1 // SPDX-License-Identifier: GPL-2.0-only 2 3 /* 4 * Local APIC virtualization 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2007 Novell 8 * Copyright (C) 2007 Intel 9 * Copyright 2009 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Dor Laor <dor.laor@qumranet.com> 13 * Gregory Haskins <ghaskins@novell.com> 14 * Yaozu (Eddie) Dong <eddie.dong@intel.com> 15 * 16 * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation. 17 */ 18 19 #include <linux/kvm_host.h> 20 #include <linux/kvm.h> 21 #include <linux/mm.h> 22 #include <linux/highmem.h> 23 #include <linux/smp.h> 24 #include <linux/hrtimer.h> 25 #include <linux/io.h> 26 #include <linux/export.h> 27 #include <linux/math64.h> 28 #include <linux/slab.h> 29 #include <asm/processor.h> 30 #include <asm/msr.h> 31 #include <asm/page.h> 32 #include <asm/current.h> 33 #include <asm/apicdef.h> 34 #include <asm/delay.h> 35 #include <linux/atomic.h> 36 #include <linux/jump_label.h> 37 #include "kvm_cache_regs.h" 38 #include "irq.h" 39 #include "trace.h" 40 #include "x86.h" 41 #include "cpuid.h" 42 #include "hyperv.h" 43 44 #ifndef CONFIG_X86_64 45 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y)) 46 #else 47 #define mod_64(x, y) ((x) % (y)) 48 #endif 49 50 #define PRId64 "d" 51 #define PRIx64 "llx" 52 #define PRIu64 "u" 53 #define PRIo64 "o" 54 55 /* 14 is the version for Xeon and Pentium 8.4.8*/ 56 #define APIC_VERSION (0x14UL | ((KVM_APIC_LVT_NUM - 1) << 16)) 57 #define LAPIC_MMIO_LENGTH (1 << 12) 58 /* followed define is not in apicdef.h */ 59 #define MAX_APIC_VECTOR 256 60 #define APIC_VECTORS_PER_REG 32 61 62 static bool lapic_timer_advance_dynamic __read_mostly; 63 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN 100 /* clock cycles */ 64 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX 10000 /* clock cycles */ 65 #define LAPIC_TIMER_ADVANCE_NS_INIT 1000 66 #define LAPIC_TIMER_ADVANCE_NS_MAX 5000 67 /* step-by-step approximation to mitigate fluctuation */ 68 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8 69 70 static inline int apic_test_vector(int vec, void *bitmap) 71 { 72 return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 73 } 74 75 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector) 76 { 77 struct kvm_lapic *apic = vcpu->arch.apic; 78 79 return apic_test_vector(vector, apic->regs + APIC_ISR) || 80 apic_test_vector(vector, apic->regs + APIC_IRR); 81 } 82 83 static inline int __apic_test_and_set_vector(int vec, void *bitmap) 84 { 85 return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 86 } 87 88 static inline int __apic_test_and_clear_vector(int vec, void *bitmap) 89 { 90 return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 91 } 92 93 struct static_key_deferred apic_hw_disabled __read_mostly; 94 struct static_key_deferred apic_sw_disabled __read_mostly; 95 96 static inline int apic_enabled(struct kvm_lapic *apic) 97 { 98 return kvm_apic_sw_enabled(apic) && kvm_apic_hw_enabled(apic); 99 } 100 101 #define LVT_MASK \ 102 (APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK) 103 104 #define LINT_MASK \ 105 (LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \ 106 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER) 107 108 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic) 109 { 110 return apic->vcpu->vcpu_id; 111 } 112 113 bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu) 114 { 115 return pi_inject_timer && kvm_vcpu_apicv_active(vcpu); 116 } 117 EXPORT_SYMBOL_GPL(kvm_can_post_timer_interrupt); 118 119 