xref: /linux/arch/x86/kvm/lapic.c (revision fcab107abe1ab5be9dbe874baa722372da8f4f73)
1 // SPDX-License-Identifier: GPL-2.0-only
2 
3 /*
4  * Local APIC virtualization
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2007 Novell
8  * Copyright (C) 2007 Intel
9  * Copyright 2009 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Dor Laor <dor.laor@qumranet.com>
13  *   Gregory Haskins <ghaskins@novell.com>
14  *   Yaozu (Eddie) Dong <eddie.dong@intel.com>
15  *
16  * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation.
17  */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/smp.h>
25 #include <linux/hrtimer.h>
26 #include <linux/io.h>
27 #include <linux/export.h>
28 #include <linux/math64.h>
29 #include <linux/slab.h>
30 #include <asm/processor.h>
31 #include <asm/mce.h>
32 #include <asm/msr.h>
33 #include <asm/page.h>
34 #include <asm/current.h>
35 #include <asm/apicdef.h>
36 #include <asm/delay.h>
37 #include <linux/atomic.h>
38 #include <linux/jump_label.h>
39 #include "kvm_cache_regs.h"
40 #include "irq.h"
41 #include "ioapic.h"
42 #include "trace.h"
43 #include "x86.h"
44 #include "xen.h"
45 #include "cpuid.h"
46 #include "hyperv.h"
47 #include "smm.h"
48 
49 #ifndef CONFIG_X86_64
50 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
51 #else
52 #define mod_64(x, y) ((x) % (y))
53 #endif
54 
55 /* 14 is the version for Xeon and Pentium 8.4.8*/
56 #define APIC_VERSION			0x14UL
57 #define LAPIC_MMIO_LENGTH		(1 << 12)
58 /* followed define is not in apicdef.h */
59 #define MAX_APIC_VECTOR			256
60 #define APIC_VECTORS_PER_REG		32
61 
62 /*
63  * Enable local APIC timer advancement (tscdeadline mode only) with adaptive
64  * tuning.  When enabled, KVM programs the host timer event to fire early, i.e.
65  * before the deadline expires, to account for the delay between taking the
66  * VM-Exit (to inject the guest event) and the subsequent VM-Enter to resume
67  * the guest, i.e. so that the interrupt arrives in the guest with minimal
68  * latency relative to the deadline programmed by the guest.
69  */
70 static bool lapic_timer_advance __read_mostly = true;
71 module_param(lapic_timer_advance, bool, 0444);
72 
73 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN	100	/* clock cycles */
74 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX	10000	/* clock cycles */
75 #define LAPIC_TIMER_ADVANCE_NS_INIT	1000
76 #define LAPIC_TIMER_ADVANCE_NS_MAX     5000
77 /* step-by-step approximation to mitigate fluctuation */
78 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8
79 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data);
80 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data);
81 
82 static inline void __kvm_lapic_set_reg(char *regs, int reg_off, u32 val)
83 {
84 	*((u32 *) (regs + reg_off)) = val;
85 }
86 
87 static inline void kvm_lapic_set_reg(struct kvm_lapic *apic, int reg_off, u32 val)
88 {
89 	__kvm_lapic_set_reg(apic->regs, reg_off, val);
90 }
91 
92 static __always_inline u64 __kvm_lapic_get_reg64(char *regs, int reg)
93 {
94 	BUILD_BUG_ON(reg != APIC_ICR);
95 	return *((u64 *) (regs + reg));
96 }
97 
98 static __always_inline u64 kvm_lapic_get_reg64(struct kvm_lapic *apic, int reg)
99 {
100 	return __kvm_lapic_get_reg64(apic->regs, reg);
101 }
102 
103 static __always_inline void __kvm_lapic_set_reg64(char *regs, int reg, u64 val)
104 {
105 	BUILD_BUG_ON(reg != APIC_ICR);
106 	*((u64 *) (regs + reg)) = val;
107 }
108 
109 static __always_inline void kvm_lapic_set_reg64(struct kvm_lapic *apic,
110 						int reg, u64 val)
111 {
112 	__kvm_lapic_set_reg64(apic->regs, reg, val);
113 }
114 
115 static inline int apic_test_vector(int vec, void *bitmap)
116 {
117 	return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
118 }
119 
120 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector)
121 {
122 	struct kvm_lapic *apic = vcpu->arch.apic;
123 
124 	return apic_test_vector(vector, apic->regs + APIC_ISR) ||
125 		apic_test_vector(vector, apic->regs + APIC_IRR);
126 }
127 
128 static inline int __apic_test_and_set_vector(int vec, void *bitmap)
129 {
130 	return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
131 }
132 
133 static inline int __apic_test_and_clear_vector(int vec, void *bitmap)
134 {
135 	return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
136 }
137 
138 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
139 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
140 
141 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_hw_disabled, HZ);
142 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_sw_disabled, HZ);
143 
144 static inline int apic_enabled(struct kvm_lapic *apic)
145 {
146 	return kvm_apic_sw_enabled(apic) &&	kvm_apic_hw_enabled(apic);
147 }
148 
149 #define LVT_MASK	\
150 	(APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK)
151 
152 #define LINT_MASK	\
153 	(LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \
154 	 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER)
155 
156 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic)
157 {
158 	return apic->vcpu->vcpu_id;
159 }
160 
161 static bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu)
162 {
163 	return pi_inject_timer && kvm_vcpu_apicv_active(vcpu) &&
164 		(kvm_mwait_in_guest(vcpu->kvm) || kvm_hlt_in_guest(vcpu->kvm));
165 }
166 
167 bool kvm_can_use_hv_timer(struct kvm_vcpu *vcpu)
168 {
169 	return kvm_x86_ops.set_hv_timer
170 	       && !(kvm_mwait_in_guest(vcpu->kvm) ||
171 		    kvm_can_post_timer_interrupt(vcpu));
172 }
173 
174 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu)
175 {
176 	return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE;
177 }
178 
179 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id)
180 {
181 	return ((id >> 4) << 16) | (1 << (id & 0xf));
182 }
183 
184 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map,
185 		u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) {
186 	switch (map->logical_mode) {
187 	case KVM_APIC_MODE_SW_DISABLED:
188 		/* Arbitrarily use the flat map so that @cluster isn't NULL. */
189 		*cluster = map->xapic_flat_map;
190 		*mask = 0;
191 		return true;
192 	case KVM_APIC_MODE_X2APIC: {
193 		u32 offset = (dest_id >> 16) * 16;
194 		u32 max_apic_id = map->max_apic_id;
195 
196 		if (offset <= max_apic_id) {
197 			u8 cluster_size = min(max_apic_id - offset + 1, 16U);
198 
199 			offset = array_index_nospec(offset, map->max_apic_id + 1);
200 			*cluster = &map->phys_map[offset];
201 			*mask = dest_id & (0xffff >> (16 - cluster_size));
202 		} else {
203 			*mask = 0;
204 		}
205 
206 		return true;
207 		}
208 	case KVM_APIC_MODE_XAPIC_FLAT:
209 		*cluster = map->xapic_flat_map;
210 		*mask = dest_id & 0xff;
211 		return true;
212 	case KVM_APIC_MODE_XAPIC_CLUSTER:
213 		*cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf];
214 		*mask = dest_id & 0xf;
215 		return true;
216 	case KVM_APIC_MODE_MAP_DISABLED:
217 		return false;
218 	default:
219 		WARN_ON_ONCE(1);
220 		return false;
221 	}
222 }
223 
224 static int kvm_recalculate_phys_map(struct kvm_apic_map *new,
225 				    struct kvm_vcpu *vcpu,
226 				    bool *xapic_id_mismatch)
227 {
228 	struct kvm_lapic *apic = vcpu->arch.apic;
229 	u32 x2apic_id = kvm_x2apic_id(apic);
230 	u32 xapic_id = kvm_xapic_id(apic);
231 	u32 physical_id;
232 
233 	/*
234 	 * For simplicity, KVM always allocates enough space for all possible
235 	 * xAPIC IDs.  Yell, but don't kill the VM, as KVM can continue on
236 	 * without the optimized map.
237 	 */
238 	if (WARN_ON_ONCE(xapic_id > new->max_apic_id))
239 		return -EINVAL;
240 
241 	/*
242 	 * Bail if a vCPU was added and/or enabled its APIC between allocating
243 	 * the map and doing the actual calculations for the map.  Note, KVM
244 	 * hardcodes the x2APIC ID to vcpu_id, i.e. there's no TOCTOU bug if
245 	 * the compiler decides to reload x2apic_id after this check.
246 	 */
247 	if (x2apic_id > new->max_apic_id)
248 		return -E2BIG;
249 
250 	/*
251 	 * Deliberately truncate the vCPU ID when detecting a mismatched APIC
252 	 * ID to avoid false positives if the vCPU ID, i.e. x2APIC ID, is a
253 	 * 32-bit value.  Any unwanted aliasing due to truncation results will
254 	 * be detected below.
255 	 */
256 	if (!apic_x2apic_mode(apic) && xapic_id != (u8)vcpu->vcpu_id)
257 		*xapic_id_mismatch = true;
258 
259 	/*
260 	 * Apply KVM's hotplug hack if userspace has enable 32-bit APIC IDs.
261 	 * Allow sending events to vCPUs by their x2APIC ID even if the target
262 	 * vCPU is in legacy xAPIC mode, and silently ignore aliased xAPIC IDs
263 	 * (the x2APIC ID is truncated to 8 bits, causing IDs > 0xff to wrap
264 	 * and collide).
265 	 *
266 	 * Honor the architectural (and KVM's non-optimized) behavior if
267 	 * userspace has not enabled 32-bit x2APIC IDs.  Each APIC is supposed
268 	 * to process messages independently.  If multiple vCPUs have the same
269 	 * effective APIC ID, e.g. due to the x2APIC wrap or because the guest
270 	 * manually modified its xAPIC IDs, events targeting that ID are
271 	 * supposed to be recognized by all vCPUs with said ID.
272 	 */
273 	if (vcpu->kvm->arch.x2apic_format) {
274 		/* See also kvm_apic_match_physical_addr(). */
275 		if (apic_x2apic_mode(apic) || x2apic_id > 0xff)
276 			new->phys_map[x2apic_id] = apic;
277 
278 		if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id])
279 			new->phys_map[xapic_id] = apic;
280 	} else {
281 		/*
282 		 * Disable the optimized map if the physical APIC ID is already
283 		 * mapped, i.e. is aliased to multiple vCPUs.  The optimized
284 		 * map requires a strict 1:1 mapping between IDs and vCPUs.
285 		 */
286 		if (apic_x2apic_mode(apic))
287 			physical_id = x2apic_id;
288 		else
289 			physical_id = xapic_id;
290 
291 		if (new->phys_map[physical_id])
292 			return -EINVAL;
293 
294 		new->phys_map[physical_id] = apic;
295 	}
296 
297 	return 0;
298 }
299 
300 static void kvm_recalculate_logical_map(struct kvm_apic_map *new,
301 					struct kvm_vcpu *vcpu)
302 {
303 	struct kvm_lapic *apic = vcpu->arch.apic;
304 	enum kvm_apic_logical_mode logical_mode;
305 	struct kvm_lapic **cluster;
306 	u16 mask;
307 	u32 ldr;
308 
309 	if (new->logical_mode == KVM_APIC_MODE_MAP_DISABLED)
310 		return;
311 
312 	if (!kvm_apic_sw_enabled(apic))
313 		return;
314 
315 	ldr = kvm_lapic_get_reg(apic, APIC_LDR);
316 	if (!ldr)
317 		return;
318 
319 	if (apic_x2apic_mode(apic)) {
320 		logical_mode = KVM_APIC_MODE_X2APIC;
321 	} else {
322 		ldr = GET_APIC_LOGICAL_ID(ldr);
323 		if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT)
324 			logical_mode = KVM_APIC_MODE_XAPIC_FLAT;
325 		else
326 			logical_mode = KVM_APIC_MODE_XAPIC_CLUSTER;
327 	}
328 
329 	/*
330 	 * To optimize logical mode delivery, all software-enabled APICs must
331 	 * be configured for the same mode.
332 	 */
333 	if (new->logical_mode == KVM_APIC_MODE_SW_DISABLED) {
334 		new->logical_mode = logical_mode;
335 	} else if (new->logical_mode != logical_mode) {
336 		new->logical_mode = KVM_APIC_MODE_MAP_DISABLED;
337 		return;
338 	}
339 
340 	/*
341 	 * In x2APIC mode, the LDR is read-only and derived directly from the
342 	 * x2APIC ID, thus is guaranteed to be addressable.  KVM reuses
343 	 * kvm_apic_map.phys_map to optimize logical mode x2APIC interrupts by
344 	 * reversing the LDR calculation to get cluster of APICs, i.e. no
345 	 * additional work is required.
346 	 */
347 	if (apic_x2apic_mode(apic))
348 		return;
349 
350 	if (WARN_ON_ONCE(!kvm_apic_map_get_logical_dest(new, ldr,
351 							&cluster, &mask))) {
352 		new->logical_mode = KVM_APIC_MODE_MAP_DISABLED;
353 		return;
354 	}
355 
356 	if (!mask)
357 		return;
358 
359 	ldr = ffs(mask) - 1;
360 	if (!is_power_of_2(mask) || cluster[ldr])
361 		new->logical_mode = KVM_APIC_MODE_MAP_DISABLED;
362 	else
363 		cluster[ldr] = apic;
364 }
365 
366 /*
367  * CLEAN -> DIRTY and UPDATE_IN_PROGRESS -> DIRTY changes happen without a lock.
368  *
369  * DIRTY -> UPDATE_IN_PROGRESS and UPDATE_IN_PROGRESS -> CLEAN happen with
370  * apic_map_lock_held.
371  */
372 enum {
373 	CLEAN,
374 	UPDATE_IN_PROGRESS,
375 	DIRTY
376 };
377 
378 static void kvm_recalculate_apic_map(struct kvm *kvm)
379 {
380 	struct kvm_apic_map *new, *old = NULL;
381 	struct kvm_vcpu *vcpu;
382 	unsigned long i;
383 	u32 max_id = 255; /* enough space for any xAPIC ID */
384 	bool xapic_id_mismatch;
385 	int r;
386 
387 	/* Read kvm->arch.apic_map_dirty before kvm->arch.apic_map.  */
388 	if (atomic_read_acquire(&kvm->arch.apic_map_dirty) == CLEAN)
389 		return;
390 
391 	WARN_ONCE(!irqchip_in_kernel(kvm),
392 		  "Dirty APIC map without an in-kernel local APIC");
393 
394 	mutex_lock(&kvm->arch.apic_map_lock);
395 
396 retry:
397 	/*
398 	 * Read kvm->arch.apic_map_dirty before kvm->arch.apic_map (if clean)
399 	 * or the APIC registers (if dirty).  Note, on retry the map may have
400 	 * not yet been marked dirty by whatever task changed a vCPU's x2APIC
401 	 * ID, i.e. the map may still show up as in-progress.  In that case
402 	 * this task still needs to retry and complete its calculation.
403 	 */
404 	if (atomic_cmpxchg_acquire(&kvm->arch.apic_map_dirty,
405 				   DIRTY, UPDATE_IN_PROGRESS) == CLEAN) {
406 		/* Someone else has updated the map. */
407 		mutex_unlock(&kvm->arch.apic_map_lock);
408 		return;
409 	}
410 
411 	/*
412 	 * Reset the mismatch flag between attempts so that KVM does the right
413 	 * thing if a vCPU changes its xAPIC ID, but do NOT reset max_id, i.e.
