1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * MMU support 9 * 10 * Copyright (C) 2006 Qumranet, Inc. 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 12 * 13 * Authors: 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Avi Kivity <avi@qumranet.com> 16 */ 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include "irq.h" 20 #include "ioapic.h" 21 #include "mmu.h" 22 #include "mmu_internal.h" 23 #include "tdp_mmu.h" 24 #include "x86.h" 25 #include "kvm_cache_regs.h" 26 #include "smm.h" 27 #include "kvm_emulate.h" 28 #include "page_track.h" 29 #include "cpuid.h" 30 #include "spte.h" 31 32 #include <linux/kvm_host.h> 33 #include <linux/types.h> 34 #include <linux/string.h> 35 #include <linux/mm.h> 36 #include <linux/highmem.h> 37 #include <linux/moduleparam.h> 38 #include <linux/export.h> 39 #include <linux/swap.h> 40 #include <linux/hugetlb.h> 41 #include <linux/compiler.h> 42 #include <linux/srcu.h> 43 #include <linux/slab.h> 44 #include <linux/sched/signal.h> 45 #include <linux/uaccess.h> 46 #include <linux/hash.h> 47 #include <linux/kern_levels.h> 48 #include <linux/kstrtox.h> 49 #include <linux/kthread.h> 50 #include <linux/wordpart.h> 51 52 #include <asm/page.h> 53 #include <asm/memtype.h> 54 #include <asm/cmpxchg.h> 55 #include <asm/io.h> 56 #include <asm/set_memory.h> 57 #include <asm/spec-ctrl.h> 58 #include <asm/vmx.h> 59 60 #include "trace.h" 61 62 static bool nx_hugepage_mitigation_hard_disabled; 63 64 int __read_mostly nx_huge_pages = -1; 65 static uint __read_mostly nx_huge_pages_recovery_period_ms; 66 #ifdef CONFIG_PREEMPT_RT 67 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */ 68 static uint __read_mostly nx_huge_pages_recovery_ratio = 0; 69 #else 70 static uint __read_mostly nx_huge_pages_recovery_ratio = 60; 71 #endif 72 73 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp); 74 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp); 75 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp); 76 77 static const struct kernel_param_ops nx_huge_pages_ops = { 78 .set = set_nx_huge_pages, 79 .get = get_nx_huge_pages, 80 }; 81 82 static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = { 83 .set = set_nx_huge_pages_recovery_param, 84 .get = param_get_uint, 85 }; 86 87 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644); 88 __MODULE_PARM_TYPE(nx_huge_pages, "bool"); 89 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops, 90 &nx_huge_pages_recovery_ratio, 0644); 91 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint"); 92 module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops, 93 &nx_huge_pages_recovery_period_ms, 0644); 94 __MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint"); 95 96 static bool __read_mostly force_flush_and_sync_on_reuse; 97 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644); 98 99 /* 100 * When setting this variable to true it enables Two-Dimensional-Paging 101 * where the hardware walks 2 page tables: 102 * 1. the guest-virtual to guest-physical 103 * 2. while doing 1. it walks guest-physical to host-physical 104 * If the hardware supports that we don't need to do shadow paging. 105 */ 106 bool tdp_enabled = false; 107 108 static bool __ro_after_init tdp_mmu_allowed; 109 110 #ifdef CONFIG_X86_64 111 bool __read_mostly tdp_mmu_enabled = true; 112 module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0444); 113 #endif 114 115 static int max_huge_page_level __read_mostly; 116 static int tdp_root_level __read_mostly; 117 static int max_tdp_level __read_mostly; 118 119 #define PTE_PREFETCH_NUM 8 120 121 #include <trace/events/kvm.h> 122 123 /* make pte_list_desc fit well in cache lines */ 124 #define PTE_LIST_EXT 14 125 126 /* 127 * struct pte_list_desc is the core data structure used to implement a custom 128 * list for tracking a set of related SPTEs, e.g. all the SPTEs that map a 129 * given GFN when used in the context of rmaps. Using a custom list allows KVM 130 * to optimize for the common case where many GFNs will have at most a handful 131 * of SPTEs pointing at them, i.e. allows packing multiple SPTEs into a small 132 * memory footprint, which in turn improves runtime performance by exploiting 133 * cache locality. 134 * 135 * A list is comprised of one or more pte_list_desc objects (descriptors). 136 * Each individual descriptor stores up to PTE_LIST_EXT SPTEs. If a descriptor 137 * is full and a new SPTEs needs to be added, a new descriptor is allocated and 138 * becomes the head of the list. This means that by definitions, all tail 139 * descriptors are full. 140 * 141 * Note, the meta data fields are deliberately placed at the start of the 142 * structure to optimize the cacheline layout; accessing the descriptor will 143 * touch only a single cacheline so long as @spte_count<=6 (or if only the 144 * descriptors metadata is accessed). 145 */ 146 struct pte_list_desc { 147 struct pte_list_desc *more; 148 /* The number of PTEs stored in _this_ descriptor. */ 149 u32 spte_count; 150 /* The number of PTEs stored in all tails of this descriptor. */ 151 u32 tail_count; 152 u64 *sptes[PTE_LIST_EXT]; 153 }; 154 155 struct kvm_shadow_walk_iterator { 156 u64 addr; 157 hpa_t shadow_addr; 158 u64 *sptep; 159 int level; 160 unsigned index; 161 }; 162 163 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \ 164 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \ 165 (_root), (_addr)); \ 166 shadow_walk_okay(&(_walker)); \ 167 shadow_walk_next(&(_walker))) 168 169 #define for_each_shadow_entry(_vcpu, _addr, _walker) \ 170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 171 shadow_walk_okay(&(_walker)); \ 172 shadow_walk_next(&(_walker))) 173 174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \ 175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 176 shadow_walk_okay(&(_walker)) && \ 177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \ 178 __shadow_walk_next(&(_walker), spte)) 179 180 static struct kmem_cache *pte_list_desc_cache; 181 struct kmem_cache *mmu_page_header_cache; 182 static struct percpu_counter kvm_total_used_mmu_pages; 183 184 static void mmu_spte_set(u64 *sptep, u64 spte); 185 186 struct kvm_mmu_role_regs { 187 const unsigned long cr0; 188 const unsigned long cr4; 189 const u64 efer; 190 }; 191 192 #define CREATE_TRACE_POINTS 193 #include "mmutrace.h" 194 195 /* 196 * Yes, lot's of underscores. They're a hint that you probably shouldn't be 197 * reading from the role_regs. Once the root_role is constructed, it becomes 198 * the single source of truth for the MMU's state. 199 */ 200 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag) \ 201 static inline bool __maybe_unused \ 202 ____is_##reg##_##name(const struct kvm_mmu_role_regs *regs) \ 203 { \ 204 return !!(regs->reg & flag); \ 205 } 206 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG); 207 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP); 208 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE); 209 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE); 210 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP); 211 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP); 212 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE); 213 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57); 214 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX); 215 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA); 216 217 /* 218 * The MMU itself (with a valid role) is the single source of truth for the 219 * MMU. Do not use the regs used to build the MMU/role, nor the vCPU. The 220 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1, 221 * and the vCPU may be incorrect/irrelevant. 222 */ 223 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name) \ 224 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu) \ 225 { \ 226 return !!(mmu->cpu_role. base_or_ext . reg##_##name); \ 227 } 228 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp); 229 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pse); 230 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smep); 231 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smap); 232 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pke); 233 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, la57); 234 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx); 235 BUILD_MMU_ROLE_ACCESSOR(ext, efer, lma); 236 237 static inline bool is_cr0_pg(struct kvm_mmu *mmu) 238 { 239 return mmu->cpu_role.base.level > 0; 240 } 241 242 static inline bool is_cr4_pae(struct kvm_mmu *mmu) 243 { 244 return !mmu->cpu_role.base.has_4_byte_gpte; 245 } 246 247 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu) 248 { 249 struct kvm_mmu_role_regs regs = { 250 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS), 251 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS), 252 .efer = vcpu->arch.efer, 253 }; 254 255 return regs; 256 } 257 258 static unsigned long get_guest_cr3(struct kvm_vcpu *vcpu) 259 { 260 return kvm_read_cr3(vcpu); 261 } 262 263 static inline unsigned long kvm_mmu_get_guest_pgd(struct kvm_vcpu *vcpu, 264 struct kvm_mmu *mmu) 265 { 266 if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && mmu->get_guest_pgd == get_guest_cr3) 267 return kvm_read_cr3(vcpu); 268 269 return mmu->get_guest_pgd(vcpu); 270 } 271 272 static inline bool kvm_available_flush_remote_tlbs_range(void) 273 { 274 #if IS_ENABLED(CONFIG_HYPERV) 275 return kvm_x86_ops.flush_remote_tlbs_range; 276 #else 277 return false; 278 #endif 279 } 280 281 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index); 282 283 /* Flush the range of guest memory mapped by the given SPTE. */ 284 static void kvm_flush_remote_tlbs_sptep(struct kvm *kvm, u64 *sptep) 285 { 286 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 287 gfn_t gfn = kvm_mmu_page_get_gfn(sp, spte_index(sptep)); 288 289 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level); 290 } 291 292 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn, 293 unsigned int access) 294 { 295 u64 spte = make_mmio_spte(vcpu, gfn, access); 296 297 trace_mark_mmio_spte(sptep, gfn, spte); 298 mmu_spte_set(sptep, spte); 299 } 300 301 static gfn_t get_mmio_spte_gfn(u64 spte) 302 { 303 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask; 304 305 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN) 306 & shadow_nonpresent_or_rsvd_mask; 307 308 return gpa >> PAGE_SHIFT; 309 } 310 311 static unsigned get_mmio_spte_access(u64 spte) 312 { 313 return spte & shadow_mmio_access_mask; 314 } 315 316 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte) 317 { 318 u64 kvm_gen, spte_gen, gen; 319 320 gen = kvm_vcpu_memslots(vcpu)->generation; 321 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS)) 322 return false; 323 324 kvm_gen = gen & MMIO_SPTE_GEN_MASK; 325 spte_gen = get_mmio_spte_generation(spte); 326 327 trace_check_mmio_spte(spte, kvm_gen, spte_gen); 328 return likely(kvm_gen == spte_gen); 329 } 330 331 static int is_cpuid_PSE36(void) 332 { 333 return 1; 334 } 335 336 #ifdef CONFIG_X86_64 337 static void __set_spte(u64 *sptep, u64 spte) 338 { 339 KVM_MMU_WARN_ON(is_ept_ve_possible(spte)); 340 WRITE_ONCE(*sptep, spte); 341 } 342 343 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 344 { 345 KVM_MMU_WARN_ON(is_ept_ve_possible(spte)); 346 WRITE_ONCE(*sptep, spte); 347 } 348 349 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 350 { 351 KVM_MMU_WARN_ON(is_ept_ve_possible(spte)); 352 return xchg(sptep, spte); 353 } 354 355 static u64 __get_spte_lockless(u64 *sptep) 356 { 357 return READ_ONCE(*sptep); 358 } 359 #else 360 union split_spte { 361 struct { 362 u32 spte_low; 363 u32 spte_high; 364 }; 365 u64 spte; 366 }; 367 368 static void count_spte_clear(u64 *sptep, u64 spte) 369 { 370 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 371 372 if (is_shadow_present_pte(spte)) 373 return; 374 375 /* Ensure the spte is completely set before we increase the count */ 376 smp_wmb(); 377 sp->clear_spte_count++; 378 } 379 380 static void __set_spte(u64 *sptep, u64 spte) 381 { 382 union split_spte *ssptep, sspte; 383 384 ssptep = (union split_spte *)sptep; 385 sspte = (union split_spte)spte; 386 387 ssptep->spte_high = sspte.spte_high; 388 389 /* 390 * If we map the spte from nonpresent to present, We should store 391 * the high bits firstly, then set present bit, so cpu can not 392 * fetch this spte while we are setting the spte. 393 */ 394 smp_wmb(); 395 396 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 397 } 398 399 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 400 { 401 union split_spte *ssptep, sspte; 402 403 ssptep = (union split_spte *)sptep; 404 sspte = (union split_spte)spte; 405 406 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 407 408 /* 409 * If we map the spte from present to nonpresent, we should clear 410 * present bit firstly to avoid vcpu fetch the old high bits. 411 */ 412 smp_wmb(); 413 414 ssptep->spte_high = sspte.spte_high; 415 count_spte_clear(sptep, spte); 416 } 417 418 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 419 { 420 union split_spte *ssptep, sspte, orig; 421 422 ssptep = (union split_spte *)sptep; 423 sspte = (union split_spte)spte; 424 425 /* xchg acts as a barrier before the setting of the high bits */ 426 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); 427 orig.spte_high = ssptep->spte_high; 428 ssptep->spte_high = sspte.spte_high; 429 count_spte_clear(sptep, spte); 430 431 return orig.spte; 432 } 433 434 /* 435 * The idea using the light way get the spte on x86_32 guest is from 436 * gup_get_pte (mm/gup.c). 437 * 438 * An spte tlb flush may be pending, because they are coalesced and 439 * we are running out of the MMU lock. Therefore 440 * we need to protect against in-progress updates of the spte. 441 * 442 * Reading the spte while an update is in progress may get the old value 443 * for the high part of the spte. The race is fine for a present->non-present 444 * change (because the high part of the spte is ignored for non-present spte), 445 * but for a present->present change we must reread the spte. 446 * 447 * All such changes are done in two steps (present->non-present and 448 * non-present->present), hence it is enough to count the number of 449 * present->non-present updates: if it changed while reading the spte, 450 * we might have hit the race. This is done using clear_spte_count. 451 */ 452 static u64 __get_spte_lockless(u64 *sptep) 453 { 454 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 455 union split_spte spte, *orig = (union split_spte *)sptep; 456 int count; 457 458 retry: 459 count = sp->clear_spte_count; 460 smp_rmb(); 461 462 spte.spte_low = orig->spte_low; 463 smp_rmb(); 464 465 spte.spte_high = orig->spte_high; 466 smp_rmb(); 467 468 if (unlikely(spte.spte_low != orig->spte_low || 469 count != sp->clear_spte_count)) 470 goto retry; 471 472 return spte.spte; 473 } 474 #endif 475 476 /* Rules for using mmu_spte_set: 477 * Set the sptep from nonpresent to present. 478 * Note: the sptep being assigned *must* be either not present 479 * or in a state where the hardware will not attempt to update 480 * the spte. 481 */ 482 static void mmu_spte_set(u64 *sptep, u64 new_spte) 483 { 484 WARN_ON_ONCE(is_shadow_present_pte(*sptep)); 485 __set_spte(sptep, new_spte); 486 } 487 488 /* 489 * Update the SPTE (excluding the PFN), but do not track changes in its 490 * accessed/dirty status. 491 */ 492 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte) 493 { 494 u64 old_spte = *sptep; 495 496 WARN_ON_ONCE(!is_shadow_present_pte(new_spte)); 497 check_spte_writable_invariants(new_spte); 498 499 if (!is_shadow_present_pte(old_spte)) { 500 mmu_spte_set(sptep, new_spte); 501 return old_spte; 502 } 503 504 if (!spte_has_volatile_bits(old_spte)) 505 __update_clear_spte_fast(sptep, new_spte); 506 else 507 old_spte = __update_clear_spte_slow(sptep, new_spte); 508 509 WARN_ON_ONCE(spte_to_pfn(old_spte) != spte_to_pfn(new_spte)); 510 511 return old_spte; 512 } 513 514 /* Rules for using mmu_spte_update: 515 * Update the state bits, it means the mapped pfn is not changed. 516 * 517 * Whenever an MMU-writable SPTE is overwritten with a read-only SPTE, remote 518 * TLBs must be flushed. Otherwise rmap_write_protect will find a read-only 519 * spte, even though the writable spte might be cached on a CPU's TLB. 520 * 521 * Returns true if the TLB needs to be flushed 522 */ 523 static bool mmu_spte_update(u64 *sptep, u64 new_spte) 524 { 525 bool flush = false; 526 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte); 527 528 if (!is_shadow_present_pte(old_spte)) 529 return false; 530 531 /* 532 * For the spte updated out of mmu-lock is safe, since 533 * we always atomically update it, see the comments in 534 * spte_has_volatile_bits(). 535 */ 536 if (is_mmu_writable_spte(old_spte) && 537 !is_writable_pte(new_spte)) 538 flush = true; 539 540 /* 541 * Flush TLB when accessed/dirty states are changed in the page tables, 542 * to guarantee consistency between TLB and page tables. 543 */ 544 545 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) { 546 flush = true; 547 kvm_set_pfn_accessed(spte_to_pfn(old_spte)); 548 } 549 550 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) { 551 flush = true; 552 kvm_set_pfn_dirty(spte_to_pfn(old_spte)); 553 } 554 555 return flush; 556 } 557 558 /* 559 * Rules for using mmu_spte_clear_track_bits: 560 * It sets the sptep from present to nonpresent, and track the 561 * state bits, it is used to clear the last level sptep. 562 * Returns the old PTE. 563 */ 564 static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep) 565 { 566 kvm_pfn_t pfn; 567 u64 old_spte = *sptep; 568 int level = sptep_to_sp(sptep)->role.level; 569 struct page *page; 570 571 if (!is_shadow_present_pte(old_spte) || 572 !spte_has_volatile_bits(old_spte)) 573 __update_clear_spte_fast(sptep, SHADOW_NONPRESENT_VALUE); 574 else 575 old_spte = __update_clear_spte_slow(sptep, SHADOW_NONPRESENT_VALUE); 576 577 if (!is_shadow_present_pte(old_spte)) 578 return old_spte; 579 580 kvm_update_page_stats(kvm, level, -1); 581 582 pfn = spte_to_pfn(old_spte); 583 584 /* 585 * KVM doesn't hold a reference to any pages mapped into the guest, and 586 * instead uses the mmu_notifier to ensure that KVM unmaps any pages 587 * before they are reclaimed. Sanity check that, if the pfn is backed 588 * by a refcounted page, the refcount is elevated. 589 */ 590 page = kvm_pfn_to_refcounted_page(pfn); 591 WARN_ON_ONCE(page && !page_count(page)); 592 593 if (is_accessed_spte(old_spte)) 594 kvm_set_pfn_accessed(pfn); 595 596 if (is_dirty_spte(old_spte)) 597 kvm_set_pfn_dirty(pfn); 598 599 return old_spte; 600 } 601 602 /* 603 * Rules for using mmu_spte_clear_no_track: 604 * Directly clear spte without caring the state bits of sptep, 605 * it is used to set the upper level spte. 606 */ 607 static void mmu_spte_clear_no_track(u64 *sptep) 608 { 609 __update_clear_spte_fast(sptep, SHADOW_NONPRESENT_VALUE); 610 } 611 612 static u64 mmu_spte_get_lockless(u64 *sptep) 613 { 614 return __get_spte_lockless(sptep); 615 } 616 617 static inline bool is_tdp_mmu_active(struct kvm_vcpu *vcpu) 618 { 619 return tdp_mmu_enabled && vcpu->arch.mmu->root_role.direct; 620 } 621 622 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) 623 { 624 if (is_tdp_mmu_active(vcpu)) { 625 kvm_tdp_mmu_walk_lockless_begin(); 626 } else { 627 /* 628 * Prevent page table teardown by making any free-er wait during 629 * kvm_flush_remote_tlbs() IPI to all active vcpus. 630 */ 631 local_irq_disable(); 632 633 /* 634 * Make sure a following spte read is not reordered ahead of the write 635 * to vcpu->mode. 636 */ 637 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); 638 } 639 } 640 641 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) 642 { 643 if (is_tdp_mmu_active(vcpu)) { 644 kvm_tdp_mmu_walk_lockless_end(); 645 } else { 646 /* 647 * Make sure the write to vcpu->mode is not reordered in front of 648 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us 649 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. 650 */ 651 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); 652 local_irq_enable(); 653 } 654 } 655 656 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect) 657 { 658 int r; 659 660 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */ 661 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, 662 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM); 663 if (r) 664 return r; 665 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache, 666 PT64_ROOT_MAX_LEVEL); 667 if (r) 668 return r; 669 if (maybe_indirect) { 670 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadowed_info_cache, 671 PT64_ROOT_MAX_LEVEL); 672 if (r) 673 return r; 674 } 675 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, 676 PT64_ROOT_MAX_LEVEL); 677 } 678 679 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) 680 { 681 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache); 682 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache); 683 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadowed_info_cache); 684 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache); 685 } 686 687 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) 688 { 689 kmem_cache_free(pte_list_desc_cache, pte_list_desc); 690 } 691 692 static bool sp_has_gptes(struct kvm_mmu_page *sp); 693 694 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) 695 { 696 if (sp->role.passthrough) 697 return sp->gfn; 698 699 if (sp->shadowed_translation) 700 return sp->shadowed_translation[index] >> PAGE_SHIFT; 701 702 return sp->gfn + (index << ((sp->role.level - 1) * SPTE_LEVEL_BITS)); 703 } 704 705 /* 706 * For leaf SPTEs, fetch the *guest* access permissions being shadowed. Note 707 * that the SPTE itself may have a more constrained access permissions that 708 * what the guest enforces. For example, a guest may create an executable 709 * huge PTE but KVM may disallow execution to mitigate iTLB multihit. 710 */ 711 static u32 kvm_mmu_page_get_access(struct kvm_mmu_page *sp, int index) 712 { 713 if (sp->shadowed_translation) 714 return sp->shadowed_translation[index] & ACC_ALL; 715 716 /* 717 * For direct MMUs (e.g. TDP or non-paging guests) or passthrough SPs, 718 * KVM is not shadowing any guest page tables, so the "guest access 719 * permissions" are just ACC_ALL. 720 * 721 * For direct SPs in indirect MMUs (shadow paging), i.e. when KVM 722 * is shadowing a guest huge page with small pages, the guest access 723 * permissions being shadowed are the access permissions of the huge 724 * page. 725 * 726 * In both cases, sp->role.access contains the correct access bits. 727 */ 728 return sp->role.access; 729 } 730 731 static void kvm_mmu_page_set_translation(struct kvm_mmu_page *sp, int index, 732 gfn_t gfn, unsigned int access) 733 { 734 if (sp->shadowed_translation) { 735 sp->shadowed_translation[index] = (gfn << PAGE_SHIFT) | access; 736 return; 737 } 738 739 WARN_ONCE(access != kvm_mmu_page_get_access(sp, index), 740 "access mismatch under %s page %llx (expected %u, got %u)\n", 741 sp->role.passthrough ? "passthrough" : "direct", 742 sp->gfn, kvm_mmu_page_get_access(sp, index), access); 743 744 WARN_ONCE(gfn != kvm_mmu_page_get_gfn(sp, index), 745 "gfn mismatch under %s page %llx (expected %llx, got %llx)\n", 746 sp->role.passthrough ? "passthrough" : "direct", 747 sp->gfn, kvm_mmu_page_get_gfn(sp, index), gfn); 748 } 749 750 static void kvm_mmu_page_set_access(struct kvm_mmu_page *sp, int index, 751 unsigned int access) 752 { 753 gfn_t gfn = kvm_mmu_page_get_gfn(sp, index); 754 755 kvm_mmu_page_set_translation(sp, index, gfn, access); 756 } 757 758 /* 759 * Return the pointer to the large page information for a given gfn, 760 * handling slots that are not large page aligned. 761 */ 762 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, 763 const struct kvm_memory_slot *slot, int level) 764 { 765 unsigned long idx; 766 767 idx = gfn_to_index(gfn, slot->base_gfn, level); 768 return &slot->arch.lpage_info[level - 2][idx]; 769 } 770 771 /* 772 * The most significant bit in disallow_lpage tracks whether or not memory 773 * attributes are mixed, i.e. not identical for all gfns at the current level. 774 * The lower order bits are used to refcount other cases where a hugepage is 775 * disallowed, e.g. if KVM has shadow a page table at the gfn. 776 */ 777 #define KVM_LPAGE_MIXED_FLAG BIT(31) 778 779 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot, 780 gfn_t gfn, int count) 781 { 782 struct kvm_lpage_info *linfo; 783 int old, i; 784 785 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 786 linfo = lpage_info_slot(gfn, slot, i); 787 788 old = linfo->disallow_lpage; 789 linfo->disallow_lpage += count; 790 WARN_ON_ONCE((old ^ linfo->disallow_lpage) & KVM_LPAGE_MIXED_FLAG); 791 } 792 } 793 794 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 795 { 796 update_gfn_disallow_lpage_count(slot, gfn, 1); 797 } 798 799 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 800 { 801 update_gfn_disallow_lpage_count(slot, gfn, -1); 802 } 803 804 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 805 { 806 struct kvm_memslots *slots; 807 struct kvm_memory_slot *slot; 808 gfn_t gfn; 809 810 kvm->arch.indirect_shadow_pages++; 811 /* 812 * Ensure indirect_shadow_pages is elevated prior to re-reading guest 813 * child PTEs in FNAME(gpte_changed), i.e. guarantee either in-flight 814 * emulated writes are visible before re-reading guest PTEs, or that 815 * an emulated write will see the elevated count and acquire mmu_lock 816 * to update SPTEs. Pairs with the smp_mb() in kvm_mmu_track_write(). 817 */ 818 smp_mb(); 819 820 gfn = sp->gfn; 821 slots = kvm_memslots_for_spte_role(kvm, sp->role); 822 slot = __gfn_to_memslot(slots, gfn); 823 824 /* the non-leaf shadow pages are keeping readonly. */ 825 if (sp->role.level > PG_LEVEL_4K) 826 return __kvm_write_track_add_gfn(kvm, slot, gfn); 827 828 kvm_mmu_gfn_disallow_lpage(slot, gfn); 829 830 if (kvm_mmu_slot_gfn_write_protect(kvm, slot, gfn, PG_LEVEL_4K)) 831 kvm_flush_remote_tlbs_gfn(kvm, gfn, PG_LEVEL_4K); 832 } 833 834 void track_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 835 { 836 /* 837 * If it's possible to replace the shadow page with an NX huge page, 838 * i.e. if the shadow page is the only thing currently preventing KVM 839 * from using a huge page, add the shadow page to the list of "to be 840 * zapped for NX recovery" pages. Note, the shadow page can already be 841 * on the list if KVM is reusing an existing shadow page, i.e. if KVM 842 * links a shadow page at multiple points. 843 */ 844 if (!list_empty(&sp->possible_nx_huge_page_link)) 845 return; 846 847 ++kvm->stat.nx_lpage_splits; 848 list_add_tail(&sp->possible_nx_huge_page_link, 849 &kvm->arch.possible_nx_huge_pages); 850 } 851 852 static void account_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp, 853 bool nx_huge_page_possible) 854 { 855 sp->nx_huge_page_disallowed = true; 856 857 if (nx_huge_page_possible) 858 track_possible_nx_huge_page(kvm, sp); 859 } 860 861 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 862 { 863 struct kvm_memslots *slots; 864 struct kvm_memory_slot *slot; 865 gfn_t gfn; 866 867 kvm->arch.indirect_shadow_pages--; 868 gfn = sp->gfn; 869 slots = kvm_memslots_for_spte_role(kvm, sp->role); 870 slot = __gfn_to_memslot(slots, gfn); 871 if (sp->role.level > PG_LEVEL_4K) 872 return __kvm_write_track_remove_gfn(kvm, slot, gfn); 873 874 kvm_mmu_gfn_allow_lpage(slot, gfn); 875 } 876 877 void untrack_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 878 { 879 if (list_empty(&sp->possible_nx_huge_page_link)) 880 return; 881 882 --kvm->stat.nx_lpage_splits; 883 list_del_init(&sp->possible_nx_huge_page_link); 884 } 885 886 static void unaccount_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 887 { 888 sp->nx_huge_page_disallowed = false; 889 890 untrack_possible_nx_huge_page(kvm, sp); 891 } 892 893 static struct kvm_memory_slot *gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, 894 gfn_t gfn, 895 bool no_dirty_log) 896 { 897 struct kvm_memory_slot *slot; 898 899 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 900 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 901 return NULL; 902 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot)) 903 return NULL; 904 905 return slot; 906 } 907 908 /* 909 * About rmap_head encoding: 910 * 911 * If the bit zero of rmap_head->val is clear, then it points to the only spte 912 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct 913 * pte_list_desc containing more mappings. 914 */ 915 #define KVM_RMAP_MANY BIT(0) 916 917 /* 918 * Returns the number of pointers in the rmap chain, not counting the new one. 919 */ 920 static int pte_list_add(struct kvm_mmu_memory_cache *cache, u64 *spte, 921 struct kvm_rmap_head *rmap_head) 922 { 923 struct pte_list_desc *desc; 924 int count = 0; 925 926 if (!rmap_head->val) { 927 rmap_head->val = (unsigned long)spte; 928 } else if (!(rmap_head->val & KVM_RMAP_MANY)) { 929 desc = kvm_mmu_memory_cache_alloc(cache); 930 desc->sptes[0] = (u64 *)rmap_head->val; 931 desc->sptes[1] = spte; 932 desc->spte_count = 2; 933 desc->tail_count = 0; 934 rmap_head->val = (unsigned long)desc | KVM_RMAP_MANY; 935 ++count; 936 } else { 937 desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); 938 count = desc->tail_count + desc->spte_count; 939 940 /* 941 * If the previous head is full, allocate a new head descriptor 942 * as tail descriptors are always kept full. 943 */ 944 if (desc->spte_count == PTE_LIST_EXT) { 945 desc = kvm_mmu_memory_cache_alloc(cache); 946 desc->more = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); 947 desc->spte_count = 0; 948 desc->tail_count = count; 949 rmap_head->val = (unsigned long)desc | KVM_RMAP_MANY; 950 } 951 desc->sptes[desc->spte_count++] = spte; 952 } 953 return count; 954 } 955 956 static void pte_list_desc_remove_entry(struct kvm *kvm, 957 struct kvm_rmap_head *rmap_head, 958 struct pte_list_desc *desc, int i) 959 { 960 struct pte_list_desc *head_desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); 961 int j = head_desc->spte_count - 1; 962 963 /* 964 * The head descriptor should never be empty. A new head is added only 965 * when adding an entry and the previous head is full, and heads are 966 * removed (this flow) when they become empty. 967 */ 968 KVM_BUG_ON_DATA_CORRUPTION(j < 0, kvm); 969 970 /* 971 * Replace the to-be-freed SPTE with the last valid entry from the head 972 * descriptor to ensure that tail descriptors are full at all times. 