1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * MMU support 9 * 10 * Copyright (C) 2006 Qumranet, Inc. 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 12 * 13 * Authors: 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Avi Kivity <avi@qumranet.com> 16 */ 17 18 #include "irq.h" 19 #include "ioapic.h" 20 #include "mmu.h" 21 #include "mmu_internal.h" 22 #include "tdp_mmu.h" 23 #include "x86.h" 24 #include "kvm_cache_regs.h" 25 #include "kvm_emulate.h" 26 #include "cpuid.h" 27 #include "spte.h" 28 29 #include <linux/kvm_host.h> 30 #include <linux/types.h> 31 #include <linux/string.h> 32 #include <linux/mm.h> 33 #include <linux/highmem.h> 34 #include <linux/moduleparam.h> 35 #include <linux/export.h> 36 #include <linux/swap.h> 37 #include <linux/hugetlb.h> 38 #include <linux/compiler.h> 39 #include <linux/srcu.h> 40 #include <linux/slab.h> 41 #include <linux/sched/signal.h> 42 #include <linux/uaccess.h> 43 #include <linux/hash.h> 44 #include <linux/kern_levels.h> 45 #include <linux/kthread.h> 46 47 #include <asm/page.h> 48 #include <asm/memtype.h> 49 #include <asm/cmpxchg.h> 50 #include <asm/io.h> 51 #include <asm/set_memory.h> 52 #include <asm/vmx.h> 53 #include <asm/kvm_page_track.h> 54 #include "trace.h" 55 56 #include "paging.h" 57 58 extern bool itlb_multihit_kvm_mitigation; 59 60 int __read_mostly nx_huge_pages = -1; 61 static uint __read_mostly nx_huge_pages_recovery_period_ms; 62 #ifdef CONFIG_PREEMPT_RT 63 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */ 64 static uint __read_mostly nx_huge_pages_recovery_ratio = 0; 65 #else 66 static uint __read_mostly nx_huge_pages_recovery_ratio = 60; 67 #endif 68 69 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp); 70 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp); 71 72 static const struct kernel_param_ops nx_huge_pages_ops = { 73 .set = set_nx_huge_pages, 74 .get = param_get_bool, 75 }; 76 77 static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = { 78 .set = set_nx_huge_pages_recovery_param, 79 .get = param_get_uint, 80 }; 81 82 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644); 83 __MODULE_PARM_TYPE(nx_huge_pages, "bool"); 84 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops, 85 &nx_huge_pages_recovery_ratio, 0644); 86 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint"); 87 module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops, 88 &nx_huge_pages_recovery_period_ms, 0644); 89 __MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint"); 90 91 static bool __read_mostly force_flush_and_sync_on_reuse; 92 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644); 93 94 /* 95 * When setting this variable to true it enables Two-Dimensional-Paging 96 * where the hardware walks 2 page tables: 97 * 1. the guest-virtual to guest-physical 98 * 2. while doing 1. it walks guest-physical to host-physical 99 * If the hardware supports that we don't need to do shadow paging. 100 */ 101 bool tdp_enabled = false; 102 103 static int max_huge_page_level __read_mostly; 104 static int tdp_root_level __read_mostly; 105 static int max_tdp_level __read_mostly; 106 107 #ifdef MMU_DEBUG 108 bool dbg = 0; 109 module_param(dbg, bool, 0644); 110 #endif 111 112 #define PTE_PREFETCH_NUM 8 113 114 #define PT32_LEVEL_BITS 10 115 116 #define PT32_LEVEL_SHIFT(level) \ 117 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS) 118 119 #define PT32_LVL_OFFSET_MASK(level) \ 120 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \ 121 * PT32_LEVEL_BITS))) - 1)) 122 123 #define PT32_INDEX(address, level)\ 124 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1)) 125 126 127 #define PT32_BASE_ADDR_MASK PAGE_MASK 128 #define PT32_DIR_BASE_ADDR_MASK \ 129 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1)) 130 #define PT32_LVL_ADDR_MASK(level) \ 131 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \ 132 * PT32_LEVEL_BITS))) - 1)) 133 134 #include <trace/events/kvm.h> 135 136 /* make pte_list_desc fit well in cache lines */ 137 #define PTE_LIST_EXT 14 138 139 /* 140 * Slight optimization of cacheline layout, by putting `more' and `spte_count' 141 * at the start; then accessing it will only use one single cacheline for 142 * either full (entries==PTE_LIST_EXT) case or entries<=6. 143 */ 144 struct pte_list_desc { 145 struct pte_list_desc *more; 146 /* 147 * Stores number of entries stored in the pte_list_desc. No need to be 148 * u64 but just for easier alignment. When PTE_LIST_EXT, means full. 149 */ 150 u64 spte_count; 151 u64 *sptes[PTE_LIST_EXT]; 152 }; 153 154 struct kvm_shadow_walk_iterator { 155 u64 addr; 156 hpa_t shadow_addr; 157 u64 *sptep; 158 int level; 159 unsigned index; 160 }; 161 162 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \ 163 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \ 164 (_root), (_addr)); \ 165 shadow_walk_okay(&(_walker)); \ 166 shadow_walk_next(&(_walker))) 167 168 #define for_each_shadow_entry(_vcpu, _addr, _walker) \ 169 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 170 shadow_walk_okay(&(_walker)); \ 171 shadow_walk_next(&(_walker))) 172 173 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \ 174 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 175 shadow_walk_okay(&(_walker)) && \ 176 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \ 177 __shadow_walk_next(&(_walker), spte)) 178 179 static struct kmem_cache *pte_list_desc_cache; 180 struct kmem_cache *mmu_page_header_cache; 181 static struct percpu_counter kvm_total_used_mmu_pages; 182 183 static void mmu_spte_set(u64 *sptep, u64 spte); 184 185 struct kvm_mmu_role_regs { 186 const unsigned long cr0; 187 const unsigned long cr4; 188 const u64 efer; 189 }; 190 191 #define CREATE_TRACE_POINTS 192 #include "mmutrace.h" 193 194 /* 195 * Yes, lot's of underscores. They're a hint that you probably shouldn't be 196 * reading from the role_regs. Once the root_role is constructed, it becomes 197 * the single source of truth for the MMU's state. 198 */ 199 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag) \ 200 static inline bool __maybe_unused \ 201 ____is_##reg##_##name(const struct kvm_mmu_role_regs *regs) \ 202 { \ 203 return !!(regs->reg & flag); \ 204 } 205 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG); 206 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP); 207 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE); 208 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE); 209 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP); 210 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP); 211 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE); 212 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57); 213 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX); 214 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA); 215 216 /* 217 * The MMU itself (with a valid role) is the single source of truth for the 218 * MMU. Do not use the regs used to build the MMU/role, nor the vCPU. The 219 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1, 220 * and the vCPU may be incorrect/irrelevant. 221 */ 222 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name) \ 223 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu) \ 224 { \ 225 return !!(mmu->cpu_role. base_or_ext . reg##_##name); \ 226 } 227 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp); 228 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pse); 229 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smep); 230 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smap); 231 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pke); 232 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, la57); 233 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx); 234 BUILD_MMU_ROLE_ACCESSOR(ext, efer, lma); 235 236 static inline bool is_cr0_pg(struct kvm_mmu *mmu) 237 { 238 return mmu->cpu_role.base.level > 0; 239 } 240 241 static inline bool is_cr4_pae(struct kvm_mmu *mmu) 242 { 243 return !mmu->cpu_role.base.has_4_byte_gpte; 244 } 245 246 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu) 247 { 248 struct kvm_mmu_role_regs regs = { 249 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS), 250 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS), 251 .efer = vcpu->arch.efer, 252 }; 253 254 return regs; 255 } 256 257 static inline bool kvm_available_flush_tlb_with_range(void) 258 { 259 return kvm_x86_ops.tlb_remote_flush_with_range; 260 } 261 262 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm, 263 struct kvm_tlb_range *range) 264 { 265 int ret = -ENOTSUPP; 266 267 if (range && kvm_x86_ops.tlb_remote_flush_with_range) 268 ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range); 269 270 if (ret) 271 kvm_flush_remote_tlbs(kvm); 272 } 273 274 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm, 275 u64 start_gfn, u64 pages) 276 { 277 struct kvm_tlb_range range; 278 279 range.start_gfn = start_gfn; 280 range.pages = pages; 281 282 kvm_flush_remote_tlbs_with_range(kvm, &range); 283 } 284 285 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn, 286 unsigned int access) 287 { 288 u64 spte = make_mmio_spte(vcpu, gfn, access); 289 290 trace_mark_mmio_spte(sptep, gfn, spte); 291 mmu_spte_set(sptep, spte); 292 } 293 294 static gfn_t get_mmio_spte_gfn(u64 spte) 295 { 296 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask; 297 298 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN) 299 & shadow_nonpresent_or_rsvd_mask; 300 301 return gpa >> PAGE_SHIFT; 302 } 303 304 static unsigned get_mmio_spte_access(u64 spte) 305 { 306 return spte & shadow_mmio_access_mask; 307 } 308 309 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte) 310 { 311 u64 kvm_gen, spte_gen, gen; 312 313 gen = kvm_vcpu_memslots(vcpu)->generation; 314 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS)) 315 return false; 316 317 kvm_gen = gen & MMIO_SPTE_GEN_MASK; 318 spte_gen = get_mmio_spte_generation(spte); 319 320 trace_check_mmio_spte(spte, kvm_gen, spte_gen); 321 return likely(kvm_gen == spte_gen); 322 } 323 324 static int is_cpuid_PSE36(void) 325 { 326 return 1; 327 } 328 329 static gfn_t pse36_gfn_delta(u32 gpte) 330 { 331 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT; 332 333 return (gpte & PT32_DIR_PSE36_MASK) << shift; 334 } 335 336 #ifdef CONFIG_X86_64 337 static void __set_spte(u64 *sptep, u64 spte) 338 { 339 WRITE_ONCE(*sptep, spte); 340 } 341 342 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 343 { 344 WRITE_ONCE(*sptep, spte); 345 } 346 347 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 348 { 349 return xchg(sptep, spte); 350 } 351 352 static u64 __get_spte_lockless(u64 *sptep) 353 { 354 return READ_ONCE(*sptep); 355 } 356 #else 357 union split_spte { 358 struct { 359 u32 spte_low; 360 u32 spte_high; 361 }; 362 u64 spte; 363 }; 364 365 static void count_spte_clear(u64 *sptep, u64 spte) 366 { 367 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 368 369 if (is_shadow_present_pte(spte)) 370 return; 371 372 /* Ensure the spte is completely set before we increase the count */ 373 smp_wmb(); 374 sp->clear_spte_count++; 375 } 376 377 static void __set_spte(u64 *sptep, u64 spte) 378 { 379 union split_spte *ssptep, sspte; 380 381 ssptep = (union split_spte *)sptep; 382 sspte = (union split_spte)spte; 383 384 ssptep->spte_high = sspte.spte_high; 385 386 /* 387 * If we map the spte from nonpresent to present, We should store 388 * the high bits firstly, then set present bit, so cpu can not 389 * fetch this spte while we are setting the spte. 390 */ 391 smp_wmb(); 392 393 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 394 } 395 396 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 397 { 398 union split_spte *ssptep, sspte; 399 400 ssptep = (union split_spte *)sptep; 401 sspte = (union split_spte)spte; 402 403 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 404 405 /* 406 * If we map the spte from present to nonpresent, we should clear 407 * present bit firstly to avoid vcpu fetch the old high bits. 408 */ 409 smp_wmb(); 410 411 ssptep->spte_high = sspte.spte_high; 412 count_spte_clear(sptep, spte); 413 } 414 415 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 416 { 417 union split_spte *ssptep, sspte, orig; 418 419 ssptep = (union split_spte *)sptep; 420 sspte = (union split_spte)spte; 421 422 /* xchg acts as a barrier before the setting of the high bits */ 423 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); 424 orig.spte_high = ssptep->spte_high; 425 ssptep->spte_high = sspte.spte_high; 426 count_spte_clear(sptep, spte); 427 428 return orig.spte; 429 } 430 431 /* 432 * The idea using the light way get the spte on x86_32 guest is from 433 * gup_get_pte (mm/gup.c). 434 * 435 * An spte tlb flush may be pending, because kvm_set_pte_rmapp 436 * coalesces them and we are running out of the MMU lock. Therefore 437 * we need to protect against in-progress updates of the spte. 438 * 439 * Reading the spte while an update is in progress may get the old value 440 * for the high part of the spte. The race is fine for a present->non-present 441 * change (because the high part of the spte is ignored for non-present spte), 442 * but for a present->present change we must reread the spte. 443 * 444 * All such changes are done in two steps (present->non-present and 445 * non-present->present), hence it is enough to count the number of 446 * present->non-present updates: if it changed while reading the spte, 447 * we might have hit the race. This is done using clear_spte_count. 448 */ 449 static u64 __get_spte_lockless(u64 *sptep) 450 { 451 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 452 union split_spte spte, *orig = (union split_spte *)sptep; 453 int count; 454 455 retry: 456 count = sp->clear_spte_count; 457 smp_rmb(); 458 459 spte.spte_low = orig->spte_low; 460 smp_rmb(); 461 462 spte.spte_high = orig->spte_high; 463 smp_rmb(); 464 465 if (unlikely(spte.spte_low != orig->spte_low || 466 count != sp->clear_spte_count)) 467 goto retry; 468 469 return spte.spte; 470 } 471 #endif 472 473 /* Rules for using mmu_spte_set: 474 * Set the sptep from nonpresent to present. 475 * Note: the sptep being assigned *must* be either not present 476 * or in a state where the hardware will not attempt to update 477 * the spte. 478 */ 479 static void mmu_spte_set(u64 *sptep, u64 new_spte) 480 { 481 WARN_ON(is_shadow_present_pte(*sptep)); 482 __set_spte(sptep, new_spte); 483 } 484 485 /* 486 * Update the SPTE (excluding the PFN), but do not track changes in its 487 * accessed/dirty status. 488 */ 489 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte) 490 { 491 u64 old_spte = *sptep; 492 493 WARN_ON(!is_shadow_present_pte(new_spte)); 494 check_spte_writable_invariants(new_spte); 495 496 if (!is_shadow_present_pte(old_spte)) { 497 mmu_spte_set(sptep, new_spte); 498 return old_spte; 499 } 500 501 if (!spte_has_volatile_bits(old_spte)) 502 __update_clear_spte_fast(sptep, new_spte); 503 else 504 old_spte = __update_clear_spte_slow(sptep, new_spte); 505 506 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte)); 507 508 return old_spte; 509 } 510 511 /* Rules for using mmu_spte_update: 512 * Update the state bits, it means the mapped pfn is not changed. 513 * 514 * Whenever an MMU-writable SPTE is overwritten with a read-only SPTE, remote 515 * TLBs must be flushed. Otherwise rmap_write_protect will find a read-only 516 * spte, even though the writable spte might be cached on a CPU's TLB. 517 * 518 * Returns true if the TLB needs to be flushed 519 */ 520 static bool mmu_spte_update(u64 *sptep, u64 new_spte) 521 { 522 bool flush = false; 523 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte); 524 525 if (!is_shadow_present_pte(old_spte)) 526 return false; 527 528 /* 529 * For the spte updated out of mmu-lock is safe, since 530 * we always atomically update it, see the comments in 531 * spte_has_volatile_bits(). 532 */ 533 if (is_mmu_writable_spte(old_spte) && 534 !is_writable_pte(new_spte)) 535 flush = true; 536 537 /* 538 * Flush TLB when accessed/dirty states are changed in the page tables, 539 * to guarantee consistency between TLB and page tables. 540 */ 541 542 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) { 543 flush = true; 544 kvm_set_pfn_accessed(spte_to_pfn(old_spte)); 545 } 546 547 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) { 548 flush = true; 549 kvm_set_pfn_dirty(spte_to_pfn(old_spte)); 550 } 551 552 return flush; 553 } 554 555 /* 556 * Rules for using mmu_spte_clear_track_bits: 557 * It sets the sptep from present to nonpresent, and track the 558 * state bits, it is used to clear the last level sptep. 559 * Returns the old PTE. 560 */ 561 static int mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep) 562 { 563 kvm_pfn_t pfn; 564 u64 old_spte = *sptep; 565 int level = sptep_to_sp(sptep)->role.level; 566 567 if (!is_shadow_present_pte(old_spte) || 568 !spte_has_volatile_bits(old_spte)) 569 __update_clear_spte_fast(sptep, 0ull); 570 else 571 old_spte = __update_clear_spte_slow(sptep, 0ull); 572 573 if (!is_shadow_present_pte(old_spte)) 574 return old_spte; 575 576 kvm_update_page_stats(kvm, level, -1); 577 578 pfn = spte_to_pfn(old_spte); 579 580 /* 581 * KVM does not hold the refcount of the page used by 582 * kvm mmu, before reclaiming the page, we should 583 * unmap it from mmu first. 584 */ 585 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn))); 586 587 if (is_accessed_spte(old_spte)) 588 kvm_set_pfn_accessed(pfn); 589 590 if (is_dirty_spte(old_spte)) 591 kvm_set_pfn_dirty(pfn); 592 593 return old_spte; 594 } 595 596 /* 597 * Rules for using mmu_spte_clear_no_track: 598 * Directly clear spte without caring the state bits of sptep, 599 * it is used to set the upper level spte. 600 */ 601 static void mmu_spte_clear_no_track(u64 *sptep) 602 { 603 __update_clear_spte_fast(sptep, 0ull); 604 } 605 606 static u64 mmu_spte_get_lockless(u64 *sptep) 607 { 608 return __get_spte_lockless(sptep); 609 } 610 611 /* Returns the Accessed status of the PTE and resets it at the same time. */ 612 static bool mmu_spte_age(u64 *sptep) 613 { 614 u64 spte = mmu_spte_get_lockless(sptep); 615 616 if (!is_accessed_spte(spte)) 617 return false; 618 619 if (spte_ad_enabled(spte)) { 620 clear_bit((ffs(shadow_accessed_mask) - 1), 621 (unsigned long *)sptep); 622 } else { 623 /* 624 * Capture the dirty status of the page, so that it doesn't get 625 * lost when the SPTE is marked for access tracking. 626 */ 627 if (is_writable_pte(spte)) 628 kvm_set_pfn_dirty(spte_to_pfn(spte)); 629 630 spte = mark_spte_for_access_track(spte); 631 mmu_spte_update_no_track(sptep, spte); 632 } 633 634 return true; 635 } 636 637 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) 638 { 639 if (is_tdp_mmu(vcpu->arch.mmu)) { 640 kvm_tdp_mmu_walk_lockless_begin(); 641 } else { 642 /* 643 * Prevent page table teardown by making any free-er wait during 644 * kvm_flush_remote_tlbs() IPI to all active vcpus. 645 */ 646 local_irq_disable(); 647 648 /* 649 * Make sure a following spte read is not reordered ahead of the write 650 * to vcpu->mode. 651 */ 652 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); 653 } 654 } 655 656 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) 657 { 658 if (is_tdp_mmu(vcpu->arch.mmu)) { 659 kvm_tdp_mmu_walk_lockless_end(); 660 } else { 661 /* 662 * Make sure the write to vcpu->mode is not reordered in front of 663 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us 664 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. 665 */ 666 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); 667 local_irq_enable(); 668 } 669 } 670 671 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect) 672 { 673 int r; 674 675 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */ 676 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, 677 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM); 678 if (r) 679 return r; 680 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache, 681 PT64_ROOT_MAX_LEVEL); 682 if (r) 683 return r; 684 if (maybe_indirect) { 685 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache, 686 PT64_ROOT_MAX_LEVEL); 687 if (r) 688 return r; 689 } 690 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, 691 PT64_ROOT_MAX_LEVEL); 692 } 693 694 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) 695 { 696 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache); 697 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache); 698 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache); 699 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache); 700 } 701 702 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu) 703 { 704 return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache); 705 } 706 707 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) 708 { 709 kmem_cache_free(pte_list_desc_cache, pte_list_desc); 710 } 711 712 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) 713 { 714 if (sp->role.passthrough) 715 return sp->gfn; 716 717 if (!sp->role.direct) 718 return sp->gfns[index]; 719 720 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS)); 721 } 722 723 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn) 724 { 725 if (sp->role.passthrough) { 726 WARN_ON_ONCE(gfn != sp->gfn); 727 return; 728 } 729 730 if (!sp->role.direct) { 731 sp->gfns[index] = gfn; 732 return; 733 } 734 735 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index))) 736 pr_err_ratelimited("gfn mismatch under direct page %llx " 737 "(expected %llx, got %llx)\n", 738 sp->gfn, 739 kvm_mmu_page_get_gfn(sp, index), gfn); 740 } 741 742 /* 743 * Return the pointer to the large page information for a given gfn, 744 * handling slots that are not large page aligned. 745 */ 746 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, 747 const struct kvm_memory_slot *slot, int level) 748 { 749 unsigned long idx; 750 751 idx = gfn_to_index(gfn, slot->base_gfn, level); 752 return &slot->arch.lpage_info[level - 2][idx]; 753 } 754 755 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot, 756 gfn_t gfn, int count) 757 { 758 struct kvm_lpage_info *linfo; 759 int i; 760 761 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 762 linfo = lpage_info_slot(gfn, slot, i); 763 linfo->disallow_lpage += count; 764 WARN_ON(linfo->disallow_lpage < 0); 765 } 766 } 767 768 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 769 { 770 update_gfn_disallow_lpage_count(slot, gfn, 1); 771 } 772 773 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 774 { 775 update_gfn_disallow_lpage_count(slot, gfn, -1); 776 } 777 778 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 779 { 780 struct kvm_memslots *slots; 781 struct kvm_memory_slot *slot; 782 gfn_t gfn; 783 784 kvm->arch.indirect_shadow_pages++; 785 gfn = sp->gfn; 786 slots = kvm_memslots_for_spte_role(kvm, sp->role); 787 slot = __gfn_to_memslot(slots, gfn); 788 789 /* the non-leaf shadow pages are keeping readonly. */ 790 if (sp->role.level > PG_LEVEL_4K) 791 return kvm_slot_page_track_add_page(kvm, slot, gfn, 792 KVM_PAGE_TRACK_WRITE); 793 794 kvm_mmu_gfn_disallow_lpage(slot, gfn); 795 } 796 797 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) 798 { 799 if (sp->lpage_disallowed) 800 return; 801 802 ++kvm->stat.nx_lpage_splits; 803 list_add_tail(&sp->lpage_disallowed_link, 804 &kvm->arch.lpage_disallowed_mmu_pages); 805 sp->lpage_disallowed = true; 806 } 807 808 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 809 { 810 struct kvm_memslots *slots; 811 struct kvm_memory_slot *slot; 812 gfn_t gfn; 813 814 kvm->arch.indirect_shadow_pages--; 815 gfn = sp->gfn; 816 slots = kvm_memslots_for_spte_role(kvm, sp->role); 817 slot = __gfn_to_memslot(slots, gfn); 818 if (sp->role.level > PG_LEVEL_4K) 819 return kvm_slot_page_track_remove_page(kvm, slot, gfn, 820 KVM_PAGE_TRACK_WRITE); 821 822 kvm_mmu_gfn_allow_lpage(slot, gfn); 823 } 824 825 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) 826 { 827 --kvm->stat.nx_lpage_splits; 828 sp->lpage_disallowed = false; 829 list_del(&sp->lpage_disallowed_link); 830 } 831 832 static struct kvm_memory_slot * 833 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn, 834 bool no_dirty_log) 835 { 836 struct kvm_memory_slot *slot; 837 838 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 839 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 840 return NULL; 841 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot)) 842 return NULL; 843 844 return slot; 845 } 846 847 /* 848 * About rmap_head encoding: 849 * 850 * If the bit zero of rmap_head->val is clear, then it points to the only spte 851 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct 852 * pte_list_desc containing more mappings. 