1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * MMU support 9 * 10 * Copyright (C) 2006 Qumranet, Inc. 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 12 * 13 * Authors: 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Avi Kivity <avi@qumranet.com> 16 */ 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include "irq.h" 20 #include "ioapic.h" 21 #include "mmu.h" 22 #include "mmu_internal.h" 23 #include "tdp_mmu.h" 24 #include "x86.h" 25 #include "kvm_cache_regs.h" 26 #include "smm.h" 27 #include "kvm_emulate.h" 28 #include "page_track.h" 29 #include "cpuid.h" 30 #include "spte.h" 31 32 #include <linux/kvm_host.h> 33 #include <linux/types.h> 34 #include <linux/string.h> 35 #include <linux/mm.h> 36 #include <linux/highmem.h> 37 #include <linux/moduleparam.h> 38 #include <linux/export.h> 39 #include <linux/swap.h> 40 #include <linux/hugetlb.h> 41 #include <linux/compiler.h> 42 #include <linux/srcu.h> 43 #include <linux/slab.h> 44 #include <linux/sched/signal.h> 45 #include <linux/uaccess.h> 46 #include <linux/hash.h> 47 #include <linux/kern_levels.h> 48 #include <linux/kstrtox.h> 49 #include <linux/kthread.h> 50 #include <linux/wordpart.h> 51 52 #include <asm/page.h> 53 #include <asm/memtype.h> 54 #include <asm/cmpxchg.h> 55 #include <asm/io.h> 56 #include <asm/set_memory.h> 57 #include <asm/spec-ctrl.h> 58 #include <asm/vmx.h> 59 60 #include "trace.h" 61 62 static bool nx_hugepage_mitigation_hard_disabled; 63 64 int __read_mostly nx_huge_pages = -1; 65 static uint __read_mostly nx_huge_pages_recovery_period_ms; 66 #ifdef CONFIG_PREEMPT_RT 67 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */ 68 static uint __read_mostly nx_huge_pages_recovery_ratio = 0; 69 #else 70 static uint __read_mostly nx_huge_pages_recovery_ratio = 60; 71 #endif 72 73 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp); 74 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp); 75 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp); 76 77 static const struct kernel_param_ops nx_huge_pages_ops = { 78 .set = set_nx_huge_pages, 79 .get = get_nx_huge_pages, 80 }; 81 82 static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = { 83 .set = set_nx_huge_pages_recovery_param, 84 .get = param_get_uint, 85 }; 86 87 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644); 88 __MODULE_PARM_TYPE(nx_huge_pages, "bool"); 89 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops, 90 &nx_huge_pages_recovery_ratio, 0644); 91 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint"); 92 module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops, 93 &nx_huge_pages_recovery_period_ms, 0644); 94 __MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint"); 95 96 static bool __read_mostly force_flush_and_sync_on_reuse; 97 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644); 98 99 /* 100 * When setting this variable to true it enables Two-Dimensional-Paging 101 * where the hardware walks 2 page tables: 102 * 1. the guest-virtual to guest-physical 103 * 2. while doing 1. it walks guest-physical to host-physical 104 * If the hardware supports that we don't need to do shadow paging. 105 */ 106 bool tdp_enabled = false; 107 108 static bool __ro_after_init tdp_mmu_allowed; 109 110 #ifdef CONFIG_X86_64 111 bool __read_mostly tdp_mmu_enabled = true; 112 module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0444); 113 #endif 114 115 static int max_huge_page_level __read_mostly; 116 static int tdp_root_level __read_mostly; 117 static int max_tdp_level __read_mostly; 118 119 #define PTE_PREFETCH_NUM 8 120 121 #include <trace/events/kvm.h> 122 123 /* make pte_list_desc fit well in cache lines */ 124 #define PTE_LIST_EXT 14 125 126 /* 127 * struct pte_list_desc is the core data structure used to implement a custom 128 * list for tracking a set of related SPTEs, e.g. all the SPTEs that map a 129 * given GFN when used in the context of rmaps. Using a custom list allows KVM 130 * to optimize for the common case where many GFNs will have at most a handful 131 * of SPTEs pointing at them, i.e. allows packing multiple SPTEs into a small 132 * memory footprint, which in turn improves runtime performance by exploiting 133 * cache locality. 134 * 135 * A list is comprised of one or more pte_list_desc objects (descriptors). 136 * Each individual descriptor stores up to PTE_LIST_EXT SPTEs. If a descriptor 137 * is full and a new SPTEs needs to be added, a new descriptor is allocated and 138 * becomes the head of the list. This means that by definitions, all tail 139 * descriptors are full. 140 * 141 * Note, the meta data fields are deliberately placed at the start of the 142 * structure to optimize the cacheline layout; accessing the descriptor will 143 * touch only a single cacheline so long as @spte_count<=6 (or if only the 144 * descriptors metadata is accessed). 145 */ 146 struct pte_list_desc { 147 struct pte_list_desc *more; 148 /* The number of PTEs stored in _this_ descriptor. */ 149 u32 spte_count; 150 /* The number of PTEs stored in all tails of this descriptor. */ 151 u32 tail_count; 152 u64 *sptes[PTE_LIST_EXT]; 153 }; 154 155 struct kvm_shadow_walk_iterator { 156 u64 addr; 157 hpa_t shadow_addr; 158 u64 *sptep; 159 int level; 160 unsigned index; 161 }; 162 163 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \ 164 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \ 165 (_root), (_addr)); \ 166 shadow_walk_okay(&(_walker)); \ 167 shadow_walk_next(&(_walker))) 168 169 #define for_each_shadow_entry(_vcpu, _addr, _walker) \ 170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 171 shadow_walk_okay(&(_walker)); \ 172 shadow_walk_next(&(_walker))) 173 174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \ 175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 176 shadow_walk_okay(&(_walker)) && \ 177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \ 178 __shadow_walk_next(&(_walker), spte)) 179 180 static struct kmem_cache *pte_list_desc_cache; 181 struct kmem_cache *mmu_page_header_cache; 182 183 static void mmu_spte_set(u64 *sptep, u64 spte); 184 185 struct kvm_mmu_role_regs { 186 const unsigned long cr0; 187 const unsigned long cr4; 188 const u64 efer; 189 }; 190 191 #define CREATE_TRACE_POINTS 192 #include "mmutrace.h" 193 194 /* 195 * Yes, lot's of underscores. They're a hint that you probably shouldn't be 196 * reading from the role_regs. Once the root_role is constructed, it becomes 197 * the single source of truth for the MMU's state. 198 */ 199 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag) \ 200 static inline bool __maybe_unused \ 201 ____is_##reg##_##name(const struct kvm_mmu_role_regs *regs) \ 202 { \ 203 return !!(regs->reg & flag); \ 204 } 205 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG); 206 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP); 207 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE); 208 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE); 209 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP); 210 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP); 211 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE); 212 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57); 213 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX); 214 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA); 215 216 /* 217 * The MMU itself (with a valid role) is the single source of truth for the 218 * MMU. Do not use the regs used to build the MMU/role, nor the vCPU. The 219 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1, 220 * and the vCPU may be incorrect/irrelevant. 221 */ 222 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name) \ 223 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu) \ 224 { \ 225 return !!(mmu->cpu_role. base_or_ext . reg##_##name); \ 226 } 227 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp); 228 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pse); 229 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smep); 230 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smap); 231 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pke); 232 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, la57); 233 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx); 234 BUILD_MMU_ROLE_ACCESSOR(ext, efer, lma); 235 236 static inline bool is_cr0_pg(struct kvm_mmu *mmu) 237 { 238 return mmu->cpu_role.base.level > 0; 239 } 240 241 static inline bool is_cr4_pae(struct kvm_mmu *mmu) 242 { 243 return !mmu->cpu_role.base.has_4_byte_gpte; 244 } 245 246 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu) 247 { 248 struct kvm_mmu_role_regs regs = { 249 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS), 250 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS), 251 .efer = vcpu->arch.efer, 252 }; 253 254 return regs; 255 } 256 257 static unsigned long get_guest_cr3(struct kvm_vcpu *vcpu) 258 { 259 return kvm_read_cr3(vcpu); 260 } 261 262 static inline unsigned long kvm_mmu_get_guest_pgd(struct kvm_vcpu *vcpu, 263 struct kvm_mmu *mmu) 264 { 265 if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && mmu->get_guest_pgd == get_guest_cr3) 266 return kvm_read_cr3(vcpu); 267 268 return mmu->get_guest_pgd(vcpu); 269 } 270 271 static inline bool kvm_available_flush_remote_tlbs_range(void) 272 { 273 #if IS_ENABLED(CONFIG_HYPERV) 274 return kvm_x86_ops.flush_remote_tlbs_range; 275 #else 276 return false; 277 #endif 278 } 279 280 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index); 281 282 /* Flush the range of guest memory mapped by the given SPTE. */ 283 static void kvm_flush_remote_tlbs_sptep(struct kvm *kvm, u64 *sptep) 284 { 285 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 286 gfn_t gfn = kvm_mmu_page_get_gfn(sp, spte_index(sptep)); 287 288 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level); 289 } 290 291 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn, 292 unsigned int access) 293 { 294 u64 spte = make_mmio_spte(vcpu, gfn, access); 295 296 trace_mark_mmio_spte(sptep, gfn, spte); 297 mmu_spte_set(sptep, spte); 298 } 299 300 static gfn_t get_mmio_spte_gfn(u64 spte) 301 { 302 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask; 303 304 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN) 305 & shadow_nonpresent_or_rsvd_mask; 306 307 return gpa >> PAGE_SHIFT; 308 } 309 310 static unsigned get_mmio_spte_access(u64 spte) 311 { 312 return spte & shadow_mmio_access_mask; 313 } 314 315 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte) 316 { 317 u64 kvm_gen, spte_gen, gen; 318 319 gen = kvm_vcpu_memslots(vcpu)->generation; 320 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS)) 321 return false; 322 323 kvm_gen = gen & MMIO_SPTE_GEN_MASK; 324 spte_gen = get_mmio_spte_generation(spte); 325 326 trace_check_mmio_spte(spte, kvm_gen, spte_gen); 327 return likely(kvm_gen == spte_gen); 328 } 329 330 static int is_cpuid_PSE36(void) 331 { 332 return 1; 333 } 334 335 #ifdef CONFIG_X86_64 336 static void __set_spte(u64 *sptep, u64 spte) 337 { 338 KVM_MMU_WARN_ON(is_ept_ve_possible(spte)); 339 WRITE_ONCE(*sptep, spte); 340 } 341 342 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 343 { 344 KVM_MMU_WARN_ON(is_ept_ve_possible(spte)); 345 WRITE_ONCE(*sptep, spte); 346 } 347 348 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 349 { 350 KVM_MMU_WARN_ON(is_ept_ve_possible(spte)); 351 return xchg(sptep, spte); 352 } 353 354 static u64 __get_spte_lockless(u64 *sptep) 355 { 356 return READ_ONCE(*sptep); 357 } 358 #else 359 union split_spte { 360 struct { 361 u32 spte_low; 362 u32 spte_high; 363 }; 364 u64 spte; 365 }; 366 367 static void count_spte_clear(u64 *sptep, u64 spte) 368 { 369 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 370 371 if (is_shadow_present_pte(spte)) 372 return; 373 374 /* Ensure the spte is completely set before we increase the count */ 375 smp_wmb(); 376 sp->clear_spte_count++; 377 } 378 379 static void __set_spte(u64 *sptep, u64 spte) 380 { 381 union split_spte *ssptep, sspte; 382 383 ssptep = (union split_spte *)sptep; 384 sspte = (union split_spte)spte; 385 386 ssptep->spte_high = sspte.spte_high; 387 388 /* 389 * If we map the spte from nonpresent to present, We should store 390 * the high bits firstly, then set present bit, so cpu can not 391 * fetch this spte while we are setting the spte. 392 */ 393 smp_wmb(); 394 395 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 396 } 397 398 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 399 { 400 union split_spte *ssptep, sspte; 401 402 ssptep = (union split_spte *)sptep; 403 sspte = (union split_spte)spte; 404 405 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 406 407 /* 408 * If we map the spte from present to nonpresent, we should clear 409 * present bit firstly to avoid vcpu fetch the old high bits. 410 */ 411 smp_wmb(); 412 413 ssptep->spte_high = sspte.spte_high; 414 count_spte_clear(sptep, spte); 415 } 416 417 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 418 { 419 union split_spte *ssptep, sspte, orig; 420 421 ssptep = (union split_spte *)sptep; 422 sspte = (union split_spte)spte; 423 424 /* xchg acts as a barrier before the setting of the high bits */ 425 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); 426 orig.spte_high = ssptep->spte_high; 427 ssptep->spte_high = sspte.spte_high; 428 count_spte_clear(sptep, spte); 429 430 return orig.spte; 431 } 432 433 /* 434 * The idea using the light way get the spte on x86_32 guest is from 435 * gup_get_pte (mm/gup.c). 436 * 437 * An spte tlb flush may be pending, because they are coalesced and 438 * we are running out of the MMU lock. Therefore 439 * we need to protect against in-progress updates of the spte. 440 * 441 * Reading the spte while an update is in progress may get the old value 442 * for the high part of the spte. The race is fine for a present->non-present 443 * change (because the high part of the spte is ignored for non-present spte), 444 * but for a present->present change we must reread the spte. 445 * 446 * All such changes are done in two steps (present->non-present and 447 * non-present->present), hence it is enough to count the number of 448 * present->non-present updates: if it changed while reading the spte, 449 * we might have hit the race. This is done using clear_spte_count. 450 */ 451 static u64 __get_spte_lockless(u64 *sptep) 452 { 453 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 454 union split_spte spte, *orig = (union split_spte *)sptep; 455 int count; 456 457 retry: 458 count = sp->clear_spte_count; 459 smp_rmb(); 460 461 spte.spte_low = orig->spte_low; 462 smp_rmb(); 463 464 spte.spte_high = orig->spte_high; 465 smp_rmb(); 466 467 if (unlikely(spte.spte_low != orig->spte_low || 468 count != sp->clear_spte_count)) 469 goto retry; 470 471 return spte.spte; 472 } 473 #endif 474 475 /* Rules for using mmu_spte_set: 476 * Set the sptep from nonpresent to present. 477 * Note: the sptep being assigned *must* be either not present 478 * or in a state where the hardware will not attempt to update 479 * the spte. 480 */ 481 static void mmu_spte_set(u64 *sptep, u64 new_spte) 482 { 483 WARN_ON_ONCE(is_shadow_present_pte(*sptep)); 484 __set_spte(sptep, new_spte); 485 } 486 487 /* Rules for using mmu_spte_update: 488 * Update the state bits, it means the mapped pfn is not changed. 489 * 490 * Returns true if the TLB needs to be flushed 491 */ 492 static bool mmu_spte_update(u64 *sptep, u64 new_spte) 493 { 494 u64 old_spte = *sptep; 495 496 WARN_ON_ONCE(!is_shadow_present_pte(new_spte)); 497 check_spte_writable_invariants(new_spte); 498 499 if (!is_shadow_present_pte(old_spte)) { 500 mmu_spte_set(sptep, new_spte); 501 return false; 502 } 503 504 if (!spte_has_volatile_bits(old_spte)) 505 __update_clear_spte_fast(sptep, new_spte); 506 else 507 old_spte = __update_clear_spte_slow(sptep, new_spte); 508 509 WARN_ON_ONCE(!is_shadow_present_pte(old_spte) || 510 spte_to_pfn(old_spte) != spte_to_pfn(new_spte)); 511 512 return leaf_spte_change_needs_tlb_flush(old_spte, new_spte); 513 } 514 515 /* 516 * Rules for using mmu_spte_clear_track_bits: 517 * It sets the sptep from present to nonpresent, and track the 518 * state bits, it is used to clear the last level sptep. 519 * Returns the old PTE. 520 */ 521 static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep) 522 { 523 u64 old_spte = *sptep; 524 int level = sptep_to_sp(sptep)->role.level; 525 526 if (!is_shadow_present_pte(old_spte) || 527 !spte_has_volatile_bits(old_spte)) 528 __update_clear_spte_fast(sptep, SHADOW_NONPRESENT_VALUE); 529 else 530 old_spte = __update_clear_spte_slow(sptep, SHADOW_NONPRESENT_VALUE); 531 532 if (!is_shadow_present_pte(old_spte)) 533 return old_spte; 534 535 kvm_update_page_stats(kvm, level, -1); 536 return old_spte; 537 } 538 539 /* 540 * Rules for using mmu_spte_clear_no_track: 541 * Directly clear spte without caring the state bits of sptep, 542 * it is used to set the upper level spte. 543 */ 544 static void mmu_spte_clear_no_track(u64 *sptep) 545 { 546 __update_clear_spte_fast(sptep, SHADOW_NONPRESENT_VALUE); 547 } 548 549 static u64 mmu_spte_get_lockless(u64 *sptep) 550 { 551 return __get_spte_lockless(sptep); 552 } 553 554 static inline bool is_tdp_mmu_active(struct kvm_vcpu *vcpu) 555 { 556 return tdp_mmu_enabled && vcpu->arch.mmu->root_role.direct; 557 } 558 559 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) 560 { 561 if (is_tdp_mmu_active(vcpu)) { 562 kvm_tdp_mmu_walk_lockless_begin(); 563 } else { 564 /* 565 * Prevent page table teardown by making any free-er wait during 566 * kvm_flush_remote_tlbs() IPI to all active vcpus. 567 */ 568 local_irq_disable(); 569 570 /* 571 * Make sure a following spte read is not reordered ahead of the write 572 * to vcpu->mode. 573 */ 574 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); 575 } 576 } 577 578 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) 579 { 580 if (is_tdp_mmu_active(vcpu)) { 581 kvm_tdp_mmu_walk_lockless_end(); 582 } else { 583 /* 584 * Make sure the write to vcpu->mode is not reordered in front of 585 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us 586 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. 587 */ 588 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); 589 local_irq_enable(); 590 } 591 } 592 593 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect) 594 { 595 int r; 596 597 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */ 598 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, 599 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM); 600 if (r) 601 return r; 602 if (kvm_has_mirrored_tdp(vcpu->kvm)) { 603 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_external_spt_cache, 604 PT64_ROOT_MAX_LEVEL); 605 if (r) 606 return r; 607 } 608 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache, 609 PT64_ROOT_MAX_LEVEL); 610 if (r) 611 return r; 612 if (maybe_indirect) { 613 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadowed_info_cache, 614 PT64_ROOT_MAX_LEVEL); 615 if (r) 616 return r; 617 } 618 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, 619 PT64_ROOT_MAX_LEVEL); 620 } 621 622 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) 623 { 624 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache); 625 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache); 626 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadowed_info_cache); 627 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_external_spt_cache); 628 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache); 629 } 630 631 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) 632 { 633 kmem_cache_free(pte_list_desc_cache, pte_list_desc); 634 } 635 636 static bool sp_has_gptes(struct kvm_mmu_page *sp); 637 638 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) 639 { 640 if (sp->role.passthrough) 641 return sp->gfn; 642 643 if (sp->shadowed_translation) 644 return sp->shadowed_translation[index] >> PAGE_SHIFT; 645 646 return sp->gfn + (index << ((sp->role.level - 1) * SPTE_LEVEL_BITS)); 647 } 648 649 /* 650 * For leaf SPTEs, fetch the *guest* access permissions being shadowed. Note 651 * that the SPTE itself may have a more constrained access permissions that 652 * what the guest enforces. For example, a guest may create an executable 653 * huge PTE but KVM may disallow execution to mitigate iTLB multihit. 654 */ 655 static u32 kvm_mmu_page_get_access(struct kvm_mmu_page *sp, int index) 656 { 657 if (sp->shadowed_translation) 658 return sp->shadowed_translation[index] & ACC_ALL; 659 660 /* 661 * For direct MMUs (e.g. TDP or non-paging guests) or passthrough SPs, 662 * KVM is not shadowing any guest page tables, so the "guest access 663 * permissions" are just ACC_ALL. 664 * 665 * For direct SPs in indirect MMUs (shadow paging), i.e. when KVM 666 * is shadowing a guest huge page with small pages, the guest access 667 * permissions being shadowed are the access permissions of the huge 668 * page. 669 * 670 * In both cases, sp->role.access contains the correct access bits. 671 */ 672 return sp->role.access; 673 } 674 675 static void kvm_mmu_page_set_translation(struct kvm_mmu_page *sp, int index, 676 gfn_t gfn, unsigned int access) 677 { 678 if (sp->shadowed_translation) { 679 sp->shadowed_translation[index] = (gfn << PAGE_SHIFT) | access; 680 return; 681 } 682 683 WARN_ONCE(access != kvm_mmu_page_get_access(sp, index), 684 "access mismatch under %s page %llx (expected %u, got %u)\n", 685 sp->role.passthrough ? "passthrough" : "direct", 686 sp->gfn, kvm_mmu_page_get_access(sp, index), access); 687 688 WARN_ONCE(gfn != kvm_mmu_page_get_gfn(sp, index), 689 "gfn mismatch under %s page %llx (expected %llx, got %llx)\n", 690 sp->role.passthrough ? "passthrough" : "direct", 691 sp->gfn, kvm_mmu_page_get_gfn(sp, index), gfn); 692 } 693 694 static void kvm_mmu_page_set_access(struct kvm_mmu_page *sp, int index, 695 unsigned int access) 696 { 697 gfn_t gfn = kvm_mmu_page_get_gfn(sp, index); 698 699 kvm_mmu_page_set_translation(sp, index, gfn, access); 700 } 701 702 /* 703 * Return the pointer to the large page information for a given gfn, 704 * handling slots that are not large page aligned. 705 */ 706 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, 707 const struct kvm_memory_slot *slot, int level) 708 { 709 unsigned long idx; 710 711 idx = gfn_to_index(gfn, slot->base_gfn, level); 712 return &slot->arch.lpage_info[level - 2][idx]; 713 } 714 715 /* 716 * The most significant bit in disallow_lpage tracks whether or not memory 717 * attributes are mixed, i.e. not identical for all gfns at the current level. 718 * The lower order bits are used to refcount other cases where a hugepage is 719 * disallowed, e.g. if KVM has shadow a page table at the gfn. 720 */ 721 #define KVM_LPAGE_MIXED_FLAG BIT(31) 722 723 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot, 724 gfn_t gfn, int count) 725 { 726 struct kvm_lpage_info *linfo; 727 int old, i; 728 729 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 730 linfo = lpage_info_slot(gfn, slot, i); 731 732 old = linfo->disallow_lpage; 733 linfo->disallow_lpage += count; 734 WARN_ON_ONCE((old ^ linfo->disallow_lpage) & KVM_LPAGE_MIXED_FLAG); 735 } 736 } 737 738 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 739 { 740 update_gfn_disallow_lpage_count(slot, gfn, 1); 741 } 742 743 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn) 744 { 745 update_gfn_disallow_lpage_count(slot, gfn, -1); 746 } 747 748 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 749 { 750 struct kvm_memslots *slots; 751 struct kvm_memory_slot *slot; 752 gfn_t gfn; 753 754 kvm->arch.indirect_shadow_pages++; 755 /* 756 * Ensure indirect_shadow_pages is elevated prior to re-reading guest 757 * child PTEs in FNAME(gpte_changed), i.e. guarantee either in-flight 758 * emulated writes are visible before re-reading guest PTEs, or that 759 * an emulated write will see the elevated count and acquire mmu_lock 760 * to update SPTEs. Pairs with the smp_mb() in kvm_mmu_track_write(). 761 */ 762 smp_mb(); 763 764 gfn = sp->gfn; 765 slots = kvm_memslots_for_spte_role(kvm, sp->role); 766 slot = __gfn_to_memslot(slots, gfn); 767 768 /* the non-leaf shadow pages are keeping readonly. */ 769 if (sp->role.level > PG_LEVEL_4K) 770 return __kvm_write_track_add_gfn(kvm, slot, gfn); 771 772 kvm_mmu_gfn_disallow_lpage(slot, gfn); 773 774 if (kvm_mmu_slot_gfn_write_protect(kvm, slot, gfn, PG_LEVEL_4K)) 775 kvm_flush_remote_tlbs_gfn(kvm, gfn, PG_LEVEL_4K); 776 } 777 778 void track_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 779 { 780 /* 781 * If it's possible to replace the shadow page with an NX huge page, 782 * i.e. if the shadow page is the only thing currently preventing KVM 783 * from using a huge page, add the shadow page to the list of "to be 784 * zapped for NX recovery" pages. Note, the shadow page can already be 785 * on the list if KVM is reusing an existing shadow page, i.e. if KVM 786 * links a shadow page at multiple points. 787 */ 788 if (!list_empty(&sp->possible_nx_huge_page_link)) 789 return; 790 791 ++kvm->stat.nx_lpage_splits; 792 list_add_tail(&sp->possible_nx_huge_page_link, 793 &kvm->arch.possible_nx_huge_pages); 794 } 795 796 static void account_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp, 797 bool nx_huge_page_possible) 798 { 799 sp->nx_huge_page_disallowed = true; 800 801 if (nx_huge_page_possible) 802 track_possible_nx_huge_page(kvm, sp); 803 } 804 805 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 806 { 807 struct kvm_memslots *slots; 808 struct kvm_memory_slot *slot; 809 gfn_t gfn; 810 811 kvm->arch.indirect_shadow_pages--; 812 gfn = sp->gfn; 813 slots = kvm_memslots_for_spte_role(kvm, sp->role); 814 slot = __gfn_to_memslot(slots, gfn); 815 if (sp->role.level > PG_LEVEL_4K) 816 return __kvm_write_track_remove_gfn(kvm, slot, gfn); 817 818 kvm_mmu_gfn_allow_lpage(slot, gfn); 819 } 820 821 void untrack_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 822 { 823 if (list_empty(&sp->possible_nx_huge_page_link)) 824 return; 825 826 --kvm->stat.nx_lpage_splits; 827 list_del_init(&sp->possible_nx_huge_page_link); 828 } 829 830 static void unaccount_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp) 831 { 832 sp->nx_huge_page_disallowed = false; 833 834 untrack_possible_nx_huge_page(kvm, sp); 835 } 836 837 static struct kvm_memory_slot *gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, 838 gfn_t gfn, 839 bool no_dirty_log) 840 { 841 struct kvm_memory_slot *slot; 842 843 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 844 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 845 return NULL; 846 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot)) 847 return NULL; 848 849 return slot; 850 } 851 852 /* 853 * About rmap_head encoding: 854 * 855 * If the bit zero of rmap_head->val is clear, then it points to the only spte 856 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct 857 * pte_list_desc containing more mappings. 858 */ 859 #define KVM_RMAP_MANY BIT(0) 860 861 /* 862 * Returns the number of pointers in the rmap chain, not counting the new one. 863 */ 864 static int pte_list_add(struct kvm_mmu_memory_cache *cache, u64 *spte, 865 struct kvm_rmap_head *rmap_head) 866 { 867 struct pte_list_desc *desc; 868 int count = 0; 869 870 if (!rmap_head->val) { 871 rmap_head->val = (unsigned long)spte; 872 } else if (!(rmap_head->val & KVM_RMAP_MANY)) { 873 desc = kvm_mmu_memory_cache_alloc(cache); 874 desc->sptes[0] = (u64 *)rmap_head->val; 875 desc->sptes[1] = spte; 876 desc->spte_count = 2; 877 desc->tail_count = 0; 878 rmap_head->val = (unsigned long)desc | KVM_RMAP_MANY; 879 ++count; 880 } else { 881 desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); 882 count = desc->tail_count + desc->spte_count; 883 884 /* 885 * If the previous head is full, allocate a new head descriptor 886 * as tail descriptors are always kept full. 887 */ 888 if (desc->spte_count == PTE_LIST_EXT) { 889 desc = kvm_mmu_memory_cache_alloc(cache); 890 desc->more = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); 891 desc->spte_count = 0; 892 desc->tail_count = count; 893 rmap_head->val = (unsigned long)desc | KVM_RMAP_MANY; 894 } 895 desc->sptes[desc->spte_count++] = spte; 896 } 897 return count; 898 } 899 900 static void pte_list_desc_remove_entry(struct kvm *kvm, 901 struct kvm_rmap_head *rmap_head, 902 struct pte_list_desc *desc, int i) 903 { 904 struct pte_list_desc *head_desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); 905 int j = head_desc->spte_count - 1; 906 907 /* 908 * The head descriptor should never be empty. A new head is added only 909 * when adding an entry and the previous head is full, and heads are 910 * removed (this flow) when they become empty. 911 */ 912 KVM_BUG_ON_DATA_CORRUPTION(j < 0, kvm); 913 914 /* 915 * Replace the to-be-freed SPTE with the last valid entry from the head 916 * descriptor to ensure that tail descriptors are full at all times. 917 * Note, this also means that tail_count is stable for each descriptor. 918 */ 919 desc->sptes[i] = head_desc->sptes[j]; 920 head_desc->sptes[j] = NULL; 921 head_desc->spte_count--; 922 if (head_desc->spte_count) 923 return; 924 925 /* 926 * The head descriptor is empty. If there are no tail descriptors, 927 * nullify the rmap head to mark the list as empty, else point the rmap 928 * head at the next descriptor, i.e. the new head. 929 */ 930 if (!head_desc->more) 931 rmap_head->val = 0; 932 else 933 rmap_head->val = (unsigned long)head_desc->more | KVM_RMAP_MANY; 934 mmu_free_pte_list_desc(head_desc); 935 } 936 937 static void pte_list_remove(struct kvm *kvm, u64 *spte, 938 struct kvm_rmap_head *rmap_head) 939 { 940 struct pte_list_desc *desc; 941 int i; 942 943 if (KVM_BUG_ON_DATA_CORRUPTION(!rmap_head->val, kvm)) 944 return; 945 946 if (!(rmap_head->val & KVM_RMAP_MANY)) { 947 if (KVM_BUG_ON_DATA_CORRUPTION((u64 *)rmap_head->val != spte, kvm)) 948 return; 949 950 rmap_head->val = 0; 951 } else { 952 desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); 953 while (desc) { 954 for (i = 0; i < desc->spte_count; ++i) { 955 if (desc->sptes[i] == spte) { 956 pte_list_desc_remove_entry(kvm, rmap_head, 957 desc, i); 958 return; 959 } 960 } 961 desc = desc->more; 962 } 963 964 KVM_BUG_ON_DATA_CORRUPTION(true, kvm); 965 } 966 } 967 968 static void kvm_zap_one_rmap_spte(struct kvm *kvm, 969 struct kvm_rmap_head *rmap_head, u64 *sptep) 970 { 971 mmu_spte_clear_track_bits(kvm, sptep); 972 pte_list_remove(kvm, sptep, rmap_head); 973 } 974 975 /* Return true if at least one SPTE was zapped, false otherwise */ 976 static bool kvm_zap_all_rmap_sptes(struct kvm *kvm, 977 struct kvm_rmap_head *rmap_head) 978 { 979 struct pte_list_desc *desc, *next; 980 int i; 981 982 if (!rmap_head->val) 983 return false; 984 985 if (!