xref: /linux/arch/x86/kvm/mmu.h (revision 0ad53fe3ae82443c74ff8cfd7bd13377cc1134a3)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __KVM_X86_MMU_H
3 #define __KVM_X86_MMU_H
4 
5 #include <linux/kvm_host.h>
6 #include "kvm_cache_regs.h"
7 #include "cpuid.h"
8 
9 #define PT64_PT_BITS 9
10 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
11 #define PT32_PT_BITS 10
12 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
13 
14 #define PT_WRITABLE_SHIFT 1
15 #define PT_USER_SHIFT 2
16 
17 #define PT_PRESENT_MASK (1ULL << 0)
18 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
19 #define PT_USER_MASK (1ULL << PT_USER_SHIFT)
20 #define PT_PWT_MASK (1ULL << 3)
21 #define PT_PCD_MASK (1ULL << 4)
22 #define PT_ACCESSED_SHIFT 5
23 #define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
24 #define PT_DIRTY_SHIFT 6
25 #define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
26 #define PT_PAGE_SIZE_SHIFT 7
27 #define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
28 #define PT_PAT_MASK (1ULL << 7)
29 #define PT_GLOBAL_MASK (1ULL << 8)
30 #define PT64_NX_SHIFT 63
31 #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
32 
33 #define PT_PAT_SHIFT 7
34 #define PT_DIR_PAT_SHIFT 12
35 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
36 
37 #define PT32_DIR_PSE36_SIZE 4
38 #define PT32_DIR_PSE36_SHIFT 13
39 #define PT32_DIR_PSE36_MASK \
40 	(((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
41 
42 #define PT64_ROOT_5LEVEL 5
43 #define PT64_ROOT_4LEVEL 4
44 #define PT32_ROOT_LEVEL 2
45 #define PT32E_ROOT_LEVEL 3
46 
47 #define KVM_MMU_CR4_ROLE_BITS (X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE | \
48 			       X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE | \
49 			       X86_CR4_LA57)
50 
51 #define KVM_MMU_CR0_ROLE_BITS (X86_CR0_PG | X86_CR0_WP)
52 
53 static __always_inline u64 rsvd_bits(int s, int e)
54 {
55 	BUILD_BUG_ON(__builtin_constant_p(e) && __builtin_constant_p(s) && e < s);
56 
57 	if (__builtin_constant_p(e))
58 		BUILD_BUG_ON(e > 63);
59 	else
60 		e &= 63;
61 
62 	if (e < s)
63 		return 0;
64 
65 	return ((2ULL << (e - s)) - 1) << s;
66 }
67 
68 void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask);
69 void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only);
70 
71 void kvm_init_mmu(struct kvm_vcpu *vcpu);
72 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
73 			     unsigned long cr4, u64 efer, gpa_t nested_cr3);
74 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
75 			     bool accessed_dirty, gpa_t new_eptp);
76 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu);
77 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
78 				u64 fault_address, char *insn, int insn_len);
79 
80 int kvm_mmu_load(struct kvm_vcpu *vcpu);
81 void kvm_mmu_unload(struct kvm_vcpu *vcpu);
82 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu);
83 
84 static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
85 {
86 	if (likely(vcpu->arch.mmu->root_hpa != INVALID_PAGE))
87 		return 0;
88 
89 	return kvm_mmu_load(vcpu);
90 }
91 
92 static inline unsigned long kvm_get_pcid(struct kvm_vcpu *vcpu, gpa_t cr3)
93 {
94 	BUILD_BUG_ON((X86_CR3_PCID_MASK & PAGE_MASK) != 0);
95 
96 	return kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)
97 	       ? cr3 & X86_CR3_PCID_MASK
98 	       : 0;
99 }
100 
101 static inline unsigned long kvm_get_active_pcid(struct kvm_vcpu *vcpu)
102 {
103 	return kvm_get_pcid(vcpu, kvm_read_cr3(vcpu));
104 }
105 
106 static inline void kvm_mmu_load_pgd(struct kvm_vcpu *vcpu)
107 {
108 	u64 root_hpa = vcpu->arch.mmu->root_hpa;
109 
110 	if (!VALID_PAGE(root_hpa))
111 		return;
112 
113 	static_call(kvm_x86_load_mmu_pgd)(vcpu, root_hpa,
114 					  vcpu->arch.mmu->shadow_root_level);
115 }
116 
117 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
118 		       bool prefault);
119 
120 static inline int kvm_mmu_do_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
121 					u32 err, bool prefault)
122 {
123 #ifdef CONFIG_RETPOLINE
124 	if (likely(vcpu->arch.mmu->page_fault == kvm_tdp_page_fault))
125 		return kvm_tdp_page_fault(vcpu, cr2_or_gpa, err, prefault);
126 #endif
127 	return vcpu->arch.mmu->page_fault(vcpu, cr2_or_gpa, err, prefault);
128 }
129 
130 /*
131  * Currently, we have two sorts of write-protection, a) the first one
132  * write-protects guest page to sync the guest modification, b) another one is
133  * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences
134  * between these two sorts are:
135  * 1) the first case clears MMU-writable bit.
136  * 2) the first case requires flushing tlb immediately avoiding corrupting
137  *    shadow page table between all vcpus so it should be in the protection of
138  *    mmu-lock. And the another case does not need to flush tlb until returning
139  *    the dirty bitmap to userspace since it only write-protects the page
140  *    logged in the bitmap, that means the page in the dirty bitmap is not
141  *    missed, so it can flush tlb out of mmu-lock.
