xref: /linux/arch/x86/kvm/mmu/mmu.c (revision 4359a011e259a4608afc7fb3635370c9d4ba5943)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17 
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "mmu_internal.h"
22 #include "tdp_mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "kvm_emulate.h"
26 #include "cpuid.h"
27 #include "spte.h"
28 
29 #include <linux/kvm_host.h>
30 #include <linux/types.h>
31 #include <linux/string.h>
32 #include <linux/mm.h>
33 #include <linux/highmem.h>
34 #include <linux/moduleparam.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/hugetlb.h>
38 #include <linux/compiler.h>
39 #include <linux/srcu.h>
40 #include <linux/slab.h>
41 #include <linux/sched/signal.h>
42 #include <linux/uaccess.h>
43 #include <linux/hash.h>
44 #include <linux/kern_levels.h>
45 #include <linux/kthread.h>
46 
47 #include <asm/page.h>
48 #include <asm/memtype.h>
49 #include <asm/cmpxchg.h>
50 #include <asm/io.h>
51 #include <asm/set_memory.h>
52 #include <asm/vmx.h>
53 #include <asm/kvm_page_track.h>
54 #include "trace.h"
55 
56 extern bool itlb_multihit_kvm_mitigation;
57 
58 int __read_mostly nx_huge_pages = -1;
59 static uint __read_mostly nx_huge_pages_recovery_period_ms;
60 #ifdef CONFIG_PREEMPT_RT
61 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
62 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
63 #else
64 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
65 #endif
66 
67 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
68 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp);
69 
70 static const struct kernel_param_ops nx_huge_pages_ops = {
71 	.set = set_nx_huge_pages,
72 	.get = param_get_bool,
73 };
74 
75 static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = {
76 	.set = set_nx_huge_pages_recovery_param,
77 	.get = param_get_uint,
78 };
79 
80 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
81 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
82 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops,
83 		&nx_huge_pages_recovery_ratio, 0644);
84 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
85 module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops,
86 		&nx_huge_pages_recovery_period_ms, 0644);
87 __MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint");
88 
89 static bool __read_mostly force_flush_and_sync_on_reuse;
90 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
91 
92 /*
93  * When setting this variable to true it enables Two-Dimensional-Paging
94  * where the hardware walks 2 page tables:
95  * 1. the guest-virtual to guest-physical
96  * 2. while doing 1. it walks guest-physical to host-physical
97  * If the hardware supports that we don't need to do shadow paging.
98  */
99 bool tdp_enabled = false;
100 
101 static int max_huge_page_level __read_mostly;
102 static int tdp_root_level __read_mostly;
103 static int max_tdp_level __read_mostly;
104 
105 #ifdef MMU_DEBUG
106 bool dbg = 0;
107 module_param(dbg, bool, 0644);
108 #endif
109 
110 #define PTE_PREFETCH_NUM		8
111 
112 #include <trace/events/kvm.h>
113 
114 /* make pte_list_desc fit well in cache lines */
115 #define PTE_LIST_EXT 14
116 
117 /*
118  * Slight optimization of cacheline layout, by putting `more' and `spte_count'
119  * at the start; then accessing it will only use one single cacheline for
120  * either full (entries==PTE_LIST_EXT) case or entries<=6.
121  */
122 struct pte_list_desc {
123 	struct pte_list_desc *more;
124 	/*
125 	 * Stores number of entries stored in the pte_list_desc.  No need to be
126 	 * u64 but just for easier alignment.  When PTE_LIST_EXT, means full.
127 	 */
128 	u64 spte_count;
129 	u64 *sptes[PTE_LIST_EXT];
130 };
131 
132 struct kvm_shadow_walk_iterator {
133 	u64 addr;
134 	hpa_t shadow_addr;
135 	u64 *sptep;
136 	int level;
137 	unsigned index;
138 };
139 
140 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
141 	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
142 					 (_root), (_addr));                \
143 	     shadow_walk_okay(&(_walker));			           \
144 	     shadow_walk_next(&(_walker)))
145 
146 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
147 	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
148 	     shadow_walk_okay(&(_walker));			\
149 	     shadow_walk_next(&(_walker)))
150 
151 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
152 	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
153 	     shadow_walk_okay(&(_walker)) &&				\
154 		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
155 	     __shadow_walk_next(&(_walker), spte))
156 
157 static struct kmem_cache *pte_list_desc_cache;
158 struct kmem_cache *mmu_page_header_cache;
159 static struct percpu_counter kvm_total_used_mmu_pages;
160 
161 static void mmu_spte_set(u64 *sptep, u64 spte);
162 
163 struct kvm_mmu_role_regs {
164 	const unsigned long cr0;
165 	const unsigned long cr4;
166 	const u64 efer;
167 };
168 
169 #define CREATE_TRACE_POINTS
170 #include "mmutrace.h"
171 
172 /*
173  * Yes, lot's of underscores.  They're a hint that you probably shouldn't be
174  * reading from the role_regs.  Once the root_role is constructed, it becomes
175  * the single source of truth for the MMU's state.
176  */
177 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag)			\
178 static inline bool __maybe_unused					\
179 ____is_##reg##_##name(const struct kvm_mmu_role_regs *regs)		\
180 {									\
181 	return !!(regs->reg & flag);					\
182 }
183 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
184 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
185 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
186 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
187 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
188 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
189 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
190 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
191 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
192 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);
193 
194 /*
195  * The MMU itself (with a valid role) is the single source of truth for the
196  * MMU.  Do not use the regs used to build the MMU/role, nor the vCPU.  The
197  * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
198  * and the vCPU may be incorrect/irrelevant.
199  */
200 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name)		\
201 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu)	\
202 {								\
203 	return !!(mmu->cpu_role. base_or_ext . reg##_##name);	\
204 }
205 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
206 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pse);
207 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smep);
208 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smap);
209 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pke);
210 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, la57);
211 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);
212 BUILD_MMU_ROLE_ACCESSOR(ext,  efer, lma);
213 
214 static inline bool is_cr0_pg(struct kvm_mmu *mmu)
215 {
216         return mmu->cpu_role.base.level > 0;
217 }
218 
219 static inline bool is_cr4_pae(struct kvm_mmu *mmu)
220 {
221         return !mmu->cpu_role.base.has_4_byte_gpte;
222 }
223 
224 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
225 {
226 	struct kvm_mmu_role_regs regs = {
227 		.cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
228 		.cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
229 		.efer = vcpu->arch.efer,
230 	};
231 
232 	return regs;
233 }
234 
235 static inline bool kvm_available_flush_tlb_with_range(void)
236 {
237 	return kvm_x86_ops.tlb_remote_flush_with_range;
238 }
239 
240 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
241 		struct kvm_tlb_range *range)
242 {
243 	int ret = -ENOTSUPP;
244 
245 	if (range && kvm_x86_ops.tlb_remote_flush_with_range)
246 		ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
247 
248 	if (ret)
249 		kvm_flush_remote_tlbs(kvm);
250 }
251 
252 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
253 		u64 start_gfn, u64 pages)
254 {
255 	struct kvm_tlb_range range;
256 
257 	range.start_gfn = start_gfn;
258 	range.pages = pages;
259 
260 	kvm_flush_remote_tlbs_with_range(kvm, &range);
261 }
262 
263 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
264 			   unsigned int access)
265 {
266 	u64 spte = make_mmio_spte(vcpu, gfn, access);
267 
268 	trace_mark_mmio_spte(sptep, gfn, spte);
269 	mmu_spte_set(sptep, spte);
270 }
271 
272 static gfn_t get_mmio_spte_gfn(u64 spte)
273 {
274 	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
275 
276 	gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
277 	       & shadow_nonpresent_or_rsvd_mask;
278 
279 	return gpa >> PAGE_SHIFT;
280 }
281 
282 static unsigned get_mmio_spte_access(u64 spte)
283 {
284 	return spte & shadow_mmio_access_mask;
285 }
286 
287 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
288 {
289 	u64 kvm_gen, spte_gen, gen;
290 
291 	gen = kvm_vcpu_memslots(vcpu)->generation;
292 	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
293 		return false;
294 
295 	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
296 	spte_gen = get_mmio_spte_generation(spte);
297 
298 	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
299 	return likely(kvm_gen == spte_gen);
300 }
301 
302 static int is_cpuid_PSE36(void)
303 {
304 	return 1;
305 }
306 
307 #ifdef CONFIG_X86_64
308 static void __set_spte(u64 *sptep, u64 spte)
309 {
310 	WRITE_ONCE(*sptep, spte);
311 }
312 
313 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
314 {
315 	WRITE_ONCE(*sptep, spte);
316 }
317 
318 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
319 {
320 	return xchg(sptep, spte);
321 }
322 
323 static u64 __get_spte_lockless(u64 *sptep)
324 {
325 	return READ_ONCE(*sptep);
326 }
327 #else
328 union split_spte {
329 	struct {
330 		u32 spte_low;
331 		u32 spte_high;
332 	};
333 	u64 spte;
334 };
335 
336 static void count_spte_clear(u64 *sptep, u64 spte)
337 {
338 	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
339 
340 	if (is_shadow_present_pte(spte))
341 		return;
342 
343 	/* Ensure the spte is completely set before we increase the count */
344 	smp_wmb();
345 	sp->clear_spte_count++;
346 }
347 
348 static void __set_spte(u64 *sptep, u64 spte)
349 {
350 	union split_spte *ssptep, sspte;
351 
352 	ssptep = (union split_spte *)sptep;
353 	sspte = (union split_spte)spte;
354 
355 	ssptep->spte_high = sspte.spte_high;
356 
357 	/*
358 	 * If we map the spte from nonpresent to present, We should store
359 	 * the high bits firstly, then set present bit, so cpu can not
360 	 * fetch this spte while we are setting the spte.
361 	 */
362 	smp_wmb();
363 
364 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
365 }
366 
367 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
368 {
369 	union split_spte *ssptep, sspte;
370 
371 	ssptep = (union split_spte *)sptep;
372 	sspte = (union split_spte)spte;
373 
374 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
375 
376 	/*
377 	 * If we map the spte from present to nonpresent, we should clear
378 	 * present bit firstly to avoid vcpu fetch the old high bits.
379 	 */
380 	smp_wmb();
381 
382 	ssptep->spte_high = sspte.spte_high;
383 	count_spte_clear(sptep, spte);
384 }
385 
386 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
387 {
388 	union split_spte *ssptep, sspte, orig;
389 
390 	ssptep = (union split_spte *)sptep;
391 	sspte = (union split_spte)spte;
392 
393 	/* xchg acts as a barrier before the setting of the high bits */
394 	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
395 	orig.spte_high = ssptep->spte_high;
396 	ssptep->spte_high = sspte.spte_high;
397 	count_spte_clear(sptep, spte);
398 
399 	return orig.spte;
400 }
401 
402 /*
403  * The idea using the light way get the spte on x86_32 guest is from
404  * gup_get_pte (mm/gup.c).
405  *
406  * An spte tlb flush may be pending, because kvm_set_pte_rmap
407  * coalesces them and we are running out of the MMU lock.  Therefore
408  * we need to protect against in-progress updates of the spte.
409  *
410  * Reading the spte while an update is in progress may get the old value
411  * for the high part of the spte.  The race is fine for a present->non-present
412  * change (because the high part of the spte is ignored for non-present spte),
413  * but for a present->present change we must reread the spte.
414  *
415  * All such changes are done in two steps (present->non-present and
416  * non-present->present), hence it is enough to count the number of
417  * present->non-present updates: if it changed while reading the spte,
418  * we might have hit the race.  This is done using clear_spte_count.
419  */
420 static u64 __get_spte_lockless(u64 *sptep)
421 {
422 	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
423 	union split_spte spte, *orig = (union split_spte *)sptep;
424 	int count;
425 
426 retry:
427 	count = sp->clear_spte_count;
428 	smp_rmb();
429 
430 	spte.spte_low = orig->spte_low;
431 	smp_rmb();
432 
433 	spte.spte_high = orig->spte_high;
434 	smp_rmb();
435 
436 	if (unlikely(spte.spte_low != orig->spte_low ||
437 	      count != sp->clear_spte_count))
438 		goto retry;
439 
440 	return spte.spte;
441 }
442 #endif
443 
444 /* Rules for using mmu_spte_set:
445  * Set the sptep from nonpresent to present.
446  * Note: the sptep being assigned *must* be either not present
447  * or in a state where the hardware will not attempt to update
448  * the spte.
449  */
450 static void mmu_spte_set(u64 *sptep, u64 new_spte)
451 {
452 	WARN_ON(is_shadow_present_pte(*sptep));
453 	__set_spte(sptep, new_spte);
454 }
455 
456 /*
457  * Update the SPTE (excluding the PFN), but do not track changes in its
458  * accessed/dirty status.
459  */
460 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
461 {
462 	u64 old_spte = *sptep;
463 
464 	WARN_ON(!is_shadow_present_pte(new_spte));
465 	check_spte_writable_invariants(new_spte);
466 
467 	if (!is_shadow_present_pte(old_spte)) {
468 		mmu_spte_set(sptep, new_spte);
469 		return old_spte;
470 	}
471 
472 	if (!spte_has_volatile_bits(old_spte))
473 		__update_clear_spte_fast(sptep, new_spte);
474 	else
475 		old_spte = __update_clear_spte_slow(sptep, new_spte);
476 
477 	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
478 
479 	return old_spte;
480 }
481 
482 /* Rules for using mmu_spte_update:
483  * Update the state bits, it means the mapped pfn is not changed.
484  *
485  * Whenever an MMU-writable SPTE is overwritten with a read-only SPTE, remote
486  * TLBs must be flushed. Otherwise rmap_write_protect will find a read-only
487  * spte, even though the writable spte might be cached on a CPU's TLB.
488  *
489  * Returns true if the TLB needs to be flushed
490  */
491 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
492 {
493 	bool flush = false;
494 	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
495 
496 	if (!is_shadow_present_pte(old_spte))
497 		return false;
498 
499 	/*
500 	 * For the spte updated out of mmu-lock is safe, since
501 	 * we always atomically update it, see the comments in
502 	 * spte_has_volatile_bits().
503 	 */
504 	if (is_mmu_writable_spte(old_spte) &&
505 	      !is_writable_pte(new_spte))
506 		flush = true;
507 
508 	/*
509 	 * Flush TLB when accessed/dirty states are changed in the page tables,
510 	 * to guarantee consistency between TLB and page tables.
511 	 */
512 
513 	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
514 		flush = true;
515 		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
516 	}
517 
518 	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
519 		flush = true;
520 		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
521 	}
522 
523 	return flush;
524 }
525 
526 /*
527  * Rules for using mmu_spte_clear_track_bits:
528  * It sets the sptep from present to nonpresent, and track the
529  * state bits, it is used to clear the last level sptep.
530  * Returns the old PTE.
531  */
532 static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
533 {
534 	kvm_pfn_t pfn;
535 	u64 old_spte = *sptep;
536 	int level = sptep_to_sp(sptep)->role.level;
537 	struct page *page;
538 
539 	if (!is_shadow_present_pte(old_spte) ||
540 	    !spte_has_volatile_bits(old_spte))
541 		__update_clear_spte_fast(sptep, 0ull);
542 	else
543 		old_spte = __update_clear_spte_slow(sptep, 0ull);
544 
545 	if (!is_shadow_present_pte(old_spte))
546 		return old_spte;
547 
548 	kvm_update_page_stats(kvm, level, -1);
549 
550 	pfn = spte_to_pfn(old_spte);
551 
552 	/*
553 	 * KVM doesn't hold a reference to any pages mapped into the guest, and
554 	 * instead uses the mmu_notifier to ensure that KVM unmaps any pages
555 	 * before they are reclaimed.  Sanity check that, if the pfn is backed
556 	 * by a refcounted page, the refcount is elevated.
557 	 */
558 	page = kvm_pfn_to_refcounted_page(pfn);
559 	WARN_ON(page && !page_count(page));
560 
561 	if (is_accessed_spte(old_spte))
562 		kvm_set_pfn_accessed(pfn);
563 
564 	if (is_dirty_spte(old_spte))
565 		kvm_set_pfn_dirty(pfn);
566 
567 	return old_spte;
568 }
569 
570 /*
571  * Rules for using mmu_spte_clear_no_track:
572  * Directly clear spte without caring the state bits of sptep,
573  * it is used to set the upper level spte.
574  */
575 static void mmu_spte_clear_no_track(u64 *sptep)
576 {
577 	__update_clear_spte_fast(sptep, 0ull);
578 }
579 
580 static u64 mmu_spte_get_lockless(u64 *sptep)
581 {
582 	return __get_spte_lockless(sptep);
583 }
584 
585 /* Returns the Accessed status of the PTE and resets it at the same time. */
586 static bool mmu_spte_age(u64 *sptep)
587 {
588 	u64 spte = mmu_spte_get_lockless(sptep);
589 
590 	if (!is_accessed_spte(spte))
591 		return false;
592 
593 	if (spte_ad_enabled(spte)) {
594 		clear_bit((ffs(shadow_accessed_mask) - 1),
595 			  (unsigned long *)sptep);
596 	} else {
597 		/*
598 		 * Capture the dirty status of the page, so that it doesn't get
599 		 * lost when the SPTE is marked for access tracking.
600 		 */
601 		if (is_writable_pte(spte))
602 			kvm_set_pfn_dirty(spte_to_pfn(spte));
603 
604 		spte = mark_spte_for_access_track(spte);
605 		mmu_spte_update_no_track(sptep, spte);
606 	}
607 
608 	return true;
609 }
610 
611 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
612 {
613 	if (is_tdp_mmu(vcpu->arch.mmu)) {
614 		kvm_tdp_mmu_walk_lockless_begin();
615 	} else {
616 		/*
617 		 * Prevent page table teardown by making any free-er wait during
618 		 * kvm_flush_remote_tlbs() IPI to all active vcpus.
619 		 */
620 		local_irq_disable();
621 
622 		/*
623 		 * Make sure a following spte read is not reordered ahead of the write
624 		 * to vcpu->mode.
625 		 */
626 		smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
627 	}
628 }
629 
630 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
631 {
632 	if (is_tdp_mmu(vcpu->arch.mmu)) {
633 		kvm_tdp_mmu_walk_lockless_end();
634 	} else {
635 		/*
636 		 * Make sure the write to vcpu->mode is not reordered in front of
637 		 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
638 		 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
639 		 */
640 		smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
641 		local_irq_enable();
642 	}
643 }
644 
645 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
646 {
647 	int r;
648 
649 	/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
650 	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
651 				       1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
652 	if (r)
653 		return r;
654 	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
655 				       PT64_ROOT_MAX_LEVEL);
656 	if (r)
657 		return r;
658 	if (maybe_indirect) {
659 		r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadowed_info_cache,
660 					       PT64_ROOT_MAX_LEVEL);
661 		if (r)
662 			return r;
663 	}
664 	return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
665 					  PT64_ROOT_MAX_LEVEL);
666 }
667 
668 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
669 {
670 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
671 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
672 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadowed_info_cache);
673 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
674 }
675 
676 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
677 {
678 	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
679 }
680 
681 static bool sp_has_gptes(struct kvm_mmu_page *sp);
682 
683 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
684 {
685 	if (sp->role.passthrough)
686 		return sp->gfn;
687 
688 	if (!sp->role.direct)
689 		return sp->shadowed_translation[index] >> PAGE_SHIFT;
690 
691 	return sp->gfn + (index << ((sp->role.level - 1) * SPTE_LEVEL_BITS));
692 }
693 
694 /*
695  * For leaf SPTEs, fetch the *guest* access permissions being shadowed. Note
696  * that the SPTE itself may have a more constrained access permissions that
697  * what the guest enforces. For example, a guest may create an executable
698  * huge PTE but KVM may disallow execution to mitigate iTLB multihit.
699  */
700 static u32 kvm_mmu_page_get_access(struct kvm_mmu_page *sp, int index)
701 {
702 	if (sp_has_gptes(sp))
703 		return sp->shadowed_translation[index] & ACC_ALL;
704 
705 	/*
706 	 * For direct MMUs (e.g. TDP or non-paging guests) or passthrough SPs,
707 	 * KVM is not shadowing any guest page tables, so the "guest access
708 	 * permissions" are just ACC_ALL.
709 	 *
710 	 * For direct SPs in indirect MMUs (shadow paging), i.e. when KVM
711 	 * is shadowing a guest huge page with small pages, the guest access
712 	 * permissions being shadowed are the access permissions of the huge
713 	 * page.
714 	 *
715 	 * In both cases, sp->role.access contains the correct access bits.
716 	 */
717 	return sp->role.access;
718 }
719 
720 static void kvm_mmu_page_set_translation(struct kvm_mmu_page *sp, int index,
721 					 gfn_t gfn, unsigned int access)
722 {
723 	if (sp_has_gptes(sp)) {
724 		sp->shadowed_translation[index] = (gfn << PAGE_SHIFT) | access;
725 		return;
726 	}
727 
728 	WARN_ONCE(access != kvm_mmu_page_get_access(sp, index),
729 	          "access mismatch under %s page %llx (expected %u, got %u)\n",
730 	          sp->role.passthrough ? "passthrough" : "direct",
731 	          sp->gfn, kvm_mmu_page_get_access(sp, index), access);
732 
733 	WARN_ONCE(gfn != kvm_mmu_page_get_gfn(sp, index),
734 	          "gfn mismatch under %s page %llx (expected %llx, got %llx)\n",
735 	          sp->role.passthrough ? "passthrough" : "direct",
736 	          sp->gfn, kvm_mmu_page_get_gfn(sp, index), gfn);
737 }
738 
739 static void kvm_mmu_page_set_access(struct kvm_mmu_page *sp, int index,
740 				    unsigned int access)
741 {
742 	gfn_t gfn = kvm_mmu_page_get_gfn(sp, index);
743 
744 	kvm_mmu_page_set_translation(sp, index, gfn, access);
745 }
746 
747 /*
748  * Return the pointer to the large page information for a given gfn,
749  * handling slots that are not large page aligned.
750  */
751 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
752 		const struct kvm_memory_slot *slot, int level)
753 {
754 	unsigned long idx;
755 
756 	idx = gfn_to_index(gfn, slot->base_gfn, level);
757 	return &slot->arch.lpage_info[level - 2][idx];
758 }
759 
760 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot,
761 					    gfn_t gfn, int count)
762 {
763 	struct kvm_lpage_info *linfo;
764 	int i;
765 
766 	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
767 		linfo = lpage_info_slot(gfn, slot, i);
768 		linfo->disallow_lpage += count;
769 		WARN_ON(linfo->disallow_lpage < 0);
770 	}
771 }
772 
773 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
774 {
775 	update_gfn_disallow_lpage_count(slot, gfn, 1);
776 }
777 
778 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
779 {
780 	update_gfn_disallow_lpage_count(slot, gfn, -1);
781 }
782 
783 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
784 {
785 	struct kvm_memslots *slots;
786 	struct kvm_memory_slot *slot;
787 	gfn_t gfn;
788 
789 	kvm->arch.indirect_shadow_pages++;
790 	gfn = sp->gfn;
791 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
792 	slot = __gfn_to_memslot(slots, gfn);
793 
794 	/* the non-leaf shadow pages are keeping readonly. */
795 	if (sp->role.level > PG_LEVEL_4K)
796 		return kvm_slot_page_track_add_page(kvm, slot, gfn,
797 						    KVM_PAGE_TRACK_WRITE);
798 
799 	kvm_mmu_gfn_disallow_lpage(slot, gfn);
800 
801 	if (kvm_mmu_slot_gfn_write_protect(kvm, slot, gfn, PG_LEVEL_4K))
802 		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
803 }
804 
805 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
806 {
807 	if (sp->lpage_disallowed)
808 		return;
809 
810 	++kvm->stat.nx_lpage_splits;
811 	list_add_tail(&sp->lpage_disallowed_link,
812 		      &kvm->arch.lpage_disallowed_mmu_pages);
813 	sp->lpage_disallowed = true;
814 }
815 
816 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
817 {
818 	struct kvm_memslots *slots;
819 	struct kvm_memory_slot *slot;
820 	gfn_t gfn;
821 
822 	kvm->arch.indirect_shadow_pages--;
823 	gfn = sp->gfn;
824 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
825 	slot = __gfn_to_memslot(slots, gfn);
826 	if (sp->role.level > PG_LEVEL_4K)
827 		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
828 						       KVM_PAGE_TRACK_WRITE);
829 
830 	kvm_mmu_gfn_allow_lpage(slot, gfn);
831 }
832 
833 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
834 {
835 	--kvm->stat.nx_lpage_splits;
836 	sp->lpage_disallowed = false;
837 	list_del(&sp->lpage_disallowed_link);
838 }
839 
840 static struct kvm_memory_slot *
841 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
842 			    bool no_dirty_log)
843 {
844 	struct kvm_memory_slot *slot;
845 
846 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
847 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
848 		return NULL;
849 	if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
850 		return NULL;
851 
852 	return slot;
853 }
854 
855 /*
856  * About rmap_head encoding:
857  *
858  * If the bit zero of rmap_head->val is clear, then it points to the only spte
859  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
860  * pte_list_desc containing more mappings.
861  */
862 
863 /*
864  * Returns the number of pointers in the rmap chain, not counting the new one.
865  */
866 static int pte_list_add(struct kvm_mmu_memory_cache *cache, u64 *spte,
867 			struct kvm_rmap_head *rmap_head)
868 {
869 	struct pte_list_desc *desc;
870 	int count = 0;
871 
872 	if (!rmap_head->val) {
873 		rmap_printk("%p %llx 0->1\n", spte, *spte);
874 		rmap_head->val = (unsigned long)spte;
875 	} else if (!(rmap_head->val & 1)) {
876 		rmap_printk("%p %llx 1->many\n", spte, *spte);
877 		desc = kvm_mmu_memory_cache_alloc(cache);
878 		desc->sptes[0] = (u64 *)rmap_head->val;
879 		desc->sptes[1] = spte;
880 		desc->spte_count = 2;
881 		rmap_head->val = (unsigned long)desc | 1;
882 		++count;
883 	} else {
884 		rmap_printk("%p %llx many->many\n", spte, *spte);
885 		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
886 		while (desc->spte_count == PTE_LIST_EXT) {
887 			count += PTE_LIST_EXT;
888 			if (!desc->more) {
889 				desc->more = kvm_mmu_memory_cache_alloc(cache);
890 				desc = desc->more;
891 				desc->spte_count = 0;
892 				break;
893 			}
894 			desc = desc->more;
895 		}
896 		count += desc->spte_count;
897 		desc->sptes[desc->spte_count++] = spte;
898 	}
899 	return count;
900 }
901 
902 static void
903 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
904 			   struct pte_list_desc *desc, int i,
905 			   struct pte_list_desc *prev_desc)
906 {
907 	int j = desc->spte_count - 1;
908 
909 	desc->sptes[i] = desc->sptes[j];
910 	desc->sptes[j] = NULL;
911 	desc->spte_count--;
912 	if (desc->spte_count)
913 		return;
914 	if (!prev_desc && !desc->more)
915 		rmap_head->val = 0;
916 	else
917 		if (prev_desc)
918 			prev_desc->more = desc->more;
919 		else
920 			rmap_head->val = (unsigned long)desc->more | 1;
921 	mmu_free_pte_list_desc(desc);
922 }
923 
924 static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
925 {
926 	struct pte_list_desc *desc;
927 	struct pte_list_desc *prev_desc;
928 	int i;
929 
930 	if (!rmap_head->val) {
931 		pr_err("%s: %p 0->BUG\n", __func__, spte);
932 		BUG();
933 	} else if (!(rmap_head->val & 1)) {
934 		rmap_printk("%p 1->0\n", spte);
935 		if ((u64 *)rmap_head->val != spte) {
936 			pr_err("%s:  %p 1->BUG\n", __func__, spte);
937 			BUG();
938 		}
939 		rmap_head->val = 0;
940 	} else {
941 		rmap_printk("%p many->many\n", spte);
942 		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
943 		prev_desc = NULL;
944 		while (desc) {
945 			for (i = 0; i < desc->spte_count; ++i) {
946 				if (desc->sptes[i] == spte) {
947 					pte_list_desc_remove_entry(rmap_head,
948 							desc, i, prev_desc);
949 					return;
950 				}
951 			}
952 			prev_desc = desc;
953 			desc = desc->more;
954 		}
955 		pr_err("%s: %p many->many\n", __func__, spte);
956 		BUG();
957 	}
958 }
959 
960 static void kvm_zap_one_rmap_spte(struct kvm *kvm,
961 				  struct kvm_rmap_head *rmap_head, u64 *sptep)
962 {
963 	mmu_spte_clear_track_bits(kvm, sptep);
964 	pte_list_remove(sptep, rmap_head);
965 }
966 
967 /* Return true if at least one SPTE was zapped, false otherwise */
968 static bool kvm_zap_all_rmap_sptes(struct kvm *kvm,
969 				   struct kvm_rmap_head *rmap_head)
970 {
971 	struct pte_list_desc *desc, *next;
972 	int i;
973 
974 	if (!rmap_head->val)
975 		return false;
976 
977 	if (!(rmap_head->val & 1)) {
978 		mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val);
979 		goto out;
980 	}
981 
982 	desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
983 
984 	for (; desc; desc = next) {
985 		for (i = 0; i < desc->spte_count; i++)
986 			mmu_spte_clear_track_bits(kvm, desc->sptes[i]);
987 		next = desc->more;
988 		mmu_free_pte_list_desc(desc);
989 	}
990 out:
991 	/* rmap_head is meaningless now, remember to reset it */
992 	rmap_head->val = 0;
993 	return true;
994 }
995 
996 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head)
997 {
998 	struct pte_list_desc *desc;
999 	unsigned int count = 0;
1000 
1001 	if (!rmap_head->val)
1002 		return 0;
1003 	else if (!(rmap_head->val & 1))
1004 		return 1;
1005 
1006 	desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1007 
1008 	while (desc) {
1009 		count += desc->spte_count;
1010 		desc = desc->more;
1011 	}
1012 
1013 	return count;
1014 }
1015 
1016 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level,
1017 					 const struct kvm_memory_slot *slot)
1018 {
1019 	unsigned long idx;
1020 
1021 	idx = gfn_to_index(gfn, slot->base_gfn, level);
1022 	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1023 }
1024 
1025 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1026 {
1027 	struct kvm_mmu_memory_cache *mc;
1028 
1029 	mc = &vcpu->arch.mmu_pte_list_desc_cache;
1030 	return kvm_mmu_memory_cache_nr_free_objects(mc);
1031 }
1032 
1033 static void rmap_remove(struct kvm *kvm, u64 *spte)
1034 {
1035 	struct kvm_memslots *slots;
1036 	struct kvm_memory_slot *slot;
1037 	struct kvm_mmu_page *sp;
1038 	gfn_t gfn;
1039 	struct kvm_rmap_head *rmap_head;
1040 
1041 	sp = sptep_to_sp(spte);
1042 	gfn = kvm_mmu_page_get_gfn(sp, spte_index(spte));
1043 
1044 	/*
1045 	 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU
1046 	 * so we have to determine which memslots to use based on context
1047 	 * information in sp->role.