(rmap_head->val & KVM_RMAP_MANY)) { 986 mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val); 987 goto out; 988 } 989 990 desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); 991 992 for (; desc; desc = next) { 993 for (i = 0; i < desc->spte_count; i++) 994 mmu_spte_clear_track_bits(kvm, desc->sptes[i]); 995 next = desc->more; 996 mmu_free_pte_list_desc(desc); 997 } 998 out: 999 /* rmap_head is meaningless now, remember to reset it */ 1000 rmap_head->val = 0; 1001 return true; 1002 } 1003 1004 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head) 1005 { 1006 struct pte_list_desc *desc; 1007 1008 if (!rmap_head->val) 1009 return 0; 1010 else if (!(rmap_head->val & KVM_RMAP_MANY)) 1011 return 1; 1012 1013 desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); 1014 return desc->tail_count + desc->spte_count; 1015 } 1016 1017 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level, 1018 const struct kvm_memory_slot *slot) 1019 { 1020 unsigned long idx; 1021 1022 idx = gfn_to_index(gfn, slot->base_gfn, level); 1023 return &slot->arch.rmap[level - PG_LEVEL_4K][idx]; 1024 } 1025 1026 static void rmap_remove(struct kvm *kvm, u64 *spte) 1027 { 1028 struct kvm_memslots *slots; 1029 struct kvm_memory_slot *slot; 1030 struct kvm_mmu_page *sp; 1031 gfn_t gfn; 1032 struct kvm_rmap_head *rmap_head; 1033 1034 sp = sptep_to_sp(spte); 1035 gfn = kvm_mmu_page_get_gfn(sp, spte_index(spte)); 1036 1037 /* 1038 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU 1039 * so we have to determine which memslots to use based on context 1040 * information in sp->role. 1041 */ 1042 slots = kvm_memslots_for_spte_role(kvm, sp->role); 1043 1044 slot = __gfn_to_memslot(slots, gfn); 1045 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1046 1047 pte_list_remove(kvm, spte, rmap_head); 1048 } 1049 1050 /* 1051 * Used by the following functions to iterate through the sptes linked by a 1052 * rmap. All fields are private and not assumed to be used outside. 1053 */ 1054 struct rmap_iterator { 1055 /* private fields */ 1056 struct pte_list_desc *desc; /* holds the sptep if not NULL */ 1057 int pos; /* index of the sptep */ 1058 }; 1059 1060 /* 1061 * Iteration must be started by this function. This should also be used after 1062 * removing/dropping sptes from the rmap link because in such cases the 1063 * information in the iterator may not be valid. 1064 * 1065 * Returns sptep if found, NULL otherwise. 1066 */ 1067 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head, 1068 struct rmap_iterator *iter) 1069 { 1070 u64 *sptep; 1071 1072 if (!rmap_head->val) 1073 return NULL; 1074 1075 if (!(rmap_head->val & KVM_RMAP_MANY)) { 1076 iter->desc = NULL; 1077 sptep = (u64 *)rmap_head->val; 1078 goto out; 1079 } 1080 1081 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY); 1082 iter->pos = 0; 1083 sptep = iter->desc->sptes[iter->pos]; 1084 out: 1085 BUG_ON(!is_shadow_present_pte(*sptep)); 1086 return sptep; 1087 } 1088 1089 /* 1090 * Must be used with a valid iterator: e.g. after rmap_get_first(). 1091 * 1092 * Returns sptep if found, NULL otherwise. 1093 */ 1094 static u64 *rmap_get_next(struct rmap_iterator *iter) 1095 { 1096 u64 *sptep; 1097 1098 if (iter->desc) { 1099 if (iter->pos < PTE_LIST_EXT - 1) { 1100 ++iter->pos; 1101 sptep = iter->desc->sptes[iter->pos]; 1102 if (sptep) 1103 goto out; 1104 } 1105 1106 iter->desc = iter->desc->more; 1107 1108 if (iter->desc) { 1109 iter->pos = 0; 1110 /* desc->sptes[0] cannot be NULL */ 1111 sptep = iter->desc->sptes[iter->pos]; 1112 goto out; 1113 } 1114 } 1115 1116 return NULL; 1117 out: 1118 BUG_ON(!is_shadow_present_pte(*sptep)); 1119 return sptep; 1120 } 1121 1122 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \ 1123 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \ 1124 _spte_; _spte_ = rmap_get_next(_iter_)) 1125 1126 static void drop_spte(struct kvm *kvm, u64 *sptep) 1127 { 1128 u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep); 1129 1130 if (is_shadow_present_pte(old_spte)) 1131 rmap_remove(kvm, sptep); 1132 } 1133 1134 static void drop_large_spte(struct kvm *kvm, u64 *sptep, bool flush) 1135 { 1136 struct kvm_mmu_page *sp; 1137 1138 sp = sptep_to_sp(sptep); 1139 WARN_ON_ONCE(sp->role.level == PG_LEVEL_4K); 1140 1141 drop_spte(kvm, sptep); 1142 1143 if (flush) 1144 kvm_flush_remote_tlbs_sptep(kvm, sptep); 1145 } 1146 1147 /* 1148 * Write-protect on the specified @sptep, @pt_protect indicates whether 1149 * spte write-protection is caused by protecting shadow page table. 1150 * 1151 * Note: write protection is difference between dirty logging and spte 1152 * protection: 1153 * - for dirty logging, the spte can be set to writable at anytime if 1154 * its dirty bitmap is properly set. 1155 * - for spte protection, the spte can be writable only after unsync-ing 1156 * shadow page. 1157 * 1158 * Return true if tlb need be flushed. 1159 */ 1160 static bool spte_write_protect(u64 *sptep, bool pt_protect) 1161 { 1162 u64 spte = *sptep; 1163 1164 if (!is_writable_pte(spte) && 1165 !(pt_protect && is_mmu_writable_spte(spte))) 1166 return false; 1167 1168 if (pt_protect) 1169 spte &= ~shadow_mmu_writable_mask; 1170 spte = spte & ~PT_WRITABLE_MASK; 1171 1172 return mmu_spte_update(sptep, spte); 1173 } 1174 1175 static bool rmap_write_protect(struct kvm_rmap_head *rmap_head, 1176 bool pt_protect) 1177 { 1178 u64 *sptep; 1179 struct rmap_iterator iter; 1180 bool flush = false; 1181 1182 for_each_rmap_spte(rmap_head, &iter, sptep) 1183 flush |= spte_write_protect(sptep, pt_protect); 1184 1185 return flush; 1186 } 1187 1188 static bool spte_clear_dirty(u64 *sptep) 1189 { 1190 u64 spte = *sptep; 1191 1192 KVM_MMU_WARN_ON(!spte_ad_enabled(spte)); 1193 spte &= ~shadow_dirty_mask; 1194 return mmu_spte_update(sptep, spte); 1195 } 1196 1197 /* 1198 * Gets the GFN ready for another round of dirty logging by clearing the 1199 * - D bit on ad-enabled SPTEs, and 1200 * - W bit on ad-disabled SPTEs. 1201 * Returns true iff any D or W bits were cleared. 1202 */ 1203 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1204 const struct kvm_memory_slot *slot) 1205 { 1206 u64 *sptep; 1207 struct rmap_iterator iter; 1208 bool flush = false; 1209 1210 for_each_rmap_spte(rmap_head, &iter, sptep) 1211 if (spte_ad_need_write_protect(*sptep)) 1212 flush |= test_and_clear_bit(PT_WRITABLE_SHIFT, 1213 (unsigned long *)sptep); 1214 else 1215 flush |= spte_clear_dirty(sptep); 1216 1217 return flush; 1218 } 1219 1220 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 1221 struct kvm_memory_slot *slot, 1222 gfn_t gfn_offset, unsigned long mask) 1223 { 1224 struct kvm_rmap_head *rmap_head; 1225 1226 if (tdp_mmu_enabled) 1227 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1228 slot->base_gfn + gfn_offset, mask, true); 1229 1230 if (!kvm_memslots_have_rmaps(kvm)) 1231 return; 1232 1233 while (mask) { 1234 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1235 PG_LEVEL_4K, slot); 1236 rmap_write_protect(rmap_head, false); 1237 1238 /* clear the first set bit */ 1239 mask &= mask - 1; 1240 } 1241 } 1242 1243 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1244 struct kvm_memory_slot *slot, 1245 gfn_t gfn_offset, unsigned long mask) 1246 { 1247 struct kvm_rmap_head *rmap_head; 1248 1249 if (tdp_mmu_enabled) 1250 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1251 slot->base_gfn + gfn_offset, mask, false); 1252 1253 if (!kvm_memslots_have_rmaps(kvm)) 1254 return; 1255 1256 while (mask) { 1257 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1258 PG_LEVEL_4K, slot); 1259 __rmap_clear_dirty(kvm, rmap_head, slot); 1260 1261 /* clear the first set bit */ 1262 mask &= mask - 1; 1263 } 1264 } 1265 1266 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1267 struct kvm_memory_slot *slot, 1268 gfn_t gfn_offset, unsigned long mask) 1269 { 1270 /* 1271 * If the slot was assumed to be "initially all dirty", write-protect 1272 * huge pages to ensure they are split to 4KiB on the first write (KVM 1273 * dirty logs at 4KiB granularity). If eager page splitting is enabled, 1274 * immediately try to split huge pages, e.g. so that vCPUs don't get 1275 * saddled with the cost of splitting. 1276 * 1277 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn 1278 * of memslot has no such restriction, so the range can cross two large 1279 * pages. 1280 */ 1281 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) { 1282 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask); 1283 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask); 1284 1285 if (READ_ONCE(eager_page_split)) 1286 kvm_mmu_try_split_huge_pages(kvm, slot, start, end + 1, PG_LEVEL_4K); 1287 1288 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M); 1289 1290 /* Cross two large pages? */ 1291 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) != 1292 ALIGN(end << PAGE_SHIFT, PMD_SIZE)) 1293 kvm_mmu_slot_gfn_write_protect(kvm, slot, end, 1294 PG_LEVEL_2M); 1295 } 1296 1297 /* 1298 * (Re)Enable dirty logging for all 4KiB SPTEs that map the GFNs in 1299 * mask. If PML is enabled and the GFN doesn't need to be write- 1300 * protected for other reasons, e.g. shadow paging, clear the Dirty bit. 1301 * Otherwise clear the Writable bit. 1302 * 1303 * Note that kvm_mmu_clear_dirty_pt_masked() is called whenever PML is 1304 * enabled but it chooses between clearing the Dirty bit and Writeable 1305 * bit based on the context. 1306 */ 1307 if (kvm_x86_ops.cpu_dirty_log_size) 1308 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask); 1309 else 1310 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 1311 } 1312 1313 int kvm_cpu_dirty_log_size(void) 1314 { 1315 return kvm_x86_ops.cpu_dirty_log_size; 1316 } 1317 1318 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, 1319 struct kvm_memory_slot *slot, u64 gfn, 1320 int min_level) 1321 { 1322 struct kvm_rmap_head *rmap_head; 1323 int i; 1324 bool write_protected = false; 1325 1326 if (kvm_memslots_have_rmaps(kvm)) { 1327 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 1328 rmap_head = gfn_to_rmap(gfn, i, slot); 1329 write_protected |= rmap_write_protect(rmap_head, true); 1330 } 1331 } 1332 1333 if (tdp_mmu_enabled) 1334 write_protected |= 1335 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level); 1336 1337 return write_protected; 1338 } 1339 1340 static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn) 1341 { 1342 struct kvm_memory_slot *slot; 1343 1344 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1345 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K); 1346 } 1347 1348 static bool kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1349 const struct kvm_memory_slot *slot) 1350 { 1351 return kvm_zap_all_rmap_sptes(kvm, rmap_head); 1352 } 1353 1354 struct slot_rmap_walk_iterator { 1355 /* input fields. */ 1356 const struct kvm_memory_slot *slot; 1357 gfn_t start_gfn; 1358 gfn_t end_gfn; 1359 int start_level; 1360 int end_level; 1361 1362 /* output fields. */ 1363 gfn_t gfn; 1364 struct kvm_rmap_head *rmap; 1365 int level; 1366 1367 /* private field. */ 1368 struct kvm_rmap_head *end_rmap; 1369 }; 1370 1371 static void rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, 1372 int level) 1373 { 1374 iterator->level = level; 1375 iterator->gfn = iterator->start_gfn; 1376 iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot); 1377 iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot); 1378 } 1379 1380 static void slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator, 1381 const struct kvm_memory_slot *slot, 1382 int start_level, int end_level, 1383 gfn_t start_gfn, gfn_t end_gfn) 1384 { 1385 iterator->slot = slot; 1386 iterator->start_level = start_level; 1387 iterator->end_level = end_level; 1388 iterator->start_gfn = start_gfn; 1389 iterator->end_gfn = end_gfn; 1390 1391 rmap_walk_init_level(iterator, iterator->start_level); 1392 } 1393 1394 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator) 1395 { 1396 return !!iterator->rmap; 1397 } 1398 1399 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) 1400 { 1401 while (++iterator->rmap <= iterator->end_rmap) { 1402 iterator->gfn += KVM_PAGES_PER_HPAGE(iterator->level); 1403 1404 if (iterator->rmap->val) 1405 return; 1406 } 1407 1408 if (++iterator->level > iterator->end_level) { 1409 iterator->rmap = NULL; 1410 return; 1411 } 1412 1413 rmap_walk_init_level(iterator, iterator->level); 1414 } 1415 1416 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \ 1417 _start_gfn, _end_gfn, _iter_) \ 1418 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \ 1419 _end_level_, _start_gfn, _end_gfn); \ 1420 slot_rmap_walk_okay(_iter_); \ 1421 slot_rmap_walk_next(_iter_)) 1422 1423 /* The return value indicates if tlb flush on all vcpus is needed. */ 1424 typedef bool (*slot_rmaps_handler) (struct kvm *kvm, 1425 struct kvm_rmap_head *rmap_head, 1426 const struct kvm_memory_slot *slot); 1427 1428 static __always_inline bool __walk_slot_rmaps(struct kvm *kvm, 1429 const struct kvm_memory_slot *slot, 1430 slot_rmaps_handler fn, 1431 int start_level, int end_level, 1432 gfn_t start_gfn, gfn_t end_gfn, 1433 bool can_yield, bool flush_on_yield, 1434 bool flush) 1435 { 1436 struct slot_rmap_walk_iterator iterator; 1437 1438 lockdep_assert_held_write(&kvm->mmu_lock); 1439 1440 for_each_slot_rmap_range(slot, start_level, end_level, start_gfn, 1441 end_gfn, &iterator) { 1442 if (iterator.rmap) 1443 flush |= fn(kvm, iterator.rmap, slot); 1444 1445 if (!can_yield) 1446 continue; 1447 1448 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 1449 if (flush && flush_on_yield) { 1450 kvm_flush_remote_tlbs_range(kvm, start_gfn, 1451 iterator.gfn - start_gfn + 1); 1452 flush = false; 1453 } 1454 cond_resched_rwlock_write(&kvm->mmu_lock); 1455 } 1456 } 1457 1458 return flush; 1459 } 1460 1461 static __always_inline bool walk_slot_rmaps(struct kvm *kvm, 1462 const struct kvm_memory_slot *slot, 1463 slot_rmaps_handler fn, 1464 int start_level, int end_level, 1465 bool flush_on_yield) 1466 { 1467 return __walk_slot_rmaps(kvm, slot, fn, start_level, end_level, 1468 slot->base_gfn, slot->base_gfn + slot->npages - 1, 1469 true, flush_on_yield, false); 1470 } 1471 1472 static __always_inline bool walk_slot_rmaps_4k(struct kvm *kvm, 1473 const struct kvm_memory_slot *slot, 1474 slot_rmaps_handler fn, 1475 bool flush_on_yield) 1476 { 1477 return walk_slot_rmaps(kvm, slot, fn, PG_LEVEL_4K, PG_LEVEL_4K, flush_on_yield); 1478 } 1479 1480 static bool __kvm_rmap_zap_gfn_range(struct kvm *kvm, 1481 const struct kvm_memory_slot *slot, 1482 gfn_t start, gfn_t end, bool can_yield, 1483 bool flush) 1484 { 1485 return __walk_slot_rmaps(kvm, slot, kvm_zap_rmap, 1486 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 1487 start, end - 1, can_yield, true, flush); 1488 } 1489 1490 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1491 { 1492 bool flush = false; 1493 1494 /* 1495 * To prevent races with vCPUs faulting in a gfn using stale data, 1496 * zapping a gfn range must be protected by mmu_invalidate_in_progress 1497 * (and mmu_invalidate_seq). The only exception is memslot deletion; 1498 * in that case, SRCU synchronization ensures that SPTEs are zapped 1499 * after all vCPUs have unlocked SRCU, guaranteeing that vCPUs see the 1500 * invalid slot. 1501 */ 1502 lockdep_assert_once(kvm->mmu_invalidate_in_progress || 1503 lockdep_is_held(&kvm->slots_lock)); 1504 1505 if (kvm_memslots_have_rmaps(kvm)) 1506 flush = __kvm_rmap_zap_gfn_range(kvm, range->slot, 1507 range->start, range->end, 1508 range->may_block, flush); 1509 1510 if (tdp_mmu_enabled) 1511 flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush); 1512 1513 if (kvm_x86_ops.set_apic_access_page_addr && 1514 range->slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT) 1515 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 1516 1517 return flush; 1518 } 1519 1520 #define RMAP_RECYCLE_THRESHOLD 1000 1521 1522 static void __rmap_add(struct kvm *kvm, 1523 struct kvm_mmu_memory_cache *cache, 1524 const struct kvm_memory_slot *slot, 1525 u64 *spte, gfn_t gfn, unsigned int access) 1526 { 1527 struct kvm_mmu_page *sp; 1528 struct kvm_rmap_head *rmap_head; 1529 int rmap_count; 1530 1531 sp = sptep_to_sp(spte); 1532 kvm_mmu_page_set_translation(sp, spte_index(spte), gfn, access); 1533 kvm_update_page_stats(kvm, sp->role.level, 1); 1534 1535 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); 1536 rmap_count = pte_list_add(cache, spte, rmap_head); 1537 1538 if (rmap_count > kvm->stat.max_mmu_rmap_size) 1539 kvm->stat.max_mmu_rmap_size = rmap_count; 1540 if (rmap_count > RMAP_RECYCLE_THRESHOLD) { 1541 kvm_zap_all_rmap_sptes(kvm, rmap_head); 1542 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level); 1543 } 1544 } 1545 1546 static void rmap_add(struct kvm_vcpu *vcpu, const struct kvm_memory_slot *slot, 1547 u64 *spte, gfn_t gfn, unsigned int access) 1548 { 1549 struct kvm_mmu_memory_cache *cache = &vcpu->arch.mmu_pte_list_desc_cache; 1550 1551 __rmap_add(vcpu->kvm, cache, slot, spte, gfn, access); 1552 } 1553 1554 static bool kvm_rmap_age_gfn_range(struct kvm *kvm, 1555 struct kvm_gfn_range *range, bool test_only) 1556 { 1557 struct slot_rmap_walk_iterator iterator; 1558 struct rmap_iterator iter; 1559 bool young = false; 1560 u64 *sptep; 1561 1562 for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 1563 range->start, range->end - 1, &iterator) { 1564 for_each_rmap_spte(iterator.rmap, &iter, sptep) { 1565 u64 spte = *sptep; 1566 1567 if (!is_accessed_spte(spte)) 1568 continue; 1569 1570 if (test_only) 1571 return true; 1572 1573 if (spte_ad_enabled(spte)) { 1574 clear_bit((ffs(shadow_accessed_mask) - 1), 1575 (unsigned long *)sptep); 1576 } else { 1577 /* 1578 * WARN if mmu_spte_update() signals the need 1579 * for a TLB flush, as Access tracking a SPTE 1580 * should never trigger an _immediate_ flush. 1581 */ 1582 spte = mark_spte_for_access_track(spte); 1583 WARN_ON_ONCE(mmu_spte_update(sptep, spte)); 1584 } 1585 young = true; 1586 } 1587 } 1588 return young; 1589 } 1590 1591 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1592 { 1593 bool young = false; 1594 1595 if (kvm_memslots_have_rmaps(kvm)) 1596 young = kvm_rmap_age_gfn_range(kvm, range, false); 1597 1598 if (tdp_mmu_enabled) 1599 young |= kvm_tdp_mmu_age_gfn_range(kvm, range); 1600 1601 return young; 1602 } 1603 1604 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1605 { 1606 bool young = false; 1607 1608 if (kvm_memslots_have_rmaps(kvm)) 1609 young = kvm_rmap_age_gfn_range(kvm, range, true); 1610 1611 if (tdp_mmu_enabled) 1612 young |= kvm_tdp_mmu_test_age_gfn(kvm, range); 1613 1614 return young; 1615 } 1616 1617 static void kvm_mmu_check_sptes_at_free(struct kvm_mmu_page *sp) 1618 { 1619 #ifdef CONFIG_KVM_PROVE_MMU 1620 int i; 1621 1622 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) { 1623 if (KVM_MMU_WARN_ON(is_shadow_present_pte(sp->spt[i]))) 1624 pr_err_ratelimited("SPTE %llx (@ %p) for gfn %llx shadow-present at free", 1625 sp->spt[i], &sp->spt[i], 1626 kvm_mmu_page_get_gfn(sp, i)); 1627 } 1628 #endif 1629 } 1630 1631 static void kvm_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1632 { 1633 kvm->arch.n_used_mmu_pages++; 1634 kvm_account_pgtable_pages((void *)sp->spt, +1); 1635 } 1636 1637 static void kvm_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1638 { 1639 kvm->arch.n_used_mmu_pages--; 1640 kvm_account_pgtable_pages((void *)sp->spt, -1); 1641 } 1642 1643 static void kvm_mmu_free_shadow_page(struct kvm_mmu_page *sp) 1644 { 1645 kvm_mmu_check_sptes_at_free(sp); 1646 1647 hlist_del(&sp->hash_link); 1648 list_del(&sp->link); 1649 free_page((unsigned long)sp->spt); 1650 free_page((unsigned long)sp->shadowed_translation); 1651 kmem_cache_free(mmu_page_header_cache, sp); 1652 } 1653 1654 static unsigned kvm_page_table_hashfn(gfn_t gfn) 1655 { 1656 return hash_64(gfn, KVM_MMU_HASH_SHIFT); 1657 } 1658 1659 static void mmu_page_add_parent_pte(struct kvm_mmu_memory_cache *cache, 1660 struct kvm_mmu_page *sp, u64 *parent_pte) 1661 { 1662 if (!parent_pte) 1663 return; 1664 1665 pte_list_add(cache, parent_pte, &sp->parent_ptes); 1666 } 1667 1668 static void mmu_page_remove_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 1669 u64 *parent_pte) 1670 { 1671 pte_list_remove(kvm, parent_pte, &sp->parent_ptes); 1672 } 1673 1674 static void drop_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 1675 u64 *parent_pte) 1676 { 1677 mmu_page_remove_parent_pte(kvm, sp, parent_pte); 1678 mmu_spte_clear_no_track(parent_pte); 1679 } 1680 1681 static void mark_unsync(u64 *spte); 1682 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) 1683 { 1684 u64 *sptep; 1685 struct rmap_iterator iter; 1686 1687 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) { 1688 mark_unsync(sptep); 1689 } 1690 } 1691 1692 static void mark_unsync(u64 *spte) 1693 { 1694 struct kvm_mmu_page *sp; 1695 1696 sp = sptep_to_sp(spte); 1697 if (__test_and_set_bit(spte_index(spte), sp->unsync_child_bitmap)) 1698 return; 1699 if (sp->unsync_children++) 1700 return; 1701 kvm_mmu_mark_parents_unsync(sp); 1702 } 1703 1704 #define KVM_PAGE_ARRAY_NR 16 1705 1706 struct kvm_mmu_pages { 1707 struct mmu_page_and_offset { 1708 struct kvm_mmu_page *sp; 1709 unsigned int idx; 1710 } page[KVM_PAGE_ARRAY_NR]; 1711 unsigned int nr; 1712 }; 1713 1714 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, 1715 int idx) 1716 { 1717 int i; 1718 1719 if (sp->unsync) 1720 for (i=0; i < pvec->nr; i++) 1721 if (pvec->page[i].sp == sp) 1722 return 0; 1723 1724 pvec->page[pvec->nr].sp = sp; 1725 pvec->page[pvec->nr].idx = idx; 1726 pvec->nr++; 1727 return (pvec->nr == KVM_PAGE_ARRAY_NR); 1728 } 1729 1730 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx) 1731 { 1732 --sp->unsync_children; 1733 WARN_ON_ONCE((int)sp->unsync_children < 0); 1734 __clear_bit(idx, sp->unsync_child_bitmap); 1735 } 1736 1737 static int __mmu_unsync_walk(struct kvm_mmu_page *sp, 1738 struct kvm_mmu_pages *pvec) 1739 { 1740 int i, ret, nr_unsync_leaf = 0; 1741 1742 for_each_set_bit(i, sp->unsync_child_bitmap, 512) { 1743 struct kvm_mmu_page *child; 1744 u64 ent = sp->spt[i]; 1745 1746 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) { 1747 clear_unsync_child_bit(sp, i); 1748 continue; 1749 } 1750 1751 child = spte_to_child_sp(ent); 1752 1753 if (child->unsync_children) { 1754 if (mmu_pages_add(pvec, child, i)) 1755 return -ENOSPC; 1756 1757 ret = __mmu_unsync_walk(child, pvec); 1758 if (!ret) { 1759 clear_unsync_child_bit(sp, i); 1760 continue; 1761 } else if (ret > 0) { 1762 nr_unsync_leaf += ret; 1763 } else 1764 return ret; 1765 } else if (child->unsync) { 1766 nr_unsync_leaf++; 1767 if (mmu_pages_add(pvec, child, i)) 1768 return -ENOSPC; 1769 } else 1770 clear_unsync_child_bit(sp, i); 1771 } 1772 1773 return nr_unsync_leaf; 1774 } 1775 1776 #define INVALID_INDEX (-1) 1777 1778 static int mmu_unsync_walk(struct kvm_mmu_page *sp, 1779 struct kvm_mmu_pages *pvec) 1780 { 1781 pvec->nr = 0; 1782 if (!sp->unsync_children) 1783 return 0; 1784 1785 mmu_pages_add(pvec, sp, INVALID_INDEX); 1786 return __mmu_unsync_walk(sp, pvec); 1787 } 1788 1789 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1790 { 1791 WARN_ON_ONCE(!sp->unsync); 1792 trace_kvm_mmu_sync_page(sp); 1793 sp->unsync = 0; 1794 --kvm->stat.mmu_unsync; 1795 } 1796 1797 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 1798 struct list_head *invalid_list); 1799 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 1800 struct list_head *invalid_list); 1801 1802 static bool sp_has_gptes(struct kvm_mmu_page *sp) 1803 { 1804 if (sp->role.direct) 1805 return false; 1806 1807 if (sp->role.passthrough) 1808 return false; 1809 1810 return true; 1811 } 1812 1813 #define for_each_valid_sp(_kvm, _sp, _list) \ 1814 hlist_for_each_entry(_sp, _list, hash_link) \ 1815 if (is_obsolete_sp((_kvm), (_sp))) { \ 1816 } else 1817 1818 #define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn) \ 1819 for_each_valid_sp(_kvm, _sp, \ 1820 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \ 1821 if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else 1822 1823 static bool kvm_sync_page_check(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 1824 { 1825 union kvm_mmu_page_role root_role = vcpu->arch.mmu->root_role; 1826 1827 /* 1828 * Ignore various flags when verifying that it's safe to sync a shadow 1829 * page using the current MMU context. 1830 * 1831 * - level: not part of the overall MMU role and will never match as the MMU's 1832 * level tracks the root level 1833 * - access: updated based on the new guest PTE 1834 * - quadrant: not part of the overall MMU role (similar to level) 1835 */ 1836 const union kvm_mmu_page_role sync_role_ign = { 1837 .level = 0xf, 1838 .access = 0x7, 1839 .quadrant = 0x3, 1840 .passthrough = 0x1, 1841 }; 1842 1843 /* 1844 * Direct pages can never be unsync, and KVM should never attempt to 1845 * sync a shadow page for a different MMU context, e.g. if the role 1846 * differs then the memslot lookup (SMM vs. non-SMM) will be bogus, the 1847 * reserved bits checks will be wrong, etc... 1848 */ 1849 if (WARN_ON_ONCE(sp->role.direct || !vcpu->arch.mmu->sync_spte || 1850 (sp->role.word ^ root_role.word) & ~sync_role_ign.word)) 1851 return false; 1852 1853 return true; 1854 } 1855 1856 static int kvm_sync_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, int i) 1857 { 1858 /* sp->spt[i] has initial value of shadow page table allocation */ 1859 if (sp->spt[i] == SHADOW_NONPRESENT_VALUE) 1860 return 0; 1861 1862 return vcpu->arch.mmu->sync_spte(vcpu, sp, i); 1863 } 1864 1865 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 1866 { 1867 int flush = 0; 1868 int i; 1869 1870 if (!kvm_sync_page_check(vcpu, sp)) 1871 return -1; 1872 1873 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) { 1874 int ret = kvm_sync_spte(vcpu, sp, i); 1875 1876 if (ret < -1) 1877 return -1; 1878 flush |= ret; 1879 } 1880 1881 /* 1882 * Note, any flush is purely for KVM's correctness, e.g. when dropping 1883 * an existing SPTE or clearing W/A/D bits to ensure an mmu_notifier 1884 * unmap or dirty logging event doesn't fail to flush. The guest is 1885 * responsible for flushing the TLB to ensure any changes in protection 1886 * bits are recognized, i.e. until the guest flushes or page faults on 1887 * a relevant address, KVM is architecturally allowed to let vCPUs use 1888 * cached translations with the old protection bits. 1889 */ 1890 return flush; 1891 } 1892 1893 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 1894 struct list_head *invalid_list) 1895 { 1896 int ret = __kvm_sync_page(vcpu, sp); 1897 1898 if (ret < 0) 1899 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); 1900 return ret; 1901 } 1902 1903 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm, 1904 struct list_head *invalid_list, 1905 bool remote_flush) 1906 { 1907 if (!remote_flush && list_empty(invalid_list)) 1908 return false; 1909 1910 if (!list_empty(invalid_list)) 1911 kvm_mmu_commit_zap_page(kvm, invalid_list); 1912 else 1913 kvm_flush_remote_tlbs(kvm); 1914 return true; 1915 } 1916 1917 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 1918 { 1919 if (sp->role.invalid) 1920 return true; 1921 1922 /* TDP MMU pages do not use the MMU generation. */ 1923 return !is_tdp_mmu_page(sp) && 1924 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); 1925 } 1926 1927 struct mmu_page_path { 1928 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL]; 1929 unsigned int idx[PT64_ROOT_MAX_LEVEL]; 1930 }; 1931 1932 #define for_each_sp(pvec, sp, parents, i) \ 1933 for (i = mmu_pages_first(&pvec, &parents); \ 1934 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \ 1935 i = mmu_pages_next(&pvec, &parents, i)) 1936 1937 static int mmu_pages_next(struct kvm_mmu_pages *pvec, 1938 struct mmu_page_path *parents, 1939 int i) 1940 { 1941 int n; 1942 1943 for (n = i+1; n < pvec->nr; n++) { 1944 struct kvm_mmu_page *sp = pvec->page[n].sp; 1945 unsigned idx = pvec->page[n].idx; 1946 int level = sp->role.level; 1947 1948 parents->idx[level-1] = idx; 1949 if (level == PG_LEVEL_4K) 1950 break; 1951 1952 parents->parent[level-2] = sp; 1953 } 1954 1955 return n; 1956 } 1957 1958 static int mmu_pages_first(struct kvm_mmu_pages *pvec, 1959 struct mmu_page_path *parents) 1960 { 1961 struct kvm_mmu_page *sp; 1962 int level; 1963 1964 if (pvec->nr == 0) 1965 return 0; 1966 1967 WARN_ON_ONCE(pvec->page[0].idx != INVALID_INDEX); 1968 1969 sp = pvec->page[0].sp; 1970 level = sp->role.level; 1971 WARN_ON_ONCE(level == PG_LEVEL_4K); 1972 1973 parents->parent[level-2] = sp; 1974 1975 /* Also set up a sentinel. Further entries in pvec are all 1976 * children of sp, so this element is never overwritten. 