1 // SPDX-License-Identifier: GPL-2.0-only 2 3 /* 4 * Local APIC virtualization 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2007 Novell 8 * Copyright (C) 2007 Intel 9 * Copyright 2009 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Dor Laor <dor.laor@qumranet.com> 13 * Gregory Haskins <ghaskins@novell.com> 14 * Yaozu (Eddie) Dong <eddie.dong@intel.com> 15 * 16 * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation. 17 */ 18 19 #include <linux/kvm_host.h> 20 #include <linux/kvm.h> 21 #include <linux/mm.h> 22 #include <linux/highmem.h> 23 #include <linux/smp.h> 24 #include <linux/hrtimer.h> 25 #include <linux/io.h> 26 #include <linux/export.h> 27 #include <linux/math64.h> 28 #include <linux/slab.h> 29 #include <asm/processor.h> 30 #include <asm/msr.h> 31 #include <asm/page.h> 32 #include <asm/current.h> 33 #include <asm/apicdef.h> 34 #include <asm/delay.h> 35 #include <linux/atomic.h> 36 #include <linux/jump_label.h> 37 #include "kvm_cache_regs.h" 38 #include "irq.h" 39 #include "trace.h" 40 #include "x86.h" 41 #include "cpuid.h" 42 #include "hyperv.h" 43 44 #ifndef CONFIG_X86_64 45 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y)) 46 #else 47 #define mod_64(x, y) ((x) % (y)) 48 #endif 49 50 #define PRId64 "d" 51 #define PRIx64 "llx" 52 #define PRIu64 "u" 53 #define PRIo64 "o" 54 55 /* 14 is the version for Xeon and Pentium 8.4.8*/ 56 #define APIC_VERSION (0x14UL | ((KVM_APIC_LVT_NUM - 1) << 16)) 57 #define LAPIC_MMIO_LENGTH (1 << 12) 58 /* followed define is not in apicdef.h */ 59 #define MAX_APIC_VECTOR 256 60 #define APIC_VECTORS_PER_REG 32 61 62 #define APIC_BROADCAST 0xFF 63 #define X2APIC_BROADCAST 0xFFFFFFFFul 64 65 static bool lapic_timer_advance_dynamic __read_mostly; 66 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN 100 /* clock cycles */ 67 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX 10000 /* clock cycles */ 68 #define LAPIC_TIMER_ADVANCE_NS_INIT 1000 69 #define LAPIC_TIMER_ADVANCE_NS_MAX 5000 70 /* step-by-step approximation to mitigate fluctuation */ 71 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8 72 73 static inline int apic_test_vector(int vec, void *bitmap) 74 { 75 return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 76 } 77 78 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector) 79 { 80 struct kvm_lapic *apic = vcpu->arch.apic; 81 82 return apic_test_vector(vector, apic->regs + APIC_ISR) || 83 apic_test_vector(vector, apic->regs + APIC_IRR); 84 } 85 86 static inline int __apic_test_and_set_vector(int vec, void *bitmap) 87 { 88 return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 89 } 90 91 static inline int __apic_test_and_clear_vector(int vec, void *bitmap) 92 { 93 return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 94 } 95 96 struct static_key_deferred apic_hw_disabled __read_mostly; 97 struct static_key_deferred apic_sw_disabled __read_mostly; 98 99 static inline int apic_enabled(struct kvm_lapic *apic) 100 { 101 return kvm_apic_sw_enabled(apic) && kvm_apic_hw_enabled(apic); 102 } 103 104 #define LVT_MASK \ 105 (APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK) 106 107 #define LINT_MASK \ 108 (LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \ 109 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER) 110 111 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic) 112 { 113 return apic->vcpu->vcpu_id; 114 } 115 116 bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu) 117 { 118 return pi_inject_timer && kvm_vcpu_apicv_active(vcpu); 119 } 120 EXPORT_SYMBOL_GPL(kvm_can_post_timer_interrupt); 121 122 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu) 123 { 124 return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE; 125 } 126 127 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map, 128 u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) { 129 switch (map->mode) { 130 case KVM_APIC_MODE_X2APIC: { 131 u32 offset = (dest_id >> 16) * 16; 132 u32 max_apic_id = map->max_apic_id; 133 134 if (offset <= max_apic_id) { 135 u8 cluster_size = min(max_apic_id - offset + 1, 16U); 136 137 offset = array_index_nospec(offset, map->max_apic_id + 1); 138 *cluster = &map->phys_map[offset]; 139 *mask = dest_id & (0xffff >> (16 - cluster_size)); 140 } else { 141 *mask = 0; 142 } 143 144 return true; 145 } 146 case KVM_APIC_MODE_XAPIC_FLAT: 147 *cluster = map->xapic_flat_map; 148 *mask = dest_id & 0xff; 149 return true; 150 case KVM_APIC_MODE_XAPIC_CLUSTER: 151 *cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf]; 152 *mask = dest_id & 0xf; 153 return true; 154 default: 155 /* Not optimized. */ 156 return false; 157 } 158 } 159 160 static void kvm_apic_map_free(struct rcu_head *rcu) 161 { 162 struct kvm_apic_map *map = container_of(rcu, struct kvm_apic_map, rcu); 163 164 kvfree(map); 165 } 166 167 static void recalculate_apic_map(struct kvm *kvm) 168 { 169 struct kvm_apic_map *new, *old = NULL; 170 struct kvm_vcpu *vcpu; 171 int i; 172 u32 max_id = 255; /* enough space for any xAPIC ID */ 173 174 mutex_lock(&kvm->arch.apic_map_lock); 175 176 kvm_for_each_vcpu(i, vcpu, kvm) 177 if (kvm_apic_present(vcpu)) 178 max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic)); 179 180 new = kvzalloc(sizeof(struct kvm_apic_map) + 181 sizeof(struct kvm_lapic *) * ((u64)max_id + 1), 182 GFP_KERNEL_ACCOUNT); 183 184 if (!new) 185 goto out; 186 187 new->max_apic_id = max_id; 188 189 kvm_for_each_vcpu(i, vcpu, kvm) { 190 struct kvm_lapic *apic = vcpu->arch.apic; 191 struct kvm_lapic **cluster; 192 u16 mask; 193 u32 ldr; 194 u8 xapic_id; 195 u32 x2apic_id; 196 197 if (!kvm_apic_present(vcpu)) 198 continue; 199 200 xapic_id = kvm_xapic_id(apic); 201 x2apic_id = kvm_x2apic_id(apic); 202 203 /* Hotplug hack: see kvm_apic_match_physical_addr(), ... */ 204 if ((apic_x2apic_mode(apic) || x2apic_id > 0xff) && 205 x2apic_id <= new->max_apic_id) 206 new->phys_map[x2apic_id] = apic; 207 /* 208 * ... xAPIC ID of VCPUs with APIC ID > 0xff will wrap-around, 209 * prevent them from masking VCPUs with APIC ID <= 0xff. 210 */ 211 if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id]) 212 new->phys_map[xapic_id] = apic; 213 214 if (!kvm_apic_sw_enabled(apic)) 215 continue; 216 217 ldr = kvm_lapic_get_reg(apic, APIC_LDR); 218 219 if (apic_x2apic_mode(apic)) { 220 new->mode |= KVM_APIC_MODE_X2APIC; 221 } else if (ldr) { 222 ldr = GET_APIC_LOGICAL_ID(ldr); 223 if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT) 224 new->mode |= KVM_APIC_MODE_XAPIC_FLAT; 225 else 226 new->mode |= KVM_APIC_MODE_XAPIC_CLUSTER; 227 } 228 229 if (!kvm_apic_map_get_logical_dest(new, ldr, &cluster, &mask)) 230 continue; 231 232 if (mask) 233 cluster[ffs(mask) - 1] = apic; 234 } 235 out: 236 old = rcu_dereference_protected(kvm->arch.apic_map, 237 lockdep_is_held(&kvm->arch.apic_map_lock)); 238 rcu_assign_pointer(kvm->arch.apic_map, new); 239 mutex_unlock(&kvm->arch.apic_map_lock); 240 241 if (old) 242 call_rcu(&old->rcu, kvm_apic_map_free); 243 244 kvm_make_scan_ioapic_request(kvm); 245 } 246 247 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val) 248 { 249 bool enabled = val & APIC_SPIV_APIC_ENABLED; 250 251 kvm_lapic_set_reg(apic, APIC_SPIV, val); 252 253 if (enabled != apic->sw_enabled) { 254 apic->sw_enabled = enabled; 255 if (enabled) 256 static_key_slow_dec_deferred(&apic_sw_disabled); 257 else 258 static_key_slow_inc(&apic_sw_disabled.key); 259 260 recalculate_apic_map(apic->vcpu->kvm); 261 } 262 } 263 264 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id) 265 { 266 kvm_lapic_set_reg(apic, APIC_ID, id << 24); 267 recalculate_apic_map(apic->vcpu->kvm); 268 } 269 270 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id) 271 { 272 kvm_lapic_set_reg(apic, APIC_LDR, id); 273 recalculate_apic_map(apic->vcpu->kvm); 274 } 275 276 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id) 277 { 278 return ((id >> 4) << 16) | (1 << (id & 0xf)); 279 } 280 281 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id) 282 { 283 u32 ldr = kvm_apic_calc_x2apic_ldr(id); 284 285 WARN_ON_ONCE(id != apic->vcpu->vcpu_id); 286 287 kvm_lapic_set_reg(apic, APIC_ID, id); 288 kvm_lapic_set_reg(apic, APIC_LDR, ldr); 289 recalculate_apic_map(apic->vcpu->kvm); 290 } 291 292 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type) 293 { 294 return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED); 295 } 296 297 static inline int apic_lvt_vector(struct kvm_lapic *apic, int lvt_type) 298 { 299 return kvm_lapic_get_reg(apic, lvt_type) & APIC_VECTOR_MASK; 300 } 301 302 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic) 303 { 304 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT; 305 } 306 307 static inline int apic_lvtt_period(struct kvm_lapic *apic) 308 { 309 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC; 310 } 311 312 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic) 313 { 314 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE; 315 } 316 317 static inline int apic_lvt_nmi_mode(u32 lvt_val) 318 { 319 return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI; 320 } 321 322 void kvm_apic_set_version(struct kvm_vcpu *vcpu) 323 { 324 struct kvm_lapic *apic = vcpu->arch.apic; 325 struct kvm_cpuid_entry2 *feat; 326 u32 v = APIC_VERSION; 327 328 if (!lapic_in_kernel(vcpu)) 329 return; 330 331 /* 332 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation) 333 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with 334 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC 335 * version first and level-triggered interrupts never get EOIed in 336 * IOAPIC. 