973 * Note, this also means that tail_count is stable for each descriptor. 974 */ 975 desc->sptes[i] = head_desc->sptes[j]; 976 head_desc->sptes[j] = NULL; 977 head_desc->spte_count--; 978 if (head_desc->spte_count) 979 return; 980 981 /* 982 * The head descriptor is empty. If there are no tail descriptors, 983 * nullify the rmap head to mark the list as empty, else point the rmap 984 * head at the next descriptor, i.e. the new head. 985 */ 986 if (!head_desc->more) 987 rmap_head->val = 0; 988 else 989 rmap_head->val = (unsigned long)head_desc->more | KVM_RMAP_MANY; 990 mmu_free_pte_list_desc(head_desc); 991 } 992 993 static void pte_list_remove(struct kvm *kvm, u64 *spte, 994 struct kvm_rmap_head *rmap_head) 995 { 996 struct pte_list_desc *desc; 997 int i; 998 999 if (KVM_BUG_ON_DATA_CORRUPTION(!rmap_head->val, kvm)) 1000 return; 1001 1002 if (!(rmap_head->val & KVM_RMAP_MANY)) { 1003 if (KVM_BUG_ON_DATA_CORRUPTION((u64 *)rmap_head->val != spte, kvm)) 1004 return; 1005 1006 rmap_head->val = 0; 1007 } else { 1008 desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); 1009 while (desc) { 1010 for (i = 0; i < desc->spte_count; ++i) { 1011 if (desc->sptes[i] == spte) { 1012 pte_list_desc_remove_entry(kvm, rmap_head, 1013 desc, i); 1014 return; 1015 } 1016 } 1017 desc = desc->more; 1018 } 1019 1020 KVM_BUG_ON_DATA_CORRUPTION(true, kvm); 1021 } 1022 } 1023 1024 static void kvm_zap_one_rmap_spte(struct kvm *kvm, 1025 struct kvm_rmap_head *rmap_head, u64 *sptep) 1026 { 1027 mmu_spte_clear_track_bits(kvm, sptep); 1028 pte_list_remove(kvm, sptep, rmap_head); 1029 } 1030 1031 /* Return true if at least one SPTE was zapped, false otherwise */ 1032 static bool kvm_zap_all_rmap_sptes(struct kvm *kvm, 1033 struct kvm_rmap_head *rmap_head) 1034 { 1035 struct pte_list_desc *desc, *next; 1036 int i; 1037 1038 if (!rmap_head->val) 1039 return false; 1040 1041 if (!(rmap_head->val & KVM_RMAP_MANY)) { 1042 mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val); 1043 goto out; 1044 } 1045 1046 desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); 1047 1048 for (; desc; desc = next) { 1049 for (i = 0; i < desc->spte_count; i++) 1050 mmu_spte_clear_track_bits(kvm, desc->sptes[i]); 1051 next = desc->more; 1052 mmu_free_pte_list_desc(desc); 1053 } 1054 out: 1055 /* rmap_head is meaningless now, remember to reset it */ 1056 rmap_head->val = 0; 1057 return true; 1058 } 1059 1060 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head) 1061 { 1062 struct pte_list_desc *desc; 1063 1064 if (!rmap_head->val) 1065 return 0; 1066 else if (!(rmap_head->val & KVM_RMAP_MANY)) 1067 return 1; 1068 1069 desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); 1070 return desc->tail_count + desc->spte_count; 1071 } 1072 1073 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level, 1074 const struct kvm_memory_slot *slot) 1075 { 1076 unsigned long idx; 1077 1078 idx = gfn_to_index(gfn, slot->base_gfn, level); 1079 return &slot->arch.rmap[level - PG_LEVEL_4K][idx]; 1080 } 1081 1082 static void rmap_remove(struct kvm *kvm, u64 *spte) 1083 { 1084 struct kvm_memslots *slots; 1085 struct kvm_memory_slot *slot; 1086 struct kvm_mmu_page *sp; 1087 gfn_t gfn; 1088 struct kvm_rmap_head *rmap_head; 1089 1090 sp = sptep_to_sp(spte); 1091 gfn = kvm_mmu_page_get_gfn(sp, spte_index(spte)); 1092 1093 /* 1094 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU 1095 * so we have to determine which memslots to use based on context 1096 * information in sp->role. 1097 */ 1098 slots = kvm_memslots_for_spte_role(kvm, sp->role); 1099 1100 slot = __gfn_to_memslot(slots, gfn); 1101 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1102 1103 pte_list_remove(kvm, spte, rmap_head); 1104 } 1105 1106 /* 1107 * Used by the following functions to iterate through the sptes linked by a 1108 * rmap. All fields are private and not assumed to be used outside. 1109 */ 1110 struct rmap_iterator { 1111 /* private fields */ 1112 struct pte_list_desc *desc; /* holds the sptep if not NULL */ 1113 int pos; /* index of the sptep */ 1114 }; 1115 1116 /* 1117 * Iteration must be started by this function. This should also be used after 1118 * removing/dropping sptes from the rmap link because in such cases the 1119 * information in the iterator may not be valid. 1120 * 1121 * Returns sptep if found, NULL otherwise. 1122 */ 1123 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head, 1124 struct rmap_iterator *iter) 1125 { 1126 u64 *sptep; 1127 1128 if (!rmap_head->val) 1129 return NULL; 1130 1131 if (!(rmap_head->val & KVM_RMAP_MANY)) { 1132 iter->desc = NULL; 1133 sptep = (u64 *)rmap_head->val; 1134 goto out; 1135 } 1136 1137 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); 1138 iter->pos = 0; 1139 sptep = iter->desc->sptes[iter->pos]; 1140 out: 1141 BUG_ON(!is_shadow_present_pte(*sptep)); 1142 return sptep; 1143 } 1144 1145 /* 1146 * Must be used with a valid iterator: e.g. after rmap_get_first(). 1147 * 1148 * Returns sptep if found, NULL otherwise. 1149 */ 1150 static u64 *rmap_get_next(struct rmap_iterator *iter) 1151 { 1152 u64 *sptep; 1153 1154 if (iter->desc) { 1155 if (iter->pos < PTE_LIST_EXT - 1) { 1156 ++iter->pos; 1157 sptep = iter->desc->sptes[iter->pos]; 1158 if (sptep) 1159 goto out; 1160 } 1161 1162 iter->desc = iter->desc->more; 1163 1164 if (iter->desc) { 1165 iter->pos = 0; 1166 /* desc->sptes[0] cannot be NULL */ 1167 sptep = iter->desc->sptes[iter->pos]; 1168 goto out; 1169 } 1170 } 1171 1172 return NULL; 1173 out: 1174 BUG_ON(!is_shadow_present_pte(*sptep)); 1175 return sptep; 1176 } 1177 1178 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \ 1179 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \ 1180 _spte_; _spte_ = rmap_get_next(_iter_)) 1181 1182 static void drop_spte(struct kvm *kvm, u64 *sptep) 1183 { 1184 u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep); 1185 1186 if (is_shadow_present_pte(old_spte)) 1187 rmap_remove(kvm, sptep); 1188 } 1189 1190 static void drop_large_spte(struct kvm *kvm, u64 *sptep, bool flush) 1191 { 1192 struct kvm_mmu_page *sp; 1193 1194 sp = sptep_to_sp(sptep); 1195 WARN_ON_ONCE(sp->role.level == PG_LEVEL_4K); 1196 1197 drop_spte(kvm, sptep); 1198 1199 if (flush) 1200 kvm_flush_remote_tlbs_sptep(kvm, sptep); 1201 } 1202 1203 /* 1204 * Write-protect on the specified @sptep, @pt_protect indicates whether 1205 * spte write-protection is caused by protecting shadow page table. 1206 * 1207 * Note: write protection is difference between dirty logging and spte 1208 * protection: 1209 * - for dirty logging, the spte can be set to writable at anytime if 1210 * its dirty bitmap is properly set. 1211 * - for spte protection, the spte can be writable only after unsync-ing 1212 * shadow page. 1213 * 1214 * Return true if tlb need be flushed. 1215 */ 1216 static bool spte_write_protect(u64 *sptep, bool pt_protect) 1217 { 1218 u64 spte = *sptep; 1219 1220 if (!is_writable_pte(spte) && 1221 !(pt_protect && is_mmu_writable_spte(spte))) 1222 return false; 1223 1224 if (pt_protect) 1225 spte &= ~shadow_mmu_writable_mask; 1226 spte = spte & ~PT_WRITABLE_MASK; 1227 1228 return mmu_spte_update(sptep, spte); 1229 } 1230 1231 static bool rmap_write_protect(struct kvm_rmap_head *rmap_head, 1232 bool pt_protect) 1233 { 1234 u64 *sptep; 1235 struct rmap_iterator iter; 1236 bool flush = false; 1237 1238 for_each_rmap_spte(rmap_head, &iter, sptep) 1239 flush |= spte_write_protect(sptep, pt_protect); 1240 1241 return flush; 1242 } 1243 1244 static bool spte_clear_dirty(u64 *sptep) 1245 { 1246 u64 spte = *sptep; 1247 1248 KVM_MMU_WARN_ON(!spte_ad_enabled(spte)); 1249 spte &= ~shadow_dirty_mask; 1250 return mmu_spte_update(sptep, spte); 1251 } 1252 1253 static bool spte_wrprot_for_clear_dirty(u64 *sptep) 1254 { 1255 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT, 1256 (unsigned long *)sptep); 1257 if (was_writable && !spte_ad_enabled(*sptep)) 1258 kvm_set_pfn_dirty(spte_to_pfn(*sptep)); 1259 1260 return was_writable; 1261 } 1262 1263 /* 1264 * Gets the GFN ready for another round of dirty logging by clearing the 1265 * - D bit on ad-enabled SPTEs, and 1266 * - W bit on ad-disabled SPTEs. 1267 * Returns true iff any D or W bits were cleared. 1268 */ 1269 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1270 const struct kvm_memory_slot *slot) 1271 { 1272 u64 *sptep; 1273 struct rmap_iterator iter; 1274 bool flush = false; 1275 1276 for_each_rmap_spte(rmap_head, &iter, sptep) 1277 if (spte_ad_need_write_protect(*sptep)) 1278 flush |= spte_wrprot_for_clear_dirty(sptep); 1279 else 1280 flush |= spte_clear_dirty(sptep); 1281 1282 return flush; 1283 } 1284 1285 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 1286 struct kvm_memory_slot *slot, 1287 gfn_t gfn_offset, unsigned long mask) 1288 { 1289 struct kvm_rmap_head *rmap_head; 1290 1291 if (tdp_mmu_enabled) 1292 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1293 slot->base_gfn + gfn_offset, mask, true); 1294 1295 if (!kvm_memslots_have_rmaps(kvm)) 1296 return; 1297 1298 while (mask) { 1299 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1300 PG_LEVEL_4K, slot); 1301 rmap_write_protect(rmap_head, false); 1302 1303 /* clear the first set bit */ 1304 mask &= mask - 1; 1305 } 1306 } 1307 1308 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1309 struct kvm_memory_slot *slot, 1310 gfn_t gfn_offset, unsigned long mask) 1311 { 1312 struct kvm_rmap_head *rmap_head; 1313 1314 if (tdp_mmu_enabled) 1315 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1316 slot->base_gfn + gfn_offset, mask, false); 1317 1318 if (!kvm_memslots_have_rmaps(kvm)) 1319 return; 1320 1321 while (mask) { 1322 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1323 PG_LEVEL_4K, slot); 1324 __rmap_clear_dirty(kvm, rmap_head, slot); 1325 1326 /* clear the first set bit */ 1327 mask &= mask - 1; 1328 } 1329 } 1330 1331 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1332 struct kvm_memory_slot *slot, 1333 gfn_t gfn_offset, unsigned long mask) 1334 { 1335 /* 1336 * If the slot was assumed to be "initially all dirty", write-protect 1337 * huge pages to ensure they are split to 4KiB on the first write (KVM 1338 * dirty logs at 4KiB granularity). If eager page splitting is enabled, 1339 * immediately try to split huge pages, e.g. so that vCPUs don't get 1340 * saddled with the cost of splitting. 1341 * 1342 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn 1343 * of memslot has no such restriction, so the range can cross two large 1344 * pages. 1345 */ 1346 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) { 1347 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask); 1348 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask); 1349 1350 if (READ_ONCE(eager_page_split)) 1351 kvm_mmu_try_split_huge_pages(kvm, slot, start, end + 1, PG_LEVEL_4K); 1352 1353 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M); 1354 1355 /* Cross two large pages? */ 1356 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) != 1357 ALIGN(end << PAGE_SHIFT, PMD_SIZE)) 1358 kvm_mmu_slot_gfn_write_protect(kvm, slot, end, 1359 PG_LEVEL_2M); 1360 } 1361 1362 /* 1363 * (Re)Enable dirty logging for all 4KiB SPTEs that map the GFNs in 1364 * mask. If PML is enabled and the GFN doesn't need to be write- 1365 * protected for other reasons, e.g. shadow paging, clear the Dirty bit. 1366 * Otherwise clear the Writable bit. 1367 * 1368 * Note that kvm_mmu_clear_dirty_pt_masked() is called whenever PML is 1369 * enabled but it chooses between clearing the Dirty bit and Writeable 1370 * bit based on the context. 1371 */ 1372 if (kvm_x86_ops.cpu_dirty_log_size) 1373 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask); 1374 else 1375 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 1376 } 1377 1378 int kvm_cpu_dirty_log_size(void) 1379 { 1380 return kvm_x86_ops.cpu_dirty_log_size; 1381 } 1382 1383 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, 1384 struct kvm_memory_slot *slot, u64 gfn, 1385 int min_level) 1386 { 1387 struct kvm_rmap_head *rmap_head; 1388 int i; 1389 bool write_protected = false; 1390 1391 if (kvm_memslots_have_rmaps(kvm)) { 1392 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 1393 rmap_head = gfn_to_rmap(gfn, i, slot); 1394 write_protected |= rmap_write_protect(rmap_head, true); 1395 } 1396 } 1397 1398 if (tdp_mmu_enabled) 1399 write_protected |= 1400 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level); 1401 1402 return write_protected; 1403 } 1404 1405 static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn) 1406 { 1407 struct kvm_memory_slot *slot; 1408 1409 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1410 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K); 1411 } 1412 1413 static bool kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1414 const struct kvm_memory_slot *slot) 1415 { 1416 return kvm_zap_all_rmap_sptes(kvm, rmap_head); 1417 } 1418 1419 struct slot_rmap_walk_iterator { 1420 /* input fields. */ 1421 const struct kvm_memory_slot *slot; 1422 gfn_t start_gfn; 1423 gfn_t end_gfn; 1424 int start_level; 1425 int end_level; 1426 1427 /* output fields. */ 1428 gfn_t gfn; 1429 struct kvm_rmap_head *rmap; 1430 int level; 1431 1432 /* private field. */ 1433 struct kvm_rmap_head *end_rmap; 1434 }; 1435 1436 static void rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, 1437 int level) 1438 { 1439 iterator->level = level; 1440 iterator->gfn = iterator->start_gfn; 1441 iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot); 1442 iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot); 1443 } 1444 1445 static void slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator, 1446 const struct kvm_memory_slot *slot, 1447 int start_level, int end_level, 1448 gfn_t start_gfn, gfn_t end_gfn) 1449 { 1450 iterator->slot = slot; 1451 iterator->start_level = start_level; 1452 iterator->end_level = end_level; 1453 iterator->start_gfn = start_gfn; 1454 iterator->end_gfn = end_gfn; 1455 1456 rmap_walk_init_level(iterator, iterator->start_level); 1457 } 1458 1459 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator) 1460 { 1461 return !!iterator->rmap; 1462 } 1463 1464 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) 1465 { 1466 while (++iterator->rmap <= iterator->end_rmap) { 1467 iterator->gfn += KVM_PAGES_PER_HPAGE(iterator->level); 1468 1469 if (iterator->rmap->val) 1470 return; 1471 } 1472 1473 if (++iterator->level > iterator->end_level) { 1474 iterator->rmap = NULL; 1475 return; 1476 } 1477 1478 rmap_walk_init_level(iterator, iterator->level); 1479 } 1480 1481 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \ 1482 _start_gfn, _end_gfn, _iter_) \ 1483 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \ 1484 _end_level_, _start_gfn, _end_gfn); \ 1485 slot_rmap_walk_okay(_iter_); \ 1486 slot_rmap_walk_next(_iter_)) 1487 1488 /* The return value indicates if tlb flush on all vcpus is needed. */ 1489 typedef bool (*slot_rmaps_handler) (struct kvm *kvm, 1490 struct kvm_rmap_head *rmap_head, 1491 const struct kvm_memory_slot *slot); 1492 1493 static __always_inline bool __walk_slot_rmaps(struct kvm *kvm, 1494 const struct kvm_memory_slot *slot, 1495 slot_rmaps_handler fn, 1496 int start_level, int end_level, 1497 gfn_t start_gfn, gfn_t end_gfn, 1498 bool can_yield, bool flush_on_yield, 1499 bool flush) 1500 { 1501 struct slot_rmap_walk_iterator iterator; 1502 1503 lockdep_assert_held_write(&kvm->mmu_lock); 1504 1505 for_each_slot_rmap_range(slot, start_level, end_level, start_gfn, 1506 end_gfn, &iterator) { 1507 if (iterator.rmap) 1508 flush |= fn(kvm, iterator.rmap, slot); 1509 1510 if (!can_yield) 1511 continue; 1512 1513 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 1514 if (flush && flush_on_yield) { 1515 kvm_flush_remote_tlbs_range(kvm, start_gfn, 1516 iterator.gfn - start_gfn + 1); 1517 flush = false; 1518 } 1519 cond_resched_rwlock_write(&kvm->mmu_lock); 1520 } 1521 } 1522 1523 return flush; 1524 } 1525 1526 static __always_inline bool walk_slot_rmaps(struct kvm *kvm, 1527 const struct kvm_memory_slot *slot, 1528 slot_rmaps_handler fn, 1529 int start_level, int end_level, 1530 bool flush_on_yield) 1531 { 1532 return __walk_slot_rmaps(kvm, slot, fn, start_level, end_level, 1533 slot->base_gfn, slot->base_gfn + slot->npages - 1, 1534 true, flush_on_yield, false); 1535 } 1536 1537 static __always_inline bool walk_slot_rmaps_4k(struct kvm *kvm, 1538 const struct kvm_memory_slot *slot, 1539 slot_rmaps_handler fn, 1540 bool flush_on_yield) 1541 { 1542 return walk_slot_rmaps(kvm, slot, fn, PG_LEVEL_4K, PG_LEVEL_4K, flush_on_yield); 1543 } 1544 1545 static bool __kvm_rmap_zap_gfn_range(struct kvm *kvm, 1546 const struct kvm_memory_slot *slot, 1547 gfn_t start, gfn_t end, bool can_yield, 1548 bool flush) 1549 { 1550 return __walk_slot_rmaps(kvm, slot, kvm_zap_rmap, 1551 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 1552 start, end - 1, can_yield, true, flush); 1553 } 1554 1555 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1556 { 1557 bool flush = false; 1558 1559 if (kvm_memslots_have_rmaps(kvm)) 1560 flush = __kvm_rmap_zap_gfn_range(kvm, range->slot, 1561 range->start, range->end, 1562 range->may_block, flush); 1563 1564 if (tdp_mmu_enabled) 1565 flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush); 1566 1567 if (kvm_x86_ops.set_apic_access_page_addr && 1568 range->slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT) 1569 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 1570 1571 return flush; 1572 } 1573 1574 #define RMAP_RECYCLE_THRESHOLD 1000 1575 1576 static void __rmap_add(struct kvm *kvm, 1577 struct kvm_mmu_memory_cache *cache, 1578 const struct kvm_memory_slot *slot, 1579 u64 *spte, gfn_t gfn, unsigned int access) 1580 { 1581 struct kvm_mmu_page *sp; 1582 struct kvm_rmap_head *rmap_head; 1583 int rmap_count; 1584 1585 sp = sptep_to_sp(spte); 1586 kvm_mmu_page_set_translation(sp, spte_index(spte), gfn, access); 1587 kvm_update_page_stats(kvm, sp->role.level, 1); 1588 1589 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1590 rmap_count = pte_list_add(cache, spte, rmap_head); 1591 1592 if (rmap_count > kvm->stat.max_mmu_rmap_size) 1593 kvm->stat.max_mmu_rmap_size = rmap_count; 1594 if (rmap_count > RMAP_RECYCLE_THRESHOLD) { 1595 kvm_zap_all_rmap_sptes(kvm, rmap_head); 1596 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level); 1597 } 1598 } 1599 1600 static void rmap_add(struct kvm_vcpu *vcpu, const struct kvm_memory_slot *slot, 1601 u64 *spte, gfn_t gfn, unsigned int access) 1602 { 1603 struct kvm_mmu_memory_cache *cache = &vcpu->arch.mmu_pte_list_desc_cache; 1604 1605 __rmap_add(vcpu->kvm, cache, slot, spte, gfn, access); 1606 } 1607 1608 static bool kvm_rmap_age_gfn_range(struct kvm *kvm, 1609 struct kvm_gfn_range *range, bool test_only) 1610 { 1611 struct slot_rmap_walk_iterator iterator; 1612 struct rmap_iterator iter; 1613 bool young = false; 1614 u64 *sptep; 1615 1616 for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 1617 range->start, range->end - 1, &iterator) { 1618 for_each_rmap_spte(iterator.rmap, &iter, sptep) { 1619 u64 spte = *sptep; 1620 1621 if (!is_accessed_spte(spte)) 1622 continue; 1623 1624 if (test_only) 1625 return true; 1626 1627 if (spte_ad_enabled(spte)) { 1628 clear_bit((ffs(shadow_accessed_mask) - 1), 1629 (unsigned long *)sptep); 1630 } else { 1631 /* 1632 * Capture the dirty status of the page, so that 1633 * it doesn't get lost when the SPTE is marked 1634 * for access tracking. 1635 */ 1636 if (is_writable_pte(spte)) 1637 kvm_set_pfn_dirty(spte_to_pfn(spte)); 1638 1639 spte = mark_spte_for_access_track(spte); 1640 mmu_spte_update_no_track(sptep, spte); 1641 } 1642 young = true; 1643 } 1644 } 1645 return young; 1646 } 1647 1648 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1649 { 1650 bool young = false; 1651 1652 if (kvm_memslots_have_rmaps(kvm)) 1653 young = kvm_rmap_age_gfn_range(kvm, range, false); 1654 1655 if (tdp_mmu_enabled) 1656 young |= kvm_tdp_mmu_age_gfn_range(kvm, range); 1657 1658 return young; 1659 } 1660 1661 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1662 { 1663 bool young = false; 1664 1665 if (kvm_memslots_have_rmaps(kvm)) 1666 young = kvm_rmap_age_gfn_range(kvm, range, true); 1667 1668 if (tdp_mmu_enabled) 1669 young |= kvm_tdp_mmu_test_age_gfn(kvm, range); 1670 1671 return young; 1672 } 1673 1674 static void kvm_mmu_check_sptes_at_free(struct kvm_mmu_page *sp) 1675 { 1676 #ifdef CONFIG_KVM_PROVE_MMU 1677 int i; 1678 1679 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) { 1680 if (KVM_MMU_WARN_ON(is_shadow_present_pte(sp->spt[i]))) 1681 pr_err_ratelimited("SPTE %llx (@ %p) for gfn %llx shadow-present at free", 1682 sp->spt[i], &sp->spt[i], 1683 kvm_mmu_page_get_gfn(sp, i)); 1684 } 1685 #endif 1686 } 1687 1688 /* 1689 * This value is the sum of all of the kvm instances's 1690 * kvm->arch.n_used_mmu_pages values. We need a global, 1691 * aggregate version in order to make the slab shrinker 1692 * faster 1693 */ 1694 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr) 1695 { 1696 kvm->arch.n_used_mmu_pages += nr; 1697 percpu_counter_add(&kvm_total_used_mmu_pages, nr); 1698 } 1699 1700 static void kvm_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1701 { 1702 kvm_mod_used_mmu_pages(kvm, +1); 1703 kvm_account_pgtable_pages((void *)sp->spt, +1); 1704 } 1705 1706 static void kvm_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1707 { 1708 kvm_mod_used_mmu_pages(kvm, -1); 1709 kvm_account_pgtable_pages((void *)sp->spt, -1); 1710 } 1711 1712 static void kvm_mmu_free_shadow_page(struct kvm_mmu_page *sp) 1713 { 1714 kvm_mmu_check_sptes_at_free(sp); 1715 1716 hlist_del(&sp->hash_link); 1717 list_del(&sp->link); 1718 free_page((unsigned long)sp->spt); 1719 free_page((unsigned long)sp->shadowed_translation); 1720 kmem_cache_free(mmu_page_header_cache, sp); 1721 } 1722 1723 static unsigned kvm_page_table_hashfn(gfn_t gfn) 1724 { 1725 return hash_64(gfn, KVM_MMU_HASH_SHIFT); 1726 } 1727 1728 static void mmu_page_add_parent_pte(struct kvm_mmu_memory_cache *cache, 1729 struct kvm_mmu_page *sp, u64 *parent_pte) 1730 { 1731 if (!parent_pte) 1732 return; 1733 1734 pte_list_add(cache, parent_pte, &sp->parent_ptes); 1735 } 1736 1737 static void mmu_page_remove_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 1738 u64 *parent_pte) 1739 { 1740 pte_list_remove(kvm, parent_pte, &sp->parent_ptes); 1741 } 1742 1743 static void drop_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 1744 u64 *parent_pte) 1745 { 1746 mmu_page_remove_parent_pte(kvm, sp, parent_pte); 1747 mmu_spte_clear_no_track(parent_pte); 1748 } 1749 1750 static void mark_unsync(u64 *spte); 1751 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) 1752 { 1753 u64 *sptep; 1754 struct rmap_iterator iter; 1755 1756 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) { 1757 mark_unsync(sptep); 1758 } 1759 } 1760 1761 static void mark_unsync(u64 *spte) 1762 { 1763 struct kvm_mmu_page *sp; 1764 1765 sp = sptep_to_sp(spte); 1766 if (__test_and_set_bit(spte_index(spte), sp->unsync_child_bitmap)) 1767 return; 1768 if (sp->unsync_children++) 1769 return; 1770 kvm_mmu_mark_parents_unsync(sp); 1771 } 1772 1773 #define KVM_PAGE_ARRAY_NR 16 1774 1775 struct kvm_mmu_pages { 1776 struct mmu_page_and_offset { 1777 struct kvm_mmu_page *sp; 1778 unsigned int idx; 1779 } page[KVM_PAGE_ARRAY_NR]; 1780 unsigned int nr; 1781 }; 1782 1783 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, 1784 int idx) 1785 { 1786 int i; 1787 1788 if (sp->unsync) 1789 for (i=0; i < pvec->nr; i++) 1790 if (pvec->page[i].sp == sp) 1791 return 0; 1792 1793 pvec->page[pvec->nr].sp = sp; 1794 pvec->page[pvec->nr].idx = idx; 1795 pvec->nr++; 1796 return (pvec->nr == KVM_PAGE_ARRAY_NR); 1797 } 1798 1799 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx) 1800 { 1801 --sp->unsync_children; 1802 WARN_ON_ONCE((int)sp->unsync_children < 0); 1803 __clear_bit(idx, sp->unsync_child_bitmap); 1804 } 1805 1806 static int __mmu_unsync_walk(struct kvm_mmu_page *sp, 1807 struct kvm_mmu_pages *pvec) 1808 { 1809 int i, ret, nr_unsync_leaf = 0; 1810 1811 for_each_set_bit(i, sp->unsync_child_bitmap, 512) { 1812 struct kvm_mmu_page *child; 1813 u64 ent = sp->spt[i]; 1814 1815 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) { 1816 clear_unsync_child_bit(sp, i); 1817 continue; 1818 } 1819 1820 child = spte_to_child_sp(ent); 1821 1822 if (child->unsync_children) { 1823 if (mmu_pages_add(pvec, child, i)) 1824 return -ENOSPC; 1825 1826 ret = __mmu_unsync_walk(child, pvec); 1827 if (!ret) { 1828 clear_unsync_child_bit(sp, i); 1829 continue; 1830 } else if (ret > 0) { 1831 nr_unsync_leaf += ret; 1832 } else 1833 return ret; 1834 } else if (child->unsync) { 1835 nr_unsync_leaf++; 1836 if (mmu_pages_add(pvec, child, i)) 1837 return -ENOSPC; 1838 } else 1839 clear_unsync_child_bit(sp, i); 1840 } 1841 1842 return nr_unsync_leaf; 1843 } 1844 1845 #define INVALID_INDEX (-1) 1846 1847 static int mmu_unsync_walk(struct kvm_mmu_page *sp, 1848 struct kvm_mmu_pages *pvec) 1849 { 1850 pvec->nr = 0; 1851 if (!sp->unsync_children) 1852 return 0; 1853 1854 mmu_pages_add(pvec, sp, INVALID_INDEX); 1855 return __mmu_unsync_walk(sp, pvec); 1856 } 1857 1858 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1859 { 1860 WARN_ON_ONCE(!sp->unsync); 1861 trace_kvm_mmu_sync_page(sp); 1862 sp->unsync = 0; 1863 --kvm->stat.mmu_unsync; 1864 } 1865 1866 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 1867 struct list_head *invalid_list); 1868 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 1869 struct list_head *invalid_list); 1870 1871 static bool sp_has_gptes(struct kvm_mmu_page *sp) 1872 { 1873 if (sp->role.direct) 1874 return false; 1875 1876 if (sp->role.passthrough) 1877 return false; 1878 1879 return true; 1880 } 1881 1882 #define for_each_valid_sp(_kvm, _sp, _list) \ 1883 hlist_for_each_entry(_sp, _list, hash_link) \ 1884 if (is_obsolete_sp((_kvm), (_sp))) { \ 1885 } else 1886 1887 #define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn) \ 1888 for_each_valid_sp(_kvm, _sp, \ 1889 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \ 1890 if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else 1891 1892 static bool kvm_sync_page_check(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 1893 { 1894 union kvm_mmu_page_role root_role = vcpu->arch.mmu->root_role; 1895 1896 /* 1897 * Ignore various flags when verifying that it's safe to sync a shadow 1898 * page using the current MMU context. 1899 * 1900 * - level: not part of the overall MMU role and will never match as the MMU's 1901 * level tracks the root level 1902 * - access: updated based on the new guest PTE 1903 * - quadrant: not part of the overall MMU role (similar to level) 1904 */ 1905 const union kvm_mmu_page_role sync_role_ign = { 1906 .level = 0xf, 1907 .access = 0x7, 1908 .quadrant = 0x3, 1909 .passthrough = 0x1, 1910 }; 1911 1912 /* 1913 * Direct pages can never be unsync, and KVM should never attempt to 1914 * sync a shadow page for a different MMU context, e.g. if the role 1915 * differs then the memslot lookup (SMM vs. non-SMM) will be bogus, the 1916 * reserved bits checks will be wrong, etc... 1917 */ 1918 if (WARN_ON_ONCE(sp->role.direct || !vcpu->arch.mmu->sync_spte || 1919 (sp->role.word ^ root_role.word) & ~sync_role_ign.word)) 1920 return false; 1921 1922 return true; 1923 } 1924 1925 static int kvm_sync_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, int i) 1926 { 1927 /* sp->spt[i] has initial value of shadow page table allocation */ 1928 if (sp->spt[i] == SHADOW_NONPRESENT_VALUE) 1929 return 0; 1930 1931 return vcpu->arch.mmu->sync_spte(vcpu, sp, i); 1932 } 1933 1934 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 1935 { 1936 int flush = 0; 1937 int i; 1938 1939 if (!kvm_sync_page_check(vcpu, sp)) 1940 return -1; 1941 1942 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) { 1943 int ret = kvm_sync_spte(vcpu, sp, i); 1944 1945 if (ret < -1) 1946 return -1; 1947 flush |= ret; 1948 } 1949 1950 /* 1951 * Note, any flush is purely for KVM's correctness, e.g. when dropping 1952 * an existing SPTE or clearing W/A/D bits to ensure an mmu_notifier 1953 * unmap or dirty logging event doesn't fail to flush. The guest is 1954 * responsible for flushing the TLB to ensure any changes in protection 1955 * bits are recognized, i.e. until the guest flushes or page faults on 1956 * a relevant address, KVM is architecturally allowed to let vCPUs use 1957 * cached translations with the old protection bits. 1958 */ 1959 return flush; 1960 } 1961 1962 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 1963 struct list_head *invalid_list) 1964 { 1965 int ret = __kvm_sync_page(vcpu, sp); 1966 1967 if (ret < 0) 1968 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); 1969 return ret; 1970 } 1971 1972 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm, 1973 struct list_head *invalid_list, 1974 bool remote_flush) 1975 { 1976 if (!remote_flush && list_empty(invalid_list)) 1977 return false; 1978 1979 if (!list_empty(invalid_list)) 1980 kvm_mmu_commit_zap_page(kvm, invalid_list); 1981 else 1982 kvm_flush_remote_tlbs(kvm); 1983 return true; 1984 } 1985 1986 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 1987 { 1988 if (sp->role.invalid) 1989 return true; 1990 1991 /* TDP MMU pages do not use the MMU generation. */ 1992 return !is_tdp_mmu_page(sp) && 1993 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); 1994 } 1995 1996 struct mmu_page_path { 1997 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL]; 1998 unsigned int idx[PT64_ROOT_MAX_LEVEL]; 1999 }; 2000 2001 #define for_each_sp(pvec, sp, parents, i) \ 2002 for (i = mmu_pages_first(&pvec, &parents); \ 2003 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \ 2004 i = mmu_pages_next(&pvec, &parents, i)) 2005 2006 static int mmu_pages_next(struct kvm_mmu_pages *pvec, 2007 struct mmu_page_path *parents, 2008 int i) 2009 { 2010 int n; 2011 2012 for (n = i+1; n < pvec->nr; n++) { 2013 struct kvm_mmu_page *sp = pvec->page[n].sp; 2014 unsigned idx = pvec->page[n].idx; 2015 int level = sp->role.level; 2016 2017 parents->idx[level-1] = idx; 2018 if (level == PG_LEVEL_4K) 2019 break; 2020 2021 parents->parent[level-2] = sp; 2022 } 2023 2024 return n; 2025 } 2026 2027 static int mmu_pages_first(struct kvm_mmu_pages *pvec, 2028 struct mmu_page_path *parents) 2029 { 2030 struct kvm_mmu_page *sp; 2031 int level; 2032 2033 if (pvec->nr == 0) 2034 return 0; 2035 2036 WARN_ON_ONCE(pvec->page[0].idx != INVALID_INDEX); 2037 2038 sp = pvec->page[0].sp; 2039 level = sp->role.level; 2040 WARN_ON_ONCE(level == PG_LEVEL_4K); 2041 2042 parents->parent[level-2] = sp; 2043 2044 /* Also set up a sentinel. Further entries in pvec are all 2045 * children of sp, so this element is never overwritten. 