142  *
143  * So, there is the problem: the first case can meet the corrupted tlb caused
144  * by another case which write-protects pages but without flush tlb
145  * immediately. In order to making the first case be aware this problem we let
146  * it flush tlb if we try to write-protect a spte whose MMU-writable bit
147  * is set, it works since another case never touches MMU-writable bit.
148  *
149  * Anyway, whenever a spte is updated (only permission and status bits are
150  * changed) we need to check whether the spte with MMU-writable becomes
151  * readonly, if that happens, we need to flush tlb. Fortunately,
152  * mmu_spte_update() has already handled it perfectly.
153  *
154  * The rules to use MMU-writable and PT_WRITABLE_MASK:
155  * - if we want to see if it has writable tlb entry or if the spte can be
156  *   writable on the mmu mapping, check MMU-writable, this is the most
157  *   case, otherwise
158  * - if we fix page fault on the spte or do write-protection by dirty logging,
159  *   check PT_WRITABLE_MASK.
160  *
161  * TODO: introduce APIs to split these two cases.
162  */
163 static inline bool is_writable_pte(unsigned long pte)
164 {
165 	return pte & PT_WRITABLE_MASK;
166 }
167 
168 /*
169  * Check if a given access (described through the I/D, W/R and U/S bits of a
170  * page fault error code pfec) causes a permission fault with the given PTE
171  * access rights (in ACC_* format).
172  *
173  * Return zero if the access does not fault; return the page fault error code
174  * if the access faults.
175  */
176 static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
177 				  unsigned pte_access, unsigned pte_pkey,
178 				  unsigned pfec)
179 {
180 	int cpl = static_call(kvm_x86_get_cpl)(vcpu);
181 	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
182 
183 	/*
184 	 * If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1.
185 	 *
186 	 * If CPL = 3, SMAP applies to all supervisor-mode data accesses
187 	 * (these are implicit supervisor accesses) regardless of the value
188 	 * of EFLAGS.AC.
189 	 *
190 	 * This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving
191 	 * the result in X86_EFLAGS_AC. We then insert it in place of
192 	 * the PFERR_RSVD_MASK bit; this bit will always be zero in pfec,
193 	 * but it will be one in index if SMAP checks are being overridden.
194 	 * It is important to keep this branchless.
195 	 */
196 	unsigned long smap = (cpl - 3) & (rflags & X86_EFLAGS_AC);
197 	int index = (pfec >> 1) +
198 		    (smap >> (X86_EFLAGS_AC_BIT - PFERR_RSVD_BIT + 1));
199 	bool fault = (mmu->permissions[index] >> pte_access) & 1;
200 	u32 errcode = PFERR_PRESENT_MASK;
201 
202 	WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK));
203 	if (unlikely(mmu->pkru_mask)) {
204 		u32 pkru_bits, offset;
205 
206 		/*
207 		* PKRU defines 32 bits, there are 16 domains and 2
208 		* attribute bits per domain in pkru.  pte_pkey is the
209 		* index of the protection domain, so pte_pkey * 2 is
210 		* is the index of the first bit for the domain.
211 		*/
212 		pkru_bits = (vcpu->arch.pkru >> (pte_pkey * 2)) & 3;
213 
214 		/* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */
215 		offset = (pfec & ~1) +
216 			((pte_access & PT_USER_MASK) << (PFERR_RSVD_BIT - PT_USER_SHIFT));
217 
218 		pkru_bits &= mmu->pkru_mask >> offset;
219 		errcode |= -pkru_bits & PFERR_PK_MASK;
220 		fault |= (pkru_bits != 0);
221 	}
222 
223 	return -(u32)fault & errcode;
224 }
225 
226 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
227 
228 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu);
229 
230 int kvm_mmu_post_init_vm(struct kvm *kvm);
231 void kvm_mmu_pre_destroy_vm(struct kvm *kvm);
232 
233 static inline bool kvm_memslots_have_rmaps(struct kvm *kvm)
234 {
235 	/*
236 	 * Read memslot_have_rmaps before rmap pointers.  Hence, threads reading
237 	 * memslots_have_rmaps in any lock context are guaranteed to see the
238 	 * pointers.  Pairs with smp_store_release in alloc_all_memslots_rmaps.
239 	 */
240 	return smp_load_acquire(&kvm->arch.memslots_have_rmaps);
241 }
242 
243 static inline gfn_t gfn_to_index(gfn_t gfn, gfn_t base_gfn, int level)
244 {
245 	/* KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K) must be 0. */
246 	return (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
247 		(base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
248 }
249 
250 static inline unsigned long
251 __kvm_mmu_slot_lpages(struct kvm_memory_slot *slot, unsigned long npages,
252 		      int level)
253 {
254 	return gfn_to_index(slot->base_gfn + npages - 1,
255 			    slot->base_gfn, level) + 1;
256 }
257 
258 static inline unsigned long
259 kvm_mmu_slot_lpages(struct kvm_memory_slot *slot, int level)
260 {
261 	return __kvm_mmu_slot_lpages(slot, slot->npages, level);
262 }
263 
264 static inline void kvm_update_page_stats(struct kvm *kvm, int level, int count)
265 {
266 	atomic64_add(count, &kvm->stat.pages[level - 1]);
267 }
268 #endif
269