1977 */ 1978 parents->parent[level-1] = NULL; 1979 return mmu_pages_next(pvec, parents, 0); 1980 } 1981 1982 static void mmu_pages_clear_parents(struct mmu_page_path *parents) 1983 { 1984 struct kvm_mmu_page *sp; 1985 unsigned int level = 0; 1986 1987 do { 1988 unsigned int idx = parents->idx[level]; 1989 sp = parents->parent[level]; 1990 if (!sp) 1991 return; 1992 1993 WARN_ON_ONCE(idx == INVALID_INDEX); 1994 clear_unsync_child_bit(sp, idx); 1995 level++; 1996 } while (!sp->unsync_children); 1997 } 1998 1999 static int mmu_sync_children(struct kvm_vcpu *vcpu, 2000 struct kvm_mmu_page *parent, bool can_yield) 2001 { 2002 int i; 2003 struct kvm_mmu_page *sp; 2004 struct mmu_page_path parents; 2005 struct kvm_mmu_pages pages; 2006 LIST_HEAD(invalid_list); 2007 bool flush = false; 2008 2009 while (mmu_unsync_walk(parent, &pages)) { 2010 bool protected = false; 2011 2012 for_each_sp(pages, sp, parents, i) 2013 protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn); 2014 2015 if (protected) { 2016 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true); 2017 flush = false; 2018 } 2019 2020 for_each_sp(pages, sp, parents, i) { 2021 kvm_unlink_unsync_page(vcpu->kvm, sp); 2022 flush |= kvm_sync_page(vcpu, sp, &invalid_list) > 0; 2023 mmu_pages_clear_parents(&parents); 2024 } 2025 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) { 2026 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2027 if (!can_yield) { 2028 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 2029 return -EINTR; 2030 } 2031 2032 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock); 2033 flush = false; 2034 } 2035 } 2036 2037 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 2038 return 0; 2039 } 2040 2041 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) 2042 { 2043 atomic_set(&sp->write_flooding_count, 0); 2044 } 2045 2046 static void clear_sp_write_flooding_count(u64 *spte) 2047 { 2048 __clear_sp_write_flooding_count(sptep_to_sp(spte)); 2049 } 2050 2051 /* 2052 * The vCPU is required when finding indirect shadow pages; the shadow 2053 * page may already exist and syncing it needs the vCPU pointer in 2054 * order to read guest page tables. Direct shadow pages are never 2055 * unsync, thus @vcpu can be NULL if @role.direct is true. 2056 */ 2057 static struct kvm_mmu_page *kvm_mmu_find_shadow_page(struct kvm *kvm, 2058 struct kvm_vcpu *vcpu, 2059 gfn_t gfn, 2060 struct hlist_head *sp_list, 2061 union kvm_mmu_page_role role) 2062 { 2063 struct kvm_mmu_page *sp; 2064 int ret; 2065 int collisions = 0; 2066 LIST_HEAD(invalid_list); 2067 2068 for_each_valid_sp(kvm, sp, sp_list) { 2069 if (sp->gfn != gfn) { 2070 collisions++; 2071 continue; 2072 } 2073 2074 if (sp->role.word != role.word) { 2075 /* 2076 * If the guest is creating an upper-level page, zap 2077 * unsync pages for the same gfn. While it's possible 2078 * the guest is using recursive page tables, in all 2079 * likelihood the guest has stopped using the unsync 2080 * page and is installing a completely unrelated page. 2081 * Unsync pages must not be left as is, because the new 2082 * upper-level page will be write-protected. 2083 */ 2084 if (role.level > PG_LEVEL_4K && sp->unsync) 2085 kvm_mmu_prepare_zap_page(kvm, sp, 2086 &invalid_list); 2087 continue; 2088 } 2089 2090 /* unsync and write-flooding only apply to indirect SPs. */ 2091 if (sp->role.direct) 2092 goto out; 2093 2094 if (sp->unsync) { 2095 if (KVM_BUG_ON(!vcpu, kvm)) 2096 break; 2097 2098 /* 2099 * The page is good, but is stale. kvm_sync_page does 2100 * get the latest guest state, but (unlike mmu_unsync_children) 2101 * it doesn't write-protect the page or mark it synchronized! 2102 * This way the validity of the mapping is ensured, but the 2103 * overhead of write protection is not incurred until the 2104 * guest invalidates the TLB mapping. This allows multiple 2105 * SPs for a single gfn to be unsync. 2106 * 2107 * If the sync fails, the page is zapped. If so, break 2108 * in order to rebuild it. 2109 */ 2110 ret = kvm_sync_page(vcpu, sp, &invalid_list); 2111 if (ret < 0) 2112 break; 2113 2114 WARN_ON_ONCE(!list_empty(&invalid_list)); 2115 if (ret > 0) 2116 kvm_flush_remote_tlbs(kvm); 2117 } 2118 2119 __clear_sp_write_flooding_count(sp); 2120 2121 goto out; 2122 } 2123 2124 sp = NULL; 2125 ++kvm->stat.mmu_cache_miss; 2126 2127 out: 2128 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2129 2130 if (collisions > kvm->stat.max_mmu_page_hash_collisions) 2131 kvm->stat.max_mmu_page_hash_collisions = collisions; 2132 return sp; 2133 } 2134 2135 /* Caches used when allocating a new shadow page. */ 2136 struct shadow_page_caches { 2137 struct kvm_mmu_memory_cache *page_header_cache; 2138 struct kvm_mmu_memory_cache *shadow_page_cache; 2139 struct kvm_mmu_memory_cache *shadowed_info_cache; 2140 }; 2141 2142 static struct kvm_mmu_page *kvm_mmu_alloc_shadow_page(struct kvm *kvm, 2143 struct shadow_page_caches *caches, 2144 gfn_t gfn, 2145 struct hlist_head *sp_list, 2146 union kvm_mmu_page_role role) 2147 { 2148 struct kvm_mmu_page *sp; 2149 2150 sp = kvm_mmu_memory_cache_alloc(caches->page_header_cache); 2151 sp->spt = kvm_mmu_memory_cache_alloc(caches->shadow_page_cache); 2152 if (!role.direct && role.level <= KVM_MAX_HUGEPAGE_LEVEL) 2153 sp->shadowed_translation = kvm_mmu_memory_cache_alloc(caches->shadowed_info_cache); 2154 2155 set_page_private(virt_to_page(sp->spt), (unsigned long)sp); 2156 2157 INIT_LIST_HEAD(&sp->possible_nx_huge_page_link); 2158 2159 /* 2160 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages() 2161 * depends on valid pages being added to the head of the list. See 2162 * comments in kvm_zap_obsolete_pages(). 2163 */ 2164 sp->mmu_valid_gen = kvm->arch.mmu_valid_gen; 2165 list_add(&sp->link, &kvm->arch.active_mmu_pages); 2166 kvm_account_mmu_page(kvm, sp); 2167 2168 sp->gfn = gfn; 2169 sp->role = role; 2170 hlist_add_head(&sp->hash_link, sp_list); 2171 if (sp_has_gptes(sp)) 2172 account_shadowed(kvm, sp); 2173 2174 return sp; 2175 } 2176 2177 /* Note, @vcpu may be NULL if @role.direct is true; see kvm_mmu_find_shadow_page. */ 2178 static struct kvm_mmu_page *__kvm_mmu_get_shadow_page(struct kvm *kvm, 2179 struct kvm_vcpu *vcpu, 2180 struct shadow_page_caches *caches, 2181 gfn_t gfn, 2182 union kvm_mmu_page_role role) 2183 { 2184 struct hlist_head *sp_list; 2185 struct kvm_mmu_page *sp; 2186 bool created = false; 2187 2188 sp_list = &kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]; 2189 2190 sp = kvm_mmu_find_shadow_page(kvm, vcpu, gfn, sp_list, role); 2191 if (!sp) { 2192 created = true; 2193 sp = kvm_mmu_alloc_shadow_page(kvm, caches, gfn, sp_list, role); 2194 } 2195 2196 trace_kvm_mmu_get_page(sp, created); 2197 return sp; 2198 } 2199 2200 static struct kvm_mmu_page *kvm_mmu_get_shadow_page(struct kvm_vcpu *vcpu, 2201 gfn_t gfn, 2202 union kvm_mmu_page_role role) 2203 { 2204 struct shadow_page_caches caches = { 2205 .page_header_cache = &vcpu->arch.mmu_page_header_cache, 2206 .shadow_page_cache = &vcpu->arch.mmu_shadow_page_cache, 2207 .shadowed_info_cache = &vcpu->arch.mmu_shadowed_info_cache, 2208 }; 2209 2210 return __kvm_mmu_get_shadow_page(vcpu->kvm, vcpu, &caches, gfn, role); 2211 } 2212 2213 static union kvm_mmu_page_role kvm_mmu_child_role(u64 *sptep, bool direct, 2214 unsigned int access) 2215 { 2216 struct kvm_mmu_page *parent_sp = sptep_to_sp(sptep); 2217 union kvm_mmu_page_role role; 2218 2219 role = parent_sp->role; 2220 role.level--; 2221 role.access = access; 2222 role.direct = direct; 2223 role.passthrough = 0; 2224 2225 /* 2226 * If the guest has 4-byte PTEs then that means it's using 32-bit, 2227 * 2-level, non-PAE paging. KVM shadows such guests with PAE paging 2228 * (i.e. 8-byte PTEs). The difference in PTE size means that KVM must 2229 * shadow each guest page table with multiple shadow page tables, which 2230 * requires extra bookkeeping in the role. 2231 * 2232 * Specifically, to shadow the guest's page directory (which covers a 2233 * 4GiB address space), KVM uses 4 PAE page directories, each mapping 2234 * 1GiB of the address space. @role.quadrant encodes which quarter of 2235 * the address space each maps. 2236 * 2237 * To shadow the guest's page tables (which each map a 4MiB region), KVM 2238 * uses 2 PAE page tables, each mapping a 2MiB region. For these, 2239 * @role.quadrant encodes which half of the region they map. 2240 * 2241 * Concretely, a 4-byte PDE consumes bits 31:22, while an 8-byte PDE 2242 * consumes bits 29:21. To consume bits 31:30, KVM's uses 4 shadow 2243 * PDPTEs; those 4 PAE page directories are pre-allocated and their 2244 * quadrant is assigned in mmu_alloc_root(). A 4-byte PTE consumes 2245 * bits 21:12, while an 8-byte PTE consumes bits 20:12. To consume 2246 * bit 21 in the PTE (the child here), KVM propagates that bit to the 2247 * quadrant, i.e. sets quadrant to '0' or '1'. The parent 8-byte PDE 2248 * covers bit 21 (see above), thus the quadrant is calculated from the 2249 * _least_ significant bit of the PDE index. 2250 */ 2251 if (role.has_4_byte_gpte) { 2252 WARN_ON_ONCE(role.level != PG_LEVEL_4K); 2253 role.quadrant = spte_index(sptep) & 1; 2254 } 2255 2256 return role; 2257 } 2258 2259 static struct kvm_mmu_page *kvm_mmu_get_child_sp(struct kvm_vcpu *vcpu, 2260 u64 *sptep, gfn_t gfn, 2261 bool direct, unsigned int access) 2262 { 2263 union kvm_mmu_page_role role; 2264 2265 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) 2266 return ERR_PTR(-EEXIST); 2267 2268 role = kvm_mmu_child_role(sptep, direct, access); 2269 return kvm_mmu_get_shadow_page(vcpu, gfn, role); 2270 } 2271 2272 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator, 2273 struct kvm_vcpu *vcpu, hpa_t root, 2274 u64 addr) 2275 { 2276 iterator->addr = addr; 2277 iterator->shadow_addr = root; 2278 iterator->level = vcpu->arch.mmu->root_role.level; 2279 2280 if (iterator->level >= PT64_ROOT_4LEVEL && 2281 vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL && 2282 !vcpu->arch.mmu->root_role.direct) 2283 iterator->level = PT32E_ROOT_LEVEL; 2284 2285 if (iterator->level == PT32E_ROOT_LEVEL) { 2286 /* 2287 * prev_root is currently only used for 64-bit hosts. So only 2288 * the active root_hpa is valid here. 2289 */ 2290 BUG_ON(root != vcpu->arch.mmu->root.hpa); 2291 2292 iterator->shadow_addr 2293 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3]; 2294 iterator->shadow_addr &= SPTE_BASE_ADDR_MASK; 2295 --iterator->level; 2296 if (!iterator->shadow_addr) 2297 iterator->level = 0; 2298 } 2299 } 2300 2301 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, 2302 struct kvm_vcpu *vcpu, u64 addr) 2303 { 2304 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa, 2305 addr); 2306 } 2307 2308 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) 2309 { 2310 if (iterator->level < PG_LEVEL_4K) 2311 return false; 2312 2313 iterator->index = SPTE_INDEX(iterator->addr, iterator->level); 2314 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; 2315 return true; 2316 } 2317 2318 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, 2319 u64 spte) 2320 { 2321 if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) { 2322 iterator->level = 0; 2323 return; 2324 } 2325 2326 iterator->shadow_addr = spte & SPTE_BASE_ADDR_MASK; 2327 --iterator->level; 2328 } 2329 2330 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) 2331 { 2332 __shadow_walk_next(iterator, *iterator->sptep); 2333 } 2334 2335 static void __link_shadow_page(struct kvm *kvm, 2336 struct kvm_mmu_memory_cache *cache, u64 *sptep, 2337 struct kvm_mmu_page *sp, bool flush) 2338 { 2339 u64 spte; 2340 2341 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); 2342 2343 /* 2344 * If an SPTE is present already, it must be a leaf and therefore 2345 * a large one. Drop it, and flush the TLB if needed, before 2346 * installing sp. 2347 */ 2348 if (is_shadow_present_pte(*sptep)) 2349 drop_large_spte(kvm, sptep, flush); 2350 2351 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp)); 2352 2353 mmu_spte_set(sptep, spte); 2354 2355 mmu_page_add_parent_pte(cache, sp, sptep); 2356 2357 /* 2358 * The non-direct sub-pagetable must be updated before linking. For 2359 * L1 sp, the pagetable is updated via kvm_sync_page() in 2360 * kvm_mmu_find_shadow_page() without write-protecting the gfn, 2361 * so sp->unsync can be true or false. For higher level non-direct 2362 * sp, the pagetable is updated/synced via mmu_sync_children() in 2363 * FNAME(fetch)(), so sp->unsync_children can only be false. 2364 * WARN_ON_ONCE() if anything happens unexpectedly. 2365 */ 2366 if (WARN_ON_ONCE(sp->unsync_children) || sp->unsync) 2367 mark_unsync(sptep); 2368 } 2369 2370 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, 2371 struct kvm_mmu_page *sp) 2372 { 2373 __link_shadow_page(vcpu->kvm, &vcpu->arch.mmu_pte_list_desc_cache, sptep, sp, true); 2374 } 2375 2376 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2377 unsigned direct_access) 2378 { 2379 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { 2380 struct kvm_mmu_page *child; 2381 2382 /* 2383 * For the direct sp, if the guest pte's dirty bit 2384 * changed form clean to dirty, it will corrupt the 2385 * sp's access: allow writable in the read-only sp, 2386 * so we should update the spte at this point to get 2387 * a new sp with the correct access. 2388 */ 2389 child = spte_to_child_sp(*sptep); 2390 if (child->role.access == direct_access) 2391 return; 2392 2393 drop_parent_pte(vcpu->kvm, child, sptep); 2394 kvm_flush_remote_tlbs_sptep(vcpu->kvm, sptep); 2395 } 2396 } 2397 2398 /* Returns the number of zapped non-leaf child shadow pages. */ 2399 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 2400 u64 *spte, struct list_head *invalid_list) 2401 { 2402 u64 pte; 2403 struct kvm_mmu_page *child; 2404 2405 pte = *spte; 2406 if (is_shadow_present_pte(pte)) { 2407 if (is_last_spte(pte, sp->role.level)) { 2408 drop_spte(kvm, spte); 2409 } else { 2410 child = spte_to_child_sp(pte); 2411 drop_parent_pte(kvm, child, spte); 2412 2413 /* 2414 * Recursively zap nested TDP SPs, parentless SPs are 2415 * unlikely to be used again in the near future. This 2416 * avoids retaining a large number of stale nested SPs. 2417 */ 2418 if (tdp_enabled && invalid_list && 2419 child->role.guest_mode && !child->parent_ptes.val) 2420 return kvm_mmu_prepare_zap_page(kvm, child, 2421 invalid_list); 2422 } 2423 } else if (is_mmio_spte(kvm, pte)) { 2424 mmu_spte_clear_no_track(spte); 2425 } 2426 return 0; 2427 } 2428 2429 static int kvm_mmu_page_unlink_children(struct kvm *kvm, 2430 struct kvm_mmu_page *sp, 2431 struct list_head *invalid_list) 2432 { 2433 int zapped = 0; 2434 unsigned i; 2435 2436 for (i = 0; i < SPTE_ENT_PER_PAGE; ++i) 2437 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list); 2438 2439 return zapped; 2440 } 2441 2442 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp) 2443 { 2444 u64 *sptep; 2445 struct rmap_iterator iter; 2446 2447 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter))) 2448 drop_parent_pte(kvm, sp, sptep); 2449 } 2450 2451 static int mmu_zap_unsync_children(struct kvm *kvm, 2452 struct kvm_mmu_page *parent, 2453 struct list_head *invalid_list) 2454 { 2455 int i, zapped = 0; 2456 struct mmu_page_path parents; 2457 struct kvm_mmu_pages pages; 2458 2459 if (parent->role.level == PG_LEVEL_4K) 2460 return 0; 2461 2462 while (mmu_unsync_walk(parent, &pages)) { 2463 struct kvm_mmu_page *sp; 2464 2465 for_each_sp(pages, sp, parents, i) { 2466 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 2467 mmu_pages_clear_parents(&parents); 2468 zapped++; 2469 } 2470 } 2471 2472 return zapped; 2473 } 2474 2475 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm, 2476 struct kvm_mmu_page *sp, 2477 struct list_head *invalid_list, 2478 int *nr_zapped) 2479 { 2480 bool list_unstable, zapped_root = false; 2481 2482 lockdep_assert_held_write(&kvm->mmu_lock); 2483 trace_kvm_mmu_prepare_zap_page(sp); 2484 ++kvm->stat.mmu_shadow_zapped; 2485 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list); 2486 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list); 2487 kvm_mmu_unlink_parents(kvm, sp); 2488 2489 /* Zapping children means active_mmu_pages has become unstable. */ 2490 list_unstable = *nr_zapped; 2491 2492 if (!sp->role.invalid && sp_has_gptes(sp)) 2493 unaccount_shadowed(kvm, sp); 2494 2495 if (sp->unsync) 2496 kvm_unlink_unsync_page(kvm, sp); 2497 if (!sp->root_count) { 2498 /* Count self */ 2499 (*nr_zapped)++; 2500 2501 /* 2502 * Already invalid pages (previously active roots) are not on 2503 * the active page list. See list_del() in the "else" case of 2504 * !sp->root_count. 2505 */ 2506 if (sp->role.invalid) 2507 list_add(&sp->link, invalid_list); 2508 else 2509 list_move(&sp->link, invalid_list); 2510 kvm_unaccount_mmu_page(kvm, sp); 2511 } else { 2512 /* 2513 * Remove the active root from the active page list, the root 2514 * will be explicitly freed when the root_count hits zero. 2515 */ 2516 list_del(&sp->link); 2517 2518 /* 2519 * Obsolete pages cannot be used on any vCPUs, see the comment 2520 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also 2521 * treats invalid shadow pages as being obsolete. 2522 */ 2523 zapped_root = !is_obsolete_sp(kvm, sp); 2524 } 2525 2526 if (sp->nx_huge_page_disallowed) 2527 unaccount_nx_huge_page(kvm, sp); 2528 2529 sp->role.invalid = 1; 2530 2531 /* 2532 * Make the request to free obsolete roots after marking the root 2533 * invalid, otherwise other vCPUs may not see it as invalid. 2534 */ 2535 if (zapped_root) 2536 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 2537 return list_unstable; 2538 } 2539 2540 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 2541 struct list_head *invalid_list) 2542 { 2543 int nr_zapped; 2544 2545 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped); 2546 return nr_zapped; 2547 } 2548 2549 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 2550 struct list_head *invalid_list) 2551 { 2552 struct kvm_mmu_page *sp, *nsp; 2553 2554 if (list_empty(invalid_list)) 2555 return; 2556 2557 /* 2558 * We need to make sure everyone sees our modifications to 2559 * the page tables and see changes to vcpu->mode here. The barrier 2560 * in the kvm_flush_remote_tlbs() achieves this. This pairs 2561 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end. 2562 * 2563 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit 2564 * guest mode and/or lockless shadow page table walks. 2565 */ 2566 kvm_flush_remote_tlbs(kvm); 2567 2568 list_for_each_entry_safe(sp, nsp, invalid_list, link) { 2569 WARN_ON_ONCE(!sp->role.invalid || sp->root_count); 2570 kvm_mmu_free_shadow_page(sp); 2571 } 2572 } 2573 2574 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm, 2575 unsigned long nr_to_zap) 2576 { 2577 unsigned long total_zapped = 0; 2578 struct kvm_mmu_page *sp, *tmp; 2579 LIST_HEAD(invalid_list); 2580 bool unstable; 2581 int nr_zapped; 2582 2583 if (list_empty(&kvm->arch.active_mmu_pages)) 2584 return 0; 2585 2586 restart: 2587 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) { 2588 /* 2589 * Don't zap active root pages, the page itself can't be freed 2590 * and zapping it will just force vCPUs to realloc and reload. 2591 */ 2592 if (sp->root_count) 2593 continue; 2594 2595 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, 2596 &nr_zapped); 2597 total_zapped += nr_zapped; 2598 if (total_zapped >= nr_to_zap) 2599 break; 2600 2601 if (unstable) 2602 goto restart; 2603 } 2604 2605 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2606 2607 kvm->stat.mmu_recycled += total_zapped; 2608 return total_zapped; 2609 } 2610 2611 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm) 2612 { 2613 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) 2614 return kvm->arch.n_max_mmu_pages - 2615 kvm->arch.n_used_mmu_pages; 2616 2617 return 0; 2618 } 2619 2620 static int make_mmu_pages_available(struct kvm_vcpu *vcpu) 2621 { 2622 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm); 2623 2624 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES)) 2625 return 0; 2626 2627 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail); 2628 2629 /* 2630 * Note, this check is intentionally soft, it only guarantees that one 2631 * page is available, while the caller may end up allocating as many as 2632 * four pages, e.g. for PAE roots or for 5-level paging. Temporarily 2633 * exceeding the (arbitrary by default) limit will not harm the host, 2634 * being too aggressive may unnecessarily kill the guest, and getting an 2635 * exact count is far more trouble than it's worth, especially in the 2636 * page fault paths. 2637 */ 2638 if (!kvm_mmu_available_pages(vcpu->kvm)) 2639 return -ENOSPC; 2640 return 0; 2641 } 2642 2643 /* 2644 * Changing the number of mmu pages allocated to the vm 2645 * Note: if goal_nr_mmu_pages is too small, you will get dead lock 2646 */ 2647 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages) 2648 { 2649 write_lock(&kvm->mmu_lock); 2650 2651 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { 2652 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages - 2653 goal_nr_mmu_pages); 2654 2655 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; 2656 } 2657 2658 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; 2659 2660 write_unlock(&kvm->mmu_lock); 2661 } 2662 2663 bool __kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 2664 bool always_retry) 2665 { 2666 struct kvm *kvm = vcpu->kvm; 2667 LIST_HEAD(invalid_list); 2668 struct kvm_mmu_page *sp; 2669 gpa_t gpa = cr2_or_gpa; 2670 bool r = false; 2671 2672 /* 2673 * Bail early if there aren't any write-protected shadow pages to avoid 2674 * unnecessarily taking mmu_lock lock, e.g. if the gfn is write-tracked 2675 * by a third party. Reading indirect_shadow_pages without holding 2676 * mmu_lock is safe, as this is purely an optimization, i.e. a false 2677 * positive is benign, and a false negative will simply result in KVM 2678 * skipping the unprotect+retry path, which is also an optimization. 2679 */ 2680 if (!READ_ONCE(kvm->arch.indirect_shadow_pages)) 2681 goto out; 2682 2683 if (!vcpu->arch.mmu->root_role.direct) { 2684 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 2685 if (gpa == INVALID_GPA) 2686 goto out; 2687 } 2688 2689 write_lock(&kvm->mmu_lock); 2690 for_each_gfn_valid_sp_with_gptes(kvm, sp, gpa_to_gfn(gpa)) 2691 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 2692 2693 /* 2694 * Snapshot the result before zapping, as zapping will remove all list 2695 * entries, i.e. checking the list later would yield a false negative. 2696 */ 2697 r = !list_empty(&invalid_list); 2698 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2699 write_unlock(&kvm->mmu_lock); 2700 2701 out: 2702 if (r || always_retry) { 2703 vcpu->arch.last_retry_eip = kvm_rip_read(vcpu); 2704 vcpu->arch.last_retry_addr = cr2_or_gpa; 2705 } 2706 return r; 2707 } 2708 2709 static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 2710 { 2711 trace_kvm_mmu_unsync_page(sp); 2712 ++kvm->stat.mmu_unsync; 2713 sp->unsync = 1; 2714 2715 kvm_mmu_mark_parents_unsync(sp); 2716 } 2717 2718 /* 2719 * Attempt to unsync any shadow pages that can be reached by the specified gfn, 2720 * KVM is creating a writable mapping for said gfn. Returns 0 if all pages 2721 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must 2722 * be write-protected. 2723 */ 2724 int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot, 2725 gfn_t gfn, bool synchronizing, bool prefetch) 2726 { 2727 struct kvm_mmu_page *sp; 2728 bool locked = false; 2729 2730 /* 2731 * Force write-protection if the page is being tracked. Note, the page 2732 * track machinery is used to write-protect upper-level shadow pages, 2733 * i.e. this guards the role.level == 4K assertion below! 2734 */ 2735 if (kvm_gfn_is_write_tracked(kvm, slot, gfn)) 2736 return -EPERM; 2737 2738 /* 2739 * The page is not write-tracked, mark existing shadow pages unsync 2740 * unless KVM is synchronizing an unsync SP. In that case, KVM must 2741 * complete emulation of the guest TLB flush before allowing shadow 2742 * pages to become unsync (writable by the guest). 2743 */ 2744 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) { 2745 if (synchronizing) 2746 return -EPERM; 2747 2748 if (sp->unsync) 2749 continue; 2750 2751 if (prefetch) 2752 return -EEXIST; 2753 2754 /* 2755 * TDP MMU page faults require an additional spinlock as they 2756 * run with mmu_lock held for read, not write, and the unsync 2757 * logic is not thread safe. Take the spinklock regardless of 2758 * the MMU type to avoid extra conditionals/parameters, there's 2759 * no meaningful penalty if mmu_lock is held for write. 2760 */ 2761 if (!locked) { 2762 locked = true; 2763 spin_lock(&kvm->arch.mmu_unsync_pages_lock); 2764 2765 /* 2766 * Recheck after taking the spinlock, a different vCPU 2767 * may have since marked the page unsync. A false 2768 * negative on the unprotected check above is not 2769 * possible as clearing sp->unsync _must_ hold mmu_lock 2770 * for write, i.e. unsync cannot transition from 1->0 2771 * while this CPU holds mmu_lock for read (or write). 2772 */ 2773 if (READ_ONCE(sp->unsync)) 2774 continue; 2775 } 2776 2777 WARN_ON_ONCE(sp->role.level != PG_LEVEL_4K); 2778 kvm_unsync_page(kvm, sp); 2779 } 2780 if (locked) 2781 spin_unlock(&kvm->arch.mmu_unsync_pages_lock); 2782 2783 /* 2784 * We need to ensure that the marking of unsync pages is visible 2785 * before the SPTE is updated to allow writes because 2786 * kvm_mmu_sync_roots() checks the unsync flags without holding 2787 * the MMU lock and so can race with this. If the SPTE was updated 2788 * before the page had been marked as unsync-ed, something like the 2789 * following could happen: 2790 * 2791 * CPU 1 CPU 2 2792 * --------------------------------------------------------------------- 2793 * 1.2 Host updates SPTE 2794 * to be writable 2795 * 2.1 Guest writes a GPTE for GVA X. 2796 * (GPTE being in the guest page table shadowed 2797 * by the SP from CPU 1.) 2798 * This reads SPTE during the page table walk. 2799 * Since SPTE.W is read as 1, there is no 2800 * fault. 2801 * 2802 * 2.2 Guest issues TLB flush. 2803 * That causes a VM Exit. 2804 * 2805 * 2.3 Walking of unsync pages sees sp->unsync is 2806 * false and skips the page. 2807 * 2808 * 2.4 Guest accesses GVA X. 2809 * Since the mapping in the SP was not updated, 2810 * so the old mapping for GVA X incorrectly 2811 * gets used. 2812 * 1.1 Host marks SP 2813 * as unsync 2814 * (sp->unsync = true) 2815 * 2816 * The write barrier below ensures that 1.1 happens before 1.2 and thus 2817 * the situation in 2.4 does not arise. It pairs with the read barrier 2818 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3. 2819 */ 2820 smp_wmb(); 2821 2822 return 0; 2823 } 2824 2825 static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, 2826 u64 *sptep, unsigned int pte_access, gfn_t gfn, 2827 kvm_pfn_t pfn, struct kvm_page_fault *fault) 2828 { 2829 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 2830 int level = sp->role.level; 2831 int was_rmapped = 0; 2832 int ret = RET_PF_FIXED; 2833 bool flush = false; 2834 bool wrprot; 2835 u64 spte; 2836 2837 /* Prefetching always gets a writable pfn. */ 2838 bool host_writable = !fault || fault->map_writable; 2839 bool prefetch = !fault || fault->prefetch; 2840 bool write_fault = fault && fault->write; 2841 2842 if (unlikely(is_noslot_pfn(pfn))) { 2843 vcpu->stat.pf_mmio_spte_created++; 2844 mark_mmio_spte(vcpu, sptep, gfn, pte_access); 2845 return RET_PF_EMULATE; 2846 } 2847 2848 if (is_shadow_present_pte(*sptep)) { 2849 if (prefetch) 2850 return RET_PF_SPURIOUS; 2851 2852 /* 2853 * If we overwrite a PTE page pointer with a 2MB PMD, unlink 2854 * the parent of the now unreachable PTE. 2855 */ 2856 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) { 2857 struct kvm_mmu_page *child; 2858 u64 pte = *sptep; 2859 2860 child = spte_to_child_sp(pte); 2861 drop_parent_pte(vcpu->kvm, child, sptep); 2862 flush = true; 2863 } else if (pfn != spte_to_pfn(*sptep)) { 2864 drop_spte(vcpu->kvm, sptep); 2865 flush = true; 2866 } else 2867 was_rmapped = 1; 2868 } 2869 2870 wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch, 2871 false, host_writable, &spte); 2872 2873 if (*sptep == spte) { 2874 ret = RET_PF_SPURIOUS; 2875 } else { 2876 flush |= mmu_spte_update(sptep, spte); 2877 trace_kvm_mmu_set_spte(level, gfn, sptep); 2878 } 2879 2880 if (wrprot && write_fault) 2881 ret = RET_PF_WRITE_PROTECTED; 2882 2883 if (flush) 2884 kvm_flush_remote_tlbs_gfn(vcpu->kvm, gfn, level); 2885 2886 if (!was_rmapped) { 2887 WARN_ON_ONCE(ret == RET_PF_SPURIOUS); 2888 rmap_add(vcpu, slot, sptep, gfn, pte_access); 2889 } else { 2890 /* Already rmapped but the pte_access bits may have changed. */ 2891 kvm_mmu_page_set_access(sp, spte_index(sptep), pte_access); 2892 } 2893 2894 return ret; 2895 } 2896 2897 static bool kvm_mmu_prefetch_sptes(struct kvm_vcpu *vcpu, gfn_t gfn, u64 *sptep, 2898 int nr_pages, unsigned int access) 2899 { 2900 struct page *pages[PTE_PREFETCH_NUM]; 2901 struct kvm_memory_slot *slot; 2902 int i; 2903 2904 if (WARN_ON_ONCE(nr_pages > PTE_PREFETCH_NUM)) 2905 return false; 2906 2907 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK); 2908 if (!slot) 2909 return false; 2910 2911 nr_pages = kvm_prefetch_pages(slot, gfn, pages, nr_pages); 2912 if (nr_pages <= 0) 2913 return false; 2914 2915 for (i = 0; i < nr_pages; i++, gfn++, sptep++) { 2916 mmu_set_spte(vcpu, slot, sptep, access, gfn, 2917 page_to_pfn(pages[i]), NULL); 2918 2919 /* 2920 * KVM always prefetches writable pages from the primary MMU, 2921 * and KVM can make its SPTE writable in the fast page handler, 2922 * without notifying the primary MMU. Mark pages/folios dirty 2923 * now to ensure file data is written back if it ends up being 2924 * written by the guest. Because KVM's prefetching GUPs 2925 * writable PTEs, the probability of unnecessary writeback is 2926 * extremely low. 2927 */ 2928 kvm_release_page_dirty(pages[i]); 2929 } 2930 2931 return true; 2932 } 2933 2934 static bool direct_pte_prefetch_many(struct kvm_vcpu *vcpu, 2935 struct kvm_mmu_page *sp, 2936 u64 *start, u64 *end) 2937 { 2938 gfn_t gfn = kvm_mmu_page_get_gfn(sp, spte_index(start)); 2939 unsigned int access = sp->role.access; 2940 2941 return kvm_mmu_prefetch_sptes(vcpu, gfn, start, end - start, access); 2942 } 2943 2944 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, 2945 struct kvm_mmu_page *sp, u64 *sptep) 2946 { 2947 u64 *spte, *start = NULL; 2948 int i; 2949 2950 WARN_ON_ONCE(!sp->role.direct); 2951 2952 i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1); 2953 spte = sp->spt + i; 2954 2955 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 2956 if (is_shadow_present_pte(*spte) || spte == sptep) { 2957 if (!start) 2958 continue; 2959 if (!direct_pte_prefetch_many(vcpu, sp, start, spte)) 2960 return; 2961 2962 start = NULL; 2963 } else if (!start) 2964 start = spte; 2965 } 2966 if (start) 2967 direct_pte_prefetch_many(vcpu, sp, start, spte); 2968 } 2969 2970 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) 2971 { 2972 struct kvm_mmu_page *sp; 2973 2974 sp = sptep_to_sp(sptep); 2975 2976 /* 2977 * Without accessed bits, there's no way to distinguish between 2978 * actually accessed translations and prefetched, so disable pte 2979 * prefetch if accessed bits aren't available. 2980 */ 2981 if (sp_ad_disabled(sp)) 2982 return; 2983 2984 if (sp->role.level > PG_LEVEL_4K) 2985 return; 2986 2987 /* 2988 * If addresses are being invalidated, skip prefetching to avoid 2989 * accidentally prefetching those addresses. 2990 */ 2991 if (unlikely(vcpu->kvm->mmu_invalidate_in_progress)) 2992 return; 2993 2994 __direct_pte_prefetch(vcpu, sp, sptep); 2995 } 2996 2997 /* 2998 * Lookup the mapping level for @gfn in the current mm. 2999 * 3000 * WARNING! Use of host_pfn_mapping_level() requires the caller and the end 3001 * consumer to be tied into KVM's handlers for MMU notifier events! 