xref: /linux/arch/x86/kvm/mmu.h (revision b58b13f156c00c2457035b7071eaaac105fe6836)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __KVM_X86_MMU_H
3 #define __KVM_X86_MMU_H
4 
5 #include <linux/kvm_host.h>
6 #include "kvm_cache_regs.h"
7 #include "cpuid.h"
8 
9 extern bool __read_mostly enable_mmio_caching;
10 
11 #define PT_WRITABLE_SHIFT 1
12 #define PT_USER_SHIFT 2
13 
14 #define PT_PRESENT_MASK (1ULL << 0)
15 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
16 #define PT_USER_MASK (1ULL << PT_USER_SHIFT)
17 #define PT_PWT_MASK (1ULL << 3)
18 #define PT_PCD_MASK (1ULL << 4)
19 #define PT_ACCESSED_SHIFT 5
20 #define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
21 #define PT_DIRTY_SHIFT 6
22 #define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
23 #define PT_PAGE_SIZE_SHIFT 7
24 #define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
25 #define PT_PAT_MASK (1ULL << 7)
26 #define PT_GLOBAL_MASK (1ULL << 8)
27 #define PT64_NX_SHIFT 63
28 #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
29 
30 #define PT_PAT_SHIFT 7
31 #define PT_DIR_PAT_SHIFT 12
32 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
33 
34 #define PT64_ROOT_5LEVEL 5
35 #define PT64_ROOT_4LEVEL 4
36 #define PT32_ROOT_LEVEL 2
37 #define PT32E_ROOT_LEVEL 3
38 
39 #define KVM_MMU_CR4_ROLE_BITS (X86_CR4_PSE | X86_CR4_PAE | X86_CR4_LA57 | \
40 			       X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE)
41 
42 #define KVM_MMU_CR0_ROLE_BITS (X86_CR0_PG | X86_CR0_WP)
43 #define KVM_MMU_EFER_ROLE_BITS (EFER_LME | EFER_NX)
44 
45 static __always_inline u64 rsvd_bits(int s, int e)
46 {
47 	BUILD_BUG_ON(__builtin_constant_p(e) && __builtin_constant_p(s) && e < s);
48 
49 	if (__builtin_constant_p(e))
50 		BUILD_BUG_ON(e > 63);
51 	else
52 		e &= 63;
53 
54 	if (e < s)
55 		return 0;
56 
57 	return ((2ULL << (e - s)) - 1) << s;
58 }
59 
60 /*
61  * The number of non-reserved physical address bits irrespective of features
62  * that repurpose legal bits, e.g. MKTME.
63  */
64 extern u8 __read_mostly shadow_phys_bits;
65 
66 static inline gfn_t kvm_mmu_max_gfn(void)
67 {
68 	/*
69 	 * Note that this uses the host MAXPHYADDR, not the guest's.
70 	 * EPT/NPT cannot support GPAs that would exceed host.MAXPHYADDR;
71 	 * assuming KVM is running on bare metal, guest accesses beyond
72 	 * host.MAXPHYADDR will hit a #PF(RSVD) and never cause a vmexit
73 	 * (either EPT Violation/Misconfig or #NPF), and so KVM will never
74 	 * install a SPTE for such addresses.  If KVM is running as a VM
75 	 * itself, on the other hand, it might see a MAXPHYADDR that is less
76 	 * than hardware's real MAXPHYADDR.  Using the host MAXPHYADDR
77 	 * disallows such SPTEs entirely and simplifies the TDP MMU.
78 	 */
79 	int max_gpa_bits = likely(tdp_enabled) ? shadow_phys_bits : 52;
80 
81 	return (1ULL << (max_gpa_bits - PAGE_SHIFT)) - 1;
82 }
83 
84 static inline u8 kvm_get_shadow_phys_bits(void)
85 {
86 	/*
87 	 * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
88 	 * in CPU detection code, but the processor treats those reduced bits as
89 	 * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
90 	 * the physical address bits reported by CPUID.