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu) 120 { 121 return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE; 122 } 123 124 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map, 125 u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) { 126 switch (map->mode) { 127 case KVM_APIC_MODE_X2APIC: { 128 u32 offset = (dest_id >> 16) * 16; 129 u32 max_apic_id = map->max_apic_id; 130 131 if (offset <= max_apic_id) { 132 u8 cluster_size = min(max_apic_id - offset + 1, 16U); 133 134 offset = array_index_nospec(offset, map->max_apic_id + 1); 135 *cluster = &map->phys_map[offset]; 136 *mask = dest_id & (0xffff >> (16 - cluster_size)); 137 } else { 138 *mask = 0; 139 } 140 141 return true; 142 } 143 case KVM_APIC_MODE_XAPIC_FLAT: 144 *cluster = map->xapic_flat_map; 145 *mask = dest_id & 0xff; 146 return true; 147 case KVM_APIC_MODE_XAPIC_CLUSTER: 148 *cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf]; 149 *mask = dest_id & 0xf; 150 return true; 151 default: 152 /* Not optimized. */ 153 return false; 154 } 155 } 156 157 static void kvm_apic_map_free(struct rcu_head *rcu) 158 { 159 struct kvm_apic_map *map = container_of(rcu, struct kvm_apic_map, rcu); 160 161 kvfree(map); 162 } 163 164 void kvm_recalculate_apic_map(struct kvm *kvm) 165 { 166 struct kvm_apic_map *new, *old = NULL; 167 struct kvm_vcpu *vcpu; 168 int i; 169 u32 max_id = 255; /* enough space for any xAPIC ID */ 170 171 if (!kvm->arch.apic_map_dirty) { 172 /* 173 * Read kvm->arch.apic_map_dirty before 174 * kvm->arch.apic_map 175 */ 176 smp_rmb(); 177 return; 178 } 179 180 mutex_lock(&kvm->arch.apic_map_lock); 181 if (!kvm->arch.apic_map_dirty) { 182 /* Someone else has updated the map. */ 183 mutex_unlock(&kvm->arch.apic_map_lock); 184 return; 185 } 186 187 kvm_for_each_vcpu(i, vcpu, kvm) 188 if (kvm_apic_present(vcpu)) 189 max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic)); 190 191 new = kvzalloc(sizeof(struct kvm_apic_map) + 192 sizeof(struct kvm_lapic *) * ((u64)max_id + 1), 193 GFP_KERNEL_ACCOUNT); 194 195 if (!new) 196 goto out; 197 198 new->max_apic_id = max_id; 199 200 kvm_for_each_vcpu(i, vcpu, kvm) { 201 struct kvm_lapic *apic = vcpu->arch.apic; 202 struct kvm_lapic **cluster; 203 u16 mask; 204 u32 ldr; 205 u8 xapic_id; 206 u32 x2apic_id; 207 208 if (!kvm_apic_present(vcpu)) 209 continue; 210 211 xapic_id = kvm_xapic_id(apic); 212 x2apic_id = kvm_x2apic_id(apic); 213 214 /* Hotplug hack: see kvm_apic_match_physical_addr(), ... */ 215 if ((apic_x2apic_mode(apic) || x2apic_id > 0xff) && 216 x2apic_id <= new->max_apic_id) 217 new->phys_map[x2apic_id] = apic; 218 /* 219 * ... xAPIC ID of VCPUs with APIC ID > 0xff will wrap-around, 220 * prevent them from masking VCPUs with APIC ID <= 0xff. 221 */ 222 if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id]) 223 new->phys_map[xapic_id] = apic; 224 225 if (!kvm_apic_sw_enabled(apic)) 226 continue; 227 228 ldr = kvm_lapic_get_reg(apic, APIC_LDR); 229 230 if (apic_x2apic_mode(apic)) { 231 new->mode |= KVM_APIC_MODE_X2APIC; 232 } else if (ldr) { 233 ldr = GET_APIC_LOGICAL_ID(ldr); 234 if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT) 235 new->mode |= KVM_APIC_MODE_XAPIC_FLAT; 236 else 237 new->mode |= KVM_APIC_MODE_XAPIC_CLUSTER; 238 } 239 240 if (!kvm_apic_map_get_logical_dest(new, ldr, &cluster, &mask)) 241 continue; 242 243 if (mask) 244 cluster[ffs(mask) - 1] = apic; 245 } 246 out: 247 old = rcu_dereference_protected(kvm->arch.apic_map, 248 lockdep_is_held(&kvm->arch.apic_map_lock)); 249 rcu_assign_pointer(kvm->arch.apic_map, new); 250 /* 