2046 */ 2047 parents->parent[level-1] = NULL; 2048 return mmu_pages_next(pvec, parents, 0); 2049 } 2050 2051 static void mmu_pages_clear_parents(struct mmu_page_path *parents) 2052 { 2053 struct kvm_mmu_page *sp; 2054 unsigned int level = 0; 2055 2056 do { 2057 unsigned int idx = parents->idx[level]; 2058 sp = parents->parent[level]; 2059 if (!sp) 2060 return; 2061 2062 WARN_ON_ONCE(idx == INVALID_INDEX); 2063 clear_unsync_child_bit(sp, idx); 2064 level++; 2065 } while (!sp->unsync_children); 2066 } 2067 2068 static int mmu_sync_children(struct kvm_vcpu *vcpu, 2069 struct kvm_mmu_page *parent, bool can_yield) 2070 { 2071 int i; 2072 struct kvm_mmu_page *sp; 2073 struct mmu_page_path parents; 2074 struct kvm_mmu_pages pages; 2075 LIST_HEAD(invalid_list); 2076 bool flush = false; 2077 2078 while (mmu_unsync_walk(parent, &pages)) { 2079 bool protected = false; 2080 2081 for_each_sp(pages, sp, parents, i) 2082 protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn); 2083 2084 if (protected) { 2085 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true); 2086 flush = false; 2087 } 2088 2089 for_each_sp(pages, sp, parents, i) { 2090 kvm_unlink_unsync_page(vcpu->kvm, sp); 2091 flush |= kvm_sync_page(vcpu, sp, &invalid_list) > 0; 2092 mmu_pages_clear_parents(&parents); 2093 } 2094 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) { 2095 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2096 if (!can_yield) { 2097 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 2098 return -EINTR; 2099 } 2100 2101 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock); 2102 flush = false; 2103 } 2104 } 2105 2106 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2107 return 0; 2108 } 2109 2110 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) 2111 { 2112 atomic_set(&sp->write_flooding_count, 0); 2113 } 2114 2115 static void clear_sp_write_flooding_count(u64 *spte) 2116 { 2117 __clear_sp_write_flooding_count(sptep_to_sp(spte)); 2118 } 2119 2120 /* 2121 * The vCPU is required when finding indirect shadow pages; the shadow 2122 * page may already exist and syncing it needs the vCPU pointer in 2123 * order to read guest page tables. Direct shadow pages are never 2124 * unsync, thus @vcpu can be NULL if @role.direct is true. 2125 */ 2126 static struct kvm_mmu_page *kvm_mmu_find_shadow_page(struct kvm *kvm, 2127 struct kvm_vcpu *vcpu, 2128 gfn_t gfn, 2129 struct hlist_head *sp_list, 2130 union kvm_mmu_page_role role) 2131 { 2132 struct kvm_mmu_page *sp; 2133 int ret; 2134 int collisions = 0; 2135 LIST_HEAD(invalid_list); 2136 2137 for_each_valid_sp(kvm, sp, sp_list) { 2138 if (sp->gfn != gfn) { 2139 collisions++; 2140 continue; 2141 } 2142 2143 if (sp->role.word != role.word) { 2144 /* 2145 * If the guest is creating an upper-level page, zap 2146 * unsync pages for the same gfn. While it's possible 2147 * the guest is using recursive page tables, in all 2148 * likelihood the guest has stopped using the unsync 2149 * page and is installing a completely unrelated page. 2150 * Unsync pages must not be left as is, because the new 2151 * upper-level page will be write-protected. 2152 */ 2153 if (role.level > PG_LEVEL_4K && sp->unsync) 2154 kvm_mmu_prepare_zap_page(kvm, sp, 2155 &invalid_list); 2156 continue; 2157 } 2158 2159 /* unsync and write-flooding only apply to indirect SPs. */ 2160 if (sp->role.direct) 2161 goto out; 2162 2163 if (sp->unsync) { 2164 if (KVM_BUG_ON(!vcpu, kvm)) 2165 break; 2166 2167 /* 2168 * The page is good, but is stale. kvm_sync_page does 2169 * get the latest guest state, but (unlike mmu_unsync_children) 2170 * it doesn't write-protect the page or mark it synchronized! 2171 * This way the validity of the mapping is ensured, but the 2172 * overhead of write protection is not incurred until the 2173 * guest invalidates the TLB mapping. This allows multiple 2174 * SPs for a single gfn to be unsync. 2175 * 2176 * If the sync fails, the page is zapped. If so, break 2177 * in order to rebuild it. 2178 */ 2179 ret = kvm_sync_page(vcpu, sp, &invalid_list); 2180 if (ret < 0) 2181 break; 2182 2183 WARN_ON_ONCE(!list_empty(&invalid_list)); 2184 if (ret > 0) 2185 kvm_flush_remote_tlbs(kvm); 2186 } 2187 2188 __clear_sp_write_flooding_count(sp); 2189 2190 goto out; 2191 } 2192 2193 sp = NULL; 2194 ++kvm->stat.mmu_cache_miss; 2195 2196 out: 2197 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2198 2199 if (collisions > kvm->stat.max_mmu_page_hash_collisions) 2200 kvm->stat.max_mmu_page_hash_collisions = collisions; 2201 return sp; 2202 } 2203 2204 /* Caches used when allocating a new shadow page. */ 2205 struct shadow_page_caches { 2206 struct kvm_mmu_memory_cache *page_header_cache; 2207 struct kvm_mmu_memory_cache *shadow_page_cache; 2208 struct kvm_mmu_memory_cache *shadowed_info_cache; 2209 }; 2210 2211 static struct kvm_mmu_page *kvm_mmu_alloc_shadow_page(struct kvm *kvm, 2212 struct shadow_page_caches *caches, 2213 gfn_t gfn, 2214 struct hlist_head *sp_list, 2215 union kvm_mmu_page_role role) 2216 { 2217 struct kvm_mmu_page *sp; 2218 2219 sp = kvm_mmu_memory_cache_alloc(caches->page_header_cache); 2220 sp->spt = kvm_mmu_memory_cache_alloc(caches->shadow_page_cache); 2221 if (!role.direct && role.level <= KVM_MAX_HUGEPAGE_LEVEL) 2222 sp->shadowed_translation = kvm_mmu_memory_cache_alloc(caches->shadowed_info_cache); 2223 2224 set_page_private(virt_to_page(sp->spt), (unsigned long)sp); 2225 2226 INIT_LIST_HEAD(&sp->possible_nx_huge_page_link); 2227 2228 /* 2229 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages() 2230 * depends on valid pages being added to the head of the list. See 2231 * comments in kvm_zap_obsolete_pages(). 2232 */ 2233 sp->mmu_valid_gen = kvm->arch.mmu_valid_gen; 2234 list_add(&sp->link, &kvm->arch.active_mmu_pages); 2235 kvm_account_mmu_page(kvm, sp); 2236 2237 sp->gfn = gfn; 2238 sp->role = role; 2239 hlist_add_head(&sp->hash_link, sp_list); 2240 if (sp_has_gptes(sp)) 2241 account_shadowed(kvm, sp); 2242 2243 return sp; 2244 } 2245 2246 /* Note, @vcpu may be NULL if @role.direct is true; see kvm_mmu_find_shadow_page. */ 2247 static struct kvm_mmu_page *__kvm_mmu_get_shadow_page(struct kvm *kvm, 2248 struct kvm_vcpu *vcpu, 2249 struct shadow_page_caches *caches, 2250 gfn_t gfn, 2251 union kvm_mmu_page_role role) 2252 { 2253 struct hlist_head *sp_list; 2254 struct kvm_mmu_page *sp; 2255 bool created = false; 2256 2257 sp_list = &kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]; 2258 2259 sp = kvm_mmu_find_shadow_page(kvm, vcpu, gfn, sp_list, role); 2260 if (!sp) { 2261 created = true; 2262 sp = kvm_mmu_alloc_shadow_page(kvm, caches, gfn, sp_list, role); 2263 } 2264 2265 trace_kvm_mmu_get_page(sp, created); 2266 return sp; 2267 } 2268 2269 static struct kvm_mmu_page *kvm_mmu_get_shadow_page(struct kvm_vcpu *vcpu, 2270 gfn_t gfn, 2271 union kvm_mmu_page_role role) 2272 { 2273 struct shadow_page_caches caches = { 2274 .page_header_cache = &vcpu->arch.mmu_page_header_cache, 2275 .shadow_page_cache = &vcpu->arch.mmu_shadow_page_cache, 2276 .shadowed_info_cache = &vcpu->arch.mmu_shadowed_info_cache, 2277 }; 2278 2279 return __kvm_mmu_get_shadow_page(vcpu->kvm, vcpu, &caches, gfn, role); 2280 } 2281 2282 static union kvm_mmu_page_role kvm_mmu_child_role(u64 *sptep, bool direct, 2283 unsigned int access) 2284 { 2285 struct kvm_mmu_page *parent_sp = sptep_to_sp(sptep); 2286 union kvm_mmu_page_role role; 2287 2288 role = parent_sp->role; 2289 role.level--; 2290 role.access = access; 2291 role.direct = direct; 2292 role.passthrough = 0; 2293 2294 /* 2295 * If the guest has 4-byte PTEs then that means it's using 32-bit, 2296 * 2-level, non-PAE paging. KVM shadows such guests with PAE paging 2297 * (i.e. 8-byte PTEs). The difference in PTE size means that KVM must 2298 * shadow each guest page table with multiple shadow page tables, which 2299 * requires extra bookkeeping in the role. 2300 * 2301 * Specifically, to shadow the guest's page directory (which covers a 2302 * 4GiB address space), KVM uses 4 PAE page directories, each mapping 2303 * 1GiB of the address space. @role.quadrant encodes which quarter of 2304 * the address space each maps. 2305 * 2306 * To shadow the guest's page tables (which each map a 4MiB region), KVM 2307 * uses 2 PAE page tables, each mapping a 2MiB region. For these, 2308 * @role.quadrant encodes which half of the region they map. 2309 * 2310 * Concretely, a 4-byte PDE consumes bits 31:22, while an 8-byte PDE 2311 * consumes bits 29:21. To consume bits 31:30, KVM's uses 4 shadow 2312 * PDPTEs; those 4 PAE page directories are pre-allocated and their 2313 * quadrant is assigned in mmu_alloc_root(). A 4-byte PTE consumes 2314 * bits 21:12, while an 8-byte PTE consumes bits 20:12. To consume 2315 * bit 21 in the PTE (the child here), KVM propagates that bit to the 2316 * quadrant, i.e. sets quadrant to '0' or '1'. The parent 8-byte PDE 2317 * covers bit 21 (see above), thus the quadrant is calculated from the 2318 * _least_ significant bit of the PDE index. 2319 */ 2320 if (role.has_4_byte_gpte) { 2321 WARN_ON_ONCE(role.level != PG_LEVEL_4K); 2322 role.quadrant = spte_index(sptep) & 1; 2323 } 2324 2325 return role; 2326 } 2327 2328 static struct kvm_mmu_page *kvm_mmu_get_child_sp(struct kvm_vcpu *vcpu, 2329 u64 *sptep, gfn_t gfn, 2330 bool direct, unsigned int access) 2331 { 2332 union kvm_mmu_page_role role; 2333 2334 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) 2335 return ERR_PTR(-EEXIST); 2336 2337 role = kvm_mmu_child_role(sptep, direct, access); 2338 return kvm_mmu_get_shadow_page(vcpu, gfn, role); 2339 } 2340 2341 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator, 2342 struct kvm_vcpu *vcpu, hpa_t root, 2343 u64 addr) 2344 { 2345 iterator->addr = addr; 2346 iterator->shadow_addr = root; 2347 iterator->level = vcpu->arch.mmu->root_role.level; 2348 2349 if (iterator->level >= PT64_ROOT_4LEVEL && 2350 vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL && 2351 !vcpu->arch.mmu->root_role.direct) 2352 iterator->level = PT32E_ROOT_LEVEL; 2353 2354 if (iterator->level == PT32E_ROOT_LEVEL) { 2355 /* 2356 * prev_root is currently only used for 64-bit hosts. So only 2357 * the active root_hpa is valid here. 2358 */ 2359 BUG_ON(root != vcpu->arch.mmu->root.hpa); 2360 2361 iterator->shadow_addr 2362 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3]; 2363 iterator->shadow_addr &= SPTE_BASE_ADDR_MASK; 2364 --iterator->level; 2365 if (!iterator->shadow_addr) 2366 iterator->level = 0; 2367 } 2368 } 2369 2370 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, 2371 struct kvm_vcpu *vcpu, u64 addr) 2372 { 2373 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa, 2374 addr); 2375 } 2376 2377 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) 2378 { 2379 if (iterator->level < PG_LEVEL_4K) 2380 return false; 2381 2382 iterator->index = SPTE_INDEX(iterator->addr, iterator->level); 2383 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; 2384 return true; 2385 } 2386 2387 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, 2388 u64 spte) 2389 { 2390 if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) { 2391 iterator->level = 0; 2392 return; 2393 } 2394 2395 iterator->shadow_addr = spte & SPTE_BASE_ADDR_MASK; 2396 --iterator->level; 2397 } 2398 2399 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) 2400 { 2401 __shadow_walk_next(iterator, *iterator->sptep); 2402 } 2403 2404 static void __link_shadow_page(struct kvm *kvm, 2405 struct kvm_mmu_memory_cache *cache, u64 *sptep, 2406 struct kvm_mmu_page *sp, bool flush) 2407 { 2408 u64 spte; 2409 2410 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); 2411 2412 /* 2413 * If an SPTE is present already, it must be a leaf and therefore 2414 * a large one. Drop it, and flush the TLB if needed, before 2415 * installing sp. 2416 */ 2417 if (is_shadow_present_pte(*sptep)) 2418 drop_large_spte(kvm, sptep, flush); 2419 2420 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp)); 2421 2422 mmu_spte_set(sptep, spte); 2423 2424 mmu_page_add_parent_pte(cache, sp, sptep); 2425 2426 /* 2427 * The non-direct sub-pagetable must be updated before linking. For 2428 * L1 sp, the pagetable is updated via kvm_sync_page() in 2429 * kvm_mmu_find_shadow_page() without write-protecting the gfn, 2430 * so sp->unsync can be true or false. For higher level non-direct 2431 * sp, the pagetable is updated/synced via mmu_sync_children() in 2432 * FNAME(fetch)(), so sp->unsync_children can only be false. 2433 * WARN_ON_ONCE() if anything happens unexpectedly. 2434 */ 2435 if (WARN_ON_ONCE(sp->unsync_children) || sp->unsync) 2436 mark_unsync(sptep); 2437 } 2438 2439 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, 2440 struct kvm_mmu_page *sp) 2441 { 2442 __link_shadow_page(vcpu->kvm, &vcpu->arch.mmu_pte_list_desc_cache, sptep, sp, true); 2443 } 2444 2445 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2446 unsigned direct_access) 2447 { 2448 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { 2449 struct kvm_mmu_page *child; 2450 2451 /* 2452 * For the direct sp, if the guest pte's dirty bit 2453 * changed form clean to dirty, it will corrupt the 2454 * sp's access: allow writable in the read-only sp, 2455 * so we should update the spte at this point to get 2456 * a new sp with the correct access. 2457 */ 2458 child = spte_to_child_sp(*sptep); 2459 if (child->role.access == direct_access) 2460 return; 2461 2462 drop_parent_pte(vcpu->kvm, child, sptep); 2463 kvm_flush_remote_tlbs_sptep(vcpu->kvm, sptep); 2464 } 2465 } 2466 2467 /* Returns the number of zapped non-leaf child shadow pages. */ 2468 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 2469 u64 *spte, struct list_head *invalid_list) 2470 { 2471 u64 pte; 2472 struct kvm_mmu_page *child; 2473 2474 pte = *spte; 2475 if (is_shadow_present_pte(pte)) { 2476 if (is_last_spte(pte, sp->role.level)) { 2477 drop_spte(kvm, spte); 2478 } else { 2479 child = spte_to_child_sp(pte); 2480 drop_parent_pte(kvm, child, spte); 2481 2482 /* 2483 * Recursively zap nested TDP SPs, parentless SPs are 2484 * unlikely to be used again in the near future. This 2485 * avoids retaining a large number of stale nested SPs. 2486 */ 2487 if (tdp_enabled && invalid_list && 2488 child->role.guest_mode && !child->parent_ptes.val) 2489 return kvm_mmu_prepare_zap_page(kvm, child, 2490 invalid_list); 2491 } 2492 } else if (is_mmio_spte(kvm, pte)) { 2493 mmu_spte_clear_no_track(spte); 2494 } 2495 return 0; 2496 } 2497 2498 static int kvm_mmu_page_unlink_children(struct kvm *kvm, 2499 struct kvm_mmu_page *sp, 2500 struct list_head *invalid_list) 2501 { 2502 int zapped = 0; 2503 unsigned i; 2504 2505 for (i = 0; i < SPTE_ENT_PER_PAGE; ++i) 2506 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list); 2507 2508 return zapped; 2509 } 2510 2511 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp) 2512 { 2513 u64 *sptep; 2514 struct rmap_iterator iter; 2515 2516 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter))) 2517 drop_parent_pte(kvm, sp, sptep); 2518 } 2519 2520 static int mmu_zap_unsync_children(struct kvm *kvm, 2521 struct kvm_mmu_page *parent, 2522 struct list_head *invalid_list) 2523 { 2524 int i, zapped = 0; 2525 struct mmu_page_path parents; 2526 struct kvm_mmu_pages pages; 2527 2528 if (parent->role.level == PG_LEVEL_4K) 2529 return 0; 2530 2531 while (mmu_unsync_walk(parent, &pages)) { 2532 struct kvm_mmu_page *sp; 2533 2534 for_each_sp(pages, sp, parents, i) { 2535 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 2536 mmu_pages_clear_parents(&parents); 2537 zapped++; 2538 } 2539 } 2540 2541 return zapped; 2542 } 2543 2544 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm, 2545 struct kvm_mmu_page *sp, 2546 struct list_head *invalid_list, 2547 int *nr_zapped) 2548 { 2549 bool list_unstable, zapped_root = false; 2550 2551 lockdep_assert_held_write(&kvm->mmu_lock); 2552 trace_kvm_mmu_prepare_zap_page(sp); 2553 ++kvm->stat.mmu_shadow_zapped; 2554 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list); 2555 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list); 2556 kvm_mmu_unlink_parents(kvm, sp); 2557 2558 /* Zapping children means active_mmu_pages has become unstable. */ 2559 list_unstable = *nr_zapped; 2560 2561 if (!sp->role.invalid && sp_has_gptes(sp)) 2562 unaccount_shadowed(kvm, sp); 2563 2564 if (sp->unsync) 2565 kvm_unlink_unsync_page(kvm, sp); 2566 if (!sp->root_count) { 2567 /* Count self */ 2568 (*nr_zapped)++; 2569 2570 /* 2571 * Already invalid pages (previously active roots) are not on 2572 * the active page list. See list_del() in the "else" case of 2573 * !sp->root_count. 2574 */ 2575 if (sp->role.invalid) 2576 list_add(&sp->link, invalid_list); 2577 else 2578 list_move(&sp->link, invalid_list); 2579 kvm_unaccount_mmu_page(kvm, sp); 2580 } else { 2581 /* 2582 * Remove the active root from the active page list, the root 2583 * will be explicitly freed when the root_count hits zero. 2584 */ 2585 list_del(&sp->link); 2586 2587 /* 2588 * Obsolete pages cannot be used on any vCPUs, see the comment 2589 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also 2590 * treats invalid shadow pages as being obsolete. 2591 */ 2592 zapped_root = !is_obsolete_sp(kvm, sp); 2593 } 2594 2595 if (sp->nx_huge_page_disallowed) 2596 unaccount_nx_huge_page(kvm, sp); 2597 2598 sp->role.invalid = 1; 2599 2600 /* 2601 * Make the request to free obsolete roots after marking the root 2602 * invalid, otherwise other vCPUs may not see it as invalid. 2603 */ 2604 if (zapped_root) 2605 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 2606 return list_unstable; 2607 } 2608 2609 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 2610 struct list_head *invalid_list) 2611 { 2612 int nr_zapped; 2613 2614 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped); 2615 return nr_zapped; 2616 } 2617 2618 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 2619 struct list_head *invalid_list) 2620 { 2621 struct kvm_mmu_page *sp, *nsp; 2622 2623 if (list_empty(invalid_list)) 2624 return; 2625 2626 /* 2627 * We need to make sure everyone sees our modifications to 2628 * the page tables and see changes to vcpu->mode here. The barrier 2629 * in the kvm_flush_remote_tlbs() achieves this. This pairs 2630 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end. 2631 * 2632 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit 2633 * guest mode and/or lockless shadow page table walks. 2634 */ 2635 kvm_flush_remote_tlbs(kvm); 2636 2637 list_for_each_entry_safe(sp, nsp, invalid_list, link) { 2638 WARN_ON_ONCE(!sp->role.invalid || sp->root_count); 2639 kvm_mmu_free_shadow_page(sp); 2640 } 2641 } 2642 2643 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm, 2644 unsigned long nr_to_zap) 2645 { 2646 unsigned long total_zapped = 0; 2647 struct kvm_mmu_page *sp, *tmp; 2648 LIST_HEAD(invalid_list); 2649 bool unstable; 2650 int nr_zapped; 2651 2652 if (list_empty(&kvm->arch.active_mmu_pages)) 2653 return 0; 2654 2655 restart: 2656 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) { 2657 /* 2658 * Don't zap active root pages, the page itself can't be freed 2659 * and zapping it will just force vCPUs to realloc and reload. 2660 */ 2661 if (sp->root_count) 2662 continue; 2663 2664 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, 2665 &nr_zapped); 2666 total_zapped += nr_zapped; 2667 if (total_zapped >= nr_to_zap) 2668 break; 2669 2670 if (unstable) 2671 goto restart; 2672 } 2673 2674 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2675 2676 kvm->stat.mmu_recycled += total_zapped; 2677 return total_zapped; 2678 } 2679 2680 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm) 2681 { 2682 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) 2683 return kvm->arch.n_max_mmu_pages - 2684 kvm->arch.n_used_mmu_pages; 2685 2686 return 0; 2687 } 2688 2689 static int make_mmu_pages_available(struct kvm_vcpu *vcpu) 2690 { 2691 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm); 2692 2693 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES)) 2694 return 0; 2695 2696 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail); 2697 2698 /* 2699 * Note, this check is intentionally soft, it only guarantees that one 2700 * page is available, while the caller may end up allocating as many as 2701 * four pages, e.g. for PAE roots or for 5-level paging. Temporarily 2702 * exceeding the (arbitrary by default) limit will not harm the host, 2703 * being too aggressive may unnecessarily kill the guest, and getting an 2704 * exact count is far more trouble than it's worth, especially in the 2705 * page fault paths. 2706 */ 2707 if (!kvm_mmu_available_pages(vcpu->kvm)) 2708 return -ENOSPC; 2709 return 0; 2710 } 2711 2712 /* 2713 * Changing the number of mmu pages allocated to the vm 2714 * Note: if goal_nr_mmu_pages is too small, you will get dead lock 2715 */ 2716 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages) 2717 { 2718 write_lock(&kvm->mmu_lock); 2719 2720 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { 2721 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages - 2722 goal_nr_mmu_pages); 2723 2724 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; 2725 } 2726 2727 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; 2728 2729 write_unlock(&kvm->mmu_lock); 2730 } 2731 2732 bool __kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 2733 bool always_retry) 2734 { 2735 struct kvm *kvm = vcpu->kvm; 2736 LIST_HEAD(invalid_list); 2737 struct kvm_mmu_page *sp; 2738 gpa_t gpa = cr2_or_gpa; 2739 bool r = false; 2740 2741 /* 2742 * Bail early if there aren't any write-protected shadow pages to avoid 2743 * unnecessarily taking mmu_lock lock, e.g. if the gfn is write-tracked 2744 * by a third party. Reading indirect_shadow_pages without holding 2745 * mmu_lock is safe, as this is purely an optimization, i.e. a false 2746 * positive is benign, and a false negative will simply result in KVM 2747 * skipping the unprotect+retry path, which is also an optimization. 2748 */ 2749 if (!READ_ONCE(kvm->arch.indirect_shadow_pages)) 2750 goto out; 2751 2752 if (!vcpu->arch.mmu->root_role.direct) { 2753 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 2754 if (gpa == INVALID_GPA) 2755 goto out; 2756 } 2757 2758 write_lock(&kvm->mmu_lock); 2759 for_each_gfn_valid_sp_with_gptes(kvm, sp, gpa_to_gfn(gpa)) 2760 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 2761 2762 /* 2763 * Snapshot the result before zapping, as zapping will remove all list 2764 * entries, i.e. checking the list later would yield a false negative. 2765 */ 2766 r = !list_empty(&invalid_list); 2767 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2768 write_unlock(&kvm->mmu_lock); 2769 2770 out: 2771 if (r || always_retry) { 2772 vcpu->arch.last_retry_eip = kvm_rip_read(vcpu); 2773 vcpu->arch.last_retry_addr = cr2_or_gpa; 2774 } 2775 return r; 2776 } 2777 2778 static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 2779 { 2780 trace_kvm_mmu_unsync_page(sp); 2781 ++kvm->stat.mmu_unsync; 2782 sp->unsync = 1; 2783 2784 kvm_mmu_mark_parents_unsync(sp); 2785 } 2786 2787 /* 2788 * Attempt to unsync any shadow pages that can be reached by the specified gfn, 2789 * KVM is creating a writable mapping for said gfn. Returns 0 if all pages 2790 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must 2791 * be write-protected. 2792 */ 2793 int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot, 2794 gfn_t gfn, bool can_unsync, bool prefetch) 2795 { 2796 struct kvm_mmu_page *sp; 2797 bool locked = false; 2798 2799 /* 2800 * Force write-protection if the page is being tracked. Note, the page 2801 * track machinery is used to write-protect upper-level shadow pages, 2802 * i.e. this guards the role.level == 4K assertion below! 2803 */ 2804 if (kvm_gfn_is_write_tracked(kvm, slot, gfn)) 2805 return -EPERM; 2806 2807 /* 2808 * The page is not write-tracked, mark existing shadow pages unsync 2809 * unless KVM is synchronizing an unsync SP (can_unsync = false). In 2810 * that case, KVM must complete emulation of the guest TLB flush before 2811 * allowing shadow pages to become unsync (writable by the guest). 2812 */ 2813 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) { 2814 if (!can_unsync) 2815 return -EPERM; 2816 2817 if (sp->unsync) 2818 continue; 2819 2820 if (prefetch) 2821 return -EEXIST; 2822 2823 /* 2824 * TDP MMU page faults require an additional spinlock as they 2825 * run with mmu_lock held for read, not write, and the unsync 2826 * logic is not thread safe. Take the spinklock regardless of 2827 * the MMU type to avoid extra conditionals/parameters, there's 2828 * no meaningful penalty if mmu_lock is held for write. 2829 */ 2830 if (!locked) { 2831 locked = true; 2832 spin_lock(&kvm->arch.mmu_unsync_pages_lock); 2833 2834 /* 2835 * Recheck after taking the spinlock, a different vCPU 2836 * may have since marked the page unsync. A false 2837 * negative on the unprotected check above is not 2838 * possible as clearing sp->unsync _must_ hold mmu_lock 2839 * for write, i.e. unsync cannot transition from 1->0 2840 * while this CPU holds mmu_lock for read (or write). 2841 */ 2842 if (READ_ONCE(sp->unsync)) 2843 continue; 2844 } 2845 2846 WARN_ON_ONCE(sp->role.level != PG_LEVEL_4K); 2847 kvm_unsync_page(kvm, sp); 2848 } 2849 if (locked) 2850 spin_unlock(&kvm->arch.mmu_unsync_pages_lock); 2851 2852 /* 2853 * We need to ensure that the marking of unsync pages is visible 2854 * before the SPTE is updated to allow writes because 2855 * kvm_mmu_sync_roots() checks the unsync flags without holding 2856 * the MMU lock and so can race with this. If the SPTE was updated 2857 * before the page had been marked as unsync-ed, something like the 2858 * following could happen: 2859 * 2860 * CPU 1 CPU 2 2861 * --------------------------------------------------------------------- 2862 * 1.2 Host updates SPTE 2863 * to be writable 2864 * 2.1 Guest writes a GPTE for GVA X. 2865 * (GPTE being in the guest page table shadowed 2866 * by the SP from CPU 1.) 2867 * This reads SPTE during the page table walk. 2868 * Since SPTE.W is read as 1, there is no 2869 * fault. 2870 * 2871 * 2.2 Guest issues TLB flush. 2872 * That causes a VM Exit. 2873 * 2874 * 2.3 Walking of unsync pages sees sp->unsync is 2875 * false and skips the page. 2876 * 2877 * 2.4 Guest accesses GVA X. 2878 * Since the mapping in the SP was not updated, 2879 * so the old mapping for GVA X incorrectly 2880 * gets used. 2881 * 1.1 Host marks SP 2882 * as unsync 2883 * (sp->unsync = true) 2884 * 2885 * The write barrier below ensures that 1.1 happens before 1.2 and thus 2886 * the situation in 2.4 does not arise. It pairs with the read barrier 2887 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3. 2888 */ 2889 smp_wmb(); 2890 2891 return 0; 2892 } 2893 2894 static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, 2895 u64 *sptep, unsigned int pte_access, gfn_t gfn, 2896 kvm_pfn_t pfn, struct kvm_page_fault *fault) 2897 { 2898 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 2899 int level = sp->role.level; 2900 int was_rmapped = 0; 2901 int ret = RET_PF_FIXED; 2902 bool flush = false; 2903 bool wrprot; 2904 u64 spte; 2905 2906 /* Prefetching always gets a writable pfn. */ 2907 bool host_writable = !fault || fault->map_writable; 2908 bool prefetch = !fault || fault->prefetch; 2909 bool write_fault = fault && fault->write; 2910 2911 if (unlikely(is_noslot_pfn(pfn))) { 2912 vcpu->stat.pf_mmio_spte_created++; 2913 mark_mmio_spte(vcpu, sptep, gfn, pte_access); 2914 return RET_PF_EMULATE; 2915 } 2916 2917 if (is_shadow_present_pte(*sptep)) { 2918 /* 2919 * If we overwrite a PTE page pointer with a 2MB PMD, unlink 2920 * the parent of the now unreachable PTE. 2921 */ 2922 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) { 2923 struct kvm_mmu_page *child; 2924 u64 pte = *sptep; 2925 2926 child = spte_to_child_sp(pte); 2927 drop_parent_pte(vcpu->kvm, child, sptep); 2928 flush = true; 2929 } else if (pfn != spte_to_pfn(*sptep)) { 2930 drop_spte(vcpu->kvm, sptep); 2931 flush = true; 2932 } else 2933 was_rmapped = 1; 2934 } 2935 2936 wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch, 2937 true, host_writable, &spte); 2938 2939 if (*sptep == spte) { 2940 ret = RET_PF_SPURIOUS; 2941 } else { 2942 flush |= mmu_spte_update(sptep, spte); 2943 trace_kvm_mmu_set_spte(level, gfn, sptep); 2944 } 2945 2946 if (wrprot && write_fault) 2947 ret = RET_PF_WRITE_PROTECTED; 2948 2949 if (flush) 2950 kvm_flush_remote_tlbs_gfn(vcpu->kvm, gfn, level); 2951 2952 if (!was_rmapped) { 2953 WARN_ON_ONCE(ret == RET_PF_SPURIOUS); 2954 rmap_add(vcpu, slot, sptep, gfn, pte_access); 2955 } else { 2956 /* Already rmapped but the pte_access bits may have changed. */ 2957 kvm_mmu_page_set_access(sp, spte_index(sptep), pte_access); 2958 } 2959 2960 return ret; 2961 } 2962 2963 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu, 2964 struct kvm_mmu_page *sp, 2965 u64 *start, u64 *end) 2966 { 2967 struct page *pages[PTE_PREFETCH_NUM]; 2968 struct kvm_memory_slot *slot; 2969 unsigned int access = sp->role.access; 2970 int i, ret; 2971 gfn_t gfn; 2972 2973 gfn = kvm_mmu_page_get_gfn(sp, spte_index(start)); 2974 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK); 2975 if (!slot) 2976 return -1; 2977 2978 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start); 2979 if (ret <= 0) 2980 return -1; 2981 2982 for (i = 0; i < ret; i++, gfn++, start++) { 2983 mmu_set_spte(vcpu, slot, start, access, gfn, 2984 page_to_pfn(pages[i]), NULL); 2985 put_page(pages[i]); 2986 } 2987 2988 return 0; 2989 } 2990 2991 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, 2992 struct kvm_mmu_page *sp, u64 *sptep) 2993 { 2994 u64 *spte, *start = NULL; 2995 int i; 2996 2997 WARN_ON_ONCE(!sp->role.direct); 2998 2999 i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1); 3000 spte = sp->spt + i; 3001 3002 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 3003 if (is_shadow_present_pte(*spte) || spte == sptep) { 3004 if (!start) 3005 continue; 3006 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0) 3007 return; 3008 start = NULL; 3009 } else if (!start) 3010 start = spte; 3011 } 3012 if (start) 3013 direct_pte_prefetch_many(vcpu, sp, start, spte); 3014 } 3015 3016 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) 3017 { 3018 struct kvm_mmu_page *sp; 3019 3020 sp = sptep_to_sp(sptep); 3021 3022 /* 3023 * Without accessed bits, there's no way to distinguish between 3024 * actually accessed translations and prefetched, so disable pte 3025 * prefetch if accessed bits aren't available. 