1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * MMU support 9 * 10 * Copyright (C) 2006 Qumranet, Inc. 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 12 * 13 * Authors: 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Avi Kivity <avi@qumranet.com> 16 */ 17 18 #include "irq.h" 19 #include "ioapic.h" 20 #include "mmu.h" 21 #include "mmu_internal.h" 22 #include "tdp_mmu.h" 23 #include "x86.h" 24 #include "kvm_cache_regs.h" 25 #include "kvm_emulate.h" 26 #include "cpuid.h" 27 #include "spte.h" 28 29 #include <linux/kvm_host.h> 30 #include <linux/types.h> 31 #include <linux/string.h> 32 #include <linux/mm.h> 33 #include <linux/highmem.h> 34 #include <linux/moduleparam.h> 35 #include <linux/export.h> 36 #include <linux/swap.h> 37 #include <linux/hugetlb.h> 38 #include <linux/compiler.h> 39 #include <linux/srcu.h> 40 #include <linux/slab.h> 41 #include <linux/sched/signal.h> 42 #include <linux/uaccess.h> 43 #include <linux/hash.h> 44 #include <linux/kern_levels.h> 45 #include <linux/kthread.h> 46 47 #include <asm/page.h> 48 #include <asm/memtype.h> 49 #include <asm/cmpxchg.h> 50 #include <asm/io.h> 51 #include <asm/set_memory.h> 52 #include <asm/vmx.h> 53 #include <asm/kvm_page_track.h> 54 #include "trace.h" 55 56 #include "paging.h" 57 58 extern bool itlb_multihit_kvm_mitigation; 59 60 int __read_mostly nx_huge_pages = -1; 61 static uint __read_mostly nx_huge_pages_recovery_period_ms; 62 #ifdef CONFIG_PREEMPT_RT 63 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */ 64 static uint __read_mostly nx_huge_pages_recovery_ratio = 0; 65 #else 66 static uint __read_mostly nx_huge_pages_recovery_ratio = 60; 67 #endif 68 69 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp); 70 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp); 71 72 static const struct kernel_param_ops nx_huge_pages_ops = { 73 .set = set_nx_huge_pages, 74 .get = param_get_bool, 75 }; 76 77 static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = { 78 .set = set_nx_huge_pages_recovery_param, 79 .get = param_get_uint, 80 }; 81 82 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644); 83 __MODULE_PARM_TYPE(nx_huge_pages, "bool"); 84 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops, 85 &nx_huge_pages_recovery_ratio, 0644); 86 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint"); 87 module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops, 88 &nx_huge_pages_recovery_period_ms, 0644); 89 __MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint"); 90 91 static bool __read_mostly force_flush_and_sync_on_reuse; 92 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644); 93 94 /* 95 * When setting this variable to true it enables Two-Dimensional-Paging 96 * where the hardware walks 2 page tables: 97 * 1. the guest-virtual to guest-physical 98 * 2. while doing 1. it walks guest-physical to host-physical 99 * If the hardware supports that we don't need to do shadow paging. 100 */ 101 bool tdp_enabled = false; 102 103 static int max_huge_page_level __read_mostly; 104 static int tdp_root_level __read_mostly; 105 static int max_tdp_level __read_mostly; 106 107 #ifdef MMU_DEBUG 108 bool dbg = 0; 109 module_param(dbg, bool, 0644); 110 #endif 111 112 #define PTE_PREFETCH_NUM 8 113 114 #define PT32_LEVEL_BITS 10 115 116 #define PT32_LEVEL_SHIFT(level) \ 117 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS) 118 119 #define PT32_LVL_OFFSET_MASK(level) \ 120 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \ 121 * PT32_LEVEL_BITS))) - 1)) 122 123 #define PT32_INDEX(address, level)\ 124 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1)) 125 126 127 #define PT32_BASE_ADDR_MASK PAGE_MASK 128 #define PT32_DIR_BASE_ADDR_MASK \ 129 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1)) 130 #define PT32_LVL_ADDR_MASK(level) \ 131 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \ 132 * PT32_LEVEL_BITS))) - 1)) 133 134 #include <trace/events/kvm.h> 135 136 /* make pte_list_desc fit well in cache lines */ 137 #define PTE_LIST_EXT 14 138 139 /* 140 * Slight optimization of cacheline layout, by putting `more' and `spte_count' 141 * at the start; then accessing it will only use one single cacheline for 142 * either full (entries==PTE_LIST_EXT) case or entries<=6. 143 */ 144 struct pte_list_desc { 145 struct pte_list_desc *more; 146 /* 147 * Stores number of entries stored in the pte_list_desc. No need to be 148 * u64 but just for easier alignment. When PTE_LIST_EXT, means full. 149 */ 150 u64 spte_count; 151 u64 *sptes[PTE_LIST_EXT]; 152 }; 153 154 struct kvm_shadow_walk_iterator { 155 u64 addr; 156 hpa_t shadow_addr; 157 u64 *sptep; 158 int level; 159 unsigned index; 160 }; 161 162 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \ 163 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \ 164 (_root), (_addr)); \ 165 shadow_walk_okay(&(_walker)); \ 166 shadow_walk_next(&(_walker))) 167 168 #define for_each_shadow_entry(_vcpu, _addr, _walker) \ 169 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 170 shadow_walk_okay(&(_walker)); \ 171 shadow_walk_next(&(_walker))) 172 173 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \ 174 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 175 shadow_walk_okay(&(_walker)) && \ 176 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \ 177 __shadow_walk_next(&(_walker), spte)) 178 179 static struct kmem_cache *pte_list_desc_cache; 180 struct kmem_cache *mmu_page_header_cache; 181 static struct percpu_counter kvm_total_used_mmu_pages; 182 183 static void mmu_spte_set(u64 *sptep, u64 spte); 184 185 struct kvm_mmu_role_regs { 186 const unsigned long cr0; 187 const unsigned long cr4; 188 const u64 efer; 189 }; 190 191 #define CREATE_TRACE_POINTS 192 #include "mmutrace.h" 193 194 /* 195 * Yes, lot's of underscores. They're a hint that you probably shouldn't be 196 * reading from the role_regs. Once the mmu_role is constructed, it becomes 197 * the single source of truth for the MMU's state. 198 */ 199 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag) \ 200 static inline bool __maybe_unused ____is_##reg##_##name(struct kvm_mmu_role_regs *regs)\ 201 { \ 202 return !!(regs->reg & flag); \ 203 } 204 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG); 205 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP); 206 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE); 207 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE); 208 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP); 209 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP); 210 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE); 211 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57); 212 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX); 213 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA); 214 215 /* 216 * The MMU itself (with a valid role) is the single source of truth for the 217 * MMU. Do not use the regs used to build the MMU/role, nor the vCPU. The 218 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1, 219 * and the vCPU may be incorrect/irrelevant. 220 */ 221 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name) \ 222 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu) \ 223 { \ 224 return !!(mmu->mmu_role. base_or_ext . reg##_##name); \ 225 } 226 BUILD_MMU_ROLE_ACCESSOR(ext, cr0, pg); 227 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp); 228 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pse); 229 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pae); 230 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smep); 231 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smap); 232 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pke); 233 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, la57); 234 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx); 235 236 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu) 237 { 238 struct kvm_mmu_role_regs regs = { 239 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS), 240 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS), 241 .efer = vcpu->arch.efer, 242 }; 243 244 return regs; 245 } 246 247 static int role_regs_to_root_level(struct kvm_mmu_role_regs *regs) 248 { 249 if (!____is_cr0_pg(regs)) 250 return 0; 251 else if (____is_efer_lma(regs)) 252 return ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL : 253 PT64_ROOT_4LEVEL; 254 else if (____is_cr4_pae(regs)) 255 return PT32E_ROOT_LEVEL; 256 else 257 return PT32_ROOT_LEVEL; 258 } 259 260 static inline bool kvm_available_flush_tlb_with_range(void) 261 { 262 return kvm_x86_ops.tlb_remote_flush_with_range; 263 } 264 265 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm, 266 struct kvm_tlb_range *range) 267 { 268 int ret = -ENOTSUPP; 269 270 if (range && kvm_x86_ops.tlb_remote_flush_with_range) 271 ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range); 272 273 if (ret) 274 kvm_flush_remote_tlbs(kvm); 275 } 276 277 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm, 278 u64 start_gfn, u64 pages) 279 { 280 struct kvm_tlb_range range; 281 282 range.start_gfn = start_gfn; 283 range.pages = pages; 284 285 kvm_flush_remote_tlbs_with_range(kvm, &range); 286 } 287 288 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn, 289 unsigned int access) 290 { 291 u64 spte = make_mmio_spte(vcpu, gfn, access); 292 293 trace_mark_mmio_spte(sptep, gfn, spte); 294 mmu_spte_set(sptep, spte); 295 } 296 297 static gfn_t get_mmio_spte_gfn(u64 spte) 298 { 299 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask; 300 301 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN) 302 & shadow_nonpresent_or_rsvd_mask; 303 304 return gpa >> PAGE_SHIFT; 305 } 306 307 static unsigned get_mmio_spte_access(u64 spte) 308 { 309 return spte & shadow_mmio_access_mask; 310 } 311 312 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte) 313 { 314 u64 kvm_gen, spte_gen, gen; 315 316 gen = kvm_vcpu_memslots(vcpu)->generation; 317 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS)) 318 return false; 319 320 kvm_gen = gen & MMIO_SPTE_GEN_MASK; 321 spte_gen = get_mmio_spte_generation(spte); 322 323 trace_check_mmio_spte(spte, kvm_gen, spte_gen); 324 return likely(kvm_gen == spte_gen); 325 } 326 327 static int is_cpuid_PSE36(void) 328 { 329 return 1; 330 } 331 332 static gfn_t pse36_gfn_delta(u32 gpte) 333 { 334 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT; 335 336 return (gpte & PT32_DIR_PSE36_MASK) << shift; 337 } 338 339 #ifdef CONFIG_X86_64 340 static void __set_spte(u64 *sptep, u64 spte) 341 { 342 WRITE_ONCE(*sptep, spte); 343 } 344 345 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 346 { 347 WRITE_ONCE(*sptep, spte); 348 } 349 350 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 351 { 352 return xchg(sptep, spte); 353 } 354 355 static u64 __get_spte_lockless(u64 *sptep) 356 { 357 return READ_ONCE(*sptep); 358 } 359 #else 360 union split_spte { 361 struct { 362 u32 spte_low; 363 u32 spte_high; 364 }; 365 u64 spte; 366 }; 367 368 static void count_spte_clear(u64 *sptep, u64 spte) 369 { 370 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 371 372 if (is_shadow_present_pte(spte)) 373 return; 374 375 /* Ensure the spte is completely set before we increase the count */ 376 smp_wmb(); 377 sp->clear_spte_count++; 378 } 379 380 static void __set_spte(u64 *sptep, u64 spte) 381 { 382 union split_spte *ssptep, sspte; 383 384 ssptep = (union split_spte *)sptep; 385 sspte = (union split_spte)spte; 386 387 ssptep->spte_high = sspte.spte_high; 388 389 /* 390 * If we map the spte from nonpresent to present, We should store 391 * the high bits firstly, then set present bit, so cpu can not 392 * fetch this spte while we are setting the spte. 393 */ 394 smp_wmb(); 395 396 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 397 } 398 399 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 400 { 401 union split_spte *ssptep, sspte; 402 403 ssptep = (union split_spte *)sptep; 404 sspte = (union split_spte)spte; 405 406 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 407 408 /* 409 * If we map the spte from present to nonpresent, we should clear 410 * present bit firstly to avoid vcpu fetch the old high bits. 411 */ 412 smp_wmb(); 413 414 ssptep->spte_high = sspte.spte_high; 415 count_spte_clear(sptep, spte); 416 } 417 418 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 419 { 420 union split_spte *ssptep, sspte, orig; 421 422 ssptep = (union split_spte *)sptep; 423 sspte = (union split_spte)spte; 424 425 /* xchg acts as a barrier before the setting of the high bits */ 426 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); 427 orig.spte_high = ssptep->spte_high; 428 ssptep->spte_high = sspte.spte_high; 429 count_spte_clear(sptep, spte); 430 431 return orig.spte; 432 } 433 434 /* 435 * The idea using the light way get the spte on x86_32 guest is from 436 * gup_get_pte (mm/gup.c). 437 * 438 * An spte tlb flush may be pending, because kvm_set_pte_rmapp 439 * coalesces them and we are running out of the MMU lock. Therefore 440 * we need to protect against in-progress updates of the spte. 441 * 442 * Reading the spte while an update is in progress may get the old value 443 * for the high part of the spte. The race is fine for a present->non-present 444 * change (because the high part of the spte is ignored for non-present spte), 445 * but for a present->present change we must reread the spte. 446 * 447 * All such changes are done in two steps (present->non-present and 448 * non-present->present), hence it is enough to count the number of 449 * present->non-present updates: if it changed while reading the spte, 450 * we might have hit the race. This is done using clear_spte_count. 451 */ 452 static u64 __get_spte_lockless(u64 *sptep) 453 { 454 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 455 union split_spte spte, *orig = (union split_spte *)sptep; 456 int count; 457 458 retry: 459 count = sp->clear_spte_count; 460 smp_rmb(); 461 462 spte.spte_low = orig->spte_low; 463 smp_rmb(); 464 465 spte.spte_high = orig->spte_high; 466 smp_rmb(); 467 468 if (unlikely(spte.spte_low != orig->spte_low || 469 count != sp->clear_spte_count)) 470 goto retry; 471 472 return spte.spte; 473 } 474 #endif 475 476 static bool spte_has_volatile_bits(u64 spte) 477 { 478 if (!is_shadow_present_pte(spte)) 479 return false; 480 481 /* 482 * Always atomically update spte if it can be updated 483 * out of mmu-lock, it can ensure dirty bit is not lost, 484 * also, it can help us to get a stable is_writable_pte() 485 * to ensure tlb flush is not missed. 486 */ 487 if (spte_can_locklessly_be_made_writable(spte) || 488 is_access_track_spte(spte)) 489 return true; 490 491 if (spte_ad_enabled(spte)) { 492 if ((spte & shadow_accessed_mask) == 0 || 493 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0)) 494 return true; 495 } 496 497 return false; 498 } 499 500 /* Rules for using mmu_spte_set: 501 * Set the sptep from nonpresent to present. 502 * Note: the sptep being assigned *must* be either not present 503 * or in a state where the hardware will not attempt to update 504 * the spte. 505 */ 506 static void mmu_spte_set(u64 *sptep, u64 new_spte) 507 { 508 WARN_ON(is_shadow_present_pte(*sptep)); 509 __set_spte(sptep, new_spte); 510 } 511 512 /* 513 * Update the SPTE (excluding the PFN), but do not track changes in its 514 * accessed/dirty status. 515 */ 516 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte) 517 { 518 u64 old_spte = *sptep; 519 520 WARN_ON(!is_shadow_present_pte(new_spte)); 521 check_spte_writable_invariants(new_spte); 522 523 if (!is_shadow_present_pte(old_spte)) { 524 mmu_spte_set(sptep, new_spte); 525 return old_spte; 526 } 527 528 if (!spte_has_volatile_bits(old_spte)) 529 __update_clear_spte_fast(sptep, new_spte); 530 else 531 old_spte = __update_clear_spte_slow(sptep, new_spte); 532 533 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte)); 534 535 return old_spte; 536 } 537 538 /* Rules for using mmu_spte_update: 539 * Update the state bits, it means the mapped pfn is not changed. 540 * 541 * Whenever an MMU-writable SPTE is overwritten with a read-only SPTE, remote 542 * TLBs must be flushed. Otherwise rmap_write_protect will find a read-only 543 * spte, even though the writable spte might be cached on a CPU's TLB. 544 * 545 * Returns true if the TLB needs to be flushed 546 */ 547 static bool mmu_spte_update(u64 *sptep, u64 new_spte) 548 { 549 bool flush = false; 550 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte); 551 552 if (!is_shadow_present_pte(old_spte)) 553 return false; 554 555 /* 556 * For the spte updated out of mmu-lock is safe, since 557 * we always atomically update it, see the comments in 558 * spte_has_volatile_bits(). 559 */ 560 if (spte_can_locklessly_be_made_writable(old_spte) && 561 !is_writable_pte(new_spte)) 562 flush = true; 563 564 /* 565 * Flush TLB when accessed/dirty states are changed in the page tables, 566 * to guarantee consistency between TLB and page tables. 567 */ 568 569 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) { 570 flush = true; 571 kvm_set_pfn_accessed(spte_to_pfn(old_spte)); 572 } 573 574 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) { 575 flush = true; 576 kvm_set_pfn_dirty(spte_to_pfn(old_spte)); 577 } 578 579 return flush; 580 } 581 582 /* 583 * Rules for using mmu_spte_clear_track_bits: 584 * It sets the sptep from present to nonpresent, and track the 585 * state bits, it is used to clear the last level sptep. 586 * Returns the old PTE. 587 */ 588 static int mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep) 589 { 590 kvm_pfn_t pfn; 591 u64 old_spte = *sptep; 592 int level = sptep_to_sp(sptep)->role.level; 593 594 if (!spte_has_volatile_bits(old_spte)) 595 __update_clear_spte_fast(sptep, 0ull); 596 else 597 old_spte = __update_clear_spte_slow(sptep, 0ull); 598 599 if (!is_shadow_present_pte(old_spte)) 600 return old_spte; 601 602 kvm_update_page_stats(kvm, level, -1); 603 604 pfn = spte_to_pfn(old_spte); 605 606 /* 607 * KVM does not hold the refcount of the page used by 608 * kvm mmu, before reclaiming the page, we should 609 * unmap it from mmu first. 610 */ 611 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn))); 612 613 if (is_accessed_spte(old_spte)) 614 kvm_set_pfn_accessed(pfn); 615 616 if (is_dirty_spte(old_spte)) 617 kvm_set_pfn_dirty(pfn); 618 619 return old_spte; 620 } 621 622 /* 623 * Rules for using mmu_spte_clear_no_track: 624 * Directly clear spte without caring the state bits of sptep, 625 * it is used to set the upper level spte. 626 */ 627 static void mmu_spte_clear_no_track(u64 *sptep) 628 { 629 __update_clear_spte_fast(sptep, 0ull); 630 } 631 632 static u64 mmu_spte_get_lockless(u64 *sptep) 633 { 634 return __get_spte_lockless(sptep); 635 } 636 637 /* Returns the Accessed status of the PTE and resets it at the same time. */ 638 static bool mmu_spte_age(u64 *sptep) 639 { 640 u64 spte = mmu_spte_get_lockless(sptep); 641 642 if (!is_accessed_spte(spte)) 643 return false; 644 645 if (spte_ad_enabled(spte)) { 646 clear_bit((ffs(shadow_accessed_mask) - 1), 647 (unsigned long *)sptep); 648 } else { 649 /* 650 * Capture the dirty status of the page, so that it doesn't get 651 * lost when the SPTE is marked for access tracking. 652 */ 653 if (is_writable_pte(spte)) 654 kvm_set_pfn_dirty(spte_to_pfn(spte)); 655 656 spte = mark_spte_for_access_track(spte); 657 mmu_spte_update_no_track(sptep, spte); 658 } 659 660 return true; 661 } 662 663 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) 664 { 665 if (is_tdp_mmu(vcpu->arch.mmu)) { 666 kvm_tdp_mmu_walk_lockless_begin(); 667 } else { 668 /* 669 * Prevent page table teardown by making any free-er wait during 670 * kvm_flush_remote_tlbs() IPI to all active vcpus. 671 */ 672 local_irq_disable(); 673 674 /* 675 * Make sure a following spte read is not reordered ahead of the write 676 * to vcpu->mode. 677 */ 678 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); 679 } 680 } 681 682 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) 683 { 684 if (is_tdp_mmu(vcpu->arch.mmu)) { 685 kvm_tdp_mmu_walk_lockless_end(); 686 } else { 687 /* 688 * Make sure the write to vcpu->mode is not reordered in front of 689 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us 690 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. 691 */ 692 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); 693 local_irq_enable(); 694 } 695 } 696 697 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect) 698 { 699 int r; 700 701 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */ 702 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, 703 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM); 704 if (r) 705 return r; 706 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache, 707 PT64_ROOT_MAX_LEVEL); 708 if (r) 709 return r; 710 if (maybe_indirect) { 711 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache, 712 PT64_ROOT_MAX_LEVEL); 713 if (r) 714 return r; 715 } 716 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, 717 PT64_ROOT_MAX_LEVEL); 718 } 719 720 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) 721 { 722 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache); 723 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache); 724 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache); 725 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache); 726 } 727 728 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu) 729 { 730 return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache); 731 } 732 733 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) 734 { 735 kmem_cache_free(pte_list_desc_cache, pte_list_desc); 736 } 737 738 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) 739 { 740 if (!sp->role.direct) 741 return sp->gfns[index]; 742 743 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS)); 744 } 745 746 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn) 747 { 748 if (!sp->role.direct) { 749 sp->gfns[index] = gfn; 750 return; 751 } 752 753 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index))) 754 pr_err_ratelimited("gfn mismatch under direct page %llx " 755 "(expected %llx, got %llx)\n", 756 sp->gfn, 757 kvm_mmu_page_get_gfn(sp, index), gfn); 758 } 759 760 /* 761 * Return the pointer to the large page information for a given gfn, 762 * handling slots that are not large page aligned. 763 */ 764 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, 765 const struct kvm_memory_slot *slot, int level) 766 { 767 unsigned long idx; 768 769 idx = gfn_to_index(gfn, slot->base_gfn, level); 770 return &slot->arch.lpage_info[level - 2][idx]; 771 } 772 773 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot, 774 gfn_t gfn, int count) 775 { 776 struct kvm_lpage_info *linfo; 777 int i; 778 779 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 780 linfo = lpage_info_slot(gfn, slot, i); 781 linfo->disallow_lpage += count; 782 WARN_ON(linfo->disallow_lpage < 0); 783 } 784 } 785 786 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 787 { 788 update_gfn_disallow_lpage_count(slot, gfn, 1); 789 } 790 791 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 792 { 793 update_gfn_disallow_lpage_count(slot, gfn, -1); 794 } 795 796 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 797 { 798 struct kvm_memslots *slots; 799 struct kvm_memory_slot *slot; 800 gfn_t gfn; 801 802 kvm->arch.indirect_shadow_pages++; 803 gfn = sp->gfn; 804 slots = kvm_memslots_for_spte_role(kvm, sp->role); 805 slot = __gfn_to_memslot(slots, gfn); 806 807 /* the non-leaf shadow pages are keeping readonly. */ 808 if (sp->role.level > PG_LEVEL_4K) 809 return kvm_slot_page_track_add_page(kvm, slot, gfn, 810 KVM_PAGE_TRACK_WRITE); 811 812 kvm_mmu_gfn_disallow_lpage(slot, gfn); 813 } 814 815 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) 816 { 817 if (sp->lpage_disallowed) 818 return; 819 820 ++kvm->stat.nx_lpage_splits; 821 list_add_tail(&sp->lpage_disallowed_link, 822 &kvm->arch.lpage_disallowed_mmu_pages); 823 sp->lpage_disallowed = true; 824 } 825 826 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 827 { 828 struct kvm_memslots *slots; 829 struct kvm_memory_slot *slot; 830 gfn_t gfn; 831 832 kvm->arch.indirect_shadow_pages--; 833 gfn = sp->gfn; 834 slots = kvm_memslots_for_spte_role(kvm, sp->role); 835 slot = __gfn_to_memslot(slots, gfn); 836 if (sp->role.level > PG_LEVEL_4K) 837 return kvm_slot_page_track_remove_page(kvm, slot, gfn, 838 KVM_PAGE_TRACK_WRITE); 839 840 kvm_mmu_gfn_allow_lpage(slot, gfn); 841 } 842 843 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) 844 { 845 --kvm->stat.nx_lpage_splits; 846 sp->lpage_disallowed = false; 847 list_del(&sp->lpage_disallowed_link); 848 } 849 850 static struct kvm_memory_slot * 851 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn, 852 bool no_dirty_log) 853 { 854 struct kvm_memory_slot *slot; 855 856 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 857 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 858 return NULL; 859 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot)) 860 return NULL; 861 862 return slot; 863 } 864 865 /* 866 * About rmap_head encoding: 867 * 868 * If the bit zero of rmap_head->val is clear, then it points to the only spte 869 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct 870 * pte_list_desc containing more mappings. 