1048 	 */
1049 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
1050 
1051 	slot = __gfn_to_memslot(slots, gfn);
1052 	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1053 
1054 	pte_list_remove(spte, rmap_head);
1055 }
1056 
1057 /*
1058  * Used by the following functions to iterate through the sptes linked by a
1059  * rmap.  All fields are private and not assumed to be used outside.
1060  */
1061 struct rmap_iterator {
1062 	/* private fields */
1063 	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
1064 	int pos;			/* index of the sptep */
1065 };
1066 
1067 /*
1068  * Iteration must be started by this function.  This should also be used after
1069  * removing/dropping sptes from the rmap link because in such cases the
1070  * information in the iterator may not be valid.
1071  *
1072  * Returns sptep if found, NULL otherwise.
1073  */
1074 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1075 			   struct rmap_iterator *iter)
1076 {
1077 	u64 *sptep;
1078 
1079 	if (!rmap_head->val)
1080 		return NULL;
1081 
1082 	if (!(rmap_head->val & 1)) {
1083 		iter->desc = NULL;
1084 		sptep = (u64 *)rmap_head->val;
1085 		goto out;
1086 	}
1087 
1088 	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1089 	iter->pos = 0;
1090 	sptep = iter->desc->sptes[iter->pos];
1091 out:
1092 	BUG_ON(!is_shadow_present_pte(*sptep));
1093 	return sptep;
1094 }
1095 
1096 /*
1097  * Must be used with a valid iterator: e.g. after rmap_get_first().
1098  *
1099  * Returns sptep if found, NULL otherwise.
1100  */
1101 static u64 *rmap_get_next(struct rmap_iterator *iter)
1102 {
1103 	u64 *sptep;
1104 
1105 	if (iter->desc) {
1106 		if (iter->pos < PTE_LIST_EXT - 1) {
1107 			++iter->pos;
1108 			sptep = iter->desc->sptes[iter->pos];
1109 			if (sptep)
1110 				goto out;
1111 		}
1112 
1113 		iter->desc = iter->desc->more;
1114 
1115 		if (iter->desc) {
1116 			iter->pos = 0;
1117 			/* desc->sptes[0] cannot be NULL */
1118 			sptep = iter->desc->sptes[iter->pos];
1119 			goto out;
1120 		}
1121 	}
1122 
1123 	return NULL;
1124 out:
1125 	BUG_ON(!is_shadow_present_pte(*sptep));
1126 	return sptep;
1127 }
1128 
1129 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
1130 	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1131 	     _spte_; _spte_ = rmap_get_next(_iter_))
1132 
1133 static void drop_spte(struct kvm *kvm, u64 *sptep)
1134 {
1135 	u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep);
1136 
1137 	if (is_shadow_present_pte(old_spte))
1138 		rmap_remove(kvm, sptep);
1139 }
1140 
1141 static void drop_large_spte(struct kvm *kvm, u64 *sptep, bool flush)
1142 {
1143 	struct kvm_mmu_page *sp;
1144 
1145 	sp = sptep_to_sp(sptep);
1146 	WARN_ON(sp->role.level == PG_LEVEL_4K);
1147 
1148 	drop_spte(kvm, sptep);
1149 
1150 	if (flush)
1151 		kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
1152 			KVM_PAGES_PER_HPAGE(sp->role.level));
1153 }
1154 
1155 /*
1156  * Write-protect on the specified @sptep, @pt_protect indicates whether
1157  * spte write-protection is caused by protecting shadow page table.
1158  *
1159  * Note: write protection is difference between dirty logging and spte
1160  * protection:
1161  * - for dirty logging, the spte can be set to writable at anytime if
1162  *   its dirty bitmap is properly set.
1163  * - for spte protection, the spte can be writable only after unsync-ing
1164  *   shadow page.
1165  *
1166  * Return true if tlb need be flushed.
1167  */
1168 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1169 {
1170 	u64 spte = *sptep;
1171 
1172 	if (!is_writable_pte(spte) &&
1173 	    !(pt_protect && is_mmu_writable_spte(spte)))
1174 		return false;
1175 
1176 	rmap_printk("spte %p %llx\n", sptep, *sptep);
1177 
1178 	if (pt_protect)
1179 		spte &= ~shadow_mmu_writable_mask;
1180 	spte = spte & ~PT_WRITABLE_MASK;
1181 
1182 	return mmu_spte_update(sptep, spte);
1183 }
1184 
1185 static bool rmap_write_protect(struct kvm_rmap_head *rmap_head,
1186 			       bool pt_protect)
1187 {
1188 	u64 *sptep;
1189 	struct rmap_iterator iter;
1190 	bool flush = false;
1191 
1192 	for_each_rmap_spte(rmap_head, &iter, sptep)
1193 		flush |= spte_write_protect(sptep, pt_protect);
1194 
1195 	return flush;
1196 }
1197 
1198 static bool spte_clear_dirty(u64 *sptep)
1199 {
1200 	u64 spte = *sptep;
1201 
1202 	rmap_printk("spte %p %llx\n", sptep, *sptep);
1203 
1204 	MMU_WARN_ON(!spte_ad_enabled(spte));
1205 	spte &= ~shadow_dirty_mask;
1206 	return mmu_spte_update(sptep, spte);
1207 }
1208 
1209 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1210 {
1211 	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1212 					       (unsigned long *)sptep);
1213 	if (was_writable && !spte_ad_enabled(*sptep))
1214 		kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1215 
1216 	return was_writable;
1217 }
1218 
1219 /*
1220  * Gets the GFN ready for another round of dirty logging by clearing the
1221  *	- D bit on ad-enabled SPTEs, and
1222  *	- W bit on ad-disabled SPTEs.
1223  * Returns true iff any D or W bits were cleared.
1224  */
1225 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1226 			       const struct kvm_memory_slot *slot)
1227 {
1228 	u64 *sptep;
1229 	struct rmap_iterator iter;
1230 	bool flush = false;
1231 
1232 	for_each_rmap_spte(rmap_head, &iter, sptep)
1233 		if (spte_ad_need_write_protect(*sptep))
1234 			flush |= spte_wrprot_for_clear_dirty(sptep);
1235 		else
1236 			flush |= spte_clear_dirty(sptep);
1237 
1238 	return flush;
1239 }
1240 
1241 /**
1242  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1243  * @kvm: kvm instance
1244  * @slot: slot to protect
1245  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1246  * @mask: indicates which pages we should protect
1247  *
1248  * Used when we do not need to care about huge page mappings.
1249  */
1250 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1251 				     struct kvm_memory_slot *slot,
1252 				     gfn_t gfn_offset, unsigned long mask)
1253 {
1254 	struct kvm_rmap_head *rmap_head;
1255 
1256 	if (is_tdp_mmu_enabled(kvm))
1257 		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1258 				slot->base_gfn + gfn_offset, mask, true);
1259 
1260 	if (!kvm_memslots_have_rmaps(kvm))
1261 		return;
1262 
1263 	while (mask) {
1264 		rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1265 					PG_LEVEL_4K, slot);
1266 		rmap_write_protect(rmap_head, false);
1267 
1268 		/* clear the first set bit */
1269 		mask &= mask - 1;
1270 	}
1271 }
1272 
1273 /**
1274  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1275  * protect the page if the D-bit isn't supported.
1276  * @kvm: kvm instance
1277  * @slot: slot to clear D-bit
1278  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1279  * @mask: indicates which pages we should clear D-bit
1280  *
1281  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1282  */
1283 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1284 					 struct kvm_memory_slot *slot,
1285 					 gfn_t gfn_offset, unsigned long mask)
1286 {
1287 	struct kvm_rmap_head *rmap_head;
1288 
1289 	if (is_tdp_mmu_enabled(kvm))
1290 		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1291 				slot->base_gfn + gfn_offset, mask, false);
1292 
1293 	if (!kvm_memslots_have_rmaps(kvm))
1294 		return;
1295 
1296 	while (mask) {
1297 		rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1298 					PG_LEVEL_4K, slot);
1299 		__rmap_clear_dirty(kvm, rmap_head, slot);
1300 
1301 		/* clear the first set bit */
1302 		mask &= mask - 1;
1303 	}
1304 }
1305 
1306 /**
1307  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1308  * PT level pages.
1309  *
1310  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1311  * enable dirty logging for them.
1312  *
1313  * We need to care about huge page mappings: e.g. during dirty logging we may
1314  * have such mappings.
1315  */
1316 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1317 				struct kvm_memory_slot *slot,
1318 				gfn_t gfn_offset, unsigned long mask)
1319 {
1320 	/*
1321 	 * Huge pages are NOT write protected when we start dirty logging in
1322 	 * initially-all-set mode; must write protect them here so that they
1323 	 * are split to 4K on the first write.
1324 	 *
1325 	 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
1326 	 * of memslot has no such restriction, so the range can cross two large
1327 	 * pages.
1328 	 */
1329 	if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1330 		gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
1331 		gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);
1332 
1333 		if (READ_ONCE(eager_page_split))
1334 			kvm_mmu_try_split_huge_pages(kvm, slot, start, end, PG_LEVEL_4K);
1335 
1336 		kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);
1337 
1338 		/* Cross two large pages? */
1339 		if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
1340 		    ALIGN(end << PAGE_SHIFT, PMD_SIZE))
1341 			kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
1342 						       PG_LEVEL_2M);
1343 	}
1344 
1345 	/* Now handle 4K PTEs.  */
1346 	if (kvm_x86_ops.cpu_dirty_log_size)
1347 		kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1348 	else
1349 		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1350 }
1351 
1352 int kvm_cpu_dirty_log_size(void)
1353 {
1354 	return kvm_x86_ops.cpu_dirty_log_size;
1355 }
1356 
1357 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1358 				    struct kvm_memory_slot *slot, u64 gfn,
1359 				    int min_level)
1360 {
1361 	struct kvm_rmap_head *rmap_head;
1362 	int i;
1363 	bool write_protected = false;
1364 
1365 	if (kvm_memslots_have_rmaps(kvm)) {
1366 		for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1367 			rmap_head = gfn_to_rmap(gfn, i, slot);
1368 			write_protected |= rmap_write_protect(rmap_head, true);
1369 		}
1370 	}
1371 
1372 	if (is_tdp_mmu_enabled(kvm))
1373 		write_protected |=
1374 			kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1375 
1376 	return write_protected;
1377 }
1378 
1379 static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn)
1380 {
1381 	struct kvm_memory_slot *slot;
1382 
1383 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1384 	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1385 }
1386 
1387 static bool __kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1388 			   const struct kvm_memory_slot *slot)
1389 {
1390 	return kvm_zap_all_rmap_sptes(kvm, rmap_head);
1391 }
1392 
1393 static bool kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1394 			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1395 			 pte_t unused)
1396 {
1397 	return __kvm_zap_rmap(kvm, rmap_head, slot);
1398 }
1399 
1400 static bool kvm_set_pte_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1401 			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
1402 			     pte_t pte)
1403 {
1404 	u64 *sptep;
1405 	struct rmap_iterator iter;
1406 	bool need_flush = false;
1407 	u64 new_spte;
1408 	kvm_pfn_t new_pfn;
1409 
1410 	WARN_ON(pte_huge(pte));
1411 	new_pfn = pte_pfn(pte);
1412 
1413 restart:
1414 	for_each_rmap_spte(rmap_head, &iter, sptep) {
1415 		rmap_printk("spte %p %llx gfn %llx (%d)\n",
1416 			    sptep, *sptep, gfn, level);
1417 
1418 		need_flush = true;
1419 
1420 		if (pte_write(pte)) {
1421 			kvm_zap_one_rmap_spte(kvm, rmap_head, sptep);
1422 			goto restart;
1423 		} else {
1424 			new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1425 					*sptep, new_pfn);
1426 
1427 			mmu_spte_clear_track_bits(kvm, sptep);
1428 			mmu_spte_set(sptep, new_spte);
1429 		}
1430 	}
1431 
1432 	if (need_flush && kvm_available_flush_tlb_with_range()) {
1433 		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1434 		return false;
1435 	}
1436 
1437 	return need_flush;
1438 }
1439 
1440 struct slot_rmap_walk_iterator {
1441 	/* input fields. */
1442 	const struct kvm_memory_slot *slot;
1443 	gfn_t start_gfn;
1444 	gfn_t end_gfn;
1445 	int start_level;
1446 	int end_level;
1447 
1448 	/* output fields. */
1449 	gfn_t gfn;
1450 	struct kvm_rmap_head *rmap;
1451 	int level;
1452 
1453 	/* private field. */
1454 	struct kvm_rmap_head *end_rmap;
1455 };
1456 
1457 static void
1458 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1459 {
1460 	iterator->level = level;
1461 	iterator->gfn = iterator->start_gfn;
1462 	iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot);
1463 	iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot);
1464 }
1465 
1466 static void
1467 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1468 		    const struct kvm_memory_slot *slot, int start_level,
1469 		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
1470 {
1471 	iterator->slot = slot;
1472 	iterator->start_level = start_level;
1473 	iterator->end_level = end_level;
1474 	iterator->start_gfn = start_gfn;
1475 	iterator->end_gfn = end_gfn;
1476 
1477 	rmap_walk_init_level(iterator, iterator->start_level);
1478 }
1479 
1480 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1481 {
1482 	return !!iterator->rmap;
1483 }
1484 
1485 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1486 {
1487 	while (++iterator->rmap <= iterator->end_rmap) {
1488 		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1489 
1490 		if (iterator->rmap->val)
1491 			return;
1492 	}
1493 
1494 	if (++iterator->level > iterator->end_level) {
1495 		iterator->rmap = NULL;
1496 		return;
1497 	}
1498 
1499 	rmap_walk_init_level(iterator, iterator->level);
1500 }
1501 
1502 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
1503 	   _start_gfn, _end_gfn, _iter_)				\
1504 	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
1505 				 _end_level_, _start_gfn, _end_gfn);	\
1506 	     slot_rmap_walk_okay(_iter_);				\
1507 	     slot_rmap_walk_next(_iter_))
1508 
1509 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1510 			       struct kvm_memory_slot *slot, gfn_t gfn,
1511 			       int level, pte_t pte);
1512 
1513 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
1514 						 struct kvm_gfn_range *range,
1515 						 rmap_handler_t handler)
1516 {
1517 	struct slot_rmap_walk_iterator iterator;
1518 	bool ret = false;
1519 
1520 	for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
1521 				 range->start, range->end - 1, &iterator)
1522 		ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
1523 			       iterator.level, range->pte);
1524 
1525 	return ret;
1526 }
1527 
1528 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1529 {
1530 	bool flush = false;
1531 
1532 	if (kvm_memslots_have_rmaps(kvm))
1533 		flush = kvm_handle_gfn_range(kvm, range, kvm_zap_rmap);
1534 
1535 	if (is_tdp_mmu_enabled(kvm))
1536 		flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1537 
1538 	return flush;
1539 }
1540 
1541 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1542 {
1543 	bool flush = false;
1544 
1545 	if (kvm_memslots_have_rmaps(kvm))
1546 		flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmap);
1547 
1548 	if (is_tdp_mmu_enabled(kvm))
1549 		flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1550 
1551 	return flush;
1552 }
1553 
1554 static bool kvm_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1555 			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1556 			 pte_t unused)
1557 {
1558 	u64 *sptep;
1559 	struct rmap_iterator iter;
1560 	int young = 0;
1561 
1562 	for_each_rmap_spte(rmap_head, &iter, sptep)
1563 		young |= mmu_spte_age(sptep);
1564 
1565 	return young;
1566 }
1567 
1568 static bool kvm_test_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1569 			      struct kvm_memory_slot *slot, gfn_t gfn,
1570 			      int level, pte_t unused)
1571 {
1572 	u64 *sptep;
1573 	struct rmap_iterator iter;
1574 
1575 	for_each_rmap_spte(rmap_head, &iter, sptep)
1576 		if (is_accessed_spte(*sptep))
1577 			return true;
1578 	return false;
1579 }
1580 
1581 #define RMAP_RECYCLE_THRESHOLD 1000
1582 
1583 static void __rmap_add(struct kvm *kvm,
1584 		       struct kvm_mmu_memory_cache *cache,
1585 		       const struct kvm_memory_slot *slot,
1586 		       u64 *spte, gfn_t gfn, unsigned int access)
1587 {
1588 	struct kvm_mmu_page *sp;
1589 	struct kvm_rmap_head *rmap_head;
1590 	int rmap_count;
1591 
1592 	sp = sptep_to_sp(spte);
1593 	kvm_mmu_page_set_translation(sp, spte_index(spte), gfn, access);
1594 	kvm_update_page_stats(kvm, sp->role.level, 1);
1595 
1596 	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1597 	rmap_count = pte_list_add(cache, spte, rmap_head);
1598 
1599 	if (rmap_count > kvm->stat.max_mmu_rmap_size)
1600 		kvm->stat.max_mmu_rmap_size = rmap_count;
1601 	if (rmap_count > RMAP_RECYCLE_THRESHOLD) {
1602 		kvm_zap_all_rmap_sptes(kvm, rmap_head);
1603 		kvm_flush_remote_tlbs_with_address(
1604 				kvm, sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
1605 	}
1606 }
1607 
1608 static void rmap_add(struct kvm_vcpu *vcpu, const struct kvm_memory_slot *slot,
1609 		     u64 *spte, gfn_t gfn, unsigned int access)
1610 {
1611 	struct kvm_mmu_memory_cache *cache = &vcpu->arch.mmu_pte_list_desc_cache;
1612 
1613 	__rmap_add(vcpu->kvm, cache, slot, spte, gfn, access);
1614 }
1615 
1616 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1617 {
1618 	bool young = false;
1619 
1620 	if (kvm_memslots_have_rmaps(kvm))
1621 		young = kvm_handle_gfn_range(kvm, range, kvm_age_rmap);
1622 
1623 	if (is_tdp_mmu_enabled(kvm))
1624 		young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1625 
1626 	return young;
1627 }
1628 
1629 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1630 {
1631 	bool young = false;
1632 
1633 	if (kvm_memslots_have_rmaps(kvm))
1634 		young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmap);
1635 
1636 	if (is_tdp_mmu_enabled(kvm))
1637 		young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1638 
1639 	return young;
1640 }
1641 
1642 #ifdef MMU_DEBUG
1643 static int is_empty_shadow_page(u64 *spt)
1644 {
1645 	u64 *pos;
1646 	u64 *end;
1647 
1648 	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1649 		if (is_shadow_present_pte(*pos)) {
1650 			printk(KERN_ERR "%s: %p %llx\n", __func__,
1651 			       pos, *pos);
1652 			return 0;
1653 		}
1654 	return 1;
1655 }
1656 #endif
1657 
1658 /*
1659  * This value is the sum of all of the kvm instances's
1660  * kvm->arch.n_used_mmu_pages values.  We need a global,
1661  * aggregate version in order to make the slab shrinker
1662  * faster
1663  */
1664 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr)
1665 {
1666 	kvm->arch.n_used_mmu_pages += nr;
1667 	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1668 }
1669 
1670 static void kvm_mmu_free_shadow_page(struct kvm_mmu_page *sp)
1671 {
1672 	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1673 	hlist_del(&sp->hash_link);
1674 	list_del(&sp->link);
1675 	free_page((unsigned long)sp->spt);
1676 	if (!sp->role.direct)
1677 		free_page((unsigned long)sp->shadowed_translation);
1678 	kmem_cache_free(mmu_page_header_cache, sp);
1679 }
1680 
1681 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1682 {
1683 	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1684 }
1685 
1686 static void mmu_page_add_parent_pte(struct kvm_mmu_memory_cache *cache,
1687 				    struct kvm_mmu_page *sp, u64 *parent_pte)
1688 {
1689 	if (!parent_pte)
1690 		return;
1691 
1692 	pte_list_add(cache, parent_pte, &sp->parent_ptes);
1693 }
1694 
1695 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1696 				       u64 *parent_pte)
1697 {
1698 	pte_list_remove(parent_pte, &sp->parent_ptes);
1699 }
1700 
1701 static void drop_parent_pte(struct kvm_mmu_page *sp,
1702 			    u64 *parent_pte)
1703 {
1704 	mmu_page_remove_parent_pte(sp, parent_pte);
1705 	mmu_spte_clear_no_track(parent_pte);
1706 }
1707 
1708 static void mark_unsync(u64 *spte);
1709 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1710 {
1711 	u64 *sptep;
1712 	struct rmap_iterator iter;
1713 
1714 	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1715 		mark_unsync(sptep);
1716 	}
1717 }
1718 
1719 static void mark_unsync(u64 *spte)
1720 {
1721 	struct kvm_mmu_page *sp;
1722 
1723 	sp = sptep_to_sp(spte);
1724 	if (__test_and_set_bit(spte_index(spte), sp->unsync_child_bitmap))
1725 		return;
1726 	if (sp->unsync_children++)
1727 		return;
1728 	kvm_mmu_mark_parents_unsync(sp);
1729 }
1730 
1731 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1732 			       struct kvm_mmu_page *sp)
1733 {
1734 	return -1;
1735 }
1736 
1737 #define KVM_PAGE_ARRAY_NR 16
1738 
1739 struct kvm_mmu_pages {
1740 	struct mmu_page_and_offset {
1741 		struct kvm_mmu_page *sp;
1742 		unsigned int idx;
1743 	} page[KVM_PAGE_ARRAY_NR];
1744 	unsigned int nr;
1745 };
1746 
1747 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1748 			 int idx)
1749 {
1750 	int i;
1751 
1752 	if (sp->unsync)
1753 		for (i=0; i < pvec->nr; i++)
1754 			if (pvec->page[i].sp == sp)
1755 				return 0;
1756 
1757 	pvec->page[pvec->nr].sp = sp;
1758 	pvec->page[pvec->nr].idx = idx;
1759 	pvec->nr++;
1760 	return (pvec->nr == KVM_PAGE_ARRAY_NR);
1761 }
1762 
1763 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1764 {
1765 	--sp->unsync_children;
1766 	WARN_ON((int)sp->unsync_children < 0);
1767 	__clear_bit(idx, sp->unsync_child_bitmap);
1768 }
1769 
1770 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1771 			   struct kvm_mmu_pages *pvec)
1772 {
1773 	int i, ret, nr_unsync_leaf = 0;
1774 
1775 	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1776 		struct kvm_mmu_page *child;
1777 		u64 ent = sp->spt[i];
1778 
1779 		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1780 			clear_unsync_child_bit(sp, i);
1781 			continue;
1782 		}
1783 
1784 		child = to_shadow_page(ent & SPTE_BASE_ADDR_MASK);
1785 
1786 		if (child->unsync_children) {
1787 			if (mmu_pages_add(pvec, child, i))
1788 				return -ENOSPC;
1789 
1790 			ret = __mmu_unsync_walk(child, pvec);
1791 			if (!ret) {
1792 				clear_unsync_child_bit(sp, i);
1793 				continue;
1794 			} else if (ret > 0) {
1795 				nr_unsync_leaf += ret;
1796 			} else
1797 				return ret;
1798 		} else if (child->unsync) {
1799 			nr_unsync_leaf++;
1800 			if (mmu_pages_add(pvec, child, i))
1801 				return -ENOSPC;
1802 		} else
1803 			clear_unsync_child_bit(sp, i);
1804 	}
1805 
1806 	return nr_unsync_leaf;
1807 }
1808 
1809 #define INVALID_INDEX (-1)
1810 
1811 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1812 			   struct kvm_mmu_pages *pvec)
1813 {
1814 	pvec->nr = 0;
1815 	if (!sp->unsync_children)
1816 		return 0;
1817 
1818 	mmu_pages_add(pvec, sp, INVALID_INDEX);
1819 	return __mmu_unsync_walk(sp, pvec);
1820 }
1821 
1822 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1823 {
1824 	WARN_ON(!sp->unsync);
1825 	trace_kvm_mmu_sync_page(sp);
1826 	sp->unsync = 0;
1827 	--kvm->stat.mmu_unsync;
1828 }
1829 
1830 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1831 				     struct list_head *invalid_list);
1832 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1833 				    struct list_head *invalid_list);
1834 
1835 static bool sp_has_gptes(struct kvm_mmu_page *sp)
1836 {
1837 	if (sp->role.direct)
1838 		return false;
1839 
1840 	if (sp->role.passthrough)
1841 		return false;
1842 
1843 	return true;
1844 }
1845 
1846 #define for_each_valid_sp(_kvm, _sp, _list)				\
1847 	hlist_for_each_entry(_sp, _list, hash_link)			\
1848 		if (is_obsolete_sp((_kvm), (_sp))) {			\
1849 		} else
1850 
1851 #define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn)		\
1852 	for_each_valid_sp(_kvm, _sp,					\
1853 	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])	\
1854 		if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else
1855 
1856 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1857 			 struct list_head *invalid_list)
1858 {
1859 	int ret = vcpu->arch.mmu->sync_page(vcpu, sp);
1860 
1861 	if (ret < 0)
1862 		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1863 	return ret;
1864 }
1865 
1866 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1867 					struct list_head *invalid_list,
1868 					bool remote_flush)
1869 {
1870 	if (!remote_flush && list_empty(invalid_list))
1871 		return false;
1872 
1873 	if (!list_empty(invalid_list))
1874 		kvm_mmu_commit_zap_page(kvm, invalid_list);
1875 	else
1876 		kvm_flush_remote_tlbs(kvm);
1877 	return true;
1878 }
1879 
1880 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1881 {
1882 	if (sp->role.invalid)
1883 		return true;
1884 
1885 	/* TDP MMU pages due not use the MMU generation. */
1886 	return !sp->tdp_mmu_page &&
1887 	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1888 }
1889 
1890 struct mmu_page_path {
1891 	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1892 	unsigned int idx[PT64_ROOT_MAX_LEVEL];
1893 };
1894 
1895 #define for_each_sp(pvec, sp, parents, i)			\
1896 		for (i = mmu_pages_first(&pvec, &parents);	\
1897 			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
1898 			i = mmu_pages_next(&pvec, &parents, i))
1899 
1900 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1901 			  struct mmu_page_path *parents,
1902 			  int i)
1903 {
1904 	int n;
1905 
1906 	for (n = i+1; n < pvec->nr; n++) {
1907 		struct kvm_mmu_page *sp = pvec->page[n].sp;
1908 		unsigned idx = pvec->page[n].idx;
1909 		int level = sp->role.level;
1910 
1911 		parents->idx[level-1] = idx;
1912 		if (level == PG_LEVEL_4K)
1913 			break;
1914 
1915 		parents->parent[level-2] = sp;
1916 	}
1917 
1918 	return n;
1919 }
1920 
1921 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1922 			   struct mmu_page_path *parents)
1923 {
1924 	struct kvm_mmu_page *sp;
1925 	int level;
1926 
1927 	if (pvec->nr == 0)
1928 		return 0;
1929 
1930 	WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1931 
1932 	sp = pvec->page[0].sp;
1933 	level = sp->role.level;
1934 	WARN_ON(level == PG_LEVEL_4K);
1935 
1936 	parents->parent[level-2] = sp;
1937 
1938 	/* Also set up a sentinel.  Further entries in pvec are all
1939 	 * children of sp, so this element is never overwritten.