853 */ 854 855 /* 856 * Returns the number of pointers in the rmap chain, not counting the new one. 857 */ 858 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte, 859 struct kvm_rmap_head *rmap_head) 860 { 861 struct pte_list_desc *desc; 862 int count = 0; 863 864 if (!rmap_head->val) { 865 rmap_printk("%p %llx 0->1\n", spte, *spte); 866 rmap_head->val = (unsigned long)spte; 867 } else if (!(rmap_head->val & 1)) { 868 rmap_printk("%p %llx 1->many\n", spte, *spte); 869 desc = mmu_alloc_pte_list_desc(vcpu); 870 desc->sptes[0] = (u64 *)rmap_head->val; 871 desc->sptes[1] = spte; 872 desc->spte_count = 2; 873 rmap_head->val = (unsigned long)desc | 1; 874 ++count; 875 } else { 876 rmap_printk("%p %llx many->many\n", spte, *spte); 877 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 878 while (desc->spte_count == PTE_LIST_EXT) { 879 count += PTE_LIST_EXT; 880 if (!desc->more) { 881 desc->more = mmu_alloc_pte_list_desc(vcpu); 882 desc = desc->more; 883 desc->spte_count = 0; 884 break; 885 } 886 desc = desc->more; 887 } 888 count += desc->spte_count; 889 desc->sptes[desc->spte_count++] = spte; 890 } 891 return count; 892 } 893 894 static void 895 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head, 896 struct pte_list_desc *desc, int i, 897 struct pte_list_desc *prev_desc) 898 { 899 int j = desc->spte_count - 1; 900 901 desc->sptes[i] = desc->sptes[j]; 902 desc->sptes[j] = NULL; 903 desc->spte_count--; 904 if (desc->spte_count) 905 return; 906 if (!prev_desc && !desc->more) 907 rmap_head->val = 0; 908 else 909 if (prev_desc) 910 prev_desc->more = desc->more; 911 else 912 rmap_head->val = (unsigned long)desc->more | 1; 913 mmu_free_pte_list_desc(desc); 914 } 915 916 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head) 917 { 918 struct pte_list_desc *desc; 919 struct pte_list_desc *prev_desc; 920 int i; 921 922 if (!rmap_head->val) { 923 pr_err("%s: %p 0->BUG\n", __func__, spte); 924 BUG(); 925 } else if (!(rmap_head->val & 1)) { 926 rmap_printk("%p 1->0\n", spte); 927 if ((u64 *)rmap_head->val != spte) { 928 pr_err("%s: %p 1->BUG\n", __func__, spte); 929 BUG(); 930 } 931 rmap_head->val = 0; 932 } else { 933 rmap_printk("%p many->many\n", spte); 934 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 935 prev_desc = NULL; 936 while (desc) { 937 for (i = 0; i < desc->spte_count; ++i) { 938 if (desc->sptes[i] == spte) { 939 pte_list_desc_remove_entry(rmap_head, 940 desc, i, prev_desc); 941 return; 942 } 943 } 944 prev_desc = desc; 945 desc = desc->more; 946 } 947 pr_err("%s: %p many->many\n", __func__, spte); 948 BUG(); 949 } 950 } 951 952 static void pte_list_remove(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 953 u64 *sptep) 954 { 955 mmu_spte_clear_track_bits(kvm, sptep); 956 __pte_list_remove(sptep, rmap_head); 957 } 958 959 /* Return true if rmap existed, false otherwise */ 960 static bool pte_list_destroy(struct kvm *kvm, struct kvm_rmap_head *rmap_head) 961 { 962 struct pte_list_desc *desc, *next; 963 int i; 964 965 if (!rmap_head->val) 966 return false; 967 968 if (!(rmap_head->val & 1)) { 969 mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val); 970 goto out; 971 } 972 973 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 974 975 for (; desc; desc = next) { 976 for (i = 0; i < desc->spte_count; i++) 977 mmu_spte_clear_track_bits(kvm, desc->sptes[i]); 978 next = desc->more; 979 mmu_free_pte_list_desc(desc); 980 } 981 out: 982 /* rmap_head is meaningless now, remember to reset it */ 983 rmap_head->val = 0; 984 return true; 985 } 986 987 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head) 988 { 989 struct pte_list_desc *desc; 990 unsigned int count = 0; 991 992 if (!rmap_head->val) 993 return 0; 994 else if (!(rmap_head->val & 1)) 995 return 1; 996 997 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 998 999 while (desc) { 1000 count += desc->spte_count; 1001 desc = desc->more; 1002 } 1003 1004 return count; 1005 } 1006 1007 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level, 1008 const struct kvm_memory_slot *slot) 1009 { 1010 unsigned long idx; 1011 1012 idx = gfn_to_index(gfn, slot->base_gfn, level); 1013 return &slot->arch.rmap[level - PG_LEVEL_4K][idx]; 1014 } 1015 1016 static bool rmap_can_add(struct kvm_vcpu *vcpu) 1017 { 1018 struct kvm_mmu_memory_cache *mc; 1019 1020 mc = &vcpu->arch.mmu_pte_list_desc_cache; 1021 return kvm_mmu_memory_cache_nr_free_objects(mc); 1022 } 1023 1024 static void rmap_remove(struct kvm *kvm, u64 *spte) 1025 { 1026 struct kvm_memslots *slots; 1027 struct kvm_memory_slot *slot; 1028 struct kvm_mmu_page *sp; 1029 gfn_t gfn; 1030 struct kvm_rmap_head *rmap_head; 1031 1032 sp = sptep_to_sp(spte); 1033 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt); 1034 1035 /* 1036 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU 1037 * so we have to determine which memslots to use based on context 1038 * information in sp->role. 1039 */ 1040 slots = kvm_memslots_for_spte_role(kvm, sp->role); 1041 1042 slot = __gfn_to_memslot(slots, gfn); 1043 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1044 1045 __pte_list_remove(spte, rmap_head); 1046 } 1047 1048 /* 1049 * Used by the following functions to iterate through the sptes linked by a 1050 * rmap. All fields are private and not assumed to be used outside. 1051 */ 1052 struct rmap_iterator { 1053 /* private fields */ 1054 struct pte_list_desc *desc; /* holds the sptep if not NULL */ 1055 int pos; /* index of the sptep */ 1056 }; 1057 1058 /* 1059 * Iteration must be started by this function. This should also be used after 1060 * removing/dropping sptes from the rmap link because in such cases the 1061 * information in the iterator may not be valid. 1062 * 1063 * Returns sptep if found, NULL otherwise. 1064 */ 1065 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head, 1066 struct rmap_iterator *iter) 1067 { 1068 u64 *sptep; 1069 1070 if (!rmap_head->val) 1071 return NULL; 1072 1073 if (!(rmap_head->val & 1)) { 1074 iter->desc = NULL; 1075 sptep = (u64 *)rmap_head->val; 1076 goto out; 1077 } 1078 1079 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1080 iter->pos = 0; 1081 sptep = iter->desc->sptes[iter->pos]; 1082 out: 1083 BUG_ON(!is_shadow_present_pte(*sptep)); 1084 return sptep; 1085 } 1086 1087 /* 1088 * Must be used with a valid iterator: e.g. after rmap_get_first(). 1089 * 1090 * Returns sptep if found, NULL otherwise. 1091 */ 1092 static u64 *rmap_get_next(struct rmap_iterator *iter) 1093 { 1094 u64 *sptep; 1095 1096 if (iter->desc) { 1097 if (iter->pos < PTE_LIST_EXT - 1) { 1098 ++iter->pos; 1099 sptep = iter->desc->sptes[iter->pos]; 1100 if (sptep) 1101 goto out; 1102 } 1103 1104 iter->desc = iter->desc->more; 1105 1106 if (iter->desc) { 1107 iter->pos = 0; 1108 /* desc->sptes[0] cannot be NULL */ 1109 sptep = iter->desc->sptes[iter->pos]; 1110 goto out; 1111 } 1112 } 1113 1114 return NULL; 1115 out: 1116 BUG_ON(!is_shadow_present_pte(*sptep)); 1117 return sptep; 1118 } 1119 1120 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \ 1121 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \ 1122 _spte_; _spte_ = rmap_get_next(_iter_)) 1123 1124 static void drop_spte(struct kvm *kvm, u64 *sptep) 1125 { 1126 u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep); 1127 1128 if (is_shadow_present_pte(old_spte)) 1129 rmap_remove(kvm, sptep); 1130 } 1131 1132 1133 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep) 1134 { 1135 if (is_large_pte(*sptep)) { 1136 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K); 1137 drop_spte(kvm, sptep); 1138 return true; 1139 } 1140 1141 return false; 1142 } 1143 1144 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep) 1145 { 1146 if (__drop_large_spte(vcpu->kvm, sptep)) { 1147 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 1148 1149 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn, 1150 KVM_PAGES_PER_HPAGE(sp->role.level)); 1151 } 1152 } 1153 1154 /* 1155 * Write-protect on the specified @sptep, @pt_protect indicates whether 1156 * spte write-protection is caused by protecting shadow page table. 1157 * 1158 * Note: write protection is difference between dirty logging and spte 1159 * protection: 1160 * - for dirty logging, the spte can be set to writable at anytime if 1161 * its dirty bitmap is properly set. 1162 * - for spte protection, the spte can be writable only after unsync-ing 1163 * shadow page. 1164 * 1165 * Return true if tlb need be flushed. 1166 */ 1167 static bool spte_write_protect(u64 *sptep, bool pt_protect) 1168 { 1169 u64 spte = *sptep; 1170 1171 if (!is_writable_pte(spte) && 1172 !(pt_protect && is_mmu_writable_spte(spte))) 1173 return false; 1174 1175 rmap_printk("spte %p %llx\n", sptep, *sptep); 1176 1177 if (pt_protect) 1178 spte &= ~shadow_mmu_writable_mask; 1179 spte = spte & ~PT_WRITABLE_MASK; 1180 1181 return mmu_spte_update(sptep, spte); 1182 } 1183 1184 static bool rmap_write_protect(struct kvm_rmap_head *rmap_head, 1185 bool pt_protect) 1186 { 1187 u64 *sptep; 1188 struct rmap_iterator iter; 1189 bool flush = false; 1190 1191 for_each_rmap_spte(rmap_head, &iter, sptep) 1192 flush |= spte_write_protect(sptep, pt_protect); 1193 1194 return flush; 1195 } 1196 1197 static bool spte_clear_dirty(u64 *sptep) 1198 { 1199 u64 spte = *sptep; 1200 1201 rmap_printk("spte %p %llx\n", sptep, *sptep); 1202 1203 MMU_WARN_ON(!spte_ad_enabled(spte)); 1204 spte &= ~shadow_dirty_mask; 1205 return mmu_spte_update(sptep, spte); 1206 } 1207 1208 static bool spte_wrprot_for_clear_dirty(u64 *sptep) 1209 { 1210 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT, 1211 (unsigned long *)sptep); 1212 if (was_writable && !spte_ad_enabled(*sptep)) 1213 kvm_set_pfn_dirty(spte_to_pfn(*sptep)); 1214 1215 return was_writable; 1216 } 1217 1218 /* 1219 * Gets the GFN ready for another round of dirty logging by clearing the 1220 * - D bit on ad-enabled SPTEs, and 1221 * - W bit on ad-disabled SPTEs. 1222 * Returns true iff any D or W bits were cleared. 1223 */ 1224 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1225 const struct kvm_memory_slot *slot) 1226 { 1227 u64 *sptep; 1228 struct rmap_iterator iter; 1229 bool flush = false; 1230 1231 for_each_rmap_spte(rmap_head, &iter, sptep) 1232 if (spte_ad_need_write_protect(*sptep)) 1233 flush |= spte_wrprot_for_clear_dirty(sptep); 1234 else 1235 flush |= spte_clear_dirty(sptep); 1236 1237 return flush; 1238 } 1239 1240 /** 1241 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages 1242 * @kvm: kvm instance 1243 * @slot: slot to protect 1244 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1245 * @mask: indicates which pages we should protect 1246 * 1247 * Used when we do not need to care about huge page mappings. 1248 */ 1249 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 1250 struct kvm_memory_slot *slot, 1251 gfn_t gfn_offset, unsigned long mask) 1252 { 1253 struct kvm_rmap_head *rmap_head; 1254 1255 if (is_tdp_mmu_enabled(kvm)) 1256 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1257 slot->base_gfn + gfn_offset, mask, true); 1258 1259 if (!kvm_memslots_have_rmaps(kvm)) 1260 return; 1261 1262 while (mask) { 1263 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1264 PG_LEVEL_4K, slot); 1265 rmap_write_protect(rmap_head, false); 1266 1267 /* clear the first set bit */ 1268 mask &= mask - 1; 1269 } 1270 } 1271 1272 /** 1273 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write 1274 * protect the page if the D-bit isn't supported. 1275 * @kvm: kvm instance 1276 * @slot: slot to clear D-bit 1277 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1278 * @mask: indicates which pages we should clear D-bit 1279 * 1280 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap. 1281 */ 1282 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1283 struct kvm_memory_slot *slot, 1284 gfn_t gfn_offset, unsigned long mask) 1285 { 1286 struct kvm_rmap_head *rmap_head; 1287 1288 if (is_tdp_mmu_enabled(kvm)) 1289 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1290 slot->base_gfn + gfn_offset, mask, false); 1291 1292 if (!kvm_memslots_have_rmaps(kvm)) 1293 return; 1294 1295 while (mask) { 1296 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1297 PG_LEVEL_4K, slot); 1298 __rmap_clear_dirty(kvm, rmap_head, slot); 1299 1300 /* clear the first set bit */ 1301 mask &= mask - 1; 1302 } 1303 } 1304 1305 /** 1306 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected 1307 * PT level pages. 1308 * 1309 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to 1310 * enable dirty logging for them. 1311 * 1312 * We need to care about huge page mappings: e.g. during dirty logging we may 1313 * have such mappings. 1314 */ 1315 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1316 struct kvm_memory_slot *slot, 1317 gfn_t gfn_offset, unsigned long mask) 1318 { 1319 /* 1320 * Huge pages are NOT write protected when we start dirty logging in 1321 * initially-all-set mode; must write protect them here so that they 1322 * are split to 4K on the first write. 1323 * 1324 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn 1325 * of memslot has no such restriction, so the range can cross two large 1326 * pages. 1327 */ 1328 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) { 1329 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask); 1330 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask); 1331 1332 if (READ_ONCE(eager_page_split)) 1333 kvm_mmu_try_split_huge_pages(kvm, slot, start, end, PG_LEVEL_4K); 1334 1335 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M); 1336 1337 /* Cross two large pages? */ 1338 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) != 1339 ALIGN(end << PAGE_SHIFT, PMD_SIZE)) 1340 kvm_mmu_slot_gfn_write_protect(kvm, slot, end, 1341 PG_LEVEL_2M); 1342 } 1343 1344 /* Now handle 4K PTEs. */ 1345 if (kvm_x86_ops.cpu_dirty_log_size) 1346 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask); 1347 else 1348 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 1349 } 1350 1351 int kvm_cpu_dirty_log_size(void) 1352 { 1353 return kvm_x86_ops.cpu_dirty_log_size; 1354 } 1355 1356 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, 1357 struct kvm_memory_slot *slot, u64 gfn, 1358 int min_level) 1359 { 1360 struct kvm_rmap_head *rmap_head; 1361 int i; 1362 bool write_protected = false; 1363 1364 if (kvm_memslots_have_rmaps(kvm)) { 1365 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 1366 rmap_head = gfn_to_rmap(gfn, i, slot); 1367 write_protected |= rmap_write_protect(rmap_head, true); 1368 } 1369 } 1370 1371 if (is_tdp_mmu_enabled(kvm)) 1372 write_protected |= 1373 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level); 1374 1375 return write_protected; 1376 } 1377 1378 static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn) 1379 { 1380 struct kvm_memory_slot *slot; 1381 1382 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1383 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K); 1384 } 1385 1386 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1387 const struct kvm_memory_slot *slot) 1388 { 1389 return pte_list_destroy(kvm, rmap_head); 1390 } 1391 1392 static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1393 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1394 pte_t unused) 1395 { 1396 return kvm_zap_rmapp(kvm, rmap_head, slot); 1397 } 1398 1399 static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1400 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1401 pte_t pte) 1402 { 1403 u64 *sptep; 1404 struct rmap_iterator iter; 1405 bool need_flush = false; 1406 u64 new_spte; 1407 kvm_pfn_t new_pfn; 1408 1409 WARN_ON(pte_huge(pte)); 1410 new_pfn = pte_pfn(pte); 1411 1412 restart: 1413 for_each_rmap_spte(rmap_head, &iter, sptep) { 1414 rmap_printk("spte %p %llx gfn %llx (%d)\n", 1415 sptep, *sptep, gfn, level); 1416 1417 need_flush = true; 1418 1419 if (pte_write(pte)) { 1420 pte_list_remove(kvm, rmap_head, sptep); 1421 goto restart; 1422 } else { 1423 new_spte = kvm_mmu_changed_pte_notifier_make_spte( 1424 *sptep, new_pfn); 1425 1426 mmu_spte_clear_track_bits(kvm, sptep); 1427 mmu_spte_set(sptep, new_spte); 1428 } 1429 } 1430 1431 if (need_flush && kvm_available_flush_tlb_with_range()) { 1432 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1); 1433 return false; 1434 } 1435 1436 return need_flush; 1437 } 1438 1439 struct slot_rmap_walk_iterator { 1440 /* input fields. */ 1441 const struct kvm_memory_slot *slot; 1442 gfn_t start_gfn; 1443 gfn_t end_gfn; 1444 int start_level; 1445 int end_level; 1446 1447 /* output fields. */ 1448 gfn_t gfn; 1449 struct kvm_rmap_head *rmap; 1450 int level; 1451 1452 /* private field. */ 1453 struct kvm_rmap_head *end_rmap; 1454 }; 1455 1456 static void 1457 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level) 1458 { 1459 iterator->level = level; 1460 iterator->gfn = iterator->start_gfn; 1461 iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot); 1462 iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot); 1463 } 1464 1465 static void 1466 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator, 1467 const struct kvm_memory_slot *slot, int start_level, 1468 int end_level, gfn_t start_gfn, gfn_t end_gfn) 1469 { 1470 iterator->slot = slot; 1471 iterator->start_level = start_level; 1472 iterator->end_level = end_level; 1473 iterator->start_gfn = start_gfn; 1474 iterator->end_gfn = end_gfn; 1475 1476 rmap_walk_init_level(iterator, iterator->start_level); 1477 } 1478 1479 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator) 1480 { 1481 return !!iterator->rmap; 1482 } 1483 1484 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) 1485 { 1486 while (++iterator->rmap <= iterator->end_rmap) { 1487 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level)); 1488 1489 if (iterator->rmap->val) 1490 return; 1491 } 1492 1493 if (++iterator->level > iterator->end_level) { 1494 iterator->rmap = NULL; 1495 return; 1496 } 1497 1498 rmap_walk_init_level(iterator, iterator->level); 1499 } 1500 1501 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \ 1502 _start_gfn, _end_gfn, _iter_) \ 1503 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \ 1504 _end_level_, _start_gfn, _end_gfn); \ 1505 slot_rmap_walk_okay(_iter_); \ 1506 slot_rmap_walk_next(_iter_)) 1507 1508 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1509 struct kvm_memory_slot *slot, gfn_t gfn, 1510 int level, pte_t pte); 1511 1512 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm, 1513 struct kvm_gfn_range *range, 1514 rmap_handler_t handler) 1515 { 1516 struct slot_rmap_walk_iterator iterator; 1517 bool ret = false; 1518 1519 for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 1520 range->start, range->end - 1, &iterator) 1521 ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn, 1522 iterator.level, range->pte); 1523 1524 return ret; 1525 } 1526 1527 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1528 { 1529 bool flush = false; 1530 1531 if (kvm_memslots_have_rmaps(kvm)) 1532 flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp); 1533 1534 if (is_tdp_mmu_enabled(kvm)) 1535 flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush); 1536 1537 return flush; 1538 } 1539 1540 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1541 { 1542 bool flush = false; 1543 1544 if (kvm_memslots_have_rmaps(kvm)) 1545 flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp); 1546 1547 if (is_tdp_mmu_enabled(kvm)) 1548 flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range); 1549 1550 return flush; 1551 } 1552 1553 static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1554 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1555 pte_t unused) 1556 { 1557 u64 *sptep; 1558 struct rmap_iterator iter; 1559 int young = 0; 1560 1561 for_each_rmap_spte(rmap_head, &iter, sptep) 1562 young |= mmu_spte_age(sptep); 1563 1564 return young; 1565 } 1566 1567 static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1568 struct kvm_memory_slot *slot, gfn_t gfn, 1569 int level, pte_t unused) 1570 { 1571 u64 *sptep; 1572 struct rmap_iterator iter; 1573 1574 for_each_rmap_spte(rmap_head, &iter, sptep) 1575 if (is_accessed_spte(*sptep)) 1576 return true; 1577 return false; 1578 } 1579 1580 #define RMAP_RECYCLE_THRESHOLD 1000 1581 1582 static void rmap_add(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, 1583 u64 *spte, gfn_t gfn) 1584 { 1585 struct kvm_mmu_page *sp; 1586 struct kvm_rmap_head *rmap_head; 1587 int rmap_count; 1588 1589 sp = sptep_to_sp(spte); 1590 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn); 1591 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1592 rmap_count = pte_list_add(vcpu, spte, rmap_head); 1593 1594 if (rmap_count > RMAP_RECYCLE_THRESHOLD) { 1595 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0)); 1596 kvm_flush_remote_tlbs_with_address( 1597 vcpu->kvm, sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level)); 1598 } 1599 } 1600 1601 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1602 { 1603 bool young = false; 1604 1605 if (kvm_memslots_have_rmaps(kvm)) 1606 young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp); 1607 1608 if (is_tdp_mmu_enabled(kvm)) 1609 young |= kvm_tdp_mmu_age_gfn_range(kvm, range); 1610 1611 return young; 1612 } 1613 1614 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1615 { 1616 bool young = false; 1617 1618 if (kvm_memslots_have_rmaps(kvm)) 1619 young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp); 1620 1621 if (is_tdp_mmu_enabled(kvm)) 1622 young |= kvm_tdp_mmu_test_age_gfn(kvm, range); 1623 1624 return young; 1625 } 1626 1627 #ifdef MMU_DEBUG 1628 static int is_empty_shadow_page(u64 *spt) 1629 { 1630 u64 *pos; 1631 u64 *end; 1632 1633 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++) 1634 if (is_shadow_present_pte(*pos)) { 1635 printk(KERN_ERR "%s: %p %llx\n", __func__, 1636 pos, *pos); 1637 return 0; 1638 } 1639 return 1; 1640 } 1641 #endif 1642 1643 /* 1644 * This value is the sum of all of the kvm instances's 1645 * kvm->arch.n_used_mmu_pages values. We need a global, 1646 * aggregate version in order to make the slab shrinker 1647 * faster 1648 */ 1649 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr) 1650 { 1651 kvm->arch.n_used_mmu_pages += nr; 1652 percpu_counter_add(&kvm_total_used_mmu_pages, nr); 1653 } 1654 1655 static void kvm_mmu_free_page(struct kvm_mmu_page *sp) 1656 { 1657 MMU_WARN_ON(!is_empty_shadow_page(sp->spt)); 1658 hlist_del(&sp->hash_link); 1659 list_del(&sp->link); 1660 free_page((unsigned long)sp->spt); 1661 if (!sp->role.direct) 1662 free_page((unsigned long)sp->gfns); 1663 kmem_cache_free(mmu_page_header_cache, sp); 1664 } 1665 1666 static unsigned kvm_page_table_hashfn(gfn_t gfn) 1667 { 1668 return hash_64(gfn, KVM_MMU_HASH_SHIFT); 1669 } 1670 1671 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu, 1672 struct kvm_mmu_page *sp, u64 *parent_pte) 1673 { 1674 if (!parent_pte) 1675 return; 1676 1677 pte_list_add(vcpu, parent_pte, &sp->parent_ptes); 1678 } 1679 1680 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp, 1681 u64 *parent_pte) 1682 { 1683 __pte_list_remove(parent_pte, &sp->parent_ptes); 1684 } 1685 1686 static void drop_parent_pte(struct kvm_mmu_page *sp, 1687 u64 *parent_pte) 1688 { 1689 mmu_page_remove_parent_pte(sp, parent_pte); 1690 mmu_spte_clear_no_track(parent_pte); 1691 } 1692 1693 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct) 1694 { 1695 struct kvm_mmu_page *sp; 1696 1697 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache); 1698 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache); 1699 if (!direct) 1700 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache); 1701 set_page_private(virt_to_page(sp->spt), (unsigned long)sp); 1702 1703 /* 1704 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages() 1705 * depends on valid pages being added to the head of the list. See 1706 * comments in kvm_zap_obsolete_pages(). 