1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * MMU support 9 * 10 * Copyright (C) 2006 Qumranet, Inc. 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 12 * 13 * Authors: 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Avi Kivity <avi@qumranet.com> 16 */ 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include "irq.h" 20 #include "ioapic.h" 21 #include "mmu.h" 22 #include "mmu_internal.h" 23 #include "tdp_mmu.h" 24 #include "x86.h" 25 #include "kvm_cache_regs.h" 26 #include "smm.h" 27 #include "kvm_emulate.h" 28 #include "page_track.h" 29 #include "cpuid.h" 30 #include "spte.h" 31 32 #include <linux/kvm_host.h> 33 #include <linux/types.h> 34 #include <linux/string.h> 35 #include <linux/mm.h> 36 #include <linux/highmem.h> 37 #include <linux/moduleparam.h> 38 #include <linux/export.h> 39 #include <linux/swap.h> 40 #include <linux/hugetlb.h> 41 #include <linux/compiler.h> 42 #include <linux/srcu.h> 43 #include <linux/slab.h> 44 #include <linux/sched/signal.h> 45 #include <linux/uaccess.h> 46 #include <linux/hash.h> 47 #include <linux/kern_levels.h> 48 #include <linux/kstrtox.h> 49 #include <linux/kthread.h> 50 51 #include <asm/page.h> 52 #include <asm/memtype.h> 53 #include <asm/cmpxchg.h> 54 #include <asm/io.h> 55 #include <asm/set_memory.h> 56 #include <asm/vmx.h> 57 58 #include "trace.h" 59 60 extern bool itlb_multihit_kvm_mitigation; 61 62 static bool nx_hugepage_mitigation_hard_disabled; 63 64 int __read_mostly nx_huge_pages = -1; 65 static uint __read_mostly nx_huge_pages_recovery_period_ms; 66 #ifdef CONFIG_PREEMPT_RT 67 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */ 68 static uint __read_mostly nx_huge_pages_recovery_ratio = 0; 69 #else 70 static uint __read_mostly nx_huge_pages_recovery_ratio = 60; 71 #endif 72 73 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp); 74 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp); 75 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp); 76 77 static const struct kernel_param_ops nx_huge_pages_ops = { 78 .set = set_nx_huge_pages, 79 .get = get_nx_huge_pages, 80 }; 81 82 static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = { 83 .set = set_nx_huge_pages_recovery_param, 84 .get = param_get_uint, 85 }; 86 87 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644); 88 __MODULE_PARM_TYPE(nx_huge_pages, "bool"); 89 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops, 90 &nx_huge_pages_recovery_ratio, 0644); 91 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint"); 92 module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops, 93 &nx_huge_pages_recovery_period_ms, 0644); 94 __MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint"); 95 96 static bool __read_mostly force_flush_and_sync_on_reuse; 97 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644); 98 99 /* 100 * When setting this variable to true it enables Two-Dimensional-Paging 101 * where the hardware walks 2 page tables: 102 * 1. the guest-virtual to guest-physical 103 * 2. while doing 1. it walks guest-physical to host-physical 104 * If the hardware supports that we don't need to do shadow paging. 105 */ 106 bool tdp_enabled = false; 107 108 static bool __ro_after_init tdp_mmu_allowed; 109 110 #ifdef CONFIG_X86_64 111 bool __read_mostly tdp_mmu_enabled = true; 112 module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0444); 113 #endif 114 115 static int max_huge_page_level __read_mostly; 116 static int tdp_root_level __read_mostly; 117 static int max_tdp_level __read_mostly; 118 119 #define PTE_PREFETCH_NUM 8 120 121 #include <trace/events/kvm.h> 122 123 /* make pte_list_desc fit well in cache lines */ 124 #define PTE_LIST_EXT 14 125 126 /* 127 * struct pte_list_desc is the core data structure used to implement a custom 128 * list for tracking a set of related SPTEs, e.g. all the SPTEs that map a 129 * given GFN when used in the context of rmaps. Using a custom list allows KVM 130 * to optimize for the common case where many GFNs will have at most a handful 131 * of SPTEs pointing at them, i.e. allows packing multiple SPTEs into a small 132 * memory footprint, which in turn improves runtime performance by exploiting 133 * cache locality. 134 * 135 * A list is comprised of one or more pte_list_desc objects (descriptors). 136 * Each individual descriptor stores up to PTE_LIST_EXT SPTEs. If a descriptor 137 * is full and a new SPTEs needs to be added, a new descriptor is allocated and 138 * becomes the head of the list. This means that by definitions, all tail 139 * descriptors are full. 140 * 141 * Note, the meta data fields are deliberately placed at the start of the 142 * structure to optimize the cacheline layout; accessing the descriptor will 143 * touch only a single cacheline so long as @spte_count<=6 (or if only the 144 * descriptors metadata is accessed). 145 */ 146 struct pte_list_desc { 147 struct pte_list_desc *more; 148 /* The number of PTEs stored in _this_ descriptor. */ 149 u32 spte_count; 150 /* The number of PTEs stored in all tails of this descriptor. */ 151 u32 tail_count; 152 u64 *sptes[PTE_LIST_EXT]; 153 }; 154 155 struct kvm_shadow_walk_iterator { 156 u64 addr; 157 hpa_t shadow_addr; 158 u64 *sptep; 159 int level; 160 unsigned index; 161 }; 162 163 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \ 164 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \ 165 (_root), (_addr)); \ 166 shadow_walk_okay(&(_walker)); \ 167 shadow_walk_next(&(_walker))) 168 169 #define for_each_shadow_entry(_vcpu, _addr, _walker) \ 170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 171 shadow_walk_okay(&(_walker)); \ 172 shadow_walk_next(&(_walker))) 173 174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \ 175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 176 shadow_walk_okay(&(_walker)) && \ 177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \ 178 __shadow_walk_next(&(_walker), spte)) 179 180 static struct kmem_cache *pte_list_desc_cache; 181 struct kmem_cache *mmu_page_header_cache; 182 static struct percpu_counter kvm_total_used_mmu_pages; 183 184 static void mmu_spte_set(u64 *sptep, u64 spte); 185 186 struct kvm_mmu_role_regs { 187 const unsigned long cr0; 188 const unsigned long cr4; 189 const u64 efer; 190 }; 191 192 #define CREATE_TRACE_POINTS 193 #include "mmutrace.h" 194 195 /* 196 * Yes, lot's of underscores. They're a hint that you probably shouldn't be 197 * reading from the role_regs. Once the root_role is constructed, it becomes 198 * the single source of truth for the MMU's state. 199 */ 200 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag) \ 201 static inline bool __maybe_unused \ 202 ____is_##reg##_##name(const struct kvm_mmu_role_regs *regs) \ 203 { \ 204 return !!(regs->reg & flag); \ 205 } 206 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG); 207 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP); 208 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE); 209 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE); 210 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP); 211 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP); 212 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE); 213 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57); 214 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX); 215 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA); 216 217 /* 218 * The MMU itself (with a valid role) is the single source of truth for the 219 * MMU. Do not use the regs used to build the MMU/role, nor the vCPU. The 220 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1, 221 * and the vCPU may be incorrect/irrelevant. 222 */ 223 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name) \ 224 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu) \ 225 { \ 226 return !!(mmu->cpu_role. base_or_ext . reg##_##name); \ 227 } 228 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp); 229 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pse); 230 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smep); 231 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smap); 232 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pke); 233 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, la57); 234 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx); 235 BUILD_MMU_ROLE_ACCESSOR(ext, efer, lma); 236 237 static inline bool is_cr0_pg(struct kvm_mmu *mmu) 238 { 239 return mmu->cpu_role.base.level > 0; 240 } 241 242 static inline bool is_cr4_pae(struct kvm_mmu *mmu) 243 { 244 return !mmu->cpu_role.base.has_4_byte_gpte; 245 } 246 247 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu) 248 { 249 struct kvm_mmu_role_regs regs = { 250 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS), 251 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS), 252 .efer = vcpu->arch.efer, 253 }; 254 255 return regs; 256 } 257 258 static unsigned long get_guest_cr3(struct kvm_vcpu *vcpu) 259 { 260 return kvm_read_cr3(vcpu); 261 } 262 263 static inline unsigned long kvm_mmu_get_guest_pgd(struct kvm_vcpu *vcpu, 264 struct kvm_mmu *mmu) 265 { 266 if (IS_ENABLED(CONFIG_RETPOLINE) && mmu->get_guest_pgd == get_guest_cr3) 267 return kvm_read_cr3(vcpu); 268 269 return mmu->get_guest_pgd(vcpu); 270 } 271 272 static inline bool kvm_available_flush_remote_tlbs_range(void) 273 { 274 return kvm_x86_ops.flush_remote_tlbs_range; 275 } 276 277 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages) 278 { 279 if (!kvm_x86_ops.flush_remote_tlbs_range) 280 return -EOPNOTSUPP; 281 282 return static_call(kvm_x86_flush_remote_tlbs_range)(kvm, gfn, nr_pages); 283 } 284 285 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index); 286 287 /* Flush the range of guest memory mapped by the given SPTE. */ 288 static void kvm_flush_remote_tlbs_sptep(struct kvm *kvm, u64 *sptep) 289 { 290 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 291 gfn_t gfn = kvm_mmu_page_get_gfn(sp, spte_index(sptep)); 292 293 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level); 294 } 295 296 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn, 297 unsigned int access) 298 { 299 u64 spte = make_mmio_spte(vcpu, gfn, access); 300 301 trace_mark_mmio_spte(sptep, gfn, spte); 302 mmu_spte_set(sptep, spte); 303 } 304 305 static gfn_t get_mmio_spte_gfn(u64 spte) 306 { 307 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask; 308 309 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN) 310 & shadow_nonpresent_or_rsvd_mask; 311 312 return gpa >> PAGE_SHIFT; 313 } 314 315 static unsigned get_mmio_spte_access(u64 spte) 316 { 317 return spte & shadow_mmio_access_mask; 318 } 319 320 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte) 321 { 322 u64 kvm_gen, spte_gen, gen; 323 324 gen = kvm_vcpu_memslots(vcpu)->generation; 325 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS)) 326 return false; 327 328 kvm_gen = gen & MMIO_SPTE_GEN_MASK; 329 spte_gen = get_mmio_spte_generation(spte); 330 331 trace_check_mmio_spte(spte, kvm_gen, spte_gen); 332 return likely(kvm_gen == spte_gen); 333 } 334 335 static int is_cpuid_PSE36(void) 336 { 337 return 1; 338 } 339 340 #ifdef CONFIG_X86_64 341 static void __set_spte(u64 *sptep, u64 spte) 342 { 343 WRITE_ONCE(*sptep, spte); 344 } 345 346 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 347 { 348 WRITE_ONCE(*sptep, spte); 349 } 350 351 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 352 { 353 return xchg(sptep, spte); 354 } 355 356 static u64 __get_spte_lockless(u64 *sptep) 357 { 358 return READ_ONCE(*sptep); 359 } 360 #else 361 union split_spte { 362 struct { 363 u32 spte_low; 364 u32 spte_high; 365 }; 366 u64 spte; 367 }; 368 369 static void count_spte_clear(u64 *sptep, u64 spte) 370 { 371 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 372 373 if (is_shadow_present_pte(spte)) 374 return; 375 376 /* Ensure the spte is completely set before we increase the count */ 377 smp_wmb(); 378 sp->clear_spte_count++; 379 } 380 381 static void __set_spte(u64 *sptep, u64 spte) 382 { 383 union split_spte *ssptep, sspte; 384 385 ssptep = (union split_spte *)sptep; 386 sspte = (union split_spte)spte; 387 388 ssptep->spte_high = sspte.spte_high; 389 390 /* 391 * If we map the spte from nonpresent to present, We should store 392 * the high bits firstly, then set present bit, so cpu can not 393 * fetch this spte while we are setting the spte. 394 */ 395 smp_wmb(); 396 397 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 398 } 399 400 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 401 { 402 union split_spte *ssptep, sspte; 403 404 ssptep = (union split_spte *)sptep; 405 sspte = (union split_spte)spte; 406 407 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 408 409 /* 410 * If we map the spte from present to nonpresent, we should clear 411 * present bit firstly to avoid vcpu fetch the old high bits. 412 */ 413 smp_wmb(); 414 415 ssptep->spte_high = sspte.spte_high; 416 count_spte_clear(sptep, spte); 417 } 418 419 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 420 { 421 union split_spte *ssptep, sspte, orig; 422 423 ssptep = (union split_spte *)sptep; 424 sspte = (union split_spte)spte; 425 426 /* xchg acts as a barrier before the setting of the high bits */ 427 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); 428 orig.spte_high = ssptep->spte_high; 429 ssptep->spte_high = sspte.spte_high; 430 count_spte_clear(sptep, spte); 431 432 return orig.spte; 433 } 434 435 /* 436 * The idea using the light way get the spte on x86_32 guest is from 437 * gup_get_pte (mm/gup.c). 438 * 439 * An spte tlb flush may be pending, because kvm_set_pte_rmap 440 * coalesces them and we are running out of the MMU lock. Therefore 441 * we need to protect against in-progress updates of the spte. 442 * 443 * Reading the spte while an update is in progress may get the old value 444 * for the high part of the spte. The race is fine for a present->non-present 445 * change (because the high part of the spte is ignored for non-present spte), 446 * but for a present->present change we must reread the spte. 447 * 448 * All such changes are done in two steps (present->non-present and 449 * non-present->present), hence it is enough to count the number of 450 * present->non-present updates: if it changed while reading the spte, 451 * we might have hit the race. This is done using clear_spte_count. 452 */ 453 static u64 __get_spte_lockless(u64 *sptep) 454 { 455 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 456 union split_spte spte, *orig = (union split_spte *)sptep; 457 int count; 458 459 retry: 460 count = sp->clear_spte_count; 461 smp_rmb(); 462 463 spte.spte_low = orig->spte_low; 464 smp_rmb(); 465 466 spte.spte_high = orig->spte_high; 467 smp_rmb(); 468 469 if (unlikely(spte.spte_low != orig->spte_low || 470 count != sp->clear_spte_count)) 471 goto retry; 472 473 return spte.spte; 474 } 475 #endif 476 477 /* Rules for using mmu_spte_set: 478 * Set the sptep from nonpresent to present. 479 * Note: the sptep being assigned *must* be either not present 480 * or in a state where the hardware will not attempt to update 481 * the spte. 482 */ 483 static void mmu_spte_set(u64 *sptep, u64 new_spte) 484 { 485 WARN_ON_ONCE(is_shadow_present_pte(*sptep)); 486 __set_spte(sptep, new_spte); 487 } 488 489 /* 490 * Update the SPTE (excluding the PFN), but do not track changes in its 491 * accessed/dirty status. 492 */ 493 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte) 494 { 495 u64 old_spte = *sptep; 496 497 WARN_ON_ONCE(!is_shadow_present_pte(new_spte)); 498 check_spte_writable_invariants(new_spte); 499 500 if (!is_shadow_present_pte(old_spte)) { 501 mmu_spte_set(sptep, new_spte); 502 return old_spte; 503 } 504 505 if (!spte_has_volatile_bits(old_spte)) 506 __update_clear_spte_fast(sptep, new_spte); 507 else 508 old_spte = __update_clear_spte_slow(sptep, new_spte); 509 510 WARN_ON_ONCE(spte_to_pfn(old_spte) != spte_to_pfn(new_spte)); 511 512 return old_spte; 513 } 514 515 /* Rules for using mmu_spte_update: 516 * Update the state bits, it means the mapped pfn is not changed. 517 * 518 * Whenever an MMU-writable SPTE is overwritten with a read-only SPTE, remote 519 * TLBs must be flushed. Otherwise rmap_write_protect will find a read-only 520 * spte, even though the writable spte might be cached on a CPU's TLB. 521 * 522 * Returns true if the TLB needs to be flushed 523 */ 524 static bool mmu_spte_update(u64 *sptep, u64 new_spte) 525 { 526 bool flush = false; 527 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte); 528 529 if (!is_shadow_present_pte(old_spte)) 530 return false; 531 532 /* 533 * For the spte updated out of mmu-lock is safe, since 534 * we always atomically update it, see the comments in 535 * spte_has_volatile_bits(). 536 */ 537 if (is_mmu_writable_spte(old_spte) && 538 !is_writable_pte(new_spte)) 539 flush = true; 540 541 /* 542 * Flush TLB when accessed/dirty states are changed in the page tables, 543 * to guarantee consistency between TLB and page tables. 544 */ 545 546 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) { 547 flush = true; 548 kvm_set_pfn_accessed(spte_to_pfn(old_spte)); 549 } 550 551 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) { 552 flush = true; 553 kvm_set_pfn_dirty(spte_to_pfn(old_spte)); 554 } 555 556 return flush; 557 } 558 559 /* 560 * Rules for using mmu_spte_clear_track_bits: 561 * It sets the sptep from present to nonpresent, and track the 562 * state bits, it is used to clear the last level sptep. 563 * Returns the old PTE. 564 */ 565 static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep) 566 { 567 kvm_pfn_t pfn; 568 u64 old_spte = *sptep; 569 int level = sptep_to_sp(sptep)->role.level; 570 struct page *page; 571 572 if (!is_shadow_present_pte(old_spte) || 573 !spte_has_volatile_bits(old_spte)) 574 __update_clear_spte_fast(sptep, 0ull); 575 else 576 old_spte = __update_clear_spte_slow(sptep, 0ull); 577 578 if (!is_shadow_present_pte(old_spte)) 579 return old_spte; 580 581 kvm_update_page_stats(kvm, level, -1); 582 583 pfn = spte_to_pfn(old_spte); 584 585 /* 586 * KVM doesn't hold a reference to any pages mapped into the guest, and 587 * instead uses the mmu_notifier to ensure that KVM unmaps any pages 588 * before they are reclaimed. Sanity check that, if the pfn is backed 589 * by a refcounted page, the refcount is elevated. 590 */ 591 page = kvm_pfn_to_refcounted_page(pfn); 592 WARN_ON_ONCE(page && !page_count(page)); 593 594 if (is_accessed_spte(old_spte)) 595 kvm_set_pfn_accessed(pfn); 596 597 if (is_dirty_spte(old_spte)) 598 kvm_set_pfn_dirty(pfn); 599 600 return old_spte; 601 } 602 603 /* 604 * Rules for using mmu_spte_clear_no_track: 605 * Directly clear spte without caring the state bits of sptep, 606 * it is used to set the upper level spte. 607 */ 608 static void mmu_spte_clear_no_track(u64 *sptep) 609 { 610 __update_clear_spte_fast(sptep, 0ull); 611 } 612 613 static u64 mmu_spte_get_lockless(u64 *sptep) 614 { 615 return __get_spte_lockless(sptep); 616 } 617 618 /* Returns the Accessed status of the PTE and resets it at the same time. */ 619 static bool mmu_spte_age(u64 *sptep) 620 { 621 u64 spte = mmu_spte_get_lockless(sptep); 622 623 if (!is_accessed_spte(spte)) 624 return false; 625 626 if (spte_ad_enabled(spte)) { 627 clear_bit((ffs(shadow_accessed_mask) - 1), 628 (unsigned long *)sptep); 629 } else { 630 /* 631 * Capture the dirty status of the page, so that it doesn't get 632 * lost when the SPTE is marked for access tracking. 633 */ 634 if (is_writable_pte(spte)) 635 kvm_set_pfn_dirty(spte_to_pfn(spte)); 636 637 spte = mark_spte_for_access_track(spte); 638 mmu_spte_update_no_track(sptep, spte); 639 } 640 641 return true; 642 } 643 644 static inline bool is_tdp_mmu_active(struct kvm_vcpu *vcpu) 645 { 646 return tdp_mmu_enabled && vcpu->arch.mmu->root_role.direct; 647 } 648 649 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) 650 { 651 if (is_tdp_mmu_active(vcpu)) { 652 kvm_tdp_mmu_walk_lockless_begin(); 653 } else { 654 /* 655 * Prevent page table teardown by making any free-er wait during 656 * kvm_flush_remote_tlbs() IPI to all active vcpus. 657 */ 658 local_irq_disable(); 659 660 /* 661 * Make sure a following spte read is not reordered ahead of the write 662 * to vcpu->mode. 663 */ 664 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); 665 } 666 } 667 668 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) 669 { 670 if (is_tdp_mmu_active(vcpu)) { 671 kvm_tdp_mmu_walk_lockless_end(); 672 } else { 673 /* 674 * Make sure the write to vcpu->mode is not reordered in front of 675 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us 676 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. 677 */ 678 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); 679 local_irq_enable(); 680 } 681 } 682 683 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect) 684 { 685 int r; 686 687 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */ 688 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, 689 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM); 690 if (r) 691 return r; 692 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache, 693 PT64_ROOT_MAX_LEVEL); 694 if (r) 695 return r; 696 if (maybe_indirect) { 697 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadowed_info_cache, 698 PT64_ROOT_MAX_LEVEL); 699 if (r) 700 return r; 701 } 702 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, 703 PT64_ROOT_MAX_LEVEL); 704 } 705 706 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) 707 { 708 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache); 709 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache); 710 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadowed_info_cache); 711 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache); 712 } 713 714 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) 715 { 716 kmem_cache_free(pte_list_desc_cache, pte_list_desc); 717 } 718 719 static bool sp_has_gptes(struct kvm_mmu_page *sp); 720 721 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) 722 { 723 if (sp->role.passthrough) 724 return sp->gfn; 725 726 if (!sp->role.direct) 727 return sp->shadowed_translation[index] >> PAGE_SHIFT; 728 729 return sp->gfn + (index << ((sp->role.level - 1) * SPTE_LEVEL_BITS)); 730 } 731 732 /* 733 * For leaf SPTEs, fetch the *guest* access permissions being shadowed. Note 734 * that the SPTE itself may have a more constrained access permissions that 735 * what the guest enforces. For example, a guest may create an executable 736 * huge PTE but KVM may disallow execution to mitigate iTLB multihit. 737 */ 738 static u32 kvm_mmu_page_get_access(struct kvm_mmu_page *sp, int index) 739 { 740 if (sp_has_gptes(sp)) 741 return sp->shadowed_translation[index] & ACC_ALL; 742 743 /* 744 * For direct MMUs (e.g. TDP or non-paging guests) or passthrough SPs, 745 * KVM is not shadowing any guest page tables, so the "guest access 746 * permissions" are just ACC_ALL. 747 * 748 * For direct SPs in indirect MMUs (shadow paging), i.e. when KVM 749 * is shadowing a guest huge page with small pages, the guest access 750 * permissions being shadowed are the access permissions of the huge 751 * page. 752 * 753 * In both cases, sp->role.access contains the correct access bits. 754 */ 755 return sp->role.access; 756 } 757 758 static void kvm_mmu_page_set_translation(struct kvm_mmu_page *sp, int index, 759 gfn_t gfn, unsigned int access) 760 { 761 if (sp_has_gptes(sp)) { 762 sp->shadowed_translation[index] = (gfn << PAGE_SHIFT) | access; 763 return; 764 } 765 766 WARN_ONCE(access != kvm_mmu_page_get_access(sp, index), 767 "access mismatch under %s page %llx (expected %u, got %u)\n", 768 sp->role.passthrough ? "passthrough" : "direct", 769 sp->gfn, kvm_mmu_page_get_access(sp, index), access); 770 771 WARN_ONCE(gfn != kvm_mmu_page_get_gfn(sp, index), 772 "gfn mismatch under %s page %llx (expected %llx, got %llx)\n", 773 sp->role.passthrough ? "passthrough" : "direct", 774 sp->gfn, kvm_mmu_page_get_gfn(sp, index), gfn); 775 } 776 777 static void kvm_mmu_page_set_access(struct kvm_mmu_page *sp, int index, 778 unsigned int access) 779 { 780 gfn_t gfn = kvm_mmu_page_get_gfn(sp, index); 781 782 kvm_mmu_page_set_translation(sp, index, gfn, access); 783 } 784 785 /* 786 * Return the pointer to the large page information for a given gfn, 787 * handling slots that are not large page aligned. 788 */ 789 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, 790 const struct kvm_memory_slot *slot, int level) 791 { 792 unsigned long idx; 793 794 idx = gfn_to_index(gfn, slot->base_gfn, level); 795 return &slot->arch.lpage_info[level - 2][idx]; 796 } 797 798 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot, 799 gfn_t gfn, int count) 800 { 801 struct kvm_lpage_info *linfo; 802 int i; 803 804 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 805 linfo = lpage_info_slot(gfn, slot, i); 806 linfo->disallow_lpage += count; 807 WARN_ON_ONCE(linfo->disallow_lpage < 0); 808 } 809 } 810 811 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 812 { 813 update_gfn_disallow_lpage_count(slot, gfn, 1); 814 } 815 816 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 817 { 818 update_gfn_disallow_lpage_count(slot, gfn, -1); 819 } 820 821 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 822 { 823 struct kvm_memslots *slots; 824 struct kvm_memory_slot *slot; 825 gfn_t gfn; 826 827 kvm->arch.indirect_shadow_pages++; 828 gfn = sp->gfn; 829 slots = kvm_memslots_for_spte_role(kvm, sp->role); 830 slot = __gfn_to_memslot(slots, gfn); 831 832 /* the non-leaf shadow pages are keeping readonly. */ 833 if (sp->role.level > PG_LEVEL_4K) 834 return __kvm_write_track_add_gfn(kvm, slot, gfn); 835 836 kvm_mmu_gfn_disallow_lpage(slot, gfn); 837 838 if (kvm_mmu_slot_gfn_write_protect(kvm, slot, gfn, PG_LEVEL_4K)) 839 kvm_flush_remote_tlbs_gfn(kvm, gfn, PG_LEVEL_4K); 840 } 841 842 void track_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 843 { 844 /* 845 * If it's possible to replace the shadow page with an NX huge page, 846 * i.e. if the shadow page is the only thing currently preventing KVM 847 * from using a huge page, add the shadow page to the list of "to be 848 * zapped for NX recovery" pages. Note, the shadow page can already be 849 * on the list if KVM is reusing an existing shadow page, i.e. if KVM 850 * links a shadow page at multiple points. 851 */ 852 if (!list_empty(&sp->possible_nx_huge_page_link)) 853 return; 854 855 ++kvm->stat.nx_lpage_splits; 856 list_add_tail(&sp->possible_nx_huge_page_link, 857 &kvm->arch.possible_nx_huge_pages); 858 } 859 860 static void account_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp, 861 bool nx_huge_page_possible) 862 { 863 sp->nx_huge_page_disallowed = true; 864 865 if (nx_huge_page_possible) 866 track_possible_nx_huge_page(kvm, sp); 867 } 868 869 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 870 { 871 struct kvm_memslots *slots; 872 struct kvm_memory_slot *slot; 873 gfn_t gfn; 874 875 kvm->arch.indirect_shadow_pages--; 876 gfn = sp->gfn; 877 slots = kvm_memslots_for_spte_role(kvm, sp->role); 878 slot = __gfn_to_memslot(slots, gfn); 879 if (sp->role.level > PG_LEVEL_4K) 880 return __kvm_write_track_remove_gfn(kvm, slot, gfn); 881 882 kvm_mmu_gfn_allow_lpage(slot, gfn); 883 } 884 885 void untrack_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 886 { 887 if (list_empty(&sp->possible_nx_huge_page_link)) 888 return; 889 890 --kvm->stat.nx_lpage_splits; 891 list_del_init(&sp->possible_nx_huge_page_link); 892 } 893 894 static void unaccount_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 895 { 896 sp->nx_huge_page_disallowed = false; 897 898 untrack_possible_nx_huge_page(kvm, sp); 899 } 900 901 static struct kvm_memory_slot *gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, 902 gfn_t gfn, 903 bool no_dirty_log) 904 { 905 struct kvm_memory_slot *slot; 906 907 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 908 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 909 return NULL; 910 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot)) 911 return NULL; 912 913 return slot; 914 } 915 916 /* 917 * About rmap_head encoding: 918 * 919 * If the bit zero of rmap_head->val is clear, then it points to the only spte 920 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct 921 * pte_list_desc containing more mappings. 