871 */ 872 873 /* 874 * Returns the number of pointers in the rmap chain, not counting the new one. 875 */ 876 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte, 877 struct kvm_rmap_head *rmap_head) 878 { 879 struct pte_list_desc *desc; 880 int count = 0; 881 882 if (!rmap_head->val) { 883 rmap_printk("%p %llx 0->1\n", spte, *spte); 884 rmap_head->val = (unsigned long)spte; 885 } else if (!(rmap_head->val & 1)) { 886 rmap_printk("%p %llx 1->many\n", spte, *spte); 887 desc = mmu_alloc_pte_list_desc(vcpu); 888 desc->sptes[0] = (u64 *)rmap_head->val; 889 desc->sptes[1] = spte; 890 desc->spte_count = 2; 891 rmap_head->val = (unsigned long)desc | 1; 892 ++count; 893 } else { 894 rmap_printk("%p %llx many->many\n", spte, *spte); 895 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 896 while (desc->spte_count == PTE_LIST_EXT) { 897 count += PTE_LIST_EXT; 898 if (!desc->more) { 899 desc->more = mmu_alloc_pte_list_desc(vcpu); 900 desc = desc->more; 901 desc->spte_count = 0; 902 break; 903 } 904 desc = desc->more; 905 } 906 count += desc->spte_count; 907 desc->sptes[desc->spte_count++] = spte; 908 } 909 return count; 910 } 911 912 static void 913 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head, 914 struct pte_list_desc *desc, int i, 915 struct pte_list_desc *prev_desc) 916 { 917 int j = desc->spte_count - 1; 918 919 desc->sptes[i] = desc->sptes[j]; 920 desc->sptes[j] = NULL; 921 desc->spte_count--; 922 if (desc->spte_count) 923 return; 924 if (!prev_desc && !desc->more) 925 rmap_head->val = 0; 926 else 927 if (prev_desc) 928 prev_desc->more = desc->more; 929 else 930 rmap_head->val = (unsigned long)desc->more | 1; 931 mmu_free_pte_list_desc(desc); 932 } 933 934 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head) 935 { 936 struct pte_list_desc *desc; 937 struct pte_list_desc *prev_desc; 938 int i; 939 940 if (!rmap_head->val) { 941 pr_err("%s: %p 0->BUG\n", __func__, spte); 942 BUG(); 943 } else if (!(rmap_head->val & 1)) { 944 rmap_printk("%p 1->0\n", spte); 945 if ((u64 *)rmap_head->val != spte) { 946 pr_err("%s: %p 1->BUG\n", __func__, spte); 947 BUG(); 948 } 949 rmap_head->val = 0; 950 } else { 951 rmap_printk("%p many->many\n", spte); 952 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 953 prev_desc = NULL; 954 while (desc) { 955 for (i = 0; i < desc->spte_count; ++i) { 956 if (desc->sptes[i] == spte) { 957 pte_list_desc_remove_entry(rmap_head, 958 desc, i, prev_desc); 959 return; 960 } 961 } 962 prev_desc = desc; 963 desc = desc->more; 964 } 965 pr_err("%s: %p many->many\n", __func__, spte); 966 BUG(); 967 } 968 } 969 970 static void pte_list_remove(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 971 u64 *sptep) 972 { 973 mmu_spte_clear_track_bits(kvm, sptep); 974 __pte_list_remove(sptep, rmap_head); 975 } 976 977 /* Return true if rmap existed, false otherwise */ 978 static bool pte_list_destroy(struct kvm *kvm, struct kvm_rmap_head *rmap_head) 979 { 980 struct pte_list_desc *desc, *next; 981 int i; 982 983 if (!rmap_head->val) 984 return false; 985 986 if (!(rmap_head->val & 1)) { 987 mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val); 988 goto out; 989 } 990 991 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 992 993 for (; desc; desc = next) { 994 for (i = 0; i < desc->spte_count; i++) 995 mmu_spte_clear_track_bits(kvm, desc->sptes[i]); 996 next = desc->more; 997 mmu_free_pte_list_desc(desc); 998 } 999 out: 1000 /* rmap_head is meaningless now, remember to reset it */ 1001 rmap_head->val = 0; 1002 return true; 1003 } 1004 1005 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head) 1006 { 1007 struct pte_list_desc *desc; 1008 unsigned int count = 0; 1009 1010 if (!rmap_head->val) 1011 return 0; 1012 else if (!(rmap_head->val & 1)) 1013 return 1; 1014 1015 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1016 1017 while (desc) { 1018 count += desc->spte_count; 1019 desc = desc->more; 1020 } 1021 1022 return count; 1023 } 1024 1025 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level, 1026 const struct kvm_memory_slot *slot) 1027 { 1028 unsigned long idx; 1029 1030 idx = gfn_to_index(gfn, slot->base_gfn, level); 1031 return &slot->arch.rmap[level - PG_LEVEL_4K][idx]; 1032 } 1033 1034 static bool rmap_can_add(struct kvm_vcpu *vcpu) 1035 { 1036 struct kvm_mmu_memory_cache *mc; 1037 1038 mc = &vcpu->arch.mmu_pte_list_desc_cache; 1039 return kvm_mmu_memory_cache_nr_free_objects(mc); 1040 } 1041 1042 static void rmap_remove(struct kvm *kvm, u64 *spte) 1043 { 1044 struct kvm_memslots *slots; 1045 struct kvm_memory_slot *slot; 1046 struct kvm_mmu_page *sp; 1047 gfn_t gfn; 1048 struct kvm_rmap_head *rmap_head; 1049 1050 sp = sptep_to_sp(spte); 1051 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt); 1052 1053 /* 1054 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU 1055 * so we have to determine which memslots to use based on context 1056 * information in sp->role. 1057 */ 1058 slots = kvm_memslots_for_spte_role(kvm, sp->role); 1059 1060 slot = __gfn_to_memslot(slots, gfn); 1061 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1062 1063 __pte_list_remove(spte, rmap_head); 1064 } 1065 1066 /* 1067 * Used by the following functions to iterate through the sptes linked by a 1068 * rmap. All fields are private and not assumed to be used outside. 1069 */ 1070 struct rmap_iterator { 1071 /* private fields */ 1072 struct pte_list_desc *desc; /* holds the sptep if not NULL */ 1073 int pos; /* index of the sptep */ 1074 }; 1075 1076 /* 1077 * Iteration must be started by this function. This should also be used after 1078 * removing/dropping sptes from the rmap link because in such cases the 1079 * information in the iterator may not be valid. 1080 * 1081 * Returns sptep if found, NULL otherwise. 1082 */ 1083 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head, 1084 struct rmap_iterator *iter) 1085 { 1086 u64 *sptep; 1087 1088 if (!rmap_head->val) 1089 return NULL; 1090 1091 if (!(rmap_head->val & 1)) { 1092 iter->desc = NULL; 1093 sptep = (u64 *)rmap_head->val; 1094 goto out; 1095 } 1096 1097 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1098 iter->pos = 0; 1099 sptep = iter->desc->sptes[iter->pos]; 1100 out: 1101 BUG_ON(!is_shadow_present_pte(*sptep)); 1102 return sptep; 1103 } 1104 1105 /* 1106 * Must be used with a valid iterator: e.g. after rmap_get_first(). 1107 * 1108 * Returns sptep if found, NULL otherwise. 1109 */ 1110 static u64 *rmap_get_next(struct rmap_iterator *iter) 1111 { 1112 u64 *sptep; 1113 1114 if (iter->desc) { 1115 if (iter->pos < PTE_LIST_EXT - 1) { 1116 ++iter->pos; 1117 sptep = iter->desc->sptes[iter->pos]; 1118 if (sptep) 1119 goto out; 1120 } 1121 1122 iter->desc = iter->desc->more; 1123 1124 if (iter->desc) { 1125 iter->pos = 0; 1126 /* desc->sptes[0] cannot be NULL */ 1127 sptep = iter->desc->sptes[iter->pos]; 1128 goto out; 1129 } 1130 } 1131 1132 return NULL; 1133 out: 1134 BUG_ON(!is_shadow_present_pte(*sptep)); 1135 return sptep; 1136 } 1137 1138 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \ 1139 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \ 1140 _spte_; _spte_ = rmap_get_next(_iter_)) 1141 1142 static void drop_spte(struct kvm *kvm, u64 *sptep) 1143 { 1144 u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep); 1145 1146 if (is_shadow_present_pte(old_spte)) 1147 rmap_remove(kvm, sptep); 1148 } 1149 1150 1151 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep) 1152 { 1153 if (is_large_pte(*sptep)) { 1154 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K); 1155 drop_spte(kvm, sptep); 1156 return true; 1157 } 1158 1159 return false; 1160 } 1161 1162 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep) 1163 { 1164 if (__drop_large_spte(vcpu->kvm, sptep)) { 1165 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 1166 1167 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn, 1168 KVM_PAGES_PER_HPAGE(sp->role.level)); 1169 } 1170 } 1171 1172 /* 1173 * Write-protect on the specified @sptep, @pt_protect indicates whether 1174 * spte write-protection is caused by protecting shadow page table. 1175 * 1176 * Note: write protection is difference between dirty logging and spte 1177 * protection: 1178 * - for dirty logging, the spte can be set to writable at anytime if 1179 * its dirty bitmap is properly set. 1180 * - for spte protection, the spte can be writable only after unsync-ing 1181 * shadow page. 1182 * 1183 * Return true if tlb need be flushed. 1184 */ 1185 static bool spte_write_protect(u64 *sptep, bool pt_protect) 1186 { 1187 u64 spte = *sptep; 1188 1189 if (!is_writable_pte(spte) && 1190 !(pt_protect && spte_can_locklessly_be_made_writable(spte))) 1191 return false; 1192 1193 rmap_printk("spte %p %llx\n", sptep, *sptep); 1194 1195 if (pt_protect) 1196 spte &= ~shadow_mmu_writable_mask; 1197 spte = spte & ~PT_WRITABLE_MASK; 1198 1199 return mmu_spte_update(sptep, spte); 1200 } 1201 1202 static bool rmap_write_protect(struct kvm_rmap_head *rmap_head, 1203 bool pt_protect) 1204 { 1205 u64 *sptep; 1206 struct rmap_iterator iter; 1207 bool flush = false; 1208 1209 for_each_rmap_spte(rmap_head, &iter, sptep) 1210 flush |= spte_write_protect(sptep, pt_protect); 1211 1212 return flush; 1213 } 1214 1215 static bool spte_clear_dirty(u64 *sptep) 1216 { 1217 u64 spte = *sptep; 1218 1219 rmap_printk("spte %p %llx\n", sptep, *sptep); 1220 1221 MMU_WARN_ON(!spte_ad_enabled(spte)); 1222 spte &= ~shadow_dirty_mask; 1223 return mmu_spte_update(sptep, spte); 1224 } 1225 1226 static bool spte_wrprot_for_clear_dirty(u64 *sptep) 1227 { 1228 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT, 1229 (unsigned long *)sptep); 1230 if (was_writable && !spte_ad_enabled(*sptep)) 1231 kvm_set_pfn_dirty(spte_to_pfn(*sptep)); 1232 1233 return was_writable; 1234 } 1235 1236 /* 1237 * Gets the GFN ready for another round of dirty logging by clearing the 1238 * - D bit on ad-enabled SPTEs, and 1239 * - W bit on ad-disabled SPTEs. 1240 * Returns true iff any D or W bits were cleared. 1241 */ 1242 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1243 const struct kvm_memory_slot *slot) 1244 { 1245 u64 *sptep; 1246 struct rmap_iterator iter; 1247 bool flush = false; 1248 1249 for_each_rmap_spte(rmap_head, &iter, sptep) 1250 if (spte_ad_need_write_protect(*sptep)) 1251 flush |= spte_wrprot_for_clear_dirty(sptep); 1252 else 1253 flush |= spte_clear_dirty(sptep); 1254 1255 return flush; 1256 } 1257 1258 /** 1259 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages 1260 * @kvm: kvm instance 1261 * @slot: slot to protect 1262 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1263 * @mask: indicates which pages we should protect 1264 * 1265 * Used when we do not need to care about huge page mappings. 1266 */ 1267 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 1268 struct kvm_memory_slot *slot, 1269 gfn_t gfn_offset, unsigned long mask) 1270 { 1271 struct kvm_rmap_head *rmap_head; 1272 1273 if (is_tdp_mmu_enabled(kvm)) 1274 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1275 slot->base_gfn + gfn_offset, mask, true); 1276 1277 if (!kvm_memslots_have_rmaps(kvm)) 1278 return; 1279 1280 while (mask) { 1281 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1282 PG_LEVEL_4K, slot); 1283 rmap_write_protect(rmap_head, false); 1284 1285 /* clear the first set bit */ 1286 mask &= mask - 1; 1287 } 1288 } 1289 1290 /** 1291 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write 1292 * protect the page if the D-bit isn't supported. 1293 * @kvm: kvm instance 1294 * @slot: slot to clear D-bit 1295 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1296 * @mask: indicates which pages we should clear D-bit 1297 * 1298 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap. 1299 */ 1300 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1301 struct kvm_memory_slot *slot, 1302 gfn_t gfn_offset, unsigned long mask) 1303 { 1304 struct kvm_rmap_head *rmap_head; 1305 1306 if (is_tdp_mmu_enabled(kvm)) 1307 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1308 slot->base_gfn + gfn_offset, mask, false); 1309 1310 if (!kvm_memslots_have_rmaps(kvm)) 1311 return; 1312 1313 while (mask) { 1314 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1315 PG_LEVEL_4K, slot); 1316 __rmap_clear_dirty(kvm, rmap_head, slot); 1317 1318 /* clear the first set bit */ 1319 mask &= mask - 1; 1320 } 1321 } 1322 1323 /** 1324 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected 1325 * PT level pages. 1326 * 1327 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to 1328 * enable dirty logging for them. 1329 * 1330 * We need to care about huge page mappings: e.g. during dirty logging we may 1331 * have such mappings. 1332 */ 1333 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1334 struct kvm_memory_slot *slot, 1335 gfn_t gfn_offset, unsigned long mask) 1336 { 1337 /* 1338 * Huge pages are NOT write protected when we start dirty logging in 1339 * initially-all-set mode; must write protect them here so that they 1340 * are split to 4K on the first write. 1341 * 1342 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn 1343 * of memslot has no such restriction, so the range can cross two large 1344 * pages. 1345 */ 1346 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) { 1347 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask); 1348 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask); 1349 1350 if (READ_ONCE(eager_page_split)) 1351 kvm_mmu_try_split_huge_pages(kvm, slot, start, end, PG_LEVEL_4K); 1352 1353 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M); 1354 1355 /* Cross two large pages? */ 1356 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) != 1357 ALIGN(end << PAGE_SHIFT, PMD_SIZE)) 1358 kvm_mmu_slot_gfn_write_protect(kvm, slot, end, 1359 PG_LEVEL_2M); 1360 } 1361 1362 /* Now handle 4K PTEs. */ 1363 if (kvm_x86_ops.cpu_dirty_log_size) 1364 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask); 1365 else 1366 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 1367 } 1368 1369 int kvm_cpu_dirty_log_size(void) 1370 { 1371 return kvm_x86_ops.cpu_dirty_log_size; 1372 } 1373 1374 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, 1375 struct kvm_memory_slot *slot, u64 gfn, 1376 int min_level) 1377 { 1378 struct kvm_rmap_head *rmap_head; 1379 int i; 1380 bool write_protected = false; 1381 1382 if (kvm_memslots_have_rmaps(kvm)) { 1383 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 1384 rmap_head = gfn_to_rmap(gfn, i, slot); 1385 write_protected |= rmap_write_protect(rmap_head, true); 1386 } 1387 } 1388 1389 if (is_tdp_mmu_enabled(kvm)) 1390 write_protected |= 1391 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level); 1392 1393 return write_protected; 1394 } 1395 1396 static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn) 1397 { 1398 struct kvm_memory_slot *slot; 1399 1400 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1401 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K); 1402 } 1403 1404 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1405 const struct kvm_memory_slot *slot) 1406 { 1407 return pte_list_destroy(kvm, rmap_head); 1408 } 1409 1410 static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1411 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1412 pte_t unused) 1413 { 1414 return kvm_zap_rmapp(kvm, rmap_head, slot); 1415 } 1416 1417 static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1418 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1419 pte_t pte) 1420 { 1421 u64 *sptep; 1422 struct rmap_iterator iter; 1423 bool need_flush = false; 1424 u64 new_spte; 1425 kvm_pfn_t new_pfn; 1426 1427 WARN_ON(pte_huge(pte)); 1428 new_pfn = pte_pfn(pte); 1429 1430 restart: 1431 for_each_rmap_spte(rmap_head, &iter, sptep) { 1432 rmap_printk("spte %p %llx gfn %llx (%d)\n", 1433 sptep, *sptep, gfn, level); 1434 1435 need_flush = true; 1436 1437 if (pte_write(pte)) { 1438 pte_list_remove(kvm, rmap_head, sptep); 1439 goto restart; 1440 } else { 1441 new_spte = kvm_mmu_changed_pte_notifier_make_spte( 1442 *sptep, new_pfn); 1443 1444 mmu_spte_clear_track_bits(kvm, sptep); 1445 mmu_spte_set(sptep, new_spte); 1446 } 1447 } 1448 1449 if (need_flush && kvm_available_flush_tlb_with_range()) { 1450 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1); 1451 return false; 1452 } 1453 1454 return need_flush; 1455 } 1456 1457 struct slot_rmap_walk_iterator { 1458 /* input fields. */ 1459 const struct kvm_memory_slot *slot; 1460 gfn_t start_gfn; 1461 gfn_t end_gfn; 1462 int start_level; 1463 int end_level; 1464 1465 /* output fields. */ 1466 gfn_t gfn; 1467 struct kvm_rmap_head *rmap; 1468 int level; 1469 1470 /* private field. */ 1471 struct kvm_rmap_head *end_rmap; 1472 }; 1473 1474 static void 1475 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level) 1476 { 1477 iterator->level = level; 1478 iterator->gfn = iterator->start_gfn; 1479 iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot); 1480 iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot); 1481 } 1482 1483 static void 1484 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator, 1485 const struct kvm_memory_slot *slot, int start_level, 1486 int end_level, gfn_t start_gfn, gfn_t end_gfn) 1487 { 1488 iterator->slot = slot; 1489 iterator->start_level = start_level; 1490 iterator->end_level = end_level; 1491 iterator->start_gfn = start_gfn; 1492 iterator->end_gfn = end_gfn; 1493 1494 rmap_walk_init_level(iterator, iterator->start_level); 1495 } 1496 1497 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator) 1498 { 1499 return !!iterator->rmap; 1500 } 1501 1502 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) 1503 { 1504 if (++iterator->rmap <= iterator->end_rmap) { 1505 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level)); 1506 return; 1507 } 1508 1509 if (++iterator->level > iterator->end_level) { 1510 iterator->rmap = NULL; 1511 return; 1512 } 1513 1514 rmap_walk_init_level(iterator, iterator->level); 1515 } 1516 1517 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \ 1518 _start_gfn, _end_gfn, _iter_) \ 1519 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \ 1520 _end_level_, _start_gfn, _end_gfn); \ 1521 slot_rmap_walk_okay(_iter_); \ 1522 slot_rmap_walk_next(_iter_)) 1523 1524 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1525 struct kvm_memory_slot *slot, gfn_t gfn, 1526 int level, pte_t pte); 1527 1528 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm, 1529 struct kvm_gfn_range *range, 1530 rmap_handler_t handler) 1531 { 1532 struct slot_rmap_walk_iterator iterator; 1533 bool ret = false; 1534 1535 for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 1536 range->start, range->end - 1, &iterator) 1537 ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn, 1538 iterator.level, range->pte); 1539 1540 return ret; 1541 } 1542 1543 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1544 { 1545 bool flush = false; 1546 1547 if (kvm_memslots_have_rmaps(kvm)) 1548 flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp); 1549 1550 if (is_tdp_mmu_enabled(kvm)) 1551 flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush); 1552 1553 return flush; 1554 } 1555 1556 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1557 { 1558 bool flush = false; 1559 1560 if (kvm_memslots_have_rmaps(kvm)) 1561 flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp); 1562 1563 if (is_tdp_mmu_enabled(kvm)) 1564 flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range); 1565 1566 return flush; 1567 } 1568 1569 static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1570 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1571 pte_t unused) 1572 { 1573 u64 *sptep; 1574 struct rmap_iterator iter; 1575 int young = 0; 1576 1577 for_each_rmap_spte(rmap_head, &iter, sptep) 1578 young |= mmu_spte_age(sptep); 1579 1580 return young; 1581 } 1582 1583 static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1584 struct kvm_memory_slot *slot, gfn_t gfn, 1585 int level, pte_t unused) 1586 { 1587 u64 *sptep; 1588 struct rmap_iterator iter; 1589 1590 for_each_rmap_spte(rmap_head, &iter, sptep) 1591 if (is_accessed_spte(*sptep)) 1592 return true; 1593 return false; 1594 } 1595 1596 #define RMAP_RECYCLE_THRESHOLD 1000 1597 1598 static void rmap_add(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, 1599 u64 *spte, gfn_t gfn) 1600 { 1601 struct kvm_mmu_page *sp; 1602 struct kvm_rmap_head *rmap_head; 1603 int rmap_count; 1604 1605 sp = sptep_to_sp(spte); 1606 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn); 1607 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1608 rmap_count = pte_list_add(vcpu, spte, rmap_head); 1609 1610 if (rmap_count > RMAP_RECYCLE_THRESHOLD) { 1611 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0)); 1612 kvm_flush_remote_tlbs_with_address( 1613 vcpu->kvm, sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level)); 1614 } 1615 } 1616 1617 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1618 { 1619 bool young = false; 1620 1621 if (kvm_memslots_have_rmaps(kvm)) 1622 young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp); 1623 1624 if (is_tdp_mmu_enabled(kvm)) 1625 young |= kvm_tdp_mmu_age_gfn_range(kvm, range); 1626 1627 return young; 1628 } 1629 1630 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1631 { 1632 bool young = false; 1633 1634 if (kvm_memslots_have_rmaps(kvm)) 1635 young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp); 1636 1637 if (is_tdp_mmu_enabled(kvm)) 1638 young |= kvm_tdp_mmu_test_age_gfn(kvm, range); 1639 1640 return young; 1641 } 1642 1643 #ifdef MMU_DEBUG 1644 static int is_empty_shadow_page(u64 *spt) 1645 { 1646 u64 *pos; 1647 u64 *end; 1648 1649 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++) 1650 if (is_shadow_present_pte(*pos)) { 1651 printk(KERN_ERR "%s: %p %llx\n", __func__, 1652 pos, *pos); 1653 return 0; 1654 } 1655 return 1; 1656 } 1657 #endif 1658 1659 /* 1660 * This value is the sum of all of the kvm instances's 1661 * kvm->arch.n_used_mmu_pages values. We need a global, 1662 * aggregate version in order to make the slab shrinker 1663 * faster 1664 */ 1665 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr) 1666 { 1667 kvm->arch.n_used_mmu_pages += nr; 1668 percpu_counter_add(&kvm_total_used_mmu_pages, nr); 1669 } 1670 1671 static void kvm_mmu_free_page(struct kvm_mmu_page *sp) 1672 { 1673 MMU_WARN_ON(!is_empty_shadow_page(sp->spt)); 1674 hlist_del(&sp->hash_link); 1675 list_del(&sp->link); 1676 free_page((unsigned long)sp->spt); 1677 if (!sp->role.direct) 1678 free_page((unsigned long)sp->gfns); 1679 kmem_cache_free(mmu_page_header_cache, sp); 1680 } 1681 1682 static unsigned kvm_page_table_hashfn(gfn_t gfn) 1683 { 1684 return hash_64(gfn, KVM_MMU_HASH_SHIFT); 1685 } 1686 1687 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu, 1688 struct kvm_mmu_page *sp, u64 *parent_pte) 1689 { 1690 if (!parent_pte) 1691 return; 1692 1693 pte_list_add(vcpu, parent_pte, &sp->parent_ptes); 1694 } 1695 1696 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp, 1697 u64 *parent_pte) 1698 { 1699 __pte_list_remove(parent_pte, &sp->parent_ptes); 1700 } 1701 1702 static void drop_parent_pte(struct kvm_mmu_page *sp, 1703 u64 *parent_pte) 1704 { 1705 mmu_page_remove_parent_pte(sp, parent_pte); 1706 mmu_spte_clear_no_track(parent_pte); 1707 } 1708 1709 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct) 1710 { 1711 struct kvm_mmu_page *sp; 1712 1713 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache); 1714 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache); 1715 if (!direct) 1716 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache); 1717 set_page_private(virt_to_page(sp->spt), (unsigned long)sp); 1718 1719 /* 1720 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages() 1721 * depends on valid pages being added to the head of the list. See 1722 * comments in kvm_zap_obsolete_pages(). 