1707 */ 1708 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen; 1709 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages); 1710 kvm_mod_used_mmu_pages(vcpu->kvm, +1); 1711 return sp; 1712 } 1713 1714 static void mark_unsync(u64 *spte); 1715 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) 1716 { 1717 u64 *sptep; 1718 struct rmap_iterator iter; 1719 1720 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) { 1721 mark_unsync(sptep); 1722 } 1723 } 1724 1725 static void mark_unsync(u64 *spte) 1726 { 1727 struct kvm_mmu_page *sp; 1728 unsigned int index; 1729 1730 sp = sptep_to_sp(spte); 1731 index = spte - sp->spt; 1732 if (__test_and_set_bit(index, sp->unsync_child_bitmap)) 1733 return; 1734 if (sp->unsync_children++) 1735 return; 1736 kvm_mmu_mark_parents_unsync(sp); 1737 } 1738 1739 static int nonpaging_sync_page(struct kvm_vcpu *vcpu, 1740 struct kvm_mmu_page *sp) 1741 { 1742 return -1; 1743 } 1744 1745 #define KVM_PAGE_ARRAY_NR 16 1746 1747 struct kvm_mmu_pages { 1748 struct mmu_page_and_offset { 1749 struct kvm_mmu_page *sp; 1750 unsigned int idx; 1751 } page[KVM_PAGE_ARRAY_NR]; 1752 unsigned int nr; 1753 }; 1754 1755 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, 1756 int idx) 1757 { 1758 int i; 1759 1760 if (sp->unsync) 1761 for (i=0; i < pvec->nr; i++) 1762 if (pvec->page[i].sp == sp) 1763 return 0; 1764 1765 pvec->page[pvec->nr].sp = sp; 1766 pvec->page[pvec->nr].idx = idx; 1767 pvec->nr++; 1768 return (pvec->nr == KVM_PAGE_ARRAY_NR); 1769 } 1770 1771 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx) 1772 { 1773 --sp->unsync_children; 1774 WARN_ON((int)sp->unsync_children < 0); 1775 __clear_bit(idx, sp->unsync_child_bitmap); 1776 } 1777 1778 static int __mmu_unsync_walk(struct kvm_mmu_page *sp, 1779 struct kvm_mmu_pages *pvec) 1780 { 1781 int i, ret, nr_unsync_leaf = 0; 1782 1783 for_each_set_bit(i, sp->unsync_child_bitmap, 512) { 1784 struct kvm_mmu_page *child; 1785 u64 ent = sp->spt[i]; 1786 1787 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) { 1788 clear_unsync_child_bit(sp, i); 1789 continue; 1790 } 1791 1792 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK); 1793 1794 if (child->unsync_children) { 1795 if (mmu_pages_add(pvec, child, i)) 1796 return -ENOSPC; 1797 1798 ret = __mmu_unsync_walk(child, pvec); 1799 if (!ret) { 1800 clear_unsync_child_bit(sp, i); 1801 continue; 1802 } else if (ret > 0) { 1803 nr_unsync_leaf += ret; 1804 } else 1805 return ret; 1806 } else if (child->unsync) { 1807 nr_unsync_leaf++; 1808 if (mmu_pages_add(pvec, child, i)) 1809 return -ENOSPC; 1810 } else 1811 clear_unsync_child_bit(sp, i); 1812 } 1813 1814 return nr_unsync_leaf; 1815 } 1816 1817 #define INVALID_INDEX (-1) 1818 1819 static int mmu_unsync_walk(struct kvm_mmu_page *sp, 1820 struct kvm_mmu_pages *pvec) 1821 { 1822 pvec->nr = 0; 1823 if (!sp->unsync_children) 1824 return 0; 1825 1826 mmu_pages_add(pvec, sp, INVALID_INDEX); 1827 return __mmu_unsync_walk(sp, pvec); 1828 } 1829 1830 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1831 { 1832 WARN_ON(!sp->unsync); 1833 trace_kvm_mmu_sync_page(sp); 1834 sp->unsync = 0; 1835 --kvm->stat.mmu_unsync; 1836 } 1837 1838 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 1839 struct list_head *invalid_list); 1840 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 1841 struct list_head *invalid_list); 1842 1843 static bool sp_has_gptes(struct kvm_mmu_page *sp) 1844 { 1845 if (sp->role.direct) 1846 return false; 1847 1848 if (sp->role.passthrough) 1849 return false; 1850 1851 return true; 1852 } 1853 1854 #define for_each_valid_sp(_kvm, _sp, _list) \ 1855 hlist_for_each_entry(_sp, _list, hash_link) \ 1856 if (is_obsolete_sp((_kvm), (_sp))) { \ 1857 } else 1858 1859 #define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn) \ 1860 for_each_valid_sp(_kvm, _sp, \ 1861 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \ 1862 if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else 1863 1864 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 1865 struct list_head *invalid_list) 1866 { 1867 int ret = vcpu->arch.mmu->sync_page(vcpu, sp); 1868 1869 if (ret < 0) 1870 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); 1871 return ret; 1872 } 1873 1874 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm, 1875 struct list_head *invalid_list, 1876 bool remote_flush) 1877 { 1878 if (!remote_flush && list_empty(invalid_list)) 1879 return false; 1880 1881 if (!list_empty(invalid_list)) 1882 kvm_mmu_commit_zap_page(kvm, invalid_list); 1883 else 1884 kvm_flush_remote_tlbs(kvm); 1885 return true; 1886 } 1887 1888 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 1889 { 1890 if (sp->role.invalid) 1891 return true; 1892 1893 /* TDP MMU pages due not use the MMU generation. */ 1894 return !sp->tdp_mmu_page && 1895 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); 1896 } 1897 1898 struct mmu_page_path { 1899 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL]; 1900 unsigned int idx[PT64_ROOT_MAX_LEVEL]; 1901 }; 1902 1903 #define for_each_sp(pvec, sp, parents, i) \ 1904 for (i = mmu_pages_first(&pvec, &parents); \ 1905 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \ 1906 i = mmu_pages_next(&pvec, &parents, i)) 1907 1908 static int mmu_pages_next(struct kvm_mmu_pages *pvec, 1909 struct mmu_page_path *parents, 1910 int i) 1911 { 1912 int n; 1913 1914 for (n = i+1; n < pvec->nr; n++) { 1915 struct kvm_mmu_page *sp = pvec->page[n].sp; 1916 unsigned idx = pvec->page[n].idx; 1917 int level = sp->role.level; 1918 1919 parents->idx[level-1] = idx; 1920 if (level == PG_LEVEL_4K) 1921 break; 1922 1923 parents->parent[level-2] = sp; 1924 } 1925 1926 return n; 1927 } 1928 1929 static int mmu_pages_first(struct kvm_mmu_pages *pvec, 1930 struct mmu_page_path *parents) 1931 { 1932 struct kvm_mmu_page *sp; 1933 int level; 1934 1935 if (pvec->nr == 0) 1936 return 0; 1937 1938 WARN_ON(pvec->page[0].idx != INVALID_INDEX); 1939 1940 sp = pvec->page[0].sp; 1941 level = sp->role.level; 1942 WARN_ON(level == PG_LEVEL_4K); 1943 1944 parents->parent[level-2] = sp; 1945 1946 /* Also set up a sentinel. Further entries in pvec are all 1947 * children of sp, so this element is never overwritten. 1948 */ 1949 parents->parent[level-1] = NULL; 1950 return mmu_pages_next(pvec, parents, 0); 1951 } 1952 1953 static void mmu_pages_clear_parents(struct mmu_page_path *parents) 1954 { 1955 struct kvm_mmu_page *sp; 1956 unsigned int level = 0; 1957 1958 do { 1959 unsigned int idx = parents->idx[level]; 1960 sp = parents->parent[level]; 1961 if (!sp) 1962 return; 1963 1964 WARN_ON(idx == INVALID_INDEX); 1965 clear_unsync_child_bit(sp, idx); 1966 level++; 1967 } while (!sp->unsync_children); 1968 } 1969 1970 static int mmu_sync_children(struct kvm_vcpu *vcpu, 1971 struct kvm_mmu_page *parent, bool can_yield) 1972 { 1973 int i; 1974 struct kvm_mmu_page *sp; 1975 struct mmu_page_path parents; 1976 struct kvm_mmu_pages pages; 1977 LIST_HEAD(invalid_list); 1978 bool flush = false; 1979 1980 while (mmu_unsync_walk(parent, &pages)) { 1981 bool protected = false; 1982 1983 for_each_sp(pages, sp, parents, i) 1984 protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn); 1985 1986 if (protected) { 1987 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true); 1988 flush = false; 1989 } 1990 1991 for_each_sp(pages, sp, parents, i) { 1992 kvm_unlink_unsync_page(vcpu->kvm, sp); 1993 flush |= kvm_sync_page(vcpu, sp, &invalid_list) > 0; 1994 mmu_pages_clear_parents(&parents); 1995 } 1996 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) { 1997 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 1998 if (!can_yield) { 1999 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 2000 return -EINTR; 2001 } 2002 2003 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock); 2004 flush = false; 2005 } 2006 } 2007 2008 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2009 return 0; 2010 } 2011 2012 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) 2013 { 2014 atomic_set(&sp->write_flooding_count, 0); 2015 } 2016 2017 static void clear_sp_write_flooding_count(u64 *spte) 2018 { 2019 __clear_sp_write_flooding_count(sptep_to_sp(spte)); 2020 } 2021 2022 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu, 2023 gfn_t gfn, 2024 gva_t gaddr, 2025 unsigned level, 2026 int direct, 2027 unsigned int access) 2028 { 2029 bool direct_mmu = vcpu->arch.mmu->root_role.direct; 2030 union kvm_mmu_page_role role; 2031 struct hlist_head *sp_list; 2032 unsigned quadrant; 2033 struct kvm_mmu_page *sp; 2034 int ret; 2035 int collisions = 0; 2036 LIST_HEAD(invalid_list); 2037 2038 role = vcpu->arch.mmu->root_role; 2039 role.level = level; 2040 role.direct = direct; 2041 role.access = access; 2042 if (role.has_4_byte_gpte) { 2043 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level)); 2044 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1; 2045 role.quadrant = quadrant; 2046 } 2047 if (level <= vcpu->arch.mmu->cpu_role.base.level) 2048 role.passthrough = 0; 2049 2050 sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]; 2051 for_each_valid_sp(vcpu->kvm, sp, sp_list) { 2052 if (sp->gfn != gfn) { 2053 collisions++; 2054 continue; 2055 } 2056 2057 if (sp->role.word != role.word) { 2058 /* 2059 * If the guest is creating an upper-level page, zap 2060 * unsync pages for the same gfn. While it's possible 2061 * the guest is using recursive page tables, in all 2062 * likelihood the guest has stopped using the unsync 2063 * page and is installing a completely unrelated page. 2064 * Unsync pages must not be left as is, because the new 2065 * upper-level page will be write-protected. 2066 */ 2067 if (level > PG_LEVEL_4K && sp->unsync) 2068 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, 2069 &invalid_list); 2070 continue; 2071 } 2072 2073 if (direct_mmu) 2074 goto trace_get_page; 2075 2076 if (sp->unsync) { 2077 /* 2078 * The page is good, but is stale. kvm_sync_page does 2079 * get the latest guest state, but (unlike mmu_unsync_children) 2080 * it doesn't write-protect the page or mark it synchronized! 2081 * This way the validity of the mapping is ensured, but the 2082 * overhead of write protection is not incurred until the 2083 * guest invalidates the TLB mapping. This allows multiple 2084 * SPs for a single gfn to be unsync. 2085 * 2086 * If the sync fails, the page is zapped. If so, break 2087 * in order to rebuild it. 2088 */ 2089 ret = kvm_sync_page(vcpu, sp, &invalid_list); 2090 if (ret < 0) 2091 break; 2092 2093 WARN_ON(!list_empty(&invalid_list)); 2094 if (ret > 0) 2095 kvm_flush_remote_tlbs(vcpu->kvm); 2096 } 2097 2098 __clear_sp_write_flooding_count(sp); 2099 2100 trace_get_page: 2101 trace_kvm_mmu_get_page(sp, false); 2102 goto out; 2103 } 2104 2105 ++vcpu->kvm->stat.mmu_cache_miss; 2106 2107 sp = kvm_mmu_alloc_page(vcpu, direct); 2108 2109 sp->gfn = gfn; 2110 sp->role = role; 2111 hlist_add_head(&sp->hash_link, sp_list); 2112 if (sp_has_gptes(sp)) { 2113 account_shadowed(vcpu->kvm, sp); 2114 if (level == PG_LEVEL_4K && kvm_vcpu_write_protect_gfn(vcpu, gfn)) 2115 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1); 2116 } 2117 trace_kvm_mmu_get_page(sp, true); 2118 out: 2119 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); 2120 2121 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions) 2122 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions; 2123 return sp; 2124 } 2125 2126 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator, 2127 struct kvm_vcpu *vcpu, hpa_t root, 2128 u64 addr) 2129 { 2130 iterator->addr = addr; 2131 iterator->shadow_addr = root; 2132 iterator->level = vcpu->arch.mmu->root_role.level; 2133 2134 if (iterator->level >= PT64_ROOT_4LEVEL && 2135 vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL && 2136 !vcpu->arch.mmu->root_role.direct) 2137 iterator->level = PT32E_ROOT_LEVEL; 2138 2139 if (iterator->level == PT32E_ROOT_LEVEL) { 2140 /* 2141 * prev_root is currently only used for 64-bit hosts. So only 2142 * the active root_hpa is valid here. 2143 */ 2144 BUG_ON(root != vcpu->arch.mmu->root.hpa); 2145 2146 iterator->shadow_addr 2147 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3]; 2148 iterator->shadow_addr &= PT64_BASE_ADDR_MASK; 2149 --iterator->level; 2150 if (!iterator->shadow_addr) 2151 iterator->level = 0; 2152 } 2153 } 2154 2155 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, 2156 struct kvm_vcpu *vcpu, u64 addr) 2157 { 2158 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa, 2159 addr); 2160 } 2161 2162 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) 2163 { 2164 if (iterator->level < PG_LEVEL_4K) 2165 return false; 2166 2167 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level); 2168 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; 2169 return true; 2170 } 2171 2172 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, 2173 u64 spte) 2174 { 2175 if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) { 2176 iterator->level = 0; 2177 return; 2178 } 2179 2180 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK; 2181 --iterator->level; 2182 } 2183 2184 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) 2185 { 2186 __shadow_walk_next(iterator, *iterator->sptep); 2187 } 2188 2189 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, 2190 struct kvm_mmu_page *sp) 2191 { 2192 u64 spte; 2193 2194 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); 2195 2196 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp)); 2197 2198 mmu_spte_set(sptep, spte); 2199 2200 mmu_page_add_parent_pte(vcpu, sp, sptep); 2201 2202 if (sp->unsync_children || sp->unsync) 2203 mark_unsync(sptep); 2204 } 2205 2206 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2207 unsigned direct_access) 2208 { 2209 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { 2210 struct kvm_mmu_page *child; 2211 2212 /* 2213 * For the direct sp, if the guest pte's dirty bit 2214 * changed form clean to dirty, it will corrupt the 2215 * sp's access: allow writable in the read-only sp, 2216 * so we should update the spte at this point to get 2217 * a new sp with the correct access. 2218 */ 2219 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK); 2220 if (child->role.access == direct_access) 2221 return; 2222 2223 drop_parent_pte(child, sptep); 2224 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1); 2225 } 2226 } 2227 2228 /* Returns the number of zapped non-leaf child shadow pages. */ 2229 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 2230 u64 *spte, struct list_head *invalid_list) 2231 { 2232 u64 pte; 2233 struct kvm_mmu_page *child; 2234 2235 pte = *spte; 2236 if (is_shadow_present_pte(pte)) { 2237 if (is_last_spte(pte, sp->role.level)) { 2238 drop_spte(kvm, spte); 2239 } else { 2240 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK); 2241 drop_parent_pte(child, spte); 2242 2243 /* 2244 * Recursively zap nested TDP SPs, parentless SPs are 2245 * unlikely to be used again in the near future. This 2246 * avoids retaining a large number of stale nested SPs. 2247 */ 2248 if (tdp_enabled && invalid_list && 2249 child->role.guest_mode && !child->parent_ptes.val) 2250 return kvm_mmu_prepare_zap_page(kvm, child, 2251 invalid_list); 2252 } 2253 } else if (is_mmio_spte(pte)) { 2254 mmu_spte_clear_no_track(spte); 2255 } 2256 return 0; 2257 } 2258 2259 static int kvm_mmu_page_unlink_children(struct kvm *kvm, 2260 struct kvm_mmu_page *sp, 2261 struct list_head *invalid_list) 2262 { 2263 int zapped = 0; 2264 unsigned i; 2265 2266 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) 2267 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list); 2268 2269 return zapped; 2270 } 2271 2272 static void kvm_mmu_unlink_parents(struct kvm_mmu_page *sp) 2273 { 2274 u64 *sptep; 2275 struct rmap_iterator iter; 2276 2277 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter))) 2278 drop_parent_pte(sp, sptep); 2279 } 2280 2281 static int mmu_zap_unsync_children(struct kvm *kvm, 2282 struct kvm_mmu_page *parent, 2283 struct list_head *invalid_list) 2284 { 2285 int i, zapped = 0; 2286 struct mmu_page_path parents; 2287 struct kvm_mmu_pages pages; 2288 2289 if (parent->role.level == PG_LEVEL_4K) 2290 return 0; 2291 2292 while (mmu_unsync_walk(parent, &pages)) { 2293 struct kvm_mmu_page *sp; 2294 2295 for_each_sp(pages, sp, parents, i) { 2296 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 2297 mmu_pages_clear_parents(&parents); 2298 zapped++; 2299 } 2300 } 2301 2302 return zapped; 2303 } 2304 2305 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm, 2306 struct kvm_mmu_page *sp, 2307 struct list_head *invalid_list, 2308 int *nr_zapped) 2309 { 2310 bool list_unstable, zapped_root = false; 2311 2312 trace_kvm_mmu_prepare_zap_page(sp); 2313 ++kvm->stat.mmu_shadow_zapped; 2314 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list); 2315 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list); 2316 kvm_mmu_unlink_parents(sp); 2317 2318 /* Zapping children means active_mmu_pages has become unstable. */ 2319 list_unstable = *nr_zapped; 2320 2321 if (!sp->role.invalid && sp_has_gptes(sp)) 2322 unaccount_shadowed(kvm, sp); 2323 2324 if (sp->unsync) 2325 kvm_unlink_unsync_page(kvm, sp); 2326 if (!sp->root_count) { 2327 /* Count self */ 2328 (*nr_zapped)++; 2329 2330 /* 2331 * Already invalid pages (previously active roots) are not on 2332 * the active page list. See list_del() in the "else" case of 2333 * !sp->root_count. 2334 */ 2335 if (sp->role.invalid) 2336 list_add(&sp->link, invalid_list); 2337 else 2338 list_move(&sp->link, invalid_list); 2339 kvm_mod_used_mmu_pages(kvm, -1); 2340 } else { 2341 /* 2342 * Remove the active root from the active page list, the root 2343 * will be explicitly freed when the root_count hits zero. 2344 */ 2345 list_del(&sp->link); 2346 2347 /* 2348 * Obsolete pages cannot be used on any vCPUs, see the comment 2349 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also 2350 * treats invalid shadow pages as being obsolete. 2351 */ 2352 zapped_root = !is_obsolete_sp(kvm, sp); 2353 } 2354 2355 if (sp->lpage_disallowed) 2356 unaccount_huge_nx_page(kvm, sp); 2357 2358 sp->role.invalid = 1; 2359 2360 /* 2361 * Make the request to free obsolete roots after marking the root 2362 * invalid, otherwise other vCPUs may not see it as invalid. 2363 */ 2364 if (zapped_root) 2365 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 2366 return list_unstable; 2367 } 2368 2369 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 2370 struct list_head *invalid_list) 2371 { 2372 int nr_zapped; 2373 2374 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped); 2375 return nr_zapped; 2376 } 2377 2378 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 2379 struct list_head *invalid_list) 2380 { 2381 struct kvm_mmu_page *sp, *nsp; 2382 2383 if (list_empty(invalid_list)) 2384 return; 2385 2386 /* 2387 * We need to make sure everyone sees our modifications to 2388 * the page tables and see changes to vcpu->mode here. The barrier 2389 * in the kvm_flush_remote_tlbs() achieves this. This pairs 2390 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end. 2391 * 2392 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit 2393 * guest mode and/or lockless shadow page table walks. 2394 */ 2395 kvm_flush_remote_tlbs(kvm); 2396 2397 list_for_each_entry_safe(sp, nsp, invalid_list, link) { 2398 WARN_ON(!sp->role.invalid || sp->root_count); 2399 kvm_mmu_free_page(sp); 2400 } 2401 } 2402 2403 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm, 2404 unsigned long nr_to_zap) 2405 { 2406 unsigned long total_zapped = 0; 2407 struct kvm_mmu_page *sp, *tmp; 2408 LIST_HEAD(invalid_list); 2409 bool unstable; 2410 int nr_zapped; 2411 2412 if (list_empty(&kvm->arch.active_mmu_pages)) 2413 return 0; 2414 2415 restart: 2416 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) { 2417 /* 2418 * Don't zap active root pages, the page itself can't be freed 2419 * and zapping it will just force vCPUs to realloc and reload. 2420 */ 2421 if (sp->root_count) 2422 continue; 2423 2424 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, 2425 &nr_zapped); 2426 total_zapped += nr_zapped; 2427 if (total_zapped >= nr_to_zap) 2428 break; 2429 2430 if (unstable) 2431 goto restart; 2432 } 2433 2434 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2435 2436 kvm->stat.mmu_recycled += total_zapped; 2437 return total_zapped; 2438 } 2439 2440 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm) 2441 { 2442 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) 2443 return kvm->arch.n_max_mmu_pages - 2444 kvm->arch.n_used_mmu_pages; 2445 2446 return 0; 2447 } 2448 2449 static int make_mmu_pages_available(struct kvm_vcpu *vcpu) 2450 { 2451 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm); 2452 2453 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES)) 2454 return 0; 2455 2456 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail); 2457 2458 /* 2459 * Note, this check is intentionally soft, it only guarantees that one 2460 * page is available, while the caller may end up allocating as many as 2461 * four pages, e.g. for PAE roots or for 5-level paging. Temporarily 2462 * exceeding the (arbitrary by default) limit will not harm the host, 2463 * being too aggressive may unnecessarily kill the guest, and getting an 2464 * exact count is far more trouble than it's worth, especially in the 2465 * page fault paths. 2466 */ 2467 if (!kvm_mmu_available_pages(vcpu->kvm)) 2468 return -ENOSPC; 2469 return 0; 2470 } 2471 2472 /* 2473 * Changing the number of mmu pages allocated to the vm 2474 * Note: if goal_nr_mmu_pages is too small, you will get dead lock 2475 */ 2476 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages) 2477 { 2478 write_lock(&kvm->mmu_lock); 2479 2480 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { 2481 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages - 2482 goal_nr_mmu_pages); 2483 2484 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; 2485 } 2486 2487 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; 2488 2489 write_unlock(&kvm->mmu_lock); 2490 } 2491 2492 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn) 2493 { 2494 struct kvm_mmu_page *sp; 2495 LIST_HEAD(invalid_list); 2496 int r; 2497 2498 pgprintk("%s: looking for gfn %llx\n", __func__, gfn); 2499 r = 0; 2500 write_lock(&kvm->mmu_lock); 2501 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) { 2502 pgprintk("%s: gfn %llx role %x\n", __func__, gfn, 2503 sp->role.word); 2504 r = 1; 2505 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 2506 } 2507 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2508 write_unlock(&kvm->mmu_lock); 2509 2510 return r; 2511 } 2512 2513 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) 2514 { 2515 gpa_t gpa; 2516 int r; 2517 2518 if (vcpu->arch.mmu->root_role.direct) 2519 return 0; 2520 2521 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL); 2522 2523 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); 2524 2525 return r; 2526 } 2527 2528 static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 2529 { 2530 trace_kvm_mmu_unsync_page(sp); 2531 ++kvm->stat.mmu_unsync; 2532 sp->unsync = 1; 2533 2534 kvm_mmu_mark_parents_unsync(sp); 2535 } 2536 2537 /* 2538 * Attempt to unsync any shadow pages that can be reached by the specified gfn, 2539 * KVM is creating a writable mapping for said gfn. Returns 0 if all pages 2540 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must 2541 * be write-protected. 2542 */ 2543 int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot, 2544 gfn_t gfn, bool can_unsync, bool prefetch) 2545 { 2546 struct kvm_mmu_page *sp; 2547 bool locked = false; 2548 2549 /* 2550 * Force write-protection if the page is being tracked. Note, the page 2551 * track machinery is used to write-protect upper-level shadow pages, 2552 * i.e. this guards the role.level == 4K assertion below! 2553 */ 2554 if (kvm_slot_page_track_is_active(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE)) 2555 return -EPERM; 2556 2557 /* 2558 * The page is not write-tracked, mark existing shadow pages unsync 2559 * unless KVM is synchronizing an unsync SP (can_unsync = false). In 2560 * that case, KVM must complete emulation of the guest TLB flush before 2561 * allowing shadow pages to become unsync (writable by the guest). 2562 */ 2563 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) { 2564 if (!can_unsync) 2565 return -EPERM; 2566 2567 if (sp->unsync) 2568 continue; 2569 2570 if (prefetch) 2571 return -EEXIST; 2572 2573 /* 2574 * TDP MMU page faults require an additional spinlock as they 2575 * run with mmu_lock held for read, not write, and the unsync 2576 * logic is not thread safe. Take the spinklock regardless of 2577 * the MMU type to avoid extra conditionals/parameters, there's 2578 * no meaningful penalty if mmu_lock is held for write. 2579 */ 2580 if (!locked) { 2581 locked = true; 2582 spin_lock(&kvm->arch.mmu_unsync_pages_lock); 2583 2584 /* 2585 * Recheck after taking the spinlock, a different vCPU 2586 * may have since marked the page unsync. A false 2587 * positive on the unprotected check above is not 2588 * possible as clearing sp->unsync _must_ hold mmu_lock 2589 * for write, i.e. unsync cannot transition from 0->1 2590 * while this CPU holds mmu_lock for read (or write). 