1940 	 */
1941 	parents->parent[level-1] = NULL;
1942 	return mmu_pages_next(pvec, parents, 0);
1943 }
1944 
1945 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1946 {
1947 	struct kvm_mmu_page *sp;
1948 	unsigned int level = 0;
1949 
1950 	do {
1951 		unsigned int idx = parents->idx[level];
1952 		sp = parents->parent[level];
1953 		if (!sp)
1954 			return;
1955 
1956 		WARN_ON(idx == INVALID_INDEX);
1957 		clear_unsync_child_bit(sp, idx);
1958 		level++;
1959 	} while (!sp->unsync_children);
1960 }
1961 
1962 static int mmu_sync_children(struct kvm_vcpu *vcpu,
1963 			     struct kvm_mmu_page *parent, bool can_yield)
1964 {
1965 	int i;
1966 	struct kvm_mmu_page *sp;
1967 	struct mmu_page_path parents;
1968 	struct kvm_mmu_pages pages;
1969 	LIST_HEAD(invalid_list);
1970 	bool flush = false;
1971 
1972 	while (mmu_unsync_walk(parent, &pages)) {
1973 		bool protected = false;
1974 
1975 		for_each_sp(pages, sp, parents, i)
1976 			protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn);
1977 
1978 		if (protected) {
1979 			kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true);
1980 			flush = false;
1981 		}
1982 
1983 		for_each_sp(pages, sp, parents, i) {
1984 			kvm_unlink_unsync_page(vcpu->kvm, sp);
1985 			flush |= kvm_sync_page(vcpu, sp, &invalid_list) > 0;
1986 			mmu_pages_clear_parents(&parents);
1987 		}
1988 		if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
1989 			kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
1990 			if (!can_yield) {
1991 				kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1992 				return -EINTR;
1993 			}
1994 
1995 			cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
1996 			flush = false;
1997 		}
1998 	}
1999 
2000 	kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2001 	return 0;
2002 }
2003 
2004 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2005 {
2006 	atomic_set(&sp->write_flooding_count,  0);
2007 }
2008 
2009 static void clear_sp_write_flooding_count(u64 *spte)
2010 {
2011 	__clear_sp_write_flooding_count(sptep_to_sp(spte));
2012 }
2013 
2014 /*
2015  * The vCPU is required when finding indirect shadow pages; the shadow
2016  * page may already exist and syncing it needs the vCPU pointer in
2017  * order to read guest page tables.  Direct shadow pages are never
2018  * unsync, thus @vcpu can be NULL if @role.direct is true.
2019  */
2020 static struct kvm_mmu_page *kvm_mmu_find_shadow_page(struct kvm *kvm,
2021 						     struct kvm_vcpu *vcpu,
2022 						     gfn_t gfn,
2023 						     struct hlist_head *sp_list,
2024 						     union kvm_mmu_page_role role)
2025 {
2026 	struct kvm_mmu_page *sp;
2027 	int ret;
2028 	int collisions = 0;
2029 	LIST_HEAD(invalid_list);
2030 
2031 	for_each_valid_sp(kvm, sp, sp_list) {
2032 		if (sp->gfn != gfn) {
2033 			collisions++;
2034 			continue;
2035 		}
2036 
2037 		if (sp->role.word != role.word) {
2038 			/*
2039 			 * If the guest is creating an upper-level page, zap
2040 			 * unsync pages for the same gfn.  While it's possible
2041 			 * the guest is using recursive page tables, in all
2042 			 * likelihood the guest has stopped using the unsync
2043 			 * page and is installing a completely unrelated page.
2044 			 * Unsync pages must not be left as is, because the new
2045 			 * upper-level page will be write-protected.
2046 			 */
2047 			if (role.level > PG_LEVEL_4K && sp->unsync)
2048 				kvm_mmu_prepare_zap_page(kvm, sp,
2049 							 &invalid_list);
2050 			continue;
2051 		}
2052 
2053 		/* unsync and write-flooding only apply to indirect SPs. */
2054 		if (sp->role.direct)
2055 			goto out;
2056 
2057 		if (sp->unsync) {
2058 			if (KVM_BUG_ON(!vcpu, kvm))
2059 				break;
2060 
2061 			/*
2062 			 * The page is good, but is stale.  kvm_sync_page does
2063 			 * get the latest guest state, but (unlike mmu_unsync_children)
2064 			 * it doesn't write-protect the page or mark it synchronized!
2065 			 * This way the validity of the mapping is ensured, but the
2066 			 * overhead of write protection is not incurred until the
2067 			 * guest invalidates the TLB mapping.  This allows multiple
2068 			 * SPs for a single gfn to be unsync.
2069 			 *
2070 			 * If the sync fails, the page is zapped.  If so, break
2071 			 * in order to rebuild it.
2072 			 */
2073 			ret = kvm_sync_page(vcpu, sp, &invalid_list);
2074 			if (ret < 0)
2075 				break;
2076 
2077 			WARN_ON(!list_empty(&invalid_list));
2078 			if (ret > 0)
2079 				kvm_flush_remote_tlbs(kvm);
2080 		}
2081 
2082 		__clear_sp_write_flooding_count(sp);
2083 
2084 		goto out;
2085 	}
2086 
2087 	sp = NULL;
2088 	++kvm->stat.mmu_cache_miss;
2089 
2090 out:
2091 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2092 
2093 	if (collisions > kvm->stat.max_mmu_page_hash_collisions)
2094 		kvm->stat.max_mmu_page_hash_collisions = collisions;
2095 	return sp;
2096 }
2097 
2098 /* Caches used when allocating a new shadow page. */
2099 struct shadow_page_caches {
2100 	struct kvm_mmu_memory_cache *page_header_cache;
2101 	struct kvm_mmu_memory_cache *shadow_page_cache;
2102 	struct kvm_mmu_memory_cache *shadowed_info_cache;
2103 };
2104 
2105 static struct kvm_mmu_page *kvm_mmu_alloc_shadow_page(struct kvm *kvm,
2106 						      struct shadow_page_caches *caches,
2107 						      gfn_t gfn,
2108 						      struct hlist_head *sp_list,
2109 						      union kvm_mmu_page_role role)
2110 {
2111 	struct kvm_mmu_page *sp;
2112 
2113 	sp = kvm_mmu_memory_cache_alloc(caches->page_header_cache);
2114 	sp->spt = kvm_mmu_memory_cache_alloc(caches->shadow_page_cache);
2115 	if (!role.direct)
2116 		sp->shadowed_translation = kvm_mmu_memory_cache_alloc(caches->shadowed_info_cache);
2117 
2118 	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2119 
2120 	/*
2121 	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
2122 	 * depends on valid pages being added to the head of the list.  See
2123 	 * comments in kvm_zap_obsolete_pages().
2124 	 */
2125 	sp->mmu_valid_gen = kvm->arch.mmu_valid_gen;
2126 	list_add(&sp->link, &kvm->arch.active_mmu_pages);
2127 	kvm_mod_used_mmu_pages(kvm, +1);
2128 
2129 	sp->gfn = gfn;
2130 	sp->role = role;
2131 	hlist_add_head(&sp->hash_link, sp_list);
2132 	if (sp_has_gptes(sp))
2133 		account_shadowed(kvm, sp);
2134 
2135 	return sp;
2136 }
2137 
2138 /* Note, @vcpu may be NULL if @role.direct is true; see kvm_mmu_find_shadow_page. */
2139 static struct kvm_mmu_page *__kvm_mmu_get_shadow_page(struct kvm *kvm,
2140 						      struct kvm_vcpu *vcpu,
2141 						      struct shadow_page_caches *caches,
2142 						      gfn_t gfn,
2143 						      union kvm_mmu_page_role role)
2144 {
2145 	struct hlist_head *sp_list;
2146 	struct kvm_mmu_page *sp;
2147 	bool created = false;
2148 
2149 	sp_list = &kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2150 
2151 	sp = kvm_mmu_find_shadow_page(kvm, vcpu, gfn, sp_list, role);
2152 	if (!sp) {
2153 		created = true;
2154 		sp = kvm_mmu_alloc_shadow_page(kvm, caches, gfn, sp_list, role);
2155 	}
2156 
2157 	trace_kvm_mmu_get_page(sp, created);
2158 	return sp;
2159 }
2160 
2161 static struct kvm_mmu_page *kvm_mmu_get_shadow_page(struct kvm_vcpu *vcpu,
2162 						    gfn_t gfn,
2163 						    union kvm_mmu_page_role role)
2164 {
2165 	struct shadow_page_caches caches = {
2166 		.page_header_cache = &vcpu->arch.mmu_page_header_cache,
2167 		.shadow_page_cache = &vcpu->arch.mmu_shadow_page_cache,
2168 		.shadowed_info_cache = &vcpu->arch.mmu_shadowed_info_cache,
2169 	};
2170 
2171 	return __kvm_mmu_get_shadow_page(vcpu->kvm, vcpu, &caches, gfn, role);
2172 }
2173 
2174 static union kvm_mmu_page_role kvm_mmu_child_role(u64 *sptep, bool direct,
2175 						  unsigned int access)
2176 {
2177 	struct kvm_mmu_page *parent_sp = sptep_to_sp(sptep);
2178 	union kvm_mmu_page_role role;
2179 
2180 	role = parent_sp->role;
2181 	role.level--;
2182 	role.access = access;
2183 	role.direct = direct;
2184 	role.passthrough = 0;
2185 
2186 	/*
2187 	 * If the guest has 4-byte PTEs then that means it's using 32-bit,
2188 	 * 2-level, non-PAE paging. KVM shadows such guests with PAE paging
2189 	 * (i.e. 8-byte PTEs). The difference in PTE size means that KVM must
2190 	 * shadow each guest page table with multiple shadow page tables, which
2191 	 * requires extra bookkeeping in the role.
2192 	 *
2193 	 * Specifically, to shadow the guest's page directory (which covers a
2194 	 * 4GiB address space), KVM uses 4 PAE page directories, each mapping
2195 	 * 1GiB of the address space. @role.quadrant encodes which quarter of
2196 	 * the address space each maps.
2197 	 *
2198 	 * To shadow the guest's page tables (which each map a 4MiB region), KVM
2199 	 * uses 2 PAE page tables, each mapping a 2MiB region. For these,
2200 	 * @role.quadrant encodes which half of the region they map.
2201 	 *
2202 	 * Concretely, a 4-byte PDE consumes bits 31:22, while an 8-byte PDE
2203 	 * consumes bits 29:21.  To consume bits 31:30, KVM's uses 4 shadow
2204 	 * PDPTEs; those 4 PAE page directories are pre-allocated and their
2205 	 * quadrant is assigned in mmu_alloc_root().   A 4-byte PTE consumes
2206 	 * bits 21:12, while an 8-byte PTE consumes bits 20:12.  To consume
2207 	 * bit 21 in the PTE (the child here), KVM propagates that bit to the
2208 	 * quadrant, i.e. sets quadrant to '0' or '1'.  The parent 8-byte PDE
2209 	 * covers bit 21 (see above), thus the quadrant is calculated from the
2210 	 * _least_ significant bit of the PDE index.
2211 	 */
2212 	if (role.has_4_byte_gpte) {
2213 		WARN_ON_ONCE(role.level != PG_LEVEL_4K);
2214 		role.quadrant = spte_index(sptep) & 1;
2215 	}
2216 
2217 	return role;
2218 }
2219 
2220 static struct kvm_mmu_page *kvm_mmu_get_child_sp(struct kvm_vcpu *vcpu,
2221 						 u64 *sptep, gfn_t gfn,
2222 						 bool direct, unsigned int access)
2223 {
2224 	union kvm_mmu_page_role role;
2225 
2226 	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep))
2227 		return ERR_PTR(-EEXIST);
2228 
2229 	role = kvm_mmu_child_role(sptep, direct, access);
2230 	return kvm_mmu_get_shadow_page(vcpu, gfn, role);
2231 }
2232 
2233 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2234 					struct kvm_vcpu *vcpu, hpa_t root,
2235 					u64 addr)
2236 {
2237 	iterator->addr = addr;
2238 	iterator->shadow_addr = root;
2239 	iterator->level = vcpu->arch.mmu->root_role.level;
2240 
2241 	if (iterator->level >= PT64_ROOT_4LEVEL &&
2242 	    vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL &&
2243 	    !vcpu->arch.mmu->root_role.direct)
2244 		iterator->level = PT32E_ROOT_LEVEL;
2245 
2246 	if (iterator->level == PT32E_ROOT_LEVEL) {
2247 		/*
2248 		 * prev_root is currently only used for 64-bit hosts. So only
2249 		 * the active root_hpa is valid here.
2250 		 */
2251 		BUG_ON(root != vcpu->arch.mmu->root.hpa);
2252 
2253 		iterator->shadow_addr
2254 			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2255 		iterator->shadow_addr &= SPTE_BASE_ADDR_MASK;
2256 		--iterator->level;
2257 		if (!iterator->shadow_addr)
2258 			iterator->level = 0;
2259 	}
2260 }
2261 
2262 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2263 			     struct kvm_vcpu *vcpu, u64 addr)
2264 {
2265 	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa,
2266 				    addr);
2267 }
2268 
2269 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2270 {
2271 	if (iterator->level < PG_LEVEL_4K)
2272 		return false;
2273 
2274 	iterator->index = SPTE_INDEX(iterator->addr, iterator->level);
2275 	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2276 	return true;
2277 }
2278 
2279 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2280 			       u64 spte)
2281 {
2282 	if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) {
2283 		iterator->level = 0;
2284 		return;
2285 	}
2286 
2287 	iterator->shadow_addr = spte & SPTE_BASE_ADDR_MASK;
2288 	--iterator->level;
2289 }
2290 
2291 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2292 {
2293 	__shadow_walk_next(iterator, *iterator->sptep);
2294 }
2295 
2296 static void __link_shadow_page(struct kvm *kvm,
2297 			       struct kvm_mmu_memory_cache *cache, u64 *sptep,
2298 			       struct kvm_mmu_page *sp, bool flush)
2299 {
2300 	u64 spte;
2301 
2302 	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2303 
2304 	/*
2305 	 * If an SPTE is present already, it must be a leaf and therefore
2306 	 * a large one.  Drop it, and flush the TLB if needed, before
2307 	 * installing sp.
2308 	 */
2309 	if (is_shadow_present_pte(*sptep))
2310 		drop_large_spte(kvm, sptep, flush);
2311 
2312 	spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2313 
2314 	mmu_spte_set(sptep, spte);
2315 
2316 	mmu_page_add_parent_pte(cache, sp, sptep);
2317 
2318 	if (sp->unsync_children || sp->unsync)
2319 		mark_unsync(sptep);
2320 }
2321 
2322 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2323 			     struct kvm_mmu_page *sp)
2324 {
2325 	__link_shadow_page(vcpu->kvm, &vcpu->arch.mmu_pte_list_desc_cache, sptep, sp, true);
2326 }
2327 
2328 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2329 				   unsigned direct_access)
2330 {
2331 	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2332 		struct kvm_mmu_page *child;
2333 
2334 		/*
2335 		 * For the direct sp, if the guest pte's dirty bit
2336 		 * changed form clean to dirty, it will corrupt the
2337 		 * sp's access: allow writable in the read-only sp,
2338 		 * so we should update the spte at this point to get
2339 		 * a new sp with the correct access.
2340 		 */
2341 		child = to_shadow_page(*sptep & SPTE_BASE_ADDR_MASK);
2342 		if (child->role.access == direct_access)
2343 			return;
2344 
2345 		drop_parent_pte(child, sptep);
2346 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2347 	}
2348 }
2349 
2350 /* Returns the number of zapped non-leaf child shadow pages. */
2351 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2352 			    u64 *spte, struct list_head *invalid_list)
2353 {
2354 	u64 pte;
2355 	struct kvm_mmu_page *child;
2356 
2357 	pte = *spte;
2358 	if (is_shadow_present_pte(pte)) {
2359 		if (is_last_spte(pte, sp->role.level)) {
2360 			drop_spte(kvm, spte);
2361 		} else {
2362 			child = to_shadow_page(pte & SPTE_BASE_ADDR_MASK);
2363 			drop_parent_pte(child, spte);
2364 
2365 			/*
2366 			 * Recursively zap nested TDP SPs, parentless SPs are
2367 			 * unlikely to be used again in the near future.  This
2368 			 * avoids retaining a large number of stale nested SPs.
2369 			 */
2370 			if (tdp_enabled && invalid_list &&
2371 			    child->role.guest_mode && !child->parent_ptes.val)
2372 				return kvm_mmu_prepare_zap_page(kvm, child,
2373 								invalid_list);
2374 		}
2375 	} else if (is_mmio_spte(pte)) {
2376 		mmu_spte_clear_no_track(spte);
2377 	}
2378 	return 0;
2379 }
2380 
2381 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2382 					struct kvm_mmu_page *sp,
2383 					struct list_head *invalid_list)
2384 {
2385 	int zapped = 0;
2386 	unsigned i;
2387 
2388 	for (i = 0; i < SPTE_ENT_PER_PAGE; ++i)
2389 		zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2390 
2391 	return zapped;
2392 }
2393 
2394 static void kvm_mmu_unlink_parents(struct kvm_mmu_page *sp)
2395 {
2396 	u64 *sptep;
2397 	struct rmap_iterator iter;
2398 
2399 	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2400 		drop_parent_pte(sp, sptep);
2401 }
2402 
2403 static int mmu_zap_unsync_children(struct kvm *kvm,
2404 				   struct kvm_mmu_page *parent,
2405 				   struct list_head *invalid_list)
2406 {
2407 	int i, zapped = 0;
2408 	struct mmu_page_path parents;
2409 	struct kvm_mmu_pages pages;
2410 
2411 	if (parent->role.level == PG_LEVEL_4K)
2412 		return 0;
2413 
2414 	while (mmu_unsync_walk(parent, &pages)) {
2415 		struct kvm_mmu_page *sp;
2416 
2417 		for_each_sp(pages, sp, parents, i) {
2418 			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2419 			mmu_pages_clear_parents(&parents);
2420 			zapped++;
2421 		}
2422 	}
2423 
2424 	return zapped;
2425 }
2426 
2427 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2428 				       struct kvm_mmu_page *sp,
2429 				       struct list_head *invalid_list,
2430 				       int *nr_zapped)
2431 {
2432 	bool list_unstable, zapped_root = false;
2433 
2434 	trace_kvm_mmu_prepare_zap_page(sp);
2435 	++kvm->stat.mmu_shadow_zapped;
2436 	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2437 	*nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2438 	kvm_mmu_unlink_parents(sp);
2439 
2440 	/* Zapping children means active_mmu_pages has become unstable. */
2441 	list_unstable = *nr_zapped;
2442 
2443 	if (!sp->role.invalid && sp_has_gptes(sp))
2444 		unaccount_shadowed(kvm, sp);
2445 
2446 	if (sp->unsync)
2447 		kvm_unlink_unsync_page(kvm, sp);
2448 	if (!sp->root_count) {
2449 		/* Count self */
2450 		(*nr_zapped)++;
2451 
2452 		/*
2453 		 * Already invalid pages (previously active roots) are not on
2454 		 * the active page list.  See list_del() in the "else" case of
2455 		 * !sp->root_count.
2456 		 */
2457 		if (sp->role.invalid)
2458 			list_add(&sp->link, invalid_list);
2459 		else
2460 			list_move(&sp->link, invalid_list);
2461 		kvm_mod_used_mmu_pages(kvm, -1);
2462 	} else {
2463 		/*
2464 		 * Remove the active root from the active page list, the root
2465 		 * will be explicitly freed when the root_count hits zero.
2466 		 */
2467 		list_del(&sp->link);
2468 
2469 		/*
2470 		 * Obsolete pages cannot be used on any vCPUs, see the comment
2471 		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2472 		 * treats invalid shadow pages as being obsolete.
2473 		 */
2474 		zapped_root = !is_obsolete_sp(kvm, sp);
2475 	}
2476 
2477 	if (sp->lpage_disallowed)
2478 		unaccount_huge_nx_page(kvm, sp);
2479 
2480 	sp->role.invalid = 1;
2481 
2482 	/*
2483 	 * Make the request to free obsolete roots after marking the root
2484 	 * invalid, otherwise other vCPUs may not see it as invalid.
2485 	 */
2486 	if (zapped_root)
2487 		kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
2488 	return list_unstable;
2489 }
2490 
2491 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2492 				     struct list_head *invalid_list)
2493 {
2494 	int nr_zapped;
2495 
2496 	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2497 	return nr_zapped;
2498 }
2499 
2500 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2501 				    struct list_head *invalid_list)
2502 {
2503 	struct kvm_mmu_page *sp, *nsp;
2504 
2505 	if (list_empty(invalid_list))
2506 		return;
2507 
2508 	/*
2509 	 * We need to make sure everyone sees our modifications to
2510 	 * the page tables and see changes to vcpu->mode here. The barrier
2511 	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2512 	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2513 	 *
2514 	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2515 	 * guest mode and/or lockless shadow page table walks.
2516 	 */
2517 	kvm_flush_remote_tlbs(kvm);
2518 
2519 	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2520 		WARN_ON(!sp->role.invalid || sp->root_count);
2521 		kvm_mmu_free_shadow_page(sp);
2522 	}
2523 }
2524 
2525 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2526 						  unsigned long nr_to_zap)
2527 {
2528 	unsigned long total_zapped = 0;
2529 	struct kvm_mmu_page *sp, *tmp;
2530 	LIST_HEAD(invalid_list);
2531 	bool unstable;
2532 	int nr_zapped;
2533 
2534 	if (list_empty(&kvm->arch.active_mmu_pages))
2535 		return 0;
2536 
2537 restart:
2538 	list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2539 		/*
2540 		 * Don't zap active root pages, the page itself can't be freed
2541 		 * and zapping it will just force vCPUs to realloc and reload.
2542 		 */
2543 		if (sp->root_count)
2544 			continue;
2545 
2546 		unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2547 						      &nr_zapped);
2548 		total_zapped += nr_zapped;
2549 		if (total_zapped >= nr_to_zap)
2550 			break;
2551 
2552 		if (unstable)
2553 			goto restart;
2554 	}
2555 
2556 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2557 
2558 	kvm->stat.mmu_recycled += total_zapped;
2559 	return total_zapped;
2560 }
2561 
2562 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2563 {
2564 	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2565 		return kvm->arch.n_max_mmu_pages -
2566 			kvm->arch.n_used_mmu_pages;
2567 
2568 	return 0;
2569 }
2570 
2571 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2572 {
2573 	unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2574 
2575 	if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2576 		return 0;
2577 
2578 	kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2579 
2580 	/*
2581 	 * Note, this check is intentionally soft, it only guarantees that one
2582 	 * page is available, while the caller may end up allocating as many as
2583 	 * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
2584 	 * exceeding the (arbitrary by default) limit will not harm the host,
2585 	 * being too aggressive may unnecessarily kill the guest, and getting an
2586 	 * exact count is far more trouble than it's worth, especially in the
2587 	 * page fault paths.
2588 	 */
2589 	if (!kvm_mmu_available_pages(vcpu->kvm))
2590 		return -ENOSPC;
2591 	return 0;
2592 }
2593 
2594 /*
2595  * Changing the number of mmu pages allocated to the vm
2596  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2597  */
2598 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2599 {
2600 	write_lock(&kvm->mmu_lock);
2601 
2602 	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2603 		kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2604 						  goal_nr_mmu_pages);
2605 
2606 		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2607 	}
2608 
2609 	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2610 
2611 	write_unlock(&kvm->mmu_lock);
2612 }
2613 
2614 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2615 {
2616 	struct kvm_mmu_page *sp;
2617 	LIST_HEAD(invalid_list);
2618 	int r;
2619 
2620 	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2621 	r = 0;
2622 	write_lock(&kvm->mmu_lock);
2623 	for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) {
2624 		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2625 			 sp->role.word);
2626 		r = 1;
2627 		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2628 	}
2629 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2630 	write_unlock(&kvm->mmu_lock);
2631 
2632 	return r;
2633 }
2634 
2635 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2636 {
2637 	gpa_t gpa;
2638 	int r;
2639 
2640 	if (vcpu->arch.mmu->root_role.direct)
2641 		return 0;
2642 
2643 	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
2644 
2645 	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2646 
2647 	return r;
2648 }
2649 
2650 static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2651 {
2652 	trace_kvm_mmu_unsync_page(sp);
2653 	++kvm->stat.mmu_unsync;
2654 	sp->unsync = 1;
2655 
2656 	kvm_mmu_mark_parents_unsync(sp);
2657 }
2658 
2659 /*
2660  * Attempt to unsync any shadow pages that can be reached by the specified gfn,
2661  * KVM is creating a writable mapping for said gfn.  Returns 0 if all pages
2662  * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
2663  * be write-protected.
2664  */
2665 int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot,
2666 			    gfn_t gfn, bool can_unsync, bool prefetch)
2667 {
2668 	struct kvm_mmu_page *sp;
2669 	bool locked = false;
2670 
2671 	/*
2672 	 * Force write-protection if the page is being tracked.  Note, the page
2673 	 * track machinery is used to write-protect upper-level shadow pages,
2674 	 * i.e. this guards the role.level == 4K assertion below!
2675 	 */
2676 	if (kvm_slot_page_track_is_active(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE))
2677 		return -EPERM;
2678 
2679 	/*
2680 	 * The page is not write-tracked, mark existing shadow pages unsync
2681 	 * unless KVM is synchronizing an unsync SP (can_unsync = false).  In
2682 	 * that case, KVM must complete emulation of the guest TLB flush before
2683 	 * allowing shadow pages to become unsync (writable by the guest).
2684 	 */
2685 	for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) {
2686 		if (!can_unsync)
2687 			return -EPERM;
2688 
2689 		if (sp->unsync)
2690 			continue;
2691 
2692 		if (prefetch)
2693 			return -EEXIST;
2694 
2695 		/*
2696 		 * TDP MMU page faults require an additional spinlock as they
2697 		 * run with mmu_lock held for read, not write, and the unsync
2698 		 * logic is not thread safe.  Take the spinklock regardless of
2699 		 * the MMU type to avoid extra conditionals/parameters, there's
2700 		 * no meaningful penalty if mmu_lock is held for write.
2701 		 */
2702 		if (!locked) {
2703 			locked = true;
2704 			spin_lock(&kvm->arch.mmu_unsync_pages_lock);
2705 
2706 			/*
2707 			 * Recheck after taking the spinlock, a different vCPU
2708 			 * may have since marked the page unsync.  A false
2709 			 * positive on the unprotected check above is not
2710 			 * possible as clearing sp->unsync _must_ hold mmu_lock
2711 			 * for write, i.e. unsync cannot transition from 0->1
2712 			 * while this CPU holds mmu_lock for read (or write).
2713 			 */
2714 			if (READ_ONCE(sp->unsync))
2715 				continue;
2716 		}
2717 
2718 		WARN_ON(sp->role.level != PG_LEVEL_4K);
2719 		kvm_unsync_page(kvm, sp);
2720 	}
2721 	if (locked)
2722 		spin_unlock(&kvm->arch.mmu_unsync_pages_lock);
2723 
2724 	/*
2725 	 * We need to ensure that the marking of unsync pages is visible
2726 	 * before the SPTE is updated to allow writes because
2727 	 * kvm_mmu_sync_roots() checks the unsync flags without holding
2728 	 * the MMU lock and so can race with this. If the SPTE was updated
2729 	 * before the page had been marked as unsync-ed, something like the
2730 	 * following could happen:
2731 	 *
2732 	 * CPU 1                    CPU 2
2733 	 * ---------------------------------------------------------------------
2734 	 * 1.2 Host updates SPTE
2735 	 *     to be writable
2736 	 *                      2.1 Guest writes a GPTE for GVA X.
2737 	 *                          (GPTE being in the guest page table shadowed
2738 	 *                           by the SP from CPU 1.)
2739 	 *                          This reads SPTE during the page table walk.
2740 	 *                          Since SPTE.W is read as 1, there is no
2741 	 *                          fault.
2742 	 *
2743 	 *                      2.2 Guest issues TLB flush.
2744 	 *                          That causes a VM Exit.
2745 	 *
2746 	 *                      2.3 Walking of unsync pages sees sp->unsync is
2747 	 *                          false and skips the page.
2748 	 *
2749 	 *                      2.4 Guest accesses GVA X.
2750 	 *                          Since the mapping in the SP was not updated,
2751 	 *                          so the old mapping for GVA X incorrectly
2752 	 *                          gets used.