337 */ 338 feat = kvm_find_cpuid_entry(apic->vcpu, 0x1, 0); 339 if (feat && (feat->ecx & (1 << (X86_FEATURE_X2APIC & 31))) && 340 !ioapic_in_kernel(vcpu->kvm)) 341 v |= APIC_LVR_DIRECTED_EOI; 342 kvm_lapic_set_reg(apic, APIC_LVR, v); 343 } 344 345 static const unsigned int apic_lvt_mask[KVM_APIC_LVT_NUM] = { 346 LVT_MASK , /* part LVTT mask, timer mode mask added at runtime */ 347 LVT_MASK | APIC_MODE_MASK, /* LVTTHMR */ 348 LVT_MASK | APIC_MODE_MASK, /* LVTPC */ 349 LINT_MASK, LINT_MASK, /* LVT0-1 */ 350 LVT_MASK /* LVTERR */ 351 }; 352 353 static int find_highest_vector(void *bitmap) 354 { 355 int vec; 356 u32 *reg; 357 358 for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG; 359 vec >= 0; vec -= APIC_VECTORS_PER_REG) { 360 reg = bitmap + REG_POS(vec); 361 if (*reg) 362 return __fls(*reg) + vec; 363 } 364 365 return -1; 366 } 367 368 static u8 count_vectors(void *bitmap) 369 { 370 int vec; 371 u32 *reg; 372 u8 count = 0; 373 374 for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) { 375 reg = bitmap + REG_POS(vec); 376 count += hweight32(*reg); 377 } 378 379 return count; 380 } 381 382 bool __kvm_apic_update_irr(u32 *pir, void *regs, int *max_irr) 383 { 384 u32 i, vec; 385 u32 pir_val, irr_val, prev_irr_val; 386 int max_updated_irr; 387 388 max_updated_irr = -1; 389 *max_irr = -1; 390 391 for (i = vec = 0; i <= 7; i++, vec += 32) { 392 pir_val = READ_ONCE(pir[i]); 393 irr_val = *((u32 *)(regs + APIC_IRR + i * 0x10)); 394 if (pir_val) { 395 prev_irr_val = irr_val; 396 irr_val |= xchg(&pir[i], 0); 397 *((u32 *)(regs + APIC_IRR + i * 0x10)) = irr_val; 398 if (prev_irr_val != irr_val) { 399 max_updated_irr = 400 __fls(irr_val ^ prev_irr_val) + vec; 401 } 402 } 403 if (irr_val) 404 *max_irr = __fls(irr_val) + vec; 405 } 406 407 return ((max_updated_irr != -1) && 408 (max_updated_irr == *max_irr)); 409 } 410 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr); 411 412 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir, int *max_irr) 413 { 414 struct kvm_lapic *apic = vcpu->arch.apic; 415 416 return __kvm_apic_update_irr(pir, apic->regs, max_irr); 417 } 418 EXPORT_SYMBOL_GPL(kvm_apic_update_irr); 419 420 static inline int apic_search_irr(struct kvm_lapic *apic) 421 { 422 return find_highest_vector(apic->regs + APIC_IRR); 423 } 424 425 static inline int apic_find_highest_irr(struct kvm_lapic *apic) 426 { 427 int result; 428 429 /* 430 * Note that irr_pending is just a hint. It will be always 431 * true with virtual interrupt delivery enabled. 432 */ 433 if (!apic->irr_pending) 434 return -1; 435 436 result = apic_search_irr(apic); 437 ASSERT(result == -1 || result >= 16); 438 439 return result; 440 } 441 442 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic) 443 { 444 struct kvm_vcpu *vcpu; 445 446 vcpu = apic->vcpu; 447 448 if (unlikely(vcpu->arch.apicv_active)) { 449 /* need to update RVI */ 450 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR); 451 kvm_x86_ops->hwapic_irr_update(vcpu, 452 apic_find_highest_irr(apic)); 453 } else { 454 apic->irr_pending = false; 455 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR); 456 if (apic_search_irr(apic) != -1) 457 apic->irr_pending = true; 458 } 459 } 460 461 static inline void apic_set_isr(int vec, struct kvm_lapic *apic) 462 { 463 struct kvm_vcpu *vcpu; 464 465 if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR)) 466 return; 467 468 vcpu = apic->vcpu; 469 470 /* 471 * With APIC virtualization enabled, all caching is disabled 472 * because the processor can modify ISR under the hood. Instead 473 * just set SVI. 474 */ 475 if (unlikely(vcpu->arch.apicv_active)) 476 kvm_x86_ops->hwapic_isr_update(vcpu, vec); 477 else { 478 ++apic->isr_count; 479 BUG_ON(apic->isr_count > MAX_APIC_VECTOR); 480 /* 481 * ISR (in service register) bit is set when injecting an interrupt. 482 * The highest vector is injected. Thus the latest bit set matches 483 * the highest bit in ISR. 484 */ 485 apic->highest_isr_cache = vec; 486 } 487 } 488 489 static inline int apic_find_highest_isr(struct kvm_lapic *apic) 490 { 491 int result; 492 493 /* 494 * Note that isr_count is always 1, and highest_isr_cache 495 * is always -1, with APIC virtualization enabled. 496 */ 497 if (!apic->isr_count) 498 return -1; 499 if (likely(apic->highest_isr_cache != -1)) 500 return apic->highest_isr_cache; 501 502 result = find_highest_vector(apic->regs + APIC_ISR); 503 ASSERT(result == -1 || result >= 16); 504 505 return result; 506 } 507 508 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic) 509 { 510 struct kvm_vcpu *vcpu; 511 if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR)) 512 return; 513 514 vcpu = apic->vcpu; 515 516 /* 517 * We do get here for APIC virtualization enabled if the guest 518 * uses the Hyper-V APIC enlightenment. In this case we may need 519 * to trigger a new interrupt delivery by writing the SVI field; 520 * on the other hand isr_count and highest_isr_cache are unused 521 * and must be left alone. 522 */ 523 if (unlikely(vcpu->arch.apicv_active)) 524 kvm_x86_ops->hwapic_isr_update(vcpu, 525 apic_find_highest_isr(apic)); 526 else { 527 --apic->isr_count; 528 BUG_ON(apic->isr_count < 0); 529 apic->highest_isr_cache = -1; 530 } 531 } 532 533 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu) 534 { 535 /* This may race with setting of irr in __apic_accept_irq() and 536 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq 537 * will cause vmexit immediately and the value will be recalculated 538 * on the next vmentry. 539 */ 540 return apic_find_highest_irr(vcpu->arch.apic); 541 } 542 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr); 543 544 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 545 int vector, int level, int trig_mode, 546 struct dest_map *dest_map); 547 548 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq, 549 struct dest_map *dest_map) 550 { 551 struct kvm_lapic *apic = vcpu->arch.apic; 552 553 return __apic_accept_irq(apic, irq->delivery_mode, irq->vector, 554 irq->level, irq->trig_mode, dest_map); 555 } 556 557 static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map, 558 struct kvm_lapic_irq *irq, u32 min) 559 { 560 int i, count = 0; 561 struct kvm_vcpu *vcpu; 562 563 if (min > map->max_apic_id) 564 return 0; 565 566 for_each_set_bit(i, ipi_bitmap, 567 min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) { 568 if (map->phys_map[min + i]) { 569 vcpu = map->phys_map[min + i]->vcpu; 570 count += kvm_apic_set_irq(vcpu, irq, NULL); 571 } 572 } 573 574 return count; 575 } 576 577 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 578 unsigned long ipi_bitmap_high, u32 min, 579 unsigned long icr, int op_64_bit) 580 { 581 struct kvm_apic_map *map; 582 struct kvm_lapic_irq irq = {0}; 583 int cluster_size = op_64_bit ? 64 : 32; 584 int count; 585 586 if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK)) 587 return -KVM_EINVAL; 588 589 irq.vector = icr & APIC_VECTOR_MASK; 590 irq.delivery_mode = icr & APIC_MODE_MASK; 591 irq.level = (icr & APIC_INT_ASSERT) != 0; 592 irq.trig_mode = icr & APIC_INT_LEVELTRIG; 593 594 rcu_read_lock(); 595 map = rcu_dereference(kvm->arch.apic_map); 596 597 count = -EOPNOTSUPP; 598 if (likely(map)) { 599 count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min); 600 min += cluster_size; 601 count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min); 602 } 603 604 rcu_read_unlock(); 605 return count; 606 } 607 608 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val) 609 { 610 611 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val, 612 sizeof(val)); 613 } 614 615 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val) 616 { 617 618 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val, 619 sizeof(*val)); 620 } 621 622 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu) 623 { 624 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED; 625 } 626 627 static bool pv_eoi_get_pending(struct kvm_vcpu *vcpu) 628 { 629 u8 val; 630 if (pv_eoi_get_user(vcpu, &val) < 0) { 631 printk(KERN_WARNING "Can't read EOI MSR value: 0x%llx\n", 632 (unsigned long long)vcpu->arch.pv_eoi.msr_val); 633 return false; 634 } 635 return val & 0x1; 636 } 637 638 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu) 639 { 640 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0) { 641 printk(KERN_WARNING "Can't set EOI MSR value: 0x%llx\n", 642 (unsigned long long)vcpu->arch.pv_eoi.msr_val); 643 return; 644 } 645 __set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 646 } 647 648 static void pv_eoi_clr_pending(struct kvm_vcpu *vcpu) 649 { 650 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0) { 651 printk(KERN_WARNING "Can't clear EOI MSR value: 0x%llx\n", 652 (unsigned long long)vcpu->arch.pv_eoi.msr_val); 653 return; 654 } 655 __clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 656 } 657 658 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr) 659 { 660 int highest_irr; 661 if (apic->vcpu->arch.apicv_active) 662 highest_irr = kvm_x86_ops->sync_pir_to_irr(apic->vcpu); 663 else 664 highest_irr = apic_find_highest_irr(apic); 665 if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr) 666 return -1; 667 return highest_irr; 668 } 669 670 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr) 671 { 672 u32 tpr, isrv, ppr, old_ppr; 673 int isr; 674 675 old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI); 676 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI); 677 isr = apic_find_highest_isr(apic); 678 isrv = (isr != -1) ? isr : 0; 679 680 if ((tpr & 0xf0) >= (isrv & 0xf0)) 681 ppr = tpr & 0xff; 682 else 683 ppr = isrv & 0xf0; 684 685 *new_ppr = ppr; 686 if (old_ppr != ppr) 687 kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr); 688 689 return ppr < old_ppr; 690 } 691 692 static void apic_update_ppr(struct kvm_lapic *apic) 693 { 694 u32 ppr; 695 696 if (__apic_update_ppr(apic, &ppr) && 697 apic_has_interrupt_for_ppr(apic, ppr) != -1) 698 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 699 } 700 701 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu) 702 { 703 apic_update_ppr(vcpu->arch.apic); 704 } 705 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr); 706 707 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr) 708 { 709 kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr); 710 apic_update_ppr(apic); 711 } 712 713 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda) 714 { 715 return mda == (apic_x2apic_mode(apic) ? 