414 	 * keep max_id strictly increasing.  Disallowing max_id from shrinking
415 	 * ensures KVM won't get stuck in an infinite loop, e.g. if the vCPU
416 	 * with the highest x2APIC ID is toggling its APIC on and off.
417 	 */
418 	xapic_id_mismatch = false;
419 
420 	kvm_for_each_vcpu(i, vcpu, kvm)
421 		if (kvm_apic_present(vcpu))
422 			max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic));
423 
424 	new = kvzalloc(sizeof(struct kvm_apic_map) +
425 	                   sizeof(struct kvm_lapic *) * ((u64)max_id + 1),
426 			   GFP_KERNEL_ACCOUNT);
427 
428 	if (!new)
429 		goto out;
430 
431 	new->max_apic_id = max_id;
432 	new->logical_mode = KVM_APIC_MODE_SW_DISABLED;
433 
434 	kvm_for_each_vcpu(i, vcpu, kvm) {
435 		if (!kvm_apic_present(vcpu))
436 			continue;
437 
438 		r = kvm_recalculate_phys_map(new, vcpu, &xapic_id_mismatch);
439 		if (r) {
440 			kvfree(new);
441 			new = NULL;
442 			if (r == -E2BIG) {
443 				cond_resched();
444 				goto retry;
445 			}
446 
447 			goto out;
448 		}
449 
450 		kvm_recalculate_logical_map(new, vcpu);
451 	}
452 out:
453 	/*
454 	 * The optimized map is effectively KVM's internal version of APICv,
455 	 * and all unwanted aliasing that results in disabling the optimized
456 	 * map also applies to APICv.
457 	 */
458 	if (!new)
459 		kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED);
460 	else
461 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED);
462 
463 	if (!new || new->logical_mode == KVM_APIC_MODE_MAP_DISABLED)
464 		kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED);
465 	else
466 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED);
467 
468 	if (xapic_id_mismatch)
469 		kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED);
470 	else
471 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED);
472 
473 	old = rcu_dereference_protected(kvm->arch.apic_map,
474 			lockdep_is_held(&kvm->arch.apic_map_lock));
475 	rcu_assign_pointer(kvm->arch.apic_map, new);
476 	/*
477 	 * Write kvm->arch.apic_map before clearing apic->apic_map_dirty.
478 	 * If another update has come in, leave it DIRTY.
479 	 */
480 	atomic_cmpxchg_release(&kvm->arch.apic_map_dirty,
481 			       UPDATE_IN_PROGRESS, CLEAN);
482 	mutex_unlock(&kvm->arch.apic_map_lock);
483 
484 	if (old)
485 		kvfree_rcu(old, rcu);
486 
487 	kvm_make_scan_ioapic_request(kvm);
488 }
489 
490 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val)
491 {
492 	bool enabled = val & APIC_SPIV_APIC_ENABLED;
493 
494 	kvm_lapic_set_reg(apic, APIC_SPIV, val);
495 
496 	if (enabled != apic->sw_enabled) {
497 		apic->sw_enabled = enabled;
498 		if (enabled)
499 			static_branch_slow_dec_deferred(&apic_sw_disabled);
500 		else
501 			static_branch_inc(&apic_sw_disabled.key);
502 
503 		atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
504 	}
505 
506 	/* Check if there are APF page ready requests pending */
507 	if (enabled) {
508 		kvm_make_request(KVM_REQ_APF_READY, apic->vcpu);
509 		kvm_xen_sw_enable_lapic(apic->vcpu);
510 	}
511 }
512 
513 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id)
514 {
515 	kvm_lapic_set_reg(apic, APIC_ID, id << 24);
516 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
517 }
518 
519 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id)
520 {
521 	kvm_lapic_set_reg(apic, APIC_LDR, id);
522 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
523 }
524 
525 static inline void kvm_apic_set_dfr(struct kvm_lapic *apic, u32 val)
526 {
527 	kvm_lapic_set_reg(apic, APIC_DFR, val);
528 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
529 }
530 
531 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id)
532 {
533 	u32 ldr = kvm_apic_calc_x2apic_ldr(id);
534 
535 	WARN_ON_ONCE(id != apic->vcpu->vcpu_id);
536 
537 	kvm_lapic_set_reg(apic, APIC_ID, id);
538 	kvm_lapic_set_reg(apic, APIC_LDR, ldr);
539 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
540 }
541 
542 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type)
543 {
544 	return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED);
545 }
546 
547 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic)
548 {
549 	return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT;
550 }
551 
552 static inline int apic_lvtt_period(struct kvm_lapic *apic)
553 {
554 	return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC;
555 }
556 
557 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic)
558 {
559 	return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE;
560 }
561 
562 static inline int apic_lvt_nmi_mode(u32 lvt_val)
563 {
564 	return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI;
565 }
566 
567 static inline bool kvm_lapic_lvt_supported(struct kvm_lapic *apic, int lvt_index)
568 {
569 	return apic->nr_lvt_entries > lvt_index;
570 }
571 
572 static inline int kvm_apic_calc_nr_lvt_entries(struct kvm_vcpu *vcpu)
573 {
574 	return KVM_APIC_MAX_NR_LVT_ENTRIES - !(vcpu->arch.mcg_cap & MCG_CMCI_P);
575 }
576 
577 void kvm_apic_set_version(struct kvm_vcpu *vcpu)
578 {
579 	struct kvm_lapic *apic = vcpu->arch.apic;
580 	u32 v = 0;
581 
582 	if (!lapic_in_kernel(vcpu))
583 		return;
584 
585 	v = APIC_VERSION | ((apic->nr_lvt_entries - 1) << 16);
586 
587 	/*
588 	 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation)
589 	 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with
590 	 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC
591 	 * version first and level-triggered interrupts never get EOIed in
592 	 * IOAPIC.
593 	 */
594 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_X2APIC) &&
595 	    !ioapic_in_kernel(vcpu->kvm))
596 		v |= APIC_LVR_DIRECTED_EOI;
597 	kvm_lapic_set_reg(apic, APIC_LVR, v);
598 }
599 
600 void kvm_apic_after_set_mcg_cap(struct kvm_vcpu *vcpu)
601 {
602 	int nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu);
603 	struct kvm_lapic *apic = vcpu->arch.apic;
604 	int i;
605 
606 	if (!lapic_in_kernel(vcpu) || nr_lvt_entries == apic->nr_lvt_entries)
607 		return;
608 
609 	/* Initialize/mask any "new" LVT entries. */
610 	for (i = apic->nr_lvt_entries; i < nr_lvt_entries; i++)
611 		kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED);
612 
613 	apic->nr_lvt_entries = nr_lvt_entries;
614 
615 	/* The number of LVT entries is reflected in the version register. */
616 	kvm_apic_set_version(vcpu);
617 }
618 
619 static const unsigned int apic_lvt_mask[KVM_APIC_MAX_NR_LVT_ENTRIES] = {
620 	[LVT_TIMER] = LVT_MASK,      /* timer mode mask added at runtime */
621 	[LVT_THERMAL_MONITOR] = LVT_MASK | APIC_MODE_MASK,
622 	[LVT_PERFORMANCE_COUNTER] = LVT_MASK | APIC_MODE_MASK,
623 	[LVT_LINT0] = LINT_MASK,
624 	[LVT_LINT1] = LINT_MASK,
625 	[LVT_ERROR] = LVT_MASK,
626 	[LVT_CMCI] = LVT_MASK | APIC_MODE_MASK
627 };
628 
629 static int find_highest_vector(void *bitmap)
630 {
631 	int vec;
632 	u32 *reg;
633 
634 	for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG;
635 	     vec >= 0; vec -= APIC_VECTORS_PER_REG) {
636 		reg = bitmap + REG_POS(vec);
637 		if (*reg)
638 			return __fls(*reg) + vec;
639 	}
640 
641 	return -1;
642 }
643 
644 static u8 count_vectors(void *bitmap)
645 {
646 	int vec;
647 	u32 *reg;
648 	u8 count = 0;
649 
650 	for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) {
651 		reg = bitmap + REG_POS(vec);
652 		count += hweight32(*reg);
653 	}
654 
655 	return count;
656 }
657 
658 bool __kvm_apic_update_irr(unsigned long *pir, void *regs, int *max_irr)
659 {
660 	unsigned long pir_vals[NR_PIR_WORDS];
661 	u32 *__pir = (void *)pir_vals;
662 	u32 i, vec;
663 	u32 irr_val, prev_irr_val;
664 	int max_updated_irr;
665 
666 	max_updated_irr = -1;
667 	*max_irr = -1;
668 
669 	if (!pi_harvest_pir(pir, pir_vals))
670 		return false;
671 
672 	for (i = vec = 0; i <= 7; i++, vec += 32) {
673 		u32 *p_irr = (u32 *)(regs + APIC_IRR + i * 0x10);
674 
675 		irr_val = READ_ONCE(*p_irr);
676 
677 		if (__pir[i]) {
678 			prev_irr_val = irr_val;
679 			do {
680 				irr_val = prev_irr_val | __pir[i];
681 			} while (prev_irr_val != irr_val &&
682 				 !try_cmpxchg(p_irr, &prev_irr_val, irr_val));
683 
684 			if (prev_irr_val != irr_val)
685 				max_updated_irr = __fls(irr_val ^ prev_irr_val) + vec;
686 		}
687 		if (irr_val)
688 			*max_irr = __fls(irr_val) + vec;
689 	}
690 
691 	return ((max_updated_irr != -1) &&
692 		(max_updated_irr == *max_irr));
693 }
694 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr);
695 
696 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, unsigned long *pir, int *max_irr)
697 {
698 	struct kvm_lapic *apic = vcpu->arch.apic;
699 	bool irr_updated = __kvm_apic_update_irr(pir, apic->regs, max_irr);
700 
701 	if (unlikely(!apic->apicv_active && irr_updated))
702 		apic->irr_pending = true;
703 	return irr_updated;
704 }
705 EXPORT_SYMBOL_GPL(kvm_apic_update_irr);
706 
707 static inline int apic_search_irr(struct kvm_lapic *apic)
708 {
709 	return find_highest_vector(apic->regs + APIC_IRR);
710 }
711 
712 static inline int apic_find_highest_irr(struct kvm_lapic *apic)
713 {
714 	int result;
715 
716 	/*
717 	 * Note that irr_pending is just a hint. It will be always
718 	 * true with virtual interrupt delivery enabled.
719 	 */
720 	if (!apic->irr_pending)
721 		return -1;
722 
723 	result = apic_search_irr(apic);
724 	ASSERT(result == -1 || result >= 16);
725 
726 	return result;
727 }
728 
729 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic)
730 {
731 	if (unlikely(apic->apicv_active)) {
732 		kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR);
733 	} else {
734 		apic->irr_pending = false;
735 		kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR);
736 		if (apic_search_irr(apic) != -1)
737 			apic->irr_pending = true;
738 	}
739 }
740 
741 void kvm_apic_clear_irr(struct kvm_vcpu *vcpu, int vec)
742 {
743 	apic_clear_irr(vec, vcpu->arch.apic);
744 }
745 EXPORT_SYMBOL_GPL(kvm_apic_clear_irr);
746 
747 static inline void apic_set_isr(int vec, struct kvm_lapic *apic)
748 {
749 	if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR))
750 		return;
751 
752 	/*
753 	 * With APIC virtualization enabled, all caching is disabled
754 	 * because the processor can modify ISR under the hood.  Instead
755 	 * just set SVI.
756 	 */
757 	if (unlikely(apic->apicv_active))
758 		kvm_x86_call(hwapic_isr_update)(apic->vcpu, vec);
759 	else {
760 		++apic->isr_count;
761 		BUG_ON(apic->isr_count > MAX_APIC_VECTOR);
762 		/*
763 		 * ISR (in service register) bit is set when injecting an interrupt.
764 		 * The highest vector is injected. Thus the latest bit set matches
765 		 * the highest bit in ISR.
766 		 */
767 		apic->highest_isr_cache = vec;
768 	}
769 }
770 
771 static inline int apic_find_highest_isr(struct kvm_lapic *apic)
772 {
773 	int result;
774 
775 	/*
776 	 * Note that isr_count is always 1, and highest_isr_cache
777 	 * is always -1, with APIC virtualization enabled.
778 	 */
779 	if (!apic->isr_count)
780 		return -1;
781 	if (likely(apic->highest_isr_cache != -1))
782 		return apic->highest_isr_cache;
783 
784 	result = find_highest_vector(apic->regs + APIC_ISR);
785 	ASSERT(result == -1 || result >= 16);
786 
787 	return result;
788 }
789 
790 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic)
791 {
792 	if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR))
793 		return;
794 
795 	/*
796 	 * We do get here for APIC virtualization enabled if the guest
797 	 * uses the Hyper-V APIC enlightenment.  In this case we may need
798 	 * to trigger a new interrupt delivery by writing the SVI field;
799 	 * on the other hand isr_count and highest_isr_cache are unused
800 	 * and must be left alone.
801 	 */
802 	if (unlikely(apic->apicv_active))
803 		kvm_x86_call(hwapic_isr_update)(apic->vcpu, apic_find_highest_isr(apic));
804 	else {
805 		--apic->isr_count;
806 		BUG_ON(apic->isr_count < 0);
807 		apic->highest_isr_cache = -1;
808 	}
809 }
810 
811 void kvm_apic_update_hwapic_isr(struct kvm_vcpu *vcpu)
812 {
813 	struct kvm_lapic *apic = vcpu->arch.apic;
814 
815 	if (WARN_ON_ONCE(!lapic_in_kernel(vcpu)) || !apic->apicv_active)
816 		return;
817 
818 	kvm_x86_call(hwapic_isr_update)(vcpu, apic_find_highest_isr(apic));
819 }
820 EXPORT_SYMBOL_GPL(kvm_apic_update_hwapic_isr);
821 
822 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu)
823 {
824 	/* This may race with setting of irr in __apic_accept_irq() and
825 	 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq
826 	 * will cause vmexit immediately and the value will be recalculated
827 	 * on the next vmentry.