3002 * 3003 * There are several ways to safely use this helper: 3004 * 3005 * - Check mmu_invalidate_retry_gfn() after grabbing the mapping level, before 3006 * consuming it. In this case, mmu_lock doesn't need to be held during the 3007 * lookup, but it does need to be held while checking the MMU notifier. 3008 * 3009 * - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation 3010 * event for the hva. This can be done by explicit checking the MMU notifier 3011 * or by ensuring that KVM already has a valid mapping that covers the hva. 3012 * 3013 * - Do not use the result to install new mappings, e.g. use the host mapping 3014 * level only to decide whether or not to zap an entry. In this case, it's 3015 * not required to hold mmu_lock (though it's highly likely the caller will 3016 * want to hold mmu_lock anyways, e.g. to modify SPTEs). 3017 * 3018 * Note! The lookup can still race with modifications to host page tables, but 3019 * the above "rules" ensure KVM will not _consume_ the result of the walk if a 3020 * race with the primary MMU occurs. 3021 */ 3022 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, 3023 const struct kvm_memory_slot *slot) 3024 { 3025 int level = PG_LEVEL_4K; 3026 unsigned long hva; 3027 unsigned long flags; 3028 pgd_t pgd; 3029 p4d_t p4d; 3030 pud_t pud; 3031 pmd_t pmd; 3032 3033 /* 3034 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot() 3035 * is not solely for performance, it's also necessary to avoid the 3036 * "writable" check in __gfn_to_hva_many(), which will always fail on 3037 * read-only memslots due to gfn_to_hva() assuming writes. Earlier 3038 * page fault steps have already verified the guest isn't writing a 3039 * read-only memslot. 3040 */ 3041 hva = __gfn_to_hva_memslot(slot, gfn); 3042 3043 /* 3044 * Disable IRQs to prevent concurrent tear down of host page tables, 3045 * e.g. if the primary MMU promotes a P*D to a huge page and then frees 3046 * the original page table. 3047 */ 3048 local_irq_save(flags); 3049 3050 /* 3051 * Read each entry once. As above, a non-leaf entry can be promoted to 3052 * a huge page _during_ this walk. Re-reading the entry could send the 3053 * walk into the weeks, e.g. p*d_leaf() returns false (sees the old 3054 * value) and then p*d_offset() walks into the target huge page instead 3055 * of the old page table (sees the new value). 3056 */ 3057 pgd = READ_ONCE(*pgd_offset(kvm->mm, hva)); 3058 if (pgd_none(pgd)) 3059 goto out; 3060 3061 p4d = READ_ONCE(*p4d_offset(&pgd, hva)); 3062 if (p4d_none(p4d) || !p4d_present(p4d)) 3063 goto out; 3064 3065 pud = READ_ONCE(*pud_offset(&p4d, hva)); 3066 if (pud_none(pud) || !pud_present(pud)) 3067 goto out; 3068 3069 if (pud_leaf(pud)) { 3070 level = PG_LEVEL_1G; 3071 goto out; 3072 } 3073 3074 pmd = READ_ONCE(*pmd_offset(&pud, hva)); 3075 if (pmd_none(pmd) || !pmd_present(pmd)) 3076 goto out; 3077 3078 if (pmd_leaf(pmd)) 3079 level = PG_LEVEL_2M; 3080 3081 out: 3082 local_irq_restore(flags); 3083 return level; 3084 } 3085 3086 static int __kvm_mmu_max_mapping_level(struct kvm *kvm, 3087 const struct kvm_memory_slot *slot, 3088 gfn_t gfn, int max_level, bool is_private) 3089 { 3090 struct kvm_lpage_info *linfo; 3091 int host_level; 3092 3093 max_level = min(max_level, max_huge_page_level); 3094 for ( ; max_level > PG_LEVEL_4K; max_level--) { 3095 linfo = lpage_info_slot(gfn, slot, max_level); 3096 if (!linfo->disallow_lpage) 3097 break; 3098 } 3099 3100 if (is_private) 3101 return max_level; 3102 3103 if (max_level == PG_LEVEL_4K) 3104 return PG_LEVEL_4K; 3105 3106 host_level = host_pfn_mapping_level(kvm, gfn, slot); 3107 return min(host_level, max_level); 3108 } 3109 3110 int kvm_mmu_max_mapping_level(struct kvm *kvm, 3111 const struct kvm_memory_slot *slot, gfn_t gfn) 3112 { 3113 bool is_private = kvm_slot_can_be_private(slot) && 3114 kvm_mem_is_private(kvm, gfn); 3115 3116 return __kvm_mmu_max_mapping_level(kvm, slot, gfn, PG_LEVEL_NUM, is_private); 3117 } 3118 3119 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3120 { 3121 struct kvm_memory_slot *slot = fault->slot; 3122 kvm_pfn_t mask; 3123 3124 fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled; 3125 3126 if (unlikely(fault->max_level == PG_LEVEL_4K)) 3127 return; 3128 3129 if (is_error_noslot_pfn(fault->pfn)) 3130 return; 3131 3132 if (kvm_slot_dirty_track_enabled(slot)) 3133 return; 3134 3135 /* 3136 * Enforce the iTLB multihit workaround after capturing the requested 3137 * level, which will be used to do precise, accurate accounting. 3138 */ 3139 fault->req_level = __kvm_mmu_max_mapping_level(vcpu->kvm, slot, 3140 fault->gfn, fault->max_level, 3141 fault->is_private); 3142 if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed) 3143 return; 3144 3145 /* 3146 * mmu_invalidate_retry() was successful and mmu_lock is held, so 3147 * the pmd can't be split from under us. 3148 */ 3149 fault->goal_level = fault->req_level; 3150 mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1; 3151 VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask)); 3152 fault->pfn &= ~mask; 3153 } 3154 3155 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level) 3156 { 3157 if (cur_level > PG_LEVEL_4K && 3158 cur_level == fault->goal_level && 3159 is_shadow_present_pte(spte) && 3160 !is_large_pte(spte) && 3161 spte_to_child_sp(spte)->nx_huge_page_disallowed) { 3162 /* 3163 * A small SPTE exists for this pfn, but FNAME(fetch), 3164 * direct_map(), or kvm_tdp_mmu_map() would like to create a 3165 * large PTE instead: just force them to go down another level, 3166 * patching back for them into pfn the next 9 bits of the 3167 * address. 3168 */ 3169 u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) - 3170 KVM_PAGES_PER_HPAGE(cur_level - 1); 3171 fault->pfn |= fault->gfn & page_mask; 3172 fault->goal_level--; 3173 } 3174 } 3175 3176 static int direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3177 { 3178 struct kvm_shadow_walk_iterator it; 3179 struct kvm_mmu_page *sp; 3180 int ret; 3181 gfn_t base_gfn = fault->gfn; 3182 3183 kvm_mmu_hugepage_adjust(vcpu, fault); 3184 3185 trace_kvm_mmu_spte_requested(fault); 3186 for_each_shadow_entry(vcpu, fault->addr, it) { 3187 /* 3188 * We cannot overwrite existing page tables with an NX 3189 * large page, as the leaf could be executable. 3190 */ 3191 if (fault->nx_huge_page_workaround_enabled) 3192 disallowed_hugepage_adjust(fault, *it.sptep, it.level); 3193 3194 base_gfn = gfn_round_for_level(fault->gfn, it.level); 3195 if (it.level == fault->goal_level) 3196 break; 3197 3198 sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, true, ACC_ALL); 3199 if (sp == ERR_PTR(-EEXIST)) 3200 continue; 3201 3202 link_shadow_page(vcpu, it.sptep, sp); 3203 if (fault->huge_page_disallowed) 3204 account_nx_huge_page(vcpu->kvm, sp, 3205 fault->req_level >= it.level); 3206 } 3207 3208 if (WARN_ON_ONCE(it.level != fault->goal_level)) 3209 return -EFAULT; 3210 3211 ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL, 3212 base_gfn, fault->pfn, fault); 3213 if (ret == RET_PF_SPURIOUS) 3214 return ret; 3215 3216 direct_pte_prefetch(vcpu, it.sptep); 3217 return ret; 3218 } 3219 3220 static void kvm_send_hwpoison_signal(struct kvm_memory_slot *slot, gfn_t gfn) 3221 { 3222 unsigned long hva = gfn_to_hva_memslot(slot, gfn); 3223 3224 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva, PAGE_SHIFT, current); 3225 } 3226 3227 static int kvm_handle_error_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3228 { 3229 if (is_sigpending_pfn(fault->pfn)) { 3230 kvm_handle_signal_exit(vcpu); 3231 return -EINTR; 3232 } 3233 3234 /* 3235 * Do not cache the mmio info caused by writing the readonly gfn 3236 * into the spte otherwise read access on readonly gfn also can 3237 * caused mmio page fault and treat it as mmio access. 3238 */ 3239 if (fault->pfn == KVM_PFN_ERR_RO_FAULT) 3240 return RET_PF_EMULATE; 3241 3242 if (fault->pfn == KVM_PFN_ERR_HWPOISON) { 3243 kvm_send_hwpoison_signal(fault->slot, fault->gfn); 3244 return RET_PF_RETRY; 3245 } 3246 3247 return -EFAULT; 3248 } 3249 3250 static int kvm_handle_noslot_fault(struct kvm_vcpu *vcpu, 3251 struct kvm_page_fault *fault, 3252 unsigned int access) 3253 { 3254 gva_t gva = fault->is_tdp ? 0 : fault->addr; 3255 3256 if (fault->is_private) { 3257 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 3258 return -EFAULT; 3259 } 3260 3261 vcpu_cache_mmio_info(vcpu, gva, fault->gfn, 3262 access & shadow_mmio_access_mask); 3263 3264 fault->slot = NULL; 3265 fault->pfn = KVM_PFN_NOSLOT; 3266 fault->map_writable = false; 3267 3268 /* 3269 * If MMIO caching is disabled, emulate immediately without 3270 * touching the shadow page tables as attempting to install an 3271 * MMIO SPTE will just be an expensive nop. 3272 */ 3273 if (unlikely(!enable_mmio_caching)) 3274 return RET_PF_EMULATE; 3275 3276 /* 3277 * Do not create an MMIO SPTE for a gfn greater than host.MAXPHYADDR, 3278 * any guest that generates such gfns is running nested and is being 3279 * tricked by L0 userspace (you can observe gfn > L1.MAXPHYADDR if and 3280 * only if L1's MAXPHYADDR is inaccurate with respect to the 3281 * hardware's). 3282 */ 3283 if (unlikely(fault->gfn > kvm_mmu_max_gfn())) 3284 return RET_PF_EMULATE; 3285 3286 return RET_PF_CONTINUE; 3287 } 3288 3289 static bool page_fault_can_be_fast(struct kvm *kvm, struct kvm_page_fault *fault) 3290 { 3291 /* 3292 * Page faults with reserved bits set, i.e. faults on MMIO SPTEs, only 3293 * reach the common page fault handler if the SPTE has an invalid MMIO 3294 * generation number. Refreshing the MMIO generation needs to go down 3295 * the slow path. Note, EPT Misconfigs do NOT set the PRESENT flag! 3296 */ 3297 if (fault->rsvd) 3298 return false; 3299 3300 /* 3301 * For hardware-protected VMs, certain conditions like attempting to 3302 * perform a write to a page which is not in the state that the guest 3303 * expects it to be in can result in a nested/extended #PF. In this 3304 * case, the below code might misconstrue this situation as being the 3305 * result of a write-protected access, and treat it as a spurious case 3306 * rather than taking any action to satisfy the real source of the #PF 3307 * such as generating a KVM_EXIT_MEMORY_FAULT. This can lead to the 3308 * guest spinning on a #PF indefinitely, so don't attempt the fast path 3309 * in this case. 3310 * 3311 * Note that the kvm_mem_is_private() check might race with an 3312 * attribute update, but this will either result in the guest spinning 3313 * on RET_PF_SPURIOUS until the update completes, or an actual spurious 3314 * case might go down the slow path. Either case will resolve itself. 3315 */ 3316 if (kvm->arch.has_private_mem && 3317 fault->is_private != kvm_mem_is_private(kvm, fault->gfn)) 3318 return false; 3319 3320 /* 3321 * #PF can be fast if: 3322 * 3323 * 1. The shadow page table entry is not present and A/D bits are 3324 * disabled _by KVM_, which could mean that the fault is potentially 3325 * caused by access tracking (if enabled). If A/D bits are enabled 3326 * by KVM, but disabled by L1 for L2, KVM is forced to disable A/D 3327 * bits for L2 and employ access tracking, but the fast page fault 3328 * mechanism only supports direct MMUs. 3329 * 2. The shadow page table entry is present, the access is a write, 3330 * and no reserved bits are set (MMIO SPTEs cannot be "fixed"), i.e. 3331 * the fault was caused by a write-protection violation. If the 3332 * SPTE is MMU-writable (determined later), the fault can be fixed 3333 * by setting the Writable bit, which can be done out of mmu_lock. 3334 */ 3335 if (!fault->present) 3336 return !kvm_ad_enabled; 3337 3338 /* 3339 * Note, instruction fetches and writes are mutually exclusive, ignore 3340 * the "exec" flag. 3341 */ 3342 return fault->write; 3343 } 3344 3345 /* 3346 * Returns true if the SPTE was fixed successfully. Otherwise, 3347 * someone else modified the SPTE from its original value. 3348 */ 3349 static bool fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, 3350 struct kvm_page_fault *fault, 3351 u64 *sptep, u64 old_spte, u64 new_spte) 3352 { 3353 /* 3354 * Theoretically we could also set dirty bit (and flush TLB) here in 3355 * order to eliminate unnecessary PML logging. See comments in 3356 * set_spte. But fast_page_fault is very unlikely to happen with PML 3357 * enabled, so we do not do this. This might result in the same GPA 3358 * to be logged in PML buffer again when the write really happens, and 3359 * eventually to be called by mark_page_dirty twice. But it's also no 3360 * harm. This also avoids the TLB flush needed after setting dirty bit 3361 * so non-PML cases won't be impacted. 3362 * 3363 * Compare with make_spte() where instead shadow_dirty_mask is set. 3364 */ 3365 if (!try_cmpxchg64(sptep, &old_spte, new_spte)) 3366 return false; 3367 3368 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) 3369 mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn); 3370 3371 return true; 3372 } 3373 3374 /* 3375 * Returns the last level spte pointer of the shadow page walk for the given 3376 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no 3377 * walk could be performed, returns NULL and *spte does not contain valid data. 3378 * 3379 * Contract: 3380 * - Must be called between walk_shadow_page_lockless_{begin,end}. 3381 * - The returned sptep must not be used after walk_shadow_page_lockless_end. 3382 */ 3383 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte) 3384 { 3385 struct kvm_shadow_walk_iterator iterator; 3386 u64 old_spte; 3387 u64 *sptep = NULL; 3388 3389 for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) { 3390 sptep = iterator.sptep; 3391 *spte = old_spte; 3392 } 3393 3394 return sptep; 3395 } 3396 3397 /* 3398 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS. 3399 */ 3400 static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 3401 { 3402 struct kvm_mmu_page *sp; 3403 int ret = RET_PF_INVALID; 3404 u64 spte; 3405 u64 *sptep; 3406 uint retry_count = 0; 3407 3408 if (!page_fault_can_be_fast(vcpu->kvm, fault)) 3409 return ret; 3410 3411 walk_shadow_page_lockless_begin(vcpu); 3412 3413 do { 3414 u64 new_spte; 3415 3416 if (tdp_mmu_enabled) 3417 sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->gfn, &spte); 3418 else 3419 sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte); 3420 3421 /* 3422 * It's entirely possible for the mapping to have been zapped 3423 * by a different task, but the root page should always be 3424 * available as the vCPU holds a reference to its root(s). 3425 */ 3426 if (WARN_ON_ONCE(!sptep)) 3427 spte = FROZEN_SPTE; 3428 3429 if (!is_shadow_present_pte(spte)) 3430 break; 3431 3432 sp = sptep_to_sp(sptep); 3433 if (!is_last_spte(spte, sp->role.level)) 3434 break; 3435 3436 /* 3437 * Check whether the memory access that caused the fault would 3438 * still cause it if it were to be performed right now. If not, 3439 * then this is a spurious fault caused by TLB lazily flushed, 3440 * or some other CPU has already fixed the PTE after the 3441 * current CPU took the fault. 3442 * 3443 * Need not check the access of upper level table entries since 3444 * they are always ACC_ALL. 3445 */ 3446 if (is_access_allowed(fault, spte)) { 3447 ret = RET_PF_SPURIOUS; 3448 break; 3449 } 3450 3451 new_spte = spte; 3452 3453 /* 3454 * KVM only supports fixing page faults outside of MMU lock for 3455 * direct MMUs, nested MMUs are always indirect, and KVM always 3456 * uses A/D bits for non-nested MMUs. Thus, if A/D bits are 3457 * enabled, the SPTE can't be an access-tracked SPTE. 3458 */ 3459 if (unlikely(!kvm_ad_enabled) && is_access_track_spte(spte)) 3460 new_spte = restore_acc_track_spte(new_spte) | 3461 shadow_accessed_mask; 3462 3463 /* 3464 * To keep things simple, only SPTEs that are MMU-writable can 3465 * be made fully writable outside of mmu_lock, e.g. only SPTEs 3466 * that were write-protected for dirty-logging or access 3467 * tracking are handled here. Don't bother checking if the 3468 * SPTE is writable to prioritize running with A/D bits enabled. 3469 * The is_access_allowed() check above handles the common case 3470 * of the fault being spurious, and the SPTE is known to be 3471 * shadow-present, i.e. except for access tracking restoration 3472 * making the new SPTE writable, the check is wasteful. 3473 */ 3474 if (fault->write && is_mmu_writable_spte(spte)) { 3475 new_spte |= PT_WRITABLE_MASK; 3476 3477 /* 3478 * Do not fix write-permission on the large spte when 3479 * dirty logging is enabled. Since we only dirty the 3480 * first page into the dirty-bitmap in 3481 * fast_pf_fix_direct_spte(), other pages are missed 3482 * if its slot has dirty logging enabled. 3483 * 3484 * Instead, we let the slow page fault path create a 3485 * normal spte to fix the access. 3486 */ 3487 if (sp->role.level > PG_LEVEL_4K && 3488 kvm_slot_dirty_track_enabled(fault->slot)) 3489 break; 3490 } 3491 3492 /* Verify that the fault can be handled in the fast path */ 3493 if (new_spte == spte || 3494 !is_access_allowed(fault, new_spte)) 3495 break; 3496 3497 /* 3498 * Currently, fast page fault only works for direct mapping 3499 * since the gfn is not stable for indirect shadow page. See 3500 * Documentation/virt/kvm/locking.rst to get more detail. 3501 */ 3502 if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) { 3503 ret = RET_PF_FIXED; 3504 break; 3505 } 3506 3507 if (++retry_count > 4) { 3508 pr_warn_once("Fast #PF retrying more than 4 times.\n"); 3509 break; 3510 } 3511 3512 } while (true); 3513 3514 trace_fast_page_fault(vcpu, fault, sptep, spte, ret); 3515 walk_shadow_page_lockless_end(vcpu); 3516 3517 if (ret != RET_PF_INVALID) 3518 vcpu->stat.pf_fast++; 3519 3520 return ret; 3521 } 3522 3523 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa, 3524 struct list_head *invalid_list) 3525 { 3526 struct kvm_mmu_page *sp; 3527 3528 if (!VALID_PAGE(*root_hpa)) 3529 return; 3530 3531 sp = root_to_sp(*root_hpa); 3532 if (WARN_ON_ONCE(!sp)) 3533 return; 3534 3535 if (is_tdp_mmu_page(sp)) { 3536 lockdep_assert_held_read(&kvm->mmu_lock); 3537 kvm_tdp_mmu_put_root(kvm, sp); 3538 } else { 3539 lockdep_assert_held_write(&kvm->mmu_lock); 3540 if (!--sp->root_count && sp->role.invalid) 3541 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 3542 } 3543 3544 *root_hpa = INVALID_PAGE; 3545 } 3546 3547 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */ 3548 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, 3549 ulong roots_to_free) 3550 { 3551 bool is_tdp_mmu = tdp_mmu_enabled && mmu->root_role.direct; 3552 int i; 3553 LIST_HEAD(invalid_list); 3554 bool free_active_root; 3555 3556 WARN_ON_ONCE(roots_to_free & ~KVM_MMU_ROOTS_ALL); 3557 3558 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG); 3559 3560 /* Before acquiring the MMU lock, see if we need to do any real work. */ 3561 free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT) 3562 && VALID_PAGE(mmu->root.hpa); 3563 3564 if (!free_active_root) { 3565 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3566 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) && 3567 VALID_PAGE(mmu->prev_roots[i].hpa)) 3568 break; 3569 3570 if (i == KVM_MMU_NUM_PREV_ROOTS) 3571 return; 3572 } 3573 3574 if (is_tdp_mmu) 3575 read_lock(&kvm->mmu_lock); 3576 else 3577 write_lock(&kvm->mmu_lock); 3578 3579 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3580 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) 3581 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa, 3582 &invalid_list); 3583 3584 if (free_active_root) { 3585 if (kvm_mmu_is_dummy_root(mmu->root.hpa)) { 3586 /* Nothing to cleanup for dummy roots. */ 3587 } else if (root_to_sp(mmu->root.hpa)) { 3588 mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list); 3589 } else if (mmu->pae_root) { 3590 for (i = 0; i < 4; ++i) { 3591 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i])) 3592 continue; 3593 3594 mmu_free_root_page(kvm, &mmu->pae_root[i], 3595 &invalid_list); 3596 mmu->pae_root[i] = INVALID_PAE_ROOT; 3597 } 3598 } 3599 mmu->root.hpa = INVALID_PAGE; 3600 mmu->root.pgd = 0; 3601 } 3602 3603 if (is_tdp_mmu) { 3604 read_unlock(&kvm->mmu_lock); 3605 WARN_ON_ONCE(!list_empty(&invalid_list)); 3606 } else { 3607 kvm_mmu_commit_zap_page(kvm, &invalid_list); 3608 write_unlock(&kvm->mmu_lock); 3609 } 3610 } 3611 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots); 3612 3613 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu) 3614 { 3615 unsigned long roots_to_free = 0; 3616 struct kvm_mmu_page *sp; 3617 hpa_t root_hpa; 3618 int i; 3619 3620 /* 3621 * This should not be called while L2 is active, L2 can't invalidate 3622 * _only_ its own roots, e.g. INVVPID unconditionally exits. 3623 */ 3624 WARN_ON_ONCE(mmu->root_role.guest_mode); 3625 3626 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 3627 root_hpa = mmu->prev_roots[i].hpa; 3628 if (!VALID_PAGE(root_hpa)) 3629 continue; 3630 3631 sp = root_to_sp(root_hpa); 3632 if (!sp || sp->role.guest_mode) 3633 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 3634 } 3635 3636 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 3637 } 3638 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots); 3639 3640 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, int quadrant, 3641 u8 level) 3642 { 3643 union kvm_mmu_page_role role = vcpu->arch.mmu->root_role; 3644 struct kvm_mmu_page *sp; 3645 3646 role.level = level; 3647 role.quadrant = quadrant; 3648 3649 WARN_ON_ONCE(quadrant && !role.has_4_byte_gpte); 3650 WARN_ON_ONCE(role.direct && role.has_4_byte_gpte); 3651 3652 sp = kvm_mmu_get_shadow_page(vcpu, gfn, role); 3653 ++sp->root_count; 3654 3655 return __pa(sp->spt); 3656 } 3657 3658 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) 3659 { 3660 struct kvm_mmu *mmu = vcpu->arch.mmu; 3661 u8 shadow_root_level = mmu->root_role.level; 3662 hpa_t root; 3663 unsigned i; 3664 int r; 3665 3666 if (tdp_mmu_enabled) { 3667 if (kvm_has_mirrored_tdp(vcpu->kvm) && 3668 !VALID_PAGE(mmu->mirror_root_hpa)) 3669 kvm_tdp_mmu_alloc_root(vcpu, true); 3670 kvm_tdp_mmu_alloc_root(vcpu, false); 3671 return 0; 3672 } 3673 3674 write_lock(&vcpu->kvm->mmu_lock); 3675 r = make_mmu_pages_available(vcpu); 3676 if (r < 0) 3677 goto out_unlock; 3678 3679 if (shadow_root_level >= PT64_ROOT_4LEVEL) { 3680 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level); 3681 mmu->root.hpa = root; 3682 } else if (shadow_root_level == PT32E_ROOT_LEVEL) { 3683 if (WARN_ON_ONCE(!mmu->pae_root)) { 3684 r = -EIO; 3685 goto out_unlock; 3686 } 3687 3688 for (i = 0; i < 4; ++i) { 3689 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3690 3691 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 0, 3692 PT32_ROOT_LEVEL); 3693 mmu->pae_root[i] = root | PT_PRESENT_MASK | 3694 shadow_me_value; 3695 } 3696 mmu->root.hpa = __pa(mmu->pae_root); 3697 } else { 3698 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level); 3699 r = -EIO; 3700 goto out_unlock; 3701 } 3702 3703 /* root.pgd is ignored for direct MMUs. */ 3704 mmu->root.pgd = 0; 3705 out_unlock: 3706 write_unlock(&vcpu->kvm->mmu_lock); 3707 return r; 3708 } 3709 3710 static int mmu_first_shadow_root_alloc(struct kvm *kvm) 3711 { 3712 struct kvm_memslots *slots; 3713 struct kvm_memory_slot *slot; 3714 int r = 0, i, bkt; 3715 3716 /* 3717 * Check if this is the first shadow root being allocated before 3718 * taking the lock. 3719 */ 3720 if (kvm_shadow_root_allocated(kvm)) 3721 return 0; 3722 3723 mutex_lock(&kvm->slots_arch_lock); 3724 3725 /* Recheck, under the lock, whether this is the first shadow root. */ 3726 if (kvm_shadow_root_allocated(kvm)) 3727 goto out_unlock; 3728 3729 /* 3730 * Check if anything actually needs to be allocated, e.g. all metadata 3731 * will be allocated upfront if TDP is disabled. 3732 */ 3733 if (kvm_memslots_have_rmaps(kvm) && 3734 kvm_page_track_write_tracking_enabled(kvm)) 3735 goto out_success; 3736 3737 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 3738 slots = __kvm_memslots(kvm, i); 3739 kvm_for_each_memslot(slot, bkt, slots) { 3740 /* 3741 * Both of these functions are no-ops if the target is 3742 * already allocated, so unconditionally calling both 3743 * is safe. Intentionally do NOT free allocations on 3744 * failure to avoid having to track which allocations 3745 * were made now versus when the memslot was created. 3746 * The metadata is guaranteed to be freed when the slot 3747 * is freed, and will be kept/used if userspace retries 3748 * KVM_RUN instead of killing the VM. 3749 */ 3750 r = memslot_rmap_alloc(slot, slot->npages); 3751 if (r) 3752 goto out_unlock; 3753 r = kvm_page_track_write_tracking_alloc(slot); 3754 if (r) 3755 goto out_unlock; 3756 } 3757 } 3758 3759 /* 3760 * Ensure that shadow_root_allocated becomes true strictly after 3761 * all the related pointers are set. 3762 */ 3763 out_success: 3764 smp_store_release(&kvm->arch.shadow_root_allocated, true); 3765 3766 out_unlock: 3767 mutex_unlock(&kvm->slots_arch_lock); 3768 return r; 3769 } 3770 3771 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) 3772 { 3773 struct kvm_mmu *mmu = vcpu->arch.mmu; 3774 u64 pdptrs[4], pm_mask; 3775 gfn_t root_gfn, root_pgd; 3776 int quadrant, i, r; 3777 hpa_t root; 3778 3779 root_pgd = kvm_mmu_get_guest_pgd(vcpu, mmu); 3780 root_gfn = (root_pgd & __PT_BASE_ADDR_MASK) >> PAGE_SHIFT; 3781 3782 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) { 3783 mmu->root.hpa = kvm_mmu_get_dummy_root(); 3784 return 0; 3785 } 3786 3787 /* 3788 * On SVM, reading PDPTRs might access guest memory, which might fault 3789 * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock. 3790 */ 3791 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { 3792 for (i = 0; i < 4; ++i) { 3793 pdptrs[i] = mmu->get_pdptr(vcpu, i); 3794 if (!(pdptrs[i] & PT_PRESENT_MASK)) 3795 continue; 3796 3797 if (!kvm_vcpu_is_visible_gfn(vcpu, pdptrs[i] >> PAGE_SHIFT)) 3798 pdptrs[i] = 0; 3799 } 3800 } 3801 3802 r = mmu_first_shadow_root_alloc(vcpu->kvm); 3803 if (r) 3804 return r; 3805 3806 write_lock(&vcpu->kvm->mmu_lock); 3807 r = make_mmu_pages_available(vcpu); 3808 if (r < 0) 3809 goto out_unlock; 3810 3811 /* 3812 * Do we shadow a long mode page table? If so we need to 3813 * write-protect the guests page table root. 3814 */ 3815 if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { 3816 root = mmu_alloc_root(vcpu, root_gfn, 0, 3817 mmu->root_role.level); 3818 mmu->root.hpa = root; 3819 goto set_root_pgd; 3820 } 3821 3822 if (WARN_ON_ONCE(!mmu->pae_root)) { 3823 r = -EIO; 3824 goto out_unlock; 3825 } 3826 3827 /* 3828 * We shadow a 32 bit page table. This may be a legacy 2-level 3829 * or a PAE 3-level page table. In either case we need to be aware that 3830 * the shadow page table may be a PAE or a long mode page table. 3831 */ 3832 pm_mask = PT_PRESENT_MASK | shadow_me_value; 3833 if (mmu->root_role.level >= PT64_ROOT_4LEVEL) { 3834 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; 3835 3836 if (WARN_ON_ONCE(!mmu->pml4_root)) { 3837 r = -EIO; 3838 goto out_unlock; 3839 } 3840 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask; 3841 3842 if (mmu->root_role.level == PT64_ROOT_5LEVEL) { 3843 if (WARN_ON_ONCE(!mmu->pml5_root)) { 3844 r = -EIO; 3845 goto out_unlock; 3846 } 3847 mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask; 3848 } 3849 } 3850 3851 for (i = 0; i < 4; ++i) { 3852 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3853 3854 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { 3855 if (!(pdptrs[i] & PT_PRESENT_MASK)) { 3856 mmu->pae_root[i] = INVALID_PAE_ROOT; 3857 continue; 3858 } 3859 root_gfn = pdptrs[i] >> PAGE_SHIFT; 3860 } 3861 3862 /* 3863 * If shadowing 32-bit non-PAE page tables, each PAE page 3864 * directory maps one quarter of the guest's non-PAE page 3865 * directory. Othwerise each PAE page direct shadows one guest 3866 * PAE page directory so that quadrant should be 0. 3867 */ 3868 quadrant = (mmu->cpu_role.base.level == PT32_ROOT_LEVEL) ? i : 0; 3869 3870 root = mmu_alloc_root(vcpu, root_gfn, quadrant, PT32_ROOT_LEVEL); 3871 mmu->pae_root[i] = root | pm_mask; 3872 } 3873 3874 if (mmu->root_role.level == PT64_ROOT_5LEVEL) 3875 mmu->root.hpa = __pa(mmu->pml5_root); 3876 else if (mmu->root_role.level == PT64_ROOT_4LEVEL) 3877 mmu->root.hpa = __pa(mmu->pml4_root); 3878 else 3879 mmu->root.hpa = __pa(mmu->pae_root); 3880 3881 set_root_pgd: 3882 mmu->root.pgd = root_pgd; 3883 out_unlock: 3884 write_unlock(&vcpu->kvm->mmu_lock); 3885 3886 return r; 3887 } 3888 3889 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu) 3890 { 3891 struct kvm_mmu *mmu = vcpu->arch.mmu; 3892 bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL; 3893 u64 *pml5_root = NULL; 3894 u64 *pml4_root = NULL; 3895 u64 *pae_root; 3896 3897 /* 3898 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP 3899 * tables are allocated and initialized at root creation as there is no 3900 * equivalent level in the guest's NPT to shadow. Allocate the tables 3901 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare. 3902 */ 3903 if (mmu->root_role.direct || 3904 mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL || 3905 mmu->root_role.level < PT64_ROOT_4LEVEL) 3906 return 0; 3907 3908 /* 3909 * NPT, the only paging mode that uses this horror, uses a fixed number 3910 * of levels for the shadow page tables, e.g. all MMUs are 4-level or 3911 * all MMus are 5-level. Thus, this can safely require that pml5_root 3912 * is allocated if the other roots are valid and pml5 is needed, as any 3913 * prior MMU would also have required pml5. 3914 */ 3915 if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root)) 3916 return 0; 3917 3918 /* 3919 * The special roots should always be allocated in concert. Yell and 3920 * bail if KVM ends up in a state where only one of the roots is valid. 3921 */ 3922 if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root || 3923 (need_pml5 && mmu->pml5_root))) 3924 return -EIO; 3925 3926 /* 3927 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and 3928 * doesn't need to be decrypted. 