91 	 */
92 	if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
93 		return cpuid_eax(0x80000008) & 0xff;
94 
95 	/*
96 	 * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
97 	 * custom CPUID.  Proceed with whatever the kernel found since these features
98 	 * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
99 	 */
100 	return boot_cpu_data.x86_phys_bits;
101 }
102 
103 void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask);
104 void kvm_mmu_set_me_spte_mask(u64 me_value, u64 me_mask);
105 void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only);
106 
107 void kvm_init_mmu(struct kvm_vcpu *vcpu);
108 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
109 			     unsigned long cr4, u64 efer, gpa_t nested_cr3);
110 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
111 			     int huge_page_level, bool accessed_dirty,
112 			     gpa_t new_eptp);
113 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu);
114 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
115 				u64 fault_address, char *insn, int insn_len);
116 void __kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu,
117 					struct kvm_mmu *mmu);
118 
119 int kvm_mmu_load(struct kvm_vcpu *vcpu);
120 void kvm_mmu_unload(struct kvm_vcpu *vcpu);
121 void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu);
122 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu);
123 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu);
124 void kvm_mmu_track_write(struct kvm_vcpu *vcpu, gpa_t gpa, const u8 *new,
125 			 int bytes);
126 
127 static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
128 {
129 	if (likely(vcpu->arch.mmu->root.hpa != INVALID_PAGE))
130 		return 0;
131 
132 	return kvm_mmu_load(vcpu);
133 }
134 
135 static inline unsigned long kvm_get_pcid(struct kvm_vcpu *vcpu, gpa_t cr3)
136 {
137 	BUILD_BUG_ON((X86_CR3_PCID_MASK & PAGE_MASK) != 0);
138 
139 	return kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)
140 	       ? cr3 & X86_CR3_PCID_MASK
141 	       : 0;
142 }
143 
144 static inline unsigned long kvm_get_active_pcid(struct kvm_vcpu *vcpu)
145 {
146 	return kvm_get_pcid(vcpu, kvm_read_cr3(vcpu));
147 }
148 
149 static inline unsigned long kvm_get_active_cr3_lam_bits(struct kvm_vcpu *vcpu)
150 {
151 	if (!guest_can_use(vcpu, X86_FEATURE_LAM))
152 		return 0;
153 
154 	return kvm_read_cr3(vcpu) & (X86_CR3_LAM_U48 | X86_CR3_LAM_U57);
155 }
156 
157 static inline void kvm_mmu_load_pgd(struct kvm_vcpu *vcpu)
158 {
159 	u64 root_hpa = vcpu->arch.mmu->root.hpa;
160 
161 	if (!VALID_PAGE(root_hpa))
162 		return;
163 
164 	static_call(kvm_x86_load_mmu_pgd)(vcpu, root_hpa,
165 					  vcpu->arch.mmu->root_role.level);
166 }
167 
168 static inline void kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu,
169 						    struct kvm_mmu *mmu)
170 {
171 	/*
172 	 * When EPT is enabled, KVM may passthrough CR0.WP to the guest, i.e.
173 	 * @mmu's snapshot of CR0.WP and thus all related paging metadata may
174 	 * be stale.  Refresh CR0.WP and the metadata on-demand when checking
175 	 * for permission faults.  Exempt nested MMUs, i.e. MMUs for shadowing
176 	 * nEPT and nNPT, as CR0.WP is ignored in both cases.  Note, KVM does
177 	 * need to refresh nested_mmu, a.k.a. the walker used to translate L2
178 	 * GVAs to GPAs, as that "MMU" needs to honor L2's CR0.WP.
179 	 */
180 	if (!tdp_enabled || mmu == &vcpu->arch.guest_mmu)
181 		return;
182 
183 	__kvm_mmu_refresh_passthrough_bits(vcpu, mmu);
184 }
185 
186 /*
187  * Check if a given access (described through the I/D, W/R and U/S bits of a
188  * page fault error code pfec) causes a permission fault with the given PTE
189  * access rights (in ACC_* format).
190  *
191  * Return zero if the access does not fault; return the page fault error code
192  * if the access faults.
193  */
194 static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
195 				  unsigned pte_access, unsigned pte_pkey,
196 				  u64 access)
197 {
198 	/* strip nested paging fault error codes */
199 	unsigned int pfec = access;
200 	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
201 
202 	/*
203 	 * For explicit supervisor accesses, SMAP is disabled if EFLAGS.AC = 1.
204 	 * For implicit supervisor accesses, SMAP cannot be overridden.
205 	 *
206 	 * SMAP works on supervisor accesses only, and not_smap can
207 	 * be set or not set when user access with neither has any bearing
208 	 * on the result.
209 	 *
210 	 * We put the SMAP checking bit in place of the PFERR_RSVD_MASK bit;
211 	 * this bit will always be zero in pfec, but it will be one in index
212 	 * if SMAP checks are being disabled.