3026 */ 3027 if (sp_ad_disabled(sp)) 3028 return; 3029 3030 if (sp->role.level > PG_LEVEL_4K) 3031 return; 3032 3033 /* 3034 * If addresses are being invalidated, skip prefetching to avoid 3035 * accidentally prefetching those addresses. 3036 */ 3037 if (unlikely(vcpu->kvm->mmu_invalidate_in_progress)) 3038 return; 3039 3040 __direct_pte_prefetch(vcpu, sp, sptep); 3041 } 3042 3043 /* 3044 * Lookup the mapping level for @gfn in the current mm. 3045 * 3046 * WARNING! Use of host_pfn_mapping_level() requires the caller and the end 3047 * consumer to be tied into KVM's handlers for MMU notifier events! 3048 * 3049 * There are several ways to safely use this helper: 3050 * 3051 * - Check mmu_invalidate_retry_gfn() after grabbing the mapping level, before 3052 * consuming it. In this case, mmu_lock doesn't need to be held during the 3053 * lookup, but it does need to be held while checking the MMU notifier. 3054 * 3055 * - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation 3056 * event for the hva. This can be done by explicit checking the MMU notifier 3057 * or by ensuring that KVM already has a valid mapping that covers the hva. 3058 * 3059 * - Do not use the result to install new mappings, e.g. use the host mapping 3060 * level only to decide whether or not to zap an entry. In this case, it's 3061 * not required to hold mmu_lock (though it's highly likely the caller will 3062 * want to hold mmu_lock anyways, e.g. to modify SPTEs). 3063 * 3064 * Note! The lookup can still race with modifications to host page tables, but 3065 * the above "rules" ensure KVM will not _consume_ the result of the walk if a 3066 * race with the primary MMU occurs. 3067 */ 3068 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, 3069 const struct kvm_memory_slot *slot) 3070 { 3071 int level = PG_LEVEL_4K; 3072 unsigned long hva; 3073 unsigned long flags; 3074 pgd_t pgd; 3075 p4d_t p4d; 3076 pud_t pud; 3077 pmd_t pmd; 3078 3079 /* 3080 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot() 3081 * is not solely for performance, it's also necessary to avoid the 3082 * "writable" check in __gfn_to_hva_many(), which will always fail on 3083 * read-only memslots due to gfn_to_hva() assuming writes. Earlier 3084 * page fault steps have already verified the guest isn't writing a 3085 * read-only memslot. 3086 */ 3087 hva = __gfn_to_hva_memslot(slot, gfn); 3088 3089 /* 3090 * Disable IRQs to prevent concurrent tear down of host page tables, 3091 * e.g. if the primary MMU promotes a P*D to a huge page and then frees 3092 * the original page table. 3093 */ 3094 local_irq_save(flags); 3095 3096 /* 3097 * Read each entry once. As above, a non-leaf entry can be promoted to 3098 * a huge page _during_ this walk. Re-reading the entry could send the 3099 * walk into the weeks, e.g. p*d_leaf() returns false (sees the old 3100 * value) and then p*d_offset() walks into the target huge page instead 3101 * of the old page table (sees the new value). 3102 */ 3103 pgd = READ_ONCE(*pgd_offset(kvm->mm, hva)); 3104 if (pgd_none(pgd)) 3105 goto out; 3106 3107 p4d = READ_ONCE(*p4d_offset(&pgd, hva)); 3108 if (p4d_none(p4d) || !p4d_present(p4d)) 3109 goto out; 3110 3111 pud = READ_ONCE(*pud_offset(&p4d, hva)); 3112 if (pud_none(pud) || !pud_present(pud)) 3113 goto out; 3114 3115 if (pud_leaf(pud)) { 3116 level = PG_LEVEL_1G; 3117 goto out; 3118 } 3119 3120 pmd = READ_ONCE(*pmd_offset(&pud, hva)); 3121 if (pmd_none(pmd) || !pmd_present(pmd)) 3122 goto out; 3123 3124 if (pmd_leaf(pmd)) 3125 level = PG_LEVEL_2M; 3126 3127 out: 3128 local_irq_restore(flags); 3129 return level; 3130 } 3131 3132 static int __kvm_mmu_max_mapping_level(struct kvm *kvm, 3133 const struct kvm_memory_slot *slot, 3134 gfn_t gfn, int max_level, bool is_private) 3135 { 3136 struct kvm_lpage_info *linfo; 3137 int host_level; 3138 3139 max_level = min(max_level, max_huge_page_level); 3140 for ( ; max_level > PG_LEVEL_4K; max_level--) { 3141 linfo = lpage_info_slot(gfn, slot, max_level); 3142 if (!linfo->disallow_lpage) 3143 break; 3144 } 3145 3146 if (is_private) 3147 return max_level; 3148 3149 if (max_level == PG_LEVEL_4K) 3150 return PG_LEVEL_4K; 3151 3152 host_level = host_pfn_mapping_level(kvm, gfn, slot); 3153 return min(host_level, max_level); 3154 } 3155 3156 int kvm_mmu_max_mapping_level(struct kvm *kvm, 3157 const struct kvm_memory_slot *slot, gfn_t gfn, 3158 int max_level) 3159 { 3160 bool is_private = kvm_slot_can_be_private(slot) && 3161 kvm_mem_is_private(kvm, gfn); 3162 3163 return __kvm_mmu_max_mapping_level(kvm, slot, gfn, max_level, is_private); 3164 } 3165 3166 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3167 { 3168 struct kvm_memory_slot *slot = fault->slot; 3169 kvm_pfn_t mask; 3170 3171 fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled; 3172 3173 if (unlikely(fault->max_level == PG_LEVEL_4K)) 3174 return; 3175 3176 if (is_error_noslot_pfn(fault->pfn)) 3177 return; 3178 3179 if (kvm_slot_dirty_track_enabled(slot)) 3180 return; 3181 3182 /* 3183 * Enforce the iTLB multihit workaround after capturing the requested 3184 * level, which will be used to do precise, accurate accounting. 3185 */ 3186 fault->req_level = __kvm_mmu_max_mapping_level(vcpu->kvm, slot, 3187 fault->gfn, fault->max_level, 3188 fault->is_private); 3189 if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed) 3190 return; 3191 3192 /* 3193 * mmu_invalidate_retry() was successful and mmu_lock is held, so 3194 * the pmd can't be split from under us. 3195 */ 3196 fault->goal_level = fault->req_level; 3197 mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1; 3198 VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask)); 3199 fault->pfn &= ~mask; 3200 } 3201 3202 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level) 3203 { 3204 if (cur_level > PG_LEVEL_4K && 3205 cur_level == fault->goal_level && 3206 is_shadow_present_pte(spte) && 3207 !is_large_pte(spte) && 3208 spte_to_child_sp(spte)->nx_huge_page_disallowed) { 3209 /* 3210 * A small SPTE exists for this pfn, but FNAME(fetch), 3211 * direct_map(), or kvm_tdp_mmu_map() would like to create a 3212 * large PTE instead: just force them to go down another level, 3213 * patching back for them into pfn the next 9 bits of the 3214 * address. 3215 */ 3216 u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) - 3217 KVM_PAGES_PER_HPAGE(cur_level - 1); 3218 fault->pfn |= fault->gfn & page_mask; 3219 fault->goal_level--; 3220 } 3221 } 3222 3223 static int direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3224 { 3225 struct kvm_shadow_walk_iterator it; 3226 struct kvm_mmu_page *sp; 3227 int ret; 3228 gfn_t base_gfn = fault->gfn; 3229 3230 kvm_mmu_hugepage_adjust(vcpu, fault); 3231 3232 trace_kvm_mmu_spte_requested(fault); 3233 for_each_shadow_entry(vcpu, fault->addr, it) { 3234 /* 3235 * We cannot overwrite existing page tables with an NX 3236 * large page, as the leaf could be executable. 3237 */ 3238 if (fault->nx_huge_page_workaround_enabled) 3239 disallowed_hugepage_adjust(fault, *it.sptep, it.level); 3240 3241 base_gfn = gfn_round_for_level(fault->gfn, it.level); 3242 if (it.level == fault->goal_level) 3243 break; 3244 3245 sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, true, ACC_ALL); 3246 if (sp == ERR_PTR(-EEXIST)) 3247 continue; 3248 3249 link_shadow_page(vcpu, it.sptep, sp); 3250 if (fault->huge_page_disallowed) 3251 account_nx_huge_page(vcpu->kvm, sp, 3252 fault->req_level >= it.level); 3253 } 3254 3255 if (WARN_ON_ONCE(it.level != fault->goal_level)) 3256 return -EFAULT; 3257 3258 ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL, 3259 base_gfn, fault->pfn, fault); 3260 if (ret == RET_PF_SPURIOUS) 3261 return ret; 3262 3263 direct_pte_prefetch(vcpu, it.sptep); 3264 return ret; 3265 } 3266 3267 static void kvm_send_hwpoison_signal(struct kvm_memory_slot *slot, gfn_t gfn) 3268 { 3269 unsigned long hva = gfn_to_hva_memslot(slot, gfn); 3270 3271 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva, PAGE_SHIFT, current); 3272 } 3273 3274 static int kvm_handle_error_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3275 { 3276 if (is_sigpending_pfn(fault->pfn)) { 3277 kvm_handle_signal_exit(vcpu); 3278 return -EINTR; 3279 } 3280 3281 /* 3282 * Do not cache the mmio info caused by writing the readonly gfn 3283 * into the spte otherwise read access on readonly gfn also can 3284 * caused mmio page fault and treat it as mmio access. 3285 */ 3286 if (fault->pfn == KVM_PFN_ERR_RO_FAULT) 3287 return RET_PF_EMULATE; 3288 3289 if (fault->pfn == KVM_PFN_ERR_HWPOISON) { 3290 kvm_send_hwpoison_signal(fault->slot, fault->gfn); 3291 return RET_PF_RETRY; 3292 } 3293 3294 return -EFAULT; 3295 } 3296 3297 static int kvm_handle_noslot_fault(struct kvm_vcpu *vcpu, 3298 struct kvm_page_fault *fault, 3299 unsigned int access) 3300 { 3301 gva_t gva = fault->is_tdp ? 0 : fault->addr; 3302 3303 if (fault->is_private) { 3304 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 3305 return -EFAULT; 3306 } 3307 3308 vcpu_cache_mmio_info(vcpu, gva, fault->gfn, 3309 access & shadow_mmio_access_mask); 3310 3311 fault->slot = NULL; 3312 fault->pfn = KVM_PFN_NOSLOT; 3313 fault->map_writable = false; 3314 fault->hva = KVM_HVA_ERR_BAD; 3315 3316 /* 3317 * If MMIO caching is disabled, emulate immediately without 3318 * touching the shadow page tables as attempting to install an 3319 * MMIO SPTE will just be an expensive nop. 3320 */ 3321 if (unlikely(!enable_mmio_caching)) 3322 return RET_PF_EMULATE; 3323 3324 /* 3325 * Do not create an MMIO SPTE for a gfn greater than host.MAXPHYADDR, 3326 * any guest that generates such gfns is running nested and is being 3327 * tricked by L0 userspace (you can observe gfn > L1.MAXPHYADDR if and 3328 * only if L1's MAXPHYADDR is inaccurate with respect to the 3329 * hardware's). 3330 */ 3331 if (unlikely(fault->gfn > kvm_mmu_max_gfn())) 3332 return RET_PF_EMULATE; 3333 3334 return RET_PF_CONTINUE; 3335 } 3336 3337 static bool page_fault_can_be_fast(struct kvm *kvm, struct kvm_page_fault *fault) 3338 { 3339 /* 3340 * Page faults with reserved bits set, i.e. faults on MMIO SPTEs, only 3341 * reach the common page fault handler if the SPTE has an invalid MMIO 3342 * generation number. Refreshing the MMIO generation needs to go down 3343 * the slow path. Note, EPT Misconfigs do NOT set the PRESENT flag! 3344 */ 3345 if (fault->rsvd) 3346 return false; 3347 3348 /* 3349 * For hardware-protected VMs, certain conditions like attempting to 3350 * perform a write to a page which is not in the state that the guest 3351 * expects it to be in can result in a nested/extended #PF. In this 3352 * case, the below code might misconstrue this situation as being the 3353 * result of a write-protected access, and treat it as a spurious case 3354 * rather than taking any action to satisfy the real source of the #PF 3355 * such as generating a KVM_EXIT_MEMORY_FAULT. This can lead to the 3356 * guest spinning on a #PF indefinitely, so don't attempt the fast path 3357 * in this case. 3358 * 3359 * Note that the kvm_mem_is_private() check might race with an 3360 * attribute update, but this will either result in the guest spinning 3361 * on RET_PF_SPURIOUS until the update completes, or an actual spurious 3362 * case might go down the slow path. Either case will resolve itself. 3363 */ 3364 if (kvm->arch.has_private_mem && 3365 fault->is_private != kvm_mem_is_private(kvm, fault->gfn)) 3366 return false; 3367 3368 /* 3369 * #PF can be fast if: 3370 * 3371 * 1. The shadow page table entry is not present and A/D bits are 3372 * disabled _by KVM_, which could mean that the fault is potentially 3373 * caused by access tracking (if enabled). If A/D bits are enabled 3374 * by KVM, but disabled by L1 for L2, KVM is forced to disable A/D 3375 * bits for L2 and employ access tracking, but the fast page fault 3376 * mechanism only supports direct MMUs. 3377 * 2. The shadow page table entry is present, the access is a write, 3378 * and no reserved bits are set (MMIO SPTEs cannot be "fixed"), i.e. 3379 * the fault was caused by a write-protection violation. If the 3380 * SPTE is MMU-writable (determined later), the fault can be fixed 3381 * by setting the Writable bit, which can be done out of mmu_lock. 3382 */ 3383 if (!fault->present) 3384 return !kvm_ad_enabled(); 3385 3386 /* 3387 * Note, instruction fetches and writes are mutually exclusive, ignore 3388 * the "exec" flag. 3389 */ 3390 return fault->write; 3391 } 3392 3393 /* 3394 * Returns true if the SPTE was fixed successfully. Otherwise, 3395 * someone else modified the SPTE from its original value. 3396 */ 3397 static bool fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, 3398 struct kvm_page_fault *fault, 3399 u64 *sptep, u64 old_spte, u64 new_spte) 3400 { 3401 /* 3402 * Theoretically we could also set dirty bit (and flush TLB) here in 3403 * order to eliminate unnecessary PML logging. See comments in 3404 * set_spte. But fast_page_fault is very unlikely to happen with PML 3405 * enabled, so we do not do this. This might result in the same GPA 3406 * to be logged in PML buffer again when the write really happens, and 3407 * eventually to be called by mark_page_dirty twice. But it's also no 3408 * harm. This also avoids the TLB flush needed after setting dirty bit 3409 * so non-PML cases won't be impacted. 3410 * 3411 * Compare with set_spte where instead shadow_dirty_mask is set. 3412 */ 3413 if (!try_cmpxchg64(sptep, &old_spte, new_spte)) 3414 return false; 3415 3416 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) 3417 mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn); 3418 3419 return true; 3420 } 3421 3422 static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte) 3423 { 3424 if (fault->exec) 3425 return is_executable_pte(spte); 3426 3427 if (fault->write) 3428 return is_writable_pte(spte); 3429 3430 /* Fault was on Read access */ 3431 return spte & PT_PRESENT_MASK; 3432 } 3433 3434 /* 3435 * Returns the last level spte pointer of the shadow page walk for the given 3436 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no 3437 * walk could be performed, returns NULL and *spte does not contain valid data. 3438 * 3439 * Contract: 3440 * - Must be called between walk_shadow_page_lockless_{begin,end}. 3441 * - The returned sptep must not be used after walk_shadow_page_lockless_end. 3442 */ 3443 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte) 3444 { 3445 struct kvm_shadow_walk_iterator iterator; 3446 u64 old_spte; 3447 u64 *sptep = NULL; 3448 3449 for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) { 3450 sptep = iterator.sptep; 3451 *spte = old_spte; 3452 } 3453 3454 return sptep; 3455 } 3456 3457 /* 3458 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS. 3459 */ 3460 static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3461 { 3462 struct kvm_mmu_page *sp; 3463 int ret = RET_PF_INVALID; 3464 u64 spte; 3465 u64 *sptep; 3466 uint retry_count = 0; 3467 3468 if (!page_fault_can_be_fast(vcpu->kvm, fault)) 3469 return ret; 3470 3471 walk_shadow_page_lockless_begin(vcpu); 3472 3473 do { 3474 u64 new_spte; 3475 3476 if (tdp_mmu_enabled) 3477 sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->gfn, &spte); 3478 else 3479 sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte); 3480 3481 /* 3482 * It's entirely possible for the mapping to have been zapped 3483 * by a different task, but the root page should always be 3484 * available as the vCPU holds a reference to its root(s). 3485 */ 3486 if (WARN_ON_ONCE(!sptep)) 3487 spte = FROZEN_SPTE; 3488 3489 if (!is_shadow_present_pte(spte)) 3490 break; 3491 3492 sp = sptep_to_sp(sptep); 3493 if (!is_last_spte(spte, sp->role.level)) 3494 break; 3495 3496 /* 3497 * Check whether the memory access that caused the fault would 3498 * still cause it if it were to be performed right now. If not, 3499 * then this is a spurious fault caused by TLB lazily flushed, 3500 * or some other CPU has already fixed the PTE after the 3501 * current CPU took the fault. 3502 * 3503 * Need not check the access of upper level table entries since 3504 * they are always ACC_ALL. 3505 */ 3506 if (is_access_allowed(fault, spte)) { 3507 ret = RET_PF_SPURIOUS; 3508 break; 3509 } 3510 3511 new_spte = spte; 3512 3513 /* 3514 * KVM only supports fixing page faults outside of MMU lock for 3515 * direct MMUs, nested MMUs are always indirect, and KVM always 3516 * uses A/D bits for non-nested MMUs. Thus, if A/D bits are 3517 * enabled, the SPTE can't be an access-tracked SPTE. 3518 */ 3519 if (unlikely(!kvm_ad_enabled()) && is_access_track_spte(spte)) 3520 new_spte = restore_acc_track_spte(new_spte); 3521 3522 /* 3523 * To keep things simple, only SPTEs that are MMU-writable can 3524 * be made fully writable outside of mmu_lock, e.g. only SPTEs 3525 * that were write-protected for dirty-logging or access 3526 * tracking are handled here. Don't bother checking if the 3527 * SPTE is writable to prioritize running with A/D bits enabled. 3528 * The is_access_allowed() check above handles the common case 3529 * of the fault being spurious, and the SPTE is known to be 3530 * shadow-present, i.e. except for access tracking restoration 3531 * making the new SPTE writable, the check is wasteful. 3532 */ 3533 if (fault->write && is_mmu_writable_spte(spte)) { 3534 new_spte |= PT_WRITABLE_MASK; 3535 3536 /* 3537 * Do not fix write-permission on the large spte when 3538 * dirty logging is enabled. Since we only dirty the 3539 * first page into the dirty-bitmap in 3540 * fast_pf_fix_direct_spte(), other pages are missed 3541 * if its slot has dirty logging enabled. 3542 * 3543 * Instead, we let the slow page fault path create a 3544 * normal spte to fix the access. 3545 */ 3546 if (sp->role.level > PG_LEVEL_4K && 3547 kvm_slot_dirty_track_enabled(fault->slot)) 3548 break; 3549 } 3550 3551 /* Verify that the fault can be handled in the fast path */ 3552 if (new_spte == spte || 3553 !is_access_allowed(fault, new_spte)) 3554 break; 3555 3556 /* 3557 * Currently, fast page fault only works for direct mapping 3558 * since the gfn is not stable for indirect shadow page. See 3559 * Documentation/virt/kvm/locking.rst to get more detail. 3560 */ 3561 if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) { 3562 ret = RET_PF_FIXED; 3563 break; 3564 } 3565 3566 if (++retry_count > 4) { 3567 pr_warn_once("Fast #PF retrying more than 4 times.\n"); 3568 break; 3569 } 3570 3571 } while (true); 3572 3573 trace_fast_page_fault(vcpu, fault, sptep, spte, ret); 3574 walk_shadow_page_lockless_end(vcpu); 3575 3576 if (ret != RET_PF_INVALID) 3577 vcpu->stat.pf_fast++; 3578 3579 return ret; 3580 } 3581 3582 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa, 3583 struct list_head *invalid_list) 3584 { 3585 struct kvm_mmu_page *sp; 3586 3587 if (!VALID_PAGE(*root_hpa)) 3588 return; 3589 3590 sp = root_to_sp(*root_hpa); 3591 if (WARN_ON_ONCE(!sp)) 3592 return; 3593 3594 if (is_tdp_mmu_page(sp)) { 3595 lockdep_assert_held_read(&kvm->mmu_lock); 3596 kvm_tdp_mmu_put_root(kvm, sp); 3597 } else { 3598 lockdep_assert_held_write(&kvm->mmu_lock); 3599 if (!--sp->root_count && sp->role.invalid) 3600 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 3601 } 3602 3603 *root_hpa = INVALID_PAGE; 3604 } 3605 3606 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */ 3607 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, 3608 ulong roots_to_free) 3609 { 3610 bool is_tdp_mmu = tdp_mmu_enabled && mmu->root_role.direct; 3611 int i; 3612 LIST_HEAD(invalid_list); 3613 bool free_active_root; 3614 3615 WARN_ON_ONCE(roots_to_free & ~KVM_MMU_ROOTS_ALL); 3616 3617 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG); 3618 3619 /* Before acquiring the MMU lock, see if we need to do any real work. */ 3620 free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT) 3621 && VALID_PAGE(mmu->root.hpa); 3622 3623 if (!free_active_root) { 3624 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3625 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) && 3626 VALID_PAGE(mmu->prev_roots[i].hpa)) 3627 break; 3628 3629 if (i == KVM_MMU_NUM_PREV_ROOTS) 3630 return; 3631 } 3632 3633 if (is_tdp_mmu) 3634 read_lock(&kvm->mmu_lock); 3635 else 3636 write_lock(&kvm->mmu_lock); 3637 3638 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3639 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) 3640 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa, 3641 &invalid_list); 3642 3643 if (free_active_root) { 3644 if (kvm_mmu_is_dummy_root(mmu->root.hpa)) { 3645 /* Nothing to cleanup for dummy roots. */ 3646 } else if (root_to_sp(mmu->root.hpa)) { 3647 mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list); 3648 } else if (mmu->pae_root) { 3649 for (i = 0; i < 4; ++i) { 3650 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i])) 3651 continue; 3652 3653 mmu_free_root_page(kvm, &mmu->pae_root[i], 3654 &invalid_list); 3655 mmu->pae_root[i] = INVALID_PAE_ROOT; 3656 } 3657 } 3658 mmu->root.hpa = INVALID_PAGE; 3659 mmu->root.pgd = 0; 3660 } 3661 3662 if (is_tdp_mmu) { 3663 read_unlock(&kvm->mmu_lock); 3664 WARN_ON_ONCE(!list_empty(&invalid_list)); 3665 } else { 3666 kvm_mmu_commit_zap_page(kvm, &invalid_list); 3667 write_unlock(&kvm->mmu_lock); 3668 } 3669 } 3670 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots); 3671 3672 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu) 3673 { 3674 unsigned long roots_to_free = 0; 3675 struct kvm_mmu_page *sp; 3676 hpa_t root_hpa; 3677 int i; 3678 3679 /* 3680 * This should not be called while L2 is active, L2 can't invalidate 3681 * _only_ its own roots, e.g. INVVPID unconditionally exits. 3682 */ 3683 WARN_ON_ONCE(mmu->root_role.guest_mode); 3684 3685 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 3686 root_hpa = mmu->prev_roots[i].hpa; 3687 if (!VALID_PAGE(root_hpa)) 3688 continue; 3689 3690 sp = root_to_sp(root_hpa); 3691 if (!sp || sp->role.guest_mode) 3692 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 3693 } 3694 3695 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 3696 } 3697 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots); 3698 3699 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, int quadrant, 3700 u8 level) 3701 { 3702 union kvm_mmu_page_role role = vcpu->arch.mmu->root_role; 3703 struct kvm_mmu_page *sp; 3704 3705 role.level = level; 3706 role.quadrant = quadrant; 3707 3708 WARN_ON_ONCE(quadrant && !role.has_4_byte_gpte); 3709 WARN_ON_ONCE(role.direct && role.has_4_byte_gpte); 3710 3711 sp = kvm_mmu_get_shadow_page(vcpu, gfn, role); 3712 ++sp->root_count; 3713 3714 return __pa(sp->spt); 3715 } 3716 3717 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) 3718 { 3719 struct kvm_mmu *mmu = vcpu->arch.mmu; 3720 u8 shadow_root_level = mmu->root_role.level; 3721 hpa_t root; 3722 unsigned i; 3723 int r; 3724 3725 if (tdp_mmu_enabled) 3726 return kvm_tdp_mmu_alloc_root(vcpu); 3727 3728 write_lock(&vcpu->kvm->mmu_lock); 3729 r = make_mmu_pages_available(vcpu); 3730 if (r < 0) 3731 goto out_unlock; 3732 3733 if (shadow_root_level >= PT64_ROOT_4LEVEL) { 3734 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level); 3735 mmu->root.hpa = root; 3736 } else if (shadow_root_level == PT32E_ROOT_LEVEL) { 3737 if (WARN_ON_ONCE(!mmu->pae_root)) { 3738 r = -EIO; 3739 goto out_unlock; 3740 } 3741 3742 for (i = 0; i < 4; ++i) { 3743 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3744 3745 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 0, 3746 PT32_ROOT_LEVEL); 3747 mmu->pae_root[i] = root | PT_PRESENT_MASK | 3748 shadow_me_value; 3749 } 3750 mmu->root.hpa = __pa(mmu->pae_root); 3751 } else { 3752 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level); 3753 r = -EIO; 3754 goto out_unlock; 3755 } 3756 3757 /* root.pgd is ignored for direct MMUs. */ 3758 mmu->root.pgd = 0; 3759 out_unlock: 3760 write_unlock(&vcpu->kvm->mmu_lock); 3761 return r; 3762 } 3763 3764 static int mmu_first_shadow_root_alloc(struct kvm *kvm) 3765 { 3766 struct kvm_memslots *slots; 3767 struct kvm_memory_slot *slot; 3768 int r = 0, i, bkt; 3769 3770 /* 3771 * Check if this is the first shadow root being allocated before 3772 * taking the lock. 3773 */ 3774 if (kvm_shadow_root_allocated(kvm)) 3775 return 0; 3776 3777 mutex_lock(&kvm->slots_arch_lock); 3778 3779 /* Recheck, under the lock, whether this is the first shadow root. */ 3780 if (kvm_shadow_root_allocated(kvm)) 3781 goto out_unlock; 3782 3783 /* 3784 * Check if anything actually needs to be allocated, e.g. all metadata 3785 * will be allocated upfront if TDP is disabled. 3786 */ 3787 if (kvm_memslots_have_rmaps(kvm) && 3788 kvm_page_track_write_tracking_enabled(kvm)) 3789 goto out_success; 3790 3791 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 3792 slots = __kvm_memslots(kvm, i); 3793 kvm_for_each_memslot(slot, bkt, slots) { 3794 /* 3795 * Both of these functions are no-ops if the target is 3796 * already allocated, so unconditionally calling both 3797 * is safe. Intentionally do NOT free allocations on 3798 * failure to avoid having to track which allocations 3799 * were made now versus when the memslot was created. 3800 * The metadata is guaranteed to be freed when the slot 3801 * is freed, and will be kept/used if userspace retries 3802 * KVM_RUN instead of killing the VM. 3803 */ 3804 r = memslot_rmap_alloc(slot, slot->npages); 3805 if (r) 3806 goto out_unlock; 3807 r = kvm_page_track_write_tracking_alloc(slot); 3808 if (r) 3809 goto out_unlock; 3810 } 3811 } 3812 3813 /* 3814 * Ensure that shadow_root_allocated becomes true strictly after 3815 * all the related pointers are set. 3816 */ 3817 out_success: 3818 smp_store_release(&kvm->arch.shadow_root_allocated, true); 3819 3820 out_unlock: 3821 mutex_unlock(&kvm->slots_arch_lock); 3822 return r; 3823 } 3824 3825 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) 3826 { 3827 struct kvm_mmu *mmu = vcpu->arch.mmu; 3828 u64 pdptrs[4], pm_mask; 3829 gfn_t root_gfn, root_pgd; 3830 int quadrant, i, r; 3831 hpa_t root; 3832 3833 root_pgd = kvm_mmu_get_guest_pgd(vcpu, mmu); 3834 root_gfn = (root_pgd & __PT_BASE_ADDR_MASK) >> PAGE_SHIFT; 3835 3836 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) { 3837 mmu->root.hpa = kvm_mmu_get_dummy_root(); 3838 return 0; 3839 } 3840 3841 /* 3842 * On SVM, reading PDPTRs might access guest memory, which might fault 3843 * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock. 3844 */ 3845 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { 3846 for (i = 0; i < 4; ++i) { 3847 pdptrs[i] = mmu->get_pdptr(vcpu, i); 3848 if (!(pdptrs[i] & PT_PRESENT_MASK)) 3849 continue; 3850 3851 if (!kvm_vcpu_is_visible_gfn(vcpu, pdptrs[i] >> PAGE_SHIFT)) 3852 pdptrs[i] = 0; 3853 } 3854 } 3855 3856 r = mmu_first_shadow_root_alloc(vcpu->kvm); 3857 if (r) 3858 return r; 3859 3860 write_lock(&vcpu->kvm->mmu_lock); 3861 r = make_mmu_pages_available(vcpu); 3862 if (r < 0) 3863 goto out_unlock; 3864 3865 /* 3866 * Do we shadow a long mode page table? If so we need to 3867 * write-protect the guests page table root. 3868 */ 3869 if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { 3870 root = mmu_alloc_root(vcpu, root_gfn, 0, 3871 mmu->root_role.level); 3872 mmu->root.hpa = root; 3873 goto set_root_pgd; 3874 } 3875 3876 if (WARN_ON_ONCE(!mmu->pae_root)) { 3877 r = -EIO; 3878 goto out_unlock; 3879 } 3880 3881 /* 3882 * We shadow a 32 bit page table. This may be a legacy 2-level 3883 * or a PAE 3-level page table. In either case we need to be aware that 3884 * the shadow page table may be a PAE or a long mode page table. 3885 */ 3886 pm_mask = PT_PRESENT_MASK | shadow_me_value; 3887 if (mmu->root_role.level >= PT64_ROOT_4LEVEL) { 3888 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; 3889 3890 if (WARN_ON_ONCE(!mmu->pml4_root)) { 3891 r = -EIO; 3892 goto out_unlock; 3893 } 3894 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask; 3895 3896 if (mmu->root_role.level == PT64_ROOT_5LEVEL) { 3897 if (WARN_ON_ONCE(!mmu->pml5_root)) { 3898 r = -EIO; 3899 goto out_unlock; 3900 } 3901 mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask; 3902 } 3903 } 3904 3905 for (i = 0; i < 4; ++i) { 3906 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3907 3908 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { 3909 if (!(pdptrs[i] & PT_PRESENT_MASK)) { 3910 mmu->pae_root[i] = INVALID_PAE_ROOT; 3911 continue; 3912 } 3913 root_gfn = pdptrs[i] >> PAGE_SHIFT; 3914 } 3915 3916 /* 3917 * If shadowing 32-bit non-PAE page tables, each PAE page 3918 * directory maps one quarter of the guest's non-PAE page 3919 * directory. Othwerise each PAE page direct shadows one guest 3920 * PAE page directory so that quadrant should be 0. 3921 */ 3922 quadrant = (mmu->cpu_role.base.level == PT32_ROOT_LEVEL) ? i : 0; 3923 3924 root = mmu_alloc_root(vcpu, root_gfn, quadrant, PT32_ROOT_LEVEL); 3925 mmu->pae_root[i] = root | pm_mask; 3926 } 3927 3928 if (mmu->root_role.level == PT64_ROOT_5LEVEL) 3929 mmu->root.hpa = __pa(mmu->pml5_root); 3930 else if (mmu->root_role.level == PT64_ROOT_4LEVEL) 3931 mmu->root.hpa = __pa(mmu->pml4_root); 3932 else 3933 mmu->root.hpa = __pa(mmu->pae_root); 3934 3935 set_root_pgd: 3936 mmu->root.pgd = root_pgd; 3937 out_unlock: 3938 write_unlock(&vcpu->kvm->mmu_lock); 3939 3940 return r; 3941 } 3942 3943 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu) 3944 { 3945 struct kvm_mmu *mmu = vcpu->arch.mmu; 3946 bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL; 3947 u64 *pml5_root = NULL; 3948 u64 *pml4_root = NULL; 3949 u64 *pae_root; 3950 3951 /* 3952 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP 3953 * tables are allocated and initialized at root creation as there is no 3954 * equivalent level in the guest's NPT to shadow. Allocate the tables 3955 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare. 3956 */ 3957 if (mmu->root_role.direct || 3958 mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL || 3959 mmu->root_role.level < PT64_ROOT_4LEVEL) 3960 return 0; 3961 3962 /* 3963 * NPT, the only paging mode that uses this horror, uses a fixed number 3964 * of levels for the shadow page tables, e.g. all MMUs are 4-level or 3965 * all MMus are 5-level. Thus, this can safely require that pml5_root 3966 * is allocated if the other roots are valid and pml5 is needed, as any 3967 * prior MMU would also have required pml5. 