922 */ 923 924 /* 925 * Returns the number of pointers in the rmap chain, not counting the new one. 926 */ 927 static int pte_list_add(struct kvm_mmu_memory_cache *cache, u64 *spte, 928 struct kvm_rmap_head *rmap_head) 929 { 930 struct pte_list_desc *desc; 931 int count = 0; 932 933 if (!rmap_head->val) { 934 rmap_head->val = (unsigned long)spte; 935 } else if (!(rmap_head->val & 1)) { 936 desc = kvm_mmu_memory_cache_alloc(cache); 937 desc->sptes[0] = (u64 *)rmap_head->val; 938 desc->sptes[1] = spte; 939 desc->spte_count = 2; 940 desc->tail_count = 0; 941 rmap_head->val = (unsigned long)desc | 1; 942 ++count; 943 } else { 944 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 945 count = desc->tail_count + desc->spte_count; 946 947 /* 948 * If the previous head is full, allocate a new head descriptor 949 * as tail descriptors are always kept full. 950 */ 951 if (desc->spte_count == PTE_LIST_EXT) { 952 desc = kvm_mmu_memory_cache_alloc(cache); 953 desc->more = (struct pte_list_desc *)(rmap_head->val & ~1ul); 954 desc->spte_count = 0; 955 desc->tail_count = count; 956 rmap_head->val = (unsigned long)desc | 1; 957 } 958 desc->sptes[desc->spte_count++] = spte; 959 } 960 return count; 961 } 962 963 static void pte_list_desc_remove_entry(struct kvm *kvm, 964 struct kvm_rmap_head *rmap_head, 965 struct pte_list_desc *desc, int i) 966 { 967 struct pte_list_desc *head_desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 968 int j = head_desc->spte_count - 1; 969 970 /* 971 * The head descriptor should never be empty. A new head is added only 972 * when adding an entry and the previous head is full, and heads are 973 * removed (this flow) when they become empty. 974 */ 975 KVM_BUG_ON_DATA_CORRUPTION(j < 0, kvm); 976 977 /* 978 * Replace the to-be-freed SPTE with the last valid entry from the head 979 * descriptor to ensure that tail descriptors are full at all times. 980 * Note, this also means that tail_count is stable for each descriptor. 981 */ 982 desc->sptes[i] = head_desc->sptes[j]; 983 head_desc->sptes[j] = NULL; 984 head_desc->spte_count--; 985 if (head_desc->spte_count) 986 return; 987 988 /* 989 * The head descriptor is empty. If there are no tail descriptors, 990 * nullify the rmap head to mark the list as emtpy, else point the rmap 991 * head at the next descriptor, i.e. the new head. 992 */ 993 if (!head_desc->more) 994 rmap_head->val = 0; 995 else 996 rmap_head->val = (unsigned long)head_desc->more | 1; 997 mmu_free_pte_list_desc(head_desc); 998 } 999 1000 static void pte_list_remove(struct kvm *kvm, u64 *spte, 1001 struct kvm_rmap_head *rmap_head) 1002 { 1003 struct pte_list_desc *desc; 1004 int i; 1005 1006 if (KVM_BUG_ON_DATA_CORRUPTION(!rmap_head->val, kvm)) 1007 return; 1008 1009 if (!(rmap_head->val & 1)) { 1010 if (KVM_BUG_ON_DATA_CORRUPTION((u64 *)rmap_head->val != spte, kvm)) 1011 return; 1012 1013 rmap_head->val = 0; 1014 } else { 1015 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1016 while (desc) { 1017 for (i = 0; i < desc->spte_count; ++i) { 1018 if (desc->sptes[i] == spte) { 1019 pte_list_desc_remove_entry(kvm, rmap_head, 1020 desc, i); 1021 return; 1022 } 1023 } 1024 desc = desc->more; 1025 } 1026 1027 KVM_BUG_ON_DATA_CORRUPTION(true, kvm); 1028 } 1029 } 1030 1031 static void kvm_zap_one_rmap_spte(struct kvm *kvm, 1032 struct kvm_rmap_head *rmap_head, u64 *sptep) 1033 { 1034 mmu_spte_clear_track_bits(kvm, sptep); 1035 pte_list_remove(kvm, sptep, rmap_head); 1036 } 1037 1038 /* Return true if at least one SPTE was zapped, false otherwise */ 1039 static bool kvm_zap_all_rmap_sptes(struct kvm *kvm, 1040 struct kvm_rmap_head *rmap_head) 1041 { 1042 struct pte_list_desc *desc, *next; 1043 int i; 1044 1045 if (!rmap_head->val) 1046 return false; 1047 1048 if (!(rmap_head->val & 1)) { 1049 mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val); 1050 goto out; 1051 } 1052 1053 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1054 1055 for (; desc; desc = next) { 1056 for (i = 0; i < desc->spte_count; i++) 1057 mmu_spte_clear_track_bits(kvm, desc->sptes[i]); 1058 next = desc->more; 1059 mmu_free_pte_list_desc(desc); 1060 } 1061 out: 1062 /* rmap_head is meaningless now, remember to reset it */ 1063 rmap_head->val = 0; 1064 return true; 1065 } 1066 1067 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head) 1068 { 1069 struct pte_list_desc *desc; 1070 1071 if (!rmap_head->val) 1072 return 0; 1073 else if (!(rmap_head->val & 1)) 1074 return 1; 1075 1076 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1077 return desc->tail_count + desc->spte_count; 1078 } 1079 1080 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level, 1081 const struct kvm_memory_slot *slot) 1082 { 1083 unsigned long idx; 1084 1085 idx = gfn_to_index(gfn, slot->base_gfn, level); 1086 return &slot->arch.rmap[level - PG_LEVEL_4K][idx]; 1087 } 1088 1089 static void rmap_remove(struct kvm *kvm, u64 *spte) 1090 { 1091 struct kvm_memslots *slots; 1092 struct kvm_memory_slot *slot; 1093 struct kvm_mmu_page *sp; 1094 gfn_t gfn; 1095 struct kvm_rmap_head *rmap_head; 1096 1097 sp = sptep_to_sp(spte); 1098 gfn = kvm_mmu_page_get_gfn(sp, spte_index(spte)); 1099 1100 /* 1101 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU 1102 * so we have to determine which memslots to use based on context 1103 * information in sp->role. 1104 */ 1105 slots = kvm_memslots_for_spte_role(kvm, sp->role); 1106 1107 slot = __gfn_to_memslot(slots, gfn); 1108 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1109 1110 pte_list_remove(kvm, spte, rmap_head); 1111 } 1112 1113 /* 1114 * Used by the following functions to iterate through the sptes linked by a 1115 * rmap. All fields are private and not assumed to be used outside. 1116 */ 1117 struct rmap_iterator { 1118 /* private fields */ 1119 struct pte_list_desc *desc; /* holds the sptep if not NULL */ 1120 int pos; /* index of the sptep */ 1121 }; 1122 1123 /* 1124 * Iteration must be started by this function. This should also be used after 1125 * removing/dropping sptes from the rmap link because in such cases the 1126 * information in the iterator may not be valid. 1127 * 1128 * Returns sptep if found, NULL otherwise. 1129 */ 1130 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head, 1131 struct rmap_iterator *iter) 1132 { 1133 u64 *sptep; 1134 1135 if (!rmap_head->val) 1136 return NULL; 1137 1138 if (!(rmap_head->val & 1)) { 1139 iter->desc = NULL; 1140 sptep = (u64 *)rmap_head->val; 1141 goto out; 1142 } 1143 1144 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1145 iter->pos = 0; 1146 sptep = iter->desc->sptes[iter->pos]; 1147 out: 1148 BUG_ON(!is_shadow_present_pte(*sptep)); 1149 return sptep; 1150 } 1151 1152 /* 1153 * Must be used with a valid iterator: e.g. after rmap_get_first(). 1154 * 1155 * Returns sptep if found, NULL otherwise. 1156 */ 1157 static u64 *rmap_get_next(struct rmap_iterator *iter) 1158 { 1159 u64 *sptep; 1160 1161 if (iter->desc) { 1162 if (iter->pos < PTE_LIST_EXT - 1) { 1163 ++iter->pos; 1164 sptep = iter->desc->sptes[iter->pos]; 1165 if (sptep) 1166 goto out; 1167 } 1168 1169 iter->desc = iter->desc->more; 1170 1171 if (iter->desc) { 1172 iter->pos = 0; 1173 /* desc->sptes[0] cannot be NULL */ 1174 sptep = iter->desc->sptes[iter->pos]; 1175 goto out; 1176 } 1177 } 1178 1179 return NULL; 1180 out: 1181 BUG_ON(!is_shadow_present_pte(*sptep)); 1182 return sptep; 1183 } 1184 1185 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \ 1186 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \ 1187 _spte_; _spte_ = rmap_get_next(_iter_)) 1188 1189 static void drop_spte(struct kvm *kvm, u64 *sptep) 1190 { 1191 u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep); 1192 1193 if (is_shadow_present_pte(old_spte)) 1194 rmap_remove(kvm, sptep); 1195 } 1196 1197 static void drop_large_spte(struct kvm *kvm, u64 *sptep, bool flush) 1198 { 1199 struct kvm_mmu_page *sp; 1200 1201 sp = sptep_to_sp(sptep); 1202 WARN_ON_ONCE(sp->role.level == PG_LEVEL_4K); 1203 1204 drop_spte(kvm, sptep); 1205 1206 if (flush) 1207 kvm_flush_remote_tlbs_sptep(kvm, sptep); 1208 } 1209 1210 /* 1211 * Write-protect on the specified @sptep, @pt_protect indicates whether 1212 * spte write-protection is caused by protecting shadow page table. 1213 * 1214 * Note: write protection is difference between dirty logging and spte 1215 * protection: 1216 * - for dirty logging, the spte can be set to writable at anytime if 1217 * its dirty bitmap is properly set. 1218 * - for spte protection, the spte can be writable only after unsync-ing 1219 * shadow page. 1220 * 1221 * Return true if tlb need be flushed. 1222 */ 1223 static bool spte_write_protect(u64 *sptep, bool pt_protect) 1224 { 1225 u64 spte = *sptep; 1226 1227 if (!is_writable_pte(spte) && 1228 !(pt_protect && is_mmu_writable_spte(spte))) 1229 return false; 1230 1231 if (pt_protect) 1232 spte &= ~shadow_mmu_writable_mask; 1233 spte = spte & ~PT_WRITABLE_MASK; 1234 1235 return mmu_spte_update(sptep, spte); 1236 } 1237 1238 static bool rmap_write_protect(struct kvm_rmap_head *rmap_head, 1239 bool pt_protect) 1240 { 1241 u64 *sptep; 1242 struct rmap_iterator iter; 1243 bool flush = false; 1244 1245 for_each_rmap_spte(rmap_head, &iter, sptep) 1246 flush |= spte_write_protect(sptep, pt_protect); 1247 1248 return flush; 1249 } 1250 1251 static bool spte_clear_dirty(u64 *sptep) 1252 { 1253 u64 spte = *sptep; 1254 1255 KVM_MMU_WARN_ON(!spte_ad_enabled(spte)); 1256 spte &= ~shadow_dirty_mask; 1257 return mmu_spte_update(sptep, spte); 1258 } 1259 1260 static bool spte_wrprot_for_clear_dirty(u64 *sptep) 1261 { 1262 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT, 1263 (unsigned long *)sptep); 1264 if (was_writable && !spte_ad_enabled(*sptep)) 1265 kvm_set_pfn_dirty(spte_to_pfn(*sptep)); 1266 1267 return was_writable; 1268 } 1269 1270 /* 1271 * Gets the GFN ready for another round of dirty logging by clearing the 1272 * - D bit on ad-enabled SPTEs, and 1273 * - W bit on ad-disabled SPTEs. 1274 * Returns true iff any D or W bits were cleared. 1275 */ 1276 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1277 const struct kvm_memory_slot *slot) 1278 { 1279 u64 *sptep; 1280 struct rmap_iterator iter; 1281 bool flush = false; 1282 1283 for_each_rmap_spte(rmap_head, &iter, sptep) 1284 if (spte_ad_need_write_protect(*sptep)) 1285 flush |= spte_wrprot_for_clear_dirty(sptep); 1286 else 1287 flush |= spte_clear_dirty(sptep); 1288 1289 return flush; 1290 } 1291 1292 /** 1293 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages 1294 * @kvm: kvm instance 1295 * @slot: slot to protect 1296 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1297 * @mask: indicates which pages we should protect 1298 * 1299 * Used when we do not need to care about huge page mappings. 1300 */ 1301 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 1302 struct kvm_memory_slot *slot, 1303 gfn_t gfn_offset, unsigned long mask) 1304 { 1305 struct kvm_rmap_head *rmap_head; 1306 1307 if (tdp_mmu_enabled) 1308 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1309 slot->base_gfn + gfn_offset, mask, true); 1310 1311 if (!kvm_memslots_have_rmaps(kvm)) 1312 return; 1313 1314 while (mask) { 1315 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1316 PG_LEVEL_4K, slot); 1317 rmap_write_protect(rmap_head, false); 1318 1319 /* clear the first set bit */ 1320 mask &= mask - 1; 1321 } 1322 } 1323 1324 /** 1325 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write 1326 * protect the page if the D-bit isn't supported. 1327 * @kvm: kvm instance 1328 * @slot: slot to clear D-bit 1329 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1330 * @mask: indicates which pages we should clear D-bit 1331 * 1332 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap. 1333 */ 1334 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1335 struct kvm_memory_slot *slot, 1336 gfn_t gfn_offset, unsigned long mask) 1337 { 1338 struct kvm_rmap_head *rmap_head; 1339 1340 if (tdp_mmu_enabled) 1341 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1342 slot->base_gfn + gfn_offset, mask, false); 1343 1344 if (!kvm_memslots_have_rmaps(kvm)) 1345 return; 1346 1347 while (mask) { 1348 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1349 PG_LEVEL_4K, slot); 1350 __rmap_clear_dirty(kvm, rmap_head, slot); 1351 1352 /* clear the first set bit */ 1353 mask &= mask - 1; 1354 } 1355 } 1356 1357 /** 1358 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected 1359 * PT level pages. 1360 * 1361 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to 1362 * enable dirty logging for them. 1363 * 1364 * We need to care about huge page mappings: e.g. during dirty logging we may 1365 * have such mappings. 1366 */ 1367 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1368 struct kvm_memory_slot *slot, 1369 gfn_t gfn_offset, unsigned long mask) 1370 { 1371 /* 1372 * Huge pages are NOT write protected when we start dirty logging in 1373 * initially-all-set mode; must write protect them here so that they 1374 * are split to 4K on the first write. 1375 * 1376 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn 1377 * of memslot has no such restriction, so the range can cross two large 1378 * pages. 1379 */ 1380 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) { 1381 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask); 1382 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask); 1383 1384 if (READ_ONCE(eager_page_split)) 1385 kvm_mmu_try_split_huge_pages(kvm, slot, start, end, PG_LEVEL_4K); 1386 1387 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M); 1388 1389 /* Cross two large pages? */ 1390 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) != 1391 ALIGN(end << PAGE_SHIFT, PMD_SIZE)) 1392 kvm_mmu_slot_gfn_write_protect(kvm, slot, end, 1393 PG_LEVEL_2M); 1394 } 1395 1396 /* Now handle 4K PTEs. */ 1397 if (kvm_x86_ops.cpu_dirty_log_size) 1398 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask); 1399 else 1400 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 1401 } 1402 1403 int kvm_cpu_dirty_log_size(void) 1404 { 1405 return kvm_x86_ops.cpu_dirty_log_size; 1406 } 1407 1408 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, 1409 struct kvm_memory_slot *slot, u64 gfn, 1410 int min_level) 1411 { 1412 struct kvm_rmap_head *rmap_head; 1413 int i; 1414 bool write_protected = false; 1415 1416 if (kvm_memslots_have_rmaps(kvm)) { 1417 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 1418 rmap_head = gfn_to_rmap(gfn, i, slot); 1419 write_protected |= rmap_write_protect(rmap_head, true); 1420 } 1421 } 1422 1423 if (tdp_mmu_enabled) 1424 write_protected |= 1425 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level); 1426 1427 return write_protected; 1428 } 1429 1430 static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn) 1431 { 1432 struct kvm_memory_slot *slot; 1433 1434 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1435 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K); 1436 } 1437 1438 static bool __kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1439 const struct kvm_memory_slot *slot) 1440 { 1441 return kvm_zap_all_rmap_sptes(kvm, rmap_head); 1442 } 1443 1444 static bool kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1445 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1446 pte_t unused) 1447 { 1448 return __kvm_zap_rmap(kvm, rmap_head, slot); 1449 } 1450 1451 static bool kvm_set_pte_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1452 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1453 pte_t pte) 1454 { 1455 u64 *sptep; 1456 struct rmap_iterator iter; 1457 bool need_flush = false; 1458 u64 new_spte; 1459 kvm_pfn_t new_pfn; 1460 1461 WARN_ON_ONCE(pte_huge(pte)); 1462 new_pfn = pte_pfn(pte); 1463 1464 restart: 1465 for_each_rmap_spte(rmap_head, &iter, sptep) { 1466 need_flush = true; 1467 1468 if (pte_write(pte)) { 1469 kvm_zap_one_rmap_spte(kvm, rmap_head, sptep); 1470 goto restart; 1471 } else { 1472 new_spte = kvm_mmu_changed_pte_notifier_make_spte( 1473 *sptep, new_pfn); 1474 1475 mmu_spte_clear_track_bits(kvm, sptep); 1476 mmu_spte_set(sptep, new_spte); 1477 } 1478 } 1479 1480 if (need_flush && kvm_available_flush_remote_tlbs_range()) { 1481 kvm_flush_remote_tlbs_gfn(kvm, gfn, level); 1482 return false; 1483 } 1484 1485 return need_flush; 1486 } 1487 1488 struct slot_rmap_walk_iterator { 1489 /* input fields. */ 1490 const struct kvm_memory_slot *slot; 1491 gfn_t start_gfn; 1492 gfn_t end_gfn; 1493 int start_level; 1494 int end_level; 1495 1496 /* output fields. */ 1497 gfn_t gfn; 1498 struct kvm_rmap_head *rmap; 1499 int level; 1500 1501 /* private field. */ 1502 struct kvm_rmap_head *end_rmap; 1503 }; 1504 1505 static void rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, 1506 int level) 1507 { 1508 iterator->level = level; 1509 iterator->gfn = iterator->start_gfn; 1510 iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot); 1511 iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot); 1512 } 1513 1514 static void slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator, 1515 const struct kvm_memory_slot *slot, 1516 int start_level, int end_level, 1517 gfn_t start_gfn, gfn_t end_gfn) 1518 { 1519 iterator->slot = slot; 1520 iterator->start_level = start_level; 1521 iterator->end_level = end_level; 1522 iterator->start_gfn = start_gfn; 1523 iterator->end_gfn = end_gfn; 1524 1525 rmap_walk_init_level(iterator, iterator->start_level); 1526 } 1527 1528 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator) 1529 { 1530 return !!iterator->rmap; 1531 } 1532 1533 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) 1534 { 1535 while (++iterator->rmap <= iterator->end_rmap) { 1536 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level)); 1537 1538 if (iterator->rmap->val) 1539 return; 1540 } 1541 1542 if (++iterator->level > iterator->end_level) { 1543 iterator->rmap = NULL; 1544 return; 1545 } 1546 1547 rmap_walk_init_level(iterator, iterator->level); 1548 } 1549 1550 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \ 1551 _start_gfn, _end_gfn, _iter_) \ 1552 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \ 1553 _end_level_, _start_gfn, _end_gfn); \ 1554 slot_rmap_walk_okay(_iter_); \ 1555 slot_rmap_walk_next(_iter_)) 1556 1557 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1558 struct kvm_memory_slot *slot, gfn_t gfn, 1559 int level, pte_t pte); 1560 1561 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm, 1562 struct kvm_gfn_range *range, 1563 rmap_handler_t handler) 1564 { 1565 struct slot_rmap_walk_iterator iterator; 1566 bool ret = false; 1567 1568 for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 1569 range->start, range->end - 1, &iterator) 1570 ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn, 1571 iterator.level, range->arg.pte); 1572 1573 return ret; 1574 } 1575 1576 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1577 { 1578 bool flush = false; 1579 1580 if (kvm_memslots_have_rmaps(kvm)) 1581 flush = kvm_handle_gfn_range(kvm, range, kvm_zap_rmap); 1582 1583 if (tdp_mmu_enabled) 1584 flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush); 1585 1586 if (kvm_x86_ops.set_apic_access_page_addr && 1587 range->slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT) 1588 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 1589 1590 return flush; 1591 } 1592 1593 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1594 { 1595 bool flush = false; 1596 1597 if (kvm_memslots_have_rmaps(kvm)) 1598 flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmap); 1599 1600 if (tdp_mmu_enabled) 1601 flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range); 1602 1603 return flush; 1604 } 1605 1606 static bool kvm_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1607 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1608 pte_t unused) 1609 { 1610 u64 *sptep; 1611 struct rmap_iterator iter; 1612 int young = 0; 1613 1614 for_each_rmap_spte(rmap_head, &iter, sptep) 1615 young |= mmu_spte_age(sptep); 1616 1617 return young; 1618 } 1619 1620 static bool kvm_test_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1621 struct kvm_memory_slot *slot, gfn_t gfn, 1622 int level, pte_t unused) 1623 { 1624 u64 *sptep; 1625 struct rmap_iterator iter; 1626 1627 for_each_rmap_spte(rmap_head, &iter, sptep) 1628 if (is_accessed_spte(*sptep)) 1629 return true; 1630 return false; 1631 } 1632 1633 #define RMAP_RECYCLE_THRESHOLD 1000 1634 1635 static void __rmap_add(struct kvm *kvm, 1636 struct kvm_mmu_memory_cache *cache, 1637 const struct kvm_memory_slot *slot, 1638 u64 *spte, gfn_t gfn, unsigned int access) 1639 { 1640 struct kvm_mmu_page *sp; 1641 struct kvm_rmap_head *rmap_head; 1642 int rmap_count; 1643 1644 sp = sptep_to_sp(spte); 1645 kvm_mmu_page_set_translation(sp, spte_index(spte), gfn, access); 1646 kvm_update_page_stats(kvm, sp->role.level, 1); 1647 1648 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1649 rmap_count = pte_list_add(cache, spte, rmap_head); 1650 1651 if (rmap_count > kvm->stat.max_mmu_rmap_size) 1652 kvm->stat.max_mmu_rmap_size = rmap_count; 1653 if (rmap_count > RMAP_RECYCLE_THRESHOLD) { 1654 kvm_zap_all_rmap_sptes(kvm, rmap_head); 1655 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level); 1656 } 1657 } 1658 1659 static void rmap_add(struct kvm_vcpu *vcpu, const struct kvm_memory_slot *slot, 1660 u64 *spte, gfn_t gfn, unsigned int access) 1661 { 1662 struct kvm_mmu_memory_cache *cache = &vcpu->arch.mmu_pte_list_desc_cache; 1663 1664 __rmap_add(vcpu->kvm, cache, slot, spte, gfn, access); 1665 } 1666 1667 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1668 { 1669 bool young = false; 1670 1671 if (kvm_memslots_have_rmaps(kvm)) 1672 young = kvm_handle_gfn_range(kvm, range, kvm_age_rmap); 1673 1674 if (tdp_mmu_enabled) 1675 young |= kvm_tdp_mmu_age_gfn_range(kvm, range); 1676 1677 return young; 1678 } 1679 1680 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1681 { 1682 bool young = false; 1683 1684 if (kvm_memslots_have_rmaps(kvm)) 1685 young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmap); 1686 1687 if (tdp_mmu_enabled) 1688 young |= kvm_tdp_mmu_test_age_gfn(kvm, range); 1689 1690 return young; 1691 } 1692 1693 static void kvm_mmu_check_sptes_at_free(struct kvm_mmu_page *sp) 1694 { 1695 #ifdef CONFIG_KVM_PROVE_MMU 1696 int i; 1697 1698 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) { 1699 if (KVM_MMU_WARN_ON(is_shadow_present_pte(sp->spt[i]))) 1700 pr_err_ratelimited("SPTE %llx (@ %p) for gfn %llx shadow-present at free", 1701 sp->spt[i], &sp->spt[i], 1702 kvm_mmu_page_get_gfn(sp, i)); 1703 } 1704 #endif 1705 } 1706 1707 /* 1708 * This value is the sum of all of the kvm instances's 1709 * kvm->arch.n_used_mmu_pages values. We need a global, 1710 * aggregate version in order to make the slab shrinker 1711 * faster 1712 */ 1713 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr) 1714 { 1715 kvm->arch.n_used_mmu_pages += nr; 1716 percpu_counter_add(&kvm_total_used_mmu_pages, nr); 1717 } 1718 1719 static void kvm_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1720 { 1721 kvm_mod_used_mmu_pages(kvm, +1); 1722 kvm_account_pgtable_pages((void *)sp->spt, +1); 1723 } 1724 1725 static void kvm_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1726 { 1727 kvm_mod_used_mmu_pages(kvm, -1); 1728 kvm_account_pgtable_pages((void *)sp->spt, -1); 1729 } 1730 1731 static void kvm_mmu_free_shadow_page(struct kvm_mmu_page *sp) 1732 { 1733 kvm_mmu_check_sptes_at_free(sp); 1734 1735 hlist_del(&sp->hash_link); 1736 list_del(&sp->link); 1737 free_page((unsigned long)sp->spt); 1738 if (!sp->role.direct) 1739 free_page((unsigned long)sp->shadowed_translation); 1740 kmem_cache_free(mmu_page_header_cache, sp); 1741 } 1742 1743 static unsigned kvm_page_table_hashfn(gfn_t gfn) 1744 { 1745 return hash_64(gfn, KVM_MMU_HASH_SHIFT); 1746 } 1747 1748 static void mmu_page_add_parent_pte(struct kvm_mmu_memory_cache *cache, 1749 struct kvm_mmu_page *sp, u64 *parent_pte) 1750 { 1751 if (!parent_pte) 1752 return; 1753 1754 pte_list_add(cache, parent_pte, &sp->parent_ptes); 1755 } 1756 1757 static void mmu_page_remove_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 1758 u64 *parent_pte) 1759 { 1760 pte_list_remove(kvm, parent_pte, &sp->parent_ptes); 1761 } 1762 1763 static void drop_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 1764 u64 *parent_pte) 1765 { 1766 mmu_page_remove_parent_pte(kvm, sp, parent_pte); 1767 mmu_spte_clear_no_track(parent_pte); 1768 } 1769 1770 static void mark_unsync(u64 *spte); 1771 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) 1772 { 1773 u64 *sptep; 1774 struct rmap_iterator iter; 1775 1776 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) { 1777 mark_unsync(sptep); 1778 } 1779 } 1780 1781 static void mark_unsync(u64 *spte) 1782 { 1783 struct kvm_mmu_page *sp; 1784 1785 sp = sptep_to_sp(spte); 1786 if (__test_and_set_bit(spte_index(spte), sp->unsync_child_bitmap)) 1787 return; 1788 if (sp->unsync_children++) 1789 return; 1790 kvm_mmu_mark_parents_unsync(sp); 1791 } 1792 1793 #define KVM_PAGE_ARRAY_NR 16 1794 1795 struct kvm_mmu_pages { 1796 struct mmu_page_and_offset { 1797 struct kvm_mmu_page *sp; 1798 unsigned int idx; 1799 } page[KVM_PAGE_ARRAY_NR]; 1800 unsigned int nr; 1801 }; 1802 1803 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, 1804 int idx) 1805 { 1806 int i; 1807 1808 if (sp->unsync) 1809 for (i=0; i < pvec->nr; i++) 1810 if (pvec->page[i].sp == sp) 1811 return 0; 1812 1813 pvec->page[pvec->nr].sp = sp; 1814 pvec->page[pvec->nr].idx = idx; 1815 pvec->nr++; 1816 return (pvec->nr == KVM_PAGE_ARRAY_NR); 1817 } 1818 1819 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx) 1820 { 1821 --sp->unsync_children; 1822 WARN_ON_ONCE((int)sp->unsync_children < 0); 1823 __clear_bit(idx, sp->unsync_child_bitmap); 1824 } 1825 1826 static int __mmu_unsync_walk(struct kvm_mmu_page *sp, 1827 struct kvm_mmu_pages *pvec) 1828 { 1829 int i, ret, nr_unsync_leaf = 0; 1830 1831 for_each_set_bit(i, sp->unsync_child_bitmap, 512) { 1832 struct kvm_mmu_page *child; 1833 u64 ent = sp->spt[i]; 1834 1835 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) { 1836 clear_unsync_child_bit(sp, i); 1837 continue; 1838 } 1839 1840 child = spte_to_child_sp(ent); 1841 1842 if (child->unsync_children) { 1843 if (mmu_pages_add(pvec, child, i)) 1844 return -ENOSPC; 1845 1846 ret = __mmu_unsync_walk(child, pvec); 1847 if (!ret) { 1848 clear_unsync_child_bit(sp, i); 1849 continue; 1850 } else if (ret > 0) { 1851 nr_unsync_leaf += ret; 1852 } else 1853 return ret; 1854 } else if (child->unsync) { 1855 nr_unsync_leaf++; 1856 if (mmu_pages_add(pvec, child, i)) 1857 return -ENOSPC; 1858 } else 1859 clear_unsync_child_bit(sp, i); 1860 } 1861 1862 return nr_unsync_leaf; 1863 } 1864 1865 #define INVALID_INDEX (-1) 1866 1867 static int mmu_unsync_walk(struct kvm_mmu_page *sp, 1868 struct kvm_mmu_pages *pvec) 1869 { 1870 pvec->nr = 0; 1871 if (!sp->unsync_children) 1872 return 0; 1873 1874 mmu_pages_add(pvec, sp, INVALID_INDEX); 1875 return __mmu_unsync_walk(sp, pvec); 1876 } 1877 1878 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1879 { 1880 WARN_ON_ONCE(!sp->unsync); 1881 trace_kvm_mmu_sync_page(sp); 1882 sp->unsync = 0; 1883 --kvm->stat.mmu_unsync; 1884 } 1885 1886 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 1887 struct list_head *invalid_list); 1888 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 1889 struct list_head *invalid_list); 1890 1891 static bool sp_has_gptes(struct kvm_mmu_page *sp) 1892 { 1893 if (sp->role.direct) 1894 return false; 1895 1896 if (sp->role.passthrough) 1897 return false; 1898 1899 return true; 1900 } 1901 1902 #define for_each_valid_sp(_kvm, _sp, _list) \ 1903 hlist_for_each_entry(_sp, _list, hash_link) \ 1904 if (is_obsolete_sp((_kvm), (_sp))) { \ 1905 } else 1906 1907 #define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn) \ 1908 for_each_valid_sp(_kvm, _sp, \ 1909 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \ 1910 if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else 1911 1912 static bool kvm_sync_page_check(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 1913 { 1914 union kvm_mmu_page_role root_role = vcpu->arch.mmu->root_role; 1915 1916 /* 1917 * Ignore various flags when verifying that it's safe to sync a shadow 1918 * page using the current MMU context. 