213 	 */
214 	u64 implicit_access = access & PFERR_IMPLICIT_ACCESS;
215 	bool not_smap = ((rflags & X86_EFLAGS_AC) | implicit_access) == X86_EFLAGS_AC;
216 	int index = (pfec + (not_smap << PFERR_RSVD_BIT)) >> 1;
217 	u32 errcode = PFERR_PRESENT_MASK;
218 	bool fault;
219 
220 	kvm_mmu_refresh_passthrough_bits(vcpu, mmu);
221 
222 	fault = (mmu->permissions[index] >> pte_access) & 1;
223 
224 	WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK));
225 	if (unlikely(mmu->pkru_mask)) {
226 		u32 pkru_bits, offset;
227 
228 		/*
229 		* PKRU defines 32 bits, there are 16 domains and 2
230 		* attribute bits per domain in pkru.  pte_pkey is the
231 		* index of the protection domain, so pte_pkey * 2 is
232 		* is the index of the first bit for the domain.
233 		*/
234 		pkru_bits = (vcpu->arch.pkru >> (pte_pkey * 2)) & 3;
235 
236 		/* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */
237 		offset = (pfec & ~1) +
238 			((pte_access & PT_USER_MASK) << (PFERR_RSVD_BIT - PT_USER_SHIFT));
239 
240 		pkru_bits &= mmu->pkru_mask >> offset;
241 		errcode |= -pkru_bits & PFERR_PK_MASK;
242 		fault |= (pkru_bits != 0);
243 	}
244 
245 	return -(u32)fault & errcode;
246 }
247 
248 bool __kvm_mmu_honors_guest_mtrrs(bool vm_has_noncoherent_dma);
249 
250 static inline bool kvm_mmu_honors_guest_mtrrs(struct kvm *kvm)
251 {
252 	return __kvm_mmu_honors_guest_mtrrs(kvm_arch_has_noncoherent_dma(kvm));
253 }
254 
255 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
256 
257 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu);
258 
259 int kvm_mmu_post_init_vm(struct kvm *kvm);
260 void kvm_mmu_pre_destroy_vm(struct kvm *kvm);
261 
262 static inline bool kvm_shadow_root_allocated(struct kvm *kvm)
263 {
264 	/*
265 	 * Read shadow_root_allocated before related pointers. Hence, threads
266 	 * reading shadow_root_allocated in any lock context are guaranteed to
267 	 * see the pointers. Pairs with smp_store_release in
268 	 * mmu_first_shadow_root_alloc.
269 	 */
270 	return smp_load_acquire(&kvm->arch.shadow_root_allocated);
271 }
272 
273 #ifdef CONFIG_X86_64
274 extern bool tdp_mmu_enabled;
275 #else
276 #define tdp_mmu_enabled false
277 #endif
278 
279 static inline bool kvm_memslots_have_rmaps(struct kvm *kvm)
280 {
281 	return !tdp_mmu_enabled || kvm_shadow_root_allocated(kvm);
282 }
283 
284 static inline gfn_t gfn_to_index(gfn_t gfn, gfn_t base_gfn, int level)
285 {
286 	/* KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K) must be 0. */
287 	return (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
288 		(base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
289 }
290 
291 static inline unsigned long
292 __kvm_mmu_slot_lpages(struct kvm_memory_slot *slot, unsigned long npages,
293 		      int level)
294 {
295 	return gfn_to_index(slot->base_gfn + npages - 1,
296 			    slot->base_gfn, level) + 1;
297 }
298 
299 static inline unsigned long
300 kvm_mmu_slot_lpages(struct kvm_memory_slot *slot, int level)
301 {
302 	return __kvm_mmu_slot_lpages(slot, slot->npages, level);
303 }
304 
305 static inline void kvm_update_page_stats(struct kvm *kvm, int level, int count)
306 {
307 	atomic64_add(count, &kvm->stat.pages[level - 1]);
308 }
309 
310 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
311 			   struct x86_exception *exception);
312 
313 static inline gpa_t kvm_translate_gpa(struct kvm_vcpu *vcpu,
314 				      struct kvm_mmu *mmu,
315 				      gpa_t gpa, u64 access,
316 				      struct x86_exception *exception)
317 {
318 	if (mmu != &vcpu->arch.nested_mmu)
319 		return gpa;
320 	return translate_nested_gpa(vcpu, gpa, access, exception);
321 }
322 #endif
323