2753 	 * 1.1 Host marks SP
2754 	 *     as unsync
2755 	 *     (sp->unsync = true)
2756 	 *
2757 	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2758 	 * the situation in 2.4 does not arise.  It pairs with the read barrier
2759 	 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3.
2760 	 */
2761 	smp_wmb();
2762 
2763 	return 0;
2764 }
2765 
2766 static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
2767 			u64 *sptep, unsigned int pte_access, gfn_t gfn,
2768 			kvm_pfn_t pfn, struct kvm_page_fault *fault)
2769 {
2770 	struct kvm_mmu_page *sp = sptep_to_sp(sptep);
2771 	int level = sp->role.level;
2772 	int was_rmapped = 0;
2773 	int ret = RET_PF_FIXED;
2774 	bool flush = false;
2775 	bool wrprot;
2776 	u64 spte;
2777 
2778 	/* Prefetching always gets a writable pfn.  */
2779 	bool host_writable = !fault || fault->map_writable;
2780 	bool prefetch = !fault || fault->prefetch;
2781 	bool write_fault = fault && fault->write;
2782 
2783 	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2784 		 *sptep, write_fault, gfn);
2785 
2786 	if (unlikely(is_noslot_pfn(pfn))) {
2787 		vcpu->stat.pf_mmio_spte_created++;
2788 		mark_mmio_spte(vcpu, sptep, gfn, pte_access);
2789 		return RET_PF_EMULATE;
2790 	}
2791 
2792 	if (is_shadow_present_pte(*sptep)) {
2793 		/*
2794 		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2795 		 * the parent of the now unreachable PTE.
2796 		 */
2797 		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2798 			struct kvm_mmu_page *child;
2799 			u64 pte = *sptep;
2800 
2801 			child = to_shadow_page(pte & SPTE_BASE_ADDR_MASK);
2802 			drop_parent_pte(child, sptep);
2803 			flush = true;
2804 		} else if (pfn != spte_to_pfn(*sptep)) {
2805 			pgprintk("hfn old %llx new %llx\n",
2806 				 spte_to_pfn(*sptep), pfn);
2807 			drop_spte(vcpu->kvm, sptep);
2808 			flush = true;
2809 		} else
2810 			was_rmapped = 1;
2811 	}
2812 
2813 	wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch,
2814 			   true, host_writable, &spte);
2815 
2816 	if (*sptep == spte) {
2817 		ret = RET_PF_SPURIOUS;
2818 	} else {
2819 		flush |= mmu_spte_update(sptep, spte);
2820 		trace_kvm_mmu_set_spte(level, gfn, sptep);
2821 	}
2822 
2823 	if (wrprot) {
2824 		if (write_fault)
2825 			ret = RET_PF_EMULATE;
2826 	}
2827 
2828 	if (flush)
2829 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2830 				KVM_PAGES_PER_HPAGE(level));
2831 
2832 	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2833 
2834 	if (!was_rmapped) {
2835 		WARN_ON_ONCE(ret == RET_PF_SPURIOUS);
2836 		rmap_add(vcpu, slot, sptep, gfn, pte_access);
2837 	} else {
2838 		/* Already rmapped but the pte_access bits may have changed. */
2839 		kvm_mmu_page_set_access(sp, spte_index(sptep), pte_access);
2840 	}
2841 
2842 	return ret;
2843 }
2844 
2845 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2846 				    struct kvm_mmu_page *sp,
2847 				    u64 *start, u64 *end)
2848 {
2849 	struct page *pages[PTE_PREFETCH_NUM];
2850 	struct kvm_memory_slot *slot;
2851 	unsigned int access = sp->role.access;
2852 	int i, ret;
2853 	gfn_t gfn;
2854 
2855 	gfn = kvm_mmu_page_get_gfn(sp, spte_index(start));
2856 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2857 	if (!slot)
2858 		return -1;
2859 
2860 	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2861 	if (ret <= 0)
2862 		return -1;
2863 
2864 	for (i = 0; i < ret; i++, gfn++, start++) {
2865 		mmu_set_spte(vcpu, slot, start, access, gfn,
2866 			     page_to_pfn(pages[i]), NULL);
2867 		put_page(pages[i]);
2868 	}
2869 
2870 	return 0;
2871 }
2872 
2873 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2874 				  struct kvm_mmu_page *sp, u64 *sptep)
2875 {
2876 	u64 *spte, *start = NULL;
2877 	int i;
2878 
2879 	WARN_ON(!sp->role.direct);
2880 
2881 	i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1);
2882 	spte = sp->spt + i;
2883 
2884 	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2885 		if (is_shadow_present_pte(*spte) || spte == sptep) {
2886 			if (!start)
2887 				continue;
2888 			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2889 				return;
2890 			start = NULL;
2891 		} else if (!start)
2892 			start = spte;
2893 	}
2894 	if (start)
2895 		direct_pte_prefetch_many(vcpu, sp, start, spte);
2896 }
2897 
2898 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2899 {
2900 	struct kvm_mmu_page *sp;
2901 
2902 	sp = sptep_to_sp(sptep);
2903 
2904 	/*
2905 	 * Without accessed bits, there's no way to distinguish between
2906 	 * actually accessed translations and prefetched, so disable pte
2907 	 * prefetch if accessed bits aren't available.
2908 	 */
2909 	if (sp_ad_disabled(sp))
2910 		return;
2911 
2912 	if (sp->role.level > PG_LEVEL_4K)
2913 		return;
2914 
2915 	/*
2916 	 * If addresses are being invalidated, skip prefetching to avoid
2917 	 * accidentally prefetching those addresses.
2918 	 */
2919 	if (unlikely(vcpu->kvm->mmu_invalidate_in_progress))
2920 		return;
2921 
2922 	__direct_pte_prefetch(vcpu, sp, sptep);
2923 }
2924 
2925 /*
2926  * Lookup the mapping level for @gfn in the current mm.
2927  *
2928  * WARNING!  Use of host_pfn_mapping_level() requires the caller and the end
2929  * consumer to be tied into KVM's handlers for MMU notifier events!
2930  *
2931  * There are several ways to safely use this helper:
2932  *
2933  * - Check mmu_invalidate_retry_hva() after grabbing the mapping level, before
2934  *   consuming it.  In this case, mmu_lock doesn't need to be held during the
2935  *   lookup, but it does need to be held while checking the MMU notifier.
2936  *
2937  * - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation
2938  *   event for the hva.  This can be done by explicit checking the MMU notifier
2939  *   or by ensuring that KVM already has a valid mapping that covers the hva.
2940  *
2941  * - Do not use the result to install new mappings, e.g. use the host mapping
2942  *   level only to decide whether or not to zap an entry.  In this case, it's
2943  *   not required to hold mmu_lock (though it's highly likely the caller will
2944  *   want to hold mmu_lock anyways, e.g. to modify SPTEs).
2945  *
2946  * Note!  The lookup can still race with modifications to host page tables, but
2947  * the above "rules" ensure KVM will not _consume_ the result of the walk if a
2948  * race with the primary MMU occurs.
2949  */
2950 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn,
2951 				  const struct kvm_memory_slot *slot)
2952 {
2953 	int level = PG_LEVEL_4K;
2954 	unsigned long hva;
2955 	unsigned long flags;
2956 	pgd_t pgd;
2957 	p4d_t p4d;
2958 	pud_t pud;
2959 	pmd_t pmd;
2960 
2961 	/*
2962 	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2963 	 * is not solely for performance, it's also necessary to avoid the
2964 	 * "writable" check in __gfn_to_hva_many(), which will always fail on
2965 	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
2966 	 * page fault steps have already verified the guest isn't writing a
2967 	 * read-only memslot.
2968 	 */
2969 	hva = __gfn_to_hva_memslot(slot, gfn);
2970 
2971 	/*
2972 	 * Disable IRQs to prevent concurrent tear down of host page tables,
2973 	 * e.g. if the primary MMU promotes a P*D to a huge page and then frees
2974 	 * the original page table.
2975 	 */
2976 	local_irq_save(flags);
2977 
2978 	/*
2979 	 * Read each entry once.  As above, a non-leaf entry can be promoted to
2980 	 * a huge page _during_ this walk.  Re-reading the entry could send the
2981 	 * walk into the weeks, e.g. p*d_large() returns false (sees the old
2982 	 * value) and then p*d_offset() walks into the target huge page instead
2983 	 * of the old page table (sees the new value).
2984 	 */
2985 	pgd = READ_ONCE(*pgd_offset(kvm->mm, hva));
2986 	if (pgd_none(pgd))
2987 		goto out;
2988 
2989 	p4d = READ_ONCE(*p4d_offset(&pgd, hva));
2990 	if (p4d_none(p4d) || !p4d_present(p4d))
2991 		goto out;
2992 
2993 	pud = READ_ONCE(*pud_offset(&p4d, hva));
2994 	if (pud_none(pud) || !pud_present(pud))
2995 		goto out;
2996 
2997 	if (pud_large(pud)) {
2998 		level = PG_LEVEL_1G;
2999 		goto out;
3000 	}
3001 
3002 	pmd = READ_ONCE(*pmd_offset(&pud, hva));
3003 	if (pmd_none(pmd) || !pmd_present(pmd))
3004 		goto out;
3005 
3006 	if (pmd_large(pmd))
3007 		level = PG_LEVEL_2M;
3008 
3009 out:
3010 	local_irq_restore(flags);
3011 	return level;
3012 }
3013 
3014 int kvm_mmu_max_mapping_level(struct kvm *kvm,
3015 			      const struct kvm_memory_slot *slot, gfn_t gfn,
3016 			      int max_level)
3017 {
3018 	struct kvm_lpage_info *linfo;
3019 	int host_level;
3020 
3021 	max_level = min(max_level, max_huge_page_level);
3022 	for ( ; max_level > PG_LEVEL_4K; max_level--) {
3023 		linfo = lpage_info_slot(gfn, slot, max_level);
3024 		if (!linfo->disallow_lpage)
3025 			break;
3026 	}
3027 
3028 	if (max_level == PG_LEVEL_4K)
3029 		return PG_LEVEL_4K;
3030 
3031 	host_level = host_pfn_mapping_level(kvm, gfn, slot);
3032 	return min(host_level, max_level);
3033 }
3034 
3035 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3036 {
3037 	struct kvm_memory_slot *slot = fault->slot;
3038 	kvm_pfn_t mask;
3039 
3040 	fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled;
3041 
3042 	if (unlikely(fault->max_level == PG_LEVEL_4K))
3043 		return;
3044 
3045 	if (is_error_noslot_pfn(fault->pfn))
3046 		return;
3047 
3048 	if (kvm_slot_dirty_track_enabled(slot))
3049 		return;
3050 
3051 	/*
3052 	 * Enforce the iTLB multihit workaround after capturing the requested
3053 	 * level, which will be used to do precise, accurate accounting.
3054 	 */
3055 	fault->req_level = kvm_mmu_max_mapping_level(vcpu->kvm, slot,
3056 						     fault->gfn, fault->max_level);
3057 	if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed)
3058 		return;
3059 
3060 	/*
3061 	 * mmu_invalidate_retry() was successful and mmu_lock is held, so
3062 	 * the pmd can't be split from under us.
3063 	 */
3064 	fault->goal_level = fault->req_level;
3065 	mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1;
3066 	VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask));
3067 	fault->pfn &= ~mask;
3068 }
3069 
3070 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level)
3071 {
3072 	if (cur_level > PG_LEVEL_4K &&
3073 	    cur_level == fault->goal_level &&
3074 	    is_shadow_present_pte(spte) &&
3075 	    !is_large_pte(spte)) {
3076 		/*
3077 		 * A small SPTE exists for this pfn, but FNAME(fetch)
3078 		 * and __direct_map would like to create a large PTE
3079 		 * instead: just force them to go down another level,
3080 		 * patching back for them into pfn the next 9 bits of
3081 		 * the address.
3082 		 */
3083 		u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) -
3084 				KVM_PAGES_PER_HPAGE(cur_level - 1);
3085 		fault->pfn |= fault->gfn & page_mask;
3086 		fault->goal_level--;
3087 	}
3088 }
3089 
3090 static int __direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3091 {
3092 	struct kvm_shadow_walk_iterator it;
3093 	struct kvm_mmu_page *sp;
3094 	int ret;
3095 	gfn_t base_gfn = fault->gfn;
3096 
3097 	kvm_mmu_hugepage_adjust(vcpu, fault);
3098 
3099 	trace_kvm_mmu_spte_requested(fault);
3100 	for_each_shadow_entry(vcpu, fault->addr, it) {
3101 		/*
3102 		 * We cannot overwrite existing page tables with an NX
3103 		 * large page, as the leaf could be executable.
3104 		 */
3105 		if (fault->nx_huge_page_workaround_enabled)
3106 			disallowed_hugepage_adjust(fault, *it.sptep, it.level);
3107 
3108 		base_gfn = fault->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
3109 		if (it.level == fault->goal_level)
3110 			break;
3111 
3112 		sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, true, ACC_ALL);
3113 		if (sp == ERR_PTR(-EEXIST))
3114 			continue;
3115 
3116 		link_shadow_page(vcpu, it.sptep, sp);
3117 		if (fault->is_tdp && fault->huge_page_disallowed &&
3118 		    fault->req_level >= it.level)
3119 			account_huge_nx_page(vcpu->kvm, sp);
3120 	}
3121 
3122 	if (WARN_ON_ONCE(it.level != fault->goal_level))
3123 		return -EFAULT;
3124 
3125 	ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL,
3126 			   base_gfn, fault->pfn, fault);
3127 	if (ret == RET_PF_SPURIOUS)
3128 		return ret;
3129 
3130 	direct_pte_prefetch(vcpu, it.sptep);
3131 	return ret;
3132 }
3133 
3134 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3135 {
3136 	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
3137 }
3138 
3139 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3140 {
3141 	/*
3142 	 * Do not cache the mmio info caused by writing the readonly gfn
3143 	 * into the spte otherwise read access on readonly gfn also can
3144 	 * caused mmio page fault and treat it as mmio access.
3145 	 */
3146 	if (pfn == KVM_PFN_ERR_RO_FAULT)
3147 		return RET_PF_EMULATE;
3148 
3149 	if (pfn == KVM_PFN_ERR_HWPOISON) {
3150 		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3151 		return RET_PF_RETRY;
3152 	}
3153 
3154 	return -EFAULT;
3155 }
3156 
3157 static int handle_abnormal_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
3158 			       unsigned int access)
3159 {
3160 	/* The pfn is invalid, report the error! */
3161 	if (unlikely(is_error_pfn(fault->pfn)))
3162 		return kvm_handle_bad_page(vcpu, fault->gfn, fault->pfn);
3163 
3164 	if (unlikely(!fault->slot)) {
3165 		gva_t gva = fault->is_tdp ? 0 : fault->addr;
3166 
3167 		vcpu_cache_mmio_info(vcpu, gva, fault->gfn,
3168 				     access & shadow_mmio_access_mask);
3169 		/*
3170 		 * If MMIO caching is disabled, emulate immediately without
3171 		 * touching the shadow page tables as attempting to install an
3172 		 * MMIO SPTE will just be an expensive nop.  Do not cache MMIO
3173 		 * whose gfn is greater than host.MAXPHYADDR, any guest that
3174 		 * generates such gfns is running nested and is being tricked
3175 		 * by L0 userspace (you can observe gfn > L1.MAXPHYADDR if
3176 		 * and only if L1's MAXPHYADDR is inaccurate with respect to
3177 		 * the hardware's).
3178 		 */
3179 		if (unlikely(!enable_mmio_caching) ||
3180 		    unlikely(fault->gfn > kvm_mmu_max_gfn()))
3181 			return RET_PF_EMULATE;
3182 	}
3183 
3184 	return RET_PF_CONTINUE;
3185 }
3186 
3187 static bool page_fault_can_be_fast(struct kvm_page_fault *fault)
3188 {
3189 	/*
3190 	 * Page faults with reserved bits set, i.e. faults on MMIO SPTEs, only
3191 	 * reach the common page fault handler if the SPTE has an invalid MMIO
3192 	 * generation number.  Refreshing the MMIO generation needs to go down
3193 	 * the slow path.  Note, EPT Misconfigs do NOT set the PRESENT flag!
3194 	 */
3195 	if (fault->rsvd)
3196 		return false;
3197 
3198 	/*
3199 	 * #PF can be fast if:
3200 	 *
3201 	 * 1. The shadow page table entry is not present and A/D bits are
3202 	 *    disabled _by KVM_, which could mean that the fault is potentially
3203 	 *    caused by access tracking (if enabled).  If A/D bits are enabled
3204 	 *    by KVM, but disabled by L1 for L2, KVM is forced to disable A/D
3205 	 *    bits for L2 and employ access tracking, but the fast page fault
3206 	 *    mechanism only supports direct MMUs.
3207 	 * 2. The shadow page table entry is present, the access is a write,
3208 	 *    and no reserved bits are set (MMIO SPTEs cannot be "fixed"), i.e.
3209 	 *    the fault was caused by a write-protection violation.  If the
3210 	 *    SPTE is MMU-writable (determined later), the fault can be fixed
3211 	 *    by setting the Writable bit, which can be done out of mmu_lock.
3212 	 */
3213 	if (!fault->present)
3214 		return !kvm_ad_enabled();
3215 
3216 	/*
3217 	 * Note, instruction fetches and writes are mutually exclusive, ignore
3218 	 * the "exec" flag.
3219 	 */
3220 	return fault->write;
3221 }
3222 
3223 /*
3224  * Returns true if the SPTE was fixed successfully. Otherwise,
3225  * someone else modified the SPTE from its original value.
3226  */
3227 static bool
3228 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
3229 			u64 *sptep, u64 old_spte, u64 new_spte)
3230 {
3231 	/*
3232 	 * Theoretically we could also set dirty bit (and flush TLB) here in
3233 	 * order to eliminate unnecessary PML logging. See comments in
3234 	 * set_spte. But fast_page_fault is very unlikely to happen with PML
3235 	 * enabled, so we do not do this. This might result in the same GPA
3236 	 * to be logged in PML buffer again when the write really happens, and
3237 	 * eventually to be called by mark_page_dirty twice. But it's also no
3238 	 * harm. This also avoids the TLB flush needed after setting dirty bit
3239 	 * so non-PML cases won't be impacted.
3240 	 *
3241 	 * Compare with set_spte where instead shadow_dirty_mask is set.
3242 	 */
3243 	if (!try_cmpxchg64(sptep, &old_spte, new_spte))
3244 		return false;
3245 
3246 	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte))
3247 		mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn);
3248 
3249 	return true;
3250 }
3251 
3252 static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte)
3253 {
3254 	if (fault->exec)
3255 		return is_executable_pte(spte);
3256 
3257 	if (fault->write)
3258 		return is_writable_pte(spte);
3259 
3260 	/* Fault was on Read access */
3261 	return spte & PT_PRESENT_MASK;
3262 }
3263 
3264 /*
3265  * Returns the last level spte pointer of the shadow page walk for the given
3266  * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
3267  * walk could be performed, returns NULL and *spte does not contain valid data.
3268  *
3269  * Contract:
3270  *  - Must be called between walk_shadow_page_lockless_{begin,end}.
3271  *  - The returned sptep must not be used after walk_shadow_page_lockless_end.
3272  */
3273 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte)
3274 {
3275 	struct kvm_shadow_walk_iterator iterator;
3276 	u64 old_spte;
3277 	u64 *sptep = NULL;
3278 
3279 	for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) {
3280 		sptep = iterator.sptep;
3281 		*spte = old_spte;
3282 	}
3283 
3284 	return sptep;
3285 }
3286 
3287 /*
3288  * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3289  */
3290 static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3291 {
3292 	struct kvm_mmu_page *sp;
3293 	int ret = RET_PF_INVALID;
3294 	u64 spte = 0ull;
3295 	u64 *sptep = NULL;
3296 	uint retry_count = 0;
3297 
3298 	if (!page_fault_can_be_fast(fault))
3299 		return ret;
3300 
3301 	walk_shadow_page_lockless_begin(vcpu);
3302 
3303 	do {
3304 		u64 new_spte;
3305 
3306 		if (is_tdp_mmu(vcpu->arch.mmu))
3307 			sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3308 		else
3309 			sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3310 
3311 		if (!is_shadow_present_pte(spte))
3312 			break;
3313 
3314 		sp = sptep_to_sp(sptep);
3315 		if (!is_last_spte(spte, sp->role.level))
3316 			break;
3317 
3318 		/*
3319 		 * Check whether the memory access that caused the fault would
3320 		 * still cause it if it were to be performed right now. If not,
3321 		 * then this is a spurious fault caused by TLB lazily flushed,
3322 		 * or some other CPU has already fixed the PTE after the
3323 		 * current CPU took the fault.
3324 		 *
3325 		 * Need not check the access of upper level table entries since
3326 		 * they are always ACC_ALL.
3327 		 */
3328 		if (is_access_allowed(fault, spte)) {
3329 			ret = RET_PF_SPURIOUS;
3330 			break;
3331 		}
3332 
3333 		new_spte = spte;
3334 
3335 		/*
3336 		 * KVM only supports fixing page faults outside of MMU lock for
3337 		 * direct MMUs, nested MMUs are always indirect, and KVM always
3338 		 * uses A/D bits for non-nested MMUs.  Thus, if A/D bits are
3339 		 * enabled, the SPTE can't be an access-tracked SPTE.
3340 		 */
3341 		if (unlikely(!kvm_ad_enabled()) && is_access_track_spte(spte))
3342 			new_spte = restore_acc_track_spte(new_spte);
3343 
3344 		/*
3345 		 * To keep things simple, only SPTEs that are MMU-writable can
3346 		 * be made fully writable outside of mmu_lock, e.g. only SPTEs
3347 		 * that were write-protected for dirty-logging or access
3348 		 * tracking are handled here.  Don't bother checking if the
3349 		 * SPTE is writable to prioritize running with A/D bits enabled.
3350 		 * The is_access_allowed() check above handles the common case
3351 		 * of the fault being spurious, and the SPTE is known to be
3352 		 * shadow-present, i.e. except for access tracking restoration
3353 		 * making the new SPTE writable, the check is wasteful.
3354 		 */
3355 		if (fault->write && is_mmu_writable_spte(spte)) {
3356 			new_spte |= PT_WRITABLE_MASK;
3357 
3358 			/*
3359 			 * Do not fix write-permission on the large spte when
3360 			 * dirty logging is enabled. Since we only dirty the
3361 			 * first page into the dirty-bitmap in
3362 			 * fast_pf_fix_direct_spte(), other pages are missed
3363 			 * if its slot has dirty logging enabled.
3364 			 *
3365 			 * Instead, we let the slow page fault path create a
3366 			 * normal spte to fix the access.
3367 			 */
3368 			if (sp->role.level > PG_LEVEL_4K &&
3369 			    kvm_slot_dirty_track_enabled(fault->slot))
3370 				break;
3371 		}
3372 
3373 		/* Verify that the fault can be handled in the fast path */
3374 		if (new_spte == spte ||
3375 		    !is_access_allowed(fault, new_spte))
3376 			break;
3377 
3378 		/*
3379 		 * Currently, fast page fault only works for direct mapping
3380 		 * since the gfn is not stable for indirect shadow page. See
3381 		 * Documentation/virt/kvm/locking.rst to get more detail.
3382 		 */
3383 		if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) {
3384 			ret = RET_PF_FIXED;
3385 			break;
3386 		}
3387 
3388 		if (++retry_count > 4) {
3389 			printk_once(KERN_WARNING
3390 				"kvm: Fast #PF retrying more than 4 times.\n");
3391 			break;
3392 		}
3393 
3394 	} while (true);
3395 
3396 	trace_fast_page_fault(vcpu, fault, sptep, spte, ret);
3397 	walk_shadow_page_lockless_end(vcpu);
3398 
3399 	if (ret != RET_PF_INVALID)
3400 		vcpu->stat.pf_fast++;
3401 
3402 	return ret;
3403 }
3404 
3405 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3406 			       struct list_head *invalid_list)
3407 {
3408 	struct kvm_mmu_page *sp;
3409 
3410 	if (!VALID_PAGE(*root_hpa))
3411 		return;
3412 
3413 	sp = to_shadow_page(*root_hpa & SPTE_BASE_ADDR_MASK);
3414 	if (WARN_ON(!sp))
3415 		return;
3416 
3417 	if (is_tdp_mmu_page(sp))
3418 		kvm_tdp_mmu_put_root(kvm, sp, false);
3419 	else if (!--sp->root_count && sp->role.invalid)
3420 		kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3421 
3422 	*root_hpa = INVALID_PAGE;
3423 }
3424 
3425 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3426 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
3427 			ulong roots_to_free)
3428 {
3429 	int i;
3430 	LIST_HEAD(invalid_list);
3431 	bool free_active_root;
3432 
3433 	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3434 
3435 	/* Before acquiring the MMU lock, see if we need to do any real work. */
3436 	free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT)
3437 		&& VALID_PAGE(mmu->root.hpa);
3438 
3439 	if (!free_active_root) {
3440 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3441 			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3442 			    VALID_PAGE(mmu->prev_roots[i].hpa))
3443 				break;
3444 
3445 		if (i == KVM_MMU_NUM_PREV_ROOTS)
3446 			return;
3447 	}
3448 
3449 	write_lock(&kvm->mmu_lock);
3450 
3451 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3452 		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3453 			mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3454 					   &invalid_list);
3455 
3456 	if (free_active_root) {
3457 		if (to_shadow_page(mmu->root.hpa)) {
3458 			mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list);
3459 		} else if (mmu->pae_root) {
3460 			for (i = 0; i < 4; ++i) {
3461 				if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
3462 					continue;
3463 
3464 				mmu_free_root_page(kvm, &mmu->pae_root[i],
3465 						   &invalid_list);
3466 				mmu->pae_root[i] = INVALID_PAE_ROOT;
3467 			}
3468 		}
3469 		mmu->root.hpa = INVALID_PAGE;
3470 		mmu->root.pgd = 0;
3471 	}
3472 
3473 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
3474 	write_unlock(&kvm->mmu_lock);
3475 }
3476 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3477 
3478 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu)
3479 {
3480 	unsigned long roots_to_free = 0;
3481 	hpa_t root_hpa;
3482 	int i;
3483 
3484 	/*
3485 	 * This should not be called while L2 is active, L2 can't invalidate
3486 	 * _only_ its own roots, e.g. INVVPID unconditionally exits.
3487 	 */
3488 	WARN_ON_ONCE(mmu->root_role.guest_mode);
3489 
3490 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3491 		root_hpa = mmu->prev_roots[i].hpa;
3492 		if (!VALID_PAGE(root_hpa))
3493 			continue;
3494 
3495 		if (!to_shadow_page(root_hpa) ||
3496 			to_shadow_page(root_hpa)->role.guest_mode)
3497 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
3498 	}
3499 
3500 	kvm_mmu_free_roots(kvm, mmu, roots_to_free);
3501 }
3502 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);
3503 
3504 
3505 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3506 {
3507 	int ret = 0;
3508 
3509 	if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3510 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3511 		ret = 1;
3512 	}
3513 
3514 	return ret;
3515 }
3516 
3517 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, int quadrant,
3518 			    u8 level)
3519 {
3520 	union kvm_mmu_page_role role = vcpu->arch.mmu->root_role;
3521 	struct kvm_mmu_page *sp;
3522 
3523 	role.level = level;
3524 	role.quadrant = quadrant;
3525 
3526 	WARN_ON_ONCE(quadrant && !role.has_4_byte_gpte);
3527 	WARN_ON_ONCE(role.direct && role.has_4_byte_gpte);
3528 
3529 	sp = kvm_mmu_get_shadow_page(vcpu, gfn, role);
3530 	++sp->root_count;
3531 
3532 	return __pa(sp->spt);
3533 }
3534 
3535 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3536 {
3537 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3538 	u8 shadow_root_level = mmu->root_role.level;
3539 	hpa_t root;
3540 	unsigned i;
3541 	int r;
3542 
3543 	write_lock(&vcpu->kvm->mmu_lock);
3544 	r = make_mmu_pages_available(vcpu);
3545 	if (r < 0)
3546 		goto out_unlock;
3547 
3548 	if (is_tdp_mmu_enabled(vcpu->kvm)) {
3549 		root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3550 		mmu->root.hpa = root;
3551 	} else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3552 		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level);
3553 		mmu->root.hpa = root;
3554 	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3555 		if (WARN_ON_ONCE(!mmu->pae_root)) {
3556 			r = -EIO;
3557 			goto out_unlock;
3558 		}
3559 
3560 		for (i = 0; i < 4; ++i) {
3561 			WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3562 
3563 			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 0,
3564 					      PT32_ROOT_LEVEL);
3565 			mmu->pae_root[i] = root | PT_PRESENT_MASK |
3566 					   shadow_me_value;
3567 		}
3568 		mmu->root.hpa = __pa(mmu->pae_root);
3569 	} else {
3570 		WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3571 		r = -EIO;
3572 		goto out_unlock;
3573 	}
3574 
3575 	/* root.pgd is ignored for direct MMUs. */
3576 	mmu->root.pgd = 0;
3577 out_unlock:
3578 	write_unlock(&vcpu->kvm->mmu_lock);
3579 	return r;
3580 }
3581 
3582 static int mmu_first_shadow_root_alloc(struct kvm *kvm)
3583 {
3584 	struct kvm_memslots *slots;
3585 	struct kvm_memory_slot *slot;
3586 	int r = 0, i, bkt;
3587 
3588 	/*
3589 	 * Check if this is the first shadow root being allocated before
3590 	 * taking the lock.