1919 * 1920 * - level: not part of the overall MMU role and will never match as the MMU's 1921 * level tracks the root level 1922 * - access: updated based on the new guest PTE 1923 * - quadrant: not part of the overall MMU role (similar to level) 1924 */ 1925 const union kvm_mmu_page_role sync_role_ign = { 1926 .level = 0xf, 1927 .access = 0x7, 1928 .quadrant = 0x3, 1929 .passthrough = 0x1, 1930 }; 1931 1932 /* 1933 * Direct pages can never be unsync, and KVM should never attempt to 1934 * sync a shadow page for a different MMU context, e.g. if the role 1935 * differs then the memslot lookup (SMM vs. non-SMM) will be bogus, the 1936 * reserved bits checks will be wrong, etc... 1937 */ 1938 if (WARN_ON_ONCE(sp->role.direct || !vcpu->arch.mmu->sync_spte || 1939 (sp->role.word ^ root_role.word) & ~sync_role_ign.word)) 1940 return false; 1941 1942 return true; 1943 } 1944 1945 static int kvm_sync_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, int i) 1946 { 1947 if (!sp->spt[i]) 1948 return 0; 1949 1950 return vcpu->arch.mmu->sync_spte(vcpu, sp, i); 1951 } 1952 1953 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 1954 { 1955 int flush = 0; 1956 int i; 1957 1958 if (!kvm_sync_page_check(vcpu, sp)) 1959 return -1; 1960 1961 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) { 1962 int ret = kvm_sync_spte(vcpu, sp, i); 1963 1964 if (ret < -1) 1965 return -1; 1966 flush |= ret; 1967 } 1968 1969 /* 1970 * Note, any flush is purely for KVM's correctness, e.g. when dropping 1971 * an existing SPTE or clearing W/A/D bits to ensure an mmu_notifier 1972 * unmap or dirty logging event doesn't fail to flush. The guest is 1973 * responsible for flushing the TLB to ensure any changes in protection 1974 * bits are recognized, i.e. until the guest flushes or page faults on 1975 * a relevant address, KVM is architecturally allowed to let vCPUs use 1976 * cached translations with the old protection bits. 1977 */ 1978 return flush; 1979 } 1980 1981 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 1982 struct list_head *invalid_list) 1983 { 1984 int ret = __kvm_sync_page(vcpu, sp); 1985 1986 if (ret < 0) 1987 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); 1988 return ret; 1989 } 1990 1991 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm, 1992 struct list_head *invalid_list, 1993 bool remote_flush) 1994 { 1995 if (!remote_flush && list_empty(invalid_list)) 1996 return false; 1997 1998 if (!list_empty(invalid_list)) 1999 kvm_mmu_commit_zap_page(kvm, invalid_list); 2000 else 2001 kvm_flush_remote_tlbs(kvm); 2002 return true; 2003 } 2004 2005 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 2006 { 2007 if (sp->role.invalid) 2008 return true; 2009 2010 /* TDP MMU pages do not use the MMU generation. */ 2011 return !is_tdp_mmu_page(sp) && 2012 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); 2013 } 2014 2015 struct mmu_page_path { 2016 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL]; 2017 unsigned int idx[PT64_ROOT_MAX_LEVEL]; 2018 }; 2019 2020 #define for_each_sp(pvec, sp, parents, i) \ 2021 for (i = mmu_pages_first(&pvec, &parents); \ 2022 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \ 2023 i = mmu_pages_next(&pvec, &parents, i)) 2024 2025 static int mmu_pages_next(struct kvm_mmu_pages *pvec, 2026 struct mmu_page_path *parents, 2027 int i) 2028 { 2029 int n; 2030 2031 for (n = i+1; n < pvec->nr; n++) { 2032 struct kvm_mmu_page *sp = pvec->page[n].sp; 2033 unsigned idx = pvec->page[n].idx; 2034 int level = sp->role.level; 2035 2036 parents->idx[level-1] = idx; 2037 if (level == PG_LEVEL_4K) 2038 break; 2039 2040 parents->parent[level-2] = sp; 2041 } 2042 2043 return n; 2044 } 2045 2046 static int mmu_pages_first(struct kvm_mmu_pages *pvec, 2047 struct mmu_page_path *parents) 2048 { 2049 struct kvm_mmu_page *sp; 2050 int level; 2051 2052 if (pvec->nr == 0) 2053 return 0; 2054 2055 WARN_ON_ONCE(pvec->page[0].idx != INVALID_INDEX); 2056 2057 sp = pvec->page[0].sp; 2058 level = sp->role.level; 2059 WARN_ON_ONCE(level == PG_LEVEL_4K); 2060 2061 parents->parent[level-2] = sp; 2062 2063 /* Also set up a sentinel. Further entries in pvec are all 2064 * children of sp, so this element is never overwritten. 2065 */ 2066 parents->parent[level-1] = NULL; 2067 return mmu_pages_next(pvec, parents, 0); 2068 } 2069 2070 static void mmu_pages_clear_parents(struct mmu_page_path *parents) 2071 { 2072 struct kvm_mmu_page *sp; 2073 unsigned int level = 0; 2074 2075 do { 2076 unsigned int idx = parents->idx[level]; 2077 sp = parents->parent[level]; 2078 if (!sp) 2079 return; 2080 2081 WARN_ON_ONCE(idx == INVALID_INDEX); 2082 clear_unsync_child_bit(sp, idx); 2083 level++; 2084 } while (!sp->unsync_children); 2085 } 2086 2087 static int mmu_sync_children(struct kvm_vcpu *vcpu, 2088 struct kvm_mmu_page *parent, bool can_yield) 2089 { 2090 int i; 2091 struct kvm_mmu_page *sp; 2092 struct mmu_page_path parents; 2093 struct kvm_mmu_pages pages; 2094 LIST_HEAD(invalid_list); 2095 bool flush = false; 2096 2097 while (mmu_unsync_walk(parent, &pages)) { 2098 bool protected = false; 2099 2100 for_each_sp(pages, sp, parents, i) 2101 protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn); 2102 2103 if (protected) { 2104 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true); 2105 flush = false; 2106 } 2107 2108 for_each_sp(pages, sp, parents, i) { 2109 kvm_unlink_unsync_page(vcpu->kvm, sp); 2110 flush |= kvm_sync_page(vcpu, sp, &invalid_list) > 0; 2111 mmu_pages_clear_parents(&parents); 2112 } 2113 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) { 2114 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2115 if (!can_yield) { 2116 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 2117 return -EINTR; 2118 } 2119 2120 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock); 2121 flush = false; 2122 } 2123 } 2124 2125 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2126 return 0; 2127 } 2128 2129 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) 2130 { 2131 atomic_set(&sp->write_flooding_count, 0); 2132 } 2133 2134 static void clear_sp_write_flooding_count(u64 *spte) 2135 { 2136 __clear_sp_write_flooding_count(sptep_to_sp(spte)); 2137 } 2138 2139 /* 2140 * The vCPU is required when finding indirect shadow pages; the shadow 2141 * page may already exist and syncing it needs the vCPU pointer in 2142 * order to read guest page tables. Direct shadow pages are never 2143 * unsync, thus @vcpu can be NULL if @role.direct is true. 2144 */ 2145 static struct kvm_mmu_page *kvm_mmu_find_shadow_page(struct kvm *kvm, 2146 struct kvm_vcpu *vcpu, 2147 gfn_t gfn, 2148 struct hlist_head *sp_list, 2149 union kvm_mmu_page_role role) 2150 { 2151 struct kvm_mmu_page *sp; 2152 int ret; 2153 int collisions = 0; 2154 LIST_HEAD(invalid_list); 2155 2156 for_each_valid_sp(kvm, sp, sp_list) { 2157 if (sp->gfn != gfn) { 2158 collisions++; 2159 continue; 2160 } 2161 2162 if (sp->role.word != role.word) { 2163 /* 2164 * If the guest is creating an upper-level page, zap 2165 * unsync pages for the same gfn. While it's possible 2166 * the guest is using recursive page tables, in all 2167 * likelihood the guest has stopped using the unsync 2168 * page and is installing a completely unrelated page. 2169 * Unsync pages must not be left as is, because the new 2170 * upper-level page will be write-protected. 2171 */ 2172 if (role.level > PG_LEVEL_4K && sp->unsync) 2173 kvm_mmu_prepare_zap_page(kvm, sp, 2174 &invalid_list); 2175 continue; 2176 } 2177 2178 /* unsync and write-flooding only apply to indirect SPs. */ 2179 if (sp->role.direct) 2180 goto out; 2181 2182 if (sp->unsync) { 2183 if (KVM_BUG_ON(!vcpu, kvm)) 2184 break; 2185 2186 /* 2187 * The page is good, but is stale. kvm_sync_page does 2188 * get the latest guest state, but (unlike mmu_unsync_children) 2189 * it doesn't write-protect the page or mark it synchronized! 2190 * This way the validity of the mapping is ensured, but the 2191 * overhead of write protection is not incurred until the 2192 * guest invalidates the TLB mapping. This allows multiple 2193 * SPs for a single gfn to be unsync. 2194 * 2195 * If the sync fails, the page is zapped. If so, break 2196 * in order to rebuild it. 2197 */ 2198 ret = kvm_sync_page(vcpu, sp, &invalid_list); 2199 if (ret < 0) 2200 break; 2201 2202 WARN_ON_ONCE(!list_empty(&invalid_list)); 2203 if (ret > 0) 2204 kvm_flush_remote_tlbs(kvm); 2205 } 2206 2207 __clear_sp_write_flooding_count(sp); 2208 2209 goto out; 2210 } 2211 2212 sp = NULL; 2213 ++kvm->stat.mmu_cache_miss; 2214 2215 out: 2216 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2217 2218 if (collisions > kvm->stat.max_mmu_page_hash_collisions) 2219 kvm->stat.max_mmu_page_hash_collisions = collisions; 2220 return sp; 2221 } 2222 2223 /* Caches used when allocating a new shadow page. */ 2224 struct shadow_page_caches { 2225 struct kvm_mmu_memory_cache *page_header_cache; 2226 struct kvm_mmu_memory_cache *shadow_page_cache; 2227 struct kvm_mmu_memory_cache *shadowed_info_cache; 2228 }; 2229 2230 static struct kvm_mmu_page *kvm_mmu_alloc_shadow_page(struct kvm *kvm, 2231 struct shadow_page_caches *caches, 2232 gfn_t gfn, 2233 struct hlist_head *sp_list, 2234 union kvm_mmu_page_role role) 2235 { 2236 struct kvm_mmu_page *sp; 2237 2238 sp = kvm_mmu_memory_cache_alloc(caches->page_header_cache); 2239 sp->spt = kvm_mmu_memory_cache_alloc(caches->shadow_page_cache); 2240 if (!role.direct) 2241 sp->shadowed_translation = kvm_mmu_memory_cache_alloc(caches->shadowed_info_cache); 2242 2243 set_page_private(virt_to_page(sp->spt), (unsigned long)sp); 2244 2245 INIT_LIST_HEAD(&sp->possible_nx_huge_page_link); 2246 2247 /* 2248 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages() 2249 * depends on valid pages being added to the head of the list. See 2250 * comments in kvm_zap_obsolete_pages(). 2251 */ 2252 sp->mmu_valid_gen = kvm->arch.mmu_valid_gen; 2253 list_add(&sp->link, &kvm->arch.active_mmu_pages); 2254 kvm_account_mmu_page(kvm, sp); 2255 2256 sp->gfn = gfn; 2257 sp->role = role; 2258 hlist_add_head(&sp->hash_link, sp_list); 2259 if (sp_has_gptes(sp)) 2260 account_shadowed(kvm, sp); 2261 2262 return sp; 2263 } 2264 2265 /* Note, @vcpu may be NULL if @role.direct is true; see kvm_mmu_find_shadow_page. */ 2266 static struct kvm_mmu_page *__kvm_mmu_get_shadow_page(struct kvm *kvm, 2267 struct kvm_vcpu *vcpu, 2268 struct shadow_page_caches *caches, 2269 gfn_t gfn, 2270 union kvm_mmu_page_role role) 2271 { 2272 struct hlist_head *sp_list; 2273 struct kvm_mmu_page *sp; 2274 bool created = false; 2275 2276 sp_list = &kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]; 2277 2278 sp = kvm_mmu_find_shadow_page(kvm, vcpu, gfn, sp_list, role); 2279 if (!sp) { 2280 created = true; 2281 sp = kvm_mmu_alloc_shadow_page(kvm, caches, gfn, sp_list, role); 2282 } 2283 2284 trace_kvm_mmu_get_page(sp, created); 2285 return sp; 2286 } 2287 2288 static struct kvm_mmu_page *kvm_mmu_get_shadow_page(struct kvm_vcpu *vcpu, 2289 gfn_t gfn, 2290 union kvm_mmu_page_role role) 2291 { 2292 struct shadow_page_caches caches = { 2293 .page_header_cache = &vcpu->arch.mmu_page_header_cache, 2294 .shadow_page_cache = &vcpu->arch.mmu_shadow_page_cache, 2295 .shadowed_info_cache = &vcpu->arch.mmu_shadowed_info_cache, 2296 }; 2297 2298 return __kvm_mmu_get_shadow_page(vcpu->kvm, vcpu, &caches, gfn, role); 2299 } 2300 2301 static union kvm_mmu_page_role kvm_mmu_child_role(u64 *sptep, bool direct, 2302 unsigned int access) 2303 { 2304 struct kvm_mmu_page *parent_sp = sptep_to_sp(sptep); 2305 union kvm_mmu_page_role role; 2306 2307 role = parent_sp->role; 2308 role.level--; 2309 role.access = access; 2310 role.direct = direct; 2311 role.passthrough = 0; 2312 2313 /* 2314 * If the guest has 4-byte PTEs then that means it's using 32-bit, 2315 * 2-level, non-PAE paging. KVM shadows such guests with PAE paging 2316 * (i.e. 8-byte PTEs). The difference in PTE size means that KVM must 2317 * shadow each guest page table with multiple shadow page tables, which 2318 * requires extra bookkeeping in the role. 2319 * 2320 * Specifically, to shadow the guest's page directory (which covers a 2321 * 4GiB address space), KVM uses 4 PAE page directories, each mapping 2322 * 1GiB of the address space. @role.quadrant encodes which quarter of 2323 * the address space each maps. 2324 * 2325 * To shadow the guest's page tables (which each map a 4MiB region), KVM 2326 * uses 2 PAE page tables, each mapping a 2MiB region. For these, 2327 * @role.quadrant encodes which half of the region they map. 2328 * 2329 * Concretely, a 4-byte PDE consumes bits 31:22, while an 8-byte PDE 2330 * consumes bits 29:21. To consume bits 31:30, KVM's uses 4 shadow 2331 * PDPTEs; those 4 PAE page directories are pre-allocated and their 2332 * quadrant is assigned in mmu_alloc_root(). A 4-byte PTE consumes 2333 * bits 21:12, while an 8-byte PTE consumes bits 20:12. To consume 2334 * bit 21 in the PTE (the child here), KVM propagates that bit to the 2335 * quadrant, i.e. sets quadrant to '0' or '1'. The parent 8-byte PDE 2336 * covers bit 21 (see above), thus the quadrant is calculated from the 2337 * _least_ significant bit of the PDE index. 2338 */ 2339 if (role.has_4_byte_gpte) { 2340 WARN_ON_ONCE(role.level != PG_LEVEL_4K); 2341 role.quadrant = spte_index(sptep) & 1; 2342 } 2343 2344 return role; 2345 } 2346 2347 static struct kvm_mmu_page *kvm_mmu_get_child_sp(struct kvm_vcpu *vcpu, 2348 u64 *sptep, gfn_t gfn, 2349 bool direct, unsigned int access) 2350 { 2351 union kvm_mmu_page_role role; 2352 2353 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) 2354 return ERR_PTR(-EEXIST); 2355 2356 role = kvm_mmu_child_role(sptep, direct, access); 2357 return kvm_mmu_get_shadow_page(vcpu, gfn, role); 2358 } 2359 2360 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator, 2361 struct kvm_vcpu *vcpu, hpa_t root, 2362 u64 addr) 2363 { 2364 iterator->addr = addr; 2365 iterator->shadow_addr = root; 2366 iterator->level = vcpu->arch.mmu->root_role.level; 2367 2368 if (iterator->level >= PT64_ROOT_4LEVEL && 2369 vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL && 2370 !vcpu->arch.mmu->root_role.direct) 2371 iterator->level = PT32E_ROOT_LEVEL; 2372 2373 if (iterator->level == PT32E_ROOT_LEVEL) { 2374 /* 2375 * prev_root is currently only used for 64-bit hosts. So only 2376 * the active root_hpa is valid here. 2377 */ 2378 BUG_ON(root != vcpu->arch.mmu->root.hpa); 2379 2380 iterator->shadow_addr 2381 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3]; 2382 iterator->shadow_addr &= SPTE_BASE_ADDR_MASK; 2383 --iterator->level; 2384 if (!iterator->shadow_addr) 2385 iterator->level = 0; 2386 } 2387 } 2388 2389 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, 2390 struct kvm_vcpu *vcpu, u64 addr) 2391 { 2392 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa, 2393 addr); 2394 } 2395 2396 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) 2397 { 2398 if (iterator->level < PG_LEVEL_4K) 2399 return false; 2400 2401 iterator->index = SPTE_INDEX(iterator->addr, iterator->level); 2402 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; 2403 return true; 2404 } 2405 2406 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, 2407 u64 spte) 2408 { 2409 if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) { 2410 iterator->level = 0; 2411 return; 2412 } 2413 2414 iterator->shadow_addr = spte & SPTE_BASE_ADDR_MASK; 2415 --iterator->level; 2416 } 2417 2418 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) 2419 { 2420 __shadow_walk_next(iterator, *iterator->sptep); 2421 } 2422 2423 static void __link_shadow_page(struct kvm *kvm, 2424 struct kvm_mmu_memory_cache *cache, u64 *sptep, 2425 struct kvm_mmu_page *sp, bool flush) 2426 { 2427 u64 spte; 2428 2429 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); 2430 2431 /* 2432 * If an SPTE is present already, it must be a leaf and therefore 2433 * a large one. Drop it, and flush the TLB if needed, before 2434 * installing sp. 2435 */ 2436 if (is_shadow_present_pte(*sptep)) 2437 drop_large_spte(kvm, sptep, flush); 2438 2439 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp)); 2440 2441 mmu_spte_set(sptep, spte); 2442 2443 mmu_page_add_parent_pte(cache, sp, sptep); 2444 2445 /* 2446 * The non-direct sub-pagetable must be updated before linking. For 2447 * L1 sp, the pagetable is updated via kvm_sync_page() in 2448 * kvm_mmu_find_shadow_page() without write-protecting the gfn, 2449 * so sp->unsync can be true or false. For higher level non-direct 2450 * sp, the pagetable is updated/synced via mmu_sync_children() in 2451 * FNAME(fetch)(), so sp->unsync_children can only be false. 2452 * WARN_ON_ONCE() if anything happens unexpectedly. 2453 */ 2454 if (WARN_ON_ONCE(sp->unsync_children) || sp->unsync) 2455 mark_unsync(sptep); 2456 } 2457 2458 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, 2459 struct kvm_mmu_page *sp) 2460 { 2461 __link_shadow_page(vcpu->kvm, &vcpu->arch.mmu_pte_list_desc_cache, sptep, sp, true); 2462 } 2463 2464 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2465 unsigned direct_access) 2466 { 2467 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { 2468 struct kvm_mmu_page *child; 2469 2470 /* 2471 * For the direct sp, if the guest pte's dirty bit 2472 * changed form clean to dirty, it will corrupt the 2473 * sp's access: allow writable in the read-only sp, 2474 * so we should update the spte at this point to get 2475 * a new sp with the correct access. 2476 */ 2477 child = spte_to_child_sp(*sptep); 2478 if (child->role.access == direct_access) 2479 return; 2480 2481 drop_parent_pte(vcpu->kvm, child, sptep); 2482 kvm_flush_remote_tlbs_sptep(vcpu->kvm, sptep); 2483 } 2484 } 2485 2486 /* Returns the number of zapped non-leaf child shadow pages. */ 2487 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 2488 u64 *spte, struct list_head *invalid_list) 2489 { 2490 u64 pte; 2491 struct kvm_mmu_page *child; 2492 2493 pte = *spte; 2494 if (is_shadow_present_pte(pte)) { 2495 if (is_last_spte(pte, sp->role.level)) { 2496 drop_spte(kvm, spte); 2497 } else { 2498 child = spte_to_child_sp(pte); 2499 drop_parent_pte(kvm, child, spte); 2500 2501 /* 2502 * Recursively zap nested TDP SPs, parentless SPs are 2503 * unlikely to be used again in the near future. This 2504 * avoids retaining a large number of stale nested SPs. 2505 */ 2506 if (tdp_enabled && invalid_list && 2507 child->role.guest_mode && !child->parent_ptes.val) 2508 return kvm_mmu_prepare_zap_page(kvm, child, 2509 invalid_list); 2510 } 2511 } else if (is_mmio_spte(pte)) { 2512 mmu_spte_clear_no_track(spte); 2513 } 2514 return 0; 2515 } 2516 2517 static int kvm_mmu_page_unlink_children(struct kvm *kvm, 2518 struct kvm_mmu_page *sp, 2519 struct list_head *invalid_list) 2520 { 2521 int zapped = 0; 2522 unsigned i; 2523 2524 for (i = 0; i < SPTE_ENT_PER_PAGE; ++i) 2525 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list); 2526 2527 return zapped; 2528 } 2529 2530 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp) 2531 { 2532 u64 *sptep; 2533 struct rmap_iterator iter; 2534 2535 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter))) 2536 drop_parent_pte(kvm, sp, sptep); 2537 } 2538 2539 static int mmu_zap_unsync_children(struct kvm *kvm, 2540 struct kvm_mmu_page *parent, 2541 struct list_head *invalid_list) 2542 { 2543 int i, zapped = 0; 2544 struct mmu_page_path parents; 2545 struct kvm_mmu_pages pages; 2546 2547 if (parent->role.level == PG_LEVEL_4K) 2548 return 0; 2549 2550 while (mmu_unsync_walk(parent, &pages)) { 2551 struct kvm_mmu_page *sp; 2552 2553 for_each_sp(pages, sp, parents, i) { 2554 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 2555 mmu_pages_clear_parents(&parents); 2556 zapped++; 2557 } 2558 } 2559 2560 return zapped; 2561 } 2562 2563 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm, 2564 struct kvm_mmu_page *sp, 2565 struct list_head *invalid_list, 2566 int *nr_zapped) 2567 { 2568 bool list_unstable, zapped_root = false; 2569 2570 lockdep_assert_held_write(&kvm->mmu_lock); 2571 trace_kvm_mmu_prepare_zap_page(sp); 2572 ++kvm->stat.mmu_shadow_zapped; 2573 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list); 2574 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list); 2575 kvm_mmu_unlink_parents(kvm, sp); 2576 2577 /* Zapping children means active_mmu_pages has become unstable. */ 2578 list_unstable = *nr_zapped; 2579 2580 if (!sp->role.invalid && sp_has_gptes(sp)) 2581 unaccount_shadowed(kvm, sp); 2582 2583 if (sp->unsync) 2584 kvm_unlink_unsync_page(kvm, sp); 2585 if (!sp->root_count) { 2586 /* Count self */ 2587 (*nr_zapped)++; 2588 2589 /* 2590 * Already invalid pages (previously active roots) are not on 2591 * the active page list. See list_del() in the "else" case of 2592 * !sp->root_count. 2593 */ 2594 if (sp->role.invalid) 2595 list_add(&sp->link, invalid_list); 2596 else 2597 list_move(&sp->link, invalid_list); 2598 kvm_unaccount_mmu_page(kvm, sp); 2599 } else { 2600 /* 2601 * Remove the active root from the active page list, the root 2602 * will be explicitly freed when the root_count hits zero. 2603 */ 2604 list_del(&sp->link); 2605 2606 /* 2607 * Obsolete pages cannot be used on any vCPUs, see the comment 2608 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also 2609 * treats invalid shadow pages as being obsolete. 2610 */ 2611 zapped_root = !is_obsolete_sp(kvm, sp); 2612 } 2613 2614 if (sp->nx_huge_page_disallowed) 2615 unaccount_nx_huge_page(kvm, sp); 2616 2617 sp->role.invalid = 1; 2618 2619 /* 2620 * Make the request to free obsolete roots after marking the root 2621 * invalid, otherwise other vCPUs may not see it as invalid. 2622 */ 2623 if (zapped_root) 2624 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 2625 return list_unstable; 2626 } 2627 2628 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 2629 struct list_head *invalid_list) 2630 { 2631 int nr_zapped; 2632 2633 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped); 2634 return nr_zapped; 2635 } 2636 2637 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 2638 struct list_head *invalid_list) 2639 { 2640 struct kvm_mmu_page *sp, *nsp; 2641 2642 if (list_empty(invalid_list)) 2643 return; 2644 2645 /* 2646 * We need to make sure everyone sees our modifications to 2647 * the page tables and see changes to vcpu->mode here. The barrier 2648 * in the kvm_flush_remote_tlbs() achieves this. This pairs 2649 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end. 2650 * 2651 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit 2652 * guest mode and/or lockless shadow page table walks. 2653 */ 2654 kvm_flush_remote_tlbs(kvm); 2655 2656 list_for_each_entry_safe(sp, nsp, invalid_list, link) { 2657 WARN_ON_ONCE(!sp->role.invalid || sp->root_count); 2658 kvm_mmu_free_shadow_page(sp); 2659 } 2660 } 2661 2662 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm, 2663 unsigned long nr_to_zap) 2664 { 2665 unsigned long total_zapped = 0; 2666 struct kvm_mmu_page *sp, *tmp; 2667 LIST_HEAD(invalid_list); 2668 bool unstable; 2669 int nr_zapped; 2670 2671 if (list_empty(&kvm->arch.active_mmu_pages)) 2672 return 0; 2673 2674 restart: 2675 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) { 2676 /* 2677 * Don't zap active root pages, the page itself can't be freed 2678 * and zapping it will just force vCPUs to realloc and reload. 2679 */ 2680 if (sp->root_count) 2681 continue; 2682 2683 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, 2684 &nr_zapped); 2685 total_zapped += nr_zapped; 2686 if (total_zapped >= nr_to_zap) 2687 break; 2688 2689 if (unstable) 2690 goto restart; 2691 } 2692 2693 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2694 2695 kvm->stat.mmu_recycled += total_zapped; 2696 return total_zapped; 2697 } 2698 2699 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm) 2700 { 2701 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) 2702 return kvm->arch.n_max_mmu_pages - 2703 kvm->arch.n_used_mmu_pages; 2704 2705 return 0; 2706 } 2707 2708 static int make_mmu_pages_available(struct kvm_vcpu *vcpu) 2709 { 2710 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm); 2711 2712 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES)) 2713 return 0; 2714 2715 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail); 2716 2717 /* 2718 * Note, this check is intentionally soft, it only guarantees that one 2719 * page is available, while the caller may end up allocating as many as 2720 * four pages, e.g. for PAE roots or for 5-level paging. Temporarily 2721 * exceeding the (arbitrary by default) limit will not harm the host, 2722 * being too aggressive may unnecessarily kill the guest, and getting an 2723 * exact count is far more trouble than it's worth, especially in the 2724 * page fault paths. 2725 */ 2726 if (!kvm_mmu_available_pages(vcpu->kvm)) 2727 return -ENOSPC; 2728 return 0; 2729 } 2730 2731 /* 2732 * Changing the number of mmu pages allocated to the vm 2733 * Note: if goal_nr_mmu_pages is too small, you will get dead lock 2734 */ 2735 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages) 2736 { 2737 write_lock(&kvm->mmu_lock); 2738 2739 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { 2740 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages - 2741 goal_nr_mmu_pages); 2742 2743 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; 2744 } 2745 2746 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; 2747 2748 write_unlock(&kvm->mmu_lock); 2749 } 2750 2751 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn) 2752 { 2753 struct kvm_mmu_page *sp; 2754 LIST_HEAD(invalid_list); 2755 int r; 2756 2757 r = 0; 2758 write_lock(&kvm->mmu_lock); 2759 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) { 2760 r = 1; 2761 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 2762 } 2763 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2764 write_unlock(&kvm->mmu_lock); 2765 2766 return r; 2767 } 2768 2769 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) 2770 { 2771 gpa_t gpa; 2772 int r; 2773 2774 if (vcpu->arch.mmu->root_role.direct) 2775 return 0; 2776 2777 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL); 2778 2779 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); 2780 2781 return r; 2782 } 2783 2784 static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 2785 { 2786 trace_kvm_mmu_unsync_page(sp); 2787 ++kvm->stat.mmu_unsync; 2788 sp->unsync = 1; 2789 2790 kvm_mmu_mark_parents_unsync(sp); 2791 } 2792 2793 /* 2794 * Attempt to unsync any shadow pages that can be reached by the specified gfn, 2795 * KVM is creating a writable mapping for said gfn. Returns 0 if all pages 2796 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must 2797 * be write-protected. 