3929 */ 3930 pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3931 if (!pae_root) 3932 return -ENOMEM; 3933 3934 #ifdef CONFIG_X86_64 3935 pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3936 if (!pml4_root) 3937 goto err_pml4; 3938 3939 if (need_pml5) { 3940 pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3941 if (!pml5_root) 3942 goto err_pml5; 3943 } 3944 #endif 3945 3946 mmu->pae_root = pae_root; 3947 mmu->pml4_root = pml4_root; 3948 mmu->pml5_root = pml5_root; 3949 3950 return 0; 3951 3952 #ifdef CONFIG_X86_64 3953 err_pml5: 3954 free_page((unsigned long)pml4_root); 3955 err_pml4: 3956 free_page((unsigned long)pae_root); 3957 return -ENOMEM; 3958 #endif 3959 } 3960 3961 static bool is_unsync_root(hpa_t root) 3962 { 3963 struct kvm_mmu_page *sp; 3964 3965 if (!VALID_PAGE(root) || kvm_mmu_is_dummy_root(root)) 3966 return false; 3967 3968 /* 3969 * The read barrier orders the CPU's read of SPTE.W during the page table 3970 * walk before the reads of sp->unsync/sp->unsync_children here. 3971 * 3972 * Even if another CPU was marking the SP as unsync-ed simultaneously, 3973 * any guest page table changes are not guaranteed to be visible anyway 3974 * until this VCPU issues a TLB flush strictly after those changes are 3975 * made. We only need to ensure that the other CPU sets these flags 3976 * before any actual changes to the page tables are made. The comments 3977 * in mmu_try_to_unsync_pages() describe what could go wrong if this 3978 * requirement isn't satisfied. 3979 */ 3980 smp_rmb(); 3981 sp = root_to_sp(root); 3982 3983 /* 3984 * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the 3985 * PDPTEs for a given PAE root need to be synchronized individually. 3986 */ 3987 if (WARN_ON_ONCE(!sp)) 3988 return false; 3989 3990 if (sp->unsync || sp->unsync_children) 3991 return true; 3992 3993 return false; 3994 } 3995 3996 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) 3997 { 3998 int i; 3999 struct kvm_mmu_page *sp; 4000 4001 if (vcpu->arch.mmu->root_role.direct) 4002 return; 4003 4004 if (!VALID_PAGE(vcpu->arch.mmu->root.hpa)) 4005 return; 4006 4007 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 4008 4009 if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { 4010 hpa_t root = vcpu->arch.mmu->root.hpa; 4011 4012 if (!is_unsync_root(root)) 4013 return; 4014 4015 sp = root_to_sp(root); 4016 4017 write_lock(&vcpu->kvm->mmu_lock); 4018 mmu_sync_children(vcpu, sp, true); 4019 write_unlock(&vcpu->kvm->mmu_lock); 4020 return; 4021 } 4022 4023 write_lock(&vcpu->kvm->mmu_lock); 4024 4025 for (i = 0; i < 4; ++i) { 4026 hpa_t root = vcpu->arch.mmu->pae_root[i]; 4027 4028 if (IS_VALID_PAE_ROOT(root)) { 4029 sp = spte_to_child_sp(root); 4030 mmu_sync_children(vcpu, sp, true); 4031 } 4032 } 4033 4034 write_unlock(&vcpu->kvm->mmu_lock); 4035 } 4036 4037 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu) 4038 { 4039 unsigned long roots_to_free = 0; 4040 int i; 4041 4042 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 4043 if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa)) 4044 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 4045 4046 /* sync prev_roots by simply freeing them */ 4047 kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free); 4048 } 4049 4050 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 4051 gpa_t vaddr, u64 access, 4052 struct x86_exception *exception) 4053 { 4054 if (exception) 4055 exception->error_code = 0; 4056 return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception); 4057 } 4058 4059 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct) 4060 { 4061 /* 4062 * A nested guest cannot use the MMIO cache if it is using nested 4063 * page tables, because cr2 is a nGPA while the cache stores GPAs. 4064 */ 4065 if (mmu_is_nested(vcpu)) 4066 return false; 4067 4068 if (direct) 4069 return vcpu_match_mmio_gpa(vcpu, addr); 4070 4071 return vcpu_match_mmio_gva(vcpu, addr); 4072 } 4073 4074 /* 4075 * Return the level of the lowest level SPTE added to sptes. 4076 * That SPTE may be non-present. 4077 * 4078 * Must be called between walk_shadow_page_lockless_{begin,end}. 4079 */ 4080 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level) 4081 { 4082 struct kvm_shadow_walk_iterator iterator; 4083 int leaf = -1; 4084 u64 spte; 4085 4086 for (shadow_walk_init(&iterator, vcpu, addr), 4087 *root_level = iterator.level; 4088 shadow_walk_okay(&iterator); 4089 __shadow_walk_next(&iterator, spte)) { 4090 leaf = iterator.level; 4091 spte = mmu_spte_get_lockless(iterator.sptep); 4092 4093 sptes[leaf] = spte; 4094 } 4095 4096 return leaf; 4097 } 4098 4099 static int get_sptes_lockless(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, 4100 int *root_level) 4101 { 4102 int leaf; 4103 4104 walk_shadow_page_lockless_begin(vcpu); 4105 4106 if (is_tdp_mmu_active(vcpu)) 4107 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, root_level); 4108 else 4109 leaf = get_walk(vcpu, addr, sptes, root_level); 4110 4111 walk_shadow_page_lockless_end(vcpu); 4112 return leaf; 4113 } 4114 4115 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */ 4116 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) 4117 { 4118 u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; 4119 struct rsvd_bits_validate *rsvd_check; 4120 int root, leaf, level; 4121 bool reserved = false; 4122 4123 leaf = get_sptes_lockless(vcpu, addr, sptes, &root); 4124 if (unlikely(leaf < 0)) { 4125 *sptep = 0ull; 4126 return reserved; 4127 } 4128 4129 *sptep = sptes[leaf]; 4130 4131 /* 4132 * Skip reserved bits checks on the terminal leaf if it's not a valid 4133 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by 4134 * design, always have reserved bits set. The purpose of the checks is 4135 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs. 4136 */ 4137 if (!is_shadow_present_pte(sptes[leaf])) 4138 leaf++; 4139 4140 rsvd_check = &vcpu->arch.mmu->shadow_zero_check; 4141 4142 for (level = root; level >= leaf; level--) 4143 reserved |= is_rsvd_spte(rsvd_check, sptes[level], level); 4144 4145 if (reserved) { 4146 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n", 4147 __func__, addr); 4148 for (level = root; level >= leaf; level--) 4149 pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx", 4150 sptes[level], level, 4151 get_rsvd_bits(rsvd_check, sptes[level], level)); 4152 } 4153 4154 return reserved; 4155 } 4156 4157 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct) 4158 { 4159 u64 spte; 4160 bool reserved; 4161 4162 if (mmio_info_in_cache(vcpu, addr, direct)) 4163 return RET_PF_EMULATE; 4164 4165 reserved = get_mmio_spte(vcpu, addr, &spte); 4166 if (WARN_ON_ONCE(reserved)) 4167 return -EINVAL; 4168 4169 if (is_mmio_spte(vcpu->kvm, spte)) { 4170 gfn_t gfn = get_mmio_spte_gfn(spte); 4171 unsigned int access = get_mmio_spte_access(spte); 4172 4173 if (!check_mmio_spte(vcpu, spte)) 4174 return RET_PF_INVALID; 4175 4176 if (direct) 4177 addr = 0; 4178 4179 trace_handle_mmio_page_fault(addr, gfn, access); 4180 vcpu_cache_mmio_info(vcpu, addr, gfn, access); 4181 return RET_PF_EMULATE; 4182 } 4183 4184 /* 4185 * If the page table is zapped by other cpus, let CPU fault again on 4186 * the address. 4187 */ 4188 return RET_PF_RETRY; 4189 } 4190 4191 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu, 4192 struct kvm_page_fault *fault) 4193 { 4194 if (unlikely(fault->rsvd)) 4195 return false; 4196 4197 if (!fault->present || !fault->write) 4198 return false; 4199 4200 /* 4201 * guest is writing the page which is write tracked which can 4202 * not be fixed by page fault handler. 4203 */ 4204 if (kvm_gfn_is_write_tracked(vcpu->kvm, fault->slot, fault->gfn)) 4205 return true; 4206 4207 return false; 4208 } 4209 4210 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr) 4211 { 4212 struct kvm_shadow_walk_iterator iterator; 4213 u64 spte; 4214 4215 walk_shadow_page_lockless_begin(vcpu); 4216 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) 4217 clear_sp_write_flooding_count(iterator.sptep); 4218 walk_shadow_page_lockless_end(vcpu); 4219 } 4220 4221 static u32 alloc_apf_token(struct kvm_vcpu *vcpu) 4222 { 4223 /* make sure the token value is not 0 */ 4224 u32 id = vcpu->arch.apf.id; 4225 4226 if (id << 12 == 0) 4227 vcpu->arch.apf.id = 1; 4228 4229 return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; 4230 } 4231 4232 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, 4233 struct kvm_page_fault *fault) 4234 { 4235 struct kvm_arch_async_pf arch; 4236 4237 arch.token = alloc_apf_token(vcpu); 4238 arch.gfn = fault->gfn; 4239 arch.error_code = fault->error_code; 4240 arch.direct_map = vcpu->arch.mmu->root_role.direct; 4241 arch.cr3 = kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu); 4242 4243 return kvm_setup_async_pf(vcpu, fault->addr, 4244 kvm_vcpu_gfn_to_hva(vcpu, fault->gfn), &arch); 4245 } 4246 4247 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 4248 { 4249 int r; 4250 4251 if (WARN_ON_ONCE(work->arch.error_code & PFERR_PRIVATE_ACCESS)) 4252 return; 4253 4254 if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) || 4255 work->wakeup_all) 4256 return; 4257 4258 r = kvm_mmu_reload(vcpu); 4259 if (unlikely(r)) 4260 return; 4261 4262 if (!vcpu->arch.mmu->root_role.direct && 4263 work->arch.cr3 != kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu)) 4264 return; 4265 4266 r = kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, work->arch.error_code, 4267 true, NULL, NULL); 4268 4269 /* 4270 * Account fixed page faults, otherwise they'll never be counted, but 4271 * ignore stats for all other return times. Page-ready "faults" aren't 4272 * truly spurious and never trigger emulation 4273 */ 4274 if (r == RET_PF_FIXED) 4275 vcpu->stat.pf_fixed++; 4276 } 4277 4278 static inline u8 kvm_max_level_for_order(int order) 4279 { 4280 BUILD_BUG_ON(KVM_MAX_HUGEPAGE_LEVEL > PG_LEVEL_1G); 4281 4282 KVM_MMU_WARN_ON(order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G) && 4283 order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M) && 4284 order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K)); 4285 4286 if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G)) 4287 return PG_LEVEL_1G; 4288 4289 if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M)) 4290 return PG_LEVEL_2M; 4291 4292 return PG_LEVEL_4K; 4293 } 4294 4295 static u8 kvm_max_private_mapping_level(struct kvm *kvm, kvm_pfn_t pfn, 4296 u8 max_level, int gmem_order) 4297 { 4298 u8 req_max_level; 4299 4300 if (max_level == PG_LEVEL_4K) 4301 return PG_LEVEL_4K; 4302 4303 max_level = min(kvm_max_level_for_order(gmem_order), max_level); 4304 if (max_level == PG_LEVEL_4K) 4305 return PG_LEVEL_4K; 4306 4307 req_max_level = kvm_x86_call(private_max_mapping_level)(kvm, pfn); 4308 if (req_max_level) 4309 max_level = min(max_level, req_max_level); 4310 4311 return max_level; 4312 } 4313 4314 static void kvm_mmu_finish_page_fault(struct kvm_vcpu *vcpu, 4315 struct kvm_page_fault *fault, int r) 4316 { 4317 kvm_release_faultin_page(vcpu->kvm, fault->refcounted_page, 4318 r == RET_PF_RETRY, fault->map_writable); 4319 } 4320 4321 static int kvm_mmu_faultin_pfn_private(struct kvm_vcpu *vcpu, 4322 struct kvm_page_fault *fault) 4323 { 4324 int max_order, r; 4325 4326 if (!kvm_slot_can_be_private(fault->slot)) { 4327 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 4328 return -EFAULT; 4329 } 4330 4331 r = kvm_gmem_get_pfn(vcpu->kvm, fault->slot, fault->gfn, &fault->pfn, 4332 &fault->refcounted_page, &max_order); 4333 if (r) { 4334 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 4335 return r; 4336 } 4337 4338 fault->map_writable = !(fault->slot->flags & KVM_MEM_READONLY); 4339 fault->max_level = kvm_max_private_mapping_level(vcpu->kvm, fault->pfn, 4340 fault->max_level, max_order); 4341 4342 return RET_PF_CONTINUE; 4343 } 4344 4345 static int __kvm_mmu_faultin_pfn(struct kvm_vcpu *vcpu, 4346 struct kvm_page_fault *fault) 4347 { 4348 unsigned int foll = fault->write ? FOLL_WRITE : 0; 4349 4350 if (fault->is_private) 4351 return kvm_mmu_faultin_pfn_private(vcpu, fault); 4352 4353 foll |= FOLL_NOWAIT; 4354 fault->pfn = __kvm_faultin_pfn(fault->slot, fault->gfn, foll, 4355 &fault->map_writable, &fault->refcounted_page); 4356 4357 /* 4358 * If resolving the page failed because I/O is needed to fault-in the 4359 * page, then either set up an asynchronous #PF to do the I/O, or if 4360 * doing an async #PF isn't possible, retry with I/O allowed. All 4361 * other failures are terminal, i.e. retrying won't help. 4362 */ 4363 if (fault->pfn != KVM_PFN_ERR_NEEDS_IO) 4364 return RET_PF_CONTINUE; 4365 4366 if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) { 4367 trace_kvm_try_async_get_page(fault->addr, fault->gfn); 4368 if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) { 4369 trace_kvm_async_pf_repeated_fault(fault->addr, fault->gfn); 4370 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 4371 return RET_PF_RETRY; 4372 } else if (kvm_arch_setup_async_pf(vcpu, fault)) { 4373 return RET_PF_RETRY; 4374 } 4375 } 4376 4377 /* 4378 * Allow gup to bail on pending non-fatal signals when it's also allowed 4379 * to wait for IO. Note, gup always bails if it is unable to quickly 4380 * get a page and a fatal signal, i.e. SIGKILL, is pending. 4381 */ 4382 foll |= FOLL_INTERRUPTIBLE; 4383 foll &= ~FOLL_NOWAIT; 4384 fault->pfn = __kvm_faultin_pfn(fault->slot, fault->gfn, foll, 4385 &fault->map_writable, &fault->refcounted_page); 4386 4387 return RET_PF_CONTINUE; 4388 } 4389 4390 static int kvm_mmu_faultin_pfn(struct kvm_vcpu *vcpu, 4391 struct kvm_page_fault *fault, unsigned int access) 4392 { 4393 struct kvm_memory_slot *slot = fault->slot; 4394 struct kvm *kvm = vcpu->kvm; 4395 int ret; 4396 4397 if (KVM_BUG_ON(kvm_is_gfn_alias(kvm, fault->gfn), kvm)) 4398 return -EFAULT; 4399 4400 /* 4401 * Note that the mmu_invalidate_seq also serves to detect a concurrent 4402 * change in attributes. is_page_fault_stale() will detect an 4403 * invalidation relate to fault->fn and resume the guest without 4404 * installing a mapping in the page tables. 4405 */ 4406 fault->mmu_seq = vcpu->kvm->mmu_invalidate_seq; 4407 smp_rmb(); 4408 4409 /* 4410 * Now that we have a snapshot of mmu_invalidate_seq we can check for a 4411 * private vs. shared mismatch. 4412 */ 4413 if (fault->is_private != kvm_mem_is_private(kvm, fault->gfn)) { 4414 kvm_mmu_prepare_memory_fault_exit(vcpu, fault); 4415 return -EFAULT; 4416 } 4417 4418 if (unlikely(!slot)) 4419 return kvm_handle_noslot_fault(vcpu, fault, access); 4420 4421 /* 4422 * Retry the page fault if the gfn hit a memslot that is being deleted 4423 * or moved. This ensures any existing SPTEs for the old memslot will 4424 * be zapped before KVM inserts a new MMIO SPTE for the gfn. 4425 */ 4426 if (slot->flags & KVM_MEMSLOT_INVALID) 4427 return RET_PF_RETRY; 4428 4429 if (slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT) { 4430 /* 4431 * Don't map L1's APIC access page into L2, KVM doesn't support 4432 * using APICv/AVIC to accelerate L2 accesses to L1's APIC, 4433 * i.e. the access needs to be emulated. Emulating access to 4434 * L1's APIC is also correct if L1 is accelerating L2's own 4435 * virtual APIC, but for some reason L1 also maps _L1's_ APIC 4436 * into L2. Note, vcpu_is_mmio_gpa() always treats access to 4437 * the APIC as MMIO. Allow an MMIO SPTE to be created, as KVM 4438 * uses different roots for L1 vs. L2, i.e. there is no danger 4439 * of breaking APICv/AVIC for L1. 4440 */ 4441 if (is_guest_mode(vcpu)) 4442 return kvm_handle_noslot_fault(vcpu, fault, access); 4443 4444 /* 4445 * If the APIC access page exists but is disabled, go directly 4446 * to emulation without caching the MMIO access or creating a 4447 * MMIO SPTE. That way the cache doesn't need to be purged 4448 * when the AVIC is re-enabled. 4449 */ 4450 if (!kvm_apicv_activated(vcpu->kvm)) 4451 return RET_PF_EMULATE; 4452 } 4453 4454 /* 4455 * Check for a relevant mmu_notifier invalidation event before getting 4456 * the pfn from the primary MMU, and before acquiring mmu_lock. 4457 * 4458 * For mmu_lock, if there is an in-progress invalidation and the kernel 4459 * allows preemption, the invalidation task may drop mmu_lock and yield 4460 * in response to mmu_lock being contended, which is *very* counter- 4461 * productive as this vCPU can't actually make forward progress until 4462 * the invalidation completes. 4463 * 4464 * Retrying now can also avoid unnessary lock contention in the primary 4465 * MMU, as the primary MMU doesn't necessarily hold a single lock for 4466 * the duration of the invalidation, i.e. faulting in a conflicting pfn 4467 * can cause the invalidation to take longer by holding locks that are 4468 * needed to complete the invalidation. 4469 * 4470 * Do the pre-check even for non-preemtible kernels, i.e. even if KVM 4471 * will never yield mmu_lock in response to contention, as this vCPU is 4472 * *guaranteed* to need to retry, i.e. waiting until mmu_lock is held 4473 * to detect retry guarantees the worst case latency for the vCPU. 4474 */ 4475 if (mmu_invalidate_retry_gfn_unsafe(kvm, fault->mmu_seq, fault->gfn)) 4476 return RET_PF_RETRY; 4477 4478 ret = __kvm_mmu_faultin_pfn(vcpu, fault); 4479 if (ret != RET_PF_CONTINUE) 4480 return ret; 4481 4482 if (unlikely(is_error_pfn(fault->pfn))) 4483 return kvm_handle_error_pfn(vcpu, fault); 4484 4485 if (WARN_ON_ONCE(!fault->slot || is_noslot_pfn(fault->pfn))) 4486 return kvm_handle_noslot_fault(vcpu, fault, access); 4487 4488 /* 4489 * Check again for a relevant mmu_notifier invalidation event purely to 4490 * avoid contending mmu_lock. Most invalidations will be detected by 4491 * the previous check, but checking is extremely cheap relative to the 4492 * overall cost of failing to detect the invalidation until after 4493 * mmu_lock is acquired. 4494 */ 4495 if (mmu_invalidate_retry_gfn_unsafe(kvm, fault->mmu_seq, fault->gfn)) { 4496 kvm_mmu_finish_page_fault(vcpu, fault, RET_PF_RETRY); 4497 return RET_PF_RETRY; 4498 } 4499 4500 return RET_PF_CONTINUE; 4501 } 4502 4503 /* 4504 * Returns true if the page fault is stale and needs to be retried, i.e. if the 4505 * root was invalidated by a memslot update or a relevant mmu_notifier fired. 4506 */ 4507 static bool is_page_fault_stale(struct kvm_vcpu *vcpu, 4508 struct kvm_page_fault *fault) 4509 { 4510 struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa); 4511 4512 /* Special roots, e.g. pae_root, are not backed by shadow pages. */ 4513 if (sp && is_obsolete_sp(vcpu->kvm, sp)) 4514 return true; 4515 4516 /* 4517 * Roots without an associated shadow page are considered invalid if 4518 * there is a pending request to free obsolete roots. The request is 4519 * only a hint that the current root _may_ be obsolete and needs to be 4520 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a 4521 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs 4522 * to reload even if no vCPU is actively using the root. 4523 */ 4524 if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 4525 return true; 4526 4527 /* 4528 * Check for a relevant mmu_notifier invalidation event one last time 4529 * now that mmu_lock is held, as the "unsafe" checks performed without 4530 * holding mmu_lock can get false negatives. 4531 */ 4532 return fault->slot && 4533 mmu_invalidate_retry_gfn(vcpu->kvm, fault->mmu_seq, fault->gfn); 4534 } 4535 4536 static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4537 { 4538 int r; 4539 4540 /* Dummy roots are used only for shadowing bad guest roots. */ 4541 if (WARN_ON_ONCE(kvm_mmu_is_dummy_root(vcpu->arch.mmu->root.hpa))) 4542 return RET_PF_RETRY; 4543 4544 if (page_fault_handle_page_track(vcpu, fault)) 4545 return RET_PF_WRITE_PROTECTED; 4546 4547 r = fast_page_fault(vcpu, fault); 4548 if (r != RET_PF_INVALID) 4549 return r; 4550 4551 r = mmu_topup_memory_caches(vcpu, false); 4552 if (r) 4553 return r; 4554 4555 r = kvm_mmu_faultin_pfn(vcpu, fault, ACC_ALL); 4556 if (r != RET_PF_CONTINUE) 4557 return r; 4558 4559 r = RET_PF_RETRY; 4560 write_lock(&vcpu->kvm->mmu_lock); 4561 4562 if (is_page_fault_stale(vcpu, fault)) 4563 goto out_unlock; 4564 4565 r = make_mmu_pages_available(vcpu); 4566 if (r) 4567 goto out_unlock; 4568 4569 r = direct_map(vcpu, fault); 4570 4571 out_unlock: 4572 kvm_mmu_finish_page_fault(vcpu, fault, r); 4573 write_unlock(&vcpu->kvm->mmu_lock); 4574 return r; 4575 } 4576 4577 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, 4578 struct kvm_page_fault *fault) 4579 { 4580 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */ 4581 fault->max_level = PG_LEVEL_2M; 4582 return direct_page_fault(vcpu, fault); 4583 } 4584 4585 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, 4586 u64 fault_address, char *insn, int insn_len) 4587 { 4588 int r = 1; 4589 u32 flags = vcpu->arch.apf.host_apf_flags; 4590 4591 #ifndef CONFIG_X86_64 4592 /* A 64-bit CR2 should be impossible on 32-bit KVM. */ 4593 if (WARN_ON_ONCE(fault_address >> 32)) 4594 return -EFAULT; 4595 #endif 4596 /* 4597 * Legacy #PF exception only have a 32-bit error code. Simply drop the 4598 * upper bits as KVM doesn't use them for #PF (because they are never 4599 * set), and to ensure there are no collisions with KVM-defined bits. 4600 */ 4601 if (WARN_ON_ONCE(error_code >> 32)) 4602 error_code = lower_32_bits(error_code); 4603 4604 /* 4605 * Restrict KVM-defined flags to bits 63:32 so that it's impossible for 4606 * them to conflict with #PF error codes, which are limited to 32 bits. 4607 */ 4608 BUILD_BUG_ON(lower_32_bits(PFERR_SYNTHETIC_MASK)); 4609 4610 vcpu->arch.l1tf_flush_l1d = true; 4611 if (!flags) { 4612 trace_kvm_page_fault(vcpu, fault_address, error_code); 4613 4614 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn, 4615 insn_len); 4616 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) { 4617 vcpu->arch.apf.host_apf_flags = 0; 4618 local_irq_disable(); 4619 kvm_async_pf_task_wait_schedule(fault_address); 4620 local_irq_enable(); 4621 } else { 4622 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags); 4623 } 4624 4625 return r; 4626 } 4627 EXPORT_SYMBOL_GPL(kvm_handle_page_fault); 4628 4629 #ifdef CONFIG_X86_64 4630 static int kvm_tdp_mmu_page_fault(struct kvm_vcpu *vcpu, 4631 struct kvm_page_fault *fault) 4632 { 4633 int r; 4634 4635 if (page_fault_handle_page_track(vcpu, fault)) 4636 return RET_PF_WRITE_PROTECTED; 4637 4638 r = fast_page_fault(vcpu, fault); 4639 if (r != RET_PF_INVALID) 4640 return r; 4641 4642 r = mmu_topup_memory_caches(vcpu, false); 4643 if (r) 4644 return r; 4645 4646 r = kvm_mmu_faultin_pfn(vcpu, fault, ACC_ALL); 4647 if (r != RET_PF_CONTINUE) 4648 return r; 4649 4650 r = RET_PF_RETRY; 4651 read_lock(&vcpu->kvm->mmu_lock); 4652 4653 if (is_page_fault_stale(vcpu, fault)) 4654 goto out_unlock; 4655 4656 r = kvm_tdp_mmu_map(vcpu, fault); 4657 4658 out_unlock: 4659 kvm_mmu_finish_page_fault(vcpu, fault, r); 4660 read_unlock(&vcpu->kvm->mmu_lock); 4661 return r; 4662 } 4663 #endif 4664 4665 bool kvm_mmu_may_ignore_guest_pat(void) 4666 { 4667 /* 4668 * When EPT is enabled (shadow_memtype_mask is non-zero), and the VM 4669 * has non-coherent DMA (DMA doesn't snoop CPU caches), KVM's ABI is to 4670 * honor the memtype from the guest's PAT so that guest accesses to 4671 * memory that is DMA'd aren't cached against the guest's wishes. As a 4672 * result, KVM _may_ ignore guest PAT, whereas without non-coherent DMA, 4673 * KVM _always_ ignores guest PAT (when EPT is enabled). 4674 */ 4675 return shadow_memtype_mask; 4676 } 4677 4678 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 4679 { 4680 #ifdef CONFIG_X86_64 4681 if (tdp_mmu_enabled) 4682 return kvm_tdp_mmu_page_fault(vcpu, fault); 4683 #endif 4684 4685 return direct_page_fault(vcpu, fault); 4686 } 4687 4688 static int kvm_tdp_map_page(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code, 4689 u8 *level) 4690 { 4691 int r; 4692 4693 /* 4694 * Restrict to TDP page fault, since that's the only case where the MMU 4695 * is indexed by GPA. 4696 */ 4697 if (vcpu->arch.mmu->page_fault != kvm_tdp_page_fault) 4698 return -EOPNOTSUPP; 4699 4700 do { 4701 if (signal_pending(current)) 4702 return -EINTR; 4703 cond_resched(); 4704 r = kvm_mmu_do_page_fault(vcpu, gpa, error_code, true, NULL, level); 4705 } while (r == RET_PF_RETRY); 4706 4707 if (r < 0) 4708 return r; 4709 4710 switch (r) { 4711 case RET_PF_FIXED: 4712 case RET_PF_SPURIOUS: 4713 case RET_PF_WRITE_PROTECTED: 4714 return 0; 4715 4716 case RET_PF_EMULATE: 4717 return -ENOENT; 4718 4719 case RET_PF_RETRY: 4720 case RET_PF_CONTINUE: 4721 case RET_PF_INVALID: 4722 default: 4723 WARN_ONCE(1, "could not fix page fault during prefault"); 4724 return -EIO; 4725 } 4726 } 4727 4728 long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu, 4729 struct kvm_pre_fault_memory *range) 4730 { 4731 u64 error_code = PFERR_GUEST_FINAL_MASK; 4732 u8 level = PG_LEVEL_4K; 4733 u64 end; 4734 int r; 4735 4736 if (!vcpu->kvm->arch.pre_fault_allowed) 4737 return -EOPNOTSUPP; 4738 4739 /* 4740 * reload is efficient when called repeatedly, so we can do it on 4741 * every iteration. 4742 */ 4743 r = kvm_mmu_reload(vcpu); 4744 if (r) 4745 return r; 4746 4747 if (kvm_arch_has_private_mem(vcpu->kvm) && 4748 kvm_mem_is_private(vcpu->kvm, gpa_to_gfn(range->gpa))) 4749 error_code |= PFERR_PRIVATE_ACCESS; 4750 4751 /* 4752 * Shadow paging uses GVA for kvm page fault, so restrict to 4753 * two-dimensional paging. 4754 */ 4755 r = kvm_tdp_map_page(vcpu, range->gpa, error_code, &level); 4756 if (r < 0) 4757 return r; 4758 4759 /* 4760 * If the mapping that covers range->gpa can use a huge page, it 4761 * may start below it or end after range->gpa + range->size. 4762 */ 4763 end = (range->gpa & KVM_HPAGE_MASK(level)) + KVM_HPAGE_SIZE(level); 4764 return min(range->size, end - range->gpa); 4765 } 4766 4767 static void nonpaging_init_context(struct kvm_mmu *context) 4768 { 4769 context->page_fault = nonpaging_page_fault; 4770 context->gva_to_gpa = nonpaging_gva_to_gpa; 4771 context->sync_spte = NULL; 4772 } 4773 4774 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd, 4775 union kvm_mmu_page_role role) 4776 { 4777 struct kvm_mmu_page *sp; 4778 4779 if (!VALID_PAGE(root->hpa)) 4780 return false; 4781 4782 if (!role.direct && pgd != root->pgd) 4783 return false; 4784 4785 sp = root_to_sp(root->hpa); 4786 if (WARN_ON_ONCE(!sp)) 4787 return false; 4788 4789 return role.word == sp->role.word; 4790 } 4791 4792 /* 4793 * Find out if a previously cached root matching the new pgd/role is available, 4794 * and insert the current root as the MRU in the cache. 4795 * If a matching root is found, it is assigned to kvm_mmu->root and 4796 * true is returned. 4797 * If no match is found, kvm_mmu->root is left invalid, the LRU root is 4798 * evicted to make room for the current root, and false is returned. 4799 */ 4800 static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu, 4801 gpa_t new_pgd, 4802 union kvm_mmu_page_role new_role) 4803 { 4804 uint i; 4805 4806 if (is_root_usable(&mmu->root, new_pgd, new_role)) 4807 return true; 4808 4809 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 4810 /* 4811 * The swaps end up rotating the cache like this: 4812 * C 0 1 2 3 (on entry to the function) 4813 * 0 C 1 2 3 4814 * 1 C 0 2 3 4815 * 2 C 0 1 3 4816 * 3 C 0 1 2 (on exit from the loop) 4817 */ 4818 swap(mmu->root, mmu->prev_roots[i]); 4819 if (is_root_usable(&mmu->root, new_pgd, new_role)) 4820 return true; 4821 } 4822 4823 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 4824 return false; 4825 } 4826 4827 /* 4828 * Find out if a previously cached root matching the new pgd/role is available. 4829 * On entry, mmu->root is invalid. 4830 * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry 4831 * of the cache becomes invalid, and true is returned. 4832 * If no match is found, kvm_mmu->root is left invalid and false is returned. 4833 */ 4834 static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu, 4835 gpa_t new_pgd, 4836 union kvm_mmu_page_role new_role) 4837 { 4838 uint i; 4839 4840 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 4841 if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role)) 4842 goto hit; 4843 4844 return false; 4845 4846 hit: 4847 swap(mmu->root, mmu->prev_roots[i]); 4848 /* Bubble up the remaining roots. */ 4849 for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++) 4850 mmu->prev_roots[i] = mmu->prev_roots[i + 1]; 4851 mmu->prev_roots[i].hpa = INVALID_PAGE; 4852 return true; 4853 } 4854 4855 static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu, 4856 gpa_t new_pgd, union kvm_mmu_page_role new_role) 4857 { 4858 /* 4859 * Limit reuse to 64-bit hosts+VMs without "special" roots in order to 4860 * avoid having to deal with PDPTEs and other complexities. 4861 */ 4862 if (VALID_PAGE(mmu->root.hpa) && !root_to_sp(mmu->root.hpa)) 4863 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); 4864 4865 if (VALID_PAGE(mmu->root.hpa)) 4866 return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role); 4867 else 4868 return cached_root_find_without_current(kvm, mmu, new_pgd, new_role); 4869 } 4870 4871 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd) 4872 { 4873 struct kvm_mmu *mmu = vcpu->arch.mmu; 4874 union kvm_mmu_page_role new_role = mmu->root_role; 4875 4876 /* 4877 * Return immediately if no usable root was found, kvm_mmu_reload() 4878 * will establish a valid root prior to the next VM-Enter. 4879 */ 4880 if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role)) 4881 return; 4882 4883 /* 4884 * It's possible that the cached previous root page is obsolete because 4885 * of a change in the MMU generation number. However, changing the 4886 * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, 4887 * which will free the root set here and allocate a new one. 4888 */ 4889 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 4890 4891 if (force_flush_and_sync_on_reuse) { 4892 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 4893 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 4894 } 4895 4896 /* 4897 * The last MMIO access's GVA and GPA are cached in the VCPU. When 4898 * switching to a new CR3, that GVA->GPA mapping may no longer be 4899 * valid. So clear any cached MMIO info even when we don't need to sync 4900 * the shadow page tables. 4901 */ 4902 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 4903 4904 /* 4905 * If this is a direct root page, it doesn't have a write flooding 4906 * count. Otherwise, clear the write flooding count. 