1 // SPDX-License-Identifier: GPL-2.0-only 2 3 /* 4 * Local APIC virtualization 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2007 Novell 8 * Copyright (C) 2007 Intel 9 * Copyright 2009 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Dor Laor <dor.laor@qumranet.com> 13 * Gregory Haskins <ghaskins@novell.com> 14 * Yaozu (Eddie) Dong <eddie.dong@intel.com> 15 * 16 * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation. 17 */ 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/kvm_host.h> 21 #include <linux/kvm.h> 22 #include <linux/mm.h> 23 #include <linux/highmem.h> 24 #include <linux/smp.h> 25 #include <linux/hrtimer.h> 26 #include <linux/io.h> 27 #include <linux/export.h> 28 #include <linux/math64.h> 29 #include <linux/slab.h> 30 #include <asm/processor.h> 31 #include <asm/mce.h> 32 #include <asm/msr.h> 33 #include <asm/page.h> 34 #include <asm/current.h> 35 #include <asm/apicdef.h> 36 #include <asm/delay.h> 37 #include <linux/atomic.h> 38 #include <linux/jump_label.h> 39 #include "kvm_cache_regs.h" 40 #include "irq.h" 41 #include "ioapic.h" 42 #include "trace.h" 43 #include "x86.h" 44 #include "xen.h" 45 #include "cpuid.h" 46 #include "hyperv.h" 47 #include "smm.h" 48 49 #ifndef CONFIG_X86_64 50 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y)) 51 #else 52 #define mod_64(x, y) ((x) % (y)) 53 #endif 54 55 /* 14 is the version for Xeon and Pentium 8.4.8*/ 56 #define APIC_VERSION 0x14UL 57 #define LAPIC_MMIO_LENGTH (1 << 12) 58 /* followed define is not in apicdef.h */ 59 #define MAX_APIC_VECTOR 256 60 #define APIC_VECTORS_PER_REG 32 61 62 /* 63 * Enable local APIC timer advancement (tscdeadline mode only) with adaptive 64 * tuning. When enabled, KVM programs the host timer event to fire early, i.e. 65 * before the deadline expires, to account for the delay between taking the 66 * VM-Exit (to inject the guest event) and the subsequent VM-Enter to resume 67 * the guest, i.e. so that the interrupt arrives in the guest with minimal 68 * latency relative to the deadline programmed by the guest. 69 */ 70 static bool lapic_timer_advance __read_mostly = true; 71 module_param(lapic_timer_advance, bool, 0444); 72 73 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN 100 /* clock cycles */ 74 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX 10000 /* clock cycles */ 75 #define LAPIC_TIMER_ADVANCE_NS_INIT 1000 76 #define LAPIC_TIMER_ADVANCE_NS_MAX 5000 77 /* step-by-step approximation to mitigate fluctuation */ 78 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8 79 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data); 80 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data); 81 82 static inline void __kvm_lapic_set_reg(char *regs, int reg_off, u32 val) 83 { 84 *((u32 *) (regs + reg_off)) = val; 85 } 86 87 static inline void kvm_lapic_set_reg(struct kvm_lapic *apic, int reg_off, u32 val) 88 { 89 __kvm_lapic_set_reg(apic->regs, reg_off, val); 90 } 91 92 static __always_inline u64 __kvm_lapic_get_reg64(char *regs, int reg) 93 { 94 BUILD_BUG_ON(reg != APIC_ICR); 95 return *((u64 *) (regs + reg)); 96 } 97 98 static __always_inline u64 kvm_lapic_get_reg64(struct kvm_lapic *apic, int reg) 99 { 100 return __kvm_lapic_get_reg64(apic->regs, reg); 101 } 102 103 static __always_inline void __kvm_lapic_set_reg64(char *regs, int reg, u64 val) 104 { 105 BUILD_BUG_ON(reg != APIC_ICR); 106 *((u64 *) (regs + reg)) = val; 107 } 108 109 static __always_inline void kvm_lapic_set_reg64(struct kvm_lapic *apic, 110 int reg, u64 val) 111 { 112 __kvm_lapic_set_reg64(apic->regs, reg, val); 113 } 114 115 static inline int apic_test_vector(int vec, void *bitmap) 116 { 117 return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 118 } 119 120 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector) 121 { 122 struct kvm_lapic *apic = vcpu->arch.apic; 123 124 return apic_test_vector(vector, apic->regs + APIC_ISR) || 125 apic_test_vector(vector, apic->regs + APIC_IRR); 126 } 127 128 static inline int __apic_test_and_set_vector(int vec, void *bitmap) 129 { 130 return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 131 } 132 133 static inline int __apic_test_and_clear_vector(int vec, void *bitmap) 134 { 135 return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 136 } 137 138 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); 139 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); 140 141 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_hw_disabled, HZ); 142 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_sw_disabled, HZ); 143 144 static inline int apic_enabled(struct kvm_lapic *apic) 145 { 146 return kvm_apic_sw_enabled(apic) && kvm_apic_hw_enabled(apic); 147 } 148 149 #define LVT_MASK \ 150 (APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK) 151 152 #define LINT_MASK \ 153 (LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \ 154 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER) 155 156 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic) 157 { 158 return apic->vcpu->vcpu_id; 159 } 160 161 static bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu) 162 { 163 return pi_inject_timer && kvm_vcpu_apicv_active(vcpu) && 164 (kvm_mwait_in_guest(vcpu->kvm) || kvm_hlt_in_guest(vcpu->kvm)); 165 } 166 167 bool kvm_can_use_hv_timer(struct kvm_vcpu *vcpu) 168 { 169 return kvm_x86_ops.set_hv_timer 170 && !(kvm_mwait_in_guest(vcpu->kvm) || 171 kvm_can_post_timer_interrupt(vcpu)); 172 } 173 174 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu) 175 { 176 return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE; 177 } 178 179 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id) 180 { 181 return ((id >> 4) << 16) | (1 << (id & 0xf)); 182 } 183 184 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map, 185 u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) { 186 switch (map->logical_mode) { 187 case KVM_APIC_MODE_SW_DISABLED: 188 /* Arbitrarily use the flat map so that @cluster isn't NULL. */ 189 *cluster = map->xapic_flat_map; 190 *mask = 0; 191 return true; 192 case KVM_APIC_MODE_X2APIC: { 193 u32 offset = (dest_id >> 16) * 16; 194 u32 max_apic_id = map->max_apic_id; 195 196 if (offset <= max_apic_id) { 197 u8 cluster_size = min(max_apic_id - offset + 1, 16U); 198 199 offset = array_index_nospec(offset, map->max_apic_id + 1); 200 *cluster = &map->phys_map[offset]; 201 *mask = dest_id & (0xffff >> (16 - cluster_size)); 202 } else { 203 *mask = 0; 204 } 205 206 return true; 207 } 208 case KVM_APIC_MODE_XAPIC_FLAT: 209 *cluster = map->xapic_flat_map; 210 *mask = dest_id & 0xff; 211 return true; 212 case KVM_APIC_MODE_XAPIC_CLUSTER: 213 *cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf]; 214 *mask = dest_id & 0xf; 215 return true; 216 case KVM_APIC_MODE_MAP_DISABLED: 217 return false; 218 default: 219 WARN_ON_ONCE(1); 220 return false; 221 } 222 } 223 224 static int kvm_recalculate_phys_map(struct kvm_apic_map *new, 225 struct kvm_vcpu *vcpu, 226 bool *xapic_id_mismatch) 227 { 228 struct kvm_lapic *apic = vcpu->arch.apic; 229 u32 x2apic_id = kvm_x2apic_id(apic); 230 u32 xapic_id = kvm_xapic_id(apic); 231 u32 physical_id; 232 233 /* 234 * For simplicity, KVM always allocates enough space for all possible 235 * xAPIC IDs. Yell, but don't kill the VM, as KVM can continue on 236 * without the optimized map. 237 */ 238 if (WARN_ON_ONCE(xapic_id > new->max_apic_id)) 239 return -EINVAL; 240 241 /* 242 * Bail if a vCPU was added and/or enabled its APIC between allocating 243 * the map and doing the actual calculations for the map. Note, KVM 244 * hardcodes the x2APIC ID to vcpu_id, i.e. there's no TOCTOU bug if 245 * the compiler decides to reload x2apic_id after this check. 246 */ 247 if (x2apic_id > new->max_apic_id) 248 return -E2BIG; 249 250 /* 251 * Deliberately truncate the vCPU ID when detecting a mismatched APIC 252 * ID to avoid false positives if the vCPU ID, i.e. x2APIC ID, is a 253 * 32-bit value. Any unwanted aliasing due to truncation results will 254 * be detected below. 255 */ 256 if (!apic_x2apic_mode(apic) && xapic_id != (u8)vcpu->vcpu_id) 257 *xapic_id_mismatch = true; 258 259 /* 260 * Apply KVM's hotplug hack if userspace has enable 32-bit APIC IDs. 261 * Allow sending events to vCPUs by their x2APIC ID even if the target 262 * vCPU is in legacy xAPIC mode, and silently ignore aliased xAPIC IDs 263 * (the x2APIC ID is truncated to 8 bits, causing IDs > 0xff to wrap 264 * and collide). 265 * 266 * Honor the architectural (and KVM's non-optimized) behavior if 267 * userspace has not enabled 32-bit x2APIC IDs. Each APIC is supposed 268 * to process messages independently. If multiple vCPUs have the same 269 * effective APIC ID, e.g. due to the x2APIC wrap or because the guest 270 * manually modified its xAPIC IDs, events targeting that ID are 271 * supposed to be recognized by all vCPUs with said ID. 272 */ 273 if (vcpu->kvm->arch.x2apic_format) { 274 /* See also kvm_apic_match_physical_addr(). */ 275 if (apic_x2apic_mode(apic) || x2apic_id > 0xff) 276 new->phys_map[x2apic_id] = apic; 277 278 if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id]) 279 new->phys_map[xapic_id] = apic; 280 } else { 281 /* 282 * Disable the optimized map if the physical APIC ID is already 283 * mapped, i.e. is aliased to multiple vCPUs. The optimized 284 * map requires a strict 1:1 mapping between IDs and vCPUs. 285 */ 286 if (apic_x2apic_mode(apic)) 287 physical_id = x2apic_id; 288 else 289 physical_id = xapic_id; 290 291 if (new->phys_map[physical_id]) 292 return -EINVAL; 293 294 new->phys_map[physical_id] = apic; 295 } 296 297 return 0; 298 } 299 300 static void kvm_recalculate_logical_map(struct kvm_apic_map *new, 301 struct kvm_vcpu *vcpu) 302 { 303 struct kvm_lapic *apic = vcpu->arch.apic; 304 enum kvm_apic_logical_mode logical_mode; 305 struct kvm_lapic **cluster; 306 u16 mask; 307 u32 ldr; 308 309 if (new->logical_mode == KVM_APIC_MODE_MAP_DISABLED) 310 return; 311 312 if (!kvm_apic_sw_enabled(apic)) 313 return; 314 315 ldr = kvm_lapic_get_reg(apic, APIC_LDR); 316 if (!ldr) 317 return; 318 319 if (apic_x2apic_mode(apic)) { 320 logical_mode = KVM_APIC_MODE_X2APIC; 321 } else { 322 ldr = GET_APIC_LOGICAL_ID(ldr); 323 if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT) 324 logical_mode = KVM_APIC_MODE_XAPIC_FLAT; 325 else 326 logical_mode = KVM_APIC_MODE_XAPIC_CLUSTER; 327 } 328 329 /* 330 * To optimize logical mode delivery, all software-enabled APICs must 331 * be configured for the same mode. 332 */ 333 if (new->logical_mode == KVM_APIC_MODE_SW_DISABLED) { 334 new->logical_mode = logical_mode; 335 } else if (new->logical_mode != logical_mode) { 336 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED; 337 return; 338 } 339 340 /* 341 * In x2APIC mode, the LDR is read-only and derived directly from the 342 * x2APIC ID, thus is guaranteed to be addressable. KVM reuses 343 * kvm_apic_map.phys_map to optimize logical mode x2APIC interrupts by 344 * reversing the LDR calculation to get cluster of APICs, i.e. no 345 * additional work is required. 346 */ 347 if (apic_x2apic_mode(apic)) 348 return; 349 350 if (WARN_ON_ONCE(!kvm_apic_map_get_logical_dest(new, ldr, 351 &cluster, &mask))) { 352 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED; 353 return; 354 } 355 356 if (!mask) 357 return; 358 359 ldr = ffs(mask) - 1; 360 if (!is_power_of_2(mask) || cluster[ldr]) 361 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED; 362 else 363 cluster[ldr] = apic; 364 } 365 366 /* 367 * CLEAN -> DIRTY and UPDATE_IN_PROGRESS -> DIRTY changes happen without a lock. 368 * 369 * DIRTY -> UPDATE_IN_PROGRESS and UPDATE_IN_PROGRESS -> CLEAN happen with 370 * apic_map_lock_held. 371 */ 372 enum { 373 CLEAN, 374 UPDATE_IN_PROGRESS, 375 DIRTY 376 }; 377 378 static void kvm_recalculate_apic_map(struct kvm *kvm) 379 { 380 struct kvm_apic_map *new, *old = NULL; 381 struct kvm_vcpu *vcpu; 382 unsigned long i; 383 u32 max_id = 255; /* enough space for any xAPIC ID */ 384 bool xapic_id_mismatch; 385 int r; 386 387 /* Read kvm->arch.apic_map_dirty before kvm->arch.apic_map. */ 388 if (atomic_read_acquire(&kvm->arch.apic_map_dirty) == CLEAN) 389 return; 390 391 WARN_ONCE(!irqchip_in_kernel(kvm), 392 "Dirty APIC map without an in-kernel local APIC"); 393 394 mutex_lock(&kvm->arch.apic_map_lock); 395 396 retry: 397 /* 398 * Read kvm->arch.apic_map_dirty before kvm->arch.apic_map (if clean) 399 * or the APIC registers (if dirty). Note, on retry the map may have 400 * not yet been marked dirty by whatever task changed a vCPU's x2APIC 401 * ID, i.e. the map may still show up as in-progress. In that case 402 * this task still needs to retry and complete its calculation. 