251 * Write kvm->arch.apic_map before 252 * clearing apic->apic_map_dirty 253 */ 254 smp_wmb(); 255 kvm->arch.apic_map_dirty = false; 256 mutex_unlock(&kvm->arch.apic_map_lock); 257 258 if (old) 259 call_rcu(&old->rcu, kvm_apic_map_free); 260 261 kvm_make_scan_ioapic_request(kvm); 262 } 263 264 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val) 265 { 266 bool enabled = val & APIC_SPIV_APIC_ENABLED; 267 268 kvm_lapic_set_reg(apic, APIC_SPIV, val); 269 270 if (enabled != apic->sw_enabled) { 271 apic->sw_enabled = enabled; 272 if (enabled) 273 static_key_slow_dec_deferred(&apic_sw_disabled); 274 else 275 static_key_slow_inc(&apic_sw_disabled.key); 276 277 apic->vcpu->kvm->arch.apic_map_dirty = true; 278 } 279 } 280 281 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id) 282 { 283 kvm_lapic_set_reg(apic, APIC_ID, id << 24); 284 apic->vcpu->kvm->arch.apic_map_dirty = true; 285 } 286 287 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id) 288 { 289 kvm_lapic_set_reg(apic, APIC_LDR, id); 290 apic->vcpu->kvm->arch.apic_map_dirty = true; 291 } 292 293 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id) 294 { 295 return ((id >> 4) << 16) | (1 << (id & 0xf)); 296 } 297 298 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id) 299 { 300 u32 ldr = kvm_apic_calc_x2apic_ldr(id); 301 302 WARN_ON_ONCE(id != apic->vcpu->vcpu_id); 303 304 kvm_lapic_set_reg(apic, APIC_ID, id); 305 kvm_lapic_set_reg(apic, APIC_LDR, ldr); 306 apic->vcpu->kvm->arch.apic_map_dirty = true; 307 } 308 309 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type) 310 { 311 return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED); 312 } 313 314 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic) 315 { 316 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT; 317 } 318 319 static inline int apic_lvtt_period(struct kvm_lapic *apic) 320 { 321 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC; 322 } 323 324 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic) 325 { 326 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE; 327 } 328 329 static inline int apic_lvt_nmi_mode(u32 lvt_val) 330 { 331 return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI; 332 } 333 334 void kvm_apic_set_version(struct kvm_vcpu *vcpu) 335 { 336 struct kvm_lapic *apic = vcpu->arch.apic; 337 struct kvm_cpuid_entry2 *feat; 338 u32 v = APIC_VERSION; 339 340 if (!lapic_in_kernel(vcpu)) 341 return; 342 343 /* 344 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation) 345 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with 346 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC 347 * version first and level-triggered interrupts never get EOIed in 348 * IOAPIC. 349 */ 350 feat = kvm_find_cpuid_entry(apic->vcpu, 0x1, 0); 351 if (feat && (feat->ecx & (1 << (X86_FEATURE_X2APIC & 31))) && 352 !ioapic_in_kernel(vcpu->kvm)) 353 v |= APIC_LVR_DIRECTED_EOI; 354 kvm_lapic_set_reg(apic, APIC_LVR, v); 355 } 356 357 static const unsigned int apic_lvt_mask[KVM_APIC_LVT_NUM] = { 358 LVT_MASK , /* part LVTT mask, timer mode mask added at runtime */ 359 LVT_MASK | APIC_MODE_MASK, /* LVTTHMR */ 360 LVT_MASK | APIC_MODE_MASK, /* LVTPC */ 361 LINT_MASK, LINT_MASK, /* LVT0-1 */ 362 LVT_MASK /* LVTERR */ 363 }; 364 365 static int find_highest_vector(void *bitmap) 366 { 367 int vec; 368 u32 *reg; 369 370 for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG; 371 vec >= 0; vec -= APIC_VECTORS_PER_REG) { 372 reg = bitmap + REG_POS(vec); 373 if (*reg) 374 return __fls(*reg) + vec; 375 } 376 377 return -1; 378 } 379 380 static u8 count_vectors(void *bitmap) 381 { 382 int vec; 383 u32 *reg; 384 u8 count = 0; 385 386 for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) { 387 reg = bitmap + REG_POS(vec); 388 count += hweight32(*reg); 389 } 390 391 return count; 392 } 393 394 bool __kvm_apic_update_irr(u32 *pir, void *regs, int *max_irr) 395 { 396 u32 i, vec; 397 u32 pir_val, irr_val, prev_irr_val; 398 int max_updated_irr; 399 400 max_updated_irr = -1; 401 *max_irr = -1; 402 403 for (i = vec = 0; i <= 7; i++, vec += 32) { 404 pir_val = READ_ONCE(pir[i]); 405 irr_val = *((u32 *)(regs + APIC_IRR + i * 0x10)); 406 if (pir_val) { 407 prev_irr_val = irr_val; 408 irr_val |= xchg(&pir[i], 0); 409 *((u32 *)(regs + APIC_IRR + i * 0x10)) = irr_val; 410 if (prev_irr_val != irr_val) { 411 max_updated_irr = 412 __fls(irr_val ^ prev_irr_val) + vec; 413 } 414 } 415 if (irr_val) 416 *max_irr = __fls(irr_val) + vec; 417 } 418 419 return ((max_updated_irr != -1) && 420 (max_updated_irr == *max_irr)); 421 } 422 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr); 423 424 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir, int *max_irr) 425 { 426 struct kvm_lapic *apic = vcpu->arch.apic; 427 428 return __kvm_apic_update_irr(pir, apic->regs, max_irr); 429 } 430 EXPORT_SYMBOL_GPL(kvm_apic_update_irr); 431 432 static inline int apic_search_irr(struct kvm_lapic *apic) 433 { 434 return find_highest_vector(apic->regs + APIC_IRR); 435 } 436 437 static inline int apic_find_highest_irr(struct kvm_lapic *apic) 438 { 439 int result; 440 441 /* 442 * Note that irr_pending is just a hint. It will be always 443 * true with virtual interrupt delivery enabled. 444 */ 445 if (!apic->irr_pending) 446 return -1; 447 448 result = apic_search_irr(apic); 449 ASSERT(result == -1 || result >= 16); 450 451 return result; 452 } 453 454 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic) 455 { 456 struct kvm_vcpu *vcpu; 457 458 vcpu = apic->vcpu; 459 460 if (unlikely(vcpu->arch.apicv_active)) { 461 /* need to update RVI */ 462 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR); 463 kvm_x86_ops.hwapic_irr_update(vcpu, 464 apic_find_highest_irr(apic)); 465 } else { 466 apic->irr_pending = false; 467 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR); 468 if (apic_search_irr(apic) != -1) 469 apic->irr_pending = true; 470 } 471 } 472 473 static inline void apic_set_isr(int vec, struct kvm_lapic *apic) 474 { 475 struct kvm_vcpu *vcpu; 476 477 if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR)) 478 return; 479 480 vcpu = apic->vcpu; 481 482 /* 483 * With APIC virtualization enabled, all caching is disabled 484 * because the processor can modify ISR under the hood. Instead 485 * just set SVI. 486 */ 487 if (unlikely(vcpu->arch.apicv_active)) 488 kvm_x86_ops.hwapic_isr_update(vcpu, vec); 489 else { 490 ++apic->isr_count; 491 BUG_ON(apic->isr_count > MAX_APIC_VECTOR); 492 /* 493 * ISR (in service register) bit is set when injecting an interrupt. 494 * The highest vector is injected. Thus the latest bit set matches 495 * the highest bit in ISR. 496 */ 497 apic->highest_isr_cache = vec; 498 } 499 } 500 501 static inline int apic_find_highest_isr(struct kvm_lapic *apic) 502 { 503 int result; 504 505 /* 506 * Note that isr_count is always 1, and highest_isr_cache 507 * is always -1, with APIC virtualization enabled. 