ 4492 if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 4493 return true; 4494 4495 /* 4496 * Check for a relevant mmu_notifier invalidation event one last time 4497 * now that mmu_lock is held, as the "unsafe" checks performed without 4498 * holding mmu_lock can get false negatives. 4499 */ 4500 return fault->slot && 4501 mmu_invalidate_retry_gfn(vcpu->kvm, fault->mmu_seq, fault->gfn); 4502 } 4503 4504 static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4505 { 4506 int r; 4507 4508 /* Dummy roots are used only for shadowing bad guest roots. */ 4509 if (WARN_ON_ONCE(kvm_mmu_is_dummy_root(vcpu->arch.mmu->root.hpa))) 4510 return RET_PF_RETRY; 4511 4512 if (page_fault_handle_page_track(vcpu, fault)) 4513 return RET_PF_EMULATE; 4514 4515 r = fast_page_fault(vcpu, fault); 4516 if (r != RET_PF_INVALID) 4517 return r; 4518 4519 r = mmu_topup_memory_caches(vcpu, false); 4520 if (r) 4521 return r; 4522 4523 r = kvm_faultin_pfn(vcpu, fault, ACC_ALL); 4524 if (r != RET_PF_CONTINUE) 4525 return r; 4526 4527 r = RET_PF_RETRY; 4528 write_lock(&vcpu->kvm->mmu_lock); 4529 4530 if (is_page_fault_stale(vcpu, fault)) 4531 goto out_unlock; 4532 4533 r = make_mmu_pages_available(vcpu); 4534 if (r) 4535 goto out_unlock; 4536 4537 r = direct_map(vcpu, fault); 4538 4539 out_unlock: 4540 write_unlock(&vcpu->kvm->mmu_lock); 4541 kvm_release_pfn_clean(fault->pfn); 4542 return r; 4543 } 4544 4545 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, 4546 struct kvm_page_fault *fault) 4547 { 4548 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */ 4549 fault->max_level = PG_LEVEL_2M; 4550 return direct_page_fault(vcpu, fault); 4551 } 4552 4553 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, 4554 u64 fault_address, char *insn, int insn_len) 4555 { 4556 int r = 1; 4557 u32 flags = vcpu->arch.apf.host_apf_flags; 4558 4559 #ifndef CONFIG_X86_64 4560 /* A 64-bit CR2 should be impossible on 32-bit KVM. */ 4561 if (WARN_ON_ONCE(fault_address >> 32)) 4562 return -EFAULT; 4563 #endif 4564 4565 vcpu->arch.l1tf_flush_l1d = true; 4566 if (!flags) { 4567 trace_kvm_page_fault(vcpu, fault_address, error_code); 4568 4569 if (kvm_event_needs_reinjection(vcpu)) 4570 kvm_mmu_unprotect_page_virt(vcpu, fault_address); 4571 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn, 4572 insn_len); 4573 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) { 4574 vcpu->arch.apf.host_apf_flags = 0; 4575 local_irq_disable(); 4576 kvm_async_pf_task_wait_schedule(fault_address); 4577 local_irq_enable(); 4578 } else { 4579 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags); 4580 } 4581 4582 return r; 4583 } 4584 EXPORT_SYMBOL_GPL(kvm_handle_page_fault); 4585 4586 #ifdef CONFIG_X86_64 4587 static int kvm_tdp_mmu_page_fault(struct kvm_vcpu *vcpu, 4588 struct kvm_page_fault *fault) 4589 { 4590 int r; 4591 4592 if (page_fault_handle_page_track(vcpu, fault)) 4593 return RET_PF_EMULATE; 4594 4595 r = fast_page_fault(vcpu, fault); 4596 if (r != RET_PF_INVALID) 4597 return r; 4598 4599 r = mmu_topup_memory_caches(vcpu, false); 4600 if (r) 4601 return r; 4602 4603 r = kvm_faultin_pfn(vcpu, fault, ACC_ALL); 4604 if (r != RET_PF_CONTINUE) 4605 return r; 4606 4607 r = RET_PF_RETRY; 4608 read_lock(&vcpu->kvm->mmu_lock); 4609 4610 if (is_page_fault_stale(vcpu, fault)) 4611 goto out_unlock; 4612 4613 r = kvm_tdp_mmu_map(vcpu, fault); 4614 4615 out_unlock: 4616 read_unlock(&vcpu->kvm->mmu_lock); 4617 kvm_release_pfn_clean(fault->pfn); 4618 return r; 4619 } 4620 #endif 4621 4622 bool __kvm_mmu_honors_guest_mtrrs(bool vm_has_noncoherent_dma) 4623 { 4624 /* 4625 * If host MTRRs are ignored (shadow_memtype_mask is non-zero), and the 4626 * VM has non-coherent DMA (DMA doesn't snoop CPU caches), KVM's ABI is 4627 * to honor the memtype from the guest's MTRRs so that guest accesses 4628 * to memory that is DMA'd aren't cached against the guest's wishes. 4629 * 4630 * Note, KVM may still ultimately ignore guest MTRRs for certain PFNs, 4631 * e.g. KVM will force UC memtype for host MMIO. 4632 */ 4633 return vm_has_noncoherent_dma && shadow_memtype_mask; 4634 } 4635 4636 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4637 { 4638 /* 4639 * If the guest's MTRRs may be used to compute the "real" memtype, 4640 * restrict the mapping level to ensure KVM uses a consistent memtype 4641 * across the entire mapping. 4642 */ 4643 if (kvm_mmu_honors_guest_mtrrs(vcpu->kvm)) { 4644 for ( ; fault->max_level > PG_LEVEL_4K; --fault->max_level) { 4645 int page_num = KVM_PAGES_PER_HPAGE(fault->max_level); 4646 gfn_t base = gfn_round_for_level(fault->gfn, 4647 fault->max_level); 4648 4649 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num)) 4650 break; 4651 } 4652 } 4653 4654 #ifdef CONFIG_X86_64 4655 if (tdp_mmu_enabled) 4656 return kvm_tdp_mmu_page_fault(vcpu, fault); 4657 #endif 4658 4659 return direct_page_fault(vcpu, fault); 4660 } 4661 4662 static void nonpaging_init_context(struct kvm_mmu *context) 4663 { 4664 context->page_fault = nonpaging_page_fault; 4665 context->gva_to_gpa = nonpaging_gva_to_gpa; 4666 context->sync_spte = NULL; 4667 } 4668 4669 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd, 4670 union kvm_mmu_page_role role) 4671 { 4672 struct kvm_mmu_page *sp; 4673 4674 if (!VALID_PAGE(root->hpa)) 4675 return false; 4676 4677 if (!role.direct && pgd != root->pgd) 4678 return false; 4679 4680 sp = root_to_sp(root->hpa); 4681 if (WARN_ON_ONCE(!sp)) 4682 return false; 4683 4684 return role.word == sp->role.word; 4685 } 4686 4687 /* 4688 * Find out if a previously cached root matching the new pgd/role is available, 4689 * and insert the current root as the MRU in the cache. 4690 * If a matching root is found, it is assigned to kvm_mmu->root and 4691 * true is returned. 4692 * If no match is found, kvm_mmu->root is left invalid, the LRU root is 4693 * evicted to make room for the current root, and false is returned. 4694 */ 4695 static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu, 4696 gpa_t new_pgd, 4697 union kvm_mmu_page_role new_role) 4698 { 4699 uint i; 4700 4701 if (is_root_usable(&mmu->root, new_pgd, new_role)) 4702 return true; 4703 4704 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 4705 /* 4706 * The swaps end up rotating the cache like this: 4707 * C 0 1 2 3 (on entry to the function) 4708 * 0 C 1 2 3 4709 * 1 C 0 2 3 4710 * 2 C 0 1 3 4711 * 3 C 0 1 2 (on exit from the loop) 4712 */ 4713 swap(mmu->root, mmu->prev_roots[i]); 4714 if (is_root_usable(&mmu->root, new_pgd, new_role)) 4715 return true; 4716 } 4717 4718 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 4719 return false; 4720 } 4721 4722 /* 4723 * Find out if a previously cached root matching the new pgd/role is available. 4724 * On entry, mmu->root is invalid. 4725 * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry 4726 * of the cache becomes invalid, and true is returned. 4727 * If no match is found, kvm_mmu->root is left invalid and false is returned. 4728 */ 4729 static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu, 4730 gpa_t new_pgd, 4731 union kvm_mmu_page_role new_role) 4732 { 4733 uint i; 4734 4735 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 4736 if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role)) 4737 goto hit; 4738 4739 return false; 4740 4741 hit: 4742 swap(mmu->root, mmu->prev_roots[i]); 4743 /* Bubble up the remaining roots. */ 4744 for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++) 4745 mmu->prev_roots[i] = mmu->prev_roots[i + 1]; 4746 mmu->prev_roots[i].hpa = INVALID_PAGE; 4747 return true; 4748 } 4749 4750 static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu, 4751 gpa_t new_pgd, union kvm_mmu_page_role new_role) 4752 { 4753 /* 4754 * Limit reuse to 64-bit hosts+VMs without "special" roots in order to 4755 * avoid having to deal with PDPTEs and other complexities. 4756 */ 4757 if (VALID_PAGE(mmu->root.hpa) && !root_to_sp(mmu->root.hpa)) 4758 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 4759 4760 if (VALID_PAGE(mmu->root.hpa)) 4761 return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role); 4762 else 4763 return cached_root_find_without_current(kvm, mmu, new_pgd, new_role); 4764 } 4765 4766 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd) 4767 { 4768 struct kvm_mmu *mmu = vcpu->arch.mmu; 4769 union kvm_mmu_page_role new_role = mmu->root_role; 4770 4771 /* 4772 * Return immediately if no usable root was found, kvm_mmu_reload() 4773 * will establish a valid root prior to the next VM-Enter. 4774 */ 4775 if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role)) 4776 return; 4777 4778 /* 4779 * It's possible that the cached previous root page is obsolete because 4780 * of a change in the MMU generation number. However, changing the 4781 * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, 4782 * which will free the root set here and allocate a new one. 4783 */ 4784 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 4785 4786 if (force_flush_and_sync_on_reuse) { 4787 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 4788 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 4789 } 4790 4791 /* 4792 * The last MMIO access's GVA and GPA are cached in the VCPU. When 4793 * switching to a new CR3, that GVA->GPA mapping may no longer be 4794 * valid. So clear any cached MMIO info even when we don't need to sync 4795 * the shadow page tables. 4796 */ 4797 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 4798 4799 /* 4800 * If this is a direct root page, it doesn't have a write flooding 4801 * count. Otherwise, clear the write flooding count. 4802 */ 4803 if (!new_role.direct) { 4804 struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa); 4805 4806 if (!WARN_ON_ONCE(!sp)) 4807 __clear_sp_write_flooding_count(sp); 4808 } 4809 } 4810 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd); 4811 4812 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, 4813 unsigned int access) 4814 { 4815 if (unlikely(is_mmio_spte(*sptep))) { 4816 if (gfn != get_mmio_spte_gfn(*sptep)) { 4817 mmu_spte_clear_no_track(sptep); 4818 return true; 4819 } 4820 4821 mark_mmio_spte(vcpu, sptep, gfn, access); 4822 return true; 4823 } 4824 4825 return false; 4826 } 4827 4828 #define PTTYPE_EPT 18 /* arbitrary */ 4829 #define PTTYPE PTTYPE_EPT 4830 #include "paging_tmpl.h" 4831 #undef PTTYPE 4832 4833 #define PTTYPE 64 4834 #include "paging_tmpl.h" 4835 #undef PTTYPE 4836 4837 #define PTTYPE 32 4838 #include "paging_tmpl.h" 4839 #undef PTTYPE 4840 4841 static void __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check, 4842 u64 pa_bits_rsvd, int level, bool nx, 4843 bool gbpages, bool pse, bool amd) 4844 { 4845 u64 gbpages_bit_rsvd = 0; 4846 u64 nonleaf_bit8_rsvd = 0; 4847 u64 high_bits_rsvd; 4848 4849 rsvd_check->bad_mt_xwr = 0; 4850 4851 if (!gbpages) 4852 gbpages_bit_rsvd = rsvd_bits(7, 7); 4853 4854 if (level == PT32E_ROOT_LEVEL) 4855 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62); 4856 else 4857 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4858 4859 /* Note, NX doesn't exist in PDPTEs, this is handled below. */ 4860 if (!nx) 4861 high_bits_rsvd |= rsvd_bits(63, 63); 4862 4863 /* 4864 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for 4865 * leaf entries) on AMD CPUs only. 4866 */ 4867 if (amd) 4868 nonleaf_bit8_rsvd = rsvd_bits(8, 8); 4869 4870 switch (level) { 4871 case PT32_ROOT_LEVEL: 4872 /* no rsvd bits for 2 level 4K page table entries */ 4873 rsvd_check->rsvd_bits_mask[0][1] = 0; 4874 rsvd_check->rsvd_bits_mask[0][0] = 0; 4875 rsvd_check->rsvd_bits_mask[1][0] = 4876 rsvd_check->rsvd_bits_mask[0][0]; 4877 4878 if (!pse) { 4879 rsvd_check->rsvd_bits_mask[1][1] = 0; 4880 break; 4881 } 4882 4883 if (is_cpuid_PSE36()) 4884 /* 36bits PSE 4MB page */ 4885 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); 4886 else 4887 /* 32 bits PSE 4MB page */ 4888 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); 4889 break; 4890 case PT32E_ROOT_LEVEL: 4891 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) | 4892 high_bits_rsvd | 4893 rsvd_bits(5, 8) | 4894 rsvd_bits(1, 2); /* PDPTE */ 