2591 */ 2592 if (READ_ONCE(sp->unsync)) 2593 continue; 2594 } 2595 2596 WARN_ON(sp->role.level != PG_LEVEL_4K); 2597 kvm_unsync_page(kvm, sp); 2598 } 2599 if (locked) 2600 spin_unlock(&kvm->arch.mmu_unsync_pages_lock); 2601 2602 /* 2603 * We need to ensure that the marking of unsync pages is visible 2604 * before the SPTE is updated to allow writes because 2605 * kvm_mmu_sync_roots() checks the unsync flags without holding 2606 * the MMU lock and so can race with this. If the SPTE was updated 2607 * before the page had been marked as unsync-ed, something like the 2608 * following could happen: 2609 * 2610 * CPU 1 CPU 2 2611 * --------------------------------------------------------------------- 2612 * 1.2 Host updates SPTE 2613 * to be writable 2614 * 2.1 Guest writes a GPTE for GVA X. 2615 * (GPTE being in the guest page table shadowed 2616 * by the SP from CPU 1.) 2617 * This reads SPTE during the page table walk. 2618 * Since SPTE.W is read as 1, there is no 2619 * fault. 2620 * 2621 * 2.2 Guest issues TLB flush. 2622 * That causes a VM Exit. 2623 * 2624 * 2.3 Walking of unsync pages sees sp->unsync is 2625 * false and skips the page. 2626 * 2627 * 2.4 Guest accesses GVA X. 2628 * Since the mapping in the SP was not updated, 2629 * so the old mapping for GVA X incorrectly 2630 * gets used. 2631 * 1.1 Host marks SP 2632 * as unsync 2633 * (sp->unsync = true) 2634 * 2635 * The write barrier below ensures that 1.1 happens before 1.2 and thus 2636 * the situation in 2.4 does not arise. It pairs with the read barrier 2637 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3. 2638 */ 2639 smp_wmb(); 2640 2641 return 0; 2642 } 2643 2644 static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, 2645 u64 *sptep, unsigned int pte_access, gfn_t gfn, 2646 kvm_pfn_t pfn, struct kvm_page_fault *fault) 2647 { 2648 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 2649 int level = sp->role.level; 2650 int was_rmapped = 0; 2651 int ret = RET_PF_FIXED; 2652 bool flush = false; 2653 bool wrprot; 2654 u64 spte; 2655 2656 /* Prefetching always gets a writable pfn. */ 2657 bool host_writable = !fault || fault->map_writable; 2658 bool prefetch = !fault || fault->prefetch; 2659 bool write_fault = fault && fault->write; 2660 2661 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__, 2662 *sptep, write_fault, gfn); 2663 2664 if (unlikely(is_noslot_pfn(pfn))) { 2665 vcpu->stat.pf_mmio_spte_created++; 2666 mark_mmio_spte(vcpu, sptep, gfn, pte_access); 2667 return RET_PF_EMULATE; 2668 } 2669 2670 if (is_shadow_present_pte(*sptep)) { 2671 /* 2672 * If we overwrite a PTE page pointer with a 2MB PMD, unlink 2673 * the parent of the now unreachable PTE. 2674 */ 2675 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) { 2676 struct kvm_mmu_page *child; 2677 u64 pte = *sptep; 2678 2679 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK); 2680 drop_parent_pte(child, sptep); 2681 flush = true; 2682 } else if (pfn != spte_to_pfn(*sptep)) { 2683 pgprintk("hfn old %llx new %llx\n", 2684 spte_to_pfn(*sptep), pfn); 2685 drop_spte(vcpu->kvm, sptep); 2686 flush = true; 2687 } else 2688 was_rmapped = 1; 2689 } 2690 2691 wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch, 2692 true, host_writable, &spte); 2693 2694 if (*sptep == spte) { 2695 ret = RET_PF_SPURIOUS; 2696 } else { 2697 flush |= mmu_spte_update(sptep, spte); 2698 trace_kvm_mmu_set_spte(level, gfn, sptep); 2699 } 2700 2701 if (wrprot) { 2702 if (write_fault) 2703 ret = RET_PF_EMULATE; 2704 } 2705 2706 if (flush) 2707 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 2708 KVM_PAGES_PER_HPAGE(level)); 2709 2710 pgprintk("%s: setting spte %llx\n", __func__, *sptep); 2711 2712 if (!was_rmapped) { 2713 WARN_ON_ONCE(ret == RET_PF_SPURIOUS); 2714 kvm_update_page_stats(vcpu->kvm, level, 1); 2715 rmap_add(vcpu, slot, sptep, gfn); 2716 } 2717 2718 return ret; 2719 } 2720 2721 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu, 2722 struct kvm_mmu_page *sp, 2723 u64 *start, u64 *end) 2724 { 2725 struct page *pages[PTE_PREFETCH_NUM]; 2726 struct kvm_memory_slot *slot; 2727 unsigned int access = sp->role.access; 2728 int i, ret; 2729 gfn_t gfn; 2730 2731 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt); 2732 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK); 2733 if (!slot) 2734 return -1; 2735 2736 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start); 2737 if (ret <= 0) 2738 return -1; 2739 2740 for (i = 0; i < ret; i++, gfn++, start++) { 2741 mmu_set_spte(vcpu, slot, start, access, gfn, 2742 page_to_pfn(pages[i]), NULL); 2743 put_page(pages[i]); 2744 } 2745 2746 return 0; 2747 } 2748 2749 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, 2750 struct kvm_mmu_page *sp, u64 *sptep) 2751 { 2752 u64 *spte, *start = NULL; 2753 int i; 2754 2755 WARN_ON(!sp->role.direct); 2756 2757 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1); 2758 spte = sp->spt + i; 2759 2760 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 2761 if (is_shadow_present_pte(*spte) || spte == sptep) { 2762 if (!start) 2763 continue; 2764 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0) 2765 return; 2766 start = NULL; 2767 } else if (!start) 2768 start = spte; 2769 } 2770 if (start) 2771 direct_pte_prefetch_many(vcpu, sp, start, spte); 2772 } 2773 2774 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) 2775 { 2776 struct kvm_mmu_page *sp; 2777 2778 sp = sptep_to_sp(sptep); 2779 2780 /* 2781 * Without accessed bits, there's no way to distinguish between 2782 * actually accessed translations and prefetched, so disable pte 2783 * prefetch if accessed bits aren't available. 2784 */ 2785 if (sp_ad_disabled(sp)) 2786 return; 2787 2788 if (sp->role.level > PG_LEVEL_4K) 2789 return; 2790 2791 /* 2792 * If addresses are being invalidated, skip prefetching to avoid 2793 * accidentally prefetching those addresses. 2794 */ 2795 if (unlikely(vcpu->kvm->mmu_notifier_count)) 2796 return; 2797 2798 __direct_pte_prefetch(vcpu, sp, sptep); 2799 } 2800 2801 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, 2802 const struct kvm_memory_slot *slot) 2803 { 2804 unsigned long hva; 2805 unsigned long flags; 2806 int level = PG_LEVEL_4K; 2807 pgd_t pgd; 2808 p4d_t p4d; 2809 pud_t pud; 2810 pmd_t pmd; 2811 2812 if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn)) 2813 return PG_LEVEL_4K; 2814 2815 /* 2816 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot() 2817 * is not solely for performance, it's also necessary to avoid the 2818 * "writable" check in __gfn_to_hva_many(), which will always fail on 2819 * read-only memslots due to gfn_to_hva() assuming writes. Earlier 2820 * page fault steps have already verified the guest isn't writing a 2821 * read-only memslot. 2822 */ 2823 hva = __gfn_to_hva_memslot(slot, gfn); 2824 2825 /* 2826 * Lookup the mapping level in the current mm. The information 2827 * may become stale soon, but it is safe to use as long as 2828 * 1) mmu_notifier_retry was checked after taking mmu_lock, and 2829 * 2) mmu_lock is taken now. 2830 * 2831 * We still need to disable IRQs to prevent concurrent tear down 2832 * of page tables. 2833 */ 2834 local_irq_save(flags); 2835 2836 pgd = READ_ONCE(*pgd_offset(kvm->mm, hva)); 2837 if (pgd_none(pgd)) 2838 goto out; 2839 2840 p4d = READ_ONCE(*p4d_offset(&pgd, hva)); 2841 if (p4d_none(p4d) || !p4d_present(p4d)) 2842 goto out; 2843 2844 pud = READ_ONCE(*pud_offset(&p4d, hva)); 2845 if (pud_none(pud) || !pud_present(pud)) 2846 goto out; 2847 2848 if (pud_large(pud)) { 2849 level = PG_LEVEL_1G; 2850 goto out; 2851 } 2852 2853 pmd = READ_ONCE(*pmd_offset(&pud, hva)); 2854 if (pmd_none(pmd) || !pmd_present(pmd)) 2855 goto out; 2856 2857 if (pmd_large(pmd)) 2858 level = PG_LEVEL_2M; 2859 2860 out: 2861 local_irq_restore(flags); 2862 return level; 2863 } 2864 2865 int kvm_mmu_max_mapping_level(struct kvm *kvm, 2866 const struct kvm_memory_slot *slot, gfn_t gfn, 2867 kvm_pfn_t pfn, int max_level) 2868 { 2869 struct kvm_lpage_info *linfo; 2870 int host_level; 2871 2872 max_level = min(max_level, max_huge_page_level); 2873 for ( ; max_level > PG_LEVEL_4K; max_level--) { 2874 linfo = lpage_info_slot(gfn, slot, max_level); 2875 if (!linfo->disallow_lpage) 2876 break; 2877 } 2878 2879 if (max_level == PG_LEVEL_4K) 2880 return PG_LEVEL_4K; 2881 2882 host_level = host_pfn_mapping_level(kvm, gfn, pfn, slot); 2883 return min(host_level, max_level); 2884 } 2885 2886 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 2887 { 2888 struct kvm_memory_slot *slot = fault->slot; 2889 kvm_pfn_t mask; 2890 2891 fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled; 2892 2893 if (unlikely(fault->max_level == PG_LEVEL_4K)) 2894 return; 2895 2896 if (is_error_noslot_pfn(fault->pfn) || kvm_is_reserved_pfn(fault->pfn)) 2897 return; 2898 2899 if (kvm_slot_dirty_track_enabled(slot)) 2900 return; 2901 2902 /* 2903 * Enforce the iTLB multihit workaround after capturing the requested 2904 * level, which will be used to do precise, accurate accounting. 2905 */ 2906 fault->req_level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, 2907 fault->gfn, fault->pfn, 2908 fault->max_level); 2909 if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed) 2910 return; 2911 2912 /* 2913 * mmu_notifier_retry() was successful and mmu_lock is held, so 2914 * the pmd can't be split from under us. 2915 */ 2916 fault->goal_level = fault->req_level; 2917 mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1; 2918 VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask)); 2919 fault->pfn &= ~mask; 2920 } 2921 2922 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level) 2923 { 2924 if (cur_level > PG_LEVEL_4K && 2925 cur_level == fault->goal_level && 2926 is_shadow_present_pte(spte) && 2927 !is_large_pte(spte)) { 2928 /* 2929 * A small SPTE exists for this pfn, but FNAME(fetch) 2930 * and __direct_map would like to create a large PTE 2931 * instead: just force them to go down another level, 2932 * patching back for them into pfn the next 9 bits of 2933 * the address. 2934 */ 2935 u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) - 2936 KVM_PAGES_PER_HPAGE(cur_level - 1); 2937 fault->pfn |= fault->gfn & page_mask; 2938 fault->goal_level--; 2939 } 2940 } 2941 2942 static int __direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 2943 { 2944 struct kvm_shadow_walk_iterator it; 2945 struct kvm_mmu_page *sp; 2946 int ret; 2947 gfn_t base_gfn = fault->gfn; 2948 2949 kvm_mmu_hugepage_adjust(vcpu, fault); 2950 2951 trace_kvm_mmu_spte_requested(fault); 2952 for_each_shadow_entry(vcpu, fault->addr, it) { 2953 /* 2954 * We cannot overwrite existing page tables with an NX 2955 * large page, as the leaf could be executable. 2956 */ 2957 if (fault->nx_huge_page_workaround_enabled) 2958 disallowed_hugepage_adjust(fault, *it.sptep, it.level); 2959 2960 base_gfn = fault->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1); 2961 if (it.level == fault->goal_level) 2962 break; 2963 2964 drop_large_spte(vcpu, it.sptep); 2965 if (is_shadow_present_pte(*it.sptep)) 2966 continue; 2967 2968 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr, 2969 it.level - 1, true, ACC_ALL); 2970 2971 link_shadow_page(vcpu, it.sptep, sp); 2972 if (fault->is_tdp && fault->huge_page_disallowed && 2973 fault->req_level >= it.level) 2974 account_huge_nx_page(vcpu->kvm, sp); 2975 } 2976 2977 if (WARN_ON_ONCE(it.level != fault->goal_level)) 2978 return -EFAULT; 2979 2980 ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL, 2981 base_gfn, fault->pfn, fault); 2982 if (ret == RET_PF_SPURIOUS) 2983 return ret; 2984 2985 direct_pte_prefetch(vcpu, it.sptep); 2986 return ret; 2987 } 2988 2989 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk) 2990 { 2991 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk); 2992 } 2993 2994 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn) 2995 { 2996 /* 2997 * Do not cache the mmio info caused by writing the readonly gfn 2998 * into the spte otherwise read access on readonly gfn also can 2999 * caused mmio page fault and treat it as mmio access. 3000 */ 3001 if (pfn == KVM_PFN_ERR_RO_FAULT) 3002 return RET_PF_EMULATE; 3003 3004 if (pfn == KVM_PFN_ERR_HWPOISON) { 3005 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current); 3006 return RET_PF_RETRY; 3007 } 3008 3009 return -EFAULT; 3010 } 3011 3012 static int handle_abnormal_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, 3013 unsigned int access) 3014 { 3015 /* The pfn is invalid, report the error! */ 3016 if (unlikely(is_error_pfn(fault->pfn))) 3017 return kvm_handle_bad_page(vcpu, fault->gfn, fault->pfn); 3018 3019 if (unlikely(!fault->slot)) { 3020 gva_t gva = fault->is_tdp ? 0 : fault->addr; 3021 3022 vcpu_cache_mmio_info(vcpu, gva, fault->gfn, 3023 access & shadow_mmio_access_mask); 3024 /* 3025 * If MMIO caching is disabled, emulate immediately without 3026 * touching the shadow page tables as attempting to install an 3027 * MMIO SPTE will just be an expensive nop. Do not cache MMIO 3028 * whose gfn is greater than host.MAXPHYADDR, any guest that 3029 * generates such gfns is running nested and is being tricked 3030 * by L0 userspace (you can observe gfn > L1.MAXPHYADDR if 3031 * and only if L1's MAXPHYADDR is inaccurate with respect to 3032 * the hardware's). 3033 */ 3034 if (unlikely(!enable_mmio_caching) || 3035 unlikely(fault->gfn > kvm_mmu_max_gfn())) 3036 return RET_PF_EMULATE; 3037 } 3038 3039 return RET_PF_CONTINUE; 3040 } 3041 3042 static bool page_fault_can_be_fast(struct kvm_page_fault *fault) 3043 { 3044 /* 3045 * Page faults with reserved bits set, i.e. faults on MMIO SPTEs, only 3046 * reach the common page fault handler if the SPTE has an invalid MMIO 3047 * generation number. Refreshing the MMIO generation needs to go down 3048 * the slow path. Note, EPT Misconfigs do NOT set the PRESENT flag! 3049 */ 3050 if (fault->rsvd) 3051 return false; 3052 3053 /* 3054 * #PF can be fast if: 3055 * 3056 * 1. The shadow page table entry is not present and A/D bits are 3057 * disabled _by KVM_, which could mean that the fault is potentially 3058 * caused by access tracking (if enabled). If A/D bits are enabled 3059 * by KVM, but disabled by L1 for L2, KVM is forced to disable A/D 3060 * bits for L2 and employ access tracking, but the fast page fault 3061 * mechanism only supports direct MMUs. 3062 * 2. The shadow page table entry is present, the access is a write, 3063 * and no reserved bits are set (MMIO SPTEs cannot be "fixed"), i.e. 3064 * the fault was caused by a write-protection violation. If the 3065 * SPTE is MMU-writable (determined later), the fault can be fixed 3066 * by setting the Writable bit, which can be done out of mmu_lock. 3067 */ 3068 if (!fault->present) 3069 return !kvm_ad_enabled(); 3070 3071 /* 3072 * Note, instruction fetches and writes are mutually exclusive, ignore 3073 * the "exec" flag. 3074 */ 3075 return fault->write; 3076 } 3077 3078 /* 3079 * Returns true if the SPTE was fixed successfully. Otherwise, 3080 * someone else modified the SPTE from its original value. 3081 */ 3082 static bool 3083 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, 3084 u64 *sptep, u64 old_spte, u64 new_spte) 3085 { 3086 /* 3087 * Theoretically we could also set dirty bit (and flush TLB) here in 3088 * order to eliminate unnecessary PML logging. See comments in 3089 * set_spte. But fast_page_fault is very unlikely to happen with PML 3090 * enabled, so we do not do this. This might result in the same GPA 3091 * to be logged in PML buffer again when the write really happens, and 3092 * eventually to be called by mark_page_dirty twice. But it's also no 3093 * harm. This also avoids the TLB flush needed after setting dirty bit 3094 * so non-PML cases won't be impacted. 3095 * 3096 * Compare with set_spte where instead shadow_dirty_mask is set. 3097 */ 3098 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte) 3099 return false; 3100 3101 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) 3102 mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn); 3103 3104 return true; 3105 } 3106 3107 static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte) 3108 { 3109 if (fault->exec) 3110 return is_executable_pte(spte); 3111 3112 if (fault->write) 3113 return is_writable_pte(spte); 3114 3115 /* Fault was on Read access */ 3116 return spte & PT_PRESENT_MASK; 3117 } 3118 3119 /* 3120 * Returns the last level spte pointer of the shadow page walk for the given 3121 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no 3122 * walk could be performed, returns NULL and *spte does not contain valid data. 3123 * 3124 * Contract: 3125 * - Must be called between walk_shadow_page_lockless_{begin,end}. 3126 * - The returned sptep must not be used after walk_shadow_page_lockless_end. 3127 */ 3128 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte) 3129 { 3130 struct kvm_shadow_walk_iterator iterator; 3131 u64 old_spte; 3132 u64 *sptep = NULL; 3133 3134 for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) { 3135 sptep = iterator.sptep; 3136 *spte = old_spte; 3137 } 3138 3139 return sptep; 3140 } 3141 3142 /* 3143 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS. 3144 */ 3145 static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3146 { 3147 struct kvm_mmu_page *sp; 3148 int ret = RET_PF_INVALID; 3149 u64 spte = 0ull; 3150 u64 *sptep = NULL; 3151 uint retry_count = 0; 3152 3153 if (!page_fault_can_be_fast(fault)) 3154 return ret; 3155 3156 walk_shadow_page_lockless_begin(vcpu); 3157 3158 do { 3159 u64 new_spte; 3160 3161 if (is_tdp_mmu(vcpu->arch.mmu)) 3162 sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->addr, &spte); 3163 else 3164 sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte); 3165 3166 if (!is_shadow_present_pte(spte)) 3167 break; 3168 3169 sp = sptep_to_sp(sptep); 3170 if (!is_last_spte(spte, sp->role.level)) 3171 break; 3172 3173 /* 3174 * Check whether the memory access that caused the fault would 3175 * still cause it if it were to be performed right now. If not, 3176 * then this is a spurious fault caused by TLB lazily flushed, 3177 * or some other CPU has already fixed the PTE after the 3178 * current CPU took the fault. 3179 * 3180 * Need not check the access of upper level table entries since 3181 * they are always ACC_ALL. 3182 */ 3183 if (is_access_allowed(fault, spte)) { 3184 ret = RET_PF_SPURIOUS; 3185 break; 3186 } 3187 3188 new_spte = spte; 3189 3190 /* 3191 * KVM only supports fixing page faults outside of MMU lock for 3192 * direct MMUs, nested MMUs are always indirect, and KVM always 3193 * uses A/D bits for non-nested MMUs. Thus, if A/D bits are 3194 * enabled, the SPTE can't be an access-tracked SPTE. 3195 */ 3196 if (unlikely(!kvm_ad_enabled()) && is_access_track_spte(spte)) 3197 new_spte = restore_acc_track_spte(new_spte); 3198 3199 /* 3200 * To keep things simple, only SPTEs that are MMU-writable can 3201 * be made fully writable outside of mmu_lock, e.g. only SPTEs 3202 * that were write-protected for dirty-logging or access 3203 * tracking are handled here. Don't bother checking if the 3204 * SPTE is writable to prioritize running with A/D bits enabled. 3205 * The is_access_allowed() check above handles the common case 3206 * of the fault being spurious, and the SPTE is known to be 3207 * shadow-present, i.e. except for access tracking restoration 3208 * making the new SPTE writable, the check is wasteful. 3209 */ 3210 if (fault->write && is_mmu_writable_spte(spte)) { 3211 new_spte |= PT_WRITABLE_MASK; 3212 3213 /* 3214 * Do not fix write-permission on the large spte when 3215 * dirty logging is enabled. Since we only dirty the 3216 * first page into the dirty-bitmap in 3217 * fast_pf_fix_direct_spte(), other pages are missed 3218 * if its slot has dirty logging enabled. 3219 * 3220 * Instead, we let the slow page fault path create a 3221 * normal spte to fix the access. 3222 */ 3223 if (sp->role.level > PG_LEVEL_4K && 3224 kvm_slot_dirty_track_enabled(fault->slot)) 3225 break; 3226 } 3227 3228 /* Verify that the fault can be handled in the fast path */ 3229 if (new_spte == spte || 3230 !is_access_allowed(fault, new_spte)) 3231 break; 3232 3233 /* 3234 * Currently, fast page fault only works for direct mapping 3235 * since the gfn is not stable for indirect shadow page. See 3236 * Documentation/virt/kvm/locking.rst to get more detail. 3237 */ 3238 if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) { 3239 ret = RET_PF_FIXED; 3240 break; 3241 } 3242 3243 if (++retry_count > 4) { 3244 printk_once(KERN_WARNING 3245 "kvm: Fast #PF retrying more than 4 times.\n"); 3246 break; 3247 } 3248 3249 } while (true); 3250 3251 trace_fast_page_fault(vcpu, fault, sptep, spte, ret); 3252 walk_shadow_page_lockless_end(vcpu); 3253 3254 if (ret != RET_PF_INVALID) 3255 vcpu->stat.pf_fast++; 3256 3257 return ret; 3258 } 3259 3260 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa, 3261 struct list_head *invalid_list) 3262 { 3263 struct kvm_mmu_page *sp; 3264 3265 if (!VALID_PAGE(*root_hpa)) 3266 return; 3267 3268 sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK); 3269 if (WARN_ON(!sp)) 3270 return; 3271 3272 if (is_tdp_mmu_page(sp)) 3273 kvm_tdp_mmu_put_root(kvm, sp, false); 3274 else if (!--sp->root_count && sp->role.invalid) 3275 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 3276 3277 *root_hpa = INVALID_PAGE; 3278 } 3279 3280 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */ 3281 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, 3282 ulong roots_to_free) 3283 { 3284 int i; 3285 LIST_HEAD(invalid_list); 3286 bool free_active_root; 3287 3288 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG); 3289 3290 /* Before acquiring the MMU lock, see if we need to do any real work. */ 3291 free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT) 3292 && VALID_PAGE(mmu->root.hpa); 3293 3294 if (!free_active_root) { 3295 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3296 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) && 3297 VALID_PAGE(mmu->prev_roots[i].hpa)) 3298 break; 3299 3300 if (i == KVM_MMU_NUM_PREV_ROOTS) 3301 return; 3302 } 3303 3304 write_lock(&kvm->mmu_lock); 3305 3306 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3307 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) 3308 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa, 3309 &invalid_list); 3310 3311 if (free_active_root) { 3312 if (to_shadow_page(mmu->root.hpa)) { 3313 mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list); 3314 } else if (mmu->pae_root) { 3315 for (i = 0; i < 4; ++i) { 3316 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i])) 3317 continue; 3318 3319 mmu_free_root_page(kvm, &mmu->pae_root[i], 3320 &invalid_list); 3321 mmu->pae_root[i] = INVALID_PAE_ROOT; 3322 } 3323 } 3324 mmu->root.hpa = INVALID_PAGE; 3325 mmu->root.pgd = 0; 3326 } 3327 3328 kvm_mmu_commit_zap_page(kvm, &invalid_list); 3329 write_unlock(&kvm->mmu_lock); 3330 } 3331 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots); 3332 3333 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu) 3334 { 3335 unsigned long roots_to_free = 0; 3336 hpa_t root_hpa; 3337 int i; 3338 3339 /* 3340 * This should not be called while L2 is active, L2 can't invalidate 3341 * _only_ its own roots, e.g. INVVPID unconditionally exits. 