508 */ 509 if (!apic->isr_count) 510 return -1; 511 if (likely(apic->highest_isr_cache != -1)) 512 return apic->highest_isr_cache; 513 514 result = find_highest_vector(apic->regs + APIC_ISR); 515 ASSERT(result == -1 || result >= 16); 516 517 return result; 518 } 519 520 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic) 521 { 522 struct kvm_vcpu *vcpu; 523 if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR)) 524 return; 525 526 vcpu = apic->vcpu; 527 528 /* 529 * We do get here for APIC virtualization enabled if the guest 530 * uses the Hyper-V APIC enlightenment. In this case we may need 531 * to trigger a new interrupt delivery by writing the SVI field; 532 * on the other hand isr_count and highest_isr_cache are unused 533 * and must be left alone. 534 */ 535 if (unlikely(vcpu->arch.apicv_active)) 536 kvm_x86_ops.hwapic_isr_update(vcpu, 537 apic_find_highest_isr(apic)); 538 else { 539 --apic->isr_count; 540 BUG_ON(apic->isr_count < 0); 541 apic->highest_isr_cache = -1; 542 } 543 } 544 545 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu) 546 { 547 /* This may race with setting of irr in __apic_accept_irq() and 548 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq 549 * will cause vmexit immediately and the value will be recalculated 550 * on the next vmentry. 551 */ 552 return apic_find_highest_irr(vcpu->arch.apic); 553 } 554 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr); 555 556 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 557 int vector, int level, int trig_mode, 558 struct dest_map *dest_map); 559 560 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq, 561 struct dest_map *dest_map) 562 { 563 struct kvm_lapic *apic = vcpu->arch.apic; 564 565 return __apic_accept_irq(apic, irq->delivery_mode, irq->vector, 566 irq->level, irq->trig_mode, dest_map); 567 } 568 569 static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map, 570 struct kvm_lapic_irq *irq, u32 min) 571 { 572 int i, count = 0; 573 struct kvm_vcpu *vcpu; 574 575 if (min > map->max_apic_id) 576 return 0; 577 578 for_each_set_bit(i, ipi_bitmap, 579 min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) { 580 if (map->phys_map[min + i]) { 581 vcpu = map->phys_map[min + i]->vcpu; 582 count += kvm_apic_set_irq(vcpu, irq, NULL); 583 } 584 } 585 586 return count; 587 } 588 589 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 590 unsigned long ipi_bitmap_high, u32 min, 591 unsigned long icr, int op_64_bit) 592 { 593 struct kvm_apic_map *map; 594 struct kvm_lapic_irq irq = {0}; 595 int cluster_size = op_64_bit ? 64 : 32; 596 int count; 597 598 if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK)) 599 return -KVM_EINVAL; 600 601 irq.vector = icr & APIC_VECTOR_MASK; 602 irq.delivery_mode = icr & APIC_MODE_MASK; 603 irq.level = (icr & APIC_INT_ASSERT) != 0; 604 irq.trig_mode = icr & APIC_INT_LEVELTRIG; 605 606 rcu_read_lock(); 607 map = rcu_dereference(kvm->arch.apic_map); 608 609 count = -EOPNOTSUPP; 610 if (likely(map)) { 611 count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min); 612 min += cluster_size; 613 count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min); 614 } 615 616 rcu_read_unlock(); 617 return count; 618 } 619 620 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val) 621 { 622 623 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val, 624 sizeof(val)); 625 } 626 627 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val) 628 { 629 630 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val, 631 sizeof(*val)); 632 } 633 634 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu) 635 { 636 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED; 637 } 638 639 static bool pv_eoi_get_pending(struct