716 X2APIC_BROADCAST : APIC_BROADCAST); 717 } 718 719 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda) 720 { 721 if (kvm_apic_broadcast(apic, mda)) 722 return true; 723 724 if (apic_x2apic_mode(apic)) 725 return mda == kvm_x2apic_id(apic); 726 727 /* 728 * Hotplug hack: Make LAPIC in xAPIC mode also accept interrupts as if 729 * it were in x2APIC mode. Hotplugged VCPUs start in xAPIC mode and 730 * this allows unique addressing of VCPUs with APIC ID over 0xff. 731 * The 0xff condition is needed because writeable xAPIC ID. 732 */ 733 if (kvm_x2apic_id(apic) > 0xff && mda == kvm_x2apic_id(apic)) 734 return true; 735 736 return mda == kvm_xapic_id(apic); 737 } 738 739 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda) 740 { 741 u32 logical_id; 742 743 if (kvm_apic_broadcast(apic, mda)) 744 return true; 745 746 logical_id = kvm_lapic_get_reg(apic, APIC_LDR); 747 748 if (apic_x2apic_mode(apic)) 749 return ((logical_id >> 16) == (mda >> 16)) 750 && (logical_id & mda & 0xffff) != 0; 751 752 logical_id = GET_APIC_LOGICAL_ID(logical_id); 753 754 switch (kvm_lapic_get_reg(apic, APIC_DFR)) { 755 case APIC_DFR_FLAT: 756 return (logical_id & mda) != 0; 757 case APIC_DFR_CLUSTER: 758 return ((logical_id >> 4) == (mda >> 4)) 759 && (logical_id & mda & 0xf) != 0; 760 default: 761 return false; 762 } 763 } 764 765 /* The KVM local APIC implementation has two quirks: 766 * 767 * - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs 768 * in xAPIC mode if the "destination & 0xff" matches its xAPIC ID. 769 * KVM doesn't do that aliasing. 770 * 771 * - in-kernel IOAPIC messages have to be delivered directly to 772 * x2APIC, because the kernel does not support interrupt remapping. 773 * In order to support broadcast without interrupt remapping, x2APIC 774 * rewrites the destination of non-IPI messages from APIC_BROADCAST 775 * to X2APIC_BROADCAST. 776 * 777 * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API. This is 778 * important when userspace wants to use x2APIC-format MSIs, because 779 * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7". 780 */ 781 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id, 782 struct kvm_lapic *source, struct kvm_lapic *target) 783 { 784 bool ipi = source != NULL; 785 786 if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled && 787 !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target)) 788 return X2APIC_BROADCAST; 789 790 return dest_id; 791 } 792 793 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source, 794 int shorthand, unsigned int dest, int dest_mode) 795 { 796 struct kvm_lapic *target = vcpu->arch.apic; 797 u32 mda = kvm_apic_mda(vcpu, dest, source, target); 798 799 ASSERT(target); 800 switch (shorthand) { 801 case APIC_DEST_NOSHORT: 802 if (dest_mode == APIC_DEST_PHYSICAL) 803 return kvm_apic_match_physical_addr(target, mda); 804 else 805 return kvm_apic_match_logical_addr(target, mda); 806 case APIC_DEST_SELF: 807 return target == source; 808 case APIC_DEST_ALLINC: 809 return true; 810 case APIC_DEST_ALLBUT: 811 return target != source; 812 default: 813 return false; 814 } 815 } 816 EXPORT_SYMBOL_GPL(kvm_apic_match_dest); 817 818 int kvm_vector_to_index(u32 vector, u32 dest_vcpus, 819 const unsigned long *bitmap, u32 bitmap_size) 820 { 821 u32 mod; 822 int i, idx = -1; 823 824 mod = vector % dest_vcpus; 825 826 for (i = 0; i <= mod; i++) { 827 idx = find_next_bit(bitmap, bitmap_size, idx + 1); 828 BUG_ON(idx == bitmap_size); 829 } 830 831 return idx; 832 } 833 834 static void kvm_apic_disabled_lapic_found(struct kvm *kvm) 835 { 836 if (!kvm->arch.disabled_lapic_found) { 837 kvm->arch.disabled_lapic_found = true; 838 printk(KERN_INFO 839 "Disabled LAPIC found during irq injection\n"); 840 } 841 } 842 843 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src, 844 struct kvm_lapic_irq *irq, struct kvm_apic_map *map) 845 { 846 if (kvm->arch.x2apic_broadcast_quirk_disabled) { 847 if ((irq->dest_id == APIC_BROADCAST && 848 map->mode != KVM_APIC_MODE_X2APIC)) 849 return true; 850 if (irq->dest_id == X2APIC_BROADCAST) 851 return true; 852 } else { 853 bool x2apic_ipi = src && *src && apic_x2apic_mode(*src); 854 if (irq->dest_id == (x2apic_ipi ? 855 X2APIC_BROADCAST : APIC_BROADCAST)) 856 return true; 857 } 858 859 return false; 860 } 861 862 /* Return true if the interrupt can be handled by using *bitmap as index mask 863 * for valid destinations in *dst array. 864 * Return false if kvm_apic_map_get_dest_lapic did nothing useful. 865 * Note: we may have zero kvm_lapic destinations when we return true, which 866 * means that the interrupt should be dropped. In this case, *bitmap would be 867 * zero and *dst undefined. 868 */ 869 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm, 870 struct kvm_lapic **src, struct kvm_lapic_irq *irq, 871 struct kvm_apic_map *map, struct kvm_lapic ***dst, 872 unsigned long *bitmap) 873 { 874 int i, lowest; 875 876 if (irq->shorthand == APIC_DEST_SELF && src) { 877 *dst = src; 878 *bitmap = 1; 879 return true; 880 } else if (irq->shorthand) 881 return false; 882 883 if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map)) 884 return false; 885 886 if (irq->dest_mode == APIC_DEST_PHYSICAL) { 887 if (irq->dest_id > map->max_apic_id) { 888 *bitmap = 0; 889 } else { 890 u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1); 891 *dst = &map->phys_map[dest_id]; 892 *bitmap = 1; 893 } 894 return true; 895 } 896 897 *bitmap = 0; 898 if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst, 899 (u16 *)bitmap)) 900 return false; 901 902 if (!kvm_lowest_prio_delivery(irq)) 903 return true; 904 905 if (!kvm_vector_hashing_enabled()) { 906 lowest = -1; 907 for_each_set_bit(i, bitmap, 16) { 908 if (!(*dst)[i]) 909 continue; 910 if (lowest < 0) 911 lowest = i; 912 else if (kvm_apic_compare_prio((*dst)[i]->vcpu, 913 (*dst)[lowest]->vcpu) < 0) 914 lowest = i; 915 } 916 } else { 917 if (!*bitmap) 918 return true; 919 920 lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap), 921 bitmap, 16); 922 923 if (!(*dst)[lowest]) { 924 kvm_apic_disabled_lapic_found(kvm); 925 *bitmap = 0; 926 return true; 927 } 928 } 929 930 *bitmap = (lowest >= 0) ? 1 << lowest : 0; 931 932 return true; 933 } 934 935 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src, 936 struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map) 937 { 938 struct kvm_apic_map *map; 939 unsigned long bitmap; 940 struct kvm_lapic **dst = NULL; 941 int i; 942 bool ret; 943 944 *r = -1; 945 946 if (irq->shorthand == APIC_DEST_SELF) { 947 *r = kvm_apic_set_irq(src->vcpu, irq, dest_map); 948 return true; 949 } 950 951 rcu_read_lock(); 952 map = rcu_dereference(kvm->arch.apic_map); 953 954 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap); 955 if (ret) { 956 *r = 0; 957 for_each_set_bit(i, &bitmap, 16) { 958 if (!dst[i]) 959 continue; 960 *r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map); 961 } 962 } 963 964 rcu_read_unlock(); 965 return ret; 966 } 967 968 /* 969 * This routine tries to handle interrupts in posted mode, here is how 970 * it deals with different cases: 971 * - For single-destination interrupts, handle it in posted mode 972 * - Else if vector hashing is enabled and it is a lowest-priority 973 * interrupt, handle it in posted mode and use the following mechanism 974 * to find the destination vCPU. 975 * 1. For lowest-priority interrupts, store all the possible 976 * destination vCPUs in an array. 977 * 2. Use "guest vector % max number of destination vCPUs" to find 978 * the right destination vCPU in the array for the lowest-priority 979 * interrupt. 980 * - Otherwise, use remapped mode to inject the interrupt. 981 */ 982 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq, 983 struct kvm_vcpu **dest_vcpu) 984 { 985 struct kvm_apic_map *map; 986 unsigned long bitmap; 987 struct kvm_lapic **dst = NULL; 988 bool ret = false; 989 990 if (irq->shorthand) 991 return false; 992 993 rcu_read_lock(); 994 map = rcu_dereference(kvm->arch.apic_map); 995 996 if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) && 997 hweight16(bitmap) == 1) { 998 unsigned long i = find_first_bit(&bitmap, 16); 999 1000 if (dst[i]) { 1001 *dest_vcpu = dst[i]->vcpu; 1002 ret = true; 1003 } 1004 } 1005 1006 rcu_read_unlock(); 1007 return ret; 1008 } 1009 1010 /* 1011 * Add a pending IRQ into lapic. 1012 * Return 1 if successfully added and 0 if discarded. 1013 */ 1014 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 1015 int vector, int level, int trig_mode, 1016 struct dest_map *dest_map) 1017 { 1018 int result = 0; 1019 struct kvm_vcpu *vcpu = apic->vcpu; 1020 1021 trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode, 1022 trig_mode, vector); 1023 switch (delivery_mode) { 1024 case APIC_DM_LOWEST: 1025 vcpu->arch.apic_arb_prio++; 1026 /* fall through */ 1027 case APIC_DM_FIXED: 1028 if (unlikely(trig_mode && !level)) 1029 break; 1030 1031 /* FIXME add logic for vcpu on reset */ 1032 if (unlikely(!apic_enabled(apic))) 1033 break; 1034 1035 result = 1; 1036 1037 if (dest_map) { 1038 __set_bit(vcpu->vcpu_id, dest_map->map); 1039 dest_map->vectors[vcpu->vcpu_id] = vector; 1040 } 1041 1042 if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) { 1043 if (trig_mode) 1044 kvm_lapic_set_vector(vector, 1045 apic->regs + APIC_TMR); 1046 else 1047 kvm_lapic_clear_vector(vector, 1048 apic->regs + APIC_TMR); 1049 } 1050 1051 if (kvm_x86_ops->deliver_posted_interrupt(vcpu, vector)) { 1052 kvm_lapic_set_irr(vector, apic); 1053 kvm_make_request(KVM_REQ_EVENT, vcpu); 1054 kvm_vcpu_kick(vcpu); 1055 } 1056 break; 1057 1058 case APIC_DM_REMRD: 1059 result = 1; 1060 vcpu->arch.pv.pv_unhalted = 1; 1061 kvm_make_request(KVM_REQ_EVENT, vcpu); 1062 kvm_vcpu_kick(vcpu); 1063 break; 1064 1065 case APIC_DM_SMI: 1066 result = 1; 1067 kvm_make_request(KVM_REQ_SMI, vcpu); 1068 kvm_vcpu_kick(vcpu); 1069 break; 1070 1071 case APIC_DM_NMI: 1072 result = 1; 1073 kvm_inject_nmi(vcpu); 1074 kvm_vcpu_kick(vcpu); 1075 break; 1076 1077 case APIC_DM_INIT: 1078 if (!trig_mode || level) { 1079 result = 1; 1080 /* assumes that there are only KVM_APIC_INIT/SIPI */ 1081 apic->pending_events = (1UL << KVM_APIC_INIT); 1082 kvm_make_request(KVM_REQ_EVENT, vcpu); 1083 kvm_vcpu_kick(vcpu); 1084 } 1085 break; 1086 1087 case APIC_DM_STARTUP: 1088 result = 1; 1089 apic->sipi_vector = vector; 1090 /* make sure sipi_vector is visible for the receiver */ 1091 smp_wmb(); 1092 set_bit(KVM_APIC_SIPI, &apic->pending_events); 1093 kvm_make_request(KVM_REQ_EVENT, vcpu); 1094 kvm_vcpu_kick(vcpu); 1095 break; 1096 1097 case APIC_DM_EXTINT: 1098 /* 1099 * Should only be called by kvm_apic_local_deliver() with LVT0, 1100 * before NMI watchdog was enabled. Already handled by 1101 * kvm_apic_accept_pic_intr(). 