3968 */ 3969 if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root)) 3970 return 0; 3971 3972 /* 3973 * The special roots should always be allocated in concert. Yell and 3974 * bail if KVM ends up in a state where only one of the roots is valid. 3975 */ 3976 if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root || 3977 (need_pml5 && mmu->pml5_root))) 3978 return -EIO; 3979 3980 /* 3981 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and 3982 * doesn't need to be decrypted. 3983 */ 3984 pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3985 if (!pae_root) 3986 return -ENOMEM; 3987 3988 #ifdef CONFIG_X86_64 3989 pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3990 if (!pml4_root) 3991 goto err_pml4; 3992 3993 if (need_pml5) { 3994 pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3995 if (!pml5_root) 3996 goto err_pml5; 3997 } 3998 #endif 3999 4000 mmu->pae_root = pae_root; 4001 mmu->pml4_root = pml4_root; 4002 mmu->pml5_root = pml5_root; 4003 4004 return 0; 4005 4006 #ifdef CONFIG_X86_64 4007 err_pml5: 4008 free_page((unsigned long)pml4_root); 4009 err_pml4: 4010 free_page((unsigned long)pae_root); 4011 return -ENOMEM; 4012 #endif 4013 } 4014 4015 static bool is_unsync_root(hpa_t root) 4016 { 4017 struct kvm_mmu_page *sp; 4018 4019 if (!VALID_PAGE(root) || kvm_mmu_is_dummy_root(root)) 4020 return false; 4021 4022 /* 4023 * The read barrier orders the CPU's read of SPTE.W during the page table 4024 * walk before the reads of sp->unsync/sp->unsync_children here. 4025 * 4026 * Even if another CPU was marking the SP as unsync-ed simultaneously, 4027 * any guest page table changes are not guaranteed to be visible anyway 4028 * until this VCPU issues a TLB flush strictly after those changes are 4029 * made. We only need to ensure that the other CPU sets these flags 4030 * before any actual changes to the page tables are made. The comments 4031 * in mmu_try_to_unsync_pages() describe what could go wrong if this 4032 * requirement isn't satisfied. 4033 */ 4034 smp_rmb(); 4035 sp = root_to_sp(root); 4036 4037 /* 4038 * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the 4039 * PDPTEs for a given PAE root need to be synchronized individually. 4040 */ 4041 if (WARN_ON_ONCE(!sp)) 4042 return false; 4043 4044 if (sp->unsync || sp->unsync_children) 4045 return true; 4046 4047 return false; 4048 } 4049 4050 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) 4051 { 4052 int i; 4053 struct kvm_mmu_page *sp; 4054 4055 if (vcpu->arch.mmu->root_role.direct) 4056 return; 4057 4058 if (!VALID_PAGE(vcpu->arch.mmu->root.hpa)) 4059 return; 4060 4061 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 4062 4063 if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { 4064 hpa_t root = vcpu->arch.mmu->root.hpa; 4065 4066 if (!is_unsync_root(root)) 4067 return; 4068 4069 sp = root_to_sp(root); 4070 4071 write_lock(&vcpu->kvm->mmu_lock); 4072 mmu_sync_children(vcpu, sp, true); 4073 write_unlock(&vcpu->kvm->mmu_lock); 4074 return; 4075 } 4076 4077 write_lock(&vcpu->kvm->mmu_lock); 4078 4079 for (i = 0; i < 4; ++i) { 4080 hpa_t root = vcpu->arch.mmu->pae_root[i]; 4081 4082 if (IS_VALID_PAE_ROOT(root)) { 4083 sp = spte_to_child_sp(root); 4084 mmu_sync_children(vcpu, sp, true); 4085 } 4086 } 4087 4088 write_unlock(&vcpu->kvm->mmu_lock); 4089 } 4090 4091 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu) 4092 { 4093 unsigned long roots_to_free = 0; 4094 int i; 4095 4096 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 4097 if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa)) 4098 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 4099 4100 /* sync prev_roots by simply freeing them */ 4101 kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free); 4102 } 4103 4104 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 4105 gpa_t vaddr, u64 access, 4106 struct x86_exception *exception) 4107 { 4108 if (exception) 4109 exception->error_code = 0; 4110 return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception); 4111 } 4112 4113 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct) 4114 { 4115 /* 4116 * A nested guest cannot use the MMIO cache if it is using nested 4117 * page tables, because cr2 is a nGPA while the cache stores GPAs. 4118 */ 4119 if (mmu_is_nested(vcpu)) 4120 return false; 4121 4122 if (direct) 4123 return vcpu_match_mmio_gpa(vcpu, addr); 4124 4125 return vcpu_match_mmio_gva(vcpu, addr); 4126 } 4127 4128 /* 4129 * Return the level of the lowest level SPTE added to sptes. 4130 * That SPTE may be non-present. 4131 * 4132 * Must be called between walk_shadow_page_lockless_{begin,end}. 4133 */ 4134 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level) 4135 { 4136 struct kvm_shadow_walk_iterator iterator; 4137 int leaf = -1; 4138 u64 spte; 4139 4140 for (shadow_walk_init(&iterator, vcpu, addr), 4141 *root_level = iterator.level; 4142 shadow_walk_okay(&iterator); 4143 __shadow_walk_next(&iterator, spte)) { 4144 leaf = iterator.level; 4145 spte = mmu_spte_get_lockless(iterator.sptep); 4146 4147 sptes[leaf] = spte; 4148 } 4149 4150 return leaf; 4151 } 4152 4153 static int get_sptes_lockless(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, 4154 int *root_level) 4155 { 4156 int leaf; 4157 4158 walk_shadow_page_lockless_begin(vcpu); 4159 4160 if (is_tdp_mmu_active(vcpu)) 4161 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, root_level); 4162 else 4163 leaf = get_walk(vcpu, addr, sptes, root_level); 4164 4165 walk_shadow_page_lockless_end(vcpu); 4166 return leaf; 4167 } 4168 4169 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */ 4170 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) 4171 { 4172 u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; 4173 struct rsvd_bits_validate *rsvd_check; 4174 int root, leaf, level; 4175 bool reserved = false; 4176 4177 leaf = get_sptes_lockless(vcpu, addr, sptes, &root); 4178 if (unlikely(leaf < 0)) { 4179 *sptep = 0ull; 4180 return reserved; 4181 } 4182 4183 *sptep = sptes[leaf]; 4184 4185 /* 4186 * Skip reserved bits checks on the terminal leaf if it's not a valid 4187 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by 4188 * design, always have reserved bits set. The purpose of the checks is 4189 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs. 4190 */ 4191 if (!is_shadow_present_pte(sptes[leaf])) 4192 leaf++; 4193 4194 rsvd_check = &vcpu->arch.mmu->shadow_zero_check; 4195 4196 for (level = root; level >= leaf; level--) 4197 reserved |= is_rsvd_spte(rsvd_check, sptes[level], level); 4198 4199 if (reserved) { 4200 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n", 4201 __func__, addr); 4202 for (level = root; level >= leaf; level--) 4203 pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx", 4204 sptes[level], level, 4205 get_rsvd_bits(rsvd_check, sptes[level], level)); 4206 } 4207 4208 return reserved; 4209 } 4210 4211 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct) 4212 { 4213 u64 spte; 4214 bool reserved; 4215 4216 if (mmio_info_in_cache(vcpu, addr, direct)) 4217 return RET_PF_EMULATE; 4218 4219 reserved = get_mmio_spte(vcpu, addr, &spte); 4220 if (WARN_ON_ONCE(reserved)) 4221 return -EINVAL; 4222 4223 if (is_mmio_spte(vcpu->kvm, spte)) { 4224 gfn_t gfn = get_mmio_spte_gfn(spte); 4225 unsigned int access = get_mmio_spte_access(spte); 4226 4227 if (!check_mmio_spte(vcpu, spte)) 4228 return RET_PF_INVALID; 4229 4230 if (direct) 4231 addr = 0; 4232 4233 trace_handle_mmio_page_fault(addr, gfn, access); 4234 vcpu_cache_mmio_info(vcpu, addr, gfn, access); 4235 return RET_PF_EMULATE; 4236 } 4237 4238 /* 4239 * If the page table is zapped by other cpus, let CPU fault again on 4240 * the address. 4241 */ 4242 return RET_PF_RETRY; 4243 } 4244 4245 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu, 4246 struct kvm_page_fault *fault) 4247 { 4248 if (unlikely(fault->rsvd)) 4249 return false; 4250 4251 if (!fault->present || !fault->write) 4252 return false; 4253 4254 /* 4255 * guest is writing the page which is write tracked which can 4256 * not be fixed by page fault handler. 4257 */ 4258 if (kvm_gfn_is_write_tracked(vcpu->kvm, fault->slot, fault->gfn)) 4259 return true; 4260 4261 return false; 4262 } 4263 4264 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr) 4265 { 4266 struct kvm_shadow_walk_iterator iterator; 4267 u64 spte; 4268 4269 walk_shadow_page_lockless_begin(vcpu); 4270 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) 4271 clear_sp_write_flooding_count(iterator.sptep); 4272 walk_shadow_page_lockless_end(vcpu); 4273 } 4274 4275 static u32 alloc_apf_token(struct kvm_vcpu *vcpu) 4276 { 4277 /* make sure the token value is not 0 */ 4278 u32 id = vcpu->arch.apf.id; 4279 4280 if (id << 12 == 0) 4281 vcpu->arch.apf.id = 1; 4282 4283 return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; 4284 } 4285 4286 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, 4287 struct kvm_page_fault *fault) 4288 { 4289 struct kvm_arch_async_pf arch; 4290 4291 arch.token = alloc_apf_token(vcpu); 4292 arch.gfn = fault->gfn; 4293 arch.error_code = fault->error_code; 4294 arch.direct_map = vcpu->arch.mmu->root_role.direct; 4295 arch.cr3 = kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu); 4296 4297 return kvm_setup_async_pf(vcpu, fault->addr, 4298 kvm_vcpu_gfn_to_hva(vcpu, fault->gfn), &arch); 4299 } 4300 4301 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 4302 { 4303 int r; 4304 4305 if (WARN_ON_ONCE(work->arch.error_code & PFERR_PRIVATE_ACCESS)) 4306 return; 4307 4308 if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) || 4309 work->wakeup_all) 4310 return; 4311 4312 r = kvm_mmu_reload(vcpu); 4313 if (unlikely(r)) 4314 return; 4315 4316 if (!vcpu->arch.mmu->root_role.direct && 4317 work->arch.cr3 != kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu)) 4318 return; 4319 4320 r = kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, work->arch.error_code, 4321 true, NULL, NULL); 4322 4323 /* 4324 * Account fixed page faults, otherwise they'll never be counted, but 4325 * ignore stats for all other return times. Page-ready "faults" aren't 4326 * truly spurious and never trigger emulation 4327 */ 4328 if (r == RET_PF_FIXED) 4329 vcpu->stat.pf_fixed++; 4330 } 4331 4332 static inline u8 kvm_max_level_for_order(int order) 4333 { 4334 BUILD_BUG_ON(KVM_MAX_HUGEPAGE_LEVEL > PG_LEVEL_1G); 4335 4336 KVM_MMU_WARN_ON(order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G) && 4337 order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M) && 4338 order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K)); 4339 4340 if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G)) 4341 return PG_LEVEL_1G; 4342 4343 if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M)) 4344 return PG_LEVEL_2M; 4345 4346 return PG_LEVEL_4K; 4347 } 4348 4349 static u8 kvm_max_private_mapping_level(struct kvm *kvm, kvm_pfn_t pfn, 4350 u8 max_level, int gmem_order) 4351 { 4352 u8 req_max_level; 4353 4354 if (max_level == PG_LEVEL_4K) 4355 return PG_LEVEL_4K; 4356 4357 max_level = min(kvm_max_level_for_order(gmem_order), max_level); 4358 if (max_level == PG_LEVEL_4K) 4359 return PG_LEVEL_4K; 4360 4361 req_max_level = kvm_x86_call(private_max_mapping_level)(kvm, pfn); 4362 if (req_max_level) 4363 max_level = min(max_level, req_max_level); 4364 4365 return max_level; 4366 } 4367 4368 static int kvm_faultin_pfn_private(struct kvm_vcpu *vcpu, 4369 struct kvm_page_fault *fault) 4370 { 4371 int max_order, r; 4372 4373 if (!kvm_slot_can_be_private(fault->slot)) { 4374 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 4375 return -EFAULT; 4376 } 4377 4378 r = kvm_gmem_get_pfn(vcpu->kvm, fault->slot, fault->gfn, &fault->pfn, 4379 &max_order); 4380 if (r) { 4381 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 4382 return r; 4383 } 4384 4385 fault->map_writable = !(fault->slot->flags & KVM_MEM_READONLY); 4386 fault->max_level = kvm_max_private_mapping_level(vcpu->kvm, fault->pfn, 4387 fault->max_level, max_order); 4388 4389 return RET_PF_CONTINUE; 4390 } 4391 4392 static int __kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4393 { 4394 bool async; 4395 4396 if (fault->is_private) 4397 return kvm_faultin_pfn_private(vcpu, fault); 4398 4399 async = false; 4400 fault->pfn = __gfn_to_pfn_memslot(fault->slot, fault->gfn, false, false, 4401 &async, fault->write, 4402 &fault->map_writable, &fault->hva); 4403 if (!async) 4404 return RET_PF_CONTINUE; /* *pfn has correct page already */ 4405 4406 if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) { 4407 trace_kvm_try_async_get_page(fault->addr, fault->gfn); 4408 if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) { 4409 trace_kvm_async_pf_repeated_fault(fault->addr, fault->gfn); 4410 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 4411 return RET_PF_RETRY; 4412 } else if (kvm_arch_setup_async_pf(vcpu, fault)) { 4413 return RET_PF_RETRY; 4414 } 4415 } 4416 4417 /* 4418 * Allow gup to bail on pending non-fatal signals when it's also allowed 4419 * to wait for IO. Note, gup always bails if it is unable to quickly 4420 * get a page and a fatal signal, i.e. SIGKILL, is pending. 4421 */ 4422 fault->pfn = __gfn_to_pfn_memslot(fault->slot, fault->gfn, false, true, 4423 NULL, fault->write, 4424 &fault->map_writable, &fault->hva); 4425 return RET_PF_CONTINUE; 4426 } 4427 4428 static int kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, 4429 unsigned int access) 4430 { 4431 struct kvm_memory_slot *slot = fault->slot; 4432 int ret; 4433 4434 /* 4435 * Note that the mmu_invalidate_seq also serves to detect a concurrent 4436 * change in attributes. is_page_fault_stale() will detect an 4437 * invalidation relate to fault->fn and resume the guest without 4438 * installing a mapping in the page tables. 4439 */ 4440 fault->mmu_seq = vcpu->kvm->mmu_invalidate_seq; 4441 smp_rmb(); 4442 4443 /* 4444 * Now that we have a snapshot of mmu_invalidate_seq we can check for a 4445 * private vs. shared mismatch. 4446 */ 4447 if (fault->is_private != kvm_mem_is_private(vcpu->kvm, fault->gfn)) { 4448 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 4449 return -EFAULT; 4450 } 4451 4452 if (unlikely(!slot)) 4453 return kvm_handle_noslot_fault(vcpu, fault, access); 4454 4455 /* 4456 * Retry the page fault if the gfn hit a memslot that is being deleted 4457 * or moved. This ensures any existing SPTEs for the old memslot will 4458 * be zapped before KVM inserts a new MMIO SPTE for the gfn. 4459 */ 4460 if (slot->flags & KVM_MEMSLOT_INVALID) 4461 return RET_PF_RETRY; 4462 4463 if (slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT) { 4464 /* 4465 * Don't map L1's APIC access page into L2, KVM doesn't support 4466 * using APICv/AVIC to accelerate L2 accesses to L1's APIC, 4467 * i.e. the access needs to be emulated. Emulating access to 4468 * L1's APIC is also correct if L1 is accelerating L2's own 4469 * virtual APIC, but for some reason L1 also maps _L1's_ APIC 4470 * into L2. Note, vcpu_is_mmio_gpa() always treats access to 4471 * the APIC as MMIO. Allow an MMIO SPTE to be created, as KVM 4472 * uses different roots for L1 vs. L2, i.e. there is no danger 4473 * of breaking APICv/AVIC for L1. 4474 */ 4475 if (is_guest_mode(vcpu)) 4476 return kvm_handle_noslot_fault(vcpu, fault, access); 4477 4478 /* 4479 * If the APIC access page exists but is disabled, go directly 4480 * to emulation without caching the MMIO access or creating a 4481 * MMIO SPTE. That way the cache doesn't need to be purged 4482 * when the AVIC is re-enabled. 4483 */ 4484 if (!kvm_apicv_activated(vcpu->kvm)) 4485 return RET_PF_EMULATE; 4486 } 4487 4488 /* 4489 * Check for a relevant mmu_notifier invalidation event before getting 4490 * the pfn from the primary MMU, and before acquiring mmu_lock. 4491 * 4492 * For mmu_lock, if there is an in-progress invalidation and the kernel 4493 * allows preemption, the invalidation task may drop mmu_lock and yield 4494 * in response to mmu_lock being contended, which is *very* counter- 4495 * productive as this vCPU can't actually make forward progress until 4496 * the invalidation completes. 4497 * 4498 * Retrying now can also avoid unnessary lock contention in the primary 4499 * MMU, as the primary MMU doesn't necessarily hold a single lock for 4500 * the duration of the invalidation, i.e. faulting in a conflicting pfn 4501 * can cause the invalidation to take longer by holding locks that are 4502 * needed to complete the invalidation. 4503 * 4504 * Do the pre-check even for non-preemtible kernels, i.e. even if KVM 4505 * will never yield mmu_lock in response to contention, as this vCPU is 4506 * *guaranteed* to need to retry, i.e. waiting until mmu_lock is held 4507 * to detect retry guarantees the worst case latency for the vCPU. 4508 */ 4509 if (mmu_invalidate_retry_gfn_unsafe(vcpu->kvm, fault->mmu_seq, fault->gfn)) 4510 return RET_PF_RETRY; 4511 4512 ret = __kvm_faultin_pfn(vcpu, fault); 4513 if (ret != RET_PF_CONTINUE) 4514 return ret; 4515 4516 if (unlikely(is_error_pfn(fault->pfn))) 4517 return kvm_handle_error_pfn(vcpu, fault); 4518 4519 if (WARN_ON_ONCE(!fault->slot || is_noslot_pfn(fault->pfn))) 4520 return kvm_handle_noslot_fault(vcpu, fault, access); 4521 4522 /* 4523 * Check again for a relevant mmu_notifier invalidation event purely to 4524 * avoid contending mmu_lock. Most invalidations will be detected by 4525 * the previous check, but checking is extremely cheap relative to the 4526 * overall cost of failing to detect the invalidation until after 4527 * mmu_lock is acquired. 4528 */ 4529 if (mmu_invalidate_retry_gfn_unsafe(vcpu->kvm, fault->mmu_seq, fault->gfn)) { 4530 kvm_release_pfn_clean(fault->pfn); 4531 return RET_PF_RETRY; 4532 } 4533 4534 return RET_PF_CONTINUE; 4535 } 4536 4537 /* 4538 * Returns true if the page fault is stale and needs to be retried, i.e. if the 4539 * root was invalidated by a memslot update or a relevant mmu_notifier fired. 4540 */ 4541 static bool is_page_fault_stale(struct kvm_vcpu *vcpu, 4542 struct kvm_page_fault *fault) 4543 { 4544 struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa); 4545 4546 /* Special roots, e.g. pae_root, are not backed by shadow pages. */ 4547 if (sp && is_obsolete_sp(vcpu->kvm, sp)) 4548 return true; 4549 4550 /* 4551 * Roots without an associated shadow page are considered invalid if 4552 * there is a pending request to free obsolete roots. The request is 4553 * only a hint that the current root _may_ be obsolete and needs to be 4554 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a 4555 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs 4556 * to reload even if no vCPU is actively using the root. 4557 */ 4558 if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 4559 return true; 4560 4561 /* 4562 * Check for a relevant mmu_notifier invalidation event one last time 4563 * now that mmu_lock is held, as the "unsafe" checks performed without 4564 * holding mmu_lock can get false negatives. 4565 */ 4566 return fault->slot && 4567 mmu_invalidate_retry_gfn(vcpu->kvm, fault->mmu_seq, fault->gfn); 4568 } 4569 4570 static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4571 { 4572 int r; 4573 4574 /* Dummy roots are used only for shadowing bad guest roots. */ 4575 if (WARN_ON_ONCE(kvm_mmu_is_dummy_root(vcpu->arch.mmu->root.hpa))) 4576 return RET_PF_RETRY; 4577 4578 if (page_fault_handle_page_track(vcpu, fault)) 4579 return RET_PF_WRITE_PROTECTED; 4580 4581 r = fast_page_fault(vcpu, fault); 4582 if (r != RET_PF_INVALID) 4583 return r; 4584 4585 r = mmu_topup_memory_caches(vcpu, false); 4586 if (r) 4587 return r; 4588 4589 r = kvm_faultin_pfn(vcpu, fault, ACC_ALL); 4590 if (r != RET_PF_CONTINUE) 4591 return r; 4592 4593 r = RET_PF_RETRY; 4594 write_lock(&vcpu->kvm->mmu_lock); 4595 4596 if (is_page_fault_stale(vcpu, fault)) 4597 goto out_unlock; 4598 4599 r = make_mmu_pages_available(vcpu); 4600 if (r) 4601 goto out_unlock; 4602 4603 r = direct_map(vcpu, fault); 4604 4605 out_unlock: 4606 write_unlock(&vcpu->kvm->mmu_lock); 4607 kvm_release_pfn_clean(fault->pfn); 4608 return r; 4609 } 4610 4611 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, 4612 struct kvm_page_fault *fault) 4613 { 4614 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */ 4615 fault->max_level = PG_LEVEL_2M; 4616 return direct_page_fault(vcpu, fault); 4617 } 4618 4619 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, 4620 u64 fault_address, char *insn, int insn_len) 4621 { 4622 int r = 1; 4623 u32 flags = vcpu->arch.apf.host_apf_flags; 4624 4625 #ifndef CONFIG_X86_64 4626 /* A 64-bit CR2 should be impossible on 32-bit KVM. */ 4627 if (WARN_ON_ONCE(fault_address >> 32)) 4628 return -EFAULT; 4629 #endif 4630 /* 4631 * Legacy #PF exception only have a 32-bit error code. Simply drop the 4632 * upper bits as KVM doesn't use them for #PF (because they are never 4633 * set), and to ensure there are no collisions with KVM-defined bits. 4634 */ 4635 if (WARN_ON_ONCE(error_code >> 32)) 4636 error_code = lower_32_bits(error_code); 4637 4638 /* 4639 * Restrict KVM-defined flags to bits 63:32 so that it's impossible for 4640 * them to conflict with #PF error codes, which are limited to 32 bits. 4641 */ 4642 BUILD_BUG_ON(lower_32_bits(PFERR_SYNTHETIC_MASK)); 4643 4644 vcpu->arch.l1tf_flush_l1d = true; 4645 if (!flags) { 4646 trace_kvm_page_fault(vcpu, fault_address, error_code); 4647 4648 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn, 4649 insn_len); 4650 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) { 4651 vcpu->arch.apf.host_apf_flags = 0; 4652 local_irq_disable(); 4653 kvm_async_pf_task_wait_schedule(fault_address); 4654 local_irq_enable(); 4655 } else { 4656 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags); 4657 } 4658 4659 return r; 4660 } 4661 EXPORT_SYMBOL_GPL(kvm_handle_page_fault); 4662 4663 #ifdef CONFIG_X86_64 4664 static int kvm_tdp_mmu_page_fault(struct kvm_vcpu *vcpu, 4665 struct kvm_page_fault *fault) 4666 { 4667 int r; 4668 4669 if (page_fault_handle_page_track(vcpu, fault)) 4670 return RET_PF_WRITE_PROTECTED; 4671 4672 r = fast_page_fault(vcpu, fault); 4673 if (r != RET_PF_INVALID) 4674 return r; 4675 4676 r = mmu_topup_memory_caches(vcpu, false); 4677 if (r) 4678 return r; 4679 4680 r = kvm_faultin_pfn(vcpu, fault, ACC_ALL); 4681 if (r != RET_PF_CONTINUE) 4682 return r; 4683 4684 r = RET_PF_RETRY; 4685 read_lock(&vcpu->kvm->mmu_lock); 4686 4687 if (is_page_fault_stale(vcpu, fault)) 4688 goto out_unlock; 4689 4690 r = kvm_tdp_mmu_map(vcpu, fault); 4691 4692 out_unlock: 4693 read_unlock(&vcpu->kvm->mmu_lock); 4694 kvm_release_pfn_clean(fault->pfn); 4695 return r; 4696 } 4697 #endif 4698 4699 bool kvm_mmu_may_ignore_guest_pat(void) 4700 { 4701 /* 4702 * When EPT is enabled (shadow_memtype_mask is non-zero), and the VM 4703 * has non-coherent DMA (DMA doesn't snoop CPU caches), KVM's ABI is to 4704 * honor the memtype from the guest's PAT so that guest accesses to 4705 * memory that is DMA'd aren't cached against the guest's wishes. As a 4706 * result, KVM _may_ ignore guest PAT, whereas without non-coherent DMA, 4707 * KVM _always_ ignores guest PAT (when EPT is enabled). 4708 */ 4709 return shadow_memtype_mask; 4710 } 4711 4712 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4713 { 4714 #ifdef CONFIG_X86_64 4715 if (tdp_mmu_enabled) 4716 return kvm_tdp_mmu_page_fault(vcpu, fault); 4717 #endif 4718 4719 return direct_page_fault(vcpu, fault); 4720 } 4721 4722 static int kvm_tdp_map_page(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code, 4723 u8 *level) 4724 { 4725 int r; 4726 4727 /* 4728 * Restrict to TDP page fault, since that's the only case where the MMU 4729 * is indexed by GPA. 4730 */ 4731 if (vcpu->arch.mmu->page_fault != kvm_tdp_page_fault) 4732 return -EOPNOTSUPP; 4733 4734 do { 4735 if (signal_pending(current)) 4736 return -EINTR; 4737 cond_resched(); 4738 r = kvm_mmu_do_page_fault(vcpu, gpa, error_code, true, NULL, level); 4739 } while (r == RET_PF_RETRY); 4740 4741 if (r < 0) 4742 return r; 4743 4744 switch (r) { 4745 case RET_PF_FIXED: 4746 case RET_PF_SPURIOUS: 4747 case RET_PF_WRITE_PROTECTED: 4748 return 0; 4749 4750 case RET_PF_EMULATE: 4751 return -ENOENT; 4752 4753 case RET_PF_RETRY: 4754 case RET_PF_CONTINUE: 4755 case RET_PF_INVALID: 4756 default: 4757 WARN_ONCE(1, "could not fix page fault during prefault"); 4758 return -EIO; 4759 } 4760 } 4761 4762 long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu, 4763 struct kvm_pre_fault_memory *range) 4764 { 4765 u64 error_code = PFERR_GUEST_FINAL_MASK; 4766 u8 level = PG_LEVEL_4K; 4767 u64 end; 4768 int r; 4769 4770 if (!vcpu->kvm->arch.pre_fault_allowed) 4771 return -EOPNOTSUPP; 4772 4773 /* 4774 * reload is efficient when called repeatedly, so we can do it on 4775 * every iteration. 4776 */ 4777 r = kvm_mmu_reload(vcpu); 4778 if (r) 4779 return r; 4780 4781 if (kvm_arch_has_private_mem(vcpu->kvm) && 4782 kvm_mem_is_private(vcpu->kvm, gpa_to_gfn(range->gpa))) 4783 error_code |= PFERR_PRIVATE_ACCESS; 4784 4785 /* 4786 * Shadow paging uses GVA for kvm page fault, so restrict to 4787 * two-dimensional paging. 4788 */ 4789 r = kvm_tdp_map_page(vcpu, range->gpa, error_code, &level); 4790 if (r < 0) 4791 return r; 4792 4793 /* 4794 * If the mapping that covers range->gpa can use a huge page, it 4795 * may start below it or end after range->gpa + range->size. 4796 */ 4797 end = (range->gpa & KVM_HPAGE_MASK(level)) + KVM_HPAGE_SIZE(level); 4798 return min(range->size, end - range->gpa); 4799 } 4800 4801 static void nonpaging_init_context(struct kvm_mmu *context) 4802 { 4803 context->page_fault = nonpaging_page_fault; 4804 context->gva_to_gpa = nonpaging_gva_to_gpa; 4805 context->sync_spte = NULL; 4806 } 4807 4808 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd, 4809 union kvm_mmu_page_role role) 4810 { 4811 struct kvm_mmu_page *sp; 4812 4813 if (!VALID_PAGE(root->hpa)) 4814 return false; 4815 4816 if (!role.direct && pgd != root->pgd) 4817 return false; 4818 4819 sp = root_to_sp(root->hpa); 4820 if (WARN_ON_ONCE(!sp)) 4821 return false; 4822 4823 return role.word == sp->role.word; 4824 } 4825 4826 /* 4827 * Find out if a previously cached root matching the new pgd/role is available, 4828 * and insert the current root as the MRU in the cache. 4829 * If a matching root is found, it is assigned to kvm_mmu->root and 4830 * true is returned. 4831 * If no match is found, kvm_mmu->root is left invalid, the LRU root is 4832 * evicted to make room for the current root, and false is returned. 4833 */ 4834 static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu, 4835 gpa_t new_pgd, 4836 union kvm_mmu_page_role new_role) 4837 { 4838 uint i; 4839 4840 if (is_root_usable(&mmu->root, new_pgd, new_role)) 4841 return true; 4842 4843 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 4844 /* 4845 * The swaps end up rotating the cache like this: 4846 * C 0 1 2 3 (on entry to the function) 4847 * 0 C 1 2 3 4848 * 1 C 0 2 3 4849 * 2 C 0 1 3 4850 * 3 C 0 1 2 (on exit from the loop) 4851 */ 4852 swap(mmu->root, mmu->prev_roots[i]); 4853 if (is_root_usable(&mmu->root, new_pgd, new_role)) 4854 return true; 4855 } 4856 4857 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 4858 return false; 4859 } 4860 4861 /* 4862 * Find out if a previously cached root matching the new pgd/role is available. 4863 * On entry, mmu->root is invalid. 4864 * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry 4865 * of the cache becomes invalid, and true is returned. 4866 * If no match is found, kvm_mmu->root is left invalid and false is returned. 4867 */ 4868 static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu, 4869 gpa_t new_pgd, 4870 union kvm_mmu_page_role new_role) 4871 { 4872 uint i; 4873 4874 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 4875 if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role)) 4876 goto hit; 4877 4878 return false; 4879 4880 hit: 4881 swap(mmu->root, mmu->prev_roots[i]); 4882 /* Bubble up the remaining roots. */ 4883 for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++) 4884 mmu->prev_roots[i] = mmu->prev_roots[i + 1]; 4885 mmu->prev_roots[i].hpa = INVALID_PAGE; 4886 return true; 4887 } 4888 4889 static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu, 4890 gpa_t new_pgd, union kvm_mmu_page_role new_role) 4891 { 4892 /* 4893 * Limit reuse to 64-bit hosts+VMs without "special" roots in order to 4894 * avoid having to deal with PDPTEs and other complexities. 4895 */ 4896 if (VALID_PAGE(mmu->root.hpa) && !root_to_sp(mmu->root.hpa)) 4897 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 4898 4899 if (VALID_PAGE(mmu->root.hpa)) 4900 return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role); 4901 else 4902 return cached_root_find_without_current(kvm, mmu, new_pgd, new_role); 4903 } 4904 4905 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd) 4906 { 4907 struct kvm_mmu *mmu = vcpu->arch.mmu; 4908 union kvm_mmu_page_role new_role = mmu->root_role; 4909 4910 /* 4911 * Return immediately if no usable root was found, kvm_mmu_reload() 4912 * will establish a valid root prior to the next VM-Enter. 4913 */ 4914 if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role)) 4915 return; 4916 4917 /* 4918 * It's possible that the cached previous root page is obsolete because 4919 * of a change in the MMU generation number. However, changing the 4920 * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, 4921 * which will free the root set here and allocate a new one. 4922 */ 4923 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 4924 4925 if (force_flush_and_sync_on_reuse) { 4926 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 4927 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 4928 } 4929 4930 /* 4931 * The last MMIO access's GVA and GPA are cached in the VCPU. When 4932 * switching to a new CR3, that GVA->GPA mapping may no longer be 4933 * valid. So clear any cached MMIO info even when we don't need to sync 4934 * the shadow page tables. 4935 */ 4936 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 4937 4938 /* 4939 * If this is a direct root page, it doesn't have a write flooding 4940 * count. Otherwise, clear the write flooding count. 