kvm_vcpu *vcpu) 640 { 641 u8 val; 642 if (pv_eoi_get_user(vcpu, &val) < 0) { 643 printk(KERN_WARNING "Can't read EOI MSR value: 0x%llx\n", 644 (unsigned long long)vcpu->arch.pv_eoi.msr_val); 645 return false; 646 } 647 return val & 0x1; 648 } 649 650 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu) 651 { 652 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0) { 653 printk(KERN_WARNING "Can't set EOI MSR value: 0x%llx\n", 654 (unsigned long long)vcpu->arch.pv_eoi.msr_val); 655 return; 656 } 657 __set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 658 } 659 660 static void pv_eoi_clr_pending(struct kvm_vcpu *vcpu) 661 { 662 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0) { 663 printk(KERN_WARNING "Can't clear EOI MSR value: 0x%llx\n", 664 (unsigned long long)vcpu->arch.pv_eoi.msr_val); 665 return; 666 } 667 __clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 668 } 669 670 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr) 671 { 672 int highest_irr; 673 if (apic->vcpu->arch.apicv_active) 674 highest_irr = kvm_x86_ops.sync_pir_to_irr(apic->vcpu); 675 else 676 highest_irr = apic_find_highest_irr(apic); 677 if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr) 678 return -1; 679 return highest_irr; 680 } 681 682 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr) 683 { 684 u32 tpr, isrv, ppr, old_ppr; 685 int isr; 686 687 old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI); 688 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI); 689 isr = apic_find_highest_isr(apic); 690 isrv = (isr != -1) ? isr : 0; 691 692 if ((tpr & 0xf0) >= (isrv & 0xf0)) 693 ppr = tpr & 0xff; 694 else 695 ppr = isrv & 0xf0; 696 697 *new_ppr = ppr; 698 if (old_ppr != ppr) 699 kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr); 700 701 return ppr < old_ppr; 702 } 703 704 static void apic_update_ppr(struct kvm_lapic *apic) 705 { 706 u32 ppr; 707 708 if (__apic_update_ppr(apic, &ppr) && 709 apic_has_interrupt_for_ppr(apic, ppr) != -1) 710 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 711 } 712 713 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu) 714 { 715 apic_update_ppr(vcpu->arch.apic); 716 } 717 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr); 718 719 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr) 720 { 721 kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr); 722 apic_update_ppr(apic); 723 } 724 725 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda) 726 { 727 return mda == (apic_x2apic_mode(apic) ? 728 X2APIC_BROADCAST : APIC_BROADCAST); 729 } 730 731 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda) 732 { 733 if (kvm_apic_broadcast(apic, mda)) 734 return true; 735 736 if (apic_x2apic_mode(apic)) 737 return mda == kvm_x2apic_id(apic); 738 739 /* 740 * Hotplug hack: Make LAPIC in xAPIC mode also accept interrupts as if 741 * it were in x2APIC mode. Hotplugged VCPUs start in xAPIC mode and 742 * this allows unique addressing of VCPUs with APIC ID over 0xff. 743 * The 0xff condition is needed because writeable xAPIC ID. 744 */ 745 if (kvm_x2apic_id(apic) > 0xff && mda == kvm_x2apic_id(apic)) 746 return true; 747 748 return mda == kvm_xapic_id(apic); 749 } 750 751 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda) 752 { 753 u32 logical_id; 754 755 if (kvm_apic_broadcast(apic, mda)) 756 return true; 757 758 logical_id = kvm_lapic_get_reg(apic, APIC_LDR); 759 760 if (apic_x2apic_mode(apic)) 761 return ((logical_id >> 16) == (mda >> 16)) 762 && (logical_id & mda & 0xffff) != 0; 763 764 