1723 */ 1724 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen; 1725 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages); 1726 kvm_mod_used_mmu_pages(vcpu->kvm, +1); 1727 return sp; 1728 } 1729 1730 static void mark_unsync(u64 *spte); 1731 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) 1732 { 1733 u64 *sptep; 1734 struct rmap_iterator iter; 1735 1736 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) { 1737 mark_unsync(sptep); 1738 } 1739 } 1740 1741 static void mark_unsync(u64 *spte) 1742 { 1743 struct kvm_mmu_page *sp; 1744 unsigned int index; 1745 1746 sp = sptep_to_sp(spte); 1747 index = spte - sp->spt; 1748 if (__test_and_set_bit(index, sp->unsync_child_bitmap)) 1749 return; 1750 if (sp->unsync_children++) 1751 return; 1752 kvm_mmu_mark_parents_unsync(sp); 1753 } 1754 1755 static int nonpaging_sync_page(struct kvm_vcpu *vcpu, 1756 struct kvm_mmu_page *sp) 1757 { 1758 return -1; 1759 } 1760 1761 #define KVM_PAGE_ARRAY_NR 16 1762 1763 struct kvm_mmu_pages { 1764 struct mmu_page_and_offset { 1765 struct kvm_mmu_page *sp; 1766 unsigned int idx; 1767 } page[KVM_PAGE_ARRAY_NR]; 1768 unsigned int nr; 1769 }; 1770 1771 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, 1772 int idx) 1773 { 1774 int i; 1775 1776 if (sp->unsync) 1777 for (i=0; i < pvec->nr; i++) 1778 if (pvec->page[i].sp == sp) 1779 return 0; 1780 1781 pvec->page[pvec->nr].sp = sp; 1782 pvec->page[pvec->nr].idx = idx; 1783 pvec->nr++; 1784 return (pvec->nr == KVM_PAGE_ARRAY_NR); 1785 } 1786 1787 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx) 1788 { 1789 --sp->unsync_children; 1790 WARN_ON((int)sp->unsync_children < 0); 1791 __clear_bit(idx, sp->unsync_child_bitmap); 1792 } 1793 1794 static int __mmu_unsync_walk(struct kvm_mmu_page *sp, 1795 struct kvm_mmu_pages *pvec) 1796 { 1797 int i, ret, nr_unsync_leaf = 0; 1798 1799 for_each_set_bit(i, sp->unsync_child_bitmap, 512) { 1800 struct kvm_mmu_page *child; 1801 u64 ent = sp->spt[i]; 1802 1803 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) { 1804 clear_unsync_child_bit(sp, i); 1805 continue; 1806 } 1807 1808 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK); 1809 1810 if (child->unsync_children) { 1811 if (mmu_pages_add(pvec, child, i)) 1812 return -ENOSPC; 1813 1814 ret = __mmu_unsync_walk(child, pvec); 1815 if (!ret) { 1816 clear_unsync_child_bit(sp, i); 1817 continue; 1818 } else if (ret > 0) { 1819 nr_unsync_leaf += ret; 1820 } else 1821 return ret; 1822 } else if (child->unsync) { 1823 nr_unsync_leaf++; 1824 if (mmu_pages_add(pvec, child, i)) 1825 return -ENOSPC; 1826 } else 1827 clear_unsync_child_bit(sp, i); 1828 } 1829 1830 return nr_unsync_leaf; 1831 } 1832 1833 #define INVALID_INDEX (-1) 1834 1835 static int mmu_unsync_walk(struct kvm_mmu_page *sp, 1836 struct kvm_mmu_pages *pvec) 1837 { 1838 pvec->nr = 0; 1839 if (!sp->unsync_children) 1840 return 0; 1841 1842 mmu_pages_add(pvec, sp, INVALID_INDEX); 1843 return __mmu_unsync_walk(sp, pvec); 1844 } 1845 1846 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1847 { 1848 WARN_ON(!sp->unsync); 1849 trace_kvm_mmu_sync_page(sp); 1850 sp->unsync = 0; 1851 --kvm->stat.mmu_unsync; 1852 } 1853 1854 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 1855 struct list_head *invalid_list); 1856 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 1857 struct list_head *invalid_list); 1858 1859 #define for_each_valid_sp(_kvm, _sp, _list) \ 1860 hlist_for_each_entry(_sp, _list, hash_link) \ 1861 if (is_obsolete_sp((_kvm), (_sp))) { \ 1862 } else 1863 1864 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \ 1865 for_each_valid_sp(_kvm, _sp, \ 1866 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \ 1867 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else 1868 1869 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 1870 struct list_head *invalid_list) 1871 { 1872 int ret = vcpu->arch.mmu->sync_page(vcpu, sp); 1873 1874 if (ret < 0) { 1875 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); 1876 return false; 1877 } 1878 1879 return !!ret; 1880 } 1881 1882 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm, 1883 struct list_head *invalid_list, 1884 bool remote_flush) 1885 { 1886 if (!remote_flush && list_empty(invalid_list)) 1887 return false; 1888 1889 if (!list_empty(invalid_list)) 1890 kvm_mmu_commit_zap_page(kvm, invalid_list); 1891 else 1892 kvm_flush_remote_tlbs(kvm); 1893 return true; 1894 } 1895 1896 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 1897 { 1898 if (sp->role.invalid) 1899 return true; 1900 1901 /* TDP MMU pages due not use the MMU generation. */ 1902 return !sp->tdp_mmu_page && 1903 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); 1904 } 1905 1906 struct mmu_page_path { 1907 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL]; 1908 unsigned int idx[PT64_ROOT_MAX_LEVEL]; 1909 }; 1910 1911 #define for_each_sp(pvec, sp, parents, i) \ 1912 for (i = mmu_pages_first(&pvec, &parents); \ 1913 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \ 1914 i = mmu_pages_next(&pvec, &parents, i)) 1915 1916 static int mmu_pages_next(struct kvm_mmu_pages *pvec, 1917 struct mmu_page_path *parents, 1918 int i) 1919 { 1920 int n; 1921 1922 for (n = i+1; n < pvec->nr; n++) { 1923 struct kvm_mmu_page *sp = pvec->page[n].sp; 1924 unsigned idx = pvec->page[n].idx; 1925 int level = sp->role.level; 1926 1927 parents->idx[level-1] = idx; 1928 if (level == PG_LEVEL_4K) 1929 break; 1930 1931 parents->parent[level-2] = sp; 1932 } 1933 1934 return n; 1935 } 1936 1937 static int mmu_pages_first(struct kvm_mmu_pages *pvec, 1938 struct mmu_page_path *parents) 1939 { 1940 struct kvm_mmu_page *sp; 1941 int level; 1942 1943 if (pvec->nr == 0) 1944 return 0; 1945 1946 WARN_ON(pvec->page[0].idx != INVALID_INDEX); 1947 1948 sp = pvec->page[0].sp; 1949 level = sp->role.level; 1950 WARN_ON(level == PG_LEVEL_4K); 1951 1952 parents->parent[level-2] = sp; 1953 1954 /* Also set up a sentinel. Further entries in pvec are all 1955 * children of sp, so this element is never overwritten. 1956 */ 1957 parents->parent[level-1] = NULL; 1958 return mmu_pages_next(pvec, parents, 0); 1959 } 1960 1961 static void mmu_pages_clear_parents(struct mmu_page_path *parents) 1962 { 1963 struct kvm_mmu_page *sp; 1964 unsigned int level = 0; 1965 1966 do { 1967 unsigned int idx = parents->idx[level]; 1968 sp = parents->parent[level]; 1969 if (!sp) 1970 return; 1971 1972 WARN_ON(idx == INVALID_INDEX); 1973 clear_unsync_child_bit(sp, idx); 1974 level++; 1975 } while (!sp->unsync_children); 1976 } 1977 1978 static int mmu_sync_children(struct kvm_vcpu *vcpu, 1979 struct kvm_mmu_page *parent, bool can_yield) 1980 { 1981 int i; 1982 struct kvm_mmu_page *sp; 1983 struct mmu_page_path parents; 1984 struct kvm_mmu_pages pages; 1985 LIST_HEAD(invalid_list); 1986 bool flush = false; 1987 1988 while (mmu_unsync_walk(parent, &pages)) { 1989 bool protected = false; 1990 1991 for_each_sp(pages, sp, parents, i) 1992 protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn); 1993 1994 if (protected) { 1995 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true); 1996 flush = false; 1997 } 1998 1999 for_each_sp(pages, sp, parents, i) { 2000 kvm_unlink_unsync_page(vcpu->kvm, sp); 2001 flush |= kvm_sync_page(vcpu, sp, &invalid_list); 2002 mmu_pages_clear_parents(&parents); 2003 } 2004 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) { 2005 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2006 if (!can_yield) { 2007 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 2008 return -EINTR; 2009 } 2010 2011 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock); 2012 flush = false; 2013 } 2014 } 2015 2016 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2017 return 0; 2018 } 2019 2020 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) 2021 { 2022 atomic_set(&sp->write_flooding_count, 0); 2023 } 2024 2025 static void clear_sp_write_flooding_count(u64 *spte) 2026 { 2027 __clear_sp_write_flooding_count(sptep_to_sp(spte)); 2028 } 2029 2030 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu, 2031 gfn_t gfn, 2032 gva_t gaddr, 2033 unsigned level, 2034 int direct, 2035 unsigned int access) 2036 { 2037 bool direct_mmu = vcpu->arch.mmu->direct_map; 2038 union kvm_mmu_page_role role; 2039 struct hlist_head *sp_list; 2040 unsigned quadrant; 2041 struct kvm_mmu_page *sp; 2042 int collisions = 0; 2043 LIST_HEAD(invalid_list); 2044 2045 role = vcpu->arch.mmu->mmu_role.base; 2046 role.level = level; 2047 role.direct = direct; 2048 role.access = access; 2049 if (role.has_4_byte_gpte) { 2050 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level)); 2051 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1; 2052 role.quadrant = quadrant; 2053 } 2054 2055 sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]; 2056 for_each_valid_sp(vcpu->kvm, sp, sp_list) { 2057 if (sp->gfn != gfn) { 2058 collisions++; 2059 continue; 2060 } 2061 2062 if (sp->role.word != role.word) { 2063 /* 2064 * If the guest is creating an upper-level page, zap 2065 * unsync pages for the same gfn. While it's possible 2066 * the guest is using recursive page tables, in all 2067 * likelihood the guest has stopped using the unsync 2068 * page and is installing a completely unrelated page. 2069 * Unsync pages must not be left as is, because the new 2070 * upper-level page will be write-protected. 2071 */ 2072 if (level > PG_LEVEL_4K && sp->unsync) 2073 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, 2074 &invalid_list); 2075 continue; 2076 } 2077 2078 if (direct_mmu) 2079 goto trace_get_page; 2080 2081 if (sp->unsync) { 2082 /* 2083 * The page is good, but is stale. kvm_sync_page does 2084 * get the latest guest state, but (unlike mmu_unsync_children) 2085 * it doesn't write-protect the page or mark it synchronized! 2086 * This way the validity of the mapping is ensured, but the 2087 * overhead of write protection is not incurred until the 2088 * guest invalidates the TLB mapping. This allows multiple 2089 * SPs for a single gfn to be unsync. 2090 * 2091 * If the sync fails, the page is zapped. If so, break 2092 * in order to rebuild it. 2093 */ 2094 if (!kvm_sync_page(vcpu, sp, &invalid_list)) 2095 break; 2096 2097 WARN_ON(!list_empty(&invalid_list)); 2098 kvm_flush_remote_tlbs(vcpu->kvm); 2099 } 2100 2101 __clear_sp_write_flooding_count(sp); 2102 2103 trace_get_page: 2104 trace_kvm_mmu_get_page(sp, false); 2105 goto out; 2106 } 2107 2108 ++vcpu->kvm->stat.mmu_cache_miss; 2109 2110 sp = kvm_mmu_alloc_page(vcpu, direct); 2111 2112 sp->gfn = gfn; 2113 sp->role = role; 2114 hlist_add_head(&sp->hash_link, sp_list); 2115 if (!direct) { 2116 account_shadowed(vcpu->kvm, sp); 2117 if (level == PG_LEVEL_4K && kvm_vcpu_write_protect_gfn(vcpu, gfn)) 2118 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1); 2119 } 2120 trace_kvm_mmu_get_page(sp, true); 2121 out: 2122 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); 2123 2124 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions) 2125 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions; 2126 return sp; 2127 } 2128 2129 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator, 2130 struct kvm_vcpu *vcpu, hpa_t root, 2131 u64 addr) 2132 { 2133 iterator->addr = addr; 2134 iterator->shadow_addr = root; 2135 iterator->level = vcpu->arch.mmu->shadow_root_level; 2136 2137 if (iterator->level >= PT64_ROOT_4LEVEL && 2138 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL && 2139 !vcpu->arch.mmu->direct_map) 2140 iterator->level = PT32E_ROOT_LEVEL; 2141 2142 if (iterator->level == PT32E_ROOT_LEVEL) { 2143 /* 2144 * prev_root is currently only used for 64-bit hosts. So only 2145 * the active root_hpa is valid here. 2146 */ 2147 BUG_ON(root != vcpu->arch.mmu->root.hpa); 2148 2149 iterator->shadow_addr 2150 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3]; 2151 iterator->shadow_addr &= PT64_BASE_ADDR_MASK; 2152 --iterator->level; 2153 if (!iterator->shadow_addr) 2154 iterator->level = 0; 2155 } 2156 } 2157 2158 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, 2159 struct kvm_vcpu *vcpu, u64 addr) 2160 { 2161 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa, 2162 addr); 2163 } 2164 2165 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) 2166 { 2167 if (iterator->level < PG_LEVEL_4K) 2168 return false; 2169 2170 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level); 2171 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; 2172 return true; 2173 } 2174 2175 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, 2176 u64 spte) 2177 { 2178 if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) { 2179 iterator->level = 0; 2180 return; 2181 } 2182 2183 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK; 2184 --iterator->level; 2185 } 2186 2187 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) 2188 { 2189 __shadow_walk_next(iterator, *iterator->sptep); 2190 } 2191 2192 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, 2193 struct kvm_mmu_page *sp) 2194 { 2195 u64 spte; 2196 2197 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); 2198 2199 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp)); 2200 2201 mmu_spte_set(sptep, spte); 2202 2203 mmu_page_add_parent_pte(vcpu, sp, sptep); 2204 2205 if (sp->unsync_children || sp->unsync) 2206 mark_unsync(sptep); 2207 } 2208 2209 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2210 unsigned direct_access) 2211 { 2212 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { 2213 struct kvm_mmu_page *child; 2214 2215 /* 2216 * For the direct sp, if the guest pte's dirty bit 2217 * changed form clean to dirty, it will corrupt the 2218 * sp's access: allow writable in the read-only sp, 2219 * so we should update the spte at this point to get 2220 * a new sp with the correct access. 2221 */ 2222 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK); 2223 if (child->role.access == direct_access) 2224 return; 2225 2226 drop_parent_pte(child, sptep); 2227 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1); 2228 } 2229 } 2230 2231 /* Returns the number of zapped non-leaf child shadow pages. */ 2232 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 2233 u64 *spte, struct list_head *invalid_list) 2234 { 2235 u64 pte; 2236 struct kvm_mmu_page *child; 2237 2238 pte = *spte; 2239 if (is_shadow_present_pte(pte)) { 2240 if (is_last_spte(pte, sp->role.level)) { 2241 drop_spte(kvm, spte); 2242 } else { 2243 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK); 2244 drop_parent_pte(child, spte); 2245 2246 /* 2247 * Recursively zap nested TDP SPs, parentless SPs are 2248 * unlikely to be used again in the near future. This 2249 * avoids retaining a large number of stale nested SPs. 2250 */ 2251 if (tdp_enabled && invalid_list && 2252 child->role.guest_mode && !child->parent_ptes.val) 2253 return kvm_mmu_prepare_zap_page(kvm, child, 2254 invalid_list); 2255 } 2256 } else if (is_mmio_spte(pte)) { 2257 mmu_spte_clear_no_track(spte); 2258 } 2259 return 0; 2260 } 2261 2262 static int kvm_mmu_page_unlink_children(struct kvm *kvm, 2263 struct kvm_mmu_page *sp, 2264 struct list_head *invalid_list) 2265 { 2266 int zapped = 0; 2267 unsigned i; 2268 2269 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) 2270 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list); 2271 2272 return zapped; 2273 } 2274 2275 static void kvm_mmu_unlink_parents(struct kvm_mmu_page *sp) 2276 { 2277 u64 *sptep; 2278 struct rmap_iterator iter; 2279 2280 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter))) 2281 drop_parent_pte(sp, sptep); 2282 } 2283 2284 static int mmu_zap_unsync_children(struct kvm *kvm, 2285 struct kvm_mmu_page *parent, 2286 struct list_head *invalid_list) 2287 { 2288 int i, zapped = 0; 2289 struct mmu_page_path parents; 2290 struct kvm_mmu_pages pages; 2291 2292 if (parent->role.level == PG_LEVEL_4K) 2293 return 0; 2294 2295 while (mmu_unsync_walk(parent, &pages)) { 2296 struct kvm_mmu_page *sp; 2297 2298 for_each_sp(pages, sp, parents, i) { 2299 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 2300 mmu_pages_clear_parents(&parents); 2301 zapped++; 2302 } 2303 } 2304 2305 return zapped; 2306 } 2307 2308 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm, 2309 struct kvm_mmu_page *sp, 2310 struct list_head *invalid_list, 2311 int *nr_zapped) 2312 { 2313 bool list_unstable, zapped_root = false; 2314 2315 trace_kvm_mmu_prepare_zap_page(sp); 2316 ++kvm->stat.mmu_shadow_zapped; 2317 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list); 2318 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list); 2319 kvm_mmu_unlink_parents(sp); 2320 2321 /* Zapping children means active_mmu_pages has become unstable. */ 2322 list_unstable = *nr_zapped; 2323 2324 if (!sp->role.invalid && !sp->role.direct) 2325 unaccount_shadowed(kvm, sp); 2326 2327 if (sp->unsync) 2328 kvm_unlink_unsync_page(kvm, sp); 2329 if (!sp->root_count) { 2330 /* Count self */ 2331 (*nr_zapped)++; 2332 2333 /* 2334 * Already invalid pages (previously active roots) are not on 2335 * the active page list. See list_del() in the "else" case of 2336 * !sp->root_count. 2337 */ 2338 if (sp->role.invalid) 2339 list_add(&sp->link, invalid_list); 2340 else 2341 list_move(&sp->link, invalid_list); 2342 kvm_mod_used_mmu_pages(kvm, -1); 2343 } else { 2344 /* 2345 * Remove the active root from the active page list, the root 2346 * will be explicitly freed when the root_count hits zero. 2347 */ 2348 list_del(&sp->link); 2349 2350 /* 2351 * Obsolete pages cannot be used on any vCPUs, see the comment 2352 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also 2353 * treats invalid shadow pages as being obsolete. 2354 */ 2355 zapped_root = !is_obsolete_sp(kvm, sp); 2356 } 2357 2358 if (sp->lpage_disallowed) 2359 unaccount_huge_nx_page(kvm, sp); 2360 2361 sp->role.invalid = 1; 2362 2363 /* 2364 * Make the request to free obsolete roots after marking the root 2365 * invalid, otherwise other vCPUs may not see it as invalid. 2366 */ 2367 if (zapped_root) 2368 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 2369 return list_unstable; 2370 } 2371 2372 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 2373 struct list_head *invalid_list) 2374 { 2375 int nr_zapped; 2376 2377 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped); 2378 return nr_zapped; 2379 } 2380 2381 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 2382 struct list_head *invalid_list) 2383 { 2384 struct kvm_mmu_page *sp, *nsp; 2385 2386 if (list_empty(invalid_list)) 2387 return; 2388 2389 /* 2390 * We need to make sure everyone sees our modifications to 2391 * the page tables and see changes to vcpu->mode here. The barrier 2392 * in the kvm_flush_remote_tlbs() achieves this. This pairs 2393 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end. 2394 * 2395 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit 2396 * guest mode and/or lockless shadow page table walks. 2397 */ 2398 kvm_flush_remote_tlbs(kvm); 2399 2400 list_for_each_entry_safe(sp, nsp, invalid_list, link) { 2401 WARN_ON(!sp->role.invalid || sp->root_count); 2402 kvm_mmu_free_page(sp); 2403 } 2404 } 2405 2406 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm, 2407 unsigned long nr_to_zap) 2408 { 2409 unsigned long total_zapped = 0; 2410 struct kvm_mmu_page *sp, *tmp; 2411 LIST_HEAD(invalid_list); 2412 bool unstable; 2413 int nr_zapped; 2414 2415 if (list_empty(&kvm->arch.active_mmu_pages)) 2416 return 0; 2417 2418 restart: 2419 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) { 2420 /* 2421 * Don't zap active root pages, the page itself can't be freed 2422 * and zapping it will just force vCPUs to realloc and reload. 2423 */ 2424 if (sp->root_count) 2425 continue; 2426 2427 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, 2428 &nr_zapped); 2429 total_zapped += nr_zapped; 2430 if (total_zapped >= nr_to_zap) 2431 break; 2432 2433 if (unstable) 2434 goto restart; 2435 } 2436 2437 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2438 2439 kvm->stat.mmu_recycled += total_zapped; 2440 return total_zapped; 2441 } 2442 2443 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm) 2444 { 2445 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) 2446 return kvm->arch.n_max_mmu_pages - 2447 kvm->arch.n_used_mmu_pages; 2448 2449 return 0; 2450 } 2451 2452 static int make_mmu_pages_available(struct kvm_vcpu *vcpu) 2453 { 2454 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm); 2455 2456 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES)) 2457 return 0; 2458 2459 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail); 2460 2461 /* 2462 * Note, this check is intentionally soft, it only guarantees that one 2463 * page is available, while the caller may end up allocating as many as 2464 * four pages, e.g. for PAE roots or for 5-level paging. Temporarily 2465 * exceeding the (arbitrary by default) limit will not harm the host, 2466 * being too aggressive may unnecessarily kill the guest, and getting an 2467 * exact count is far more trouble than it's worth, especially in the 2468 * page fault paths. 2469 */ 2470 if (!kvm_mmu_available_pages(vcpu->kvm)) 2471 return -ENOSPC; 2472 return 0; 2473 } 2474 2475 /* 2476 * Changing the number of mmu pages allocated to the vm 2477 * Note: if goal_nr_mmu_pages is too small, you will get dead lock 2478 */ 2479 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages) 2480 { 2481 write_lock(&kvm->mmu_lock); 2482 2483 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { 2484 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages - 2485 goal_nr_mmu_pages); 2486 2487 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; 2488 } 2489 2490 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; 2491 2492 write_unlock(&kvm->mmu_lock); 2493 } 2494 2495 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn) 2496 { 2497 struct kvm_mmu_page *sp; 2498 LIST_HEAD(invalid_list); 2499 int r; 2500 2501 pgprintk("%s: looking for gfn %llx\n", __func__, gfn); 2502 r = 0; 2503 write_lock(&kvm->mmu_lock); 2504 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) { 2505 pgprintk("%s: gfn %llx role %x\n", __func__, gfn, 2506 sp->role.word); 2507 r = 1; 2508 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 2509 } 2510 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2511 write_unlock(&kvm->mmu_lock); 2512 2513 return r; 2514 } 2515 2516 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) 2517 { 2518 gpa_t gpa; 2519 int r; 2520 2521 if (vcpu->arch.mmu->direct_map) 2522 return 0; 2523 2524 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL); 2525 2526 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); 2527 2528 return r; 2529 } 2530 2531 static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 2532 { 2533 trace_kvm_mmu_unsync_page(sp); 2534 ++kvm->stat.mmu_unsync; 2535 sp->unsync = 1; 2536 2537 kvm_mmu_mark_parents_unsync(sp); 2538 } 2539 2540 /* 2541 * Attempt to unsync any shadow pages that can be reached by the specified gfn, 2542 * KVM is creating a writable mapping for said gfn. Returns 0 if all pages 2543 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must 2544 * be write-protected. 2545 */ 2546 int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot, 2547 gfn_t gfn, bool can_unsync, bool prefetch) 2548 { 2549 struct kvm_mmu_page *sp; 2550 bool locked = false; 2551 2552 /* 2553 * Force write-protection if the page is being tracked. Note, the page 2554 * track machinery is used to write-protect upper-level shadow pages, 2555 * i.e. this guards the role.level == 4K assertion below! 2556 */ 2557 if (kvm_slot_page_track_is_active(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE)) 2558 return -EPERM; 2559 2560 /* 2561 * The page is not write-tracked, mark existing shadow pages unsync 2562 * unless KVM is synchronizing an unsync SP (can_unsync = false). In 2563 * that case, KVM must complete emulation of the guest TLB flush before 2564 * allowing shadow pages to become unsync (writable by the guest). 2565 */ 2566 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) { 2567 if (!can_unsync) 2568 return -EPERM; 2569 2570 if (sp->unsync) 2571 continue; 2572 2573 if (prefetch) 2574 return -EEXIST; 2575 2576 /* 2577 * TDP MMU page faults require an additional spinlock as they 2578 * run with mmu_lock held for read, not write, and the unsync 2579 * logic is not thread safe. Take the spinklock regardless of 2580 * the MMU type to avoid extra conditionals/parameters, there's 2581 * no meaningful penalty if mmu_lock is held for write. 