403 */ 404 if (atomic_cmpxchg_acquire(&kvm->arch.apic_map_dirty, 405 DIRTY, UPDATE_IN_PROGRESS) == CLEAN) { 406 /* Someone else has updated the map. */ 407 mutex_unlock(&kvm->arch.apic_map_lock); 408 return; 409 } 410 411 /* 412 * Reset the mismatch flag between attempts so that KVM does the right 413 * thing if a vCPU changes its xAPIC ID, but do NOT reset max_id, i.e. 414 * keep max_id strictly increasing. Disallowing max_id from shrinking 415 * ensures KVM won't get stuck in an infinite loop, e.g. if the vCPU 416 * with the highest x2APIC ID is toggling its APIC on and off. 417 */ 418 xapic_id_mismatch = false; 419 420 kvm_for_each_vcpu(i, vcpu, kvm) 421 if (kvm_apic_present(vcpu)) 422 max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic)); 423 424 new = kvzalloc(sizeof(struct kvm_apic_map) + 425 sizeof(struct kvm_lapic *) * ((u64)max_id + 1), 426 GFP_KERNEL_ACCOUNT); 427 428 if (!new) 429 goto out; 430 431 new->max_apic_id = max_id; 432 new->logical_mode = KVM_APIC_MODE_SW_DISABLED; 433 434 kvm_for_each_vcpu(i, vcpu, kvm) { 435 if (!kvm_apic_present(vcpu)) 436 continue; 437 438 r = kvm_recalculate_phys_map(new, vcpu, &xapic_id_mismatch); 439 if (r) { 440 kvfree(new); 441 new = NULL; 442 if (r == -E2BIG) { 443 cond_resched(); 444 goto retry; 445 } 446 447 goto out; 448 } 449 450 kvm_recalculate_logical_map(new, vcpu); 451 } 452 out: 453 /* 454 * The optimized map is effectively KVM's internal version of APICv, 455 * and all unwanted aliasing that results in disabling the optimized 456 * map also applies to APICv. 457 */ 458 if (!new) 459 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED); 460 else 461 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED); 462 463 if (!new || new->logical_mode == KVM_APIC_MODE_MAP_DISABLED) 464 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED); 465 else 466 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED); 467 468 if (xapic_id_mismatch) 469 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED); 470 else 471 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED); 472 473 old = rcu_dereference_protected(kvm->arch.apic_map, 474 lockdep_is_held(&kvm->arch.apic_map_lock)); 475 rcu_assign_pointer(kvm->arch.apic_map, new); 476 /* 477 * Write kvm->arch.apic_map before clearing apic->apic_map_dirty. 478 * If another update has come in, leave it DIRTY. 479 */ 480 atomic_cmpxchg_release(&kvm->arch.apic_map_dirty, 481 UPDATE_IN_PROGRESS, CLEAN); 482 mutex_unlock(&kvm->arch.apic_map_lock); 483 484 if (old) 485 kvfree_rcu(old, rcu); 486 487 kvm_make_scan_ioapic_request(kvm); 488 } 489 490 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val) 491 { 492 bool enabled = val & APIC_SPIV_APIC_ENABLED; 493 494 kvm_lapic_set_reg(apic, APIC_SPIV, val); 495 496 if (enabled != apic->sw_enabled) { 497 apic->sw_enabled = enabled; 498 if (enabled) 499 static_branch_slow_dec_deferred(&apic_sw_disabled); 500 else 501 static_branch_inc(&apic_sw_disabled.key); 502 503 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 504 } 505 506 /* Check if there are APF page ready requests pending */ 507 if (enabled) { 508 kvm_make_request(KVM_REQ_APF_READY, apic->vcpu); 509 kvm_xen_sw_enable_lapic(apic->vcpu); 510 } 511 } 512 513 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id) 514 { 515 kvm_lapic_set_reg(apic, APIC_ID, id << 24); 516 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 517 } 518 519 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id) 520 { 521 kvm_lapic_set_reg(apic, APIC_LDR, id); 522 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 523 } 524 525 static inline void kvm_apic_set_dfr(struct kvm_lapic *apic, u32 val) 526 { 527 kvm_lapic_set_reg(apic, APIC_DFR, val); 528 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 529 } 530 531 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id) 532 { 533 u32 ldr = kvm_apic_calc_x2apic_ldr(id); 534 535 WARN_ON_ONCE(id != apic->vcpu->vcpu_id); 536 537 kvm_lapic_set_reg(apic, APIC_ID, id); 538 kvm_lapic_set_reg(apic, APIC_LDR, ldr); 539 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 540 } 541 542 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type) 543 { 544 return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED); 545 } 546 547 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic) 548 { 549 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT; 550 } 551 552 static inline int apic_lvtt_period(struct kvm_lapic *apic) 553 { 554 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC; 555 } 556 557 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic) 558 { 559 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE; 560 } 561 562 static inline int apic_lvt_nmi_mode(u32 lvt_val) 563 { 564 return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI; 565 } 566 567 static inline bool kvm_lapic_lvt_supported(struct kvm_lapic *apic, int lvt_index) 568 { 569 return apic->nr_lvt_entries > lvt_index; 570 } 571 572 static inline int kvm_apic_calc_nr_lvt_entries(struct kvm_vcpu *vcpu) 573 { 574 return KVM_APIC_MAX_NR_LVT_ENTRIES - !(vcpu->arch.mcg_cap & MCG_CMCI_P); 575 } 576 577 void kvm_apic_set_version(struct kvm_vcpu *vcpu) 578 { 579 struct kvm_lapic *apic = vcpu->arch.apic; 580 u32 v = 0; 581 582 if (!lapic_in_kernel(vcpu)) 583 return; 584 585 v = APIC_VERSION | ((apic->nr_lvt_entries - 1) << 16); 586 587 /* 588 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation) 589 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with 590 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC 591 * version first and level-triggered interrupts never get EOIed in 592 * IOAPIC. 593 */ 594 if (guest_cpu_cap_has(vcpu, X86_FEATURE_X2APIC) && 595 !ioapic_in_kernel(vcpu->kvm)) 596 v |= APIC_LVR_DIRECTED_EOI; 597 kvm_lapic_set_reg(apic, APIC_LVR, v); 598 } 599 600 void kvm_apic_after_set_mcg_cap(struct kvm_vcpu *vcpu) 601 { 602 int nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu); 603 struct kvm_lapic *apic = vcpu->arch.apic; 604 int i; 605 606 if (!lapic_in_kernel(vcpu) || nr_lvt_entries == apic->nr_lvt_entries) 607 return; 608 609 /* Initialize/mask any "new" LVT entries. */ 610 for (i = apic->nr_lvt_entries; i < nr_lvt_entries; i++) 611 kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED); 612 613 apic->nr_lvt_entries = nr_lvt_entries; 614 615 /* The number of LVT entries is reflected in the version register. */ 616 kvm_apic_set_version(vcpu); 617 } 618 619 static const unsigned int apic_lvt_mask[KVM_APIC_MAX_NR_LVT_ENTRIES] = { 620 [LVT_TIMER] = LVT_MASK, /* timer mode mask added at runtime */ 621 [LVT_THERMAL_MONITOR] = LVT_MASK | APIC_MODE_MASK, 622 [LVT_PERFORMANCE_COUNTER] = LVT_MASK | APIC_MODE_MASK, 623 [LVT_LINT0] = LINT_MASK, 624 [LVT_LINT1] = LINT_MASK, 625 [LVT_ERROR] = LVT_MASK, 626 [LVT_CMCI] = LVT_MASK | APIC_MODE_MASK 627 }; 628 629 static int find_highest_vector(void *bitmap) 630 { 631 int vec; 632 u32 *reg; 633 634 for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG; 635 vec >= 0; vec -= APIC_VECTORS_PER_REG) { 636 reg = bitmap + REG_POS(vec); 637 if (*reg) 638 return __fls(*reg) + vec; 639 } 640 641 return -1; 642 } 643 644 static u8 count_vectors(void *bitmap) 645 { 646 int vec; 647 u32 *reg; 648 u8 count = 0; 649 650 for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) { 651 reg = bitmap + REG_POS(vec); 652 count += hweight32(*reg); 653 } 654 655 return count; 656 } 657 658 bool __kvm_apic_update_irr(unsigned long *pir, void *regs, int *max_irr) 659 { 660 unsigned long pir_vals[NR_PIR_WORDS]; 661 u32 *__pir = (void *)pir_vals; 662 u32 i, vec; 663 u32 irr_val, prev_irr_val; 664 int max_updated_irr; 665 666 max_updated_irr = -1; 667 *max_irr = -1; 668 669 if (!pi_harvest_pir(pir, pir_vals)) 670 return false; 671 672 for (i = vec = 0; i <= 7; i++, vec += 32) { 673 u32 *p_irr = (u32 *)(regs + APIC_IRR + i * 0x10); 674 675 irr_val = READ_ONCE(*p_irr); 676 677 if (__pir[i]) { 678 prev_irr_val = irr_val; 679 do { 680 irr_val = prev_irr_val | __pir[i]; 681 } while (prev_irr_val != irr_val && 682 !try_cmpxchg(p_irr, &prev_irr_val, irr_val)); 683 684 if (prev_irr_val != irr_val) 685 max_updated_irr = __fls(irr_val ^ prev_irr_val) + vec; 686 } 687 if (irr_val) 688 *max_irr = __fls(irr_val) + vec; 689 } 690 691 return ((max_updated_irr != -1) && 692 (max_updated_irr == *max_irr)); 693 } 694 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr); 695 696 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, unsigned long *pir, int *max_irr) 697 { 698 struct kvm_lapic *apic = vcpu->arch.apic; 699 bool irr_updated = __kvm_apic_update_irr(pir, apic->regs, max_irr); 700 701 if (unlikely(!apic->apicv_active && irr_updated)) 702 apic->irr_pending = true; 703 return irr_updated; 704 } 705 EXPORT_SYMBOL_GPL(kvm_apic_update_irr); 706 707 static inline int apic_search_irr(struct kvm_lapic *apic) 708 { 709 return find_highest_vector(apic->regs + APIC_IRR); 710 } 711 712 static inline int apic_find_highest_irr(struct kvm_lapic *apic) 713 { 714 int result; 715 716 /* 717 * Note that irr_pending is just a hint. It will be always 718 * true with virtual interrupt delivery enabled. 719 */ 720 if (!apic->irr_pending) 721 return -1; 722 723 result = apic_search_irr(apic); 724 ASSERT(result == -1 || result >= 16); 725 726 return result; 727 } 728 729 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic) 730 { 731 if (unlikely(apic->apicv_active)) { 732 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR); 733 } else { 734 apic->irr_pending = false; 735 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR); 736 if (apic_search_irr(apic) != -1) 737 apic->irr_pending = true; 738 } 739 } 740 741 void kvm_apic_clear_irr(struct kvm_vcpu *vcpu, int vec) 742 { 743 apic_clear_irr(vec, vcpu->arch.apic); 744 } 745 EXPORT_SYMBOL_GPL(kvm_apic_clear_irr); 746 747 static inline void apic_set_isr(int vec, struct kvm_lapic *apic) 748 { 749 if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR)) 750 return; 751 752 /* 753 * With APIC virtualization enabled, all caching is disabled 754 * because the processor can modify ISR under the hood. Instead 755 * just set SVI. 756 */ 757 if (unlikely(apic->apicv_active)) 758 kvm_x86_call(hwapic_isr_update)(apic->vcpu, vec); 759 else { 760 ++apic->isr_count; 761 BUG_ON(apic->isr_count > MAX_APIC_VECTOR); 762 /* 763 * ISR (in service register) bit is set when injecting an interrupt. 764 * The highest vector is injected. Thus the latest bit set matches 765 * the highest bit in ISR. 766 */ 767 apic->highest_isr_cache = vec; 768 } 769 } 770 771 static inline int apic_find_highest_isr(struct kvm_lapic *apic) 772 { 773 int result; 774 775 /* 776 * Note that isr_count is always 1, and highest_isr_cache 777 * is always -1, with APIC virtualization enabled. 778 */ 779 if (!apic->isr_count) 780 return -1; 781 if (likely(apic->highest_isr_cache != -1)) 782 return apic->highest_isr_cache; 783 784 result = find_highest_vector(apic->regs + APIC_ISR); 785 ASSERT(result == -1 || result >= 16); 786 787 return result; 788 } 789 790 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic) 791 { 792 if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR)) 793 return; 794 795 /* 796 * We do get here for APIC virtualization enabled if the guest 797 * uses the Hyper-V APIC enlightenment. In this case we may need 798 * to trigger a new interrupt delivery by writing the SVI field; 799 * on the other hand isr_count and highest_isr_cache are unused 800 * and must be left alone. 801 */ 802 if (unlikely(apic->apicv_active)) 803 kvm_x86_call(hwapic_isr_update)(apic->vcpu, apic_find_highest_isr(apic)); 804 else { 805 --apic->isr_count; 806 BUG_ON(apic->isr_count < 0); 807 apic->highest_isr_cache = -1; 808 } 809 } 810 811 void kvm_apic_update_hwapic_isr(struct kvm_vcpu *vcpu) 812 { 813 struct kvm_lapic *apic = vcpu->arch.apic; 814 815 if (WARN_ON_ONCE(!lapic_in_kernel(vcpu)) || !apic->apicv_active) 816 return; 817 818 kvm_x86_call(hwapic_isr_update)(vcpu, apic_find_highest_isr(apic)); 819 } 820 EXPORT_SYMBOL_GPL(kvm_apic_update_hwapic_isr); 821 822 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu) 823 { 824 /* This may race with setting of irr in __apic_accept_irq() and 825 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq 826 * will cause vmexit immediately and the value will be recalculated 827 * on the next vmentry. 828 */ 829 return apic_find_highest_irr(vcpu->arch.apic); 830 } 831 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr); 832 833 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 834 int vector, int level, int trig_mode, 835 struct dest_map *dest_map); 836 837 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq, 838 struct dest_map *dest_map) 839 { 840 struct kvm_lapic *apic = vcpu->arch.apic; 841 842 return __apic_accept_irq(apic, irq->delivery_mode, irq->vector, 843 irq->level, irq->trig_mode, dest_map); 844 } 845 846 static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map, 847 struct kvm_lapic_irq *irq, u32 min) 848 { 849 int i, count = 0; 850 struct kvm_vcpu *vcpu; 851 852 if (min > map->max_apic_id) 853 return 0; 854 855 for_each_set_bit(i, ipi_bitmap, 856 min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) { 857 if (map->phys_map[min + i]) { 858 vcpu = map->phys_map[min + i]->vcpu; 859 count += kvm_apic_set_irq(vcpu, irq, NULL); 860 } 861 } 862 863 return count; 864 } 865 866 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 867 unsigned long ipi_bitmap_high, u32 min, 868 unsigned long icr, int op_64_bit) 869 { 870 struct kvm_apic_map *map; 871 struct kvm_lapic_irq irq = {0}; 872 int cluster_size = op_64_bit ? 