828 	 */
829 	return apic_find_highest_irr(vcpu->arch.apic);
830 }
831 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr);
832 
833 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
834 			     int vector, int level, int trig_mode,
835 			     struct dest_map *dest_map);
836 
837 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq,
838 		     struct dest_map *dest_map)
839 {
840 	struct kvm_lapic *apic = vcpu->arch.apic;
841 
842 	return __apic_accept_irq(apic, irq->delivery_mode, irq->vector,
843 			irq->level, irq->trig_mode, dest_map);
844 }
845 
846 static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map,
847 			 struct kvm_lapic_irq *irq, u32 min)
848 {
849 	int i, count = 0;
850 	struct kvm_vcpu *vcpu;
851 
852 	if (min > map->max_apic_id)
853 		return 0;
854 
855 	for_each_set_bit(i, ipi_bitmap,
856 		min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) {
857 		if (map->phys_map[min + i]) {
858 			vcpu = map->phys_map[min + i]->vcpu;
859 			count += kvm_apic_set_irq(vcpu, irq, NULL);
860 		}
861 	}
862 
863 	return count;
864 }
865 
866 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
867 		    unsigned long ipi_bitmap_high, u32 min,
868 		    unsigned long icr, int op_64_bit)
869 {
870 	struct kvm_apic_map *map;
871 	struct kvm_lapic_irq irq = {0};
872 	int cluster_size = op_64_bit ? 64 : 32;
873 	int count;
874 
875 	if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK))
876 		return -KVM_EINVAL;
877 
878 	irq.vector = icr & APIC_VECTOR_MASK;
879 	irq.delivery_mode = icr & APIC_MODE_MASK;
880 	irq.level = (icr & APIC_INT_ASSERT) != 0;
881 	irq.trig_mode = icr & APIC_INT_LEVELTRIG;
882 
883 	rcu_read_lock();
884 	map = rcu_dereference(kvm->arch.apic_map);
885 
886 	count = -EOPNOTSUPP;
887 	if (likely(map)) {
888 		count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min);
889 		min += cluster_size;
890 		count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min);
891 	}
892 
893 	rcu_read_unlock();
894 	return count;
895 }
896 
897 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val)
898 {
899 
900 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val,
901 				      sizeof(val));
902 }
903 
904 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val)
905 {
906 
907 	return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val,
908 				      sizeof(*val));
909 }
910 
911 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu)
912 {
913 	return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
914 }
915 
916 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu)
917 {
918 	if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0)
919 		return;
920 
921 	__set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
922 }
923 
924 static bool pv_eoi_test_and_clr_pending(struct kvm_vcpu *vcpu)
925 {
926 	u8 val;
927 
928 	if (pv_eoi_get_user(vcpu, &val) < 0)
929 		return false;
930 
931 	val &= KVM_PV_EOI_ENABLED;
932 
933 	if (val && pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0)
934 		return false;
935 
936 	/*
937 	 * Clear pending bit in any case: it will be set again on vmentry.
938 	 * While this might not be ideal from performance point of view,
939 	 * this makes sure pv eoi is only enabled when we know it's safe.
940 	 */
941 	__clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
942 
943 	return val;
944 }
945 
946 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr)
947 {
948 	int highest_irr;
949 	if (kvm_x86_ops.sync_pir_to_irr)
950 		highest_irr = kvm_x86_call(sync_pir_to_irr)(apic->vcpu);
951 	else
952 		highest_irr = apic_find_highest_irr(apic);
953 	if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr)
954 		return -1;
955 	return highest_irr;
956 }
957 
958 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr)
959 {
960 	u32 tpr, isrv, ppr, old_ppr;
961 	int isr;
962 
963 	old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI);
964 	tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI);
965 	isr = apic_find_highest_isr(apic);
966 	isrv = (isr != -1) ? isr : 0;
967 
968 	if ((tpr & 0xf0) >= (isrv & 0xf0))
969 		ppr = tpr & 0xff;
970 	else
971 		ppr = isrv & 0xf0;
972 
973 	*new_ppr = ppr;
974 	if (old_ppr != ppr)
975 		kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr);
976 
977 	return ppr < old_ppr;
978 }
979 
980 static void apic_update_ppr(struct kvm_lapic *apic)
981 {
982 	u32 ppr;
983 
984 	if (__apic_update_ppr(apic, &ppr) &&
985 	    apic_has_interrupt_for_ppr(apic, ppr) != -1)
986 		kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
987 }
988 
989 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu)
990 {
991 	apic_update_ppr(vcpu->arch.apic);
992 }
993 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr);
994 
995 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr)
996 {
997 	kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr);
998 	apic_update_ppr(apic);
999 }
1000 
1001 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda)
1002 {
1003 	return mda == (apic_x2apic_mode(apic) ?
1004 			X2APIC_BROADCAST : APIC_BROADCAST);
1005 }
1006 
1007 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda)
1008 {
1009 	if (kvm_apic_broadcast(apic, mda))
1010 		return true;
1011 
1012 	/*
1013 	 * Hotplug hack: Accept interrupts for vCPUs in xAPIC mode as if they
1014 	 * were in x2APIC mode if the target APIC ID can't be encoded as an
1015 	 * xAPIC ID.  This allows unique addressing of hotplugged vCPUs (which
1016 	 * start in xAPIC mode) with an APIC ID that is unaddressable in xAPIC
1017 	 * mode.  Match the x2APIC ID if and only if the target APIC ID can't
1018 	 * be encoded in xAPIC to avoid spurious matches against a vCPU that
1019 	 * changed its (addressable) xAPIC ID (which is writable).
1020 	 */
1021 	if (apic_x2apic_mode(apic) || mda > 0xff)
1022 		return mda == kvm_x2apic_id(apic);
1023 
1024 	return mda == kvm_xapic_id(apic);
1025 }
1026 
1027 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda)
1028 {
1029 	u32 logical_id;
1030 
1031 	if (kvm_apic_broadcast(apic, mda))
1032 		return true;
1033 
1034 	logical_id = kvm_lapic_get_reg(apic, APIC_LDR);
1035 
1036 	if (apic_x2apic_mode(apic))
1037 		return ((logical_id >> 16) == (mda >> 16))
1038 		       && (logical_id & mda & 0xffff) != 0;
1039 
1040 	logical_id = GET_APIC_LOGICAL_ID(logical_id);
1041 
1042 	switch (kvm_lapic_get_reg(apic, APIC_DFR)) {
1043 	case APIC_DFR_FLAT:
1044 		return (logical_id & mda) != 0;
1045 	case APIC_DFR_CLUSTER:
1046 		return ((logical_id >> 4) == (mda >> 4))
1047 		       && (logical_id & mda & 0xf) != 0;
1048 	default:
1049 		return false;
1050 	}
1051 }
1052 
1053 /* The KVM local APIC implementation has two quirks:
1054  *
1055  *  - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs
1056  *    in xAPIC mode if the "destination & 0xff" matches its xAPIC ID.
1057  *    KVM doesn't do that aliasing.
1058  *
1059  *  - in-kernel IOAPIC messages have to be delivered directly to
1060  *    x2APIC, because the kernel does not support interrupt remapping.
1061  *    In order to support broadcast without interrupt remapping, x2APIC
1062  *    rewrites the destination of non-IPI messages from APIC_BROADCAST
1063  *    to X2APIC_BROADCAST.
1064  *
1065  * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API.  This is
1066  * important when userspace wants to use x2APIC-format MSIs, because
1067  * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7".
1068  */
1069 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id,
1070 		struct kvm_lapic *source, struct kvm_lapic *target)
1071 {
1072 	bool ipi = source != NULL;
1073 
1074 	if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled &&
1075 	    !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target))
1076 		return X2APIC_BROADCAST;
1077 
1078 	return dest_id;
1079 }
1080 
1081 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
1082 			   int shorthand, unsigned int dest, int dest_mode)
1083 {
1084 	struct kvm_lapic *target = vcpu->arch.apic;
1085 	u32 mda = kvm_apic_mda(vcpu, dest, source, target);
1086 
1087 	ASSERT(target);
1088 	switch (shorthand) {
1089 	case APIC_DEST_NOSHORT:
1090 		if (dest_mode == APIC_DEST_PHYSICAL)
1091 			return kvm_apic_match_physical_addr(target, mda);
1092 		else
1093 			return kvm_apic_match_logical_addr(target, mda);
1094 	case APIC_DEST_SELF:
1095 		return target == source;
1096 	case APIC_DEST_ALLINC:
1097 		return true;
1098 	case APIC_DEST_ALLBUT:
1099 		return target != source;
1100 	default:
1101 		return false;
1102 	}
1103 }
1104 EXPORT_SYMBOL_GPL(kvm_apic_match_dest);
1105 
1106 int kvm_vector_to_index(u32 vector, u32 dest_vcpus,
1107 		       const unsigned long *bitmap, u32 bitmap_size)
1108 {
1109 	u32 mod;
1110 	int i, idx = -1;
1111 
1112 	mod = vector % dest_vcpus;
1113 
1114 	for (i = 0; i <= mod; i++) {
1115 		idx = find_next_bit(bitmap, bitmap_size, idx + 1);
1116 		BUG_ON(idx == bitmap_size);
1117 	}
1118 
1119 	return idx;
1120 }
1121 
1122 static void kvm_apic_disabled_lapic_found(struct kvm *kvm)
1123 {
1124 	if (!kvm->arch.disabled_lapic_found) {
1125 		kvm->arch.disabled_lapic_found = true;
1126 		pr_info("Disabled LAPIC found during irq injection\n");
1127 	}
1128 }
1129 
1130 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src,
1131 		struct kvm_lapic_irq *irq, struct kvm_apic_map *map)
1132 {
1133 	if (kvm->arch.x2apic_broadcast_quirk_disabled) {
1134 		if ((irq->dest_id == APIC_BROADCAST &&
1135 		     map->logical_mode != KVM_APIC_MODE_X2APIC))
1136 			return true;
1137 		if (irq->dest_id == X2APIC_BROADCAST)
1138 			return true;
1139 	} else {
1140 		bool x2apic_ipi = src && *src && apic_x2apic_mode(*src);
1141 		if (irq->dest_id == (x2apic_ipi ?
1142 		                     X2APIC_BROADCAST : APIC_BROADCAST))
1143 			return true;
1144 	}
1145 
1146 	return false;
1147 }
1148 
1149 /* Return true if the interrupt can be handled by using *bitmap as index mask
1150  * for valid destinations in *dst array.
1151  * Return false if kvm_apic_map_get_dest_lapic did nothing useful.
1152  * Note: we may have zero kvm_lapic destinations when we return true, which
1153  * means that the interrupt should be dropped.  In this case, *bitmap would be
1154  * zero and *dst undefined.
1155  */
1156 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm,
1157 		struct kvm_lapic **src, struct kvm_lapic_irq *irq,
1158 		struct kvm_apic_map *map, struct kvm_lapic ***dst,
1159 		unsigned long *bitmap)
1160 {
1161 	int i, lowest;
1162 
1163 	if (irq->shorthand == APIC_DEST_SELF && src) {
1164 		*dst = src;
1165 		*bitmap = 1;
1166 		return true;
1167 	} else if (irq->shorthand)
1168 		return false;
1169 
1170 	if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map))
1171 		return false;
1172 
1173 	if (irq->dest_mode == APIC_DEST_PHYSICAL) {
1174 		if (irq->dest_id > map->max_apic_id) {
1175 			*bitmap = 0;
1176 		} else {
1177 			u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1);
1178 			*dst = &map->phys_map[dest_id];
1179 			*bitmap = 1;
1180 		}
1181 		return true;
1182 	}
1183 
1184 	*bitmap = 0;
1185 	if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst,
1186 				(u16 *)bitmap))
1187 		return false;
1188 
1189 	if (!kvm_lowest_prio_delivery(irq))
1190 		return true;
1191 
1192 	if (!kvm_vector_hashing_enabled()) {
1193 		lowest = -1;
1194 		for_each_set_bit(i, bitmap, 16) {
1195 			if (!(*dst)[i])
1196 				continue;
1197 			if (lowest < 0)
1198 				lowest = i;
1199 			else if (kvm_apic_compare_prio((*dst)[i]->vcpu,
1200 						(*dst)[lowest]->vcpu) < 0)
1201 				lowest = i;
1202 		}
1203 	} else {
1204 		if (!*bitmap)
1205 			return true;
1206 
1207 		lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap),
1208 				bitmap, 16);
1209 
1210 		if (!(*dst)[lowest]) {
1211 			kvm_apic_disabled_lapic_found(kvm);
1212 			*bitmap = 0;
1213 			return true;
1214 		}
1215 	}
1216 
1217 	*bitmap = (lowest >= 0) ? 1 << lowest : 0;
1218 
1219 	return true;
1220 }
1221 
1222 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src,
1223 		struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map)
1224 {
1225 	struct kvm_apic_map *map;
1226 	unsigned long bitmap;
1227 	struct kvm_lapic **dst = NULL;
1228 	int i;
1229 	bool ret;
1230 
1231 	*r = -1;
1232 
1233 	if (irq->shorthand == APIC_DEST_SELF) {
1234 		if (KVM_BUG_ON(!src, kvm)) {
1235 			*r = 0;
1236 			return true;
1237 		}
1238 		*r = kvm_apic_set_irq(src->vcpu, irq, dest_map);
1239 		return true;
1240 	}
1241 
1242 	rcu_read_lock();
1243 	map = rcu_dereference(kvm->arch.apic_map);
1244 
1245 	ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap);
1246 	if (ret) {
1247 		*r = 0;
1248 		for_each_set_bit(i, &bitmap, 16) {
1249 			if (!dst[i])
1250 				continue;
1251 			*r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map);
1252 		}
1253 	}
1254 
1255 	rcu_read_unlock();
1256 	return ret;
1257 }
1258 
1259 /*
1260  * This routine tries to handle interrupts in posted mode, here is how
1261  * it deals with different cases:
1262  * - For single-destination interrupts, handle it in posted mode
1263  * - Else if vector hashing is enabled and it is a lowest-priority
1264  *   interrupt, handle it in posted mode and use the following mechanism
1265  *   to find the destination vCPU.
1266  *	1. For lowest-priority interrupts, store all the possible
1267  *	   destination vCPUs in an array.
1268  *	2. Use "guest vector % max number of destination vCPUs" to find
1269  *	   the right destination vCPU in the array for the lowest-priority
1270  *	   interrupt.
1271  * - Otherwise, use remapped mode to inject the interrupt.
1272  */
1273 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq,
1274 			struct kvm_vcpu **dest_vcpu)
1275 {
1276 	struct kvm_apic_map *map;
1277 	unsigned long bitmap;
1278 	struct kvm_lapic **dst = NULL;
1279 	bool ret = false;
1280 
1281 	if (irq->shorthand)
1282 		return false;
1283 
1284 	rcu_read_lock();
1285 	map = rcu_dereference(kvm->arch.apic_map);
1286 
1287 	if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) &&
1288 			hweight16(bitmap) == 1) {
1289 		unsigned long i = find_first_bit(&bitmap, 16);
1290 
1291 		if (dst[i]) {
1292 			*dest_vcpu = dst[i]->vcpu;
1293 			ret = true;
1294 		}
1295 	}
1296 
1297 	rcu_read_unlock();
1298 	return ret;
1299 }
1300 
1301 /*
1302  * Add a pending IRQ into lapic.
1303  * Return 1 if successfully added and 0 if discarded.