1102 */ 1103 break; 1104 1105 default: 1106 printk(KERN_ERR "TODO: unsupported delivery mode %x\n", 1107 delivery_mode); 1108 break; 1109 } 1110 return result; 1111 } 1112 1113 /* 1114 * This routine identifies the destination vcpus mask meant to receive the 1115 * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find 1116 * out the destination vcpus array and set the bitmap or it traverses to 1117 * each available vcpu to identify the same. 1118 */ 1119 void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq, 1120 unsigned long *vcpu_bitmap) 1121 { 1122 struct kvm_lapic **dest_vcpu = NULL; 1123 struct kvm_lapic *src = NULL; 1124 struct kvm_apic_map *map; 1125 struct kvm_vcpu *vcpu; 1126 unsigned long bitmap; 1127 int i, vcpu_idx; 1128 bool ret; 1129 1130 rcu_read_lock(); 1131 map = rcu_dereference(kvm->arch.apic_map); 1132 1133 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu, 1134 &bitmap); 1135 if (ret) { 1136 for_each_set_bit(i, &bitmap, 16) { 1137 if (!dest_vcpu[i]) 1138 continue; 1139 vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx; 1140 __set_bit(vcpu_idx, vcpu_bitmap); 1141 } 1142 } else { 1143 kvm_for_each_vcpu(i, vcpu, kvm) { 1144 if (!kvm_apic_present(vcpu)) 1145 continue; 1146 if (!kvm_apic_match_dest(vcpu, NULL, 1147 irq->shorthand, 1148 irq->dest_id, 1149 irq->dest_mode)) 1150 continue; 1151 __set_bit(i, vcpu_bitmap); 1152 } 1153 } 1154 rcu_read_unlock(); 1155 } 1156 1157 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2) 1158 { 1159 return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio; 1160 } 1161 1162 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector) 1163 { 1164 return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors); 1165 } 1166 1167 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector) 1168 { 1169 int trigger_mode; 1170 1171 /* Eoi the ioapic only if the ioapic doesn't own the vector. */ 1172 if (!kvm_ioapic_handles_vector(apic, vector)) 1173 return; 1174 1175 /* Request a KVM exit to inform the userspace IOAPIC. */ 1176 if (irqchip_split(apic->vcpu->kvm)) { 1177 apic->vcpu->arch.pending_ioapic_eoi = vector; 1178 kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu); 1179 return; 1180 } 1181 1182 if (apic_test_vector(vector, apic->regs + APIC_TMR)) 1183 trigger_mode = IOAPIC_LEVEL_TRIG; 1184 else 1185 trigger_mode = IOAPIC_EDGE_TRIG; 1186 1187 kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode); 1188 } 1189 1190 static int apic_set_eoi(struct kvm_lapic *apic) 1191 { 1192 int vector = apic_find_highest_isr(apic); 1193 1194 trace_kvm_eoi(apic, vector); 1195 1196 /* 1197 * Not every write EOI will has corresponding ISR, 1198 * one example is when Kernel check timer on setup_IO_APIC 1199 */ 1200 if (vector == -1) 1201 return vector; 1202 1203 apic_clear_isr(vector, apic); 1204 apic_update_ppr(apic); 1205 1206 if (test_bit(vector, vcpu_to_synic(apic->vcpu)->vec_bitmap)) 1207 kvm_hv_synic_send_eoi(apic->vcpu, vector); 1208 1209 kvm_ioapic_send_eoi(apic, vector); 1210 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1211 return vector; 1212 } 1213 1214 /* 1215 * this interface assumes a trap-like exit, which has already finished 1216 * desired side effect including vISR and vPPR update. 1217 */ 1218 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector) 1219 { 1220 struct kvm_lapic *apic = vcpu->arch.apic; 1221 1222 trace_kvm_eoi(apic, vector); 1223 1224 kvm_ioapic_send_eoi(apic, vector); 1225 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1226 } 1227 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated); 1228 1229 static void apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high) 1230 { 1231 struct kvm_lapic_irq irq; 1232 1233 irq.vector = icr_low & APIC_VECTOR_MASK; 1234 irq.delivery_mode = icr_low & APIC_MODE_MASK; 1235 irq.dest_mode = icr_low & APIC_DEST_MASK; 1236 irq.level = (icr_low & APIC_INT_ASSERT) != 0; 1237 irq.trig_mode = icr_low & APIC_INT_LEVELTRIG; 1238 irq.shorthand = icr_low & APIC_SHORT_MASK; 1239 irq.msi_redir_hint = false; 1240 if (apic_x2apic_mode(apic)) 1241 irq.dest_id = icr_high; 1242 else 1243 irq.dest_id = GET_APIC_DEST_FIELD(icr_high); 1244 1245 trace_kvm_apic_ipi(icr_low, irq.dest_id); 1246 1247 kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL); 1248 } 1249 1250 static u32 apic_get_tmcct(struct kvm_lapic *apic) 1251 { 1252 ktime_t remaining, now; 1253 s64 ns; 1254 u32 tmcct; 1255 1256 ASSERT(apic != NULL); 1257 1258 /* if initial count is 0, current count should also be 0 */ 1259 if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 || 1260 apic->lapic_timer.period == 0) 1261 return 0; 1262 1263 now = ktime_get(); 1264 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 1265 if (ktime_to_ns(remaining) < 0) 1266 remaining = 0; 1267 1268 ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period); 1269 tmcct = div64_u64(ns, 1270 (APIC_BUS_CYCLE_NS * apic->divide_count)); 1271 1272 return tmcct; 1273 } 1274 1275 static void __report_tpr_access(struct kvm_lapic *apic, bool write) 1276 { 1277 struct kvm_vcpu *vcpu = apic->vcpu; 1278 struct kvm_run *run = vcpu->run; 1279 1280 kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu); 1281 run->tpr_access.rip = kvm_rip_read(vcpu); 1282 run->tpr_access.is_write = write; 1283 } 1284 1285 static inline void report_tpr_access(struct kvm_lapic *apic, bool write) 1286 { 1287 if (apic->vcpu->arch.tpr_access_reporting) 1288 __report_tpr_access(apic, write); 1289 } 1290 1291 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset) 1292 { 1293 u32 val = 0; 1294 1295 if (offset >= LAPIC_MMIO_LENGTH) 1296 return 0; 1297 1298 switch (offset) { 1299 case APIC_ARBPRI: 1300 break; 1301 1302 case APIC_TMCCT: /* Timer CCR */ 1303 if (apic_lvtt_tscdeadline(apic)) 1304 return 0; 1305 1306 val = apic_get_tmcct(apic); 1307 break; 1308 case APIC_PROCPRI: 1309 apic_update_ppr(apic); 1310 val = kvm_lapic_get_reg(apic, offset); 1311 break; 1312 case APIC_TASKPRI: 1313 report_tpr_access(apic, false); 1314 /* fall thru */ 1315 default: 1316 val = kvm_lapic_get_reg(apic, offset); 1317 break; 1318 } 1319 1320 return val; 1321 } 1322 1323 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev) 1324 { 1325 return container_of(dev, struct kvm_lapic, dev); 1326 } 1327 1328 #define APIC_REG_MASK(reg) (1ull << ((reg) >> 4)) 1329 #define APIC_REGS_MASK(first, count) \ 1330 (APIC_REG_MASK(first) * ((1ull << (count)) - 1)) 1331 1332 int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len, 1333 void *data) 1334 { 1335 unsigned char alignment = offset & 0xf; 1336 u32 result; 1337 /* this bitmask has a bit cleared for each reserved register */ 1338 u64 valid_reg_mask = 1339 APIC_REG_MASK(APIC_ID) | 1340 APIC_REG_MASK(APIC_LVR) | 1341 APIC_REG_MASK(APIC_TASKPRI) | 1342 APIC_REG_MASK(APIC_PROCPRI) | 1343 APIC_REG_MASK(APIC_LDR) | 1344 APIC_REG_MASK(APIC_DFR) | 1345 APIC_REG_MASK(APIC_SPIV) | 1346 APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) | 1347 APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) | 1348 APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) | 1349 APIC_REG_MASK(APIC_ESR) | 1350 APIC_REG_MASK(APIC_ICR) | 1351 APIC_REG_MASK(APIC_ICR2) | 1352 APIC_REG_MASK(APIC_LVTT) | 1353 APIC_REG_MASK(APIC_LVTTHMR) | 1354 APIC_REG_MASK(APIC_LVTPC) | 1355 APIC_REG_MASK(APIC_LVT0) | 1356 APIC_REG_MASK(APIC_LVT1) | 1357 APIC_REG_MASK(APIC_LVTERR) | 1358 APIC_REG_MASK(APIC_TMICT) | 1359 APIC_REG_MASK(APIC_TMCCT) | 1360 APIC_REG_MASK(APIC_TDCR); 1361 1362 /* ARBPRI is not valid on x2APIC */ 1363 if (!apic_x2apic_mode(apic)) 1364 valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI); 1365 1366 if (offset > 0x3f0 || !(valid_reg_mask & APIC_REG_MASK(offset))) 1367 return 1; 1368 1369 result = __apic_read(apic, offset & ~0xf); 1370 1371 trace_kvm_apic_read(offset, result); 1372 1373 switch (len) { 1374 case 1: 1375 case 2: 1376 case 4: 1377 memcpy(data, (char *)&result + alignment, len); 1378 break; 1379 default: 1380 printk(KERN_ERR "Local APIC read with len = %x, " 1381 "should be 1,2, or 4 instead\n", len); 1382 break; 1383 } 1384 return 0; 1385 } 1386 EXPORT_SYMBOL_GPL(kvm_lapic_reg_read); 1387 1388 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr) 1389 { 1390 return addr >= apic->base_address && 1391 addr < apic->base_address + LAPIC_MMIO_LENGTH; 1392 } 1393 1394 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 1395 gpa_t address, int len, void *data) 1396 { 1397 struct kvm_lapic *apic = to_lapic(this); 1398 u32 offset = address - apic->base_address; 1399 1400 if (!apic_mmio_in_range(apic, address)) 1401 return -EOPNOTSUPP; 1402 1403 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 1404 if (!kvm_check_has_quirk(vcpu->kvm, 1405 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 1406 return -EOPNOTSUPP; 1407 1408 memset(data, 0xff, len); 1409 return 0; 1410 } 1411 1412 kvm_lapic_reg_read(apic, offset, len, data); 1413 1414 return 0; 1415 } 1416 1417 static void update_divide_count(struct kvm_lapic *apic) 1418 { 1419 u32 tmp1, tmp2, tdcr; 1420 1421 tdcr = kvm_lapic_get_reg(apic, APIC_TDCR); 1422 tmp1 = tdcr & 0xf; 1423 tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1; 1424 apic->divide_count = 0x1 << (tmp2 & 0x7); 1425 } 1426 1427 static void limit_periodic_timer_frequency(struct kvm_lapic *apic) 1428 { 1429 /* 1430 * Do not allow the guest to program periodic timers with small 1431 * interval, since the hrtimers are not throttled by the host 1432 * scheduler. 