64 : 32; 873 int count; 874 875 if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK)) 876 return -KVM_EINVAL; 877 878 irq.vector = icr & APIC_VECTOR_MASK; 879 irq.delivery_mode = icr & APIC_MODE_MASK; 880 irq.level = (icr & APIC_INT_ASSERT) != 0; 881 irq.trig_mode = icr & APIC_INT_LEVELTRIG; 882 883 rcu_read_lock(); 884 map = rcu_dereference(kvm->arch.apic_map); 885 886 count = -EOPNOTSUPP; 887 if (likely(map)) { 888 count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min); 889 min += cluster_size; 890 count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min); 891 } 892 893 rcu_read_unlock(); 894 return count; 895 } 896 897 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val) 898 { 899 900 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val, 901 sizeof(val)); 902 } 903 904 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val) 905 { 906 907 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val, 908 sizeof(*val)); 909 } 910 911 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu) 912 { 913 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED; 914 } 915 916 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu) 917 { 918 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0) 919 return; 920 921 __set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 922 } 923 924 static bool pv_eoi_test_and_clr_pending(struct kvm_vcpu *vcpu) 925 { 926 u8 val; 927 928 if (pv_eoi_get_user(vcpu, &val) < 0) 929 return false; 930 931 val &= KVM_PV_EOI_ENABLED; 932 933 if (val && pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0) 934 return false; 935 936 /* 937 * Clear pending bit in any case: it will be set again on vmentry. 938 * While this might not be ideal from performance point of view, 939 * this makes sure pv eoi is only enabled when we know it's safe. 940 */ 941 __clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 942 943 return val; 944 } 945 946 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr) 947 { 948 int highest_irr; 949 if (kvm_x86_ops.sync_pir_to_irr) 950 highest_irr = kvm_x86_call(sync_pir_to_irr)(apic->vcpu); 951 else 952 highest_irr = apic_find_highest_irr(apic); 953 if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr) 954 return -1; 955 return highest_irr; 956 } 957 958 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr) 959 { 960 u32 tpr, isrv, ppr, old_ppr; 961 int isr; 962 963 old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI); 964 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI); 965 isr = apic_find_highest_isr(apic); 966 isrv = (isr != -1) ? isr : 0; 967 968 if ((tpr & 0xf0) >= (isrv & 0xf0)) 969 ppr = tpr & 0xff; 970 else 971 ppr = isrv & 0xf0; 972 973 *new_ppr = ppr; 974 if (old_ppr != ppr) 975 kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr); 976 977 return ppr < old_ppr; 978 } 979 980 static void apic_update_ppr(struct kvm_lapic *apic) 981 { 982 u32 ppr; 983 984 if (__apic_update_ppr(apic, &ppr) && 985 apic_has_interrupt_for_ppr(apic, ppr) != -1) 986 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 987 } 988 989 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu) 990 { 991 apic_update_ppr(vcpu->arch.apic); 992 } 993 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr); 994 995 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr) 996 { 997 kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr); 998 apic_update_ppr(apic); 999 } 1000 1001 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda) 1002 { 1003 return mda == (apic_x2apic_mode(apic) ? 1004 X2APIC_BROADCAST : APIC_BROADCAST); 1005 } 1006 1007 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda) 1008 { 1009 if (kvm_apic_broadcast(apic, mda)) 1010 return true; 1011 1012 /* 1013 * Hotplug hack: Accept interrupts for vCPUs in xAPIC mode as if they 1014 * were in x2APIC mode if the target APIC ID can't be encoded as an 1015 * xAPIC ID. This allows unique addressing of hotplugged vCPUs (which 1016 * start in xAPIC mode) with an APIC ID that is unaddressable in xAPIC 1017 * mode. Match the x2APIC ID if and only if the target APIC ID can't 1018 * be encoded in xAPIC to avoid spurious matches against a vCPU that 1019 * changed its (addressable) xAPIC ID (which is writable). 1020 */ 1021 if (apic_x2apic_mode(apic) || mda > 0xff) 1022 return mda == kvm_x2apic_id(apic); 1023 1024 return mda == kvm_xapic_id(apic); 1025 } 1026 1027 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda) 1028 { 1029 u32 logical_id; 1030 1031 if (kvm_apic_broadcast(apic, mda)) 1032 return true; 1033 1034 logical_id = kvm_lapic_get_reg(apic, APIC_LDR); 1035 1036 if (apic_x2apic_mode(apic)) 1037 return ((logical_id >> 16) == (mda >> 16)) 1038 && (logical_id & mda & 0xffff) != 0; 1039 1040 logical_id = GET_APIC_LOGICAL_ID(logical_id); 1041 1042 switch (kvm_lapic_get_reg(apic, APIC_DFR)) { 1043 case APIC_DFR_FLAT: 1044 return (logical_id & mda) != 0; 1045 case APIC_DFR_CLUSTER: 1046 return ((logical_id >> 4) == (mda >> 4)) 1047 && (logical_id & mda & 0xf) != 0; 1048 default: 1049 return false; 1050 } 1051 } 1052 1053 /* The KVM local APIC implementation has two quirks: 1054 * 1055 * - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs 1056 * in xAPIC mode if the "destination & 0xff" matches its xAPIC ID. 1057 * KVM doesn't do that aliasing. 1058 * 1059 * - in-kernel IOAPIC messages have to be delivered directly to 1060 * x2APIC, because the kernel does not support interrupt remapping. 1061 * In order to support broadcast without interrupt remapping, x2APIC 1062 * rewrites the destination of non-IPI messages from APIC_BROADCAST 1063 * to X2APIC_BROADCAST. 1064 * 1065 * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API. This is 1066 * important when userspace wants to use x2APIC-format MSIs, because 1067 * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7". 1068 */ 1069 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id, 1070 struct kvm_lapic *source, struct kvm_lapic *target) 1071 { 1072 bool ipi = source != NULL; 1073 1074 if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled && 1075 !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target)) 1076 return X2APIC_BROADCAST; 1077 1078 return dest_id; 1079 } 1080 1081 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source, 1082 int shorthand, unsigned int dest, int dest_mode) 1083 { 1084 struct kvm_lapic *target = vcpu->arch.apic; 1085 u32 mda = kvm_apic_mda(vcpu, dest, source, target); 1086 1087 ASSERT(target); 1088 switch (shorthand) { 1089 case APIC_DEST_NOSHORT: 1090 if (dest_mode == APIC_DEST_PHYSICAL) 1091 return kvm_apic_match_physical_addr(target, mda); 1092 else 1093 return kvm_apic_match_logical_addr(target, mda); 1094 case APIC_DEST_SELF: 1095 return target == source; 1096 case APIC_DEST_ALLINC: 1097 return true; 1098 case APIC_DEST_ALLBUT: 1099 return target != source; 1100 default: 1101 return false; 1102 } 1103 } 1104 EXPORT_SYMBOL_GPL(kvm_apic_match_dest); 1105 1106 int kvm_vector_to_index(u32 vector, u32 dest_vcpus, 1107 const unsigned long *bitmap, u32 bitmap_size) 1108 { 1109 u32 mod; 1110 int i, idx = -1; 1111 1112 mod = vector % dest_vcpus; 1113 1114 for (i = 0; i <= mod; i++) { 1115 idx = find_next_bit(bitmap, bitmap_size, idx + 1); 1116 BUG_ON(idx == bitmap_size); 1117 } 1118 1119 return idx; 1120 } 1121 1122 static void kvm_apic_disabled_lapic_found(struct kvm *kvm) 1123 { 1124 if (!kvm->arch.disabled_lapic_found) { 1125 kvm->arch.disabled_lapic_found = true; 1126 pr_info("Disabled LAPIC found during irq injection\n"); 1127 } 1128 } 1129 1130 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src, 1131 struct kvm_lapic_irq *irq, struct kvm_apic_map *map) 1132 { 1133 if (kvm->arch.x2apic_broadcast_quirk_disabled) { 1134 if ((irq->dest_id == APIC_BROADCAST && 1135 map->logical_mode != KVM_APIC_MODE_X2APIC)) 1136 return true; 1137 if (irq->dest_id == X2APIC_BROADCAST) 1138 return true; 1139 } else { 1140 bool x2apic_ipi = src && *src && apic_x2apic_mode(*src); 1141 if (irq->dest_id == (x2apic_ipi ? 1142 X2APIC_BROADCAST : APIC_BROADCAST)) 1143 return true; 1144 } 1145 1146 return false; 1147 } 1148 1149 /* Return true if the interrupt can be handled by using *bitmap as index mask 1150 * for valid destinations in *dst array. 1151 * Return false if kvm_apic_map_get_dest_lapic did nothing useful. 1152 * Note: we may have zero kvm_lapic destinations when we return true, which 1153 * means that the interrupt should be dropped. In this case, *bitmap would be 1154 * zero and *dst undefined. 1155 */ 1156 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm, 1157 struct kvm_lapic **src, struct kvm_lapic_irq *irq, 1158 struct kvm_apic_map *map, struct kvm_lapic ***dst, 1159 unsigned long *bitmap) 1160 { 1161 int i, lowest; 1162 1163 if (irq->shorthand == APIC_DEST_SELF && src) { 1164 *dst = src; 1165 *bitmap = 1; 1166 return true; 1167 } else if (irq->shorthand) 1168 return false; 1169 1170 if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map)) 1171 return false; 1172 1173 if (irq->dest_mode == APIC_DEST_PHYSICAL) { 1174 if (irq->dest_id > map->max_apic_id) { 1175 *bitmap = 0; 1176 } else { 1177 u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1); 1178 *dst = &map->phys_map[dest_id]; 1179 *bitmap = 1; 1180 } 1181 return true; 1182 } 1183 1184 *bitmap = 0; 1185 if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst, 1186 (u16 *)bitmap)) 1187 return false; 1188 1189 if (!kvm_lowest_prio_delivery(irq)) 1190 return true; 1191 1192 if (!kvm_vector_hashing_enabled()) { 1193 lowest = -1; 1194 for_each_set_bit(i, bitmap, 16) { 1195 if (!(*dst)[i]) 1196 continue; 1197 if (lowest < 0) 1198 lowest = i; 1199 else if (kvm_apic_compare_prio((*dst)[i]->vcpu, 1200 (*dst)[lowest]->vcpu) < 0) 1201 lowest = i; 1202 } 1203 } else { 1204 if (!*bitmap) 1205 return true; 1206 1207 lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap), 1208 bitmap, 16); 1209 1210 if (!(*dst)[lowest]) { 1211 kvm_apic_disabled_lapic_found(kvm); 1212 *bitmap = 0; 1213 return true; 1214 } 1215 } 1216 1217 *bitmap = (lowest >= 0) ? 1 << lowest : 0; 1218 1219 return true; 1220 } 1221 1222 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src, 1223 struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map) 1224 { 1225 struct kvm_apic_map *map; 1226 unsigned long bitmap; 1227 struct kvm_lapic **dst = NULL; 1228 int i; 1229 bool ret; 1230 1231 *r = -1; 1232 1233 if (irq->shorthand == APIC_DEST_SELF) { 1234 if (KVM_BUG_ON(!src, kvm)) { 1235 *r = 0; 1236 return true; 1237 } 1238 *r = kvm_apic_set_irq(src->vcpu, irq, dest_map); 1239 return true; 1240 } 1241 1242 rcu_read_lock(); 1243 map = rcu_dereference(kvm->arch.apic_map); 1244 1245 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap); 1246 if (ret) { 1247 *r = 0; 1248 for_each_set_bit(i, &bitmap, 16) { 1249 if (!dst[i]) 1250 continue; 1251 *r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map); 1252 } 1253 } 1254 1255 rcu_read_unlock(); 1256 return ret; 1257 } 1258 1259 /* 1260 * This routine tries to handle interrupts in posted mode, here is how 1261 * it deals with different cases: 1262 * - For single-destination interrupts, handle it in posted mode 1263 * - Else if vector hashing is enabled and it is a lowest-priority 1264 * interrupt, handle it in posted mode and use the following mechanism 1265 * to find the destination vCPU. 1266 * 1. For lowest-priority interrupts, store all the possible 1267 * destination vCPUs in an array. 1268 * 2. Use "guest vector % max number of destination vCPUs" to find 1269 * the right destination vCPU in the array for the lowest-priority 1270 * interrupt. 1271 * - Otherwise, use remapped mode to inject the interrupt. 1272 */ 1273 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq, 1274 struct kvm_vcpu **dest_vcpu) 1275 { 1276 struct kvm_apic_map *map; 1277 unsigned long bitmap; 1278 struct kvm_lapic **dst = NULL; 1279 bool ret = false; 1280 1281 if (irq->shorthand) 1282 return false; 1283 1284 rcu_read_lock(); 1285 map = rcu_dereference(kvm->arch.apic_map); 1286 1287 if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) && 1288 hweight16(bitmap) == 1) { 1289 unsigned long i = find_first_bit(&bitmap, 16); 1290 1291 if (dst[i]) { 1292 *dest_vcpu = dst[i]->vcpu; 1293 ret = true; 1294 } 1295 } 1296 1297 rcu_read_unlock(); 1298 return ret; 1299 } 1300 1301 /* 1302 * Add a pending IRQ into lapic. 