4941 */ 4942 if (!new_role.direct) { 4943 struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa); 4944 4945 if (!WARN_ON_ONCE(!sp)) 4946 __clear_sp_write_flooding_count(sp); 4947 } 4948 } 4949 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd); 4950 4951 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, 4952 unsigned int access) 4953 { 4954 if (unlikely(is_mmio_spte(vcpu->kvm, *sptep))) { 4955 if (gfn != get_mmio_spte_gfn(*sptep)) { 4956 mmu_spte_clear_no_track(sptep); 4957 return true; 4958 } 4959 4960 mark_mmio_spte(vcpu, sptep, gfn, access); 4961 return true; 4962 } 4963 4964 return false; 4965 } 4966 4967 #define PTTYPE_EPT 18 /* arbitrary */ 4968 #define PTTYPE PTTYPE_EPT 4969 #include "paging_tmpl.h" 4970 #undef PTTYPE 4971 4972 #define PTTYPE 64 4973 #include "paging_tmpl.h" 4974 #undef PTTYPE 4975 4976 #define PTTYPE 32 4977 #include "paging_tmpl.h" 4978 #undef PTTYPE 4979 4980 static void __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check, 4981 u64 pa_bits_rsvd, int level, bool nx, 4982 bool gbpages, bool pse, bool amd) 4983 { 4984 u64 gbpages_bit_rsvd = 0; 4985 u64 nonleaf_bit8_rsvd = 0; 4986 u64 high_bits_rsvd; 4987 4988 rsvd_check->bad_mt_xwr = 0; 4989 4990 if (!gbpages) 4991 gbpages_bit_rsvd = rsvd_bits(7, 7); 4992 4993 if (level == PT32E_ROOT_LEVEL) 4994 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62); 4995 else 4996 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4997 4998 /* Note, NX doesn't exist in PDPTEs, this is handled below. */ 4999 if (!nx) 5000 high_bits_rsvd |= rsvd_bits(63, 63); 5001 5002 /* 5003 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for 5004 * leaf entries) on AMD CPUs only. 5005 */ 5006 if (amd) 5007 nonleaf_bit8_rsvd = rsvd_bits(8, 8); 5008 5009 switch (level) { 5010 case PT32_ROOT_LEVEL: 5011 /* no rsvd bits for 2 level 4K page table entries */ 5012 rsvd_check->rsvd_bits_mask[0][1] = 0; 5013 rsvd_check->rsvd_bits_mask[0][0] = 0; 5014 rsvd_check->rsvd_bits_mask[1][0] = 5015 rsvd_check->rsvd_bits_mask[0][0]; 5016 5017 if (!pse) { 5018 rsvd_check->rsvd_bits_mask[1][1] = 0; 5019 break; 5020 } 5021 5022 if (is_cpuid_PSE36()) 5023 /* 36bits PSE 4MB page */ 5024 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); 5025 else 5026 /* 32 bits PSE 4MB page */ 5027 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); 5028 break; 5029 case PT32E_ROOT_LEVEL: 5030 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) | 5031 high_bits_rsvd | 5032 rsvd_bits(5, 8) | 5033 rsvd_bits(1, 2); /* PDPTE */ 5034 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */ 5035 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */ 5036 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 5037 rsvd_bits(13, 20); /* large page */ 5038 rsvd_check->rsvd_bits_mask[1][0] = 5039 rsvd_check->rsvd_bits_mask[0][0]; 5040 break; 5041 case PT64_ROOT_5LEVEL: 5042 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | 5043 nonleaf_bit8_rsvd | 5044 rsvd_bits(7, 7); 5045 rsvd_check->rsvd_bits_mask[1][4] = 5046 rsvd_check->rsvd_bits_mask[0][4]; 5047 fallthrough; 5048 case PT64_ROOT_4LEVEL: 5049 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | 5050 nonleaf_bit8_rsvd | 5051 rsvd_bits(7, 7); 5052 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | 5053 gbpages_bit_rsvd; 5054 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; 5055 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 5056 rsvd_check->rsvd_bits_mask[1][3] = 5057 rsvd_check->rsvd_bits_mask[0][3]; 5058 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | 5059 gbpages_bit_rsvd | 5060 rsvd_bits(13, 29); 5061 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 5062 rsvd_bits(13, 20); /* large page */ 5063 rsvd_check->rsvd_bits_mask[1][0] = 5064 rsvd_check->rsvd_bits_mask[0][0]; 5065 break; 5066 } 5067 } 5068 5069 static void reset_guest_rsvds_bits_mask(struct kvm_vcpu *vcpu, 5070 struct kvm_mmu *context) 5071 { 5072 __reset_rsvds_bits_mask(&context->guest_rsvd_check, 5073 vcpu->arch.reserved_gpa_bits, 5074 context->cpu_role.base.level, is_efer_nx(context), 5075 guest_can_use(vcpu, X86_FEATURE_GBPAGES), 5076 is_cr4_pse(context), 5077 guest_cpuid_is_amd_compatible(vcpu)); 5078 } 5079 5080 static void __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check, 5081 u64 pa_bits_rsvd, bool execonly, 5082 int huge_page_level) 5083 { 5084 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 5085 u64 large_1g_rsvd = 0, large_2m_rsvd = 0; 5086 u64 bad_mt_xwr; 5087 5088 if (huge_page_level < PG_LEVEL_1G) 5089 large_1g_rsvd = rsvd_bits(7, 7); 5090 if (huge_page_level < PG_LEVEL_2M) 5091 large_2m_rsvd = rsvd_bits(7, 7); 5092 5093 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7); 5094 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7); 5095 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd; 5096 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd; 5097 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 5098 5099 /* large page */ 5100 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4]; 5101 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3]; 5102 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd; 5103 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd; 5104 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0]; 5105 5106 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */ 5107 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */ 5108 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */ 5109 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */ 5110 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */ 5111 if (!execonly) { 5112 /* bits 0..2 must not be 100 unless VMX capabilities allow it */ 5113 bad_mt_xwr |= REPEAT_BYTE(1ull << 4); 5114 } 5115 rsvd_check->bad_mt_xwr = bad_mt_xwr; 5116 } 5117 5118 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, 5119 struct kvm_mmu *context, bool execonly, int huge_page_level) 5120 { 5121 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check, 5122 vcpu->arch.reserved_gpa_bits, execonly, 5123 huge_page_level); 5124 } 5125 5126 static inline u64 reserved_hpa_bits(void) 5127 { 5128 return rsvd_bits(kvm_host.maxphyaddr, 63); 5129 } 5130 5131 /* 5132 * the page table on host is the shadow page table for the page 5133 * table in guest or amd nested guest, its mmu features completely 5134 * follow the features in guest. 5135 */ 5136 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 5137 struct kvm_mmu *context) 5138 { 5139 /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */ 5140 bool is_amd = true; 5141 /* KVM doesn't use 2-level page tables for the shadow MMU. */ 5142 bool is_pse = false; 5143 struct rsvd_bits_validate *shadow_zero_check; 5144 int i; 5145 5146 WARN_ON_ONCE(context->root_role.level < PT32E_ROOT_LEVEL); 5147 5148 shadow_zero_check = &context->shadow_zero_check; 5149 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 5150 context->root_role.level, 5151 context->root_role.efer_nx, 5152 guest_can_use(vcpu, X86_FEATURE_GBPAGES), 5153 is_pse, is_amd); 5154 5155 if (!shadow_me_mask) 5156 return; 5157 5158 for (i = context->root_role.level; --i >= 0;) { 5159 /* 5160 * So far shadow_me_value is a constant during KVM's life 5161 * time. Bits in shadow_me_value are allowed to be set. 5162 * Bits in shadow_me_mask but not in shadow_me_value are 5163 * not allowed to be set. 5164 */ 5165 shadow_zero_check->rsvd_bits_mask[0][i] |= shadow_me_mask; 5166 shadow_zero_check->rsvd_bits_mask[1][i] |= shadow_me_mask; 5167 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_value; 5168 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_value; 5169 } 5170 5171 } 5172 5173 static inline bool boot_cpu_is_amd(void) 5174 { 5175 WARN_ON_ONCE(!tdp_enabled); 5176 return shadow_x_mask == 0; 5177 } 5178 5179 /* 5180 * the direct page table on host, use as much mmu features as 5181 * possible, however, kvm currently does not do execution-protection. 5182 */ 5183 static void reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context) 5184 { 5185 struct rsvd_bits_validate *shadow_zero_check; 5186 int i; 5187 5188 shadow_zero_check = &context->shadow_zero_check; 5189 5190 if (boot_cpu_is_amd()) 5191 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 5192 context->root_role.level, true, 5193 boot_cpu_has(X86_FEATURE_GBPAGES), 5194 false, true); 5195 else 5196 __reset_rsvds_bits_mask_ept(shadow_zero_check, 5197 reserved_hpa_bits(), false, 5198 max_huge_page_level); 5199 5200 if (!shadow_me_mask) 5201 return; 5202 5203 for (i = context->root_role.level; --i >= 0;) { 5204 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 5205 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 5206 } 5207 } 5208 5209 /* 5210 * as the comments in reset_shadow_zero_bits_mask() except it 5211 * is the shadow page table for intel nested guest. 5212 */ 5213 static void 5214 reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly) 5215 { 5216 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check, 5217 reserved_hpa_bits(), execonly, 5218 max_huge_page_level); 5219 } 5220 5221 #define BYTE_MASK(access) \ 5222 ((1 & (access) ? 2 : 0) | \ 5223 (2 & (access) ? 4 : 0) | \ 5224 (3 & (access) ? 8 : 0) | \ 5225 (4 & (access) ? 16 : 0) | \ 5226 (5 & (access) ? 32 : 0) | \ 5227 (6 & (access) ? 64 : 0) | \ 5228 (7 & (access) ? 128 : 0)) 5229 5230 5231 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept) 5232 { 5233 unsigned byte; 5234 5235 const u8 x = BYTE_MASK(ACC_EXEC_MASK); 5236 const u8 w = BYTE_MASK(ACC_WRITE_MASK); 5237 const u8 u = BYTE_MASK(ACC_USER_MASK); 5238 5239 bool cr4_smep = is_cr4_smep(mmu); 5240 bool cr4_smap = is_cr4_smap(mmu); 5241 bool cr0_wp = is_cr0_wp(mmu); 5242 bool efer_nx = is_efer_nx(mmu); 5243 5244 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { 5245 unsigned pfec = byte << 1; 5246 5247 /* 5248 * Each "*f" variable has a 1 bit for each UWX value 5249 * that causes a fault with the given PFEC. 5250 */ 5251 5252 /* Faults from writes to non-writable pages */ 5253 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0; 5254 /* Faults from user mode accesses to supervisor pages */ 5255 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0; 5256 /* Faults from fetches of non-executable pages*/ 5257 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0; 5258 /* Faults from kernel mode fetches of user pages */ 5259 u8 smepf = 0; 5260 /* Faults from kernel mode accesses of user pages */ 5261 u8 smapf = 0; 5262 5263 if (!ept) { 5264 /* Faults from kernel mode accesses to user pages */ 5265 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u; 5266 5267 /* Not really needed: !nx will cause pte.nx to fault */ 5268 if (!efer_nx) 5269 ff = 0; 5270 5271 /* Allow supervisor writes if !cr0.wp */ 5272 if (!cr0_wp) 5273 wf = (pfec & PFERR_USER_MASK) ? wf : 0; 5274 5275 /* Disallow supervisor fetches of user code if cr4.smep */ 5276 if (cr4_smep) 5277 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0; 5278 5279 /* 5280 * SMAP:kernel-mode data accesses from user-mode 5281 * mappings should fault. A fault is considered 5282 * as a SMAP violation if all of the following 5283 * conditions are true: 5284 * - X86_CR4_SMAP is set in CR4 5285 * - A user page is accessed 5286 * - The access is not a fetch 5287 * - The access is supervisor mode 5288 * - If implicit supervisor access or X86_EFLAGS_AC is clear 5289 * 5290 * Here, we cover the first four conditions. 5291 * The fifth is computed dynamically in permission_fault(); 5292 * PFERR_RSVD_MASK bit will be set in PFEC if the access is 5293 * *not* subject to SMAP restrictions. 5294 */ 5295 if (cr4_smap) 5296 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf; 5297 } 5298 5299 mmu->permissions[byte] = ff | uf | wf | smepf | smapf; 5300 } 5301 } 5302 5303 /* 5304 * PKU is an additional mechanism by which the paging controls access to 5305 * user-mode addresses based on the value in the PKRU register. Protection 5306 * key violations are reported through a bit in the page fault error code. 5307 * Unlike other bits of the error code, the PK bit is not known at the 5308 * call site of e.g. gva_to_gpa; it must be computed directly in 5309 * permission_fault based on two bits of PKRU, on some machine state (CR4, 5310 * CR0, EFER, CPL), and on other bits of the error code and the page tables. 5311 * 5312 * In particular the following conditions come from the error code, the 5313 * page tables and the machine state: 5314 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1 5315 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch) 5316 * - PK is always zero if U=0 in the page tables 5317 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access. 5318 * 5319 * The PKRU bitmask caches the result of these four conditions. The error 5320 * code (minus the P bit) and the page table's U bit form an index into the 5321 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed 5322 * with the two bits of the PKRU register corresponding to the protection key. 5323 * For the first three conditions above the bits will be 00, thus masking 5324 * away both AD and WD. For all reads or if the last condition holds, WD 5325 * only will be masked away. 5326 */ 5327 static void update_pkru_bitmask(struct kvm_mmu *mmu) 5328 { 5329 unsigned bit; 5330 bool wp; 5331 5332 mmu->pkru_mask = 0; 5333 5334 if (!is_cr4_pke(mmu)) 5335 return; 5336 5337 wp = is_cr0_wp(mmu); 5338 5339 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) { 5340 unsigned pfec, pkey_bits; 5341 bool check_pkey, check_write, ff, uf, wf, pte_user; 5342 5343 pfec = bit << 1; 5344 ff = pfec & PFERR_FETCH_MASK; 5345 uf = pfec & PFERR_USER_MASK; 5346 wf = pfec & PFERR_WRITE_MASK; 5347 5348 /* PFEC.RSVD is replaced by ACC_USER_MASK. */ 5349 pte_user = pfec & PFERR_RSVD_MASK; 5350 5351 /* 5352 * Only need to check the access which is not an 5353 * instruction fetch and is to a user page. 5354 */ 5355 check_pkey = (!ff && pte_user); 5356 /* 5357 * write access is controlled by PKRU if it is a 5358 * user access or CR0.WP = 1. 5359 */ 5360 check_write = check_pkey && wf && (uf || wp); 5361 5362 /* PKRU.AD stops both read and write access. */ 5363 pkey_bits = !!check_pkey; 5364 /* PKRU.WD stops write access. */ 5365 pkey_bits |= (!!check_write) << 1; 5366 5367 mmu->pkru_mask |= (pkey_bits & 3) << pfec; 5368 } 5369 } 5370 5371 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu, 5372 struct kvm_mmu *mmu) 5373 { 5374 if (!is_cr0_pg(mmu)) 5375 return; 5376 5377 reset_guest_rsvds_bits_mask(vcpu, mmu); 5378 update_permission_bitmask(mmu, false); 5379 update_pkru_bitmask(mmu); 5380 } 5381 5382 static void paging64_init_context(struct kvm_mmu *context) 5383 { 5384 context->page_fault = paging64_page_fault; 5385 context->gva_to_gpa = paging64_gva_to_gpa; 5386 context->sync_spte = paging64_sync_spte; 5387 } 5388 5389 static void paging32_init_context(struct kvm_mmu *context) 5390 { 5391 context->page_fault = paging32_page_fault; 5392 context->gva_to_gpa = paging32_gva_to_gpa; 5393 context->sync_spte = paging32_sync_spte; 5394 } 5395 5396 static union kvm_cpu_role kvm_calc_cpu_role(struct kvm_vcpu *vcpu, 5397 const struct kvm_mmu_role_regs *regs) 5398 { 5399 union kvm_cpu_role role = {0}; 5400 5401 role.base.access = ACC_ALL; 5402 role.base.smm = is_smm(vcpu); 5403 role.base.guest_mode = is_guest_mode(vcpu); 5404 role.ext.valid = 1; 5405 5406 if (!____is_cr0_pg(regs)) { 5407 role.base.direct = 1; 5408 return role; 5409 } 5410 5411 role.base.efer_nx = ____is_efer_nx(regs); 5412 role.base.cr0_wp = ____is_cr0_wp(regs); 5413 role.base.smep_andnot_wp = ____is_cr4_smep(regs) && !____is_cr0_wp(regs); 5414 role.base.smap_andnot_wp = ____is_cr4_smap(regs) && !____is_cr0_wp(regs); 5415 role.base.has_4_byte_gpte = !____is_cr4_pae(regs); 5416 5417 if (____is_efer_lma(regs)) 5418 role.base.level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL 5419 : PT64_ROOT_4LEVEL; 5420 else if (____is_cr4_pae(regs)) 5421 role.base.level = PT32E_ROOT_LEVEL; 5422 else 5423 role.base.level = PT32_ROOT_LEVEL; 5424 5425 role.ext.cr4_smep = ____is_cr4_smep(regs); 5426 role.ext.cr4_smap = ____is_cr4_smap(regs); 5427 role.ext.cr4_pse = ____is_cr4_pse(regs); 5428 5429 /* PKEY and LA57 are active iff long mode is active. */ 5430 role.ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs); 5431 role.ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs); 5432 role.ext.efer_lma = ____is_efer_lma(regs); 5433 return role; 5434 } 5435 5436 void __kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu, 5437 struct kvm_mmu *mmu) 5438 { 5439 const bool cr0_wp = kvm_is_cr0_bit_set(vcpu, X86_CR0_WP); 5440 5441 BUILD_BUG_ON((KVM_MMU_CR0_ROLE_BITS & KVM_POSSIBLE_CR0_GUEST_BITS) != X86_CR0_WP); 5442 BUILD_BUG_ON((KVM_MMU_CR4_ROLE_BITS & KVM_POSSIBLE_CR4_GUEST_BITS)); 5443 5444 if (is_cr0_wp(mmu) == cr0_wp) 5445 return; 5446 5447 mmu->cpu_role.base.cr0_wp = cr0_wp; 5448 reset_guest_paging_metadata(vcpu, mmu); 5449 } 5450 5451 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu) 5452 { 5453 /* tdp_root_level is architecture forced level, use it if nonzero */ 5454 if (tdp_root_level) 5455 return tdp_root_level; 5456 5457 /* Use 5-level TDP if and only if it's useful/necessary. */ 5458 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48) 5459 return 4; 5460 5461 return max_tdp_level; 5462 } 5463 5464 u8 kvm_mmu_get_max_tdp_level(void) 5465 { 5466 return tdp_root_level ? tdp_root_level : max_tdp_level; 5467 } 5468 5469 static union kvm_mmu_page_role 5470 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, 5471 union kvm_cpu_role cpu_role) 5472 { 5473 union kvm_mmu_page_role role = {0}; 5474 5475 role.access = ACC_ALL; 5476 role.cr0_wp = true; 5477 role.efer_nx = true; 5478 role.smm = cpu_role.base.smm; 5479 role.guest_mode = cpu_role.base.guest_mode; 5480 role.ad_disabled = !kvm_ad_enabled(); 5481 role.level = kvm_mmu_get_tdp_level(vcpu); 5482 role.direct = true; 5483 role.has_4_byte_gpte = false; 5484 5485 return role; 5486 } 5487 5488 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu, 5489 union kvm_cpu_role cpu_role) 5490 { 5491 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5492 union kvm_mmu_page_role root_role = kvm_calc_tdp_mmu_root_page_role(vcpu, cpu_role); 5493 5494 if (cpu_role.as_u64 == context->cpu_role.as_u64 && 5495 root_role.word == context->root_role.word) 5496 return; 5497 5498 context->cpu_role.as_u64 = cpu_role.as_u64; 5499 context->root_role.word = root_role.word; 5500 context->page_fault = kvm_tdp_page_fault; 5501 context->sync_spte = NULL; 5502 context->get_guest_pgd = get_guest_cr3; 5503 context->get_pdptr = kvm_pdptr_read; 5504 context->inject_page_fault = kvm_inject_page_fault; 5505 5506 if (!is_cr0_pg(context)) 5507 context->gva_to_gpa = nonpaging_gva_to_gpa; 5508 else if (is_cr4_pae(context)) 5509 context->gva_to_gpa = paging64_gva_to_gpa; 5510 else 5511 context->gva_to_gpa = paging32_gva_to_gpa; 5512 5513 reset_guest_paging_metadata(vcpu, context); 5514 reset_tdp_shadow_zero_bits_mask(context); 5515 } 5516 5517 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context, 5518 union kvm_cpu_role cpu_role, 5519 union kvm_mmu_page_role root_role) 5520 { 5521 if (cpu_role.as_u64 == context->cpu_role.as_u64 && 5522 root_role.word == context->root_role.word) 5523 return; 5524 5525 context->cpu_role.as_u64 = cpu_role.as_u64; 5526 context->root_role.word = root_role.word; 5527 5528 if (!is_cr0_pg(context)) 5529 nonpaging_init_context(context); 5530 else if (is_cr4_pae(context)) 5531 paging64_init_context(context); 5532 else 5533 paging32_init_context(context); 5534 5535 reset_guest_paging_metadata(vcpu, context); 5536 reset_shadow_zero_bits_mask(vcpu, context); 5537 } 5538 5539 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, 5540 union kvm_cpu_role cpu_role) 5541 { 5542 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5543 union kvm_mmu_page_role root_role; 5544 5545 root_role = cpu_role.base; 5546 5547 /* KVM uses PAE paging whenever the guest isn't using 64-bit paging. */ 5548 root_role.level = max_t(u32, root_role.level, PT32E_ROOT_LEVEL); 5549 5550 /* 5551 * KVM forces EFER.NX=1 when TDP is disabled, reflect it in the MMU role. 5552 * KVM uses NX when TDP is disabled to handle a variety of scenarios, 5553 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and 5554 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0. 5555 * The iTLB multi-hit workaround can be toggled at any time, so assume 5556 * NX can be used by any non-nested shadow MMU to avoid having to reset 5557 * MMU contexts. 5558 */ 5559 root_role.efer_nx = true; 5560 5561 shadow_mmu_init_context(vcpu, context, cpu_role, root_role); 5562 } 5563 5564 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0, 5565 unsigned long cr4, u64 efer, gpa_t nested_cr3) 5566 { 5567 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 5568 struct kvm_mmu_role_regs regs = { 5569 .cr0 = cr0, 5570 .cr4 = cr4 & ~X86_CR4_PKE, 5571 .efer = efer, 5572 }; 5573 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); 5574 union kvm_mmu_page_role root_role; 5575 5576 /* NPT requires CR0.PG=1. */ 5577 WARN_ON_ONCE(cpu_role.base.direct); 5578 5579 root_role = cpu_role.base; 5580 root_role.level = kvm_mmu_get_tdp_level(vcpu); 5581 if (root_role.level == PT64_ROOT_5LEVEL && 5582 cpu_role.base.level == PT64_ROOT_4LEVEL) 5583 root_role.passthrough = 1; 5584 5585 shadow_mmu_init_context(vcpu, context, cpu_role, root_role); 5586 kvm_mmu_new_pgd(vcpu, nested_cr3); 5587 } 5588 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu); 5589 5590 static union kvm_cpu_role 5591 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty, 5592 bool execonly, u8 level) 5593 { 5594 union kvm_cpu_role role = {0}; 5595 5596 /* 5597 * KVM does not support SMM transfer monitors, and consequently does not 5598 * support the "entry to SMM" control either. role.base.smm is always 0. 5599 */ 5600 WARN_ON_ONCE(is_smm(vcpu)); 5601 role.base.level = level; 5602 role.base.has_4_byte_gpte = false; 5603 role.base.direct = false; 5604 role.base.ad_disabled = !accessed_dirty; 5605 role.base.guest_mode = true; 5606 role.base.access = ACC_ALL; 5607 5608 role.ext.word = 0; 5609 role.ext.execonly = execonly; 5610 role.ext.valid = 1; 5611 5612 return role; 5613 } 5614 5615 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, 5616 int huge_page_level, bool accessed_dirty, 5617 gpa_t new_eptp) 5618 { 5619 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 5620 u8 level = vmx_eptp_page_walk_level(new_eptp); 5621 union kvm_cpu_role new_mode = 5622 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty, 5623 execonly, level); 5624 5625 if (new_mode.as_u64 != context->cpu_role.as_u64) { 5626 /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */ 5627 context->cpu_role.as_u64 = new_mode.as_u64; 5628 context->root_role.word = new_mode.base.word; 5629 5630 context->page_fault = ept_page_fault; 5631 context->gva_to_gpa = ept_gva_to_gpa; 5632 context->sync_spte = ept_sync_spte; 5633 5634 update_permission_bitmask(context, true); 5635 context->pkru_mask = 0; 5636 reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level); 5637 reset_ept_shadow_zero_bits_mask(context, execonly); 5638 } 5639 5640 kvm_mmu_new_pgd(vcpu, new_eptp); 5641 } 5642 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); 5643 5644 static void init_kvm_softmmu(struct kvm_vcpu *vcpu, 5645 union kvm_cpu_role cpu_role) 5646 { 5647 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5648 5649 kvm_init_shadow_mmu(vcpu, cpu_role); 5650 5651 context->get_guest_pgd = get_guest_cr3; 5652 context->get_pdptr = kvm_pdptr_read; 5653 context->inject_page_fault = kvm_inject_page_fault; 5654 } 5655 5656 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu, 5657 union kvm_cpu_role new_mode) 5658 { 5659 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; 5660 5661 if (new_mode.as_u64 == g_context->cpu_role.as_u64) 5662 return; 5663 5664 g_context->cpu_role.as_u64 = new_mode.as_u64; 5665 g_context->get_guest_pgd = get_guest_cr3; 5666 g_context->get_pdptr = kvm_pdptr_read; 5667 g_context->inject_page_fault = kvm_inject_page_fault; 5668 5669 /* 5670 * L2 page tables are never shadowed, so there is no need to sync 5671 * SPTEs. 5672 */ 5673 g_context->sync_spte = NULL; 5674 5675 /* 5676 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using 5677 * L1's nested page tables (e.g. EPT12). The nested translation 5678 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using 5679 * L2's page tables as the first level of translation and L1's 5680 * nested page tables as the second level of translation. Basically 5681 * the gva_to_gpa functions between mmu and nested_mmu are swapped. 5682 */ 5683 if (!is_paging(vcpu)) 5684 g_context->gva_to_gpa = nonpaging_gva_to_gpa; 5685 else if (is_long_mode(vcpu)) 5686 g_context->gva_to_gpa = paging64_gva_to_gpa; 5687 else if (is_pae(vcpu)) 5688 g_context->gva_to_gpa = paging64_gva_to_gpa; 5689 else 5690 g_context->gva_to_gpa = paging32_gva_to_gpa; 5691 5692 reset_guest_paging_metadata(vcpu, g_context); 5693 } 5694 5695 void kvm_init_mmu(struct kvm_vcpu *vcpu) 5696 { 5697 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 5698 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); 5699 5700 if (mmu_is_nested(vcpu)) 5701 init_kvm_nested_mmu(vcpu, cpu_role); 5702 else if (tdp_enabled) 5703 init_kvm_tdp_mmu(vcpu, cpu_role); 5704 else 5705 init_kvm_softmmu(vcpu, cpu_role); 5706 } 5707 EXPORT_SYMBOL_GPL(kvm_init_mmu); 5708 5709 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu) 5710 { 5711 /* 5712 * Invalidate all MMU roles to force them to reinitialize as CPUID 5713 * information is factored into reserved bit calculations. 5714 * 5715 * Correctly handling multiple vCPU models with respect to paging and 5716 * physical address properties) in a single VM would require tracking 5717 * all relevant CPUID information in kvm_mmu_page_role. That is very 5718 * undesirable as it would increase the memory requirements for 5719 * gfn_write_track (see struct kvm_mmu_page_role comments). For now 5720 * that problem is swept under the rug; KVM's CPUID API is horrific and 5721 * it's all but impossible to solve it without introducing a new API. 5722 */ 5723 vcpu->arch.root_mmu.root_role.invalid = 1; 5724 vcpu->arch.guest_mmu.root_role.invalid = 1; 5725 vcpu->arch.nested_mmu.root_role.invalid = 1; 5726 vcpu->arch.root_mmu.cpu_role.ext.valid = 0; 5727 vcpu->arch.guest_mmu.cpu_role.ext.valid = 0; 5728 vcpu->arch.nested_mmu.cpu_role.ext.valid = 0; 5729 kvm_mmu_reset_context(vcpu); 5730 5731 /* 5732 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in 5733 * kvm_arch_vcpu_ioctl(). 5734 */ 5735 KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm); 5736 } 5737 5738 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu) 5739 { 5740 kvm_mmu_unload(vcpu); 5741 kvm_init_mmu(vcpu); 5742 } 5743 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); 5744 5745 int kvm_mmu_load(struct kvm_vcpu *vcpu) 5746 { 5747 int r; 5748 5749 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->root_role.direct); 5750 if (r) 5751 goto out; 5752 r = mmu_alloc_special_roots(vcpu); 5753 if (r) 5754 goto out; 5755 if (vcpu->arch.mmu->root_role.direct) 5756 r = mmu_alloc_direct_roots(vcpu); 5757 else 5758 r = mmu_alloc_shadow_roots(vcpu); 5759 if (r) 5760 goto out; 5761 5762 kvm_mmu_sync_roots(vcpu); 5763 5764 kvm_mmu_load_pgd(vcpu); 5765 5766 /* 5767 * Flush any TLB entries for the new root, the provenance of the root 5768 * is unknown. Even if KVM ensures there are no stale TLB entries 5769 * for a freed root, in theory another hypervisor could have left 5770 * stale entries. Flushing on alloc also allows KVM to skip the TLB 5771 * flush when freeing a root (see kvm_tdp_mmu_put_root()). 5772 */ 5773 kvm_x86_call(flush_tlb_current)(vcpu); 5774 out: 5775 return r; 5776 } 5777 5778 void kvm_mmu_unload(struct kvm_vcpu *vcpu) 5779 { 5780 struct kvm *kvm = vcpu->kvm; 5781 5782 kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL); 5783 WARN_ON_ONCE(VALID_PAGE(vcpu->arch.root_mmu.root.hpa)); 5784 kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); 5785 WARN_ON_ONCE(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa)); 5786 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 5787 } 5788 5789 static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa) 5790 { 5791 struct kvm_mmu_page *sp; 5792 5793 if (!VALID_PAGE(root_hpa)) 5794 return false; 5795 5796 /* 5797 * When freeing obsolete roots, treat roots as obsolete if they don't 5798 * have an associated shadow page, as it's impossible to determine if 5799 * such roots are fresh or stale. This does mean KVM will get false 5800 * positives and free roots that don't strictly need to be freed, but 5801 * such false positives are relatively rare: 5802 * 5803 * (a) only PAE paging and nested NPT have roots without shadow pages 5804 * (or any shadow paging flavor with a dummy root, see note below) 5805 * (b) remote reloads due to a memslot update obsoletes _all_ roots 5806 * (c) KVM doesn't track previous roots for PAE paging, and the guest 5807 * is unlikely to zap an in-use PGD. 5808 * 5809 * Note! Dummy roots are unique in that they are obsoleted by memslot 5810 * _creation_! See also FNAME(fetch). 5811 */ 5812 sp = root_to_sp(root_hpa); 5813 return !sp || is_obsolete_sp(kvm, sp); 5814 } 5815 5816 static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu) 5817 { 5818 unsigned long roots_to_free = 0; 5819 int i; 5820 5821 if (is_obsolete_root(kvm, mmu->root.hpa)) 5822 roots_to_free |= KVM_MMU_ROOT_CURRENT; 5823 5824 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5825 if (is_obsolete_root(kvm, mmu->prev_roots[i].hpa)) 5826 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 5827 } 5828 5829 if (roots_to_free) 5830 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 5831 } 5832 5833 void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu) 5834 { 5835 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu); 5836 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu); 5837 } 5838 5839 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, 5840 int *bytes) 5841 { 5842 u64 gentry = 0; 5843 int r; 5844 5845 /* 5846 * Assume that the pte write on a page table of the same type 5847 * as the current vcpu paging mode since we update the sptes only 5848 * when they have the same mode. 5849 */ 5850 if (is_pae(vcpu) && *bytes == 4) { 5851 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ 5852 *gpa &= ~(gpa_t)7; 5853 *bytes = 8; 5854 } 5855 5856 if (*bytes == 4 || *bytes == 8) { 5857 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes); 5858 if (r) 5859 gentry = 0; 5860 } 5861 5862 return gentry; 5863 } 5864 5865 /* 5866 * If we're seeing too many writes to a page, it may no longer be a page table, 5867 * or we may be forking, in which case it is better to unmap the page. 5868 */ 5869 static bool detect_write_flooding(struct kvm_mmu_page *sp) 5870 { 5871 /* 5872 * Skip write-flooding detected for the sp whose level is 1, because 5873 * it can become unsync, then the guest page is not write-protected. 