3591 	 */
3592 	if (kvm_shadow_root_allocated(kvm))
3593 		return 0;
3594 
3595 	mutex_lock(&kvm->slots_arch_lock);
3596 
3597 	/* Recheck, under the lock, whether this is the first shadow root. */
3598 	if (kvm_shadow_root_allocated(kvm))
3599 		goto out_unlock;
3600 
3601 	/*
3602 	 * Check if anything actually needs to be allocated, e.g. all metadata
3603 	 * will be allocated upfront if TDP is disabled.
3604 	 */
3605 	if (kvm_memslots_have_rmaps(kvm) &&
3606 	    kvm_page_track_write_tracking_enabled(kvm))
3607 		goto out_success;
3608 
3609 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
3610 		slots = __kvm_memslots(kvm, i);
3611 		kvm_for_each_memslot(slot, bkt, slots) {
3612 			/*
3613 			 * Both of these functions are no-ops if the target is
3614 			 * already allocated, so unconditionally calling both
3615 			 * is safe.  Intentionally do NOT free allocations on
3616 			 * failure to avoid having to track which allocations
3617 			 * were made now versus when the memslot was created.
3618 			 * The metadata is guaranteed to be freed when the slot
3619 			 * is freed, and will be kept/used if userspace retries
3620 			 * KVM_RUN instead of killing the VM.
3621 			 */
3622 			r = memslot_rmap_alloc(slot, slot->npages);
3623 			if (r)
3624 				goto out_unlock;
3625 			r = kvm_page_track_write_tracking_alloc(slot);
3626 			if (r)
3627 				goto out_unlock;
3628 		}
3629 	}
3630 
3631 	/*
3632 	 * Ensure that shadow_root_allocated becomes true strictly after
3633 	 * all the related pointers are set.
3634 	 */
3635 out_success:
3636 	smp_store_release(&kvm->arch.shadow_root_allocated, true);
3637 
3638 out_unlock:
3639 	mutex_unlock(&kvm->slots_arch_lock);
3640 	return r;
3641 }
3642 
3643 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3644 {
3645 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3646 	u64 pdptrs[4], pm_mask;
3647 	gfn_t root_gfn, root_pgd;
3648 	int quadrant, i, r;
3649 	hpa_t root;
3650 
3651 	root_pgd = mmu->get_guest_pgd(vcpu);
3652 	root_gfn = root_pgd >> PAGE_SHIFT;
3653 
3654 	if (mmu_check_root(vcpu, root_gfn))
3655 		return 1;
3656 
3657 	/*
3658 	 * On SVM, reading PDPTRs might access guest memory, which might fault
3659 	 * and thus might sleep.  Grab the PDPTRs before acquiring mmu_lock.
3660 	 */
3661 	if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) {
3662 		for (i = 0; i < 4; ++i) {
3663 			pdptrs[i] = mmu->get_pdptr(vcpu, i);
3664 			if (!(pdptrs[i] & PT_PRESENT_MASK))
3665 				continue;
3666 
3667 			if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
3668 				return 1;
3669 		}
3670 	}
3671 
3672 	r = mmu_first_shadow_root_alloc(vcpu->kvm);
3673 	if (r)
3674 		return r;
3675 
3676 	write_lock(&vcpu->kvm->mmu_lock);
3677 	r = make_mmu_pages_available(vcpu);
3678 	if (r < 0)
3679 		goto out_unlock;
3680 
3681 	/*
3682 	 * Do we shadow a long mode page table? If so we need to
3683 	 * write-protect the guests page table root.
3684 	 */
3685 	if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) {
3686 		root = mmu_alloc_root(vcpu, root_gfn, 0,
3687 				      mmu->root_role.level);
3688 		mmu->root.hpa = root;
3689 		goto set_root_pgd;
3690 	}
3691 
3692 	if (WARN_ON_ONCE(!mmu->pae_root)) {
3693 		r = -EIO;
3694 		goto out_unlock;
3695 	}
3696 
3697 	/*
3698 	 * We shadow a 32 bit page table. This may be a legacy 2-level
3699 	 * or a PAE 3-level page table. In either case we need to be aware that
3700 	 * the shadow page table may be a PAE or a long mode page table.
3701 	 */
3702 	pm_mask = PT_PRESENT_MASK | shadow_me_value;
3703 	if (mmu->root_role.level >= PT64_ROOT_4LEVEL) {
3704 		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3705 
3706 		if (WARN_ON_ONCE(!mmu->pml4_root)) {
3707 			r = -EIO;
3708 			goto out_unlock;
3709 		}
3710 		mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3711 
3712 		if (mmu->root_role.level == PT64_ROOT_5LEVEL) {
3713 			if (WARN_ON_ONCE(!mmu->pml5_root)) {
3714 				r = -EIO;
3715 				goto out_unlock;
3716 			}
3717 			mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask;
3718 		}
3719 	}
3720 
3721 	for (i = 0; i < 4; ++i) {
3722 		WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3723 
3724 		if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) {
3725 			if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3726 				mmu->pae_root[i] = INVALID_PAE_ROOT;
3727 				continue;
3728 			}
3729 			root_gfn = pdptrs[i] >> PAGE_SHIFT;
3730 		}
3731 
3732 		/*
3733 		 * If shadowing 32-bit non-PAE page tables, each PAE page
3734 		 * directory maps one quarter of the guest's non-PAE page
3735 		 * directory. Othwerise each PAE page direct shadows one guest
3736 		 * PAE page directory so that quadrant should be 0.
3737 		 */
3738 		quadrant = (mmu->cpu_role.base.level == PT32_ROOT_LEVEL) ? i : 0;
3739 
3740 		root = mmu_alloc_root(vcpu, root_gfn, quadrant, PT32_ROOT_LEVEL);
3741 		mmu->pae_root[i] = root | pm_mask;
3742 	}
3743 
3744 	if (mmu->root_role.level == PT64_ROOT_5LEVEL)
3745 		mmu->root.hpa = __pa(mmu->pml5_root);
3746 	else if (mmu->root_role.level == PT64_ROOT_4LEVEL)
3747 		mmu->root.hpa = __pa(mmu->pml4_root);
3748 	else
3749 		mmu->root.hpa = __pa(mmu->pae_root);
3750 
3751 set_root_pgd:
3752 	mmu->root.pgd = root_pgd;
3753 out_unlock:
3754 	write_unlock(&vcpu->kvm->mmu_lock);
3755 
3756 	return r;
3757 }
3758 
3759 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
3760 {
3761 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3762 	bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL;
3763 	u64 *pml5_root = NULL;
3764 	u64 *pml4_root = NULL;
3765 	u64 *pae_root;
3766 
3767 	/*
3768 	 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
3769 	 * tables are allocated and initialized at root creation as there is no
3770 	 * equivalent level in the guest's NPT to shadow.  Allocate the tables
3771 	 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3772 	 */
3773 	if (mmu->root_role.direct ||
3774 	    mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL ||
3775 	    mmu->root_role.level < PT64_ROOT_4LEVEL)
3776 		return 0;
3777 
3778 	/*
3779 	 * NPT, the only paging mode that uses this horror, uses a fixed number
3780 	 * of levels for the shadow page tables, e.g. all MMUs are 4-level or
3781 	 * all MMus are 5-level.  Thus, this can safely require that pml5_root
3782 	 * is allocated if the other roots are valid and pml5 is needed, as any
3783 	 * prior MMU would also have required pml5.
3784 	 */
3785 	if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root))
3786 		return 0;
3787 
3788 	/*
3789 	 * The special roots should always be allocated in concert.  Yell and
3790 	 * bail if KVM ends up in a state where only one of the roots is valid.
3791 	 */
3792 	if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root ||
3793 			 (need_pml5 && mmu->pml5_root)))
3794 		return -EIO;
3795 
3796 	/*
3797 	 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
3798 	 * doesn't need to be decrypted.
3799 	 */
3800 	pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3801 	if (!pae_root)
3802 		return -ENOMEM;
3803 
3804 #ifdef CONFIG_X86_64
3805 	pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3806 	if (!pml4_root)
3807 		goto err_pml4;
3808 
3809 	if (need_pml5) {
3810 		pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3811 		if (!pml5_root)
3812 			goto err_pml5;
3813 	}
3814 #endif
3815 
3816 	mmu->pae_root = pae_root;
3817 	mmu->pml4_root = pml4_root;
3818 	mmu->pml5_root = pml5_root;
3819 
3820 	return 0;
3821 
3822 #ifdef CONFIG_X86_64
3823 err_pml5:
3824 	free_page((unsigned long)pml4_root);
3825 err_pml4:
3826 	free_page((unsigned long)pae_root);
3827 	return -ENOMEM;
3828 #endif
3829 }
3830 
3831 static bool is_unsync_root(hpa_t root)
3832 {
3833 	struct kvm_mmu_page *sp;
3834 
3835 	if (!VALID_PAGE(root))
3836 		return false;
3837 
3838 	/*
3839 	 * The read barrier orders the CPU's read of SPTE.W during the page table
3840 	 * walk before the reads of sp->unsync/sp->unsync_children here.
3841 	 *
3842 	 * Even if another CPU was marking the SP as unsync-ed simultaneously,
3843 	 * any guest page table changes are not guaranteed to be visible anyway
3844 	 * until this VCPU issues a TLB flush strictly after those changes are
3845 	 * made.  We only need to ensure that the other CPU sets these flags
3846 	 * before any actual changes to the page tables are made.  The comments
3847 	 * in mmu_try_to_unsync_pages() describe what could go wrong if this
3848 	 * requirement isn't satisfied.
3849 	 */
3850 	smp_rmb();
3851 	sp = to_shadow_page(root);
3852 
3853 	/*
3854 	 * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the
3855 	 * PDPTEs for a given PAE root need to be synchronized individually.
3856 	 */
3857 	if (WARN_ON_ONCE(!sp))
3858 		return false;
3859 
3860 	if (sp->unsync || sp->unsync_children)
3861 		return true;
3862 
3863 	return false;
3864 }
3865 
3866 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3867 {
3868 	int i;
3869 	struct kvm_mmu_page *sp;
3870 
3871 	if (vcpu->arch.mmu->root_role.direct)
3872 		return;
3873 
3874 	if (!VALID_PAGE(vcpu->arch.mmu->root.hpa))
3875 		return;
3876 
3877 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3878 
3879 	if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) {
3880 		hpa_t root = vcpu->arch.mmu->root.hpa;
3881 		sp = to_shadow_page(root);
3882 
3883 		if (!is_unsync_root(root))
3884 			return;
3885 
3886 		write_lock(&vcpu->kvm->mmu_lock);
3887 		mmu_sync_children(vcpu, sp, true);
3888 		write_unlock(&vcpu->kvm->mmu_lock);
3889 		return;
3890 	}
3891 
3892 	write_lock(&vcpu->kvm->mmu_lock);
3893 
3894 	for (i = 0; i < 4; ++i) {
3895 		hpa_t root = vcpu->arch.mmu->pae_root[i];
3896 
3897 		if (IS_VALID_PAE_ROOT(root)) {
3898 			root &= SPTE_BASE_ADDR_MASK;
3899 			sp = to_shadow_page(root);
3900 			mmu_sync_children(vcpu, sp, true);
3901 		}
3902 	}
3903 
3904 	write_unlock(&vcpu->kvm->mmu_lock);
3905 }
3906 
3907 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu)
3908 {
3909 	unsigned long roots_to_free = 0;
3910 	int i;
3911 
3912 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3913 		if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa))
3914 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
3915 
3916 	/* sync prev_roots by simply freeing them */
3917 	kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free);
3918 }
3919 
3920 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3921 				  gpa_t vaddr, u64 access,
3922 				  struct x86_exception *exception)
3923 {
3924 	if (exception)
3925 		exception->error_code = 0;
3926 	return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception);
3927 }
3928 
3929 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3930 {
3931 	/*
3932 	 * A nested guest cannot use the MMIO cache if it is using nested
3933 	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3934 	 */
3935 	if (mmu_is_nested(vcpu))
3936 		return false;
3937 
3938 	if (direct)
3939 		return vcpu_match_mmio_gpa(vcpu, addr);
3940 
3941 	return vcpu_match_mmio_gva(vcpu, addr);
3942 }
3943 
3944 /*
3945  * Return the level of the lowest level SPTE added to sptes.
3946  * That SPTE may be non-present.
3947  *
3948  * Must be called between walk_shadow_page_lockless_{begin,end}.
3949  */
3950 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3951 {
3952 	struct kvm_shadow_walk_iterator iterator;
3953 	int leaf = -1;
3954 	u64 spte;
3955 
3956 	for (shadow_walk_init(&iterator, vcpu, addr),
3957 	     *root_level = iterator.level;
3958 	     shadow_walk_okay(&iterator);
3959 	     __shadow_walk_next(&iterator, spte)) {
3960 		leaf = iterator.level;
3961 		spte = mmu_spte_get_lockless(iterator.sptep);
3962 
3963 		sptes[leaf] = spte;
3964 	}
3965 
3966 	return leaf;
3967 }
3968 
3969 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3970 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3971 {
3972 	u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3973 	struct rsvd_bits_validate *rsvd_check;
3974 	int root, leaf, level;
3975 	bool reserved = false;
3976 
3977 	walk_shadow_page_lockless_begin(vcpu);
3978 
3979 	if (is_tdp_mmu(vcpu->arch.mmu))
3980 		leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3981 	else
3982 		leaf = get_walk(vcpu, addr, sptes, &root);
3983 
3984 	walk_shadow_page_lockless_end(vcpu);
3985 
3986 	if (unlikely(leaf < 0)) {
3987 		*sptep = 0ull;
3988 		return reserved;
3989 	}
3990 
3991 	*sptep = sptes[leaf];
3992 
3993 	/*
3994 	 * Skip reserved bits checks on the terminal leaf if it's not a valid
3995 	 * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
3996 	 * design, always have reserved bits set.  The purpose of the checks is
3997 	 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
3998 	 */
3999 	if (!is_shadow_present_pte(sptes[leaf]))
4000 		leaf++;
4001 
4002 	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
4003 
4004 	for (level = root; level >= leaf; level--)
4005 		reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
4006 
4007 	if (reserved) {
4008 		pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
4009 		       __func__, addr);
4010 		for (level = root; level >= leaf; level--)
4011 			pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
4012 			       sptes[level], level,
4013 			       get_rsvd_bits(rsvd_check, sptes[level], level));
4014 	}
4015 
4016 	return reserved;
4017 }
4018 
4019 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
4020 {
4021 	u64 spte;
4022 	bool reserved;
4023 
4024 	if (mmio_info_in_cache(vcpu, addr, direct))
4025 		return RET_PF_EMULATE;
4026 
4027 	reserved = get_mmio_spte(vcpu, addr, &spte);
4028 	if (WARN_ON(reserved))
4029 		return -EINVAL;
4030 
4031 	if (is_mmio_spte(spte)) {
4032 		gfn_t gfn = get_mmio_spte_gfn(spte);
4033 		unsigned int access = get_mmio_spte_access(spte);
4034 
4035 		if (!check_mmio_spte(vcpu, spte))
4036 			return RET_PF_INVALID;
4037 
4038 		if (direct)
4039 			addr = 0;
4040 
4041 		trace_handle_mmio_page_fault(addr, gfn, access);
4042 		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
4043 		return RET_PF_EMULATE;
4044 	}
4045 
4046 	/*
4047 	 * If the page table is zapped by other cpus, let CPU fault again on
4048 	 * the address.
4049 	 */
4050 	return RET_PF_RETRY;
4051 }
4052 
4053 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
4054 					 struct kvm_page_fault *fault)
4055 {
4056 	if (unlikely(fault->rsvd))
4057 		return false;
4058 
4059 	if (!fault->present || !fault->write)
4060 		return false;
4061 
4062 	/*
4063 	 * guest is writing the page which is write tracked which can
4064 	 * not be fixed by page fault handler.
4065 	 */
4066 	if (kvm_slot_page_track_is_active(vcpu->kvm, fault->slot, fault->gfn, KVM_PAGE_TRACK_WRITE))
4067 		return true;
4068 
4069 	return false;
4070 }
4071 
4072 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
4073 {
4074 	struct kvm_shadow_walk_iterator iterator;
4075 	u64 spte;
4076 
4077 	walk_shadow_page_lockless_begin(vcpu);
4078 	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
4079 		clear_sp_write_flooding_count(iterator.sptep);
4080 	walk_shadow_page_lockless_end(vcpu);
4081 }
4082 
4083 static u32 alloc_apf_token(struct kvm_vcpu *vcpu)
4084 {
4085 	/* make sure the token value is not 0 */
4086 	u32 id = vcpu->arch.apf.id;
4087 
4088 	if (id << 12 == 0)
4089 		vcpu->arch.apf.id = 1;
4090 
4091 	return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
4092 }
4093 
4094 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
4095 				    gfn_t gfn)
4096 {
4097 	struct kvm_arch_async_pf arch;
4098 
4099 	arch.token = alloc_apf_token(vcpu);
4100 	arch.gfn = gfn;
4101 	arch.direct_map = vcpu->arch.mmu->root_role.direct;
4102 	arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
4103 
4104 	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
4105 				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
4106 }
4107 
4108 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
4109 {
4110 	int r;
4111 
4112 	if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) ||
4113 	      work->wakeup_all)
4114 		return;
4115 
4116 	r = kvm_mmu_reload(vcpu);
4117 	if (unlikely(r))
4118 		return;
4119 
4120 	if (!vcpu->arch.mmu->root_role.direct &&
4121 	      work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
4122 		return;
4123 
4124 	kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
4125 }
4126 
4127 static int kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4128 {
4129 	struct kvm_memory_slot *slot = fault->slot;
4130 	bool async;
4131 
4132 	/*
4133 	 * Retry the page fault if the gfn hit a memslot that is being deleted
4134 	 * or moved.  This ensures any existing SPTEs for the old memslot will
4135 	 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
4136 	 */
4137 	if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
4138 		return RET_PF_RETRY;
4139 
4140 	if (!kvm_is_visible_memslot(slot)) {
4141 		/* Don't expose private memslots to L2. */
4142 		if (is_guest_mode(vcpu)) {
4143 			fault->slot = NULL;
4144 			fault->pfn = KVM_PFN_NOSLOT;
4145 			fault->map_writable = false;
4146 			return RET_PF_CONTINUE;
4147 		}
4148 		/*
4149 		 * If the APIC access page exists but is disabled, go directly
4150 		 * to emulation without caching the MMIO access or creating a
4151 		 * MMIO SPTE.  That way the cache doesn't need to be purged
4152 		 * when the AVIC is re-enabled.
4153 		 */
4154 		if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT &&
4155 		    !kvm_apicv_activated(vcpu->kvm))
4156 			return RET_PF_EMULATE;
4157 	}
4158 
4159 	async = false;
4160 	fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, &async,
4161 					  fault->write, &fault->map_writable,
4162 					  &fault->hva);
4163 	if (!async)
4164 		return RET_PF_CONTINUE; /* *pfn has correct page already */
4165 
4166 	if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) {
4167 		trace_kvm_try_async_get_page(fault->addr, fault->gfn);
4168 		if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) {
4169 			trace_kvm_async_pf_repeated_fault(fault->addr, fault->gfn);
4170 			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4171 			return RET_PF_RETRY;
4172 		} else if (kvm_arch_setup_async_pf(vcpu, fault->addr, fault->gfn)) {
4173 			return RET_PF_RETRY;
4174 		}
4175 	}
4176 
4177 	fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, NULL,
4178 					  fault->write, &fault->map_writable,
4179 					  &fault->hva);
4180 	return RET_PF_CONTINUE;
4181 }
4182 
4183 /*
4184  * Returns true if the page fault is stale and needs to be retried, i.e. if the
4185  * root was invalidated by a memslot update or a relevant mmu_notifier fired.
4186  */
4187 static bool is_page_fault_stale(struct kvm_vcpu *vcpu,
4188 				struct kvm_page_fault *fault, int mmu_seq)
4189 {
4190 	struct kvm_mmu_page *sp = to_shadow_page(vcpu->arch.mmu->root.hpa);
4191 
4192 	/* Special roots, e.g. pae_root, are not backed by shadow pages. */
4193 	if (sp && is_obsolete_sp(vcpu->kvm, sp))
4194 		return true;
4195 
4196 	/*
4197 	 * Roots without an associated shadow page are considered invalid if
4198 	 * there is a pending request to free obsolete roots.  The request is
4199 	 * only a hint that the current root _may_ be obsolete and needs to be
4200 	 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a
4201 	 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs
4202 	 * to reload even if no vCPU is actively using the root.
4203 	 */
4204 	if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
4205 		return true;
4206 
4207 	return fault->slot &&
4208 	       mmu_invalidate_retry_hva(vcpu->kvm, mmu_seq, fault->hva);
4209 }
4210 
4211 static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4212 {
4213 	bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu);
4214 
4215 	unsigned long mmu_seq;
4216 	int r;
4217 
4218 	fault->gfn = fault->addr >> PAGE_SHIFT;
4219 	fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn);
4220 
4221 	if (page_fault_handle_page_track(vcpu, fault))
4222 		return RET_PF_EMULATE;
4223 
4224 	r = fast_page_fault(vcpu, fault);
4225 	if (r != RET_PF_INVALID)
4226 		return r;
4227 
4228 	r = mmu_topup_memory_caches(vcpu, false);
4229 	if (r)
4230 		return r;
4231 
4232 	mmu_seq = vcpu->kvm->mmu_invalidate_seq;
4233 	smp_rmb();
4234 
4235 	r = kvm_faultin_pfn(vcpu, fault);
4236 	if (r != RET_PF_CONTINUE)
4237 		return r;
4238 
4239 	r = handle_abnormal_pfn(vcpu, fault, ACC_ALL);
4240 	if (r != RET_PF_CONTINUE)
4241 		return r;
4242 
4243 	r = RET_PF_RETRY;
4244 
4245 	if (is_tdp_mmu_fault)
4246 		read_lock(&vcpu->kvm->mmu_lock);
4247 	else
4248 		write_lock(&vcpu->kvm->mmu_lock);
4249 
4250 	if (is_page_fault_stale(vcpu, fault, mmu_seq))
4251 		goto out_unlock;
4252 
4253 	r = make_mmu_pages_available(vcpu);
4254 	if (r)
4255 		goto out_unlock;
4256 
4257 	if (is_tdp_mmu_fault)
4258 		r = kvm_tdp_mmu_map(vcpu, fault);
4259 	else
4260 		r = __direct_map(vcpu, fault);
4261 
4262 out_unlock:
4263 	if (is_tdp_mmu_fault)
4264 		read_unlock(&vcpu->kvm->mmu_lock);
4265 	else
4266 		write_unlock(&vcpu->kvm->mmu_lock);
4267 	kvm_release_pfn_clean(fault->pfn);
4268 	return r;
4269 }
4270 
4271 static int nonpaging_page_fault(struct kvm_vcpu *vcpu,
4272 				struct kvm_page_fault *fault)
4273 {
4274 	pgprintk("%s: gva %lx error %x\n", __func__, fault->addr, fault->error_code);
4275 
4276 	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4277 	fault->max_level = PG_LEVEL_2M;
4278 	return direct_page_fault(vcpu, fault);
4279 }
4280 
4281 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4282 				u64 fault_address, char *insn, int insn_len)
4283 {
4284 	int r = 1;
4285 	u32 flags = vcpu->arch.apf.host_apf_flags;
4286 
4287 #ifndef CONFIG_X86_64
4288 	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
4289 	if (WARN_ON_ONCE(fault_address >> 32))
4290 		return -EFAULT;
4291 #endif
4292 
4293 	vcpu->arch.l1tf_flush_l1d = true;
4294 	if (!flags) {
4295 		trace_kvm_page_fault(fault_address, error_code);
4296 
4297 		if (kvm_event_needs_reinjection(vcpu))
4298 			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4299 		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4300 				insn_len);
4301 	} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
4302 		vcpu->arch.apf.host_apf_flags = 0;
4303 		local_irq_disable();
4304 		kvm_async_pf_task_wait_schedule(fault_address);
4305 		local_irq_enable();
4306 	} else {
4307 		WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
4308 	}
4309 
4310 	return r;
4311 }
4312 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4313 
4314 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4315 {
4316 	/*
4317 	 * If the guest's MTRRs may be used to compute the "real" memtype,
4318 	 * restrict the mapping level to ensure KVM uses a consistent memtype
4319 	 * across the entire mapping.  If the host MTRRs are ignored by TDP
4320 	 * (shadow_memtype_mask is non-zero), and the VM has non-coherent DMA
4321 	 * (DMA doesn't snoop CPU caches), KVM's ABI is to honor the memtype
4322 	 * from the guest's MTRRs so that guest accesses to memory that is
4323 	 * DMA'd aren't cached against the guest's wishes.
4324 	 *
4325 	 * Note, KVM may still ultimately ignore guest MTRRs for certain PFNs,
4326 	 * e.g. KVM will force UC memtype for host MMIO.
4327 	 */
4328 	if (shadow_memtype_mask && kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
4329 		for ( ; fault->max_level > PG_LEVEL_4K; --fault->max_level) {
4330 			int page_num = KVM_PAGES_PER_HPAGE(fault->max_level);
4331 			gfn_t base = (fault->addr >> PAGE_SHIFT) & ~(page_num - 1);
4332 
4333 			if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
4334 				break;
4335 		}
4336 	}
4337 
4338 	return direct_page_fault(vcpu, fault);
4339 }
4340 
4341 static void nonpaging_init_context(struct kvm_mmu *context)
4342 {
4343 	context->page_fault = nonpaging_page_fault;
4344 	context->gva_to_gpa = nonpaging_gva_to_gpa;
4345 	context->sync_page = nonpaging_sync_page;
4346 	context->invlpg = NULL;
4347 }
4348 
4349 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
4350 				  union kvm_mmu_page_role role)
4351 {
4352 	return (role.direct || pgd == root->pgd) &&
4353 	       VALID_PAGE(root->hpa) &&
4354 	       role.word == to_shadow_page(root->hpa)->role.word;
4355 }
4356 
4357 /*
4358  * Find out if a previously cached root matching the new pgd/role is available,
4359  * and insert the current root as the MRU in the cache.
4360  * If a matching root is found, it is assigned to kvm_mmu->root and
4361  * true is returned.
4362  * If no match is found, kvm_mmu->root is left invalid, the LRU root is
4363  * evicted to make room for the current root, and false is returned.
4364  */
4365 static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu,
4366 					      gpa_t new_pgd,
4367 					      union kvm_mmu_page_role new_role)
4368 {
4369 	uint i;
4370 
4371 	if (is_root_usable(&mmu->root, new_pgd, new_role))
4372 		return true;
4373 
4374 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4375 		/*
4376 		 * The swaps end up rotating the cache like this:
4377 		 *   C   0 1 2 3   (on entry to the function)
4378 		 *   0   C 1 2 3
4379 		 *   1   C 0 2 3
4380 		 *   2   C 0 1 3
4381 		 *   3   C 0 1 2   (on exit from the loop)
4382 		 */
4383 		swap(mmu->root, mmu->prev_roots[i]);
4384 		if (is_root_usable(&mmu->root, new_pgd, new_role))
4385 			return true;
4386 	}
4387 
4388 	kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
4389 	return false;
4390 }
4391 
4392 /*
4393  * Find out if a previously cached root matching the new pgd/role is available.
4394  * On entry, mmu->root is invalid.
4395  * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry
4396  * of the cache becomes invalid, and true is returned.
4397  * If no match is found, kvm_mmu->root is left invalid and false is returned.
4398  */
4399 static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu,
4400 					     gpa_t new_pgd,
4401 					     union kvm_mmu_page_role new_role)
4402 {
4403 	uint i;
4404 
4405 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4406 		if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role))
4407 			goto hit;
4408 
4409 	return false;
4410 
4411 hit:
4412 	swap(mmu->root, mmu->prev_roots[i]);
4413 	/* Bubble up the remaining roots.  */
4414 	for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++)
4415 		mmu->prev_roots[i] = mmu->prev_roots[i + 1];
4416 	mmu->prev_roots[i].hpa = INVALID_PAGE;
4417 	return true;
4418 }
4419 
4420 static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu,
4421 			    gpa_t new_pgd, union kvm_mmu_page_role new_role)
4422 {
4423 	/*
4424 	 * For now, limit the caching to 64-bit hosts+VMs in order to avoid
4425 	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4426 	 * later if necessary.