2798 */ 2799 int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot, 2800 gfn_t gfn, bool can_unsync, bool prefetch) 2801 { 2802 struct kvm_mmu_page *sp; 2803 bool locked = false; 2804 2805 /* 2806 * Force write-protection if the page is being tracked. Note, the page 2807 * track machinery is used to write-protect upper-level shadow pages, 2808 * i.e. this guards the role.level == 4K assertion below! 2809 */ 2810 if (kvm_gfn_is_write_tracked(kvm, slot, gfn)) 2811 return -EPERM; 2812 2813 /* 2814 * The page is not write-tracked, mark existing shadow pages unsync 2815 * unless KVM is synchronizing an unsync SP (can_unsync = false). In 2816 * that case, KVM must complete emulation of the guest TLB flush before 2817 * allowing shadow pages to become unsync (writable by the guest). 2818 */ 2819 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) { 2820 if (!can_unsync) 2821 return -EPERM; 2822 2823 if (sp->unsync) 2824 continue; 2825 2826 if (prefetch) 2827 return -EEXIST; 2828 2829 /* 2830 * TDP MMU page faults require an additional spinlock as they 2831 * run with mmu_lock held for read, not write, and the unsync 2832 * logic is not thread safe. Take the spinklock regardless of 2833 * the MMU type to avoid extra conditionals/parameters, there's 2834 * no meaningful penalty if mmu_lock is held for write. 2835 */ 2836 if (!locked) { 2837 locked = true; 2838 spin_lock(&kvm->arch.mmu_unsync_pages_lock); 2839 2840 /* 2841 * Recheck after taking the spinlock, a different vCPU 2842 * may have since marked the page unsync. A false 2843 * positive on the unprotected check above is not 2844 * possible as clearing sp->unsync _must_ hold mmu_lock 2845 * for write, i.e. unsync cannot transition from 0->1 2846 * while this CPU holds mmu_lock for read (or write). 2847 */ 2848 if (READ_ONCE(sp->unsync)) 2849 continue; 2850 } 2851 2852 WARN_ON_ONCE(sp->role.level != PG_LEVEL_4K); 2853 kvm_unsync_page(kvm, sp); 2854 } 2855 if (locked) 2856 spin_unlock(&kvm->arch.mmu_unsync_pages_lock); 2857 2858 /* 2859 * We need to ensure that the marking of unsync pages is visible 2860 * before the SPTE is updated to allow writes because 2861 * kvm_mmu_sync_roots() checks the unsync flags without holding 2862 * the MMU lock and so can race with this. If the SPTE was updated 2863 * before the page had been marked as unsync-ed, something like the 2864 * following could happen: 2865 * 2866 * CPU 1 CPU 2 2867 * --------------------------------------------------------------------- 2868 * 1.2 Host updates SPTE 2869 * to be writable 2870 * 2.1 Guest writes a GPTE for GVA X. 2871 * (GPTE being in the guest page table shadowed 2872 * by the SP from CPU 1.) 2873 * This reads SPTE during the page table walk. 2874 * Since SPTE.W is read as 1, there is no 2875 * fault. 2876 * 2877 * 2.2 Guest issues TLB flush. 2878 * That causes a VM Exit. 2879 * 2880 * 2.3 Walking of unsync pages sees sp->unsync is 2881 * false and skips the page. 2882 * 2883 * 2.4 Guest accesses GVA X. 2884 * Since the mapping in the SP was not updated, 2885 * so the old mapping for GVA X incorrectly 2886 * gets used. 2887 * 1.1 Host marks SP 2888 * as unsync 2889 * (sp->unsync = true) 2890 * 2891 * The write barrier below ensures that 1.1 happens before 1.2 and thus 2892 * the situation in 2.4 does not arise. It pairs with the read barrier 2893 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3. 2894 */ 2895 smp_wmb(); 2896 2897 return 0; 2898 } 2899 2900 static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, 2901 u64 *sptep, unsigned int pte_access, gfn_t gfn, 2902 kvm_pfn_t pfn, struct kvm_page_fault *fault) 2903 { 2904 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 2905 int level = sp->role.level; 2906 int was_rmapped = 0; 2907 int ret = RET_PF_FIXED; 2908 bool flush = false; 2909 bool wrprot; 2910 u64 spte; 2911 2912 /* Prefetching always gets a writable pfn. */ 2913 bool host_writable = !fault || fault->map_writable; 2914 bool prefetch = !fault || fault->prefetch; 2915 bool write_fault = fault && fault->write; 2916 2917 if (unlikely(is_noslot_pfn(pfn))) { 2918 vcpu->stat.pf_mmio_spte_created++; 2919 mark_mmio_spte(vcpu, sptep, gfn, pte_access); 2920 return RET_PF_EMULATE; 2921 } 2922 2923 if (is_shadow_present_pte(*sptep)) { 2924 /* 2925 * If we overwrite a PTE page pointer with a 2MB PMD, unlink 2926 * the parent of the now unreachable PTE. 2927 */ 2928 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) { 2929 struct kvm_mmu_page *child; 2930 u64 pte = *sptep; 2931 2932 child = spte_to_child_sp(pte); 2933 drop_parent_pte(vcpu->kvm, child, sptep); 2934 flush = true; 2935 } else if (pfn != spte_to_pfn(*sptep)) { 2936 drop_spte(vcpu->kvm, sptep); 2937 flush = true; 2938 } else 2939 was_rmapped = 1; 2940 } 2941 2942 wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch, 2943 true, host_writable, &spte); 2944 2945 if (*sptep == spte) { 2946 ret = RET_PF_SPURIOUS; 2947 } else { 2948 flush |= mmu_spte_update(sptep, spte); 2949 trace_kvm_mmu_set_spte(level, gfn, sptep); 2950 } 2951 2952 if (wrprot) { 2953 if (write_fault) 2954 ret = RET_PF_EMULATE; 2955 } 2956 2957 if (flush) 2958 kvm_flush_remote_tlbs_gfn(vcpu->kvm, gfn, level); 2959 2960 if (!was_rmapped) { 2961 WARN_ON_ONCE(ret == RET_PF_SPURIOUS); 2962 rmap_add(vcpu, slot, sptep, gfn, pte_access); 2963 } else { 2964 /* Already rmapped but the pte_access bits may have changed. */ 2965 kvm_mmu_page_set_access(sp, spte_index(sptep), pte_access); 2966 } 2967 2968 return ret; 2969 } 2970 2971 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu, 2972 struct kvm_mmu_page *sp, 2973 u64 *start, u64 *end) 2974 { 2975 struct page *pages[PTE_PREFETCH_NUM]; 2976 struct kvm_memory_slot *slot; 2977 unsigned int access = sp->role.access; 2978 int i, ret; 2979 gfn_t gfn; 2980 2981 gfn = kvm_mmu_page_get_gfn(sp, spte_index(start)); 2982 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK); 2983 if (!slot) 2984 return -1; 2985 2986 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start); 2987 if (ret <= 0) 2988 return -1; 2989 2990 for (i = 0; i < ret; i++, gfn++, start++) { 2991 mmu_set_spte(vcpu, slot, start, access, gfn, 2992 page_to_pfn(pages[i]), NULL); 2993 put_page(pages[i]); 2994 } 2995 2996 return 0; 2997 } 2998 2999 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, 3000 struct kvm_mmu_page *sp, u64 *sptep) 3001 { 3002 u64 *spte, *start = NULL; 3003 int i; 3004 3005 WARN_ON_ONCE(!sp->role.direct); 3006 3007 i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1); 3008 spte = sp->spt + i; 3009 3010 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 3011 if (is_shadow_present_pte(*spte) || spte == sptep) { 3012 if (!start) 3013 continue; 3014 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0) 3015 return; 3016 start = NULL; 3017 } else if (!start) 3018 start = spte; 3019 } 3020 if (start) 3021 direct_pte_prefetch_many(vcpu, sp, start, spte); 3022 } 3023 3024 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) 3025 { 3026 struct kvm_mmu_page *sp; 3027 3028 sp = sptep_to_sp(sptep); 3029 3030 /* 3031 * Without accessed bits, there's no way to distinguish between 3032 * actually accessed translations and prefetched, so disable pte 3033 * prefetch if accessed bits aren't available. 3034 */ 3035 if (sp_ad_disabled(sp)) 3036 return; 3037 3038 if (sp->role.level > PG_LEVEL_4K) 3039 return; 3040 3041 /* 3042 * If addresses are being invalidated, skip prefetching to avoid 3043 * accidentally prefetching those addresses. 3044 */ 3045 if (unlikely(vcpu->kvm->mmu_invalidate_in_progress)) 3046 return; 3047 3048 __direct_pte_prefetch(vcpu, sp, sptep); 3049 } 3050 3051 /* 3052 * Lookup the mapping level for @gfn in the current mm. 3053 * 3054 * WARNING! Use of host_pfn_mapping_level() requires the caller and the end 3055 * consumer to be tied into KVM's handlers for MMU notifier events! 3056 * 3057 * There are several ways to safely use this helper: 3058 * 3059 * - Check mmu_invalidate_retry_hva() after grabbing the mapping level, before 3060 * consuming it. In this case, mmu_lock doesn't need to be held during the 3061 * lookup, but it does need to be held while checking the MMU notifier. 3062 * 3063 * - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation 3064 * event for the hva. This can be done by explicit checking the MMU notifier 3065 * or by ensuring that KVM already has a valid mapping that covers the hva. 3066 * 3067 * - Do not use the result to install new mappings, e.g. use the host mapping 3068 * level only to decide whether or not to zap an entry. In this case, it's 3069 * not required to hold mmu_lock (though it's highly likely the caller will 3070 * want to hold mmu_lock anyways, e.g. to modify SPTEs). 3071 * 3072 * Note! The lookup can still race with modifications to host page tables, but 3073 * the above "rules" ensure KVM will not _consume_ the result of the walk if a 3074 * race with the primary MMU occurs. 3075 */ 3076 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, 3077 const struct kvm_memory_slot *slot) 3078 { 3079 int level = PG_LEVEL_4K; 3080 unsigned long hva; 3081 unsigned long flags; 3082 pgd_t pgd; 3083 p4d_t p4d; 3084 pud_t pud; 3085 pmd_t pmd; 3086 3087 /* 3088 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot() 3089 * is not solely for performance, it's also necessary to avoid the 3090 * "writable" check in __gfn_to_hva_many(), which will always fail on 3091 * read-only memslots due to gfn_to_hva() assuming writes. Earlier 3092 * page fault steps have already verified the guest isn't writing a 3093 * read-only memslot. 3094 */ 3095 hva = __gfn_to_hva_memslot(slot, gfn); 3096 3097 /* 3098 * Disable IRQs to prevent concurrent tear down of host page tables, 3099 * e.g. if the primary MMU promotes a P*D to a huge page and then frees 3100 * the original page table. 3101 */ 3102 local_irq_save(flags); 3103 3104 /* 3105 * Read each entry once. As above, a non-leaf entry can be promoted to 3106 * a huge page _during_ this walk. Re-reading the entry could send the 3107 * walk into the weeks, e.g. p*d_large() returns false (sees the old 3108 * value) and then p*d_offset() walks into the target huge page instead 3109 * of the old page table (sees the new value). 3110 */ 3111 pgd = READ_ONCE(*pgd_offset(kvm->mm, hva)); 3112 if (pgd_none(pgd)) 3113 goto out; 3114 3115 p4d = READ_ONCE(*p4d_offset(&pgd, hva)); 3116 if (p4d_none(p4d) || !p4d_present(p4d)) 3117 goto out; 3118 3119 pud = READ_ONCE(*pud_offset(&p4d, hva)); 3120 if (pud_none(pud) || !pud_present(pud)) 3121 goto out; 3122 3123 if (pud_large(pud)) { 3124 level = PG_LEVEL_1G; 3125 goto out; 3126 } 3127 3128 pmd = READ_ONCE(*pmd_offset(&pud, hva)); 3129 if (pmd_none(pmd) || !pmd_present(pmd)) 3130 goto out; 3131 3132 if (pmd_large(pmd)) 3133 level = PG_LEVEL_2M; 3134 3135 out: 3136 local_irq_restore(flags); 3137 return level; 3138 } 3139 3140 int kvm_mmu_max_mapping_level(struct kvm *kvm, 3141 const struct kvm_memory_slot *slot, gfn_t gfn, 3142 int max_level) 3143 { 3144 struct kvm_lpage_info *linfo; 3145 int host_level; 3146 3147 max_level = min(max_level, max_huge_page_level); 3148 for ( ; max_level > PG_LEVEL_4K; max_level--) { 3149 linfo = lpage_info_slot(gfn, slot, max_level); 3150 if (!linfo->disallow_lpage) 3151 break; 3152 } 3153 3154 if (max_level == PG_LEVEL_4K) 3155 return PG_LEVEL_4K; 3156 3157 host_level = host_pfn_mapping_level(kvm, gfn, slot); 3158 return min(host_level, max_level); 3159 } 3160 3161 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3162 { 3163 struct kvm_memory_slot *slot = fault->slot; 3164 kvm_pfn_t mask; 3165 3166 fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled; 3167 3168 if (unlikely(fault->max_level == PG_LEVEL_4K)) 3169 return; 3170 3171 if (is_error_noslot_pfn(fault->pfn)) 3172 return; 3173 3174 if (kvm_slot_dirty_track_enabled(slot)) 3175 return; 3176 3177 /* 3178 * Enforce the iTLB multihit workaround after capturing the requested 3179 * level, which will be used to do precise, accurate accounting. 3180 */ 3181 fault->req_level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, 3182 fault->gfn, fault->max_level); 3183 if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed) 3184 return; 3185 3186 /* 3187 * mmu_invalidate_retry() was successful and mmu_lock is held, so 3188 * the pmd can't be split from under us. 3189 */ 3190 fault->goal_level = fault->req_level; 3191 mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1; 3192 VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask)); 3193 fault->pfn &= ~mask; 3194 } 3195 3196 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level) 3197 { 3198 if (cur_level > PG_LEVEL_4K && 3199 cur_level == fault->goal_level && 3200 is_shadow_present_pte(spte) && 3201 !is_large_pte(spte) && 3202 spte_to_child_sp(spte)->nx_huge_page_disallowed) { 3203 /* 3204 * A small SPTE exists for this pfn, but FNAME(fetch), 3205 * direct_map(), or kvm_tdp_mmu_map() would like to create a 3206 * large PTE instead: just force them to go down another level, 3207 * patching back for them into pfn the next 9 bits of the 3208 * address. 3209 */ 3210 u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) - 3211 KVM_PAGES_PER_HPAGE(cur_level - 1); 3212 fault->pfn |= fault->gfn & page_mask; 3213 fault->goal_level--; 3214 } 3215 } 3216 3217 static int direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3218 { 3219 struct kvm_shadow_walk_iterator it; 3220 struct kvm_mmu_page *sp; 3221 int ret; 3222 gfn_t base_gfn = fault->gfn; 3223 3224 kvm_mmu_hugepage_adjust(vcpu, fault); 3225 3226 trace_kvm_mmu_spte_requested(fault); 3227 for_each_shadow_entry(vcpu, fault->addr, it) { 3228 /* 3229 * We cannot overwrite existing page tables with an NX 3230 * large page, as the leaf could be executable. 3231 */ 3232 if (fault->nx_huge_page_workaround_enabled) 3233 disallowed_hugepage_adjust(fault, *it.sptep, it.level); 3234 3235 base_gfn = gfn_round_for_level(fault->gfn, it.level); 3236 if (it.level == fault->goal_level) 3237 break; 3238 3239 sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, true, ACC_ALL); 3240 if (sp == ERR_PTR(-EEXIST)) 3241 continue; 3242 3243 link_shadow_page(vcpu, it.sptep, sp); 3244 if (fault->huge_page_disallowed) 3245 account_nx_huge_page(vcpu->kvm, sp, 3246 fault->req_level >= it.level); 3247 } 3248 3249 if (WARN_ON_ONCE(it.level != fault->goal_level)) 3250 return -EFAULT; 3251 3252 ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL, 3253 base_gfn, fault->pfn, fault); 3254 if (ret == RET_PF_SPURIOUS) 3255 return ret; 3256 3257 direct_pte_prefetch(vcpu, it.sptep); 3258 return ret; 3259 } 3260 3261 static void kvm_send_hwpoison_signal(struct kvm_memory_slot *slot, gfn_t gfn) 3262 { 3263 unsigned long hva = gfn_to_hva_memslot(slot, gfn); 3264 3265 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva, PAGE_SHIFT, current); 3266 } 3267 3268 static int kvm_handle_error_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3269 { 3270 if (is_sigpending_pfn(fault->pfn)) { 3271 kvm_handle_signal_exit(vcpu); 3272 return -EINTR; 3273 } 3274 3275 /* 3276 * Do not cache the mmio info caused by writing the readonly gfn 3277 * into the spte otherwise read access on readonly gfn also can 3278 * caused mmio page fault and treat it as mmio access. 3279 */ 3280 if (fault->pfn == KVM_PFN_ERR_RO_FAULT) 3281 return RET_PF_EMULATE; 3282 3283 if (fault->pfn == KVM_PFN_ERR_HWPOISON) { 3284 kvm_send_hwpoison_signal(fault->slot, fault->gfn); 3285 return RET_PF_RETRY; 3286 } 3287 3288 return -EFAULT; 3289 } 3290 3291 static int kvm_handle_noslot_fault(struct kvm_vcpu *vcpu, 3292 struct kvm_page_fault *fault, 3293 unsigned int access) 3294 { 3295 gva_t gva = fault->is_tdp ? 0 : fault->addr; 3296 3297 vcpu_cache_mmio_info(vcpu, gva, fault->gfn, 3298 access & shadow_mmio_access_mask); 3299 3300 /* 3301 * If MMIO caching is disabled, emulate immediately without 3302 * touching the shadow page tables as attempting to install an 3303 * MMIO SPTE will just be an expensive nop. 3304 */ 3305 if (unlikely(!enable_mmio_caching)) 3306 return RET_PF_EMULATE; 3307 3308 /* 3309 * Do not create an MMIO SPTE for a gfn greater than host.MAXPHYADDR, 3310 * any guest that generates such gfns is running nested and is being 3311 * tricked by L0 userspace (you can observe gfn > L1.MAXPHYADDR if and 3312 * only if L1's MAXPHYADDR is inaccurate with respect to the 3313 * hardware's). 3314 */ 3315 if (unlikely(fault->gfn > kvm_mmu_max_gfn())) 3316 return RET_PF_EMULATE; 3317 3318 return RET_PF_CONTINUE; 3319 } 3320 3321 static bool page_fault_can_be_fast(struct kvm_page_fault *fault) 3322 { 3323 /* 3324 * Page faults with reserved bits set, i.e. faults on MMIO SPTEs, only 3325 * reach the common page fault handler if the SPTE has an invalid MMIO 3326 * generation number. Refreshing the MMIO generation needs to go down 3327 * the slow path. Note, EPT Misconfigs do NOT set the PRESENT flag! 3328 */ 3329 if (fault->rsvd) 3330 return false; 3331 3332 /* 3333 * #PF can be fast if: 3334 * 3335 * 1. The shadow page table entry is not present and A/D bits are 3336 * disabled _by KVM_, which could mean that the fault is potentially 3337 * caused by access tracking (if enabled). If A/D bits are enabled 3338 * by KVM, but disabled by L1 for L2, KVM is forced to disable A/D 3339 * bits for L2 and employ access tracking, but the fast page fault 3340 * mechanism only supports direct MMUs. 3341 * 2. The shadow page table entry is present, the access is a write, 3342 * and no reserved bits are set (MMIO SPTEs cannot be "fixed"), i.e. 3343 * the fault was caused by a write-protection violation. If the 3344 * SPTE is MMU-writable (determined later), the fault can be fixed 3345 * by setting the Writable bit, which can be done out of mmu_lock. 3346 */ 3347 if (!fault->present) 3348 return !kvm_ad_enabled(); 3349 3350 /* 3351 * Note, instruction fetches and writes are mutually exclusive, ignore 3352 * the "exec" flag. 3353 */ 3354 return fault->write; 3355 } 3356 3357 /* 3358 * Returns true if the SPTE was fixed successfully. Otherwise, 3359 * someone else modified the SPTE from its original value. 3360 */ 3361 static bool fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, 3362 struct kvm_page_fault *fault, 3363 u64 *sptep, u64 old_spte, u64 new_spte) 3364 { 3365 /* 3366 * Theoretically we could also set dirty bit (and flush TLB) here in 3367 * order to eliminate unnecessary PML logging. See comments in 3368 * set_spte. But fast_page_fault is very unlikely to happen with PML 3369 * enabled, so we do not do this. This might result in the same GPA 3370 * to be logged in PML buffer again when the write really happens, and 3371 * eventually to be called by mark_page_dirty twice. But it's also no 3372 * harm. This also avoids the TLB flush needed after setting dirty bit 3373 * so non-PML cases won't be impacted. 3374 * 3375 * Compare with set_spte where instead shadow_dirty_mask is set. 3376 */ 3377 if (!try_cmpxchg64(sptep, &old_spte, new_spte)) 3378 return false; 3379 3380 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) 3381 mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn); 3382 3383 return true; 3384 } 3385 3386 static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte) 3387 { 3388 if (fault->exec) 3389 return is_executable_pte(spte); 3390 3391 if (fault->write) 3392 return is_writable_pte(spte); 3393 3394 /* Fault was on Read access */ 3395 return spte & PT_PRESENT_MASK; 3396 } 3397 3398 /* 3399 * Returns the last level spte pointer of the shadow page walk for the given 3400 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no 3401 * walk could be performed, returns NULL and *spte does not contain valid data. 3402 * 3403 * Contract: 3404 * - Must be called between walk_shadow_page_lockless_{begin,end}. 3405 * - The returned sptep must not be used after walk_shadow_page_lockless_end. 3406 */ 3407 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte) 3408 { 3409 struct kvm_shadow_walk_iterator iterator; 3410 u64 old_spte; 3411 u64 *sptep = NULL; 3412 3413 for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) { 3414 sptep = iterator.sptep; 3415 *spte = old_spte; 3416 } 3417 3418 return sptep; 3419 } 3420 3421 /* 3422 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS. 3423 */ 3424 static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3425 { 3426 struct kvm_mmu_page *sp; 3427 int ret = RET_PF_INVALID; 3428 u64 spte; 3429 u64 *sptep; 3430 uint retry_count = 0; 3431 3432 if (!page_fault_can_be_fast(fault)) 3433 return ret; 3434 3435 walk_shadow_page_lockless_begin(vcpu); 3436 3437 do { 3438 u64 new_spte; 3439 3440 if (tdp_mmu_enabled) 3441 sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->addr, &spte); 3442 else 3443 sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte); 3444 3445 /* 3446 * It's entirely possible for the mapping to have been zapped 3447 * by a different task, but the root page should always be 3448 * available as the vCPU holds a reference to its root(s). 3449 */ 3450 if (WARN_ON_ONCE(!sptep)) 3451 spte = REMOVED_SPTE; 3452 3453 if (!is_shadow_present_pte(spte)) 3454 break; 3455 3456 sp = sptep_to_sp(sptep); 3457 if (!is_last_spte(spte, sp->role.level)) 3458 break; 3459 3460 /* 3461 * Check whether the memory access that caused the fault would 3462 * still cause it if it were to be performed right now. If not, 3463 * then this is a spurious fault caused by TLB lazily flushed, 3464 * or some other CPU has already fixed the PTE after the 3465 * current CPU took the fault. 3466 * 3467 * Need not check the access of upper level table entries since 3468 * they are always ACC_ALL. 3469 */ 3470 if (is_access_allowed(fault, spte)) { 3471 ret = RET_PF_SPURIOUS; 3472 break; 3473 } 3474 3475 new_spte = spte; 3476 3477 /* 3478 * KVM only supports fixing page faults outside of MMU lock for 3479 * direct MMUs, nested MMUs are always indirect, and KVM always 3480 * uses A/D bits for non-nested MMUs. Thus, if A/D bits are 3481 * enabled, the SPTE can't be an access-tracked SPTE. 3482 */ 3483 if (unlikely(!kvm_ad_enabled()) && is_access_track_spte(spte)) 3484 new_spte = restore_acc_track_spte(new_spte); 3485 3486 /* 3487 * To keep things simple, only SPTEs that are MMU-writable can 3488 * be made fully writable outside of mmu_lock, e.g. only SPTEs 3489 * that were write-protected for dirty-logging or access 3490 * tracking are handled here. Don't bother checking if the 3491 * SPTE is writable to prioritize running with A/D bits enabled. 3492 * The is_access_allowed() check above handles the common case 3493 * of the fault being spurious, and the SPTE is known to be 3494 * shadow-present, i.e. except for access tracking restoration 3495 * making the new SPTE writable, the check is wasteful. 3496 */ 3497 if (fault->write && is_mmu_writable_spte(spte)) { 3498 new_spte |= PT_WRITABLE_MASK; 3499 3500 /* 3501 * Do not fix write-permission on the large spte when 3502 * dirty logging is enabled. Since we only dirty the 3503 * first page into the dirty-bitmap in 3504 * fast_pf_fix_direct_spte(), other pages are missed 3505 * if its slot has dirty logging enabled. 3506 * 3507 * Instead, we let the slow page fault path create a 3508 * normal spte to fix the access. 3509 */ 3510 if (sp->role.level > PG_LEVEL_4K && 3511 kvm_slot_dirty_track_enabled(fault->slot)) 3512 break; 3513 } 3514 3515 /* Verify that the fault can be handled in the fast path */ 3516 if (new_spte == spte || 3517 !is_access_allowed(fault, new_spte)) 3518 break; 3519 3520 /* 3521 * Currently, fast page fault only works for direct mapping 3522 * since the gfn is not stable for indirect shadow page. See 3523 * Documentation/virt/kvm/locking.rst to get more detail. 3524 */ 3525 if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) { 3526 ret = RET_PF_FIXED; 3527 break; 3528 } 3529 3530 if (++retry_count > 4) { 3531 pr_warn_once("Fast #PF retrying more than 4 times.\n"); 3532 break; 3533 } 3534 3535 } while (true); 3536 3537 trace_fast_page_fault(vcpu, fault, sptep, spte, ret); 3538 walk_shadow_page_lockless_end(vcpu); 3539 3540 if (ret != RET_PF_INVALID) 3541 vcpu->stat.pf_fast++; 3542 3543 return ret; 3544 } 3545 3546 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa, 3547 struct list_head *invalid_list) 3548 { 3549 struct kvm_mmu_page *sp; 3550 3551 if (!VALID_PAGE(*root_hpa)) 3552 return; 3553 3554 sp = root_to_sp(*root_hpa); 3555 if (WARN_ON_ONCE(!sp)) 3556 return; 3557 3558 if (is_tdp_mmu_page(sp)) 3559 kvm_tdp_mmu_put_root(kvm, sp, false); 3560 else if (!--sp->root_count && sp->role.invalid) 3561 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 3562 3563 *root_hpa = INVALID_PAGE; 3564 } 3565 3566 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */ 3567 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, 3568 ulong roots_to_free) 3569 { 3570 int i; 3571 LIST_HEAD(invalid_list); 3572 bool free_active_root; 3573 3574 WARN_ON_ONCE(roots_to_free & ~KVM_MMU_ROOTS_ALL); 3575 3576 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG); 3577 3578 /* Before acquiring the MMU lock, see if we need to do any real work. */ 3579 free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT) 3580 && VALID_PAGE(mmu->root.hpa); 3581 3582 if (!free_active_root) { 3583 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3584 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) && 3585 VALID_PAGE(mmu->prev_roots[i].hpa)) 3586 break; 3587 3588 if (i == KVM_MMU_NUM_PREV_ROOTS) 3589 return; 3590 } 3591 3592 write_lock(&kvm->mmu_lock); 3593 3594 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3595 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) 3596 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa, 3597 &invalid_list); 3598 3599 if (free_active_root) { 3600 if (kvm_mmu_is_dummy_root(mmu->root.hpa)) { 3601 /* Nothing to cleanup for dummy roots. */ 3602 } else if (root_to_sp(mmu->root.hpa)) { 3603 mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list); 3604 } else if (mmu->pae_root) { 3605 for (i = 0; i < 4; ++i) { 3606 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i])) 3607 continue; 3608 3609 mmu_free_root_page(kvm, &mmu->pae_root[i], 3610 &invalid_list); 3611 mmu->pae_root[i] = INVALID_PAE_ROOT; 3612 } 3613 } 3614 mmu->root.hpa = INVALID_PAGE; 3615 mmu->root.pgd = 0; 3616 } 3617 3618 kvm_mmu_commit_zap_page(kvm, &invalid_list); 3619 write_unlock(&kvm->mmu_lock); 3620 } 3621 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots); 3622 3623 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu) 3624 { 3625 unsigned long roots_to_free = 0; 3626 struct kvm_mmu_page *sp; 3627 hpa_t root_hpa; 3628 int i; 3629 3630 /* 3631 * This should not be called while L2 is active, L2 can't invalidate 3632 * _only_ its own roots, e.g. INVVPID unconditionally exits. 