4895 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */ 4896 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */ 4897 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 4898 rsvd_bits(13, 20); /* large page */ 4899 rsvd_check->rsvd_bits_mask[1][0] = 4900 rsvd_check->rsvd_bits_mask[0][0]; 4901 break; 4902 case PT64_ROOT_5LEVEL: 4903 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | 4904 nonleaf_bit8_rsvd | 4905 rsvd_bits(7, 7); 4906 rsvd_check->rsvd_bits_mask[1][4] = 4907 rsvd_check->rsvd_bits_mask[0][4]; 4908 fallthrough; 4909 case PT64_ROOT_4LEVEL: 4910 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | 4911 nonleaf_bit8_rsvd | 4912 rsvd_bits(7, 7); 4913 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | 4914 gbpages_bit_rsvd; 4915 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; 4916 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 4917 rsvd_check->rsvd_bits_mask[1][3] = 4918 rsvd_check->rsvd_bits_mask[0][3]; 4919 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | 4920 gbpages_bit_rsvd | 4921 rsvd_bits(13, 29); 4922 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 4923 rsvd_bits(13, 20); /* large page */ 4924 rsvd_check->rsvd_bits_mask[1][0] = 4925 rsvd_check->rsvd_bits_mask[0][0]; 4926 break; 4927 } 4928 } 4929 4930 static void reset_guest_rsvds_bits_mask(struct kvm_vcpu *vcpu, 4931 struct kvm_mmu *context) 4932 { 4933 __reset_rsvds_bits_mask(&context->guest_rsvd_check, 4934 vcpu->arch.reserved_gpa_bits, 4935 context->cpu_role.base.level, is_efer_nx(context), 4936 guest_can_use(vcpu, X86_FEATURE_GBPAGES), 4937 is_cr4_pse(context), 4938 guest_cpuid_is_amd_compatible(vcpu)); 4939 } 4940 4941 static void __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check, 4942 u64 pa_bits_rsvd, bool execonly, 4943 int huge_page_level) 4944 { 4945 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4946 u64 large_1g_rsvd = 0, large_2m_rsvd = 0; 4947 u64 bad_mt_xwr; 4948 4949 if (huge_page_level < PG_LEVEL_1G) 4950 large_1g_rsvd = rsvd_bits(7, 7); 4951 if (huge_page_level < PG_LEVEL_2M) 4952 large_2m_rsvd = rsvd_bits(7, 7); 4953 4954 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7); 4955 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7); 4956 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd; 4957 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd; 4958 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 4959 4960 /* large page */ 4961 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4]; 4962 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3]; 4963 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd; 4964 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd; 4965 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0]; 4966 4967 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */ 4968 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */ 4969 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */ 4970 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */ 4971 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */ 4972 if (!execonly) { 4973 /* bits 0..2 must not be 100 unless VMX capabilities allow it */ 4974 bad_mt_xwr |= REPEAT_BYTE(1ull << 4); 4975 } 4976 rsvd_check->bad_mt_xwr = bad_mt_xwr; 4977 } 4978 4979 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, 4980 struct kvm_mmu *context, bool execonly, int huge_page_level) 4981 { 4982 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check, 4983 vcpu->arch.reserved_gpa_bits, execonly, 4984 huge_page_level); 4985 } 4986 4987 static inline u64 reserved_hpa_bits(void) 4988 { 4989 return rsvd_bits(shadow_phys_bits, 63); 4990 } 4991 4992 /* 4993 * the page table on host is the shadow page table for the page 4994 * table in guest or amd nested guest, its mmu features completely 4995 * follow the features in guest. 4996 */ 4997 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 4998 struct kvm_mmu *context) 4999 { 5000 /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */ 5001 bool is_amd = true; 5002 /* KVM doesn't use 2-level page tables for the shadow MMU. */ 5003 bool is_pse = false; 5004 struct rsvd_bits_validate *shadow_zero_check; 5005 int i; 5006 5007 WARN_ON_ONCE(context->root_role.level < PT32E_ROOT_LEVEL); 5008 5009 shadow_zero_check = &context->shadow_zero_check; 5010 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 5011 context->root_role.level, 5012 context->root_role.efer_nx, 5013 guest_can_use(vcpu, X86_FEATURE_GBPAGES), 5014 is_pse, is_amd); 5015 5016 if (!shadow_me_mask) 5017 return; 5018 5019 for (i = context->root_role.level; --i >= 0;) { 5020 /* 5021 * So far shadow_me_value is a constant during KVM's life 5022 * time. Bits in shadow_me_value are allowed to be set. 5023 * Bits in shadow_me_mask but not in shadow_me_value are 5024 * not allowed to be set. 5025 */ 5026 shadow_zero_check->rsvd_bits_mask[0][i] |= shadow_me_mask; 5027 shadow_zero_check->rsvd_bits_mask[1][i] |= shadow_me_mask; 5028 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_value; 5029 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_value; 5030 } 5031 5032 } 5033 5034 static inline bool boot_cpu_is_amd(void) 5035 { 5036 WARN_ON_ONCE(!tdp_enabled); 5037 return shadow_x_mask == 0; 5038 } 5039 5040 /* 5041 * the direct page table on host, use as much mmu features as 5042 * possible, however, kvm currently does not do execution-protection. 5043 */ 5044 static void reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context) 5045 { 5046 struct rsvd_bits_validate *shadow_zero_check; 5047 int i; 5048 5049 shadow_zero_check = &context->shadow_zero_check; 5050 5051 if (boot_cpu_is_amd()) 5052 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 5053 context->root_role.level, true, 5054 boot_cpu_has(X86_FEATURE_GBPAGES), 5055 false, true); 5056 else 5057 __reset_rsvds_bits_mask_ept(shadow_zero_check, 5058 reserved_hpa_bits(), false, 5059 max_huge_page_level); 5060 5061 if (!shadow_me_mask) 5062 return; 5063 5064 for (i = context->root_role.level; --i >= 0;) { 5065 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 5066 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 5067 } 5068 } 5069 5070 /* 5071 * as the comments in reset_shadow_zero_bits_mask() except it 5072 * is the shadow page table for intel nested guest. 5073 */ 5074 static void 5075 reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly) 5076 { 5077 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check, 5078 reserved_hpa_bits(), execonly, 5079 max_huge_page_level); 5080 } 5081 5082 #define BYTE_MASK(access) \ 5083 ((1 & (access) ? 2 : 0) | \ 5084 (2 & (access) ? 4 : 0) | \ 5085 (3 & (access) ? 8 : 0) | \ 5086 (4 & (access) ? 16 : 0) | \ 5087 (5 & (access) ? 32 : 0) | \ 5088 (6 & (access) ? 64 : 0) | \ 5089 (7 & (access) ? 128 : 0)) 5090 5091 5092 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept) 5093 { 5094 unsigned byte; 5095 5096 const u8 x = BYTE_MASK(ACC_EXEC_MASK); 5097 const u8 w = BYTE_MASK(ACC_WRITE_MASK); 5098 const u8 u = BYTE_MASK(ACC_USER_MASK); 5099 5100 bool cr4_smep = is_cr4_smep(mmu); 5101 bool cr4_smap = is_cr4_smap(mmu); 5102 bool cr0_wp = is_cr0_wp(mmu); 5103 bool efer_nx = is_efer_nx(mmu); 5104 5105 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { 5106 unsigned pfec = byte << 1; 5107 5108 /* 5109 * Each "*f" variable has a 1 bit for each UWX value 5110 * that causes a fault with the given PFEC. 5111 */ 5112 5113 /* Faults from writes to non-writable pages */ 5114 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0; 5115 /* Faults from user mode accesses to supervisor pages */ 5116 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0; 5117 /* Faults from fetches of non-executable pages*/ 5118 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0; 5119 /* Faults from kernel mode fetches of user pages */ 5120 u8 smepf = 0; 5121 /* Faults from kernel mode accesses of user pages */ 5122 u8 smapf = 0; 5123 5124 if (!ept) { 5125 /* Faults from kernel mode accesses to user pages */ 5126 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u; 5127 5128 /* Not really needed: !nx will cause pte.nx to fault */ 5129 if (!efer_nx) 5130 ff = 0; 5131 5132 /* Allow supervisor writes if !cr0.wp */ 5133 if (!cr0_wp) 5134 wf = (pfec & PFERR_USER_MASK) ? wf : 0; 5135 5136 /* Disallow supervisor fetches of user code if cr4.smep */ 5137 if (cr4_smep) 5138 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0; 5139 5140 /* 5141 * SMAP:kernel-mode data accesses from user-mode 5142 * mappings should fault. A fault is considered 5143 * as a SMAP violation if all of the following 5144 * conditions are true: 5145 * - X86_CR4_SMAP is set in CR4 5146 * - A user page is accessed 5147 * - The access is not a fetch 5148 * - The access is supervisor mode 5149 * - If implicit supervisor access or X86_EFLAGS_AC is clear 5150 * 5151 * Here, we cover the first four conditions. 5152 * The fifth is computed dynamically in permission_fault(); 5153 * PFERR_RSVD_MASK bit will be set in PFEC if the access is 5154 * *not* subject to SMAP restrictions. 5155 */ 5156 if (cr4_smap) 5157 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf; 5158 } 5159 5160 mmu->permissions[byte] = ff | uf | wf | smepf | smapf; 5161 } 5162 } 5163 5164 /* 5165 * PKU is an additional mechanism by which the paging controls access to 5166 * user-mode addresses based on the value in the PKRU register. Protection 5167 * key violations are reported through a bit in the page fault error code. 5168 * Unlike other bits of the error code, the PK bit is not known at the 5169 * call site of e.g. gva_to_gpa; it must be computed directly in 5170 * permission_fault based on two bits of PKRU, on some machine state (CR4, 5171 * CR0, EFER, CPL), and on other bits of the error code and the page tables. 5172 * 5173 * In particular the following conditions come from the error code, the 5174 * page tables and the machine state: 5175 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1 5176 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch) 5177 * - PK is always zero if U=0 in the page tables 5178 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access. 5179 * 5180 * The PKRU bitmask caches the result of these four conditions. The error 5181 * code (minus the P bit) and the page table's U bit form an index into the 5182 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed 5183 * with the two bits of the PKRU register corresponding to the protection key. 5184 * For the first three conditions above the bits will be 00, thus masking 5185 * away both AD and WD. For all reads or if the last condition holds, WD 5186 * only will be masked away. 5187 */ 5188 static void update_pkru_bitmask(struct kvm_mmu *mmu) 5189 { 5190 unsigned bit; 5191 bool wp; 5192 5193 mmu->pkru_mask = 0; 5194 5195 if (!is_cr4_pke(mmu)) 5196 return; 5197 5198 wp = is_cr0_wp(mmu); 5199 5200 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) { 5201 unsigned pfec, pkey_bits; 5202 bool check_pkey, check_write, ff, uf, wf, pte_user; 5203 5204 pfec = bit << 1; 5205 ff = pfec & PFERR_FETCH_MASK; 5206 uf = pfec & PFERR_USER_MASK; 5207 wf = pfec & PFERR_WRITE_MASK; 5208 5209 /* PFEC.RSVD is replaced by ACC_USER_MASK. */ 5210 pte_user = pfec & PFERR_RSVD_MASK; 5211 5212 /* 5213 * Only need to check the access which is not an 5214 * instruction fetch and is to a user page. 5215 */ 5216 check_pkey = (!ff && pte_user); 5217 /* 5218 * write access is controlled by PKRU if it is a 5219 * user access or CR0.WP = 1. 