1303 * Return 1 if successfully added and 0 if discarded. 1304 */ 1305 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 1306 int vector, int level, int trig_mode, 1307 struct dest_map *dest_map) 1308 { 1309 int result = 0; 1310 struct kvm_vcpu *vcpu = apic->vcpu; 1311 1312 trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode, 1313 trig_mode, vector); 1314 switch (delivery_mode) { 1315 case APIC_DM_LOWEST: 1316 vcpu->arch.apic_arb_prio++; 1317 fallthrough; 1318 case APIC_DM_FIXED: 1319 if (unlikely(trig_mode && !level)) 1320 break; 1321 1322 /* FIXME add logic for vcpu on reset */ 1323 if (unlikely(!apic_enabled(apic))) 1324 break; 1325 1326 result = 1; 1327 1328 if (dest_map) { 1329 __set_bit(vcpu->vcpu_id, dest_map->map); 1330 dest_map->vectors[vcpu->vcpu_id] = vector; 1331 } 1332 1333 if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) { 1334 if (trig_mode) 1335 kvm_lapic_set_vector(vector, 1336 apic->regs + APIC_TMR); 1337 else 1338 kvm_lapic_clear_vector(vector, 1339 apic->regs + APIC_TMR); 1340 } 1341 1342 kvm_x86_call(deliver_interrupt)(apic, delivery_mode, 1343 trig_mode, vector); 1344 break; 1345 1346 case APIC_DM_REMRD: 1347 result = 1; 1348 vcpu->arch.pv.pv_unhalted = 1; 1349 kvm_make_request(KVM_REQ_EVENT, vcpu); 1350 kvm_vcpu_kick(vcpu); 1351 break; 1352 1353 case APIC_DM_SMI: 1354 if (!kvm_inject_smi(vcpu)) { 1355 kvm_vcpu_kick(vcpu); 1356 result = 1; 1357 } 1358 break; 1359 1360 case APIC_DM_NMI: 1361 result = 1; 1362 kvm_inject_nmi(vcpu); 1363 kvm_vcpu_kick(vcpu); 1364 break; 1365 1366 case APIC_DM_INIT: 1367 if (!trig_mode || level) { 1368 result = 1; 1369 /* assumes that there are only KVM_APIC_INIT/SIPI */ 1370 apic->pending_events = (1UL << KVM_APIC_INIT); 1371 kvm_make_request(KVM_REQ_EVENT, vcpu); 1372 kvm_vcpu_kick(vcpu); 1373 } 1374 break; 1375 1376 case APIC_DM_STARTUP: 1377 result = 1; 1378 apic->sipi_vector = vector; 1379 /* make sure sipi_vector is visible for the receiver */ 1380 smp_wmb(); 1381 set_bit(KVM_APIC_SIPI, &apic->pending_events); 1382 kvm_make_request(KVM_REQ_EVENT, vcpu); 1383 kvm_vcpu_kick(vcpu); 1384 break; 1385 1386 case APIC_DM_EXTINT: 1387 /* 1388 * Should only be called by kvm_apic_local_deliver() with LVT0, 1389 * before NMI watchdog was enabled. Already handled by 1390 * kvm_apic_accept_pic_intr(). 1391 */ 1392 break; 1393 1394 default: 1395 printk(KERN_ERR "TODO: unsupported delivery mode %x\n", 1396 delivery_mode); 1397 break; 1398 } 1399 return result; 1400 } 1401 1402 /* 1403 * This routine identifies the destination vcpus mask meant to receive the 1404 * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find 1405 * out the destination vcpus array and set the bitmap or it traverses to 1406 * each available vcpu to identify the same. 1407 */ 1408 void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq, 1409 unsigned long *vcpu_bitmap) 1410 { 1411 struct kvm_lapic **dest_vcpu = NULL; 1412 struct kvm_lapic *src = NULL; 1413 struct kvm_apic_map *map; 1414 struct kvm_vcpu *vcpu; 1415 unsigned long bitmap, i; 1416 int vcpu_idx; 1417 bool ret; 1418 1419 rcu_read_lock(); 1420 map = rcu_dereference(kvm->arch.apic_map); 1421 1422 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu, 1423 &bitmap); 1424 if (ret) { 1425 for_each_set_bit(i, &bitmap, 16) { 1426 if (!dest_vcpu[i]) 1427 continue; 1428 vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx; 1429 __set_bit(vcpu_idx, vcpu_bitmap); 1430 } 1431 } else { 1432 kvm_for_each_vcpu(i, vcpu, kvm) { 1433 if (!kvm_apic_present(vcpu)) 1434 continue; 1435 if (!kvm_apic_match_dest(vcpu, NULL, 1436 irq->shorthand, 1437 irq->dest_id, 1438 irq->dest_mode)) 1439 continue; 1440 __set_bit(i, vcpu_bitmap); 1441 } 1442 } 1443 rcu_read_unlock(); 1444 } 1445 1446 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2) 1447 { 1448 return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio; 1449 } 1450 1451 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector) 1452 { 1453 return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors); 1454 } 1455 1456 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector) 1457 { 1458 int trigger_mode; 1459 1460 /* Eoi the ioapic only if the ioapic doesn't own the vector. */ 1461 if (!kvm_ioapic_handles_vector(apic, vector)) 1462 return; 1463 1464 /* 1465 * If the intercepted EOI is for an IRQ that was pending from previous 1466 * routing, then re-scan the I/O APIC routes as EOIs for the IRQ likely 1467 * no longer need to be intercepted. 1468 */ 1469 if (apic->vcpu->arch.highest_stale_pending_ioapic_eoi == vector) 1470 kvm_make_request(KVM_REQ_SCAN_IOAPIC, apic->vcpu); 1471 1472 /* Request a KVM exit to inform the userspace IOAPIC. */ 1473 if (irqchip_split(apic->vcpu->kvm)) { 1474 apic->vcpu->arch.pending_ioapic_eoi = vector; 1475 kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu); 1476 return; 1477 } 1478 1479 if (apic_test_vector(vector, apic->regs + APIC_TMR)) 1480 trigger_mode = IOAPIC_LEVEL_TRIG; 1481 else 1482 trigger_mode = IOAPIC_EDGE_TRIG; 1483 1484 kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode); 1485 } 1486 1487 static int apic_set_eoi(struct kvm_lapic *apic) 1488 { 1489 int vector = apic_find_highest_isr(apic); 1490 1491 trace_kvm_eoi(apic, vector); 1492 1493 /* 1494 * Not every write EOI will has corresponding ISR, 1495 * one example is when Kernel check timer on setup_IO_APIC 1496 */ 1497 if (vector == -1) 1498 return vector; 1499 1500 apic_clear_isr(vector, apic); 1501 apic_update_ppr(apic); 1502 1503 if (kvm_hv_synic_has_vector(apic->vcpu, vector)) 1504 kvm_hv_synic_send_eoi(apic->vcpu, vector); 1505 1506 kvm_ioapic_send_eoi(apic, vector); 1507 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1508 return vector; 1509 } 1510 1511 /* 1512 * this interface assumes a trap-like exit, which has already finished 1513 * desired side effect including vISR and vPPR update. 1514 */ 1515 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector) 1516 { 1517 struct kvm_lapic *apic = vcpu->arch.apic; 1518 1519 trace_kvm_eoi(apic, vector); 1520 1521 kvm_ioapic_send_eoi(apic, vector); 1522 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1523 } 1524 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated); 1525 1526 void kvm_apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high) 1527 { 1528 struct kvm_lapic_irq irq; 1529 1530 /* KVM has no delay and should always clear the BUSY/PENDING flag. */ 1531 WARN_ON_ONCE(icr_low & APIC_ICR_BUSY); 1532 1533 irq.vector = icr_low & APIC_VECTOR_MASK; 1534 irq.delivery_mode = icr_low & APIC_MODE_MASK; 1535 irq.dest_mode = icr_low & APIC_DEST_MASK; 1536 irq.level = (icr_low & APIC_INT_ASSERT) != 0; 1537 irq.trig_mode = icr_low & APIC_INT_LEVELTRIG; 1538 irq.shorthand = icr_low & APIC_SHORT_MASK; 1539 irq.msi_redir_hint = false; 1540 if (apic_x2apic_mode(apic)) 1541 irq.dest_id = icr_high; 1542 else 1543 irq.dest_id = GET_XAPIC_DEST_FIELD(icr_high); 1544 1545 trace_kvm_apic_ipi(icr_low, irq.dest_id); 1546 1547 kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL); 1548 } 1549 EXPORT_SYMBOL_GPL(kvm_apic_send_ipi); 1550 1551 static u32 apic_get_tmcct(struct kvm_lapic *apic) 1552 { 1553 ktime_t remaining, now; 1554 s64 ns; 1555 1556 ASSERT(apic != NULL); 1557 1558 /* if initial count is 0, current count should also be 0 */ 1559 if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 || 1560 apic->lapic_timer.period == 0) 1561 return 0; 1562 1563 now = ktime_get(); 1564 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 1565 if (ktime_to_ns(remaining) < 0) 1566 remaining = 0; 1567 1568 ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period); 1569 return div64_u64(ns, (apic->vcpu->kvm->arch.apic_bus_cycle_ns * 1570 apic->divide_count)); 1571 } 1572 1573 static void __report_tpr_access(struct kvm_lapic *apic, bool write) 1574 { 1575 struct kvm_vcpu *vcpu = apic->vcpu; 1576 struct kvm_run *run = vcpu->run; 1577 1578 kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu); 1579 run->tpr_access.rip = kvm_rip_read(vcpu); 1580 run->tpr_access.is_write = write; 1581 } 1582 1583 static inline void report_tpr_access(struct kvm_lapic *apic, bool write) 1584 { 1585 if (apic->vcpu->arch.tpr_access_reporting) 1586 __report_tpr_access(apic, write); 1587 } 1588 1589 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset) 1590 { 1591 u32 val = 0; 1592 1593 if (offset >= LAPIC_MMIO_LENGTH) 1594 return 0; 1595 1596 switch (offset) { 1597 case APIC_ARBPRI: 1598 break; 1599 1600 case APIC_TMCCT: /* Timer CCR */ 1601 if (apic_lvtt_tscdeadline(apic)) 1602 return 0; 1603 1604 val = apic_get_tmcct(apic); 1605 break; 1606 case APIC_PROCPRI: 1607 apic_update_ppr(apic); 1608 val = kvm_lapic_get_reg(apic, offset); 1609 break; 1610 case APIC_TASKPRI: 1611 report_tpr_access(apic, false); 1612 fallthrough; 1613 default: 1614 val = kvm_lapic_get_reg(apic, offset); 1615 break; 1616 } 1617 1618 return val; 1619 } 1620 1621 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev) 1622 { 1623 return container_of(dev, struct kvm_lapic, dev); 1624 } 1625 1626 #define APIC_REG_MASK(reg) (1ull << ((reg) >> 4)) 1627 #define APIC_REGS_MASK(first, count) \ 1628 (APIC_REG_MASK(first) * ((1ull << (count)) - 1)) 1629 1630 u64 kvm_lapic_readable_reg_mask(struct kvm_lapic *apic) 1631 { 1632 /* Leave bits '0' for reserved and write-only registers. */ 1633 u64 valid_reg_mask = 1634 APIC_REG_MASK(APIC_ID) | 1635 APIC_REG_MASK(APIC_LVR) | 1636 APIC_REG_MASK(APIC_TASKPRI) | 1637 APIC_REG_MASK(APIC_PROCPRI) | 1638 APIC_REG_MASK(APIC_LDR) | 1639 APIC_REG_MASK(APIC_SPIV) | 1640 APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) | 1641 APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) | 1642 APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) | 1643 APIC_REG_MASK(APIC_ESR) | 1644 APIC_REG_MASK(APIC_ICR) | 1645 APIC_REG_MASK(APIC_LVTT) | 1646 APIC_REG_MASK(APIC_LVTTHMR) | 1647 APIC_REG_MASK(APIC_LVTPC) | 1648 APIC_REG_MASK(APIC_LVT0) | 1649 APIC_REG_MASK(APIC_LVT1) | 1650 APIC_REG_MASK(APIC_LVTERR) | 1651 APIC_REG_MASK(APIC_TMICT) | 1652 APIC_REG_MASK(APIC_TMCCT) | 1653 APIC_REG_MASK(APIC_TDCR); 1654 1655 if (kvm_lapic_lvt_supported(apic, LVT_CMCI)) 1656 valid_reg_mask |= APIC_REG_MASK(APIC_LVTCMCI); 1657 1658 /* ARBPRI, DFR, and ICR2 are not valid in x2APIC mode. */ 1659 if (!apic_x2apic_mode(apic)) 1660 valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI) | 1661 APIC_REG_MASK(APIC_DFR) | 1662 APIC_REG_MASK(APIC_ICR2); 1663 1664 return valid_reg_mask; 1665 } 1666 EXPORT_SYMBOL_GPL(kvm_lapic_readable_reg_mask); 1667 1668 static int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len, 1669 void *data) 1670 { 1671 unsigned char alignment = offset & 0xf; 1672 u32 result; 1673 1674 /* 1675 * WARN if KVM reads ICR in x2APIC mode, as it's an 8-byte register in 1676 * x2APIC and needs to be manually handled by the caller. 1677 */ 1678 WARN_ON_ONCE(apic_x2apic_mode(apic) && offset == APIC_ICR); 1679 1680 if (alignment + len > 4) 1681 return 1; 1682 1683 if (offset > 0x3f0 || 1684 !(kvm_lapic_readable_reg_mask(apic) & APIC_REG_MASK(offset))) 1685 return 1; 1686 1687 result = __apic_read(apic, offset & ~0xf); 1688 1689 trace_kvm_apic_read(offset, result); 1690 1691 switch (len) { 1692 case 1: 1693 case 2: 1694 case 4: 1695 memcpy(data, (char *)&result + alignment, len); 1696 break; 1697 default: 1698 printk(KERN_ERR "Local APIC read with len = %x, " 1699 "should be 1,2, or 4 instead\n", len); 1700 break; 1701 } 1702 return 0; 1703 } 1704 1705 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr) 1706 { 1707 return addr >= apic->base_address && 1708 addr < apic->base_address + LAPIC_MMIO_LENGTH; 1709 } 1710 1711 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 1712 gpa_t address, int len, void *data) 1713 { 1714 struct kvm_lapic *apic = to_lapic(this); 1715 u32 offset = address - apic->base_address; 1716 1717 if (!apic_mmio_in_range(apic, address)) 1718 return -EOPNOTSUPP; 1719 1720 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 1721 if (!kvm_check_has_quirk(vcpu->kvm, 1722 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 1723 return -EOPNOTSUPP; 1724 1725 memset(data, 0xff, len); 1726 return 0; 1727 } 1728 1729 kvm_lapic_reg_read(apic, offset, len, data); 1730 1731 return 0; 1732 } 1733 1734 static void update_divide_count(struct kvm_lapic *apic) 1735 { 1736 u32 tmp1, tmp2, tdcr; 1737 1738 tdcr = kvm_lapic_get_reg(apic, APIC_TDCR); 1739 tmp1 = tdcr & 0xf; 1740 tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1; 1741 apic->divide_count = 0x1 << (tmp2 & 0x7); 1742 } 1743 1744 static void limit_periodic_timer_frequency(struct kvm_lapic *apic) 1745 { 1746 /* 1747 * Do not allow the guest to program periodic timers with small 1748 * interval, since the hrtimers are not throttled by the host 1749 * scheduler. 