3342 */ 3343 WARN_ON_ONCE(mmu->root_role.guest_mode); 3344 3345 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 3346 root_hpa = mmu->prev_roots[i].hpa; 3347 if (!VALID_PAGE(root_hpa)) 3348 continue; 3349 3350 if (!to_shadow_page(root_hpa) || 3351 to_shadow_page(root_hpa)->role.guest_mode) 3352 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 3353 } 3354 3355 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 3356 } 3357 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots); 3358 3359 3360 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn) 3361 { 3362 int ret = 0; 3363 3364 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) { 3365 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 3366 ret = 1; 3367 } 3368 3369 return ret; 3370 } 3371 3372 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva, 3373 u8 level, bool direct) 3374 { 3375 struct kvm_mmu_page *sp; 3376 3377 sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL); 3378 ++sp->root_count; 3379 3380 return __pa(sp->spt); 3381 } 3382 3383 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) 3384 { 3385 struct kvm_mmu *mmu = vcpu->arch.mmu; 3386 u8 shadow_root_level = mmu->root_role.level; 3387 hpa_t root; 3388 unsigned i; 3389 int r; 3390 3391 write_lock(&vcpu->kvm->mmu_lock); 3392 r = make_mmu_pages_available(vcpu); 3393 if (r < 0) 3394 goto out_unlock; 3395 3396 if (is_tdp_mmu_enabled(vcpu->kvm)) { 3397 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu); 3398 mmu->root.hpa = root; 3399 } else if (shadow_root_level >= PT64_ROOT_4LEVEL) { 3400 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true); 3401 mmu->root.hpa = root; 3402 } else if (shadow_root_level == PT32E_ROOT_LEVEL) { 3403 if (WARN_ON_ONCE(!mmu->pae_root)) { 3404 r = -EIO; 3405 goto out_unlock; 3406 } 3407 3408 for (i = 0; i < 4; ++i) { 3409 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3410 3411 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 3412 i << 30, PT32_ROOT_LEVEL, true); 3413 mmu->pae_root[i] = root | PT_PRESENT_MASK | 3414 shadow_me_mask; 3415 } 3416 mmu->root.hpa = __pa(mmu->pae_root); 3417 } else { 3418 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level); 3419 r = -EIO; 3420 goto out_unlock; 3421 } 3422 3423 /* root.pgd is ignored for direct MMUs. */ 3424 mmu->root.pgd = 0; 3425 out_unlock: 3426 write_unlock(&vcpu->kvm->mmu_lock); 3427 return r; 3428 } 3429 3430 static int mmu_first_shadow_root_alloc(struct kvm *kvm) 3431 { 3432 struct kvm_memslots *slots; 3433 struct kvm_memory_slot *slot; 3434 int r = 0, i, bkt; 3435 3436 /* 3437 * Check if this is the first shadow root being allocated before 3438 * taking the lock. 3439 */ 3440 if (kvm_shadow_root_allocated(kvm)) 3441 return 0; 3442 3443 mutex_lock(&kvm->slots_arch_lock); 3444 3445 /* Recheck, under the lock, whether this is the first shadow root. */ 3446 if (kvm_shadow_root_allocated(kvm)) 3447 goto out_unlock; 3448 3449 /* 3450 * Check if anything actually needs to be allocated, e.g. all metadata 3451 * will be allocated upfront if TDP is disabled. 3452 */ 3453 if (kvm_memslots_have_rmaps(kvm) && 3454 kvm_page_track_write_tracking_enabled(kvm)) 3455 goto out_success; 3456 3457 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 3458 slots = __kvm_memslots(kvm, i); 3459 kvm_for_each_memslot(slot, bkt, slots) { 3460 /* 3461 * Both of these functions are no-ops if the target is 3462 * already allocated, so unconditionally calling both 3463 * is safe. Intentionally do NOT free allocations on 3464 * failure to avoid having to track which allocations 3465 * were made now versus when the memslot was created. 3466 * The metadata is guaranteed to be freed when the slot 3467 * is freed, and will be kept/used if userspace retries 3468 * KVM_RUN instead of killing the VM. 3469 */ 3470 r = memslot_rmap_alloc(slot, slot->npages); 3471 if (r) 3472 goto out_unlock; 3473 r = kvm_page_track_write_tracking_alloc(slot); 3474 if (r) 3475 goto out_unlock; 3476 } 3477 } 3478 3479 /* 3480 * Ensure that shadow_root_allocated becomes true strictly after 3481 * all the related pointers are set. 3482 */ 3483 out_success: 3484 smp_store_release(&kvm->arch.shadow_root_allocated, true); 3485 3486 out_unlock: 3487 mutex_unlock(&kvm->slots_arch_lock); 3488 return r; 3489 } 3490 3491 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) 3492 { 3493 struct kvm_mmu *mmu = vcpu->arch.mmu; 3494 u64 pdptrs[4], pm_mask; 3495 gfn_t root_gfn, root_pgd; 3496 hpa_t root; 3497 unsigned i; 3498 int r; 3499 3500 root_pgd = mmu->get_guest_pgd(vcpu); 3501 root_gfn = root_pgd >> PAGE_SHIFT; 3502 3503 if (mmu_check_root(vcpu, root_gfn)) 3504 return 1; 3505 3506 /* 3507 * On SVM, reading PDPTRs might access guest memory, which might fault 3508 * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock. 3509 */ 3510 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { 3511 for (i = 0; i < 4; ++i) { 3512 pdptrs[i] = mmu->get_pdptr(vcpu, i); 3513 if (!(pdptrs[i] & PT_PRESENT_MASK)) 3514 continue; 3515 3516 if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT)) 3517 return 1; 3518 } 3519 } 3520 3521 r = mmu_first_shadow_root_alloc(vcpu->kvm); 3522 if (r) 3523 return r; 3524 3525 write_lock(&vcpu->kvm->mmu_lock); 3526 r = make_mmu_pages_available(vcpu); 3527 if (r < 0) 3528 goto out_unlock; 3529 3530 /* 3531 * Do we shadow a long mode page table? If so we need to 3532 * write-protect the guests page table root. 3533 */ 3534 if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { 3535 root = mmu_alloc_root(vcpu, root_gfn, 0, 3536 mmu->root_role.level, false); 3537 mmu->root.hpa = root; 3538 goto set_root_pgd; 3539 } 3540 3541 if (WARN_ON_ONCE(!mmu->pae_root)) { 3542 r = -EIO; 3543 goto out_unlock; 3544 } 3545 3546 /* 3547 * We shadow a 32 bit page table. This may be a legacy 2-level 3548 * or a PAE 3-level page table. In either case we need to be aware that 3549 * the shadow page table may be a PAE or a long mode page table. 3550 */ 3551 pm_mask = PT_PRESENT_MASK | shadow_me_value; 3552 if (mmu->root_role.level >= PT64_ROOT_4LEVEL) { 3553 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; 3554 3555 if (WARN_ON_ONCE(!mmu->pml4_root)) { 3556 r = -EIO; 3557 goto out_unlock; 3558 } 3559 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask; 3560 3561 if (mmu->root_role.level == PT64_ROOT_5LEVEL) { 3562 if (WARN_ON_ONCE(!mmu->pml5_root)) { 3563 r = -EIO; 3564 goto out_unlock; 3565 } 3566 mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask; 3567 } 3568 } 3569 3570 for (i = 0; i < 4; ++i) { 3571 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3572 3573 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { 3574 if (!(pdptrs[i] & PT_PRESENT_MASK)) { 3575 mmu->pae_root[i] = INVALID_PAE_ROOT; 3576 continue; 3577 } 3578 root_gfn = pdptrs[i] >> PAGE_SHIFT; 3579 } 3580 3581 root = mmu_alloc_root(vcpu, root_gfn, i << 30, 3582 PT32_ROOT_LEVEL, false); 3583 mmu->pae_root[i] = root | pm_mask; 3584 } 3585 3586 if (mmu->root_role.level == PT64_ROOT_5LEVEL) 3587 mmu->root.hpa = __pa(mmu->pml5_root); 3588 else if (mmu->root_role.level == PT64_ROOT_4LEVEL) 3589 mmu->root.hpa = __pa(mmu->pml4_root); 3590 else 3591 mmu->root.hpa = __pa(mmu->pae_root); 3592 3593 set_root_pgd: 3594 mmu->root.pgd = root_pgd; 3595 out_unlock: 3596 write_unlock(&vcpu->kvm->mmu_lock); 3597 3598 return r; 3599 } 3600 3601 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu) 3602 { 3603 struct kvm_mmu *mmu = vcpu->arch.mmu; 3604 bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL; 3605 u64 *pml5_root = NULL; 3606 u64 *pml4_root = NULL; 3607 u64 *pae_root; 3608 3609 /* 3610 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP 3611 * tables are allocated and initialized at root creation as there is no 3612 * equivalent level in the guest's NPT to shadow. Allocate the tables 3613 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare. 3614 */ 3615 if (mmu->root_role.direct || 3616 mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL || 3617 mmu->root_role.level < PT64_ROOT_4LEVEL) 3618 return 0; 3619 3620 /* 3621 * NPT, the only paging mode that uses this horror, uses a fixed number 3622 * of levels for the shadow page tables, e.g. all MMUs are 4-level or 3623 * all MMus are 5-level. Thus, this can safely require that pml5_root 3624 * is allocated if the other roots are valid and pml5 is needed, as any 3625 * prior MMU would also have required pml5. 3626 */ 3627 if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root)) 3628 return 0; 3629 3630 /* 3631 * The special roots should always be allocated in concert. Yell and 3632 * bail if KVM ends up in a state where only one of the roots is valid. 3633 */ 3634 if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root || 3635 (need_pml5 && mmu->pml5_root))) 3636 return -EIO; 3637 3638 /* 3639 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and 3640 * doesn't need to be decrypted. 3641 */ 3642 pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3643 if (!pae_root) 3644 return -ENOMEM; 3645 3646 #ifdef CONFIG_X86_64 3647 pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3648 if (!pml4_root) 3649 goto err_pml4; 3650 3651 if (need_pml5) { 3652 pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3653 if (!pml5_root) 3654 goto err_pml5; 3655 } 3656 #endif 3657 3658 mmu->pae_root = pae_root; 3659 mmu->pml4_root = pml4_root; 3660 mmu->pml5_root = pml5_root; 3661 3662 return 0; 3663 3664 #ifdef CONFIG_X86_64 3665 err_pml5: 3666 free_page((unsigned long)pml4_root); 3667 err_pml4: 3668 free_page((unsigned long)pae_root); 3669 return -ENOMEM; 3670 #endif 3671 } 3672 3673 static bool is_unsync_root(hpa_t root) 3674 { 3675 struct kvm_mmu_page *sp; 3676 3677 if (!VALID_PAGE(root)) 3678 return false; 3679 3680 /* 3681 * The read barrier orders the CPU's read of SPTE.W during the page table 3682 * walk before the reads of sp->unsync/sp->unsync_children here. 3683 * 3684 * Even if another CPU was marking the SP as unsync-ed simultaneously, 3685 * any guest page table changes are not guaranteed to be visible anyway 3686 * until this VCPU issues a TLB flush strictly after those changes are 3687 * made. We only need to ensure that the other CPU sets these flags 3688 * before any actual changes to the page tables are made. The comments 3689 * in mmu_try_to_unsync_pages() describe what could go wrong if this 3690 * requirement isn't satisfied. 3691 */ 3692 smp_rmb(); 3693 sp = to_shadow_page(root); 3694 3695 /* 3696 * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the 3697 * PDPTEs for a given PAE root need to be synchronized individually. 3698 */ 3699 if (WARN_ON_ONCE(!sp)) 3700 return false; 3701 3702 if (sp->unsync || sp->unsync_children) 3703 return true; 3704 3705 return false; 3706 } 3707 3708 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) 3709 { 3710 int i; 3711 struct kvm_mmu_page *sp; 3712 3713 if (vcpu->arch.mmu->root_role.direct) 3714 return; 3715 3716 if (!VALID_PAGE(vcpu->arch.mmu->root.hpa)) 3717 return; 3718 3719 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 3720 3721 if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { 3722 hpa_t root = vcpu->arch.mmu->root.hpa; 3723 sp = to_shadow_page(root); 3724 3725 if (!is_unsync_root(root)) 3726 return; 3727 3728 write_lock(&vcpu->kvm->mmu_lock); 3729 mmu_sync_children(vcpu, sp, true); 3730 write_unlock(&vcpu->kvm->mmu_lock); 3731 return; 3732 } 3733 3734 write_lock(&vcpu->kvm->mmu_lock); 3735 3736 for (i = 0; i < 4; ++i) { 3737 hpa_t root = vcpu->arch.mmu->pae_root[i]; 3738 3739 if (IS_VALID_PAE_ROOT(root)) { 3740 root &= PT64_BASE_ADDR_MASK; 3741 sp = to_shadow_page(root); 3742 mmu_sync_children(vcpu, sp, true); 3743 } 3744 } 3745 3746 write_unlock(&vcpu->kvm->mmu_lock); 3747 } 3748 3749 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu) 3750 { 3751 unsigned long roots_to_free = 0; 3752 int i; 3753 3754 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3755 if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa)) 3756 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 3757 3758 /* sync prev_roots by simply freeing them */ 3759 kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free); 3760 } 3761 3762 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 3763 gpa_t vaddr, u64 access, 3764 struct x86_exception *exception) 3765 { 3766 if (exception) 3767 exception->error_code = 0; 3768 return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception); 3769 } 3770 3771 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct) 3772 { 3773 /* 3774 * A nested guest cannot use the MMIO cache if it is using nested 3775 * page tables, because cr2 is a nGPA while the cache stores GPAs. 3776 */ 3777 if (mmu_is_nested(vcpu)) 3778 return false; 3779 3780 if (direct) 3781 return vcpu_match_mmio_gpa(vcpu, addr); 3782 3783 return vcpu_match_mmio_gva(vcpu, addr); 3784 } 3785 3786 /* 3787 * Return the level of the lowest level SPTE added to sptes. 3788 * That SPTE may be non-present. 3789 * 3790 * Must be called between walk_shadow_page_lockless_{begin,end}. 3791 */ 3792 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level) 3793 { 3794 struct kvm_shadow_walk_iterator iterator; 3795 int leaf = -1; 3796 u64 spte; 3797 3798 for (shadow_walk_init(&iterator, vcpu, addr), 3799 *root_level = iterator.level; 3800 shadow_walk_okay(&iterator); 3801 __shadow_walk_next(&iterator, spte)) { 3802 leaf = iterator.level; 3803 spte = mmu_spte_get_lockless(iterator.sptep); 3804 3805 sptes[leaf] = spte; 3806 } 3807 3808 return leaf; 3809 } 3810 3811 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */ 3812 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) 3813 { 3814 u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; 3815 struct rsvd_bits_validate *rsvd_check; 3816 int root, leaf, level; 3817 bool reserved = false; 3818 3819 walk_shadow_page_lockless_begin(vcpu); 3820 3821 if (is_tdp_mmu(vcpu->arch.mmu)) 3822 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root); 3823 else 3824 leaf = get_walk(vcpu, addr, sptes, &root); 3825 3826 walk_shadow_page_lockless_end(vcpu); 3827 3828 if (unlikely(leaf < 0)) { 3829 *sptep = 0ull; 3830 return reserved; 3831 } 3832 3833 *sptep = sptes[leaf]; 3834 3835 /* 3836 * Skip reserved bits checks on the terminal leaf if it's not a valid 3837 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by 3838 * design, always have reserved bits set. The purpose of the checks is 3839 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs. 3840 */ 3841 if (!is_shadow_present_pte(sptes[leaf])) 3842 leaf++; 3843 3844 rsvd_check = &vcpu->arch.mmu->shadow_zero_check; 3845 3846 for (level = root; level >= leaf; level--) 3847 reserved |= is_rsvd_spte(rsvd_check, sptes[level], level); 3848 3849 if (reserved) { 3850 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n", 3851 __func__, addr); 3852 for (level = root; level >= leaf; level--) 3853 pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx", 3854 sptes[level], level, 3855 get_rsvd_bits(rsvd_check, sptes[level], level)); 3856 } 3857 3858 return reserved; 3859 } 3860 3861 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct) 3862 { 3863 u64 spte; 3864 bool reserved; 3865 3866 if (mmio_info_in_cache(vcpu, addr, direct)) 3867 return RET_PF_EMULATE; 3868 3869 reserved = get_mmio_spte(vcpu, addr, &spte); 3870 if (WARN_ON(reserved)) 3871 return -EINVAL; 3872 3873 if (is_mmio_spte(spte)) { 3874 gfn_t gfn = get_mmio_spte_gfn(spte); 3875 unsigned int access = get_mmio_spte_access(spte); 3876 3877 if (!check_mmio_spte(vcpu, spte)) 3878 return RET_PF_INVALID; 3879 3880 if (direct) 3881 addr = 0; 3882 3883 trace_handle_mmio_page_fault(addr, gfn, access); 3884 vcpu_cache_mmio_info(vcpu, addr, gfn, access); 3885 return RET_PF_EMULATE; 3886 } 3887 3888 /* 3889 * If the page table is zapped by other cpus, let CPU fault again on 3890 * the address. 3891 */ 3892 return RET_PF_RETRY; 3893 } 3894 3895 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu, 3896 struct kvm_page_fault *fault) 3897 { 3898 if (unlikely(fault->rsvd)) 3899 return false; 3900 3901 if (!fault->present || !fault->write) 3902 return false; 3903 3904 /* 3905 * guest is writing the page which is write tracked which can 3906 * not be fixed by page fault handler. 3907 */ 3908 if (kvm_slot_page_track_is_active(vcpu->kvm, fault->slot, fault->gfn, KVM_PAGE_TRACK_WRITE)) 3909 return true; 3910 3911 return false; 3912 } 3913 3914 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr) 3915 { 3916 struct kvm_shadow_walk_iterator iterator; 3917 u64 spte; 3918 3919 walk_shadow_page_lockless_begin(vcpu); 3920 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) 3921 clear_sp_write_flooding_count(iterator.sptep); 3922 walk_shadow_page_lockless_end(vcpu); 3923 } 3924 3925 static u32 alloc_apf_token(struct kvm_vcpu *vcpu) 3926 { 3927 /* make sure the token value is not 0 */ 3928 u32 id = vcpu->arch.apf.id; 3929 3930 if (id << 12 == 0) 3931 vcpu->arch.apf.id = 1; 3932 3933 return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; 3934 } 3935 3936 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 3937 gfn_t gfn) 3938 { 3939 struct kvm_arch_async_pf arch; 3940 3941 arch.token = alloc_apf_token(vcpu); 3942 arch.gfn = gfn; 3943 arch.direct_map = vcpu->arch.mmu->root_role.direct; 3944 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu); 3945 3946 return kvm_setup_async_pf(vcpu, cr2_or_gpa, 3947 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch); 3948 } 3949 3950 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 3951 { 3952 int r; 3953 3954 if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) || 3955 work->wakeup_all) 3956 return; 3957 3958 r = kvm_mmu_reload(vcpu); 3959 if (unlikely(r)) 3960 return; 3961 3962 if (!vcpu->arch.mmu->root_role.direct && 3963 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu)) 3964 return; 3965 3966 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true); 3967 } 3968 3969 static int kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3970 { 3971 struct kvm_memory_slot *slot = fault->slot; 3972 bool async; 3973 3974 /* 3975 * Retry the page fault if the gfn hit a memslot that is being deleted 3976 * or moved. This ensures any existing SPTEs for the old memslot will 3977 * be zapped before KVM inserts a new MMIO SPTE for the gfn. 3978 */ 3979 if (slot && (slot->flags & KVM_MEMSLOT_INVALID)) 3980 return RET_PF_RETRY; 3981 3982 if (!kvm_is_visible_memslot(slot)) { 3983 /* Don't expose private memslots to L2. */ 3984 if (is_guest_mode(vcpu)) { 3985 fault->slot = NULL; 3986 fault->pfn = KVM_PFN_NOSLOT; 3987 fault->map_writable = false; 3988 return RET_PF_CONTINUE; 3989 } 3990 /* 3991 * If the APIC access page exists but is disabled, go directly 3992 * to emulation without caching the MMIO access or creating a 3993 * MMIO SPTE. That way the cache doesn't need to be purged 3994 * when the AVIC is re-enabled. 3995 */ 3996 if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT && 3997 !kvm_apicv_activated(vcpu->kvm)) 3998 return RET_PF_EMULATE; 3999 } 4000 4001 async = false; 4002 fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, &async, 4003 fault->write, &fault->map_writable, 4004 &fault->hva); 4005 if (!async) 4006 return RET_PF_CONTINUE; /* *pfn has correct page already */ 4007 4008 if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) { 4009 trace_kvm_try_async_get_page(fault->addr, fault->gfn); 4010 if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) { 4011 trace_kvm_async_pf_doublefault(fault->addr, fault->gfn); 4012 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 4013 return RET_PF_RETRY; 4014 } else if (kvm_arch_setup_async_pf(vcpu, fault->addr, fault->gfn)) { 4015 return RET_PF_RETRY; 4016 } 4017 } 4018 4019 fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, NULL, 4020 fault->write, &fault->map_writable, 4021 &fault->hva); 4022 return RET_PF_CONTINUE; 4023 } 4024 4025 /* 4026 * Returns true if the page fault is stale and needs to be retried, i.e. if the 4027 * root was invalidated by a memslot update or a relevant mmu_notifier fired. 4028 */ 4029 static bool is_page_fault_stale(struct kvm_vcpu *vcpu, 4030 struct kvm_page_fault *fault, int mmu_seq) 4031 { 4032 struct kvm_mmu_page *sp = to_shadow_page(vcpu->arch.mmu->root.hpa); 4033 4034 /* Special roots, e.g. pae_root, are not backed by shadow pages. */ 4035 if (sp && is_obsolete_sp(vcpu->kvm, sp)) 4036 return true; 4037 4038 /* 4039 * Roots without an associated shadow page are considered invalid if 4040 * there is a pending request to free obsolete roots. The request is 4041 * only a hint that the current root _may_ be obsolete and needs to be 4042 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a 4043 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs 4044 * to reload even if no vCPU is actively using the root. 4045 */ 4046 if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 4047 return true; 4048 4049 return fault->slot && 4050 mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, fault->hva); 4051 } 4052 4053 static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4054 { 4055 bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu); 4056 4057 unsigned long mmu_seq; 4058 int r; 4059 4060 fault->gfn = fault->addr >> PAGE_SHIFT; 4061 fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn); 4062 4063 if (page_fault_handle_page_track(vcpu, fault)) 4064 return RET_PF_EMULATE; 4065 4066 r = fast_page_fault(vcpu, fault); 4067 if (r != RET_PF_INVALID) 4068 return r; 4069 4070 r = mmu_topup_memory_caches(vcpu, false); 4071 if (r) 4072 return r; 4073 4074 mmu_seq = vcpu->kvm->mmu_notifier_seq; 4075 smp_rmb(); 4076 4077 r = kvm_faultin_pfn(vcpu, fault); 4078 if (r != RET_PF_CONTINUE) 4079 return r; 4080 4081 r = handle_abnormal_pfn(vcpu, fault, ACC_ALL); 4082 if (r != RET_PF_CONTINUE) 4083 return r; 4084 4085 r = RET_PF_RETRY; 4086 4087 if (is_tdp_mmu_fault) 4088 read_lock(&vcpu->kvm->mmu_lock); 4089 else 4090 write_lock(&vcpu->kvm->mmu_lock); 4091 4092 if (is_page_fault_stale(vcpu, fault, mmu_seq)) 4093 goto out_unlock; 4094 4095 r = make_mmu_pages_available(vcpu); 4096 if (r) 4097 goto out_unlock; 4098 4099 if (is_tdp_mmu_fault) 4100 r = kvm_tdp_mmu_map(vcpu, fault); 4101 else 4102 r = __direct_map(vcpu, fault); 4103 4104 out_unlock: 4105 if (is_tdp_mmu_fault) 4106 read_unlock(&vcpu->kvm->mmu_lock); 4107 else 4108 write_unlock(&vcpu->kvm->mmu_lock); 4109 kvm_release_pfn_clean(fault->pfn); 4110 return r; 4111 } 4112 4113 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, 4114 struct kvm_page_fault *fault) 4115 { 4116 pgprintk("%s: gva %lx error %x\n", __func__, fault->addr, fault->error_code); 4117 4118 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */ 4119 fault->max_level = PG_LEVEL_2M; 4120 return direct_page_fault(vcpu, fault); 4121 } 4122 4123 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, 4124 u64 fault_address, char *insn, int insn_len) 4125 { 4126 int r = 1; 4127 u32 flags = vcpu->arch.apf.host_apf_flags; 4128 4129 #ifndef CONFIG_X86_64 4130 /* A 64-bit CR2 should be impossible on 32-bit KVM. */ 4131 if (WARN_ON_ONCE(fault_address >> 32)) 4132 return -EFAULT; 4133 #endif 4134 4135 vcpu->arch.l1tf_flush_l1d = true; 4136 if (!flags) { 4137 trace_kvm_page_fault(fault_address, error_code); 4138 4139 if (kvm_event_needs_reinjection(vcpu)) 4140 kvm_mmu_unprotect_page_virt(vcpu, fault_address); 4141 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn, 4142 insn_len); 4143 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) { 4144 vcpu->arch.apf.host_apf_flags = 0; 4145 local_irq_disable(); 4146 kvm_async_pf_task_wait_schedule(fault_address); 4147 local_irq_enable(); 4148 } else { 4149 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags); 4150 } 4151 4152 return r; 4153 } 4154 EXPORT_SYMBOL_GPL(kvm_handle_page_fault); 4155 4156 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4157 { 4158 while (fault->max_level > PG_LEVEL_4K) { 4159 int page_num = KVM_PAGES_PER_HPAGE(fault->max_level); 4160 gfn_t base = (fault->addr >> PAGE_SHIFT) & ~(page_num - 1); 4161 4162 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num)) 4163 break; 4164 4165 --fault->max_level; 4166 } 4167 4168 return direct_page_fault(vcpu, fault); 4169 } 4170 4171 static void nonpaging_init_context(struct kvm_mmu *context) 4172 { 4173 context->page_fault = nonpaging_page_fault; 4174 context->gva_to_gpa = nonpaging_gva_to_gpa; 4175 context->sync_page = nonpaging_sync_page; 4176 context->invlpg = NULL; 4177 } 4178 4179 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd, 4180 union kvm_mmu_page_role role) 4181 { 4182 return (role.direct || pgd == root->pgd) && 4183 VALID_PAGE(root->hpa) && 4184 role.word == to_shadow_page(root->hpa)->role.word; 4185 } 4186 4187 /* 4188 * Find out if a previously cached root matching the new pgd/role is available, 4189 * and insert the current root as the MRU in the cache. 4190 * If a matching root is found, it is assigned to kvm_mmu->root and 4191 * true is returned. 4192 * If no match is found, kvm_mmu->root is left invalid, the LRU root is 4193 * evicted to make room for the current root, and false is returned. 4194 */ 4195 static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu, 4196 gpa_t new_pgd, 4197 union kvm_mmu_page_role new_role) 4198 { 4199 uint i; 4200 4201 if (is_root_usable(&mmu->root, new_pgd, new_role)) 4202 return true; 4203 4204 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 4205 /* 4206 * The swaps end up rotating the cache like this: 4207 * C 0 1 2 3 (on entry to the function) 4208 * 0 C 1 2 3 4209 * 1 C 0 2 3 4210 * 2 C 0 1 3 4211 * 3 C 0 1 2 (on exit from the loop) 4212 */ 4213 swap(mmu->root, mmu->prev_roots[i]); 4214 if (is_root_usable(&mmu->root, new_pgd, new_role)) 4215 return true; 4216 } 4217 4218 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 4219 return false; 4220 } 4221 4222 /* 4223 * Find out if a previously cached root matching the new pgd/role is available. 4224 * On entry, mmu->root is invalid. 4225 * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry 4226 * of the cache becomes invalid, and true is returned. 