4427 	 */
4428 	if (VALID_PAGE(mmu->root.hpa) && !to_shadow_page(mmu->root.hpa))
4429 		kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
4430 
4431 	if (VALID_PAGE(mmu->root.hpa))
4432 		return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role);
4433 	else
4434 		return cached_root_find_without_current(kvm, mmu, new_pgd, new_role);
4435 }
4436 
4437 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
4438 {
4439 	struct kvm_mmu *mmu = vcpu->arch.mmu;
4440 	union kvm_mmu_page_role new_role = mmu->root_role;
4441 
4442 	if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role)) {
4443 		/* kvm_mmu_ensure_valid_pgd will set up a new root.  */
4444 		return;
4445 	}
4446 
4447 	/*
4448 	 * It's possible that the cached previous root page is obsolete because
4449 	 * of a change in the MMU generation number. However, changing the
4450 	 * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS,
4451 	 * which will free the root set here and allocate a new one.
4452 	 */
4453 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
4454 
4455 	if (force_flush_and_sync_on_reuse) {
4456 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4457 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4458 	}
4459 
4460 	/*
4461 	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
4462 	 * switching to a new CR3, that GVA->GPA mapping may no longer be
4463 	 * valid. So clear any cached MMIO info even when we don't need to sync
4464 	 * the shadow page tables.
4465 	 */
4466 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4467 
4468 	/*
4469 	 * If this is a direct root page, it doesn't have a write flooding
4470 	 * count. Otherwise, clear the write flooding count.
4471 	 */
4472 	if (!new_role.direct)
4473 		__clear_sp_write_flooding_count(
4474 				to_shadow_page(vcpu->arch.mmu->root.hpa));
4475 }
4476 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4477 
4478 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4479 {
4480 	return kvm_read_cr3(vcpu);
4481 }
4482 
4483 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4484 			   unsigned int access)
4485 {
4486 	if (unlikely(is_mmio_spte(*sptep))) {
4487 		if (gfn != get_mmio_spte_gfn(*sptep)) {
4488 			mmu_spte_clear_no_track(sptep);
4489 			return true;
4490 		}
4491 
4492 		mark_mmio_spte(vcpu, sptep, gfn, access);
4493 		return true;
4494 	}
4495 
4496 	return false;
4497 }
4498 
4499 #define PTTYPE_EPT 18 /* arbitrary */
4500 #define PTTYPE PTTYPE_EPT
4501 #include "paging_tmpl.h"
4502 #undef PTTYPE
4503 
4504 #define PTTYPE 64
4505 #include "paging_tmpl.h"
4506 #undef PTTYPE
4507 
4508 #define PTTYPE 32
4509 #include "paging_tmpl.h"
4510 #undef PTTYPE
4511 
4512 static void
4513 __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
4514 			u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
4515 			bool pse, bool amd)
4516 {
4517 	u64 gbpages_bit_rsvd = 0;
4518 	u64 nonleaf_bit8_rsvd = 0;
4519 	u64 high_bits_rsvd;
4520 
4521 	rsvd_check->bad_mt_xwr = 0;
4522 
4523 	if (!gbpages)
4524 		gbpages_bit_rsvd = rsvd_bits(7, 7);
4525 
4526 	if (level == PT32E_ROOT_LEVEL)
4527 		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
4528 	else
4529 		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4530 
4531 	/* Note, NX doesn't exist in PDPTEs, this is handled below. */
4532 	if (!nx)
4533 		high_bits_rsvd |= rsvd_bits(63, 63);
4534 
4535 	/*
4536 	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4537 	 * leaf entries) on AMD CPUs only.
4538 	 */
4539 	if (amd)
4540 		nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4541 
4542 	switch (level) {
4543 	case PT32_ROOT_LEVEL:
4544 		/* no rsvd bits for 2 level 4K page table entries */
4545 		rsvd_check->rsvd_bits_mask[0][1] = 0;
4546 		rsvd_check->rsvd_bits_mask[0][0] = 0;
4547 		rsvd_check->rsvd_bits_mask[1][0] =
4548 			rsvd_check->rsvd_bits_mask[0][0];
4549 
4550 		if (!pse) {
4551 			rsvd_check->rsvd_bits_mask[1][1] = 0;
4552 			break;
4553 		}
4554 
4555 		if (is_cpuid_PSE36())
4556 			/* 36bits PSE 4MB page */
4557 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4558 		else
4559 			/* 32 bits PSE 4MB page */
4560 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4561 		break;
4562 	case PT32E_ROOT_LEVEL:
4563 		rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
4564 						   high_bits_rsvd |
4565 						   rsvd_bits(5, 8) |
4566 						   rsvd_bits(1, 2);	/* PDPTE */
4567 		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;	/* PDE */
4568 		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;	/* PTE */
4569 		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4570 						   rsvd_bits(13, 20);	/* large page */
4571 		rsvd_check->rsvd_bits_mask[1][0] =
4572 			rsvd_check->rsvd_bits_mask[0][0];
4573 		break;
4574 	case PT64_ROOT_5LEVEL:
4575 		rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
4576 						   nonleaf_bit8_rsvd |
4577 						   rsvd_bits(7, 7);
4578 		rsvd_check->rsvd_bits_mask[1][4] =
4579 			rsvd_check->rsvd_bits_mask[0][4];
4580 		fallthrough;
4581 	case PT64_ROOT_4LEVEL:
4582 		rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
4583 						   nonleaf_bit8_rsvd |
4584 						   rsvd_bits(7, 7);
4585 		rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
4586 						   gbpages_bit_rsvd;
4587 		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
4588 		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4589 		rsvd_check->rsvd_bits_mask[1][3] =
4590 			rsvd_check->rsvd_bits_mask[0][3];
4591 		rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
4592 						   gbpages_bit_rsvd |
4593 						   rsvd_bits(13, 29);
4594 		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4595 						   rsvd_bits(13, 20); /* large page */
4596 		rsvd_check->rsvd_bits_mask[1][0] =
4597 			rsvd_check->rsvd_bits_mask[0][0];
4598 		break;
4599 	}
4600 }
4601 
4602 static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu)
4603 {
4604 	/*
4605 	 * If TDP is enabled, let the guest use GBPAGES if they're supported in
4606 	 * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
4607 	 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
4608 	 * walk for performance and complexity reasons.  Not to mention KVM
4609 	 * _can't_ solve the problem because GVA->GPA walks aren't visible to
4610 	 * KVM once a TDP translation is installed.  Mimic hardware behavior so
4611 	 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
4612 	 */
4613 	return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
4614 			     guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
4615 }
4616 
4617 static void reset_guest_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4618 					struct kvm_mmu *context)
4619 {
4620 	__reset_rsvds_bits_mask(&context->guest_rsvd_check,
4621 				vcpu->arch.reserved_gpa_bits,
4622 				context->cpu_role.base.level, is_efer_nx(context),
4623 				guest_can_use_gbpages(vcpu),
4624 				is_cr4_pse(context),
4625 				guest_cpuid_is_amd_or_hygon(vcpu));
4626 }
4627 
4628 static void
4629 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4630 			    u64 pa_bits_rsvd, bool execonly, int huge_page_level)
4631 {
4632 	u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4633 	u64 large_1g_rsvd = 0, large_2m_rsvd = 0;
4634 	u64 bad_mt_xwr;
4635 
4636 	if (huge_page_level < PG_LEVEL_1G)
4637 		large_1g_rsvd = rsvd_bits(7, 7);
4638 	if (huge_page_level < PG_LEVEL_2M)
4639 		large_2m_rsvd = rsvd_bits(7, 7);
4640 
4641 	rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
4642 	rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4643 	rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd;
4644 	rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd;
4645 	rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4646 
4647 	/* large page */
4648 	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4649 	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4650 	rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd;
4651 	rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd;
4652 	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4653 
4654 	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
4655 	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
4656 	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
4657 	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
4658 	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
4659 	if (!execonly) {
4660 		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
4661 		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4662 	}
4663 	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4664 }
4665 
4666 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4667 		struct kvm_mmu *context, bool execonly, int huge_page_level)
4668 {
4669 	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4670 				    vcpu->arch.reserved_gpa_bits, execonly,
4671 				    huge_page_level);
4672 }
4673 
4674 static inline u64 reserved_hpa_bits(void)
4675 {
4676 	return rsvd_bits(shadow_phys_bits, 63);
4677 }
4678 
4679 /*
4680  * the page table on host is the shadow page table for the page
4681  * table in guest or amd nested guest, its mmu features completely
4682  * follow the features in guest.
4683  */
4684 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4685 					struct kvm_mmu *context)
4686 {
4687 	/* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
4688 	bool is_amd = true;
4689 	/* KVM doesn't use 2-level page tables for the shadow MMU. */
4690 	bool is_pse = false;
4691 	struct rsvd_bits_validate *shadow_zero_check;
4692 	int i;
4693 
4694 	WARN_ON_ONCE(context->root_role.level < PT32E_ROOT_LEVEL);
4695 
4696 	shadow_zero_check = &context->shadow_zero_check;
4697 	__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4698 				context->root_role.level,
4699 				context->root_role.efer_nx,
4700 				guest_can_use_gbpages(vcpu), is_pse, is_amd);
4701 
4702 	if (!shadow_me_mask)
4703 		return;
4704 
4705 	for (i = context->root_role.level; --i >= 0;) {
4706 		/*
4707 		 * So far shadow_me_value is a constant during KVM's life
4708 		 * time.  Bits in shadow_me_value are allowed to be set.
4709 		 * Bits in shadow_me_mask but not in shadow_me_value are
4710 		 * not allowed to be set.
4711 		 */
4712 		shadow_zero_check->rsvd_bits_mask[0][i] |= shadow_me_mask;
4713 		shadow_zero_check->rsvd_bits_mask[1][i] |= shadow_me_mask;
4714 		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_value;
4715 		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_value;
4716 	}
4717 
4718 }
4719 
4720 static inline bool boot_cpu_is_amd(void)
4721 {
4722 	WARN_ON_ONCE(!tdp_enabled);
4723 	return shadow_x_mask == 0;
4724 }
4725 
4726 /*
4727  * the direct page table on host, use as much mmu features as
4728  * possible, however, kvm currently does not do execution-protection.
4729  */
4730 static void
4731 reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context)
4732 {
4733 	struct rsvd_bits_validate *shadow_zero_check;
4734 	int i;
4735 
4736 	shadow_zero_check = &context->shadow_zero_check;
4737 
4738 	if (boot_cpu_is_amd())
4739 		__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4740 					context->root_role.level, true,
4741 					boot_cpu_has(X86_FEATURE_GBPAGES),
4742 					false, true);
4743 	else
4744 		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4745 					    reserved_hpa_bits(), false,
4746 					    max_huge_page_level);
4747 
4748 	if (!shadow_me_mask)
4749 		return;
4750 
4751 	for (i = context->root_role.level; --i >= 0;) {
4752 		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4753 		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4754 	}
4755 }
4756 
4757 /*
4758  * as the comments in reset_shadow_zero_bits_mask() except it
4759  * is the shadow page table for intel nested guest.
4760  */
4761 static void
4762 reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly)
4763 {
4764 	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4765 				    reserved_hpa_bits(), execonly,
4766 				    max_huge_page_level);
4767 }
4768 
4769 #define BYTE_MASK(access) \
4770 	((1 & (access) ? 2 : 0) | \
4771 	 (2 & (access) ? 4 : 0) | \
4772 	 (3 & (access) ? 8 : 0) | \
4773 	 (4 & (access) ? 16 : 0) | \
4774 	 (5 & (access) ? 32 : 0) | \
4775 	 (6 & (access) ? 64 : 0) | \
4776 	 (7 & (access) ? 128 : 0))
4777 
4778 
4779 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
4780 {
4781 	unsigned byte;
4782 
4783 	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4784 	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4785 	const u8 u = BYTE_MASK(ACC_USER_MASK);
4786 
4787 	bool cr4_smep = is_cr4_smep(mmu);
4788 	bool cr4_smap = is_cr4_smap(mmu);
4789 	bool cr0_wp = is_cr0_wp(mmu);
4790 	bool efer_nx = is_efer_nx(mmu);
4791 
4792 	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4793 		unsigned pfec = byte << 1;
4794 
4795 		/*
4796 		 * Each "*f" variable has a 1 bit for each UWX value
4797 		 * that causes a fault with the given PFEC.
4798 		 */
4799 
4800 		/* Faults from writes to non-writable pages */
4801 		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4802 		/* Faults from user mode accesses to supervisor pages */
4803 		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4804 		/* Faults from fetches of non-executable pages*/
4805 		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4806 		/* Faults from kernel mode fetches of user pages */
4807 		u8 smepf = 0;
4808 		/* Faults from kernel mode accesses of user pages */
4809 		u8 smapf = 0;
4810 
4811 		if (!ept) {
4812 			/* Faults from kernel mode accesses to user pages */
4813 			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4814 
4815 			/* Not really needed: !nx will cause pte.nx to fault */
4816 			if (!efer_nx)
4817 				ff = 0;
4818 
4819 			/* Allow supervisor writes if !cr0.wp */
4820 			if (!cr0_wp)
4821 				wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4822 
4823 			/* Disallow supervisor fetches of user code if cr4.smep */
4824 			if (cr4_smep)
4825 				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4826 
4827 			/*
4828 			 * SMAP:kernel-mode data accesses from user-mode
4829 			 * mappings should fault. A fault is considered
4830 			 * as a SMAP violation if all of the following
4831 			 * conditions are true:
4832 			 *   - X86_CR4_SMAP is set in CR4
4833 			 *   - A user page is accessed
4834 			 *   - The access is not a fetch
4835 			 *   - The access is supervisor mode
4836 			 *   - If implicit supervisor access or X86_EFLAGS_AC is clear
4837 			 *
4838 			 * Here, we cover the first four conditions.
4839 			 * The fifth is computed dynamically in permission_fault();
4840 			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4841 			 * *not* subject to SMAP restrictions.
4842 			 */
4843 			if (cr4_smap)
4844 				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4845 		}
4846 
4847 		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4848 	}
4849 }
4850 
4851 /*
4852 * PKU is an additional mechanism by which the paging controls access to
4853 * user-mode addresses based on the value in the PKRU register.  Protection
4854 * key violations are reported through a bit in the page fault error code.
4855 * Unlike other bits of the error code, the PK bit is not known at the
4856 * call site of e.g. gva_to_gpa; it must be computed directly in
4857 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4858 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4859 *
4860 * In particular the following conditions come from the error code, the
4861 * page tables and the machine state:
4862 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4863 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4864 * - PK is always zero if U=0 in the page tables
4865 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4866 *
4867 * The PKRU bitmask caches the result of these four conditions.  The error
4868 * code (minus the P bit) and the page table's U bit form an index into the
4869 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4870 * with the two bits of the PKRU register corresponding to the protection key.
4871 * For the first three conditions above the bits will be 00, thus masking
4872 * away both AD and WD.  For all reads or if the last condition holds, WD
4873 * only will be masked away.
4874 */
4875 static void update_pkru_bitmask(struct kvm_mmu *mmu)
4876 {
4877 	unsigned bit;
4878 	bool wp;
4879 
4880 	mmu->pkru_mask = 0;
4881 
4882 	if (!is_cr4_pke(mmu))
4883 		return;
4884 
4885 	wp = is_cr0_wp(mmu);
4886 
4887 	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4888 		unsigned pfec, pkey_bits;
4889 		bool check_pkey, check_write, ff, uf, wf, pte_user;
4890 
4891 		pfec = bit << 1;
4892 		ff = pfec & PFERR_FETCH_MASK;
4893 		uf = pfec & PFERR_USER_MASK;
4894 		wf = pfec & PFERR_WRITE_MASK;
4895 
4896 		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
4897 		pte_user = pfec & PFERR_RSVD_MASK;
4898 
4899 		/*
4900 		 * Only need to check the access which is not an
4901 		 * instruction fetch and is to a user page.
4902 		 */
4903 		check_pkey = (!ff && pte_user);
4904 		/*
4905 		 * write access is controlled by PKRU if it is a
4906 		 * user access or CR0.WP = 1.
4907 		 */
4908 		check_write = check_pkey && wf && (uf || wp);
4909 
4910 		/* PKRU.AD stops both read and write access. */
4911 		pkey_bits = !!check_pkey;
4912 		/* PKRU.WD stops write access. */
4913 		pkey_bits |= (!!check_write) << 1;
4914 
4915 		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4916 	}
4917 }
4918 
4919 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
4920 					struct kvm_mmu *mmu)
4921 {
4922 	if (!is_cr0_pg(mmu))
4923 		return;
4924 
4925 	reset_guest_rsvds_bits_mask(vcpu, mmu);
4926 	update_permission_bitmask(mmu, false);
4927 	update_pkru_bitmask(mmu);
4928 }
4929 
4930 static void paging64_init_context(struct kvm_mmu *context)
4931 {
4932 	context->page_fault = paging64_page_fault;
4933 	context->gva_to_gpa = paging64_gva_to_gpa;
4934 	context->sync_page = paging64_sync_page;
4935 	context->invlpg = paging64_invlpg;
4936 }
4937 
4938 static void paging32_init_context(struct kvm_mmu *context)
4939 {
4940 	context->page_fault = paging32_page_fault;
4941 	context->gva_to_gpa = paging32_gva_to_gpa;
4942 	context->sync_page = paging32_sync_page;
4943 	context->invlpg = paging32_invlpg;
4944 }
4945 
4946 static union kvm_cpu_role
4947 kvm_calc_cpu_role(struct kvm_vcpu *vcpu, const struct kvm_mmu_role_regs *regs)
4948 {
4949 	union kvm_cpu_role role = {0};
4950 
4951 	role.base.access = ACC_ALL;
4952 	role.base.smm = is_smm(vcpu);
4953 	role.base.guest_mode = is_guest_mode(vcpu);
4954 	role.ext.valid = 1;
4955 
4956 	if (!____is_cr0_pg(regs)) {
4957 		role.base.direct = 1;
4958 		return role;
4959 	}
4960 
4961 	role.base.efer_nx = ____is_efer_nx(regs);
4962 	role.base.cr0_wp = ____is_cr0_wp(regs);
4963 	role.base.smep_andnot_wp = ____is_cr4_smep(regs) && !____is_cr0_wp(regs);
4964 	role.base.smap_andnot_wp = ____is_cr4_smap(regs) && !____is_cr0_wp(regs);
4965 	role.base.has_4_byte_gpte = !____is_cr4_pae(regs);
4966 
4967 	if (____is_efer_lma(regs))
4968 		role.base.level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL
4969 							: PT64_ROOT_4LEVEL;
4970 	else if (____is_cr4_pae(regs))
4971 		role.base.level = PT32E_ROOT_LEVEL;
4972 	else
4973 		role.base.level = PT32_ROOT_LEVEL;
4974 
4975 	role.ext.cr4_smep = ____is_cr4_smep(regs);
4976 	role.ext.cr4_smap = ____is_cr4_smap(regs);
4977 	role.ext.cr4_pse = ____is_cr4_pse(regs);
4978 
4979 	/* PKEY and LA57 are active iff long mode is active. */
4980 	role.ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
4981 	role.ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
4982 	role.ext.efer_lma = ____is_efer_lma(regs);
4983 	return role;
4984 }
4985 
4986 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4987 {
4988 	/* tdp_root_level is architecture forced level, use it if nonzero */
4989 	if (tdp_root_level)
4990 		return tdp_root_level;
4991 
4992 	/* Use 5-level TDP if and only if it's useful/necessary. */
4993 	if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4994 		return 4;
4995 
4996 	return max_tdp_level;
4997 }
4998 
4999 static union kvm_mmu_page_role
5000 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
5001 				union kvm_cpu_role cpu_role)
5002 {
5003 	union kvm_mmu_page_role role = {0};
5004 
5005 	role.access = ACC_ALL;
5006 	role.cr0_wp = true;
5007 	role.efer_nx = true;
5008 	role.smm = cpu_role.base.smm;
5009 	role.guest_mode = cpu_role.base.guest_mode;
5010 	role.ad_disabled = !kvm_ad_enabled();
5011 	role.level = kvm_mmu_get_tdp_level(vcpu);
5012 	role.direct = true;
5013 	role.has_4_byte_gpte = false;
5014 
5015 	return role;
5016 }
5017 
5018 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu,
5019 			     union kvm_cpu_role cpu_role)
5020 {
5021 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
5022 	union kvm_mmu_page_role root_role = kvm_calc_tdp_mmu_root_page_role(vcpu, cpu_role);
5023 
5024 	if (cpu_role.as_u64 == context->cpu_role.as_u64 &&
5025 	    root_role.word == context->root_role.word)
5026 		return;
5027 
5028 	context->cpu_role.as_u64 = cpu_role.as_u64;
5029 	context->root_role.word = root_role.word;
5030 	context->page_fault = kvm_tdp_page_fault;
5031 	context->sync_page = nonpaging_sync_page;
5032 	context->invlpg = NULL;
5033 	context->get_guest_pgd = get_cr3;
5034 	context->get_pdptr = kvm_pdptr_read;
5035 	context->inject_page_fault = kvm_inject_page_fault;
5036 
5037 	if (!is_cr0_pg(context))
5038 		context->gva_to_gpa = nonpaging_gva_to_gpa;
5039 	else if (is_cr4_pae(context))
5040 		context->gva_to_gpa = paging64_gva_to_gpa;
5041 	else
5042 		context->gva_to_gpa = paging32_gva_to_gpa;
5043 
5044 	reset_guest_paging_metadata(vcpu, context);
5045 	reset_tdp_shadow_zero_bits_mask(context);
5046 }
5047 
5048 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
5049 				    union kvm_cpu_role cpu_role,
5050 				    union kvm_mmu_page_role root_role)
5051 {
5052 	if (cpu_role.as_u64 == context->cpu_role.as_u64 &&
5053 	    root_role.word == context->root_role.word)
5054 		return;
5055 
5056 	context->cpu_role.as_u64 = cpu_role.as_u64;
5057 	context->root_role.word = root_role.word;
5058 
5059 	if (!is_cr0_pg(context))
5060 		nonpaging_init_context(context);
5061 	else if (is_cr4_pae(context))
5062 		paging64_init_context(context);
5063 	else
5064 		paging32_init_context(context);
5065 
5066 	reset_guest_paging_metadata(vcpu, context);
5067 	reset_shadow_zero_bits_mask(vcpu, context);
5068 }
5069 
5070 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
5071 				union kvm_cpu_role cpu_role)
5072 {
5073 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
5074 	union kvm_mmu_page_role root_role;
5075 
5076 	root_role = cpu_role.base;
5077 
5078 	/* KVM uses PAE paging whenever the guest isn't using 64-bit paging. */
5079 	root_role.level = max_t(u32, root_role.level, PT32E_ROOT_LEVEL);
5080 
5081 	/*
5082 	 * KVM forces EFER.NX=1 when TDP is disabled, reflect it in the MMU role.
5083 	 * KVM uses NX when TDP is disabled to handle a variety of scenarios,
5084 	 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
5085 	 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
5086 	 * The iTLB multi-hit workaround can be toggled at any time, so assume
5087 	 * NX can be used by any non-nested shadow MMU to avoid having to reset
5088 	 * MMU contexts.
5089 	 */
5090 	root_role.efer_nx = true;
5091 
5092 	shadow_mmu_init_context(vcpu, context, cpu_role, root_role);
5093 }
5094 
5095 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
5096 			     unsigned long cr4, u64 efer, gpa_t nested_cr3)
5097 {
5098 	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
5099 	struct kvm_mmu_role_regs regs = {
5100 		.cr0 = cr0,
5101 		.cr4 = cr4 & ~X86_CR4_PKE,
5102 		.efer = efer,
5103 	};
5104 	union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, &regs);
5105 	union kvm_mmu_page_role root_role;
5106 
5107 	/* NPT requires CR0.PG=1. */
5108 	WARN_ON_ONCE(cpu_role.base.direct);
5109 
5110 	root_role = cpu_role.base;
5111 	root_role.level = kvm_mmu_get_tdp_level(vcpu);
5112 	if (root_role.level == PT64_ROOT_5LEVEL &&
5113 	    cpu_role.base.level == PT64_ROOT_4LEVEL)
5114 		root_role.passthrough = 1;
5115 
5116 	shadow_mmu_init_context(vcpu, context, cpu_role, root_role);
5117 	kvm_mmu_new_pgd(vcpu, nested_cr3);
5118 }
5119 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
5120 
5121 static union kvm_cpu_role
5122 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
5123 				   bool execonly, u8 level)
5124 {
5125 	union kvm_cpu_role role = {0};
5126 
5127 	/*
5128 	 * KVM does not support SMM transfer monitors, and consequently does not
5129 	 * support the "entry to SMM" control either.  role.base.smm is always 0.
5130 	 */
5131 	WARN_ON_ONCE(is_smm(vcpu));
5132 	role.base.level = level;
5133 	role.base.has_4_byte_gpte = false;
5134 	role.base.direct = false;
5135 	role.base.ad_disabled = !accessed_dirty;
5136 	role.base.guest_mode = true;
5137 	role.base.access = ACC_ALL;
5138 
5139 	role.ext.word = 0;
5140 	role.ext.execonly = execonly;
5141 	role.ext.valid = 1;
5142 
5143 	return role;
5144 }
5145 
5146 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
5147 			     int huge_page_level, bool accessed_dirty,
5148 			     gpa_t new_eptp)
5149 {
5150 	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
5151 	u8 level = vmx_eptp_page_walk_level(new_eptp);
5152 	union kvm_cpu_role new_mode =
5153 		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
5154 						   execonly, level);
5155 
5156 	if (new_mode.as_u64 != context->cpu_role.as_u64) {
5157 		/* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
5158 		context->cpu_role.as_u64 = new_mode.as_u64;
5159 		context->root_role.word = new_mode.base.word;
5160 
5161 		context->page_fault = ept_page_fault;
5162 		context->gva_to_gpa = ept_gva_to_gpa;
5163 		context->sync_page = ept_sync_page;
5164 		context->invlpg = ept_invlpg;
5165 
5166 		update_permission_bitmask(context, true);
5167 		context->pkru_mask = 0;
5168 		reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level);
5169 		reset_ept_shadow_zero_bits_mask(context, execonly);
5170 	}
5171 
5172 	kvm_mmu_new_pgd(vcpu, new_eptp);
5173 }
5174 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
5175 
5176 static void init_kvm_softmmu(struct kvm_vcpu *vcpu,
5177 			     union kvm_cpu_role cpu_role)
5178 {
5179 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
5180 
5181 	kvm_init_shadow_mmu(vcpu, cpu_role);
5182 
5183 	context->get_guest_pgd     = get_cr3;
5184 	context->get_pdptr         = kvm_pdptr_read;
5185 	context->inject_page_fault = kvm_inject_page_fault;
5186 }
5187 
5188 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu,
5189 				union kvm_cpu_role new_mode)
5190 {
5191 	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5192 
5193 	if (new_mode.as_u64 == g_context->cpu_role.as_u64)
5194 		return;
5195 
5196 	g_context->cpu_role.as_u64   = new_mode.as_u64;
5197 	g_context->get_guest_pgd     = get_cr3;
5198 	g_context->get_pdptr         = kvm_pdptr_read;
5199 	g_context->inject_page_fault = kvm_inject_page_fault;
5200 
5201 	/*
5202 	 * L2 page tables are never shadowed, so there is no need to sync
5203 	 * SPTEs.
5204 	 */
5205 	g_context->invlpg            = NULL;
5206 
5207 	/*
5208 	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5209 	 * L1's nested page tables (e.g. EPT12). The nested translation
5210 	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5211 	 * L2's page tables as the first level of translation and L1's
5212 	 * nested page tables as the second level of translation. Basically
5213 	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5214 	 */
5215 	if (!is_paging(vcpu))
5216 		g_context->gva_to_gpa = nonpaging_gva_to_gpa;
5217 	else if (is_long_mode(vcpu))
5218 		g_context->gva_to_gpa = paging64_gva_to_gpa;
5219 	else if (is_pae(vcpu))
5220 		g_context->gva_to_gpa = paging64_gva_to_gpa;
5221 	else
5222 		g_context->gva_to_gpa = paging32_gva_to_gpa;
5223 
5224 	reset_guest_paging_metadata(vcpu, g_context);
5225 }
5226 
5227 void kvm_init_mmu(struct kvm_vcpu *vcpu)
5228 {
5229 	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
5230 	union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, &regs);
5231 
5232 	if (mmu_is_nested(vcpu))
5233 		init_kvm_nested_mmu(vcpu, cpu_role);
5234 	else if (tdp_enabled)
5235 		init_kvm_tdp_mmu(vcpu, cpu_role);
5236 	else
5237 		init_kvm_softmmu(vcpu, cpu_role);
5238 }
5239 EXPORT_SYMBOL_GPL(kvm_init_mmu);
5240 
5241 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
5242 {
5243 	/*
5244 	 * Invalidate all MMU roles to force them to reinitialize as CPUID
5245 	 * information is factored into reserved bit calculations.