1750 */ 1751 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 1752 s64 min_period = min_timer_period_us * 1000LL; 1753 1754 if (apic->lapic_timer.period < min_period) { 1755 pr_info_once( 1756 "vcpu %i: requested %lld ns " 1757 "lapic timer period limited to %lld ns\n", 1758 apic->vcpu->vcpu_id, 1759 apic->lapic_timer.period, min_period); 1760 apic->lapic_timer.period = min_period; 1761 } 1762 } 1763 } 1764 1765 static void cancel_hv_timer(struct kvm_lapic *apic); 1766 1767 static void cancel_apic_timer(struct kvm_lapic *apic) 1768 { 1769 hrtimer_cancel(&apic->lapic_timer.timer); 1770 preempt_disable(); 1771 if (apic->lapic_timer.hv_timer_in_use) 1772 cancel_hv_timer(apic); 1773 preempt_enable(); 1774 atomic_set(&apic->lapic_timer.pending, 0); 1775 } 1776 1777 static void apic_update_lvtt(struct kvm_lapic *apic) 1778 { 1779 u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) & 1780 apic->lapic_timer.timer_mode_mask; 1781 1782 if (apic->lapic_timer.timer_mode != timer_mode) { 1783 if (apic_lvtt_tscdeadline(apic) != (timer_mode == 1784 APIC_LVT_TIMER_TSCDEADLINE)) { 1785 cancel_apic_timer(apic); 1786 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 1787 apic->lapic_timer.period = 0; 1788 apic->lapic_timer.tscdeadline = 0; 1789 } 1790 apic->lapic_timer.timer_mode = timer_mode; 1791 limit_periodic_timer_frequency(apic); 1792 } 1793 } 1794 1795 /* 1796 * On APICv, this test will cause a busy wait 1797 * during a higher-priority task. 1798 */ 1799 1800 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu) 1801 { 1802 struct kvm_lapic *apic = vcpu->arch.apic; 1803 u32 reg; 1804 1805 /* 1806 * Assume a timer IRQ was "injected" if the APIC is protected. KVM's 1807 * copy of the vIRR is bogus, it's the responsibility of the caller to 1808 * precisely check whether or not a timer IRQ is pending. 1809 */ 1810 if (apic->guest_apic_protected) 1811 return true; 1812 1813 reg = kvm_lapic_get_reg(apic, APIC_LVTT); 1814 if (kvm_apic_hw_enabled(apic)) { 1815 int vec = reg & APIC_VECTOR_MASK; 1816 void *bitmap = apic->regs + APIC_ISR; 1817 1818 if (apic->apicv_active) 1819 bitmap = apic->regs + APIC_IRR; 1820 1821 if (apic_test_vector(vec, bitmap)) 1822 return true; 1823 } 1824 return false; 1825 } 1826 1827 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles) 1828 { 1829 u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns; 1830 1831 /* 1832 * If the guest TSC is running at a different ratio than the host, then 1833 * convert the delay to nanoseconds to achieve an accurate delay. Note 1834 * that __delay() uses delay_tsc whenever the hardware has TSC, thus 1835 * always for VMX enabled hardware. 1836 */ 1837 if (vcpu->arch.tsc_scaling_ratio == kvm_caps.default_tsc_scaling_ratio) { 1838 __delay(min(guest_cycles, 1839 nsec_to_cycles(vcpu, timer_advance_ns))); 1840 } else { 1841 u64 delay_ns = guest_cycles * 1000000ULL; 1842 do_div(delay_ns, vcpu->arch.virtual_tsc_khz); 1843 ndelay(min_t(u32, delay_ns, timer_advance_ns)); 1844 } 1845 } 1846 1847 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu, 1848 s64 advance_expire_delta) 1849 { 1850 struct kvm_lapic *apic = vcpu->arch.apic; 1851 u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns; 1852 u64 ns; 1853 1854 /* Do not adjust for tiny fluctuations or large random spikes. */ 1855 if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX || 1856 abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN) 1857 return; 1858 1859 /* too early */ 1860 if (advance_expire_delta < 0) { 1861 ns = -advance_expire_delta * 1000000ULL; 1862 do_div(ns, vcpu->arch.virtual_tsc_khz); 1863 timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; 1864 } else { 1865 /* too late */ 1866 ns = advance_expire_delta * 1000000ULL; 1867 do_div(ns, vcpu->arch.virtual_tsc_khz); 1868 timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; 1869 } 1870 1871 if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX)) 1872 timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; 1873 apic->lapic_timer.timer_advance_ns = timer_advance_ns; 1874 } 1875 1876 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1877 { 1878 struct kvm_lapic *apic = vcpu->arch.apic; 1879 u64 guest_tsc, tsc_deadline; 1880 1881 tsc_deadline = apic->lapic_timer.expired_tscdeadline; 1882 apic->lapic_timer.expired_tscdeadline = 0; 1883 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1884 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, guest_tsc - tsc_deadline); 1885 1886 adjust_lapic_timer_advance(vcpu, guest_tsc - tsc_deadline); 1887 1888 /* 1889 * If the timer fired early, reread the TSC to account for the overhead 1890 * of the above adjustment to avoid waiting longer than is necessary. 1891 */ 1892 if (guest_tsc < tsc_deadline) 1893 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1894 1895 if (guest_tsc < tsc_deadline) 1896 __wait_lapic_expire(vcpu, tsc_deadline - guest_tsc); 1897 } 1898 1899 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1900 { 1901 if (lapic_in_kernel(vcpu) && 1902 vcpu->arch.apic->lapic_timer.expired_tscdeadline && 1903 vcpu->arch.apic->lapic_timer.timer_advance_ns && 1904 lapic_timer_int_injected(vcpu)) 1905 __kvm_wait_lapic_expire(vcpu); 1906 } 1907 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire); 1908 1909 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic) 1910 { 1911 struct kvm_timer *ktimer = &apic->lapic_timer; 1912 1913 kvm_apic_local_deliver(apic, APIC_LVTT); 1914 if (apic_lvtt_tscdeadline(apic)) { 1915 ktimer->tscdeadline = 0; 1916 } else if (apic_lvtt_oneshot(apic)) { 1917 ktimer->tscdeadline = 0; 1918 ktimer->target_expiration = 0; 1919 } 1920 } 1921 1922 static void apic_timer_expired(struct kvm_lapic *apic, bool from_timer_fn) 1923 { 1924 struct kvm_vcpu *vcpu = apic->vcpu; 1925 struct kvm_timer *ktimer = &apic->lapic_timer; 1926 1927 if (atomic_read(&apic->lapic_timer.pending)) 1928 return; 1929 1930 if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use) 1931 ktimer->expired_tscdeadline = ktimer->tscdeadline; 1932 1933 if (!from_timer_fn && apic->apicv_active) { 1934 WARN_ON(kvm_get_running_vcpu() != vcpu); 1935 kvm_apic_inject_pending_timer_irqs(apic); 1936 return; 1937 } 1938 1939 if (kvm_use_posted_timer_interrupt(apic->vcpu)) { 1940 /* 1941 * Ensure the guest's timer has truly expired before posting an 1942 * interrupt. Open code the relevant checks to avoid querying 1943 * lapic_timer_int_injected(), which will be false since the 1944 * interrupt isn't yet injected. Waiting until after injecting 1945 * is not an option since that won't help a posted interrupt. 1946 */ 1947 if (vcpu->arch.apic->lapic_timer.expired_tscdeadline && 1948 vcpu->arch.apic->lapic_timer.timer_advance_ns) 1949 __kvm_wait_lapic_expire(vcpu); 1950 kvm_apic_inject_pending_timer_irqs(apic); 1951 return; 1952 } 1953 1954 atomic_inc(&apic->lapic_timer.pending); 1955 kvm_make_request(KVM_REQ_UNBLOCK, vcpu); 1956 if (from_timer_fn) 1957 kvm_vcpu_kick(vcpu); 1958 } 1959 1960 static void start_sw_tscdeadline(struct kvm_lapic *apic) 1961 { 1962 struct kvm_timer *ktimer = &apic->lapic_timer; 1963 u64 guest_tsc, tscdeadline = ktimer->tscdeadline; 1964 u64 ns = 0; 1965 ktime_t expire; 1966 struct kvm_vcpu *vcpu = apic->vcpu; 1967 u32 this_tsc_khz = vcpu->arch.virtual_tsc_khz; 1968 unsigned long flags; 1969 ktime_t now; 1970 1971 if (unlikely(!tscdeadline || !this_tsc_khz)) 1972 return; 1973 1974 local_irq_save(flags); 1975 1976 now = ktime_get(); 1977 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1978 1979 ns = (tscdeadline - guest_tsc) * 1000000ULL; 1980 do_div(ns, this_tsc_khz); 1981 1982 if (likely(tscdeadline > guest_tsc) && 1983 likely(ns > apic->lapic_timer.timer_advance_ns)) { 1984 expire = ktime_add_ns(now, ns); 1985 expire = ktime_sub_ns(expire, ktimer->timer_advance_ns); 1986 hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD); 1987 } else 1988 apic_timer_expired(apic, false); 1989 1990 local_irq_restore(flags); 1991 } 1992 1993 static inline u64 tmict_to_ns(struct kvm_lapic *apic, u32 tmict) 1994 { 1995 return (u64)tmict * apic->vcpu->kvm->arch.apic_bus_cycle_ns * 1996 (u64)apic->divide_count; 1997 } 1998 1999 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor) 2000 { 2001 ktime_t now, remaining; 2002 u64 ns_remaining_old, ns_remaining_new; 2003 2004 apic->lapic_timer.period = 2005 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT)); 2006 limit_periodic_timer_frequency(apic); 2007 2008 now = ktime_get(); 2009 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 2010 if (ktime_to_ns(remaining) < 0) 2011 remaining = 0; 2012 2013 ns_remaining_old = ktime_to_ns(remaining); 2014 ns_remaining_new = mul_u64_u32_div(ns_remaining_old, 2015 apic->divide_count, old_divisor); 2016 2017 apic->lapic_timer.tscdeadline += 2018 nsec_to_cycles(apic->vcpu, ns_remaining_new) - 2019 nsec_to_cycles(apic->vcpu, ns_remaining_old); 2020 apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new); 2021 } 2022 2023 static bool set_target_expiration(struct kvm_lapic *apic, u32 count_reg) 2024 { 2025 ktime_t now; 2026 u64 tscl = rdtsc(); 2027 s64 deadline; 2028 2029 now = ktime_get(); 2030 apic->lapic_timer.period = 2031 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT)); 2032 2033 if (!apic->lapic_timer.period) { 2034 apic->lapic_timer.tscdeadline = 0; 2035 return false; 2036 } 2037 2038 limit_periodic_timer_frequency(apic); 2039 deadline = apic->lapic_timer.period; 2040 2041 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) { 2042 if (unlikely(count_reg != APIC_TMICT)) { 2043 deadline = tmict_to_ns(apic, 2044 kvm_lapic_get_reg(apic, count_reg)); 2045 if (unlikely(deadline <= 0)) { 2046 if (apic_lvtt_period(apic)) 2047 deadline = apic->lapic_timer.period; 2048 else 2049 deadline = 0; 2050 } 2051 else if (unlikely(deadline > apic->lapic_timer.period)) { 2052 pr_info_ratelimited( 2053 "vcpu %i: requested lapic timer restore with " 2054 "starting count register %#x=%u (%lld ns) > initial count (%lld ns). " 2055 "Using initial count to start timer.\n", 2056 apic->vcpu->vcpu_id, 2057 count_reg, 2058 kvm_lapic_get_reg(apic, count_reg), 2059 deadline, apic->lapic_timer.period); 2060 kvm_lapic_set_reg(apic, count_reg, 0); 2061 deadline = apic->lapic_timer.period; 2062 } 2063 } 2064 } 2065 2066 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 2067 nsec_to_cycles(apic->vcpu, deadline); 2068 apic->lapic_timer.target_expiration = ktime_add_ns(now, deadline); 2069 2070 return true; 2071 } 2072 2073 static void advance_periodic_target_expiration(struct kvm_lapic *apic) 2074 { 2075 ktime_t now = ktime_get(); 2076 u64 tscl = rdtsc(); 2077 ktime_t delta; 2078 2079 /* 2080 * Synchronize both deadlines to the same time source or 2081 * differences in the periods (caused by differences in the 2082 * underlying clocks or numerical approximation errors) will 2083 * cause the two to drift apart over time as the errors 2084 * accumulate. 2085 */ 2086 apic->lapic_timer.target_expiration = 2087 ktime_add_ns(apic->lapic_timer.target_expiration, 2088 apic->lapic_timer.period); 2089 delta = ktime_sub(apic->lapic_timer.target_expiration, now); 2090 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 2091 nsec_to_cycles(apic->vcpu, delta); 2092 } 2093 2094 static void start_sw_period(struct kvm_lapic *apic) 2095 { 2096 if (!apic->lapic_timer.period) 2097 return; 2098 2099 if (ktime_after(ktime_get(), 2100 apic->lapic_timer.target_expiration)) { 2101 apic_timer_expired(apic, false); 2102 2103 if (apic_lvtt_oneshot(apic)) 2104 return; 2105 2106 advance_periodic_target_expiration(apic); 2107 } 2108 2109 hrtimer_start(&apic->lapic_timer.timer, 2110 apic->lapic_timer.target_expiration, 2111 HRTIMER_MODE_ABS_HARD); 2112 } 2113 2114 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu) 2115 { 2116 if (!lapic_in_kernel(vcpu)) 2117 return false; 2118 2119 return vcpu->arch.apic->lapic_timer.hv_timer_in_use; 2120 } 2121 2122 static void cancel_hv_timer(struct kvm_lapic *apic) 2123 { 2124 WARN_ON(preemptible()); 2125 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 2126 kvm_x86_call(cancel_hv_timer)(apic->vcpu); 2127 apic->lapic_timer.hv_timer_in_use = false; 2128 } 2129 2130 static bool start_hv_timer(struct kvm_lapic *apic) 2131 { 2132 struct kvm_timer *ktimer = &apic->lapic_timer; 2133 struct kvm_vcpu *vcpu = apic->vcpu; 2134 bool expired; 2135 2136 WARN_ON(preemptible()); 2137 if (!kvm_can_use_hv_timer(vcpu)) 2138 return false; 2139 2140 if (!ktimer->tscdeadline) 2141 return false; 2142 2143 if (kvm_x86_call(set_hv_timer)(vcpu, ktimer->tscdeadline, &expired)) 2144 return false; 2145 2146 ktimer->hv_timer_in_use = true; 2147 hrtimer_cancel(&ktimer->timer); 2148 2149 /* 2150 * To simplify handling the periodic timer, leave the hv timer running 2151 * even if the deadline timer has expired, i.e. rely on the resulting 2152 * VM-Exit to recompute the periodic timer's target expiration. 