4227 * If no match is found, kvm_mmu->root is left invalid and false is returned. 4228 */ 4229 static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu, 4230 gpa_t new_pgd, 4231 union kvm_mmu_page_role new_role) 4232 { 4233 uint i; 4234 4235 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 4236 if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role)) 4237 goto hit; 4238 4239 return false; 4240 4241 hit: 4242 swap(mmu->root, mmu->prev_roots[i]); 4243 /* Bubble up the remaining roots. */ 4244 for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++) 4245 mmu->prev_roots[i] = mmu->prev_roots[i + 1]; 4246 mmu->prev_roots[i].hpa = INVALID_PAGE; 4247 return true; 4248 } 4249 4250 static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu, 4251 gpa_t new_pgd, union kvm_mmu_page_role new_role) 4252 { 4253 /* 4254 * For now, limit the caching to 64-bit hosts+VMs in order to avoid 4255 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs 4256 * later if necessary. 4257 */ 4258 if (VALID_PAGE(mmu->root.hpa) && !to_shadow_page(mmu->root.hpa)) 4259 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 4260 4261 if (VALID_PAGE(mmu->root.hpa)) 4262 return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role); 4263 else 4264 return cached_root_find_without_current(kvm, mmu, new_pgd, new_role); 4265 } 4266 4267 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd) 4268 { 4269 struct kvm_mmu *mmu = vcpu->arch.mmu; 4270 union kvm_mmu_page_role new_role = mmu->root_role; 4271 4272 if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role)) { 4273 /* kvm_mmu_ensure_valid_pgd will set up a new root. */ 4274 return; 4275 } 4276 4277 /* 4278 * It's possible that the cached previous root page is obsolete because 4279 * of a change in the MMU generation number. However, changing the 4280 * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, 4281 * which will free the root set here and allocate a new one. 4282 */ 4283 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 4284 4285 if (force_flush_and_sync_on_reuse) { 4286 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 4287 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 4288 } 4289 4290 /* 4291 * The last MMIO access's GVA and GPA are cached in the VCPU. When 4292 * switching to a new CR3, that GVA->GPA mapping may no longer be 4293 * valid. So clear any cached MMIO info even when we don't need to sync 4294 * the shadow page tables. 4295 */ 4296 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 4297 4298 /* 4299 * If this is a direct root page, it doesn't have a write flooding 4300 * count. Otherwise, clear the write flooding count. 4301 */ 4302 if (!new_role.direct) 4303 __clear_sp_write_flooding_count( 4304 to_shadow_page(vcpu->arch.mmu->root.hpa)); 4305 } 4306 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd); 4307 4308 static unsigned long get_cr3(struct kvm_vcpu *vcpu) 4309 { 4310 return kvm_read_cr3(vcpu); 4311 } 4312 4313 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, 4314 unsigned int access) 4315 { 4316 if (unlikely(is_mmio_spte(*sptep))) { 4317 if (gfn != get_mmio_spte_gfn(*sptep)) { 4318 mmu_spte_clear_no_track(sptep); 4319 return true; 4320 } 4321 4322 mark_mmio_spte(vcpu, sptep, gfn, access); 4323 return true; 4324 } 4325 4326 return false; 4327 } 4328 4329 #define PTTYPE_EPT 18 /* arbitrary */ 4330 #define PTTYPE PTTYPE_EPT 4331 #include "paging_tmpl.h" 4332 #undef PTTYPE 4333 4334 #define PTTYPE 64 4335 #include "paging_tmpl.h" 4336 #undef PTTYPE 4337 4338 #define PTTYPE 32 4339 #include "paging_tmpl.h" 4340 #undef PTTYPE 4341 4342 static void 4343 __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check, 4344 u64 pa_bits_rsvd, int level, bool nx, bool gbpages, 4345 bool pse, bool amd) 4346 { 4347 u64 gbpages_bit_rsvd = 0; 4348 u64 nonleaf_bit8_rsvd = 0; 4349 u64 high_bits_rsvd; 4350 4351 rsvd_check->bad_mt_xwr = 0; 4352 4353 if (!gbpages) 4354 gbpages_bit_rsvd = rsvd_bits(7, 7); 4355 4356 if (level == PT32E_ROOT_LEVEL) 4357 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62); 4358 else 4359 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4360 4361 /* Note, NX doesn't exist in PDPTEs, this is handled below. */ 4362 if (!nx) 4363 high_bits_rsvd |= rsvd_bits(63, 63); 4364 4365 /* 4366 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for 4367 * leaf entries) on AMD CPUs only. 4368 */ 4369 if (amd) 4370 nonleaf_bit8_rsvd = rsvd_bits(8, 8); 4371 4372 switch (level) { 4373 case PT32_ROOT_LEVEL: 4374 /* no rsvd bits for 2 level 4K page table entries */ 4375 rsvd_check->rsvd_bits_mask[0][1] = 0; 4376 rsvd_check->rsvd_bits_mask[0][0] = 0; 4377 rsvd_check->rsvd_bits_mask[1][0] = 4378 rsvd_check->rsvd_bits_mask[0][0]; 4379 4380 if (!pse) { 4381 rsvd_check->rsvd_bits_mask[1][1] = 0; 4382 break; 4383 } 4384 4385 if (is_cpuid_PSE36()) 4386 /* 36bits PSE 4MB page */ 4387 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); 4388 else 4389 /* 32 bits PSE 4MB page */ 4390 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); 4391 break; 4392 case PT32E_ROOT_LEVEL: 4393 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) | 4394 high_bits_rsvd | 4395 rsvd_bits(5, 8) | 4396 rsvd_bits(1, 2); /* PDPTE */ 4397 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */ 4398 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */ 4399 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 4400 rsvd_bits(13, 20); /* large page */ 4401 rsvd_check->rsvd_bits_mask[1][0] = 4402 rsvd_check->rsvd_bits_mask[0][0]; 4403 break; 4404 case PT64_ROOT_5LEVEL: 4405 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | 4406 nonleaf_bit8_rsvd | 4407 rsvd_bits(7, 7); 4408 rsvd_check->rsvd_bits_mask[1][4] = 4409 rsvd_check->rsvd_bits_mask[0][4]; 4410 fallthrough; 4411 case PT64_ROOT_4LEVEL: 4412 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | 4413 nonleaf_bit8_rsvd | 4414 rsvd_bits(7, 7); 4415 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | 4416 gbpages_bit_rsvd; 4417 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; 4418 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 4419 rsvd_check->rsvd_bits_mask[1][3] = 4420 rsvd_check->rsvd_bits_mask[0][3]; 4421 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | 4422 gbpages_bit_rsvd | 4423 rsvd_bits(13, 29); 4424 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 4425 rsvd_bits(13, 20); /* large page */ 4426 rsvd_check->rsvd_bits_mask[1][0] = 4427 rsvd_check->rsvd_bits_mask[0][0]; 4428 break; 4429 } 4430 } 4431 4432 static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu) 4433 { 4434 /* 4435 * If TDP is enabled, let the guest use GBPAGES if they're supported in 4436 * hardware. The hardware page walker doesn't let KVM disable GBPAGES, 4437 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA 4438 * walk for performance and complexity reasons. Not to mention KVM 4439 * _can't_ solve the problem because GVA->GPA walks aren't visible to 4440 * KVM once a TDP translation is installed. Mimic hardware behavior so 4441 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF. 4442 */ 4443 return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) : 4444 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES); 4445 } 4446 4447 static void reset_guest_rsvds_bits_mask(struct kvm_vcpu *vcpu, 4448 struct kvm_mmu *context) 4449 { 4450 __reset_rsvds_bits_mask(&context->guest_rsvd_check, 4451 vcpu->arch.reserved_gpa_bits, 4452 context->cpu_role.base.level, is_efer_nx(context), 4453 guest_can_use_gbpages(vcpu), 4454 is_cr4_pse(context), 4455 guest_cpuid_is_amd_or_hygon(vcpu)); 4456 } 4457 4458 static void 4459 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check, 4460 u64 pa_bits_rsvd, bool execonly, int huge_page_level) 4461 { 4462 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4463 u64 large_1g_rsvd = 0, large_2m_rsvd = 0; 4464 u64 bad_mt_xwr; 4465 4466 if (huge_page_level < PG_LEVEL_1G) 4467 large_1g_rsvd = rsvd_bits(7, 7); 4468 if (huge_page_level < PG_LEVEL_2M) 4469 large_2m_rsvd = rsvd_bits(7, 7); 4470 4471 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7); 4472 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7); 4473 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd; 4474 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd; 4475 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 4476 4477 /* large page */ 4478 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4]; 4479 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3]; 4480 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd; 4481 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd; 4482 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0]; 4483 4484 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */ 4485 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */ 4486 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */ 4487 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */ 4488 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */ 4489 if (!execonly) { 4490 /* bits 0..2 must not be 100 unless VMX capabilities allow it */ 4491 bad_mt_xwr |= REPEAT_BYTE(1ull << 4); 4492 } 4493 rsvd_check->bad_mt_xwr = bad_mt_xwr; 4494 } 4495 4496 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, 4497 struct kvm_mmu *context, bool execonly, int huge_page_level) 4498 { 4499 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check, 4500 vcpu->arch.reserved_gpa_bits, execonly, 4501 huge_page_level); 4502 } 4503 4504 static inline u64 reserved_hpa_bits(void) 4505 { 4506 return rsvd_bits(shadow_phys_bits, 63); 4507 } 4508 4509 /* 4510 * the page table on host is the shadow page table for the page 4511 * table in guest or amd nested guest, its mmu features completely 4512 * follow the features in guest. 4513 */ 4514 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 4515 struct kvm_mmu *context) 4516 { 4517 /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */ 4518 bool is_amd = true; 4519 /* KVM doesn't use 2-level page tables for the shadow MMU. */ 4520 bool is_pse = false; 4521 struct rsvd_bits_validate *shadow_zero_check; 4522 int i; 4523 4524 WARN_ON_ONCE(context->root_role.level < PT32E_ROOT_LEVEL); 4525 4526 shadow_zero_check = &context->shadow_zero_check; 4527 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 4528 context->root_role.level, 4529 context->root_role.efer_nx, 4530 guest_can_use_gbpages(vcpu), is_pse, is_amd); 4531 4532 if (!shadow_me_mask) 4533 return; 4534 4535 for (i = context->root_role.level; --i >= 0;) { 4536 /* 4537 * So far shadow_me_value is a constant during KVM's life 4538 * time. Bits in shadow_me_value are allowed to be set. 4539 * Bits in shadow_me_mask but not in shadow_me_value are 4540 * not allowed to be set. 4541 */ 4542 shadow_zero_check->rsvd_bits_mask[0][i] |= shadow_me_mask; 4543 shadow_zero_check->rsvd_bits_mask[1][i] |= shadow_me_mask; 4544 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_value; 4545 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_value; 4546 } 4547 4548 } 4549 4550 static inline bool boot_cpu_is_amd(void) 4551 { 4552 WARN_ON_ONCE(!tdp_enabled); 4553 return shadow_x_mask == 0; 4554 } 4555 4556 /* 4557 * the direct page table on host, use as much mmu features as 4558 * possible, however, kvm currently does not do execution-protection. 4559 */ 4560 static void 4561 reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context) 4562 { 4563 struct rsvd_bits_validate *shadow_zero_check; 4564 int i; 4565 4566 shadow_zero_check = &context->shadow_zero_check; 4567 4568 if (boot_cpu_is_amd()) 4569 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 4570 context->root_role.level, false, 4571 boot_cpu_has(X86_FEATURE_GBPAGES), 4572 false, true); 4573 else 4574 __reset_rsvds_bits_mask_ept(shadow_zero_check, 4575 reserved_hpa_bits(), false, 4576 max_huge_page_level); 4577 4578 if (!shadow_me_mask) 4579 return; 4580 4581 for (i = context->root_role.level; --i >= 0;) { 4582 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 4583 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 4584 } 4585 } 4586 4587 /* 4588 * as the comments in reset_shadow_zero_bits_mask() except it 4589 * is the shadow page table for intel nested guest. 4590 */ 4591 static void 4592 reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly) 4593 { 4594 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check, 4595 reserved_hpa_bits(), execonly, 4596 max_huge_page_level); 4597 } 4598 4599 #define BYTE_MASK(access) \ 4600 ((1 & (access) ? 2 : 0) | \ 4601 (2 & (access) ? 4 : 0) | \ 4602 (3 & (access) ? 8 : 0) | \ 4603 (4 & (access) ? 16 : 0) | \ 4604 (5 & (access) ? 32 : 0) | \ 4605 (6 & (access) ? 64 : 0) | \ 4606 (7 & (access) ? 128 : 0)) 4607 4608 4609 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept) 4610 { 4611 unsigned byte; 4612 4613 const u8 x = BYTE_MASK(ACC_EXEC_MASK); 4614 const u8 w = BYTE_MASK(ACC_WRITE_MASK); 4615 const u8 u = BYTE_MASK(ACC_USER_MASK); 4616 4617 bool cr4_smep = is_cr4_smep(mmu); 4618 bool cr4_smap = is_cr4_smap(mmu); 4619 bool cr0_wp = is_cr0_wp(mmu); 4620 bool efer_nx = is_efer_nx(mmu); 4621 4622 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { 4623 unsigned pfec = byte << 1; 4624 4625 /* 4626 * Each "*f" variable has a 1 bit for each UWX value 4627 * that causes a fault with the given PFEC. 4628 */ 4629 4630 /* Faults from writes to non-writable pages */ 4631 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0; 4632 /* Faults from user mode accesses to supervisor pages */ 4633 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0; 4634 /* Faults from fetches of non-executable pages*/ 4635 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0; 4636 /* Faults from kernel mode fetches of user pages */ 4637 u8 smepf = 0; 4638 /* Faults from kernel mode accesses of user pages */ 4639 u8 smapf = 0; 4640 4641 if (!ept) { 4642 /* Faults from kernel mode accesses to user pages */ 4643 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u; 4644 4645 /* Not really needed: !nx will cause pte.nx to fault */ 4646 if (!efer_nx) 4647 ff = 0; 4648 4649 /* Allow supervisor writes if !cr0.wp */ 4650 if (!cr0_wp) 4651 wf = (pfec & PFERR_USER_MASK) ? wf : 0; 4652 4653 /* Disallow supervisor fetches of user code if cr4.smep */ 4654 if (cr4_smep) 4655 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0; 4656 4657 /* 4658 * SMAP:kernel-mode data accesses from user-mode 4659 * mappings should fault. A fault is considered 4660 * as a SMAP violation if all of the following 4661 * conditions are true: 4662 * - X86_CR4_SMAP is set in CR4 4663 * - A user page is accessed 4664 * - The access is not a fetch 4665 * - The access is supervisor mode 4666 * - If implicit supervisor access or X86_EFLAGS_AC is clear 4667 * 4668 * Here, we cover the first four conditions. 4669 * The fifth is computed dynamically in permission_fault(); 4670 * PFERR_RSVD_MASK bit will be set in PFEC if the access is 4671 * *not* subject to SMAP restrictions. 4672 */ 4673 if (cr4_smap) 4674 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf; 4675 } 4676 4677 mmu->permissions[byte] = ff | uf | wf | smepf | smapf; 4678 } 4679 } 4680 4681 /* 4682 * PKU is an additional mechanism by which the paging controls access to 4683 * user-mode addresses based on the value in the PKRU register. Protection 4684 * key violations are reported through a bit in the page fault error code. 4685 * Unlike other bits of the error code, the PK bit is not known at the 4686 * call site of e.g. gva_to_gpa; it must be computed directly in 4687 * permission_fault based on two bits of PKRU, on some machine state (CR4, 4688 * CR0, EFER, CPL), and on other bits of the error code and the page tables. 4689 * 4690 * In particular the following conditions come from the error code, the 4691 * page tables and the machine state: 4692 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1 4693 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch) 4694 * - PK is always zero if U=0 in the page tables 4695 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access. 4696 * 4697 * The PKRU bitmask caches the result of these four conditions. The error 4698 * code (minus the P bit) and the page table's U bit form an index into the 4699 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed 4700 * with the two bits of the PKRU register corresponding to the protection key. 4701 * For the first three conditions above the bits will be 00, thus masking 4702 * away both AD and WD. For all reads or if the last condition holds, WD 4703 * only will be masked away. 4704 */ 4705 static void update_pkru_bitmask(struct kvm_mmu *mmu) 4706 { 4707 unsigned bit; 4708 bool wp; 4709 4710 mmu->pkru_mask = 0; 4711 4712 if (!is_cr4_pke(mmu)) 4713 return; 4714 4715 wp = is_cr0_wp(mmu); 4716 4717 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) { 4718 unsigned pfec, pkey_bits; 4719 bool check_pkey, check_write, ff, uf, wf, pte_user; 4720 4721 pfec = bit << 1; 4722 ff = pfec & PFERR_FETCH_MASK; 4723 uf = pfec & PFERR_USER_MASK; 4724 wf = pfec & PFERR_WRITE_MASK; 4725 4726 /* PFEC.RSVD is replaced by ACC_USER_MASK. */ 4727 pte_user = pfec & PFERR_RSVD_MASK; 4728 4729 /* 4730 * Only need to check the access which is not an 4731 * instruction fetch and is to a user page. 4732 */ 4733 check_pkey = (!ff && pte_user); 4734 /* 4735 * write access is controlled by PKRU if it is a 4736 * user access or CR0.WP = 1. 4737 */ 4738 check_write = check_pkey && wf && (uf || wp); 4739 4740 /* PKRU.AD stops both read and write access. */ 4741 pkey_bits = !!check_pkey; 4742 /* PKRU.WD stops write access. */ 4743 pkey_bits |= (!!check_write) << 1; 4744 4745 mmu->pkru_mask |= (pkey_bits & 3) << pfec; 4746 } 4747 } 4748 4749 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu, 4750 struct kvm_mmu *mmu) 4751 { 4752 if (!is_cr0_pg(mmu)) 4753 return; 4754 4755 reset_guest_rsvds_bits_mask(vcpu, mmu); 4756 update_permission_bitmask(mmu, false); 4757 update_pkru_bitmask(mmu); 4758 } 4759 4760 static void paging64_init_context(struct kvm_mmu *context) 4761 { 4762 context->page_fault = paging64_page_fault; 4763 context->gva_to_gpa = paging64_gva_to_gpa; 4764 context->sync_page = paging64_sync_page; 4765 context->invlpg = paging64_invlpg; 4766 } 4767 4768 static void paging32_init_context(struct kvm_mmu *context) 4769 { 4770 context->page_fault = paging32_page_fault; 4771 context->gva_to_gpa = paging32_gva_to_gpa; 4772 context->sync_page = paging32_sync_page; 4773 context->invlpg = paging32_invlpg; 4774 } 4775 4776 static union kvm_cpu_role 4777 kvm_calc_cpu_role(struct kvm_vcpu *vcpu, const struct kvm_mmu_role_regs *regs) 4778 { 4779 union kvm_cpu_role role = {0}; 4780 4781 role.base.access = ACC_ALL; 4782 role.base.smm = is_smm(vcpu); 4783 role.base.guest_mode = is_guest_mode(vcpu); 4784 role.ext.valid = 1; 4785 4786 if (!____is_cr0_pg(regs)) { 4787 role.base.direct = 1; 4788 return role; 4789 } 4790 4791 role.base.efer_nx = ____is_efer_nx(regs); 4792 role.base.cr0_wp = ____is_cr0_wp(regs); 4793 role.base.smep_andnot_wp = ____is_cr4_smep(regs) && !____is_cr0_wp(regs); 4794 role.base.smap_andnot_wp = ____is_cr4_smap(regs) && !____is_cr0_wp(regs); 4795 role.base.has_4_byte_gpte = !____is_cr4_pae(regs); 4796 4797 if (____is_efer_lma(regs)) 4798 role.base.level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL 4799 : PT64_ROOT_4LEVEL; 4800 else if (____is_cr4_pae(regs)) 4801 role.base.level = PT32E_ROOT_LEVEL; 4802 else 4803 role.base.level = PT32_ROOT_LEVEL; 4804 4805 role.ext.cr4_smep = ____is_cr4_smep(regs); 4806 role.ext.cr4_smap = ____is_cr4_smap(regs); 4807 role.ext.cr4_pse = ____is_cr4_pse(regs); 4808 4809 /* PKEY and LA57 are active iff long mode is active. */ 4810 role.ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs); 4811 role.ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs); 4812 role.ext.efer_lma = ____is_efer_lma(regs); 4813 return role; 4814 } 4815 4816 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu) 4817 { 4818 /* tdp_root_level is architecture forced level, use it if nonzero */ 4819 if (tdp_root_level) 4820 return tdp_root_level; 4821 4822 /* Use 5-level TDP if and only if it's useful/necessary. */ 4823 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48) 4824 return 4; 4825 4826 return max_tdp_level; 4827 } 4828 4829 static union kvm_mmu_page_role 4830 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, 4831 union kvm_cpu_role cpu_role) 4832 { 4833 union kvm_mmu_page_role role = {0}; 4834 4835 role.access = ACC_ALL; 4836 role.cr0_wp = true; 4837 role.efer_nx = true; 4838 role.smm = cpu_role.base.smm; 4839 role.guest_mode = cpu_role.base.guest_mode; 4840 role.ad_disabled = !kvm_ad_enabled(); 4841 role.level = kvm_mmu_get_tdp_level(vcpu); 4842 role.direct = true; 4843 role.has_4_byte_gpte = false; 4844 4845 return role; 4846 } 4847 4848 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu, 4849 union kvm_cpu_role cpu_role) 4850 { 4851 struct kvm_mmu *context = &vcpu->arch.root_mmu; 4852 union kvm_mmu_page_role root_role = kvm_calc_tdp_mmu_root_page_role(vcpu, cpu_role); 4853 4854 if (cpu_role.as_u64 == context->cpu_role.as_u64 && 4855 root_role.word == context->root_role.word) 4856 return; 4857 4858 context->cpu_role.as_u64 = cpu_role.as_u64; 4859 context->root_role.word = root_role.word; 4860 context->page_fault = kvm_tdp_page_fault; 4861 context->sync_page = nonpaging_sync_page; 4862 context->invlpg = NULL; 4863 context->get_guest_pgd = get_cr3; 4864 context->get_pdptr = kvm_pdptr_read; 4865 context->inject_page_fault = kvm_inject_page_fault; 4866 4867 if (!is_cr0_pg(context)) 4868 context->gva_to_gpa = nonpaging_gva_to_gpa; 4869 else if (is_cr4_pae(context)) 4870 context->gva_to_gpa = paging64_gva_to_gpa; 4871 else 4872 context->gva_to_gpa = paging32_gva_to_gpa; 4873 4874 reset_guest_paging_metadata(vcpu, context); 4875 reset_tdp_shadow_zero_bits_mask(context); 4876 } 4877 4878 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context, 4879 union kvm_cpu_role cpu_role, 4880 union kvm_mmu_page_role root_role) 4881 { 4882 if (cpu_role.as_u64 == context->cpu_role.as_u64 && 4883 root_role.word == context->root_role.word) 4884 return; 4885 4886 context->cpu_role.as_u64 = cpu_role.as_u64; 4887 context->root_role.word = root_role.word; 4888 4889 if (!is_cr0_pg(context)) 4890 nonpaging_init_context(context); 4891 else if (is_cr4_pae(context)) 4892 paging64_init_context(context); 4893 else 4894 paging32_init_context(context); 4895 4896 reset_guest_paging_metadata(vcpu, context); 4897 reset_shadow_zero_bits_mask(vcpu, context); 4898 } 4899 4900 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, 4901 union kvm_cpu_role cpu_role) 4902 { 4903 struct kvm_mmu *context = &vcpu->arch.root_mmu; 4904 union kvm_mmu_page_role root_role; 4905 4906 root_role = cpu_role.base; 4907 4908 /* KVM uses PAE paging whenever the guest isn't using 64-bit paging. */ 4909 root_role.level = max_t(u32, root_role.level, PT32E_ROOT_LEVEL); 4910 4911 /* 4912 * KVM forces EFER.NX=1 when TDP is disabled, reflect it in the MMU role. 4913 * KVM uses NX when TDP is disabled to handle a variety of scenarios, 4914 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and 4915 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0. 4916 * The iTLB multi-hit workaround can be toggled at any time, so assume 4917 * NX can be used by any non-nested shadow MMU to avoid having to reset 4918 * MMU contexts. 4919 */ 4920 root_role.efer_nx = true; 4921 4922 shadow_mmu_init_context(vcpu, context, cpu_role, root_role); 4923 } 4924 4925 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0, 4926 unsigned long cr4, u64 efer, gpa_t nested_cr3) 4927 { 4928 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 4929 struct kvm_mmu_role_regs regs = { 4930 .cr0 = cr0, 4931 .cr4 = cr4 & ~X86_CR4_PKE, 4932 .efer = efer, 4933 }; 4934 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); 4935 union kvm_mmu_page_role root_role; 4936 4937 /* NPT requires CR0.PG=1. */ 4938 WARN_ON_ONCE(cpu_role.base.direct); 4939 4940 root_role = cpu_role.base; 4941 root_role.level = kvm_mmu_get_tdp_level(vcpu); 4942 if (root_role.level == PT64_ROOT_5LEVEL && 4943 cpu_role.base.level == PT64_ROOT_4LEVEL) 4944 root_role.passthrough = 1; 4945 4946 shadow_mmu_init_context(vcpu, context, cpu_role, root_role); 4947 kvm_mmu_new_pgd(vcpu, nested_cr3); 4948 } 4949 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu); 4950 4951 static union kvm_cpu_role 4952 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty, 4953 bool execonly, u8 level) 4954 { 4955 union kvm_cpu_role role = {0}; 4956 4957 /* 4958 * KVM does not support SMM transfer monitors, and consequently does not 4959 * support the "entry to SMM" control either. role.base.smm is always 0. 