logical_id = GET_APIC_LOGICAL_ID(logical_id); 765 766 switch (kvm_lapic_get_reg(apic, APIC_DFR)) { 767 case APIC_DFR_FLAT: 768 return (logical_id & mda) != 0; 769 case APIC_DFR_CLUSTER: 770 return ((logical_id >> 4) == (mda >> 4)) 771 && (logical_id & mda & 0xf) != 0; 772 default: 773 return false; 774 } 775 } 776 777 /* The KVM local APIC implementation has two quirks: 778 * 779 * - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs 780 * in xAPIC mode if the "destination & 0xff" matches its xAPIC ID. 781 * KVM doesn't do that aliasing. 782 * 783 * - in-kernel IOAPIC messages have to be delivered directly to 784 * x2APIC, because the kernel does not support interrupt remapping. 785 * In order to support broadcast without interrupt remapping, x2APIC 786 * rewrites the destination of non-IPI messages from APIC_BROADCAST 787 * to X2APIC_BROADCAST. 788 * 789 * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API. This is 790 * important when userspace wants to use x2APIC-format MSIs, because 791 * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7". 792 */ 793 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id, 794 struct kvm_lapic *source, struct kvm_lapic *target) 795 { 796 bool ipi = source != NULL; 797 798 if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled && 799 !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target)) 800 return X2APIC_BROADCAST; 801 802 return dest_id; 803 } 804 805 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source, 806 int shorthand, unsigned int dest, int dest_mode) 807 { 808 struct kvm_lapic *target = vcpu->arch.apic; 809 u32 mda = kvm_apic_mda(vcpu, dest, source, target); 810 811 ASSERT(target); 812 switch (shorthand) { 813 case APIC_DEST_NOSHORT: 814 if (dest_mode == APIC_DEST_PHYSICAL) 815 return kvm_apic_match_physical_addr(target, mda); 816 else 817 return kvm_apic_match_logical_addr(target, mda); 818 case APIC_DEST_SELF: 819 return target == source; 820 case APIC_DEST_ALLINC: 821 return true; 822 case APIC_DEST_ALLBUT: 823 return target != source; 824 default: 825 return false; 826 } 827 } 828 EXPORT_SYMBOL_GPL(kvm_apic_match_dest); 829 830 int kvm_vector_to_index(u32 vector, u32 dest_vcpus, 831 const unsigned long *bitmap, u32 bitmap_size) 832 { 833 u32 mod; 834 int i, idx = -1; 835 836 mod = vector % dest_vcpus; 837 838 for (i = 0; i <= mod; i++) { 839 idx = find_next_bit(bitmap, bitmap_size, idx + 1); 840 BUG_ON(idx == bitmap_size); 841 } 842 843 return idx; 844 } 845 846 static void kvm_apic_disabled_lapic_found(struct kvm *kvm) 847 { 848 if (!kvm->arch.disabled_lapic_found) { 849 kvm->arch.disabled_lapic_found = true; 850 printk(KERN_INFO 851 "Disabled LAPIC found during irq injection\n"); 852 } 853 } 854 855 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src, 856 struct kvm_lapic_irq *irq, struct kvm_apic_map *map) 857 { 858 if (kvm->arch.x2apic_broadcast_quirk_disabled) { 859 if ((irq->dest_id == APIC_BROADCAST && 860 map->mode != KVM_APIC_MODE_X2APIC)) 861 return true; 862 if (irq->dest_id == X2APIC_BROADCAST) 863 return true; 864 } else { 865 bool x2apic_ipi = src && *src && apic_x2apic_mode(*src); 866 if (irq->dest_id == (x2apic_ipi ? 867 X2APIC_BROADCAST : APIC_BROADCAST)) 868 return true; 869 } 870 871 return false; 872 } 873 874 /* Return true if the interrupt can be handled by using *bitmap as index mask 875 * for valid destinations in *dst array. 876 * Return false if kvm_apic_map_get_dest_lapic did nothing useful. 