4907 */ 4908 if (!new_role.direct) { 4909 struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa); 4910 4911 if (!WARN_ON_ONCE(!sp)) 4912 __clear_sp_write_flooding_count(sp); 4913 } 4914 } 4915 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd); 4916 4917 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, 4918 unsigned int access) 4919 { 4920 if (unlikely(is_mmio_spte(vcpu->kvm, *sptep))) { 4921 if (gfn != get_mmio_spte_gfn(*sptep)) { 4922 mmu_spte_clear_no_track(sptep); 4923 return true; 4924 } 4925 4926 mark_mmio_spte(vcpu, sptep, gfn, access); 4927 return true; 4928 } 4929 4930 return false; 4931 } 4932 4933 #define PTTYPE_EPT 18 /* arbitrary */ 4934 #define PTTYPE PTTYPE_EPT 4935 #include "paging_tmpl.h" 4936 #undef PTTYPE 4937 4938 #define PTTYPE 64 4939 #include "paging_tmpl.h" 4940 #undef PTTYPE 4941 4942 #define PTTYPE 32 4943 #include "paging_tmpl.h" 4944 #undef PTTYPE 4945 4946 static void __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check, 4947 u64 pa_bits_rsvd, int level, bool nx, 4948 bool gbpages, bool pse, bool amd) 4949 { 4950 u64 gbpages_bit_rsvd = 0; 4951 u64 nonleaf_bit8_rsvd = 0; 4952 u64 high_bits_rsvd; 4953 4954 rsvd_check->bad_mt_xwr = 0; 4955 4956 if (!gbpages) 4957 gbpages_bit_rsvd = rsvd_bits(7, 7); 4958 4959 if (level == PT32E_ROOT_LEVEL) 4960 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62); 4961 else 4962 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4963 4964 /* Note, NX doesn't exist in PDPTEs, this is handled below. */ 4965 if (!nx) 4966 high_bits_rsvd |= rsvd_bits(63, 63); 4967 4968 /* 4969 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for 4970 * leaf entries) on AMD CPUs only. 4971 */ 4972 if (amd) 4973 nonleaf_bit8_rsvd = rsvd_bits(8, 8); 4974 4975 switch (level) { 4976 case PT32_ROOT_LEVEL: 4977 /* no rsvd bits for 2 level 4K page table entries */ 4978 rsvd_check->rsvd_bits_mask[0][1] = 0; 4979 rsvd_check->rsvd_bits_mask[0][0] = 0; 4980 rsvd_check->rsvd_bits_mask[1][0] = 4981 rsvd_check->rsvd_bits_mask[0][0]; 4982 4983 if (!pse) { 4984 rsvd_check->rsvd_bits_mask[1][1] = 0; 4985 break; 4986 } 4987 4988 if (is_cpuid_PSE36()) 4989 /* 36bits PSE 4MB page */ 4990 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); 4991 else 4992 /* 32 bits PSE 4MB page */ 4993 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); 4994 break; 4995 case PT32E_ROOT_LEVEL: 4996 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) | 4997 high_bits_rsvd | 4998 rsvd_bits(5, 8) | 4999 rsvd_bits(1, 2); /* PDPTE */ 5000 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */ 5001 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */ 5002 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 5003 rsvd_bits(13, 20); /* large page */ 5004 rsvd_check->rsvd_bits_mask[1][0] = 5005 rsvd_check->rsvd_bits_mask[0][0]; 5006 break; 5007 case PT64_ROOT_5LEVEL: 5008 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | 5009 nonleaf_bit8_rsvd | 5010 rsvd_bits(7, 7); 5011 rsvd_check->rsvd_bits_mask[1][4] = 5012 rsvd_check->rsvd_bits_mask[0][4]; 5013 fallthrough; 5014 case PT64_ROOT_4LEVEL: 5015 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | 5016 nonleaf_bit8_rsvd | 5017 rsvd_bits(7, 7); 5018 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | 5019 gbpages_bit_rsvd; 5020 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; 5021 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 5022 rsvd_check->rsvd_bits_mask[1][3] = 5023 rsvd_check->rsvd_bits_mask[0][3]; 5024 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | 5025 gbpages_bit_rsvd | 5026 rsvd_bits(13, 29); 5027 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 5028 rsvd_bits(13, 20); /* large page */ 5029 rsvd_check->rsvd_bits_mask[1][0] = 5030 rsvd_check->rsvd_bits_mask[0][0]; 5031 break; 5032 } 5033 } 5034 5035 static void reset_guest_rsvds_bits_mask(struct kvm_vcpu *vcpu, 5036 struct kvm_mmu *context) 5037 { 5038 __reset_rsvds_bits_mask(&context->guest_rsvd_check, 5039 vcpu->arch.reserved_gpa_bits, 5040 context->cpu_role.base.level, is_efer_nx(context), 5041 guest_cpu_cap_has(vcpu, X86_FEATURE_GBPAGES), 5042 is_cr4_pse(context), 5043 guest_cpuid_is_amd_compatible(vcpu)); 5044 } 5045 5046 static void __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check, 5047 u64 pa_bits_rsvd, bool execonly, 5048 int huge_page_level) 5049 { 5050 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 5051 u64 large_1g_rsvd = 0, large_2m_rsvd = 0; 5052 u64 bad_mt_xwr; 5053 5054 if (huge_page_level < PG_LEVEL_1G) 5055 large_1g_rsvd = rsvd_bits(7, 7); 5056 if (huge_page_level < PG_LEVEL_2M) 5057 large_2m_rsvd = rsvd_bits(7, 7); 5058 5059 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7); 5060 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7); 5061 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd; 5062 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd; 5063 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 5064 5065 /* large page */ 5066 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4]; 5067 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3]; 5068 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd; 5069 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd; 5070 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0]; 5071 5072 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */ 5073 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */ 5074 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */ 5075 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */ 5076 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */ 5077 if (!execonly) { 5078 /* bits 0..2 must not be 100 unless VMX capabilities allow it */ 5079 bad_mt_xwr |= REPEAT_BYTE(1ull << 4); 5080 } 5081 rsvd_check->bad_mt_xwr = bad_mt_xwr; 5082 } 5083 5084 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, 5085 struct kvm_mmu *context, bool execonly, int huge_page_level) 5086 { 5087 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check, 5088 vcpu->arch.reserved_gpa_bits, execonly, 5089 huge_page_level); 5090 } 5091 5092 static inline u64 reserved_hpa_bits(void) 5093 { 5094 return rsvd_bits(kvm_host.maxphyaddr, 63); 5095 } 5096 5097 /* 5098 * the page table on host is the shadow page table for the page 5099 * table in guest or amd nested guest, its mmu features completely 5100 * follow the features in guest. 5101 */ 5102 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 5103 struct kvm_mmu *context) 5104 { 5105 /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */ 5106 bool is_amd = true; 5107 /* KVM doesn't use 2-level page tables for the shadow MMU. */ 5108 bool is_pse = false; 5109 struct rsvd_bits_validate *shadow_zero_check; 5110 int i; 5111 5112 WARN_ON_ONCE(context->root_role.level < PT32E_ROOT_LEVEL); 5113 5114 shadow_zero_check = &context->shadow_zero_check; 5115 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 5116 context->root_role.level, 5117 context->root_role.efer_nx, 5118 guest_cpu_cap_has(vcpu, X86_FEATURE_GBPAGES), 5119 is_pse, is_amd); 5120 5121 if (!shadow_me_mask) 5122 return; 5123 5124 for (i = context->root_role.level; --i >= 0;) { 5125 /* 5126 * So far shadow_me_value is a constant during KVM's life 5127 * time. Bits in shadow_me_value are allowed to be set. 5128 * Bits in shadow_me_mask but not in shadow_me_value are 5129 * not allowed to be set. 5130 */ 5131 shadow_zero_check->rsvd_bits_mask[0][i] |= shadow_me_mask; 5132 shadow_zero_check->rsvd_bits_mask[1][i] |= shadow_me_mask; 5133 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_value; 5134 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_value; 5135 } 5136 5137 } 5138 5139 static inline bool boot_cpu_is_amd(void) 5140 { 5141 WARN_ON_ONCE(!tdp_enabled); 5142 return shadow_x_mask == 0; 5143 } 5144 5145 /* 5146 * the direct page table on host, use as much mmu features as 5147 * possible, however, kvm currently does not do execution-protection. 5148 */ 5149 static void reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context) 5150 { 5151 struct rsvd_bits_validate *shadow_zero_check; 5152 int i; 5153 5154 shadow_zero_check = &context->shadow_zero_check; 5155 5156 if (boot_cpu_is_amd()) 5157 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), 5158 context->root_role.level, true, 5159 boot_cpu_has(X86_FEATURE_GBPAGES), 5160 false, true); 5161 else 5162 __reset_rsvds_bits_mask_ept(shadow_zero_check, 5163 reserved_hpa_bits(), false, 5164 max_huge_page_level); 5165 5166 if (!shadow_me_mask) 5167 return; 5168 5169 for (i = context->root_role.level; --i >= 0;) { 5170 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 5171 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 5172 } 5173 } 5174 5175 /* 5176 * as the comments in reset_shadow_zero_bits_mask() except it 5177 * is the shadow page table for intel nested guest. 5178 */ 5179 static void 5180 reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly) 5181 { 5182 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check, 5183 reserved_hpa_bits(), execonly, 5184 max_huge_page_level); 5185 } 5186 5187 #define BYTE_MASK(access) \ 5188 ((1 & (access) ? 2 : 0) | \ 5189 (2 & (access) ? 4 : 0) | \ 5190 (3 & (access) ? 8 : 0) | \ 5191 (4 & (access) ? 16 : 0) | \ 5192 (5 & (access) ? 32 : 0) | \ 5193 (6 & (access) ? 64 : 0) | \ 5194 (7 & (access) ? 128 : 0)) 5195 5196 5197 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept) 5198 { 5199 unsigned byte; 5200 5201 const u8 x = BYTE_MASK(ACC_EXEC_MASK); 5202 const u8 w = BYTE_MASK(ACC_WRITE_MASK); 5203 const u8 u = BYTE_MASK(ACC_USER_MASK); 5204 5205 bool cr4_smep = is_cr4_smep(mmu); 5206 bool cr4_smap = is_cr4_smap(mmu); 5207 bool cr0_wp = is_cr0_wp(mmu); 5208 bool efer_nx = is_efer_nx(mmu); 5209 5210 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { 5211 unsigned pfec = byte << 1; 5212 5213 /* 5214 * Each "*f" variable has a 1 bit for each UWX value 5215 * that causes a fault with the given PFEC. 5216 */ 5217 5218 /* Faults from writes to non-writable pages */ 5219 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0; 5220 /* Faults from user mode accesses to supervisor pages */ 5221 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0; 5222 /* Faults from fetches of non-executable pages*/ 5223 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0; 5224 /* Faults from kernel mode fetches of user pages */ 5225 u8 smepf = 0; 5226 /* Faults from kernel mode accesses of user pages */ 5227 u8 smapf = 0; 5228 5229 if (!ept) { 5230 /* Faults from kernel mode accesses to user pages */ 5231 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u; 5232 5233 /* Not really needed: !nx will cause pte.nx to fault */ 5234 if (!efer_nx) 5235 ff = 0; 5236 5237 /* Allow supervisor writes if !cr0.wp */ 5238 if (!cr0_wp) 5239 wf = (pfec & PFERR_USER_MASK) ? wf : 0; 5240 5241 /* Disallow supervisor fetches of user code if cr4.smep */ 5242 if (cr4_smep) 5243 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0; 5244 5245 /* 5246 * SMAP:kernel-mode data accesses from user-mode 5247 * mappings should fault. A fault is considered 5248 * as a SMAP violation if all of the following 5249 * conditions are true: 5250 * - X86_CR4_SMAP is set in CR4 5251 * - A user page is accessed 5252 * - The access is not a fetch 5253 * - The access is supervisor mode 5254 * - If implicit supervisor access or X86_EFLAGS_AC is clear 5255 * 5256 * Here, we cover the first four conditions. 5257 * The fifth is computed dynamically in permission_fault(); 5258 * PFERR_RSVD_MASK bit will be set in PFEC if the access is 5259 * *not* subject to SMAP restrictions. 5260 */ 5261 if (cr4_smap) 5262 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf; 5263 } 5264 5265 mmu->permissions[byte] = ff | uf | wf | smepf | smapf; 5266 } 5267 } 5268 5269 /* 5270 * PKU is an additional mechanism by which the paging controls access to 5271 * user-mode addresses based on the value in the PKRU register. Protection 5272 * key violations are reported through a bit in the page fault error code. 5273 * Unlike other bits of the error code, the PK bit is not known at the 5274 * call site of e.g. gva_to_gpa; it must be computed directly in 5275 * permission_fault based on two bits of PKRU, on some machine state (CR4, 5276 * CR0, EFER, CPL), and on other bits of the error code and the page tables. 5277 * 5278 * In particular the following conditions come from the error code, the 5279 * page tables and the machine state: 5280 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1 5281 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch) 5282 * - PK is always zero if U=0 in the page tables 5283 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access. 5284 * 5285 * The PKRU bitmask caches the result of these four conditions. The error 5286 * code (minus the P bit) and the page table's U bit form an index into the 5287 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed 5288 * with the two bits of the PKRU register corresponding to the protection key. 5289 * For the first three conditions above the bits will be 00, thus masking 5290 * away both AD and WD. For all reads or if the last condition holds, WD 5291 * only will be masked away. 5292 */ 5293 static void update_pkru_bitmask(struct kvm_mmu *mmu) 5294 { 5295 unsigned bit; 5296 bool wp; 5297 5298 mmu->pkru_mask = 0; 5299 5300 if (!is_cr4_pke(mmu)) 5301 return; 5302 5303 wp = is_cr0_wp(mmu); 5304 5305 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) { 5306 unsigned pfec, pkey_bits; 5307 bool check_pkey, check_write, ff, uf, wf, pte_user; 5308 5309 pfec = bit << 1; 5310 ff = pfec & PFERR_FETCH_MASK; 5311 uf = pfec & PFERR_USER_MASK; 5312 wf = pfec & PFERR_WRITE_MASK; 5313 5314 /* PFEC.RSVD is replaced by ACC_USER_MASK. */ 5315 pte_user = pfec & PFERR_RSVD_MASK; 5316 5317 /* 5318 * Only need to check the access which is not an 5319 * instruction fetch and is to a user page. 5320 */ 5321 check_pkey = (!ff && pte_user); 5322 /* 5323 * write access is controlled by PKRU if it is a 5324 * user access or CR0.WP = 1. 5325 */ 5326 check_write = check_pkey && wf && (uf || wp); 5327 5328 /* PKRU.AD stops both read and write access. */ 5329 pkey_bits = !!check_pkey; 5330 /* PKRU.WD stops write access. */ 5331 pkey_bits |= (!!check_write) << 1; 5332 5333 mmu->pkru_mask |= (pkey_bits & 3) << pfec; 5334 } 5335 } 5336 5337 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu, 5338 struct kvm_mmu *mmu) 5339 { 5340 if (!is_cr0_pg(mmu)) 5341 return; 5342 5343 reset_guest_rsvds_bits_mask(vcpu, mmu); 5344 update_permission_bitmask(mmu, false); 5345 update_pkru_bitmask(mmu); 5346 } 5347 5348 static void paging64_init_context(struct kvm_mmu *context) 5349 { 5350 context->page_fault = paging64_page_fault; 5351 context->gva_to_gpa = paging64_gva_to_gpa; 5352 context->sync_spte = paging64_sync_spte; 5353 } 5354 5355 static void paging32_init_context(struct kvm_mmu *context) 5356 { 5357 context->page_fault = paging32_page_fault; 5358 context->gva_to_gpa = paging32_gva_to_gpa; 5359 context->sync_spte = paging32_sync_spte; 5360 } 5361 5362 static union kvm_cpu_role kvm_calc_cpu_role(struct kvm_vcpu *vcpu, 5363 const struct kvm_mmu_role_regs *regs) 5364 { 5365 union kvm_cpu_role role = {0}; 5366 5367 role.base.access = ACC_ALL; 5368 role.base.smm = is_smm(vcpu); 5369 role.base.guest_mode = is_guest_mode(vcpu); 5370 role.ext.valid = 1; 5371 5372 if (!____is_cr0_pg(regs)) { 5373 role.base.direct = 1; 5374 return role; 5375 } 5376 5377 role.base.efer_nx = ____is_efer_nx(regs); 5378 role.base.cr0_wp = ____is_cr0_wp(regs); 5379 role.base.smep_andnot_wp = ____is_cr4_smep(regs) && !____is_cr0_wp(regs); 5380 role.base.smap_andnot_wp = ____is_cr4_smap(regs) && !____is_cr0_wp(regs); 5381 role.base.has_4_byte_gpte = !____is_cr4_pae(regs); 5382 5383 if (____is_efer_lma(regs)) 5384 role.base.level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL 5385 : PT64_ROOT_4LEVEL; 5386 else if (____is_cr4_pae(regs)) 5387 role.base.level = PT32E_ROOT_LEVEL; 5388 else 5389 role.base.level = PT32_ROOT_LEVEL; 5390 5391 role.ext.cr4_smep = ____is_cr4_smep(regs); 5392 role.ext.cr4_smap = ____is_cr4_smap(regs); 5393 role.ext.cr4_pse = ____is_cr4_pse(regs); 5394 5395 /* PKEY and LA57 are active iff long mode is active. */ 5396 role.ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs); 5397 role.ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs); 5398 role.ext.efer_lma = ____is_efer_lma(regs); 5399 return role; 5400 } 5401 5402 void __kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu, 5403 struct kvm_mmu *mmu) 5404 { 5405 const bool cr0_wp = kvm_is_cr0_bit_set(vcpu, X86_CR0_WP); 5406 5407 BUILD_BUG_ON((KVM_MMU_CR0_ROLE_BITS & KVM_POSSIBLE_CR0_GUEST_BITS) != X86_CR0_WP); 5408 BUILD_BUG_ON((KVM_MMU_CR4_ROLE_BITS & KVM_POSSIBLE_CR4_GUEST_BITS)); 5409 5410 if (is_cr0_wp(mmu) == cr0_wp) 5411 return; 5412 5413 mmu->cpu_role.base.cr0_wp = cr0_wp; 5414 reset_guest_paging_metadata(vcpu, mmu); 5415 } 5416 5417 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu) 5418 { 5419 /* tdp_root_level is architecture forced level, use it if nonzero */ 5420 if (tdp_root_level) 5421 return tdp_root_level; 5422 5423 /* Use 5-level TDP if and only if it's useful/necessary. */ 5424 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48) 5425 return 4; 5426 5427 return max_tdp_level; 5428 } 5429 5430 u8 kvm_mmu_get_max_tdp_level(void) 5431 { 5432 return tdp_root_level ? tdp_root_level : max_tdp_level; 5433 } 5434 5435 static union kvm_mmu_page_role 5436 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, 5437 union kvm_cpu_role cpu_role) 5438 { 5439 union kvm_mmu_page_role role = {0}; 5440 5441 role.access = ACC_ALL; 5442 role.cr0_wp = true; 5443 role.efer_nx = true; 5444 role.smm = cpu_role.base.smm; 5445 role.guest_mode = cpu_role.base.guest_mode; 5446 role.ad_disabled = !kvm_ad_enabled; 5447 role.level = kvm_mmu_get_tdp_level(vcpu); 5448 role.direct = true; 5449 role.has_4_byte_gpte = false; 5450 5451 return role; 5452 } 5453 5454 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu, 5455 union kvm_cpu_role cpu_role) 5456 { 5457 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5458 union kvm_mmu_page_role root_role = kvm_calc_tdp_mmu_root_page_role(vcpu, cpu_role); 5459 5460 if (cpu_role.as_u64 == context->cpu_role.as_u64 && 5461 root_role.word == context->root_role.word) 5462 return; 5463 5464 context->cpu_role.as_u64 = cpu_role.as_u64; 5465 context->root_role.word = root_role.word; 5466 context->page_fault = kvm_tdp_page_fault; 5467 context->sync_spte = NULL; 5468 context->get_guest_pgd = get_guest_cr3; 5469 context->get_pdptr = kvm_pdptr_read; 5470 context->inject_page_fault = kvm_inject_page_fault; 5471 5472 if (!is_cr0_pg(context)) 5473 context->gva_to_gpa = nonpaging_gva_to_gpa; 5474 else if (is_cr4_pae(context)) 5475 context->gva_to_gpa = paging64_gva_to_gpa; 5476 else 5477 context->gva_to_gpa = paging32_gva_to_gpa; 5478 5479 reset_guest_paging_metadata(vcpu, context); 5480 reset_tdp_shadow_zero_bits_mask(context); 5481 } 5482 5483 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context, 5484 union kvm_cpu_role cpu_role, 5485 union kvm_mmu_page_role root_role) 5486 { 5487 if (cpu_role.as_u64 == context->cpu_role.as_u64 && 5488 root_role.word == context->root_role.word) 5489 return; 5490 5491 context->cpu_role.as_u64 = cpu_role.as_u64; 5492 context->root_role.word = root_role.word; 5493 5494 if (!is_cr0_pg(context)) 5495 nonpaging_init_context(context); 5496 else if (is_cr4_pae(context)) 5497 paging64_init_context(context); 5498 else 5499 paging32_init_context(context); 5500 5501 reset_guest_paging_metadata(vcpu, context); 5502 reset_shadow_zero_bits_mask(vcpu, context); 5503 } 5504 5505 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, 5506 union kvm_cpu_role cpu_role) 5507 { 5508 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5509 union kvm_mmu_page_role root_role; 5510 5511 root_role = cpu_role.base; 5512 5513 /* KVM uses PAE paging whenever the guest isn't using 64-bit paging. */ 5514 root_role.level = max_t(u32, root_role.level, PT32E_ROOT_LEVEL); 5515 5516 /* 5517 * KVM forces EFER.NX=1 when TDP is disabled, reflect it in the MMU role. 5518 * KVM uses NX when TDP is disabled to handle a variety of scenarios, 5519 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and 5520 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0. 5521 * The iTLB multi-hit workaround can be toggled at any time, so assume 5522 * NX can be used by any non-nested shadow MMU to avoid having to reset 5523 * MMU contexts. 5524 */ 5525 root_role.efer_nx = true; 5526 5527 shadow_mmu_init_context(vcpu, context, cpu_role, root_role); 5528 } 5529 5530 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0, 5531 unsigned long cr4, u64 efer, gpa_t nested_cr3) 5532 { 5533 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 5534 struct kvm_mmu_role_regs regs = { 5535 .cr0 = cr0, 5536 .cr4 = cr4 & ~X86_CR4_PKE, 5537 .efer = efer, 5538 }; 5539 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); 5540 union kvm_mmu_page_role root_role; 5541 5542 /* NPT requires CR0.PG=1. */ 5543 WARN_ON_ONCE(cpu_role.base.direct || !cpu_role.base.guest_mode); 5544 5545 root_role = cpu_role.base; 5546 root_role.level = kvm_mmu_get_tdp_level(vcpu); 5547 if (root_role.level == PT64_ROOT_5LEVEL && 5548 cpu_role.base.level == PT64_ROOT_4LEVEL) 5549 root_role.passthrough = 1; 5550 5551 shadow_mmu_init_context(vcpu, context, cpu_role, root_role); 5552 kvm_mmu_new_pgd(vcpu, nested_cr3); 5553 } 5554 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu); 5555 5556 static union kvm_cpu_role 5557 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty, 5558 bool execonly, u8 level) 5559 { 5560 union kvm_cpu_role role = {0}; 5561 5562 /* 5563 * KVM does not support SMM transfer monitors, and consequently does not 5564 * support the "entry to SMM" control either. role.base.smm is always 0. 5565 */ 5566 WARN_ON_ONCE(is_smm(vcpu)); 5567 role.base.level = level; 5568 role.base.has_4_byte_gpte = false; 5569 role.base.direct = false; 5570 role.base.ad_disabled = !accessed_dirty; 5571 role.base.guest_mode = true; 5572 role.base.access = ACC_ALL; 5573 5574 role.ext.word = 0; 5575 role.ext.execonly = execonly; 5576 role.ext.valid = 1; 5577 5578 return role; 5579 } 5580 5581 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, 5582 int huge_page_level, bool accessed_dirty, 5583 gpa_t new_eptp) 5584 { 5585 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 5586 u8 level = vmx_eptp_page_walk_level(new_eptp); 5587 union kvm_cpu_role new_mode = 5588 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty, 5589 execonly, level); 5590 5591 if (new_mode.as_u64 != context->cpu_role.as_u64) { 5592 /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */ 5593 context->cpu_role.as_u64 = new_mode.as_u64; 5594 context->root_role.word = new_mode.base.word; 5595 5596 context->page_fault = ept_page_fault; 5597 context->gva_to_gpa = ept_gva_to_gpa; 5598 context->sync_spte = ept_sync_spte; 5599 5600 update_permission_bitmask(context, true); 5601 context->pkru_mask = 0; 5602 reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level); 5603 reset_ept_shadow_zero_bits_mask(context, execonly); 5604 } 5605 5606 kvm_mmu_new_pgd(vcpu, new_eptp); 5607 } 5608 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); 5609 5610 static void init_kvm_softmmu(struct kvm_vcpu *vcpu, 5611 union kvm_cpu_role cpu_role) 5612 { 5613 struct kvm_mmu *context = &vcpu->arch.root_mmu; 5614 5615 kvm_init_shadow_mmu(vcpu, cpu_role); 5616 5617 context->get_guest_pgd = get_guest_cr3; 5618 context->get_pdptr = kvm_pdptr_read; 5619 context->inject_page_fault = kvm_inject_page_fault; 5620 } 5621 5622 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu, 5623 union kvm_cpu_role new_mode) 5624 { 5625 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; 5626 5627 if (new_mode.as_u64 == g_context->cpu_role.as_u64) 5628 return; 5629 5630 g_context->cpu_role.as_u64 = new_mode.as_u64; 5631 g_context->get_guest_pgd = get_guest_cr3; 5632 g_context->get_pdptr = kvm_pdptr_read; 5633 g_context->inject_page_fault = kvm_inject_page_fault; 5634 5635 /* 5636 * L2 page tables are never shadowed, so there is no need to sync 5637 * SPTEs. 5638 */ 5639 g_context->sync_spte = NULL; 5640 5641 /* 5642 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using 5643 * L1's nested page tables (e.g. EPT12). The nested translation 5644 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using 5645 * L2's page tables as the first level of translation and L1's 5646 * nested page tables as the second level of translation. Basically 5647 * the gva_to_gpa functions between mmu and nested_mmu are swapped. 5648 */ 5649 if (!is_paging(vcpu)) 5650 g_context->gva_to_gpa = nonpaging_gva_to_gpa; 5651 else if (is_long_mode(vcpu)) 5652 g_context->gva_to_gpa = paging64_gva_to_gpa; 5653 else if (is_pae(vcpu)) 5654 g_context->gva_to_gpa = paging64_gva_to_gpa; 5655 else 5656 g_context->gva_to_gpa = paging32_gva_to_gpa; 5657 5658 reset_guest_paging_metadata(vcpu, g_context); 5659 } 5660 5661 void kvm_init_mmu(struct kvm_vcpu *vcpu) 5662 { 5663 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); 5664 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); 5665 5666 if (mmu_is_nested(vcpu)) 5667 init_kvm_nested_mmu(vcpu, cpu_role); 5668 else if (tdp_enabled) 5669 init_kvm_tdp_mmu(vcpu, cpu_role); 5670 else 5671 init_kvm_softmmu(vcpu, cpu_role); 5672 } 5673 EXPORT_SYMBOL_GPL(kvm_init_mmu); 5674 5675 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu) 5676 { 5677 /* 5678 * Invalidate all MMU roles to force them to reinitialize as CPUID 5679 * information is factored into reserved bit calculations. 5680 * 5681 * Correctly handling multiple vCPU models with respect to paging and 5682 * physical address properties) in a single VM would require tracking 5683 * all relevant CPUID information in kvm_mmu_page_role. That is very 5684 * undesirable as it would increase the memory requirements for 5685 * gfn_write_track (see struct kvm_mmu_page_role comments). For now 5686 * that problem is swept under the rug; KVM's CPUID API is horrific and 5687 * it's all but impossible to solve it without introducing a new API. 5688 */ 5689 vcpu->arch.root_mmu.root_role.invalid = 1; 5690 vcpu->arch.guest_mmu.root_role.invalid = 1; 5691 vcpu->arch.nested_mmu.root_role.invalid = 1; 5692 vcpu->arch.root_mmu.cpu_role.ext.valid = 0; 5693 vcpu->arch.guest_mmu.cpu_role.ext.valid = 0; 5694 vcpu->arch.nested_mmu.cpu_role.ext.valid = 0; 5695 kvm_mmu_reset_context(vcpu); 5696 5697 /* 5698 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in 5699 * kvm_arch_vcpu_ioctl(). 5700 */ 5701 KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm); 5702 } 5703 5704 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu) 5705 { 5706 kvm_mmu_unload(vcpu); 5707 kvm_init_mmu(vcpu); 5708 } 5709 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); 5710 5711 int kvm_mmu_load(struct kvm_vcpu *vcpu) 5712 { 5713 int r; 5714 5715 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->root_role.direct); 5716 if (r) 5717 goto out; 5718 r = mmu_alloc_special_roots(vcpu); 5719 if (r) 5720 goto out; 5721 if (vcpu->arch.mmu->root_role.direct) 5722 r = mmu_alloc_direct_roots(vcpu); 5723 else 5724 r = mmu_alloc_shadow_roots(vcpu); 5725 if (r) 5726 goto out; 5727 5728 kvm_mmu_sync_roots(vcpu); 5729 5730 kvm_mmu_load_pgd(vcpu); 5731 5732 /* 5733 * Flush any TLB entries for the new root, the provenance of the root 5734 * is unknown. Even if KVM ensures there are no stale TLB entries 5735 * for a freed root, in theory another hypervisor could have left 5736 * stale entries. Flushing on alloc also allows KVM to skip the TLB 5737 * flush when freeing a root (see kvm_tdp_mmu_put_root()). 5738 */ 5739 kvm_x86_call(flush_tlb_current)(vcpu); 5740 out: 5741 return r; 5742 } 5743 5744 void kvm_mmu_unload(struct kvm_vcpu *vcpu) 5745 { 5746 struct kvm *kvm = vcpu->kvm; 5747 5748 kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL); 5749 WARN_ON_ONCE(VALID_PAGE(vcpu->arch.root_mmu.root.hpa)); 5750 kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); 5751 WARN_ON_ONCE(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa)); 5752 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 5753 } 5754 5755 static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa) 5756 { 5757 struct kvm_mmu_page *sp; 5758 5759 if (!VALID_PAGE(root_hpa)) 5760 return false; 5761 5762 /* 5763 * When freeing obsolete roots, treat roots as obsolete if they don't 5764 * have an associated shadow page, as it's impossible to determine if 5765 * such roots are fresh or stale. This does mean KVM will get false 5766 * positives and free roots that don't strictly need to be freed, but 5767 * such false positives are relatively rare: 5768 * 5769 * (a) only PAE paging and nested NPT have roots without shadow pages 5770 * (or any shadow paging flavor with a dummy root, see note below) 5771 * (b) remote reloads due to a memslot update obsoletes _all_ roots 5772 * (c) KVM doesn't track previous roots for PAE paging, and the guest 5773 * is unlikely to zap an in-use PGD. 5774 * 5775 * Note! Dummy roots are unique in that they are obsoleted by memslot 5776 * _creation_! See also FNAME(fetch). 5777 */ 5778 sp = root_to_sp(root_hpa); 5779 return !sp || is_obsolete_sp(kvm, sp); 5780 } 5781 5782 static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu) 5783 { 5784 unsigned long roots_to_free = 0; 5785 int i; 5786 5787 if (is_obsolete_root(kvm, mmu->root.hpa)) 5788 roots_to_free |= KVM_MMU_ROOT_CURRENT; 5789 5790 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5791 if (is_obsolete_root(kvm, mmu->prev_roots[i].hpa)) 5792 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 5793 } 5794 5795 if (roots_to_free) 5796 kvm_mmu_free_roots(kvm, mmu, roots_to_free); 5797 } 5798 5799 void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu) 5800 { 5801 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu); 5802 __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu); 5803 } 5804 5805 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, 5806 int *bytes) 5807 { 5808 u64 gentry = 0; 5809 int r; 5810 5811 /* 5812 * Assume that the pte write on a page table of the same type 5813 * as the current vcpu paging mode since we update the sptes only 5814 * when they have the same mode. 5815 */ 5816 if (is_pae(vcpu) && *bytes == 4) { 5817 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ 5818 *gpa &= ~(gpa_t)7; 5819 *bytes = 8; 5820 } 5821 5822 if (*bytes == 4 || *bytes == 8) { 5823 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes); 5824 if (r) 5825 gentry = 0; 5826 } 5827 5828 return gentry; 5829 } 5830 5831 /* 5832 * If we're seeing too many writes to a page, it may no longer be a page table, 5833 * or we may be forking, in which case it is better to unmap the page. 5834 */ 5835 static bool detect_write_flooding(struct kvm_mmu_page *sp) 5836 { 5837 /* 5838 * Skip write-flooding detected for the sp whose level is 1, because 5839 * it can become unsync, then the guest page is not write-protected. 