1304  */
1305 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
1306 			     int vector, int level, int trig_mode,
1307 			     struct dest_map *dest_map)
1308 {
1309 	int result = 0;
1310 	struct kvm_vcpu *vcpu = apic->vcpu;
1311 
1312 	trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode,
1313 				  trig_mode, vector);
1314 	switch (delivery_mode) {
1315 	case APIC_DM_LOWEST:
1316 		vcpu->arch.apic_arb_prio++;
1317 		fallthrough;
1318 	case APIC_DM_FIXED:
1319 		if (unlikely(trig_mode && !level))
1320 			break;
1321 
1322 		/* FIXME add logic for vcpu on reset */
1323 		if (unlikely(!apic_enabled(apic)))
1324 			break;
1325 
1326 		result = 1;
1327 
1328 		if (dest_map) {
1329 			__set_bit(vcpu->vcpu_id, dest_map->map);
1330 			dest_map->vectors[vcpu->vcpu_id] = vector;
1331 		}
1332 
1333 		if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) {
1334 			if (trig_mode)
1335 				kvm_lapic_set_vector(vector,
1336 						     apic->regs + APIC_TMR);
1337 			else
1338 				kvm_lapic_clear_vector(vector,
1339 						       apic->regs + APIC_TMR);
1340 		}
1341 
1342 		kvm_x86_call(deliver_interrupt)(apic, delivery_mode,
1343 						trig_mode, vector);
1344 		break;
1345 
1346 	case APIC_DM_REMRD:
1347 		result = 1;
1348 		vcpu->arch.pv.pv_unhalted = 1;
1349 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1350 		kvm_vcpu_kick(vcpu);
1351 		break;
1352 
1353 	case APIC_DM_SMI:
1354 		if (!kvm_inject_smi(vcpu)) {
1355 			kvm_vcpu_kick(vcpu);
1356 			result = 1;
1357 		}
1358 		break;
1359 
1360 	case APIC_DM_NMI:
1361 		result = 1;
1362 		kvm_inject_nmi(vcpu);
1363 		kvm_vcpu_kick(vcpu);
1364 		break;
1365 
1366 	case APIC_DM_INIT:
1367 		if (!trig_mode || level) {
1368 			result = 1;
1369 			/* assumes that there are only KVM_APIC_INIT/SIPI */
1370 			apic->pending_events = (1UL << KVM_APIC_INIT);
1371 			kvm_make_request(KVM_REQ_EVENT, vcpu);
1372 			kvm_vcpu_kick(vcpu);
1373 		}
1374 		break;
1375 
1376 	case APIC_DM_STARTUP:
1377 		result = 1;
1378 		apic->sipi_vector = vector;
1379 		/* make sure sipi_vector is visible for the receiver */
1380 		smp_wmb();
1381 		set_bit(KVM_APIC_SIPI, &apic->pending_events);
1382 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1383 		kvm_vcpu_kick(vcpu);
1384 		break;
1385 
1386 	case APIC_DM_EXTINT:
1387 		/*
1388 		 * Should only be called by kvm_apic_local_deliver() with LVT0,
1389 		 * before NMI watchdog was enabled. Already handled by
1390 		 * kvm_apic_accept_pic_intr().
1391 		 */
1392 		break;
1393 
1394 	default:
1395 		printk(KERN_ERR "TODO: unsupported delivery mode %x\n",
1396 		       delivery_mode);
1397 		break;
1398 	}
1399 	return result;
1400 }
1401 
1402 /*
1403  * This routine identifies the destination vcpus mask meant to receive the
1404  * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find
1405  * out the destination vcpus array and set the bitmap or it traverses to
1406  * each available vcpu to identify the same.
1407  */
1408 void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq,
1409 			      unsigned long *vcpu_bitmap)
1410 {
1411 	struct kvm_lapic **dest_vcpu = NULL;
1412 	struct kvm_lapic *src = NULL;
1413 	struct kvm_apic_map *map;
1414 	struct kvm_vcpu *vcpu;
1415 	unsigned long bitmap, i;
1416 	int vcpu_idx;
1417 	bool ret;
1418 
1419 	rcu_read_lock();
1420 	map = rcu_dereference(kvm->arch.apic_map);
1421 
1422 	ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu,
1423 					  &bitmap);
1424 	if (ret) {
1425 		for_each_set_bit(i, &bitmap, 16) {
1426 			if (!dest_vcpu[i])
1427 				continue;
1428 			vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx;
1429 			__set_bit(vcpu_idx, vcpu_bitmap);
1430 		}
1431 	} else {
1432 		kvm_for_each_vcpu(i, vcpu, kvm) {
1433 			if (!kvm_apic_present(vcpu))
1434 				continue;
1435 			if (!kvm_apic_match_dest(vcpu, NULL,
1436 						 irq->shorthand,
1437 						 irq->dest_id,
1438 						 irq->dest_mode))
1439 				continue;
1440 			__set_bit(i, vcpu_bitmap);
1441 		}
1442 	}
1443 	rcu_read_unlock();
1444 }
1445 
1446 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
1447 {
1448 	return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio;
1449 }
1450 
1451 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector)
1452 {
1453 	return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors);
1454 }
1455 
1456 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector)
1457 {
1458 	int trigger_mode;
1459 
1460 	/* Eoi the ioapic only if the ioapic doesn't own the vector. */
1461 	if (!kvm_ioapic_handles_vector(apic, vector))
1462 		return;
1463 
1464 	/*
1465 	 * If the intercepted EOI is for an IRQ that was pending from previous
1466 	 * routing, then re-scan the I/O APIC routes as EOIs for the IRQ likely
1467 	 * no longer need to be intercepted.
1468 	 */
1469 	if (apic->vcpu->arch.highest_stale_pending_ioapic_eoi == vector)
1470 		kvm_make_request(KVM_REQ_SCAN_IOAPIC, apic->vcpu);
1471 
1472 	/* Request a KVM exit to inform the userspace IOAPIC. */
1473 	if (irqchip_split(apic->vcpu->kvm)) {
1474 		apic->vcpu->arch.pending_ioapic_eoi = vector;
1475 		kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu);
1476 		return;
1477 	}
1478 
1479 	if (apic_test_vector(vector, apic->regs + APIC_TMR))
1480 		trigger_mode = IOAPIC_LEVEL_TRIG;
1481 	else
1482 		trigger_mode = IOAPIC_EDGE_TRIG;
1483 
1484 	kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode);
1485 }
1486 
1487 static int apic_set_eoi(struct kvm_lapic *apic)
1488 {
1489 	int vector = apic_find_highest_isr(apic);
1490 
1491 	trace_kvm_eoi(apic, vector);
1492 
1493 	/*
1494 	 * Not every write EOI will has corresponding ISR,
1495 	 * one example is when Kernel check timer on setup_IO_APIC
1496 	 */
1497 	if (vector == -1)
1498 		return vector;
1499 
1500 	apic_clear_isr(vector, apic);
1501 	apic_update_ppr(apic);
1502 
1503 	if (kvm_hv_synic_has_vector(apic->vcpu, vector))
1504 		kvm_hv_synic_send_eoi(apic->vcpu, vector);
1505 
1506 	kvm_ioapic_send_eoi(apic, vector);
1507 	kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1508 	return vector;
1509 }
1510 
1511 /*
1512  * this interface assumes a trap-like exit, which has already finished
1513  * desired side effect including vISR and vPPR update.
1514  */
1515 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector)
1516 {
1517 	struct kvm_lapic *apic = vcpu->arch.apic;
1518 
1519 	trace_kvm_eoi(apic, vector);
1520 
1521 	kvm_ioapic_send_eoi(apic, vector);
1522 	kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1523 }
1524 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated);
1525 
1526 void kvm_apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high)
1527 {
1528 	struct kvm_lapic_irq irq;
1529 
1530 	/* KVM has no delay and should always clear the BUSY/PENDING flag. */
1531 	WARN_ON_ONCE(icr_low & APIC_ICR_BUSY);
1532 
1533 	irq.vector = icr_low & APIC_VECTOR_MASK;
1534 	irq.delivery_mode = icr_low & APIC_MODE_MASK;
1535 	irq.dest_mode = icr_low & APIC_DEST_MASK;
1536 	irq.level = (icr_low & APIC_INT_ASSERT) != 0;
1537 	irq.trig_mode = icr_low & APIC_INT_LEVELTRIG;
1538 	irq.shorthand = icr_low & APIC_SHORT_MASK;
1539 	irq.msi_redir_hint = false;
1540 	if (apic_x2apic_mode(apic))
1541 		irq.dest_id = icr_high;
1542 	else
1543 		irq.dest_id = GET_XAPIC_DEST_FIELD(icr_high);
1544 
1545 	trace_kvm_apic_ipi(icr_low, irq.dest_id);
1546 
1547 	kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL);
1548 }
1549 EXPORT_SYMBOL_GPL(kvm_apic_send_ipi);
1550 
1551 static u32 apic_get_tmcct(struct kvm_lapic *apic)
1552 {
1553 	ktime_t remaining, now;
1554 	s64 ns;
1555 
1556 	ASSERT(apic != NULL);
1557 
1558 	/* if initial count is 0, current count should also be 0 */
1559 	if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 ||
1560 		apic->lapic_timer.period == 0)
1561 		return 0;
1562 
1563 	now = ktime_get();
1564 	remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1565 	if (ktime_to_ns(remaining) < 0)
1566 		remaining = 0;
1567 
1568 	ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period);
1569 	return div64_u64(ns, (apic->vcpu->kvm->arch.apic_bus_cycle_ns *
1570 			      apic->divide_count));
1571 }
1572 
1573 static void __report_tpr_access(struct kvm_lapic *apic, bool write)
1574 {
1575 	struct kvm_vcpu *vcpu = apic->vcpu;
1576 	struct kvm_run *run = vcpu->run;
1577 
1578 	kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu);
1579 	run->tpr_access.rip = kvm_rip_read(vcpu);
1580 	run->tpr_access.is_write = write;
1581 }
1582 
1583 static inline void report_tpr_access(struct kvm_lapic *apic, bool write)
1584 {
1585 	if (apic->vcpu->arch.tpr_access_reporting)
1586 		__report_tpr_access(apic, write);
1587 }
1588 
1589 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset)
1590 {
1591 	u32 val = 0;
1592 
1593 	if (offset >= LAPIC_MMIO_LENGTH)
1594 		return 0;
1595 
1596 	switch (offset) {
1597 	case APIC_ARBPRI:
1598 		break;
1599 
1600 	case APIC_TMCCT:	/* Timer CCR */
1601 		if (apic_lvtt_tscdeadline(apic))
1602 			return 0;
1603 
1604 		val = apic_get_tmcct(apic);
1605 		break;
1606 	case APIC_PROCPRI:
1607 		apic_update_ppr(apic);
1608 		val = kvm_lapic_get_reg(apic, offset);
1609 		break;
1610 	case APIC_TASKPRI:
1611 		report_tpr_access(apic, false);
1612 		fallthrough;
1613 	default:
1614 		val = kvm_lapic_get_reg(apic, offset);
1615 		break;
1616 	}
1617 
1618 	return val;
1619 }
1620 
1621 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev)
1622 {
1623 	return container_of(dev, struct kvm_lapic, dev);
1624 }
1625 
1626 #define APIC_REG_MASK(reg)	(1ull << ((reg) >> 4))
1627 #define APIC_REGS_MASK(first, count) \
1628 	(APIC_REG_MASK(first) * ((1ull << (count)) - 1))
1629 
1630 u64 kvm_lapic_readable_reg_mask(struct kvm_lapic *apic)
1631 {
1632 	/* Leave bits '0' for reserved and write-only registers. */
1633 	u64 valid_reg_mask =
1634 		APIC_REG_MASK(APIC_ID) |
1635 		APIC_REG_MASK(APIC_LVR) |
1636 		APIC_REG_MASK(APIC_TASKPRI) |
1637 		APIC_REG_MASK(APIC_PROCPRI) |
1638 		APIC_REG_MASK(APIC_LDR) |
1639 		APIC_REG_MASK(APIC_SPIV) |
1640 		APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) |
1641 		APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) |
1642 		APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) |
1643 		APIC_REG_MASK(APIC_ESR) |
1644 		APIC_REG_MASK(APIC_ICR) |
1645 		APIC_REG_MASK(APIC_LVTT) |
1646 		APIC_REG_MASK(APIC_LVTTHMR) |
1647 		APIC_REG_MASK(APIC_LVTPC) |
1648 		APIC_REG_MASK(APIC_LVT0) |
1649 		APIC_REG_MASK(APIC_LVT1) |
1650 		APIC_REG_MASK(APIC_LVTERR) |
1651 		APIC_REG_MASK(APIC_TMICT) |
1652 		APIC_REG_MASK(APIC_TMCCT) |
1653 		APIC_REG_MASK(APIC_TDCR);
1654 
1655 	if (kvm_lapic_lvt_supported(apic, LVT_CMCI))
1656 		valid_reg_mask |= APIC_REG_MASK(APIC_LVTCMCI);
1657 
1658 	/* ARBPRI, DFR, and ICR2 are not valid in x2APIC mode. */
1659 	if (!apic_x2apic_mode(apic))
1660 		valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI) |
1661 				  APIC_REG_MASK(APIC_DFR) |
1662 				  APIC_REG_MASK(APIC_ICR2);
1663 
1664 	return valid_reg_mask;
1665 }
1666 EXPORT_SYMBOL_GPL(kvm_lapic_readable_reg_mask);
1667 
1668 static int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len,
1669 			      void *data)
1670 {
1671 	unsigned char alignment = offset & 0xf;
1672 	u32 result;
1673 
1674 	/*
1675 	 * WARN if KVM reads ICR in x2APIC mode, as it's an 8-byte register in
1676 	 * x2APIC and needs to be manually handled by the caller.
1677 	 */
1678 	WARN_ON_ONCE(apic_x2apic_mode(apic) && offset == APIC_ICR);
1679 
1680 	if (alignment + len > 4)
1681 		return 1;
1682 
1683 	if (offset > 0x3f0 ||
1684 	    !(kvm_lapic_readable_reg_mask(apic) & APIC_REG_MASK(offset)))
1685 		return 1;
1686 
1687 	result = __apic_read(apic, offset & ~0xf);
1688 
1689 	trace_kvm_apic_read(offset, result);
1690 
1691 	switch (len) {
1692 	case 1:
1693 	case 2:
1694 	case 4:
1695 		memcpy(data, (char *)&result + alignment, len);
1696 		break;
1697 	default:
1698 		printk(KERN_ERR "Local APIC read with len = %x, "
1699 		       "should be 1,2, or 4 instead\n", len);
1700 		break;
1701 	}
1702 	return 0;
1703 }
1704 
1705 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr)
1706 {
1707 	return addr >= apic->base_address &&
1708 		addr < apic->base_address + LAPIC_MMIO_LENGTH;
1709 }
1710 
1711 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
1712 			   gpa_t address, int len, void *data)
1713 {
1714 	struct kvm_lapic *apic = to_lapic(this);
1715 	u32 offset = address - apic->base_address;
1716 
1717 	if (!apic_mmio_in_range(apic, address))
1718 		return -EOPNOTSUPP;
1719 
1720 	if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
1721 		if (!kvm_check_has_quirk(vcpu->kvm,
1722 					 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
1723 			return -EOPNOTSUPP;
1724 
1725 		memset(data, 0xff, len);
1726 		return 0;
1727 	}
1728 
1729 	kvm_lapic_reg_read(apic, offset, len, data);
1730 
1731 	return 0;
1732 }
1733 
1734 static void update_divide_count(struct kvm_lapic *apic)
1735 {
1736 	u32 tmp1, tmp2, tdcr;
1737 
1738 	tdcr = kvm_lapic_get_reg(apic, APIC_TDCR);
1739 	tmp1 = tdcr & 0xf;
1740 	tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1;
1741 	apic->divide_count = 0x1 << (tmp2 & 0x7);
1742 }
1743 
1744 static void limit_periodic_timer_frequency(struct kvm_lapic *apic)
1745 {
1746 	/*
1747 	 * Do not allow the guest to program periodic timers with small
1748 	 * interval, since the hrtimers are not throttled by the host
1749 	 * scheduler.