5874 */ 5875 if (sp->role.level == PG_LEVEL_4K) 5876 return false; 5877 5878 atomic_inc(&sp->write_flooding_count); 5879 return atomic_read(&sp->write_flooding_count) >= 3; 5880 } 5881 5882 /* 5883 * Misaligned accesses are too much trouble to fix up; also, they usually 5884 * indicate a page is not used as a page table. 5885 */ 5886 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, 5887 int bytes) 5888 { 5889 unsigned offset, pte_size, misaligned; 5890 5891 offset = offset_in_page(gpa); 5892 pte_size = sp->role.has_4_byte_gpte ? 4 : 8; 5893 5894 /* 5895 * Sometimes, the OS only writes the last one bytes to update status 5896 * bits, for example, in linux, andb instruction is used in clear_bit(). 5897 */ 5898 if (!(offset & (pte_size - 1)) && bytes == 1) 5899 return false; 5900 5901 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); 5902 misaligned |= bytes < 4; 5903 5904 return misaligned; 5905 } 5906 5907 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) 5908 { 5909 unsigned page_offset, quadrant; 5910 u64 *spte; 5911 int level; 5912 5913 page_offset = offset_in_page(gpa); 5914 level = sp->role.level; 5915 *nspte = 1; 5916 if (sp->role.has_4_byte_gpte) { 5917 page_offset <<= 1; /* 32->64 */ 5918 /* 5919 * A 32-bit pde maps 4MB while the shadow pdes map 5920 * only 2MB. So we need to double the offset again 5921 * and zap two pdes instead of one. 5922 */ 5923 if (level == PT32_ROOT_LEVEL) { 5924 page_offset &= ~7; /* kill rounding error */ 5925 page_offset <<= 1; 5926 *nspte = 2; 5927 } 5928 quadrant = page_offset >> PAGE_SHIFT; 5929 page_offset &= ~PAGE_MASK; 5930 if (quadrant != sp->role.quadrant) 5931 return NULL; 5932 } 5933 5934 spte = &sp->spt[page_offset / sizeof(*spte)]; 5935 return spte; 5936 } 5937 5938 void kvm_mmu_track_write(struct kvm_vcpu *vcpu, gpa_t gpa, const u8 *new, 5939 int bytes) 5940 { 5941 gfn_t gfn = gpa >> PAGE_SHIFT; 5942 struct kvm_mmu_page *sp; 5943 LIST_HEAD(invalid_list); 5944 u64 entry, gentry, *spte; 5945 int npte; 5946 bool flush = false; 5947 5948 /* 5949 * When emulating guest writes, ensure the written value is visible to 5950 * any task that is handling page faults before checking whether or not 5951 * KVM is shadowing a guest PTE. This ensures either KVM will create 5952 * the correct SPTE in the page fault handler, or this task will see 5953 * a non-zero indirect_shadow_pages. Pairs with the smp_mb() in 5954 * account_shadowed(). 5955 */ 5956 smp_mb(); 5957 if (!vcpu->kvm->arch.indirect_shadow_pages) 5958 return; 5959 5960 write_lock(&vcpu->kvm->mmu_lock); 5961 5962 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes); 5963 5964 ++vcpu->kvm->stat.mmu_pte_write; 5965 5966 for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) { 5967 if (detect_write_misaligned(sp, gpa, bytes) || 5968 detect_write_flooding(sp)) { 5969 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); 5970 ++vcpu->kvm->stat.mmu_flooded; 5971 continue; 5972 } 5973 5974 spte = get_written_sptes(sp, gpa, &npte); 5975 if (!spte) 5976 continue; 5977 5978 while (npte--) { 5979 entry = *spte; 5980 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL); 5981 if (gentry && sp->role.level != PG_LEVEL_4K) 5982 ++vcpu->kvm->stat.mmu_pde_zapped; 5983 if (is_shadow_present_pte(entry)) 5984 flush = true; 5985 ++spte; 5986 } 5987 } 5988 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 5989 write_unlock(&vcpu->kvm->mmu_lock); 5990 } 5991 5992 static bool is_write_to_guest_page_table(u64 error_code) 5993 { 5994 const u64 mask = PFERR_GUEST_PAGE_MASK | PFERR_WRITE_MASK | PFERR_PRESENT_MASK; 5995 5996 return (error_code & mask) == mask; 5997 } 5998 5999 static int kvm_mmu_write_protect_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 6000 u64 error_code, int *emulation_type) 6001 { 6002 bool direct = vcpu->arch.mmu->root_role.direct; 6003 6004 /* 6005 * Do not try to unprotect and retry if the vCPU re-faulted on the same 6006 * RIP with the same address that was previously unprotected, as doing 6007 * so will likely put the vCPU into an infinite. E.g. if the vCPU uses 6008 * a non-page-table modifying instruction on the PDE that points to the 6009 * instruction, then unprotecting the gfn will unmap the instruction's 6010 * code, i.e. make it impossible for the instruction to ever complete. 6011 */ 6012 if (vcpu->arch.last_retry_eip == kvm_rip_read(vcpu) && 6013 vcpu->arch.last_retry_addr == cr2_or_gpa) 6014 return RET_PF_EMULATE; 6015 6016 /* 6017 * Reset the unprotect+retry values that guard against infinite loops. 6018 * The values will be refreshed if KVM explicitly unprotects a gfn and 6019 * retries, in all other cases it's safe to retry in the future even if 6020 * the next page fault happens on the same RIP+address. 6021 */ 6022 vcpu->arch.last_retry_eip = 0; 6023 vcpu->arch.last_retry_addr = 0; 6024 6025 /* 6026 * It should be impossible to reach this point with an MMIO cache hit, 6027 * as RET_PF_WRITE_PROTECTED is returned if and only if there's a valid, 6028 * writable memslot, and creating a memslot should invalidate the MMIO 6029 * cache by way of changing the memslot generation. WARN and disallow 6030 * retry if MMIO is detected, as retrying MMIO emulation is pointless 6031 * and could put the vCPU into an infinite loop because the processor 6032 * will keep faulting on the non-existent MMIO address. 6033 */ 6034 if (WARN_ON_ONCE(mmio_info_in_cache(vcpu, cr2_or_gpa, direct))) 6035 return RET_PF_EMULATE; 6036 6037 /* 6038 * Before emulating the instruction, check to see if the access was due 6039 * to a read-only violation while the CPU was walking non-nested NPT 6040 * page tables, i.e. for a direct MMU, for _guest_ page tables in L1. 6041 * If L1 is sharing (a subset of) its page tables with L2, e.g. by 6042 * having nCR3 share lower level page tables with hCR3, then when KVM 6043 * (L0) write-protects the nested NPTs, i.e. npt12 entries, KVM is also 6044 * unknowingly write-protecting L1's guest page tables, which KVM isn't 6045 * shadowing. 6046 * 6047 * Because the CPU (by default) walks NPT page tables using a write 6048 * access (to ensure the CPU can do A/D updates), page walks in L1 can 6049 * trigger write faults for the above case even when L1 isn't modifying 6050 * PTEs. As a result, KVM will unnecessarily emulate (or at least, try 6051 * to emulate) an excessive number of L1 instructions; because L1's MMU 6052 * isn't shadowed by KVM, there is no need to write-protect L1's gPTEs 6053 * and thus no need to emulate in order to guarantee forward progress. 6054 * 6055 * Try to unprotect the gfn, i.e. zap any shadow pages, so that L1 can 6056 * proceed without triggering emulation. If one or more shadow pages 6057 * was zapped, skip emulation and resume L1 to let it natively execute 6058 * the instruction. If no shadow pages were zapped, then the write- 6059 * fault is due to something else entirely, i.e. KVM needs to emulate, 6060 * as resuming the guest will put it into an infinite loop. 6061 * 6062 * Note, this code also applies to Intel CPUs, even though it is *very* 6063 * unlikely that an L1 will share its page tables (IA32/PAE/paging64 6064 * format) with L2's page tables (EPT format). 6065 * 6066 * For indirect MMUs, i.e. if KVM is shadowing the current MMU, try to 6067 * unprotect the gfn and retry if an event is awaiting reinjection. If 6068 * KVM emulates multiple instructions before completing event injection, 6069 * the event could be delayed beyond what is architecturally allowed, 6070 * e.g. KVM could inject an IRQ after the TPR has been raised. 6071 */ 6072 if (((direct && is_write_to_guest_page_table(error_code)) || 6073 (!direct && kvm_event_needs_reinjection(vcpu))) && 6074 kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa)) 6075 return RET_PF_RETRY; 6076 6077 /* 6078 * The gfn is write-protected, but if KVM detects its emulating an 6079 * instruction that is unlikely to be used to modify page tables, or if 6080 * emulation fails, KVM can try to unprotect the gfn and let the CPU 6081 * re-execute the instruction that caused the page fault. Do not allow 6082 * retrying an instruction from a nested guest as KVM is only explicitly 6083 * shadowing L1's page tables, i.e. unprotecting something for L1 isn't 6084 * going to magically fix whatever issue caused L2 to fail. 6085 */ 6086 if (!is_guest_mode(vcpu)) 6087 *emulation_type |= EMULTYPE_ALLOW_RETRY_PF; 6088 6089 return RET_PF_EMULATE; 6090 } 6091 6092 int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 6093 void *insn, int insn_len) 6094 { 6095 int r, emulation_type = EMULTYPE_PF; 6096 bool direct = vcpu->arch.mmu->root_role.direct; 6097 6098 if (WARN_ON_ONCE(!VALID_PAGE(vcpu->arch.mmu->root.hpa))) 6099 return RET_PF_RETRY; 6100 6101 /* 6102 * Except for reserved faults (emulated MMIO is shared-only), set the 6103 * PFERR_PRIVATE_ACCESS flag for software-protected VMs based on the gfn's 6104 * current attributes, which are the source of truth for such VMs. Note, 6105 * this wrong for nested MMUs as the GPA is an L2 GPA, but KVM doesn't 6106 * currently supported nested virtualization (among many other things) 6107 * for software-protected VMs. 6108 */ 6109 if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && 6110 !(error_code & PFERR_RSVD_MASK) && 6111 vcpu->kvm->arch.vm_type == KVM_X86_SW_PROTECTED_VM && 6112 kvm_mem_is_private(vcpu->kvm, gpa_to_gfn(cr2_or_gpa))) 6113 error_code |= PFERR_PRIVATE_ACCESS; 6114 6115 r = RET_PF_INVALID; 6116 if (unlikely(error_code & PFERR_RSVD_MASK)) { 6117 if (WARN_ON_ONCE(error_code & PFERR_PRIVATE_ACCESS)) 6118 return -EFAULT; 6119 6120 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct); 6121 if (r == RET_PF_EMULATE) 6122 goto emulate; 6123 } 6124 6125 if (r == RET_PF_INVALID) { 6126 vcpu->stat.pf_taken++; 6127 6128 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, error_code, false, 6129 &emulation_type, NULL); 6130 if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm)) 6131 return -EIO; 6132 } 6133 6134 if (r < 0) 6135 return r; 6136 6137 if (r == RET_PF_WRITE_PROTECTED) 6138 r = kvm_mmu_write_protect_fault(vcpu, cr2_or_gpa, error_code, 6139 &emulation_type); 6140 6141 if (r == RET_PF_FIXED) 6142 vcpu->stat.pf_fixed++; 6143 else if (r == RET_PF_EMULATE) 6144 vcpu->stat.pf_emulate++; 6145 else if (r == RET_PF_SPURIOUS) 6146 vcpu->stat.pf_spurious++; 6147 6148 if (r != RET_PF_EMULATE) 6149 return 1; 6150 6151 emulate: 6152 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn, 6153 insn_len); 6154 } 6155 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); 6156 6157 void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg) 6158 { 6159 u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; 6160 int root_level, leaf, level; 6161 6162 leaf = get_sptes_lockless(vcpu, gpa, sptes, &root_level); 6163 if (unlikely(leaf < 0)) 6164 return; 6165 6166 pr_err("%s %llx", msg, gpa); 6167 for (level = root_level; level >= leaf; level--) 6168 pr_cont(", spte[%d] = 0x%llx", level, sptes[level]); 6169 pr_cont("\n"); 6170 } 6171 EXPORT_SYMBOL_GPL(kvm_mmu_print_sptes); 6172 6173 static void __kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 6174 u64 addr, hpa_t root_hpa) 6175 { 6176 struct kvm_shadow_walk_iterator iterator; 6177 6178 vcpu_clear_mmio_info(vcpu, addr); 6179 6180 /* 6181 * Walking and synchronizing SPTEs both assume they are operating in 6182 * the context of the current MMU, and would need to be reworked if 6183 * this is ever used to sync the guest_mmu, e.g. to emulate INVEPT. 6184 */ 6185 if (WARN_ON_ONCE(mmu != vcpu->arch.mmu)) 6186 return; 6187 6188 if (!VALID_PAGE(root_hpa)) 6189 return; 6190 6191 write_lock(&vcpu->kvm->mmu_lock); 6192 for_each_shadow_entry_using_root(vcpu, root_hpa, addr, iterator) { 6193 struct kvm_mmu_page *sp = sptep_to_sp(iterator.sptep); 6194 6195 if (sp->unsync) { 6196 int ret = kvm_sync_spte(vcpu, sp, iterator.index); 6197 6198 if (ret < 0) 6199 mmu_page_zap_pte(vcpu->kvm, sp, iterator.sptep, NULL); 6200 if (ret) 6201 kvm_flush_remote_tlbs_sptep(vcpu->kvm, iterator.sptep); 6202 } 6203 6204 if (!sp->unsync_children) 6205 break; 6206 } 6207 write_unlock(&vcpu->kvm->mmu_lock); 6208 } 6209 6210 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 6211 u64 addr, unsigned long roots) 6212 { 6213 int i; 6214 6215 WARN_ON_ONCE(roots & ~KVM_MMU_ROOTS_ALL); 6216 6217 /* It's actually a GPA for vcpu->arch.guest_mmu. */ 6218 if (mmu != &vcpu->arch.guest_mmu) { 6219 /* INVLPG on a non-canonical address is a NOP according to the SDM. */ 6220 if (is_noncanonical_address(addr, vcpu)) 6221 return; 6222 6223 kvm_x86_call(flush_tlb_gva)(vcpu, addr); 6224 } 6225 6226 if (!mmu->sync_spte) 6227 return; 6228 6229 if (roots & KVM_MMU_ROOT_CURRENT) 6230 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->root.hpa); 6231 6232 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 6233 if (roots & KVM_MMU_ROOT_PREVIOUS(i)) 6234 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->prev_roots[i].hpa); 6235 } 6236 } 6237 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_addr); 6238 6239 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) 6240 { 6241 /* 6242 * INVLPG is required to invalidate any global mappings for the VA, 6243 * irrespective of PCID. Blindly sync all roots as it would take 6244 * roughly the same amount of work/time to determine whether any of the 6245 * previous roots have a global mapping. 6246 * 6247 * Mappings not reachable via the current or previous cached roots will 6248 * be synced when switching to that new cr3, so nothing needs to be 6249 * done here for them. 6250 */ 6251 kvm_mmu_invalidate_addr(vcpu, vcpu->arch.walk_mmu, gva, KVM_MMU_ROOTS_ALL); 6252 ++vcpu->stat.invlpg; 6253 } 6254 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); 6255 6256 6257 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid) 6258 { 6259 struct kvm_mmu *mmu = vcpu->arch.mmu; 6260 unsigned long roots = 0; 6261 uint i; 6262 6263 if (pcid == kvm_get_active_pcid(vcpu)) 6264 roots |= KVM_MMU_ROOT_CURRENT; 6265 6266 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 6267 if (VALID_PAGE(mmu->prev_roots[i].hpa) && 6268 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) 6269 roots |= KVM_MMU_ROOT_PREVIOUS(i); 6270 } 6271 6272 if (roots) 6273 kvm_mmu_invalidate_addr(vcpu, mmu, gva, roots); 6274 ++vcpu->stat.invlpg; 6275 6276 /* 6277 * Mappings not reachable via the current cr3 or the prev_roots will be 6278 * synced when switching to that cr3, so nothing needs to be done here 6279 * for them. 6280 */ 6281 } 6282 6283 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 6284 int tdp_max_root_level, int tdp_huge_page_level) 6285 { 6286 tdp_enabled = enable_tdp; 6287 tdp_root_level = tdp_forced_root_level; 6288 max_tdp_level = tdp_max_root_level; 6289 6290 #ifdef CONFIG_X86_64 6291 tdp_mmu_enabled = tdp_mmu_allowed && tdp_enabled; 6292 #endif 6293 /* 6294 * max_huge_page_level reflects KVM's MMU capabilities irrespective 6295 * of kernel support, e.g. KVM may be capable of using 1GB pages when 6296 * the kernel is not. But, KVM never creates a page size greater than 6297 * what is used by the kernel for any given HVA, i.e. the kernel's 6298 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust(). 6299 */ 6300 if (tdp_enabled) 6301 max_huge_page_level = tdp_huge_page_level; 6302 else if (boot_cpu_has(X86_FEATURE_GBPAGES)) 6303 max_huge_page_level = PG_LEVEL_1G; 6304 else 6305 max_huge_page_level = PG_LEVEL_2M; 6306 } 6307 EXPORT_SYMBOL_GPL(kvm_configure_mmu); 6308 6309 static void free_mmu_pages(struct kvm_mmu *mmu) 6310 { 6311 if (!tdp_enabled && mmu->pae_root) 6312 set_memory_encrypted((unsigned long)mmu->pae_root, 1); 6313 free_page((unsigned long)mmu->pae_root); 6314 free_page((unsigned long)mmu->pml4_root); 6315 free_page((unsigned long)mmu->pml5_root); 6316 } 6317 6318 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 6319 { 6320 struct page *page; 6321 int i; 6322 6323 mmu->root.hpa = INVALID_PAGE; 6324 mmu->root.pgd = 0; 6325 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 6326 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 6327 6328 /* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */ 6329 if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu) 6330 return 0; 6331 6332 /* 6333 * When using PAE paging, the four PDPTEs are treated as 'root' pages, 6334 * while the PDP table is a per-vCPU construct that's allocated at MMU 6335 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on 6336 * x86_64. Therefore we need to allocate the PDP table in the first 6337 * 4GB of memory, which happens to fit the DMA32 zone. TDP paging 6338 * generally doesn't use PAE paging and can skip allocating the PDP 6339 * table. The main exception, handled here, is SVM's 32-bit NPT. The 6340 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit 6341 * KVM; that horror is handled on-demand by mmu_alloc_special_roots(). 6342 */ 6343 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL) 6344 return 0; 6345 6346 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32); 6347 if (!page) 6348 return -ENOMEM; 6349 6350 mmu->pae_root = page_address(page); 6351 6352 /* 6353 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to 6354 * get the CPU to treat the PDPTEs as encrypted. Decrypt the page so 6355 * that KVM's writes and the CPU's reads get along. Note, this is 6356 * only necessary when using shadow paging, as 64-bit NPT can get at 6357 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported 6358 * by 32-bit kernels (when KVM itself uses 32-bit NPT). 6359 */ 6360 if (!tdp_enabled) 6361 set_memory_decrypted((unsigned long)mmu->pae_root, 1); 6362 else 6363 WARN_ON_ONCE(shadow_me_value); 6364 6365 for (i = 0; i < 4; ++i) 6366 mmu->pae_root[i] = INVALID_PAE_ROOT; 6367 6368 return 0; 6369 } 6370 6371 int kvm_mmu_create(struct kvm_vcpu *vcpu) 6372 { 6373 int ret; 6374 6375 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache; 6376 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO; 6377 6378 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache; 6379 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO; 6380 6381 vcpu->arch.mmu_shadow_page_cache.init_value = 6382 SHADOW_NONPRESENT_VALUE; 6383 if (!vcpu->arch.mmu_shadow_page_cache.init_value) 6384 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO; 6385 6386 vcpu->arch.mmu = &vcpu->arch.root_mmu; 6387 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; 6388 6389 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu); 6390 if (ret) 6391 return ret; 6392 6393 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu); 6394 if (ret) 6395 goto fail_allocate_root; 6396 6397 return ret; 6398 fail_allocate_root: 6399 free_mmu_pages(&vcpu->arch.guest_mmu); 6400 return ret; 6401 } 6402 6403 #define BATCH_ZAP_PAGES 10 6404 static void kvm_zap_obsolete_pages(struct kvm *kvm) 6405 { 6406 struct kvm_mmu_page *sp, *node; 6407 int nr_zapped, batch = 0; 6408 bool unstable; 6409 6410 restart: 6411 list_for_each_entry_safe_reverse(sp, node, 6412 &kvm->arch.active_mmu_pages, link) { 6413 /* 6414 * No obsolete valid page exists before a newly created page 6415 * since active_mmu_pages is a FIFO list. 6416 */ 6417 if (!is_obsolete_sp(kvm, sp)) 6418 break; 6419 6420 /* 6421 * Invalid pages should never land back on the list of active 6422 * pages. Skip the bogus page, otherwise we'll get stuck in an 6423 * infinite loop if the page gets put back on the list (again). 6424 */ 6425 if (WARN_ON_ONCE(sp->role.invalid)) 6426 continue; 6427 6428 /* 6429 * No need to flush the TLB since we're only zapping shadow 6430 * pages with an obsolete generation number and all vCPUS have 6431 * loaded a new root, i.e. the shadow pages being zapped cannot 6432 * be in active use by the guest. 6433 */ 6434 if (batch >= BATCH_ZAP_PAGES && 6435 cond_resched_rwlock_write(&kvm->mmu_lock)) { 6436 batch = 0; 6437 goto restart; 6438 } 6439 6440 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, 6441 &kvm->arch.zapped_obsolete_pages, &nr_zapped); 6442 batch += nr_zapped; 6443 6444 if (unstable) 6445 goto restart; 6446 } 6447 6448 /* 6449 * Kick all vCPUs (via remote TLB flush) before freeing the page tables 6450 * to ensure KVM is not in the middle of a lockless shadow page table 6451 * walk, which may reference the pages. The remote TLB flush itself is 6452 * not required and is simply a convenient way to kick vCPUs as needed. 6453 * KVM performs a local TLB flush when allocating a new root (see 6454 * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are 6455 * running with an obsolete MMU. 6456 */ 6457 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages); 6458 } 6459 6460 /* 6461 * Fast invalidate all shadow pages and use lock-break technique 6462 * to zap obsolete pages. 6463 * 6464 * It's required when memslot is being deleted or VM is being 6465 * destroyed, in these cases, we should ensure that KVM MMU does 6466 * not use any resource of the being-deleted slot or all slots 6467 * after calling the function. 6468 */ 6469 static void kvm_mmu_zap_all_fast(struct kvm *kvm) 6470 { 6471 lockdep_assert_held(&kvm->slots_lock); 6472 6473 write_lock(&kvm->mmu_lock); 6474 trace_kvm_mmu_zap_all_fast(kvm); 6475 6476 /* 6477 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is 6478 * held for the entire duration of zapping obsolete pages, it's 6479 * impossible for there to be multiple invalid generations associated 6480 * with *valid* shadow pages at any given time, i.e. there is exactly 6481 * one valid generation and (at most) one invalid generation. 6482 */ 6483 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1; 6484 6485 /* 6486 * In order to ensure all vCPUs drop their soon-to-be invalid roots, 6487 * invalidating TDP MMU roots must be done while holding mmu_lock for 6488 * write and in the same critical section as making the reload request, 6489 * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield. 6490 */ 6491 if (tdp_mmu_enabled) 6492 kvm_tdp_mmu_invalidate_all_roots(kvm); 6493 6494 /* 6495 * Notify all vcpus to reload its shadow page table and flush TLB. 6496 * Then all vcpus will switch to new shadow page table with the new 6497 * mmu_valid_gen. 6498 * 6499 * Note: we need to do this under the protection of mmu_lock, 6500 * otherwise, vcpu would purge shadow page but miss tlb flush. 6501 */ 6502 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 6503 6504 kvm_zap_obsolete_pages(kvm); 6505 6506 write_unlock(&kvm->mmu_lock); 6507 6508 /* 6509 * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before 6510 * returning to the caller, e.g. if the zap is in response to a memslot 6511 * deletion, mmu_notifier callbacks will be unable to reach the SPTEs 6512 * associated with the deleted memslot once the update completes, and 6513 * Deferring the zap until the final reference to the root is put would 6514 * lead to use-after-free. 6515 */ 6516 if (tdp_mmu_enabled) 6517 kvm_tdp_mmu_zap_invalidated_roots(kvm); 6518 } 6519 6520 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm) 6521 { 6522 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages)); 6523 } 6524 6525 void kvm_mmu_init_vm(struct kvm *kvm) 6526 { 6527 kvm->arch.shadow_mmio_value = shadow_mmio_value; 6528 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 6529 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 6530 INIT_LIST_HEAD(&kvm->arch.possible_nx_huge_pages); 6531 spin_lock_init(&kvm->arch.mmu_unsync_pages_lock); 6532 6533 if (tdp_mmu_enabled) 6534 kvm_mmu_init_tdp_mmu(kvm); 6535 6536 kvm->arch.split_page_header_cache.kmem_cache = mmu_page_header_cache; 6537 kvm->arch.split_page_header_cache.gfp_zero = __GFP_ZERO; 6538 6539 kvm->arch.split_shadow_page_cache.gfp_zero = __GFP_ZERO; 6540 6541 kvm->arch.split_desc_cache.kmem_cache = pte_list_desc_cache; 6542 kvm->arch.split_desc_cache.gfp_zero = __GFP_ZERO; 6543 } 6544 6545 static void mmu_free_vm_memory_caches(struct kvm *kvm) 6546 { 6547 kvm_mmu_free_memory_cache(&kvm->arch.split_desc_cache); 6548 kvm_mmu_free_memory_cache(&kvm->arch.split_page_header_cache); 6549 kvm_mmu_free_memory_cache(&kvm->arch.split_shadow_page_cache); 6550 } 6551 6552 void kvm_mmu_uninit_vm(struct kvm *kvm) 6553 { 6554 if (tdp_mmu_enabled) 6555 kvm_mmu_uninit_tdp_mmu(kvm); 6556 6557 mmu_free_vm_memory_caches(kvm); 6558 } 6559 6560 static bool kvm_rmap_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 6561 { 6562 const struct kvm_memory_slot *memslot; 6563 struct kvm_memslots *slots; 6564 struct kvm_memslot_iter iter; 6565 bool flush = false; 6566 gfn_t start, end; 6567 int i; 6568 6569 if (!kvm_memslots_have_rmaps(kvm)) 6570 return flush; 6571 6572 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 6573 slots = __kvm_memslots(kvm, i); 6574 6575 kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) { 6576 memslot = iter.slot; 6577 start = max(gfn_start, memslot->base_gfn); 6578 end = min(gfn_end, memslot->base_gfn + memslot->npages); 6579 if (WARN_ON_ONCE(start >= end)) 6580 continue; 6581 6582 flush = __kvm_rmap_zap_gfn_range(kvm, memslot, start, 6583 end, true, flush); 6584 } 6585 } 6586 6587 return flush; 6588 } 6589 6590 /* 6591 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end 6592 * (not including it) 6593 */ 6594 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 6595 { 6596 bool flush; 6597 6598 if (WARN_ON_ONCE(gfn_end <= gfn_start)) 6599 return; 6600 6601 write_lock(&kvm->mmu_lock); 6602 6603 kvm_mmu_invalidate_begin(kvm); 6604 6605 kvm_mmu_invalidate_range_add(kvm, gfn_start, gfn_end); 6606 6607 flush = kvm_rmap_zap_gfn_range(kvm, gfn_start, gfn_end); 6608 6609 if (tdp_mmu_enabled) 6610 flush = kvm_tdp_mmu_zap_leafs(kvm, gfn_start, gfn_end, flush); 6611 6612 if (flush) 6613 kvm_flush_remote_tlbs_range(kvm, gfn_start, gfn_end - gfn_start); 6614 6615 kvm_mmu_invalidate_end(kvm); 6616 6617 write_unlock(&kvm->mmu_lock); 6618 } 6619 6620 static bool slot_rmap_write_protect(struct kvm *kvm, 6621 struct kvm_rmap_head *rmap_head, 6622 const struct kvm_memory_slot *slot) 6623 { 6624 return rmap_write_protect(rmap_head, false); 6625 } 6626 6627 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 6628 const struct kvm_memory_slot *memslot, 6629 int start_level) 6630 { 6631 if (kvm_memslots_have_rmaps(kvm)) { 6632 write_lock(&kvm->mmu_lock); 6633 walk_slot_rmaps(kvm, memslot, slot_rmap_write_protect, 6634 start_level, KVM_MAX_HUGEPAGE_LEVEL, false); 6635 write_unlock(&kvm->mmu_lock); 6636 } 6637 6638 if (tdp_mmu_enabled) { 6639 read_lock(&kvm->mmu_lock); 6640 kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level); 6641 read_unlock(&kvm->mmu_lock); 6642 } 6643 } 6644 6645 static inline bool need_topup(struct kvm_mmu_memory_cache *cache, int min) 6646 { 6647 return kvm_mmu_memory_cache_nr_free_objects(cache) < min; 6648 } 6649 6650 static bool need_topup_split_caches_or_resched(struct kvm *kvm) 6651 { 6652 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) 6653 return true; 6654 6655 /* 6656 * In the worst case, SPLIT_DESC_CACHE_MIN_NR_OBJECTS descriptors are needed 6657 * to split a single huge page. Calculating how many are actually needed 6658 * is possible but not worth the complexity. 6659 */ 6660 return need_topup(&kvm->arch.split_desc_cache, SPLIT_DESC_CACHE_MIN_NR_OBJECTS) || 6661 need_topup(&kvm->arch.split_page_header_cache, 1) || 6662 need_topup(&kvm->arch.split_shadow_page_cache, 1); 6663 } 6664 6665 static int topup_split_caches(struct kvm *kvm) 6666 { 6667 /* 6668 * Allocating rmap list entries when splitting huge pages for nested 6669 * MMUs is uncommon as KVM needs to use a list if and only if there is 6670 * more than one rmap entry for a gfn, i.e. requires an L1 gfn to be 6671 * aliased by multiple L2 gfns and/or from multiple nested roots with 6672 * different roles. Aliasing gfns when using TDP is atypical for VMMs; 6673 * a few gfns are often aliased during boot, e.g. when remapping BIOS, 6674 * but aliasing rarely occurs post-boot or for many gfns. If there is 6675 * only one rmap entry, rmap->val points directly at that one entry and 6676 * doesn't need to allocate a list. Buffer the cache by the default 6677 * capacity so that KVM doesn't have to drop mmu_lock to topup if KVM 6678 * encounters an aliased gfn or two. 6679 */ 6680 const int capacity = SPLIT_DESC_CACHE_MIN_NR_OBJECTS + 6681 KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE; 6682 int r; 6683 6684 lockdep_assert_held(&kvm->slots_lock); 6685 6686 r = __kvm_mmu_topup_memory_cache(&kvm->arch.split_desc_cache, capacity, 6687 SPLIT_DESC_CACHE_MIN_NR_OBJECTS); 6688 if (r) 6689 return r; 6690 6691 r = kvm_mmu_topup_memory_cache(&kvm->arch.split_page_header_cache, 1); 6692 if (r) 6693 return r; 6694 6695 return kvm_mmu_topup_memory_cache(&kvm->arch.split_shadow_page_cache, 1); 6696 } 6697 6698 static struct kvm_mmu_page *shadow_mmu_get_sp_for_split(struct kvm *kvm, u64 *huge_sptep) 6699 { 6700 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); 6701 struct shadow_page_caches caches = {}; 6702 union kvm_mmu_page_role role; 6703 unsigned int access; 6704 gfn_t gfn; 6705 6706 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep)); 6707 access = kvm_mmu_page_get_access(huge_sp, spte_index(huge_sptep)); 6708 6709 /* 6710 * Note, huge page splitting always uses direct shadow pages, regardless 6711 * of whether the huge page itself is mapped by a direct or indirect 6712 * shadow page, since the huge page region itself is being directly 6713 * mapped with smaller pages. 6714 */ 6715 role = kvm_mmu_child_role(huge_sptep, /*direct=*/true, access); 6716 6717 /* Direct SPs do not require a shadowed_info_cache. */ 6718 caches.page_header_cache = &kvm->arch.split_page_header_cache; 6719 caches.shadow_page_cache = &kvm->arch.split_shadow_page_cache; 6720 6721 /* Safe to pass NULL for vCPU since requesting a direct SP. */ 6722 return __kvm_mmu_get_shadow_page(kvm, NULL, &caches, gfn, role); 6723 } 6724 6725 static void shadow_mmu_split_huge_page(struct kvm *kvm, 6726 const struct kvm_memory_slot *slot, 6727 u64 *huge_sptep) 6728 6729 { 6730 struct kvm_mmu_memory_cache *cache = &kvm->arch.split_desc_cache; 6731 u64 huge_spte = READ_ONCE(*huge_sptep); 6732 struct kvm_mmu_page *sp; 6733 bool flush = false; 6734 u64 *sptep, spte; 6735 gfn_t gfn; 6736 int index; 6737 6738 sp = shadow_mmu_get_sp_for_split(kvm, huge_sptep); 6739 6740 for (index = 0; index < SPTE_ENT_PER_PAGE; index++) { 6741 sptep = &sp->spt[index]; 6742 gfn = kvm_mmu_page_get_gfn(sp, index); 6743 6744 /* 6745 * The SP may already have populated SPTEs, e.g. if this huge 6746 * page is aliased by multiple sptes with the same access 6747 * permissions. These entries are guaranteed to map the same 6748 * gfn-to-pfn translation since the SP is direct, so no need to 6749 * modify them. 6750 * 6751 * However, if a given SPTE points to a lower level page table, 6752 * that lower level page table may only be partially populated. 