4960 */ 4961 WARN_ON_ONCE(is_smm(vcpu)); 4962 role.base.level = level; 4963 role.base.has_4_byte_gpte = false; 4964 role.base.direct = false; 4965 role.base.ad_disabled = !accessed_dirty; 4966 role.base.guest_mode = true; 4967 role.base.access = ACC_ALL; 4968 4969 role.ext.word = 0; 4970 role.ext.execonly = execonly; 4971 role.ext.valid = 1; 4972 4973 return role; 4974 } 4975 4976 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, 4977 int huge_page_level, bool accessed_dirty, 4978 gpa_t new_eptp) 4979 { 4980 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 4981 u8 level = vmx_eptp_page_walk_level(new_eptp); 4982 union kvm_cpu_role new_mode = 4983 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty, 4984 execonly, level); 4985 4986 if (new_mode.as_u64 != context->cpu_role.as_u64) { 4987 /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */ 4988 context->cpu_role.as_u64 = new_mode.as_u64; 4989 context->root_role.word = new_mode.base.word; 4990 4991 context->page_fault = ept_page_fault; 4992 context->gva_to_gpa = ept_gva_to_gpa; 4993 context->sync_page = ept_sync_page; 4994 context->invlpg = ept_invlpg; 4995 4996 update_permission_bitmask(context, true); 4997 context->pkru_mask = 0; 4998 reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level); 4999 reset_ept_shadow_zero_bits_mask(context, execonly); 5000 } 5001 5002 kvm_mmu_new_pgd(vcpu, new_eptp); 5003 } 5004 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); 5005 5006 static void init_kvm_softmmu(struct kvm_vcpu *vcpu, 5007 union kvm_cpu_role cpu_role) 5008 { 5009 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5010 5011 kvm_init_shadow_mmu(vcpu, cpu_role); 5012 5013 context->get_guest_pgd = get_cr3; 5014 context->get_pdptr = kvm_pdptr_read; 5015 context->inject_page_fault = kvm_inject_page_fault; 5016 } 5017 5018 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu, 5019 union kvm_cpu_role new_mode) 5020 { 5021 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; 5022 5023 if (new_mode.as_u64 == g_context->cpu_role.as_u64) 5024 return; 5025 5026 g_context->cpu_role.as_u64 = new_mode.as_u64; 5027 g_context->get_guest_pgd = get_cr3; 5028 g_context->get_pdptr = kvm_pdptr_read; 5029 g_context->inject_page_fault = kvm_inject_page_fault; 5030 5031 /* 5032 * L2 page tables are never shadowed, so there is no need to sync 5033 * SPTEs. 5034 */ 5035 g_context->invlpg = NULL; 5036 5037 /* 5038 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using 5039 * L1's nested page tables (e.g. EPT12). The nested translation 5040 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using 5041 * L2's page tables as the first level of translation and L1's 5042 * nested page tables as the second level of translation. Basically 5043 * the gva_to_gpa functions between mmu and nested_mmu are swapped. 5044 */ 5045 if (!is_paging(vcpu)) 5046 g_context->gva_to_gpa = nonpaging_gva_to_gpa; 5047 else if (is_long_mode(vcpu)) 5048 g_context->gva_to_gpa = paging64_gva_to_gpa; 5049 else if (is_pae(vcpu)) 5050 g_context->gva_to_gpa = paging64_gva_to_gpa; 5051 else 5052 g_context->gva_to_gpa = paging32_gva_to_gpa; 5053 5054 reset_guest_paging_metadata(vcpu, g_context); 5055 } 5056 5057 void kvm_init_mmu(struct kvm_vcpu *vcpu) 5058 { 5059 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 5060 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); 5061 5062 if (mmu_is_nested(vcpu)) 5063 init_kvm_nested_mmu(vcpu, cpu_role); 5064 else if (tdp_enabled) 5065 init_kvm_tdp_mmu(vcpu, cpu_role); 5066 else 5067 init_kvm_softmmu(vcpu, cpu_role); 5068 } 5069 EXPORT_SYMBOL_GPL(kvm_init_mmu); 5070 5071 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu) 5072 { 5073 /* 5074 * Invalidate all MMU roles to force them to reinitialize as CPUID 5075 * information is factored into reserved bit calculations. 5076 * 5077 * Correctly handling multiple vCPU models with respect to paging and 5078 * physical address properties) in a single VM would require tracking 5079 * all relevant CPUID information in kvm_mmu_page_role. That is very 5080 * undesirable as it would increase the memory requirements for 5081 * gfn_track (see struct kvm_mmu_page_role comments). For now that 5082 * problem is swept under the rug; KVM's CPUID API is horrific and 5083 * it's all but impossible to solve it without introducing a new API. 5084 */ 5085 vcpu->arch.root_mmu.root_role.word = 0; 5086 vcpu->arch.guest_mmu.root_role.word = 0; 5087 vcpu->arch.nested_mmu.root_role.word = 0; 5088 vcpu->arch.root_mmu.cpu_role.ext.valid = 0; 5089 vcpu->arch.guest_mmu.cpu_role.ext.valid = 0; 5090 vcpu->arch.nested_mmu.cpu_role.ext.valid = 0; 5091 kvm_mmu_reset_context(vcpu); 5092 5093 /* 5094 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in 5095 * kvm_arch_vcpu_ioctl(). 5096 */ 5097 KVM_BUG_ON(vcpu->arch.last_vmentry_cpu != -1, vcpu->kvm); 5098 } 5099 5100 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu) 5101 { 5102 kvm_mmu_unload(vcpu); 5103 kvm_init_mmu(vcpu); 5104 } 5105 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); 5106 5107 int kvm_mmu_load(struct kvm_vcpu *vcpu) 5108 { 5109 int r; 5110 5111 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->root_role.direct); 5112 if (r) 5113 goto out; 5114 r = mmu_alloc_special_roots(vcpu); 5115 if (r) 5116 goto out; 5117 if (vcpu->arch.mmu->root_role.direct) 5118 r = mmu_alloc_direct_roots(vcpu); 5119 else 5120 r = mmu_alloc_shadow_roots(vcpu); 5121 if (r) 5122 goto out; 5123 5124 kvm_mmu_sync_roots(vcpu); 5125 5126 kvm_mmu_load_pgd(vcpu); 5127 5128 /* 5129 * Flush any TLB entries for the new root, the provenance of the root 5130 * is unknown. Even if KVM ensures there are no stale TLB entries 5131 * for a freed root, in theory another hypervisor could have left 5132 * stale entries. Flushing on alloc also allows KVM to skip the TLB 5133 * flush when freeing a root (see kvm_tdp_mmu_put_root()). 5134 */ 5135 static_call(kvm_x86_flush_tlb_current)(vcpu); 5136 out: 5137 return r; 5138 } 5139 5140 void kvm_mmu_unload(struct kvm_vcpu *vcpu) 5141 { 5142 struct kvm *kvm = vcpu->kvm; 5143 5144 kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL); 5145 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root.hpa)); 5146 kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); 5147 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa)); 5148 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 5149 } 5150 5151 static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa) 5152 { 5153 struct kvm_mmu_page *sp; 5154 5155 if (!VALID_PAGE(root_hpa)) 5156 return false; 5157 5158 /* 5159 * When freeing obsolete roots, treat roots as obsolete if they don't 5160 * have an associated shadow page. This does mean KVM will get false 5161 * positives and free roots that don't strictly need to be freed, but 5162 * such false positives are relatively rare: 5163 * 5164 * (a) only PAE paging and nested NPT has roots without shadow pages 5165 * (b) remote reloads due to a memslot update obsoletes _all_ roots 5166 * (c) KVM doesn't track previous roots for PAE paging, and the guest 5167 * is unlikely to zap an in-use PGD. 5168 */ 5169 sp = to_shadow_page(root_hpa); 5170 return !sp || is_obsolete_sp(kvm, sp); 5171 } 5172 5173 static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu) 5174 { 5175 unsigned long roots_to_free = 0; 5176 int i; 5177 5178 if (is_obsolete_root(kvm, mmu->root.hpa)) 5179 roots_to_free |= KVM_MMU_ROOT_CURRENT; 5180 5181 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5182 if (is_obsolete_root(kvm, mmu->root.hpa)) 5183 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 5184 } 5185 5186 if (roots_to_free) 5187 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 5188 } 5189 5190 void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu) 5191 { 5192 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu); 5193 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu); 5194 } 5195 5196 static bool need_remote_flush(u64 old, u64 new) 5197 { 5198 if (!is_shadow_present_pte(old)) 5199 return false; 5200 if (!is_shadow_present_pte(new)) 5201 return true; 5202 if ((old ^ new) & PT64_BASE_ADDR_MASK) 5203 return true; 5204 old ^= shadow_nx_mask; 5205 new ^= shadow_nx_mask; 5206 return (old & ~new & PT64_PERM_MASK) != 0; 5207 } 5208 5209 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, 5210 int *bytes) 5211 { 5212 u64 gentry = 0; 5213 int r; 5214 5215 /* 5216 * Assume that the pte write on a page table of the same type 5217 * as the current vcpu paging mode since we update the sptes only 5218 * when they have the same mode. 5219 */ 5220 if (is_pae(vcpu) && *bytes == 4) { 5221 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ 5222 *gpa &= ~(gpa_t)7; 5223 *bytes = 8; 5224 } 5225 5226 if (*bytes == 4 || *bytes == 8) { 5227 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes); 5228 if (r) 5229 gentry = 0; 5230 } 5231 5232 return gentry; 5233 } 5234 5235 /* 5236 * If we're seeing too many writes to a page, it may no longer be a page table, 5237 * or we may be forking, in which case it is better to unmap the page. 5238 */ 5239 static bool detect_write_flooding(struct kvm_mmu_page *sp) 5240 { 5241 /* 5242 * Skip write-flooding detected for the sp whose level is 1, because 5243 * it can become unsync, then the guest page is not write-protected. 5244 */ 5245 if (sp->role.level == PG_LEVEL_4K) 5246 return false; 5247 5248 atomic_inc(&sp->write_flooding_count); 5249 return atomic_read(&sp->write_flooding_count) >= 3; 5250 } 5251 5252 /* 5253 * Misaligned accesses are too much trouble to fix up; also, they usually 5254 * indicate a page is not used as a page table. 5255 */ 5256 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, 5257 int bytes) 5258 { 5259 unsigned offset, pte_size, misaligned; 5260 5261 pgprintk("misaligned: gpa %llx bytes %d role %x\n", 5262 gpa, bytes, sp->role.word); 5263 5264 offset = offset_in_page(gpa); 5265 pte_size = sp->role.has_4_byte_gpte ? 4 : 8; 5266 5267 /* 5268 * Sometimes, the OS only writes the last one bytes to update status 5269 * bits, for example, in linux, andb instruction is used in clear_bit(). 5270 */ 5271 if (!(offset & (pte_size - 1)) && bytes == 1) 5272 return false; 5273 5274 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); 5275 misaligned |= bytes < 4; 5276 5277 return misaligned; 5278 } 5279 5280 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) 5281 { 5282 unsigned page_offset, quadrant; 5283 u64 *spte; 5284 int level; 5285 5286 page_offset = offset_in_page(gpa); 5287 level = sp->role.level; 5288 *nspte = 1; 5289 if (sp->role.has_4_byte_gpte) { 5290 page_offset <<= 1; /* 32->64 */ 5291 /* 5292 * A 32-bit pde maps 4MB while the shadow pdes map 5293 * only 2MB. So we need to double the offset again 5294 * and zap two pdes instead of one. 5295 */ 5296 if (level == PT32_ROOT_LEVEL) { 5297 page_offset &= ~7; /* kill rounding error */ 5298 page_offset <<= 1; 5299 *nspte = 2; 5300 } 5301 quadrant = page_offset >> PAGE_SHIFT; 5302 page_offset &= ~PAGE_MASK; 5303 if (quadrant != sp->role.quadrant) 5304 return NULL; 5305 } 5306 5307 spte = &sp->spt[page_offset / sizeof(*spte)]; 5308 return spte; 5309 } 5310 5311 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, 5312 const u8 *new, int bytes, 5313 struct kvm_page_track_notifier_node *node) 5314 { 5315 gfn_t gfn = gpa >> PAGE_SHIFT; 5316 struct kvm_mmu_page *sp; 5317 LIST_HEAD(invalid_list); 5318 u64 entry, gentry, *spte; 5319 int npte; 5320 bool flush = false; 5321 5322 /* 5323 * If we don't have indirect shadow pages, it means no page is 5324 * write-protected, so we can exit simply. 5325 */ 5326 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages)) 5327 return; 5328 5329 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes); 5330 5331 /* 5332 * No need to care whether allocation memory is successful 5333 * or not since pte prefetch is skipped if it does not have 5334 * enough objects in the cache. 5335 */ 5336 mmu_topup_memory_caches(vcpu, true); 5337 5338 write_lock(&vcpu->kvm->mmu_lock); 5339 5340 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes); 5341 5342 ++vcpu->kvm->stat.mmu_pte_write; 5343 5344 for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) { 5345 if (detect_write_misaligned(sp, gpa, bytes) || 5346 detect_write_flooding(sp)) { 5347 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); 5348 ++vcpu->kvm->stat.mmu_flooded; 5349 continue; 5350 } 5351 5352 spte = get_written_sptes(sp, gpa, &npte); 5353 if (!spte) 5354 continue; 5355 5356 while (npte--) { 5357 entry = *spte; 5358 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL); 5359 if (gentry && sp->role.level != PG_LEVEL_4K) 5360 ++vcpu->kvm->stat.mmu_pde_zapped; 5361 if (need_remote_flush(entry, *spte)) 5362 flush = true; 5363 ++spte; 5364 } 5365 } 5366 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 5367 write_unlock(&vcpu->kvm->mmu_lock); 5368 } 5369 5370 int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 5371 void *insn, int insn_len) 5372 { 5373 int r, emulation_type = EMULTYPE_PF; 5374 bool direct = vcpu->arch.mmu->root_role.direct; 5375 5376 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root.hpa))) 5377 return RET_PF_RETRY; 5378 5379 r = RET_PF_INVALID; 5380 if (unlikely(error_code & PFERR_RSVD_MASK)) { 5381 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct); 5382 if (r == RET_PF_EMULATE) 5383 goto emulate; 5384 } 5385 5386 if (r == RET_PF_INVALID) { 5387 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, 5388 lower_32_bits(error_code), false); 5389 if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm)) 5390 return -EIO; 5391 } 5392 5393 if (r < 0) 5394 return r; 5395 if (r != RET_PF_EMULATE) 5396 return 1; 5397 5398 /* 5399 * Before emulating the instruction, check if the error code 5400 * was due to a RO violation while translating the guest page. 5401 * This can occur when using nested virtualization with nested 5402 * paging in both guests. If true, we simply unprotect the page 5403 * and resume the guest. 5404 */ 5405 if (vcpu->arch.mmu->root_role.direct && 5406 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) { 5407 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa)); 5408 return 1; 5409 } 5410 5411 /* 5412 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still 5413 * optimistically try to just unprotect the page and let the processor 5414 * re-execute the instruction that caused the page fault. Do not allow 5415 * retrying MMIO emulation, as it's not only pointless but could also 5416 * cause us to enter an infinite loop because the processor will keep 5417 * faulting on the non-existent MMIO address. Retrying an instruction 5418 * from a nested guest is also pointless and dangerous as we are only 5419 * explicitly shadowing L1's page tables, i.e. unprotecting something 5420 * for L1 isn't going to magically fix whatever issue cause L2 to fail. 5421 */ 5422 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu)) 5423 emulation_type |= EMULTYPE_ALLOW_RETRY_PF; 5424 emulate: 5425 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn, 5426 insn_len); 5427 } 5428 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); 5429 5430 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 5431 gva_t gva, hpa_t root_hpa) 5432 { 5433 int i; 5434 5435 /* It's actually a GPA for vcpu->arch.guest_mmu. */ 5436 if (mmu != &vcpu->arch.guest_mmu) { 5437 /* INVLPG on a non-canonical address is a NOP according to the SDM. */ 5438 if (is_noncanonical_address(gva, vcpu)) 5439 return; 5440 5441 static_call(kvm_x86_flush_tlb_gva)(vcpu, gva); 5442 } 5443 5444 if (!mmu->invlpg) 5445 return; 5446 5447 if (root_hpa == INVALID_PAGE) { 5448 mmu->invlpg(vcpu, gva, mmu->root.hpa); 5449 5450 /* 5451 * INVLPG is required to invalidate any global mappings for the VA, 5452 * irrespective of PCID. Since it would take us roughly similar amount 5453 * of work to determine whether any of the prev_root mappings of the VA 5454 * is marked global, or to just sync it blindly, so we might as well 5455 * just always sync it. 5456 * 5457 * Mappings not reachable via the current cr3 or the prev_roots will be 5458 * synced when switching to that cr3, so nothing needs to be done here 5459 * for them. 5460 */ 5461 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5462 if (VALID_PAGE(mmu->prev_roots[i].hpa)) 5463 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); 5464 } else { 5465 mmu->invlpg(vcpu, gva, root_hpa); 5466 } 5467 } 5468 5469 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) 5470 { 5471 kvm_mmu_invalidate_gva(vcpu, vcpu->arch.walk_mmu, gva, INVALID_PAGE); 5472 ++vcpu->stat.invlpg; 5473 } 5474 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); 5475 5476 5477 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid) 5478 { 5479 struct kvm_mmu *mmu = vcpu->arch.mmu; 5480 bool tlb_flush = false; 5481 uint i; 5482 5483 if (pcid == kvm_get_active_pcid(vcpu)) { 5484 if (mmu->invlpg) 5485 mmu->invlpg(vcpu, gva, mmu->root.hpa); 5486 tlb_flush = true; 5487 } 5488 5489 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5490 if (VALID_PAGE(mmu->prev_roots[i].hpa) && 5491 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) { 5492 if (mmu->invlpg) 5493 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); 5494 tlb_flush = true; 5495 } 5496 } 5497 5498 if (tlb_flush) 5499 static_call(kvm_x86_flush_tlb_gva)(vcpu, gva); 5500 5501 ++vcpu->stat.invlpg; 5502 5503 /* 5504 * Mappings not reachable via the current cr3 or the prev_roots will be 5505 * synced when switching to that cr3, so nothing needs to be done here 5506 * for them. 5507 */ 5508 } 5509 5510 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 5511 int tdp_max_root_level, int tdp_huge_page_level) 5512 { 5513 tdp_enabled = enable_tdp; 5514 tdp_root_level = tdp_forced_root_level; 5515 max_tdp_level = tdp_max_root_level; 5516 5517 /* 5518 * max_huge_page_level reflects KVM's MMU capabilities irrespective 5519 * of kernel support, e.g. KVM may be capable of using 1GB pages when 5520 * the kernel is not. But, KVM never creates a page size greater than 5521 * what is used by the kernel for any given HVA, i.e. the kernel's 5522 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust(). 5523 */ 5524 if (tdp_enabled) 5525 max_huge_page_level = tdp_huge_page_level; 5526 else if (boot_cpu_has(X86_FEATURE_GBPAGES)) 5527 max_huge_page_level = PG_LEVEL_1G; 5528 else 5529 max_huge_page_level = PG_LEVEL_2M; 5530 } 5531 EXPORT_SYMBOL_GPL(kvm_configure_mmu); 5532 5533 /* The return value indicates if tlb flush on all vcpus is needed. */ 5534 typedef bool (*slot_level_handler) (struct kvm *kvm, 5535 struct kvm_rmap_head *rmap_head, 5536 const struct kvm_memory_slot *slot); 5537 5538 /* The caller should hold mmu-lock before calling this function. */ 5539 static __always_inline bool 5540 slot_handle_level_range(struct kvm *kvm, const struct kvm_memory_slot *memslot, 5541 slot_level_handler fn, int start_level, int end_level, 5542 gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield, 5543 bool flush) 5544 { 5545 struct slot_rmap_walk_iterator iterator; 5546 5547 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn, 5548 end_gfn, &iterator) { 5549 if (iterator.rmap) 5550 flush |= fn(kvm, iterator.rmap, memslot); 5551 5552 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 5553 if (flush && flush_on_yield) { 5554 kvm_flush_remote_tlbs_with_address(kvm, 5555 start_gfn, 5556 iterator.gfn - start_gfn + 1); 5557 flush = false; 5558 } 5559 cond_resched_rwlock_write(&kvm->mmu_lock); 5560 } 5561 } 5562 5563 return flush; 5564 } 5565 5566 static __always_inline bool 5567 slot_handle_level(struct kvm *kvm, const struct kvm_memory_slot *memslot, 5568 slot_level_handler fn, int start_level, int end_level, 5569 bool flush_on_yield) 5570 { 5571 return slot_handle_level_range(kvm, memslot, fn, start_level, 5572 end_level, memslot->base_gfn, 5573 memslot->base_gfn + memslot->npages - 1, 5574 flush_on_yield, false); 5575 } 5576 5577 static __always_inline bool 5578 slot_handle_level_4k(struct kvm *kvm, const struct kvm_memory_slot *memslot, 5579 slot_level_handler fn, bool flush_on_yield) 5580 { 5581 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K, 5582 PG_LEVEL_4K, flush_on_yield); 5583 } 5584 5585 static void free_mmu_pages(struct kvm_mmu *mmu) 5586 { 5587 if (!tdp_enabled && mmu->pae_root) 5588 set_memory_encrypted((unsigned long)mmu->pae_root, 1); 5589 free_page((unsigned long)mmu->pae_root); 5590 free_page((unsigned long)mmu->pml4_root); 5591 free_page((unsigned long)mmu->pml5_root); 5592 } 5593 5594 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 5595 { 5596 struct page *page; 5597 int i; 5598 5599 mmu->root.hpa = INVALID_PAGE; 5600 mmu->root.pgd = 0; 5601 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5602 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 5603 5604 /* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */ 5605 if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu) 5606 return 0; 5607 5608 /* 5609 * When using PAE paging, the four PDPTEs are treated as 'root' pages, 5610 * while the PDP table is a per-vCPU construct that's allocated at MMU 5611 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on 5612 * x86_64. Therefore we need to allocate the PDP table in the first 5613 * 4GB of memory, which happens to fit the DMA32 zone. TDP paging 5614 * generally doesn't use PAE paging and can skip allocating the PDP 5615 * table. The main exception, handled here, is SVM's 32-bit NPT. The 5616 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit 5617 * KVM; that horror is handled on-demand by mmu_alloc_special_roots(). 5618 */ 5619 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL) 5620 return 0; 5621 5622 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32); 5623 if (!page) 5624 return -ENOMEM; 5625 5626 mmu->pae_root = page_address(page); 5627 5628 /* 5629 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to 5630 * get the CPU to treat the PDPTEs as encrypted. Decrypt the page so 5631 * that KVM's writes and the CPU's reads get along. Note, this is 5632 * only necessary when using shadow paging, as 64-bit NPT can get at 5633 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported 5634 * by 32-bit kernels (when KVM itself uses 32-bit NPT). 5635 */ 5636 if (!tdp_enabled) 5637 set_memory_decrypted((unsigned long)mmu->pae_root, 1); 5638 else 5639 WARN_ON_ONCE(shadow_me_value); 5640 5641 for (i = 0; i < 4; ++i) 5642 mmu->pae_root[i] = INVALID_PAE_ROOT; 5643 5644 return 0; 5645 } 5646 5647 int kvm_mmu_create(struct kvm_vcpu *vcpu) 5648 { 5649 int ret; 5650 5651 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache; 5652 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO; 5653 5654 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache; 5655 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO; 5656 5657 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO; 5658 5659 vcpu->arch.mmu = &vcpu->arch.root_mmu; 5660 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; 5661 5662 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu); 5663 if (ret) 5664 return ret; 5665 5666 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu); 5667 if (ret) 5668 goto fail_allocate_root; 5669 5670 return ret; 5671 fail_allocate_root: 5672 free_mmu_pages(&vcpu->arch.guest_mmu); 5673 return ret; 5674 } 5675 5676 #define BATCH_ZAP_PAGES 10 5677 static void kvm_zap_obsolete_pages(struct kvm *kvm) 5678 { 5679 struct kvm_mmu_page *sp, *node; 5680 int nr_zapped, batch = 0; 5681 bool unstable; 5682 5683 restart: 5684 list_for_each_entry_safe_reverse(sp, node, 5685 &kvm->arch.active_mmu_pages, link) { 5686 /* 5687 * No obsolete valid page exists before a newly created page 5688 * since active_mmu_pages is a FIFO list. 5689 */ 5690 if (!is_obsolete_sp(kvm, sp)) 5691 break; 5692 5693 /* 5694 * Invalid pages should never land back on the list of active 5695 * pages. Skip the bogus page, otherwise we'll get stuck in an 5696 * infinite loop if the page gets put back on the list (again). 5697 */ 5698 if (WARN_ON(sp->role.invalid)) 5699 continue; 5700 5701 /* 5702 * No need to flush the TLB since we're only zapping shadow 5703 * pages with an obsolete generation number and all vCPUS have 5704 * loaded a new root, i.e. the shadow pages being zapped cannot 5705 * be in active use by the guest. 