3633 */ 3634 WARN_ON_ONCE(mmu->root_role.guest_mode); 3635 3636 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 3637 root_hpa = mmu->prev_roots[i].hpa; 3638 if (!VALID_PAGE(root_hpa)) 3639 continue; 3640 3641 sp = root_to_sp(root_hpa); 3642 if (!sp || sp->role.guest_mode) 3643 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 3644 } 3645 3646 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 3647 } 3648 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots); 3649 3650 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, int quadrant, 3651 u8 level) 3652 { 3653 union kvm_mmu_page_role role = vcpu->arch.mmu->root_role; 3654 struct kvm_mmu_page *sp; 3655 3656 role.level = level; 3657 role.quadrant = quadrant; 3658 3659 WARN_ON_ONCE(quadrant && !role.has_4_byte_gpte); 3660 WARN_ON_ONCE(role.direct && role.has_4_byte_gpte); 3661 3662 sp = kvm_mmu_get_shadow_page(vcpu, gfn, role); 3663 ++sp->root_count; 3664 3665 return __pa(sp->spt); 3666 } 3667 3668 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) 3669 { 3670 struct kvm_mmu *mmu = vcpu->arch.mmu; 3671 u8 shadow_root_level = mmu->root_role.level; 3672 hpa_t root; 3673 unsigned i; 3674 int r; 3675 3676 write_lock(&vcpu->kvm->mmu_lock); 3677 r = make_mmu_pages_available(vcpu); 3678 if (r < 0) 3679 goto out_unlock; 3680 3681 if (tdp_mmu_enabled) { 3682 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu); 3683 mmu->root.hpa = root; 3684 } else if (shadow_root_level >= PT64_ROOT_4LEVEL) { 3685 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level); 3686 mmu->root.hpa = root; 3687 } else if (shadow_root_level == PT32E_ROOT_LEVEL) { 3688 if (WARN_ON_ONCE(!mmu->pae_root)) { 3689 r = -EIO; 3690 goto out_unlock; 3691 } 3692 3693 for (i = 0; i < 4; ++i) { 3694 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3695 3696 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 0, 3697 PT32_ROOT_LEVEL); 3698 mmu->pae_root[i] = root | PT_PRESENT_MASK | 3699 shadow_me_value; 3700 } 3701 mmu->root.hpa = __pa(mmu->pae_root); 3702 } else { 3703 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level); 3704 r = -EIO; 3705 goto out_unlock; 3706 } 3707 3708 /* root.pgd is ignored for direct MMUs. */ 3709 mmu->root.pgd = 0; 3710 out_unlock: 3711 write_unlock(&vcpu->kvm->mmu_lock); 3712 return r; 3713 } 3714 3715 static int mmu_first_shadow_root_alloc(struct kvm *kvm) 3716 { 3717 struct kvm_memslots *slots; 3718 struct kvm_memory_slot *slot; 3719 int r = 0, i, bkt; 3720 3721 /* 3722 * Check if this is the first shadow root being allocated before 3723 * taking the lock. 3724 */ 3725 if (kvm_shadow_root_allocated(kvm)) 3726 return 0; 3727 3728 mutex_lock(&kvm->slots_arch_lock); 3729 3730 /* Recheck, under the lock, whether this is the first shadow root. */ 3731 if (kvm_shadow_root_allocated(kvm)) 3732 goto out_unlock; 3733 3734 /* 3735 * Check if anything actually needs to be allocated, e.g. all metadata 3736 * will be allocated upfront if TDP is disabled. 3737 */ 3738 if (kvm_memslots_have_rmaps(kvm) && 3739 kvm_page_track_write_tracking_enabled(kvm)) 3740 goto out_success; 3741 3742 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 3743 slots = __kvm_memslots(kvm, i); 3744 kvm_for_each_memslot(slot, bkt, slots) { 3745 /* 3746 * Both of these functions are no-ops if the target is 3747 * already allocated, so unconditionally calling both 3748 * is safe. Intentionally do NOT free allocations on 3749 * failure to avoid having to track which allocations 3750 * were made now versus when the memslot was created. 3751 * The metadata is guaranteed to be freed when the slot 3752 * is freed, and will be kept/used if userspace retries 3753 * KVM_RUN instead of killing the VM. 3754 */ 3755 r = memslot_rmap_alloc(slot, slot->npages); 3756 if (r) 3757 goto out_unlock; 3758 r = kvm_page_track_write_tracking_alloc(slot); 3759 if (r) 3760 goto out_unlock; 3761 } 3762 } 3763 3764 /* 3765 * Ensure that shadow_root_allocated becomes true strictly after 3766 * all the related pointers are set. 3767 */ 3768 out_success: 3769 smp_store_release(&kvm->arch.shadow_root_allocated, true); 3770 3771 out_unlock: 3772 mutex_unlock(&kvm->slots_arch_lock); 3773 return r; 3774 } 3775 3776 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) 3777 { 3778 struct kvm_mmu *mmu = vcpu->arch.mmu; 3779 u64 pdptrs[4], pm_mask; 3780 gfn_t root_gfn, root_pgd; 3781 int quadrant, i, r; 3782 hpa_t root; 3783 3784 root_pgd = kvm_mmu_get_guest_pgd(vcpu, mmu); 3785 root_gfn = root_pgd >> PAGE_SHIFT; 3786 3787 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) { 3788 mmu->root.hpa = kvm_mmu_get_dummy_root(); 3789 return 0; 3790 } 3791 3792 /* 3793 * On SVM, reading PDPTRs might access guest memory, which might fault 3794 * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock. 3795 */ 3796 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { 3797 for (i = 0; i < 4; ++i) { 3798 pdptrs[i] = mmu->get_pdptr(vcpu, i); 3799 if (!(pdptrs[i] & PT_PRESENT_MASK)) 3800 continue; 3801 3802 if (!kvm_vcpu_is_visible_gfn(vcpu, pdptrs[i] >> PAGE_SHIFT)) 3803 pdptrs[i] = 0; 3804 } 3805 } 3806 3807 r = mmu_first_shadow_root_alloc(vcpu->kvm); 3808 if (r) 3809 return r; 3810 3811 write_lock(&vcpu->kvm->mmu_lock); 3812 r = make_mmu_pages_available(vcpu); 3813 if (r < 0) 3814 goto out_unlock; 3815 3816 /* 3817 * Do we shadow a long mode page table? If so we need to 3818 * write-protect the guests page table root. 3819 */ 3820 if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { 3821 root = mmu_alloc_root(vcpu, root_gfn, 0, 3822 mmu->root_role.level); 3823 mmu->root.hpa = root; 3824 goto set_root_pgd; 3825 } 3826 3827 if (WARN_ON_ONCE(!mmu->pae_root)) { 3828 r = -EIO; 3829 goto out_unlock; 3830 } 3831 3832 /* 3833 * We shadow a 32 bit page table. This may be a legacy 2-level 3834 * or a PAE 3-level page table. In either case we need to be aware that 3835 * the shadow page table may be a PAE or a long mode page table. 3836 */ 3837 pm_mask = PT_PRESENT_MASK | shadow_me_value; 3838 if (mmu->root_role.level >= PT64_ROOT_4LEVEL) { 3839 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; 3840 3841 if (WARN_ON_ONCE(!mmu->pml4_root)) { 3842 r = -EIO; 3843 goto out_unlock; 3844 } 3845 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask; 3846 3847 if (mmu->root_role.level == PT64_ROOT_5LEVEL) { 3848 if (WARN_ON_ONCE(!mmu->pml5_root)) { 3849 r = -EIO; 3850 goto out_unlock; 3851 } 3852 mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask; 3853 } 3854 } 3855 3856 for (i = 0; i < 4; ++i) { 3857 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3858 3859 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { 3860 if (!(pdptrs[i] & PT_PRESENT_MASK)) { 3861 mmu->pae_root[i] = INVALID_PAE_ROOT; 3862 continue; 3863 } 3864 root_gfn = pdptrs[i] >> PAGE_SHIFT; 3865 } 3866 3867 /* 3868 * If shadowing 32-bit non-PAE page tables, each PAE page 3869 * directory maps one quarter of the guest's non-PAE page 3870 * directory. Othwerise each PAE page direct shadows one guest 3871 * PAE page directory so that quadrant should be 0. 3872 */ 3873 quadrant = (mmu->cpu_role.base.level == PT32_ROOT_LEVEL) ? i : 0; 3874 3875 root = mmu_alloc_root(vcpu, root_gfn, quadrant, PT32_ROOT_LEVEL); 3876 mmu->pae_root[i] = root | pm_mask; 3877 } 3878 3879 if (mmu->root_role.level == PT64_ROOT_5LEVEL) 3880 mmu->root.hpa = __pa(mmu->pml5_root); 3881 else if (mmu->root_role.level == PT64_ROOT_4LEVEL) 3882 mmu->root.hpa = __pa(mmu->pml4_root); 3883 else 3884 mmu->root.hpa = __pa(mmu->pae_root); 3885 3886 set_root_pgd: 3887 mmu->root.pgd = root_pgd; 3888 out_unlock: 3889 write_unlock(&vcpu->kvm->mmu_lock); 3890 3891 return r; 3892 } 3893 3894 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu) 3895 { 3896 struct kvm_mmu *mmu = vcpu->arch.mmu; 3897 bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL; 3898 u64 *pml5_root = NULL; 3899 u64 *pml4_root = NULL; 3900 u64 *pae_root; 3901 3902 /* 3903 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP 3904 * tables are allocated and initialized at root creation as there is no 3905 * equivalent level in the guest's NPT to shadow. Allocate the tables 3906 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare. 3907 */ 3908 if (mmu->root_role.direct || 3909 mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL || 3910 mmu->root_role.level < PT64_ROOT_4LEVEL) 3911 return 0; 3912 3913 /* 3914 * NPT, the only paging mode that uses this horror, uses a fixed number 3915 * of levels for the shadow page tables, e.g. all MMUs are 4-level or 3916 * all MMus are 5-level. Thus, this can safely require that pml5_root 3917 * is allocated if the other roots are valid and pml5 is needed, as any 3918 * prior MMU would also have required pml5. 3919 */ 3920 if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root)) 3921 return 0; 3922 3923 /* 3924 * The special roots should always be allocated in concert. Yell and 3925 * bail if KVM ends up in a state where only one of the roots is valid. 3926 */ 3927 if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root || 3928 (need_pml5 && mmu->pml5_root))) 3929 return -EIO; 3930 3931 /* 3932 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and 3933 * doesn't need to be decrypted. 3934 */ 3935 pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3936 if (!pae_root) 3937 return -ENOMEM; 3938 3939 #ifdef CONFIG_X86_64 3940 pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3941 if (!pml4_root) 3942 goto err_pml4; 3943 3944 if (need_pml5) { 3945 pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3946 if (!pml5_root) 3947 goto err_pml5; 3948 } 3949 #endif 3950 3951 mmu->pae_root = pae_root; 3952 mmu->pml4_root = pml4_root; 3953 mmu->pml5_root = pml5_root; 3954 3955 return 0; 3956 3957 #ifdef CONFIG_X86_64 3958 err_pml5: 3959 free_page((unsigned long)pml4_root); 3960 err_pml4: 3961 free_page((unsigned long)pae_root); 3962 return -ENOMEM; 3963 #endif 3964 } 3965 3966 static bool is_unsync_root(hpa_t root) 3967 { 3968 struct kvm_mmu_page *sp; 3969 3970 if (!VALID_PAGE(root) || kvm_mmu_is_dummy_root(root)) 3971 return false; 3972 3973 /* 3974 * The read barrier orders the CPU's read of SPTE.W during the page table 3975 * walk before the reads of sp->unsync/sp->unsync_children here. 3976 * 3977 * Even if another CPU was marking the SP as unsync-ed simultaneously, 3978 * any guest page table changes are not guaranteed to be visible anyway 3979 * until this VCPU issues a TLB flush strictly after those changes are 3980 * made. We only need to ensure that the other CPU sets these flags 3981 * before any actual changes to the page tables are made. The comments 3982 * in mmu_try_to_unsync_pages() describe what could go wrong if this 3983 * requirement isn't satisfied. 3984 */ 3985 smp_rmb(); 3986 sp = root_to_sp(root); 3987 3988 /* 3989 * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the 3990 * PDPTEs for a given PAE root need to be synchronized individually. 3991 */ 3992 if (WARN_ON_ONCE(!sp)) 3993 return false; 3994 3995 if (sp->unsync || sp->unsync_children) 3996 return true; 3997 3998 return false; 3999 } 4000 4001 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) 4002 { 4003 int i; 4004 struct kvm_mmu_page *sp; 4005 4006 if (vcpu->arch.mmu->root_role.direct) 4007 return; 4008 4009 if (!VALID_PAGE(vcpu->arch.mmu->root.hpa)) 4010 return; 4011 4012 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 4013 4014 if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { 4015 hpa_t root = vcpu->arch.mmu->root.hpa; 4016 4017 if (!is_unsync_root(root)) 4018 return; 4019 4020 sp = root_to_sp(root); 4021 4022 write_lock(&vcpu->kvm->mmu_lock); 4023 mmu_sync_children(vcpu, sp, true); 4024 write_unlock(&vcpu->kvm->mmu_lock); 4025 return; 4026 } 4027 4028 write_lock(&vcpu->kvm->mmu_lock); 4029 4030 for (i = 0; i < 4; ++i) { 4031 hpa_t root = vcpu->arch.mmu->pae_root[i]; 4032 4033 if (IS_VALID_PAE_ROOT(root)) { 4034 sp = spte_to_child_sp(root); 4035 mmu_sync_children(vcpu, sp, true); 4036 } 4037 } 4038 4039 write_unlock(&vcpu->kvm->mmu_lock); 4040 } 4041 4042 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu) 4043 { 4044 unsigned long roots_to_free = 0; 4045 int i; 4046 4047 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 4048 if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa)) 4049 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 4050 4051 /* sync prev_roots by simply freeing them */ 4052 kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free); 4053 } 4054 4055 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 4056 gpa_t vaddr, u64 access, 4057 struct x86_exception *exception) 4058 { 4059 if (exception) 4060 exception->error_code = 0; 4061 return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception); 4062 } 4063 4064 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct) 4065 { 4066 /* 4067 * A nested guest cannot use the MMIO cache if it is using nested 4068 * page tables, because cr2 is a nGPA while the cache stores GPAs. 4069 */ 4070 if (mmu_is_nested(vcpu)) 4071 return false; 4072 4073 if (direct) 4074 return vcpu_match_mmio_gpa(vcpu, addr); 4075 4076 return vcpu_match_mmio_gva(vcpu, addr); 4077 } 4078 4079 /* 4080 * Return the level of the lowest level SPTE added to sptes. 4081 * That SPTE may be non-present. 4082 * 4083 * Must be called between walk_shadow_page_lockless_{begin,end}. 4084 */ 4085 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level) 4086 { 4087 struct kvm_shadow_walk_iterator iterator; 4088 int leaf = -1; 4089 u64 spte; 4090 4091 for (shadow_walk_init(&iterator, vcpu, addr), 4092 *root_level = iterator.level; 4093 shadow_walk_okay(&iterator); 4094 __shadow_walk_next(&iterator, spte)) { 4095 leaf = iterator.level; 4096 spte = mmu_spte_get_lockless(iterator.sptep); 4097 4098 sptes[leaf] = spte; 4099 } 4100 4101 return leaf; 4102 } 4103 4104 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */ 4105 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) 4106 { 4107 u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; 4108 struct rsvd_bits_validate *rsvd_check; 4109 int root, leaf, level; 4110 bool reserved = false; 4111 4112 walk_shadow_page_lockless_begin(vcpu); 4113 4114 if (is_tdp_mmu_active(vcpu)) 4115 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root); 4116 else 4117 leaf = get_walk(vcpu, addr, sptes, &root); 4118 4119 walk_shadow_page_lockless_end(vcpu); 4120 4121 if (unlikely(leaf < 0)) { 4122 *sptep = 0ull; 4123 return reserved; 4124 } 4125 4126 *sptep = sptes[leaf]; 4127 4128 /* 4129 * Skip reserved bits checks on the terminal leaf if it's not a valid 4130 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by 4131 * design, always have reserved bits set. The purpose of the checks is 4132 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs. 4133 */ 4134 if (!is_shadow_present_pte(sptes[leaf])) 4135 leaf++; 4136 4137 rsvd_check = &vcpu->arch.mmu->shadow_zero_check; 4138 4139 for (level = root; level >= leaf; level--) 4140 reserved |= is_rsvd_spte(rsvd_check, sptes[level], level); 4141 4142 if (reserved) { 4143 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n", 4144 __func__, addr); 4145 for (level = root; level >= leaf; level--) 4146 pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx", 4147 sptes[level], level, 4148 get_rsvd_bits(rsvd_check, sptes[level], level)); 4149 } 4150 4151 return reserved; 4152 } 4153 4154 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct) 4155 { 4156 u64 spte; 4157 bool reserved; 4158 4159 if (mmio_info_in_cache(vcpu, addr, direct)) 4160 return RET_PF_EMULATE; 4161 4162 reserved = get_mmio_spte(vcpu, addr, &spte); 4163 if (WARN_ON_ONCE(reserved)) 4164 return -EINVAL; 4165 4166 if (is_mmio_spte(spte)) { 4167 gfn_t gfn = get_mmio_spte_gfn(spte); 4168 unsigned int access = get_mmio_spte_access(spte); 4169 4170 if (!check_mmio_spte(vcpu, spte)) 4171 return RET_PF_INVALID; 4172 4173 if (direct) 4174 addr = 0; 4175 4176 trace_handle_mmio_page_fault(addr, gfn, access); 4177 vcpu_cache_mmio_info(vcpu, addr, gfn, access); 4178 return RET_PF_EMULATE; 4179 } 4180 4181 /* 4182 * If the page table is zapped by other cpus, let CPU fault again on 4183 * the address. 4184 */ 4185 return RET_PF_RETRY; 4186 } 4187 4188 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu, 4189 struct kvm_page_fault *fault) 4190 { 4191 if (unlikely(fault->rsvd)) 4192 return false; 4193 4194 if (!fault->present || !fault->write) 4195 return false; 4196 4197 /* 4198 * guest is writing the page which is write tracked which can 4199 * not be fixed by page fault handler. 4200 */ 4201 if (kvm_gfn_is_write_tracked(vcpu->kvm, fault->slot, fault->gfn)) 4202 return true; 4203 4204 return false; 4205 } 4206 4207 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr) 4208 { 4209 struct kvm_shadow_walk_iterator iterator; 4210 u64 spte; 4211 4212 walk_shadow_page_lockless_begin(vcpu); 4213 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) 4214 clear_sp_write_flooding_count(iterator.sptep); 4215 walk_shadow_page_lockless_end(vcpu); 4216 } 4217 4218 static u32 alloc_apf_token(struct kvm_vcpu *vcpu) 4219 { 4220 /* make sure the token value is not 0 */ 4221 u32 id = vcpu->arch.apf.id; 4222 4223 if (id << 12 == 0) 4224 vcpu->arch.apf.id = 1; 4225 4226 return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; 4227 } 4228 4229 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 4230 gfn_t gfn) 4231 { 4232 struct kvm_arch_async_pf arch; 4233 4234 arch.token = alloc_apf_token(vcpu); 4235 arch.gfn = gfn; 4236 arch.direct_map = vcpu->arch.mmu->root_role.direct; 4237 arch.cr3 = kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu); 4238 4239 return kvm_setup_async_pf(vcpu, cr2_or_gpa, 4240 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch); 4241 } 4242 4243 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 4244 { 4245 int r; 4246 4247 if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) || 4248 work->wakeup_all) 4249 return; 4250 4251 r = kvm_mmu_reload(vcpu); 4252 if (unlikely(r)) 4253 return; 4254 4255 if (!vcpu->arch.mmu->root_role.direct && 4256 work->arch.cr3 != kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu)) 4257 return; 4258 4259 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true, NULL); 4260 } 4261 4262 static int __kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4263 { 4264 struct kvm_memory_slot *slot = fault->slot; 4265 bool async; 4266 4267 /* 4268 * Retry the page fault if the gfn hit a memslot that is being deleted 4269 * or moved. This ensures any existing SPTEs for the old memslot will 4270 * be zapped before KVM inserts a new MMIO SPTE for the gfn. 4271 */ 4272 if (slot && (slot->flags & KVM_MEMSLOT_INVALID)) 4273 return RET_PF_RETRY; 4274 4275 if (!kvm_is_visible_memslot(slot)) { 4276 /* Don't expose private memslots to L2. */ 4277 if (is_guest_mode(vcpu)) { 4278 fault->slot = NULL; 4279 fault->pfn = KVM_PFN_NOSLOT; 4280 fault->map_writable = false; 4281 return RET_PF_CONTINUE; 4282 } 4283 /* 4284 * If the APIC access page exists but is disabled, go directly 4285 * to emulation without caching the MMIO access or creating a 4286 * MMIO SPTE. That way the cache doesn't need to be purged 4287 * when the AVIC is re-enabled. 4288 */ 4289 if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT && 4290 !kvm_apicv_activated(vcpu->kvm)) 4291 return RET_PF_EMULATE; 4292 } 4293 4294 async = false; 4295 fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, false, &async, 4296 fault->write, &fault->map_writable, 4297 &fault->hva); 4298 if (!async) 4299 return RET_PF_CONTINUE; /* *pfn has correct page already */ 4300 4301 if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) { 4302 trace_kvm_try_async_get_page(fault->addr, fault->gfn); 4303 if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) { 4304 trace_kvm_async_pf_repeated_fault(fault->addr, fault->gfn); 4305 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 4306 return RET_PF_RETRY; 4307 } else if (kvm_arch_setup_async_pf(vcpu, fault->addr, fault->gfn)) { 4308 return RET_PF_RETRY; 4309 } 4310 } 4311 4312 /* 4313 * Allow gup to bail on pending non-fatal signals when it's also allowed 4314 * to wait for IO. Note, gup always bails if it is unable to quickly 4315 * get a page and a fatal signal, i.e. SIGKILL, is pending. 4316 */ 4317 fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, true, NULL, 4318 fault->write, &fault->map_writable, 4319 &fault->hva); 4320 return RET_PF_CONTINUE; 4321 } 4322 4323 static int kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, 4324 unsigned int access) 4325 { 4326 int ret; 4327 4328 fault->mmu_seq = vcpu->kvm->mmu_invalidate_seq; 4329 smp_rmb(); 4330 4331 ret = __kvm_faultin_pfn(vcpu, fault); 4332 if (ret != RET_PF_CONTINUE) 4333 return ret; 4334 4335 if (unlikely(is_error_pfn(fault->pfn))) 4336 return kvm_handle_error_pfn(vcpu, fault); 4337 4338 if (unlikely(!fault->slot)) 4339 return kvm_handle_noslot_fault(vcpu, fault, access); 4340 4341 return RET_PF_CONTINUE; 4342 } 4343 4344 /* 4345 * Returns true if the page fault is stale and needs to be retried, i.e. if the 4346 * root was invalidated by a memslot update or a relevant mmu_notifier fired. 4347 */ 4348 static bool is_page_fault_stale(struct kvm_vcpu *vcpu, 4349 struct kvm_page_fault *fault) 4350 { 4351 struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa); 4352 4353 /* Special roots, e.g. pae_root, are not backed by shadow pages. */ 4354 if (sp && is_obsolete_sp(vcpu->kvm, sp)) 4355 return true; 4356 4357 /* 4358 * Roots without an associated shadow page are considered invalid if 4359 * there is a pending request to free obsolete roots. The request is 4360 * only a hint that the current root _may_ be obsolete and needs to be 4361 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a 4362 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs 4363 * to reload even if no vCPU is actively using the root. 4364 */ 4365 if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 4366 return true; 4367 4368 return fault->slot && 4369 mmu_invalidate_retry_hva(vcpu->kvm, fault->mmu_seq, fault->hva); 4370 } 4371 4372 static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4373 { 4374 int r; 4375 4376 /* Dummy roots are used only for shadowing bad guest roots. */ 4377 if (WARN_ON_ONCE(kvm_mmu_is_dummy_root(vcpu->arch.mmu->root.hpa))) 4378 return RET_PF_RETRY; 4379 4380 if (page_fault_handle_page_track(vcpu, fault)) 4381 return RET_PF_EMULATE; 4382 4383 r = fast_page_fault(vcpu, fault); 4384 if (r != RET_PF_INVALID) 4385 return r; 4386 4387 r = mmu_topup_memory_caches(vcpu, false); 4388 if (r) 4389 return r; 4390 4391 r = kvm_faultin_pfn(vcpu, fault, ACC_ALL); 4392 if (r != RET_PF_CONTINUE) 4393 return r; 4394 4395 r = RET_PF_RETRY; 4396 write_lock(&vcpu->kvm->mmu_lock); 4397 4398 if (is_page_fault_stale(vcpu, fault)) 4399 goto out_unlock; 4400 4401 r = make_mmu_pages_available(vcpu); 4402 if (r) 4403 goto out_unlock; 4404 4405 r = direct_map(vcpu, fault); 4406 4407 out_unlock: 4408 write_unlock(&vcpu->kvm->mmu_lock); 4409 kvm_release_pfn_clean(fault->pfn); 4410 return r; 4411 } 4412 4413 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, 4414 struct kvm_page_fault *fault) 4415 { 4416 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */ 4417 fault->max_level = PG_LEVEL_2M; 4418 return direct_page_fault(vcpu, fault); 4419 } 4420 4421 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, 4422 u64 fault_address, char *insn, int insn_len) 4423 { 4424 int r = 1; 4425 u32 flags = vcpu->arch.apf.host_apf_flags; 4426 4427 #ifndef CONFIG_X86_64 4428 /* A 64-bit CR2 should be impossible on 32-bit KVM. */ 4429 if (WARN_ON_ONCE(fault_address >> 32)) 4430 return -EFAULT; 4431 #endif 4432 4433 vcpu->arch.l1tf_flush_l1d = true; 4434 if (!flags) { 4435 trace_kvm_page_fault(vcpu, fault_address, error_code); 4436 4437 if (kvm_event_needs_reinjection(vcpu)) 4438 kvm_mmu_unprotect_page_virt(vcpu, fault_address); 4439 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn, 4440 insn_len); 4441 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) { 4442 vcpu->arch.apf.host_apf_flags = 0; 4443 local_irq_disable(); 4444 kvm_async_pf_task_wait_schedule(fault_address); 4445 local_irq_enable(); 4446 } else { 4447 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags); 4448 } 4449 4450 return r; 4451 } 4452 EXPORT_SYMBOL_GPL(kvm_handle_page_fault); 4453 4454 #ifdef CONFIG_X86_64 4455 static int kvm_tdp_mmu_page_fault(struct kvm_vcpu *vcpu, 4456 struct kvm_page_fault *fault) 4457 { 4458 int r; 4459 4460 if (page_fault_handle_page_track(vcpu, fault)) 4461 return RET_PF_EMULATE; 4462 4463 r = fast_page_fault(vcpu, fault); 4464 if (r != RET_PF_INVALID) 4465 return r; 4466 4467 r = mmu_topup_memory_caches(vcpu, false); 4468 if (r) 4469 return r; 4470 4471 r = kvm_faultin_pfn(vcpu, fault, ACC_ALL); 4472 if (r != RET_PF_CONTINUE) 4473 return r; 4474 4475 r = RET_PF_RETRY; 4476 read_lock(&vcpu->kvm->mmu_lock); 4477 4478 if (is_page_fault_stale(vcpu, fault)) 4479 goto out_unlock; 4480 4481 r = kvm_tdp_mmu_map(vcpu, fault); 4482 4483 out_unlock: 4484 read_unlock(&vcpu->kvm->mmu_lock); 4485 kvm_release_pfn_clean(fault->pfn); 4486 return r; 4487 } 4488 #endif 4489 4490 bool __kvm_mmu_honors_guest_mtrrs(bool vm_has_noncoherent_dma) 4491 { 4492 /* 4493 * If host MTRRs are ignored (shadow_memtype_mask is non-zero), and the 4494 * VM has non-coherent DMA (DMA doesn't snoop CPU caches), KVM's ABI is 4495 * to honor the memtype from the guest's MTRRs so that guest accesses 4496 * to memory that is DMA'd aren't cached against the guest's wishes. 4497 * 4498 * Note, KVM may still ultimately ignore guest MTRRs for certain PFNs, 4499 * e.g. KVM will force UC memtype for host MMIO. 4500 */ 4501 return vm_has_noncoherent_dma && shadow_memtype_mask; 4502 } 4503 4504 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4505 { 4506 /* 4507 * If the guest's MTRRs may be used to compute the "real" memtype, 4508 * restrict the mapping level to ensure KVM uses a consistent memtype 4509 * across the entire mapping. 4510 */ 4511 if (kvm_mmu_honors_guest_mtrrs(vcpu->kvm)) { 4512 for ( ; fault->max_level > PG_LEVEL_4K; --fault->max_level) { 4513 int page_num = KVM_PAGES_PER_HPAGE(fault->max_level); 4514 gfn_t base = gfn_round_for_level(fault->gfn, 4515 fault->max_level); 4516 4517 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num)) 4518 break; 4519 } 4520 } 4521 4522 #ifdef CONFIG_X86_64 4523 if (tdp_mmu_enabled) 4524 return kvm_tdp_mmu_page_fault(vcpu, fault); 4525 #endif 4526 4527 return direct_page_fault(vcpu, fault); 4528 } 4529 4530 static void nonpaging_init_context(struct kvm_mmu *context) 4531 { 4532 context->page_fault = nonpaging_page_fault; 4533 context->gva_to_gpa = nonpaging_gva_to_gpa; 4534 context->sync_spte = NULL; 4535 } 4536 4537 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd, 4538 union kvm_mmu_page_role role) 4539 { 4540 struct kvm_mmu_page *sp; 4541 4542 if (!VALID_PAGE(root->hpa)) 4543 return false; 4544 4545 if (!role.direct && pgd != root->pgd) 4546 return false; 4547 4548 sp = root_to_sp(root->hpa); 4549 if (WARN_ON_ONCE(!sp)) 4550 return false; 4551 4552 return role.word == sp->role.word; 4553 } 4554 4555 /* 4556 * Find out if a previously cached root matching the new pgd/role is available, 4557 * and insert the current root as the MRU in the cache. 4558 * If a matching root is found, it is assigned to kvm_mmu->root and 4559 * true is returned. 4560 * If no match is found, kvm_mmu->root is left invalid, the LRU root is 4561 * evicted to make room for the current root, and false is returned. 4562 */ 4563 static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu, 4564 gpa_t new_pgd, 4565 union kvm_mmu_page_role new_role) 4566 { 4567 uint i; 4568 4569 if (is_root_usable(&mmu->root, new_pgd, new_role)) 4570 return true; 4571 4572 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 4573 /* 4574 * The swaps end up rotating the cache like this: 4575 * C 0 1 2 3 (on entry to the function) 4576 * 0 C 1 2 3 4577 * 1 C 0 2 3 4578 * 2 C 0 1 3 4579 * 3 C 0 1 2 (on exit from the loop) 4580 */ 4581 swap(mmu->root, mmu->prev_roots[i]); 4582 if (is_root_usable(&mmu->root, new_pgd, new_role)) 4583 return true; 4584 } 4585 4586 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 4587 return false; 4588 } 4589 4590 /* 4591 * Find out if a previously cached root matching the new pgd/role is available. 4592 * On entry, mmu->root is invalid. 4593 * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry 4594 * of the cache becomes invalid, and true is returned. 4595 * If no match is found, kvm_mmu->root is left invalid and false is returned. 4596 */ 4597 static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu, 4598 gpa_t new_pgd, 4599 union kvm_mmu_page_role new_role) 4600 { 4601 uint i; 4602 4603 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 4604 if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role)) 4605 goto hit; 4606 4607 return false; 4608 4609 hit: 4610 swap(mmu->root, mmu->prev_roots[i]); 4611 /* Bubble up the remaining roots. */ 4612 for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++) 4613 mmu->prev_roots[i] = mmu->prev_roots[i + 1]; 4614 mmu->prev_roots[i].hpa = INVALID_PAGE; 4615 return true; 4616 } 4617 4618 static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu, 4619 gpa_t new_pgd, union kvm_mmu_page_role new_role) 4620 { 4621 /* 4622 * Limit reuse to 64-bit hosts+VMs without "special" roots in order to 4623 * avoid having to deal with PDPTEs and other complexities. 