2153 */ 2154 if (!apic_lvtt_period(apic)) { 2155 /* 2156 * Cancel the hv timer if the sw timer fired while the hv timer 2157 * was being programmed, or if the hv timer itself expired. 2158 */ 2159 if (atomic_read(&ktimer->pending)) { 2160 cancel_hv_timer(apic); 2161 } else if (expired) { 2162 apic_timer_expired(apic, false); 2163 cancel_hv_timer(apic); 2164 } 2165 } 2166 2167 trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use); 2168 2169 return true; 2170 } 2171 2172 static void start_sw_timer(struct kvm_lapic *apic) 2173 { 2174 struct kvm_timer *ktimer = &apic->lapic_timer; 2175 2176 WARN_ON(preemptible()); 2177 if (apic->lapic_timer.hv_timer_in_use) 2178 cancel_hv_timer(apic); 2179 if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending)) 2180 return; 2181 2182 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 2183 start_sw_period(apic); 2184 else if (apic_lvtt_tscdeadline(apic)) 2185 start_sw_tscdeadline(apic); 2186 trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false); 2187 } 2188 2189 static void restart_apic_timer(struct kvm_lapic *apic) 2190 { 2191 preempt_disable(); 2192 2193 if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending)) 2194 goto out; 2195 2196 if (!start_hv_timer(apic)) 2197 start_sw_timer(apic); 2198 out: 2199 preempt_enable(); 2200 } 2201 2202 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu) 2203 { 2204 struct kvm_lapic *apic = vcpu->arch.apic; 2205 2206 preempt_disable(); 2207 /* If the preempt notifier has already run, it also called apic_timer_expired */ 2208 if (!apic->lapic_timer.hv_timer_in_use) 2209 goto out; 2210 WARN_ON(kvm_vcpu_is_blocking(vcpu)); 2211 apic_timer_expired(apic, false); 2212 cancel_hv_timer(apic); 2213 2214 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 2215 advance_periodic_target_expiration(apic); 2216 restart_apic_timer(apic); 2217 } 2218 out: 2219 preempt_enable(); 2220 } 2221 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer); 2222 2223 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu) 2224 { 2225 restart_apic_timer(vcpu->arch.apic); 2226 } 2227 2228 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu) 2229 { 2230 struct kvm_lapic *apic = vcpu->arch.apic; 2231 2232 preempt_disable(); 2233 /* Possibly the TSC deadline timer is not enabled yet */ 2234 if (apic->lapic_timer.hv_timer_in_use) 2235 start_sw_timer(apic); 2236 preempt_enable(); 2237 } 2238 2239 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu) 2240 { 2241 struct kvm_lapic *apic = vcpu->arch.apic; 2242 2243 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 2244 restart_apic_timer(apic); 2245 } 2246 2247 static void __start_apic_timer(struct kvm_lapic *apic, u32 count_reg) 2248 { 2249 atomic_set(&apic->lapic_timer.pending, 0); 2250 2251 if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 2252 && !set_target_expiration(apic, count_reg)) 2253 return; 2254 2255 restart_apic_timer(apic); 2256 } 2257 2258 static void start_apic_timer(struct kvm_lapic *apic) 2259 { 2260 __start_apic_timer(apic, APIC_TMICT); 2261 } 2262 2263 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val) 2264 { 2265 bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val); 2266 2267 if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) { 2268 apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode; 2269 if (lvt0_in_nmi_mode) { 2270 atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 2271 } else 2272 atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 2273 } 2274 } 2275 2276 static int get_lvt_index(u32 reg) 2277 { 2278 if (reg == APIC_LVTCMCI) 2279 return LVT_CMCI; 2280 if (reg < APIC_LVTT || reg > APIC_LVTERR) 2281 return -1; 2282 return array_index_nospec( 2283 (reg - APIC_LVTT) >> 4, KVM_APIC_MAX_NR_LVT_ENTRIES); 2284 } 2285 2286 static int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val) 2287 { 2288 int ret = 0; 2289 2290 trace_kvm_apic_write(reg, val); 2291 2292 switch (reg) { 2293 case APIC_ID: /* Local APIC ID */ 2294 if (!apic_x2apic_mode(apic)) { 2295 kvm_apic_set_xapic_id(apic, val >> 24); 2296 } else { 2297 ret = 1; 2298 } 2299 break; 2300 2301 case APIC_TASKPRI: 2302 report_tpr_access(apic, true); 2303 apic_set_tpr(apic, val & 0xff); 2304 break; 2305 2306 case APIC_EOI: 2307 apic_set_eoi(apic); 2308 break; 2309 2310 case APIC_LDR: 2311 if (!apic_x2apic_mode(apic)) 2312 kvm_apic_set_ldr(apic, val & APIC_LDR_MASK); 2313 else 2314 ret = 1; 2315 break; 2316 2317 case APIC_DFR: 2318 if (!apic_x2apic_mode(apic)) 2319 kvm_apic_set_dfr(apic, val | 0x0FFFFFFF); 2320 else 2321 ret = 1; 2322 break; 2323 2324 case APIC_SPIV: { 2325 u32 mask = 0x3ff; 2326 if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI) 2327 mask |= APIC_SPIV_DIRECTED_EOI; 2328 apic_set_spiv(apic, val & mask); 2329 if (!(val & APIC_SPIV_APIC_ENABLED)) { 2330 int i; 2331 2332 for (i = 0; i < apic->nr_lvt_entries; i++) { 2333 kvm_lapic_set_reg(apic, APIC_LVTx(i), 2334 kvm_lapic_get_reg(apic, APIC_LVTx(i)) | APIC_LVT_MASKED); 2335 } 2336 apic_update_lvtt(apic); 2337 atomic_set(&apic->lapic_timer.pending, 0); 2338 2339 } 2340 break; 2341 } 2342 case APIC_ICR: 2343 WARN_ON_ONCE(apic_x2apic_mode(apic)); 2344 2345 /* No delay here, so we always clear the pending bit */ 2346 val &= ~APIC_ICR_BUSY; 2347 kvm_apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2)); 2348 kvm_lapic_set_reg(apic, APIC_ICR, val); 2349 break; 2350 case APIC_ICR2: 2351 if (apic_x2apic_mode(apic)) 2352 ret = 1; 2353 else 2354 kvm_lapic_set_reg(apic, APIC_ICR2, val & 0xff000000); 2355 break; 2356 2357 case APIC_LVT0: 2358 apic_manage_nmi_watchdog(apic, val); 2359 fallthrough; 2360 case APIC_LVTTHMR: 2361 case APIC_LVTPC: 2362 case APIC_LVT1: 2363 case APIC_LVTERR: 2364 case APIC_LVTCMCI: { 2365 u32 index = get_lvt_index(reg); 2366 if (!kvm_lapic_lvt_supported(apic, index)) { 2367 ret = 1; 2368 break; 2369 } 2370 if (!kvm_apic_sw_enabled(apic)) 2371 val |= APIC_LVT_MASKED; 2372 val &= apic_lvt_mask[index]; 2373 kvm_lapic_set_reg(apic, reg, val); 2374 break; 2375 } 2376 2377 case APIC_LVTT: 2378 if (!kvm_apic_sw_enabled(apic)) 2379 val |= APIC_LVT_MASKED; 2380 val &= (apic_lvt_mask[LVT_TIMER] | apic->lapic_timer.timer_mode_mask); 2381 kvm_lapic_set_reg(apic, APIC_LVTT, val); 2382 apic_update_lvtt(apic); 2383 break; 2384 2385 case APIC_TMICT: 2386 if (apic_lvtt_tscdeadline(apic)) 2387 break; 2388 2389 cancel_apic_timer(apic); 2390 kvm_lapic_set_reg(apic, APIC_TMICT, val); 2391 start_apic_timer(apic); 2392 break; 2393 2394 case APIC_TDCR: { 2395 uint32_t old_divisor = apic->divide_count; 2396 2397 kvm_lapic_set_reg(apic, APIC_TDCR, val & 0xb); 2398 update_divide_count(apic); 2399 if (apic->divide_count != old_divisor && 2400 apic->lapic_timer.period) { 2401 hrtimer_cancel(&apic->lapic_timer.timer); 2402 update_target_expiration(apic, old_divisor); 2403 restart_apic_timer(apic); 2404 } 2405 break; 2406 } 2407 case APIC_ESR: 2408 if (apic_x2apic_mode(apic) && val != 0) 2409 ret = 1; 2410 break; 2411 2412 case APIC_SELF_IPI: 2413 /* 2414 * Self-IPI exists only when x2APIC is enabled. Bits 7:0 hold 2415 * the vector, everything else is reserved. 2416 */ 2417 if (!apic_x2apic_mode(apic) || (val & ~APIC_VECTOR_MASK)) 2418 ret = 1; 2419 else 2420 kvm_apic_send_ipi(apic, APIC_DEST_SELF | val, 0); 2421 break; 2422 default: 2423 ret = 1; 2424 break; 2425 } 2426 2427 /* 2428 * Recalculate APIC maps if necessary, e.g. if the software enable bit 2429 * was toggled, the APIC ID changed, etc... The maps are marked dirty 2430 * on relevant changes, i.e. this is a nop for most writes. 2431 */ 2432 kvm_recalculate_apic_map(apic->vcpu->kvm); 2433 2434 return ret; 2435 } 2436 2437 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 2438 gpa_t address, int len, const void *data) 2439 { 2440 struct kvm_lapic *apic = to_lapic(this); 2441 unsigned int offset = address - apic->base_address; 2442 u32 val; 2443 2444 if (!apic_mmio_in_range(apic, address)) 2445 return -EOPNOTSUPP; 2446 2447 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 2448 if (!kvm_check_has_quirk(vcpu->kvm, 2449 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 2450 return -EOPNOTSUPP; 2451 2452 return 0; 2453 } 2454 2455 /* 2456 * APIC register must be aligned on 128-bits boundary. 2457 * 32/64/128 bits registers must be accessed thru 32 bits. 2458 * Refer SDM 8.4.1 2459 */ 2460 if (len != 4 || (offset & 0xf)) 2461 return 0; 2462 2463 val = *(u32*)data; 2464 2465 kvm_lapic_reg_write(apic, offset & 0xff0, val); 2466 2467 return 0; 2468 } 2469 2470 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu) 2471 { 2472 kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0); 2473 } 2474 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi); 2475 2476 #define X2APIC_ICR_RESERVED_BITS (GENMASK_ULL(31, 20) | GENMASK_ULL(17, 16) | BIT(13)) 2477 2478 int kvm_x2apic_icr_write(struct kvm_lapic *apic, u64 data) 2479 { 2480 if (data & X2APIC_ICR_RESERVED_BITS) 2481 return 1; 2482 2483 /* 2484 * The BUSY bit is reserved on both Intel and AMD in x2APIC mode, but 2485 * only AMD requires it to be zero, Intel essentially just ignores the 2486 * bit. And if IPI virtualization (Intel) or x2AVIC (AMD) is enabled, 2487 * the CPU performs the reserved bits checks, i.e. the underlying CPU 2488 * behavior will "win". Arbitrarily clear the BUSY bit, as there is no 2489 * sane way to provide consistent behavior with respect to hardware. 2490 */ 2491 data &= ~APIC_ICR_BUSY; 2492 2493 kvm_apic_send_ipi(apic, (u32)data, (u32)(data >> 32)); 2494 if (kvm_x86_ops.x2apic_icr_is_split) { 2495 kvm_lapic_set_reg(apic, APIC_ICR, data); 2496 kvm_lapic_set_reg(apic, APIC_ICR2, data >> 32); 2497 } else { 2498 kvm_lapic_set_reg64(apic, APIC_ICR, data); 2499 } 2500 trace_kvm_apic_write(APIC_ICR, data); 2501 return 0; 2502 } 2503 2504 static u64 kvm_x2apic_icr_read(struct kvm_lapic *apic) 2505 { 2506 if (kvm_x86_ops.x2apic_icr_is_split) 2507 return (u64)kvm_lapic_get_reg(apic, APIC_ICR) | 2508 (u64)kvm_lapic_get_reg(apic, APIC_ICR2) << 32; 2509 2510 return kvm_lapic_get_reg64(apic, APIC_ICR); 2511 } 2512 2513 /* emulate APIC access in a trap manner */ 2514 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset) 2515 { 2516 struct kvm_lapic *apic = vcpu->arch.apic; 2517 2518 /* 2519 * ICR is a single 64-bit register when x2APIC is enabled, all others 2520 * registers hold 32-bit values. For legacy xAPIC, ICR writes need to 2521 * go down the common path to get the upper half from ICR2. 2522 * 2523 * Note, using the write helpers may incur an unnecessary write to the 2524 * virtual APIC state, but KVM needs to conditionally modify the value 2525 * in certain cases, e.g. to clear the ICR busy bit. The cost of extra 2526 * conditional branches is likely a wash relative to the cost of the 2527 * maybe-unecessary write, and both are in the noise anyways. 2528 */ 2529 if (apic_x2apic_mode(apic) && offset == APIC_ICR) 2530 WARN_ON_ONCE(kvm_x2apic_icr_write(apic, kvm_x2apic_icr_read(apic))); 2531 else 2532 kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset)); 2533 } 2534 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode); 2535 2536 void kvm_free_lapic(struct kvm_vcpu *vcpu) 2537 { 2538 struct kvm_lapic *apic = vcpu->arch.apic; 2539 2540 if (!vcpu->arch.apic) { 2541 static_branch_dec(&kvm_has_noapic_vcpu); 2542 return; 2543 } 2544 2545 hrtimer_cancel(&apic->lapic_timer.timer); 2546 2547 if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)) 2548 static_branch_slow_dec_deferred(&apic_hw_disabled); 2549 2550 if (!apic->sw_enabled) 2551 static_branch_slow_dec_deferred(&apic_sw_disabled); 2552 2553 if (apic->regs) 2554 free_page((unsigned long)apic->regs); 2555 2556 kfree(apic); 2557 } 2558 2559 /* 2560 *---------------------------------------------------------------------- 2561 * LAPIC interface 2562 *---------------------------------------------------------------------- 2563 */ 2564 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu) 2565 { 2566 struct kvm_lapic *apic = vcpu->arch.apic; 2567 2568 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic)) 2569 return 0; 2570 2571 return apic->lapic_timer.tscdeadline; 2572 } 2573 2574 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data) 2575 { 2576 struct kvm_lapic *apic = vcpu->arch.apic; 2577 2578 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic)) 2579 return; 2580 2581 hrtimer_cancel(&apic->lapic_timer.timer); 2582 apic->lapic_timer.tscdeadline = data; 2583 start_apic_timer(apic); 2584 } 2585 2586 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8) 2587 { 2588 apic_set_tpr(vcpu->arch.apic, (cr8 & 0x0f) << 4); 2589 } 2590 2591 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu) 2592 { 2593 u64 tpr; 2594 2595 tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI); 2596 2597 return (tpr & 0xf0) >> 4; 2598 } 2599 2600 static void __kvm_apic_set_base(struct kvm_vcpu *vcpu, u64 value) 2601 { 2602 u64 old_value = vcpu->arch.apic_base; 