1433 */ 1434 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 1435 s64 min_period = min_timer_period_us * 1000LL; 1436 1437 if (apic->lapic_timer.period < min_period) { 1438 pr_info_ratelimited( 1439 "kvm: vcpu %i: requested %lld ns " 1440 "lapic timer period limited to %lld ns\n", 1441 apic->vcpu->vcpu_id, 1442 apic->lapic_timer.period, min_period); 1443 apic->lapic_timer.period = min_period; 1444 } 1445 } 1446 } 1447 1448 static void apic_update_lvtt(struct kvm_lapic *apic) 1449 { 1450 u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) & 1451 apic->lapic_timer.timer_mode_mask; 1452 1453 if (apic->lapic_timer.timer_mode != timer_mode) { 1454 if (apic_lvtt_tscdeadline(apic) != (timer_mode == 1455 APIC_LVT_TIMER_TSCDEADLINE)) { 1456 hrtimer_cancel(&apic->lapic_timer.timer); 1457 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 1458 apic->lapic_timer.period = 0; 1459 apic->lapic_timer.tscdeadline = 0; 1460 } 1461 apic->lapic_timer.timer_mode = timer_mode; 1462 limit_periodic_timer_frequency(apic); 1463 } 1464 } 1465 1466 /* 1467 * On APICv, this test will cause a busy wait 1468 * during a higher-priority task. 1469 */ 1470 1471 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu) 1472 { 1473 struct kvm_lapic *apic = vcpu->arch.apic; 1474 u32 reg = kvm_lapic_get_reg(apic, APIC_LVTT); 1475 1476 if (kvm_apic_hw_enabled(apic)) { 1477 int vec = reg & APIC_VECTOR_MASK; 1478 void *bitmap = apic->regs + APIC_ISR; 1479 1480 if (vcpu->arch.apicv_active) 1481 bitmap = apic->regs + APIC_IRR; 1482 1483 if (apic_test_vector(vec, bitmap)) 1484 return true; 1485 } 1486 return false; 1487 } 1488 1489 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles) 1490 { 1491 u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns; 1492 1493 /* 1494 * If the guest TSC is running at a different ratio than the host, then 1495 * convert the delay to nanoseconds to achieve an accurate delay. Note 1496 * that __delay() uses delay_tsc whenever the hardware has TSC, thus 1497 * always for VMX enabled hardware. 1498 */ 1499 if (vcpu->arch.tsc_scaling_ratio == kvm_default_tsc_scaling_ratio) { 1500 __delay(min(guest_cycles, 1501 nsec_to_cycles(vcpu, timer_advance_ns))); 1502 } else { 1503 u64 delay_ns = guest_cycles * 1000000ULL; 1504 do_div(delay_ns, vcpu->arch.virtual_tsc_khz); 1505 ndelay(min_t(u32, delay_ns, timer_advance_ns)); 1506 } 1507 } 1508 1509 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu, 1510 s64 advance_expire_delta) 1511 { 1512 struct kvm_lapic *apic = vcpu->arch.apic; 1513 u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns; 1514 u64 ns; 1515 1516 /* Do not adjust for tiny fluctuations or large random spikes. */ 1517 if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX || 1518 abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN) 1519 return; 1520 1521 /* too early */ 1522 if (advance_expire_delta < 0) { 1523 ns = -advance_expire_delta * 1000000ULL; 1524 do_div(ns, vcpu->arch.virtual_tsc_khz); 1525 timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; 1526 } else { 1527 /* too late */ 1528 ns = advance_expire_delta * 1000000ULL; 1529 do_div(ns, vcpu->arch.virtual_tsc_khz); 1530 timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; 1531 } 1532 1533 if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX)) 1534 timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; 1535 apic->lapic_timer.timer_advance_ns = timer_advance_ns; 1536 } 1537 1538 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1539 { 1540 struct kvm_lapic *apic = vcpu->arch.apic; 1541 u64 guest_tsc, tsc_deadline; 1542 1543 if (apic->lapic_timer.expired_tscdeadline == 0) 1544 return; 1545 1546 tsc_deadline = apic->lapic_timer.expired_tscdeadline; 1547 apic->lapic_timer.expired_tscdeadline = 0; 1548 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1549 apic->lapic_timer.advance_expire_delta = guest_tsc - tsc_deadline; 1550 1551 if (guest_tsc < tsc_deadline) 1552 __wait_lapic_expire(vcpu, tsc_deadline - guest_tsc); 1553 1554 if (lapic_timer_advance_dynamic) 1555 adjust_lapic_timer_advance(vcpu, apic->lapic_timer.advance_expire_delta); 1556 } 1557 1558 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1559 { 1560 if (lapic_timer_int_injected(vcpu)) 1561 __kvm_wait_lapic_expire(vcpu); 1562 } 1563 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire); 1564 1565 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic) 1566 { 1567 struct kvm_timer *ktimer = &apic->lapic_timer; 1568 1569 kvm_apic_local_deliver(apic, APIC_LVTT); 1570 if (apic_lvtt_tscdeadline(apic)) { 1571 ktimer->tscdeadline = 0; 1572 } else if (apic_lvtt_oneshot(apic)) { 1573 ktimer->tscdeadline = 0; 1574 ktimer->target_expiration = 0; 1575 } 1576 } 1577 1578 static void apic_timer_expired(struct kvm_lapic *apic) 1579 { 1580 struct kvm_vcpu *vcpu = apic->vcpu; 1581 struct kvm_timer *ktimer = &apic->lapic_timer; 1582 1583 if (atomic_read(&apic->lapic_timer.pending)) 1584 return; 1585 1586 if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use) 1587 ktimer->expired_tscdeadline = ktimer->tscdeadline; 1588 1589 if (kvm_use_posted_timer_interrupt(apic->vcpu)) { 1590 if (apic->lapic_timer.timer_advance_ns) 1591 __kvm_wait_lapic_expire(vcpu); 1592 kvm_apic_inject_pending_timer_irqs(apic); 1593 return; 1594 } 1595 1596 atomic_inc(&apic->lapic_timer.pending); 1597 kvm_set_pending_timer(vcpu); 1598 } 1599 1600 static void start_sw_tscdeadline(struct kvm_lapic *apic) 1601 { 1602 struct kvm_timer *ktimer = &apic->lapic_timer; 1603 u64 guest_tsc, tscdeadline = ktimer->tscdeadline; 1604 u64 ns = 0; 1605 ktime_t expire; 1606 struct kvm_vcpu *vcpu = apic->vcpu; 1607 unsigned long this_tsc_khz = vcpu->arch.virtual_tsc_khz; 1608 unsigned long flags; 1609 ktime_t now; 1610 1611 if (unlikely(!tscdeadline || !this_tsc_khz)) 1612 return; 1613 1614 local_irq_save(flags); 1615 1616 now = ktime_get(); 1617 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1618 1619 ns = (tscdeadline - guest_tsc) * 1000000ULL; 1620 do_div(ns, this_tsc_khz); 1621 1622 if (likely(tscdeadline > guest_tsc) && 1623 likely(ns > apic->lapic_timer.timer_advance_ns)) { 1624 expire = ktime_add_ns(now, ns); 1625 expire = ktime_sub_ns(expire, ktimer->timer_advance_ns); 1626 hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD); 1627 } else 1628 apic_timer_expired(apic); 1629 1630 local_irq_restore(flags); 1631 } 1632 1633 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor) 1634 { 1635 ktime_t now, remaining; 1636 u64 ns_remaining_old, ns_remaining_new; 1637 1638 apic->lapic_timer.period = (u64)kvm_lapic_get_reg(apic, APIC_TMICT) 1639 * APIC_BUS_CYCLE_NS * apic->divide_count; 1640 limit_periodic_timer_frequency(apic); 1641 1642 now = ktime_get(); 1643 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 1644 if (ktime_to_ns(remaining) < 0) 1645 remaining = 0; 1646 1647 ns_remaining_old = ktime_to_ns(remaining); 1648 ns_remaining_new = mul_u64_u32_div(ns_remaining_old, 1649 apic->divide_count, old_divisor); 1650 1651 apic->lapic_timer.tscdeadline += 1652 nsec_to_cycles(apic->vcpu, ns_remaining_new) - 1653 nsec_to_cycles(apic->vcpu, ns_remaining_old); 1654 apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new); 1655 } 1656 1657 static bool set_target_expiration(struct kvm_lapic *apic) 1658 { 1659 ktime_t now; 1660 u64 tscl = rdtsc(); 1661 1662 now = ktime_get(); 1663 apic->lapic_timer.period = (u64)kvm_lapic_get_reg(apic, APIC_TMICT) 1664 * APIC_BUS_CYCLE_NS * apic->divide_count; 1665 1666 if (!apic->lapic_timer.period) { 1667 apic->lapic_timer.tscdeadline = 0; 1668 return false; 1669 } 1670 1671 limit_periodic_timer_frequency(apic); 1672 1673 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 1674 nsec_to_cycles(apic->vcpu, apic->lapic_timer.period); 1675 apic->lapic_timer.target_expiration = ktime_add_ns(now, apic->lapic_timer.period); 1676 1677 return true; 1678 } 1679 1680 static void advance_periodic_target_expiration(struct kvm_lapic *apic) 1681 { 1682 ktime_t now = ktime_get(); 1683 u64 tscl = rdtsc(); 1684 ktime_t delta; 1685 1686 /* 1687 * Synchronize both deadlines to the same time source or 1688 * differences in the periods (caused by differences in the 1689 * underlying clocks or numerical approximation errors) will 1690 * cause the two to drift apart over time as the errors 1691 * accumulate. 1692 */ 1693 apic->lapic_timer.target_expiration = 1694 ktime_add_ns(apic->lapic_timer.target_expiration, 1695 apic->lapic_timer.period); 1696 delta = ktime_sub(apic->lapic_timer.target_expiration, now); 1697 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 1698 nsec_to_cycles(apic->vcpu, delta); 1699 } 1700 1701 static void start_sw_period(struct kvm_lapic *apic) 1702 { 1703 if (!apic->lapic_timer.period) 1704 return; 1705 1706 if (ktime_after(ktime_get(), 1707 apic->lapic_timer.target_expiration)) { 1708 apic_timer_expired(apic); 1709 1710 if (apic_lvtt_oneshot(apic)) 1711 return; 1712 1713 advance_periodic_target_expiration(apic); 1714 } 1715 1716 hrtimer_start(&apic->lapic_timer.timer, 1717 apic->lapic_timer.target_expiration, 1718 HRTIMER_MODE_ABS); 1719 } 1720 1721 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu) 1722 { 1723 if (!lapic_in_kernel(vcpu)) 1724 return false; 1725 1726 return vcpu->arch.apic->lapic_timer.hv_timer_in_use; 1727 } 1728 EXPORT_SYMBOL_GPL(kvm_lapic_hv_timer_in_use); 1729 1730 static void cancel_hv_timer(struct kvm_lapic *apic) 1731 { 1732 WARN_ON(preemptible()); 1733 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 1734 kvm_x86_ops->cancel_hv_timer(apic->vcpu); 1735 apic->lapic_timer.hv_timer_in_use = false; 1736 } 1737 1738 static bool start_hv_timer(struct kvm_lapic *apic) 1739 { 1740 struct kvm_timer *ktimer = &apic->lapic_timer; 1741 struct kvm_vcpu *vcpu = apic->vcpu; 1742 bool expired; 1743 1744 WARN_ON(preemptible()); 1745 if (!kvm_x86_ops->set_hv_timer) 1746 return false; 1747 1748 if (!ktimer->tscdeadline) 1749 return false; 1750 1751 if (kvm_x86_ops->set_hv_timer(vcpu, ktimer->tscdeadline, &expired)) 1752 return false; 1753 1754 ktimer->hv_timer_in_use = true; 1755 hrtimer_cancel(&ktimer->timer); 1756 1757 /* 1758 * To simplify handling the periodic timer, leave the hv timer running 1759 * even if the deadline timer has expired, i.e. rely on the resulting 1760 * VM-Exit to recompute the periodic timer's target expiration. 