5220 */ 5221 check_write = check_pkey && wf && (uf || wp); 5222 5223 /* PKRU.AD stops both read and write access. */ 5224 pkey_bits = !!check_pkey; 5225 /* PKRU.WD stops write access. */ 5226 pkey_bits |= (!!check_write) << 1; 5227 5228 mmu->pkru_mask |= (pkey_bits & 3) << pfec; 5229 } 5230 } 5231 5232 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu, 5233 struct kvm_mmu *mmu) 5234 { 5235 if (!is_cr0_pg(mmu)) 5236 return; 5237 5238 reset_guest_rsvds_bits_mask(vcpu, mmu); 5239 update_permission_bitmask(mmu, false); 5240 update_pkru_bitmask(mmu); 5241 } 5242 5243 static void paging64_init_context(struct kvm_mmu *context) 5244 { 5245 context->page_fault = paging64_page_fault; 5246 context->gva_to_gpa = paging64_gva_to_gpa; 5247 context->sync_spte = paging64_sync_spte; 5248 } 5249 5250 static void paging32_init_context(struct kvm_mmu *context) 5251 { 5252 context->page_fault = paging32_page_fault; 5253 context->gva_to_gpa = paging32_gva_to_gpa; 5254 context->sync_spte = paging32_sync_spte; 5255 } 5256 5257 static union kvm_cpu_role kvm_calc_cpu_role(struct kvm_vcpu *vcpu, 5258 const struct kvm_mmu_role_regs *regs) 5259 { 5260 union kvm_cpu_role role = {0}; 5261 5262 role.base.access = ACC_ALL; 5263 role.base.smm = is_smm(vcpu); 5264 role.base.guest_mode = is_guest_mode(vcpu); 5265 role.ext.valid = 1; 5266 5267 if (!____is_cr0_pg(regs)) { 5268 role.base.direct = 1; 5269 return role; 5270 } 5271 5272 role.base.efer_nx = ____is_efer_nx(regs); 5273 role.base.cr0_wp = ____is_cr0_wp(regs); 5274 role.base.smep_andnot_wp = ____is_cr4_smep(regs) && !____is_cr0_wp(regs); 5275 role.base.smap_andnot_wp = ____is_cr4_smap(regs) && !____is_cr0_wp(regs); 5276 role.base.has_4_byte_gpte = !____is_cr4_pae(regs); 5277 5278 if (____is_efer_lma(regs)) 5279 role.base.level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL 5280 : PT64_ROOT_4LEVEL; 5281 else if (____is_cr4_pae(regs)) 5282 role.base.level = PT32E_ROOT_LEVEL; 5283 else 5284 role.base.level = PT32_ROOT_LEVEL; 5285 5286 role.ext.cr4_smep = ____is_cr4_smep(regs); 5287 role.ext.cr4_smap = ____is_cr4_smap(regs); 5288 role.ext.cr4_pse = ____is_cr4_pse(regs); 5289 5290 /* PKEY and LA57 are active iff long mode is active. */ 5291 role.ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs); 5292 role.ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs); 5293 role.ext.efer_lma = ____is_efer_lma(regs); 5294 return role; 5295 } 5296 5297 void __kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu, 5298 struct kvm_mmu *mmu) 5299 { 5300 const bool cr0_wp = kvm_is_cr0_bit_set(vcpu, X86_CR0_WP); 5301 5302 BUILD_BUG_ON((KVM_MMU_CR0_ROLE_BITS & KVM_POSSIBLE_CR0_GUEST_BITS) != X86_CR0_WP); 5303 BUILD_BUG_ON((KVM_MMU_CR4_ROLE_BITS & KVM_POSSIBLE_CR4_GUEST_BITS)); 5304 5305 if (is_cr0_wp(mmu) == cr0_wp) 5306 return; 5307 5308 mmu->cpu_role.base.cr0_wp = cr0_wp; 5309 reset_guest_paging_metadata(vcpu, mmu); 5310 } 5311 5312 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu) 5313 { 5314 /* tdp_root_level is architecture forced level, use it if nonzero */ 5315 if (tdp_root_level) 5316 return tdp_root_level; 5317 5318 /* Use 5-level TDP if and only if it's useful/necessary. */ 5319 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48) 5320 return 4; 5321 5322 return max_tdp_level; 5323 } 5324 5325 static union kvm_mmu_page_role 5326 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, 5327 union kvm_cpu_role cpu_role) 5328 { 5329 union kvm_mmu_page_role role = {0}; 5330 5331 role.access = ACC_ALL; 5332 role.cr0_wp = true; 5333 role.efer_nx = true; 5334 role.smm = cpu_role.base.smm; 5335 role.guest_mode = cpu_role.base.guest_mode; 5336 role.ad_disabled = !kvm_ad_enabled(); 5337 role.level = kvm_mmu_get_tdp_level(vcpu); 5338 role.direct = true; 5339 role.has_4_byte_gpte = false; 5340 5341 return role; 5342 } 5343 5344 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu, 5345 union kvm_cpu_role cpu_role) 5346 { 5347 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5348 union kvm_mmu_page_role root_role = kvm_calc_tdp_mmu_root_page_role(vcpu, cpu_role); 5349 5350 if (cpu_role.as_u64 == context->cpu_role.as_u64 && 5351 root_role.word == context->root_role.word) 5352 return; 5353 5354 context->cpu_role.as_u64 = cpu_role.as_u64; 5355 context->root_role.word = root_role.word; 5356 context->page_fault = kvm_tdp_page_fault; 5357 context->sync_spte = NULL; 5358 context->get_guest_pgd = get_guest_cr3; 5359 context->get_pdptr = kvm_pdptr_read; 5360 context->inject_page_fault = kvm_inject_page_fault; 5361 5362 if (!is_cr0_pg(context)) 5363 context->gva_to_gpa = nonpaging_gva_to_gpa; 5364 else if (is_cr4_pae(context)) 5365 context->gva_to_gpa = paging64_gva_to_gpa; 5366 else 5367 context->gva_to_gpa = paging32_gva_to_gpa; 5368 5369 reset_guest_paging_metadata(vcpu, context); 5370 reset_tdp_shadow_zero_bits_mask(context); 5371 } 5372 5373 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context, 5374 union kvm_cpu_role cpu_role, 5375 union kvm_mmu_page_role root_role) 5376 { 5377 if (cpu_role.as_u64 == context->cpu_role.as_u64 && 5378 root_role.word == context->root_role.word) 5379 return; 5380 5381 context->cpu_role.as_u64 = cpu_role.as_u64; 5382 context->root_role.word = root_role.word; 5383 5384 if (!is_cr0_pg(context)) 5385 nonpaging_init_context(context); 5386 else if (is_cr4_pae(context)) 5387 paging64_init_context(context); 5388 else 5389 paging32_init_context(context); 5390 5391 reset_guest_paging_metadata(vcpu, context); 5392 reset_shadow_zero_bits_mask(vcpu, context); 5393 } 5394 5395 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, 5396 union kvm_cpu_role cpu_role) 5397 { 5398 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5399 union kvm_mmu_page_role root_role; 5400 5401 root_role = cpu_role.base; 5402 5403 /* KVM uses PAE paging whenever the guest isn't using 64-bit paging. */ 5404 root_role.level = max_t(u32, root_role.level, PT32E_ROOT_LEVEL); 5405 5406 /* 5407 * KVM forces EFER.NX=1 when TDP is disabled, reflect it in the MMU role. 5408 * KVM uses NX when TDP is disabled to handle a variety of scenarios, 5409 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and 5410 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0. 5411 * The iTLB multi-hit workaround can be toggled at any time, so assume 5412 * NX can be used by any non-nested shadow MMU to avoid having to reset 5413 * MMU contexts. 5414 */ 5415 root_role.efer_nx = true; 5416 5417 shadow_mmu_init_context(vcpu, context, cpu_role, root_role); 5418 } 5419 5420 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0, 5421 unsigned long cr4, u64 efer, gpa_t nested_cr3) 5422 { 5423 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 5424 struct kvm_mmu_role_regs regs = { 5425 .cr0 = cr0, 5426 .cr4 = cr4 & ~X86_CR4_PKE, 5427 .efer = efer, 5428 }; 5429 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); 5430 union kvm_mmu_page_role root_role; 5431 5432 /* NPT requires CR0.PG=1. */ 5433 WARN_ON_ONCE(cpu_role.base.direct); 5434 5435 root_role = cpu_role.base; 5436 root_role.level = kvm_mmu_get_tdp_level(vcpu); 5437 if (root_role.level == PT64_ROOT_5LEVEL && 5438 cpu_role.base.level == PT64_ROOT_4LEVEL) 5439 root_role.passthrough = 1; 5440 5441 shadow_mmu_init_context(vcpu, context, cpu_role, root_role); 5442 kvm_mmu_new_pgd(vcpu, nested_cr3); 5443 } 5444 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu); 5445 5446 static union kvm_cpu_role 5447 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty, 5448 bool execonly, u8 level) 5449 { 5450 union kvm_cpu_role role = {0}; 5451 5452 /* 5453 * KVM does not support SMM transfer monitors, and consequently does not 5454 * support the "entry to SMM" control either. role.base.smm is always 0. 5455 */ 5456 WARN_ON_ONCE(is_smm(vcpu)); 5457 role.base.level = level; 5458 role.base.has_4_byte_gpte = false; 5459 role.base.direct = false; 5460 role.base.ad_disabled = !accessed_dirty; 5461 role.base.guest_mode = true; 5462 role.base.access = ACC_ALL; 5463 5464 role.ext.word = 0; 5465 role.ext.execonly = execonly; 5466 role.ext.valid = 1; 5467 5468 return role; 5469 } 5470 5471 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, 5472 int huge_page_level, bool accessed_dirty, 5473 gpa_t new_eptp) 5474 { 5475 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 5476 u8 level = vmx_eptp_page_walk_level(new_eptp); 5477 union kvm_cpu_role new_mode = 5478 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty, 5479 execonly, level); 5480 5481 if (new_mode.as_u64 != context->cpu_role.as_u64) { 5482 /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */ 5483 context->cpu_role.as_u64 = new_mode.as_u64; 5484 context->root_role.word = new_mode.base.word; 5485 5486 context->page_fault = ept_page_fault; 5487 context->gva_to_gpa = ept_gva_to_gpa; 5488 context->sync_spte = ept_sync_spte; 5489 5490 update_permission_bitmask(context, true); 5491 context->pkru_mask = 0; 5492 reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level); 5493 reset_ept_shadow_zero_bits_mask(context, execonly); 5494 } 5495 5496 kvm_mmu_new_pgd(vcpu, new_eptp); 5497 } 5498 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); 5499 5500 static void init_kvm_softmmu(struct kvm_vcpu *vcpu, 5501 union kvm_cpu_role cpu_role) 5502 { 5503 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5504 5505 kvm_init_shadow_mmu(vcpu, cpu_role); 5506 5507 context->get_guest_pgd = get_guest_cr3; 5508 context->get_pdptr = kvm_pdptr_read; 5509 context->inject_page_fault = kvm_inject_page_fault; 5510 } 5511 5512 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu, 5513 union kvm_cpu_role new_mode) 5514 { 5515 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; 5516 5517 if (new_mode.as_u64 == g_context->cpu_role.as_u64) 5518 return; 5519 5520 g_context->cpu_role.as_u64 = new_mode.as_u64; 5521 g_context->get_guest_pgd = get_guest_cr3; 5522 g_context->get_pdptr = kvm_pdptr_read; 5523 g_context->inject_page_fault = kvm_inject_page_fault; 5524 5525 /* 5526 * L2 page tables are never shadowed, so there is no need to sync 5527 * SPTEs. 5528 */ 5529 g_context->sync_spte = NULL; 5530 5531 /* 5532 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using 5533 * L1's nested page tables (e.g. EPT12). The nested translation 5534 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using 5535 * L2's page tables as the first level of translation and L1's 5536 * nested page tables as the second level of translation. Basically 5537 * the gva_to_gpa functions between mmu and nested_mmu are swapped. 5538 */ 5539 if (!is_paging(vcpu)) 5540 g_context->gva_to_gpa = nonpaging_gva_to_gpa; 5541 else if (is_long_mode(vcpu)) 5542 g_context->gva_to_gpa = paging64_gva_to_gpa; 5543 else if (is_pae(vcpu)) 5544 g_context->gva_to_gpa = paging64_gva_to_gpa; 5545 else 5546 g_context->gva_to_gpa = paging32_gva_to_gpa; 5547 5548 reset_guest_paging_metadata(vcpu, g_context); 5549 } 5550 5551 void kvm_init_mmu(struct kvm_vcpu *vcpu) 5552 { 5553 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 5554 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); 5555 5556 if (mmu_is_nested(vcpu)) 5557 init_kvm_nested_mmu(vcpu, cpu_role); 5558 else if (tdp_enabled) 5559 init_kvm_tdp_mmu(vcpu, cpu_role); 5560 else 5561 init_kvm_softmmu(vcpu, cpu_role); 5562 } 5563 EXPORT_SYMBOL_GPL(kvm_init_mmu); 5564 5565 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu) 5566 { 5567 /* 5568 * Invalidate all MMU roles to force them to reinitialize as CPUID 5569 * information is factored into reserved bit calculations. 5570 * 5571 * Correctly handling multiple vCPU models with respect to paging and 5572 * physical address properties) in a single VM would require tracking 5573 * all relevant CPUID information in kvm_mmu_page_role. That is very 5574 * undesirable as it would increase the memory requirements for 5575 * gfn_write_track (see struct kvm_mmu_page_role comments). For now 5576 * that problem is swept under the rug; KVM's CPUID API is horrific and 5577 * it's all but impossible to solve it without introducing a new API. 5578 */ 5579 vcpu->arch.root_mmu.root_role.invalid = 1; 5580 vcpu->arch.guest_mmu.root_role.invalid = 1; 5581 vcpu->arch.nested_mmu.root_role.invalid = 1; 5582 vcpu->arch.root_mmu.cpu_role.ext.valid = 0; 5583 vcpu->arch.guest_mmu.cpu_role.ext.valid = 0; 5584 vcpu->arch.nested_mmu.cpu_role.ext.valid = 0; 5585 kvm_mmu_reset_context(vcpu); 5586 5587 /* 5588 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in 5589 * kvm_arch_vcpu_ioctl(). 