4624 */ 4625 if (VALID_PAGE(mmu->root.hpa) && !root_to_sp(mmu->root.hpa)) 4626 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 4627 4628 if (VALID_PAGE(mmu->root.hpa)) 4629 return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role); 4630 else 4631 return cached_root_find_without_current(kvm, mmu, new_pgd, new_role); 4632 } 4633 4634 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd) 4635 { 4636 struct kvm_mmu *mmu = vcpu->arch.mmu; 4637 union kvm_mmu_page_role new_role = mmu->root_role; 4638 4639 /* 4640 * Return immediately if no usable root was found, kvm_mmu_reload() 4641 * will establish a valid root prior to the next VM-Enter. 4642 */ 4643 if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role)) 4644 return; 4645 4646 /* 4647 * It's possible that the cached previous root page is obsolete because 4648 * of a change in the MMU generation number. However, changing the 4649 * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, 4650 * which will free the root set here and allocate a new one. 4651 */ 4652 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 4653 4654 if (force_flush_and_sync_on_reuse) { 4655 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 4656 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 4657 } 4658 4659 /* 4660 * The last MMIO access's GVA and GPA are cached in the VCPU. When 4661 * switching to a new CR3, that GVA->GPA mapping may no longer be 4662 * valid. So clear any cached MMIO info even when we don't need to sync 4663 * the shadow page tables. 4664 */ 4665 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 4666 4667 /* 4668 * If this is a direct root page, it doesn't have a write flooding 4669 * count. Otherwise, clear the write flooding count. 4670 */ 4671 if (!new_role.direct) { 4672 struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa); 4673 4674 if (!WARN_ON_ONCE(!sp)) 4675 __clear_sp_write_flooding_count(sp); 4676 } 4677 } 4678 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd); 4679 4680 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, 4681 unsigned int access) 4682 { 4683 if (unlikely(is_mmio_spte(*sptep))) { 4684 if (gfn != get_mmio_spte_gfn(*sptep)) { 4685 mmu_spte_clear_no_track(sptep); 4686 return true; 4687 } 4688 4689 mark_mmio_spte(vcpu, sptep, gfn, access); 4690 return true; 4691 } 4692 4693 return false; 4694 } 4695 4696 #define PTTYPE_EPT 18 /* arbitrary */ 4697 #define PTTYPE PTTYPE_EPT 4698 #include "paging_tmpl.h" 4699 #undef PTTYPE 4700 4701 #define PTTYPE 64 4702 #include "paging_tmpl.h" 4703 #undef PTTYPE 4704 4705 #define PTTYPE 32 4706 #include "paging_tmpl.h" 4707 #undef PTTYPE 4708 4709 static void __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check, 4710 u64 pa_bits_rsvd, int level, bool nx, 4711 bool gbpages, bool pse, bool amd) 4712 { 4713 u64 gbpages_bit_rsvd = 0; 4714 u64 nonleaf_bit8_rsvd = 0; 4715 u64 high_bits_rsvd; 4716 4717 rsvd_check->bad_mt_xwr = 0; 4718 4719 if (!gbpages) 4720 gbpages_bit_rsvd = rsvd_bits(7, 7); 4721 4722 if (level == PT32E_ROOT_LEVEL) 4723 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62); 4724 else 4725 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4726 4727 /* Note, NX doesn't exist in PDPTEs, this is handled below. */ 4728 if (!nx) 4729 high_bits_rsvd |= rsvd_bits(63, 63); 4730 4731 /* 4732 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for 4733 * leaf entries) on AMD CPUs only. 4734 */ 4735 if (amd) 4736 nonleaf_bit8_rsvd = rsvd_bits(8, 8); 4737 4738 switch (level) { 4739 case PT32_ROOT_LEVEL: 4740 /* no rsvd bits for 2 level 4K page table entries */ 4741 rsvd_check->rsvd_bits_mask[0][1] = 0; 4742 rsvd_check->rsvd_bits_mask[0][0] = 0; 4743 rsvd_check->rsvd_bits_mask[1][0] = 4744 rsvd_check->rsvd_bits_mask[0][0]; 4745 4746 if (!pse) { 4747 rsvd_check->rsvd_bits_mask[1][1] = 0; 4748 break; 4749 } 4750 4751 if (is_cpuid_PSE36()) 4752 /* 36bits PSE 4MB page */ 4753 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); 4754 else 4755 /* 32 bits PSE 4MB page */ 4756 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); 4757 break; 4758 case PT32E_ROOT_LEVEL: 4759 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) | 4760 high_bits_rsvd | 4761 rsvd_bits(5, 8) | 4762 rsvd_bits(1, 2); /* PDPTE */ 4763 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */ 4764 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */ 4765 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 4766 rsvd_bits(13, 20); /* large page */ 4767 rsvd_check->rsvd_bits_mask[1][0] = 4768 rsvd_check->rsvd_bits_mask[0][0]; 4769 break; 4770 case PT64_ROOT_5LEVEL: 4771 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | 4772 nonleaf_bit8_rsvd | 4773 rsvd_bits(7, 7); 4774 rsvd_check->rsvd_bits_mask[1][4] = 4775 rsvd_check->rsvd_bits_mask[0][4]; 4776 fallthrough; 4777 case PT64_ROOT_4LEVEL: 4778 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | 4779 nonleaf_bit8_rsvd | 4780 rsvd_bits(7, 7); 4781 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | 4782 gbpages_bit_rsvd; 4783 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; 4784 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 4785 rsvd_check->rsvd_bits_mask[1][3] = 4786 rsvd_check->rsvd_bits_mask[0][3]; 4787 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | 4788 gbpages_bit_rsvd | 4789 rsvd_bits(13, 29); 4790 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 4791 rsvd_bits(13, 20); /* large page */ 4792 rsvd_check->rsvd_bits_mask[1][0] = 4793 rsvd_check->rsvd_bits_mask[0][0]; 4794 break; 4795 } 4796 } 4797 4798 static void reset_guest_rsvds_bits_mask(struct kvm_vcpu *vcpu, 4799 struct kvm_mmu *context) 4800 { 4801 __reset_rsvds_bits_mask(&context->guest_rsvd_check, 4802 vcpu->arch.reserved_gpa_bits, 4803 context->cpu_role.base.level, is_efer_nx(context), 4804 guest_can_use(vcpu, X86_FEATURE_GBPAGES), 4805 is_cr4_pse(context), 4806 guest_cpuid_is_amd_or_hygon(vcpu)); 4807 } 4808 4809 static void __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check, 4810 u64 pa_bits_rsvd, bool execonly, 4811 int huge_page_level) 4812 { 4813 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4814 u64 large_1g_rsvd = 0, large_2m_rsvd = 0; 4815 u64 bad_mt_xwr; 4816 4817 if (huge_page_level < PG_LEVEL_1G) 4818 large_1g_rsvd = rsvd_bits(7, 7); 4819 if (huge_page_level < PG_LEVEL_2M) 4820 large_2m_rsvd = rsvd_bits(7, 7); 4821 4822 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7); 4823 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7); 4824 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd; 4825 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd; 4826 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 4827 4828 /* large page */ 4829 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4]; 4830 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3]; 4831 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd; 4832 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd; 4833 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0]; 4834 4835 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */ 4836 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */ 4837 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */ 4838 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */ 4839 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */ 4840 if (!execonly) { 4841 /* bits 0..2 must not be 100 unless VMX capabilities allow it */ 4842 bad_mt_xwr |= REPEAT_BYTE(1ull << 4); 4843 } 4844 rsvd_check->bad_mt_xwr = bad_mt_xwr; 4845 } 4846 4847 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, 4848 struct kvm_mmu *context, bool execonly, int huge_page_level) 4849 { 4850 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check, 4851 vcpu->arch.reserved_gpa_bits, execonly, 4852 huge_page_level); 4853 } 4854 4855 static inline u64 reserved_hpa_bits(void) 4856 { 4857 return rsvd_bits(shadow_phys_bits, 63); 4858 } 4859 4860 /* 4861 * the page table on host is the shadow page table for the page 4862 * table in guest or amd nested guest, its mmu features completely 4863 * follow the features in guest. 4864 */ 4865 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 4866 struct kvm_mmu *context) 4867 { 4868 /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */ 4869 bool is_amd = true; 4870 /* KVM doesn't use 2-level page tables for the shadow MMU. */ 4871 bool is_pse = false; 4872 struct rsvd_bits_validate *shadow_zero_check; 4873 int i; 4874 4875 WARN_ON_ONCE(context->root_role.level < PT32E_ROOT_LEVEL); 4876 4877 shadow_zero_check = &context->shadow_zero_check; 4878 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 4879 context->root_role.level, 4880 context->root_role.efer_nx, 4881 guest_can_use(vcpu, X86_FEATURE_GBPAGES), 4882 is_pse, is_amd); 4883 4884 if (!shadow_me_mask) 4885 return; 4886 4887 for (i = context->root_role.level; --i >= 0;) { 4888 /* 4889 * So far shadow_me_value is a constant during KVM's life 4890 * time. Bits in shadow_me_value are allowed to be set. 4891 * Bits in shadow_me_mask but not in shadow_me_value are 4892 * not allowed to be set. 4893 */ 4894 shadow_zero_check->rsvd_bits_mask[0][i] |= shadow_me_mask; 4895 shadow_zero_check->rsvd_bits_mask[1][i] |= shadow_me_mask; 4896 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_value; 4897 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_value; 4898 } 4899 4900 } 4901 4902 static inline bool boot_cpu_is_amd(void) 4903 { 4904 WARN_ON_ONCE(!tdp_enabled); 4905 return shadow_x_mask == 0; 4906 } 4907 4908 /* 4909 * the direct page table on host, use as much mmu features as 4910 * possible, however, kvm currently does not do execution-protection. 4911 */ 4912 static void reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context) 4913 { 4914 struct rsvd_bits_validate *shadow_zero_check; 4915 int i; 4916 4917 shadow_zero_check = &context->shadow_zero_check; 4918 4919 if (boot_cpu_is_amd()) 4920 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 4921 context->root_role.level, true, 4922 boot_cpu_has(X86_FEATURE_GBPAGES), 4923 false, true); 4924 else 4925 __reset_rsvds_bits_mask_ept(shadow_zero_check, 4926 reserved_hpa_bits(), false, 4927 max_huge_page_level); 4928 4929 if (!shadow_me_mask) 4930 return; 4931 4932 for (i = context->root_role.level; --i >= 0;) { 4933 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 4934 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 4935 } 4936 } 4937 4938 /* 4939 * as the comments in reset_shadow_zero_bits_mask() except it 4940 * is the shadow page table for intel nested guest. 4941 */ 4942 static void 4943 reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly) 4944 { 4945 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check, 4946 reserved_hpa_bits(), execonly, 4947 max_huge_page_level); 4948 } 4949 4950 #define BYTE_MASK(access) \ 4951 ((1 & (access) ? 2 : 0) | \ 4952 (2 & (access) ? 4 : 0) | \ 4953 (3 & (access) ? 8 : 0) | \ 4954 (4 & (access) ? 16 : 0) | \ 4955 (5 & (access) ? 32 : 0) | \ 4956 (6 & (access) ? 64 : 0) | \ 4957 (7 & (access) ? 128 : 0)) 4958 4959 4960 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept) 4961 { 4962 unsigned byte; 4963 4964 const u8 x = BYTE_MASK(ACC_EXEC_MASK); 4965 const u8 w = BYTE_MASK(ACC_WRITE_MASK); 4966 const u8 u = BYTE_MASK(ACC_USER_MASK); 4967 4968 bool cr4_smep = is_cr4_smep(mmu); 4969 bool cr4_smap = is_cr4_smap(mmu); 4970 bool cr0_wp = is_cr0_wp(mmu); 4971 bool efer_nx = is_efer_nx(mmu); 4972 4973 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { 4974 unsigned pfec = byte << 1; 4975 4976 /* 4977 * Each "*f" variable has a 1 bit for each UWX value 4978 * that causes a fault with the given PFEC. 4979 */ 4980 4981 /* Faults from writes to non-writable pages */ 4982 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0; 4983 /* Faults from user mode accesses to supervisor pages */ 4984 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0; 4985 /* Faults from fetches of non-executable pages*/ 4986 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0; 4987 /* Faults from kernel mode fetches of user pages */ 4988 u8 smepf = 0; 4989 /* Faults from kernel mode accesses of user pages */ 4990 u8 smapf = 0; 4991 4992 if (!ept) { 4993 /* Faults from kernel mode accesses to user pages */ 4994 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u; 4995 4996 /* Not really needed: !nx will cause pte.nx to fault */ 4997 if (!efer_nx) 4998 ff = 0; 4999 5000 /* Allow supervisor writes if !cr0.wp */ 5001 if (!cr0_wp) 5002 wf = (pfec & PFERR_USER_MASK) ? wf : 0; 5003 5004 /* Disallow supervisor fetches of user code if cr4.smep */ 5005 if (cr4_smep) 5006 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0; 5007 5008 /* 5009 * SMAP:kernel-mode data accesses from user-mode 5010 * mappings should fault. A fault is considered 5011 * as a SMAP violation if all of the following 5012 * conditions are true: 5013 * - X86_CR4_SMAP is set in CR4 5014 * - A user page is accessed 5015 * - The access is not a fetch 5016 * - The access is supervisor mode 5017 * - If implicit supervisor access or X86_EFLAGS_AC is clear 5018 * 5019 * Here, we cover the first four conditions. 5020 * The fifth is computed dynamically in permission_fault(); 5021 * PFERR_RSVD_MASK bit will be set in PFEC if the access is 5022 * *not* subject to SMAP restrictions. 5023 */ 5024 if (cr4_smap) 5025 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf; 5026 } 5027 5028 mmu->permissions[byte] = ff | uf | wf | smepf | smapf; 5029 } 5030 } 5031 5032 /* 5033 * PKU is an additional mechanism by which the paging controls access to 5034 * user-mode addresses based on the value in the PKRU register. Protection 5035 * key violations are reported through a bit in the page fault error code. 5036 * Unlike other bits of the error code, the PK bit is not known at the 5037 * call site of e.g. gva_to_gpa; it must be computed directly in 5038 * permission_fault based on two bits of PKRU, on some machine state (CR4, 5039 * CR0, EFER, CPL), and on other bits of the error code and the page tables. 5040 * 5041 * In particular the following conditions come from the error code, the 5042 * page tables and the machine state: 5043 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1 5044 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch) 5045 * - PK is always zero if U=0 in the page tables 5046 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access. 5047 * 5048 * The PKRU bitmask caches the result of these four conditions. The error 5049 * code (minus the P bit) and the page table's U bit form an index into the 5050 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed 5051 * with the two bits of the PKRU register corresponding to the protection key. 5052 * For the first three conditions above the bits will be 00, thus masking 5053 * away both AD and WD. For all reads or if the last condition holds, WD 5054 * only will be masked away. 5055 */ 5056 static void update_pkru_bitmask(struct kvm_mmu *mmu) 5057 { 5058 unsigned bit; 5059 bool wp; 5060 5061 mmu->pkru_mask = 0; 5062 5063 if (!is_cr4_pke(mmu)) 5064 return; 5065 5066 wp = is_cr0_wp(mmu); 5067 5068 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) { 5069 unsigned pfec, pkey_bits; 5070 bool check_pkey, check_write, ff, uf, wf, pte_user; 5071 5072 pfec = bit << 1; 5073 ff = pfec & PFERR_FETCH_MASK; 5074 uf = pfec & PFERR_USER_MASK; 5075 wf = pfec & PFERR_WRITE_MASK; 5076 5077 /* PFEC.RSVD is replaced by ACC_USER_MASK. */ 5078 pte_user = pfec & PFERR_RSVD_MASK; 5079 5080 /* 5081 * Only need to check the access which is not an 5082 * instruction fetch and is to a user page. 5083 */ 5084 check_pkey = (!ff && pte_user); 5085 /* 5086 * write access is controlled by PKRU if it is a 5087 * user access or CR0.WP = 1. 5088 */ 5089 check_write = check_pkey && wf && (uf || wp); 5090 5091 /* PKRU.AD stops both read and write access. */ 5092 pkey_bits = !!check_pkey; 5093 /* PKRU.WD stops write access. */ 5094 pkey_bits |= (!!check_write) << 1; 5095 5096 mmu->pkru_mask |= (pkey_bits & 3) << pfec; 5097 } 5098 } 5099 5100 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu, 5101 struct kvm_mmu *mmu) 5102 { 5103 if (!is_cr0_pg(mmu)) 5104 return; 5105 5106 reset_guest_rsvds_bits_mask(vcpu, mmu); 5107 update_permission_bitmask(mmu, false); 5108 update_pkru_bitmask(mmu); 5109 } 5110 5111 static void paging64_init_context(struct kvm_mmu *context) 5112 { 5113 context->page_fault = paging64_page_fault; 5114 context->gva_to_gpa = paging64_gva_to_gpa; 5115 context->sync_spte = paging64_sync_spte; 5116 } 5117 5118 static void paging32_init_context(struct kvm_mmu *context) 5119 { 5120 context->page_fault = paging32_page_fault; 5121 context->gva_to_gpa = paging32_gva_to_gpa; 5122 context->sync_spte = paging32_sync_spte; 5123 } 5124 5125 static union kvm_cpu_role kvm_calc_cpu_role(struct kvm_vcpu *vcpu, 5126 const struct kvm_mmu_role_regs *regs) 5127 { 5128 union kvm_cpu_role role = {0}; 5129 5130 role.base.access = ACC_ALL; 5131 role.base.smm = is_smm(vcpu); 5132 role.base.guest_mode = is_guest_mode(vcpu); 5133 role.ext.valid = 1; 5134 5135 if (!____is_cr0_pg(regs)) { 5136 role.base.direct = 1; 5137 return role; 5138 } 5139 5140 role.base.efer_nx = ____is_efer_nx(regs); 5141 role.base.cr0_wp = ____is_cr0_wp(regs); 5142 role.base.smep_andnot_wp = ____is_cr4_smep(regs) && !____is_cr0_wp(regs); 5143 role.base.smap_andnot_wp = ____is_cr4_smap(regs) && !____is_cr0_wp(regs); 5144 role.base.has_4_byte_gpte = !____is_cr4_pae(regs); 5145 5146 if (____is_efer_lma(regs)) 5147 role.base.level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL 5148 : PT64_ROOT_4LEVEL; 5149 else if (____is_cr4_pae(regs)) 5150 role.base.level = PT32E_ROOT_LEVEL; 5151 else 5152 role.base.level = PT32_ROOT_LEVEL; 5153 5154 role.ext.cr4_smep = ____is_cr4_smep(regs); 5155 role.ext.cr4_smap = ____is_cr4_smap(regs); 5156 role.ext.cr4_pse = ____is_cr4_pse(regs); 5157 5158 /* PKEY and LA57 are active iff long mode is active. */ 5159 role.ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs); 5160 role.ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs); 5161 role.ext.efer_lma = ____is_efer_lma(regs); 5162 return role; 5163 } 5164 5165 void __kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu, 5166 struct kvm_mmu *mmu) 5167 { 5168 const bool cr0_wp = kvm_is_cr0_bit_set(vcpu, X86_CR0_WP); 5169 5170 BUILD_BUG_ON((KVM_MMU_CR0_ROLE_BITS & KVM_POSSIBLE_CR0_GUEST_BITS) != X86_CR0_WP); 5171 BUILD_BUG_ON((KVM_MMU_CR4_ROLE_BITS & KVM_POSSIBLE_CR4_GUEST_BITS)); 5172 5173 if (is_cr0_wp(mmu) == cr0_wp) 5174 return; 5175 5176 mmu->cpu_role.base.cr0_wp = cr0_wp; 5177 reset_guest_paging_metadata(vcpu, mmu); 5178 } 5179 5180 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu) 5181 { 5182 /* tdp_root_level is architecture forced level, use it if nonzero */ 5183 if (tdp_root_level) 5184 return tdp_root_level; 5185 5186 /* Use 5-level TDP if and only if it's useful/necessary. */ 5187 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48) 5188 return 4; 5189 5190 return max_tdp_level; 5191 } 5192 5193 static union kvm_mmu_page_role 5194 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, 5195 union kvm_cpu_role cpu_role) 5196 { 5197 union kvm_mmu_page_role role = {0}; 5198 5199 role.access = ACC_ALL; 5200 role.cr0_wp = true; 5201 role.efer_nx = true; 5202 role.smm = cpu_role.base.smm; 5203 role.guest_mode = cpu_role.base.guest_mode; 5204 role.ad_disabled = !kvm_ad_enabled(); 5205 role.level = kvm_mmu_get_tdp_level(vcpu); 5206 role.direct = true; 5207 role.has_4_byte_gpte = false; 5208 5209 return role; 5210 } 5211 5212 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu, 5213 union kvm_cpu_role cpu_role) 5214 { 5215 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5216 union kvm_mmu_page_role root_role = kvm_calc_tdp_mmu_root_page_role(vcpu, cpu_role); 5217 5218 if (cpu_role.as_u64 == context->cpu_role.as_u64 && 5219 root_role.word == context->root_role.word) 5220 return; 5221 5222 context->cpu_role.as_u64 = cpu_role.as_u64; 5223 context->root_role.word = root_role.word; 5224 context->page_fault = kvm_tdp_page_fault; 5225 context->sync_spte = NULL; 5226 context->get_guest_pgd = get_guest_cr3; 5227 context->get_pdptr = kvm_pdptr_read; 5228 context->inject_page_fault = kvm_inject_page_fault; 5229 5230 if (!is_cr0_pg(context)) 5231 context->gva_to_gpa = nonpaging_gva_to_gpa; 5232 else if (is_cr4_pae(context)) 5233 context->gva_to_gpa = paging64_gva_to_gpa; 5234 else 5235 context->gva_to_gpa = paging32_gva_to_gpa; 5236 5237 reset_guest_paging_metadata(vcpu, context); 5238 reset_tdp_shadow_zero_bits_mask(context); 5239 } 5240 5241 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context, 5242 union kvm_cpu_role cpu_role, 5243 union kvm_mmu_page_role root_role) 5244 { 5245 if (cpu_role.as_u64 == context->cpu_role.as_u64 && 5246 root_role.word == context->root_role.word) 5247 return; 5248 5249 context->cpu_role.as_u64 = cpu_role.as_u64; 5250 context->root_role.word = root_role.word; 5251 5252 if (!is_cr0_pg(context)) 5253 nonpaging_init_context(context); 5254 else if (is_cr4_pae(context)) 5255 paging64_init_context(context); 5256 else 5257 paging32_init_context(context); 5258 5259 reset_guest_paging_metadata(vcpu, context); 5260 reset_shadow_zero_bits_mask(vcpu, context); 5261 } 5262 5263 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, 5264 union kvm_cpu_role cpu_role) 5265 { 5266 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5267 union kvm_mmu_page_role root_role; 5268 5269 root_role = cpu_role.base; 5270 5271 /* KVM uses PAE paging whenever the guest isn't using 64-bit paging. */ 5272 root_role.level = max_t(u32, root_role.level, PT32E_ROOT_LEVEL); 5273 5274 /* 5275 * KVM forces EFER.NX=1 when TDP is disabled, reflect it in the MMU role. 5276 * KVM uses NX when TDP is disabled to handle a variety of scenarios, 5277 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and 5278 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0. 5279 * The iTLB multi-hit workaround can be toggled at any time, so assume 5280 * NX can be used by any non-nested shadow MMU to avoid having to reset 5281 * MMU contexts. 5282 */ 5283 root_role.efer_nx = true; 5284 5285 shadow_mmu_init_context(vcpu, context, cpu_role, root_role); 5286 } 5287 5288 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0, 5289 unsigned long cr4, u64 efer, gpa_t nested_cr3) 5290 { 5291 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 5292 struct kvm_mmu_role_regs regs = { 5293 .cr0 = cr0, 5294 .cr4 = cr4 & ~X86_CR4_PKE, 5295 .efer = efer, 5296 }; 5297 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); 5298 union kvm_mmu_page_role root_role; 5299 5300 /* NPT requires CR0.PG=1. */ 5301 WARN_ON_ONCE(cpu_role.base.direct); 5302 5303 root_role = cpu_role.base; 5304 root_role.level = kvm_mmu_get_tdp_level(vcpu); 5305 if (root_role.level == PT64_ROOT_5LEVEL && 5306 cpu_role.base.level == PT64_ROOT_4LEVEL) 5307 root_role.passthrough = 1; 5308 5309 shadow_mmu_init_context(vcpu, context, cpu_role, root_role); 5310 kvm_mmu_new_pgd(vcpu, nested_cr3); 5311 } 5312 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu); 5313 5314 static union kvm_cpu_role 5315 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty, 5316 bool execonly, u8 level) 5317 { 5318 union kvm_cpu_role role = {0}; 5319 5320 /* 5321 * KVM does not support SMM transfer monitors, and consequently does not 5322 * support the "entry to SMM" control either. role.base.smm is always 0. 5323 */ 5324 WARN_ON_ONCE(is_smm(vcpu)); 5325 role.base.level = level; 5326 role.base.has_4_byte_gpte = false; 5327 role.base.direct = false; 5328 role.base.ad_disabled = !accessed_dirty; 5329 role.base.guest_mode = true; 5330 role.base.access = ACC_ALL; 5331 5332 role.ext.word = 0; 5333 role.ext.execonly = execonly; 5334 role.ext.valid = 1; 5335 5336 return role; 5337 } 5338 5339 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, 5340 int huge_page_level, bool accessed_dirty, 5341 gpa_t new_eptp) 5342 { 5343 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 5344 u8 level = vmx_eptp_page_walk_level(new_eptp); 5345 union kvm_cpu_role new_mode = 5346 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty, 5347 execonly, level); 5348 5349 if (new_mode.as_u64 != context->cpu_role.as_u64) { 5350 /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */ 5351 context->cpu_role.as_u64 = new_mode.as_u64; 5352 context->root_role.word = new_mode.base.word; 5353 5354 context->page_fault = ept_page_fault; 5355 context->gva_to_gpa = ept_gva_to_gpa; 5356 context->sync_spte = ept_sync_spte; 5357 5358 update_permission_bitmask(context, true); 5359 context->pkru_mask = 0; 5360 reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level); 5361 reset_ept_shadow_zero_bits_mask(context, execonly); 5362 } 5363 5364 kvm_mmu_new_pgd(vcpu, new_eptp); 5365 } 5366 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); 5367 5368 static void init_kvm_softmmu(struct kvm_vcpu *vcpu, 5369 union kvm_cpu_role cpu_role) 5370 { 5371 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5372 5373 kvm_init_shadow_mmu(vcpu, cpu_role); 5374 5375 context->get_guest_pgd = get_guest_cr3; 5376 context->get_pdptr = kvm_pdptr_read; 5377 context->inject_page_fault = kvm_inject_page_fault; 5378 } 5379 5380 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu, 5381 union kvm_cpu_role new_mode) 5382 { 5383 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; 5384 5385 if (new_mode.as_u64 == g_context->cpu_role.as_u64) 5386 return; 5387 5388 g_context->cpu_role.as_u64 = new_mode.as_u64; 5389 g_context->get_guest_pgd = get_guest_cr3; 5390 g_context->get_pdptr = kvm_pdptr_read; 5391 g_context->inject_page_fault = kvm_inject_page_fault; 5392 5393 /* 5394 * L2 page tables are never shadowed, so there is no need to sync 5395 * SPTEs. 5396 */ 5397 g_context->sync_spte = NULL; 5398 5399 /* 5400 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using 5401 * L1's nested page tables (e.g. EPT12). The nested translation 5402 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using 5403 * L2's page tables as the first level of translation and L1's 5404 * nested page tables as the second level of translation. Basically 5405 * the gva_to_gpa functions between mmu and nested_mmu are swapped. 5406 */ 5407 if (!is_paging(vcpu)) 5408 g_context->gva_to_gpa = nonpaging_gva_to_gpa; 5409 else if (is_long_mode(vcpu)) 5410 g_context->gva_to_gpa = paging64_gva_to_gpa; 5411 else if (is_pae(vcpu)) 5412 g_context->gva_to_gpa = paging64_gva_to_gpa; 5413 else 5414 g_context->gva_to_gpa = paging32_gva_to_gpa; 5415 5416 reset_guest_paging_metadata(vcpu, g_context); 5417 } 5418 5419 void kvm_init_mmu(struct kvm_vcpu *vcpu) 5420 { 5421 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 5422 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); 5423 5424 if (mmu_is_nested(vcpu)) 5425 init_kvm_nested_mmu(vcpu, cpu_role); 5426 else if (tdp_enabled) 5427 init_kvm_tdp_mmu(vcpu, cpu_role); 5428 else 5429 init_kvm_softmmu(vcpu, cpu_role); 5430 } 5431 EXPORT_SYMBOL_GPL(kvm_init_mmu); 5432 5433 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu) 5434 { 5435 /* 5436 * Invalidate all MMU roles to force them to reinitialize as CPUID 5437 * information is factored into reserved bit calculations. 