2582 */ 2583 if (!locked) { 2584 locked = true; 2585 spin_lock(&kvm->arch.mmu_unsync_pages_lock); 2586 2587 /* 2588 * Recheck after taking the spinlock, a different vCPU 2589 * may have since marked the page unsync. A false 2590 * positive on the unprotected check above is not 2591 * possible as clearing sp->unsync _must_ hold mmu_lock 2592 * for write, i.e. unsync cannot transition from 0->1 2593 * while this CPU holds mmu_lock for read (or write). 2594 */ 2595 if (READ_ONCE(sp->unsync)) 2596 continue; 2597 } 2598 2599 WARN_ON(sp->role.level != PG_LEVEL_4K); 2600 kvm_unsync_page(kvm, sp); 2601 } 2602 if (locked) 2603 spin_unlock(&kvm->arch.mmu_unsync_pages_lock); 2604 2605 /* 2606 * We need to ensure that the marking of unsync pages is visible 2607 * before the SPTE is updated to allow writes because 2608 * kvm_mmu_sync_roots() checks the unsync flags without holding 2609 * the MMU lock and so can race with this. If the SPTE was updated 2610 * before the page had been marked as unsync-ed, something like the 2611 * following could happen: 2612 * 2613 * CPU 1 CPU 2 2614 * --------------------------------------------------------------------- 2615 * 1.2 Host updates SPTE 2616 * to be writable 2617 * 2.1 Guest writes a GPTE for GVA X. 2618 * (GPTE being in the guest page table shadowed 2619 * by the SP from CPU 1.) 2620 * This reads SPTE during the page table walk. 2621 * Since SPTE.W is read as 1, there is no 2622 * fault. 2623 * 2624 * 2.2 Guest issues TLB flush. 2625 * That causes a VM Exit. 2626 * 2627 * 2.3 Walking of unsync pages sees sp->unsync is 2628 * false and skips the page. 2629 * 2630 * 2.4 Guest accesses GVA X. 2631 * Since the mapping in the SP was not updated, 2632 * so the old mapping for GVA X incorrectly 2633 * gets used. 2634 * 1.1 Host marks SP 2635 * as unsync 2636 * (sp->unsync = true) 2637 * 2638 * The write barrier below ensures that 1.1 happens before 1.2 and thus 2639 * the situation in 2.4 does not arise. It pairs with the read barrier 2640 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3. 2641 */ 2642 smp_wmb(); 2643 2644 return 0; 2645 } 2646 2647 static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, 2648 u64 *sptep, unsigned int pte_access, gfn_t gfn, 2649 kvm_pfn_t pfn, struct kvm_page_fault *fault) 2650 { 2651 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 2652 int level = sp->role.level; 2653 int was_rmapped = 0; 2654 int ret = RET_PF_FIXED; 2655 bool flush = false; 2656 bool wrprot; 2657 u64 spte; 2658 2659 /* Prefetching always gets a writable pfn. */ 2660 bool host_writable = !fault || fault->map_writable; 2661 bool prefetch = !fault || fault->prefetch; 2662 bool write_fault = fault && fault->write; 2663 2664 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__, 2665 *sptep, write_fault, gfn); 2666 2667 if (unlikely(is_noslot_pfn(pfn))) { 2668 mark_mmio_spte(vcpu, sptep, gfn, pte_access); 2669 return RET_PF_EMULATE; 2670 } 2671 2672 if (is_shadow_present_pte(*sptep)) { 2673 /* 2674 * If we overwrite a PTE page pointer with a 2MB PMD, unlink 2675 * the parent of the now unreachable PTE. 2676 */ 2677 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) { 2678 struct kvm_mmu_page *child; 2679 u64 pte = *sptep; 2680 2681 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK); 2682 drop_parent_pte(child, sptep); 2683 flush = true; 2684 } else if (pfn != spte_to_pfn(*sptep)) { 2685 pgprintk("hfn old %llx new %llx\n", 2686 spte_to_pfn(*sptep), pfn); 2687 drop_spte(vcpu->kvm, sptep); 2688 flush = true; 2689 } else 2690 was_rmapped = 1; 2691 } 2692 2693 wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch, 2694 true, host_writable, &spte); 2695 2696 if (*sptep == spte) { 2697 ret = RET_PF_SPURIOUS; 2698 } else { 2699 flush |= mmu_spte_update(sptep, spte); 2700 trace_kvm_mmu_set_spte(level, gfn, sptep); 2701 } 2702 2703 if (wrprot) { 2704 if (write_fault) 2705 ret = RET_PF_EMULATE; 2706 } 2707 2708 if (flush) 2709 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 2710 KVM_PAGES_PER_HPAGE(level)); 2711 2712 pgprintk("%s: setting spte %llx\n", __func__, *sptep); 2713 2714 if (!was_rmapped) { 2715 WARN_ON_ONCE(ret == RET_PF_SPURIOUS); 2716 kvm_update_page_stats(vcpu->kvm, level, 1); 2717 rmap_add(vcpu, slot, sptep, gfn); 2718 } 2719 2720 return ret; 2721 } 2722 2723 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu, 2724 struct kvm_mmu_page *sp, 2725 u64 *start, u64 *end) 2726 { 2727 struct page *pages[PTE_PREFETCH_NUM]; 2728 struct kvm_memory_slot *slot; 2729 unsigned int access = sp->role.access; 2730 int i, ret; 2731 gfn_t gfn; 2732 2733 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt); 2734 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK); 2735 if (!slot) 2736 return -1; 2737 2738 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start); 2739 if (ret <= 0) 2740 return -1; 2741 2742 for (i = 0; i < ret; i++, gfn++, start++) { 2743 mmu_set_spte(vcpu, slot, start, access, gfn, 2744 page_to_pfn(pages[i]), NULL); 2745 put_page(pages[i]); 2746 } 2747 2748 return 0; 2749 } 2750 2751 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, 2752 struct kvm_mmu_page *sp, u64 *sptep) 2753 { 2754 u64 *spte, *start = NULL; 2755 int i; 2756 2757 WARN_ON(!sp->role.direct); 2758 2759 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1); 2760 spte = sp->spt + i; 2761 2762 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 2763 if (is_shadow_present_pte(*spte) || spte == sptep) { 2764 if (!start) 2765 continue; 2766 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0) 2767 return; 2768 start = NULL; 2769 } else if (!start) 2770 start = spte; 2771 } 2772 if (start) 2773 direct_pte_prefetch_many(vcpu, sp, start, spte); 2774 } 2775 2776 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) 2777 { 2778 struct kvm_mmu_page *sp; 2779 2780 sp = sptep_to_sp(sptep); 2781 2782 /* 2783 * Without accessed bits, there's no way to distinguish between 2784 * actually accessed translations and prefetched, so disable pte 2785 * prefetch if accessed bits aren't available. 2786 */ 2787 if (sp_ad_disabled(sp)) 2788 return; 2789 2790 if (sp->role.level > PG_LEVEL_4K) 2791 return; 2792 2793 /* 2794 * If addresses are being invalidated, skip prefetching to avoid 2795 * accidentally prefetching those addresses. 2796 */ 2797 if (unlikely(vcpu->kvm->mmu_notifier_count)) 2798 return; 2799 2800 __direct_pte_prefetch(vcpu, sp, sptep); 2801 } 2802 2803 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, 2804 const struct kvm_memory_slot *slot) 2805 { 2806 unsigned long hva; 2807 unsigned long flags; 2808 int level = PG_LEVEL_4K; 2809 pgd_t pgd; 2810 p4d_t p4d; 2811 pud_t pud; 2812 pmd_t pmd; 2813 2814 if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn)) 2815 return PG_LEVEL_4K; 2816 2817 /* 2818 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot() 2819 * is not solely for performance, it's also necessary to avoid the 2820 * "writable" check in __gfn_to_hva_many(), which will always fail on 2821 * read-only memslots due to gfn_to_hva() assuming writes. Earlier 2822 * page fault steps have already verified the guest isn't writing a 2823 * read-only memslot. 2824 */ 2825 hva = __gfn_to_hva_memslot(slot, gfn); 2826 2827 /* 2828 * Lookup the mapping level in the current mm. The information 2829 * may become stale soon, but it is safe to use as long as 2830 * 1) mmu_notifier_retry was checked after taking mmu_lock, and 2831 * 2) mmu_lock is taken now. 2832 * 2833 * We still need to disable IRQs to prevent concurrent tear down 2834 * of page tables. 2835 */ 2836 local_irq_save(flags); 2837 2838 pgd = READ_ONCE(*pgd_offset(kvm->mm, hva)); 2839 if (pgd_none(pgd)) 2840 goto out; 2841 2842 p4d = READ_ONCE(*p4d_offset(&pgd, hva)); 2843 if (p4d_none(p4d) || !p4d_present(p4d)) 2844 goto out; 2845 2846 pud = READ_ONCE(*pud_offset(&p4d, hva)); 2847 if (pud_none(pud) || !pud_present(pud)) 2848 goto out; 2849 2850 if (pud_large(pud)) { 2851 level = PG_LEVEL_1G; 2852 goto out; 2853 } 2854 2855 pmd = READ_ONCE(*pmd_offset(&pud, hva)); 2856 if (pmd_none(pmd) || !pmd_present(pmd)) 2857 goto out; 2858 2859 if (pmd_large(pmd)) 2860 level = PG_LEVEL_2M; 2861 2862 out: 2863 local_irq_restore(flags); 2864 return level; 2865 } 2866 2867 int kvm_mmu_max_mapping_level(struct kvm *kvm, 2868 const struct kvm_memory_slot *slot, gfn_t gfn, 2869 kvm_pfn_t pfn, int max_level) 2870 { 2871 struct kvm_lpage_info *linfo; 2872 int host_level; 2873 2874 max_level = min(max_level, max_huge_page_level); 2875 for ( ; max_level > PG_LEVEL_4K; max_level--) { 2876 linfo = lpage_info_slot(gfn, slot, max_level); 2877 if (!linfo->disallow_lpage) 2878 break; 2879 } 2880 2881 if (max_level == PG_LEVEL_4K) 2882 return PG_LEVEL_4K; 2883 2884 host_level = host_pfn_mapping_level(kvm, gfn, pfn, slot); 2885 return min(host_level, max_level); 2886 } 2887 2888 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 2889 { 2890 struct kvm_memory_slot *slot = fault->slot; 2891 kvm_pfn_t mask; 2892 2893 fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled; 2894 2895 if (unlikely(fault->max_level == PG_LEVEL_4K)) 2896 return; 2897 2898 if (is_error_noslot_pfn(fault->pfn) || kvm_is_reserved_pfn(fault->pfn)) 2899 return; 2900 2901 if (kvm_slot_dirty_track_enabled(slot)) 2902 return; 2903 2904 /* 2905 * Enforce the iTLB multihit workaround after capturing the requested 2906 * level, which will be used to do precise, accurate accounting. 2907 */ 2908 fault->req_level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, 2909 fault->gfn, fault->pfn, 2910 fault->max_level); 2911 if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed) 2912 return; 2913 2914 /* 2915 * mmu_notifier_retry() was successful and mmu_lock is held, so 2916 * the pmd can't be split from under us. 2917 */ 2918 fault->goal_level = fault->req_level; 2919 mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1; 2920 VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask)); 2921 fault->pfn &= ~mask; 2922 } 2923 2924 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level) 2925 { 2926 if (cur_level > PG_LEVEL_4K && 2927 cur_level == fault->goal_level && 2928 is_shadow_present_pte(spte) && 2929 !is_large_pte(spte)) { 2930 /* 2931 * A small SPTE exists for this pfn, but FNAME(fetch) 2932 * and __direct_map would like to create a large PTE 2933 * instead: just force them to go down another level, 2934 * patching back for them into pfn the next 9 bits of 2935 * the address. 2936 */ 2937 u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) - 2938 KVM_PAGES_PER_HPAGE(cur_level - 1); 2939 fault->pfn |= fault->gfn & page_mask; 2940 fault->goal_level--; 2941 } 2942 } 2943 2944 static int __direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 2945 { 2946 struct kvm_shadow_walk_iterator it; 2947 struct kvm_mmu_page *sp; 2948 int ret; 2949 gfn_t base_gfn = fault->gfn; 2950 2951 kvm_mmu_hugepage_adjust(vcpu, fault); 2952 2953 trace_kvm_mmu_spte_requested(fault); 2954 for_each_shadow_entry(vcpu, fault->addr, it) { 2955 /* 2956 * We cannot overwrite existing page tables with an NX 2957 * large page, as the leaf could be executable. 2958 */ 2959 if (fault->nx_huge_page_workaround_enabled) 2960 disallowed_hugepage_adjust(fault, *it.sptep, it.level); 2961 2962 base_gfn = fault->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1); 2963 if (it.level == fault->goal_level) 2964 break; 2965 2966 drop_large_spte(vcpu, it.sptep); 2967 if (is_shadow_present_pte(*it.sptep)) 2968 continue; 2969 2970 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr, 2971 it.level - 1, true, ACC_ALL); 2972 2973 link_shadow_page(vcpu, it.sptep, sp); 2974 if (fault->is_tdp && fault->huge_page_disallowed && 2975 fault->req_level >= it.level) 2976 account_huge_nx_page(vcpu->kvm, sp); 2977 } 2978 2979 if (WARN_ON_ONCE(it.level != fault->goal_level)) 2980 return -EFAULT; 2981 2982 ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL, 2983 base_gfn, fault->pfn, fault); 2984 if (ret == RET_PF_SPURIOUS) 2985 return ret; 2986 2987 direct_pte_prefetch(vcpu, it.sptep); 2988 ++vcpu->stat.pf_fixed; 2989 return ret; 2990 } 2991 2992 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk) 2993 { 2994 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk); 2995 } 2996 2997 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn) 2998 { 2999 /* 3000 * Do not cache the mmio info caused by writing the readonly gfn 3001 * into the spte otherwise read access on readonly gfn also can 3002 * caused mmio page fault and treat it as mmio access. 3003 */ 3004 if (pfn == KVM_PFN_ERR_RO_FAULT) 3005 return RET_PF_EMULATE; 3006 3007 if (pfn == KVM_PFN_ERR_HWPOISON) { 3008 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current); 3009 return RET_PF_RETRY; 3010 } 3011 3012 return -EFAULT; 3013 } 3014 3015 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, 3016 unsigned int access, int *ret_val) 3017 { 3018 /* The pfn is invalid, report the error! */ 3019 if (unlikely(is_error_pfn(fault->pfn))) { 3020 *ret_val = kvm_handle_bad_page(vcpu, fault->gfn, fault->pfn); 3021 return true; 3022 } 3023 3024 if (unlikely(!fault->slot)) { 3025 gva_t gva = fault->is_tdp ? 0 : fault->addr; 3026 3027 vcpu_cache_mmio_info(vcpu, gva, fault->gfn, 3028 access & shadow_mmio_access_mask); 3029 /* 3030 * If MMIO caching is disabled, emulate immediately without 3031 * touching the shadow page tables as attempting to install an 3032 * MMIO SPTE will just be an expensive nop. Do not cache MMIO 3033 * whose gfn is greater than host.MAXPHYADDR, any guest that 3034 * generates such gfns is running nested and is being tricked 3035 * by L0 userspace (you can observe gfn > L1.MAXPHYADDR if 3036 * and only if L1's MAXPHYADDR is inaccurate with respect to 3037 * the hardware's). 3038 */ 3039 if (unlikely(!shadow_mmio_value) || 3040 unlikely(fault->gfn > kvm_mmu_max_gfn())) { 3041 *ret_val = RET_PF_EMULATE; 3042 return true; 3043 } 3044 } 3045 3046 return false; 3047 } 3048 3049 static bool page_fault_can_be_fast(struct kvm_page_fault *fault) 3050 { 3051 /* 3052 * Do not fix the mmio spte with invalid generation number which 3053 * need to be updated by slow page fault path. 3054 */ 3055 if (fault->rsvd) 3056 return false; 3057 3058 /* See if the page fault is due to an NX violation */ 3059 if (unlikely(fault->exec && fault->present)) 3060 return false; 3061 3062 /* 3063 * #PF can be fast if: 3064 * 1. The shadow page table entry is not present, which could mean that 3065 * the fault is potentially caused by access tracking (if enabled). 3066 * 2. The shadow page table entry is present and the fault 3067 * is caused by write-protect, that means we just need change the W 3068 * bit of the spte which can be done out of mmu-lock. 3069 * 3070 * However, if access tracking is disabled we know that a non-present 3071 * page must be a genuine page fault where we have to create a new SPTE. 3072 * So, if access tracking is disabled, we return true only for write 3073 * accesses to a present page. 3074 */ 3075 3076 return shadow_acc_track_mask != 0 || (fault->write && fault->present); 3077 } 3078 3079 /* 3080 * Returns true if the SPTE was fixed successfully. Otherwise, 3081 * someone else modified the SPTE from its original value. 3082 */ 3083 static bool 3084 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, 3085 u64 *sptep, u64 old_spte, u64 new_spte) 3086 { 3087 /* 3088 * Theoretically we could also set dirty bit (and flush TLB) here in 3089 * order to eliminate unnecessary PML logging. See comments in 3090 * set_spte. But fast_page_fault is very unlikely to happen with PML 3091 * enabled, so we do not do this. This might result in the same GPA 3092 * to be logged in PML buffer again when the write really happens, and 3093 * eventually to be called by mark_page_dirty twice. But it's also no 3094 * harm. This also avoids the TLB flush needed after setting dirty bit 3095 * so non-PML cases won't be impacted. 3096 * 3097 * Compare with set_spte where instead shadow_dirty_mask is set. 3098 */ 3099 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte) 3100 return false; 3101 3102 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) 3103 mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn); 3104 3105 return true; 3106 } 3107 3108 static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte) 3109 { 3110 if (fault->exec) 3111 return is_executable_pte(spte); 3112 3113 if (fault->write) 3114 return is_writable_pte(spte); 3115 3116 /* Fault was on Read access */ 3117 return spte & PT_PRESENT_MASK; 3118 } 3119 3120 /* 3121 * Returns the last level spte pointer of the shadow page walk for the given 3122 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no 3123 * walk could be performed, returns NULL and *spte does not contain valid data. 3124 * 3125 * Contract: 3126 * - Must be called between walk_shadow_page_lockless_{begin,end}. 3127 * - The returned sptep must not be used after walk_shadow_page_lockless_end. 3128 */ 3129 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte) 3130 { 3131 struct kvm_shadow_walk_iterator iterator; 3132 u64 old_spte; 3133 u64 *sptep = NULL; 3134 3135 for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) { 3136 sptep = iterator.sptep; 3137 *spte = old_spte; 3138 } 3139 3140 return sptep; 3141 } 3142 3143 /* 3144 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS. 3145 */ 3146 static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3147 { 3148 struct kvm_mmu_page *sp; 3149 int ret = RET_PF_INVALID; 3150 u64 spte = 0ull; 3151 u64 *sptep = NULL; 3152 uint retry_count = 0; 3153 3154 if (!page_fault_can_be_fast(fault)) 3155 return ret; 3156 3157 walk_shadow_page_lockless_begin(vcpu); 3158 3159 do { 3160 u64 new_spte; 3161 3162 if (is_tdp_mmu(vcpu->arch.mmu)) 3163 sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->addr, &spte); 3164 else 3165 sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte); 3166 3167 if (!is_shadow_present_pte(spte)) 3168 break; 3169 3170 sp = sptep_to_sp(sptep); 3171 if (!is_last_spte(spte, sp->role.level)) 3172 break; 3173 3174 /* 3175 * Check whether the memory access that caused the fault would 3176 * still cause it if it were to be performed right now. If not, 3177 * then this is a spurious fault caused by TLB lazily flushed, 3178 * or some other CPU has already fixed the PTE after the 3179 * current CPU took the fault. 3180 * 3181 * Need not check the access of upper level table entries since 3182 * they are always ACC_ALL. 3183 */ 3184 if (is_access_allowed(fault, spte)) { 3185 ret = RET_PF_SPURIOUS; 3186 break; 3187 } 3188 3189 new_spte = spte; 3190 3191 if (is_access_track_spte(spte)) 3192 new_spte = restore_acc_track_spte(new_spte); 3193 3194 /* 3195 * Currently, to simplify the code, write-protection can 3196 * be removed in the fast path only if the SPTE was 3197 * write-protected for dirty-logging or access tracking. 3198 */ 3199 if (fault->write && 3200 spte_can_locklessly_be_made_writable(spte)) { 3201 new_spte |= PT_WRITABLE_MASK; 3202 3203 /* 3204 * Do not fix write-permission on the large spte when 3205 * dirty logging is enabled. Since we only dirty the 3206 * first page into the dirty-bitmap in 3207 * fast_pf_fix_direct_spte(), other pages are missed 3208 * if its slot has dirty logging enabled. 3209 * 3210 * Instead, we let the slow page fault path create a 3211 * normal spte to fix the access. 3212 */ 3213 if (sp->role.level > PG_LEVEL_4K && 3214 kvm_slot_dirty_track_enabled(fault->slot)) 3215 break; 3216 } 3217 3218 /* Verify that the fault can be handled in the fast path */ 3219 if (new_spte == spte || 3220 !is_access_allowed(fault, new_spte)) 3221 break; 3222 3223 /* 3224 * Currently, fast page fault only works for direct mapping 3225 * since the gfn is not stable for indirect shadow page. See 3226 * Documentation/virt/kvm/locking.rst to get more detail. 3227 */ 3228 if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) { 3229 ret = RET_PF_FIXED; 3230 break; 3231 } 3232 3233 if (++retry_count > 4) { 3234 printk_once(KERN_WARNING 3235 "kvm: Fast #PF retrying more than 4 times.\n"); 3236 break; 3237 } 3238 3239 } while (true); 3240 3241 trace_fast_page_fault(vcpu, fault, sptep, spte, ret); 3242 walk_shadow_page_lockless_end(vcpu); 3243 3244 return ret; 3245 } 3246 3247 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa, 3248 struct list_head *invalid_list) 3249 { 3250 struct kvm_mmu_page *sp; 3251 3252 if (!VALID_PAGE(*root_hpa)) 3253 return; 3254 3255 sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK); 3256 if (WARN_ON(!sp)) 3257 return; 3258 3259 if (is_tdp_mmu_page(sp)) 3260 kvm_tdp_mmu_put_root(kvm, sp, false); 3261 else if (!--sp->root_count && sp->role.invalid) 3262 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 3263 3264 *root_hpa = INVALID_PAGE; 3265 } 3266 3267 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */ 3268 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, 3269 ulong roots_to_free) 3270 { 3271 int i; 3272 LIST_HEAD(invalid_list); 3273 bool free_active_root; 3274 3275 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG); 3276 3277 /* Before acquiring the MMU lock, see if we need to do any real work. */ 3278 free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT) 3279 && VALID_PAGE(mmu->root.hpa); 3280 3281 if (!free_active_root) { 3282 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3283 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) && 3284 VALID_PAGE(mmu->prev_roots[i].hpa)) 3285 break; 3286 3287 if (i == KVM_MMU_NUM_PREV_ROOTS) 3288 return; 3289 } 3290 3291 write_lock(&kvm->mmu_lock); 3292 3293 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3294 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) 3295 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa, 3296 &invalid_list); 3297 3298 if (free_active_root) { 3299 if (to_shadow_page(mmu->root.hpa)) { 3300 mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list); 3301 } else if (mmu->pae_root) { 3302 for (i = 0; i < 4; ++i) { 3303 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i])) 3304 continue; 3305 3306 mmu_free_root_page(kvm, &mmu->pae_root[i], 3307 &invalid_list); 3308 mmu->pae_root[i] = INVALID_PAE_ROOT; 3309 } 3310 } 3311 mmu->root.hpa = INVALID_PAGE; 3312 mmu->root.pgd = 0; 3313 } 3314 3315 kvm_mmu_commit_zap_page(kvm, &invalid_list); 3316 write_unlock(&kvm->mmu_lock); 3317 } 3318 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots); 3319 3320 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu) 3321 { 3322 unsigned long roots_to_free = 0; 3323 hpa_t root_hpa; 3324 int i; 3325 3326 /* 3327 * This should not be called while L2 is active, L2 can't invalidate 3328 * _only_ its own roots, e.g. INVVPID unconditionally exits. 3329 */ 3330 WARN_ON_ONCE(mmu->mmu_role.base.guest_mode); 3331 3332 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 3333 root_hpa = mmu->prev_roots[i].hpa; 3334 if (!VALID_PAGE(root_hpa)) 3335 continue; 3336 3337 if (!to_shadow_page(root_hpa) || 3338 to_shadow_page(root_hpa)->role.guest_mode) 3339 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 3340 } 3341 3342 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 3343 } 3344 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots); 3345 3346 3347 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn) 3348 { 3349 int ret = 0; 3350 3351 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) { 3352 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 3353 ret = 1; 3354 } 3355 3356 return ret; 3357 } 3358 3359 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva, 3360 u8 level, bool direct) 3361 { 3362 struct kvm_mmu_page *sp; 3363 3364 sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL); 3365 ++sp->root_count; 3366 3367 return __pa(sp->spt); 3368 } 3369 3370 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) 3371 { 3372 struct kvm_mmu *mmu = vcpu->arch.mmu; 3373 u8 shadow_root_level = mmu->shadow_root_level; 3374 hpa_t root; 3375 unsigned i; 3376 int r; 3377 3378 write_lock(&vcpu->kvm->mmu_lock); 3379 r = make_mmu_pages_available(vcpu); 3380 if (r < 0) 3381 goto out_unlock; 3382 3383 if (is_tdp_mmu_enabled(vcpu->kvm)) { 3384 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu); 3385 mmu->root.hpa = root; 3386 } else if (shadow_root_level >= PT64_ROOT_4LEVEL) { 3387 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true); 3388 mmu->root.hpa = root; 3389 } else if (shadow_root_level == PT32E_ROOT_LEVEL) { 3390 if (WARN_ON_ONCE(!mmu->pae_root)) { 3391 r = -EIO; 3392 goto out_unlock; 3393 } 3394 3395 for (i = 0; i < 4; ++i) { 3396 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3397 3398 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 3399 i << 30, PT32_ROOT_LEVEL, true); 3400 mmu->pae_root[i] = root | PT_PRESENT_MASK | 3401 shadow_me_mask; 3402 } 3403 mmu->root.hpa = __pa(mmu->pae_root); 3404 } else { 3405 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level); 3406 r = -EIO; 3407 goto out_unlock; 3408 } 3409 3410 /* root.pgd is ignored for direct MMUs. */ 3411 mmu->root.pgd = 0; 3412 out_unlock: 3413 write_unlock(&vcpu->kvm->mmu_lock); 3414 return r; 3415 } 3416 3417 static int mmu_first_shadow_root_alloc(struct kvm *kvm) 3418 { 3419 struct kvm_memslots *slots; 3420 struct kvm_memory_slot *slot; 3421 int r = 0, i, bkt; 3422 3423 /* 3424 * Check if this is the first shadow root being allocated before 3425 * taking the lock. 3426 */ 3427 if (kvm_shadow_root_allocated(kvm)) 3428 return 0; 3429 3430 mutex_lock(&kvm->slots_arch_lock); 3431 3432 /* Recheck, under the lock, whether this is the first shadow root. */ 3433 if (kvm_shadow_root_allocated(kvm)) 3434 goto out_unlock; 3435 3436 /* 3437 * Check if anything actually needs to be allocated, e.g. all metadata 3438 * will be allocated upfront if TDP is disabled. 