5590 */ 5591 KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm); 5592 } 5593 5594 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu) 5595 { 5596 kvm_mmu_unload(vcpu); 5597 kvm_init_mmu(vcpu); 5598 } 5599 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); 5600 5601 int kvm_mmu_load(struct kvm_vcpu *vcpu) 5602 { 5603 int r; 5604 5605 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->root_role.direct); 5606 if (r) 5607 goto out; 5608 r = mmu_alloc_special_roots(vcpu); 5609 if (r) 5610 goto out; 5611 if (vcpu->arch.mmu->root_role.direct) 5612 r = mmu_alloc_direct_roots(vcpu); 5613 else 5614 r = mmu_alloc_shadow_roots(vcpu); 5615 if (r) 5616 goto out; 5617 5618 kvm_mmu_sync_roots(vcpu); 5619 5620 kvm_mmu_load_pgd(vcpu); 5621 5622 /* 5623 * Flush any TLB entries for the new root, the provenance of the root 5624 * is unknown. Even if KVM ensures there are no stale TLB entries 5625 * for a freed root, in theory another hypervisor could have left 5626 * stale entries. Flushing on alloc also allows KVM to skip the TLB 5627 * flush when freeing a root (see kvm_tdp_mmu_put_root()). 5628 */ 5629 static_call(kvm_x86_flush_tlb_current)(vcpu); 5630 out: 5631 return r; 5632 } 5633 5634 void kvm_mmu_unload(struct kvm_vcpu *vcpu) 5635 { 5636 struct kvm *kvm = vcpu->kvm; 5637 5638 kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL); 5639 WARN_ON_ONCE(VALID_PAGE(vcpu->arch.root_mmu.root.hpa)); 5640 kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); 5641 WARN_ON_ONCE(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa)); 5642 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 5643 } 5644 5645 static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa) 5646 { 5647 struct kvm_mmu_page *sp; 5648 5649 if (!VALID_PAGE(root_hpa)) 5650 return false; 5651 5652 /* 5653 * When freeing obsolete roots, treat roots as obsolete if they don't 5654 * have an associated shadow page, as it's impossible to determine if 5655 * such roots are fresh or stale. This does mean KVM will get false 5656 * positives and free roots that don't strictly need to be freed, but 5657 * such false positives are relatively rare: 5658 * 5659 * (a) only PAE paging and nested NPT have roots without shadow pages 5660 * (or any shadow paging flavor with a dummy root, see note below) 5661 * (b) remote reloads due to a memslot update obsoletes _all_ roots 5662 * (c) KVM doesn't track previous roots for PAE paging, and the guest 5663 * is unlikely to zap an in-use PGD. 5664 * 5665 * Note! Dummy roots are unique in that they are obsoleted by memslot 5666 * _creation_! See also FNAME(fetch). 5667 */ 5668 sp = root_to_sp(root_hpa); 5669 return !sp || is_obsolete_sp(kvm, sp); 5670 } 5671 5672 static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu) 5673 { 5674 unsigned long roots_to_free = 0; 5675 int i; 5676 5677 if (is_obsolete_root(kvm, mmu->root.hpa)) 5678 roots_to_free |= KVM_MMU_ROOT_CURRENT; 5679 5680 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5681 if (is_obsolete_root(kvm, mmu->prev_roots[i].hpa)) 5682 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 5683 } 5684 5685 if (roots_to_free) 5686 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 5687 } 5688 5689 void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu) 5690 { 5691 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu); 5692 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu); 5693 } 5694 5695 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, 5696 int *bytes) 5697 { 5698 u64 gentry = 0; 5699 int r; 5700 5701 /* 5702 * Assume that the pte write on a page table of the same type 5703 * as the current vcpu paging mode since we update the sptes only 5704 * when they have the same mode. 5705 */ 5706 if (is_pae(vcpu) && *bytes == 4) { 5707 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ 5708 *gpa &= ~(gpa_t)7; 5709 *bytes = 8; 5710 } 5711 5712 if (*bytes == 4 || *bytes == 8) { 5713 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes); 5714 if (r) 5715 gentry = 0; 5716 } 5717 5718 return gentry; 5719 } 5720 5721 /* 5722 * If we're seeing too many writes to a page, it may no longer be a page table, 5723 * or we may be forking, in which case it is better to unmap the page. 5724 */ 5725 static bool detect_write_flooding(struct kvm_mmu_page *sp) 5726 { 5727 /* 5728 * Skip write-flooding detected for the sp whose level is 1, because 5729 * it can become unsync, then the guest page is not write-protected. 5730 */ 5731 if (sp->role.level == PG_LEVEL_4K) 5732 return false; 5733 5734 atomic_inc(&sp->write_flooding_count); 5735 return atomic_read(&sp->write_flooding_count) >= 3; 5736 } 5737 5738 /* 5739 * Misaligned accesses are too much trouble to fix up; also, they usually 5740 * indicate a page is not used as a page table. 5741 */ 5742 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, 5743 int bytes) 5744 { 5745 unsigned offset, pte_size, misaligned; 5746 5747 offset = offset_in_page(gpa); 5748 pte_size = sp->role.has_4_byte_gpte ? 4 : 8; 5749 5750 /* 5751 * Sometimes, the OS only writes the last one bytes to update status 5752 * bits, for example, in linux, andb instruction is used in clear_bit(). 5753 */ 5754 if (!(offset & (pte_size - 1)) && bytes == 1) 5755 return false; 5756 5757 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); 5758 misaligned |= bytes < 4; 5759 5760 return misaligned; 5761 } 5762 5763 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) 5764 { 5765 unsigned page_offset, quadrant; 5766 u64 *spte; 5767 int level; 5768 5769 page_offset = offset_in_page(gpa); 5770 level = sp->role.level; 5771 *nspte = 1; 5772 if (sp->role.has_4_byte_gpte) { 5773 page_offset <<= 1; /* 32->64 */ 5774 /* 5775 * A 32-bit pde maps 4MB while the shadow pdes map 5776 * only 2MB. So we need to double the offset again 5777 * and zap two pdes instead of one. 5778 */ 5779 if (level == PT32_ROOT_LEVEL) { 5780 page_offset &= ~7; /* kill rounding error */ 5781 page_offset <<= 1; 5782 *nspte = 2; 5783 } 5784 quadrant = page_offset >> PAGE_SHIFT; 5785 page_offset &= ~PAGE_MASK; 5786 if (quadrant != sp->role.quadrant) 5787 return NULL; 5788 } 5789 5790 spte = &sp->spt[page_offset / sizeof(*spte)]; 5791 return spte; 5792 } 5793 5794 void kvm_mmu_track_write(struct kvm_vcpu *vcpu, gpa_t gpa, const u8 *new, 5795 int bytes) 5796 { 5797 gfn_t gfn = gpa >> PAGE_SHIFT; 5798 struct kvm_mmu_page *sp; 5799 LIST_HEAD(invalid_list); 5800 u64 entry, gentry, *spte; 5801 int npte; 5802 bool flush = false; 5803 5804 /* 5805 * If we don't have indirect shadow pages, it means no page is 5806 * write-protected, so we can exit simply. 5807 */ 5808 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages)) 5809 return; 5810 5811 write_lock(&vcpu->kvm->mmu_lock); 5812 5813 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes); 5814 5815 ++vcpu->kvm->stat.mmu_pte_write; 5816 5817 for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) { 5818 if (detect_write_misaligned(sp, gpa, bytes) || 5819 detect_write_flooding(sp)) { 5820 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); 5821 ++vcpu->kvm->stat.mmu_flooded; 5822 continue; 5823 } 5824 5825 spte = get_written_sptes(sp, gpa, &npte); 5826 if (!spte) 5827 continue; 5828 5829 while (npte--) { 5830 entry = *spte; 5831 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL); 5832 if (gentry && sp->role.level != PG_LEVEL_4K) 5833 ++vcpu->kvm->stat.mmu_pde_zapped; 5834 if (is_shadow_present_pte(entry)) 5835 flush = true; 5836 ++spte; 5837 } 5838 } 5839 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 5840 write_unlock(&vcpu->kvm->mmu_lock); 5841 } 5842 5843 int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 5844 void *insn, int insn_len) 5845 { 5846 int r, emulation_type = EMULTYPE_PF; 5847 bool direct = vcpu->arch.mmu->root_role.direct; 5848 5849 /* 5850 * IMPLICIT_ACCESS is a KVM-defined flag used to correctly perform SMAP 5851 * checks when emulating instructions that triggers implicit access. 5852 * WARN if hardware generates a fault with an error code that collides 5853 * with the KVM-defined value. Clear the flag and continue on, i.e. 5854 * don't terminate the VM, as KVM can't possibly be relying on a flag 5855 * that KVM doesn't know about. 5856 */ 5857 if (WARN_ON_ONCE(error_code & PFERR_IMPLICIT_ACCESS)) 5858 error_code &= ~PFERR_IMPLICIT_ACCESS; 5859 5860 if (WARN_ON_ONCE(!VALID_PAGE(vcpu->arch.mmu->root.hpa))) 5861 return RET_PF_RETRY; 5862 5863 r = RET_PF_INVALID; 5864 if (unlikely(error_code & PFERR_RSVD_MASK)) { 5865 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct); 5866 if (r == RET_PF_EMULATE) 5867 goto emulate; 5868 } 5869 5870 if (r == RET_PF_INVALID) { 5871 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, 5872 lower_32_bits(error_code), false, 5873 &emulation_type); 5874 if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm)) 5875 return -EIO; 5876 } 5877 5878 if (r < 0) 5879 return r; 5880 if (r != RET_PF_EMULATE) 5881 return 1; 5882 5883 /* 5884 * Before emulating the instruction, check if the error code 5885 * was due to a RO violation while translating the guest page. 5886 * This can occur when using nested virtualization with nested 5887 * paging in both guests. If true, we simply unprotect the page 5888 * and resume the guest. 5889 */ 5890 if (vcpu->arch.mmu->root_role.direct && 5891 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) { 5892 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa)); 5893 return 1; 5894 } 5895 5896 /* 5897 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still 5898 * optimistically try to just unprotect the page and let the processor 5899 * re-execute the instruction that caused the page fault. Do not allow 5900 * retrying MMIO emulation, as it's not only pointless but could also 5901 * cause us to enter an infinite loop because the processor will keep 5902 * faulting on the non-existent MMIO address. Retrying an instruction 5903 * from a nested guest is also pointless and dangerous as we are only 5904 * explicitly shadowing L1's page tables, i.e. unprotecting something 5905 * for L1 isn't going to magically fix whatever issue cause L2 to fail. 5906 */ 5907 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu)) 5908 emulation_type |= EMULTYPE_ALLOW_RETRY_PF; 5909 emulate: 5910 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn, 5911 insn_len); 5912 } 5913 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); 5914 5915 static void __kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 5916 u64 addr, hpa_t root_hpa) 5917 { 5918 struct kvm_shadow_walk_iterator iterator; 5919 5920 vcpu_clear_mmio_info(vcpu, addr); 5921 5922 /* 5923 * Walking and synchronizing SPTEs both assume they are operating in 5924 * the context of the current MMU, and would need to be reworked if 5925 * this is ever used to sync the guest_mmu, e.g. to emulate INVEPT. 5926 */ 5927 if (WARN_ON_ONCE(mmu != vcpu->arch.mmu)) 5928 return; 5929 5930 if (!VALID_PAGE(root_hpa)) 5931 return; 5932 5933 write_lock(&vcpu->kvm->mmu_lock); 5934 for_each_shadow_entry_using_root(vcpu, root_hpa, addr, iterator) { 5935 struct kvm_mmu_page *sp = sptep_to_sp(iterator.sptep); 5936 5937 if (sp->unsync) { 5938 int ret = kvm_sync_spte(vcpu, sp, iterator.index); 5939 5940 if (ret < 0) 5941 mmu_page_zap_pte(vcpu->kvm, sp, iterator.sptep, NULL); 5942 if (ret) 5943 kvm_flush_remote_tlbs_sptep(vcpu->kvm, iterator.sptep); 5944 } 5945 5946 if (!sp->unsync_children) 5947 break; 5948 } 5949 write_unlock(&vcpu->kvm->mmu_lock); 5950 } 5951 5952 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 5953 u64 addr, unsigned long roots) 5954 { 5955 int i; 5956 5957 WARN_ON_ONCE(roots & ~KVM_MMU_ROOTS_ALL); 5958 5959 /* It's actually a GPA for vcpu->arch.guest_mmu. */ 5960 if (mmu != &vcpu->arch.guest_mmu) { 5961 /* INVLPG on a non-canonical address is a NOP according to the SDM. */ 5962 if (is_noncanonical_address(addr, vcpu)) 5963 return; 5964 5965 static_call(kvm_x86_flush_tlb_gva)(vcpu, addr); 5966 } 5967 5968 if (!mmu->sync_spte) 5969 return; 5970 5971 if (roots & KVM_MMU_ROOT_CURRENT) 5972 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->root.hpa); 5973 5974 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5975 if (roots & KVM_MMU_ROOT_PREVIOUS(i)) 5976 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->prev_roots[i].hpa); 5977 } 5978 } 5979 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_addr); 5980 5981 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) 5982 { 5983 /* 5984 * INVLPG is required to invalidate any global mappings for the VA, 5985 * irrespective of PCID. Blindly sync all roots as it would take 5986 * roughly the same amount of work/time to determine whether any of the 5987 * previous roots have a global mapping. 