5840 */ 5841 if (sp->role.level == PG_LEVEL_4K) 5842 return false; 5843 5844 atomic_inc(&sp->write_flooding_count); 5845 return atomic_read(&sp->write_flooding_count) >= 3; 5846 } 5847 5848 /* 5849 * Misaligned accesses are too much trouble to fix up; also, they usually 5850 * indicate a page is not used as a page table. 5851 */ 5852 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, 5853 int bytes) 5854 { 5855 unsigned offset, pte_size, misaligned; 5856 5857 offset = offset_in_page(gpa); 5858 pte_size = sp->role.has_4_byte_gpte ? 4 : 8; 5859 5860 /* 5861 * Sometimes, the OS only writes the last one bytes to update status 5862 * bits, for example, in linux, andb instruction is used in clear_bit(). 5863 */ 5864 if (!(offset & (pte_size - 1)) && bytes == 1) 5865 return false; 5866 5867 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); 5868 misaligned |= bytes < 4; 5869 5870 return misaligned; 5871 } 5872 5873 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) 5874 { 5875 unsigned page_offset, quadrant; 5876 u64 *spte; 5877 int level; 5878 5879 page_offset = offset_in_page(gpa); 5880 level = sp->role.level; 5881 *nspte = 1; 5882 if (sp->role.has_4_byte_gpte) { 5883 page_offset <<= 1; /* 32->64 */ 5884 /* 5885 * A 32-bit pde maps 4MB while the shadow pdes map 5886 * only 2MB. So we need to double the offset again 5887 * and zap two pdes instead of one. 5888 */ 5889 if (level == PT32_ROOT_LEVEL) { 5890 page_offset &= ~7; /* kill rounding error */ 5891 page_offset <<= 1; 5892 *nspte = 2; 5893 } 5894 quadrant = page_offset >> PAGE_SHIFT; 5895 page_offset &= ~PAGE_MASK; 5896 if (quadrant != sp->role.quadrant) 5897 return NULL; 5898 } 5899 5900 spte = &sp->spt[page_offset / sizeof(*spte)]; 5901 return spte; 5902 } 5903 5904 void kvm_mmu_track_write(struct kvm_vcpu *vcpu, gpa_t gpa, const u8 *new, 5905 int bytes) 5906 { 5907 gfn_t gfn = gpa >> PAGE_SHIFT; 5908 struct kvm_mmu_page *sp; 5909 LIST_HEAD(invalid_list); 5910 u64 entry, gentry, *spte; 5911 int npte; 5912 bool flush = false; 5913 5914 /* 5915 * When emulating guest writes, ensure the written value is visible to 5916 * any task that is handling page faults before checking whether or not 5917 * KVM is shadowing a guest PTE. This ensures either KVM will create 5918 * the correct SPTE in the page fault handler, or this task will see 5919 * a non-zero indirect_shadow_pages. Pairs with the smp_mb() in 5920 * account_shadowed(). 5921 */ 5922 smp_mb(); 5923 if (!vcpu->kvm->arch.indirect_shadow_pages) 5924 return; 5925 5926 write_lock(&vcpu->kvm->mmu_lock); 5927 5928 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes); 5929 5930 ++vcpu->kvm->stat.mmu_pte_write; 5931 5932 for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) { 5933 if (detect_write_misaligned(sp, gpa, bytes) || 5934 detect_write_flooding(sp)) { 5935 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); 5936 ++vcpu->kvm->stat.mmu_flooded; 5937 continue; 5938 } 5939 5940 spte = get_written_sptes(sp, gpa, &npte); 5941 if (!spte) 5942 continue; 5943 5944 while (npte--) { 5945 entry = *spte; 5946 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL); 5947 if (gentry && sp->role.level != PG_LEVEL_4K) 5948 ++vcpu->kvm->stat.mmu_pde_zapped; 5949 if (is_shadow_present_pte(entry)) 5950 flush = true; 5951 ++spte; 5952 } 5953 } 5954 kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); 5955 write_unlock(&vcpu->kvm->mmu_lock); 5956 } 5957 5958 static bool is_write_to_guest_page_table(u64 error_code) 5959 { 5960 const u64 mask = PFERR_GUEST_PAGE_MASK | PFERR_WRITE_MASK | PFERR_PRESENT_MASK; 5961 5962 return (error_code & mask) == mask; 5963 } 5964 5965 static int kvm_mmu_write_protect_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 5966 u64 error_code, int *emulation_type) 5967 { 5968 bool direct = vcpu->arch.mmu->root_role.direct; 5969 5970 /* 5971 * Do not try to unprotect and retry if the vCPU re-faulted on the same 5972 * RIP with the same address that was previously unprotected, as doing 5973 * so will likely put the vCPU into an infinite. E.g. if the vCPU uses 5974 * a non-page-table modifying instruction on the PDE that points to the 5975 * instruction, then unprotecting the gfn will unmap the instruction's 5976 * code, i.e. make it impossible for the instruction to ever complete. 5977 */ 5978 if (vcpu->arch.last_retry_eip == kvm_rip_read(vcpu) && 5979 vcpu->arch.last_retry_addr == cr2_or_gpa) 5980 return RET_PF_EMULATE; 5981 5982 /* 5983 * Reset the unprotect+retry values that guard against infinite loops. 5984 * The values will be refreshed if KVM explicitly unprotects a gfn and 5985 * retries, in all other cases it's safe to retry in the future even if 5986 * the next page fault happens on the same RIP+address. 5987 */ 5988 vcpu->arch.last_retry_eip = 0; 5989 vcpu->arch.last_retry_addr = 0; 5990 5991 /* 5992 * It should be impossible to reach this point with an MMIO cache hit, 5993 * as RET_PF_WRITE_PROTECTED is returned if and only if there's a valid, 5994 * writable memslot, and creating a memslot should invalidate the MMIO 5995 * cache by way of changing the memslot generation. WARN and disallow 5996 * retry if MMIO is detected, as retrying MMIO emulation is pointless 5997 * and could put the vCPU into an infinite loop because the processor 5998 * will keep faulting on the non-existent MMIO address. 5999 */ 6000 if (WARN_ON_ONCE(mmio_info_in_cache(vcpu, cr2_or_gpa, direct))) 6001 return RET_PF_EMULATE; 6002 6003 /* 6004 * Before emulating the instruction, check to see if the access was due 6005 * to a read-only violation while the CPU was walking non-nested NPT 6006 * page tables, i.e. for a direct MMU, for _guest_ page tables in L1. 6007 * If L1 is sharing (a subset of) its page tables with L2, e.g. by 6008 * having nCR3 share lower level page tables with hCR3, then when KVM 6009 * (L0) write-protects the nested NPTs, i.e. npt12 entries, KVM is also 6010 * unknowingly write-protecting L1's guest page tables, which KVM isn't 6011 * shadowing. 6012 * 6013 * Because the CPU (by default) walks NPT page tables using a write 6014 * access (to ensure the CPU can do A/D updates), page walks in L1 can 6015 * trigger write faults for the above case even when L1 isn't modifying 6016 * PTEs. As a result, KVM will unnecessarily emulate (or at least, try 6017 * to emulate) an excessive number of L1 instructions; because L1's MMU 6018 * isn't shadowed by KVM, there is no need to write-protect L1's gPTEs 6019 * and thus no need to emulate in order to guarantee forward progress. 6020 * 6021 * Try to unprotect the gfn, i.e. zap any shadow pages, so that L1 can 6022 * proceed without triggering emulation. If one or more shadow pages 6023 * was zapped, skip emulation and resume L1 to let it natively execute 6024 * the instruction. If no shadow pages were zapped, then the write- 6025 * fault is due to something else entirely, i.e. KVM needs to emulate, 6026 * as resuming the guest will put it into an infinite loop. 6027 * 6028 * Note, this code also applies to Intel CPUs, even though it is *very* 6029 * unlikely that an L1 will share its page tables (IA32/PAE/paging64 6030 * format) with L2's page tables (EPT format). 6031 * 6032 * For indirect MMUs, i.e. if KVM is shadowing the current MMU, try to 6033 * unprotect the gfn and retry if an event is awaiting reinjection. If 6034 * KVM emulates multiple instructions before completing event injection, 6035 * the event could be delayed beyond what is architecturally allowed, 6036 * e.g. KVM could inject an IRQ after the TPR has been raised. 6037 */ 6038 if (((direct && is_write_to_guest_page_table(error_code)) || 6039 (!direct && kvm_event_needs_reinjection(vcpu))) && 6040 kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa)) 6041 return RET_PF_RETRY; 6042 6043 /* 6044 * The gfn is write-protected, but if KVM detects its emulating an 6045 * instruction that is unlikely to be used to modify page tables, or if 6046 * emulation fails, KVM can try to unprotect the gfn and let the CPU 6047 * re-execute the instruction that caused the page fault. Do not allow 6048 * retrying an instruction from a nested guest as KVM is only explicitly 6049 * shadowing L1's page tables, i.e. unprotecting something for L1 isn't 6050 * going to magically fix whatever issue caused L2 to fail. 6051 */ 6052 if (!is_guest_mode(vcpu)) 6053 *emulation_type |= EMULTYPE_ALLOW_RETRY_PF; 6054 6055 return RET_PF_EMULATE; 6056 } 6057 6058 int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 6059 void *insn, int insn_len) 6060 { 6061 int r, emulation_type = EMULTYPE_PF; 6062 bool direct = vcpu->arch.mmu->root_role.direct; 6063 6064 if (WARN_ON_ONCE(!VALID_PAGE(vcpu->arch.mmu->root.hpa))) 6065 return RET_PF_RETRY; 6066 6067 /* 6068 * Except for reserved faults (emulated MMIO is shared-only), set the 6069 * PFERR_PRIVATE_ACCESS flag for software-protected VMs based on the gfn's 6070 * current attributes, which are the source of truth for such VMs. Note, 6071 * this wrong for nested MMUs as the GPA is an L2 GPA, but KVM doesn't 6072 * currently supported nested virtualization (among many other things) 6073 * for software-protected VMs. 6074 */ 6075 if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && 6076 !(error_code & PFERR_RSVD_MASK) && 6077 vcpu->kvm->arch.vm_type == KVM_X86_SW_PROTECTED_VM && 6078 kvm_mem_is_private(vcpu->kvm, gpa_to_gfn(cr2_or_gpa))) 6079 error_code |= PFERR_PRIVATE_ACCESS; 6080 6081 r = RET_PF_INVALID; 6082 if (unlikely(error_code & PFERR_RSVD_MASK)) { 6083 if (WARN_ON_ONCE(error_code & PFERR_PRIVATE_ACCESS)) 6084 return -EFAULT; 6085 6086 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct); 6087 if (r == RET_PF_EMULATE) 6088 goto emulate; 6089 } 6090 6091 if (r == RET_PF_INVALID) { 6092 vcpu->stat.pf_taken++; 6093 6094 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, error_code, false, 6095 &emulation_type, NULL); 6096 if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm)) 6097 return -EIO; 6098 } 6099 6100 if (r < 0) 6101 return r; 6102 6103 if (r == RET_PF_WRITE_PROTECTED) 6104 r = kvm_mmu_write_protect_fault(vcpu, cr2_or_gpa, error_code, 6105 &emulation_type); 6106 6107 if (r == RET_PF_FIXED) 6108 vcpu->stat.pf_fixed++; 6109 else if (r == RET_PF_EMULATE) 6110 vcpu->stat.pf_emulate++; 6111 else if (r == RET_PF_SPURIOUS) 6112 vcpu->stat.pf_spurious++; 6113 6114 /* 6115 * None of handle_mmio_page_fault(), kvm_mmu_do_page_fault(), or 6116 * kvm_mmu_write_protect_fault() return RET_PF_CONTINUE. 6117 * kvm_mmu_do_page_fault() only uses RET_PF_CONTINUE internally to 6118 * indicate continuing the page fault handling until to the final 6119 * page table mapping phase. 6120 */ 6121 WARN_ON_ONCE(r == RET_PF_CONTINUE); 6122 if (r != RET_PF_EMULATE) 6123 return r; 6124 6125 emulate: 6126 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn, 6127 insn_len); 6128 } 6129 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); 6130 6131 void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg) 6132 { 6133 u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; 6134 int root_level, leaf, level; 6135 6136 leaf = get_sptes_lockless(vcpu, gpa, sptes, &root_level); 6137 if (unlikely(leaf < 0)) 6138 return; 6139 6140 pr_err("%s %llx", msg, gpa); 6141 for (level = root_level; level >= leaf; level--) 6142 pr_cont(", spte[%d] = 0x%llx", level, sptes[level]); 6143 pr_cont("\n"); 6144 } 6145 EXPORT_SYMBOL_GPL(kvm_mmu_print_sptes); 6146 6147 static void __kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 6148 u64 addr, hpa_t root_hpa) 6149 { 6150 struct kvm_shadow_walk_iterator iterator; 6151 6152 vcpu_clear_mmio_info(vcpu, addr); 6153 6154 /* 6155 * Walking and synchronizing SPTEs both assume they are operating in 6156 * the context of the current MMU, and would need to be reworked if 6157 * this is ever used to sync the guest_mmu, e.g. to emulate INVEPT. 6158 */ 6159 if (WARN_ON_ONCE(mmu != vcpu->arch.mmu)) 6160 return; 6161 6162 if (!VALID_PAGE(root_hpa)) 6163 return; 6164 6165 write_lock(&vcpu->kvm->mmu_lock); 6166 for_each_shadow_entry_using_root(vcpu, root_hpa, addr, iterator) { 6167 struct kvm_mmu_page *sp = sptep_to_sp(iterator.sptep); 6168 6169 if (sp->unsync) { 6170 int ret = kvm_sync_spte(vcpu, sp, iterator.index); 6171 6172 if (ret < 0) 6173 mmu_page_zap_pte(vcpu->kvm, sp, iterator.sptep, NULL); 6174 if (ret) 6175 kvm_flush_remote_tlbs_sptep(vcpu->kvm, iterator.sptep); 6176 } 6177 6178 if (!sp->unsync_children) 6179 break; 6180 } 6181 write_unlock(&vcpu->kvm->mmu_lock); 6182 } 6183 6184 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 6185 u64 addr, unsigned long roots) 6186 { 6187 int i; 6188 6189 WARN_ON_ONCE(roots & ~KVM_MMU_ROOTS_ALL); 6190 6191 /* It's actually a GPA for vcpu->arch.guest_mmu. */ 6192 if (mmu != &vcpu->arch.guest_mmu) { 6193 /* INVLPG on a non-canonical address is a NOP according to the SDM. */ 6194 if (is_noncanonical_invlpg_address(addr, vcpu)) 6195 return; 6196 6197 kvm_x86_call(flush_tlb_gva)(vcpu, addr); 6198 } 6199 6200 if (!mmu->sync_spte) 6201 return; 6202 6203 if (roots & KVM_MMU_ROOT_CURRENT) 6204 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->root.hpa); 6205 6206 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 6207 if (roots & KVM_MMU_ROOT_PREVIOUS(i)) 6208 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->prev_roots[i].hpa); 6209 } 6210 } 6211 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_addr); 6212 6213 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) 6214 { 6215 /* 6216 * INVLPG is required to invalidate any global mappings for the VA, 6217 * irrespective of PCID. Blindly sync all roots as it would take 6218 * roughly the same amount of work/time to determine whether any of the 6219 * previous roots have a global mapping. 6220 * 6221 * Mappings not reachable via the current or previous cached roots will 6222 * be synced when switching to that new cr3, so nothing needs to be 6223 * done here for them. 6224 */ 6225 kvm_mmu_invalidate_addr(vcpu, vcpu->arch.walk_mmu, gva, KVM_MMU_ROOTS_ALL); 6226 ++vcpu->stat.invlpg; 6227 } 6228 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); 6229 6230 6231 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid) 6232 { 6233 struct kvm_mmu *mmu = vcpu->arch.mmu; 6234 unsigned long roots = 0; 6235 uint i; 6236 6237 if (pcid == kvm_get_active_pcid(vcpu)) 6238 roots |= KVM_MMU_ROOT_CURRENT; 6239 6240 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 6241 if (VALID_PAGE(mmu->prev_roots[i].hpa) && 6242 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) 6243 roots |= KVM_MMU_ROOT_PREVIOUS(i); 6244 } 6245 6246 if (roots) 6247 kvm_mmu_invalidate_addr(vcpu, mmu, gva, roots); 6248 ++vcpu->stat.invlpg; 6249 6250 /* 6251 * Mappings not reachable via the current cr3 or the prev_roots will be 6252 * synced when switching to that cr3, so nothing needs to be done here 6253 * for them. 6254 */ 6255 } 6256 6257 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 6258 int tdp_max_root_level, int tdp_huge_page_level) 6259 { 6260 tdp_enabled = enable_tdp; 6261 tdp_root_level = tdp_forced_root_level; 6262 max_tdp_level = tdp_max_root_level; 6263 6264 #ifdef CONFIG_X86_64 6265 tdp_mmu_enabled = tdp_mmu_allowed && tdp_enabled; 6266 #endif 6267 /* 6268 * max_huge_page_level reflects KVM's MMU capabilities irrespective 6269 * of kernel support, e.g. KVM may be capable of using 1GB pages when 6270 * the kernel is not. But, KVM never creates a page size greater than 6271 * what is used by the kernel for any given HVA, i.e. the kernel's 6272 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust(). 6273 */ 6274 if (tdp_enabled) 6275 max_huge_page_level = tdp_huge_page_level; 6276 else if (boot_cpu_has(X86_FEATURE_GBPAGES)) 6277 max_huge_page_level = PG_LEVEL_1G; 6278 else 6279 max_huge_page_level = PG_LEVEL_2M; 6280 } 6281 EXPORT_SYMBOL_GPL(kvm_configure_mmu); 6282 6283 static void free_mmu_pages(struct kvm_mmu *mmu) 6284 { 6285 if (!tdp_enabled && mmu->pae_root) 6286 set_memory_encrypted((unsigned long)mmu->pae_root, 1); 6287 free_page((unsigned long)mmu->pae_root); 6288 free_page((unsigned long)mmu->pml4_root); 6289 free_page((unsigned long)mmu->pml5_root); 6290 } 6291 6292 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 6293 { 6294 struct page *page; 6295 int i; 6296 6297 mmu->root.hpa = INVALID_PAGE; 6298 mmu->root.pgd = 0; 6299 mmu->mirror_root_hpa = INVALID_PAGE; 6300 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 6301 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 6302 6303 /* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */ 6304 if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu) 6305 return 0; 6306 6307 /* 6308 * When using PAE paging, the four PDPTEs are treated as 'root' pages, 6309 * while the PDP table is a per-vCPU construct that's allocated at MMU 6310 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on 6311 * x86_64. Therefore we need to allocate the PDP table in the first 6312 * 4GB of memory, which happens to fit the DMA32 zone. TDP paging 6313 * generally doesn't use PAE paging and can skip allocating the PDP 6314 * table. The main exception, handled here, is SVM's 32-bit NPT. The 6315 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit 6316 * KVM; that horror is handled on-demand by mmu_alloc_special_roots(). 6317 */ 6318 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL) 6319 return 0; 6320 6321 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32); 6322 if (!page) 6323 return -ENOMEM; 6324 6325 mmu->pae_root = page_address(page); 6326 6327 /* 6328 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to 6329 * get the CPU to treat the PDPTEs as encrypted. Decrypt the page so 6330 * that KVM's writes and the CPU's reads get along. Note, this is 6331 * only necessary when using shadow paging, as 64-bit NPT can get at 6332 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported 6333 * by 32-bit kernels (when KVM itself uses 32-bit NPT). 6334 */ 6335 if (!tdp_enabled) 6336 set_memory_decrypted((unsigned long)mmu->pae_root, 1); 6337 else 6338 WARN_ON_ONCE(shadow_me_value); 6339 6340 for (i = 0; i < 4; ++i) 6341 mmu->pae_root[i] = INVALID_PAE_ROOT; 6342 6343 return 0; 6344 } 6345 6346 int kvm_mmu_create(struct kvm_vcpu *vcpu) 6347 { 6348 int ret; 6349 6350 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache; 6351 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO; 6352 6353 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache; 6354 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO; 6355 6356 vcpu->arch.mmu_shadow_page_cache.init_value = 6357 SHADOW_NONPRESENT_VALUE; 6358 if (!vcpu->arch.mmu_shadow_page_cache.init_value) 6359 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO; 6360 6361 vcpu->arch.mmu = &vcpu->arch.root_mmu; 6362 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; 6363 6364 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu); 6365 if (ret) 6366 return ret; 6367 6368 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu); 6369 if (ret) 6370 goto fail_allocate_root; 6371 6372 return ret; 6373 fail_allocate_root: 6374 free_mmu_pages(&vcpu->arch.guest_mmu); 6375 return ret; 6376 } 6377 6378 #define BATCH_ZAP_PAGES 10 6379 static void kvm_zap_obsolete_pages(struct kvm *kvm) 6380 { 6381 struct kvm_mmu_page *sp, *node; 6382 int nr_zapped, batch = 0; 6383 LIST_HEAD(invalid_list); 6384 bool unstable; 6385 6386 lockdep_assert_held(&kvm->slots_lock); 6387 6388 restart: 6389 list_for_each_entry_safe_reverse(sp, node, 6390 &kvm->arch.active_mmu_pages, link) { 6391 /* 6392 * No obsolete valid page exists before a newly created page 6393 * since active_mmu_pages is a FIFO list. 6394 */ 6395 if (!is_obsolete_sp(kvm, sp)) 6396 break; 6397 6398 /* 6399 * Invalid pages should never land back on the list of active 6400 * pages. Skip the bogus page, otherwise we'll get stuck in an 6401 * infinite loop if the page gets put back on the list (again). 6402 */ 6403 if (WARN_ON_ONCE(sp->role.invalid)) 6404 continue; 6405 6406 /* 6407 * No need to flush the TLB since we're only zapping shadow 6408 * pages with an obsolete generation number and all vCPUS have 6409 * loaded a new root, i.e. the shadow pages being zapped cannot 6410 * be in active use by the guest. 6411 */ 6412 if (batch >= BATCH_ZAP_PAGES && 6413 cond_resched_rwlock_write(&kvm->mmu_lock)) { 6414 batch = 0; 6415 goto restart; 6416 } 6417 6418 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, 6419 &invalid_list, &nr_zapped); 6420 batch += nr_zapped; 6421 6422 if (unstable) 6423 goto restart; 6424 } 6425 6426 /* 6427 * Kick all vCPUs (via remote TLB flush) before freeing the page tables 6428 * to ensure KVM is not in the middle of a lockless shadow page table 6429 * walk, which may reference the pages. The remote TLB flush itself is 6430 * not required and is simply a convenient way to kick vCPUs as needed. 6431 * KVM performs a local TLB flush when allocating a new root (see 6432 * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are 6433 * running with an obsolete MMU. 6434 */ 6435 kvm_mmu_commit_zap_page(kvm, &invalid_list); 6436 } 6437 6438 /* 6439 * Fast invalidate all shadow pages and use lock-break technique 6440 * to zap obsolete pages. 6441 * 6442 * It's required when memslot is being deleted or VM is being 6443 * destroyed, in these cases, we should ensure that KVM MMU does 6444 * not use any resource of the being-deleted slot or all slots 6445 * after calling the function. 6446 */ 6447 static void kvm_mmu_zap_all_fast(struct kvm *kvm) 6448 { 6449 lockdep_assert_held(&kvm->slots_lock); 6450 6451 write_lock(&kvm->mmu_lock); 6452 trace_kvm_mmu_zap_all_fast(kvm); 6453 6454 /* 6455 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is 6456 * held for the entire duration of zapping obsolete pages, it's 6457 * impossible for there to be multiple invalid generations associated 6458 * with *valid* shadow pages at any given time, i.e. there is exactly 6459 * one valid generation and (at most) one invalid generation. 6460 */ 6461 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1; 6462 6463 /* 6464 * In order to ensure all vCPUs drop their soon-to-be invalid roots, 6465 * invalidating TDP MMU roots must be done while holding mmu_lock for 6466 * write and in the same critical section as making the reload request, 6467 * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield. 6468 */ 6469 if (tdp_mmu_enabled) { 6470 /* 6471 * External page tables don't support fast zapping, therefore 6472 * their mirrors must be invalidated separately by the caller. 6473 */ 6474 kvm_tdp_mmu_invalidate_roots(kvm, KVM_DIRECT_ROOTS); 6475 } 6476 6477 /* 6478 * Notify all vcpus to reload its shadow page table and flush TLB. 6479 * Then all vcpus will switch to new shadow page table with the new 6480 * mmu_valid_gen. 6481 * 6482 * Note: we need to do this under the protection of mmu_lock, 6483 * otherwise, vcpu would purge shadow page but miss tlb flush. 6484 */ 6485 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); 6486 6487 kvm_zap_obsolete_pages(kvm); 6488 6489 write_unlock(&kvm->mmu_lock); 6490 6491 /* 6492 * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before 6493 * returning to the caller, e.g. if the zap is in response to a memslot 6494 * deletion, mmu_notifier callbacks will be unable to reach the SPTEs 6495 * associated with the deleted memslot once the update completes, and 6496 * Deferring the zap until the final reference to the root is put would 6497 * lead to use-after-free. 6498 */ 6499 if (tdp_mmu_enabled) 6500 kvm_tdp_mmu_zap_invalidated_roots(kvm, true); 6501 } 6502 6503 void kvm_mmu_init_vm(struct kvm *kvm) 6504 { 6505 kvm->arch.shadow_mmio_value = shadow_mmio_value; 6506 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 6507 INIT_LIST_HEAD(&kvm->arch.possible_nx_huge_pages); 6508 spin_lock_init(&kvm->arch.mmu_unsync_pages_lock); 6509 6510 if (tdp_mmu_enabled) 6511 kvm_mmu_init_tdp_mmu(kvm); 6512 6513 kvm->arch.split_page_header_cache.kmem_cache = mmu_page_header_cache; 6514 kvm->arch.split_page_header_cache.gfp_zero = __GFP_ZERO; 6515 6516 kvm->arch.split_shadow_page_cache.gfp_zero = __GFP_ZERO; 6517 6518 kvm->arch.split_desc_cache.kmem_cache = pte_list_desc_cache; 6519 kvm->arch.split_desc_cache.gfp_zero = __GFP_ZERO; 6520 } 6521 6522 static void mmu_free_vm_memory_caches(struct kvm *kvm) 6523 { 6524 kvm_mmu_free_memory_cache(&kvm->arch.split_desc_cache); 6525 kvm_mmu_free_memory_cache(&kvm->arch.split_page_header_cache); 6526 kvm_mmu_free_memory_cache(&kvm->arch.split_shadow_page_cache); 6527 } 6528 6529 void kvm_mmu_uninit_vm(struct kvm *kvm) 6530 { 6531 if (tdp_mmu_enabled) 6532 kvm_mmu_uninit_tdp_mmu(kvm); 6533 6534 mmu_free_vm_memory_caches(kvm); 6535 } 6536 6537 static bool kvm_rmap_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 6538 { 6539 const struct kvm_memory_slot *memslot; 6540 struct kvm_memslots *slots; 6541 struct kvm_memslot_iter iter; 6542 bool flush = false; 6543 gfn_t start, end; 6544 int i; 6545 6546 if (!kvm_memslots_have_rmaps(kvm)) 6547 return flush; 6548 6549 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 6550 slots = __kvm_memslots(kvm, i); 6551 6552 kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) { 6553 memslot = iter.slot; 6554 start = max(gfn_start, memslot->base_gfn); 6555 end = min(gfn_end, memslot->base_gfn + memslot->npages); 6556 if (WARN_ON_ONCE(start >= end)) 6557 continue; 6558 6559 flush = __kvm_rmap_zap_gfn_range(kvm, memslot, start, 6560 end, true, flush); 6561 } 6562 } 6563 6564 return flush; 6565 } 6566 6567 /* 6568 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end 6569 * (not including it) 6570 */ 6571 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 6572 { 6573 bool flush; 6574 6575 if (WARN_ON_ONCE(gfn_end <= gfn_start)) 6576 return; 6577 6578 write_lock(&kvm->mmu_lock); 6579 6580 kvm_mmu_invalidate_begin(kvm); 6581 6582 kvm_mmu_invalidate_range_add(kvm, gfn_start, gfn_end); 6583 6584 flush = kvm_rmap_zap_gfn_range(kvm, gfn_start, gfn_end); 6585 6586 if (tdp_mmu_enabled) 6587 flush = kvm_tdp_mmu_zap_leafs(kvm, gfn_start, gfn_end, flush); 6588 6589 if (flush) 6590 kvm_flush_remote_tlbs_range(kvm, gfn_start, gfn_end - gfn_start); 6591 6592 kvm_mmu_invalidate_end(kvm); 6593 6594 write_unlock(&kvm->mmu_lock); 6595 } 6596 6597 static bool slot_rmap_write_protect(struct kvm *kvm, 6598 struct kvm_rmap_head *rmap_head, 6599 const struct kvm_memory_slot *slot) 6600 { 6601 return rmap_write_protect(rmap_head, false); 6602 } 6603 6604 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 6605 const struct kvm_memory_slot *memslot, 6606 int start_level) 6607 { 6608 if (kvm_memslots_have_rmaps(kvm)) { 6609 write_lock(&kvm->mmu_lock); 6610 walk_slot_rmaps(kvm, memslot, slot_rmap_write_protect, 6611 start_level, KVM_MAX_HUGEPAGE_LEVEL, false); 6612 write_unlock(&kvm->mmu_lock); 6613 } 6614 6615 if (tdp_mmu_enabled) { 6616 read_lock(&kvm->mmu_lock); 6617 kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level); 6618 read_unlock(&kvm->mmu_lock); 6619 } 6620 } 6621 6622 static inline bool need_topup(struct kvm_mmu_memory_cache *cache, int min) 6623 { 6624 return kvm_mmu_memory_cache_nr_free_objects(cache) < min; 6625 } 6626 6627 static bool need_topup_split_caches_or_resched(struct kvm *kvm) 6628 { 6629 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) 6630 return true; 6631 6632 /* 6633 * In the worst case, SPLIT_DESC_CACHE_MIN_NR_OBJECTS descriptors are needed 6634 * to split a single huge page. Calculating how many are actually needed 6635 * is possible but not worth the complexity. 6636 */ 6637 return need_topup(&kvm->arch.split_desc_cache, SPLIT_DESC_CACHE_MIN_NR_OBJECTS) || 6638 need_topup(&kvm->arch.split_page_header_cache, 1) || 6639 need_topup(&kvm->arch.split_shadow_page_cache, 1); 6640 } 6641 6642 static int topup_split_caches(struct kvm *kvm) 6643 { 6644 /* 6645 * Allocating rmap list entries when splitting huge pages for nested 6646 * MMUs is uncommon as KVM needs to use a list if and only if there is 6647 * more than one rmap entry for a gfn, i.e. requires an L1 gfn to be 6648 * aliased by multiple L2 gfns and/or from multiple nested roots with 6649 * different roles. Aliasing gfns when using TDP is atypical for VMMs; 6650 * a few gfns are often aliased during boot, e.g. when remapping BIOS, 6651 * but aliasing rarely occurs post-boot or for many gfns. If there is 6652 * only one rmap entry, rmap->val points directly at that one entry and 6653 * doesn't need to allocate a list. Buffer the cache by the default 6654 * capacity so that KVM doesn't have to drop mmu_lock to topup if KVM 6655 * encounters an aliased gfn or two. 6656 */ 6657 const int capacity = SPLIT_DESC_CACHE_MIN_NR_OBJECTS + 6658 KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE; 6659 int r; 6660 6661 lockdep_assert_held(&kvm->slots_lock); 6662 6663 r = __kvm_mmu_topup_memory_cache(&kvm->arch.split_desc_cache, capacity, 6664 SPLIT_DESC_CACHE_MIN_NR_OBJECTS); 6665 if (r) 6666 return r; 6667 6668 r = kvm_mmu_topup_memory_cache(&kvm->arch.split_page_header_cache, 1); 6669 if (r) 6670 return r; 6671 6672 return kvm_mmu_topup_memory_cache(&kvm->arch.split_shadow_page_cache, 1); 6673 } 6674 6675 static struct kvm_mmu_page *shadow_mmu_get_sp_for_split(struct kvm *kvm, u64 *huge_sptep) 6676 { 6677 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); 6678 struct shadow_page_caches caches = {}; 6679 union kvm_mmu_page_role role; 6680 unsigned int access; 6681 gfn_t gfn; 6682 6683 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep)); 6684 access = kvm_mmu_page_get_access(huge_sp, spte_index(huge_sptep)); 6685 6686 /* 6687 * Note, huge page splitting always uses direct shadow pages, regardless 6688 * of whether the huge page itself is mapped by a direct or indirect 6689 * shadow page, since the huge page region itself is being directly 6690 * mapped with smaller pages. 