5438 * 5439 * Correctly handling multiple vCPU models with respect to paging and 5440 * physical address properties) in a single VM would require tracking 5441 * all relevant CPUID information in kvm_mmu_page_role. That is very 5442 * undesirable as it would increase the memory requirements for 5443 * gfn_write_track (see struct kvm_mmu_page_role comments). For now 5444 * that problem is swept under the rug; KVM's CPUID API is horrific and 5445 * it's all but impossible to solve it without introducing a new API. 5446 */ 5447 vcpu->arch.root_mmu.root_role.word = 0; 5448 vcpu->arch.guest_mmu.root_role.word = 0; 5449 vcpu->arch.nested_mmu.root_role.word = 0; 5450 vcpu->arch.root_mmu.cpu_role.ext.valid = 0; 5451 vcpu->arch.guest_mmu.cpu_role.ext.valid = 0; 5452 vcpu->arch.nested_mmu.cpu_role.ext.valid = 0; 5453 kvm_mmu_reset_context(vcpu); 5454 5455 /* 5456 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in 5457 * kvm_arch_vcpu_ioctl(). 5458 */ 5459 KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm); 5460 } 5461 5462 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu) 5463 { 5464 kvm_mmu_unload(vcpu); 5465 kvm_init_mmu(vcpu); 5466 } 5467 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); 5468 5469 int kvm_mmu_load(struct kvm_vcpu *vcpu) 5470 { 5471 int r; 5472 5473 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->root_role.direct); 5474 if (r) 5475 goto out; 5476 r = mmu_alloc_special_roots(vcpu); 5477 if (r) 5478 goto out; 5479 if (vcpu->arch.mmu->root_role.direct) 5480 r = mmu_alloc_direct_roots(vcpu); 5481 else 5482 r = mmu_alloc_shadow_roots(vcpu); 5483 if (r) 5484 goto out; 5485 5486 kvm_mmu_sync_roots(vcpu); 5487 5488 kvm_mmu_load_pgd(vcpu); 5489 5490 /* 5491 * Flush any TLB entries for the new root, the provenance of the root 5492 * is unknown. Even if KVM ensures there are no stale TLB entries 5493 * for a freed root, in theory another hypervisor could have left 5494 * stale entries. Flushing on alloc also allows KVM to skip the TLB 5495 * flush when freeing a root (see kvm_tdp_mmu_put_root()). 5496 */ 5497 static_call(kvm_x86_flush_tlb_current)(vcpu); 5498 out: 5499 return r; 5500 } 5501 5502 void kvm_mmu_unload(struct kvm_vcpu *vcpu) 5503 { 5504 struct kvm *kvm = vcpu->kvm; 5505 5506 kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL); 5507 WARN_ON_ONCE(VALID_PAGE(vcpu->arch.root_mmu.root.hpa)); 5508 kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); 5509 WARN_ON_ONCE(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa)); 5510 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 5511 } 5512 5513 static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa) 5514 { 5515 struct kvm_mmu_page *sp; 5516 5517 if (!VALID_PAGE(root_hpa)) 5518 return false; 5519 5520 /* 5521 * When freeing obsolete roots, treat roots as obsolete if they don't 5522 * have an associated shadow page, as it's impossible to determine if 5523 * such roots are fresh or stale. This does mean KVM will get false 5524 * positives and free roots that don't strictly need to be freed, but 5525 * such false positives are relatively rare: 5526 * 5527 * (a) only PAE paging and nested NPT have roots without shadow pages 5528 * (or any shadow paging flavor with a dummy root, see note below) 5529 * (b) remote reloads due to a memslot update obsoletes _all_ roots 5530 * (c) KVM doesn't track previous roots for PAE paging, and the guest 5531 * is unlikely to zap an in-use PGD. 5532 * 5533 * Note! Dummy roots are unique in that they are obsoleted by memslot 5534 * _creation_! See also FNAME(fetch). 5535 */ 5536 sp = root_to_sp(root_hpa); 5537 return !sp || is_obsolete_sp(kvm, sp); 5538 } 5539 5540 static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu) 5541 { 5542 unsigned long roots_to_free = 0; 5543 int i; 5544 5545 if (is_obsolete_root(kvm, mmu->root.hpa)) 5546 roots_to_free |= KVM_MMU_ROOT_CURRENT; 5547 5548 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5549 if (is_obsolete_root(kvm, mmu->prev_roots[i].hpa)) 5550 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 5551 } 5552 5553 if (roots_to_free) 5554 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 5555 } 5556 5557 void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu) 5558 { 5559 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu); 5560 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu); 5561 } 5562 5563 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, 5564 int *bytes) 5565 { 5566 u64 gentry = 0; 5567 int r; 5568 5569 /* 5570 * Assume that the pte write on a page table of the same type 5571 * as the current vcpu paging mode since we update the sptes only 5572 * when they have the same mode. 5573 */ 5574 if (is_pae(vcpu) && *bytes == 4) { 5575 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ 5576 *gpa &= ~(gpa_t)7; 5577 *bytes = 8; 5578 } 5579 5580 if (*bytes == 4 || *bytes == 8) { 5581 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes); 5582 if (r) 5583 gentry = 0; 5584 } 5585 5586 return gentry; 5587 } 5588 5589 /* 5590 * If we're seeing too many writes to a page, it may no longer be a page table, 5591 * or we may be forking, in which case it is better to unmap the page. 5592 */ 5593 static bool detect_write_flooding(struct kvm_mmu_page *sp) 5594 { 5595 /* 5596 * Skip write-flooding detected for the sp whose level is 1, because 5597 * it can become unsync, then the guest page is not write-protected. 5598 */ 5599 if (sp->role.level == PG_LEVEL_4K) 5600 return false; 5601 5602 atomic_inc(&sp->write_flooding_count); 5603 return atomic_read(&sp->write_flooding_count) >= 3; 5604 } 5605 5606 /* 5607 * Misaligned accesses are too much trouble to fix up; also, they usually 5608 * indicate a page is not used as a page table. 5609 */ 5610 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, 5611 int bytes) 5612 { 5613 unsigned offset, pte_size, misaligned; 5614 5615 offset = offset_in_page(gpa); 5616 pte_size = sp->role.has_4_byte_gpte ? 4 : 8; 5617 5618 /* 5619 * Sometimes, the OS only writes the last one bytes to update status 5620 * bits, for example, in linux, andb instruction is used in clear_bit(). 5621 */ 5622 if (!(offset & (pte_size - 1)) && bytes == 1) 5623 return false; 5624 5625 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); 5626 misaligned |= bytes < 4; 5627 5628 return misaligned; 5629 } 5630 5631 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) 5632 { 5633 unsigned page_offset, quadrant; 5634 u64 *spte; 5635 int level; 5636 5637 page_offset = offset_in_page(gpa); 5638 level = sp->role.level; 5639 *nspte = 1; 5640 if (sp->role.has_4_byte_gpte) { 5641 page_offset <<= 1; /* 32->64 */ 5642 /* 5643 * A 32-bit pde maps 4MB while the shadow pdes map 5644 * only 2MB. So we need to double the offset again 5645 * and zap two pdes instead of one. 5646 */ 5647 if (level == PT32_ROOT_LEVEL) { 5648 page_offset &= ~7; /* kill rounding error */ 5649 page_offset <<= 1; 5650 *nspte = 2; 5651 } 5652 quadrant = page_offset >> PAGE_SHIFT; 5653 page_offset &= ~PAGE_MASK; 5654 if (quadrant != sp->role.quadrant) 5655 return NULL; 5656 } 5657 5658 spte = &sp->spt[page_offset / sizeof(*spte)]; 5659 return spte; 5660 } 5661 5662 void kvm_mmu_track_write(struct kvm_vcpu *vcpu, gpa_t gpa, const u8 *new, 5663 int bytes) 5664 { 5665 gfn_t gfn = gpa >> PAGE_SHIFT; 5666 struct kvm_mmu_page *sp; 5667 LIST_HEAD(invalid_list); 5668 u64 entry, gentry, *spte; 5669 int npte; 5670 bool flush = false; 5671 5672 /* 5673 * If we don't have indirect shadow pages, it means no page is 5674 * write-protected, so we can exit simply. 5675 */ 5676 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages)) 5677 return; 5678 5679 write_lock(&vcpu->kvm->mmu_lock); 5680 5681 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes); 5682 5683 ++vcpu->kvm->stat.mmu_pte_write; 5684 5685 for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) { 5686 if (detect_write_misaligned(sp, gpa, bytes) || 5687 detect_write_flooding(sp)) { 5688 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); 5689 ++vcpu->kvm->stat.mmu_flooded; 5690 continue; 5691 } 5692 5693 spte = get_written_sptes(sp, gpa, &npte); 5694 if (!spte) 5695 continue; 5696 5697 while (npte--) { 5698 entry = *spte; 5699 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL); 5700 if (gentry && sp->role.level != PG_LEVEL_4K) 5701 ++vcpu->kvm->stat.mmu_pde_zapped; 5702 if (is_shadow_present_pte(entry)) 5703 flush = true; 5704 ++spte; 5705 } 5706 } 5707 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 5708 write_unlock(&vcpu->kvm->mmu_lock); 5709 } 5710 5711 int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 5712 void *insn, int insn_len) 5713 { 5714 int r, emulation_type = EMULTYPE_PF; 5715 bool direct = vcpu->arch.mmu->root_role.direct; 5716 5717 /* 5718 * IMPLICIT_ACCESS is a KVM-defined flag used to correctly perform SMAP 5719 * checks when emulating instructions that triggers implicit access. 5720 * WARN if hardware generates a fault with an error code that collides 5721 * with the KVM-defined value. Clear the flag and continue on, i.e. 5722 * don't terminate the VM, as KVM can't possibly be relying on a flag 5723 * that KVM doesn't know about. 5724 */ 5725 if (WARN_ON_ONCE(error_code & PFERR_IMPLICIT_ACCESS)) 5726 error_code &= ~PFERR_IMPLICIT_ACCESS; 5727 5728 if (WARN_ON_ONCE(!VALID_PAGE(vcpu->arch.mmu->root.hpa))) 5729 return RET_PF_RETRY; 5730 5731 r = RET_PF_INVALID; 5732 if (unlikely(error_code & PFERR_RSVD_MASK)) { 5733 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct); 5734 if (r == RET_PF_EMULATE) 5735 goto emulate; 5736 } 5737 5738 if (r == RET_PF_INVALID) { 5739 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, 5740 lower_32_bits(error_code), false, 5741 &emulation_type); 5742 if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm)) 5743 return -EIO; 5744 } 5745 5746 if (r < 0) 5747 return r; 5748 if (r != RET_PF_EMULATE) 5749 return 1; 5750 5751 /* 5752 * Before emulating the instruction, check if the error code 5753 * was due to a RO violation while translating the guest page. 5754 * This can occur when using nested virtualization with nested 5755 * paging in both guests. If true, we simply unprotect the page 5756 * and resume the guest. 5757 */ 5758 if (vcpu->arch.mmu->root_role.direct && 5759 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) { 5760 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa)); 5761 return 1; 5762 } 5763 5764 /* 5765 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still 5766 * optimistically try to just unprotect the page and let the processor 5767 * re-execute the instruction that caused the page fault. Do not allow 5768 * retrying MMIO emulation, as it's not only pointless but could also 5769 * cause us to enter an infinite loop because the processor will keep 5770 * faulting on the non-existent MMIO address. Retrying an instruction 5771 * from a nested guest is also pointless and dangerous as we are only 5772 * explicitly shadowing L1's page tables, i.e. unprotecting something 5773 * for L1 isn't going to magically fix whatever issue cause L2 to fail. 5774 */ 5775 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu)) 5776 emulation_type |= EMULTYPE_ALLOW_RETRY_PF; 5777 emulate: 5778 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn, 5779 insn_len); 5780 } 5781 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); 5782 5783 static void __kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 5784 u64 addr, hpa_t root_hpa) 5785 { 5786 struct kvm_shadow_walk_iterator iterator; 5787 5788 vcpu_clear_mmio_info(vcpu, addr); 5789 5790 /* 5791 * Walking and synchronizing SPTEs both assume they are operating in 5792 * the context of the current MMU, and would need to be reworked if 5793 * this is ever used to sync the guest_mmu, e.g. to emulate INVEPT. 5794 */ 5795 if (WARN_ON_ONCE(mmu != vcpu->arch.mmu)) 5796 return; 5797 5798 if (!VALID_PAGE(root_hpa)) 5799 return; 5800 5801 write_lock(&vcpu->kvm->mmu_lock); 5802 for_each_shadow_entry_using_root(vcpu, root_hpa, addr, iterator) { 5803 struct kvm_mmu_page *sp = sptep_to_sp(iterator.sptep); 5804 5805 if (sp->unsync) { 5806 int ret = kvm_sync_spte(vcpu, sp, iterator.index); 5807 5808 if (ret < 0) 5809 mmu_page_zap_pte(vcpu->kvm, sp, iterator.sptep, NULL); 5810 if (ret) 5811 kvm_flush_remote_tlbs_sptep(vcpu->kvm, iterator.sptep); 5812 } 5813 5814 if (!sp->unsync_children) 5815 break; 5816 } 5817 write_unlock(&vcpu->kvm->mmu_lock); 5818 } 5819 5820 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 5821 u64 addr, unsigned long roots) 5822 { 5823 int i; 5824 5825 WARN_ON_ONCE(roots & ~KVM_MMU_ROOTS_ALL); 5826 5827 /* It's actually a GPA for vcpu->arch.guest_mmu. */ 5828 if (mmu != &vcpu->arch.guest_mmu) { 5829 /* INVLPG on a non-canonical address is a NOP according to the SDM. */ 5830 if (is_noncanonical_address(addr, vcpu)) 5831 return; 5832 5833 static_call(kvm_x86_flush_tlb_gva)(vcpu, addr); 5834 } 5835 5836 if (!mmu->sync_spte) 5837 return; 5838 5839 if (roots & KVM_MMU_ROOT_CURRENT) 5840 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->root.hpa); 5841 5842 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5843 if (roots & KVM_MMU_ROOT_PREVIOUS(i)) 5844 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->prev_roots[i].hpa); 5845 } 5846 } 5847 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_addr); 5848 5849 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) 5850 { 5851 /* 5852 * INVLPG is required to invalidate any global mappings for the VA, 5853 * irrespective of PCID. Blindly sync all roots as it would take 5854 * roughly the same amount of work/time to determine whether any of the 5855 * previous roots have a global mapping. 5856 * 5857 * Mappings not reachable via the current or previous cached roots will 5858 * be synced when switching to that new cr3, so nothing needs to be 5859 * done here for them. 5860 */ 5861 kvm_mmu_invalidate_addr(vcpu, vcpu->arch.walk_mmu, gva, KVM_MMU_ROOTS_ALL); 5862 ++vcpu->stat.invlpg; 5863 } 5864 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); 5865 5866 5867 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid) 5868 { 5869 struct kvm_mmu *mmu = vcpu->arch.mmu; 5870 unsigned long roots = 0; 5871 uint i; 5872 5873 if (pcid == kvm_get_active_pcid(vcpu)) 5874 roots |= KVM_MMU_ROOT_CURRENT; 5875 5876 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5877 if (VALID_PAGE(mmu->prev_roots[i].hpa) && 5878 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) 5879 roots |= KVM_MMU_ROOT_PREVIOUS(i); 5880 } 5881 5882 if (roots) 5883 kvm_mmu_invalidate_addr(vcpu, mmu, gva, roots); 5884 ++vcpu->stat.invlpg; 5885 5886 /* 5887 * Mappings not reachable via the current cr3 or the prev_roots will be 5888 * synced when switching to that cr3, so nothing needs to be done here 5889 * for them. 5890 */ 5891 } 5892 5893 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 5894 int tdp_max_root_level, int tdp_huge_page_level) 5895 { 5896 tdp_enabled = enable_tdp; 5897 tdp_root_level = tdp_forced_root_level; 5898 max_tdp_level = tdp_max_root_level; 5899 5900 #ifdef CONFIG_X86_64 5901 tdp_mmu_enabled = tdp_mmu_allowed && tdp_enabled; 5902 #endif 5903 /* 5904 * max_huge_page_level reflects KVM's MMU capabilities irrespective 5905 * of kernel support, e.g. KVM may be capable of using 1GB pages when 5906 * the kernel is not. But, KVM never creates a page size greater than 5907 * what is used by the kernel for any given HVA, i.e. the kernel's 5908 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust(). 5909 */ 5910 if (tdp_enabled) 5911 max_huge_page_level = tdp_huge_page_level; 5912 else if (boot_cpu_has(X86_FEATURE_GBPAGES)) 5913 max_huge_page_level = PG_LEVEL_1G; 5914 else 5915 max_huge_page_level = PG_LEVEL_2M; 5916 } 5917 EXPORT_SYMBOL_GPL(kvm_configure_mmu); 5918 5919 /* The return value indicates if tlb flush on all vcpus is needed. */ 5920 typedef bool (*slot_rmaps_handler) (struct kvm *kvm, 5921 struct kvm_rmap_head *rmap_head, 5922 const struct kvm_memory_slot *slot); 5923 5924 static __always_inline bool __walk_slot_rmaps(struct kvm *kvm, 5925 const struct kvm_memory_slot *slot, 5926 slot_rmaps_handler fn, 5927 int start_level, int end_level, 5928 gfn_t start_gfn, gfn_t end_gfn, 5929 bool flush_on_yield, bool flush) 5930 { 5931 struct slot_rmap_walk_iterator iterator; 5932 5933 lockdep_assert_held_write(&kvm->mmu_lock); 5934 5935 for_each_slot_rmap_range(slot, start_level, end_level, start_gfn, 5936 end_gfn, &iterator) { 5937 if (iterator.rmap) 5938 flush |= fn(kvm, iterator.rmap, slot); 5939 5940 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 5941 if (flush && flush_on_yield) { 5942 kvm_flush_remote_tlbs_range(kvm, start_gfn, 5943 iterator.gfn - start_gfn + 1); 5944 flush = false; 5945 } 5946 cond_resched_rwlock_write(&kvm->mmu_lock); 5947 } 5948 } 5949 5950 return flush; 5951 } 5952 5953 static __always_inline bool walk_slot_rmaps(struct kvm *kvm, 5954 const struct kvm_memory_slot *slot, 5955 slot_rmaps_handler fn, 5956 int start_level, int end_level, 5957 bool flush_on_yield) 5958 { 5959 return __walk_slot_rmaps(kvm, slot, fn, start_level, end_level, 5960 slot->base_gfn, slot->base_gfn + slot->npages - 1, 5961 flush_on_yield, false); 5962 } 5963 5964 static __always_inline bool walk_slot_rmaps_4k(struct kvm *kvm, 5965 const struct kvm_memory_slot *slot, 5966 slot_rmaps_handler fn, 5967 bool flush_on_yield) 5968 { 5969 return walk_slot_rmaps(kvm, slot, fn, PG_LEVEL_4K, PG_LEVEL_4K, flush_on_yield); 5970 } 5971 5972 static void free_mmu_pages(struct kvm_mmu *mmu) 5973 { 5974 if (!tdp_enabled && mmu->pae_root) 5975 set_memory_encrypted((unsigned long)mmu->pae_root, 1); 5976 free_page((unsigned long)mmu->pae_root); 5977 free_page((unsigned long)mmu->pml4_root); 5978 free_page((unsigned long)mmu->pml5_root); 5979 } 5980 5981 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 5982 { 5983 struct page *page; 5984 int i; 5985 5986 mmu->root.hpa = INVALID_PAGE; 5987 mmu->root.pgd = 0; 5988 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5989 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 5990 5991 /* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */ 5992 if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu) 5993 return 0; 5994 5995 /* 5996 * When using PAE paging, the four PDPTEs are treated as 'root' pages, 5997 * while the PDP table is a per-vCPU construct that's allocated at MMU 5998 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on 5999 * x86_64. Therefore we need to allocate the PDP table in the first 6000 * 4GB of memory, which happens to fit the DMA32 zone. TDP paging 6001 * generally doesn't use PAE paging and can skip allocating the PDP 6002 * table. The main exception, handled here, is SVM's 32-bit NPT. The 6003 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit 6004 * KVM; that horror is handled on-demand by mmu_alloc_special_roots(). 6005 */ 6006 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL) 6007 return 0; 6008 6009 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32); 6010 if (!page) 6011 return -ENOMEM; 6012 6013 mmu->pae_root = page_address(page); 6014 6015 /* 6016 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to 6017 * get the CPU to treat the PDPTEs as encrypted. Decrypt the page so 6018 * that KVM's writes and the CPU's reads get along. Note, this is 6019 * only necessary when using shadow paging, as 64-bit NPT can get at 6020 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported 6021 * by 32-bit kernels (when KVM itself uses 32-bit NPT). 6022 */ 6023 if (!tdp_enabled) 6024 set_memory_decrypted((unsigned long)mmu->pae_root, 1); 6025 else 6026 WARN_ON_ONCE(shadow_me_value); 6027 6028 for (i = 0; i < 4; ++i) 6029 mmu->pae_root[i] = INVALID_PAE_ROOT; 6030 6031 return 0; 6032 } 6033 6034 int kvm_mmu_create(struct kvm_vcpu *vcpu) 6035 { 6036 int ret; 6037 6038 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache; 6039 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO; 6040 6041 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache; 6042 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO; 6043 6044 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO; 6045 6046 vcpu->arch.mmu = &vcpu->arch.root_mmu; 6047 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; 6048 6049 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu); 6050 if (ret) 6051 return ret; 6052 6053 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu); 6054 if (ret) 6055 goto fail_allocate_root; 6056 6057 return ret; 6058 fail_allocate_root: 6059 free_mmu_pages(&vcpu->arch.guest_mmu); 6060 return ret; 6061 } 6062 6063 #define BATCH_ZAP_PAGES 10 6064 static void kvm_zap_obsolete_pages(struct kvm *kvm) 6065 { 6066 struct kvm_mmu_page *sp, *node; 6067 int nr_zapped, batch = 0; 6068 bool unstable; 6069 6070 restart: 6071 list_for_each_entry_safe_reverse(sp, node, 6072 &kvm->arch.active_mmu_pages, link) { 6073 /* 6074 * No obsolete valid page exists before a newly created page 6075 * since active_mmu_pages is a FIFO list. 6076 */ 6077 if (!is_obsolete_sp(kvm, sp)) 6078 break; 6079 6080 /* 6081 * Invalid pages should never land back on the list of active 6082 * pages. Skip the bogus page, otherwise we'll get stuck in an 6083 * infinite loop if the page gets put back on the list (again). 6084 */ 6085 if (WARN_ON_ONCE(sp->role.invalid)) 6086 continue; 6087 6088 /* 6089 * No need to flush the TLB since we're only zapping shadow 6090 * pages with an obsolete generation number and all vCPUS have 6091 * loaded a new root, i.e. the shadow pages being zapped cannot 6092 * be in active use by the guest. 6093 */ 6094 if (batch >= BATCH_ZAP_PAGES && 6095 cond_resched_rwlock_write(&kvm->mmu_lock)) { 6096 batch = 0; 6097 goto restart; 6098 } 6099 6100 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, 6101 &kvm->arch.zapped_obsolete_pages, &nr_zapped); 6102 batch += nr_zapped; 6103 6104 if (unstable) 6105 goto restart; 6106 } 6107 6108 /* 6109 * Kick all vCPUs (via remote TLB flush) before freeing the page tables 6110 * to ensure KVM is not in the middle of a lockless shadow page table 6111 * walk, which may reference the pages. The remote TLB flush itself is 6112 * not required and is simply a convenient way to kick vCPUs as needed. 6113 * KVM performs a local TLB flush when allocating a new root (see 6114 * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are 6115 * running with an obsolete MMU. 6116 */ 6117 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages); 6118 } 6119 6120 /* 6121 * Fast invalidate all shadow pages and use lock-break technique 6122 * to zap obsolete pages. 6123 * 6124 * It's required when memslot is being deleted or VM is being 6125 * destroyed, in these cases, we should ensure that KVM MMU does 6126 * not use any resource of the being-deleted slot or all slots 6127 * after calling the function. 6128 */ 6129 static void kvm_mmu_zap_all_fast(struct kvm *kvm) 6130 { 6131 lockdep_assert_held(&kvm->slots_lock); 6132 6133 write_lock(&kvm->mmu_lock); 6134 trace_kvm_mmu_zap_all_fast(kvm); 6135 6136 /* 6137 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is 6138 * held for the entire duration of zapping obsolete pages, it's 6139 * impossible for there to be multiple invalid generations associated 6140 * with *valid* shadow pages at any given time, i.e. there is exactly 6141 * one valid generation and (at most) one invalid generation. 6142 */ 6143 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1; 6144 6145 /* 6146 * In order to ensure all vCPUs drop their soon-to-be invalid roots, 6147 * invalidating TDP MMU roots must be done while holding mmu_lock for 6148 * write and in the same critical section as making the reload request, 6149 * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield. 6150 */ 6151 if (tdp_mmu_enabled) 6152 kvm_tdp_mmu_invalidate_all_roots(kvm); 6153 6154 /* 6155 * Notify all vcpus to reload its shadow page table and flush TLB. 6156 * Then all vcpus will switch to new shadow page table with the new 6157 * mmu_valid_gen. 6158 * 6159 * Note: we need to do this under the protection of mmu_lock, 6160 * otherwise, vcpu would purge shadow page but miss tlb flush. 6161 */ 6162 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 6163 6164 kvm_zap_obsolete_pages(kvm); 6165 6166 write_unlock(&kvm->mmu_lock); 6167 6168 /* 6169 * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before 6170 * returning to the caller, e.g. if the zap is in response to a memslot 6171 * deletion, mmu_notifier callbacks will be unable to reach the SPTEs 6172 * associated with the deleted memslot once the update completes, and 6173 * Deferring the zap until the final reference to the root is put would 6174 * lead to use-after-free. 6175 */ 6176 if (tdp_mmu_enabled) 6177 kvm_tdp_mmu_zap_invalidated_roots(kvm); 6178 } 6179 6180 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm) 6181 { 6182 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages)); 6183 } 6184 6185 void kvm_mmu_init_vm(struct kvm *kvm) 6186 { 6187 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 6188 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 6189 INIT_LIST_HEAD(&kvm->arch.possible_nx_huge_pages); 6190 spin_lock_init(&kvm->arch.mmu_unsync_pages_lock); 6191 6192 if (tdp_mmu_enabled) 6193 kvm_mmu_init_tdp_mmu(kvm); 6194 6195 kvm->arch.split_page_header_cache.kmem_cache = mmu_page_header_cache; 6196 kvm->arch.split_page_header_cache.gfp_zero = __GFP_ZERO; 6197 6198 kvm->arch.split_shadow_page_cache.gfp_zero = __GFP_ZERO; 6199 6200 kvm->arch.split_desc_cache.kmem_cache = pte_list_desc_cache; 6201 kvm->arch.split_desc_cache.gfp_zero = __GFP_ZERO; 6202 } 6203 6204 static void mmu_free_vm_memory_caches(struct kvm *kvm) 6205 { 6206 kvm_mmu_free_memory_cache(&kvm->arch.split_desc_cache); 6207 kvm_mmu_free_memory_cache(&kvm->arch.split_page_header_cache); 6208 kvm_mmu_free_memory_cache(&kvm->arch.split_shadow_page_cache); 6209 } 6210 6211 void kvm_mmu_uninit_vm(struct kvm *kvm) 6212 { 6213 if (tdp_mmu_enabled) 6214 kvm_mmu_uninit_tdp_mmu(kvm); 6215 6216 mmu_free_vm_memory_caches(kvm); 6217 } 6218 6219 static bool kvm_rmap_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 6220 { 6221 const struct kvm_memory_slot *memslot; 6222 struct kvm_memslots *slots; 6223 struct kvm_memslot_iter iter; 6224 bool flush = false; 6225 gfn_t start, end; 6226 int i; 6227 6228 if (!kvm_memslots_have_rmaps(kvm)) 6229 return flush; 6230 6231 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 6232 slots = __kvm_memslots(kvm, i); 6233 6234 kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) { 6235 memslot = iter.slot; 6236 start = max(gfn_start, memslot->base_gfn); 6237 end = min(gfn_end, memslot->base_gfn + memslot->npages); 6238 if (WARN_ON_ONCE(start >= end)) 6239 continue; 6240 6241 flush = __walk_slot_rmaps(kvm, memslot, __kvm_zap_rmap, 6242 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 6243 start, end - 1, true, flush); 6244 } 6245 } 6246 6247 return flush; 6248 } 6249 6250 /* 6251 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end 6252 * (not including it) 6253 */ 6254 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 6255 { 6256 bool flush; 6257 6258 if (WARN_ON_ONCE(gfn_end <= gfn_start)) 6259 return; 6260 6261 write_lock(&kvm->mmu_lock); 6262 6263 kvm_mmu_invalidate_begin(kvm, 0, -1ul); 6264 6265 flush = kvm_rmap_zap_gfn_range(kvm, gfn_start, gfn_end); 6266 6267 if (tdp_mmu_enabled) 6268 flush = kvm_tdp_mmu_zap_leafs(kvm, gfn_start, gfn_end, flush); 6269 6270 if (flush) 6271 kvm_flush_remote_tlbs_range(kvm, gfn_start, gfn_end - gfn_start); 6272 6273 kvm_mmu_invalidate_end(kvm, 0, -1ul); 6274 6275 write_unlock(&kvm->mmu_lock); 6276 } 6277 6278 static bool slot_rmap_write_protect(struct kvm *kvm, 6279 struct kvm_rmap_head *rmap_head, 6280 const struct kvm_memory_slot *slot) 6281 { 6282 return rmap_write_protect(rmap_head, false); 6283 } 6284 6285 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 6286 const struct kvm_memory_slot *memslot, 6287 int start_level) 6288 { 6289 if (kvm_memslots_have_rmaps(kvm)) { 6290 write_lock(&kvm->mmu_lock); 6291 walk_slot_rmaps(kvm, memslot, slot_rmap_write_protect, 6292 start_level, KVM_MAX_HUGEPAGE_LEVEL, false); 6293 write_unlock(&kvm->mmu_lock); 6294 } 6295 6296 if (tdp_mmu_enabled) { 6297 read_lock(&kvm->mmu_lock); 6298 kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level); 6299 read_unlock(&kvm->mmu_lock); 6300 } 6301 } 6302 6303 static inline bool need_topup(struct kvm_mmu_memory_cache *cache, int min) 6304 { 6305 return kvm_mmu_memory_cache_nr_free_objects(cache) < min; 6306 } 6307 6308 static bool need_topup_split_caches_or_resched(struct kvm *kvm) 6309 { 6310 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) 6311 return true; 6312 6313 /* 6314 * In the worst case, SPLIT_DESC_CACHE_MIN_NR_OBJECTS descriptors are needed 6315 * to split a single huge page. Calculating how many are actually needed 6316 * is possible but not worth the complexity. 