5988 * 5989 * Mappings not reachable via the current or previous cached roots will 5990 * be synced when switching to that new cr3, so nothing needs to be 5991 * done here for them. 5992 */ 5993 kvm_mmu_invalidate_addr(vcpu, vcpu->arch.walk_mmu, gva, KVM_MMU_ROOTS_ALL); 5994 ++vcpu->stat.invlpg; 5995 } 5996 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); 5997 5998 5999 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid) 6000 { 6001 struct kvm_mmu *mmu = vcpu->arch.mmu; 6002 unsigned long roots = 0; 6003 uint i; 6004 6005 if (pcid == kvm_get_active_pcid(vcpu)) 6006 roots |= KVM_MMU_ROOT_CURRENT; 6007 6008 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 6009 if (VALID_PAGE(mmu->prev_roots[i].hpa) && 6010 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) 6011 roots |= KVM_MMU_ROOT_PREVIOUS(i); 6012 } 6013 6014 if (roots) 6015 kvm_mmu_invalidate_addr(vcpu, mmu, gva, roots); 6016 ++vcpu->stat.invlpg; 6017 6018 /* 6019 * Mappings not reachable via the current cr3 or the prev_roots will be 6020 * synced when switching to that cr3, so nothing needs to be done here 6021 * for them. 6022 */ 6023 } 6024 6025 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 6026 int tdp_max_root_level, int tdp_huge_page_level) 6027 { 6028 tdp_enabled = enable_tdp; 6029 tdp_root_level = tdp_forced_root_level; 6030 max_tdp_level = tdp_max_root_level; 6031 6032 #ifdef CONFIG_X86_64 6033 tdp_mmu_enabled = tdp_mmu_allowed && tdp_enabled; 6034 #endif 6035 /* 6036 * max_huge_page_level reflects KVM's MMU capabilities irrespective 6037 * of kernel support, e.g. KVM may be capable of using 1GB pages when 6038 * the kernel is not. But, KVM never creates a page size greater than 6039 * what is used by the kernel for any given HVA, i.e. the kernel's 6040 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust(). 6041 */ 6042 if (tdp_enabled) 6043 max_huge_page_level = tdp_huge_page_level; 6044 else if (boot_cpu_has(X86_FEATURE_GBPAGES)) 6045 max_huge_page_level = PG_LEVEL_1G; 6046 else 6047 max_huge_page_level = PG_LEVEL_2M; 6048 } 6049 EXPORT_SYMBOL_GPL(kvm_configure_mmu); 6050 6051 /* The return value indicates if tlb flush on all vcpus is needed. */ 6052 typedef bool (*slot_rmaps_handler) (struct kvm *kvm, 6053 struct kvm_rmap_head *rmap_head, 6054 const struct kvm_memory_slot *slot); 6055 6056 static __always_inline bool __walk_slot_rmaps(struct kvm *kvm, 6057 const struct kvm_memory_slot *slot, 6058 slot_rmaps_handler fn, 6059 int start_level, int end_level, 6060 gfn_t start_gfn, gfn_t end_gfn, 6061 bool flush_on_yield, bool flush) 6062 { 6063 struct slot_rmap_walk_iterator iterator; 6064 6065 lockdep_assert_held_write(&kvm->mmu_lock); 6066 6067 for_each_slot_rmap_range(slot, start_level, end_level, start_gfn, 6068 end_gfn, &iterator) { 6069 if (iterator.rmap) 6070 flush |= fn(kvm, iterator.rmap, slot); 6071 6072 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 6073 if (flush && flush_on_yield) { 6074 kvm_flush_remote_tlbs_range(kvm, start_gfn, 6075 iterator.gfn - start_gfn + 1); 6076 flush = false; 6077 } 6078 cond_resched_rwlock_write(&kvm->mmu_lock); 6079 } 6080 } 6081 6082 return flush; 6083 } 6084 6085 static __always_inline bool walk_slot_rmaps(struct kvm *kvm, 6086 const struct kvm_memory_slot *slot, 6087 slot_rmaps_handler fn, 6088 int start_level, int end_level, 6089 bool flush_on_yield) 6090 { 6091 return __walk_slot_rmaps(kvm, slot, fn, start_level, end_level, 6092 slot->base_gfn, slot->base_gfn + slot->npages - 1, 6093 flush_on_yield, false); 6094 } 6095 6096 static __always_inline bool walk_slot_rmaps_4k(struct kvm *kvm, 6097 const struct kvm_memory_slot *slot, 6098 slot_rmaps_handler fn, 6099 bool flush_on_yield) 6100 { 6101 return walk_slot_rmaps(kvm, slot, fn, PG_LEVEL_4K, PG_LEVEL_4K, flush_on_yield); 6102 } 6103 6104 static void free_mmu_pages(struct kvm_mmu *mmu) 6105 { 6106 if (!tdp_enabled && mmu->pae_root) 6107 set_memory_encrypted((unsigned long)mmu->pae_root, 1); 6108 free_page((unsigned long)mmu->pae_root); 6109 free_page((unsigned long)mmu->pml4_root); 6110 free_page((unsigned long)mmu->pml5_root); 6111 } 6112 6113 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 6114 { 6115 struct page *page; 6116 int i; 6117 6118 mmu->root.hpa = INVALID_PAGE; 6119 mmu->root.pgd = 0; 6120 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 6121 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 6122 6123 /* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */ 6124 if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu) 6125 return 0; 6126 6127 /* 6128 * When using PAE paging, the four PDPTEs are treated as 'root' pages, 6129 * while the PDP table is a per-vCPU construct that's allocated at MMU 6130 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on 6131 * x86_64. Therefore we need to allocate the PDP table in the first 6132 * 4GB of memory, which happens to fit the DMA32 zone. TDP paging 6133 * generally doesn't use PAE paging and can skip allocating the PDP 6134 * table. The main exception, handled here, is SVM's 32-bit NPT. The 6135 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit 6136 * KVM; that horror is handled on-demand by mmu_alloc_special_roots(). 6137 */ 6138 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL) 6139 return 0; 6140 6141 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32); 6142 if (!page) 6143 return -ENOMEM; 6144 6145 mmu->pae_root = page_address(page); 6146 6147 /* 6148 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to 6149 * get the CPU to treat the PDPTEs as encrypted. Decrypt the page so 6150 * that KVM's writes and the CPU's reads get along. Note, this is 6151 * only necessary when using shadow paging, as 64-bit NPT can get at 6152 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported 6153 * by 32-bit kernels (when KVM itself uses 32-bit NPT). 6154 */ 6155 if (!tdp_enabled) 6156 set_memory_decrypted((unsigned long)mmu->pae_root, 1); 6157 else 6158 WARN_ON_ONCE(shadow_me_value); 6159 6160 for (i = 0; i < 4; ++i) 6161 mmu->pae_root[i] = INVALID_PAE_ROOT; 6162 6163 return 0; 6164 } 6165 6166 int kvm_mmu_create(struct kvm_vcpu *vcpu) 6167 { 6168 int ret; 6169 6170 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache; 6171 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO; 6172 6173 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache; 6174 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO; 6175 6176 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO; 6177 6178 vcpu->arch.mmu = &vcpu->arch.root_mmu; 6179 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; 6180 6181 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu); 6182 if (ret) 6183 return ret; 6184 6185 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu); 6186 if (ret) 6187 goto fail_allocate_root; 6188 6189 return ret; 6190 fail_allocate_root: 6191 free_mmu_pages(&vcpu->arch.guest_mmu); 6192 return ret; 6193 } 6194 6195 #define BATCH_ZAP_PAGES 10 6196 static void kvm_zap_obsolete_pages(struct kvm *kvm) 6197 { 6198 struct kvm_mmu_page *sp, *node; 6199 int nr_zapped, batch = 0; 6200 bool unstable; 6201 6202 restart: 6203 list_for_each_entry_safe_reverse(sp, node, 6204 &kvm->arch.active_mmu_pages, link) { 6205 /* 6206 * No obsolete valid page exists before a newly created page 6207 * since active_mmu_pages is a FIFO list. 6208 */ 6209 if (!is_obsolete_sp(kvm, sp)) 6210 break; 6211 6212 /* 6213 * Invalid pages should never land back on the list of active 6214 * pages. Skip the bogus page, otherwise we'll get stuck in an 6215 * infinite loop if the page gets put back on the list (again). 6216 */ 6217 if (WARN_ON_ONCE(sp->role.invalid)) 6218 continue; 6219 6220 /* 6221 * No need to flush the TLB since we're only zapping shadow 6222 * pages with an obsolete generation number and all vCPUS have 6223 * loaded a new root, i.e. the shadow pages being zapped cannot 6224 * be in active use by the guest. 6225 */ 6226 if (batch >= BATCH_ZAP_PAGES && 6227 cond_resched_rwlock_write(&kvm->mmu_lock)) { 6228 batch = 0; 6229 goto restart; 6230 } 6231 6232 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, 6233 &kvm->arch.zapped_obsolete_pages, &nr_zapped); 6234 batch += nr_zapped; 6235 6236 if (unstable) 6237 goto restart; 6238 } 6239 6240 /* 6241 * Kick all vCPUs (via remote TLB flush) before freeing the page tables 6242 * to ensure KVM is not in the middle of a lockless shadow page table 6243 * walk, which may reference the pages. The remote TLB flush itself is 6244 * not required and is simply a convenient way to kick vCPUs as needed. 6245 * KVM performs a local TLB flush when allocating a new root (see 6246 * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are 6247 * running with an obsolete MMU. 6248 */ 6249 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages); 6250 } 6251 6252 /* 6253 * Fast invalidate all shadow pages and use lock-break technique 6254 * to zap obsolete pages. 6255 * 6256 * It's required when memslot is being deleted or VM is being 6257 * destroyed, in these cases, we should ensure that KVM MMU does 6258 * not use any resource of the being-deleted slot or all slots 6259 * after calling the function. 6260 */ 6261 static void kvm_mmu_zap_all_fast(struct kvm *kvm) 6262 { 6263 lockdep_assert_held(&kvm->slots_lock); 6264 6265 write_lock(&kvm->mmu_lock); 6266 trace_kvm_mmu_zap_all_fast(kvm); 6267 6268 /* 6269 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is 6270 * held for the entire duration of zapping obsolete pages, it's 6271 * impossible for there to be multiple invalid generations associated 6272 * with *valid* shadow pages at any given time, i.e. there is exactly 6273 * one valid generation and (at most) one invalid generation. 6274 */ 6275 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1; 6276 6277 /* 6278 * In order to ensure all vCPUs drop their soon-to-be invalid roots, 6279 * invalidating TDP MMU roots must be done while holding mmu_lock for 6280 * write and in the same critical section as making the reload request, 6281 * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield. 6282 */ 6283 if (tdp_mmu_enabled) 6284 kvm_tdp_mmu_invalidate_all_roots(kvm); 6285 6286 /* 6287 * Notify all vcpus to reload its shadow page table and flush TLB. 6288 * Then all vcpus will switch to new shadow page table with the new 6289 * mmu_valid_gen. 6290 * 6291 * Note: we need to do this under the protection of mmu_lock, 6292 * otherwise, vcpu would purge shadow page but miss tlb flush. 