3439 */ 3440 if (kvm_memslots_have_rmaps(kvm) && 3441 kvm_page_track_write_tracking_enabled(kvm)) 3442 goto out_success; 3443 3444 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 3445 slots = __kvm_memslots(kvm, i); 3446 kvm_for_each_memslot(slot, bkt, slots) { 3447 /* 3448 * Both of these functions are no-ops if the target is 3449 * already allocated, so unconditionally calling both 3450 * is safe. Intentionally do NOT free allocations on 3451 * failure to avoid having to track which allocations 3452 * were made now versus when the memslot was created. 3453 * The metadata is guaranteed to be freed when the slot 3454 * is freed, and will be kept/used if userspace retries 3455 * KVM_RUN instead of killing the VM. 3456 */ 3457 r = memslot_rmap_alloc(slot, slot->npages); 3458 if (r) 3459 goto out_unlock; 3460 r = kvm_page_track_write_tracking_alloc(slot); 3461 if (r) 3462 goto out_unlock; 3463 } 3464 } 3465 3466 /* 3467 * Ensure that shadow_root_allocated becomes true strictly after 3468 * all the related pointers are set. 3469 */ 3470 out_success: 3471 smp_store_release(&kvm->arch.shadow_root_allocated, true); 3472 3473 out_unlock: 3474 mutex_unlock(&kvm->slots_arch_lock); 3475 return r; 3476 } 3477 3478 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) 3479 { 3480 struct kvm_mmu *mmu = vcpu->arch.mmu; 3481 u64 pdptrs[4], pm_mask; 3482 gfn_t root_gfn, root_pgd; 3483 hpa_t root; 3484 unsigned i; 3485 int r; 3486 3487 root_pgd = mmu->get_guest_pgd(vcpu); 3488 root_gfn = root_pgd >> PAGE_SHIFT; 3489 3490 if (mmu_check_root(vcpu, root_gfn)) 3491 return 1; 3492 3493 /* 3494 * On SVM, reading PDPTRs might access guest memory, which might fault 3495 * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock. 3496 */ 3497 if (mmu->root_level == PT32E_ROOT_LEVEL) { 3498 for (i = 0; i < 4; ++i) { 3499 pdptrs[i] = mmu->get_pdptr(vcpu, i); 3500 if (!(pdptrs[i] & PT_PRESENT_MASK)) 3501 continue; 3502 3503 if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT)) 3504 return 1; 3505 } 3506 } 3507 3508 r = mmu_first_shadow_root_alloc(vcpu->kvm); 3509 if (r) 3510 return r; 3511 3512 write_lock(&vcpu->kvm->mmu_lock); 3513 r = make_mmu_pages_available(vcpu); 3514 if (r < 0) 3515 goto out_unlock; 3516 3517 /* 3518 * Do we shadow a long mode page table? If so we need to 3519 * write-protect the guests page table root. 3520 */ 3521 if (mmu->root_level >= PT64_ROOT_4LEVEL) { 3522 root = mmu_alloc_root(vcpu, root_gfn, 0, 3523 mmu->shadow_root_level, false); 3524 mmu->root.hpa = root; 3525 goto set_root_pgd; 3526 } 3527 3528 if (WARN_ON_ONCE(!mmu->pae_root)) { 3529 r = -EIO; 3530 goto out_unlock; 3531 } 3532 3533 /* 3534 * We shadow a 32 bit page table. This may be a legacy 2-level 3535 * or a PAE 3-level page table. In either case we need to be aware that 3536 * the shadow page table may be a PAE or a long mode page table. 3537 */ 3538 pm_mask = PT_PRESENT_MASK | shadow_me_mask; 3539 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL) { 3540 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; 3541 3542 if (WARN_ON_ONCE(!mmu->pml4_root)) { 3543 r = -EIO; 3544 goto out_unlock; 3545 } 3546 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask; 3547 3548 if (mmu->shadow_root_level == PT64_ROOT_5LEVEL) { 3549 if (WARN_ON_ONCE(!mmu->pml5_root)) { 3550 r = -EIO; 3551 goto out_unlock; 3552 } 3553 mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask; 3554 } 3555 } 3556 3557 for (i = 0; i < 4; ++i) { 3558 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3559 3560 if (mmu->root_level == PT32E_ROOT_LEVEL) { 3561 if (!(pdptrs[i] & PT_PRESENT_MASK)) { 3562 mmu->pae_root[i] = INVALID_PAE_ROOT; 3563 continue; 3564 } 3565 root_gfn = pdptrs[i] >> PAGE_SHIFT; 3566 } 3567 3568 root = mmu_alloc_root(vcpu, root_gfn, i << 30, 3569 PT32_ROOT_LEVEL, false); 3570 mmu->pae_root[i] = root | pm_mask; 3571 } 3572 3573 if (mmu->shadow_root_level == PT64_ROOT_5LEVEL) 3574 mmu->root.hpa = __pa(mmu->pml5_root); 3575 else if (mmu->shadow_root_level == PT64_ROOT_4LEVEL) 3576 mmu->root.hpa = __pa(mmu->pml4_root); 3577 else 3578 mmu->root.hpa = __pa(mmu->pae_root); 3579 3580 set_root_pgd: 3581 mmu->root.pgd = root_pgd; 3582 out_unlock: 3583 write_unlock(&vcpu->kvm->mmu_lock); 3584 3585 return r; 3586 } 3587 3588 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu) 3589 { 3590 struct kvm_mmu *mmu = vcpu->arch.mmu; 3591 bool need_pml5 = mmu->shadow_root_level > PT64_ROOT_4LEVEL; 3592 u64 *pml5_root = NULL; 3593 u64 *pml4_root = NULL; 3594 u64 *pae_root; 3595 3596 /* 3597 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP 3598 * tables are allocated and initialized at root creation as there is no 3599 * equivalent level in the guest's NPT to shadow. Allocate the tables 3600 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare. 3601 */ 3602 if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL || 3603 mmu->shadow_root_level < PT64_ROOT_4LEVEL) 3604 return 0; 3605 3606 /* 3607 * NPT, the only paging mode that uses this horror, uses a fixed number 3608 * of levels for the shadow page tables, e.g. all MMUs are 4-level or 3609 * all MMus are 5-level. Thus, this can safely require that pml5_root 3610 * is allocated if the other roots are valid and pml5 is needed, as any 3611 * prior MMU would also have required pml5. 3612 */ 3613 if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root)) 3614 return 0; 3615 3616 /* 3617 * The special roots should always be allocated in concert. Yell and 3618 * bail if KVM ends up in a state where only one of the roots is valid. 3619 */ 3620 if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root || 3621 (need_pml5 && mmu->pml5_root))) 3622 return -EIO; 3623 3624 /* 3625 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and 3626 * doesn't need to be decrypted. 3627 */ 3628 pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3629 if (!pae_root) 3630 return -ENOMEM; 3631 3632 #ifdef CONFIG_X86_64 3633 pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3634 if (!pml4_root) 3635 goto err_pml4; 3636 3637 if (need_pml5) { 3638 pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3639 if (!pml5_root) 3640 goto err_pml5; 3641 } 3642 #endif 3643 3644 mmu->pae_root = pae_root; 3645 mmu->pml4_root = pml4_root; 3646 mmu->pml5_root = pml5_root; 3647 3648 return 0; 3649 3650 #ifdef CONFIG_X86_64 3651 err_pml5: 3652 free_page((unsigned long)pml4_root); 3653 err_pml4: 3654 free_page((unsigned long)pae_root); 3655 return -ENOMEM; 3656 #endif 3657 } 3658 3659 static bool is_unsync_root(hpa_t root) 3660 { 3661 struct kvm_mmu_page *sp; 3662 3663 if (!VALID_PAGE(root)) 3664 return false; 3665 3666 /* 3667 * The read barrier orders the CPU's read of SPTE.W during the page table 3668 * walk before the reads of sp->unsync/sp->unsync_children here. 3669 * 3670 * Even if another CPU was marking the SP as unsync-ed simultaneously, 3671 * any guest page table changes are not guaranteed to be visible anyway 3672 * until this VCPU issues a TLB flush strictly after those changes are 3673 * made. We only need to ensure that the other CPU sets these flags 3674 * before any actual changes to the page tables are made. The comments 3675 * in mmu_try_to_unsync_pages() describe what could go wrong if this 3676 * requirement isn't satisfied. 3677 */ 3678 smp_rmb(); 3679 sp = to_shadow_page(root); 3680 3681 /* 3682 * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the 3683 * PDPTEs for a given PAE root need to be synchronized individually. 3684 */ 3685 if (WARN_ON_ONCE(!sp)) 3686 return false; 3687 3688 if (sp->unsync || sp->unsync_children) 3689 return true; 3690 3691 return false; 3692 } 3693 3694 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) 3695 { 3696 int i; 3697 struct kvm_mmu_page *sp; 3698 3699 if (vcpu->arch.mmu->direct_map) 3700 return; 3701 3702 if (!VALID_PAGE(vcpu->arch.mmu->root.hpa)) 3703 return; 3704 3705 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 3706 3707 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) { 3708 hpa_t root = vcpu->arch.mmu->root.hpa; 3709 sp = to_shadow_page(root); 3710 3711 if (!is_unsync_root(root)) 3712 return; 3713 3714 write_lock(&vcpu->kvm->mmu_lock); 3715 mmu_sync_children(vcpu, sp, true); 3716 write_unlock(&vcpu->kvm->mmu_lock); 3717 return; 3718 } 3719 3720 write_lock(&vcpu->kvm->mmu_lock); 3721 3722 for (i = 0; i < 4; ++i) { 3723 hpa_t root = vcpu->arch.mmu->pae_root[i]; 3724 3725 if (IS_VALID_PAE_ROOT(root)) { 3726 root &= PT64_BASE_ADDR_MASK; 3727 sp = to_shadow_page(root); 3728 mmu_sync_children(vcpu, sp, true); 3729 } 3730 } 3731 3732 write_unlock(&vcpu->kvm->mmu_lock); 3733 } 3734 3735 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu) 3736 { 3737 unsigned long roots_to_free = 0; 3738 int i; 3739 3740 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3741 if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa)) 3742 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 3743 3744 /* sync prev_roots by simply freeing them */ 3745 kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free); 3746 } 3747 3748 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 3749 gpa_t vaddr, u64 access, 3750 struct x86_exception *exception) 3751 { 3752 if (exception) 3753 exception->error_code = 0; 3754 return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception); 3755 } 3756 3757 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct) 3758 { 3759 /* 3760 * A nested guest cannot use the MMIO cache if it is using nested 3761 * page tables, because cr2 is a nGPA while the cache stores GPAs. 3762 */ 3763 if (mmu_is_nested(vcpu)) 3764 return false; 3765 3766 if (direct) 3767 return vcpu_match_mmio_gpa(vcpu, addr); 3768 3769 return vcpu_match_mmio_gva(vcpu, addr); 3770 } 3771 3772 /* 3773 * Return the level of the lowest level SPTE added to sptes. 3774 * That SPTE may be non-present. 3775 * 3776 * Must be called between walk_shadow_page_lockless_{begin,end}. 3777 */ 3778 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level) 3779 { 3780 struct kvm_shadow_walk_iterator iterator; 3781 int leaf = -1; 3782 u64 spte; 3783 3784 for (shadow_walk_init(&iterator, vcpu, addr), 3785 *root_level = iterator.level; 3786 shadow_walk_okay(&iterator); 3787 __shadow_walk_next(&iterator, spte)) { 3788 leaf = iterator.level; 3789 spte = mmu_spte_get_lockless(iterator.sptep); 3790 3791 sptes[leaf] = spte; 3792 } 3793 3794 return leaf; 3795 } 3796 3797 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */ 3798 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) 3799 { 3800 u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; 3801 struct rsvd_bits_validate *rsvd_check; 3802 int root, leaf, level; 3803 bool reserved = false; 3804 3805 walk_shadow_page_lockless_begin(vcpu); 3806 3807 if (is_tdp_mmu(vcpu->arch.mmu)) 3808 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root); 3809 else 3810 leaf = get_walk(vcpu, addr, sptes, &root); 3811 3812 walk_shadow_page_lockless_end(vcpu); 3813 3814 if (unlikely(leaf < 0)) { 3815 *sptep = 0ull; 3816 return reserved; 3817 } 3818 3819 *sptep = sptes[leaf]; 3820 3821 /* 3822 * Skip reserved bits checks on the terminal leaf if it's not a valid 3823 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by 3824 * design, always have reserved bits set. The purpose of the checks is 3825 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs. 3826 */ 3827 if (!is_shadow_present_pte(sptes[leaf])) 3828 leaf++; 3829 3830 rsvd_check = &vcpu->arch.mmu->shadow_zero_check; 3831 3832 for (level = root; level >= leaf; level--) 3833 reserved |= is_rsvd_spte(rsvd_check, sptes[level], level); 3834 3835 if (reserved) { 3836 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n", 3837 __func__, addr); 3838 for (level = root; level >= leaf; level--) 3839 pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx", 3840 sptes[level], level, 3841 get_rsvd_bits(rsvd_check, sptes[level], level)); 3842 } 3843 3844 return reserved; 3845 } 3846 3847 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct) 3848 { 3849 u64 spte; 3850 bool reserved; 3851 3852 if (mmio_info_in_cache(vcpu, addr, direct)) 3853 return RET_PF_EMULATE; 3854 3855 reserved = get_mmio_spte(vcpu, addr, &spte); 3856 if (WARN_ON(reserved)) 3857 return -EINVAL; 3858 3859 if (is_mmio_spte(spte)) { 3860 gfn_t gfn = get_mmio_spte_gfn(spte); 3861 unsigned int access = get_mmio_spte_access(spte); 3862 3863 if (!check_mmio_spte(vcpu, spte)) 3864 return RET_PF_INVALID; 3865 3866 if (direct) 3867 addr = 0; 3868 3869 trace_handle_mmio_page_fault(addr, gfn, access); 3870 vcpu_cache_mmio_info(vcpu, addr, gfn, access); 3871 return RET_PF_EMULATE; 3872 } 3873 3874 /* 3875 * If the page table is zapped by other cpus, let CPU fault again on 3876 * the address. 3877 */ 3878 return RET_PF_RETRY; 3879 } 3880 3881 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu, 3882 struct kvm_page_fault *fault) 3883 { 3884 if (unlikely(fault->rsvd)) 3885 return false; 3886 3887 if (!fault->present || !fault->write) 3888 return false; 3889 3890 /* 3891 * guest is writing the page which is write tracked which can 3892 * not be fixed by page fault handler. 3893 */ 3894 if (kvm_slot_page_track_is_active(vcpu->kvm, fault->slot, fault->gfn, KVM_PAGE_TRACK_WRITE)) 3895 return true; 3896 3897 return false; 3898 } 3899 3900 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr) 3901 { 3902 struct kvm_shadow_walk_iterator iterator; 3903 u64 spte; 3904 3905 walk_shadow_page_lockless_begin(vcpu); 3906 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) 3907 clear_sp_write_flooding_count(iterator.sptep); 3908 walk_shadow_page_lockless_end(vcpu); 3909 } 3910 3911 static u32 alloc_apf_token(struct kvm_vcpu *vcpu) 3912 { 3913 /* make sure the token value is not 0 */ 3914 u32 id = vcpu->arch.apf.id; 3915 3916 if (id << 12 == 0) 3917 vcpu->arch.apf.id = 1; 3918 3919 return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; 3920 } 3921 3922 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 3923 gfn_t gfn) 3924 { 3925 struct kvm_arch_async_pf arch; 3926 3927 arch.token = alloc_apf_token(vcpu); 3928 arch.gfn = gfn; 3929 arch.direct_map = vcpu->arch.mmu->direct_map; 3930 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu); 3931 3932 return kvm_setup_async_pf(vcpu, cr2_or_gpa, 3933 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch); 3934 } 3935 3936 static bool kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, int *r) 3937 { 3938 struct kvm_memory_slot *slot = fault->slot; 3939 bool async; 3940 3941 /* 3942 * Retry the page fault if the gfn hit a memslot that is being deleted 3943 * or moved. This ensures any existing SPTEs for the old memslot will 3944 * be zapped before KVM inserts a new MMIO SPTE for the gfn. 3945 */ 3946 if (slot && (slot->flags & KVM_MEMSLOT_INVALID)) 3947 goto out_retry; 3948 3949 if (!kvm_is_visible_memslot(slot)) { 3950 /* Don't expose private memslots to L2. */ 3951 if (is_guest_mode(vcpu)) { 3952 fault->slot = NULL; 3953 fault->pfn = KVM_PFN_NOSLOT; 3954 fault->map_writable = false; 3955 return false; 3956 } 3957 /* 3958 * If the APIC access page exists but is disabled, go directly 3959 * to emulation without caching the MMIO access or creating a 3960 * MMIO SPTE. That way the cache doesn't need to be purged 3961 * when the AVIC is re-enabled. 3962 */ 3963 if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT && 3964 !kvm_apicv_activated(vcpu->kvm)) { 3965 *r = RET_PF_EMULATE; 3966 return true; 3967 } 3968 } 3969 3970 async = false; 3971 fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, &async, 3972 fault->write, &fault->map_writable, 3973 &fault->hva); 3974 if (!async) 3975 return false; /* *pfn has correct page already */ 3976 3977 if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) { 3978 trace_kvm_try_async_get_page(fault->addr, fault->gfn); 3979 if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) { 3980 trace_kvm_async_pf_doublefault(fault->addr, fault->gfn); 3981 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 3982 goto out_retry; 3983 } else if (kvm_arch_setup_async_pf(vcpu, fault->addr, fault->gfn)) 3984 goto out_retry; 3985 } 3986 3987 fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, NULL, 3988 fault->write, &fault->map_writable, 3989 &fault->hva); 3990 return false; 3991 3992 out_retry: 3993 *r = RET_PF_RETRY; 3994 return true; 3995 } 3996 3997 /* 3998 * Returns true if the page fault is stale and needs to be retried, i.e. if the 3999 * root was invalidated by a memslot update or a relevant mmu_notifier fired. 4000 */ 4001 static bool is_page_fault_stale(struct kvm_vcpu *vcpu, 4002 struct kvm_page_fault *fault, int mmu_seq) 4003 { 4004 struct kvm_mmu_page *sp = to_shadow_page(vcpu->arch.mmu->root.hpa); 4005 4006 /* Special roots, e.g. pae_root, are not backed by shadow pages. */ 4007 if (sp && is_obsolete_sp(vcpu->kvm, sp)) 4008 return true; 4009 4010 /* 4011 * Roots without an associated shadow page are considered invalid if 4012 * there is a pending request to free obsolete roots. The request is 4013 * only a hint that the current root _may_ be obsolete and needs to be 4014 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a 4015 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs 4016 * to reload even if no vCPU is actively using the root. 4017 */ 4018 if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 4019 return true; 4020 4021 return fault->slot && 4022 mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, fault->hva); 4023 } 4024 4025 static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4026 { 4027 bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu); 4028 4029 unsigned long mmu_seq; 4030 int r; 4031 4032 fault->gfn = fault->addr >> PAGE_SHIFT; 4033 fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn); 4034 4035 if (page_fault_handle_page_track(vcpu, fault)) 4036 return RET_PF_EMULATE; 4037 4038 r = fast_page_fault(vcpu, fault); 4039 if (r != RET_PF_INVALID) 4040 return r; 4041 4042 r = mmu_topup_memory_caches(vcpu, false); 4043 if (r) 4044 return r; 4045 4046 mmu_seq = vcpu->kvm->mmu_notifier_seq; 4047 smp_rmb(); 4048 4049 if (kvm_faultin_pfn(vcpu, fault, &r)) 4050 return r; 4051 4052 if (handle_abnormal_pfn(vcpu, fault, ACC_ALL, &r)) 4053 return r; 4054 4055 r = RET_PF_RETRY; 4056 4057 if (is_tdp_mmu_fault) 4058 read_lock(&vcpu->kvm->mmu_lock); 4059 else 4060 write_lock(&vcpu->kvm->mmu_lock); 4061 4062 if (is_page_fault_stale(vcpu, fault, mmu_seq)) 4063 goto out_unlock; 4064 4065 r = make_mmu_pages_available(vcpu); 4066 if (r) 4067 goto out_unlock; 4068 4069 if (is_tdp_mmu_fault) 4070 r = kvm_tdp_mmu_map(vcpu, fault); 4071 else 4072 r = __direct_map(vcpu, fault); 4073 4074 out_unlock: 4075 if (is_tdp_mmu_fault) 4076 read_unlock(&vcpu->kvm->mmu_lock); 4077 else 4078 write_unlock(&vcpu->kvm->mmu_lock); 4079 kvm_release_pfn_clean(fault->pfn); 4080 return r; 4081 } 4082 4083 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, 4084 struct kvm_page_fault *fault) 4085 { 4086 pgprintk("%s: gva %lx error %x\n", __func__, fault->addr, fault->error_code); 4087 4088 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */ 4089 fault->max_level = PG_LEVEL_2M; 4090 return direct_page_fault(vcpu, fault); 4091 } 4092 4093 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, 4094 u64 fault_address, char *insn, int insn_len) 4095 { 4096 int r = 1; 4097 u32 flags = vcpu->arch.apf.host_apf_flags; 4098 4099 #ifndef CONFIG_X86_64 4100 /* A 64-bit CR2 should be impossible on 32-bit KVM. */ 4101 if (WARN_ON_ONCE(fault_address >> 32)) 4102 return -EFAULT; 4103 #endif 4104 4105 vcpu->arch.l1tf_flush_l1d = true; 4106 if (!flags) { 4107 trace_kvm_page_fault(fault_address, error_code); 4108 4109 if (kvm_event_needs_reinjection(vcpu)) 4110 kvm_mmu_unprotect_page_virt(vcpu, fault_address); 4111 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn, 4112 insn_len); 4113 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) { 4114 vcpu->arch.apf.host_apf_flags = 0; 4115 local_irq_disable(); 4116 kvm_async_pf_task_wait_schedule(fault_address); 4117 local_irq_enable(); 4118 } else { 4119 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags); 4120 } 4121 4122 return r; 4123 } 4124 EXPORT_SYMBOL_GPL(kvm_handle_page_fault); 4125 4126 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4127 { 4128 while (fault->max_level > PG_LEVEL_4K) { 4129 int page_num = KVM_PAGES_PER_HPAGE(fault->max_level); 4130 gfn_t base = (fault->addr >> PAGE_SHIFT) & ~(page_num - 1); 4131 4132 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num)) 4133 break; 4134 4135 --fault->max_level; 4136 } 4137 4138 return direct_page_fault(vcpu, fault); 4139 } 4140 4141 static void nonpaging_init_context(struct kvm_mmu *context) 4142 { 4143 context->page_fault = nonpaging_page_fault; 4144 context->gva_to_gpa = nonpaging_gva_to_gpa; 4145 context->sync_page = nonpaging_sync_page; 4146 context->invlpg = NULL; 4147 context->direct_map = true; 4148 } 4149 4150 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd, 4151 union kvm_mmu_page_role role) 4152 { 4153 return (role.direct || pgd == root->pgd) && 4154 VALID_PAGE(root->hpa) && 4155 role.word == to_shadow_page(root->hpa)->role.word; 4156 } 4157 4158 /* 4159 * Find out if a previously cached root matching the new pgd/role is available, 4160 * and insert the current root as the MRU in the cache. 4161 * If a matching root is found, it is assigned to kvm_mmu->root and 4162 * true is returned. 4163 * If no match is found, kvm_mmu->root is left invalid, the LRU root is 4164 * evicted to make room for the current root, and false is returned. 4165 */ 4166 static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu, 4167 gpa_t new_pgd, 4168 union kvm_mmu_page_role new_role) 4169 { 4170 uint i; 4171 4172 if (is_root_usable(&mmu->root, new_pgd, new_role)) 4173 return true; 4174 4175 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 4176 /* 4177 * The swaps end up rotating the cache like this: 4178 * C 0 1 2 3 (on entry to the function) 4179 * 0 C 1 2 3 4180 * 1 C 0 2 3 4181 * 2 C 0 1 3 4182 * 3 C 0 1 2 (on exit from the loop) 4183 */ 4184 swap(mmu->root, mmu->prev_roots[i]); 4185 if (is_root_usable(&mmu->root, new_pgd, new_role)) 4186 return true; 4187 } 4188 4189 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 4190 return false; 4191 } 4192 4193 /* 4194 * Find out if a previously cached root matching the new pgd/role is available. 4195 * On entry, mmu->root is invalid. 4196 * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry 4197 * of the cache becomes invalid, and true is returned. 4198 * If no match is found, kvm_mmu->root is left invalid and false is returned. 4199 */ 4200 static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu, 4201 gpa_t new_pgd, 4202 union kvm_mmu_page_role new_role) 4203 { 4204 uint i; 4205 4206 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 4207 if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role)) 4208 goto hit; 4209 4210 return false; 4211 4212 hit: 4213 swap(mmu->root, mmu->prev_roots[i]); 4214 /* Bubble up the remaining roots. */ 4215 for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++) 4216 mmu->prev_roots[i] = mmu->prev_roots[i + 1]; 4217 mmu->prev_roots[i].hpa = INVALID_PAGE; 4218 return true; 4219 } 4220 4221 static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu, 4222 gpa_t new_pgd, union kvm_mmu_page_role new_role) 4223 { 4224 /* 4225 * For now, limit the caching to 64-bit hosts+VMs in order to avoid 4226 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs 4227 * later if necessary. 