1750 	 */
1751 	if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
1752 		s64 min_period = min_timer_period_us * 1000LL;
1753 
1754 		if (apic->lapic_timer.period < min_period) {
1755 			pr_info_once(
1756 			    "vcpu %i: requested %lld ns "
1757 			    "lapic timer period limited to %lld ns\n",
1758 			    apic->vcpu->vcpu_id,
1759 			    apic->lapic_timer.period, min_period);
1760 			apic->lapic_timer.period = min_period;
1761 		}
1762 	}
1763 }
1764 
1765 static void cancel_hv_timer(struct kvm_lapic *apic);
1766 
1767 static void cancel_apic_timer(struct kvm_lapic *apic)
1768 {
1769 	hrtimer_cancel(&apic->lapic_timer.timer);
1770 	preempt_disable();
1771 	if (apic->lapic_timer.hv_timer_in_use)
1772 		cancel_hv_timer(apic);
1773 	preempt_enable();
1774 	atomic_set(&apic->lapic_timer.pending, 0);
1775 }
1776 
1777 static void apic_update_lvtt(struct kvm_lapic *apic)
1778 {
1779 	u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) &
1780 			apic->lapic_timer.timer_mode_mask;
1781 
1782 	if (apic->lapic_timer.timer_mode != timer_mode) {
1783 		if (apic_lvtt_tscdeadline(apic) != (timer_mode ==
1784 				APIC_LVT_TIMER_TSCDEADLINE)) {
1785 			cancel_apic_timer(apic);
1786 			kvm_lapic_set_reg(apic, APIC_TMICT, 0);
1787 			apic->lapic_timer.period = 0;
1788 			apic->lapic_timer.tscdeadline = 0;
1789 		}
1790 		apic->lapic_timer.timer_mode = timer_mode;
1791 		limit_periodic_timer_frequency(apic);
1792 	}
1793 }
1794 
1795 /*
1796  * On APICv, this test will cause a busy wait
1797  * during a higher-priority task.
1798  */
1799 
1800 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu)
1801 {
1802 	struct kvm_lapic *apic = vcpu->arch.apic;
1803 	u32 reg;
1804 
1805 	/*
1806 	 * Assume a timer IRQ was "injected" if the APIC is protected.  KVM's
1807 	 * copy of the vIRR is bogus, it's the responsibility of the caller to
1808 	 * precisely check whether or not a timer IRQ is pending.
1809 	 */
1810 	if (apic->guest_apic_protected)
1811 		return true;
1812 
1813 	reg = kvm_lapic_get_reg(apic, APIC_LVTT);
1814 	if (kvm_apic_hw_enabled(apic)) {
1815 		int vec = reg & APIC_VECTOR_MASK;
1816 		void *bitmap = apic->regs + APIC_ISR;
1817 
1818 		if (apic->apicv_active)
1819 			bitmap = apic->regs + APIC_IRR;
1820 
1821 		if (apic_test_vector(vec, bitmap))
1822 			return true;
1823 	}
1824 	return false;
1825 }
1826 
1827 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles)
1828 {
1829 	u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns;
1830 
1831 	/*
1832 	 * If the guest TSC is running at a different ratio than the host, then
1833 	 * convert the delay to nanoseconds to achieve an accurate delay.  Note
1834 	 * that __delay() uses delay_tsc whenever the hardware has TSC, thus
1835 	 * always for VMX enabled hardware.
1836 	 */
1837 	if (vcpu->arch.tsc_scaling_ratio == kvm_caps.default_tsc_scaling_ratio) {
1838 		__delay(min(guest_cycles,
1839 			nsec_to_cycles(vcpu, timer_advance_ns)));
1840 	} else {
1841 		u64 delay_ns = guest_cycles * 1000000ULL;
1842 		do_div(delay_ns, vcpu->arch.virtual_tsc_khz);
1843 		ndelay(min_t(u32, delay_ns, timer_advance_ns));
1844 	}
1845 }
1846 
1847 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu,
1848 					      s64 advance_expire_delta)
1849 {
1850 	struct kvm_lapic *apic = vcpu->arch.apic;
1851 	u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns;
1852 	u64 ns;
1853 
1854 	/* Do not adjust for tiny fluctuations or large random spikes. */
1855 	if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX ||
1856 	    abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN)
1857 		return;
1858 
1859 	/* too early */
1860 	if (advance_expire_delta < 0) {
1861 		ns = -advance_expire_delta * 1000000ULL;
1862 		do_div(ns, vcpu->arch.virtual_tsc_khz);
1863 		timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
1864 	} else {
1865 	/* too late */
1866 		ns = advance_expire_delta * 1000000ULL;
1867 		do_div(ns, vcpu->arch.virtual_tsc_khz);
1868 		timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
1869 	}
1870 
1871 	if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX))
1872 		timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
1873 	apic->lapic_timer.timer_advance_ns = timer_advance_ns;
1874 }
1875 
1876 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1877 {
1878 	struct kvm_lapic *apic = vcpu->arch.apic;
1879 	u64 guest_tsc, tsc_deadline;
1880 
1881 	tsc_deadline = apic->lapic_timer.expired_tscdeadline;
1882 	apic->lapic_timer.expired_tscdeadline = 0;
1883 	guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1884 	trace_kvm_wait_lapic_expire(vcpu->vcpu_id, guest_tsc - tsc_deadline);
1885 
1886 	adjust_lapic_timer_advance(vcpu, guest_tsc - tsc_deadline);
1887 
1888 	/*
1889 	 * If the timer fired early, reread the TSC to account for the overhead
1890 	 * of the above adjustment to avoid waiting longer than is necessary.
1891 	 */
1892 	if (guest_tsc < tsc_deadline)
1893 		guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1894 
1895 	if (guest_tsc < tsc_deadline)
1896 		__wait_lapic_expire(vcpu, tsc_deadline - guest_tsc);
1897 }
1898 
1899 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1900 {
1901 	if (lapic_in_kernel(vcpu) &&
1902 	    vcpu->arch.apic->lapic_timer.expired_tscdeadline &&
1903 	    vcpu->arch.apic->lapic_timer.timer_advance_ns &&
1904 	    lapic_timer_int_injected(vcpu))
1905 		__kvm_wait_lapic_expire(vcpu);
1906 }
1907 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire);
1908 
1909 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic)
1910 {
1911 	struct kvm_timer *ktimer = &apic->lapic_timer;
1912 
1913 	kvm_apic_local_deliver(apic, APIC_LVTT);
1914 	if (apic_lvtt_tscdeadline(apic)) {
1915 		ktimer->tscdeadline = 0;
1916 	} else if (apic_lvtt_oneshot(apic)) {
1917 		ktimer->tscdeadline = 0;
1918 		ktimer->target_expiration = 0;
1919 	}
1920 }
1921 
1922 static void apic_timer_expired(struct kvm_lapic *apic, bool from_timer_fn)
1923 {
1924 	struct kvm_vcpu *vcpu = apic->vcpu;
1925 	struct kvm_timer *ktimer = &apic->lapic_timer;
1926 
1927 	if (atomic_read(&apic->lapic_timer.pending))
1928 		return;
1929 
1930 	if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use)
1931 		ktimer->expired_tscdeadline = ktimer->tscdeadline;
1932 
1933 	if (!from_timer_fn && apic->apicv_active) {
1934 		WARN_ON(kvm_get_running_vcpu() != vcpu);
1935 		kvm_apic_inject_pending_timer_irqs(apic);
1936 		return;
1937 	}
1938 
1939 	if (kvm_use_posted_timer_interrupt(apic->vcpu)) {
1940 		/*
1941 		 * Ensure the guest's timer has truly expired before posting an
1942 		 * interrupt.  Open code the relevant checks to avoid querying
1943 		 * lapic_timer_int_injected(), which will be false since the
1944 		 * interrupt isn't yet injected.  Waiting until after injecting
1945 		 * is not an option since that won't help a posted interrupt.
1946 		 */
1947 		if (vcpu->arch.apic->lapic_timer.expired_tscdeadline &&
1948 		    vcpu->arch.apic->lapic_timer.timer_advance_ns)
1949 			__kvm_wait_lapic_expire(vcpu);
1950 		kvm_apic_inject_pending_timer_irqs(apic);
1951 		return;
1952 	}
1953 
1954 	atomic_inc(&apic->lapic_timer.pending);
1955 	kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1956 	if (from_timer_fn)
1957 		kvm_vcpu_kick(vcpu);
1958 }
1959 
1960 static void start_sw_tscdeadline(struct kvm_lapic *apic)
1961 {
1962 	struct kvm_timer *ktimer = &apic->lapic_timer;
1963 	u64 guest_tsc, tscdeadline = ktimer->tscdeadline;
1964 	u64 ns = 0;
1965 	ktime_t expire;
1966 	struct kvm_vcpu *vcpu = apic->vcpu;
1967 	u32 this_tsc_khz = vcpu->arch.virtual_tsc_khz;
1968 	unsigned long flags;
1969 	ktime_t now;
1970 
1971 	if (unlikely(!tscdeadline || !this_tsc_khz))
1972 		return;
1973 
1974 	local_irq_save(flags);
1975 
1976 	now = ktime_get();
1977 	guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1978 
1979 	ns = (tscdeadline - guest_tsc) * 1000000ULL;
1980 	do_div(ns, this_tsc_khz);
1981 
1982 	if (likely(tscdeadline > guest_tsc) &&
1983 	    likely(ns > apic->lapic_timer.timer_advance_ns)) {
1984 		expire = ktime_add_ns(now, ns);
1985 		expire = ktime_sub_ns(expire, ktimer->timer_advance_ns);
1986 		hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD);
1987 	} else
1988 		apic_timer_expired(apic, false);
1989 
1990 	local_irq_restore(flags);
1991 }
1992 
1993 static inline u64 tmict_to_ns(struct kvm_lapic *apic, u32 tmict)
1994 {
1995 	return (u64)tmict * apic->vcpu->kvm->arch.apic_bus_cycle_ns *
1996 		(u64)apic->divide_count;
1997 }
1998 
1999 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor)
2000 {
2001 	ktime_t now, remaining;
2002 	u64 ns_remaining_old, ns_remaining_new;
2003 
2004 	apic->lapic_timer.period =
2005 			tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT));
2006 	limit_periodic_timer_frequency(apic);
2007 
2008 	now = ktime_get();
2009 	remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
2010 	if (ktime_to_ns(remaining) < 0)
2011 		remaining = 0;
2012 
2013 	ns_remaining_old = ktime_to_ns(remaining);
2014 	ns_remaining_new = mul_u64_u32_div(ns_remaining_old,
2015 	                                   apic->divide_count, old_divisor);
2016 
2017 	apic->lapic_timer.tscdeadline +=
2018 		nsec_to_cycles(apic->vcpu, ns_remaining_new) -
2019 		nsec_to_cycles(apic->vcpu, ns_remaining_old);
2020 	apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new);
2021 }
2022 
2023 static bool set_target_expiration(struct kvm_lapic *apic, u32 count_reg)
2024 {
2025 	ktime_t now;
2026 	u64 tscl = rdtsc();
2027 	s64 deadline;
2028 
2029 	now = ktime_get();
2030 	apic->lapic_timer.period =
2031 			tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT));
2032 
2033 	if (!apic->lapic_timer.period) {
2034 		apic->lapic_timer.tscdeadline = 0;
2035 		return false;
2036 	}
2037 
2038 	limit_periodic_timer_frequency(apic);
2039 	deadline = apic->lapic_timer.period;
2040 
2041 	if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) {
2042 		if (unlikely(count_reg != APIC_TMICT)) {
2043 			deadline = tmict_to_ns(apic,
2044 				     kvm_lapic_get_reg(apic, count_reg));
2045 			if (unlikely(deadline <= 0)) {
2046 				if (apic_lvtt_period(apic))
2047 					deadline = apic->lapic_timer.period;
2048 				else
2049 					deadline = 0;
2050 			}
2051 			else if (unlikely(deadline > apic->lapic_timer.period)) {
2052 				pr_info_ratelimited(
2053 				    "vcpu %i: requested lapic timer restore with "
2054 				    "starting count register %#x=%u (%lld ns) > initial count (%lld ns). "
2055 				    "Using initial count to start timer.\n",
2056 				    apic->vcpu->vcpu_id,
2057 				    count_reg,
2058 				    kvm_lapic_get_reg(apic, count_reg),
2059 				    deadline, apic->lapic_timer.period);
2060 				kvm_lapic_set_reg(apic, count_reg, 0);
2061 				deadline = apic->lapic_timer.period;
2062 			}
2063 		}
2064 	}
2065 
2066 	apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
2067 		nsec_to_cycles(apic->vcpu, deadline);
2068 	apic->lapic_timer.target_expiration = ktime_add_ns(now, deadline);
2069 
2070 	return true;
2071 }
2072 
2073 static void advance_periodic_target_expiration(struct kvm_lapic *apic)
2074 {
2075 	ktime_t now = ktime_get();
2076 	u64 tscl = rdtsc();
2077 	ktime_t delta;
2078 
2079 	/*
2080 	 * Synchronize both deadlines to the same time source or
2081 	 * differences in the periods (caused by differences in the
2082 	 * underlying clocks or numerical approximation errors) will
2083 	 * cause the two to drift apart over time as the errors
2084 	 * accumulate.
2085 	 */
2086 	apic->lapic_timer.target_expiration =
2087 		ktime_add_ns(apic->lapic_timer.target_expiration,
2088 				apic->lapic_timer.period);
2089 	delta = ktime_sub(apic->lapic_timer.target_expiration, now);
2090 	apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
2091 		nsec_to_cycles(apic->vcpu, delta);
2092 }
2093 
2094 static void start_sw_period(struct kvm_lapic *apic)
2095 {
2096 	if (!apic->lapic_timer.period)
2097 		return;
2098 
2099 	if (ktime_after(ktime_get(),
2100 			apic->lapic_timer.target_expiration)) {
2101 		apic_timer_expired(apic, false);
2102 
2103 		if (apic_lvtt_oneshot(apic))
2104 			return;
2105 
2106 		advance_periodic_target_expiration(apic);
2107 	}
2108 
2109 	hrtimer_start(&apic->lapic_timer.timer,
2110 		apic->lapic_timer.target_expiration,
2111 		HRTIMER_MODE_ABS_HARD);
2112 }
2113 
2114 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu)
2115 {
2116 	if (!lapic_in_kernel(vcpu))
2117 		return false;
2118 
2119 	return vcpu->arch.apic->lapic_timer.hv_timer_in_use;
2120 }
2121 
2122 static void cancel_hv_timer(struct kvm_lapic *apic)
2123 {
2124 	WARN_ON(preemptible());
2125 	WARN_ON(!apic->lapic_timer.hv_timer_in_use);
2126 	kvm_x86_call(cancel_hv_timer)(apic->vcpu);
2127 	apic->lapic_timer.hv_timer_in_use = false;
2128 }
2129 
2130 static bool start_hv_timer(struct kvm_lapic *apic)
2131 {
2132 	struct kvm_timer *ktimer = &apic->lapic_timer;
2133 	struct kvm_vcpu *vcpu = apic->vcpu;
2134 	bool expired;
2135 
2136 	WARN_ON(preemptible());
2137 	if (!kvm_can_use_hv_timer(vcpu))
2138 		return false;
2139 
2140 	if (!ktimer->tscdeadline)
2141 		return false;
2142 
2143 	if (kvm_x86_call(set_hv_timer)(vcpu, ktimer->tscdeadline, &expired))
2144 		return false;
2145 
2146 	ktimer->hv_timer_in_use = true;
2147 	hrtimer_cancel(&ktimer->timer);
2148 
2149 	/*
2150 	 * To simplify handling the periodic timer, leave the hv timer running
2151 	 * even if the deadline timer has expired, i.e. rely on the resulting
2152 	 * VM-Exit to recompute the periodic timer's target expiration.
2153 	 */
2154 	if (!apic_lvtt_period(apic)) {
2155 		/*
2156 		 * Cancel the hv timer if the sw timer fired while the hv timer
2157 		 * was being programmed, or if the hv timer itself expired.