6753 * Installing such SPTEs would effectively unmap a potion of the 6754 * huge page. Unmapping guest memory always requires a TLB flush 6755 * since a subsequent operation on the unmapped regions would 6756 * fail to detect the need to flush. 6757 */ 6758 if (is_shadow_present_pte(*sptep)) { 6759 flush |= !is_last_spte(*sptep, sp->role.level); 6760 continue; 6761 } 6762 6763 spte = make_huge_page_split_spte(kvm, huge_spte, sp->role, index); 6764 mmu_spte_set(sptep, spte); 6765 __rmap_add(kvm, cache, slot, sptep, gfn, sp->role.access); 6766 } 6767 6768 __link_shadow_page(kvm, cache, huge_sptep, sp, flush); 6769 } 6770 6771 static int shadow_mmu_try_split_huge_page(struct kvm *kvm, 6772 const struct kvm_memory_slot *slot, 6773 u64 *huge_sptep) 6774 { 6775 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); 6776 int level, r = 0; 6777 gfn_t gfn; 6778 u64 spte; 6779 6780 /* Grab information for the tracepoint before dropping the MMU lock. */ 6781 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep)); 6782 level = huge_sp->role.level; 6783 spte = *huge_sptep; 6784 6785 if (kvm_mmu_available_pages(kvm) <= KVM_MIN_FREE_MMU_PAGES) { 6786 r = -ENOSPC; 6787 goto out; 6788 } 6789 6790 if (need_topup_split_caches_or_resched(kvm)) { 6791 write_unlock(&kvm->mmu_lock); 6792 cond_resched(); 6793 /* 6794 * If the topup succeeds, return -EAGAIN to indicate that the 6795 * rmap iterator should be restarted because the MMU lock was 6796 * dropped. 6797 */ 6798 r = topup_split_caches(kvm) ?: -EAGAIN; 6799 write_lock(&kvm->mmu_lock); 6800 goto out; 6801 } 6802 6803 shadow_mmu_split_huge_page(kvm, slot, huge_sptep); 6804 6805 out: 6806 trace_kvm_mmu_split_huge_page(gfn, spte, level, r); 6807 return r; 6808 } 6809 6810 static bool shadow_mmu_try_split_huge_pages(struct kvm *kvm, 6811 struct kvm_rmap_head *rmap_head, 6812 const struct kvm_memory_slot *slot) 6813 { 6814 struct rmap_iterator iter; 6815 struct kvm_mmu_page *sp; 6816 u64 *huge_sptep; 6817 int r; 6818 6819 restart: 6820 for_each_rmap_spte(rmap_head, &iter, huge_sptep) { 6821 sp = sptep_to_sp(huge_sptep); 6822 6823 /* TDP MMU is enabled, so rmap only contains nested MMU SPs. */ 6824 if (WARN_ON_ONCE(!sp->role.guest_mode)) 6825 continue; 6826 6827 /* The rmaps should never contain non-leaf SPTEs. */ 6828 if (WARN_ON_ONCE(!is_large_pte(*huge_sptep))) 6829 continue; 6830 6831 /* SPs with level >PG_LEVEL_4K should never by unsync. */ 6832 if (WARN_ON_ONCE(sp->unsync)) 6833 continue; 6834 6835 /* Don't bother splitting huge pages on invalid SPs. */ 6836 if (sp->role.invalid) 6837 continue; 6838 6839 r = shadow_mmu_try_split_huge_page(kvm, slot, huge_sptep); 6840 6841 /* 6842 * The split succeeded or needs to be retried because the MMU 6843 * lock was dropped. Either way, restart the iterator to get it 6844 * back into a consistent state. 6845 */ 6846 if (!r || r == -EAGAIN) 6847 goto restart; 6848 6849 /* The split failed and shouldn't be retried (e.g. -ENOMEM). */ 6850 break; 6851 } 6852 6853 return false; 6854 } 6855 6856 static void kvm_shadow_mmu_try_split_huge_pages(struct kvm *kvm, 6857 const struct kvm_memory_slot *slot, 6858 gfn_t start, gfn_t end, 6859 int target_level) 6860 { 6861 int level; 6862 6863 /* 6864 * Split huge pages starting with KVM_MAX_HUGEPAGE_LEVEL and working 6865 * down to the target level. This ensures pages are recursively split 6866 * all the way to the target level. There's no need to split pages 6867 * already at the target level. 6868 */ 6869 for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--) 6870 __walk_slot_rmaps(kvm, slot, shadow_mmu_try_split_huge_pages, 6871 level, level, start, end - 1, true, true, false); 6872 } 6873 6874 /* Must be called with the mmu_lock held in write-mode. */ 6875 void kvm_mmu_try_split_huge_pages(struct kvm *kvm, 6876 const struct kvm_memory_slot *memslot, 6877 u64 start, u64 end, 6878 int target_level) 6879 { 6880 if (!tdp_mmu_enabled) 6881 return; 6882 6883 if (kvm_memslots_have_rmaps(kvm)) 6884 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); 6885 6886 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, false); 6887 6888 /* 6889 * A TLB flush is unnecessary at this point for the same reasons as in 6890 * kvm_mmu_slot_try_split_huge_pages(). 6891 */ 6892 } 6893 6894 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, 6895 const struct kvm_memory_slot *memslot, 6896 int target_level) 6897 { 6898 u64 start = memslot->base_gfn; 6899 u64 end = start + memslot->npages; 6900 6901 if (!tdp_mmu_enabled) 6902 return; 6903 6904 if (kvm_memslots_have_rmaps(kvm)) { 6905 write_lock(&kvm->mmu_lock); 6906 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); 6907 write_unlock(&kvm->mmu_lock); 6908 } 6909 6910 read_lock(&kvm->mmu_lock); 6911 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true); 6912 read_unlock(&kvm->mmu_lock); 6913 6914 /* 6915 * No TLB flush is necessary here. KVM will flush TLBs after 6916 * write-protecting and/or clearing dirty on the newly split SPTEs to 6917 * ensure that guest writes are reflected in the dirty log before the 6918 * ioctl to enable dirty logging on this memslot completes. Since the 6919 * split SPTEs retain the write and dirty bits of the huge SPTE, it is 6920 * safe for KVM to decide if a TLB flush is necessary based on the split 6921 * SPTEs. 6922 */ 6923 } 6924 6925 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, 6926 struct kvm_rmap_head *rmap_head, 6927 const struct kvm_memory_slot *slot) 6928 { 6929 u64 *sptep; 6930 struct rmap_iterator iter; 6931 int need_tlb_flush = 0; 6932 struct kvm_mmu_page *sp; 6933 6934 restart: 6935 for_each_rmap_spte(rmap_head, &iter, sptep) { 6936 sp = sptep_to_sp(sptep); 6937 6938 /* 6939 * We cannot do huge page mapping for indirect shadow pages, 6940 * which are found on the last rmap (level = 1) when not using 6941 * tdp; such shadow pages are synced with the page table in 6942 * the guest, and the guest page table is using 4K page size 6943 * mapping if the indirect sp has level = 1. 6944 */ 6945 if (sp->role.direct && 6946 sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn, 6947 PG_LEVEL_NUM)) { 6948 kvm_zap_one_rmap_spte(kvm, rmap_head, sptep); 6949 6950 if (kvm_available_flush_remote_tlbs_range()) 6951 kvm_flush_remote_tlbs_sptep(kvm, sptep); 6952 else 6953 need_tlb_flush = 1; 6954 6955 goto restart; 6956 } 6957 } 6958 6959 return need_tlb_flush; 6960 } 6961 EXPORT_SYMBOL_GPL(kvm_zap_gfn_range); 6962 6963 static void kvm_rmap_zap_collapsible_sptes(struct kvm *kvm, 6964 const struct kvm_memory_slot *slot) 6965 { 6966 /* 6967 * Note, use KVM_MAX_HUGEPAGE_LEVEL - 1 since there's no need to zap 6968 * pages that are already mapped at the maximum hugepage level. 6969 */ 6970 if (walk_slot_rmaps(kvm, slot, kvm_mmu_zap_collapsible_spte, 6971 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL - 1, true)) 6972 kvm_flush_remote_tlbs_memslot(kvm, slot); 6973 } 6974 6975 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, 6976 const struct kvm_memory_slot *slot) 6977 { 6978 if (kvm_memslots_have_rmaps(kvm)) { 6979 write_lock(&kvm->mmu_lock); 6980 kvm_rmap_zap_collapsible_sptes(kvm, slot); 6981 write_unlock(&kvm->mmu_lock); 6982 } 6983 6984 if (tdp_mmu_enabled) { 6985 read_lock(&kvm->mmu_lock); 6986 kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot); 6987 read_unlock(&kvm->mmu_lock); 6988 } 6989 } 6990 6991 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 6992 const struct kvm_memory_slot *memslot) 6993 { 6994 if (kvm_memslots_have_rmaps(kvm)) { 6995 write_lock(&kvm->mmu_lock); 6996 /* 6997 * Clear dirty bits only on 4k SPTEs since the legacy MMU only 6998 * support dirty logging at a 4k granularity. 6999 */ 7000 walk_slot_rmaps_4k(kvm, memslot, __rmap_clear_dirty, false); 7001 write_unlock(&kvm->mmu_lock); 7002 } 7003 7004 if (tdp_mmu_enabled) { 7005 read_lock(&kvm->mmu_lock); 7006 kvm_tdp_mmu_clear_dirty_slot(kvm, memslot); 7007 read_unlock(&kvm->mmu_lock); 7008 } 7009 7010 /* 7011 * The caller will flush the TLBs after this function returns. 7012 * 7013 * It's also safe to flush TLBs out of mmu lock here as currently this 7014 * function is only used for dirty logging, in which case flushing TLB 7015 * out of mmu lock also guarantees no dirty pages will be lost in 7016 * dirty_bitmap. 7017 */ 7018 } 7019 7020 static void kvm_mmu_zap_all(struct kvm *kvm) 7021 { 7022 struct kvm_mmu_page *sp, *node; 7023 LIST_HEAD(invalid_list); 7024 int ign; 7025 7026 write_lock(&kvm->mmu_lock); 7027 restart: 7028 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) { 7029 if (WARN_ON_ONCE(sp->role.invalid)) 7030 continue; 7031 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign)) 7032 goto restart; 7033 if (cond_resched_rwlock_write(&kvm->mmu_lock)) 7034 goto restart; 7035 } 7036 7037 kvm_mmu_commit_zap_page(kvm, &invalid_list); 7038 7039 if (tdp_mmu_enabled) 7040 kvm_tdp_mmu_zap_all(kvm); 7041 7042 write_unlock(&kvm->mmu_lock); 7043 } 7044 7045 void kvm_arch_flush_shadow_all(struct kvm *kvm) 7046 { 7047 kvm_mmu_zap_all(kvm); 7048 } 7049 7050 /* 7051 * Zapping leaf SPTEs with memslot range when a memslot is moved/deleted. 7052 * 7053 * Zapping non-leaf SPTEs, a.k.a. not-last SPTEs, isn't required, worst 7054 * case scenario we'll have unused shadow pages lying around until they 7055 * are recycled due to age or when the VM is destroyed. 7056 */ 7057 static void kvm_mmu_zap_memslot_leafs(struct kvm *kvm, struct kvm_memory_slot *slot) 7058 { 7059 struct kvm_gfn_range range = { 7060 .slot = slot, 7061 .start = slot->base_gfn, 7062 .end = slot->base_gfn + slot->npages, 7063 .may_block = true, 7064 }; 7065 7066 write_lock(&kvm->mmu_lock); 7067 if (kvm_unmap_gfn_range(kvm, &range)) 7068 kvm_flush_remote_tlbs_memslot(kvm, slot); 7069 7070 write_unlock(&kvm->mmu_lock); 7071 } 7072 7073 static inline bool kvm_memslot_flush_zap_all(struct kvm *kvm) 7074 { 7075 return kvm->arch.vm_type == KVM_X86_DEFAULT_VM && 7076 kvm_check_has_quirk(kvm, KVM_X86_QUIRK_SLOT_ZAP_ALL); 7077 } 7078 7079 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 7080 struct kvm_memory_slot *slot) 7081 { 7082 if (kvm_memslot_flush_zap_all(kvm)) 7083 kvm_mmu_zap_all_fast(kvm); 7084 else 7085 kvm_mmu_zap_memslot_leafs(kvm, slot); 7086 } 7087 7088 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen) 7089 { 7090 WARN_ON_ONCE(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 7091 7092 gen &= MMIO_SPTE_GEN_MASK; 7093 7094 /* 7095 * Generation numbers are incremented in multiples of the number of 7096 * address spaces in order to provide unique generations across all 7097 * address spaces. Strip what is effectively the address space 7098 * modifier prior to checking for a wrap of the MMIO generation so 7099 * that a wrap in any address space is detected. 7100 */ 7101 gen &= ~((u64)kvm_arch_nr_memslot_as_ids(kvm) - 1); 7102 7103 /* 7104 * The very rare case: if the MMIO generation number has wrapped, 7105 * zap all shadow pages. 7106 */ 7107 if (unlikely(gen == 0)) { 7108 kvm_debug_ratelimited("zapping shadow pages for mmio generation wraparound\n"); 7109 kvm_mmu_zap_all_fast(kvm); 7110 } 7111 } 7112 7113 static unsigned long mmu_shrink_scan(struct shrinker *shrink, 7114 struct shrink_control *sc) 7115 { 7116 struct kvm *kvm; 7117 int nr_to_scan = sc->nr_to_scan; 7118 unsigned long freed = 0; 7119 7120 mutex_lock(&kvm_lock); 7121 7122 list_for_each_entry(kvm, &vm_list, vm_list) { 7123 int idx; 7124 7125 /* 7126 * Never scan more than sc->nr_to_scan VM instances. 7127 * Will not hit this condition practically since we do not try 7128 * to shrink more than one VM and it is very unlikely to see 7129 * !n_used_mmu_pages so many times. 7130 */ 7131 if (!nr_to_scan--) 7132 break; 7133 /* 7134 * n_used_mmu_pages is accessed without holding kvm->mmu_lock 7135 * here. We may skip a VM instance errorneosly, but we do not 7136 * want to shrink a VM that only started to populate its MMU 7137 * anyway. 7138 */ 7139 if (!kvm->arch.n_used_mmu_pages && 7140 !kvm_has_zapped_obsolete_pages(kvm)) 7141 continue; 7142 7143 idx = srcu_read_lock(&kvm->srcu); 7144 write_lock(&kvm->mmu_lock); 7145 7146 if (kvm_has_zapped_obsolete_pages(kvm)) { 7147 kvm_mmu_commit_zap_page(kvm, 7148 &kvm->arch.zapped_obsolete_pages); 7149 goto unlock; 7150 } 7151 7152 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan); 7153 7154 unlock: 7155 write_unlock(&kvm->mmu_lock); 7156 srcu_read_unlock(&kvm->srcu, idx); 7157 7158 /* 7159 * unfair on small ones 7160 * per-vm shrinkers cry out 7161 * sadness comes quickly 7162 */ 7163 list_move_tail(&kvm->vm_list, &vm_list); 7164 break; 7165 } 7166 7167 mutex_unlock(&kvm_lock); 7168 return freed; 7169 } 7170 7171 static unsigned long mmu_shrink_count(struct shrinker *shrink, 7172 struct shrink_control *sc) 7173 { 7174 return percpu_counter_read_positive(&kvm_total_used_mmu_pages); 7175 } 7176 7177 static struct shrinker *mmu_shrinker; 7178 7179 static void mmu_destroy_caches(void) 7180 { 7181 kmem_cache_destroy(pte_list_desc_cache); 7182 kmem_cache_destroy(mmu_page_header_cache); 7183 } 7184 7185 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp) 7186 { 7187 if (nx_hugepage_mitigation_hard_disabled) 7188 return sysfs_emit(buffer, "never\n"); 7189 7190 return param_get_bool(buffer, kp); 7191 } 7192 7193 static bool get_nx_auto_mode(void) 7194 { 7195 /* Return true when CPU has the bug, and mitigations are ON */ 7196 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off(); 7197 } 7198 7199 static void __set_nx_huge_pages(bool val) 7200 { 7201 nx_huge_pages = itlb_multihit_kvm_mitigation = val; 7202 } 7203 7204 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp) 7205 { 7206 bool old_val = nx_huge_pages; 7207 bool new_val; 7208 7209 if (nx_hugepage_mitigation_hard_disabled) 7210 return -EPERM; 7211 7212 /* In "auto" mode deploy workaround only if CPU has the bug. */ 7213 if (sysfs_streq(val, "off")) { 7214 new_val = 0; 7215 } else if (sysfs_streq(val, "force")) { 7216 new_val = 1; 7217 } else if (sysfs_streq(val, "auto")) { 7218 new_val = get_nx_auto_mode(); 7219 } else if (sysfs_streq(val, "never")) { 7220 new_val = 0; 7221 7222 mutex_lock(&kvm_lock); 7223 if (!list_empty(&vm_list)) { 7224 mutex_unlock(&kvm_lock); 7225 return -EBUSY; 7226 } 7227 nx_hugepage_mitigation_hard_disabled = true; 7228 mutex_unlock(&kvm_lock); 7229 } else if (kstrtobool(val, &new_val) < 0) { 7230 return -EINVAL; 7231 } 7232 7233 __set_nx_huge_pages(new_val); 7234 7235 if (new_val != old_val) { 7236 struct kvm *kvm; 7237 7238 mutex_lock(&kvm_lock); 7239 7240 list_for_each_entry(kvm, &vm_list, vm_list) { 7241 mutex_lock(&kvm->slots_lock); 7242 kvm_mmu_zap_all_fast(kvm); 7243 mutex_unlock(&kvm->slots_lock); 7244 7245 wake_up_process(kvm->arch.nx_huge_page_recovery_thread); 7246 } 7247 mutex_unlock(&kvm_lock); 7248 } 7249 7250 return 0; 7251 } 7252 7253 /* 7254 * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as 7255 * its default value of -1 is technically undefined behavior for a boolean. 7256 * Forward the module init call to SPTE code so that it too can handle module 7257 * params that need to be resolved/snapshot. 7258 */ 7259 void __init kvm_mmu_x86_module_init(void) 7260 { 7261 if (nx_huge_pages == -1) 7262 __set_nx_huge_pages(get_nx_auto_mode()); 7263 7264 /* 7265 * Snapshot userspace's desire to enable the TDP MMU. Whether or not the 7266 * TDP MMU is actually enabled is determined in kvm_configure_mmu() 7267 * when the vendor module is loaded. 7268 */ 7269 tdp_mmu_allowed = tdp_mmu_enabled; 7270 7271 kvm_mmu_spte_module_init(); 7272 } 7273 7274 /* 7275 * The bulk of the MMU initialization is deferred until the vendor module is 7276 * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need 7277 * to be reset when a potentially different vendor module is loaded. 7278 */ 7279 int kvm_mmu_vendor_module_init(void) 7280 { 7281 int ret = -ENOMEM; 7282 7283 /* 7284 * MMU roles use union aliasing which is, generally speaking, an 7285 * undefined behavior. However, we supposedly know how compilers behave 7286 * and the current status quo is unlikely to change. Guardians below are 7287 * supposed to let us know if the assumption becomes false. 7288 */ 7289 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32)); 7290 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32)); 7291 BUILD_BUG_ON(sizeof(union kvm_cpu_role) != sizeof(u64)); 7292 7293 kvm_mmu_reset_all_pte_masks(); 7294 7295 pte_list_desc_cache = KMEM_CACHE(pte_list_desc, SLAB_ACCOUNT); 7296 if (!pte_list_desc_cache) 7297 goto out; 7298 7299 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", 7300 sizeof(struct kvm_mmu_page), 7301 0, SLAB_ACCOUNT, NULL); 7302 if (!mmu_page_header_cache) 7303 goto out; 7304 7305 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL)) 7306 goto out; 7307 7308 mmu_shrinker = shrinker_alloc(0, "x86-mmu"); 7309 if (!mmu_shrinker) 7310 goto out_shrinker; 7311 7312 mmu_shrinker->count_objects = mmu_shrink_count; 7313 mmu_shrinker->scan_objects = mmu_shrink_scan; 7314 mmu_shrinker->seeks = DEFAULT_SEEKS * 10; 7315 7316 shrinker_register(mmu_shrinker); 7317 7318 return 0; 7319 7320 out_shrinker: 7321 percpu_counter_destroy(&kvm_total_used_mmu_pages); 7322 out: 7323 mmu_destroy_caches(); 7324 return ret; 7325 } 7326 7327 void kvm_mmu_destroy(struct kvm_vcpu *vcpu) 7328 { 7329 kvm_mmu_unload(vcpu); 7330 free_mmu_pages(&vcpu->arch.root_mmu); 7331 free_mmu_pages(&vcpu->arch.guest_mmu); 7332 mmu_free_memory_caches(vcpu); 7333 } 7334 7335 void kvm_mmu_vendor_module_exit(void) 7336 { 7337 mmu_destroy_caches(); 7338 percpu_counter_destroy(&kvm_total_used_mmu_pages); 7339 shrinker_free(mmu_shrinker); 7340 } 7341 7342 /* 7343 * Calculate the effective recovery period, accounting for '0' meaning "let KVM 7344 * select a halving time of 1 hour". Returns true if recovery is enabled. 7345 */ 7346 static bool calc_nx_huge_pages_recovery_period(uint *period) 7347 { 7348 /* 7349 * Use READ_ONCE to get the params, this may be called outside of the 7350 * param setters, e.g. by the kthread to compute its next timeout. 7351 */ 7352 bool enabled = READ_ONCE(nx_huge_pages); 7353 uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 7354 7355 if (!enabled || !ratio) 7356 return false; 7357 7358 *period = READ_ONCE(nx_huge_pages_recovery_period_ms); 7359 if (!*period) { 7360 /* Make sure the period is not less than one second. */ 7361 ratio = min(ratio, 3600u); 7362 *period = 60 * 60 * 1000 / ratio; 7363 } 7364 return true; 7365 } 7366 7367 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp) 7368 { 7369 bool was_recovery_enabled, is_recovery_enabled; 7370 uint old_period, new_period; 7371 int err; 7372 7373 if (nx_hugepage_mitigation_hard_disabled) 7374 return -EPERM; 7375 7376 was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period); 7377 7378 err = param_set_uint(val, kp); 7379 if (err) 7380 return err; 7381 7382 is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period); 7383 7384 if (is_recovery_enabled && 7385 (!was_recovery_enabled || old_period > new_period)) { 7386 struct kvm *kvm; 7387 7388 mutex_lock(&kvm_lock); 7389 7390 list_for_each_entry(kvm, &vm_list, vm_list) 7391 wake_up_process(kvm->arch.nx_huge_page_recovery_thread); 7392 7393 mutex_unlock(&kvm_lock); 7394 } 7395 7396 return err; 7397 } 7398 7399 static void kvm_recover_nx_huge_pages(struct kvm *kvm) 7400 { 7401 unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits; 7402 struct kvm_memory_slot *slot; 7403 int rcu_idx; 7404 struct kvm_mmu_page *sp; 7405 unsigned int ratio; 7406 LIST_HEAD(invalid_list); 7407 bool flush = false; 7408 ulong to_zap; 7409 7410 rcu_idx = srcu_read_lock(&kvm->srcu); 7411 write_lock(&kvm->mmu_lock); 7412 7413 /* 7414 * Zapping TDP MMU shadow pages, including the remote TLB flush, must 7415 * be done under RCU protection, because the pages are freed via RCU 7416 * callback. 7417 */ 7418 rcu_read_lock(); 7419 7420 ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 7421 to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0; 7422 for ( ; to_zap; --to_zap) { 7423 if (list_empty(&kvm->arch.possible_nx_huge_pages)) 7424 break; 7425 7426 /* 7427 * We use a separate list instead of just using active_mmu_pages 7428 * because the number of shadow pages that be replaced with an 7429 * NX huge page is expected to be relatively small compared to 7430 * the total number of shadow pages. And because the TDP MMU 7431 * doesn't use active_mmu_pages. 7432 */ 7433 sp = list_first_entry(&kvm->arch.possible_nx_huge_pages, 7434 struct kvm_mmu_page, 7435 possible_nx_huge_page_link); 7436 WARN_ON_ONCE(!sp->nx_huge_page_disallowed); 7437 WARN_ON_ONCE(!sp->role.direct); 7438 7439 /* 7440 * Unaccount and do not attempt to recover any NX Huge Pages 7441 * that are being dirty tracked, as they would just be faulted 7442 * back in as 4KiB pages. The NX Huge Pages in this slot will be 7443 * recovered, along with all the other huge pages in the slot, 7444 * when dirty logging is disabled. 7445 * 7446 * Since gfn_to_memslot() is relatively expensive, it helps to 7447 * skip it if it the test cannot possibly return true. On the 7448 * other hand, if any memslot has logging enabled, chances are 7449 * good that all of them do, in which case unaccount_nx_huge_page() 7450 * is much cheaper than zapping the page. 7451 * 7452 * If a memslot update is in progress, reading an incorrect value 7453 * of kvm->nr_memslots_dirty_logging is not a problem: if it is 7454 * becoming zero, gfn_to_memslot() will be done unnecessarily; if 7455 * it is becoming nonzero, the page will be zapped unnecessarily. 7456 * Either way, this only affects efficiency in racy situations, 7457 * and not correctness. 7458 */ 7459 slot = NULL; 7460 if (atomic_read(&kvm->nr_memslots_dirty_logging)) { 7461 struct kvm_memslots *slots; 7462 7463 slots = kvm_memslots_for_spte_role(kvm, sp->role); 7464 slot = __gfn_to_memslot(slots, sp->gfn); 7465 WARN_ON_ONCE(!slot); 7466 } 7467 7468 if (slot && kvm_slot_dirty_track_enabled(slot)) 7469 unaccount_nx_huge_page(kvm, sp); 7470 else if (is_tdp_mmu_page(sp)) 7471 flush |= kvm_tdp_mmu_zap_sp(kvm, sp); 7472 else 7473 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 7474 WARN_ON_ONCE(sp->nx_huge_page_disallowed); 7475 7476 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 7477 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7478 rcu_read_unlock(); 7479 7480 cond_resched_rwlock_write(&kvm->mmu_lock); 7481 flush = false; 7482 7483 rcu_read_lock(); 7484 } 7485 } 7486 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7487 7488 rcu_read_unlock(); 7489 7490 write_unlock(&kvm->mmu_lock); 7491 srcu_read_unlock(&kvm->srcu, rcu_idx); 7492 } 7493 7494 static long get_nx_huge_page_recovery_timeout(u64 start_time) 7495 { 7496 bool enabled; 7497 uint period; 7498 7499 enabled = calc_nx_huge_pages_recovery_period(&period); 7500 7501 return enabled ? start_time + msecs_to_jiffies(period) - get_jiffies_64() 7502 : MAX_SCHEDULE_TIMEOUT; 7503 } 7504 7505 static int kvm_nx_huge_page_recovery_worker(struct kvm *kvm, uintptr_t data) 7506 { 7507 u64 start_time; 7508 long remaining_time; 7509 7510 while (true) { 7511 start_time = get_jiffies_64(); 7512 remaining_time = get_nx_huge_page_recovery_timeout(start_time); 7513 7514 set_current_state(TASK_INTERRUPTIBLE); 7515 while (!kthread_should_stop() && remaining_time > 0) { 7516 schedule_timeout(remaining_time); 7517 remaining_time = get_nx_huge_page_recovery_timeout(start_time); 7518 set_current_state(TASK_INTERRUPTIBLE); 7519 } 7520 7521 set_current_state(TASK_RUNNING); 7522 7523 if (kthread_should_stop()) 7524 return 0; 7525 7526 kvm_recover_nx_huge_pages(kvm); 7527 } 7528 } 7529 7530 int kvm_mmu_post_init_vm(struct kvm *kvm) 7531 { 7532 int err; 7533 7534 if (nx_hugepage_mitigation_hard_disabled) 7535 return 0; 7536 7537 err = kvm_vm_create_worker_thread(kvm, kvm_nx_huge_page_recovery_worker, 0, 7538 "kvm-nx-lpage-recovery", 7539 &kvm->arch.nx_huge_page_recovery_thread); 7540 if (!err) 7541 kthread_unpark(kvm->arch.nx_huge_page_recovery_thread); 7542 7543 return err; 7544 } 7545 7546 void kvm_mmu_pre_destroy_vm(struct kvm *kvm) 7547 { 7548 if (kvm->arch.nx_huge_page_recovery_thread) 7549 kthread_stop(kvm->arch.nx_huge_page_recovery_thread); 7550 } 7551 7552 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 7553 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm, 7554 struct kvm_gfn_range *range) 7555 { 7556 /* 7557 * Zap SPTEs even if the slot can't be mapped PRIVATE. KVM x86 only 7558 * supports KVM_MEMORY_ATTRIBUTE_PRIVATE, and so it *seems* like KVM 7559 * can simply ignore such slots. But if userspace is making memory 7560 * PRIVATE, then KVM must prevent the guest from accessing the memory 7561 * as shared. And if userspace is making memory SHARED and this point 7562 * is reached, then at least one page within the range was previously 7563 * PRIVATE, i.e. the slot's possible hugepage ranges are changing. 7564 * Zapping SPTEs in this case ensures KVM will reassess whether or not 7565 * a hugepage can be used for affected ranges. 7566 */ 7567 if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm))) 7568 return false; 7569 7570 return kvm_unmap_gfn_range(kvm, range); 7571 } 7572 7573 static bool hugepage_test_mixed(struct kvm_memory_slot *slot, gfn_t gfn, 7574 int level) 7575 { 7576 return lpage_info_slot(gfn, slot, level)->disallow_lpage & KVM_LPAGE_MIXED_FLAG; 7577 } 7578 7579 static void hugepage_clear_mixed(struct kvm_memory_slot *slot, gfn_t gfn, 7580 int level) 7581 { 7582 lpage_info_slot(gfn, slot, level)->disallow_lpage &= ~KVM_LPAGE_MIXED_FLAG; 7583 } 7584 7585 static void hugepage_set_mixed(struct kvm_memory_slot *slot, gfn_t gfn, 7586 int level) 7587 { 7588 lpage_info_slot(gfn, slot, level)->disallow_lpage |= KVM_LPAGE_MIXED_FLAG; 7589 } 7590 7591 static bool hugepage_has_attrs(struct kvm *kvm, struct kvm_memory_slot *slot, 7592 gfn_t gfn, int level, unsigned long attrs) 7593 { 7594 const unsigned long start = gfn; 7595 const unsigned long end = start + KVM_PAGES_PER_HPAGE(level); 7596 7597 if (level == PG_LEVEL_2M) 7598 return kvm_range_has_memory_attributes(kvm, start, end, ~0, attrs); 7599 7600 for (gfn = start; gfn < end; gfn += KVM_PAGES_PER_HPAGE(level - 1)) { 7601 if (hugepage_test_mixed(slot, gfn, level - 1) || 7602 attrs != kvm_get_memory_attributes(kvm, gfn)) 7603 return false; 7604 } 7605 return true; 7606 } 7607 7608 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm, 7609 struct kvm_gfn_range *range) 7610 { 7611 unsigned long attrs = range->arg.attributes; 7612 struct kvm_memory_slot *slot = range->slot; 7613 int level; 7614 7615 lockdep_assert_held_write(&kvm->mmu_lock); 7616 lockdep_assert_held(&kvm->slots_lock); 7617 7618 /* 7619 * Calculate which ranges can be mapped with hugepages even if the slot 7620 * can't map memory PRIVATE. KVM mustn't create a SHARED hugepage over 7621 * a range that has PRIVATE GFNs, and conversely converting a range to 7622 * SHARED may now allow hugepages. 7623 */ 7624 if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm))) 7625 return false; 7626 7627 /* 7628 * The sequence matters here: upper levels consume the result of lower 7629 * level's scanning. 7630 */ 7631 for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) { 7632 gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level); 7633 gfn_t gfn = gfn_round_for_level(range->start, level); 7634 7635 /* Process the head page if it straddles the range. */ 7636 if (gfn != range->start || gfn + nr_pages > range->end) { 7637 /* 7638 * Skip mixed tracking if the aligned gfn isn't covered 7639 * by the memslot, KVM can't use a hugepage due to the 7640 * misaligned address regardless of memory attributes. 7641 */ 7642 if (gfn >= slot->base_gfn && 7643 gfn + nr_pages <= slot->base_gfn + slot->npages) { 7644 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs)) 7645 hugepage_clear_mixed(slot, gfn, level); 7646 else 7647 hugepage_set_mixed(slot, gfn, level); 7648 } 7649 gfn += nr_pages; 7650 } 7651 7652 /* 7653 * Pages entirely covered by the range are guaranteed to have 7654 * only the attributes which were just set. 7655 */ 7656 for ( ; gfn + nr_pages <= range->end; gfn += nr_pages) 7657 hugepage_clear_mixed(slot, gfn, level); 7658 7659 /* 7660 * Process the last tail page if it straddles the range and is 7661 * contained by the memslot. Like the head page, KVM can't 7662 * create a hugepage if the slot size is misaligned. 7663 */ 7664 if (gfn < range->end && 7665 (gfn + nr_pages) <= (slot->base_gfn + slot->npages)) { 7666 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs)) 7667 hugepage_clear_mixed(slot, gfn, level); 7668 else 7669 hugepage_set_mixed(slot, gfn, level); 7670 } 7671 } 7672 return false; 7673 } 7674 7675 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm, 7676 struct kvm_memory_slot *slot) 7677 { 7678 int level; 7679 7680 if (!kvm_arch_has_private_mem(kvm)) 7681 return; 7682 7683 for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) { 7684 /* 7685 * Don't bother tracking mixed attributes for pages that can't 7686 * be huge due to alignment, i.e. process only pages that are 7687 * entirely contained by the memslot. 7688 */ 7689 gfn_t end = gfn_round_for_level(slot->base_gfn + slot->npages, level); 7690 gfn_t start = gfn_round_for_level(slot->base_gfn, level); 7691 gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level); 7692 gfn_t gfn; 7693 7694 if (start < slot->base_gfn) 7695 start += nr_pages; 7696 7697 /* 7698 * Unlike setting attributes, every potential hugepage needs to 7699 * be manually checked as the attributes may already be mixed. 7700 */ 7701 for (gfn = start; gfn < end; gfn += nr_pages) { 7702 unsigned long attrs = kvm_get_memory_attributes(kvm, gfn); 7703 7704 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs)) 7705 hugepage_clear_mixed(slot, gfn, level); 7706 else 7707 hugepage_set_mixed(slot, gfn, level); 7708 } 7709 } 7710 } 7711 #endif 7712