4228 */ 4229 if (VALID_PAGE(mmu->root.hpa) && !to_shadow_page(mmu->root.hpa)) 4230 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 4231 4232 if (VALID_PAGE(mmu->root.hpa)) 4233 return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role); 4234 else 4235 return cached_root_find_without_current(kvm, mmu, new_pgd, new_role); 4236 } 4237 4238 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd) 4239 { 4240 struct kvm_mmu *mmu = vcpu->arch.mmu; 4241 union kvm_mmu_page_role new_role = mmu->mmu_role.base; 4242 4243 if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role)) { 4244 /* kvm_mmu_ensure_valid_pgd will set up a new root. */ 4245 return; 4246 } 4247 4248 /* 4249 * It's possible that the cached previous root page is obsolete because 4250 * of a change in the MMU generation number. However, changing the 4251 * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, 4252 * which will free the root set here and allocate a new one. 4253 */ 4254 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 4255 4256 if (force_flush_and_sync_on_reuse) { 4257 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 4258 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 4259 } 4260 4261 /* 4262 * The last MMIO access's GVA and GPA are cached in the VCPU. When 4263 * switching to a new CR3, that GVA->GPA mapping may no longer be 4264 * valid. So clear any cached MMIO info even when we don't need to sync 4265 * the shadow page tables. 4266 */ 4267 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 4268 4269 /* 4270 * If this is a direct root page, it doesn't have a write flooding 4271 * count. Otherwise, clear the write flooding count. 4272 */ 4273 if (!new_role.direct) 4274 __clear_sp_write_flooding_count( 4275 to_shadow_page(vcpu->arch.mmu->root.hpa)); 4276 } 4277 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd); 4278 4279 static unsigned long get_cr3(struct kvm_vcpu *vcpu) 4280 { 4281 return kvm_read_cr3(vcpu); 4282 } 4283 4284 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, 4285 unsigned int access) 4286 { 4287 if (unlikely(is_mmio_spte(*sptep))) { 4288 if (gfn != get_mmio_spte_gfn(*sptep)) { 4289 mmu_spte_clear_no_track(sptep); 4290 return true; 4291 } 4292 4293 mark_mmio_spte(vcpu, sptep, gfn, access); 4294 return true; 4295 } 4296 4297 return false; 4298 } 4299 4300 #define PTTYPE_EPT 18 /* arbitrary */ 4301 #define PTTYPE PTTYPE_EPT 4302 #include "paging_tmpl.h" 4303 #undef PTTYPE 4304 4305 #define PTTYPE 64 4306 #include "paging_tmpl.h" 4307 #undef PTTYPE 4308 4309 #define PTTYPE 32 4310 #include "paging_tmpl.h" 4311 #undef PTTYPE 4312 4313 static void 4314 __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check, 4315 u64 pa_bits_rsvd, int level, bool nx, bool gbpages, 4316 bool pse, bool amd) 4317 { 4318 u64 gbpages_bit_rsvd = 0; 4319 u64 nonleaf_bit8_rsvd = 0; 4320 u64 high_bits_rsvd; 4321 4322 rsvd_check->bad_mt_xwr = 0; 4323 4324 if (!gbpages) 4325 gbpages_bit_rsvd = rsvd_bits(7, 7); 4326 4327 if (level == PT32E_ROOT_LEVEL) 4328 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62); 4329 else 4330 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4331 4332 /* Note, NX doesn't exist in PDPTEs, this is handled below. */ 4333 if (!nx) 4334 high_bits_rsvd |= rsvd_bits(63, 63); 4335 4336 /* 4337 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for 4338 * leaf entries) on AMD CPUs only. 4339 */ 4340 if (amd) 4341 nonleaf_bit8_rsvd = rsvd_bits(8, 8); 4342 4343 switch (level) { 4344 case PT32_ROOT_LEVEL: 4345 /* no rsvd bits for 2 level 4K page table entries */ 4346 rsvd_check->rsvd_bits_mask[0][1] = 0; 4347 rsvd_check->rsvd_bits_mask[0][0] = 0; 4348 rsvd_check->rsvd_bits_mask[1][0] = 4349 rsvd_check->rsvd_bits_mask[0][0]; 4350 4351 if (!pse) { 4352 rsvd_check->rsvd_bits_mask[1][1] = 0; 4353 break; 4354 } 4355 4356 if (is_cpuid_PSE36()) 4357 /* 36bits PSE 4MB page */ 4358 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); 4359 else 4360 /* 32 bits PSE 4MB page */ 4361 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); 4362 break; 4363 case PT32E_ROOT_LEVEL: 4364 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) | 4365 high_bits_rsvd | 4366 rsvd_bits(5, 8) | 4367 rsvd_bits(1, 2); /* PDPTE */ 4368 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */ 4369 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */ 4370 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 4371 rsvd_bits(13, 20); /* large page */ 4372 rsvd_check->rsvd_bits_mask[1][0] = 4373 rsvd_check->rsvd_bits_mask[0][0]; 4374 break; 4375 case PT64_ROOT_5LEVEL: 4376 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | 4377 nonleaf_bit8_rsvd | 4378 rsvd_bits(7, 7); 4379 rsvd_check->rsvd_bits_mask[1][4] = 4380 rsvd_check->rsvd_bits_mask[0][4]; 4381 fallthrough; 4382 case PT64_ROOT_4LEVEL: 4383 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | 4384 nonleaf_bit8_rsvd | 4385 rsvd_bits(7, 7); 4386 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | 4387 gbpages_bit_rsvd; 4388 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; 4389 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 4390 rsvd_check->rsvd_bits_mask[1][3] = 4391 rsvd_check->rsvd_bits_mask[0][3]; 4392 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | 4393 gbpages_bit_rsvd | 4394 rsvd_bits(13, 29); 4395 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 4396 rsvd_bits(13, 20); /* large page */ 4397 rsvd_check->rsvd_bits_mask[1][0] = 4398 rsvd_check->rsvd_bits_mask[0][0]; 4399 break; 4400 } 4401 } 4402 4403 static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu) 4404 { 4405 /* 4406 * If TDP is enabled, let the guest use GBPAGES if they're supported in 4407 * hardware. The hardware page walker doesn't let KVM disable GBPAGES, 4408 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA 4409 * walk for performance and complexity reasons. Not to mention KVM 4410 * _can't_ solve the problem because GVA->GPA walks aren't visible to 4411 * KVM once a TDP translation is installed. Mimic hardware behavior so 4412 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF. 4413 */ 4414 return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) : 4415 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES); 4416 } 4417 4418 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, 4419 struct kvm_mmu *context) 4420 { 4421 __reset_rsvds_bits_mask(&context->guest_rsvd_check, 4422 vcpu->arch.reserved_gpa_bits, 4423 context->root_level, is_efer_nx(context), 4424 guest_can_use_gbpages(vcpu), 4425 is_cr4_pse(context), 4426 guest_cpuid_is_amd_or_hygon(vcpu)); 4427 } 4428 4429 static void 4430 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check, 4431 u64 pa_bits_rsvd, bool execonly, int huge_page_level) 4432 { 4433 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4434 u64 large_1g_rsvd = 0, large_2m_rsvd = 0; 4435 u64 bad_mt_xwr; 4436 4437 if (huge_page_level < PG_LEVEL_1G) 4438 large_1g_rsvd = rsvd_bits(7, 7); 4439 if (huge_page_level < PG_LEVEL_2M) 4440 large_2m_rsvd = rsvd_bits(7, 7); 4441 4442 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7); 4443 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7); 4444 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd; 4445 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd; 4446 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 4447 4448 /* large page */ 4449 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4]; 4450 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3]; 4451 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd; 4452 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd; 4453 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0]; 4454 4455 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */ 4456 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */ 4457 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */ 4458 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */ 4459 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */ 4460 if (!execonly) { 4461 /* bits 0..2 must not be 100 unless VMX capabilities allow it */ 4462 bad_mt_xwr |= REPEAT_BYTE(1ull << 4); 4463 } 4464 rsvd_check->bad_mt_xwr = bad_mt_xwr; 4465 } 4466 4467 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, 4468 struct kvm_mmu *context, bool execonly, int huge_page_level) 4469 { 4470 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check, 4471 vcpu->arch.reserved_gpa_bits, execonly, 4472 huge_page_level); 4473 } 4474 4475 static inline u64 reserved_hpa_bits(void) 4476 { 4477 return rsvd_bits(shadow_phys_bits, 63); 4478 } 4479 4480 /* 4481 * the page table on host is the shadow page table for the page 4482 * table in guest or amd nested guest, its mmu features completely 4483 * follow the features in guest. 4484 */ 4485 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 4486 struct kvm_mmu *context) 4487 { 4488 /* 4489 * KVM uses NX when TDP is disabled to handle a variety of scenarios, 4490 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and 4491 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0. 4492 * The iTLB multi-hit workaround can be toggled at any time, so assume 4493 * NX can be used by any non-nested shadow MMU to avoid having to reset 4494 * MMU contexts. Note, KVM forces EFER.NX=1 when TDP is disabled. 4495 */ 4496 bool uses_nx = is_efer_nx(context) || !tdp_enabled; 4497 4498 /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */ 4499 bool is_amd = true; 4500 /* KVM doesn't use 2-level page tables for the shadow MMU. */ 4501 bool is_pse = false; 4502 struct rsvd_bits_validate *shadow_zero_check; 4503 int i; 4504 4505 WARN_ON_ONCE(context->shadow_root_level < PT32E_ROOT_LEVEL); 4506 4507 shadow_zero_check = &context->shadow_zero_check; 4508 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 4509 context->shadow_root_level, uses_nx, 4510 guest_can_use_gbpages(vcpu), is_pse, is_amd); 4511 4512 if (!shadow_me_mask) 4513 return; 4514 4515 for (i = context->shadow_root_level; --i >= 0;) { 4516 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 4517 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 4518 } 4519 4520 } 4521 4522 static inline bool boot_cpu_is_amd(void) 4523 { 4524 WARN_ON_ONCE(!tdp_enabled); 4525 return shadow_x_mask == 0; 4526 } 4527 4528 /* 4529 * the direct page table on host, use as much mmu features as 4530 * possible, however, kvm currently does not do execution-protection. 4531 */ 4532 static void 4533 reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context) 4534 { 4535 struct rsvd_bits_validate *shadow_zero_check; 4536 int i; 4537 4538 shadow_zero_check = &context->shadow_zero_check; 4539 4540 if (boot_cpu_is_amd()) 4541 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 4542 context->shadow_root_level, false, 4543 boot_cpu_has(X86_FEATURE_GBPAGES), 4544 false, true); 4545 else 4546 __reset_rsvds_bits_mask_ept(shadow_zero_check, 4547 reserved_hpa_bits(), false, 4548 max_huge_page_level); 4549 4550 if (!shadow_me_mask) 4551 return; 4552 4553 for (i = context->shadow_root_level; --i >= 0;) { 4554 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 4555 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 4556 } 4557 } 4558 4559 /* 4560 * as the comments in reset_shadow_zero_bits_mask() except it 4561 * is the shadow page table for intel nested guest. 4562 */ 4563 static void 4564 reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly) 4565 { 4566 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check, 4567 reserved_hpa_bits(), execonly, 4568 max_huge_page_level); 4569 } 4570 4571 #define BYTE_MASK(access) \ 4572 ((1 & (access) ? 2 : 0) | \ 4573 (2 & (access) ? 4 : 0) | \ 4574 (3 & (access) ? 8 : 0) | \ 4575 (4 & (access) ? 16 : 0) | \ 4576 (5 & (access) ? 32 : 0) | \ 4577 (6 & (access) ? 64 : 0) | \ 4578 (7 & (access) ? 128 : 0)) 4579 4580 4581 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept) 4582 { 4583 unsigned byte; 4584 4585 const u8 x = BYTE_MASK(ACC_EXEC_MASK); 4586 const u8 w = BYTE_MASK(ACC_WRITE_MASK); 4587 const u8 u = BYTE_MASK(ACC_USER_MASK); 4588 4589 bool cr4_smep = is_cr4_smep(mmu); 4590 bool cr4_smap = is_cr4_smap(mmu); 4591 bool cr0_wp = is_cr0_wp(mmu); 4592 bool efer_nx = is_efer_nx(mmu); 4593 4594 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { 4595 unsigned pfec = byte << 1; 4596 4597 /* 4598 * Each "*f" variable has a 1 bit for each UWX value 4599 * that causes a fault with the given PFEC. 4600 */ 4601 4602 /* Faults from writes to non-writable pages */ 4603 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0; 4604 /* Faults from user mode accesses to supervisor pages */ 4605 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0; 4606 /* Faults from fetches of non-executable pages*/ 4607 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0; 4608 /* Faults from kernel mode fetches of user pages */ 4609 u8 smepf = 0; 4610 /* Faults from kernel mode accesses of user pages */ 4611 u8 smapf = 0; 4612 4613 if (!ept) { 4614 /* Faults from kernel mode accesses to user pages */ 4615 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u; 4616 4617 /* Not really needed: !nx will cause pte.nx to fault */ 4618 if (!efer_nx) 4619 ff = 0; 4620 4621 /* Allow supervisor writes if !cr0.wp */ 4622 if (!cr0_wp) 4623 wf = (pfec & PFERR_USER_MASK) ? wf : 0; 4624 4625 /* Disallow supervisor fetches of user code if cr4.smep */ 4626 if (cr4_smep) 4627 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0; 4628 4629 /* 4630 * SMAP:kernel-mode data accesses from user-mode 4631 * mappings should fault. A fault is considered 4632 * as a SMAP violation if all of the following 4633 * conditions are true: 4634 * - X86_CR4_SMAP is set in CR4 4635 * - A user page is accessed 4636 * - The access is not a fetch 4637 * - The access is supervisor mode 4638 * - If implicit supervisor access or X86_EFLAGS_AC is clear 4639 * 4640 * Here, we cover the first four conditions. 4641 * The fifth is computed dynamically in permission_fault(); 4642 * PFERR_RSVD_MASK bit will be set in PFEC if the access is 4643 * *not* subject to SMAP restrictions. 4644 */ 4645 if (cr4_smap) 4646 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf; 4647 } 4648 4649 mmu->permissions[byte] = ff | uf | wf | smepf | smapf; 4650 } 4651 } 4652 4653 /* 4654 * PKU is an additional mechanism by which the paging controls access to 4655 * user-mode addresses based on the value in the PKRU register. Protection 4656 * key violations are reported through a bit in the page fault error code. 4657 * Unlike other bits of the error code, the PK bit is not known at the 4658 * call site of e.g. gva_to_gpa; it must be computed directly in 4659 * permission_fault based on two bits of PKRU, on some machine state (CR4, 4660 * CR0, EFER, CPL), and on other bits of the error code and the page tables. 4661 * 4662 * In particular the following conditions come from the error code, the 4663 * page tables and the machine state: 4664 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1 4665 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch) 4666 * - PK is always zero if U=0 in the page tables 4667 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access. 4668 * 4669 * The PKRU bitmask caches the result of these four conditions. The error 4670 * code (minus the P bit) and the page table's U bit form an index into the 4671 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed 4672 * with the two bits of the PKRU register corresponding to the protection key. 4673 * For the first three conditions above the bits will be 00, thus masking 4674 * away both AD and WD. For all reads or if the last condition holds, WD 4675 * only will be masked away. 4676 */ 4677 static void update_pkru_bitmask(struct kvm_mmu *mmu) 4678 { 4679 unsigned bit; 4680 bool wp; 4681 4682 mmu->pkru_mask = 0; 4683 4684 if (!is_cr4_pke(mmu)) 4685 return; 4686 4687 wp = is_cr0_wp(mmu); 4688 4689 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) { 4690 unsigned pfec, pkey_bits; 4691 bool check_pkey, check_write, ff, uf, wf, pte_user; 4692 4693 pfec = bit << 1; 4694 ff = pfec & PFERR_FETCH_MASK; 4695 uf = pfec & PFERR_USER_MASK; 4696 wf = pfec & PFERR_WRITE_MASK; 4697 4698 /* PFEC.RSVD is replaced by ACC_USER_MASK. */ 4699 pte_user = pfec & PFERR_RSVD_MASK; 4700 4701 /* 4702 * Only need to check the access which is not an 4703 * instruction fetch and is to a user page. 4704 */ 4705 check_pkey = (!ff && pte_user); 4706 /* 4707 * write access is controlled by PKRU if it is a 4708 * user access or CR0.WP = 1. 4709 */ 4710 check_write = check_pkey && wf && (uf || wp); 4711 4712 /* PKRU.AD stops both read and write access. */ 4713 pkey_bits = !!check_pkey; 4714 /* PKRU.WD stops write access. */ 4715 pkey_bits |= (!!check_write) << 1; 4716 4717 mmu->pkru_mask |= (pkey_bits & 3) << pfec; 4718 } 4719 } 4720 4721 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu, 4722 struct kvm_mmu *mmu) 4723 { 4724 if (!is_cr0_pg(mmu)) 4725 return; 4726 4727 reset_rsvds_bits_mask(vcpu, mmu); 4728 update_permission_bitmask(mmu, false); 4729 update_pkru_bitmask(mmu); 4730 } 4731 4732 static void paging64_init_context(struct kvm_mmu *context) 4733 { 4734 context->page_fault = paging64_page_fault; 4735 context->gva_to_gpa = paging64_gva_to_gpa; 4736 context->sync_page = paging64_sync_page; 4737 context->invlpg = paging64_invlpg; 4738 context->direct_map = false; 4739 } 4740 4741 static void paging32_init_context(struct kvm_mmu *context) 4742 { 4743 context->page_fault = paging32_page_fault; 4744 context->gva_to_gpa = paging32_gva_to_gpa; 4745 context->sync_page = paging32_sync_page; 4746 context->invlpg = paging32_invlpg; 4747 context->direct_map = false; 4748 } 4749 4750 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu, 4751 struct kvm_mmu_role_regs *regs) 4752 { 4753 union kvm_mmu_extended_role ext = {0}; 4754 4755 if (____is_cr0_pg(regs)) { 4756 ext.cr0_pg = 1; 4757 ext.cr4_pae = ____is_cr4_pae(regs); 4758 ext.cr4_smep = ____is_cr4_smep(regs); 4759 ext.cr4_smap = ____is_cr4_smap(regs); 4760 ext.cr4_pse = ____is_cr4_pse(regs); 4761 4762 /* PKEY and LA57 are active iff long mode is active. */ 4763 ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs); 4764 ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs); 4765 ext.efer_lma = ____is_efer_lma(regs); 4766 } 4767 4768 ext.valid = 1; 4769 4770 return ext; 4771 } 4772 4773 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu, 4774 struct kvm_mmu_role_regs *regs, 4775 bool base_only) 4776 { 4777 union kvm_mmu_role role = {0}; 4778 4779 role.base.access = ACC_ALL; 4780 if (____is_cr0_pg(regs)) { 4781 role.base.efer_nx = ____is_efer_nx(regs); 4782 role.base.cr0_wp = ____is_cr0_wp(regs); 4783 } 4784 role.base.smm = is_smm(vcpu); 4785 role.base.guest_mode = is_guest_mode(vcpu); 4786 4787 if (base_only) 4788 return role; 4789 4790 role.ext = kvm_calc_mmu_role_ext(vcpu, regs); 4791 4792 return role; 4793 } 4794 4795 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu) 4796 { 4797 /* tdp_root_level is architecture forced level, use it if nonzero */ 4798 if (tdp_root_level) 4799 return tdp_root_level; 4800 4801 /* Use 5-level TDP if and only if it's useful/necessary. */ 4802 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48) 4803 return 4; 4804 4805 return max_tdp_level; 4806 } 4807 4808 static union kvm_mmu_role 4809 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, 4810 struct kvm_mmu_role_regs *regs, bool base_only) 4811 { 4812 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only); 4813 4814 role.base.ad_disabled = (shadow_accessed_mask == 0); 4815 role.base.level = kvm_mmu_get_tdp_level(vcpu); 4816 role.base.direct = true; 4817 role.base.has_4_byte_gpte = false; 4818 4819 return role; 4820 } 4821 4822 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu) 4823 { 4824 struct kvm_mmu *context = &vcpu->arch.root_mmu; 4825 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 4826 union kvm_mmu_role new_role = 4827 kvm_calc_tdp_mmu_root_page_role(vcpu, ®s, false); 4828 4829 if (new_role.as_u64 == context->mmu_role.as_u64) 4830 return; 4831 4832 context->mmu_role.as_u64 = new_role.as_u64; 4833 context->page_fault = kvm_tdp_page_fault; 4834 context->sync_page = nonpaging_sync_page; 4835 context->invlpg = NULL; 4836 context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu); 4837 context->direct_map = true; 4838 context->get_guest_pgd = get_cr3; 4839 context->get_pdptr = kvm_pdptr_read; 4840 context->inject_page_fault = kvm_inject_page_fault; 4841 context->root_level = role_regs_to_root_level(®s); 4842 4843 if (!is_cr0_pg(context)) 4844 context->gva_to_gpa = nonpaging_gva_to_gpa; 4845 else if (is_cr4_pae(context)) 4846 context->gva_to_gpa = paging64_gva_to_gpa; 4847 else 4848 context->gva_to_gpa = paging32_gva_to_gpa; 4849 4850 reset_guest_paging_metadata(vcpu, context); 4851 reset_tdp_shadow_zero_bits_mask(context); 4852 } 4853 4854 static union kvm_mmu_role 4855 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, 4856 struct kvm_mmu_role_regs *regs, bool base_only) 4857 { 4858 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only); 4859 4860 role.base.smep_andnot_wp = role.ext.cr4_smep && !____is_cr0_wp(regs); 4861 role.base.smap_andnot_wp = role.ext.cr4_smap && !____is_cr0_wp(regs); 4862 role.base.has_4_byte_gpte = ____is_cr0_pg(regs) && !____is_cr4_pae(regs); 4863 4864 return role; 4865 } 4866 4867 static union kvm_mmu_role 4868 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, 4869 struct kvm_mmu_role_regs *regs, bool base_only) 4870 { 4871 union kvm_mmu_role role = 4872 kvm_calc_shadow_root_page_role_common(vcpu, regs, base_only); 4873 4874 role.base.direct = !____is_cr0_pg(regs); 4875 4876 if (!____is_efer_lma(regs)) 4877 role.base.level = PT32E_ROOT_LEVEL; 4878 else if (____is_cr4_la57(regs)) 4879 role.base.level = PT64_ROOT_5LEVEL; 4880 else 4881 role.base.level = PT64_ROOT_4LEVEL; 4882 4883 return role; 4884 } 4885 4886 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context, 4887 struct kvm_mmu_role_regs *regs, 4888 union kvm_mmu_role new_role) 4889 { 4890 if (new_role.as_u64 == context->mmu_role.as_u64) 4891 return; 4892 4893 context->mmu_role.as_u64 = new_role.as_u64; 4894 4895 if (!is_cr0_pg(context)) 4896 nonpaging_init_context(context); 4897 else if (is_cr4_pae(context)) 4898 paging64_init_context(context); 4899 else 4900 paging32_init_context(context); 4901 context->root_level = role_regs_to_root_level(regs); 4902 4903 reset_guest_paging_metadata(vcpu, context); 4904 context->shadow_root_level = new_role.base.level; 4905 4906 reset_shadow_zero_bits_mask(vcpu, context); 4907 } 4908 4909 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, 4910 struct kvm_mmu_role_regs *regs) 4911 { 4912 struct kvm_mmu *context = &vcpu->arch.root_mmu; 4913 union kvm_mmu_role new_role = 4914 kvm_calc_shadow_mmu_root_page_role(vcpu, regs, false); 4915 4916 shadow_mmu_init_context(vcpu, context, regs, new_role); 4917 } 4918 4919 static union kvm_mmu_role 4920 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu, 4921 struct kvm_mmu_role_regs *regs) 4922 { 4923 union kvm_mmu_role role = 4924 kvm_calc_shadow_root_page_role_common(vcpu, regs, false); 4925 4926 role.base.direct = false; 4927 role.base.level = kvm_mmu_get_tdp_level(vcpu); 4928 4929 return role; 4930 } 4931 4932 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0, 4933 unsigned long cr4, u64 efer, gpa_t nested_cr3) 4934 { 4935 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 4936 struct kvm_mmu_role_regs regs = { 4937 .cr0 = cr0, 4938 .cr4 = cr4 & ~X86_CR4_PKE, 4939 .efer = efer, 4940 }; 4941 union kvm_mmu_role new_role; 4942 4943 new_role = kvm_calc_shadow_npt_root_page_role(vcpu, ®s); 4944 4945 shadow_mmu_init_context(vcpu, context, ®s, new_role); 4946 kvm_mmu_new_pgd(vcpu, nested_cr3); 4947 } 4948 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu); 4949 4950 static union kvm_mmu_role 4951 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty, 4952 bool execonly, u8 level) 4953 { 4954 union kvm_mmu_role role = {0}; 4955 4956 /* SMM flag is inherited from root_mmu */ 4957 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm; 4958 4959 role.base.level = level; 4960 role.base.has_4_byte_gpte = false; 4961 role.base.direct = false; 4962 role.base.ad_disabled = !accessed_dirty; 4963 role.base.guest_mode = true; 4964 role.base.access = ACC_ALL; 4965 4966 /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */ 4967 role.ext.word = 0; 4968 role.ext.execonly = execonly; 4969 role.ext.valid = 1; 4970 4971 return role; 4972 } 4973 4974 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, 4975 int huge_page_level, bool accessed_dirty, 4976 gpa_t new_eptp) 4977 { 4978 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 4979 u8 level = vmx_eptp_page_walk_level(new_eptp); 4980 union kvm_mmu_role new_role = 4981 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty, 4982 execonly, level); 4983 4984 if (new_role.as_u64 != context->mmu_role.as_u64) { 4985 context->mmu_role.as_u64 = new_role.as_u64; 4986 4987 context->shadow_root_level = level; 4988 4989 context->ept_ad = accessed_dirty; 4990 context->page_fault = ept_page_fault; 4991 context->gva_to_gpa = ept_gva_to_gpa; 4992 context->sync_page = ept_sync_page; 4993 context->invlpg = ept_invlpg; 4994 context->root_level = level; 4995 context->direct_map = false; 4996 update_permission_bitmask(context, true); 4997 context->pkru_mask = 0; 4998 reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level); 4999 reset_ept_shadow_zero_bits_mask(context, execonly); 5000 } 5001 5002 kvm_mmu_new_pgd(vcpu, new_eptp); 5003 } 5004 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); 5005 5006 static void init_kvm_softmmu(struct kvm_vcpu *vcpu) 5007 { 5008 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5009 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 5010 5011 kvm_init_shadow_mmu(vcpu, ®s); 5012 5013 context->get_guest_pgd = get_cr3; 5014 context->get_pdptr = kvm_pdptr_read; 5015 context->inject_page_fault = kvm_inject_page_fault; 5016 } 5017 5018 static union kvm_mmu_role 5019 kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu, struct kvm_mmu_role_regs *regs) 5020 { 5021 union kvm_mmu_role role; 5022 5023 role = kvm_calc_shadow_root_page_role_common(vcpu, regs, false); 5024 5025 /* 5026 * Nested MMUs are used only for walking L2's gva->gpa, they never have 5027 * shadow pages of their own and so "direct" has no meaning. Set it 5028 * to "true" to try to detect bogus usage of the nested MMU. 5029 */ 5030 role.base.direct = true; 5031 role.base.level = role_regs_to_root_level(regs); 5032 return role; 5033 } 5034 5035 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu) 5036 { 5037 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 5038 union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu, ®s); 5039 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; 5040 5041 if (new_role.as_u64 == g_context->mmu_role.as_u64) 5042 return; 5043 5044 g_context->mmu_role.as_u64 = new_role.as_u64; 5045 g_context->get_guest_pgd = get_cr3; 5046 g_context->get_pdptr = kvm_pdptr_read; 5047 g_context->inject_page_fault = kvm_inject_page_fault; 5048 g_context->root_level = new_role.base.level; 5049 5050 /* 5051 * L2 page tables are never shadowed, so there is no need to sync 5052 * SPTEs. 