2603 struct kvm_lapic *apic = vcpu->arch.apic; 2604 2605 vcpu->arch.apic_base = value; 2606 2607 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) 2608 vcpu->arch.cpuid_dynamic_bits_dirty = true; 2609 2610 if (!apic) 2611 return; 2612 2613 /* update jump label if enable bit changes */ 2614 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) { 2615 if (value & MSR_IA32_APICBASE_ENABLE) { 2616 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2617 static_branch_slow_dec_deferred(&apic_hw_disabled); 2618 /* Check if there are APF page ready requests pending */ 2619 kvm_make_request(KVM_REQ_APF_READY, vcpu); 2620 } else { 2621 static_branch_inc(&apic_hw_disabled.key); 2622 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 2623 } 2624 } 2625 2626 if ((old_value ^ value) & X2APIC_ENABLE) { 2627 if (value & X2APIC_ENABLE) 2628 kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id); 2629 else if (value & MSR_IA32_APICBASE_ENABLE) 2630 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2631 } 2632 2633 if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) { 2634 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 2635 kvm_x86_call(set_virtual_apic_mode)(vcpu); 2636 } 2637 2638 apic->base_address = apic->vcpu->arch.apic_base & 2639 MSR_IA32_APICBASE_BASE; 2640 2641 if ((value & MSR_IA32_APICBASE_ENABLE) && 2642 apic->base_address != APIC_DEFAULT_PHYS_BASE) { 2643 kvm_set_apicv_inhibit(apic->vcpu->kvm, 2644 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED); 2645 } 2646 } 2647 2648 int kvm_apic_set_base(struct kvm_vcpu *vcpu, u64 value, bool host_initiated) 2649 { 2650 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 2651 enum lapic_mode new_mode = kvm_apic_mode(value); 2652 2653 if (vcpu->arch.apic_base == value) 2654 return 0; 2655 2656 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 2657 (guest_cpu_cap_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 2658 2659 if ((value & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 2660 return 1; 2661 if (!host_initiated) { 2662 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 2663 return 1; 2664 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 2665 return 1; 2666 } 2667 2668 __kvm_apic_set_base(vcpu, value); 2669 kvm_recalculate_apic_map(vcpu->kvm); 2670 return 0; 2671 } 2672 EXPORT_SYMBOL_GPL(kvm_apic_set_base); 2673 2674 void kvm_apic_update_apicv(struct kvm_vcpu *vcpu) 2675 { 2676 struct kvm_lapic *apic = vcpu->arch.apic; 2677 2678 /* 2679 * When APICv is enabled, KVM must always search the IRR for a pending 2680 * IRQ, as other vCPUs and devices can set IRR bits even if the vCPU 2681 * isn't running. If APICv is disabled, KVM _should_ search the IRR 2682 * for a pending IRQ. But KVM currently doesn't ensure *all* hardware, 2683 * e.g. CPUs and IOMMUs, has seen the change in state, i.e. searching 2684 * the IRR at this time could race with IRQ delivery from hardware that 2685 * still sees APICv as being enabled. 2686 * 2687 * FIXME: Ensure other vCPUs and devices observe the change in APICv 2688 * state prior to updating KVM's metadata caches, so that KVM 2689 * can safely search the IRR and set irr_pending accordingly. 2690 */ 2691 apic->irr_pending = true; 2692 2693 if (apic->apicv_active) 2694 apic->isr_count = 1; 2695 else 2696 apic->isr_count = count_vectors(apic->regs + APIC_ISR); 2697 2698 apic->highest_isr_cache = -1; 2699 } 2700 2701 int kvm_alloc_apic_access_page(struct kvm *kvm) 2702 { 2703 void __user *hva; 2704 int ret = 0; 2705 2706 mutex_lock(&kvm->slots_lock); 2707 if (kvm->arch.apic_access_memslot_enabled || 2708 kvm->arch.apic_access_memslot_inhibited) 2709 goto out; 2710 2711 hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 2712 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE); 2713 if (IS_ERR(hva)) { 2714 ret = PTR_ERR(hva); 2715 goto out; 2716 } 2717 2718 kvm->arch.apic_access_memslot_enabled = true; 2719 out: 2720 mutex_unlock(&kvm->slots_lock); 2721 return ret; 2722 } 2723 EXPORT_SYMBOL_GPL(kvm_alloc_apic_access_page); 2724 2725 void kvm_inhibit_apic_access_page(struct kvm_vcpu *vcpu) 2726 { 2727 struct kvm *kvm = vcpu->kvm; 2728 2729 if (!kvm->arch.apic_access_memslot_enabled) 2730 return; 2731 2732 kvm_vcpu_srcu_read_unlock(vcpu); 2733 2734 mutex_lock(&kvm->slots_lock); 2735 2736 if (kvm->arch.apic_access_memslot_enabled) { 2737 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0); 2738 /* 2739 * Clear "enabled" after the memslot is deleted so that a 2740 * different vCPU doesn't get a false negative when checking 2741 * the flag out of slots_lock. No additional memory barrier is 2742 * needed as modifying memslots requires waiting other vCPUs to 2743 * drop SRCU (see above), and false positives are ok as the 2744 * flag is rechecked after acquiring slots_lock. 2745 */ 2746 kvm->arch.apic_access_memslot_enabled = false; 2747 2748 /* 2749 * Mark the memslot as inhibited to prevent reallocating the 2750 * memslot during vCPU creation, e.g. if a vCPU is hotplugged. 2751 */ 2752 kvm->arch.apic_access_memslot_inhibited = true; 2753 } 2754 2755 mutex_unlock(&kvm->slots_lock); 2756 2757 kvm_vcpu_srcu_read_lock(vcpu); 2758 } 2759 2760 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event) 2761 { 2762 struct kvm_lapic *apic = vcpu->arch.apic; 2763 u64 msr_val; 2764 int i; 2765 2766 kvm_x86_call(apicv_pre_state_restore)(vcpu); 2767 2768 if (!init_event) { 2769 msr_val = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE; 2770 if (kvm_vcpu_is_reset_bsp(vcpu)) 2771 msr_val |= MSR_IA32_APICBASE_BSP; 2772 2773 /* 2774 * Use the inner helper to avoid an extra recalcuation of the 2775 * optimized APIC map if some other task has dirtied the map. 2776 * The recalculation needed for this vCPU will be done after 2777 * all APIC state has been initialized (see below). 2778 */ 2779 __kvm_apic_set_base(vcpu, msr_val); 2780 } 2781 2782 if (!apic) 2783 return; 2784 2785 /* Stop the timer in case it's a reset to an active apic */ 2786 hrtimer_cancel(&apic->lapic_timer.timer); 2787 2788 /* The xAPIC ID is set at RESET even if the APIC was already enabled. */ 2789 if (!init_event) 2790 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2791 kvm_apic_set_version(apic->vcpu); 2792 2793 for (i = 0; i < apic->nr_lvt_entries; i++) 2794 kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED); 2795 apic_update_lvtt(apic); 2796 if (kvm_vcpu_is_reset_bsp(vcpu) && 2797 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED)) 2798 kvm_lapic_set_reg(apic, APIC_LVT0, 2799 SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT)); 2800 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 2801 2802 kvm_apic_set_dfr(apic, 0xffffffffU); 2803 apic_set_spiv(apic, 0xff); 2804 kvm_lapic_set_reg(apic, APIC_TASKPRI, 0); 2805 if (!apic_x2apic_mode(apic)) 2806 kvm_apic_set_ldr(apic, 0); 2807 kvm_lapic_set_reg(apic, APIC_ESR, 0); 2808 if (!apic_x2apic_mode(apic)) { 2809 kvm_lapic_set_reg(apic, APIC_ICR, 0); 2810 kvm_lapic_set_reg(apic, APIC_ICR2, 0); 2811 } else { 2812 kvm_lapic_set_reg64(apic, APIC_ICR, 0); 2813 } 2814 kvm_lapic_set_reg(apic, APIC_TDCR, 0); 2815 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 2816 for (i = 0; i < 8; i++) { 2817 kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0); 2818 kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0); 2819 kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0); 2820 } 2821 kvm_apic_update_apicv(vcpu); 2822 update_divide_count(apic); 2823 atomic_set(&apic->lapic_timer.pending, 0); 2824 2825 vcpu->arch.pv_eoi.msr_val = 0; 2826 apic_update_ppr(apic); 2827 if (apic->apicv_active) { 2828 kvm_x86_call(apicv_post_state_restore)(vcpu); 2829 kvm_x86_call(hwapic_isr_update)(vcpu, -1); 2830 } 2831 2832 vcpu->arch.apic_arb_prio = 0; 2833 vcpu->arch.apic_attention = 0; 2834 2835 kvm_recalculate_apic_map(vcpu->kvm); 2836 } 2837 2838 /* 2839 *---------------------------------------------------------------------- 2840 * timer interface 2841 *---------------------------------------------------------------------- 2842 */ 2843 2844 static bool lapic_is_periodic(struct kvm_lapic *apic) 2845 { 2846 return apic_lvtt_period(apic); 2847 } 2848 2849 int apic_has_pending_timer(struct kvm_vcpu *vcpu) 2850 { 2851 struct kvm_lapic *apic = vcpu->arch.apic; 2852 2853 if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT)) 2854 return atomic_read(&apic->lapic_timer.pending); 2855 2856 return 0; 2857 } 2858 2859 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type) 2860 { 2861 u32 reg = kvm_lapic_get_reg(apic, lvt_type); 2862 int vector, mode, trig_mode; 2863 int r; 2864 2865 if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) { 2866 vector = reg & APIC_VECTOR_MASK; 2867 mode = reg & APIC_MODE_MASK; 2868 trig_mode = reg & APIC_LVT_LEVEL_TRIGGER; 2869 2870 r = __apic_accept_irq(apic, mode, vector, 1, trig_mode, NULL); 2871 if (r && lvt_type == APIC_LVTPC && 2872 guest_cpuid_is_intel_compatible(apic->vcpu)) 2873 kvm_lapic_set_reg(apic, APIC_LVTPC, reg | APIC_LVT_MASKED); 2874 return r; 2875 } 2876 return 0; 2877 } 2878 2879 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu) 2880 { 2881 struct kvm_lapic *apic = vcpu->arch.apic; 2882 2883 if (apic) 2884 kvm_apic_local_deliver(apic, APIC_LVT0); 2885 } 2886 2887 static const struct kvm_io_device_ops apic_mmio_ops = { 2888 .read = apic_mmio_read, 2889 .write = apic_mmio_write, 2890 }; 2891 2892 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data) 2893 { 2894 struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer); 2895 struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer); 2896 2897 apic_timer_expired(apic, true); 2898 2899 if (lapic_is_periodic(apic)) { 2900 advance_periodic_target_expiration(apic); 2901 hrtimer_add_expires_ns(&ktimer->timer, ktimer->period); 2902 return HRTIMER_RESTART; 2903 } else 2904 return HRTIMER_NORESTART; 2905 } 2906 2907 int kvm_create_lapic(struct kvm_vcpu *vcpu) 2908 { 2909 struct kvm_lapic *apic; 2910 2911 ASSERT(vcpu != NULL); 2912 2913 if (!irqchip_in_kernel(vcpu->kvm)) { 2914 static_branch_inc(&kvm_has_noapic_vcpu); 2915 return 0; 2916 } 2917 2918 apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT); 2919 if (!apic) 2920 goto nomem; 2921 2922 vcpu->arch.apic = apic; 2923 2924 if (kvm_x86_ops.alloc_apic_backing_page) 2925 apic->regs = kvm_x86_call(alloc_apic_backing_page)(vcpu); 2926 else 2927 apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 2928 if (!apic->regs) { 2929 printk(KERN_ERR "malloc apic regs error for vcpu %x\n", 2930 vcpu->vcpu_id); 2931 goto nomem_free_apic; 2932 } 2933 apic->vcpu = vcpu; 2934 2935 apic->nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu); 2936 2937 hrtimer_setup(&apic->lapic_timer.timer, apic_timer_fn, CLOCK_MONOTONIC, 2938 HRTIMER_MODE_ABS_HARD); 2939 if (lapic_timer_advance) 2940 apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; 2941 2942 /* 2943 * Stuff the APIC ENABLE bit in lieu of temporarily incrementing 2944 * apic_hw_disabled; the full RESET value is set by kvm_lapic_reset(). 2945 */ 2946 vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE; 2947 static_branch_inc(&apic_sw_disabled.key); /* sw disabled at reset */ 2948 kvm_iodevice_init(&apic->dev, &apic_mmio_ops); 2949 2950 /* 2951 * Defer evaluating inhibits until the vCPU is first run, as this vCPU 2952 * will not get notified of any changes until this vCPU is visible to 2953 * other vCPUs (marked online and added to the set of vCPUs). 2954 * 2955 * Opportunistically mark APICv active as VMX in particularly is highly 2956 * unlikely to have inhibits. Ignore the current per-VM APICv state so 2957 * that vCPU creation is guaranteed to run with a deterministic value, 2958 * the request will ensure the vCPU gets the correct state before VM-Entry. 2959 */ 2960 if (enable_apicv) { 2961 apic->apicv_active = true; 2962 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 2963 } 2964 2965 return 0; 2966 nomem_free_apic: 2967 kfree(apic); 2968 vcpu->arch.apic = NULL; 2969 nomem: 2970 return -ENOMEM; 2971 } 2972 2973 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu) 2974 { 2975 struct kvm_lapic *apic = vcpu->arch.apic; 2976 u32 ppr; 2977 2978 if (!kvm_apic_present(vcpu)) 2979 return -1; 2980 2981 if (apic->guest_apic_protected) 2982 return -1; 2983 2984 __apic_update_ppr(apic, &ppr); 2985 return apic_has_interrupt_for_ppr(apic, ppr); 2986 } 2987 EXPORT_SYMBOL_GPL(kvm_apic_has_interrupt); 2988 2989 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu) 2990 { 2991 u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0); 2992 2993 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 2994 return 1; 2995 if ((lvt0 & APIC_LVT_MASKED) == 0 && 2996 GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT) 2997 return 1; 2998 return 0; 2999 } 3000 3001 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu) 3002 { 3003 struct kvm_lapic *apic = vcpu->arch.apic; 3004 3005 if (atomic_read(&apic->lapic_timer.pending) > 0) { 3006 kvm_apic_inject_pending_timer_irqs(apic); 3007 atomic_set(&apic->lapic_timer.pending, 0); 3008 } 3009 } 3010 3011 void kvm_apic_ack_interrupt(struct kvm_vcpu *vcpu, int vector) 3012 { 3013 struct kvm_lapic *apic = vcpu->arch.apic; 3014 u32 ppr; 3015 3016 if (WARN_ON_ONCE(vector < 0 || !apic)) 3017 return; 3018 3019 /* 3020 * We get here even with APIC virtualization enabled, if doing 3021 * nested virtualization and L1 runs with the "acknowledge interrupt 3022 * on exit" mode. Then we cannot inject the interrupt via RVI, 3023 * because the process would deliver it through the IDT. 3024 */ 3025 3026 apic_clear_irr(vector, apic); 3027 if (kvm_hv_synic_auto_eoi_set(vcpu, vector)) { 3028 /* 3029 * For auto-EOI interrupts, there might be another pending 3030 * interrupt above PPR, so check whether to raise another 3031 * KVM_REQ_EVENT. 