5246 	 *
5247 	 * Correctly handling multiple vCPU models with respect to paging and
5248 	 * physical address properties) in a single VM would require tracking
5249 	 * all relevant CPUID information in kvm_mmu_page_role. That is very
5250 	 * undesirable as it would increase the memory requirements for
5251 	 * gfn_track (see struct kvm_mmu_page_role comments).  For now that
5252 	 * problem is swept under the rug; KVM's CPUID API is horrific and
5253 	 * it's all but impossible to solve it without introducing a new API.
5254 	 */
5255 	vcpu->arch.root_mmu.root_role.word = 0;
5256 	vcpu->arch.guest_mmu.root_role.word = 0;
5257 	vcpu->arch.nested_mmu.root_role.word = 0;
5258 	vcpu->arch.root_mmu.cpu_role.ext.valid = 0;
5259 	vcpu->arch.guest_mmu.cpu_role.ext.valid = 0;
5260 	vcpu->arch.nested_mmu.cpu_role.ext.valid = 0;
5261 	kvm_mmu_reset_context(vcpu);
5262 
5263 	/*
5264 	 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in
5265 	 * kvm_arch_vcpu_ioctl().
5266 	 */
5267 	KVM_BUG_ON(vcpu->arch.last_vmentry_cpu != -1, vcpu->kvm);
5268 }
5269 
5270 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5271 {
5272 	kvm_mmu_unload(vcpu);
5273 	kvm_init_mmu(vcpu);
5274 }
5275 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5276 
5277 int kvm_mmu_load(struct kvm_vcpu *vcpu)
5278 {
5279 	int r;
5280 
5281 	r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->root_role.direct);
5282 	if (r)
5283 		goto out;
5284 	r = mmu_alloc_special_roots(vcpu);
5285 	if (r)
5286 		goto out;
5287 	if (vcpu->arch.mmu->root_role.direct)
5288 		r = mmu_alloc_direct_roots(vcpu);
5289 	else
5290 		r = mmu_alloc_shadow_roots(vcpu);
5291 	if (r)
5292 		goto out;
5293 
5294 	kvm_mmu_sync_roots(vcpu);
5295 
5296 	kvm_mmu_load_pgd(vcpu);
5297 
5298 	/*
5299 	 * Flush any TLB entries for the new root, the provenance of the root
5300 	 * is unknown.  Even if KVM ensures there are no stale TLB entries
5301 	 * for a freed root, in theory another hypervisor could have left
5302 	 * stale entries.  Flushing on alloc also allows KVM to skip the TLB
5303 	 * flush when freeing a root (see kvm_tdp_mmu_put_root()).
5304 	 */
5305 	static_call(kvm_x86_flush_tlb_current)(vcpu);
5306 out:
5307 	return r;
5308 }
5309 
5310 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5311 {
5312 	struct kvm *kvm = vcpu->kvm;
5313 
5314 	kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5315 	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root.hpa));
5316 	kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5317 	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa));
5318 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
5319 }
5320 
5321 static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa)
5322 {
5323 	struct kvm_mmu_page *sp;
5324 
5325 	if (!VALID_PAGE(root_hpa))
5326 		return false;
5327 
5328 	/*
5329 	 * When freeing obsolete roots, treat roots as obsolete if they don't
5330 	 * have an associated shadow page.  This does mean KVM will get false
5331 	 * positives and free roots that don't strictly need to be freed, but
5332 	 * such false positives are relatively rare:
5333 	 *
5334 	 *  (a) only PAE paging and nested NPT has roots without shadow pages
5335 	 *  (b) remote reloads due to a memslot update obsoletes _all_ roots
5336 	 *  (c) KVM doesn't track previous roots for PAE paging, and the guest
5337 	 *      is unlikely to zap an in-use PGD.
5338 	 */
5339 	sp = to_shadow_page(root_hpa);
5340 	return !sp || is_obsolete_sp(kvm, sp);
5341 }
5342 
5343 static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu)
5344 {
5345 	unsigned long roots_to_free = 0;
5346 	int i;
5347 
5348 	if (is_obsolete_root(kvm, mmu->root.hpa))
5349 		roots_to_free |= KVM_MMU_ROOT_CURRENT;
5350 
5351 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5352 		if (is_obsolete_root(kvm, mmu->prev_roots[i].hpa))
5353 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5354 	}
5355 
5356 	if (roots_to_free)
5357 		kvm_mmu_free_roots(kvm, mmu, roots_to_free);
5358 }
5359 
5360 void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu)
5361 {
5362 	__kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu);
5363 	__kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu);
5364 }
5365 
5366 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5367 				    int *bytes)
5368 {
5369 	u64 gentry = 0;
5370 	int r;
5371 
5372 	/*
5373 	 * Assume that the pte write on a page table of the same type
5374 	 * as the current vcpu paging mode since we update the sptes only
5375 	 * when they have the same mode.
5376 	 */
5377 	if (is_pae(vcpu) && *bytes == 4) {
5378 		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5379 		*gpa &= ~(gpa_t)7;
5380 		*bytes = 8;
5381 	}
5382 
5383 	if (*bytes == 4 || *bytes == 8) {
5384 		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5385 		if (r)
5386 			gentry = 0;
5387 	}
5388 
5389 	return gentry;
5390 }
5391 
5392 /*
5393  * If we're seeing too many writes to a page, it may no longer be a page table,
5394  * or we may be forking, in which case it is better to unmap the page.
5395  */
5396 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5397 {
5398 	/*
5399 	 * Skip write-flooding detected for the sp whose level is 1, because
5400 	 * it can become unsync, then the guest page is not write-protected.
5401 	 */
5402 	if (sp->role.level == PG_LEVEL_4K)
5403 		return false;
5404 
5405 	atomic_inc(&sp->write_flooding_count);
5406 	return atomic_read(&sp->write_flooding_count) >= 3;
5407 }
5408 
5409 /*
5410  * Misaligned accesses are too much trouble to fix up; also, they usually
5411  * indicate a page is not used as a page table.
5412  */
5413 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5414 				    int bytes)
5415 {
5416 	unsigned offset, pte_size, misaligned;
5417 
5418 	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5419 		 gpa, bytes, sp->role.word);
5420 
5421 	offset = offset_in_page(gpa);
5422 	pte_size = sp->role.has_4_byte_gpte ? 4 : 8;
5423 
5424 	/*
5425 	 * Sometimes, the OS only writes the last one bytes to update status
5426 	 * bits, for example, in linux, andb instruction is used in clear_bit().
5427 	 */
5428 	if (!(offset & (pte_size - 1)) && bytes == 1)
5429 		return false;
5430 
5431 	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5432 	misaligned |= bytes < 4;
5433 
5434 	return misaligned;
5435 }
5436 
5437 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5438 {
5439 	unsigned page_offset, quadrant;
5440 	u64 *spte;
5441 	int level;
5442 
5443 	page_offset = offset_in_page(gpa);
5444 	level = sp->role.level;
5445 	*nspte = 1;
5446 	if (sp->role.has_4_byte_gpte) {
5447 		page_offset <<= 1;	/* 32->64 */
5448 		/*
5449 		 * A 32-bit pde maps 4MB while the shadow pdes map
5450 		 * only 2MB.  So we need to double the offset again
5451 		 * and zap two pdes instead of one.
5452 		 */
5453 		if (level == PT32_ROOT_LEVEL) {
5454 			page_offset &= ~7; /* kill rounding error */
5455 			page_offset <<= 1;
5456 			*nspte = 2;
5457 		}
5458 		quadrant = page_offset >> PAGE_SHIFT;
5459 		page_offset &= ~PAGE_MASK;
5460 		if (quadrant != sp->role.quadrant)
5461 			return NULL;
5462 	}
5463 
5464 	spte = &sp->spt[page_offset / sizeof(*spte)];
5465 	return spte;
5466 }
5467 
5468 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5469 			      const u8 *new, int bytes,
5470 			      struct kvm_page_track_notifier_node *node)
5471 {
5472 	gfn_t gfn = gpa >> PAGE_SHIFT;
5473 	struct kvm_mmu_page *sp;
5474 	LIST_HEAD(invalid_list);
5475 	u64 entry, gentry, *spte;
5476 	int npte;
5477 	bool flush = false;
5478 
5479 	/*
5480 	 * If we don't have indirect shadow pages, it means no page is
5481 	 * write-protected, so we can exit simply.
5482 	 */
5483 	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5484 		return;
5485 
5486 	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5487 
5488 	write_lock(&vcpu->kvm->mmu_lock);
5489 
5490 	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5491 
5492 	++vcpu->kvm->stat.mmu_pte_write;
5493 
5494 	for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) {
5495 		if (detect_write_misaligned(sp, gpa, bytes) ||
5496 		      detect_write_flooding(sp)) {
5497 			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5498 			++vcpu->kvm->stat.mmu_flooded;
5499 			continue;
5500 		}
5501 
5502 		spte = get_written_sptes(sp, gpa, &npte);
5503 		if (!spte)
5504 			continue;
5505 
5506 		while (npte--) {
5507 			entry = *spte;
5508 			mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5509 			if (gentry && sp->role.level != PG_LEVEL_4K)
5510 				++vcpu->kvm->stat.mmu_pde_zapped;
5511 			if (is_shadow_present_pte(entry))
5512 				flush = true;
5513 			++spte;
5514 		}
5515 	}
5516 	kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
5517 	write_unlock(&vcpu->kvm->mmu_lock);
5518 }
5519 
5520 int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5521 		       void *insn, int insn_len)
5522 {
5523 	int r, emulation_type = EMULTYPE_PF;
5524 	bool direct = vcpu->arch.mmu->root_role.direct;
5525 
5526 	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root.hpa)))
5527 		return RET_PF_RETRY;
5528 
5529 	r = RET_PF_INVALID;
5530 	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5531 		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5532 		if (r == RET_PF_EMULATE)
5533 			goto emulate;
5534 	}
5535 
5536 	if (r == RET_PF_INVALID) {
5537 		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5538 					  lower_32_bits(error_code), false);
5539 		if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm))
5540 			return -EIO;
5541 	}
5542 
5543 	if (r < 0)
5544 		return r;
5545 	if (r != RET_PF_EMULATE)
5546 		return 1;
5547 
5548 	/*
5549 	 * Before emulating the instruction, check if the error code
5550 	 * was due to a RO violation while translating the guest page.
5551 	 * This can occur when using nested virtualization with nested
5552 	 * paging in both guests. If true, we simply unprotect the page
5553 	 * and resume the guest.
5554 	 */
5555 	if (vcpu->arch.mmu->root_role.direct &&
5556 	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5557 		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5558 		return 1;
5559 	}
5560 
5561 	/*
5562 	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5563 	 * optimistically try to just unprotect the page and let the processor
5564 	 * re-execute the instruction that caused the page fault.  Do not allow
5565 	 * retrying MMIO emulation, as it's not only pointless but could also
5566 	 * cause us to enter an infinite loop because the processor will keep
5567 	 * faulting on the non-existent MMIO address.  Retrying an instruction
5568 	 * from a nested guest is also pointless and dangerous as we are only
5569 	 * explicitly shadowing L1's page tables, i.e. unprotecting something
5570 	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5571 	 */
5572 	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5573 		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5574 emulate:
5575 	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5576 				       insn_len);
5577 }
5578 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5579 
5580 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5581 			    gva_t gva, hpa_t root_hpa)
5582 {
5583 	int i;
5584 
5585 	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
5586 	if (mmu != &vcpu->arch.guest_mmu) {
5587 		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
5588 		if (is_noncanonical_address(gva, vcpu))
5589 			return;
5590 
5591 		static_call(kvm_x86_flush_tlb_gva)(vcpu, gva);
5592 	}
5593 
5594 	if (!mmu->invlpg)
5595 		return;
5596 
5597 	if (root_hpa == INVALID_PAGE) {
5598 		mmu->invlpg(vcpu, gva, mmu->root.hpa);
5599 
5600 		/*
5601 		 * INVLPG is required to invalidate any global mappings for the VA,
5602 		 * irrespective of PCID. Since it would take us roughly similar amount
5603 		 * of work to determine whether any of the prev_root mappings of the VA
5604 		 * is marked global, or to just sync it blindly, so we might as well
5605 		 * just always sync it.
5606 		 *
5607 		 * Mappings not reachable via the current cr3 or the prev_roots will be
5608 		 * synced when switching to that cr3, so nothing needs to be done here
5609 		 * for them.
5610 		 */
5611 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5612 			if (VALID_PAGE(mmu->prev_roots[i].hpa))
5613 				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5614 	} else {
5615 		mmu->invlpg(vcpu, gva, root_hpa);
5616 	}
5617 }
5618 
5619 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5620 {
5621 	kvm_mmu_invalidate_gva(vcpu, vcpu->arch.walk_mmu, gva, INVALID_PAGE);
5622 	++vcpu->stat.invlpg;
5623 }
5624 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5625 
5626 
5627 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5628 {
5629 	struct kvm_mmu *mmu = vcpu->arch.mmu;
5630 	bool tlb_flush = false;
5631 	uint i;
5632 
5633 	if (pcid == kvm_get_active_pcid(vcpu)) {
5634 		if (mmu->invlpg)
5635 			mmu->invlpg(vcpu, gva, mmu->root.hpa);
5636 		tlb_flush = true;
5637 	}
5638 
5639 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5640 		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5641 		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5642 			if (mmu->invlpg)
5643 				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5644 			tlb_flush = true;
5645 		}
5646 	}
5647 
5648 	if (tlb_flush)
5649 		static_call(kvm_x86_flush_tlb_gva)(vcpu, gva);
5650 
5651 	++vcpu->stat.invlpg;
5652 
5653 	/*
5654 	 * Mappings not reachable via the current cr3 or the prev_roots will be
5655 	 * synced when switching to that cr3, so nothing needs to be done here
5656 	 * for them.
5657 	 */
5658 }
5659 
5660 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
5661 		       int tdp_max_root_level, int tdp_huge_page_level)
5662 {
5663 	tdp_enabled = enable_tdp;
5664 	tdp_root_level = tdp_forced_root_level;
5665 	max_tdp_level = tdp_max_root_level;
5666 
5667 	/*
5668 	 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5669 	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5670 	 * the kernel is not.  But, KVM never creates a page size greater than
5671 	 * what is used by the kernel for any given HVA, i.e. the kernel's
5672 	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5673 	 */
5674 	if (tdp_enabled)
5675 		max_huge_page_level = tdp_huge_page_level;
5676 	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5677 		max_huge_page_level = PG_LEVEL_1G;
5678 	else
5679 		max_huge_page_level = PG_LEVEL_2M;
5680 }
5681 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5682 
5683 /* The return value indicates if tlb flush on all vcpus is needed. */
5684 typedef bool (*slot_level_handler) (struct kvm *kvm,
5685 				    struct kvm_rmap_head *rmap_head,
5686 				    const struct kvm_memory_slot *slot);
5687 
5688 /* The caller should hold mmu-lock before calling this function. */
5689 static __always_inline bool
5690 slot_handle_level_range(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5691 			slot_level_handler fn, int start_level, int end_level,
5692 			gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
5693 			bool flush)
5694 {
5695 	struct slot_rmap_walk_iterator iterator;
5696 
5697 	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5698 			end_gfn, &iterator) {
5699 		if (iterator.rmap)
5700 			flush |= fn(kvm, iterator.rmap, memslot);
5701 
5702 		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5703 			if (flush && flush_on_yield) {
5704 				kvm_flush_remote_tlbs_with_address(kvm,
5705 						start_gfn,
5706 						iterator.gfn - start_gfn + 1);
5707 				flush = false;
5708 			}
5709 			cond_resched_rwlock_write(&kvm->mmu_lock);
5710 		}
5711 	}
5712 
5713 	return flush;
5714 }
5715 
5716 static __always_inline bool
5717 slot_handle_level(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5718 		  slot_level_handler fn, int start_level, int end_level,
5719 		  bool flush_on_yield)
5720 {
5721 	return slot_handle_level_range(kvm, memslot, fn, start_level,
5722 			end_level, memslot->base_gfn,
5723 			memslot->base_gfn + memslot->npages - 1,
5724 			flush_on_yield, false);
5725 }
5726 
5727 static __always_inline bool
5728 slot_handle_level_4k(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5729 		     slot_level_handler fn, bool flush_on_yield)
5730 {
5731 	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5732 				 PG_LEVEL_4K, flush_on_yield);
5733 }
5734 
5735 static void free_mmu_pages(struct kvm_mmu *mmu)
5736 {
5737 	if (!tdp_enabled && mmu->pae_root)
5738 		set_memory_encrypted((unsigned long)mmu->pae_root, 1);
5739 	free_page((unsigned long)mmu->pae_root);
5740 	free_page((unsigned long)mmu->pml4_root);
5741 	free_page((unsigned long)mmu->pml5_root);
5742 }
5743 
5744 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5745 {
5746 	struct page *page;
5747 	int i;
5748 
5749 	mmu->root.hpa = INVALID_PAGE;
5750 	mmu->root.pgd = 0;
5751 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5752 		mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5753 
5754 	/* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */
5755 	if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu)
5756 		return 0;
5757 
5758 	/*
5759 	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5760 	 * while the PDP table is a per-vCPU construct that's allocated at MMU
5761 	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5762 	 * x86_64.  Therefore we need to allocate the PDP table in the first
5763 	 * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
5764 	 * generally doesn't use PAE paging and can skip allocating the PDP
5765 	 * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
5766 	 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
5767 	 * KVM; that horror is handled on-demand by mmu_alloc_special_roots().
5768 	 */
5769 	if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5770 		return 0;
5771 
5772 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5773 	if (!page)
5774 		return -ENOMEM;
5775 
5776 	mmu->pae_root = page_address(page);
5777 
5778 	/*
5779 	 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
5780 	 * get the CPU to treat the PDPTEs as encrypted.  Decrypt the page so
5781 	 * that KVM's writes and the CPU's reads get along.  Note, this is
5782 	 * only necessary when using shadow paging, as 64-bit NPT can get at
5783 	 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
5784 	 * by 32-bit kernels (when KVM itself uses 32-bit NPT).
5785 	 */
5786 	if (!tdp_enabled)
5787 		set_memory_decrypted((unsigned long)mmu->pae_root, 1);
5788 	else
5789 		WARN_ON_ONCE(shadow_me_value);
5790 
5791 	for (i = 0; i < 4; ++i)
5792 		mmu->pae_root[i] = INVALID_PAE_ROOT;
5793 
5794 	return 0;
5795 }
5796 
5797 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5798 {
5799 	int ret;
5800 
5801 	vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5802 	vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5803 
5804 	vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5805 	vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5806 
5807 	vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5808 
5809 	vcpu->arch.mmu = &vcpu->arch.root_mmu;
5810 	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5811 
5812 	ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5813 	if (ret)
5814 		return ret;
5815 
5816 	ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5817 	if (ret)
5818 		goto fail_allocate_root;
5819 
5820 	return ret;
5821  fail_allocate_root:
5822 	free_mmu_pages(&vcpu->arch.guest_mmu);
5823 	return ret;
5824 }
5825 
5826 #define BATCH_ZAP_PAGES	10
5827 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5828 {
5829 	struct kvm_mmu_page *sp, *node;
5830 	int nr_zapped, batch = 0;
5831 	bool unstable;
5832 
5833 restart:
5834 	list_for_each_entry_safe_reverse(sp, node,
5835 	      &kvm->arch.active_mmu_pages, link) {
5836 		/*
5837 		 * No obsolete valid page exists before a newly created page
5838 		 * since active_mmu_pages is a FIFO list.
5839 		 */
5840 		if (!is_obsolete_sp(kvm, sp))
5841 			break;
5842 
5843 		/*
5844 		 * Invalid pages should never land back on the list of active
5845 		 * pages.  Skip the bogus page, otherwise we'll get stuck in an
5846 		 * infinite loop if the page gets put back on the list (again).
5847 		 */
5848 		if (WARN_ON(sp->role.invalid))
5849 			continue;
5850 
5851 		/*
5852 		 * No need to flush the TLB since we're only zapping shadow
5853 		 * pages with an obsolete generation number and all vCPUS have
5854 		 * loaded a new root, i.e. the shadow pages being zapped cannot
5855 		 * be in active use by the guest.
5856 		 */
5857 		if (batch >= BATCH_ZAP_PAGES &&
5858 		    cond_resched_rwlock_write(&kvm->mmu_lock)) {
5859 			batch = 0;
5860 			goto restart;
5861 		}
5862 
5863 		unstable = __kvm_mmu_prepare_zap_page(kvm, sp,
5864 				&kvm->arch.zapped_obsolete_pages, &nr_zapped);
5865 		batch += nr_zapped;
5866 
5867 		if (unstable)
5868 			goto restart;
5869 	}
5870 
5871 	/*
5872 	 * Kick all vCPUs (via remote TLB flush) before freeing the page tables
5873 	 * to ensure KVM is not in the middle of a lockless shadow page table
5874 	 * walk, which may reference the pages.  The remote TLB flush itself is
5875 	 * not required and is simply a convenient way to kick vCPUs as needed.
5876 	 * KVM performs a local TLB flush when allocating a new root (see
5877 	 * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are
5878 	 * running with an obsolete MMU.
5879 	 */
5880 	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5881 }
5882 
5883 /*
5884  * Fast invalidate all shadow pages and use lock-break technique
5885  * to zap obsolete pages.
5886  *
5887  * It's required when memslot is being deleted or VM is being
5888  * destroyed, in these cases, we should ensure that KVM MMU does
5889  * not use any resource of the being-deleted slot or all slots
5890  * after calling the function.
5891  */
5892 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5893 {
5894 	lockdep_assert_held(&kvm->slots_lock);
5895 
5896 	write_lock(&kvm->mmu_lock);
5897 	trace_kvm_mmu_zap_all_fast(kvm);
5898 
5899 	/*
5900 	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
5901 	 * held for the entire duration of zapping obsolete pages, it's
5902 	 * impossible for there to be multiple invalid generations associated
5903 	 * with *valid* shadow pages at any given time, i.e. there is exactly
5904 	 * one valid generation and (at most) one invalid generation.
5905 	 */
5906 	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5907 
5908 	/*
5909 	 * In order to ensure all vCPUs drop their soon-to-be invalid roots,
5910 	 * invalidating TDP MMU roots must be done while holding mmu_lock for
5911 	 * write and in the same critical section as making the reload request,
5912 	 * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield.
5913 	 */
5914 	if (is_tdp_mmu_enabled(kvm))
5915 		kvm_tdp_mmu_invalidate_all_roots(kvm);
5916 
5917 	/*
5918 	 * Notify all vcpus to reload its shadow page table and flush TLB.
5919 	 * Then all vcpus will switch to new shadow page table with the new
5920 	 * mmu_valid_gen.
5921 	 *
5922 	 * Note: we need to do this under the protection of mmu_lock,
5923 	 * otherwise, vcpu would purge shadow page but miss tlb flush.
5924 	 */
5925 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
5926 
5927 	kvm_zap_obsolete_pages(kvm);
5928 
5929 	write_unlock(&kvm->mmu_lock);
5930 
5931 	/*
5932 	 * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before
5933 	 * returning to the caller, e.g. if the zap is in response to a memslot
5934 	 * deletion, mmu_notifier callbacks will be unable to reach the SPTEs
5935 	 * associated with the deleted memslot once the update completes, and
5936 	 * Deferring the zap until the final reference to the root is put would
5937 	 * lead to use-after-free.
5938 	 */
5939 	if (is_tdp_mmu_enabled(kvm))
5940 		kvm_tdp_mmu_zap_invalidated_roots(kvm);
5941 }
5942 
5943 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5944 {
5945 	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5946 }
5947 
5948 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5949 			struct kvm_memory_slot *slot,
5950 			struct kvm_page_track_notifier_node *node)
5951 {
5952 	kvm_mmu_zap_all_fast(kvm);
5953 }
5954 
5955 int kvm_mmu_init_vm(struct kvm *kvm)
5956 {
5957 	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5958 	int r;
5959 
5960 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
5961 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
5962 	INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
5963 	spin_lock_init(&kvm->arch.mmu_unsync_pages_lock);
5964 
5965 	r = kvm_mmu_init_tdp_mmu(kvm);
5966 	if (r < 0)
5967 		return r;
5968 
5969 	node->track_write = kvm_mmu_pte_write;
5970 	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5971 	kvm_page_track_register_notifier(kvm, node);
5972 
5973 	kvm->arch.split_page_header_cache.kmem_cache = mmu_page_header_cache;
5974 	kvm->arch.split_page_header_cache.gfp_zero = __GFP_ZERO;
5975 
5976 	kvm->arch.split_shadow_page_cache.gfp_zero = __GFP_ZERO;
5977 
5978 	kvm->arch.split_desc_cache.kmem_cache = pte_list_desc_cache;
5979 	kvm->arch.split_desc_cache.gfp_zero = __GFP_ZERO;
5980 
5981 	return 0;
5982 }
5983 
5984 static void mmu_free_vm_memory_caches(struct kvm *kvm)
5985 {
5986 	kvm_mmu_free_memory_cache(&kvm->arch.split_desc_cache);
5987 	kvm_mmu_free_memory_cache(&kvm->arch.split_page_header_cache);
5988 	kvm_mmu_free_memory_cache(&kvm->arch.split_shadow_page_cache);
5989 }
5990 
5991 void kvm_mmu_uninit_vm(struct kvm *kvm)
5992 {
5993 	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5994 
5995 	kvm_page_track_unregister_notifier(kvm, node);
5996 
5997 	kvm_mmu_uninit_tdp_mmu(kvm);
5998 
5999 	mmu_free_vm_memory_caches(kvm);
6000 }
6001 
6002 static bool kvm_rmap_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
6003 {
6004 	const struct kvm_memory_slot *memslot;
6005 	struct kvm_memslots *slots;
6006 	struct kvm_memslot_iter iter;
6007 	bool flush = false;
6008 	gfn_t start, end;
6009 	int i;
6010 
6011 	if (!kvm_memslots_have_rmaps(kvm))
6012 		return flush;
6013 
6014 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6015 		slots = __kvm_memslots(kvm, i);
6016 
6017 		kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) {
6018 			memslot = iter.slot;
6019 			start = max(gfn_start, memslot->base_gfn);
6020 			end = min(gfn_end, memslot->base_gfn + memslot->npages);
6021 			if (WARN_ON_ONCE(start >= end))
6022 				continue;
6023 
6024 			flush = slot_handle_level_range(kvm, memslot, __kvm_zap_rmap,
6025 							PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
6026 							start, end - 1, true, flush);
6027 		}
6028 	}
6029 
6030 	return flush;
6031 }
6032 
6033 /*
6034  * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end
6035  * (not including it)
6036  */
6037 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
6038 {
6039 	bool flush;
6040 	int i;
6041 
6042 	if (WARN_ON_ONCE(gfn_end <= gfn_start))
6043 		return;
6044 
6045 	write_lock(&kvm->mmu_lock);
6046 
6047 	kvm_mmu_invalidate_begin(kvm, gfn_start, gfn_end);
6048 
6049 	flush = kvm_rmap_zap_gfn_range(kvm, gfn_start, gfn_end);
6050 
6051 	if (is_tdp_mmu_enabled(kvm)) {
6052 		for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
6053 			flush = kvm_tdp_mmu_zap_leafs(kvm, i, gfn_start,
6054 						      gfn_end, true, flush);
6055 	}
6056 
6057 	if (flush)
6058 		kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
6059 						   gfn_end - gfn_start);
6060 
6061 	kvm_mmu_invalidate_end(kvm, gfn_start, gfn_end);
6062 
6063 	write_unlock(&kvm->mmu_lock);
6064 }
6065 
6066 static bool slot_rmap_write_protect(struct kvm *kvm,
6067 				    struct kvm_rmap_head *rmap_head,
6068 				    const struct kvm_memory_slot *slot)
6069 {
6070 	return rmap_write_protect(rmap_head, false);
6071 }
6072 
6073 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
6074 				      const struct kvm_memory_slot *memslot,
6075 				      int start_level)
6076 {
6077 	if (kvm_memslots_have_rmaps(kvm)) {
6078 		write_lock(&kvm->mmu_lock);
6079 		slot_handle_level(kvm, memslot, slot_rmap_write_protect,
6080 				  start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
6081 		write_unlock(&kvm->mmu_lock);
6082 	}
6083 
6084 	if (is_tdp_mmu_enabled(kvm)) {
6085 		read_lock(&kvm->mmu_lock);
6086 		kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
6087 		read_unlock(&kvm->mmu_lock);
6088 	}
6089 }
6090 
6091 static inline bool need_topup(struct kvm_mmu_memory_cache *cache, int min)
6092 {
6093 	return kvm_mmu_memory_cache_nr_free_objects(cache) < min;
6094 }
6095 
6096 static bool need_topup_split_caches_or_resched(struct kvm *kvm)
6097 {
6098 	if (need_resched() || rwlock_needbreak(&kvm->mmu_lock))
6099 		return true;
6100 
6101 	/*
6102 	 * In the worst case, SPLIT_DESC_CACHE_MIN_NR_OBJECTS descriptors are needed
6103 	 * to split a single huge page. Calculating how many are actually needed
6104 	 * is possible but not worth the complexity.