6691 */ 6692 role = kvm_mmu_child_role(huge_sptep, /*direct=*/true, access); 6693 6694 /* Direct SPs do not require a shadowed_info_cache. */ 6695 caches.page_header_cache = &kvm->arch.split_page_header_cache; 6696 caches.shadow_page_cache = &kvm->arch.split_shadow_page_cache; 6697 6698 /* Safe to pass NULL for vCPU since requesting a direct SP. */ 6699 return __kvm_mmu_get_shadow_page(kvm, NULL, &caches, gfn, role); 6700 } 6701 6702 static void shadow_mmu_split_huge_page(struct kvm *kvm, 6703 const struct kvm_memory_slot *slot, 6704 u64 *huge_sptep) 6705 6706 { 6707 struct kvm_mmu_memory_cache *cache = &kvm->arch.split_desc_cache; 6708 u64 huge_spte = READ_ONCE(*huge_sptep); 6709 struct kvm_mmu_page *sp; 6710 bool flush = false; 6711 u64 *sptep, spte; 6712 gfn_t gfn; 6713 int index; 6714 6715 sp = shadow_mmu_get_sp_for_split(kvm, huge_sptep); 6716 6717 for (index = 0; index < SPTE_ENT_PER_PAGE; index++) { 6718 sptep = &sp->spt[index]; 6719 gfn = kvm_mmu_page_get_gfn(sp, index); 6720 6721 /* 6722 * The SP may already have populated SPTEs, e.g. if this huge 6723 * page is aliased by multiple sptes with the same access 6724 * permissions. These entries are guaranteed to map the same 6725 * gfn-to-pfn translation since the SP is direct, so no need to 6726 * modify them. 6727 * 6728 * However, if a given SPTE points to a lower level page table, 6729 * that lower level page table may only be partially populated. 6730 * Installing such SPTEs would effectively unmap a potion of the 6731 * huge page. Unmapping guest memory always requires a TLB flush 6732 * since a subsequent operation on the unmapped regions would 6733 * fail to detect the need to flush. 6734 */ 6735 if (is_shadow_present_pte(*sptep)) { 6736 flush |= !is_last_spte(*sptep, sp->role.level); 6737 continue; 6738 } 6739 6740 spte = make_small_spte(kvm, huge_spte, sp->role, index); 6741 mmu_spte_set(sptep, spte); 6742 __rmap_add(kvm, cache, slot, sptep, gfn, sp->role.access); 6743 } 6744 6745 __link_shadow_page(kvm, cache, huge_sptep, sp, flush); 6746 } 6747 6748 static int shadow_mmu_try_split_huge_page(struct kvm *kvm, 6749 const struct kvm_memory_slot *slot, 6750 u64 *huge_sptep) 6751 { 6752 struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); 6753 int level, r = 0; 6754 gfn_t gfn; 6755 u64 spte; 6756 6757 /* Grab information for the tracepoint before dropping the MMU lock. */ 6758 gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep)); 6759 level = huge_sp->role.level; 6760 spte = *huge_sptep; 6761 6762 if (kvm_mmu_available_pages(kvm) <= KVM_MIN_FREE_MMU_PAGES) { 6763 r = -ENOSPC; 6764 goto out; 6765 } 6766 6767 if (need_topup_split_caches_or_resched(kvm)) { 6768 write_unlock(&kvm->mmu_lock); 6769 cond_resched(); 6770 /* 6771 * If the topup succeeds, return -EAGAIN to indicate that the 6772 * rmap iterator should be restarted because the MMU lock was 6773 * dropped. 6774 */ 6775 r = topup_split_caches(kvm) ?: -EAGAIN; 6776 write_lock(&kvm->mmu_lock); 6777 goto out; 6778 } 6779 6780 shadow_mmu_split_huge_page(kvm, slot, huge_sptep); 6781 6782 out: 6783 trace_kvm_mmu_split_huge_page(gfn, spte, level, r); 6784 return r; 6785 } 6786 6787 static bool shadow_mmu_try_split_huge_pages(struct kvm *kvm, 6788 struct kvm_rmap_head *rmap_head, 6789 const struct kvm_memory_slot *slot) 6790 { 6791 struct rmap_iterator iter; 6792 struct kvm_mmu_page *sp; 6793 u64 *huge_sptep; 6794 int r; 6795 6796 restart: 6797 for_each_rmap_spte(rmap_head, &iter, huge_sptep) { 6798 sp = sptep_to_sp(huge_sptep); 6799 6800 /* TDP MMU is enabled, so rmap only contains nested MMU SPs. */ 6801 if (WARN_ON_ONCE(!sp->role.guest_mode)) 6802 continue; 6803 6804 /* The rmaps should never contain non-leaf SPTEs. */ 6805 if (WARN_ON_ONCE(!is_large_pte(*huge_sptep))) 6806 continue; 6807 6808 /* SPs with level >PG_LEVEL_4K should never by unsync. */ 6809 if (WARN_ON_ONCE(sp->unsync)) 6810 continue; 6811 6812 /* Don't bother splitting huge pages on invalid SPs. */ 6813 if (sp->role.invalid) 6814 continue; 6815 6816 r = shadow_mmu_try_split_huge_page(kvm, slot, huge_sptep); 6817 6818 /* 6819 * The split succeeded or needs to be retried because the MMU 6820 * lock was dropped. Either way, restart the iterator to get it 6821 * back into a consistent state. 6822 */ 6823 if (!r || r == -EAGAIN) 6824 goto restart; 6825 6826 /* The split failed and shouldn't be retried (e.g. -ENOMEM). */ 6827 break; 6828 } 6829 6830 return false; 6831 } 6832 6833 static void kvm_shadow_mmu_try_split_huge_pages(struct kvm *kvm, 6834 const struct kvm_memory_slot *slot, 6835 gfn_t start, gfn_t end, 6836 int target_level) 6837 { 6838 int level; 6839 6840 /* 6841 * Split huge pages starting with KVM_MAX_HUGEPAGE_LEVEL and working 6842 * down to the target level. This ensures pages are recursively split 6843 * all the way to the target level. There's no need to split pages 6844 * already at the target level. 6845 */ 6846 for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--) 6847 __walk_slot_rmaps(kvm, slot, shadow_mmu_try_split_huge_pages, 6848 level, level, start, end - 1, true, true, false); 6849 } 6850 6851 /* Must be called with the mmu_lock held in write-mode. */ 6852 void kvm_mmu_try_split_huge_pages(struct kvm *kvm, 6853 const struct kvm_memory_slot *memslot, 6854 u64 start, u64 end, 6855 int target_level) 6856 { 6857 if (!tdp_mmu_enabled) 6858 return; 6859 6860 if (kvm_memslots_have_rmaps(kvm)) 6861 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); 6862 6863 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, false); 6864 6865 /* 6866 * A TLB flush is unnecessary at this point for the same reasons as in 6867 * kvm_mmu_slot_try_split_huge_pages(). 6868 */ 6869 } 6870 6871 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, 6872 const struct kvm_memory_slot *memslot, 6873 int target_level) 6874 { 6875 u64 start = memslot->base_gfn; 6876 u64 end = start + memslot->npages; 6877 6878 if (!tdp_mmu_enabled) 6879 return; 6880 6881 if (kvm_memslots_have_rmaps(kvm)) { 6882 write_lock(&kvm->mmu_lock); 6883 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); 6884 write_unlock(&kvm->mmu_lock); 6885 } 6886 6887 read_lock(&kvm->mmu_lock); 6888 kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true); 6889 read_unlock(&kvm->mmu_lock); 6890 6891 /* 6892 * No TLB flush is necessary here. KVM will flush TLBs after 6893 * write-protecting and/or clearing dirty on the newly split SPTEs to 6894 * ensure that guest writes are reflected in the dirty log before the 6895 * ioctl to enable dirty logging on this memslot completes. Since the 6896 * split SPTEs retain the write and dirty bits of the huge SPTE, it is 6897 * safe for KVM to decide if a TLB flush is necessary based on the split 6898 * SPTEs. 6899 */ 6900 } 6901 6902 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, 6903 struct kvm_rmap_head *rmap_head, 6904 const struct kvm_memory_slot *slot) 6905 { 6906 u64 *sptep; 6907 struct rmap_iterator iter; 6908 int need_tlb_flush = 0; 6909 struct kvm_mmu_page *sp; 6910 6911 restart: 6912 for_each_rmap_spte(rmap_head, &iter, sptep) { 6913 sp = sptep_to_sp(sptep); 6914 6915 /* 6916 * We cannot do huge page mapping for indirect shadow pages, 6917 * which are found on the last rmap (level = 1) when not using 6918 * tdp; such shadow pages are synced with the page table in 6919 * the guest, and the guest page table is using 4K page size 6920 * mapping if the indirect sp has level = 1. 6921 */ 6922 if (sp->role.direct && 6923 sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn)) { 6924 kvm_zap_one_rmap_spte(kvm, rmap_head, sptep); 6925 6926 if (kvm_available_flush_remote_tlbs_range()) 6927 kvm_flush_remote_tlbs_sptep(kvm, sptep); 6928 else 6929 need_tlb_flush = 1; 6930 6931 goto restart; 6932 } 6933 } 6934 6935 return need_tlb_flush; 6936 } 6937 EXPORT_SYMBOL_GPL(kvm_zap_gfn_range); 6938 6939 static void kvm_rmap_zap_collapsible_sptes(struct kvm *kvm, 6940 const struct kvm_memory_slot *slot) 6941 { 6942 /* 6943 * Note, use KVM_MAX_HUGEPAGE_LEVEL - 1 since there's no need to zap 6944 * pages that are already mapped at the maximum hugepage level. 6945 */ 6946 if (walk_slot_rmaps(kvm, slot, kvm_mmu_zap_collapsible_spte, 6947 PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL - 1, true)) 6948 kvm_flush_remote_tlbs_memslot(kvm, slot); 6949 } 6950 6951 void kvm_mmu_recover_huge_pages(struct kvm *kvm, 6952 const struct kvm_memory_slot *slot) 6953 { 6954 if (kvm_memslots_have_rmaps(kvm)) { 6955 write_lock(&kvm->mmu_lock); 6956 kvm_rmap_zap_collapsible_sptes(kvm, slot); 6957 write_unlock(&kvm->mmu_lock); 6958 } 6959 6960 if (tdp_mmu_enabled) { 6961 read_lock(&kvm->mmu_lock); 6962 kvm_tdp_mmu_recover_huge_pages(kvm, slot); 6963 read_unlock(&kvm->mmu_lock); 6964 } 6965 } 6966 6967 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 6968 const struct kvm_memory_slot *memslot) 6969 { 6970 if (kvm_memslots_have_rmaps(kvm)) { 6971 write_lock(&kvm->mmu_lock); 6972 /* 6973 * Clear dirty bits only on 4k SPTEs since the legacy MMU only 6974 * support dirty logging at a 4k granularity. 6975 */ 6976 walk_slot_rmaps_4k(kvm, memslot, __rmap_clear_dirty, false); 6977 write_unlock(&kvm->mmu_lock); 6978 } 6979 6980 if (tdp_mmu_enabled) { 6981 read_lock(&kvm->mmu_lock); 6982 kvm_tdp_mmu_clear_dirty_slot(kvm, memslot); 6983 read_unlock(&kvm->mmu_lock); 6984 } 6985 6986 /* 6987 * The caller will flush the TLBs after this function returns. 6988 * 6989 * It's also safe to flush TLBs out of mmu lock here as currently this 6990 * function is only used for dirty logging, in which case flushing TLB 6991 * out of mmu lock also guarantees no dirty pages will be lost in 6992 * dirty_bitmap. 6993 */ 6994 } 6995 6996 static void kvm_mmu_zap_all(struct kvm *kvm) 6997 { 6998 struct kvm_mmu_page *sp, *node; 6999 LIST_HEAD(invalid_list); 7000 int ign; 7001 7002 write_lock(&kvm->mmu_lock); 7003 restart: 7004 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) { 7005 if (WARN_ON_ONCE(sp->role.invalid)) 7006 continue; 7007 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign)) 7008 goto restart; 7009 if (cond_resched_rwlock_write(&kvm->mmu_lock)) 7010 goto restart; 7011 } 7012 7013 kvm_mmu_commit_zap_page(kvm, &invalid_list); 7014 7015 if (tdp_mmu_enabled) 7016 kvm_tdp_mmu_zap_all(kvm); 7017 7018 write_unlock(&kvm->mmu_lock); 7019 } 7020 7021 void kvm_arch_flush_shadow_all(struct kvm *kvm) 7022 { 7023 kvm_mmu_zap_all(kvm); 7024 } 7025 7026 static void kvm_mmu_zap_memslot_pages_and_flush(struct kvm *kvm, 7027 struct kvm_memory_slot *slot, 7028 bool flush) 7029 { 7030 LIST_HEAD(invalid_list); 7031 unsigned long i; 7032 7033 if (list_empty(&kvm->arch.active_mmu_pages)) 7034 goto out_flush; 7035 7036 /* 7037 * Since accounting information is stored in struct kvm_arch_memory_slot, 7038 * all MMU pages that are shadowing guest PTEs must be zapped before the 7039 * memslot is deleted, as freeing such pages after the memslot is freed 7040 * will result in use-after-free, e.g. in unaccount_shadowed(). 7041 */ 7042 for (i = 0; i < slot->npages; i++) { 7043 struct kvm_mmu_page *sp; 7044 gfn_t gfn = slot->base_gfn + i; 7045 7046 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) 7047 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 7048 7049 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 7050 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7051 flush = false; 7052 cond_resched_rwlock_write(&kvm->mmu_lock); 7053 } 7054 } 7055 7056 out_flush: 7057 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7058 } 7059 7060 static void kvm_mmu_zap_memslot(struct kvm *kvm, 7061 struct kvm_memory_slot *slot) 7062 { 7063 struct kvm_gfn_range range = { 7064 .slot = slot, 7065 .start = slot->base_gfn, 7066 .end = slot->base_gfn + slot->npages, 7067 .may_block = true, 7068 }; 7069 bool flush; 7070 7071 write_lock(&kvm->mmu_lock); 7072 flush = kvm_unmap_gfn_range(kvm, &range); 7073 kvm_mmu_zap_memslot_pages_and_flush(kvm, slot, flush); 7074 write_unlock(&kvm->mmu_lock); 7075 } 7076 7077 static inline bool kvm_memslot_flush_zap_all(struct kvm *kvm) 7078 { 7079 return kvm->arch.vm_type == KVM_X86_DEFAULT_VM && 7080 kvm_check_has_quirk(kvm, KVM_X86_QUIRK_SLOT_ZAP_ALL); 7081 } 7082 7083 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 7084 struct kvm_memory_slot *slot) 7085 { 7086 if (kvm_memslot_flush_zap_all(kvm)) 7087 kvm_mmu_zap_all_fast(kvm); 7088 else 7089 kvm_mmu_zap_memslot(kvm, slot); 7090 } 7091 7092 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen) 7093 { 7094 WARN_ON_ONCE(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 7095 7096 gen &= MMIO_SPTE_GEN_MASK; 7097 7098 /* 7099 * Generation numbers are incremented in multiples of the number of 7100 * address spaces in order to provide unique generations across all 7101 * address spaces. Strip what is effectively the address space 7102 * modifier prior to checking for a wrap of the MMIO generation so 7103 * that a wrap in any address space is detected. 7104 */ 7105 gen &= ~((u64)kvm_arch_nr_memslot_as_ids(kvm) - 1); 7106 7107 /* 7108 * The very rare case: if the MMIO generation number has wrapped, 7109 * zap all shadow pages. 7110 */ 7111 if (unlikely(gen == 0)) { 7112 kvm_debug_ratelimited("zapping shadow pages for mmio generation wraparound\n"); 7113 kvm_mmu_zap_all_fast(kvm); 7114 } 7115 } 7116 7117 static void mmu_destroy_caches(void) 7118 { 7119 kmem_cache_destroy(pte_list_desc_cache); 7120 kmem_cache_destroy(mmu_page_header_cache); 7121 } 7122 7123 static void kvm_wake_nx_recovery_thread(struct kvm *kvm) 7124 { 7125 /* 7126 * The NX recovery thread is spawned on-demand at the first KVM_RUN and 7127 * may not be valid even though the VM is globally visible. Do nothing, 7128 * as such a VM can't have any possible NX huge pages. 7129 */ 7130 struct vhost_task *nx_thread = READ_ONCE(kvm->arch.nx_huge_page_recovery_thread); 7131 7132 if (nx_thread) 7133 vhost_task_wake(nx_thread); 7134 } 7135 7136 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp) 7137 { 7138 if (nx_hugepage_mitigation_hard_disabled) 7139 return sysfs_emit(buffer, "never\n"); 7140 7141 return param_get_bool(buffer, kp); 7142 } 7143 7144 static bool get_nx_auto_mode(void) 7145 { 7146 /* Return true when CPU has the bug, and mitigations are ON */ 7147 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off(); 7148 } 7149 7150 static void __set_nx_huge_pages(bool val) 7151 { 7152 nx_huge_pages = itlb_multihit_kvm_mitigation = val; 7153 } 7154 7155 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp) 7156 { 7157 bool old_val = nx_huge_pages; 7158 bool new_val; 7159 7160 if (nx_hugepage_mitigation_hard_disabled) 7161 return -EPERM; 7162 7163 /* In "auto" mode deploy workaround only if CPU has the bug. */ 7164 if (sysfs_streq(val, "off")) { 7165 new_val = 0; 7166 } else if (sysfs_streq(val, "force")) { 7167 new_val = 1; 7168 } else if (sysfs_streq(val, "auto")) { 7169 new_val = get_nx_auto_mode(); 7170 } else if (sysfs_streq(val, "never")) { 7171 new_val = 0; 7172 7173 mutex_lock(&kvm_lock); 7174 if (!list_empty(&vm_list)) { 7175 mutex_unlock(&kvm_lock); 7176 return -EBUSY; 7177 } 7178 nx_hugepage_mitigation_hard_disabled = true; 7179 mutex_unlock(&kvm_lock); 7180 } else if (kstrtobool(val, &new_val) < 0) { 7181 return -EINVAL; 7182 } 7183 7184 __set_nx_huge_pages(new_val); 7185 7186 if (new_val != old_val) { 7187 struct kvm *kvm; 7188 7189 mutex_lock(&kvm_lock); 7190 7191 list_for_each_entry(kvm, &vm_list, vm_list) { 7192 mutex_lock(&kvm->slots_lock); 7193 kvm_mmu_zap_all_fast(kvm); 7194 mutex_unlock(&kvm->slots_lock); 7195 7196 kvm_wake_nx_recovery_thread(kvm); 7197 } 7198 mutex_unlock(&kvm_lock); 7199 } 7200 7201 return 0; 7202 } 7203 7204 /* 7205 * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as 7206 * its default value of -1 is technically undefined behavior for a boolean. 7207 * Forward the module init call to SPTE code so that it too can handle module 7208 * params that need to be resolved/snapshot. 7209 */ 7210 void __init kvm_mmu_x86_module_init(void) 7211 { 7212 if (nx_huge_pages == -1) 7213 __set_nx_huge_pages(get_nx_auto_mode()); 7214 7215 /* 7216 * Snapshot userspace's desire to enable the TDP MMU. Whether or not the 7217 * TDP MMU is actually enabled is determined in kvm_configure_mmu() 7218 * when the vendor module is loaded. 7219 */ 7220 tdp_mmu_allowed = tdp_mmu_enabled; 7221 7222 kvm_mmu_spte_module_init(); 7223 } 7224 7225 /* 7226 * The bulk of the MMU initialization is deferred until the vendor module is 7227 * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need 7228 * to be reset when a potentially different vendor module is loaded. 7229 */ 7230 int kvm_mmu_vendor_module_init(void) 7231 { 7232 int ret = -ENOMEM; 7233 7234 /* 7235 * MMU roles use union aliasing which is, generally speaking, an 7236 * undefined behavior. However, we supposedly know how compilers behave 7237 * and the current status quo is unlikely to change. Guardians below are 7238 * supposed to let us know if the assumption becomes false. 7239 */ 7240 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32)); 7241 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32)); 7242 BUILD_BUG_ON(sizeof(union kvm_cpu_role) != sizeof(u64)); 7243 7244 kvm_mmu_reset_all_pte_masks(); 7245 7246 pte_list_desc_cache = KMEM_CACHE(pte_list_desc, SLAB_ACCOUNT); 7247 if (!pte_list_desc_cache) 7248 goto out; 7249 7250 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", 7251 sizeof(struct kvm_mmu_page), 7252 0, SLAB_ACCOUNT, NULL); 7253 if (!mmu_page_header_cache) 7254 goto out; 7255 7256 return 0; 7257 7258 out: 7259 mmu_destroy_caches(); 7260 return ret; 7261 } 7262 7263 void kvm_mmu_destroy(struct kvm_vcpu *vcpu) 7264 { 7265 kvm_mmu_unload(vcpu); 7266 if (tdp_mmu_enabled) { 7267 read_lock(&vcpu->kvm->mmu_lock); 7268 mmu_free_root_page(vcpu->kvm, &vcpu->arch.mmu->mirror_root_hpa, 7269 NULL); 7270 read_unlock(&vcpu->kvm->mmu_lock); 7271 } 7272 free_mmu_pages(&vcpu->arch.root_mmu); 7273 free_mmu_pages(&vcpu->arch.guest_mmu); 7274 mmu_free_memory_caches(vcpu); 7275 } 7276 7277 void kvm_mmu_vendor_module_exit(void) 7278 { 7279 mmu_destroy_caches(); 7280 } 7281 7282 /* 7283 * Calculate the effective recovery period, accounting for '0' meaning "let KVM 7284 * select a halving time of 1 hour". Returns true if recovery is enabled. 7285 */ 7286 static bool calc_nx_huge_pages_recovery_period(uint *period) 7287 { 7288 /* 7289 * Use READ_ONCE to get the params, this may be called outside of the 7290 * param setters, e.g. by the kthread to compute its next timeout. 7291 */ 7292 bool enabled = READ_ONCE(nx_huge_pages); 7293 uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 7294 7295 if (!enabled || !ratio) 7296 return false; 7297 7298 *period = READ_ONCE(nx_huge_pages_recovery_period_ms); 7299 if (!*period) { 7300 /* Make sure the period is not less than one second. */ 7301 ratio = min(ratio, 3600u); 7302 *period = 60 * 60 * 1000 / ratio; 7303 } 7304 return true; 7305 } 7306 7307 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp) 7308 { 7309 bool was_recovery_enabled, is_recovery_enabled; 7310 uint old_period, new_period; 7311 int err; 7312 7313 if (nx_hugepage_mitigation_hard_disabled) 7314 return -EPERM; 7315 7316 was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period); 7317 7318 err = param_set_uint(val, kp); 7319 if (err) 7320 return err; 7321 7322 is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period); 7323 7324 if (is_recovery_enabled && 7325 (!was_recovery_enabled || old_period > new_period)) { 7326 struct kvm *kvm; 7327 7328 mutex_lock(&kvm_lock); 7329 7330 list_for_each_entry(kvm, &vm_list, vm_list) 7331 kvm_wake_nx_recovery_thread(kvm); 7332 7333 mutex_unlock(&kvm_lock); 7334 } 7335 7336 return err; 7337 } 7338 7339 static void kvm_recover_nx_huge_pages(struct kvm *kvm) 7340 { 7341 unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits; 7342 struct kvm_memory_slot *slot; 7343 int rcu_idx; 7344 struct kvm_mmu_page *sp; 7345 unsigned int ratio; 7346 LIST_HEAD(invalid_list); 7347 bool flush = false; 7348 ulong to_zap; 7349 7350 rcu_idx = srcu_read_lock(&kvm->srcu); 7351 write_lock(&kvm->mmu_lock); 7352 7353 /* 7354 * Zapping TDP MMU shadow pages, including the remote TLB flush, must 7355 * be done under RCU protection, because the pages are freed via RCU 7356 * callback. 7357 */ 7358 rcu_read_lock(); 7359 7360 ratio = READ_ONCE(nx_huge_pages_recovery_ratio); 7361 to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0; 7362 for ( ; to_zap; --to_zap) { 7363 if (list_empty(&kvm->arch.possible_nx_huge_pages)) 7364 break; 7365 7366 /* 7367 * We use a separate list instead of just using active_mmu_pages 7368 * because the number of shadow pages that be replaced with an 7369 * NX huge page is expected to be relatively small compared to 7370 * the total number of shadow pages. And because the TDP MMU 7371 * doesn't use active_mmu_pages. 7372 */ 7373 sp = list_first_entry(&kvm->arch.possible_nx_huge_pages, 7374 struct kvm_mmu_page, 7375 possible_nx_huge_page_link); 7376 WARN_ON_ONCE(!sp->nx_huge_page_disallowed); 7377 WARN_ON_ONCE(!sp->role.direct); 7378 7379 /* 7380 * Unaccount and do not attempt to recover any NX Huge Pages 7381 * that are being dirty tracked, as they would just be faulted 7382 * back in as 4KiB pages. The NX Huge Pages in this slot will be 7383 * recovered, along with all the other huge pages in the slot, 7384 * when dirty logging is disabled. 7385 * 7386 * Since gfn_to_memslot() is relatively expensive, it helps to 7387 * skip it if it the test cannot possibly return true. On the 7388 * other hand, if any memslot has logging enabled, chances are 7389 * good that all of them do, in which case unaccount_nx_huge_page() 7390 * is much cheaper than zapping the page. 7391 * 7392 * If a memslot update is in progress, reading an incorrect value 7393 * of kvm->nr_memslots_dirty_logging is not a problem: if it is 7394 * becoming zero, gfn_to_memslot() will be done unnecessarily; if 7395 * it is becoming nonzero, the page will be zapped unnecessarily. 7396 * Either way, this only affects efficiency in racy situations, 7397 * and not correctness. 7398 */ 7399 slot = NULL; 7400 if (atomic_read(&kvm->nr_memslots_dirty_logging)) { 7401 struct kvm_memslots *slots; 7402 7403 slots = kvm_memslots_for_spte_role(kvm, sp->role); 7404 slot = __gfn_to_memslot(slots, sp->gfn); 7405 WARN_ON_ONCE(!slot); 7406 } 7407 7408 if (slot && kvm_slot_dirty_track_enabled(slot)) 7409 unaccount_nx_huge_page(kvm, sp); 7410 else if (is_tdp_mmu_page(sp)) 7411 flush |= kvm_tdp_mmu_zap_sp(kvm, sp); 7412 else 7413 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 7414 WARN_ON_ONCE(sp->nx_huge_page_disallowed); 7415 7416 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 7417 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7418 rcu_read_unlock(); 7419 7420 cond_resched_rwlock_write(&kvm->mmu_lock); 7421 flush = false; 7422 7423 rcu_read_lock(); 7424 } 7425 } 7426 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); 7427 7428 rcu_read_unlock(); 7429 7430 write_unlock(&kvm->mmu_lock); 7431 srcu_read_unlock(&kvm->srcu, rcu_idx); 7432 } 7433 7434 static void kvm_nx_huge_page_recovery_worker_kill(void *data) 7435 { 7436 } 7437 7438 static bool kvm_nx_huge_page_recovery_worker(void *data) 7439 { 7440 struct kvm *kvm = data; 7441 bool enabled; 7442 uint period; 7443 long remaining_time; 7444 7445 enabled = calc_nx_huge_pages_recovery_period(&period); 7446 if (!enabled) 7447 return false; 7448 7449 remaining_time = kvm->arch.nx_huge_page_last + msecs_to_jiffies(period) 7450 - get_jiffies_64(); 7451 if (remaining_time > 0) { 7452 schedule_timeout(remaining_time); 7453 /* check for signals and come back */ 7454 return true; 7455 } 7456 7457 __set_current_state(TASK_RUNNING); 7458 kvm_recover_nx_huge_pages(kvm); 7459 kvm->arch.nx_huge_page_last = get_jiffies_64(); 7460 return true; 7461 } 7462 7463 static int kvm_mmu_start_lpage_recovery(struct once *once) 7464 { 7465 struct kvm_arch *ka = container_of(once, struct kvm_arch, nx_once); 7466 struct kvm *kvm = container_of(ka, struct kvm, arch); 7467 struct vhost_task *nx_thread; 7468 7469 kvm->arch.nx_huge_page_last = get_jiffies_64(); 7470 nx_thread = vhost_task_create(kvm_nx_huge_page_recovery_worker, 7471 kvm_nx_huge_page_recovery_worker_kill, 7472 kvm, "kvm-nx-lpage-recovery"); 7473 7474 if (IS_ERR(nx_thread)) 7475 return PTR_ERR(nx_thread); 7476 7477 vhost_task_start(nx_thread); 7478 7479 /* Make the task visible only once it is fully started. */ 7480 WRITE_ONCE(kvm->arch.nx_huge_page_recovery_thread, nx_thread); 7481 return 0; 7482 } 7483 7484 int kvm_mmu_post_init_vm(struct kvm *kvm) 7485 { 7486 if (nx_hugepage_mitigation_hard_disabled) 7487 return 0; 7488 7489 return call_once(&kvm->arch.nx_once, kvm_mmu_start_lpage_recovery); 7490 } 7491 7492 void kvm_mmu_pre_destroy_vm(struct kvm *kvm) 7493 { 7494 if (kvm->arch.nx_huge_page_recovery_thread) 7495 vhost_task_stop(kvm->arch.nx_huge_page_recovery_thread); 7496 } 7497 7498 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 7499 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm, 7500 struct kvm_gfn_range *range) 7501 { 7502 /* 7503 * Zap SPTEs even if the slot can't be mapped PRIVATE. KVM x86 only 7504 * supports KVM_MEMORY_ATTRIBUTE_PRIVATE, and so it *seems* like KVM 7505 * can simply ignore such slots. But if userspace is making memory 7506 * PRIVATE, then KVM must prevent the guest from accessing the memory 7507 * as shared. And if userspace is making memory SHARED and this point 7508 * is reached, then at least one page within the range was previously 7509 * PRIVATE, i.e. the slot's possible hugepage ranges are changing. 7510 * Zapping SPTEs in this case ensures KVM will reassess whether or not 7511 * a hugepage can be used for affected ranges. 7512 */ 7513 if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm))) 7514 return false; 7515 7516 /* Unmap the old attribute page. */ 7517 if (range->arg.attributes & KVM_MEMORY_ATTRIBUTE_PRIVATE) 7518 range->attr_filter = KVM_FILTER_SHARED; 7519 else 7520 range->attr_filter = KVM_FILTER_PRIVATE; 7521 7522 return kvm_unmap_gfn_range(kvm, range); 7523 } 7524 7525 static bool hugepage_test_mixed(struct kvm_memory_slot *slot, gfn_t gfn, 7526 int level) 7527 { 7528 return lpage_info_slot(gfn, slot, level)->disallow_lpage & KVM_LPAGE_MIXED_FLAG; 7529 } 7530 7531 static void hugepage_clear_mixed(struct kvm_memory_slot *slot, gfn_t gfn, 7532 int level) 7533 { 7534 lpage_info_slot(gfn, slot, level)->disallow_lpage &= ~KVM_LPAGE_MIXED_FLAG; 7535 } 7536 7537 static void hugepage_set_mixed(struct kvm_memory_slot *slot, gfn_t gfn, 7538 int level) 7539 { 7540 lpage_info_slot(gfn, slot, level)->disallow_lpage |= KVM_LPAGE_MIXED_FLAG; 7541 } 7542 7543 static bool hugepage_has_attrs(struct kvm *kvm, struct kvm_memory_slot *slot, 7544 gfn_t gfn, int level, unsigned long attrs) 7545 { 7546 const unsigned long start = gfn; 7547 const unsigned long end = start + KVM_PAGES_PER_HPAGE(level); 7548 7549 if (level == PG_LEVEL_2M) 7550 return kvm_range_has_memory_attributes(kvm, start, end, ~0, attrs); 7551 7552 for (gfn = start; gfn < end; gfn += KVM_PAGES_PER_HPAGE(level - 1)) { 7553 if (hugepage_test_mixed(slot, gfn, level - 1) || 7554 attrs != kvm_get_memory_attributes(kvm, gfn)) 7555 return false; 7556 } 7557 return true; 7558 } 7559 7560 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm, 7561 struct kvm_gfn_range *range) 7562 { 7563 unsigned long attrs = range->arg.attributes; 7564 struct kvm_memory_slot *slot = range->slot; 7565 int level; 7566 7567 lockdep_assert_held_write(&kvm->mmu_lock); 7568 lockdep_assert_held(&kvm->slots_lock); 7569 7570 /* 7571 * Calculate which ranges can be mapped with hugepages even if the slot 7572 * can't map memory PRIVATE. KVM mustn't create a SHARED hugepage over 7573 * a range that has PRIVATE GFNs, and conversely converting a range to 7574 * SHARED may now allow hugepages. 7575 */ 7576 if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm))) 7577 return false; 7578 7579 /* 7580 * The sequence matters here: upper levels consume the result of lower 7581 * level's scanning. 7582 */ 7583 for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) { 7584 gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level); 7585 gfn_t gfn = gfn_round_for_level(range->start, level); 7586 7587 /* Process the head page if it straddles the range. */ 7588 if (gfn != range->start || gfn + nr_pages > range->end) { 7589 /* 7590 * Skip mixed tracking if the aligned gfn isn't covered 7591 * by the memslot, KVM can't use a hugepage due to the 7592 * misaligned address regardless of memory attributes. 7593 */ 7594 if (gfn >= slot->base_gfn && 7595 gfn + nr_pages <= slot->base_gfn + slot->npages) { 7596 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs)) 7597 hugepage_clear_mixed(slot, gfn, level); 7598 else 7599 hugepage_set_mixed(slot, gfn, level); 7600 } 7601 gfn += nr_pages; 7602 } 7603 7604 /* 7605 * Pages entirely covered by the range are guaranteed to have 7606 * only the attributes which were just set. 7607 */ 7608 for ( ; gfn + nr_pages <= range->end; gfn += nr_pages) 7609 hugepage_clear_mixed(slot, gfn, level); 7610 7611 /* 7612 * Process the last tail page if it straddles the range and is 7613 * contained by the memslot. Like the head page, KVM can't 7614 * create a hugepage if the slot size is misaligned. 7615 */ 7616 if (gfn < range->end && 7617 (gfn + nr_pages) <= (slot->base_gfn + slot->npages)) { 7618 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs)) 7619 hugepage_clear_mixed(slot, gfn, level); 7620 else 7621 hugepage_set_mixed(slot, gfn, level); 7622 } 7623 } 7624 return false; 7625 } 7626 7627 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm, 7628 struct kvm_memory_slot *slot) 7629 { 7630 int level; 7631 7632 if (!kvm_arch_has_private_mem(kvm)) 7633 return; 7634 7635 for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) { 7636 /* 7637 * Don't bother tracking mixed attributes for pages that can't 7638 * be huge due to alignment, i.e. process only pages that are 7639 * entirely contained by the memslot. 7640 */ 7641 gfn_t end = gfn_round_for_level(slot->base_gfn + slot->npages, level); 7642 gfn_t start = gfn_round_for_level(slot->base_gfn, level); 7643 gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level); 7644 gfn_t gfn; 7645 7646 if (start < slot->base_gfn) 7647 start += nr_pages; 7648 7649 /* 7650 * Unlike setting attributes, every potential hugepage needs to 7651 * be manually checked as the attributes may already be mixed. 7652 */ 7653 for (gfn = start; gfn < end; gfn += nr_pages) { 7654 unsigned long attrs = kvm_get_memory_attributes(kvm, gfn); 7655 7656 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs)) 7657 hugepage_clear_mixed(slot, gfn, level); 7658 else 7659 hugepage_set_mixed(slot, gfn, level); 7660 } 7661 } 7662 } 7663 #endif 7664