2158 		 */
2159 		if (atomic_read(&ktimer->pending)) {
2160 			cancel_hv_timer(apic);
2161 		} else if (expired) {
2162 			apic_timer_expired(apic, false);
2163 			cancel_hv_timer(apic);
2164 		}
2165 	}
2166 
2167 	trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use);
2168 
2169 	return true;
2170 }
2171 
2172 static void start_sw_timer(struct kvm_lapic *apic)
2173 {
2174 	struct kvm_timer *ktimer = &apic->lapic_timer;
2175 
2176 	WARN_ON(preemptible());
2177 	if (apic->lapic_timer.hv_timer_in_use)
2178 		cancel_hv_timer(apic);
2179 	if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending))
2180 		return;
2181 
2182 	if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
2183 		start_sw_period(apic);
2184 	else if (apic_lvtt_tscdeadline(apic))
2185 		start_sw_tscdeadline(apic);
2186 	trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false);
2187 }
2188 
2189 static void restart_apic_timer(struct kvm_lapic *apic)
2190 {
2191 	preempt_disable();
2192 
2193 	if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending))
2194 		goto out;
2195 
2196 	if (!start_hv_timer(apic))
2197 		start_sw_timer(apic);
2198 out:
2199 	preempt_enable();
2200 }
2201 
2202 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu)
2203 {
2204 	struct kvm_lapic *apic = vcpu->arch.apic;
2205 
2206 	preempt_disable();
2207 	/* If the preempt notifier has already run, it also called apic_timer_expired */
2208 	if (!apic->lapic_timer.hv_timer_in_use)
2209 		goto out;
2210 	WARN_ON(kvm_vcpu_is_blocking(vcpu));
2211 	apic_timer_expired(apic, false);
2212 	cancel_hv_timer(apic);
2213 
2214 	if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
2215 		advance_periodic_target_expiration(apic);
2216 		restart_apic_timer(apic);
2217 	}
2218 out:
2219 	preempt_enable();
2220 }
2221 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer);
2222 
2223 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu)
2224 {
2225 	restart_apic_timer(vcpu->arch.apic);
2226 }
2227 
2228 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu)
2229 {
2230 	struct kvm_lapic *apic = vcpu->arch.apic;
2231 
2232 	preempt_disable();
2233 	/* Possibly the TSC deadline timer is not enabled yet */
2234 	if (apic->lapic_timer.hv_timer_in_use)
2235 		start_sw_timer(apic);
2236 	preempt_enable();
2237 }
2238 
2239 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu)
2240 {
2241 	struct kvm_lapic *apic = vcpu->arch.apic;
2242 
2243 	WARN_ON(!apic->lapic_timer.hv_timer_in_use);
2244 	restart_apic_timer(apic);
2245 }
2246 
2247 static void __start_apic_timer(struct kvm_lapic *apic, u32 count_reg)
2248 {
2249 	atomic_set(&apic->lapic_timer.pending, 0);
2250 
2251 	if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
2252 	    && !set_target_expiration(apic, count_reg))
2253 		return;
2254 
2255 	restart_apic_timer(apic);
2256 }
2257 
2258 static void start_apic_timer(struct kvm_lapic *apic)
2259 {
2260 	__start_apic_timer(apic, APIC_TMICT);
2261 }
2262 
2263 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val)
2264 {
2265 	bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val);
2266 
2267 	if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) {
2268 		apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode;
2269 		if (lvt0_in_nmi_mode) {
2270 			atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
2271 		} else
2272 			atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
2273 	}
2274 }
2275 
2276 static int get_lvt_index(u32 reg)
2277 {
2278 	if (reg == APIC_LVTCMCI)
2279 		return LVT_CMCI;
2280 	if (reg < APIC_LVTT || reg > APIC_LVTERR)
2281 		return -1;
2282 	return array_index_nospec(
2283 			(reg - APIC_LVTT) >> 4, KVM_APIC_MAX_NR_LVT_ENTRIES);
2284 }
2285 
2286 static int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val)
2287 {
2288 	int ret = 0;
2289 
2290 	trace_kvm_apic_write(reg, val);
2291 
2292 	switch (reg) {
2293 	case APIC_ID:		/* Local APIC ID */
2294 		if (!apic_x2apic_mode(apic)) {
2295 			kvm_apic_set_xapic_id(apic, val >> 24);
2296 		} else {
2297 			ret = 1;
2298 		}
2299 		break;
2300 
2301 	case APIC_TASKPRI:
2302 		report_tpr_access(apic, true);
2303 		apic_set_tpr(apic, val & 0xff);
2304 		break;
2305 
2306 	case APIC_EOI:
2307 		apic_set_eoi(apic);
2308 		break;
2309 
2310 	case APIC_LDR:
2311 		if (!apic_x2apic_mode(apic))
2312 			kvm_apic_set_ldr(apic, val & APIC_LDR_MASK);
2313 		else
2314 			ret = 1;
2315 		break;
2316 
2317 	case APIC_DFR:
2318 		if (!apic_x2apic_mode(apic))
2319 			kvm_apic_set_dfr(apic, val | 0x0FFFFFFF);
2320 		else
2321 			ret = 1;
2322 		break;
2323 
2324 	case APIC_SPIV: {
2325 		u32 mask = 0x3ff;
2326 		if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI)
2327 			mask |= APIC_SPIV_DIRECTED_EOI;
2328 		apic_set_spiv(apic, val & mask);
2329 		if (!(val & APIC_SPIV_APIC_ENABLED)) {
2330 			int i;
2331 
2332 			for (i = 0; i < apic->nr_lvt_entries; i++) {
2333 				kvm_lapic_set_reg(apic, APIC_LVTx(i),
2334 					kvm_lapic_get_reg(apic, APIC_LVTx(i)) | APIC_LVT_MASKED);
2335 			}
2336 			apic_update_lvtt(apic);
2337 			atomic_set(&apic->lapic_timer.pending, 0);
2338 
2339 		}
2340 		break;
2341 	}
2342 	case APIC_ICR:
2343 		WARN_ON_ONCE(apic_x2apic_mode(apic));
2344 
2345 		/* No delay here, so we always clear the pending bit */
2346 		val &= ~APIC_ICR_BUSY;
2347 		kvm_apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2));
2348 		kvm_lapic_set_reg(apic, APIC_ICR, val);
2349 		break;
2350 	case APIC_ICR2:
2351 		if (apic_x2apic_mode(apic))
2352 			ret = 1;
2353 		else
2354 			kvm_lapic_set_reg(apic, APIC_ICR2, val & 0xff000000);
2355 		break;
2356 
2357 	case APIC_LVT0:
2358 		apic_manage_nmi_watchdog(apic, val);
2359 		fallthrough;
2360 	case APIC_LVTTHMR:
2361 	case APIC_LVTPC:
2362 	case APIC_LVT1:
2363 	case APIC_LVTERR:
2364 	case APIC_LVTCMCI: {
2365 		u32 index = get_lvt_index(reg);
2366 		if (!kvm_lapic_lvt_supported(apic, index)) {
2367 			ret = 1;
2368 			break;
2369 		}
2370 		if (!kvm_apic_sw_enabled(apic))
2371 			val |= APIC_LVT_MASKED;
2372 		val &= apic_lvt_mask[index];
2373 		kvm_lapic_set_reg(apic, reg, val);
2374 		break;
2375 	}
2376 
2377 	case APIC_LVTT:
2378 		if (!kvm_apic_sw_enabled(apic))
2379 			val |= APIC_LVT_MASKED;
2380 		val &= (apic_lvt_mask[LVT_TIMER] | apic->lapic_timer.timer_mode_mask);
2381 		kvm_lapic_set_reg(apic, APIC_LVTT, val);
2382 		apic_update_lvtt(apic);
2383 		break;
2384 
2385 	case APIC_TMICT:
2386 		if (apic_lvtt_tscdeadline(apic))
2387 			break;
2388 
2389 		cancel_apic_timer(apic);
2390 		kvm_lapic_set_reg(apic, APIC_TMICT, val);
2391 		start_apic_timer(apic);
2392 		break;
2393 
2394 	case APIC_TDCR: {
2395 		uint32_t old_divisor = apic->divide_count;
2396 
2397 		kvm_lapic_set_reg(apic, APIC_TDCR, val & 0xb);
2398 		update_divide_count(apic);
2399 		if (apic->divide_count != old_divisor &&
2400 				apic->lapic_timer.period) {
2401 			hrtimer_cancel(&apic->lapic_timer.timer);
2402 			update_target_expiration(apic, old_divisor);
2403 			restart_apic_timer(apic);
2404 		}
2405 		break;
2406 	}
2407 	case APIC_ESR:
2408 		if (apic_x2apic_mode(apic) && val != 0)
2409 			ret = 1;
2410 		break;
2411 
2412 	case APIC_SELF_IPI:
2413 		/*
2414 		 * Self-IPI exists only when x2APIC is enabled.  Bits 7:0 hold
2415 		 * the vector, everything else is reserved.
2416 		 */
2417 		if (!apic_x2apic_mode(apic) || (val & ~APIC_VECTOR_MASK))
2418 			ret = 1;
2419 		else
2420 			kvm_apic_send_ipi(apic, APIC_DEST_SELF | val, 0);
2421 		break;
2422 	default:
2423 		ret = 1;
2424 		break;
2425 	}
2426 
2427 	/*
2428 	 * Recalculate APIC maps if necessary, e.g. if the software enable bit
2429 	 * was toggled, the APIC ID changed, etc...   The maps are marked dirty
2430 	 * on relevant changes, i.e. this is a nop for most writes.
2431 	 */
2432 	kvm_recalculate_apic_map(apic->vcpu->kvm);
2433 
2434 	return ret;
2435 }
2436 
2437 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
2438 			    gpa_t address, int len, const void *data)
2439 {
2440 	struct kvm_lapic *apic = to_lapic(this);
2441 	unsigned int offset = address - apic->base_address;
2442 	u32 val;
2443 
2444 	if (!apic_mmio_in_range(apic, address))
2445 		return -EOPNOTSUPP;
2446 
2447 	if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
2448 		if (!kvm_check_has_quirk(vcpu->kvm,
2449 					 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
2450 			return -EOPNOTSUPP;
2451 
2452 		return 0;
2453 	}
2454 
2455 	/*
2456 	 * APIC register must be aligned on 128-bits boundary.
2457 	 * 32/64/128 bits registers must be accessed thru 32 bits.
2458 	 * Refer SDM 8.4.1
2459 	 */
2460 	if (len != 4 || (offset & 0xf))
2461 		return 0;
2462 
2463 	val = *(u32*)data;
2464 
2465 	kvm_lapic_reg_write(apic, offset & 0xff0, val);
2466 
2467 	return 0;
2468 }
2469 
2470 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu)
2471 {
2472 	kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0);
2473 }
2474 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi);
2475 
2476 #define X2APIC_ICR_RESERVED_BITS (GENMASK_ULL(31, 20) | GENMASK_ULL(17, 16) | BIT(13))
2477 
2478 int kvm_x2apic_icr_write(struct kvm_lapic *apic, u64 data)
2479 {
2480 	if (data & X2APIC_ICR_RESERVED_BITS)
2481 		return 1;
2482 
2483 	/*
2484 	 * The BUSY bit is reserved on both Intel and AMD in x2APIC mode, but
2485 	 * only AMD requires it to be zero, Intel essentially just ignores the
2486 	 * bit.  And if IPI virtualization (Intel) or x2AVIC (AMD) is enabled,
2487 	 * the CPU performs the reserved bits checks, i.e. the underlying CPU
2488 	 * behavior will "win".  Arbitrarily clear the BUSY bit, as there is no
2489 	 * sane way to provide consistent behavior with respect to hardware.
2490 	 */
2491 	data &= ~APIC_ICR_BUSY;
2492 
2493 	kvm_apic_send_ipi(apic, (u32)data, (u32)(data >> 32));
2494 	if (kvm_x86_ops.x2apic_icr_is_split) {
2495 		kvm_lapic_set_reg(apic, APIC_ICR, data);
2496 		kvm_lapic_set_reg(apic, APIC_ICR2, data >> 32);
2497 	} else {
2498 		kvm_lapic_set_reg64(apic, APIC_ICR, data);
2499 	}
2500 	trace_kvm_apic_write(APIC_ICR, data);
2501 	return 0;
2502 }
2503 
2504 static u64 kvm_x2apic_icr_read(struct kvm_lapic *apic)
2505 {
2506 	if (kvm_x86_ops.x2apic_icr_is_split)
2507 		return (u64)kvm_lapic_get_reg(apic, APIC_ICR) |
2508 		       (u64)kvm_lapic_get_reg(apic, APIC_ICR2) << 32;
2509 
2510 	return kvm_lapic_get_reg64(apic, APIC_ICR);
2511 }
2512 
2513 /* emulate APIC access in a trap manner */
2514 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset)
2515 {
2516 	struct kvm_lapic *apic = vcpu->arch.apic;
2517 
2518 	/*
2519 	 * ICR is a single 64-bit register when x2APIC is enabled, all others
2520 	 * registers hold 32-bit values.  For legacy xAPIC, ICR writes need to
2521 	 * go down the common path to get the upper half from ICR2.
2522 	 *
2523 	 * Note, using the write helpers may incur an unnecessary write to the
2524 	 * virtual APIC state, but KVM needs to conditionally modify the value
2525 	 * in certain cases, e.g. to clear the ICR busy bit.  The cost of extra
2526 	 * conditional branches is likely a wash relative to the cost of the
2527 	 * maybe-unecessary write, and both are in the noise anyways.