1761 */ 1762 if (!apic_lvtt_period(apic)) { 1763 /* 1764 * Cancel the hv timer if the sw timer fired while the hv timer 1765 * was being programmed, or if the hv timer itself expired. 1766 */ 1767 if (atomic_read(&ktimer->pending)) { 1768 cancel_hv_timer(apic); 1769 } else if (expired) { 1770 apic_timer_expired(apic); 1771 cancel_hv_timer(apic); 1772 } 1773 } 1774 1775 trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use); 1776 1777 return true; 1778 } 1779 1780 static void start_sw_timer(struct kvm_lapic *apic) 1781 { 1782 struct kvm_timer *ktimer = &apic->lapic_timer; 1783 1784 WARN_ON(preemptible()); 1785 if (apic->lapic_timer.hv_timer_in_use) 1786 cancel_hv_timer(apic); 1787 if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending)) 1788 return; 1789 1790 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 1791 start_sw_period(apic); 1792 else if (apic_lvtt_tscdeadline(apic)) 1793 start_sw_tscdeadline(apic); 1794 trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false); 1795 } 1796 1797 static void restart_apic_timer(struct kvm_lapic *apic) 1798 { 1799 preempt_disable(); 1800 1801 if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending)) 1802 goto out; 1803 1804 if (!start_hv_timer(apic)) 1805 start_sw_timer(apic); 1806 out: 1807 preempt_enable(); 1808 } 1809 1810 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu) 1811 { 1812 struct kvm_lapic *apic = vcpu->arch.apic; 1813 1814 preempt_disable(); 1815 /* If the preempt notifier has already run, it also called apic_timer_expired */ 1816 if (!apic->lapic_timer.hv_timer_in_use) 1817 goto out; 1818 WARN_ON(swait_active(&vcpu->wq)); 1819 cancel_hv_timer(apic); 1820 apic_timer_expired(apic); 1821 1822 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 1823 advance_periodic_target_expiration(apic); 1824 restart_apic_timer(apic); 1825 } 1826 out: 1827 preempt_enable(); 1828 } 1829 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer); 1830 1831 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu) 1832 { 1833 restart_apic_timer(vcpu->arch.apic); 1834 } 1835 EXPORT_SYMBOL_GPL(kvm_lapic_switch_to_hv_timer); 1836 1837 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu) 1838 { 1839 struct kvm_lapic *apic = vcpu->arch.apic; 1840 1841 preempt_disable(); 1842 /* Possibly the TSC deadline timer is not enabled yet */ 1843 if (apic->lapic_timer.hv_timer_in_use) 1844 start_sw_timer(apic); 1845 preempt_enable(); 1846 } 1847 EXPORT_SYMBOL_GPL(kvm_lapic_switch_to_sw_timer); 1848 1849 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu) 1850 { 1851 struct kvm_lapic *apic = vcpu->arch.apic; 1852 1853 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 1854 restart_apic_timer(apic); 1855 } 1856 1857 static void start_apic_timer(struct kvm_lapic *apic) 1858 { 1859 atomic_set(&apic->lapic_timer.pending, 0); 1860 1861 if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 1862 && !set_target_expiration(apic)) 1863 return; 1864 1865 restart_apic_timer(apic); 1866 } 1867 1868 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val) 1869 { 1870 bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val); 1871 1872 if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) { 1873 apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode; 1874 if (lvt0_in_nmi_mode) { 1875 atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 1876 } else 1877 atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 1878 } 1879 } 1880 1881 int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val) 1882 { 1883 int ret = 0; 1884 1885 trace_kvm_apic_write(reg, val); 1886 1887 switch (reg) { 1888 case APIC_ID: /* Local APIC ID */ 1889 if (!apic_x2apic_mode(apic)) 1890 kvm_apic_set_xapic_id(apic, val >> 24); 1891 else 1892 ret = 1; 1893 break; 1894 1895 case APIC_TASKPRI: 1896 report_tpr_access(apic, true); 1897 apic_set_tpr(apic, val & 0xff); 1898 break; 1899 1900 case APIC_EOI: 1901 apic_set_eoi(apic); 1902 break; 1903 1904 case APIC_LDR: 1905 if (!apic_x2apic_mode(apic)) 1906 kvm_apic_set_ldr(apic, val & APIC_LDR_MASK); 1907 else 1908 ret = 1; 1909 break; 1910 1911 case APIC_DFR: 1912 if (!apic_x2apic_mode(apic)) { 1913 kvm_lapic_set_reg(apic, APIC_DFR, val | 0x0FFFFFFF); 1914 recalculate_apic_map(apic->vcpu->kvm); 1915 } else 1916 ret = 1; 1917 break; 1918 1919 case APIC_SPIV: { 1920 u32 mask = 0x3ff; 1921 if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI) 1922 mask |= APIC_SPIV_DIRECTED_EOI; 1923 apic_set_spiv(apic, val & mask); 1924 if (!(val & APIC_SPIV_APIC_ENABLED)) { 1925 int i; 1926 u32 lvt_val; 1927 1928 for (i = 0; i < KVM_APIC_LVT_NUM; i++) { 1929 lvt_val = kvm_lapic_get_reg(apic, 1930 APIC_LVTT + 0x10 * i); 1931 kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i, 1932 lvt_val | APIC_LVT_MASKED); 1933 } 1934 apic_update_lvtt(apic); 1935 atomic_set(&apic->lapic_timer.pending, 0); 1936 1937 } 1938 break; 1939 } 1940 case APIC_ICR: 1941 /* No delay here, so we always clear the pending bit */ 1942 val &= ~(1 << 12); 1943 apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2)); 1944 kvm_lapic_set_reg(apic, APIC_ICR, val); 1945 break; 1946 1947 case APIC_ICR2: 1948 if (!apic_x2apic_mode(apic)) 1949 val &= 0xff000000; 1950 kvm_lapic_set_reg(apic, APIC_ICR2, val); 1951 break; 1952 1953 case APIC_LVT0: 1954 apic_manage_nmi_watchdog(apic, val); 1955 /* fall through */ 1956 case APIC_LVTTHMR: 1957 case APIC_LVTPC: 1958 case APIC_LVT1: 1959 case APIC_LVTERR: { 1960 /* TODO: Check vector */ 1961 size_t size; 1962 u32 index; 1963 1964 if (!kvm_apic_sw_enabled(apic)) 1965 val |= APIC_LVT_MASKED; 1966 size = ARRAY_SIZE(apic_lvt_mask); 1967 index = array_index_nospec( 1968 (reg - APIC_LVTT) >> 4, size); 1969 val &= apic_lvt_mask[index]; 1970 kvm_lapic_set_reg(apic, reg, val); 1971 break; 1972 } 1973 1974 case APIC_LVTT: 1975 if (!kvm_apic_sw_enabled(apic)) 1976 val |= APIC_LVT_MASKED; 1977 val &= (apic_lvt_mask[0] | apic->lapic_timer.timer_mode_mask); 1978 kvm_lapic_set_reg(apic, APIC_LVTT, val); 1979 apic_update_lvtt(apic); 1980 break; 1981 1982 case APIC_TMICT: 1983 if (apic_lvtt_tscdeadline(apic)) 1984 break; 1985 1986 hrtimer_cancel(&apic->lapic_timer.timer); 1987 kvm_lapic_set_reg(apic, APIC_TMICT, val); 1988 start_apic_timer(apic); 1989 break; 1990 1991 case APIC_TDCR: { 1992 uint32_t old_divisor = apic->divide_count; 1993 1994 kvm_lapic_set_reg(apic, APIC_TDCR, val); 1995 update_divide_count(apic); 1996 if (apic->divide_count != old_divisor && 1997 apic->lapic_timer.period) { 1998 hrtimer_cancel(&apic->lapic_timer.timer); 1999 update_target_expiration(apic, old_divisor); 2000 restart_apic_timer(apic); 2001 } 2002 break; 2003 } 2004 case APIC_ESR: 2005 if (apic_x2apic_mode(apic) && val != 0) 2006 ret = 1; 2007 break; 2008 2009 case APIC_SELF_IPI: 2010 if (apic_x2apic_mode(apic)) { 2011 kvm_lapic_reg_write(apic, APIC_ICR, 0x40000 | (val & 0xff)); 2012 } else 2013 ret = 1; 2014 break; 2015 default: 2016 ret = 1; 2017 break; 2018 } 2019 2020 return ret; 2021 } 2022 EXPORT_SYMBOL_GPL(kvm_lapic_reg_write); 2023 2024 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 2025 gpa_t address, int len, const void *data) 2026 { 2027 struct kvm_lapic *apic = to_lapic(this); 2028 unsigned int offset = address - apic->base_address; 2029 u32 val; 2030 2031 if (!apic_mmio_in_range(apic, address)) 2032 return -EOPNOTSUPP; 2033 2034 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 2035 if (!kvm_check_has_quirk(vcpu->kvm, 2036 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 2037 return -EOPNOTSUPP; 2038 2039 return 0; 2040 } 2041 2042 /* 2043 * APIC register must be aligned on 128-bits boundary. 2044 * 32/64/128 bits registers must be accessed thru 32 bits. 2045 * Refer SDM 8.4.1 2046 */ 2047 if (len != 4 || (offset & 0xf)) 2048 return 0; 2049 2050 val = *(u32*)data; 2051 2052 kvm_lapic_reg_write(apic, offset & 0xff0, val); 2053 2054 return 0; 2055 } 2056 2057 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu) 2058 { 2059 kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0); 2060 } 2061 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi); 2062 2063 /* emulate APIC access in a trap manner */ 2064 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset) 2065 { 2066 u32 val = 0; 2067 2068 /* hw has done the conditional check and inst decode */ 2069 offset &= 0xff0; 2070 2071 kvm_lapic_reg_read(vcpu->arch.apic, offset, 4, &val); 2072 2073 /* TODO: optimize to just emulate side effect w/o one more write */ 2074 kvm_lapic_reg_write(vcpu->arch.apic, offset, val); 2075 } 2076 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode); 2077 2078 void kvm_free_lapic(struct kvm_vcpu *vcpu) 2079 { 2080 struct kvm_lapic *apic = vcpu->arch.apic; 2081 2082 if (!vcpu->arch.apic) 2083 return; 2084 2085 hrtimer_cancel(&apic->lapic_timer.timer); 2086 2087 if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)) 2088 static_key_slow_dec_deferred(&apic_hw_disabled); 2089 2090 if (!apic->sw_enabled) 2091 static_key_slow_dec_deferred(&apic_sw_disabled); 2092 2093 if (apic->regs) 2094 free_page((unsigned long)apic->regs); 2095 2096 kfree(apic); 2097 } 2098 2099 /* 2100 *---------------------------------------------------------------------- 2101 * LAPIC interface 2102 *---------------------------------------------------------------------- 2103 */ 2104 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu) 2105 { 2106 struct kvm_lapic *apic = vcpu->arch.apic; 2107 2108 if (!lapic_in_kernel(vcpu) || 2109 !apic_lvtt_tscdeadline(apic)) 2110 return 0; 2111 2112 return apic->lapic_timer.tscdeadline; 2113 } 2114 2115 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data) 2116 { 2117 struct kvm_lapic *apic = vcpu->arch.apic; 2118 2119 if (!lapic_in_kernel(vcpu) || apic_lvtt_oneshot(apic) || 2120 apic_lvtt_period(apic)) 2121 return; 2122 2123 hrtimer_cancel(&apic->lapic_timer.timer); 2124 