5053 */ 5054 g_context->invlpg = NULL; 5055 5056 /* 5057 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using 5058 * L1's nested page tables (e.g. EPT12). The nested translation 5059 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using 5060 * L2's page tables as the first level of translation and L1's 5061 * nested page tables as the second level of translation. Basically 5062 * the gva_to_gpa functions between mmu and nested_mmu are swapped. 5063 */ 5064 if (!is_paging(vcpu)) 5065 g_context->gva_to_gpa = nonpaging_gva_to_gpa; 5066 else if (is_long_mode(vcpu)) 5067 g_context->gva_to_gpa = paging64_gva_to_gpa; 5068 else if (is_pae(vcpu)) 5069 g_context->gva_to_gpa = paging64_gva_to_gpa; 5070 else 5071 g_context->gva_to_gpa = paging32_gva_to_gpa; 5072 5073 reset_guest_paging_metadata(vcpu, g_context); 5074 } 5075 5076 void kvm_init_mmu(struct kvm_vcpu *vcpu) 5077 { 5078 if (mmu_is_nested(vcpu)) 5079 init_kvm_nested_mmu(vcpu); 5080 else if (tdp_enabled) 5081 init_kvm_tdp_mmu(vcpu); 5082 else 5083 init_kvm_softmmu(vcpu); 5084 } 5085 EXPORT_SYMBOL_GPL(kvm_init_mmu); 5086 5087 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu) 5088 { 5089 /* 5090 * Invalidate all MMU roles to force them to reinitialize as CPUID 5091 * information is factored into reserved bit calculations. 5092 * 5093 * Correctly handling multiple vCPU models with respect to paging and 5094 * physical address properties) in a single VM would require tracking 5095 * all relevant CPUID information in kvm_mmu_page_role. That is very 5096 * undesirable as it would increase the memory requirements for 5097 * gfn_track (see struct kvm_mmu_page_role comments). For now that 5098 * problem is swept under the rug; KVM's CPUID API is horrific and 5099 * it's all but impossible to solve it without introducing a new API. 5100 */ 5101 vcpu->arch.root_mmu.mmu_role.ext.valid = 0; 5102 vcpu->arch.guest_mmu.mmu_role.ext.valid = 0; 5103 vcpu->arch.nested_mmu.mmu_role.ext.valid = 0; 5104 kvm_mmu_reset_context(vcpu); 5105 5106 /* 5107 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in 5108 * kvm_arch_vcpu_ioctl(). 5109 */ 5110 KVM_BUG_ON(vcpu->arch.last_vmentry_cpu != -1, vcpu->kvm); 5111 } 5112 5113 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu) 5114 { 5115 kvm_mmu_unload(vcpu); 5116 kvm_init_mmu(vcpu); 5117 } 5118 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); 5119 5120 int kvm_mmu_load(struct kvm_vcpu *vcpu) 5121 { 5122 int r; 5123 5124 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map); 5125 if (r) 5126 goto out; 5127 r = mmu_alloc_special_roots(vcpu); 5128 if (r) 5129 goto out; 5130 if (vcpu->arch.mmu->direct_map) 5131 r = mmu_alloc_direct_roots(vcpu); 5132 else 5133 r = mmu_alloc_shadow_roots(vcpu); 5134 if (r) 5135 goto out; 5136 5137 kvm_mmu_sync_roots(vcpu); 5138 5139 kvm_mmu_load_pgd(vcpu); 5140 5141 /* 5142 * Flush any TLB entries for the new root, the provenance of the root 5143 * is unknown. Even if KVM ensures there are no stale TLB entries 5144 * for a freed root, in theory another hypervisor could have left 5145 * stale entries. Flushing on alloc also allows KVM to skip the TLB 5146 * flush when freeing a root (see kvm_tdp_mmu_put_root()). 5147 */ 5148 static_call(kvm_x86_flush_tlb_current)(vcpu); 5149 out: 5150 return r; 5151 } 5152 5153 void kvm_mmu_unload(struct kvm_vcpu *vcpu) 5154 { 5155 struct kvm *kvm = vcpu->kvm; 5156 5157 kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL); 5158 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root.hpa)); 5159 kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); 5160 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa)); 5161 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 5162 } 5163 5164 static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa) 5165 { 5166 struct kvm_mmu_page *sp; 5167 5168 if (!VALID_PAGE(root_hpa)) 5169 return false; 5170 5171 /* 5172 * When freeing obsolete roots, treat roots as obsolete if they don't 5173 * have an associated shadow page. This does mean KVM will get false 5174 * positives and free roots that don't strictly need to be freed, but 5175 * such false positives are relatively rare: 5176 * 5177 * (a) only PAE paging and nested NPT has roots without shadow pages 5178 * (b) remote reloads due to a memslot update obsoletes _all_ roots 5179 * (c) KVM doesn't track previous roots for PAE paging, and the guest 5180 * is unlikely to zap an in-use PGD. 5181 */ 5182 sp = to_shadow_page(root_hpa); 5183 return !sp || is_obsolete_sp(kvm, sp); 5184 } 5185 5186 static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu) 5187 { 5188 unsigned long roots_to_free = 0; 5189 int i; 5190 5191 if (is_obsolete_root(kvm, mmu->root.hpa)) 5192 roots_to_free |= KVM_MMU_ROOT_CURRENT; 5193 5194 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5195 if (is_obsolete_root(kvm, mmu->root.hpa)) 5196 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 5197 } 5198 5199 if (roots_to_free) 5200 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 5201 } 5202 5203 void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu) 5204 { 5205 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu); 5206 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu); 5207 } 5208 5209 static bool need_remote_flush(u64 old, u64 new) 5210 { 5211 if (!is_shadow_present_pte(old)) 5212 return false; 5213 if (!is_shadow_present_pte(new)) 5214 return true; 5215 if ((old ^ new) & PT64_BASE_ADDR_MASK) 5216 return true; 5217 old ^= shadow_nx_mask; 5218 new ^= shadow_nx_mask; 5219 return (old & ~new & PT64_PERM_MASK) != 0; 5220 } 5221 5222 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, 5223 int *bytes) 5224 { 5225 u64 gentry = 0; 5226 int r; 5227 5228 /* 5229 * Assume that the pte write on a page table of the same type 5230 * as the current vcpu paging mode since we update the sptes only 5231 * when they have the same mode. 5232 */ 5233 if (is_pae(vcpu) && *bytes == 4) { 5234 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ 5235 *gpa &= ~(gpa_t)7; 5236 *bytes = 8; 5237 } 5238 5239 if (*bytes == 4 || *bytes == 8) { 5240 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes); 5241 if (r) 5242 gentry = 0; 5243 } 5244 5245 return gentry; 5246 } 5247 5248 /* 5249 * If we're seeing too many writes to a page, it may no longer be a page table, 5250 * or we may be forking, in which case it is better to unmap the page. 5251 */ 5252 static bool detect_write_flooding(struct kvm_mmu_page *sp) 5253 { 5254 /* 5255 * Skip write-flooding detected for the sp whose level is 1, because 5256 * it can become unsync, then the guest page is not write-protected. 5257 */ 5258 if (sp->role.level == PG_LEVEL_4K) 5259 return false; 5260 5261 atomic_inc(&sp->write_flooding_count); 5262 return atomic_read(&sp->write_flooding_count) >= 3; 5263 } 5264 5265 /* 5266 * Misaligned accesses are too much trouble to fix up; also, they usually 5267 * indicate a page is not used as a page table. 5268 */ 5269 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, 5270 int bytes) 5271 { 5272 unsigned offset, pte_size, misaligned; 5273 5274 pgprintk("misaligned: gpa %llx bytes %d role %x\n", 5275 gpa, bytes, sp->role.word); 5276 5277 offset = offset_in_page(gpa); 5278 pte_size = sp->role.has_4_byte_gpte ? 4 : 8; 5279 5280 /* 5281 * Sometimes, the OS only writes the last one bytes to update status 5282 * bits, for example, in linux, andb instruction is used in clear_bit(). 5283 */ 5284 if (!(offset & (pte_size - 1)) && bytes == 1) 5285 return false; 5286 5287 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); 5288 misaligned |= bytes < 4; 5289 5290 return misaligned; 5291 } 5292 5293 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) 5294 { 5295 unsigned page_offset, quadrant; 5296 u64 *spte; 5297 int level; 5298 5299 page_offset = offset_in_page(gpa); 5300 level = sp->role.level; 5301 *nspte = 1; 5302 if (sp->role.has_4_byte_gpte) { 5303 page_offset <<= 1; /* 32->64 */ 5304 /* 5305 * A 32-bit pde maps 4MB while the shadow pdes map 5306 * only 2MB. So we need to double the offset again 5307 * and zap two pdes instead of one. 5308 */ 5309 if (level == PT32_ROOT_LEVEL) { 5310 page_offset &= ~7; /* kill rounding error */ 5311 page_offset <<= 1; 5312 *nspte = 2; 5313 } 5314 quadrant = page_offset >> PAGE_SHIFT; 5315 page_offset &= ~PAGE_MASK; 5316 if (quadrant != sp->role.quadrant) 5317 return NULL; 5318 } 5319 5320 spte = &sp->spt[page_offset / sizeof(*spte)]; 5321 return spte; 5322 } 5323 5324 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, 5325 const u8 *new, int bytes, 5326 struct kvm_page_track_notifier_node *node) 5327 { 5328 gfn_t gfn = gpa >> PAGE_SHIFT; 5329 struct kvm_mmu_page *sp; 5330 LIST_HEAD(invalid_list); 5331 u64 entry, gentry, *spte; 5332 int npte; 5333 bool flush = false; 5334 5335 /* 5336 * If we don't have indirect shadow pages, it means no page is 5337 * write-protected, so we can exit simply. 5338 */ 5339 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages)) 5340 return; 5341 5342 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes); 5343 5344 /* 5345 * No need to care whether allocation memory is successful 5346 * or not since pte prefetch is skipped if it does not have 5347 * enough objects in the cache. 5348 */ 5349 mmu_topup_memory_caches(vcpu, true); 5350 5351 write_lock(&vcpu->kvm->mmu_lock); 5352 5353 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes); 5354 5355 ++vcpu->kvm->stat.mmu_pte_write; 5356 5357 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) { 5358 if (detect_write_misaligned(sp, gpa, bytes) || 5359 detect_write_flooding(sp)) { 5360 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); 5361 ++vcpu->kvm->stat.mmu_flooded; 5362 continue; 5363 } 5364 5365 spte = get_written_sptes(sp, gpa, &npte); 5366 if (!spte) 5367 continue; 5368 5369 while (npte--) { 5370 entry = *spte; 5371 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL); 5372 if (gentry && sp->role.level != PG_LEVEL_4K) 5373 ++vcpu->kvm->stat.mmu_pde_zapped; 5374 if (need_remote_flush(entry, *spte)) 5375 flush = true; 5376 ++spte; 5377 } 5378 } 5379 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 5380 write_unlock(&vcpu->kvm->mmu_lock); 5381 } 5382 5383 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 5384 void *insn, int insn_len) 5385 { 5386 int r, emulation_type = EMULTYPE_PF; 5387 bool direct = vcpu->arch.mmu->direct_map; 5388 5389 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root.hpa))) 5390 return RET_PF_RETRY; 5391 5392 r = RET_PF_INVALID; 5393 if (unlikely(error_code & PFERR_RSVD_MASK)) { 5394 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct); 5395 if (r == RET_PF_EMULATE) 5396 goto emulate; 5397 } 5398 5399 if (r == RET_PF_INVALID) { 5400 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, 5401 lower_32_bits(error_code), false); 5402 if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm)) 5403 return -EIO; 5404 } 5405 5406 if (r < 0) 5407 return r; 5408 if (r != RET_PF_EMULATE) 5409 return 1; 5410 5411 /* 5412 * Before emulating the instruction, check if the error code 5413 * was due to a RO violation while translating the guest page. 5414 * This can occur when using nested virtualization with nested 5415 * paging in both guests. If true, we simply unprotect the page 5416 * and resume the guest. 5417 */ 5418 if (vcpu->arch.mmu->direct_map && 5419 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) { 5420 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa)); 5421 return 1; 5422 } 5423 5424 /* 5425 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still 5426 * optimistically try to just unprotect the page and let the processor 5427 * re-execute the instruction that caused the page fault. Do not allow 5428 * retrying MMIO emulation, as it's not only pointless but could also 5429 * cause us to enter an infinite loop because the processor will keep 5430 * faulting on the non-existent MMIO address. Retrying an instruction 5431 * from a nested guest is also pointless and dangerous as we are only 5432 * explicitly shadowing L1's page tables, i.e. unprotecting something 5433 * for L1 isn't going to magically fix whatever issue cause L2 to fail. 5434 */ 5435 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu)) 5436 emulation_type |= EMULTYPE_ALLOW_RETRY_PF; 5437 emulate: 5438 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn, 5439 insn_len); 5440 } 5441 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); 5442 5443 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 5444 gva_t gva, hpa_t root_hpa) 5445 { 5446 int i; 5447 5448 /* It's actually a GPA for vcpu->arch.guest_mmu. */ 5449 if (mmu != &vcpu->arch.guest_mmu) { 5450 /* INVLPG on a non-canonical address is a NOP according to the SDM. */ 5451 if (is_noncanonical_address(gva, vcpu)) 5452 return; 5453 5454 static_call(kvm_x86_flush_tlb_gva)(vcpu, gva); 5455 } 5456 5457 if (!mmu->invlpg) 5458 return; 5459 5460 if (root_hpa == INVALID_PAGE) { 5461 mmu->invlpg(vcpu, gva, mmu->root.hpa); 5462 5463 /* 5464 * INVLPG is required to invalidate any global mappings for the VA, 5465 * irrespective of PCID. Since it would take us roughly similar amount 5466 * of work to determine whether any of the prev_root mappings of the VA 5467 * is marked global, or to just sync it blindly, so we might as well 5468 * just always sync it. 5469 * 5470 * Mappings not reachable via the current cr3 or the prev_roots will be 5471 * synced when switching to that cr3, so nothing needs to be done here 5472 * for them. 5473 */ 5474 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5475 if (VALID_PAGE(mmu->prev_roots[i].hpa)) 5476 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); 5477 } else { 5478 mmu->invlpg(vcpu, gva, root_hpa); 5479 } 5480 } 5481 5482 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) 5483 { 5484 kvm_mmu_invalidate_gva(vcpu, vcpu->arch.walk_mmu, gva, INVALID_PAGE); 5485 ++vcpu->stat.invlpg; 5486 } 5487 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); 5488 5489 5490 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid) 5491 { 5492 struct kvm_mmu *mmu = vcpu->arch.mmu; 5493 bool tlb_flush = false; 5494 uint i; 5495 5496 if (pcid == kvm_get_active_pcid(vcpu)) { 5497 mmu->invlpg(vcpu, gva, mmu->root.hpa); 5498 tlb_flush = true; 5499 } 5500 5501 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5502 if (VALID_PAGE(mmu->prev_roots[i].hpa) && 5503 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) { 5504 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); 5505 tlb_flush = true; 5506 } 5507 } 5508 5509 if (tlb_flush) 5510 static_call(kvm_x86_flush_tlb_gva)(vcpu, gva); 5511 5512 ++vcpu->stat.invlpg; 5513 5514 /* 5515 * Mappings not reachable via the current cr3 or the prev_roots will be 5516 * synced when switching to that cr3, so nothing needs to be done here 5517 * for them. 5518 */ 5519 } 5520 5521 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 5522 int tdp_max_root_level, int tdp_huge_page_level) 5523 { 5524 tdp_enabled = enable_tdp; 5525 tdp_root_level = tdp_forced_root_level; 5526 max_tdp_level = tdp_max_root_level; 5527 5528 /* 5529 * max_huge_page_level reflects KVM's MMU capabilities irrespective 5530 * of kernel support, e.g. KVM may be capable of using 1GB pages when 5531 * the kernel is not. But, KVM never creates a page size greater than 5532 * what is used by the kernel for any given HVA, i.e. the kernel's 5533 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust(). 5534 */ 5535 if (tdp_enabled) 5536 max_huge_page_level = tdp_huge_page_level; 5537 else if (boot_cpu_has(X86_FEATURE_GBPAGES)) 5538 max_huge_page_level = PG_LEVEL_1G; 5539 else 5540 max_huge_page_level = PG_LEVEL_2M; 5541 } 5542 EXPORT_SYMBOL_GPL(kvm_configure_mmu); 5543 5544 /* The return value indicates if tlb flush on all vcpus is needed. */ 5545 typedef bool (*slot_level_handler) (struct kvm *kvm, 5546 struct kvm_rmap_head *rmap_head, 5547 const struct kvm_memory_slot *slot); 5548 5549 /* The caller should hold mmu-lock before calling this function. */ 5550 static __always_inline bool 5551 slot_handle_level_range(struct kvm *kvm, const struct kvm_memory_slot *memslot, 5552 slot_level_handler fn, int start_level, int end_level, 5553 gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield, 5554 bool flush) 5555 { 5556 struct slot_rmap_walk_iterator iterator; 5557 5558 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn, 5559 end_gfn, &iterator) { 5560 if (iterator.rmap) 5561 flush |= fn(kvm, iterator.rmap, memslot); 5562 5563 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 5564 if (flush && flush_on_yield) { 5565 kvm_flush_remote_tlbs_with_address(kvm, 5566 start_gfn, 5567 iterator.gfn - start_gfn + 1); 5568 flush = false; 5569 } 5570 cond_resched_rwlock_write(&kvm->mmu_lock); 5571 } 5572 } 5573 5574 return flush; 5575 } 5576 5577 static __always_inline bool 5578 slot_handle_level(struct kvm *kvm, const struct kvm_memory_slot *memslot, 5579 slot_level_handler fn, int start_level, int end_level, 5580 bool flush_on_yield) 5581 { 5582 return slot_handle_level_range(kvm, memslot, fn, start_level, 5583 end_level, memslot->base_gfn, 5584 memslot->base_gfn + memslot->npages - 1, 5585 flush_on_yield, false); 5586 } 5587 5588 static __always_inline bool 5589 slot_handle_level_4k(struct kvm *kvm, const struct kvm_memory_slot *memslot, 5590 slot_level_handler fn, bool flush_on_yield) 5591 { 5592 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K, 5593 PG_LEVEL_4K, flush_on_yield); 5594 } 5595 5596 static void free_mmu_pages(struct kvm_mmu *mmu) 5597 { 5598 if (!tdp_enabled && mmu->pae_root) 5599 set_memory_encrypted((unsigned long)mmu->pae_root, 1); 5600 free_page((unsigned long)mmu->pae_root); 5601 free_page((unsigned long)mmu->pml4_root); 5602 free_page((unsigned long)mmu->pml5_root); 5603 } 5604 5605 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 5606 { 5607 struct page *page; 5608 int i; 5609 5610 mmu->root.hpa = INVALID_PAGE; 5611 mmu->root.pgd = 0; 5612 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5613 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 5614 5615 /* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */ 5616 if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu) 5617 return 0; 5618 5619 /* 5620 * When using PAE paging, the four PDPTEs are treated as 'root' pages, 5621 * while the PDP table is a per-vCPU construct that's allocated at MMU 5622 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on 5623 * x86_64. Therefore we need to allocate the PDP table in the first 5624 * 4GB of memory, which happens to fit the DMA32 zone. TDP paging 5625 * generally doesn't use PAE paging and can skip allocating the PDP 5626 * table. The main exception, handled here, is SVM's 32-bit NPT. The 5627 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit 5628 * KVM; that horror is handled on-demand by mmu_alloc_special_roots(). 5629 */ 5630 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL) 5631 return 0; 5632 5633 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32); 5634 if (!page) 5635 return -ENOMEM; 5636 5637 mmu->pae_root = page_address(page); 5638 5639 /* 5640 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to 5641 * get the CPU to treat the PDPTEs as encrypted. Decrypt the page so 5642 * that KVM's writes and the CPU's reads get along. Note, this is 5643 * only necessary when using shadow paging, as 64-bit NPT can get at 5644 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported 5645 * by 32-bit kernels (when KVM itself uses 32-bit NPT). 5646 */ 5647 if (!tdp_enabled) 5648 set_memory_decrypted((unsigned long)mmu->pae_root, 1); 5649 else 5650 WARN_ON_ONCE(shadow_me_mask); 5651 5652 for (i = 0; i < 4; ++i) 5653 mmu->pae_root[i] = INVALID_PAE_ROOT; 5654 5655 return 0; 5656 } 5657 5658 int kvm_mmu_create(struct kvm_vcpu *vcpu) 5659 { 5660 int ret; 5661 5662 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache; 5663 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO; 5664 5665 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache; 5666 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO; 5667 5668 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO; 5669 5670 vcpu->arch.mmu = &vcpu->arch.root_mmu; 5671 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; 5672 5673 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu); 5674 if (ret) 5675 return ret; 5676 5677 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu); 5678 if (ret) 5679 goto fail_allocate_root; 5680 5681 return ret; 5682 fail_allocate_root: 5683 free_mmu_pages(&vcpu->arch.guest_mmu); 5684 return ret; 5685 } 5686 5687 #define BATCH_ZAP_PAGES 10 5688 static void kvm_zap_obsolete_pages(struct kvm *kvm) 5689 { 5690 struct kvm_mmu_page *sp, *node; 5691 int nr_zapped, batch = 0; 5692 5693 restart: 5694 list_for_each_entry_safe_reverse(sp, node, 5695 &kvm->arch.active_mmu_pages, link) { 5696 /* 5697 * No obsolete valid page exists before a newly created page 5698 * since active_mmu_pages is a FIFO list. 5699 */ 5700 if (!is_obsolete_sp(kvm, sp)) 5701 break; 5702 5703 /* 5704 * Invalid pages should never land back on the list of active 5705 * pages. Skip the bogus page, otherwise we'll get stuck in an 5706 * infinite loop if the page gets put back on the list (again). 5707 */ 5708 if (WARN_ON(sp->role.invalid)) 5709 continue; 5710 5711 /* 5712 * No need to flush the TLB since we're only zapping shadow 5713 * pages with an obsolete generation number and all vCPUS have 5714 * loaded a new root, i.e. the shadow pages being zapped cannot 5715 * be in active use by the guest. 