5706 */ 5707 if (batch >= BATCH_ZAP_PAGES && 5708 cond_resched_rwlock_write(&kvm->mmu_lock)) { 5709 batch = 0; 5710 goto restart; 5711 } 5712 5713 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, 5714 &kvm->arch.zapped_obsolete_pages, &nr_zapped); 5715 batch += nr_zapped; 5716 5717 if (unstable) 5718 goto restart; 5719 } 5720 5721 /* 5722 * Kick all vCPUs (via remote TLB flush) before freeing the page tables 5723 * to ensure KVM is not in the middle of a lockless shadow page table 5724 * walk, which may reference the pages. The remote TLB flush itself is 5725 * not required and is simply a convenient way to kick vCPUs as needed. 5726 * KVM performs a local TLB flush when allocating a new root (see 5727 * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are 5728 * running with an obsolete MMU. 5729 */ 5730 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages); 5731 } 5732 5733 /* 5734 * Fast invalidate all shadow pages and use lock-break technique 5735 * to zap obsolete pages. 5736 * 5737 * It's required when memslot is being deleted or VM is being 5738 * destroyed, in these cases, we should ensure that KVM MMU does 5739 * not use any resource of the being-deleted slot or all slots 5740 * after calling the function. 5741 */ 5742 static void kvm_mmu_zap_all_fast(struct kvm *kvm) 5743 { 5744 lockdep_assert_held(&kvm->slots_lock); 5745 5746 write_lock(&kvm->mmu_lock); 5747 trace_kvm_mmu_zap_all_fast(kvm); 5748 5749 /* 5750 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is 5751 * held for the entire duration of zapping obsolete pages, it's 5752 * impossible for there to be multiple invalid generations associated 5753 * with *valid* shadow pages at any given time, i.e. there is exactly 5754 * one valid generation and (at most) one invalid generation. 5755 */ 5756 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1; 5757 5758 /* 5759 * In order to ensure all vCPUs drop their soon-to-be invalid roots, 5760 * invalidating TDP MMU roots must be done while holding mmu_lock for 5761 * write and in the same critical section as making the reload request, 5762 * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield. 5763 */ 5764 if (is_tdp_mmu_enabled(kvm)) 5765 kvm_tdp_mmu_invalidate_all_roots(kvm); 5766 5767 /* 5768 * Notify all vcpus to reload its shadow page table and flush TLB. 5769 * Then all vcpus will switch to new shadow page table with the new 5770 * mmu_valid_gen. 5771 * 5772 * Note: we need to do this under the protection of mmu_lock, 5773 * otherwise, vcpu would purge shadow page but miss tlb flush. 5774 */ 5775 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 5776 5777 kvm_zap_obsolete_pages(kvm); 5778 5779 write_unlock(&kvm->mmu_lock); 5780 5781 /* 5782 * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before 5783 * returning to the caller, e.g. if the zap is in response to a memslot 5784 * deletion, mmu_notifier callbacks will be unable to reach the SPTEs 5785 * associated with the deleted memslot once the update completes, and 5786 * Deferring the zap until the final reference to the root is put would 5787 * lead to use-after-free. 5788 */ 5789 if (is_tdp_mmu_enabled(kvm)) 5790 kvm_tdp_mmu_zap_invalidated_roots(kvm); 5791 } 5792 5793 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm) 5794 { 5795 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages)); 5796 } 5797 5798 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm, 5799 struct kvm_memory_slot *slot, 5800 struct kvm_page_track_notifier_node *node) 5801 { 5802 kvm_mmu_zap_all_fast(kvm); 5803 } 5804 5805 int kvm_mmu_init_vm(struct kvm *kvm) 5806 { 5807 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 5808 int r; 5809 5810 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 5811 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 5812 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages); 5813 spin_lock_init(&kvm->arch.mmu_unsync_pages_lock); 5814 5815 r = kvm_mmu_init_tdp_mmu(kvm); 5816 if (r < 0) 5817 return r; 5818 5819 node->track_write = kvm_mmu_pte_write; 5820 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot; 5821 kvm_page_track_register_notifier(kvm, node); 5822 return 0; 5823 } 5824 5825 void kvm_mmu_uninit_vm(struct kvm *kvm) 5826 { 5827 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 5828 5829 kvm_page_track_unregister_notifier(kvm, node); 5830 5831 kvm_mmu_uninit_tdp_mmu(kvm); 5832 } 5833 5834 static bool __kvm_zap_rmaps(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 5835 { 5836 const struct kvm_memory_slot *memslot; 5837 struct kvm_memslots *slots; 5838 struct kvm_memslot_iter iter; 5839 bool flush = false; 5840 gfn_t start, end; 5841 int i; 5842 5843 if (!kvm_memslots_have_rmaps(kvm)) 5844 return flush; 5845 5846 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 5847 slots = __kvm_memslots(kvm, i); 5848 5849 kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) { 5850 memslot = iter.slot; 5851 start = max(gfn_start, memslot->base_gfn); 5852 end = min(gfn_end, memslot->base_gfn + memslot->npages); 5853 if (WARN_ON_ONCE(start >= end)) 5854 continue; 5855 5856 flush = slot_handle_level_range(kvm, memslot, kvm_zap_rmapp, 5857 5858 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 5859 start, end - 1, true, flush); 5860 } 5861 } 5862 5863 return flush; 5864 } 5865 5866 /* 5867 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end 5868 * (not including it) 5869 */ 5870 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 5871 { 5872 bool flush; 5873 int i; 5874 5875 if (WARN_ON_ONCE(gfn_end <= gfn_start)) 5876 return; 5877 5878 write_lock(&kvm->mmu_lock); 5879 5880 kvm_inc_notifier_count(kvm, gfn_start, gfn_end); 5881 5882 flush = __kvm_zap_rmaps(kvm, gfn_start, gfn_end); 5883 5884 if (is_tdp_mmu_enabled(kvm)) { 5885 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 5886 flush = kvm_tdp_mmu_zap_leafs(kvm, i, gfn_start, 5887 gfn_end, true, flush); 5888 } 5889 5890 if (flush) 5891 kvm_flush_remote_tlbs_with_address(kvm, gfn_start, 5892 gfn_end - gfn_start); 5893 5894 kvm_dec_notifier_count(kvm, gfn_start, gfn_end); 5895 5896 write_unlock(&kvm->mmu_lock); 5897 } 5898 5899 static bool slot_rmap_write_protect(struct kvm *kvm, 5900 struct kvm_rmap_head *rmap_head, 5901 const struct kvm_memory_slot *slot) 5902 { 5903 return rmap_write_protect(rmap_head, false); 5904 } 5905 5906 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 5907 const struct kvm_memory_slot *memslot, 5908 int start_level) 5909 { 5910 bool flush = false; 5911 5912 if (kvm_memslots_have_rmaps(kvm)) { 5913 write_lock(&kvm->mmu_lock); 5914 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect, 5915 start_level, KVM_MAX_HUGEPAGE_LEVEL, 5916 false); 5917 write_unlock(&kvm->mmu_lock); 5918 } 5919 5920 if (is_tdp_mmu_enabled(kvm)) { 5921 read_lock(&kvm->mmu_lock); 5922 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level); 5923 read_unlock(&kvm->mmu_lock); 5924 } 5925 5926 /* 5927 * Flush TLBs if any SPTEs had to be write-protected to ensure that 5928 * guest writes are reflected in the dirty bitmap before the memslot 5929 * update completes, i.e. before enabling dirty logging is visible to 5930 * userspace. 5931 * 5932 * Perform the TLB flush outside the mmu_lock to reduce the amount of 5933 * time the lock is held. However, this does mean that another CPU can 5934 * now grab mmu_lock and encounter a write-protected SPTE while CPUs 5935 * still have a writable mapping for the associated GFN in their TLB. 5936 * 5937 * This is safe but requires KVM to be careful when making decisions 5938 * based on the write-protection status of an SPTE. Specifically, KVM 5939 * also write-protects SPTEs to monitor changes to guest page tables 5940 * during shadow paging, and must guarantee no CPUs can write to those 5941 * page before the lock is dropped. As mentioned in the previous 5942 * paragraph, a write-protected SPTE is no guarantee that CPU cannot 5943 * perform writes. So to determine if a TLB flush is truly required, KVM 5944 * will clear a separate software-only bit (MMU-writable) and skip the 5945 * flush if-and-only-if this bit was already clear. 5946 * 5947 * See is_writable_pte() for more details. 5948 */ 5949 if (flush) 5950 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 5951 } 5952 5953 /* Must be called with the mmu_lock held in write-mode. */ 5954 void kvm_mmu_try_split_huge_pages(struct kvm *kvm, 5955 const struct kvm_memory_slot *memslot, 5956 u64 start, u64 end, 5957 int target_level) 5958 { 5959 if (is_tdp_mmu_enabled(kvm)) 5960 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, 5961 target_level, false); 5962 5963 /* 5964 * A TLB flush is unnecessary at this point for the same resons as in 5965 * kvm_mmu_slot_try_split_huge_pages(). 5966 */ 5967 } 5968 5969 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, 5970 const struct kvm_memory_slot *memslot, 5971 int target_level) 5972 { 5973 u64 start = memslot->base_gfn; 5974 u64 end = start + memslot->npages; 5975 5976 if (is_tdp_mmu_enabled(kvm)) { 5977 read_lock(&kvm->mmu_lock); 5978 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true); 5979 read_unlock(&kvm->mmu_lock); 5980 } 5981 5982 /* 5983 * No TLB flush is necessary here. KVM will flush TLBs after 5984 * write-protecting and/or clearing dirty on the newly split SPTEs to 5985 * ensure that guest writes are reflected in the dirty log before the 5986 * ioctl to enable dirty logging on this memslot completes. Since the 5987 * split SPTEs retain the write and dirty bits of the huge SPTE, it is 5988 * safe for KVM to decide if a TLB flush is necessary based on the split 5989 * SPTEs. 5990 */ 5991 } 5992 5993 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, 5994 struct kvm_rmap_head *rmap_head, 5995 const struct kvm_memory_slot *slot) 5996 { 5997 u64 *sptep; 5998 struct rmap_iterator iter; 5999 int need_tlb_flush = 0; 6000 kvm_pfn_t pfn; 6001 struct kvm_mmu_page *sp; 6002 6003 restart: 6004 for_each_rmap_spte(rmap_head, &iter, sptep) { 6005 sp = sptep_to_sp(sptep); 6006 pfn = spte_to_pfn(*sptep); 6007 6008 /* 6009 * We cannot do huge page mapping for indirect shadow pages, 6010 * which are found on the last rmap (level = 1) when not using 6011 * tdp; such shadow pages are synced with the page table in 6012 * the guest, and the guest page table is using 4K page size 6013 * mapping if the indirect sp has level = 1. 6014 */ 6015 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) && 6016 sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn, 6017 pfn, PG_LEVEL_NUM)) { 6018 pte_list_remove(kvm, rmap_head, sptep); 6019 6020 if (kvm_available_flush_tlb_with_range()) 6021 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn, 6022 KVM_PAGES_PER_HPAGE(sp->role.level)); 6023 else 6024 need_tlb_flush = 1; 6025 6026 goto restart; 6027 } 6028 } 6029 6030 return need_tlb_flush; 6031 } 6032 6033 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, 6034 const struct kvm_memory_slot *slot) 6035 { 6036 if (kvm_memslots_have_rmaps(kvm)) { 6037 write_lock(&kvm->mmu_lock); 6038 /* 6039 * Zap only 4k SPTEs since the legacy MMU only supports dirty 6040 * logging at a 4k granularity and never creates collapsible 6041 * 2m SPTEs during dirty logging. 6042 */ 6043 if (slot_handle_level_4k(kvm, slot, kvm_mmu_zap_collapsible_spte, true)) 6044 kvm_arch_flush_remote_tlbs_memslot(kvm, slot); 6045 write_unlock(&kvm->mmu_lock); 6046 } 6047 6048 if (is_tdp_mmu_enabled(kvm)) { 6049 read_lock(&kvm->mmu_lock); 6050 kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot); 6051 read_unlock(&kvm->mmu_lock); 6052 } 6053 } 6054 6055 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 6056 const struct kvm_memory_slot *memslot) 6057 { 6058 /* 6059 * All current use cases for flushing the TLBs for a specific memslot 6060 * related to dirty logging, and many do the TLB flush out of mmu_lock. 6061 * The interaction between the various operations on memslot must be 6062 * serialized by slots_locks to ensure the TLB flush from one operation 6063 * is observed by any other operation on the same memslot. 6064 */ 6065 lockdep_assert_held(&kvm->slots_lock); 6066 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn, 6067 memslot->npages); 6068 } 6069 6070 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 6071 const struct kvm_memory_slot *memslot) 6072 { 6073 bool flush = false; 6074 6075 if (kvm_memslots_have_rmaps(kvm)) { 6076 write_lock(&kvm->mmu_lock); 6077 /* 6078 * Clear dirty bits only on 4k SPTEs since the legacy MMU only 6079 * support dirty logging at a 4k granularity. 6080 */ 6081 flush = slot_handle_level_4k(kvm, memslot, __rmap_clear_dirty, false); 6082 write_unlock(&kvm->mmu_lock); 6083 } 6084 6085 if (is_tdp_mmu_enabled(kvm)) { 6086 read_lock(&kvm->mmu_lock); 6087 flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot); 6088 read_unlock(&kvm->mmu_lock); 6089 } 6090 6091 /* 6092 * It's also safe to flush TLBs out of mmu lock here as currently this 6093 * function is only used for dirty logging, in which case flushing TLB 6094 * out of mmu lock also guarantees no dirty pages will be lost in 6095 * dirty_bitmap. 6096 */ 6097 if (flush) 6098 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 6099 } 6100 6101 void kvm_mmu_zap_all(struct kvm *kvm) 6102 { 6103 struct kvm_mmu_page *sp, *node; 6104 LIST_HEAD(invalid_list); 6105 int ign; 6106 6107 write_lock(&kvm->mmu_lock); 6108 restart: 6109 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) { 6110 if (WARN_ON(sp->role.invalid)) 6111 continue; 6112 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign)) 6113 goto restart; 6114 if (cond_resched_rwlock_write(&kvm->mmu_lock)) 6115 goto restart; 6116 } 6117 6118 kvm_mmu_commit_zap_page(kvm, &invalid_list); 6119 6120 if (is_tdp_mmu_enabled(kvm)) 6121 kvm_tdp_mmu_zap_all(kvm); 6122 6123 write_unlock(&kvm->mmu_lock); 6124 } 6125 6126 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen) 6127 { 6128 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 6129 6130 gen &= MMIO_SPTE_GEN_MASK; 6131 6132 /* 6133 * Generation numbers are incremented in multiples of the number of 6134 * address spaces in order to provide unique generations across all 6135 * address spaces. Strip what is effectively the address space 6136 * modifier prior to checking for a wrap of the MMIO generation so 6137 * that a wrap in any address space is detected. 6138 */ 6139 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1); 6140 6141 /* 6142 * The very rare case: if the MMIO generation number has wrapped, 6143 * zap all shadow pages. 6144 */ 6145 if (unlikely(gen == 0)) { 6146 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n"); 6147 kvm_mmu_zap_all_fast(kvm); 6148 } 6149 } 6150 6151 static unsigned long 6152 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 6153 { 6154 struct kvm *kvm; 6155 int nr_to_scan = sc->nr_to_scan; 6156 unsigned long freed = 0; 6157 6158 mutex_lock(&kvm_lock); 6159 6160 list_for_each_entry(kvm, &vm_list, vm_list) { 6161 int idx; 6162 LIST_HEAD(invalid_list); 6163 6164 /* 6165 * Never scan more than sc->nr_to_scan VM instances. 6166 * Will not hit this condition practically since we do not try 6167 * to shrink more than one VM and it is very unlikely to see 6168 * !n_used_mmu_pages so many times. 6169 */ 6170 if (!nr_to_scan--) 6171 break; 6172 /* 6173 * n_used_mmu_pages is accessed without holding kvm->mmu_lock 6174 * here. We may skip a VM instance errorneosly, but we do not 6175 * want to shrink a VM that only started to populate its MMU 6176 * anyway. 6177 */ 6178 if (!kvm->arch.n_used_mmu_pages && 6179 !kvm_has_zapped_obsolete_pages(kvm)) 6180 continue; 6181 6182 idx = srcu_read_lock(&kvm->srcu); 6183 write_lock(&kvm->mmu_lock); 6184 6185 if (kvm_has_zapped_obsolete_pages(kvm)) { 6186 kvm_mmu_commit_zap_page(kvm, 6187 &kvm->arch.zapped_obsolete_pages); 6188 goto unlock; 6189 } 6190 6191 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan); 6192 6193 unlock: 6194 write_unlock(&kvm->mmu_lock); 6195 srcu_read_unlock(&kvm->srcu, idx); 6196 6197 /* 6198 * unfair on small ones 6199 * per-vm shrinkers cry out 6200 * sadness comes quickly 6201 */ 6202 list_move_tail(&kvm->vm_list, &vm_list); 6203 break; 6204 } 6205 6206 mutex_unlock(&kvm_lock); 6207 return freed; 6208 } 6209 6210 static unsigned long 6211 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 6212 { 6213 return percpu_counter_read_positive(&kvm_total_used_mmu_pages); 6214 } 6215 6216 static struct shrinker mmu_shrinker = { 6217 .count_objects = mmu_shrink_count, 6218 .scan_objects = mmu_shrink_scan, 6219 .seeks = DEFAULT_SEEKS * 10, 6220 }; 6221 6222 static void mmu_destroy_caches(void) 6223 { 6224 kmem_cache_destroy(pte_list_desc_cache); 6225 kmem_cache_destroy(mmu_page_header_cache); 6226 } 6227 6228 static bool get_nx_auto_mode(void) 6229 { 6230 /* Return true when CPU has the bug, and mitigations are ON */ 6231 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off(); 6232 } 6233 6234 static void __set_nx_huge_pages(bool val) 6235 { 6236 nx_huge_pages = itlb_multihit_kvm_mitigation = val; 6237 } 6238 6239 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp) 6240 { 6241 bool old_val = nx_huge_pages; 6242 bool new_val; 6243 6244 /* In "auto" mode deploy workaround only if CPU has the bug. */ 6245 if (sysfs_streq(val, "off")) 6246 new_val = 0; 6247 else if (sysfs_streq(val, "force")) 6248 new_val = 1; 6249 else if (sysfs_streq(val, "auto")) 6250 new_val = get_nx_auto_mode(); 6251 else if (strtobool(val, &new_val) < 0) 6252 return -EINVAL; 6253 6254 __set_nx_huge_pages(new_val); 6255 6256 if (new_val != old_val) { 6257 struct kvm *kvm; 6258 6259 mutex_lock(&kvm_lock); 6260 6261 list_for_each_entry(kvm, &vm_list, vm_list) { 6262 mutex_lock(&kvm->slots_lock); 6263 kvm_mmu_zap_all_fast(kvm); 6264 mutex_unlock(&kvm->slots_lock); 6265 6266 wake_up_process(kvm->arch.nx_lpage_recovery_thread); 6267 } 6268 mutex_unlock(&kvm_lock); 6269 } 6270 6271 return 0; 6272 } 6273 6274 /* 6275 * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as 6276 * its default value of -1 is technically undefined behavior for a boolean. 6277 */ 6278 void kvm_mmu_x86_module_init(void) 6279 { 6280 if (nx_huge_pages == -1) 6281 __set_nx_huge_pages(get_nx_auto_mode()); 6282 } 6283 6284 /* 6285 * The bulk of the MMU initialization is deferred until the vendor module is 6286 * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need 6287 * to be reset when a potentially different vendor module is loaded. 6288 */ 6289 int kvm_mmu_vendor_module_init(void) 6290 { 6291 int ret = -ENOMEM; 6292 6293 /* 6294 * MMU roles use union aliasing which is, generally speaking, an 6295 * undefined behavior. However, we supposedly know how compilers behave 6296 * and the current status quo is unlikely to change. Guardians below are 6297 * supposed to let us know if the assumption becomes false. 6298 */ 6299 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32)); 6300 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32)); 6301 BUILD_BUG_ON(sizeof(union kvm_cpu_role) != sizeof(u64)); 6302 6303 kvm_mmu_reset_all_pte_masks(); 6304 6305 pte_list_desc_cache = kmem_cache_create("pte_list_desc", 6306 sizeof(struct pte_list_desc), 6307 0, SLAB_ACCOUNT, NULL); 6308 if (!pte_list_desc_cache) 6309 goto out; 6310 6311 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", 6312 sizeof(struct kvm_mmu_page), 6313 0, SLAB_ACCOUNT, NULL); 6314 if (!mmu_page_header_cache) 6315 goto out; 6316 6317 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL)) 6318 goto out; 6319 6320 ret = register_shrinker(&mmu_shrinker); 6321 if (ret) 6322 goto out; 6323 6324 return 0; 6325 6326 out: 6327 mmu_destroy_caches(); 6328 return ret; 6329 } 6330 6331 void kvm_mmu_destroy(struct kvm_vcpu *vcpu) 6332 { 6333 kvm_mmu_unload(vcpu); 6334 free_mmu_pages(&vcpu->arch.root_mmu); 6335 free_mmu_pages(&vcpu->arch.guest_mmu); 6336 mmu_free_memory_caches(vcpu); 6337 } 6338 6339 void kvm_mmu_vendor_module_exit(void) 6340 { 6341 mmu_destroy_caches(); 6342 percpu_counter_destroy(&kvm_total_used_mmu_pages); 6343 unregister_shrinker(&mmu_shrinker); 6344 } 6345 6346 /* 6347 * Calculate the effective recovery period, accounting for '0' meaning "let KVM 6348 * select a halving time of 1 hour". Returns true if recovery is enabled. 6349 */ 6350 static bool calc_nx_huge_pages_recovery_period(uint *period) 6351 { 6352 /* 6353 * Use READ_ONCE to get the params, this may be called outside of the 6354 * param setters, e.g. by the kthread to compute its next timeout. 6355 */ 6356 bool enabled = READ_ONCE(nx_huge_pages); 6357 uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 6358 6359 if (!enabled || !ratio) 6360 return false; 6361 6362 *period = READ_ONCE(nx_huge_pages_recovery_period_ms); 6363 if (!*period) { 6364 /* Make sure the period is not less than one second. */ 6365 ratio = min(ratio, 3600u); 6366 *period = 60 * 60 * 1000 / ratio; 6367 } 6368 return true; 6369 } 6370 6371 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp) 6372 { 6373 bool was_recovery_enabled, is_recovery_enabled; 6374 uint old_period, new_period; 6375 int err; 6376 6377 was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period); 6378 6379 err = param_set_uint(val, kp); 6380 if (err) 6381 return err; 6382 6383 is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period); 6384 6385 if (is_recovery_enabled && 6386 (!was_recovery_enabled || old_period > new_period)) { 6387 struct kvm *kvm; 6388 6389 mutex_lock(&kvm_lock); 6390 6391 list_for_each_entry(kvm, &vm_list, vm_list) 6392 wake_up_process(kvm->arch.nx_lpage_recovery_thread); 6393 6394 mutex_unlock(&kvm_lock); 6395 } 6396 6397 return err; 6398 } 6399 6400 static void kvm_recover_nx_lpages(struct kvm *kvm) 6401 { 6402 unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits; 6403 int rcu_idx; 6404 struct kvm_mmu_page *sp; 6405 unsigned int ratio; 6406 LIST_HEAD(invalid_list); 6407 bool flush = false; 6408 ulong to_zap; 6409 6410 rcu_idx = srcu_read_lock(&kvm->srcu); 6411 write_lock(&kvm->mmu_lock); 6412 6413 /* 6414 * Zapping TDP MMU shadow pages, including the remote TLB flush, must 6415 * be done under RCU protection, because the pages are freed via RCU 6416 * callback. 6417 */ 6418 rcu_read_lock(); 6419 6420 ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 6421 to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0; 6422 for ( ; to_zap; --to_zap) { 6423 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) 6424 break; 6425 6426 /* 6427 * We use a separate list instead of just using active_mmu_pages 6428 * because the number of lpage_disallowed pages is expected to 6429 * be relatively small compared to the total. 6430 */ 6431 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages, 6432 struct kvm_mmu_page, 6433 lpage_disallowed_link); 6434 WARN_ON_ONCE(!sp->lpage_disallowed); 6435 if (is_tdp_mmu_page(sp)) { 6436 flush |= kvm_tdp_mmu_zap_sp(kvm, sp); 6437 } else { 6438 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 6439 WARN_ON_ONCE(sp->lpage_disallowed); 6440 } 6441 6442 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 6443 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 6444 rcu_read_unlock(); 6445 6446 cond_resched_rwlock_write(&kvm->mmu_lock); 6447 flush = false; 6448 6449 rcu_read_lock(); 6450 } 6451 } 6452 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 6453 6454 rcu_read_unlock(); 6455 6456 write_unlock(&kvm->mmu_lock); 6457 srcu_read_unlock(&kvm->srcu, rcu_idx); 6458 } 6459 6460 static long get_nx_lpage_recovery_timeout(u64 start_time) 6461 { 6462 bool enabled; 6463 uint period; 6464 6465 enabled = calc_nx_huge_pages_recovery_period(&period); 6466 6467 return enabled ? start_time + msecs_to_jiffies(period) - get_jiffies_64() 6468 : MAX_SCHEDULE_TIMEOUT; 6469 } 6470 6471 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data) 6472 { 6473 u64 start_time; 6474 long remaining_time; 6475 6476 while (true) { 6477 start_time = get_jiffies_64(); 6478 remaining_time = get_nx_lpage_recovery_timeout(start_time); 6479 6480 set_current_state(TASK_INTERRUPTIBLE); 6481 while (!kthread_should_stop() && remaining_time > 0) { 6482 schedule_timeout(remaining_time); 6483 remaining_time = get_nx_lpage_recovery_timeout(start_time); 6484 set_current_state(TASK_INTERRUPTIBLE); 6485 } 6486 6487 set_current_state(TASK_RUNNING); 6488 6489 if (kthread_should_stop()) 6490 return 0; 6491 6492 kvm_recover_nx_lpages(kvm); 6493 } 6494 } 6495 6496 int kvm_mmu_post_init_vm(struct kvm *kvm) 6497 { 6498 int err; 6499 6500 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0, 6501 "kvm-nx-lpage-recovery", 6502 &kvm->arch.nx_lpage_recovery_thread); 6503 if (!err) 6504 kthread_unpark(kvm->arch.nx_lpage_recovery_thread); 6505 6506 return err; 6507 } 6508 6509 void kvm_mmu_pre_destroy_vm(struct kvm *kvm) 6510 { 6511 if (kvm->arch.nx_lpage_recovery_thread) 6512 kthread_stop(kvm->arch.nx_lpage_recovery_thread); 6513 } 6514