apic->lapic_timer.tscdeadline = data; 2125 start_apic_timer(apic); 2126 } 2127 2128 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8) 2129 { 2130 struct kvm_lapic *apic = vcpu->arch.apic; 2131 2132 apic_set_tpr(apic, ((cr8 & 0x0f) << 4) 2133 | (kvm_lapic_get_reg(apic, APIC_TASKPRI) & 4)); 2134 } 2135 2136 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu) 2137 { 2138 u64 tpr; 2139 2140 tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI); 2141 2142 return (tpr & 0xf0) >> 4; 2143 } 2144 2145 void kvm_lapic_set_base(struct kvm_vcpu *vcpu, u64 value) 2146 { 2147 u64 old_value = vcpu->arch.apic_base; 2148 struct kvm_lapic *apic = vcpu->arch.apic; 2149 2150 if (!apic) 2151 value |= MSR_IA32_APICBASE_BSP; 2152 2153 vcpu->arch.apic_base = value; 2154 2155 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) 2156 kvm_update_cpuid(vcpu); 2157 2158 if (!apic) 2159 return; 2160 2161 /* update jump label if enable bit changes */ 2162 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) { 2163 if (value & MSR_IA32_APICBASE_ENABLE) { 2164 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2165 static_key_slow_dec_deferred(&apic_hw_disabled); 2166 } else { 2167 static_key_slow_inc(&apic_hw_disabled.key); 2168 recalculate_apic_map(vcpu->kvm); 2169 } 2170 } 2171 2172 if (((old_value ^ value) & X2APIC_ENABLE) && (value & X2APIC_ENABLE)) 2173 kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id); 2174 2175 if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) 2176 kvm_x86_ops->set_virtual_apic_mode(vcpu); 2177 2178 apic->base_address = apic->vcpu->arch.apic_base & 2179 MSR_IA32_APICBASE_BASE; 2180 2181 if ((value & MSR_IA32_APICBASE_ENABLE) && 2182 apic->base_address != APIC_DEFAULT_PHYS_BASE) 2183 pr_warn_once("APIC base relocation is unsupported by KVM"); 2184 } 2185 2186 void kvm_apic_update_apicv(struct kvm_vcpu *vcpu) 2187 { 2188 struct kvm_lapic *apic = vcpu->arch.apic; 2189 2190 if (vcpu->arch.apicv_active) { 2191 /* irr_pending is always true when apicv is activated. */ 2192 apic->irr_pending = true; 2193 apic->isr_count = 1; 2194 } else { 2195 apic->irr_pending = (apic_search_irr(apic) != -1); 2196 apic->isr_count = count_vectors(apic->regs + APIC_ISR); 2197 } 2198 } 2199 EXPORT_SYMBOL_GPL(kvm_apic_update_apicv); 2200 2201 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event) 2202 { 2203 struct kvm_lapic *apic = vcpu->arch.apic; 2204 int i; 2205 2206 if (!apic) 2207 return; 2208 2209 /* Stop the timer in case it's a reset to an active apic */ 2210 hrtimer_cancel(&apic->lapic_timer.timer); 2211 2212 if (!init_event) { 2213 kvm_lapic_set_base(vcpu, APIC_DEFAULT_PHYS_BASE | 2214 MSR_IA32_APICBASE_ENABLE); 2215 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2216 } 2217 kvm_apic_set_version(apic->vcpu); 2218 2219 for (i = 0; i < KVM_APIC_LVT_NUM; i++) 2220 kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i, APIC_LVT_MASKED); 2221 apic_update_lvtt(apic); 2222 if (kvm_vcpu_is_reset_bsp(vcpu) && 2223 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED)) 2224 kvm_lapic_set_reg(apic, APIC_LVT0, 2225 SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT)); 2226 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 2227 2228 kvm_lapic_set_reg(apic, APIC_DFR, 0xffffffffU); 2229 apic_set_spiv(apic, 0xff); 2230 kvm_lapic_set_reg(apic, APIC_TASKPRI, 0); 2231 if (!apic_x2apic_mode(apic)) 2232 kvm_apic_set_ldr(apic, 0); 2233 kvm_lapic_set_reg(apic, APIC_ESR, 0); 2234 kvm_lapic_set_reg(apic, APIC_ICR, 0); 2235 kvm_lapic_set_reg(apic, APIC_ICR2, 0); 2236 kvm_lapic_set_reg(apic, APIC_TDCR, 0); 2237 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 2238 for (i = 0; i < 8; i++) { 2239 kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0); 2240 kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0); 2241 kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0); 2242 } 2243 kvm_apic_update_apicv(vcpu); 2244 apic->highest_isr_cache = -1; 2245 update_divide_count(apic); 2246 atomic_set(&apic->lapic_timer.pending, 0); 2247 if (kvm_vcpu_is_bsp(vcpu)) 2248 kvm_lapic_set_base(vcpu, 2249 vcpu->arch.apic_base | MSR_IA32_APICBASE_BSP); 2250 vcpu->arch.pv_eoi.msr_val = 0; 2251 apic_update_ppr(apic); 2252 if (vcpu->arch.apicv_active) { 2253 kvm_x86_ops->apicv_post_state_restore(vcpu); 2254 kvm_x86_ops->hwapic_irr_update(vcpu, -1); 2255 kvm_x86_ops->hwapic_isr_update(vcpu, -1); 2256 } 2257 2258 vcpu->arch.apic_arb_prio = 0; 2259 vcpu->arch.apic_attention = 0; 2260 } 2261 2262 /* 2263 *---------------------------------------------------------------------- 2264 * timer interface 2265 *---------------------------------------------------------------------- 2266 */ 2267 2268 static bool lapic_is_periodic(struct kvm_lapic *apic) 2269 { 2270 return apic_lvtt_period(apic); 2271 } 2272 2273 int apic_has_pending_timer(struct kvm_vcpu *vcpu) 2274 { 2275 struct kvm_lapic *apic = vcpu->arch.apic; 2276 2277 if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT)) 2278 return atomic_read(&apic->lapic_timer.pending); 2279 2280 return 0; 2281 } 2282 2283 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type) 2284 { 2285 u32 reg = kvm_lapic_get_reg(apic, lvt_type); 2286 int vector, mode, trig_mode; 2287 2288 if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) { 2289 vector = reg & APIC_VECTOR_MASK; 2290 mode = reg & APIC_MODE_MASK; 2291 trig_mode = reg & APIC_LVT_LEVEL_TRIGGER; 2292 return __apic_accept_irq(apic, mode, vector, 1, trig_mode, 2293 NULL); 2294 } 2295 return 0; 2296 } 2297 2298 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu) 2299 { 2300 struct kvm_lapic *apic = vcpu->arch.apic; 2301 2302 if (apic) 2303 kvm_apic_local_deliver(apic, APIC_LVT0); 2304 } 2305 2306 static const struct kvm_io_device_ops apic_mmio_ops = { 2307 .read = apic_mmio_read, 2308 .write = apic_mmio_write, 2309 }; 2310 2311 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data) 2312 { 2313 struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer); 2314 struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer); 2315 2316 apic_timer_expired(apic); 2317 2318 if (lapic_is_periodic(apic)) { 2319 advance_periodic_target_expiration(apic); 2320 hrtimer_add_expires_ns(&ktimer->timer, ktimer->period); 2321 return HRTIMER_RESTART; 2322 } else 2323 return HRTIMER_NORESTART; 2324 } 2325 2326 int kvm_create_lapic(struct kvm_vcpu *vcpu, int timer_advance_ns) 2327 { 2328 struct kvm_lapic *apic; 2329 2330 ASSERT(vcpu != NULL); 2331 2332 apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT); 2333 if (!apic) 2334 goto nomem; 2335 2336 vcpu->arch.apic = apic; 2337 2338 apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 2339 if (!apic->regs) { 2340 printk(KERN_ERR "malloc apic regs error for vcpu %x\n", 2341 vcpu->vcpu_id); 2342 goto nomem_free_apic; 2343 } 2344 apic->vcpu = vcpu; 2345 2346 hrtimer_init(&apic->lapic_timer.timer, CLOCK_MONOTONIC, 2347 HRTIMER_MODE_ABS_HARD); 2348 apic->lapic_timer.timer.function = apic_timer_fn; 2349 if (timer_advance_ns == -1) { 2350 apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; 2351 lapic_timer_advance_dynamic = true; 2352 } else { 2353 apic->lapic_timer.timer_advance_ns = timer_advance_ns; 2354 lapic_timer_advance_dynamic = false; 2355 } 2356 2357 /* 2358 * APIC is created enabled. This will prevent kvm_lapic_set_base from 2359 * thinking that APIC state has changed. 2360 */ 2361 vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE; 2362 static_key_slow_inc(&apic_sw_disabled.key); /* sw disabled at reset */ 2363 kvm_iodevice_init(&apic->dev, &apic_mmio_ops); 2364 2365 return 0; 2366 nomem_free_apic: 2367 kfree(apic); 2368 vcpu->arch.apic = NULL; 2369 nomem: 2370 return -ENOMEM; 2371 } 2372 2373 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu) 2374 { 2375 struct kvm_lapic *apic = vcpu->arch.apic; 2376 u32 ppr; 2377 2378 if (!kvm_apic_hw_enabled(apic)) 2379 return -1; 2380 2381 __apic_update_ppr(apic, &ppr); 2382 return apic_has_interrupt_for_ppr(apic, ppr); 2383 } 2384 2385 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu) 2386 { 2387 u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0); 2388 2389 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 2390 return 1; 2391 if ((lvt0 & APIC_LVT_MASKED) == 0 && 2392 GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT) 2393 return 1; 2394 return 0; 2395 } 2396 2397 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu) 2398 { 2399 struct kvm_lapic *apic = vcpu->arch.apic; 2400 2401 if (atomic_read(&apic->lapic_timer.pending) > 0) { 2402 kvm_apic_inject_pending_timer_irqs(apic); 2403 atomic_set(&apic->lapic_timer.pending, 0); 2404 } 2405 } 2406 2407 int kvm_get_apic_interrupt(struct kvm_vcpu *vcpu) 2408 { 2409 int vector = kvm_apic_has_interrupt(vcpu); 2410 struct kvm_lapic *apic = vcpu->arch.apic; 2411 u32 ppr; 2412 2413 if (vector == -1) 2414 return -1; 2415 2416 /* 2417 * We get here even with APIC virtualization enabled, if doing 2418 * nested virtualization and L1 runs with the "acknowledge interrupt 2419 * on exit" mode. Then we cannot inject the interrupt via RVI, 2420 * because the process would deliver it through the IDT. 2421 */ 2422 2423 apic_clear_irr(vector, apic); 2424 if (test_bit(vector, vcpu_to_synic(vcpu)->auto_eoi_bitmap)) { 2425 /* 2426 * For auto-EOI interrupts, there might be another pending 2427 * interrupt above PPR, so check whether to raise another 2428 * KVM_REQ_EVENT. 2429 */ 2430 apic_update_ppr(apic); 2431 } else { 2432 /* 2433 * For normal interrupts, PPR has been raised and there cannot 2434 * be a higher-priority pending interrupt---except if there was 2435 * a concurrent interrupt injection, but that would have 2436 * triggered KVM_REQ_EVENT already. 