6105 	 */
6106 	return need_topup(&kvm->arch.split_desc_cache, SPLIT_DESC_CACHE_MIN_NR_OBJECTS) ||
6107 	       need_topup(&kvm->arch.split_page_header_cache, 1) ||
6108 	       need_topup(&kvm->arch.split_shadow_page_cache, 1);
6109 }
6110 
6111 static int topup_split_caches(struct kvm *kvm)
6112 {
6113 	/*
6114 	 * Allocating rmap list entries when splitting huge pages for nested
6115 	 * MMUs is uncommon as KVM needs to use a list if and only if there is
6116 	 * more than one rmap entry for a gfn, i.e. requires an L1 gfn to be
6117 	 * aliased by multiple L2 gfns and/or from multiple nested roots with
6118 	 * different roles.  Aliasing gfns when using TDP is atypical for VMMs;
6119 	 * a few gfns are often aliased during boot, e.g. when remapping BIOS,
6120 	 * but aliasing rarely occurs post-boot or for many gfns.  If there is
6121 	 * only one rmap entry, rmap->val points directly at that one entry and
6122 	 * doesn't need to allocate a list.  Buffer the cache by the default
6123 	 * capacity so that KVM doesn't have to drop mmu_lock to topup if KVM
6124 	 * encounters an aliased gfn or two.
6125 	 */
6126 	const int capacity = SPLIT_DESC_CACHE_MIN_NR_OBJECTS +
6127 			     KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE;
6128 	int r;
6129 
6130 	lockdep_assert_held(&kvm->slots_lock);
6131 
6132 	r = __kvm_mmu_topup_memory_cache(&kvm->arch.split_desc_cache, capacity,
6133 					 SPLIT_DESC_CACHE_MIN_NR_OBJECTS);
6134 	if (r)
6135 		return r;
6136 
6137 	r = kvm_mmu_topup_memory_cache(&kvm->arch.split_page_header_cache, 1);
6138 	if (r)
6139 		return r;
6140 
6141 	return kvm_mmu_topup_memory_cache(&kvm->arch.split_shadow_page_cache, 1);
6142 }
6143 
6144 static struct kvm_mmu_page *shadow_mmu_get_sp_for_split(struct kvm *kvm, u64 *huge_sptep)
6145 {
6146 	struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep);
6147 	struct shadow_page_caches caches = {};
6148 	union kvm_mmu_page_role role;
6149 	unsigned int access;
6150 	gfn_t gfn;
6151 
6152 	gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep));
6153 	access = kvm_mmu_page_get_access(huge_sp, spte_index(huge_sptep));
6154 
6155 	/*
6156 	 * Note, huge page splitting always uses direct shadow pages, regardless
6157 	 * of whether the huge page itself is mapped by a direct or indirect
6158 	 * shadow page, since the huge page region itself is being directly
6159 	 * mapped with smaller pages.
6160 	 */
6161 	role = kvm_mmu_child_role(huge_sptep, /*direct=*/true, access);
6162 
6163 	/* Direct SPs do not require a shadowed_info_cache. */
6164 	caches.page_header_cache = &kvm->arch.split_page_header_cache;
6165 	caches.shadow_page_cache = &kvm->arch.split_shadow_page_cache;
6166 
6167 	/* Safe to pass NULL for vCPU since requesting a direct SP. */
6168 	return __kvm_mmu_get_shadow_page(kvm, NULL, &caches, gfn, role);
6169 }
6170 
6171 static void shadow_mmu_split_huge_page(struct kvm *kvm,
6172 				       const struct kvm_memory_slot *slot,
6173 				       u64 *huge_sptep)
6174 
6175 {
6176 	struct kvm_mmu_memory_cache *cache = &kvm->arch.split_desc_cache;
6177 	u64 huge_spte = READ_ONCE(*huge_sptep);
6178 	struct kvm_mmu_page *sp;
6179 	bool flush = false;
6180 	u64 *sptep, spte;
6181 	gfn_t gfn;
6182 	int index;
6183 
6184 	sp = shadow_mmu_get_sp_for_split(kvm, huge_sptep);
6185 
6186 	for (index = 0; index < SPTE_ENT_PER_PAGE; index++) {
6187 		sptep = &sp->spt[index];
6188 		gfn = kvm_mmu_page_get_gfn(sp, index);
6189 
6190 		/*
6191 		 * The SP may already have populated SPTEs, e.g. if this huge
6192 		 * page is aliased by multiple sptes with the same access
6193 		 * permissions. These entries are guaranteed to map the same
6194 		 * gfn-to-pfn translation since the SP is direct, so no need to
6195 		 * modify them.
6196 		 *
6197 		 * However, if a given SPTE points to a lower level page table,
6198 		 * that lower level page table may only be partially populated.
6199 		 * Installing such SPTEs would effectively unmap a potion of the
6200 		 * huge page. Unmapping guest memory always requires a TLB flush
6201 		 * since a subsequent operation on the unmapped regions would
6202 		 * fail to detect the need to flush.
6203 		 */
6204 		if (is_shadow_present_pte(*sptep)) {
6205 			flush |= !is_last_spte(*sptep, sp->role.level);
6206 			continue;
6207 		}
6208 
6209 		spte = make_huge_page_split_spte(kvm, huge_spte, sp->role, index);
6210 		mmu_spte_set(sptep, spte);
6211 		__rmap_add(kvm, cache, slot, sptep, gfn, sp->role.access);
6212 	}
6213 
6214 	__link_shadow_page(kvm, cache, huge_sptep, sp, flush);
6215 }
6216 
6217 static int shadow_mmu_try_split_huge_page(struct kvm *kvm,
6218 					  const struct kvm_memory_slot *slot,
6219 					  u64 *huge_sptep)
6220 {
6221 	struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep);
6222 	int level, r = 0;
6223 	gfn_t gfn;
6224 	u64 spte;
6225 
6226 	/* Grab information for the tracepoint before dropping the MMU lock. */
6227 	gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep));
6228 	level = huge_sp->role.level;
6229 	spte = *huge_sptep;
6230 
6231 	if (kvm_mmu_available_pages(kvm) <= KVM_MIN_FREE_MMU_PAGES) {
6232 		r = -ENOSPC;
6233 		goto out;
6234 	}
6235 
6236 	if (need_topup_split_caches_or_resched(kvm)) {
6237 		write_unlock(&kvm->mmu_lock);
6238 		cond_resched();
6239 		/*
6240 		 * If the topup succeeds, return -EAGAIN to indicate that the
6241 		 * rmap iterator should be restarted because the MMU lock was
6242 		 * dropped.
6243 		 */
6244 		r = topup_split_caches(kvm) ?: -EAGAIN;
6245 		write_lock(&kvm->mmu_lock);
6246 		goto out;
6247 	}
6248 
6249 	shadow_mmu_split_huge_page(kvm, slot, huge_sptep);
6250 
6251 out:
6252 	trace_kvm_mmu_split_huge_page(gfn, spte, level, r);
6253 	return r;
6254 }
6255 
6256 static bool shadow_mmu_try_split_huge_pages(struct kvm *kvm,
6257 					    struct kvm_rmap_head *rmap_head,
6258 					    const struct kvm_memory_slot *slot)
6259 {
6260 	struct rmap_iterator iter;
6261 	struct kvm_mmu_page *sp;
6262 	u64 *huge_sptep;
6263 	int r;
6264 
6265 restart:
6266 	for_each_rmap_spte(rmap_head, &iter, huge_sptep) {
6267 		sp = sptep_to_sp(huge_sptep);
6268 
6269 		/* TDP MMU is enabled, so rmap only contains nested MMU SPs. */
6270 		if (WARN_ON_ONCE(!sp->role.guest_mode))
6271 			continue;
6272 
6273 		/* The rmaps should never contain non-leaf SPTEs. */
6274 		if (WARN_ON_ONCE(!is_large_pte(*huge_sptep)))
6275 			continue;
6276 
6277 		/* SPs with level >PG_LEVEL_4K should never by unsync. */
6278 		if (WARN_ON_ONCE(sp->unsync))
6279 			continue;
6280 
6281 		/* Don't bother splitting huge pages on invalid SPs. */
6282 		if (sp->role.invalid)
6283 			continue;
6284 
6285 		r = shadow_mmu_try_split_huge_page(kvm, slot, huge_sptep);
6286 
6287 		/*
6288 		 * The split succeeded or needs to be retried because the MMU
6289 		 * lock was dropped. Either way, restart the iterator to get it
6290 		 * back into a consistent state.
6291 		 */
6292 		if (!r || r == -EAGAIN)
6293 			goto restart;
6294 
6295 		/* The split failed and shouldn't be retried (e.g. -ENOMEM). */
6296 		break;
6297 	}
6298 
6299 	return false;
6300 }
6301 
6302 static void kvm_shadow_mmu_try_split_huge_pages(struct kvm *kvm,
6303 						const struct kvm_memory_slot *slot,
6304 						gfn_t start, gfn_t end,
6305 						int target_level)
6306 {
6307 	int level;
6308 
6309 	/*
6310 	 * Split huge pages starting with KVM_MAX_HUGEPAGE_LEVEL and working
6311 	 * down to the target level. This ensures pages are recursively split
6312 	 * all the way to the target level. There's no need to split pages
6313 	 * already at the target level.
6314 	 */
6315 	for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--) {
6316 		slot_handle_level_range(kvm, slot, shadow_mmu_try_split_huge_pages,
6317 					level, level, start, end - 1, true, false);
6318 	}
6319 }
6320 
6321 /* Must be called with the mmu_lock held in write-mode. */
6322 void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
6323 				   const struct kvm_memory_slot *memslot,
6324 				   u64 start, u64 end,
6325 				   int target_level)
6326 {
6327 	if (!is_tdp_mmu_enabled(kvm))
6328 		return;
6329 
6330 	if (kvm_memslots_have_rmaps(kvm))
6331 		kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level);
6332 
6333 	kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, false);
6334 
6335 	/*
6336 	 * A TLB flush is unnecessary at this point for the same resons as in
6337 	 * kvm_mmu_slot_try_split_huge_pages().
6338 	 */
6339 }
6340 
6341 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
6342 					const struct kvm_memory_slot *memslot,
6343 					int target_level)
6344 {
6345 	u64 start = memslot->base_gfn;
6346 	u64 end = start + memslot->npages;
6347 
6348 	if (!is_tdp_mmu_enabled(kvm))
6349 		return;
6350 
6351 	if (kvm_memslots_have_rmaps(kvm)) {
6352 		write_lock(&kvm->mmu_lock);
6353 		kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level);
6354 		write_unlock(&kvm->mmu_lock);
6355 	}
6356 
6357 	read_lock(&kvm->mmu_lock);
6358 	kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true);
6359 	read_unlock(&kvm->mmu_lock);
6360 
6361 	/*
6362 	 * No TLB flush is necessary here. KVM will flush TLBs after
6363 	 * write-protecting and/or clearing dirty on the newly split SPTEs to
6364 	 * ensure that guest writes are reflected in the dirty log before the
6365 	 * ioctl to enable dirty logging on this memslot completes. Since the
6366 	 * split SPTEs retain the write and dirty bits of the huge SPTE, it is
6367 	 * safe for KVM to decide if a TLB flush is necessary based on the split
6368 	 * SPTEs.
6369 	 */
6370 }
6371 
6372 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
6373 					 struct kvm_rmap_head *rmap_head,
6374 					 const struct kvm_memory_slot *slot)
6375 {
6376 	u64 *sptep;
6377 	struct rmap_iterator iter;
6378 	int need_tlb_flush = 0;
6379 	struct kvm_mmu_page *sp;
6380 
6381 restart:
6382 	for_each_rmap_spte(rmap_head, &iter, sptep) {
6383 		sp = sptep_to_sp(sptep);
6384 
6385 		/*
6386 		 * We cannot do huge page mapping for indirect shadow pages,
6387 		 * which are found on the last rmap (level = 1) when not using
6388 		 * tdp; such shadow pages are synced with the page table in
6389 		 * the guest, and the guest page table is using 4K page size
6390 		 * mapping if the indirect sp has level = 1.
6391 		 */
6392 		if (sp->role.direct &&
6393 		    sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
6394 							       PG_LEVEL_NUM)) {
6395 			kvm_zap_one_rmap_spte(kvm, rmap_head, sptep);
6396 
6397 			if (kvm_available_flush_tlb_with_range())
6398 				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
6399 					KVM_PAGES_PER_HPAGE(sp->role.level));
6400 			else
6401 				need_tlb_flush = 1;
6402 
6403 			goto restart;
6404 		}
6405 	}
6406 
6407 	return need_tlb_flush;
6408 }
6409 
6410 static void kvm_rmap_zap_collapsible_sptes(struct kvm *kvm,
6411 					   const struct kvm_memory_slot *slot)
6412 {
6413 	/*
6414 	 * Note, use KVM_MAX_HUGEPAGE_LEVEL - 1 since there's no need to zap
6415 	 * pages that are already mapped at the maximum hugepage level.
6416 	 */
6417 	if (slot_handle_level(kvm, slot, kvm_mmu_zap_collapsible_spte,
6418 			      PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL - 1, true))
6419 		kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
6420 }
6421 
6422 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
6423 				   const struct kvm_memory_slot *slot)
6424 {
6425 	if (kvm_memslots_have_rmaps(kvm)) {
6426 		write_lock(&kvm->mmu_lock);
6427 		kvm_rmap_zap_collapsible_sptes(kvm, slot);
6428 		write_unlock(&kvm->mmu_lock);
6429 	}
6430 
6431 	if (is_tdp_mmu_enabled(kvm)) {
6432 		read_lock(&kvm->mmu_lock);
6433 		kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot);
6434 		read_unlock(&kvm->mmu_lock);
6435 	}
6436 }
6437 
6438 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
6439 					const struct kvm_memory_slot *memslot)
6440 {
6441 	/*
6442 	 * All current use cases for flushing the TLBs for a specific memslot
6443 	 * related to dirty logging, and many do the TLB flush out of mmu_lock.
6444 	 * The interaction between the various operations on memslot must be
6445 	 * serialized by slots_locks to ensure the TLB flush from one operation
6446 	 * is observed by any other operation on the same memslot.
6447 	 */
6448 	lockdep_assert_held(&kvm->slots_lock);
6449 	kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
6450 					   memslot->npages);
6451 }
6452 
6453 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
6454 				   const struct kvm_memory_slot *memslot)
6455 {
6456 	if (kvm_memslots_have_rmaps(kvm)) {
6457 		write_lock(&kvm->mmu_lock);
6458 		/*
6459 		 * Clear dirty bits only on 4k SPTEs since the legacy MMU only
6460 		 * support dirty logging at a 4k granularity.
6461 		 */
6462 		slot_handle_level_4k(kvm, memslot, __rmap_clear_dirty, false);
6463 		write_unlock(&kvm->mmu_lock);
6464 	}
6465 
6466 	if (is_tdp_mmu_enabled(kvm)) {
6467 		read_lock(&kvm->mmu_lock);
6468 		kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
6469 		read_unlock(&kvm->mmu_lock);
6470 	}
6471 
6472 	/*
6473 	 * The caller will flush the TLBs after this function returns.
6474 	 *
6475 	 * It's also safe to flush TLBs out of mmu lock here as currently this
6476 	 * function is only used for dirty logging, in which case flushing TLB
6477 	 * out of mmu lock also guarantees no dirty pages will be lost in
6478 	 * dirty_bitmap.
6479 	 */
6480 }
6481 
6482 void kvm_mmu_zap_all(struct kvm *kvm)
6483 {
6484 	struct kvm_mmu_page *sp, *node;
6485 	LIST_HEAD(invalid_list);
6486 	int ign;
6487 
6488 	write_lock(&kvm->mmu_lock);
6489 restart:
6490 	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
6491 		if (WARN_ON(sp->role.invalid))
6492 			continue;
6493 		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
6494 			goto restart;
6495 		if (cond_resched_rwlock_write(&kvm->mmu_lock))
6496 			goto restart;
6497 	}
6498 
6499 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
6500 
6501 	if (is_tdp_mmu_enabled(kvm))
6502 		kvm_tdp_mmu_zap_all(kvm);
6503 
6504 	write_unlock(&kvm->mmu_lock);
6505 }
6506 
6507 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
6508 {
6509 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
6510 
6511 	gen &= MMIO_SPTE_GEN_MASK;
6512 
6513 	/*
6514 	 * Generation numbers are incremented in multiples of the number of
6515 	 * address spaces in order to provide unique generations across all
6516 	 * address spaces.  Strip what is effectively the address space
6517 	 * modifier prior to checking for a wrap of the MMIO generation so
6518 	 * that a wrap in any address space is detected.
6519 	 */
6520 	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
6521 
6522 	/*
6523 	 * The very rare case: if the MMIO generation number has wrapped,
6524 	 * zap all shadow pages.
6525 	 */
6526 	if (unlikely(gen == 0)) {
6527 		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
6528 		kvm_mmu_zap_all_fast(kvm);
6529 	}
6530 }
6531 
6532 static unsigned long
6533 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
6534 {
6535 	struct kvm *kvm;
6536 	int nr_to_scan = sc->nr_to_scan;
6537 	unsigned long freed = 0;
6538 
6539 	mutex_lock(&kvm_lock);
6540 
6541 	list_for_each_entry(kvm, &vm_list, vm_list) {
6542 		int idx;
6543 		LIST_HEAD(invalid_list);
6544 
6545 		/*
6546 		 * Never scan more than sc->nr_to_scan VM instances.
6547 		 * Will not hit this condition practically since we do not try
6548 		 * to shrink more than one VM and it is very unlikely to see
6549 		 * !n_used_mmu_pages so many times.
6550 		 */
6551 		if (!nr_to_scan--)
6552 			break;
6553 		/*
6554 		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
6555 		 * here. We may skip a VM instance errorneosly, but we do not
6556 		 * want to shrink a VM that only started to populate its MMU
6557 		 * anyway.
6558 		 */
6559 		if (!kvm->arch.n_used_mmu_pages &&
6560 		    !kvm_has_zapped_obsolete_pages(kvm))
6561 			continue;
6562 
6563 		idx = srcu_read_lock(&kvm->srcu);
6564 		write_lock(&kvm->mmu_lock);
6565 
6566 		if (kvm_has_zapped_obsolete_pages(kvm)) {
6567 			kvm_mmu_commit_zap_page(kvm,
6568 			      &kvm->arch.zapped_obsolete_pages);
6569 			goto unlock;
6570 		}
6571 
6572 		freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
6573 
6574 unlock:
6575 		write_unlock(&kvm->mmu_lock);
6576 		srcu_read_unlock(&kvm->srcu, idx);
6577 
6578 		/*
6579 		 * unfair on small ones
6580 		 * per-vm shrinkers cry out
6581 		 * sadness comes quickly
6582 		 */
6583 		list_move_tail(&kvm->vm_list, &vm_list);
6584 		break;
6585 	}
6586 
6587 	mutex_unlock(&kvm_lock);
6588 	return freed;
6589 }
6590 
6591 static unsigned long
6592 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
6593 {
6594 	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6595 }
6596 
6597 static struct shrinker mmu_shrinker = {
6598 	.count_objects = mmu_shrink_count,
6599 	.scan_objects = mmu_shrink_scan,
6600 	.seeks = DEFAULT_SEEKS * 10,
6601 };
6602 
6603 static void mmu_destroy_caches(void)
6604 {
6605 	kmem_cache_destroy(pte_list_desc_cache);
6606 	kmem_cache_destroy(mmu_page_header_cache);
6607 }
6608 
6609 static bool get_nx_auto_mode(void)
6610 {
6611 	/* Return true when CPU has the bug, and mitigations are ON */
6612 	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
6613 }
6614 
6615 static void __set_nx_huge_pages(bool val)
6616 {
6617 	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
6618 }
6619 
6620 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
6621 {
6622 	bool old_val = nx_huge_pages;
6623 	bool new_val;
6624 
6625 	/* In "auto" mode deploy workaround only if CPU has the bug. */
6626 	if (sysfs_streq(val, "off"))
6627 		new_val = 0;
6628 	else if (sysfs_streq(val, "force"))
6629 		new_val = 1;
6630 	else if (sysfs_streq(val, "auto"))
6631 		new_val = get_nx_auto_mode();
6632 	else if (strtobool(val, &new_val) < 0)
6633 		return -EINVAL;
6634 
6635 	__set_nx_huge_pages(new_val);
6636 
6637 	if (new_val != old_val) {
6638 		struct kvm *kvm;
6639 
6640 		mutex_lock(&kvm_lock);
6641 
6642 		list_for_each_entry(kvm, &vm_list, vm_list) {
6643 			mutex_lock(&kvm->slots_lock);
6644 			kvm_mmu_zap_all_fast(kvm);
6645 			mutex_unlock(&kvm->slots_lock);
6646 
6647 			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6648 		}
6649 		mutex_unlock(&kvm_lock);
6650 	}
6651 
6652 	return 0;
6653 }
6654 
6655 /*
6656  * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as
6657  * its default value of -1 is technically undefined behavior for a boolean.
6658  * Forward the module init call to SPTE code so that it too can handle module
6659  * params that need to be resolved/snapshot.
6660  */
6661 void __init kvm_mmu_x86_module_init(void)
6662 {
6663 	if (nx_huge_pages == -1)
6664 		__set_nx_huge_pages(get_nx_auto_mode());
6665 
6666 	kvm_mmu_spte_module_init();
6667 }
6668 
6669 /*
6670  * The bulk of the MMU initialization is deferred until the vendor module is
6671  * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need
6672  * to be reset when a potentially different vendor module is loaded.
6673  */
6674 int kvm_mmu_vendor_module_init(void)
6675 {
6676 	int ret = -ENOMEM;
6677 
6678 	/*
6679 	 * MMU roles use union aliasing which is, generally speaking, an
6680 	 * undefined behavior. However, we supposedly know how compilers behave
6681 	 * and the current status quo is unlikely to change. Guardians below are
6682 	 * supposed to let us know if the assumption becomes false.
6683 	 */
6684 	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6685 	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6686 	BUILD_BUG_ON(sizeof(union kvm_cpu_role) != sizeof(u64));
6687 
6688 	kvm_mmu_reset_all_pte_masks();
6689 
6690 	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6691 					    sizeof(struct pte_list_desc),
6692 					    0, SLAB_ACCOUNT, NULL);
6693 	if (!pte_list_desc_cache)
6694 		goto out;
6695 
6696 	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6697 						  sizeof(struct kvm_mmu_page),
6698 						  0, SLAB_ACCOUNT, NULL);
6699 	if (!mmu_page_header_cache)
6700 		goto out;
6701 
6702 	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6703 		goto out;
6704 
6705 	ret = register_shrinker(&mmu_shrinker, "x86-mmu");
6706 	if (ret)
6707 		goto out;
6708 
6709 	return 0;
6710 
6711 out:
6712 	mmu_destroy_caches();
6713 	return ret;
6714 }
6715 
6716 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6717 {
6718 	kvm_mmu_unload(vcpu);
6719 	free_mmu_pages(&vcpu->arch.root_mmu);
6720 	free_mmu_pages(&vcpu->arch.guest_mmu);
6721 	mmu_free_memory_caches(vcpu);
6722 }
6723 
6724 void kvm_mmu_vendor_module_exit(void)
6725 {
6726 	mmu_destroy_caches();
6727 	percpu_counter_destroy(&kvm_total_used_mmu_pages);
6728 	unregister_shrinker(&mmu_shrinker);
6729 }
6730 
6731 /*
6732  * Calculate the effective recovery period, accounting for '0' meaning "let KVM
6733  * select a halving time of 1 hour".  Returns true if recovery is enabled.
6734  */
6735 static bool calc_nx_huge_pages_recovery_period(uint *period)
6736 {
6737 	/*
6738 	 * Use READ_ONCE to get the params, this may be called outside of the
6739 	 * param setters, e.g. by the kthread to compute its next timeout.
6740 	 */
6741 	bool enabled = READ_ONCE(nx_huge_pages);
6742 	uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6743 
6744 	if (!enabled || !ratio)
6745 		return false;
6746 
6747 	*period = READ_ONCE(nx_huge_pages_recovery_period_ms);
6748 	if (!*period) {
6749 		/* Make sure the period is not less than one second.  */
6750 		ratio = min(ratio, 3600u);
6751 		*period = 60 * 60 * 1000 / ratio;
6752 	}
6753 	return true;
6754 }
6755 
6756 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp)
6757 {
6758 	bool was_recovery_enabled, is_recovery_enabled;
6759 	uint old_period, new_period;
6760 	int err;
6761 
6762 	was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period);
6763 
6764 	err = param_set_uint(val, kp);
6765 	if (err)
6766 		return err;
6767 
6768 	is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period);
6769 
6770 	if (is_recovery_enabled &&
6771 	    (!was_recovery_enabled || old_period > new_period)) {
6772 		struct kvm *kvm;
6773 
6774 		mutex_lock(&kvm_lock);
6775 
6776 		list_for_each_entry(kvm, &vm_list, vm_list)
6777 			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6778 
6779 		mutex_unlock(&kvm_lock);
6780 	}
6781 
6782 	return err;
6783 }
6784 
6785 static void kvm_recover_nx_lpages(struct kvm *kvm)
6786 {
6787 	unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
6788 	int rcu_idx;
6789 	struct kvm_mmu_page *sp;
6790 	unsigned int ratio;
6791 	LIST_HEAD(invalid_list);
6792 	bool flush = false;
6793 	ulong to_zap;
6794 
6795 	rcu_idx = srcu_read_lock(&kvm->srcu);
6796 	write_lock(&kvm->mmu_lock);
6797 
6798 	/*
6799 	 * Zapping TDP MMU shadow pages, including the remote TLB flush, must
6800 	 * be done under RCU protection, because the pages are freed via RCU
6801 	 * callback.
6802 	 */
6803 	rcu_read_lock();
6804 
6805 	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6806 	to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
6807 	for ( ; to_zap; --to_zap) {
6808 		if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
6809 			break;
6810 
6811 		/*
6812 		 * We use a separate list instead of just using active_mmu_pages
6813 		 * because the number of lpage_disallowed pages is expected to
6814 		 * be relatively small compared to the total.
6815 		 */
6816 		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6817 				      struct kvm_mmu_page,
6818 				      lpage_disallowed_link);
6819 		WARN_ON_ONCE(!sp->lpage_disallowed);
6820 		if (is_tdp_mmu_page(sp)) {
6821 			flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
6822 		} else {
6823 			kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6824 			WARN_ON_ONCE(sp->lpage_disallowed);
6825 		}
6826 
6827 		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
6828 			kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6829 			rcu_read_unlock();
6830 
6831 			cond_resched_rwlock_write(&kvm->mmu_lock);
6832 			flush = false;
6833 
6834 			rcu_read_lock();
6835 		}
6836 	}
6837 	kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6838 
6839 	rcu_read_unlock();
6840 
6841 	write_unlock(&kvm->mmu_lock);
6842 	srcu_read_unlock(&kvm->srcu, rcu_idx);
6843 }
6844 
6845 static long get_nx_lpage_recovery_timeout(u64 start_time)
6846 {
6847 	bool enabled;
6848 	uint period;
6849 
6850 	enabled = calc_nx_huge_pages_recovery_period(&period);
6851 
6852 	return enabled ? start_time + msecs_to_jiffies(period) - get_jiffies_64()
6853 		       : MAX_SCHEDULE_TIMEOUT;
6854 }
6855 
6856 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6857 {
6858 	u64 start_time;
6859 	long remaining_time;
6860 
6861 	while (true) {
6862 		start_time = get_jiffies_64();
6863 		remaining_time = get_nx_lpage_recovery_timeout(start_time);
6864 
6865 		set_current_state(TASK_INTERRUPTIBLE);
6866 		while (!kthread_should_stop() && remaining_time > 0) {
6867 			schedule_timeout(remaining_time);
6868 			remaining_time = get_nx_lpage_recovery_timeout(start_time);
6869 			set_current_state(TASK_INTERRUPTIBLE);
6870 		}
6871 
6872 		set_current_state(TASK_RUNNING);
6873 
6874 		if (kthread_should_stop())
6875 			return 0;
6876 
6877 		kvm_recover_nx_lpages(kvm);
6878 	}
6879 }
6880 
6881 int kvm_mmu_post_init_vm(struct kvm *kvm)
6882 {
6883 	int err;
6884 
6885 	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6886 					  "kvm-nx-lpage-recovery",
6887 					  &kvm->arch.nx_lpage_recovery_thread);
6888 	if (!err)
6889 		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6890 
6891 	return err;
6892 }
6893 
6894 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6895 {
6896 	if (kvm->arch.nx_lpage_recovery_thread)
6897 		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6898 }
6899