5716 */ 5717 if (batch >= BATCH_ZAP_PAGES && 5718 cond_resched_rwlock_write(&kvm->mmu_lock)) { 5719 batch = 0; 5720 goto restart; 5721 } 5722 5723 if (__kvm_mmu_prepare_zap_page(kvm, sp, 5724 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) { 5725 batch += nr_zapped; 5726 goto restart; 5727 } 5728 } 5729 5730 /* 5731 * Kick all vCPUs (via remote TLB flush) before freeing the page tables 5732 * to ensure KVM is not in the middle of a lockless shadow page table 5733 * walk, which may reference the pages. The remote TLB flush itself is 5734 * not required and is simply a convenient way to kick vCPUs as needed. 5735 * KVM performs a local TLB flush when allocating a new root (see 5736 * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are 5737 * running with an obsolete MMU. 5738 */ 5739 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages); 5740 } 5741 5742 /* 5743 * Fast invalidate all shadow pages and use lock-break technique 5744 * to zap obsolete pages. 5745 * 5746 * It's required when memslot is being deleted or VM is being 5747 * destroyed, in these cases, we should ensure that KVM MMU does 5748 * not use any resource of the being-deleted slot or all slots 5749 * after calling the function. 5750 */ 5751 static void kvm_mmu_zap_all_fast(struct kvm *kvm) 5752 { 5753 lockdep_assert_held(&kvm->slots_lock); 5754 5755 write_lock(&kvm->mmu_lock); 5756 trace_kvm_mmu_zap_all_fast(kvm); 5757 5758 /* 5759 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is 5760 * held for the entire duration of zapping obsolete pages, it's 5761 * impossible for there to be multiple invalid generations associated 5762 * with *valid* shadow pages at any given time, i.e. there is exactly 5763 * one valid generation and (at most) one invalid generation. 5764 */ 5765 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1; 5766 5767 /* 5768 * In order to ensure all vCPUs drop their soon-to-be invalid roots, 5769 * invalidating TDP MMU roots must be done while holding mmu_lock for 5770 * write and in the same critical section as making the reload request, 5771 * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield. 5772 */ 5773 if (is_tdp_mmu_enabled(kvm)) 5774 kvm_tdp_mmu_invalidate_all_roots(kvm); 5775 5776 /* 5777 * Notify all vcpus to reload its shadow page table and flush TLB. 5778 * Then all vcpus will switch to new shadow page table with the new 5779 * mmu_valid_gen. 5780 * 5781 * Note: we need to do this under the protection of mmu_lock, 5782 * otherwise, vcpu would purge shadow page but miss tlb flush. 5783 */ 5784 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 5785 5786 kvm_zap_obsolete_pages(kvm); 5787 5788 write_unlock(&kvm->mmu_lock); 5789 5790 /* 5791 * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before 5792 * returning to the caller, e.g. if the zap is in response to a memslot 5793 * deletion, mmu_notifier callbacks will be unable to reach the SPTEs 5794 * associated with the deleted memslot once the update completes, and 5795 * Deferring the zap until the final reference to the root is put would 5796 * lead to use-after-free. 5797 */ 5798 if (is_tdp_mmu_enabled(kvm)) 5799 kvm_tdp_mmu_zap_invalidated_roots(kvm); 5800 } 5801 5802 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm) 5803 { 5804 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages)); 5805 } 5806 5807 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm, 5808 struct kvm_memory_slot *slot, 5809 struct kvm_page_track_notifier_node *node) 5810 { 5811 kvm_mmu_zap_all_fast(kvm); 5812 } 5813 5814 int kvm_mmu_init_vm(struct kvm *kvm) 5815 { 5816 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 5817 int r; 5818 5819 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 5820 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 5821 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages); 5822 spin_lock_init(&kvm->arch.mmu_unsync_pages_lock); 5823 5824 r = kvm_mmu_init_tdp_mmu(kvm); 5825 if (r < 0) 5826 return r; 5827 5828 node->track_write = kvm_mmu_pte_write; 5829 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot; 5830 kvm_page_track_register_notifier(kvm, node); 5831 return 0; 5832 } 5833 5834 void kvm_mmu_uninit_vm(struct kvm *kvm) 5835 { 5836 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 5837 5838 kvm_page_track_unregister_notifier(kvm, node); 5839 5840 kvm_mmu_uninit_tdp_mmu(kvm); 5841 } 5842 5843 static bool __kvm_zap_rmaps(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 5844 { 5845 const struct kvm_memory_slot *memslot; 5846 struct kvm_memslots *slots; 5847 struct kvm_memslot_iter iter; 5848 bool flush = false; 5849 gfn_t start, end; 5850 int i; 5851 5852 if (!kvm_memslots_have_rmaps(kvm)) 5853 return flush; 5854 5855 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 5856 slots = __kvm_memslots(kvm, i); 5857 5858 kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) { 5859 memslot = iter.slot; 5860 start = max(gfn_start, memslot->base_gfn); 5861 end = min(gfn_end, memslot->base_gfn + memslot->npages); 5862 if (WARN_ON_ONCE(start >= end)) 5863 continue; 5864 5865 flush = slot_handle_level_range(kvm, memslot, kvm_zap_rmapp, 5866 5867 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 5868 start, end - 1, true, flush); 5869 } 5870 } 5871 5872 return flush; 5873 } 5874 5875 /* 5876 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end 5877 * (not including it) 5878 */ 5879 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 5880 { 5881 bool flush; 5882 int i; 5883 5884 if (WARN_ON_ONCE(gfn_end <= gfn_start)) 5885 return; 5886 5887 write_lock(&kvm->mmu_lock); 5888 5889 kvm_inc_notifier_count(kvm, gfn_start, gfn_end); 5890 5891 flush = __kvm_zap_rmaps(kvm, gfn_start, gfn_end); 5892 5893 if (is_tdp_mmu_enabled(kvm)) { 5894 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 5895 flush = kvm_tdp_mmu_zap_leafs(kvm, i, gfn_start, 5896 gfn_end, true, flush); 5897 } 5898 5899 if (flush) 5900 kvm_flush_remote_tlbs_with_address(kvm, gfn_start, 5901 gfn_end - gfn_start); 5902 5903 kvm_dec_notifier_count(kvm, gfn_start, gfn_end); 5904 5905 write_unlock(&kvm->mmu_lock); 5906 } 5907 5908 static bool slot_rmap_write_protect(struct kvm *kvm, 5909 struct kvm_rmap_head *rmap_head, 5910 const struct kvm_memory_slot *slot) 5911 { 5912 return rmap_write_protect(rmap_head, false); 5913 } 5914 5915 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 5916 const struct kvm_memory_slot *memslot, 5917 int start_level) 5918 { 5919 bool flush = false; 5920 5921 if (kvm_memslots_have_rmaps(kvm)) { 5922 write_lock(&kvm->mmu_lock); 5923 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect, 5924 start_level, KVM_MAX_HUGEPAGE_LEVEL, 5925 false); 5926 write_unlock(&kvm->mmu_lock); 5927 } 5928 5929 if (is_tdp_mmu_enabled(kvm)) { 5930 read_lock(&kvm->mmu_lock); 5931 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level); 5932 read_unlock(&kvm->mmu_lock); 5933 } 5934 5935 /* 5936 * Flush TLBs if any SPTEs had to be write-protected to ensure that 5937 * guest writes are reflected in the dirty bitmap before the memslot 5938 * update completes, i.e. before enabling dirty logging is visible to 5939 * userspace. 5940 * 5941 * Perform the TLB flush outside the mmu_lock to reduce the amount of 5942 * time the lock is held. However, this does mean that another CPU can 5943 * now grab mmu_lock and encounter a write-protected SPTE while CPUs 5944 * still have a writable mapping for the associated GFN in their TLB. 5945 * 5946 * This is safe but requires KVM to be careful when making decisions 5947 * based on the write-protection status of an SPTE. Specifically, KVM 5948 * also write-protects SPTEs to monitor changes to guest page tables 5949 * during shadow paging, and must guarantee no CPUs can write to those 5950 * page before the lock is dropped. As mentioned in the previous 5951 * paragraph, a write-protected SPTE is no guarantee that CPU cannot 5952 * perform writes. So to determine if a TLB flush is truly required, KVM 5953 * will clear a separate software-only bit (MMU-writable) and skip the 5954 * flush if-and-only-if this bit was already clear. 5955 * 5956 * See is_writable_pte() for more details. 5957 */ 5958 if (flush) 5959 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 5960 } 5961 5962 /* Must be called with the mmu_lock held in write-mode. */ 5963 void kvm_mmu_try_split_huge_pages(struct kvm *kvm, 5964 const struct kvm_memory_slot *memslot, 5965 u64 start, u64 end, 5966 int target_level) 5967 { 5968 if (is_tdp_mmu_enabled(kvm)) 5969 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, 5970 target_level, false); 5971 5972 /* 5973 * A TLB flush is unnecessary at this point for the same resons as in 5974 * kvm_mmu_slot_try_split_huge_pages(). 5975 */ 5976 } 5977 5978 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, 5979 const struct kvm_memory_slot *memslot, 5980 int target_level) 5981 { 5982 u64 start = memslot->base_gfn; 5983 u64 end = start + memslot->npages; 5984 5985 if (is_tdp_mmu_enabled(kvm)) { 5986 read_lock(&kvm->mmu_lock); 5987 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true); 5988 read_unlock(&kvm->mmu_lock); 5989 } 5990 5991 /* 5992 * No TLB flush is necessary here. KVM will flush TLBs after 5993 * write-protecting and/or clearing dirty on the newly split SPTEs to 5994 * ensure that guest writes are reflected in the dirty log before the 5995 * ioctl to enable dirty logging on this memslot completes. Since the 5996 * split SPTEs retain the write and dirty bits of the huge SPTE, it is 5997 * safe for KVM to decide if a TLB flush is necessary based on the split 5998 * SPTEs. 5999 */ 6000 } 6001 6002 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, 6003 struct kvm_rmap_head *rmap_head, 6004 const struct kvm_memory_slot *slot) 6005 { 6006 u64 *sptep; 6007 struct rmap_iterator iter; 6008 int need_tlb_flush = 0; 6009 kvm_pfn_t pfn; 6010 struct kvm_mmu_page *sp; 6011 6012 restart: 6013 for_each_rmap_spte(rmap_head, &iter, sptep) { 6014 sp = sptep_to_sp(sptep); 6015 pfn = spte_to_pfn(*sptep); 6016 6017 /* 6018 * We cannot do huge page mapping for indirect shadow pages, 6019 * which are found on the last rmap (level = 1) when not using 6020 * tdp; such shadow pages are synced with the page table in 6021 * the guest, and the guest page table is using 4K page size 6022 * mapping if the indirect sp has level = 1. 6023 */ 6024 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) && 6025 sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn, 6026 pfn, PG_LEVEL_NUM)) { 6027 pte_list_remove(kvm, rmap_head, sptep); 6028 6029 if (kvm_available_flush_tlb_with_range()) 6030 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn, 6031 KVM_PAGES_PER_HPAGE(sp->role.level)); 6032 else 6033 need_tlb_flush = 1; 6034 6035 goto restart; 6036 } 6037 } 6038 6039 return need_tlb_flush; 6040 } 6041 6042 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, 6043 const struct kvm_memory_slot *slot) 6044 { 6045 if (kvm_memslots_have_rmaps(kvm)) { 6046 write_lock(&kvm->mmu_lock); 6047 /* 6048 * Zap only 4k SPTEs since the legacy MMU only supports dirty 6049 * logging at a 4k granularity and never creates collapsible 6050 * 2m SPTEs during dirty logging. 6051 */ 6052 if (slot_handle_level_4k(kvm, slot, kvm_mmu_zap_collapsible_spte, true)) 6053 kvm_arch_flush_remote_tlbs_memslot(kvm, slot); 6054 write_unlock(&kvm->mmu_lock); 6055 } 6056 6057 if (is_tdp_mmu_enabled(kvm)) { 6058 read_lock(&kvm->mmu_lock); 6059 kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot); 6060 read_unlock(&kvm->mmu_lock); 6061 } 6062 } 6063 6064 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 6065 const struct kvm_memory_slot *memslot) 6066 { 6067 /* 6068 * All current use cases for flushing the TLBs for a specific memslot 6069 * related to dirty logging, and many do the TLB flush out of mmu_lock. 6070 * The interaction between the various operations on memslot must be 6071 * serialized by slots_locks to ensure the TLB flush from one operation 6072 * is observed by any other operation on the same memslot. 6073 */ 6074 lockdep_assert_held(&kvm->slots_lock); 6075 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn, 6076 memslot->npages); 6077 } 6078 6079 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 6080 const struct kvm_memory_slot *memslot) 6081 { 6082 bool flush = false; 6083 6084 if (kvm_memslots_have_rmaps(kvm)) { 6085 write_lock(&kvm->mmu_lock); 6086 /* 6087 * Clear dirty bits only on 4k SPTEs since the legacy MMU only 6088 * support dirty logging at a 4k granularity. 6089 */ 6090 flush = slot_handle_level_4k(kvm, memslot, __rmap_clear_dirty, false); 6091 write_unlock(&kvm->mmu_lock); 6092 } 6093 6094 if (is_tdp_mmu_enabled(kvm)) { 6095 read_lock(&kvm->mmu_lock); 6096 flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot); 6097 read_unlock(&kvm->mmu_lock); 6098 } 6099 6100 /* 6101 * It's also safe to flush TLBs out of mmu lock here as currently this 6102 * function is only used for dirty logging, in which case flushing TLB 6103 * out of mmu lock also guarantees no dirty pages will be lost in 6104 * dirty_bitmap. 6105 */ 6106 if (flush) 6107 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 6108 } 6109 6110 void kvm_mmu_zap_all(struct kvm *kvm) 6111 { 6112 struct kvm_mmu_page *sp, *node; 6113 LIST_HEAD(invalid_list); 6114 int ign; 6115 6116 write_lock(&kvm->mmu_lock); 6117 restart: 6118 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) { 6119 if (WARN_ON(sp->role.invalid)) 6120 continue; 6121 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign)) 6122 goto restart; 6123 if (cond_resched_rwlock_write(&kvm->mmu_lock)) 6124 goto restart; 6125 } 6126 6127 kvm_mmu_commit_zap_page(kvm, &invalid_list); 6128 6129 if (is_tdp_mmu_enabled(kvm)) 6130 kvm_tdp_mmu_zap_all(kvm); 6131 6132 write_unlock(&kvm->mmu_lock); 6133 } 6134 6135 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen) 6136 { 6137 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 6138 6139 gen &= MMIO_SPTE_GEN_MASK; 6140 6141 /* 6142 * Generation numbers are incremented in multiples of the number of 6143 * address spaces in order to provide unique generations across all 6144 * address spaces. Strip what is effectively the address space 6145 * modifier prior to checking for a wrap of the MMIO generation so 6146 * that a wrap in any address space is detected. 6147 */ 6148 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1); 6149 6150 /* 6151 * The very rare case: if the MMIO generation number has wrapped, 6152 * zap all shadow pages. 6153 */ 6154 if (unlikely(gen == 0)) { 6155 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n"); 6156 kvm_mmu_zap_all_fast(kvm); 6157 } 6158 } 6159 6160 static unsigned long 6161 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 6162 { 6163 struct kvm *kvm; 6164 int nr_to_scan = sc->nr_to_scan; 6165 unsigned long freed = 0; 6166 6167 mutex_lock(&kvm_lock); 6168 6169 list_for_each_entry(kvm, &vm_list, vm_list) { 6170 int idx; 6171 LIST_HEAD(invalid_list); 6172 6173 /* 6174 * Never scan more than sc->nr_to_scan VM instances. 6175 * Will not hit this condition practically since we do not try 6176 * to shrink more than one VM and it is very unlikely to see 6177 * !n_used_mmu_pages so many times. 6178 */ 6179 if (!nr_to_scan--) 6180 break; 6181 /* 6182 * n_used_mmu_pages is accessed without holding kvm->mmu_lock 6183 * here. We may skip a VM instance errorneosly, but we do not 6184 * want to shrink a VM that only started to populate its MMU 6185 * anyway. 6186 */ 6187 if (!kvm->arch.n_used_mmu_pages && 6188 !kvm_has_zapped_obsolete_pages(kvm)) 6189 continue; 6190 6191 idx = srcu_read_lock(&kvm->srcu); 6192 write_lock(&kvm->mmu_lock); 6193 6194 if (kvm_has_zapped_obsolete_pages(kvm)) { 6195 kvm_mmu_commit_zap_page(kvm, 6196 &kvm->arch.zapped_obsolete_pages); 6197 goto unlock; 6198 } 6199 6200 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan); 6201 6202 unlock: 6203 write_unlock(&kvm->mmu_lock); 6204 srcu_read_unlock(&kvm->srcu, idx); 6205 6206 /* 6207 * unfair on small ones 6208 * per-vm shrinkers cry out 6209 * sadness comes quickly 6210 */ 6211 list_move_tail(&kvm->vm_list, &vm_list); 6212 break; 6213 } 6214 6215 mutex_unlock(&kvm_lock); 6216 return freed; 6217 } 6218 6219 static unsigned long 6220 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 6221 { 6222 return percpu_counter_read_positive(&kvm_total_used_mmu_pages); 6223 } 6224 6225 static struct shrinker mmu_shrinker = { 6226 .count_objects = mmu_shrink_count, 6227 .scan_objects = mmu_shrink_scan, 6228 .seeks = DEFAULT_SEEKS * 10, 6229 }; 6230 6231 static void mmu_destroy_caches(void) 6232 { 6233 kmem_cache_destroy(pte_list_desc_cache); 6234 kmem_cache_destroy(mmu_page_header_cache); 6235 } 6236 6237 static bool get_nx_auto_mode(void) 6238 { 6239 /* Return true when CPU has the bug, and mitigations are ON */ 6240 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off(); 6241 } 6242 6243 static void __set_nx_huge_pages(bool val) 6244 { 6245 nx_huge_pages = itlb_multihit_kvm_mitigation = val; 6246 } 6247 6248 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp) 6249 { 6250 bool old_val = nx_huge_pages; 6251 bool new_val; 6252 6253 /* In "auto" mode deploy workaround only if CPU has the bug. */ 6254 if (sysfs_streq(val, "off")) 6255 new_val = 0; 6256 else if (sysfs_streq(val, "force")) 6257 new_val = 1; 6258 else if (sysfs_streq(val, "auto")) 6259 new_val = get_nx_auto_mode(); 6260 else if (strtobool(val, &new_val) < 0) 6261 return -EINVAL; 6262 6263 __set_nx_huge_pages(new_val); 6264 6265 if (new_val != old_val) { 6266 struct kvm *kvm; 6267 6268 mutex_lock(&kvm_lock); 6269 6270 list_for_each_entry(kvm, &vm_list, vm_list) { 6271 mutex_lock(&kvm->slots_lock); 6272 kvm_mmu_zap_all_fast(kvm); 6273 mutex_unlock(&kvm->slots_lock); 6274 6275 wake_up_process(kvm->arch.nx_lpage_recovery_thread); 6276 } 6277 mutex_unlock(&kvm_lock); 6278 } 6279 6280 return 0; 6281 } 6282 6283 /* 6284 * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as 6285 * its default value of -1 is technically undefined behavior for a boolean. 6286 */ 6287 void kvm_mmu_x86_module_init(void) 6288 { 6289 if (nx_huge_pages == -1) 6290 __set_nx_huge_pages(get_nx_auto_mode()); 6291 } 6292 6293 /* 6294 * The bulk of the MMU initialization is deferred until the vendor module is 6295 * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need 6296 * to be reset when a potentially different vendor module is loaded. 6297 */ 6298 int kvm_mmu_vendor_module_init(void) 6299 { 6300 int ret = -ENOMEM; 6301 6302 /* 6303 * MMU roles use union aliasing which is, generally speaking, an 6304 * undefined behavior. However, we supposedly know how compilers behave 6305 * and the current status quo is unlikely to change. Guardians below are 6306 * supposed to let us know if the assumption becomes false. 6307 */ 6308 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32)); 6309 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32)); 6310 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64)); 6311 6312 kvm_mmu_reset_all_pte_masks(); 6313 6314 pte_list_desc_cache = kmem_cache_create("pte_list_desc", 6315 sizeof(struct pte_list_desc), 6316 0, SLAB_ACCOUNT, NULL); 6317 if (!pte_list_desc_cache) 6318 goto out; 6319 6320 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", 6321 sizeof(struct kvm_mmu_page), 6322 0, SLAB_ACCOUNT, NULL); 6323 if (!mmu_page_header_cache) 6324 goto out; 6325 6326 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL)) 6327 goto out; 6328 6329 ret = register_shrinker(&mmu_shrinker); 6330 if (ret) 6331 goto out; 6332 6333 return 0; 6334 6335 out: 6336 mmu_destroy_caches(); 6337 return ret; 6338 } 6339 6340 void kvm_mmu_destroy(struct kvm_vcpu *vcpu) 6341 { 6342 kvm_mmu_unload(vcpu); 6343 free_mmu_pages(&vcpu->arch.root_mmu); 6344 free_mmu_pages(&vcpu->arch.guest_mmu); 6345 mmu_free_memory_caches(vcpu); 6346 } 6347 6348 void kvm_mmu_vendor_module_exit(void) 6349 { 6350 mmu_destroy_caches(); 6351 percpu_counter_destroy(&kvm_total_used_mmu_pages); 6352 unregister_shrinker(&mmu_shrinker); 6353 } 6354 6355 /* 6356 * Calculate the effective recovery period, accounting for '0' meaning "let KVM 6357 * select a halving time of 1 hour". Returns true if recovery is enabled. 6358 */ 6359 static bool calc_nx_huge_pages_recovery_period(uint *period) 6360 { 6361 /* 6362 * Use READ_ONCE to get the params, this may be called outside of the 6363 * param setters, e.g. by the kthread to compute its next timeout. 6364 */ 6365 bool enabled = READ_ONCE(nx_huge_pages); 6366 uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 6367 6368 if (!enabled || !ratio) 6369 return false; 6370 6371 *period = READ_ONCE(nx_huge_pages_recovery_period_ms); 6372 if (!*period) { 6373 /* Make sure the period is not less than one second. */ 6374 ratio = min(ratio, 3600u); 6375 *period = 60 * 60 * 1000 / ratio; 6376 } 6377 return true; 6378 } 6379 6380 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp) 6381 { 6382 bool was_recovery_enabled, is_recovery_enabled; 6383 uint old_period, new_period; 6384 int err; 6385 6386 was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period); 6387 6388 err = param_set_uint(val, kp); 6389 if (err) 6390 return err; 6391 6392 is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period); 6393 6394 if (is_recovery_enabled && 6395 (!was_recovery_enabled || old_period > new_period)) { 6396 struct kvm *kvm; 6397 6398 mutex_lock(&kvm_lock); 6399 6400 list_for_each_entry(kvm, &vm_list, vm_list) 6401 wake_up_process(kvm->arch.nx_lpage_recovery_thread); 6402 6403 mutex_unlock(&kvm_lock); 6404 } 6405 6406 return err; 6407 } 6408 6409 static void kvm_recover_nx_lpages(struct kvm *kvm) 6410 { 6411 unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits; 6412 int rcu_idx; 6413 struct kvm_mmu_page *sp; 6414 unsigned int ratio; 6415 LIST_HEAD(invalid_list); 6416 bool flush = false; 6417 ulong to_zap; 6418 6419 rcu_idx = srcu_read_lock(&kvm->srcu); 6420 write_lock(&kvm->mmu_lock); 6421 6422 /* 6423 * Zapping TDP MMU shadow pages, including the remote TLB flush, must 6424 * be done under RCU protection, because the pages are freed via RCU 6425 * callback. 6426 */ 6427 rcu_read_lock(); 6428 6429 ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 6430 to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0; 6431 for ( ; to_zap; --to_zap) { 6432 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) 6433 break; 6434 6435 /* 6436 * We use a separate list instead of just using active_mmu_pages 6437 * because the number of lpage_disallowed pages is expected to 6438 * be relatively small compared to the total. 6439 */ 6440 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages, 6441 struct kvm_mmu_page, 6442 lpage_disallowed_link); 6443 WARN_ON_ONCE(!sp->lpage_disallowed); 6444 if (is_tdp_mmu_page(sp)) { 6445 flush |= kvm_tdp_mmu_zap_sp(kvm, sp); 6446 } else { 6447 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 6448 WARN_ON_ONCE(sp->lpage_disallowed); 6449 } 6450 6451 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 6452 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 6453 rcu_read_unlock(); 6454 6455 cond_resched_rwlock_write(&kvm->mmu_lock); 6456 flush = false; 6457 6458 rcu_read_lock(); 6459 } 6460 } 6461 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 6462 6463 rcu_read_unlock(); 6464 6465 write_unlock(&kvm->mmu_lock); 6466 srcu_read_unlock(&kvm->srcu, rcu_idx); 6467 } 6468 6469 static long get_nx_lpage_recovery_timeout(u64 start_time) 6470 { 6471 bool enabled; 6472 uint period; 6473 6474 enabled = calc_nx_huge_pages_recovery_period(&period); 6475 6476 return enabled ? start_time + msecs_to_jiffies(period) - get_jiffies_64() 6477 : MAX_SCHEDULE_TIMEOUT; 6478 } 6479 6480 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data) 6481 { 6482 u64 start_time; 6483 long remaining_time; 6484 6485 while (true) { 6486 start_time = get_jiffies_64(); 6487 remaining_time = get_nx_lpage_recovery_timeout(start_time); 6488 6489 set_current_state(TASK_INTERRUPTIBLE); 6490 while (!kthread_should_stop() && remaining_time > 0) { 6491 schedule_timeout(remaining_time); 6492 remaining_time = get_nx_lpage_recovery_timeout(start_time); 6493 set_current_state(TASK_INTERRUPTIBLE); 6494 } 6495 6496 set_current_state(TASK_RUNNING); 6497 6498 if (kthread_should_stop()) 6499 return 0; 6500 6501 kvm_recover_nx_lpages(kvm); 6502 } 6503 } 6504 6505 int kvm_mmu_post_init_vm(struct kvm *kvm) 6506 { 6507 int err; 6508 6509 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0, 6510 "kvm-nx-lpage-recovery", 6511 &kvm->arch.nx_lpage_recovery_thread); 6512 if (!err) 6513 kthread_unpark(kvm->arch.nx_lpage_recovery_thread); 6514 6515 return err; 6516 } 6517 6518 void kvm_mmu_pre_destroy_vm(struct kvm *kvm) 6519 { 6520 if (kvm->arch.nx_lpage_recovery_thread) 6521 kthread_stop(kvm->arch.nx_lpage_recovery_thread); 6522 } 6523