6293 */ 6294 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 6295 6296 kvm_zap_obsolete_pages(kvm); 6297 6298 write_unlock(&kvm->mmu_lock); 6299 6300 /* 6301 * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before 6302 * returning to the caller, e.g. if the zap is in response to a memslot 6303 * deletion, mmu_notifier callbacks will be unable to reach the SPTEs 6304 * associated with the deleted memslot once the update completes, and 6305 * Deferring the zap until the final reference to the root is put would 6306 * lead to use-after-free. 6307 */ 6308 if (tdp_mmu_enabled) 6309 kvm_tdp_mmu_zap_invalidated_roots(kvm); 6310 } 6311 6312 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm) 6313 { 6314 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages)); 6315 } 6316 6317 void kvm_mmu_init_vm(struct kvm *kvm) 6318 { 6319 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 6320 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 6321 INIT_LIST_HEAD(&kvm->arch.possible_nx_huge_pages); 6322 spin_lock_init(&kvm->arch.mmu_unsync_pages_lock); 6323 6324 if (tdp_mmu_enabled) 6325 kvm_mmu_init_tdp_mmu(kvm); 6326 6327 kvm->arch.split_page_header_cache.kmem_cache = mmu_page_header_cache; 6328 kvm->arch.split_page_header_cache.gfp_zero = __GFP_ZERO; 6329 6330 kvm->arch.split_shadow_page_cache.gfp_zero = __GFP_ZERO; 6331 6332 kvm->arch.split_desc_cache.kmem_cache = pte_list_desc_cache; 6333 kvm->arch.split_desc_cache.gfp_zero = __GFP_ZERO; 6334 } 6335 6336 static void mmu_free_vm_memory_caches(struct kvm *kvm) 6337 { 6338 kvm_mmu_free_memory_cache(&kvm->arch.split_desc_cache); 6339 kvm_mmu_free_memory_cache(&kvm->arch.split_page_header_cache); 6340 kvm_mmu_free_memory_cache(&kvm->arch.split_shadow_page_cache); 6341 } 6342 6343 void kvm_mmu_uninit_vm(struct kvm *kvm) 6344 { 6345 if (tdp_mmu_enabled) 6346 kvm_mmu_uninit_tdp_mmu(kvm); 6347 6348 mmu_free_vm_memory_caches(kvm); 6349 } 6350 6351 static bool kvm_rmap_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 6352 { 6353 const struct kvm_memory_slot *memslot; 6354 struct kvm_memslots *slots; 6355 struct kvm_memslot_iter iter; 6356 bool flush = false; 6357 gfn_t start, end; 6358 int i; 6359 6360 if (!kvm_memslots_have_rmaps(kvm)) 6361 return flush; 6362 6363 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 6364 slots = __kvm_memslots(kvm, i); 6365 6366 kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) { 6367 memslot = iter.slot; 6368 start = max(gfn_start, memslot->base_gfn); 6369 end = min(gfn_end, memslot->base_gfn + memslot->npages); 6370 if (WARN_ON_ONCE(start >= end)) 6371 continue; 6372 6373 flush = __walk_slot_rmaps(kvm, memslot, __kvm_zap_rmap, 6374 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 6375 start, end - 1, true, flush); 6376 } 6377 } 6378 6379 return flush; 6380 } 6381 6382 /* 6383 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end 6384 * (not including it) 6385 */ 6386 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 6387 { 6388 bool flush; 6389 6390 if (WARN_ON_ONCE(gfn_end <= gfn_start)) 6391 return; 6392 6393 write_lock(&kvm->mmu_lock); 6394 6395 kvm_mmu_invalidate_begin(kvm); 6396 6397 kvm_mmu_invalidate_range_add(kvm, gfn_start, gfn_end); 6398 6399 flush = kvm_rmap_zap_gfn_range(kvm, gfn_start, gfn_end); 6400 6401 if (tdp_mmu_enabled) 6402 flush = kvm_tdp_mmu_zap_leafs(kvm, gfn_start, gfn_end, flush); 6403 6404 if (flush) 6405 kvm_flush_remote_tlbs_range(kvm, gfn_start, gfn_end - gfn_start); 6406 6407 kvm_mmu_invalidate_end(kvm); 6408 6409 write_unlock(&kvm->mmu_lock); 6410 } 6411 6412 static bool slot_rmap_write_protect(struct kvm *kvm, 6413 struct kvm_rmap_head *rmap_head, 6414 const struct kvm_memory_slot *slot) 6415 { 6416 return rmap_write_protect(rmap_head, false); 6417 } 6418 6419 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 6420 const struct kvm_memory_slot *memslot, 6421 int start_level) 6422 { 6423 if (kvm_memslots_have_rmaps(kvm)) { 6424 write_lock(&kvm->mmu_lock); 6425 walk_slot_rmaps(kvm, memslot, slot_rmap_write_protect, 6426 start_level, KVM_MAX_HUGEPAGE_LEVEL, false); 6427 write_unlock(&kvm->mmu_lock); 6428 } 6429 6430 if (tdp_mmu_enabled) { 6431 read_lock(&kvm->mmu_lock); 6432 kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level); 6433 read_unlock(&kvm->mmu_lock); 6434 } 6435 } 6436 6437 static inline bool need_topup(struct kvm_mmu_memory_cache *cache, int min) 6438 { 6439 return kvm_mmu_memory_cache_nr_free_objects(cache) < min; 6440 } 6441 6442 static bool need_topup_split_caches_or_resched(struct kvm *kvm) 6443 { 6444 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) 6445 return true; 6446 6447 /* 6448 * In the worst case, SPLIT_DESC_CACHE_MIN_NR_OBJECTS descriptors are needed 6449 * to split a single huge page. Calculating how many are actually needed 6450 * is possible but not worth the complexity. 6451 */ 6452 return need_topup(&kvm->arch.split_desc_cache, SPLIT_DESC_CACHE_MIN_NR_OBJECTS) || 6453 need_topup(&kvm->arch.split_page_header_cache, 1) || 6454 need_topup(&kvm->arch.split_shadow_page_cache, 1); 6455 } 6456 6457 static int topup_split_caches(struct kvm *kvm) 6458 { 6459 /* 6460 * Allocating rmap list entries when splitting huge pages for nested 6461 * MMUs is uncommon as KVM needs to use a list if and only if there is 6462 * more than one rmap entry for a gfn, i.e. requires an L1 gfn to be 6463 * aliased by multiple L2 gfns and/or from multiple nested roots with 6464 * different roles. Aliasing gfns when using TDP is atypical for VMMs; 6465 * a few gfns are often aliased during boot, e.g. when remapping BIOS, 6466 * but aliasing rarely occurs post-boot or for many gfns. If there is 6467 * only one rmap entry, rmap->val points directly at that one entry and 6468 * doesn't need to allocate a list. Buffer the cache by the default 6469 * capacity so that KVM doesn't have to drop mmu_lock to topup if KVM 6470 * encounters an aliased gfn or two. 6471 */ 6472 const int capacity = SPLIT_DESC_CACHE_MIN_NR_OBJECTS + 6473 KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE; 6474 int r; 6475 6476 lockdep_assert_held(&kvm->slots_lock); 6477 6478 r = __kvm_mmu_topup_memory_cache(&kvm->arch.split_desc_cache, capacity, 6479 SPLIT_DESC_CACHE_MIN_NR_OBJECTS); 6480 if (r) 6481 return r; 6482 6483 r = kvm_mmu_topup_memory_cache(&kvm->arch.split_page_header_cache, 1); 6484 if (r) 6485 return r; 6486 6487 return kvm_mmu_topup_memory_cache(&kvm->arch.split_shadow_page_cache, 1); 6488 } 6489 6490 static struct kvm_mmu_page *shadow_mmu_get_sp_for_split(struct kvm *kvm, u64 *huge_sptep) 6491 { 6492 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); 6493 struct shadow_page_caches caches = {}; 6494 union kvm_mmu_page_role role; 6495 unsigned int access; 6496 gfn_t gfn; 6497 6498 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep)); 6499 access = kvm_mmu_page_get_access(huge_sp, spte_index(huge_sptep)); 6500 6501 /* 6502 * Note, huge page splitting always uses direct shadow pages, regardless 6503 * of whether the huge page itself is mapped by a direct or indirect 6504 * shadow page, since the huge page region itself is being directly 6505 * mapped with smaller pages. 6506 */ 6507 role = kvm_mmu_child_role(huge_sptep, /*direct=*/true, access); 6508 6509 /* Direct SPs do not require a shadowed_info_cache. */ 6510 caches.page_header_cache = &kvm->arch.split_page_header_cache; 6511 caches.shadow_page_cache = &kvm->arch.split_shadow_page_cache; 6512 6513 /* Safe to pass NULL for vCPU since requesting a direct SP. */ 6514 return __kvm_mmu_get_shadow_page(kvm, NULL, &caches, gfn, role); 6515 } 6516 6517 static void shadow_mmu_split_huge_page(struct kvm *kvm, 6518 const struct kvm_memory_slot *slot, 6519 u64 *huge_sptep) 6520 6521 { 6522 struct kvm_mmu_memory_cache *cache = &kvm->arch.split_desc_cache; 6523 u64 huge_spte = READ_ONCE(*huge_sptep); 6524 struct kvm_mmu_page *sp; 6525 bool flush = false; 6526 u64 *sptep, spte; 6527 gfn_t gfn; 6528 int index; 6529 6530 sp = shadow_mmu_get_sp_for_split(kvm, huge_sptep); 6531 6532 for (index = 0; index < SPTE_ENT_PER_PAGE; index++) { 6533 sptep = &sp->spt[index]; 6534 gfn = kvm_mmu_page_get_gfn(sp, index); 6535 6536 /* 6537 * The SP may already have populated SPTEs, e.g. if this huge 6538 * page is aliased by multiple sptes with the same access 6539 * permissions. These entries are guaranteed to map the same 6540 * gfn-to-pfn translation since the SP is direct, so no need to 6541 * modify them. 6542 * 6543 * However, if a given SPTE points to a lower level page table, 6544 * that lower level page table may only be partially populated. 6545 * Installing such SPTEs would effectively unmap a potion of the 6546 * huge page. Unmapping guest memory always requires a TLB flush 6547 * since a subsequent operation on the unmapped regions would 6548 * fail to detect the need to flush. 6549 */ 6550 if (is_shadow_present_pte(*sptep)) { 6551 flush |= !is_last_spte(*sptep, sp->role.level); 6552 continue; 6553 } 6554 6555 spte = make_huge_page_split_spte(kvm, huge_spte, sp->role, index); 6556 mmu_spte_set(sptep, spte); 6557 __rmap_add(kvm, cache, slot, sptep, gfn, sp->role.access); 6558 } 6559 6560 __link_shadow_page(kvm, cache, huge_sptep, sp, flush); 6561 } 6562 6563 static int shadow_mmu_try_split_huge_page(struct kvm *kvm, 6564 const struct kvm_memory_slot *slot, 6565 u64 *huge_sptep) 6566 { 6567 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); 6568 int level, r = 0; 6569 gfn_t gfn; 6570 u64 spte; 6571 6572 /* Grab information for the tracepoint before dropping the MMU lock. */ 6573 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep)); 6574 level = huge_sp->role.level; 6575 spte = *huge_sptep; 6576 6577 if (kvm_mmu_available_pages(kvm) <= KVM_MIN_FREE_MMU_PAGES) { 6578 r = -ENOSPC; 6579 goto out; 6580 } 6581 6582 if (need_topup_split_caches_or_resched(kvm)) { 6583 write_unlock(&kvm->mmu_lock); 6584 cond_resched(); 6585 /* 6586 * If the topup succeeds, return -EAGAIN to indicate that the 6587 * rmap iterator should be restarted because the MMU lock was 6588 * dropped. 6589 */ 6590 r = topup_split_caches(kvm) ?: -EAGAIN; 6591 write_lock(&kvm->mmu_lock); 6592 goto out; 6593 } 6594 6595 shadow_mmu_split_huge_page(kvm, slot, huge_sptep); 6596 6597 out: 6598 trace_kvm_mmu_split_huge_page(gfn, spte, level, r); 6599 return r; 6600 } 6601 6602 static bool shadow_mmu_try_split_huge_pages(struct kvm *kvm, 6603 struct kvm_rmap_head *rmap_head, 6604 const struct kvm_memory_slot *slot) 6605 { 6606 struct rmap_iterator iter; 6607 struct kvm_mmu_page *sp; 6608 u64 *huge_sptep; 6609 int r; 6610 6611 restart: 6612 for_each_rmap_spte(rmap_head, &iter, huge_sptep) { 6613 sp = sptep_to_sp(huge_sptep); 6614 6615 /* TDP MMU is enabled, so rmap only contains nested MMU SPs. */ 6616 if (WARN_ON_ONCE(!sp->role.guest_mode)) 6617 continue; 6618 6619 /* The rmaps should never contain non-leaf SPTEs. */ 6620 if (WARN_ON_ONCE(!is_large_pte(*huge_sptep))) 6621 continue; 6622 6623 /* SPs with level >PG_LEVEL_4K should never by unsync. */ 6624 if (WARN_ON_ONCE(sp->unsync)) 6625 continue; 6626 6627 /* Don't bother splitting huge pages on invalid SPs. */ 6628 if (sp->role.invalid) 6629 continue; 6630 6631 r = shadow_mmu_try_split_huge_page(kvm, slot, huge_sptep); 6632 6633 /* 6634 * The split succeeded or needs to be retried because the MMU 6635 * lock was dropped. Either way, restart the iterator to get it 6636 * back into a consistent state. 6637 */ 6638 if (!r || r == -EAGAIN) 6639 goto restart; 6640 6641 /* The split failed and shouldn't be retried (e.g. -ENOMEM). */ 6642 break; 6643 } 6644 6645 return false; 6646 } 6647 6648 static void kvm_shadow_mmu_try_split_huge_pages(struct kvm *kvm, 6649 const struct kvm_memory_slot *slot, 6650 gfn_t start, gfn_t end, 6651 int target_level) 6652 { 6653 int level; 6654 6655 /* 6656 * Split huge pages starting with KVM_MAX_HUGEPAGE_LEVEL and working 6657 * down to the target level. This ensures pages are recursively split 6658 * all the way to the target level. There's no need to split pages 6659 * already at the target level. 6660 */ 6661 for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--) 6662 __walk_slot_rmaps(kvm, slot, shadow_mmu_try_split_huge_pages, 6663 level, level, start, end - 1, true, false); 6664 } 6665 6666 /* Must be called with the mmu_lock held in write-mode. */ 6667 void kvm_mmu_try_split_huge_pages(struct kvm *kvm, 6668 const struct kvm_memory_slot *memslot, 6669 u64 start, u64 end, 6670 int target_level) 6671 { 6672 if (!tdp_mmu_enabled) 6673 return; 6674 6675 if (kvm_memslots_have_rmaps(kvm)) 6676 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); 6677 6678 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, false); 6679 6680 /* 6681 * A TLB flush is unnecessary at this point for the same reasons as in 6682 * kvm_mmu_slot_try_split_huge_pages(). 