2528 	 */
2529 	if (apic_x2apic_mode(apic) && offset == APIC_ICR)
2530 		WARN_ON_ONCE(kvm_x2apic_icr_write(apic, kvm_x2apic_icr_read(apic)));
2531 	else
2532 		kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
2533 }
2534 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode);
2535 
2536 void kvm_free_lapic(struct kvm_vcpu *vcpu)
2537 {
2538 	struct kvm_lapic *apic = vcpu->arch.apic;
2539 
2540 	if (!vcpu->arch.apic) {
2541 		static_branch_dec(&kvm_has_noapic_vcpu);
2542 		return;
2543 	}
2544 
2545 	hrtimer_cancel(&apic->lapic_timer.timer);
2546 
2547 	if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE))
2548 		static_branch_slow_dec_deferred(&apic_hw_disabled);
2549 
2550 	if (!apic->sw_enabled)
2551 		static_branch_slow_dec_deferred(&apic_sw_disabled);
2552 
2553 	if (apic->regs)
2554 		free_page((unsigned long)apic->regs);
2555 
2556 	kfree(apic);
2557 }
2558 
2559 /*
2560  *----------------------------------------------------------------------
2561  * LAPIC interface
2562  *----------------------------------------------------------------------
2563  */
2564 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu)
2565 {
2566 	struct kvm_lapic *apic = vcpu->arch.apic;
2567 
2568 	if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic))
2569 		return 0;
2570 
2571 	return apic->lapic_timer.tscdeadline;
2572 }
2573 
2574 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data)
2575 {
2576 	struct kvm_lapic *apic = vcpu->arch.apic;
2577 
2578 	if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic))
2579 		return;
2580 
2581 	hrtimer_cancel(&apic->lapic_timer.timer);
2582 	apic->lapic_timer.tscdeadline = data;
2583 	start_apic_timer(apic);
2584 }
2585 
2586 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8)
2587 {
2588 	apic_set_tpr(vcpu->arch.apic, (cr8 & 0x0f) << 4);
2589 }
2590 
2591 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu)
2592 {
2593 	u64 tpr;
2594 
2595 	tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI);
2596 
2597 	return (tpr & 0xf0) >> 4;
2598 }
2599 
2600 static void __kvm_apic_set_base(struct kvm_vcpu *vcpu, u64 value)
2601 {
2602 	u64 old_value = vcpu->arch.apic_base;
2603 	struct kvm_lapic *apic = vcpu->arch.apic;
2604 
2605 	vcpu->arch.apic_base = value;
2606 
2607 	if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE)
2608 		vcpu->arch.cpuid_dynamic_bits_dirty = true;
2609 
2610 	if (!apic)
2611 		return;
2612 
2613 	/* update jump label if enable bit changes */
2614 	if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) {
2615 		if (value & MSR_IA32_APICBASE_ENABLE) {
2616 			kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2617 			static_branch_slow_dec_deferred(&apic_hw_disabled);
2618 			/* Check if there are APF page ready requests pending */
2619 			kvm_make_request(KVM_REQ_APF_READY, vcpu);
2620 		} else {
2621 			static_branch_inc(&apic_hw_disabled.key);
2622 			atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
2623 		}
2624 	}
2625 
2626 	if ((old_value ^ value) & X2APIC_ENABLE) {
2627 		if (value & X2APIC_ENABLE)
2628 			kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id);
2629 		else if (value & MSR_IA32_APICBASE_ENABLE)
2630 			kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2631 	}
2632 
2633 	if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) {
2634 		kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
2635 		kvm_x86_call(set_virtual_apic_mode)(vcpu);
2636 	}
2637 
2638 	apic->base_address = apic->vcpu->arch.apic_base &
2639 			     MSR_IA32_APICBASE_BASE;
2640 
2641 	if ((value & MSR_IA32_APICBASE_ENABLE) &&
2642 	     apic->base_address != APIC_DEFAULT_PHYS_BASE) {
2643 		kvm_set_apicv_inhibit(apic->vcpu->kvm,
2644 				      APICV_INHIBIT_REASON_APIC_BASE_MODIFIED);
2645 	}
2646 }
2647 
2648 int kvm_apic_set_base(struct kvm_vcpu *vcpu, u64 value, bool host_initiated)
2649 {
2650 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
2651 	enum lapic_mode new_mode = kvm_apic_mode(value);
2652 
2653 	if (vcpu->arch.apic_base == value)
2654 		return 0;
2655 
2656 	u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
2657 		(guest_cpu_cap_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
2658 
2659 	if ((value & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
2660 		return 1;
2661 	if (!host_initiated) {
2662 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
2663 			return 1;
2664 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
2665 			return 1;
2666 	}
2667 
2668 	__kvm_apic_set_base(vcpu, value);
2669 	kvm_recalculate_apic_map(vcpu->kvm);
2670 	return 0;
2671 }
2672 EXPORT_SYMBOL_GPL(kvm_apic_set_base);
2673 
2674 void kvm_apic_update_apicv(struct kvm_vcpu *vcpu)
2675 {
2676 	struct kvm_lapic *apic = vcpu->arch.apic;
2677 
2678 	/*
2679 	 * When APICv is enabled, KVM must always search the IRR for a pending
2680 	 * IRQ, as other vCPUs and devices can set IRR bits even if the vCPU
2681 	 * isn't running.  If APICv is disabled, KVM _should_ search the IRR
2682 	 * for a pending IRQ.  But KVM currently doesn't ensure *all* hardware,
2683 	 * e.g. CPUs and IOMMUs, has seen the change in state, i.e. searching
2684 	 * the IRR at this time could race with IRQ delivery from hardware that
2685 	 * still sees APICv as being enabled.
2686 	 *
2687 	 * FIXME: Ensure other vCPUs and devices observe the change in APICv
2688 	 *        state prior to updating KVM's metadata caches, so that KVM
2689 	 *        can safely search the IRR and set irr_pending accordingly.
2690 	 */
2691 	apic->irr_pending = true;
2692 
2693 	if (apic->apicv_active)
2694 		apic->isr_count = 1;
2695 	else
2696 		apic->isr_count = count_vectors(apic->regs + APIC_ISR);
2697 
2698 	apic->highest_isr_cache = -1;
2699 }
2700 
2701 int kvm_alloc_apic_access_page(struct kvm *kvm)
2702 {
2703 	void __user *hva;
2704 	int ret = 0;
2705 
2706 	mutex_lock(&kvm->slots_lock);
2707 	if (kvm->arch.apic_access_memslot_enabled ||
2708 	    kvm->arch.apic_access_memslot_inhibited)
2709 		goto out;
2710 
2711 	hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
2712 				      APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
2713 	if (IS_ERR(hva)) {
2714 		ret = PTR_ERR(hva);
2715 		goto out;
2716 	}
2717 
2718 	kvm->arch.apic_access_memslot_enabled = true;
2719 out:
2720 	mutex_unlock(&kvm->slots_lock);
2721 	return ret;
2722 }
2723 EXPORT_SYMBOL_GPL(kvm_alloc_apic_access_page);
2724 
2725 void kvm_inhibit_apic_access_page(struct kvm_vcpu *vcpu)
2726 {
2727 	struct kvm *kvm = vcpu->kvm;
2728 
2729 	if (!kvm->arch.apic_access_memslot_enabled)
2730 		return;
2731 
2732 	kvm_vcpu_srcu_read_unlock(vcpu);
2733 
2734 	mutex_lock(&kvm->slots_lock);
2735 
2736 	if (kvm->arch.apic_access_memslot_enabled) {
2737 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
2738 		/*
2739 		 * Clear "enabled" after the memslot is deleted so that a
2740 		 * different vCPU doesn't get a false negative when checking
2741 		 * the flag out of slots_lock.  No additional memory barrier is
2742 		 * needed as modifying memslots requires waiting other vCPUs to
2743 		 * drop SRCU (see above), and false positives are ok as the
2744 		 * flag is rechecked after acquiring slots_lock.
2745 		 */
2746 		kvm->arch.apic_access_memslot_enabled = false;
2747 
2748 		/*
2749 		 * Mark the memslot as inhibited to prevent reallocating the
2750 		 * memslot during vCPU creation, e.g. if a vCPU is hotplugged.
2751 		 */
2752 		kvm->arch.apic_access_memslot_inhibited = true;
2753 	}
2754 
2755 	mutex_unlock(&kvm->slots_lock);
2756 
2757 	kvm_vcpu_srcu_read_lock(vcpu);
2758 }
2759 
2760 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event)
2761 {
2762 	struct kvm_lapic *apic = vcpu->arch.apic;
2763 	u64 msr_val;
2764 	int i;
2765 
2766 	kvm_x86_call(apicv_pre_state_restore)(vcpu);
2767 
2768 	if (!init_event) {
2769 		msr_val = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE;
2770 		if (kvm_vcpu_is_reset_bsp(vcpu))
2771 			msr_val |= MSR_IA32_APICBASE_BSP;
2772 
2773 		/*
2774 		 * Use the inner helper to avoid an extra recalcuation of the
2775 		 * optimized APIC map if some other task has dirtied the map.
2776 		 * The recalculation needed for this vCPU will be done after
2777 		 * all APIC state has been initialized (see below).
2778 		 */
2779 		__kvm_apic_set_base(vcpu, msr_val);
2780 	}
2781 
2782 	if (!apic)
2783 		return;
2784 
2785 	/* Stop the timer in case it's a reset to an active apic */
2786 	hrtimer_cancel(&apic->lapic_timer.timer);
2787 
2788 	/* The xAPIC ID is set at RESET even if the APIC was already enabled. */
2789 	if (!init_event)
2790 		kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2791 	kvm_apic_set_version(apic->vcpu);
2792 
2793 	for (i = 0; i < apic->nr_lvt_entries; i++)
2794 		kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED);
2795 	apic_update_lvtt(apic);
2796 	if (kvm_vcpu_is_reset_bsp(vcpu) &&
2797 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED))
2798 		kvm_lapic_set_reg(apic, APIC_LVT0,
2799 			     SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT));
2800 	apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
2801 
2802 	kvm_apic_set_dfr(apic, 0xffffffffU);
2803 	apic_set_spiv(apic, 0xff);
2804 	kvm_lapic_set_reg(apic, APIC_TASKPRI, 0);
2805 	if (!apic_x2apic_mode(apic))
2806 		kvm_apic_set_ldr(apic, 0);
2807 	kvm_lapic_set_reg(apic, APIC_ESR, 0);
2808 	if (!apic_x2apic_mode(apic)) {
2809 		kvm_lapic_set_reg(apic, APIC_ICR, 0);
2810 		kvm_lapic_set_reg(apic, APIC_ICR2, 0);
2811 	} else {
2812 		kvm_lapic_set_reg64(apic, APIC_ICR, 0);
2813 	}
2814 	kvm_lapic_set_reg(apic, APIC_TDCR, 0);
2815 	kvm_lapic_set_reg(apic, APIC_TMICT, 0);
2816 	for (i = 0; i < 8; i++) {
2817 		kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0);
2818 		kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0);
2819 		kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0);
2820 	}
2821 	kvm_apic_update_apicv(vcpu);
2822 	update_divide_count(apic);
2823 	atomic_set(&apic->lapic_timer.pending, 0);
2824 
2825 	vcpu->arch.pv_eoi.msr_val = 0;
2826 	apic_update_ppr(apic);
2827 	if (apic->apicv_active) {
2828 		kvm_x86_call(apicv_post_state_restore)(vcpu);
2829 		kvm_x86_call(hwapic_isr_update)(vcpu, -1);
2830 	}
2831 
2832 	vcpu->arch.apic_arb_prio = 0;
2833 	vcpu->arch.apic_attention = 0;
2834 
2835 	kvm_recalculate_apic_map(vcpu->kvm);
2836 }
2837 
2838 /*
2839  *----------------------------------------------------------------------
2840  * timer interface
2841  *----------------------------------------------------------------------
2842  */
2843 
2844 static bool lapic_is_periodic(struct kvm_lapic *apic)
2845 {
2846 	return apic_lvtt_period(apic);
2847 }
2848 
2849 int apic_has_pending_timer(struct kvm_vcpu *vcpu)
2850 {
2851 	struct kvm_lapic *apic = vcpu->arch.apic;
2852 
2853 	if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT))
2854 		return atomic_read(&apic->lapic_timer.pending);
2855 
2856 	return 0;
2857 }
2858 
2859 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type)
2860 {
2861 	u32 reg = kvm_lapic_get_reg(apic, lvt_type);
2862 	int vector, mode, trig_mode;
2863 	int r;
2864 
2865 	if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) {
2866 		vector = reg & APIC_VECTOR_MASK;
2867 		mode = reg & APIC_MODE_MASK;
2868 		trig_mode = reg & APIC_LVT_LEVEL_TRIGGER;
2869 
2870 		r = __apic_accept_irq(apic, mode, vector, 1, trig_mode, NULL);
2871 		if (r && lvt_type == APIC_LVTPC &&
2872 		    guest_cpuid_is_intel_compatible(apic->vcpu))
2873 			kvm_lapic_set_reg(apic, APIC_LVTPC, reg | APIC_LVT_MASKED);
2874 		return r;
2875 	}
2876 	return 0;
2877 }
2878 
2879 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu)
2880 {
2881 	struct kvm_lapic *apic = vcpu->arch.apic;
2882 
2883 	if (apic)
2884 		kvm_apic_local_deliver(apic, APIC_LVT0);
2885 }
2886 
2887 static const struct kvm_io_device_ops apic_mmio_ops = {
2888 	.read     = apic_mmio_read,
2889 	.write    = apic_mmio_write,
2890 };
2891 
2892 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data)
2893 {
2894 	struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer);
2895 	struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer);
2896 
2897 	apic_timer_expired(apic, true);
2898 
2899 	if (lapic_is_periodic(apic)) {
2900 		advance_periodic_target_expiration(apic);
2901 		hrtimer_add_expires_ns(&ktimer->timer, ktimer->period);
2902 		return HRTIMER_RESTART;
2903 	} else
2904 		return HRTIMER_NORESTART;
2905 }
2906 
2907 int kvm_create_lapic(struct kvm_vcpu *vcpu)
2908 {
2909 	struct kvm_lapic *apic;
2910 
2911 	ASSERT(vcpu != NULL);
2912 
2913 	if (!irqchip_in_kernel(vcpu->kvm)) {
2914 		static_branch_inc(&kvm_has_noapic_vcpu);
2915 		return 0;
2916 	}
2917 
2918 	apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT);
2919 	if (!apic)
2920 		goto nomem;
2921 
2922 	vcpu->arch.apic = apic;
2923 
2924 	if (kvm_x86_ops.alloc_apic_backing_page)
2925 		apic->regs = kvm_x86_call(alloc_apic_backing_page)(vcpu);
2926 	else
2927 		apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
2928 	if (!apic->regs) {
2929 		printk(KERN_ERR "malloc apic regs error for vcpu %x\n",
2930 		       vcpu->vcpu_id);
2931 		goto nomem_free_apic;
2932 	}
2933 	apic->vcpu = vcpu;
2934 
2935 	apic->nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu);
2936 
2937 	hrtimer_setup(&apic->lapic_timer.timer, apic_timer_fn, CLOCK_MONOTONIC,
2938 		      HRTIMER_MODE_ABS_HARD);
2939 	if (lapic_timer_advance)
2940 		apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
2941 
2942 	/*
2943 	 * Stuff the APIC ENABLE bit in lieu of temporarily incrementing
2944 	 * apic_hw_disabled; the full RESET value is set by kvm_lapic_reset().
2945 	 */
2946 	vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE;
2947 	static_branch_inc(&apic_sw_disabled.key); /* sw disabled at reset */
2948 	kvm_iodevice_init(&apic->dev, &apic_mmio_ops);
2949 
2950 	/*
2951 	 * Defer evaluating inhibits until the vCPU is first run, as this vCPU
2952 	 * will not get notified of any changes until this vCPU is visible to
2953 	 * other vCPUs (marked online and added to the set of vCPUs).
2954 	 *
2955 	 * Opportunistically mark APICv active as VMX in particularly is highly
2956 	 * unlikely to have inhibits.  Ignore the current per-VM APICv state so
2957 	 * that vCPU creation is guaranteed to run with a deterministic value,
2958 	 * the request will ensure the vCPU gets the correct state before VM-Entry.
2959 	 */
2960 	if (enable_apicv) {
2961 		apic->apicv_active = true;
2962 		kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
2963 	}
2964 
2965 	return 0;
2966 nomem_free_apic:
2967 	kfree(apic);
2968 	vcpu->arch.apic = NULL;
2969 nomem:
2970 	return -ENOMEM;
2971 }
2972 
2973 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu)
2974 {
2975 	struct kvm_lapic *apic = vcpu->arch.apic;
2976 	u32 ppr;
2977 
2978 	if (!kvm_apic_present(vcpu))
2979 		return -1;
2980 
2981 	if (apic->guest_apic_protected)
2982 		return -1;
2983 
2984 	__apic_update_ppr(apic, &ppr);
2985 	return apic_has_interrupt_for_ppr(apic, ppr);
2986 }
2987 EXPORT_SYMBOL_GPL(kvm_apic_has_interrupt);
2988 
2989 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu)
2990 {
2991 	u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0);
2992 
2993 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
2994 		return 1;
2995 	if ((lvt0 & APIC_LVT_MASKED) == 0 &&
2996 	    GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT)
2997 		return 1;
2998 	return 0;
2999 }
3000 
3001 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu)
3002 {
3003 	struct kvm_lapic *apic = vcpu->arch.apic;
3004 
3005 	if (atomic_read(&apic->lapic_timer.pending) > 0) {
3006 		kvm_apic_inject_pending_timer_irqs(apic);
3007 		atomic_set(&apic->lapic_timer.pending, 0);
3008 	}
3009 }
3010 
3011 void kvm_apic_ack_interrupt(struct kvm_vcpu *vcpu, int vector)
3012 {
3013 	struct kvm_lapic *apic = vcpu->arch.apic;
3014 	u32 ppr;
3015 
3016 	if (WARN_ON_ONCE(vector < 0 || !apic))
3017 		return;
3018 
3019 	/*
3020 	 * We get here even with APIC virtualization enabled, if doing
3021 	 * nested virtualization and L1 runs with the "acknowledge interrupt
3022 	 * on exit" mode.  Then we cannot inject the interrupt via RVI,
3023 	 * because the process would deliver it through the IDT.