2437 */ 2438 apic_set_isr(vector, apic); 2439 __apic_update_ppr(apic, &ppr); 2440 } 2441 2442 return vector; 2443 } 2444 2445 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu, 2446 struct kvm_lapic_state *s, bool set) 2447 { 2448 if (apic_x2apic_mode(vcpu->arch.apic)) { 2449 u32 *id = (u32 *)(s->regs + APIC_ID); 2450 u32 *ldr = (u32 *)(s->regs + APIC_LDR); 2451 2452 if (vcpu->kvm->arch.x2apic_format) { 2453 if (*id != vcpu->vcpu_id) 2454 return -EINVAL; 2455 } else { 2456 if (set) 2457 *id >>= 24; 2458 else 2459 *id <<= 24; 2460 } 2461 2462 /* In x2APIC mode, the LDR is fixed and based on the id */ 2463 if (set) 2464 *ldr = kvm_apic_calc_x2apic_ldr(*id); 2465 } 2466 2467 return 0; 2468 } 2469 2470 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 2471 { 2472 memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s)); 2473 return kvm_apic_state_fixup(vcpu, s, false); 2474 } 2475 2476 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 2477 { 2478 struct kvm_lapic *apic = vcpu->arch.apic; 2479 int r; 2480 2481 2482 kvm_lapic_set_base(vcpu, vcpu->arch.apic_base); 2483 /* set SPIV separately to get count of SW disabled APICs right */ 2484 apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV))); 2485 2486 r = kvm_apic_state_fixup(vcpu, s, true); 2487 if (r) 2488 return r; 2489 memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s)); 2490 2491 recalculate_apic_map(vcpu->kvm); 2492 kvm_apic_set_version(vcpu); 2493 2494 apic_update_ppr(apic); 2495 hrtimer_cancel(&apic->lapic_timer.timer); 2496 apic_update_lvtt(apic); 2497 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 2498 update_divide_count(apic); 2499 start_apic_timer(apic); 2500 kvm_apic_update_apicv(vcpu); 2501 apic->highest_isr_cache = -1; 2502 if (vcpu->arch.apicv_active) { 2503 kvm_x86_ops->apicv_post_state_restore(vcpu); 2504 kvm_x86_ops->hwapic_irr_update(vcpu, 2505 apic_find_highest_irr(apic)); 2506 kvm_x86_ops->hwapic_isr_update(vcpu, 2507 apic_find_highest_isr(apic)); 2508 } 2509 kvm_make_request(KVM_REQ_EVENT, vcpu); 2510 if (ioapic_in_kernel(vcpu->kvm)) 2511 kvm_rtc_eoi_tracking_restore_one(vcpu); 2512 2513 vcpu->arch.apic_arb_prio = 0; 2514 2515 return 0; 2516 } 2517 2518 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu) 2519 { 2520 struct hrtimer *timer; 2521 2522 if (!lapic_in_kernel(vcpu) || 2523 kvm_can_post_timer_interrupt(vcpu)) 2524 return; 2525 2526 timer = &vcpu->arch.apic->lapic_timer.timer; 2527 if (hrtimer_cancel(timer)) 2528 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD); 2529 } 2530 2531 /* 2532 * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt 2533 * 2534 * Detect whether guest triggered PV EOI since the 2535 * last entry. If yes, set EOI on guests's behalf. 2536 * Clear PV EOI in guest memory in any case. 2537 */ 2538 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu, 2539 struct kvm_lapic *apic) 2540 { 2541 bool pending; 2542 int vector; 2543 /* 2544 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host 2545 * and KVM_PV_EOI_ENABLED in guest memory as follows: 2546 * 2547 * KVM_APIC_PV_EOI_PENDING is unset: 2548 * -> host disabled PV EOI. 2549 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set: 2550 * -> host enabled PV EOI, guest did not execute EOI yet. 2551 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset: 2552 * -> host enabled PV EOI, guest executed EOI. 2553 */ 2554 BUG_ON(!pv_eoi_enabled(vcpu)); 2555 pending = pv_eoi_get_pending(vcpu); 2556 /* 2557 * Clear pending bit in any case: it will be set again on vmentry. 2558 * While this might not be ideal from performance point of view, 2559 * this makes sure pv eoi is only enabled when we know it's safe. 2560 */ 2561 pv_eoi_clr_pending(vcpu); 2562 if (pending) 2563 return; 2564 vector = apic_set_eoi(apic); 2565 trace_kvm_pv_eoi(apic, vector); 2566 } 2567 2568 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu) 2569 { 2570 u32 data; 2571 2572 if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention)) 2573 apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic); 2574 2575 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 2576 return; 2577 2578 if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 2579 sizeof(u32))) 2580 return; 2581 2582 apic_set_tpr(vcpu->arch.apic, data & 0xff); 2583 } 2584 2585 /* 2586 * apic_sync_pv_eoi_to_guest - called before vmentry 2587 * 2588 * Detect whether it's safe to enable PV EOI and 2589 * if yes do so. 2590 */ 2591 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu, 2592 struct kvm_lapic *apic) 2593 { 2594 if (!pv_eoi_enabled(vcpu) || 2595 /* IRR set or many bits in ISR: could be nested. */ 2596 apic->irr_pending || 2597 /* Cache not set: could be safe but we don't bother. */ 2598 apic->highest_isr_cache == -1 || 2599 /* Need EOI to update ioapic. */ 2600 kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) { 2601 /* 2602 * PV EOI was disabled by apic_sync_pv_eoi_from_guest 2603 * so we need not do anything here. 2604 */ 2605 return; 2606 } 2607 2608 pv_eoi_set_pending(apic->vcpu); 2609 } 2610 2611 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu) 2612 { 2613 u32 data, tpr; 2614 int max_irr, max_isr; 2615 struct kvm_lapic *apic = vcpu->arch.apic; 2616 2617 apic_sync_pv_eoi_to_guest(vcpu, apic); 2618 2619 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 2620 return; 2621 2622 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff; 2623 max_irr = apic_find_highest_irr(apic); 2624 if (max_irr < 0) 2625 max_irr = 0; 2626 max_isr = apic_find_highest_isr(apic); 2627 if (max_isr < 0) 2628 max_isr = 0; 2629 data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24); 2630 2631 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 2632 sizeof(u32)); 2633 } 2634 2635 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr) 2636 { 2637 if (vapic_addr) { 2638 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, 2639 &vcpu->arch.apic->vapic_cache, 2640 vapic_addr, sizeof(u32))) 2641 return -EINVAL; 2642 __set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 2643 } else { 2644 __clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 2645 } 2646 2647 vcpu->arch.apic->vapic_addr = vapic_addr; 2648 return 0; 2649 } 2650 2651 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data) 2652 { 2653 struct kvm_lapic *apic = vcpu->arch.apic; 2654 u32 reg = (msr - APIC_BASE_MSR) << 4; 2655 2656 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 2657 return 1; 2658 2659 if (reg == APIC_ICR2) 2660 return 1; 2661 2662 /* if this is ICR write vector before command */ 2663 if (reg == APIC_ICR) 2664 kvm_lapic_reg_write(apic, APIC_ICR2, (u32)(data >> 32)); 2665 return kvm_lapic_reg_write(apic, reg, (u32)data); 2666 } 2667 2668 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data) 2669 { 2670 struct kvm_lapic *apic = vcpu->arch.apic; 2671 u32 reg = (msr - APIC_BASE_MSR) << 4, low, high = 0; 2672 2673 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 2674 return 1; 2675 2676 if (reg == APIC_DFR || reg == APIC_ICR2) 2677 return 1; 2678 2679 if (kvm_lapic_reg_read(apic, reg, 4, &low)) 2680 return 1; 2681 if (reg == APIC_ICR) 2682 kvm_lapic_reg_read(apic, APIC_ICR2, 4, &high); 2683 2684 *data = (((u64)high) << 32) | low; 2685 2686 return 0; 2687 } 2688 2689 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data) 2690 { 2691 struct kvm_lapic *apic = vcpu->arch.apic; 2692 2693 if (!lapic_in_kernel(vcpu)) 2694 return 1; 2695 2696 /* if this is ICR write vector before command */ 2697 if (reg == APIC_ICR) 2698 kvm_lapic_reg_write(apic, APIC_ICR2, (u32)(data >> 32)); 2699 return kvm_lapic_reg_write(apic, reg, (u32)data); 2700 } 2701 2702 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data) 2703 { 2704 struct kvm_lapic *apic = vcpu->arch.apic; 2705 u32 low, high = 0; 2706 2707 if (!lapic_in_kernel(vcpu)) 2708 return 1; 2709 2710 if (kvm_lapic_reg_read(apic, reg, 4, &low)) 2711 return 1; 2712 if (reg == APIC_ICR) 2713 kvm_lapic_reg_read(apic, APIC_ICR2, 4, &high); 2714 2715 *data = (((u64)high) << 32) | low; 2716 2717 return 0; 2718 } 2719 2720 int kvm_lapic_enable_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len) 2721 { 2722 u64 addr = data & ~KVM_MSR_ENABLED; 2723 struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data; 2724 unsigned long new_len; 2725 2726 if (!IS_ALIGNED(addr, 4)) 2727 return 1; 2728 2729 vcpu->arch.pv_eoi.msr_val = data; 2730 if (!pv_eoi_enabled(vcpu)) 2731 return 0; 2732 2733 if (addr == ghc->gpa && len <= ghc->len) 2734 new_len = ghc->len; 2735 else 2736 new_len = len; 2737 2738 return kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len); 2739 } 2740 2741 void kvm_apic_accept_events(struct kvm_vcpu *vcpu) 2742 { 2743 struct kvm_lapic *apic = vcpu->arch.apic; 2744 u8 sipi_vector; 2745 unsigned long pe; 2746 2747 if (!lapic_in_kernel(vcpu) || !apic->pending_events) 2748 return; 2749 2750 /* 2751 * INITs are latched while CPU is in specific states 2752 * (SMM, VMX non-root mode, SVM with GIF=0). 2753 * Because a CPU cannot be in these states immediately 2754 * after it has processed an INIT signal (and thus in 2755 * KVM_MP_STATE_INIT_RECEIVED state), just eat SIPIs 2756 * and leave the INIT pending. 2757 */ 2758 if (kvm_vcpu_latch_init(vcpu)) { 2759 WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED); 2760 if (test_bit(KVM_APIC_SIPI, &apic->pending_events)) 2761 clear_bit(KVM_APIC_SIPI, &apic->pending_events); 2762 return; 2763 } 2764 2765 pe = xchg(&apic->pending_events, 0); 2766 if (test_bit(KVM_APIC_INIT, &pe)) { 2767 kvm_vcpu_reset(vcpu, true); 2768 if (kvm_vcpu_is_bsp(apic->vcpu)) 2769 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 2770 else 2771 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 2772 } 2773 if (test_bit(KVM_APIC_SIPI, &pe) && 2774 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 2775 /* evaluate pending_events before reading the vector */ 2776 smp_rmb(); 2777 sipi_vector = apic->sipi_vector; 2778 kvm_vcpu_deliver_sipi_vector(vcpu, sipi_vector); 2779 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 2780 } 2781 } 2782 2783 void kvm_lapic_init(void) 2784 { 2785 /* do not patch jump label more than once per second */ 2786 jump_label_rate_limit(&apic_hw_disabled, HZ); 2787 jump_label_rate_limit(&apic_sw_disabled, HZ); 2788 } 2789 2790 void kvm_lapic_exit(void) 2791 { 2792 static_key_deferred_flush(&apic_hw_disabled); 2793 static_key_deferred_flush(&apic_sw_disabled); 2794 } 2795