6683 */ 6684 } 6685 6686 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, 6687 const struct kvm_memory_slot *memslot, 6688 int target_level) 6689 { 6690 u64 start = memslot->base_gfn; 6691 u64 end = start + memslot->npages; 6692 6693 if (!tdp_mmu_enabled) 6694 return; 6695 6696 if (kvm_memslots_have_rmaps(kvm)) { 6697 write_lock(&kvm->mmu_lock); 6698 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); 6699 write_unlock(&kvm->mmu_lock); 6700 } 6701 6702 read_lock(&kvm->mmu_lock); 6703 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true); 6704 read_unlock(&kvm->mmu_lock); 6705 6706 /* 6707 * No TLB flush is necessary here. KVM will flush TLBs after 6708 * write-protecting and/or clearing dirty on the newly split SPTEs to 6709 * ensure that guest writes are reflected in the dirty log before the 6710 * ioctl to enable dirty logging on this memslot completes. Since the 6711 * split SPTEs retain the write and dirty bits of the huge SPTE, it is 6712 * safe for KVM to decide if a TLB flush is necessary based on the split 6713 * SPTEs. 6714 */ 6715 } 6716 6717 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, 6718 struct kvm_rmap_head *rmap_head, 6719 const struct kvm_memory_slot *slot) 6720 { 6721 u64 *sptep; 6722 struct rmap_iterator iter; 6723 int need_tlb_flush = 0; 6724 struct kvm_mmu_page *sp; 6725 6726 restart: 6727 for_each_rmap_spte(rmap_head, &iter, sptep) { 6728 sp = sptep_to_sp(sptep); 6729 6730 /* 6731 * We cannot do huge page mapping for indirect shadow pages, 6732 * which are found on the last rmap (level = 1) when not using 6733 * tdp; such shadow pages are synced with the page table in 6734 * the guest, and the guest page table is using 4K page size 6735 * mapping if the indirect sp has level = 1. 6736 */ 6737 if (sp->role.direct && 6738 sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn, 6739 PG_LEVEL_NUM)) { 6740 kvm_zap_one_rmap_spte(kvm, rmap_head, sptep); 6741 6742 if (kvm_available_flush_remote_tlbs_range()) 6743 kvm_flush_remote_tlbs_sptep(kvm, sptep); 6744 else 6745 need_tlb_flush = 1; 6746 6747 goto restart; 6748 } 6749 } 6750 6751 return need_tlb_flush; 6752 } 6753 6754 static void kvm_rmap_zap_collapsible_sptes(struct kvm *kvm, 6755 const struct kvm_memory_slot *slot) 6756 { 6757 /* 6758 * Note, use KVM_MAX_HUGEPAGE_LEVEL - 1 since there's no need to zap 6759 * pages that are already mapped at the maximum hugepage level. 6760 */ 6761 if (walk_slot_rmaps(kvm, slot, kvm_mmu_zap_collapsible_spte, 6762 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL - 1, true)) 6763 kvm_flush_remote_tlbs_memslot(kvm, slot); 6764 } 6765 6766 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, 6767 const struct kvm_memory_slot *slot) 6768 { 6769 if (kvm_memslots_have_rmaps(kvm)) { 6770 write_lock(&kvm->mmu_lock); 6771 kvm_rmap_zap_collapsible_sptes(kvm, slot); 6772 write_unlock(&kvm->mmu_lock); 6773 } 6774 6775 if (tdp_mmu_enabled) { 6776 read_lock(&kvm->mmu_lock); 6777 kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot); 6778 read_unlock(&kvm->mmu_lock); 6779 } 6780 } 6781 6782 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 6783 const struct kvm_memory_slot *memslot) 6784 { 6785 if (kvm_memslots_have_rmaps(kvm)) { 6786 write_lock(&kvm->mmu_lock); 6787 /* 6788 * Clear dirty bits only on 4k SPTEs since the legacy MMU only 6789 * support dirty logging at a 4k granularity. 6790 */ 6791 walk_slot_rmaps_4k(kvm, memslot, __rmap_clear_dirty, false); 6792 write_unlock(&kvm->mmu_lock); 6793 } 6794 6795 if (tdp_mmu_enabled) { 6796 read_lock(&kvm->mmu_lock); 6797 kvm_tdp_mmu_clear_dirty_slot(kvm, memslot); 6798 read_unlock(&kvm->mmu_lock); 6799 } 6800 6801 /* 6802 * The caller will flush the TLBs after this function returns. 6803 * 6804 * It's also safe to flush TLBs out of mmu lock here as currently this 6805 * function is only used for dirty logging, in which case flushing TLB 6806 * out of mmu lock also guarantees no dirty pages will be lost in 6807 * dirty_bitmap. 6808 */ 6809 } 6810 6811 static void kvm_mmu_zap_all(struct kvm *kvm) 6812 { 6813 struct kvm_mmu_page *sp, *node; 6814 LIST_HEAD(invalid_list); 6815 int ign; 6816 6817 write_lock(&kvm->mmu_lock); 6818 restart: 6819 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) { 6820 if (WARN_ON_ONCE(sp->role.invalid)) 6821 continue; 6822 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign)) 6823 goto restart; 6824 if (cond_resched_rwlock_write(&kvm->mmu_lock)) 6825 goto restart; 6826 } 6827 6828 kvm_mmu_commit_zap_page(kvm, &invalid_list); 6829 6830 if (tdp_mmu_enabled) 6831 kvm_tdp_mmu_zap_all(kvm); 6832 6833 write_unlock(&kvm->mmu_lock); 6834 } 6835 6836 void kvm_arch_flush_shadow_all(struct kvm *kvm) 6837 { 6838 kvm_mmu_zap_all(kvm); 6839 } 6840 6841 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 6842 struct kvm_memory_slot *slot) 6843 { 6844 kvm_mmu_zap_all_fast(kvm); 6845 } 6846 6847 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen) 6848 { 6849 WARN_ON_ONCE(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 6850 6851 gen &= MMIO_SPTE_GEN_MASK; 6852 6853 /* 6854 * Generation numbers are incremented in multiples of the number of 6855 * address spaces in order to provide unique generations across all 6856 * address spaces. Strip what is effectively the address space 6857 * modifier prior to checking for a wrap of the MMIO generation so 6858 * that a wrap in any address space is detected. 6859 */ 6860 gen &= ~((u64)kvm_arch_nr_memslot_as_ids(kvm) - 1); 6861 6862 /* 6863 * The very rare case: if the MMIO generation number has wrapped, 6864 * zap all shadow pages. 6865 */ 6866 if (unlikely(gen == 0)) { 6867 kvm_debug_ratelimited("zapping shadow pages for mmio generation wraparound\n"); 6868 kvm_mmu_zap_all_fast(kvm); 6869 } 6870 } 6871 6872 static unsigned long mmu_shrink_scan(struct shrinker *shrink, 6873 struct shrink_control *sc) 6874 { 6875 struct kvm *kvm; 6876 int nr_to_scan = sc->nr_to_scan; 6877 unsigned long freed = 0; 6878 6879 mutex_lock(&kvm_lock); 6880 6881 list_for_each_entry(kvm, &vm_list, vm_list) { 6882 int idx; 6883 LIST_HEAD(invalid_list); 6884 6885 /* 6886 * Never scan more than sc->nr_to_scan VM instances. 6887 * Will not hit this condition practically since we do not try 6888 * to shrink more than one VM and it is very unlikely to see 6889 * !n_used_mmu_pages so many times. 6890 */ 6891 if (!nr_to_scan--) 6892 break; 6893 /* 6894 * n_used_mmu_pages is accessed without holding kvm->mmu_lock 6895 * here. We may skip a VM instance errorneosly, but we do not 6896 * want to shrink a VM that only started to populate its MMU 6897 * anyway. 6898 */ 6899 if (!kvm->arch.n_used_mmu_pages && 6900 !kvm_has_zapped_obsolete_pages(kvm)) 6901 continue; 6902 6903 idx = srcu_read_lock(&kvm->srcu); 6904 write_lock(&kvm->mmu_lock); 6905 6906 if (kvm_has_zapped_obsolete_pages(kvm)) { 6907 kvm_mmu_commit_zap_page(kvm, 6908 &kvm->arch.zapped_obsolete_pages); 6909 goto unlock; 6910 } 6911 6912 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan); 6913 6914 unlock: 6915 write_unlock(&kvm->mmu_lock); 6916 srcu_read_unlock(&kvm->srcu, idx); 6917 6918 /* 6919 * unfair on small ones 6920 * per-vm shrinkers cry out 6921 * sadness comes quickly 6922 */ 6923 list_move_tail(&kvm->vm_list, &vm_list); 6924 break; 6925 } 6926 6927 mutex_unlock(&kvm_lock); 6928 return freed; 6929 } 6930 6931 static unsigned long mmu_shrink_count(struct shrinker *shrink, 6932 struct shrink_control *sc) 6933 { 6934 return percpu_counter_read_positive(&kvm_total_used_mmu_pages); 6935 } 6936 6937 static struct shrinker *mmu_shrinker; 6938 6939 static void mmu_destroy_caches(void) 6940 { 6941 kmem_cache_destroy(pte_list_desc_cache); 6942 kmem_cache_destroy(mmu_page_header_cache); 6943 } 6944 6945 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp) 6946 { 6947 if (nx_hugepage_mitigation_hard_disabled) 6948 return sysfs_emit(buffer, "never\n"); 6949 6950 return param_get_bool(buffer, kp); 6951 } 6952 6953 static bool get_nx_auto_mode(void) 6954 { 6955 /* Return true when CPU has the bug, and mitigations are ON */ 6956 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off(); 6957 } 6958 6959 static void __set_nx_huge_pages(bool val) 6960 { 6961 nx_huge_pages = itlb_multihit_kvm_mitigation = val; 6962 } 6963 6964 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp) 6965 { 6966 bool old_val = nx_huge_pages; 6967 bool new_val; 6968 6969 if (nx_hugepage_mitigation_hard_disabled) 6970 return -EPERM; 6971 6972 /* In "auto" mode deploy workaround only if CPU has the bug. */ 6973 if (sysfs_streq(val, "off")) { 6974 new_val = 0; 6975 } else if (sysfs_streq(val, "force")) { 6976 new_val = 1; 6977 } else if (sysfs_streq(val, "auto")) { 6978 new_val = get_nx_auto_mode(); 6979 } else if (sysfs_streq(val, "never")) { 6980 new_val = 0; 6981 6982 mutex_lock(&kvm_lock); 6983 if (!list_empty(&vm_list)) { 6984 mutex_unlock(&kvm_lock); 6985 return -EBUSY; 6986 } 6987 nx_hugepage_mitigation_hard_disabled = true; 6988 mutex_unlock(&kvm_lock); 6989 } else if (kstrtobool(val, &new_val) < 0) { 6990 return -EINVAL; 6991 } 6992 6993 __set_nx_huge_pages(new_val); 6994 6995 if (new_val != old_val) { 6996 struct kvm *kvm; 6997 6998 mutex_lock(&kvm_lock); 6999 7000 list_for_each_entry(kvm, &vm_list, vm_list) { 7001 mutex_lock(&kvm->slots_lock); 7002 kvm_mmu_zap_all_fast(kvm); 7003 mutex_unlock(&kvm->slots_lock); 7004 7005 wake_up_process(kvm->arch.nx_huge_page_recovery_thread); 7006 } 7007 mutex_unlock(&kvm_lock); 7008 } 7009 7010 return 0; 7011 } 7012 7013 /* 7014 * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as 7015 * its default value of -1 is technically undefined behavior for a boolean. 7016 * Forward the module init call to SPTE code so that it too can handle module 7017 * params that need to be resolved/snapshot. 7018 */ 7019 void __init kvm_mmu_x86_module_init(void) 7020 { 7021 if (nx_huge_pages == -1) 7022 __set_nx_huge_pages(get_nx_auto_mode()); 7023 7024 /* 7025 * Snapshot userspace's desire to enable the TDP MMU. Whether or not the 7026 * TDP MMU is actually enabled is determined in kvm_configure_mmu() 7027 * when the vendor module is loaded. 7028 */ 7029 tdp_mmu_allowed = tdp_mmu_enabled; 7030 7031 kvm_mmu_spte_module_init(); 7032 } 7033 7034 /* 7035 * The bulk of the MMU initialization is deferred until the vendor module is 7036 * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need 7037 * to be reset when a potentially different vendor module is loaded. 7038 */ 7039 int kvm_mmu_vendor_module_init(void) 7040 { 7041 int ret = -ENOMEM; 7042 7043 /* 7044 * MMU roles use union aliasing which is, generally speaking, an 7045 * undefined behavior. However, we supposedly know how compilers behave 7046 * and the current status quo is unlikely to change. Guardians below are 7047 * supposed to let us know if the assumption becomes false. 7048 */ 7049 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32)); 7050 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32)); 7051 BUILD_BUG_ON(sizeof(union kvm_cpu_role) != sizeof(u64)); 7052 7053 kvm_mmu_reset_all_pte_masks(); 7054 7055 pte_list_desc_cache = KMEM_CACHE(pte_list_desc, SLAB_ACCOUNT); 7056 if (!pte_list_desc_cache) 7057 goto out; 7058 7059 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", 7060 sizeof(struct kvm_mmu_page), 7061 0, SLAB_ACCOUNT, NULL); 7062 if (!mmu_page_header_cache) 7063 goto out; 7064 7065 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL)) 7066 goto out; 7067 7068 mmu_shrinker = shrinker_alloc(0, "x86-mmu"); 7069 if (!mmu_shrinker) 7070 goto out_shrinker; 7071 7072 mmu_shrinker->count_objects = mmu_shrink_count; 7073 mmu_shrinker->scan_objects = mmu_shrink_scan; 7074 mmu_shrinker->seeks = DEFAULT_SEEKS * 10; 7075 7076 shrinker_register(mmu_shrinker); 7077 7078 return 0; 7079 7080 out_shrinker: 7081 percpu_counter_destroy(&kvm_total_used_mmu_pages); 7082 out: 7083 mmu_destroy_caches(); 7084 return ret; 7085 } 7086 7087 void kvm_mmu_destroy(struct kvm_vcpu *vcpu) 7088 { 7089 kvm_mmu_unload(vcpu); 7090 free_mmu_pages(&vcpu->arch.root_mmu); 7091 free_mmu_pages(&vcpu->arch.guest_mmu); 7092 mmu_free_memory_caches(vcpu); 7093 } 7094 7095 void kvm_mmu_vendor_module_exit(void) 7096 { 7097 mmu_destroy_caches(); 7098 percpu_counter_destroy(&kvm_total_used_mmu_pages); 7099 shrinker_free(mmu_shrinker); 7100 } 7101 7102 /* 7103 * Calculate the effective recovery period, accounting for '0' meaning "let KVM 7104 * select a halving time of 1 hour". Returns true if recovery is enabled. 