3024 	 */
3025 
3026 	apic_clear_irr(vector, apic);
3027 	if (kvm_hv_synic_auto_eoi_set(vcpu, vector)) {
3028 		/*
3029 		 * For auto-EOI interrupts, there might be another pending
3030 		 * interrupt above PPR, so check whether to raise another
3031 		 * KVM_REQ_EVENT.
3032 		 */
3033 		apic_update_ppr(apic);
3034 	} else {
3035 		/*
3036 		 * For normal interrupts, PPR has been raised and there cannot
3037 		 * be a higher-priority pending interrupt---except if there was
3038 		 * a concurrent interrupt injection, but that would have
3039 		 * triggered KVM_REQ_EVENT already.
3040 		 */
3041 		apic_set_isr(vector, apic);
3042 		__apic_update_ppr(apic, &ppr);
3043 	}
3044 
3045 }
3046 EXPORT_SYMBOL_GPL(kvm_apic_ack_interrupt);
3047 
3048 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu,
3049 		struct kvm_lapic_state *s, bool set)
3050 {
3051 	if (apic_x2apic_mode(vcpu->arch.apic)) {
3052 		u32 x2apic_id = kvm_x2apic_id(vcpu->arch.apic);
3053 		u32 *id = (u32 *)(s->regs + APIC_ID);
3054 		u32 *ldr = (u32 *)(s->regs + APIC_LDR);
3055 		u64 icr;
3056 
3057 		if (vcpu->kvm->arch.x2apic_format) {
3058 			if (*id != x2apic_id)
3059 				return -EINVAL;
3060 		} else {
3061 			/*
3062 			 * Ignore the userspace value when setting APIC state.
3063 			 * KVM's model is that the x2APIC ID is readonly, e.g.
3064 			 * KVM only supports delivering interrupts to KVM's
3065 			 * version of the x2APIC ID.  However, for backwards
3066 			 * compatibility, don't reject attempts to set a
3067 			 * mismatched ID for userspace that hasn't opted into
3068 			 * x2apic_format.
3069 			 */
3070 			if (set)
3071 				*id = x2apic_id;
3072 			else
3073 				*id = x2apic_id << 24;
3074 		}
3075 
3076 		/*
3077 		 * In x2APIC mode, the LDR is fixed and based on the id.  And
3078 		 * if the ICR is _not_ split, ICR is internally a single 64-bit
3079 		 * register, but needs to be split to ICR+ICR2 in userspace for
3080 		 * backwards compatibility.
3081 		 */
3082 		if (set)
3083 			*ldr = kvm_apic_calc_x2apic_ldr(x2apic_id);
3084 
3085 		if (!kvm_x86_ops.x2apic_icr_is_split) {
3086 			if (set) {
3087 				icr = __kvm_lapic_get_reg(s->regs, APIC_ICR) |
3088 				      (u64)__kvm_lapic_get_reg(s->regs, APIC_ICR2) << 32;
3089 				__kvm_lapic_set_reg64(s->regs, APIC_ICR, icr);
3090 			} else {
3091 				icr = __kvm_lapic_get_reg64(s->regs, APIC_ICR);
3092 				__kvm_lapic_set_reg(s->regs, APIC_ICR2, icr >> 32);
3093 			}
3094 		}
3095 	}
3096 
3097 	return 0;
3098 }
3099 
3100 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
3101 {
3102 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s));
3103 
3104 	/*
3105 	 * Get calculated timer current count for remaining timer period (if
3106 	 * any) and store it in the returned register set.
3107 	 */
3108 	__kvm_lapic_set_reg(s->regs, APIC_TMCCT,
3109 			    __apic_read(vcpu->arch.apic, APIC_TMCCT));
3110 
3111 	return kvm_apic_state_fixup(vcpu, s, false);
3112 }
3113 
3114 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
3115 {
3116 	struct kvm_lapic *apic = vcpu->arch.apic;
3117 	int r;
3118 
3119 	kvm_x86_call(apicv_pre_state_restore)(vcpu);
3120 
3121 	/* set SPIV separately to get count of SW disabled APICs right */
3122 	apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV)));
3123 
3124 	r = kvm_apic_state_fixup(vcpu, s, true);
3125 	if (r) {
3126 		kvm_recalculate_apic_map(vcpu->kvm);
3127 		return r;
3128 	}
3129 	memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s));
3130 
3131 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
3132 	kvm_recalculate_apic_map(vcpu->kvm);
3133 	kvm_apic_set_version(vcpu);
3134 
3135 	apic_update_ppr(apic);
3136 	cancel_apic_timer(apic);
3137 	apic->lapic_timer.expired_tscdeadline = 0;
3138 	apic_update_lvtt(apic);
3139 	apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
3140 	update_divide_count(apic);
3141 	__start_apic_timer(apic, APIC_TMCCT);
3142 	kvm_lapic_set_reg(apic, APIC_TMCCT, 0);
3143 	kvm_apic_update_apicv(vcpu);
3144 	if (apic->apicv_active) {
3145 		kvm_x86_call(apicv_post_state_restore)(vcpu);
3146 		kvm_x86_call(hwapic_isr_update)(vcpu, apic_find_highest_isr(apic));
3147 	}
3148 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3149 	if (ioapic_in_kernel(vcpu->kvm))
3150 		kvm_rtc_eoi_tracking_restore_one(vcpu);
3151 
3152 	vcpu->arch.apic_arb_prio = 0;
3153 
3154 	return 0;
3155 }
3156 
3157 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu)
3158 {
3159 	struct hrtimer *timer;
3160 
3161 	if (!lapic_in_kernel(vcpu) ||
3162 		kvm_can_post_timer_interrupt(vcpu))
3163 		return;
3164 
3165 	timer = &vcpu->arch.apic->lapic_timer.timer;
3166 	if (hrtimer_cancel(timer))
3167 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD);
3168 }
3169 
3170 /*
3171  * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt
3172  *
3173  * Detect whether guest triggered PV EOI since the
3174  * last entry. If yes, set EOI on guests's behalf.
3175  * Clear PV EOI in guest memory in any case.
3176  */
3177 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu,
3178 					struct kvm_lapic *apic)
3179 {
3180 	int vector;
3181 	/*
3182 	 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host
3183 	 * and KVM_PV_EOI_ENABLED in guest memory as follows:
3184 	 *
3185 	 * KVM_APIC_PV_EOI_PENDING is unset:
3186 	 * 	-> host disabled PV EOI.
3187 	 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set:
3188 	 * 	-> host enabled PV EOI, guest did not execute EOI yet.
3189 	 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset:
3190 	 * 	-> host enabled PV EOI, guest executed EOI.
3191 	 */
3192 	BUG_ON(!pv_eoi_enabled(vcpu));
3193 
3194 	if (pv_eoi_test_and_clr_pending(vcpu))
3195 		return;
3196 	vector = apic_set_eoi(apic);
3197 	trace_kvm_pv_eoi(apic, vector);
3198 }
3199 
3200 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu)
3201 {
3202 	u32 data;
3203 
3204 	if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention))
3205 		apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic);
3206 
3207 	if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
3208 		return;
3209 
3210 	if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
3211 				  sizeof(u32)))
3212 		return;
3213 
3214 	apic_set_tpr(vcpu->arch.apic, data & 0xff);
3215 }
3216 
3217 /*
3218  * apic_sync_pv_eoi_to_guest - called before vmentry
3219  *
3220  * Detect whether it's safe to enable PV EOI and
3221  * if yes do so.
3222  */
3223 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu,
3224 					struct kvm_lapic *apic)
3225 {
3226 	if (!pv_eoi_enabled(vcpu) ||
3227 	    /* IRR set or many bits in ISR: could be nested. */
3228 	    apic->irr_pending ||
3229 	    /* Cache not set: could be safe but we don't bother. */
3230 	    apic->highest_isr_cache == -1 ||
3231 	    /* Need EOI to update ioapic. */
3232 	    kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) {
3233 		/*
3234 		 * PV EOI was disabled by apic_sync_pv_eoi_from_guest
3235 		 * so we need not do anything here.
3236 		 */
3237 		return;
3238 	}
3239 
3240 	pv_eoi_set_pending(apic->vcpu);
3241 }
3242 
3243 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu)
3244 {
3245 	u32 data, tpr;
3246 	int max_irr, max_isr;
3247 	struct kvm_lapic *apic = vcpu->arch.apic;
3248 
3249 	apic_sync_pv_eoi_to_guest(vcpu, apic);
3250 
3251 	if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
3252 		return;
3253 
3254 	tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff;
3255 	max_irr = apic_find_highest_irr(apic);
3256 	if (max_irr < 0)
3257 		max_irr = 0;
3258 	max_isr = apic_find_highest_isr(apic);
3259 	if (max_isr < 0)
3260 		max_isr = 0;
3261 	data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24);
3262 
3263 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
3264 				sizeof(u32));
3265 }
3266 
3267 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr)
3268 {
3269 	if (vapic_addr) {
3270 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
3271 					&vcpu->arch.apic->vapic_cache,
3272 					vapic_addr, sizeof(u32)))
3273 			return -EINVAL;
3274 		__set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
3275 	} else {
3276 		__clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
3277 	}
3278 
3279 	vcpu->arch.apic->vapic_addr = vapic_addr;
3280 	return 0;
3281 }
3282 
3283 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data)
3284 {
3285 	u32 low;
3286 
3287 	if (reg == APIC_ICR) {
3288 		*data = kvm_x2apic_icr_read(apic);
3289 		return 0;
3290 	}
3291 
3292 	if (kvm_lapic_reg_read(apic, reg, 4, &low))
3293 		return 1;
3294 
3295 	*data = low;
3296 
3297 	return 0;
3298 }
3299 
3300 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data)
3301 {
3302 	/*
3303 	 * ICR is a 64-bit register in x2APIC mode (and Hyper-V PV vAPIC) and
3304 	 * can be written as such, all other registers remain accessible only
3305 	 * through 32-bit reads/writes.
3306 	 */
3307 	if (reg == APIC_ICR)
3308 		return kvm_x2apic_icr_write(apic, data);
3309 
3310 	/* Bits 63:32 are reserved in all other registers. */
3311 	if (data >> 32)
3312 		return 1;
3313 
3314 	return kvm_lapic_reg_write(apic, reg, (u32)data);
3315 }
3316 
3317 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data)
3318 {
3319 	struct kvm_lapic *apic = vcpu->arch.apic;
3320 	u32 reg = (msr - APIC_BASE_MSR) << 4;
3321 
3322 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
3323 		return 1;
3324 
3325 	return kvm_lapic_msr_write(apic, reg, data);
3326 }
3327 
3328 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data)
3329 {
3330 	struct kvm_lapic *apic = vcpu->arch.apic;
3331 	u32 reg = (msr - APIC_BASE_MSR) << 4;
3332 
3333 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
3334 		return 1;
3335 
3336 	return kvm_lapic_msr_read(apic, reg, data);
3337 }
3338 
3339 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data)
3340 {
3341 	if (!lapic_in_kernel(vcpu))
3342 		return 1;
3343 
3344 	return kvm_lapic_msr_write(vcpu->arch.apic, reg, data);
3345 }
3346 
3347 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data)
3348 {
3349 	if (!lapic_in_kernel(vcpu))
3350 		return 1;
3351 
3352 	return kvm_lapic_msr_read(vcpu->arch.apic, reg, data);
3353 }
3354 
3355 int kvm_lapic_set_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len)
3356 {
3357 	u64 addr = data & ~KVM_MSR_ENABLED;
3358 	struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data;
3359 	unsigned long new_len;
3360 	int ret;
3361 
3362 	if (!IS_ALIGNED(addr, 4))
3363 		return 1;
3364 
3365 	if (data & KVM_MSR_ENABLED) {
3366 		if (addr == ghc->gpa && len <= ghc->len)
3367 			new_len = ghc->len;
3368 		else
3369 			new_len = len;
3370 
3371 		ret = kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len);
3372 		if (ret)
3373 			return ret;
3374 	}
3375 
3376 	vcpu->arch.pv_eoi.msr_val = data;
3377 
3378 	return 0;
3379 }
3380 
3381 int kvm_apic_accept_events(struct kvm_vcpu *vcpu)
3382 {
3383 	struct kvm_lapic *apic = vcpu->arch.apic;
3384 	u8 sipi_vector;
3385 	int r;
3386 
3387 	if (!kvm_apic_has_pending_init_or_sipi(vcpu))
3388 		return 0;
3389 
3390 	if (is_guest_mode(vcpu)) {
3391 		r = kvm_check_nested_events(vcpu);
3392 		if (r < 0)
3393 			return r == -EBUSY ? 0 : r;
3394 		/*
3395 		 * Continue processing INIT/SIPI even if a nested VM-Exit
3396 		 * occurred, e.g. pending SIPIs should be dropped if INIT+SIPI
3397 		 * are blocked as a result of transitioning to VMX root mode.
3398 		 */
3399 	}
3400 
3401 	/*
3402 	 * INITs are blocked while CPU is in specific states (SMM, VMX root
3403 	 * mode, SVM with GIF=0), while SIPIs are dropped if the CPU isn't in
3404 	 * wait-for-SIPI (WFS).
3405 	 */
3406 	if (!kvm_apic_init_sipi_allowed(vcpu)) {
3407 		WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED);
3408 		clear_bit(KVM_APIC_SIPI, &apic->pending_events);
3409 		return 0;
3410 	}
3411 
3412 	if (test_and_clear_bit(KVM_APIC_INIT, &apic->pending_events)) {
3413 		kvm_vcpu_reset(vcpu, true);
3414 		if (kvm_vcpu_is_bsp(apic->vcpu))
3415 			kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
3416 		else
3417 			kvm_set_mp_state(vcpu, KVM_MP_STATE_INIT_RECEIVED);
3418 	}
3419 	if (test_and_clear_bit(KVM_APIC_SIPI, &apic->pending_events)) {
3420 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
3421 			/* evaluate pending_events before reading the vector */
3422 			smp_rmb();
3423 			sipi_vector = apic->sipi_vector;
3424 			kvm_x86_call(vcpu_deliver_sipi_vector)(vcpu,
3425 							       sipi_vector);
3426 			kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
3427 		}
3428 	}
3429 	return 0;
3430 }
3431 
3432 void kvm_lapic_exit(void)
3433 {
3434 	static_key_deferred_flush(&apic_hw_disabled);
3435 	WARN_ON(static_branch_unlikely(&apic_hw_disabled.key));
3436 	static_key_deferred_flush(&apic_sw_disabled);
3437 	WARN_ON(static_branch_unlikely(&apic_sw_disabled.key));
3438 }
3439