6317 */ 6318 return need_topup(&kvm->arch.split_desc_cache, SPLIT_DESC_CACHE_MIN_NR_OBJECTS) || 6319 need_topup(&kvm->arch.split_page_header_cache, 1) || 6320 need_topup(&kvm->arch.split_shadow_page_cache, 1); 6321 } 6322 6323 static int topup_split_caches(struct kvm *kvm) 6324 { 6325 /* 6326 * Allocating rmap list entries when splitting huge pages for nested 6327 * MMUs is uncommon as KVM needs to use a list if and only if there is 6328 * more than one rmap entry for a gfn, i.e. requires an L1 gfn to be 6329 * aliased by multiple L2 gfns and/or from multiple nested roots with 6330 * different roles. Aliasing gfns when using TDP is atypical for VMMs; 6331 * a few gfns are often aliased during boot, e.g. when remapping BIOS, 6332 * but aliasing rarely occurs post-boot or for many gfns. If there is 6333 * only one rmap entry, rmap->val points directly at that one entry and 6334 * doesn't need to allocate a list. Buffer the cache by the default 6335 * capacity so that KVM doesn't have to drop mmu_lock to topup if KVM 6336 * encounters an aliased gfn or two. 6337 */ 6338 const int capacity = SPLIT_DESC_CACHE_MIN_NR_OBJECTS + 6339 KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE; 6340 int r; 6341 6342 lockdep_assert_held(&kvm->slots_lock); 6343 6344 r = __kvm_mmu_topup_memory_cache(&kvm->arch.split_desc_cache, capacity, 6345 SPLIT_DESC_CACHE_MIN_NR_OBJECTS); 6346 if (r) 6347 return r; 6348 6349 r = kvm_mmu_topup_memory_cache(&kvm->arch.split_page_header_cache, 1); 6350 if (r) 6351 return r; 6352 6353 return kvm_mmu_topup_memory_cache(&kvm->arch.split_shadow_page_cache, 1); 6354 } 6355 6356 static struct kvm_mmu_page *shadow_mmu_get_sp_for_split(struct kvm *kvm, u64 *huge_sptep) 6357 { 6358 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); 6359 struct shadow_page_caches caches = {}; 6360 union kvm_mmu_page_role role; 6361 unsigned int access; 6362 gfn_t gfn; 6363 6364 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep)); 6365 access = kvm_mmu_page_get_access(huge_sp, spte_index(huge_sptep)); 6366 6367 /* 6368 * Note, huge page splitting always uses direct shadow pages, regardless 6369 * of whether the huge page itself is mapped by a direct or indirect 6370 * shadow page, since the huge page region itself is being directly 6371 * mapped with smaller pages. 6372 */ 6373 role = kvm_mmu_child_role(huge_sptep, /*direct=*/true, access); 6374 6375 /* Direct SPs do not require a shadowed_info_cache. */ 6376 caches.page_header_cache = &kvm->arch.split_page_header_cache; 6377 caches.shadow_page_cache = &kvm->arch.split_shadow_page_cache; 6378 6379 /* Safe to pass NULL for vCPU since requesting a direct SP. */ 6380 return __kvm_mmu_get_shadow_page(kvm, NULL, &caches, gfn, role); 6381 } 6382 6383 static void shadow_mmu_split_huge_page(struct kvm *kvm, 6384 const struct kvm_memory_slot *slot, 6385 u64 *huge_sptep) 6386 6387 { 6388 struct kvm_mmu_memory_cache *cache = &kvm->arch.split_desc_cache; 6389 u64 huge_spte = READ_ONCE(*huge_sptep); 6390 struct kvm_mmu_page *sp; 6391 bool flush = false; 6392 u64 *sptep, spte; 6393 gfn_t gfn; 6394 int index; 6395 6396 sp = shadow_mmu_get_sp_for_split(kvm, huge_sptep); 6397 6398 for (index = 0; index < SPTE_ENT_PER_PAGE; index++) { 6399 sptep = &sp->spt[index]; 6400 gfn = kvm_mmu_page_get_gfn(sp, index); 6401 6402 /* 6403 * The SP may already have populated SPTEs, e.g. if this huge 6404 * page is aliased by multiple sptes with the same access 6405 * permissions. These entries are guaranteed to map the same 6406 * gfn-to-pfn translation since the SP is direct, so no need to 6407 * modify them. 6408 * 6409 * However, if a given SPTE points to a lower level page table, 6410 * that lower level page table may only be partially populated. 6411 * Installing such SPTEs would effectively unmap a potion of the 6412 * huge page. Unmapping guest memory always requires a TLB flush 6413 * since a subsequent operation on the unmapped regions would 6414 * fail to detect the need to flush. 6415 */ 6416 if (is_shadow_present_pte(*sptep)) { 6417 flush |= !is_last_spte(*sptep, sp->role.level); 6418 continue; 6419 } 6420 6421 spte = make_huge_page_split_spte(kvm, huge_spte, sp->role, index); 6422 mmu_spte_set(sptep, spte); 6423 __rmap_add(kvm, cache, slot, sptep, gfn, sp->role.access); 6424 } 6425 6426 __link_shadow_page(kvm, cache, huge_sptep, sp, flush); 6427 } 6428 6429 static int shadow_mmu_try_split_huge_page(struct kvm *kvm, 6430 const struct kvm_memory_slot *slot, 6431 u64 *huge_sptep) 6432 { 6433 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); 6434 int level, r = 0; 6435 gfn_t gfn; 6436 u64 spte; 6437 6438 /* Grab information for the tracepoint before dropping the MMU lock. */ 6439 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep)); 6440 level = huge_sp->role.level; 6441 spte = *huge_sptep; 6442 6443 if (kvm_mmu_available_pages(kvm) <= KVM_MIN_FREE_MMU_PAGES) { 6444 r = -ENOSPC; 6445 goto out; 6446 } 6447 6448 if (need_topup_split_caches_or_resched(kvm)) { 6449 write_unlock(&kvm->mmu_lock); 6450 cond_resched(); 6451 /* 6452 * If the topup succeeds, return -EAGAIN to indicate that the 6453 * rmap iterator should be restarted because the MMU lock was 6454 * dropped. 6455 */ 6456 r = topup_split_caches(kvm) ?: -EAGAIN; 6457 write_lock(&kvm->mmu_lock); 6458 goto out; 6459 } 6460 6461 shadow_mmu_split_huge_page(kvm, slot, huge_sptep); 6462 6463 out: 6464 trace_kvm_mmu_split_huge_page(gfn, spte, level, r); 6465 return r; 6466 } 6467 6468 static bool shadow_mmu_try_split_huge_pages(struct kvm *kvm, 6469 struct kvm_rmap_head *rmap_head, 6470 const struct kvm_memory_slot *slot) 6471 { 6472 struct rmap_iterator iter; 6473 struct kvm_mmu_page *sp; 6474 u64 *huge_sptep; 6475 int r; 6476 6477 restart: 6478 for_each_rmap_spte(rmap_head, &iter, huge_sptep) { 6479 sp = sptep_to_sp(huge_sptep); 6480 6481 /* TDP MMU is enabled, so rmap only contains nested MMU SPs. */ 6482 if (WARN_ON_ONCE(!sp->role.guest_mode)) 6483 continue; 6484 6485 /* The rmaps should never contain non-leaf SPTEs. */ 6486 if (WARN_ON_ONCE(!is_large_pte(*huge_sptep))) 6487 continue; 6488 6489 /* SPs with level >PG_LEVEL_4K should never by unsync. */ 6490 if (WARN_ON_ONCE(sp->unsync)) 6491 continue; 6492 6493 /* Don't bother splitting huge pages on invalid SPs. */ 6494 if (sp->role.invalid) 6495 continue; 6496 6497 r = shadow_mmu_try_split_huge_page(kvm, slot, huge_sptep); 6498 6499 /* 6500 * The split succeeded or needs to be retried because the MMU 6501 * lock was dropped. Either way, restart the iterator to get it 6502 * back into a consistent state. 6503 */ 6504 if (!r || r == -EAGAIN) 6505 goto restart; 6506 6507 /* The split failed and shouldn't be retried (e.g. -ENOMEM). */ 6508 break; 6509 } 6510 6511 return false; 6512 } 6513 6514 static void kvm_shadow_mmu_try_split_huge_pages(struct kvm *kvm, 6515 const struct kvm_memory_slot *slot, 6516 gfn_t start, gfn_t end, 6517 int target_level) 6518 { 6519 int level; 6520 6521 /* 6522 * Split huge pages starting with KVM_MAX_HUGEPAGE_LEVEL and working 6523 * down to the target level. This ensures pages are recursively split 6524 * all the way to the target level. There's no need to split pages 6525 * already at the target level. 6526 */ 6527 for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--) 6528 __walk_slot_rmaps(kvm, slot, shadow_mmu_try_split_huge_pages, 6529 level, level, start, end - 1, true, false); 6530 } 6531 6532 /* Must be called with the mmu_lock held in write-mode. */ 6533 void kvm_mmu_try_split_huge_pages(struct kvm *kvm, 6534 const struct kvm_memory_slot *memslot, 6535 u64 start, u64 end, 6536 int target_level) 6537 { 6538 if (!tdp_mmu_enabled) 6539 return; 6540 6541 if (kvm_memslots_have_rmaps(kvm)) 6542 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); 6543 6544 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, false); 6545 6546 /* 6547 * A TLB flush is unnecessary at this point for the same resons as in 6548 * kvm_mmu_slot_try_split_huge_pages(). 6549 */ 6550 } 6551 6552 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, 6553 const struct kvm_memory_slot *memslot, 6554 int target_level) 6555 { 6556 u64 start = memslot->base_gfn; 6557 u64 end = start + memslot->npages; 6558 6559 if (!tdp_mmu_enabled) 6560 return; 6561 6562 if (kvm_memslots_have_rmaps(kvm)) { 6563 write_lock(&kvm->mmu_lock); 6564 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); 6565 write_unlock(&kvm->mmu_lock); 6566 } 6567 6568 read_lock(&kvm->mmu_lock); 6569 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true); 6570 read_unlock(&kvm->mmu_lock); 6571 6572 /* 6573 * No TLB flush is necessary here. KVM will flush TLBs after 6574 * write-protecting and/or clearing dirty on the newly split SPTEs to 6575 * ensure that guest writes are reflected in the dirty log before the 6576 * ioctl to enable dirty logging on this memslot completes. Since the 6577 * split SPTEs retain the write and dirty bits of the huge SPTE, it is 6578 * safe for KVM to decide if a TLB flush is necessary based on the split 6579 * SPTEs. 6580 */ 6581 } 6582 6583 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, 6584 struct kvm_rmap_head *rmap_head, 6585 const struct kvm_memory_slot *slot) 6586 { 6587 u64 *sptep; 6588 struct rmap_iterator iter; 6589 int need_tlb_flush = 0; 6590 struct kvm_mmu_page *sp; 6591 6592 restart: 6593 for_each_rmap_spte(rmap_head, &iter, sptep) { 6594 sp = sptep_to_sp(sptep); 6595 6596 /* 6597 * We cannot do huge page mapping for indirect shadow pages, 6598 * which are found on the last rmap (level = 1) when not using 6599 * tdp; such shadow pages are synced with the page table in 6600 * the guest, and the guest page table is using 4K page size 6601 * mapping if the indirect sp has level = 1. 6602 */ 6603 if (sp->role.direct && 6604 sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn, 6605 PG_LEVEL_NUM)) { 6606 kvm_zap_one_rmap_spte(kvm, rmap_head, sptep); 6607 6608 if (kvm_available_flush_remote_tlbs_range()) 6609 kvm_flush_remote_tlbs_sptep(kvm, sptep); 6610 else 6611 need_tlb_flush = 1; 6612 6613 goto restart; 6614 } 6615 } 6616 6617 return need_tlb_flush; 6618 } 6619 6620 static void kvm_rmap_zap_collapsible_sptes(struct kvm *kvm, 6621 const struct kvm_memory_slot *slot) 6622 { 6623 /* 6624 * Note, use KVM_MAX_HUGEPAGE_LEVEL - 1 since there's no need to zap 6625 * pages that are already mapped at the maximum hugepage level. 6626 */ 6627 if (walk_slot_rmaps(kvm, slot, kvm_mmu_zap_collapsible_spte, 6628 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL - 1, true)) 6629 kvm_flush_remote_tlbs_memslot(kvm, slot); 6630 } 6631 6632 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, 6633 const struct kvm_memory_slot *slot) 6634 { 6635 if (kvm_memslots_have_rmaps(kvm)) { 6636 write_lock(&kvm->mmu_lock); 6637 kvm_rmap_zap_collapsible_sptes(kvm, slot); 6638 write_unlock(&kvm->mmu_lock); 6639 } 6640 6641 if (tdp_mmu_enabled) { 6642 read_lock(&kvm->mmu_lock); 6643 kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot); 6644 read_unlock(&kvm->mmu_lock); 6645 } 6646 } 6647 6648 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 6649 const struct kvm_memory_slot *memslot) 6650 { 6651 if (kvm_memslots_have_rmaps(kvm)) { 6652 write_lock(&kvm->mmu_lock); 6653 /* 6654 * Clear dirty bits only on 4k SPTEs since the legacy MMU only 6655 * support dirty logging at a 4k granularity. 6656 */ 6657 walk_slot_rmaps_4k(kvm, memslot, __rmap_clear_dirty, false); 6658 write_unlock(&kvm->mmu_lock); 6659 } 6660 6661 if (tdp_mmu_enabled) { 6662 read_lock(&kvm->mmu_lock); 6663 kvm_tdp_mmu_clear_dirty_slot(kvm, memslot); 6664 read_unlock(&kvm->mmu_lock); 6665 } 6666 6667 /* 6668 * The caller will flush the TLBs after this function returns. 6669 * 6670 * It's also safe to flush TLBs out of mmu lock here as currently this 6671 * function is only used for dirty logging, in which case flushing TLB 6672 * out of mmu lock also guarantees no dirty pages will be lost in 6673 * dirty_bitmap. 6674 */ 6675 } 6676 6677 static void kvm_mmu_zap_all(struct kvm *kvm) 6678 { 6679 struct kvm_mmu_page *sp, *node; 6680 LIST_HEAD(invalid_list); 6681 int ign; 6682 6683 write_lock(&kvm->mmu_lock); 6684 restart: 6685 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) { 6686 if (WARN_ON_ONCE(sp->role.invalid)) 6687 continue; 6688 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign)) 6689 goto restart; 6690 if (cond_resched_rwlock_write(&kvm->mmu_lock)) 6691 goto restart; 6692 } 6693 6694 kvm_mmu_commit_zap_page(kvm, &invalid_list); 6695 6696 if (tdp_mmu_enabled) 6697 kvm_tdp_mmu_zap_all(kvm); 6698 6699 write_unlock(&kvm->mmu_lock); 6700 } 6701 6702 void kvm_arch_flush_shadow_all(struct kvm *kvm) 6703 { 6704 kvm_mmu_zap_all(kvm); 6705 } 6706 6707 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 6708 struct kvm_memory_slot *slot) 6709 { 6710 kvm_mmu_zap_all_fast(kvm); 6711 } 6712 6713 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen) 6714 { 6715 WARN_ON_ONCE(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 6716 6717 gen &= MMIO_SPTE_GEN_MASK; 6718 6719 /* 6720 * Generation numbers are incremented in multiples of the number of 6721 * address spaces in order to provide unique generations across all 6722 * address spaces. Strip what is effectively the address space 6723 * modifier prior to checking for a wrap of the MMIO generation so 6724 * that a wrap in any address space is detected. 6725 */ 6726 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1); 6727 6728 /* 6729 * The very rare case: if the MMIO generation number has wrapped, 6730 * zap all shadow pages. 6731 */ 6732 if (unlikely(gen == 0)) { 6733 kvm_debug_ratelimited("zapping shadow pages for mmio generation wraparound\n"); 6734 kvm_mmu_zap_all_fast(kvm); 6735 } 6736 } 6737 6738 static unsigned long mmu_shrink_scan(struct shrinker *shrink, 6739 struct shrink_control *sc) 6740 { 6741 struct kvm *kvm; 6742 int nr_to_scan = sc->nr_to_scan; 6743 unsigned long freed = 0; 6744 6745 mutex_lock(&kvm_lock); 6746 6747 list_for_each_entry(kvm, &vm_list, vm_list) { 6748 int idx; 6749 LIST_HEAD(invalid_list); 6750 6751 /* 6752 * Never scan more than sc->nr_to_scan VM instances. 6753 * Will not hit this condition practically since we do not try 6754 * to shrink more than one VM and it is very unlikely to see 6755 * !n_used_mmu_pages so many times. 6756 */ 6757 if (!nr_to_scan--) 6758 break; 6759 /* 6760 * n_used_mmu_pages is accessed without holding kvm->mmu_lock 6761 * here. We may skip a VM instance errorneosly, but we do not 6762 * want to shrink a VM that only started to populate its MMU 6763 * anyway. 6764 */ 6765 if (!kvm->arch.n_used_mmu_pages && 6766 !kvm_has_zapped_obsolete_pages(kvm)) 6767 continue; 6768 6769 idx = srcu_read_lock(&kvm->srcu); 6770 write_lock(&kvm->mmu_lock); 6771 6772 if (kvm_has_zapped_obsolete_pages(kvm)) { 6773 kvm_mmu_commit_zap_page(kvm, 6774 &kvm->arch.zapped_obsolete_pages); 6775 goto unlock; 6776 } 6777 6778 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan); 6779 6780 unlock: 6781 write_unlock(&kvm->mmu_lock); 6782 srcu_read_unlock(&kvm->srcu, idx); 6783 6784 /* 6785 * unfair on small ones 6786 * per-vm shrinkers cry out 6787 * sadness comes quickly 6788 */ 6789 list_move_tail(&kvm->vm_list, &vm_list); 6790 break; 6791 } 6792 6793 mutex_unlock(&kvm_lock); 6794 return freed; 6795 } 6796 6797 static unsigned long mmu_shrink_count(struct shrinker *shrink, 6798 struct shrink_control *sc) 6799 { 6800 return percpu_counter_read_positive(&kvm_total_used_mmu_pages); 6801 } 6802 6803 static struct shrinker *mmu_shrinker; 6804 6805 static void mmu_destroy_caches(void) 6806 { 6807 kmem_cache_destroy(pte_list_desc_cache); 6808 kmem_cache_destroy(mmu_page_header_cache); 6809 } 6810 6811 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp) 6812 { 6813 if (nx_hugepage_mitigation_hard_disabled) 6814 return sysfs_emit(buffer, "never\n"); 6815 6816 return param_get_bool(buffer, kp); 6817 } 6818 6819 static bool get_nx_auto_mode(void) 6820 { 6821 /* Return true when CPU has the bug, and mitigations are ON */ 6822 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off(); 6823 } 6824 6825 static void __set_nx_huge_pages(bool val) 6826 { 6827 nx_huge_pages = itlb_multihit_kvm_mitigation = val; 6828 } 6829 6830 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp) 6831 { 6832 bool old_val = nx_huge_pages; 6833 bool new_val; 6834 6835 if (nx_hugepage_mitigation_hard_disabled) 6836 return -EPERM; 6837 6838 /* In "auto" mode deploy workaround only if CPU has the bug. */ 6839 if (sysfs_streq(val, "off")) { 6840 new_val = 0; 6841 } else if (sysfs_streq(val, "force")) { 6842 new_val = 1; 6843 } else if (sysfs_streq(val, "auto")) { 6844 new_val = get_nx_auto_mode(); 6845 } else if (sysfs_streq(val, "never")) { 6846 new_val = 0; 6847 6848 mutex_lock(&kvm_lock); 6849 if (!list_empty(&vm_list)) { 6850 mutex_unlock(&kvm_lock); 6851 return -EBUSY; 6852 } 6853 nx_hugepage_mitigation_hard_disabled = true; 6854 mutex_unlock(&kvm_lock); 6855 } else if (kstrtobool(val, &new_val) < 0) { 6856 return -EINVAL; 6857 } 6858 6859 __set_nx_huge_pages(new_val); 6860 6861 if (new_val != old_val) { 6862 struct kvm *kvm; 6863 6864 mutex_lock(&kvm_lock); 6865 6866 list_for_each_entry(kvm, &vm_list, vm_list) { 6867 mutex_lock(&kvm->slots_lock); 6868 kvm_mmu_zap_all_fast(kvm); 6869 mutex_unlock(&kvm->slots_lock); 6870 6871 wake_up_process(kvm->arch.nx_huge_page_recovery_thread); 6872 } 6873 mutex_unlock(&kvm_lock); 6874 } 6875 6876 return 0; 6877 } 6878 6879 /* 6880 * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as 6881 * its default value of -1 is technically undefined behavior for a boolean. 6882 * Forward the module init call to SPTE code so that it too can handle module 6883 * params that need to be resolved/snapshot. 6884 */ 6885 void __init kvm_mmu_x86_module_init(void) 6886 { 6887 if (nx_huge_pages == -1) 6888 __set_nx_huge_pages(get_nx_auto_mode()); 6889 6890 /* 6891 * Snapshot userspace's desire to enable the TDP MMU. Whether or not the 6892 * TDP MMU is actually enabled is determined in kvm_configure_mmu() 6893 * when the vendor module is loaded. 6894 */ 6895 tdp_mmu_allowed = tdp_mmu_enabled; 6896 6897 kvm_mmu_spte_module_init(); 6898 } 6899 6900 /* 6901 * The bulk of the MMU initialization is deferred until the vendor module is 6902 * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need 6903 * to be reset when a potentially different vendor module is loaded. 6904 */ 6905 int kvm_mmu_vendor_module_init(void) 6906 { 6907 int ret = -ENOMEM; 6908 6909 /* 6910 * MMU roles use union aliasing which is, generally speaking, an 6911 * undefined behavior. However, we supposedly know how compilers behave 6912 * and the current status quo is unlikely to change. Guardians below are 6913 * supposed to let us know if the assumption becomes false. 6914 */ 6915 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32)); 6916 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32)); 6917 BUILD_BUG_ON(sizeof(union kvm_cpu_role) != sizeof(u64)); 6918 6919 kvm_mmu_reset_all_pte_masks(); 6920 6921 pte_list_desc_cache = kmem_cache_create("pte_list_desc", 6922 sizeof(struct pte_list_desc), 6923 0, SLAB_ACCOUNT, NULL); 6924 if (!pte_list_desc_cache) 6925 goto out; 6926 6927 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", 6928 sizeof(struct kvm_mmu_page), 6929 0, SLAB_ACCOUNT, NULL); 6930 if (!mmu_page_header_cache) 6931 goto out; 6932 6933 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL)) 6934 goto out; 6935 6936 mmu_shrinker = shrinker_alloc(0, "x86-mmu"); 6937 if (!mmu_shrinker) 6938 goto out_shrinker; 6939 6940 mmu_shrinker->count_objects = mmu_shrink_count; 6941 mmu_shrinker->scan_objects = mmu_shrink_scan; 6942 mmu_shrinker->seeks = DEFAULT_SEEKS * 10; 6943 6944 shrinker_register(mmu_shrinker); 6945 6946 return 0; 6947 6948 out_shrinker: 6949 percpu_counter_destroy(&kvm_total_used_mmu_pages); 6950 out: 6951 mmu_destroy_caches(); 6952 return ret; 6953 } 6954 6955 void kvm_mmu_destroy(struct kvm_vcpu *vcpu) 6956 { 6957 kvm_mmu_unload(vcpu); 6958 free_mmu_pages(&vcpu->arch.root_mmu); 6959 free_mmu_pages(&vcpu->arch.guest_mmu); 6960 mmu_free_memory_caches(vcpu); 6961 } 6962 6963 void kvm_mmu_vendor_module_exit(void) 6964 { 6965 mmu_destroy_caches(); 6966 percpu_counter_destroy(&kvm_total_used_mmu_pages); 6967 shrinker_free(mmu_shrinker); 6968 } 6969 6970 /* 6971 * Calculate the effective recovery period, accounting for '0' meaning "let KVM 6972 * select a halving time of 1 hour". Returns true if recovery is enabled. 6973 */ 6974 static bool calc_nx_huge_pages_recovery_period(uint *period) 6975 { 6976 /* 6977 * Use READ_ONCE to get the params, this may be called outside of the 6978 * param setters, e.g. by the kthread to compute its next timeout. 6979 */ 6980 bool enabled = READ_ONCE(nx_huge_pages); 6981 uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 6982 6983 if (!enabled || !ratio) 6984 return false; 6985 6986 *period = READ_ONCE(nx_huge_pages_recovery_period_ms); 6987 if (!*period) { 6988 /* Make sure the period is not less than one second. */ 6989 ratio = min(ratio, 3600u); 6990 *period = 60 * 60 * 1000 / ratio; 6991 } 6992 return true; 6993 } 6994 6995 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp) 6996 { 6997 bool was_recovery_enabled, is_recovery_enabled; 6998 uint old_period, new_period; 6999 int err; 7000 7001 if (nx_hugepage_mitigation_hard_disabled) 7002 return -EPERM; 7003 7004 was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period); 7005 7006 err = param_set_uint(val, kp); 7007 if (err) 7008 return err; 7009 7010 is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period); 7011 7012 if (is_recovery_enabled && 7013 (!was_recovery_enabled || old_period > new_period)) { 7014 struct kvm *kvm; 7015 7016 mutex_lock(&kvm_lock); 7017 7018 list_for_each_entry(kvm, &vm_list, vm_list) 7019 wake_up_process(kvm->arch.nx_huge_page_recovery_thread); 7020 7021 mutex_unlock(&kvm_lock); 7022 } 7023 7024 return err; 7025 } 7026 7027 static void kvm_recover_nx_huge_pages(struct kvm *kvm) 7028 { 7029 unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits; 7030 struct kvm_memory_slot *slot; 7031 int rcu_idx; 7032 struct kvm_mmu_page *sp; 7033 unsigned int ratio; 7034 LIST_HEAD(invalid_list); 7035 bool flush = false; 7036 ulong to_zap; 7037 7038 rcu_idx = srcu_read_lock(&kvm->srcu); 7039 write_lock(&kvm->mmu_lock); 7040 7041 /* 7042 * Zapping TDP MMU shadow pages, including the remote TLB flush, must 7043 * be done under RCU protection, because the pages are freed via RCU 7044 * callback. 7045 */ 7046 rcu_read_lock(); 7047 7048 ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 7049 to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0; 7050 for ( ; to_zap; --to_zap) { 7051 if (list_empty(&kvm->arch.possible_nx_huge_pages)) 7052 break; 7053 7054 /* 7055 * We use a separate list instead of just using active_mmu_pages 7056 * because the number of shadow pages that be replaced with an 7057 * NX huge page is expected to be relatively small compared to 7058 * the total number of shadow pages. And because the TDP MMU 7059 * doesn't use active_mmu_pages. 7060 */ 7061 sp = list_first_entry(&kvm->arch.possible_nx_huge_pages, 7062 struct kvm_mmu_page, 7063 possible_nx_huge_page_link); 7064 WARN_ON_ONCE(!sp->nx_huge_page_disallowed); 7065 WARN_ON_ONCE(!sp->role.direct); 7066 7067 /* 7068 * Unaccount and do not attempt to recover any NX Huge Pages 7069 * that are being dirty tracked, as they would just be faulted 7070 * back in as 4KiB pages. The NX Huge Pages in this slot will be 7071 * recovered, along with all the other huge pages in the slot, 7072 * when dirty logging is disabled. 7073 * 7074 * Since gfn_to_memslot() is relatively expensive, it helps to 7075 * skip it if it the test cannot possibly return true. On the 7076 * other hand, if any memslot has logging enabled, chances are 7077 * good that all of them do, in which case unaccount_nx_huge_page() 7078 * is much cheaper than zapping the page. 7079 * 7080 * If a memslot update is in progress, reading an incorrect value 7081 * of kvm->nr_memslots_dirty_logging is not a problem: if it is 7082 * becoming zero, gfn_to_memslot() will be done unnecessarily; if 7083 * it is becoming nonzero, the page will be zapped unnecessarily. 7084 * Either way, this only affects efficiency in racy situations, 7085 * and not correctness. 7086 */ 7087 slot = NULL; 7088 if (atomic_read(&kvm->nr_memslots_dirty_logging)) { 7089 struct kvm_memslots *slots; 7090 7091 slots = kvm_memslots_for_spte_role(kvm, sp->role); 7092 slot = __gfn_to_memslot(slots, sp->gfn); 7093 WARN_ON_ONCE(!slot); 7094 } 7095 7096 if (slot && kvm_slot_dirty_track_enabled(slot)) 7097 unaccount_nx_huge_page(kvm, sp); 7098 else if (is_tdp_mmu_page(sp)) 7099 flush |= kvm_tdp_mmu_zap_sp(kvm, sp); 7100 else 7101 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 7102 WARN_ON_ONCE(sp->nx_huge_page_disallowed); 7103 7104 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 7105 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7106 rcu_read_unlock(); 7107 7108 cond_resched_rwlock_write(&kvm->mmu_lock); 7109 flush = false; 7110 7111 rcu_read_lock(); 7112 } 7113 } 7114 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7115 7116 rcu_read_unlock(); 7117 7118 write_unlock(&kvm->mmu_lock); 7119 srcu_read_unlock(&kvm->srcu, rcu_idx); 7120 } 7121 7122 static long get_nx_huge_page_recovery_timeout(u64 start_time) 7123 { 7124 bool enabled; 7125 uint period; 7126 7127 enabled = calc_nx_huge_pages_recovery_period(&period); 7128 7129 return enabled ? start_time + msecs_to_jiffies(period) - get_jiffies_64() 7130 : MAX_SCHEDULE_TIMEOUT; 7131 } 7132 7133 static int kvm_nx_huge_page_recovery_worker(struct kvm *kvm, uintptr_t data) 7134 { 7135 u64 start_time; 7136 long remaining_time; 7137 7138 while (true) { 7139 start_time = get_jiffies_64(); 7140 remaining_time = get_nx_huge_page_recovery_timeout(start_time); 7141 7142 set_current_state(TASK_INTERRUPTIBLE); 7143 while (!kthread_should_stop() && remaining_time > 0) { 7144 schedule_timeout(remaining_time); 7145 remaining_time = get_nx_huge_page_recovery_timeout(start_time); 7146 set_current_state(TASK_INTERRUPTIBLE); 7147 } 7148 7149 set_current_state(TASK_RUNNING); 7150 7151 if (kthread_should_stop()) 7152 return 0; 7153 7154 kvm_recover_nx_huge_pages(kvm); 7155 } 7156 } 7157 7158 int kvm_mmu_post_init_vm(struct kvm *kvm) 7159 { 7160 int err; 7161 7162 if (nx_hugepage_mitigation_hard_disabled) 7163 return 0; 7164 7165 err = kvm_vm_create_worker_thread(kvm, kvm_nx_huge_page_recovery_worker, 0, 7166 "kvm-nx-lpage-recovery", 7167 &kvm->arch.nx_huge_page_recovery_thread); 7168 if (!err) 7169 kthread_unpark(kvm->arch.nx_huge_page_recovery_thread); 7170 7171 return err; 7172 } 7173 7174 void kvm_mmu_pre_destroy_vm(struct kvm *kvm) 7175 { 7176 if (kvm->arch.nx_huge_page_recovery_thread) 7177 kthread_stop(kvm->arch.nx_huge_page_recovery_thread); 7178 } 7179