7105 */ 7106 static bool calc_nx_huge_pages_recovery_period(uint *period) 7107 { 7108 /* 7109 * Use READ_ONCE to get the params, this may be called outside of the 7110 * param setters, e.g. by the kthread to compute its next timeout. 7111 */ 7112 bool enabled = READ_ONCE(nx_huge_pages); 7113 uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 7114 7115 if (!enabled || !ratio) 7116 return false; 7117 7118 *period = READ_ONCE(nx_huge_pages_recovery_period_ms); 7119 if (!*period) { 7120 /* Make sure the period is not less than one second. */ 7121 ratio = min(ratio, 3600u); 7122 *period = 60 * 60 * 1000 / ratio; 7123 } 7124 return true; 7125 } 7126 7127 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp) 7128 { 7129 bool was_recovery_enabled, is_recovery_enabled; 7130 uint old_period, new_period; 7131 int err; 7132 7133 if (nx_hugepage_mitigation_hard_disabled) 7134 return -EPERM; 7135 7136 was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period); 7137 7138 err = param_set_uint(val, kp); 7139 if (err) 7140 return err; 7141 7142 is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period); 7143 7144 if (is_recovery_enabled && 7145 (!was_recovery_enabled || old_period > new_period)) { 7146 struct kvm *kvm; 7147 7148 mutex_lock(&kvm_lock); 7149 7150 list_for_each_entry(kvm, &vm_list, vm_list) 7151 wake_up_process(kvm->arch.nx_huge_page_recovery_thread); 7152 7153 mutex_unlock(&kvm_lock); 7154 } 7155 7156 return err; 7157 } 7158 7159 static void kvm_recover_nx_huge_pages(struct kvm *kvm) 7160 { 7161 unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits; 7162 struct kvm_memory_slot *slot; 7163 int rcu_idx; 7164 struct kvm_mmu_page *sp; 7165 unsigned int ratio; 7166 LIST_HEAD(invalid_list); 7167 bool flush = false; 7168 ulong to_zap; 7169 7170 rcu_idx = srcu_read_lock(&kvm->srcu); 7171 write_lock(&kvm->mmu_lock); 7172 7173 /* 7174 * Zapping TDP MMU shadow pages, including the remote TLB flush, must 7175 * be done under RCU protection, because the pages are freed via RCU 7176 * callback. 7177 */ 7178 rcu_read_lock(); 7179 7180 ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 7181 to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0; 7182 for ( ; to_zap; --to_zap) { 7183 if (list_empty(&kvm->arch.possible_nx_huge_pages)) 7184 break; 7185 7186 /* 7187 * We use a separate list instead of just using active_mmu_pages 7188 * because the number of shadow pages that be replaced with an 7189 * NX huge page is expected to be relatively small compared to 7190 * the total number of shadow pages. And because the TDP MMU 7191 * doesn't use active_mmu_pages. 7192 */ 7193 sp = list_first_entry(&kvm->arch.possible_nx_huge_pages, 7194 struct kvm_mmu_page, 7195 possible_nx_huge_page_link); 7196 WARN_ON_ONCE(!sp->nx_huge_page_disallowed); 7197 WARN_ON_ONCE(!sp->role.direct); 7198 7199 /* 7200 * Unaccount and do not attempt to recover any NX Huge Pages 7201 * that are being dirty tracked, as they would just be faulted 7202 * back in as 4KiB pages. The NX Huge Pages in this slot will be 7203 * recovered, along with all the other huge pages in the slot, 7204 * when dirty logging is disabled. 7205 * 7206 * Since gfn_to_memslot() is relatively expensive, it helps to 7207 * skip it if it the test cannot possibly return true. On the 7208 * other hand, if any memslot has logging enabled, chances are 7209 * good that all of them do, in which case unaccount_nx_huge_page() 7210 * is much cheaper than zapping the page. 7211 * 7212 * If a memslot update is in progress, reading an incorrect value 7213 * of kvm->nr_memslots_dirty_logging is not a problem: if it is 7214 * becoming zero, gfn_to_memslot() will be done unnecessarily; if 7215 * it is becoming nonzero, the page will be zapped unnecessarily. 7216 * Either way, this only affects efficiency in racy situations, 7217 * and not correctness. 7218 */ 7219 slot = NULL; 7220 if (atomic_read(&kvm->nr_memslots_dirty_logging)) { 7221 struct kvm_memslots *slots; 7222 7223 slots = kvm_memslots_for_spte_role(kvm, sp->role); 7224 slot = __gfn_to_memslot(slots, sp->gfn); 7225 WARN_ON_ONCE(!slot); 7226 } 7227 7228 if (slot && kvm_slot_dirty_track_enabled(slot)) 7229 unaccount_nx_huge_page(kvm, sp); 7230 else if (is_tdp_mmu_page(sp)) 7231 flush |= kvm_tdp_mmu_zap_sp(kvm, sp); 7232 else 7233 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 7234 WARN_ON_ONCE(sp->nx_huge_page_disallowed); 7235 7236 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 7237 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7238 rcu_read_unlock(); 7239 7240 cond_resched_rwlock_write(&kvm->mmu_lock); 7241 flush = false; 7242 7243 rcu_read_lock(); 7244 } 7245 } 7246 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7247 7248 rcu_read_unlock(); 7249 7250 write_unlock(&kvm->mmu_lock); 7251 srcu_read_unlock(&kvm->srcu, rcu_idx); 7252 } 7253 7254 static long get_nx_huge_page_recovery_timeout(u64 start_time) 7255 { 7256 bool enabled; 7257 uint period; 7258 7259 enabled = calc_nx_huge_pages_recovery_period(&period); 7260 7261 return enabled ? start_time + msecs_to_jiffies(period) - get_jiffies_64() 7262 : MAX_SCHEDULE_TIMEOUT; 7263 } 7264 7265 static int kvm_nx_huge_page_recovery_worker(struct kvm *kvm, uintptr_t data) 7266 { 7267 u64 start_time; 7268 long remaining_time; 7269 7270 while (true) { 7271 start_time = get_jiffies_64(); 7272 remaining_time = get_nx_huge_page_recovery_timeout(start_time); 7273 7274 set_current_state(TASK_INTERRUPTIBLE); 7275 while (!kthread_should_stop() && remaining_time > 0) { 7276 schedule_timeout(remaining_time); 7277 remaining_time = get_nx_huge_page_recovery_timeout(start_time); 7278 set_current_state(TASK_INTERRUPTIBLE); 7279 } 7280 7281 set_current_state(TASK_RUNNING); 7282 7283 if (kthread_should_stop()) 7284 return 0; 7285 7286 kvm_recover_nx_huge_pages(kvm); 7287 } 7288 } 7289 7290 int kvm_mmu_post_init_vm(struct kvm *kvm) 7291 { 7292 int err; 7293 7294 if (nx_hugepage_mitigation_hard_disabled) 7295 return 0; 7296 7297 err = kvm_vm_create_worker_thread(kvm, kvm_nx_huge_page_recovery_worker, 0, 7298 "kvm-nx-lpage-recovery", 7299 &kvm->arch.nx_huge_page_recovery_thread); 7300 if (!err) 7301 kthread_unpark(kvm->arch.nx_huge_page_recovery_thread); 7302 7303 return err; 7304 } 7305 7306 void kvm_mmu_pre_destroy_vm(struct kvm *kvm) 7307 { 7308 if (kvm->arch.nx_huge_page_recovery_thread) 7309 kthread_stop(kvm->arch.nx_huge_page_recovery_thread); 7310 } 7311 7312 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 7313 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm, 7314 struct kvm_gfn_range *range) 7315 { 7316 /* 7317 * Zap SPTEs even if the slot can't be mapped PRIVATE. KVM x86 only 7318 * supports KVM_MEMORY_ATTRIBUTE_PRIVATE, and so it *seems* like KVM 7319 * can simply ignore such slots. But if userspace is making memory 7320 * PRIVATE, then KVM must prevent the guest from accessing the memory 7321 * as shared. And if userspace is making memory SHARED and this point 7322 * is reached, then at least one page within the range was previously 7323 * PRIVATE, i.e. the slot's possible hugepage ranges are changing. 7324 * Zapping SPTEs in this case ensures KVM will reassess whether or not 7325 * a hugepage can be used for affected ranges. 7326 */ 7327 if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm))) 7328 return false; 7329 7330 return kvm_unmap_gfn_range(kvm, range); 7331 } 7332 7333 static bool hugepage_test_mixed(struct kvm_memory_slot *slot, gfn_t gfn, 7334 int level) 7335 { 7336 return lpage_info_slot(gfn, slot, level)->disallow_lpage & KVM_LPAGE_MIXED_FLAG; 7337 } 7338 7339 static void hugepage_clear_mixed(struct kvm_memory_slot *slot, gfn_t gfn, 7340 int level) 7341 { 7342 lpage_info_slot(gfn, slot, level)->disallow_lpage &= ~KVM_LPAGE_MIXED_FLAG; 7343 } 7344 7345 static void hugepage_set_mixed(struct kvm_memory_slot *slot, gfn_t gfn, 7346 int level) 7347 { 7348 lpage_info_slot(gfn, slot, level)->disallow_lpage |= KVM_LPAGE_MIXED_FLAG; 7349 } 7350 7351 static bool hugepage_has_attrs(struct kvm *kvm, struct kvm_memory_slot *slot, 7352 gfn_t gfn, int level, unsigned long attrs) 7353 { 7354 const unsigned long start = gfn; 7355 const unsigned long end = start + KVM_PAGES_PER_HPAGE(level); 7356 7357 if (level == PG_LEVEL_2M) 7358 return kvm_range_has_memory_attributes(kvm, start, end, attrs); 7359 7360 for (gfn = start; gfn < end; gfn += KVM_PAGES_PER_HPAGE(level - 1)) { 7361 if (hugepage_test_mixed(slot, gfn, level - 1) || 7362 attrs != kvm_get_memory_attributes(kvm, gfn)) 7363 return false; 7364 } 7365 return true; 7366 } 7367 7368 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm, 7369 struct kvm_gfn_range *range) 7370 { 7371 unsigned long attrs = range->arg.attributes; 7372 struct kvm_memory_slot *slot = range->slot; 7373 int level; 7374 7375 lockdep_assert_held_write(&kvm->mmu_lock); 7376 lockdep_assert_held(&kvm->slots_lock); 7377 7378 /* 7379 * Calculate which ranges can be mapped with hugepages even if the slot 7380 * can't map memory PRIVATE. KVM mustn't create a SHARED hugepage over 7381 * a range that has PRIVATE GFNs, and conversely converting a range to 7382 * SHARED may now allow hugepages. 7383 */ 7384 if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm))) 7385 return false; 7386 7387 /* 7388 * The sequence matters here: upper levels consume the result of lower 7389 * level's scanning. 7390 */ 7391 for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) { 7392 gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level); 7393 gfn_t gfn = gfn_round_for_level(range->start, level); 7394 7395 /* Process the head page if it straddles the range. */ 7396 if (gfn != range->start || gfn + nr_pages > range->end) { 7397 /* 7398 * Skip mixed tracking if the aligned gfn isn't covered 7399 * by the memslot, KVM can't use a hugepage due to the 7400 * misaligned address regardless of memory attributes. 7401 */ 7402 if (gfn >= slot->base_gfn && 7403 gfn + nr_pages <= slot->base_gfn + slot->npages) { 7404 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs)) 7405 hugepage_clear_mixed(slot, gfn, level); 7406 else 7407 hugepage_set_mixed(slot, gfn, level); 7408 } 7409 gfn += nr_pages; 7410 } 7411 7412 /* 7413 * Pages entirely covered by the range are guaranteed to have 7414 * only the attributes which were just set. 7415 */ 7416 for ( ; gfn + nr_pages <= range->end; gfn += nr_pages) 7417 hugepage_clear_mixed(slot, gfn, level); 7418 7419 /* 7420 * Process the last tail page if it straddles the range and is 7421 * contained by the memslot. Like the head page, KVM can't 7422 * create a hugepage if the slot size is misaligned. 7423 */ 7424 if (gfn < range->end && 7425 (gfn + nr_pages) <= (slot->base_gfn + slot->npages)) { 7426 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs)) 7427 hugepage_clear_mixed(slot, gfn, level); 7428 else 7429 hugepage_set_mixed(slot, gfn, level); 7430 } 7431 } 7432 return false; 7433 } 7434 7435 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm, 7436 struct kvm_memory_slot *slot) 7437 { 7438 int level; 7439 7440 if (!kvm_arch_has_private_mem(kvm)) 7441 return; 7442 7443 for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) { 7444 /* 7445 * Don't bother tracking mixed attributes for pages that can't 7446 * be huge due to alignment, i.e. process only pages that are 7447 * entirely contained by the memslot. 7448 */ 7449 gfn_t end = gfn_round_for_level(slot->base_gfn + slot->npages, level); 7450 gfn_t start = gfn_round_for_level(slot->base_gfn, level); 7451 gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level); 7452 gfn_t gfn; 7453 7454 if (start < slot->base_gfn) 7455 start += nr_pages; 7456 7457 /* 7458 * Unlike setting attributes, every potential hugepage needs to 7459 * be manually checked as the attributes may already be mixed. 7460 */ 7461 for (gfn = start; gfn < end; gfn += nr_pages) { 7462 unsigned long attrs = kvm_get_memory_attributes(kvm, gfn); 7463 7464 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs)) 7465 hugepage_clear_mixed(slot, gfn, level); 7466 else 7467 hugepage_set_mixed(slot, gfn, level); 7468 } 7469 } 7470 } 7471 #endif 7472