3032 */ 3033 apic_update_ppr(apic); 3034 } else { 3035 /* 3036 * For normal interrupts, PPR has been raised and there cannot 3037 * be a higher-priority pending interrupt---except if there was 3038 * a concurrent interrupt injection, but that would have 3039 * triggered KVM_REQ_EVENT already. 3040 */ 3041 apic_set_isr(vector, apic); 3042 __apic_update_ppr(apic, &ppr); 3043 } 3044 3045 } 3046 EXPORT_SYMBOL_GPL(kvm_apic_ack_interrupt); 3047 3048 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu, 3049 struct kvm_lapic_state *s, bool set) 3050 { 3051 if (apic_x2apic_mode(vcpu->arch.apic)) { 3052 u32 x2apic_id = kvm_x2apic_id(vcpu->arch.apic); 3053 u32 *id = (u32 *)(s->regs + APIC_ID); 3054 u32 *ldr = (u32 *)(s->regs + APIC_LDR); 3055 u64 icr; 3056 3057 if (vcpu->kvm->arch.x2apic_format) { 3058 if (*id != x2apic_id) 3059 return -EINVAL; 3060 } else { 3061 /* 3062 * Ignore the userspace value when setting APIC state. 3063 * KVM's model is that the x2APIC ID is readonly, e.g. 3064 * KVM only supports delivering interrupts to KVM's 3065 * version of the x2APIC ID. However, for backwards 3066 * compatibility, don't reject attempts to set a 3067 * mismatched ID for userspace that hasn't opted into 3068 * x2apic_format. 3069 */ 3070 if (set) 3071 *id = x2apic_id; 3072 else 3073 *id = x2apic_id << 24; 3074 } 3075 3076 /* 3077 * In x2APIC mode, the LDR is fixed and based on the id. And 3078 * if the ICR is _not_ split, ICR is internally a single 64-bit 3079 * register, but needs to be split to ICR+ICR2 in userspace for 3080 * backwards compatibility. 3081 */ 3082 if (set) 3083 *ldr = kvm_apic_calc_x2apic_ldr(x2apic_id); 3084 3085 if (!kvm_x86_ops.x2apic_icr_is_split) { 3086 if (set) { 3087 icr = __kvm_lapic_get_reg(s->regs, APIC_ICR) | 3088 (u64)__kvm_lapic_get_reg(s->regs, APIC_ICR2) << 32; 3089 __kvm_lapic_set_reg64(s->regs, APIC_ICR, icr); 3090 } else { 3091 icr = __kvm_lapic_get_reg64(s->regs, APIC_ICR); 3092 __kvm_lapic_set_reg(s->regs, APIC_ICR2, icr >> 32); 3093 } 3094 } 3095 } 3096 3097 return 0; 3098 } 3099 3100 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 3101 { 3102 memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s)); 3103 3104 /* 3105 * Get calculated timer current count for remaining timer period (if 3106 * any) and store it in the returned register set. 3107 */ 3108 __kvm_lapic_set_reg(s->regs, APIC_TMCCT, 3109 __apic_read(vcpu->arch.apic, APIC_TMCCT)); 3110 3111 return kvm_apic_state_fixup(vcpu, s, false); 3112 } 3113 3114 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 3115 { 3116 struct kvm_lapic *apic = vcpu->arch.apic; 3117 int r; 3118 3119 kvm_x86_call(apicv_pre_state_restore)(vcpu); 3120 3121 /* set SPIV separately to get count of SW disabled APICs right */ 3122 apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV))); 3123 3124 r = kvm_apic_state_fixup(vcpu, s, true); 3125 if (r) { 3126 kvm_recalculate_apic_map(vcpu->kvm); 3127 return r; 3128 } 3129 memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s)); 3130 3131 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 3132 kvm_recalculate_apic_map(vcpu->kvm); 3133 kvm_apic_set_version(vcpu); 3134 3135 apic_update_ppr(apic); 3136 cancel_apic_timer(apic); 3137 apic->lapic_timer.expired_tscdeadline = 0; 3138 apic_update_lvtt(apic); 3139 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 3140 update_divide_count(apic); 3141 __start_apic_timer(apic, APIC_TMCCT); 3142 kvm_lapic_set_reg(apic, APIC_TMCCT, 0); 3143 kvm_apic_update_apicv(vcpu); 3144 if (apic->apicv_active) { 3145 kvm_x86_call(apicv_post_state_restore)(vcpu); 3146 kvm_x86_call(hwapic_isr_update)(vcpu, apic_find_highest_isr(apic)); 3147 } 3148 kvm_make_request(KVM_REQ_EVENT, vcpu); 3149 if (ioapic_in_kernel(vcpu->kvm)) 3150 kvm_rtc_eoi_tracking_restore_one(vcpu); 3151 3152 vcpu->arch.apic_arb_prio = 0; 3153 3154 return 0; 3155 } 3156 3157 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu) 3158 { 3159 struct hrtimer *timer; 3160 3161 if (!lapic_in_kernel(vcpu) || 3162 kvm_can_post_timer_interrupt(vcpu)) 3163 return; 3164 3165 timer = &vcpu->arch.apic->lapic_timer.timer; 3166 if (hrtimer_cancel(timer)) 3167 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD); 3168 } 3169 3170 /* 3171 * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt 3172 * 3173 * Detect whether guest triggered PV EOI since the 3174 * last entry. If yes, set EOI on guests's behalf. 3175 * Clear PV EOI in guest memory in any case. 3176 */ 3177 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu, 3178 struct kvm_lapic *apic) 3179 { 3180 int vector; 3181 /* 3182 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host 3183 * and KVM_PV_EOI_ENABLED in guest memory as follows: 3184 * 3185 * KVM_APIC_PV_EOI_PENDING is unset: 3186 * -> host disabled PV EOI. 3187 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set: 3188 * -> host enabled PV EOI, guest did not execute EOI yet. 3189 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset: 3190 * -> host enabled PV EOI, guest executed EOI. 3191 */ 3192 BUG_ON(!pv_eoi_enabled(vcpu)); 3193 3194 if (pv_eoi_test_and_clr_pending(vcpu)) 3195 return; 3196 vector = apic_set_eoi(apic); 3197 trace_kvm_pv_eoi(apic, vector); 3198 } 3199 3200 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu) 3201 { 3202 u32 data; 3203 3204 if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention)) 3205 apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic); 3206 3207 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 3208 return; 3209 3210 if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 3211 sizeof(u32))) 3212 return; 3213 3214 apic_set_tpr(vcpu->arch.apic, data & 0xff); 3215 } 3216 3217 /* 3218 * apic_sync_pv_eoi_to_guest - called before vmentry 3219 * 3220 * Detect whether it's safe to enable PV EOI and 3221 * if yes do so. 3222 */ 3223 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu, 3224 struct kvm_lapic *apic) 3225 { 3226 if (!pv_eoi_enabled(vcpu) || 3227 /* IRR set or many bits in ISR: could be nested. */ 3228 apic->irr_pending || 3229 /* Cache not set: could be safe but we don't bother. */ 3230 apic->highest_isr_cache == -1 || 3231 /* Need EOI to update ioapic. */ 3232 kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) { 3233 /* 3234 * PV EOI was disabled by apic_sync_pv_eoi_from_guest 3235 * so we need not do anything here. 3236 */ 3237 return; 3238 } 3239 3240 pv_eoi_set_pending(apic->vcpu); 3241 } 3242 3243 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu) 3244 { 3245 u32 data, tpr; 3246 int max_irr, max_isr; 3247 struct kvm_lapic *apic = vcpu->arch.apic; 3248 3249 apic_sync_pv_eoi_to_guest(vcpu, apic); 3250 3251 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 3252 return; 3253 3254 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff; 3255 max_irr = apic_find_highest_irr(apic); 3256 if (max_irr < 0) 3257 max_irr = 0; 3258 max_isr = apic_find_highest_isr(apic); 3259 if (max_isr < 0) 3260 max_isr = 0; 3261 data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24); 3262 3263 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 3264 sizeof(u32)); 3265 } 3266 3267 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr) 3268 { 3269 if (vapic_addr) { 3270 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, 3271 &vcpu->arch.apic->vapic_cache, 3272 vapic_addr, sizeof(u32))) 3273 return -EINVAL; 3274 __set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 3275 } else { 3276 __clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 3277 } 3278 3279 vcpu->arch.apic->vapic_addr = vapic_addr; 3280 return 0; 3281 } 3282 3283 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data) 3284 { 3285 u32 low; 3286 3287 if (reg == APIC_ICR) { 3288 *data = kvm_x2apic_icr_read(apic); 3289 return 0; 3290 } 3291 3292 if (kvm_lapic_reg_read(apic, reg, 4, &low)) 3293 return 1; 3294 3295 *data = low; 3296 3297 return 0; 3298 } 3299 3300 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data) 3301 { 3302 /* 3303 * ICR is a 64-bit register in x2APIC mode (and Hyper-V PV vAPIC) and 3304 * can be written as such, all other registers remain accessible only 3305 * through 32-bit reads/writes. 3306 */ 3307 if (reg == APIC_ICR) 3308 return kvm_x2apic_icr_write(apic, data); 3309 3310 /* Bits 63:32 are reserved in all other registers. */ 3311 if (data >> 32) 3312 return 1; 3313 3314 return kvm_lapic_reg_write(apic, reg, (u32)data); 3315 } 3316 3317 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data) 3318 { 3319 struct kvm_lapic *apic = vcpu->arch.apic; 3320 u32 reg = (msr - APIC_BASE_MSR) << 4; 3321 3322 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 3323 return 1; 3324 3325 return kvm_lapic_msr_write(apic, reg, data); 3326 } 3327 3328 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data) 3329 { 3330 struct kvm_lapic *apic = vcpu->arch.apic; 3331 u32 reg = (msr - APIC_BASE_MSR) << 4; 3332 3333 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 3334 return 1; 3335 3336 return kvm_lapic_msr_read(apic, reg, data); 3337 } 3338 3339 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data) 3340 { 3341 if (!lapic_in_kernel(vcpu)) 3342 return 1; 3343 3344 return kvm_lapic_msr_write(vcpu->arch.apic, reg, data); 3345 } 3346 3347 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data) 3348 { 3349 if (!lapic_in_kernel(vcpu)) 3350 return 1; 3351 3352 return kvm_lapic_msr_read(vcpu->arch.apic, reg, data); 3353 } 3354 3355 int kvm_lapic_set_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len) 3356 { 3357 u64 addr = data & ~KVM_MSR_ENABLED; 3358 struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data; 3359 unsigned long new_len; 3360 int ret; 3361 3362 if (!IS_ALIGNED(addr, 4)) 3363 return 1; 3364 3365 if (data & KVM_MSR_ENABLED) { 3366 if (addr == ghc->gpa && len <= ghc->len) 3367 new_len = ghc->len; 3368 else 3369 new_len = len; 3370 3371 ret = kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len); 3372 if (ret) 3373 return ret; 3374 } 3375 3376 vcpu->arch.pv_eoi.msr_val = data; 3377 3378 return 0; 3379 } 3380 3381 int kvm_apic_accept_events(struct kvm_vcpu *vcpu) 3382 { 3383 struct kvm_lapic *apic = vcpu->arch.apic; 3384 u8 sipi_vector; 3385 int r; 3386 3387 if (!kvm_apic_has_pending_init_or_sipi(vcpu)) 3388 return 0; 3389 3390 if (is_guest_mode(vcpu)) { 3391 r = kvm_check_nested_events(vcpu); 3392 if (r < 0) 3393 return r == -EBUSY ? 0 : r; 3394 /* 3395 * Continue processing INIT/SIPI even if a nested VM-Exit 3396 * occurred, e.g. pending SIPIs should be dropped if INIT+SIPI 3397 * are blocked as a result of transitioning to VMX root mode. 3398 */ 3399 } 3400 3401 /* 3402 * INITs are blocked while CPU is in specific states (SMM, VMX root 3403 * mode, SVM with GIF=0), while SIPIs are dropped if the CPU isn't in 3404 * wait-for-SIPI (WFS). 3405 */ 3406 if (!kvm_apic_init_sipi_allowed(vcpu)) { 3407 WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED); 3408 clear_bit(KVM_APIC_SIPI, &apic->pending_events); 3409 return 0; 3410 } 3411 3412 if (test_and_clear_bit(KVM_APIC_INIT, &apic->pending_events)) { 3413 kvm_vcpu_reset(vcpu, true); 3414 if (kvm_vcpu_is_bsp(apic->vcpu)) 3415 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); 3416 else 3417 kvm_set_mp_state(vcpu, KVM_MP_STATE_INIT_RECEIVED); 3418 } 3419 if (test_and_clear_bit(KVM_APIC_SIPI, &apic->pending_events)) { 3420 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 3421 /* evaluate pending_events before reading the vector */ 3422 smp_rmb(); 3423 sipi_vector = apic->sipi_vector; 3424 kvm_x86_call(vcpu_deliver_sipi_vector)(vcpu, 3425 sipi_vector); 3426 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); 3427 } 3428 } 3429 return 0; 3430 } 3431 3432 void kvm_lapic_exit(void) 3433 { 3434 static_key_deferred_flush(&apic_hw_disabled); 3435 WARN_ON(static_branch_unlikely(&apic_hw_disabled.key)); 3436 static_key_deferred_flush(&apic_sw_disabled); 3437 WARN_ON(static_branch_unlikely(&apic_sw_disabled.key)); 3438 } 3439