877 * Note: we may have zero kvm_lapic destinations when we return true, which 878 * means that the interrupt should be dropped. In this case, *bitmap would be 879 * zero and *dst undefined. 880 */ 881 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm, 882 struct kvm_lapic **src, struct kvm_lapic_irq *irq, 883 struct kvm_apic_map *map, struct kvm_lapic ***dst, 884 unsigned long *bitmap) 885 { 886 int i, lowest; 887 888 if (irq->shorthand == APIC_DEST_SELF && src) { 889 *dst = src; 890 *bitmap = 1; 891 return true; 892 } else if (irq->shorthand) 893 return false; 894 895 if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map)) 896 return false; 897 898 if (irq->dest_mode == APIC_DEST_PHYSICAL) { 899 if (irq->dest_id > map->max_apic_id) { 900 *bitmap = 0; 901 } else { 902 u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1); 903 *dst = &map->phys_map[dest_id]; 904 *bitmap = 1; 905 } 906 return true; 907 } 908 909 *bitmap = 0; 910 if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst, 911 (u16 *)bitmap)) 912 return false; 913 914 if (!kvm_lowest_prio_delivery(irq)) 915 return true; 916 917 if (!kvm_vector_hashing_enabled()) { 918 lowest = -1; 919 for_each_set_bit(i, bitmap, 16) { 920 if (!(*dst)[i]) 921 continue; 922 if (lowest < 0) 923 lowest = i; 924 else if (kvm_apic_compare_prio((*dst)[i]->vcpu, 925 (*dst)[lowest]->vcpu) < 0) 926 lowest = i; 927 } 928 } else { 929 if (!*bitmap) 930 return true; 931 932 lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap), 933 bitmap, 16); 934 935 if (!(*dst)[lowest]) { 936 kvm_apic_disabled_lapic_found(kvm); 937 *bitmap = 0; 938 return true; 939 } 940 } 941 942 *bitmap = (lowest >= 0) ? 1 << lowest : 0; 943 944 return true; 945 } 946 947 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src, 948 struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map) 949 { 950 struct kvm_apic_map *map; 951 unsigned long bitmap; 952 struct kvm_lapic **dst = NULL; 953 int i; 954 bool ret; 955 956 *r = -1; 957 958 if (irq->shorthand == APIC_DEST_SELF) { 959 *r = kvm_apic_set_irq(src->vcpu, irq, dest_map); 960 return true; 961 } 962 963 rcu_read_lock(); 964 map = rcu_dereference(kvm->arch.apic_map); 965 966 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap); 967 if (ret) { 968 *r = 0; 969 for_each_set_bit(i, &bitmap, 16) { 970 if (!dst[i]) 971 continue; 972 *r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map); 973 } 974 } 975 976 rcu_read_unlock(); 977 return ret; 978 } 979 980 /* 981 * This routine tries to handle interrupts in posted mode, here is how 982 * it deals with different cases: 983 * - For single-destination interrupts, handle it in posted mode 984 * - Else if vector hashing is enabled and it is a lowest-priority 985 * interrupt, handle it in posted mode and use the following mechanism 986 * to find the destination vCPU. 987 * 1. For lowest-priority interrupts, store all the possible 988 * destination vCPUs in an array. 989 * 2. Use "guest vector % max number of destination vCPUs" to find 990 * the right destination vCPU in the array for the lowest-priority 991 * interrupt. 992 * - Otherwise, use remapped mode to inject the interrupt. 993 */ 994 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq, 995 struct kvm_vcpu **dest_vcpu) 996 { 997 struct kvm_apic_map *map; 998 unsigned long bitmap; 999 struct kvm_lapic **dst = NULL; 1000 bool ret = false; 1001 1002 if (irq->shorthand) 1003 return false; 1004 1005 rcu_read_lock(); 1006 map = rcu_dereference(kvm->arch.apic_map); 1007 1008 if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) && 1009 hweight16(bitmap) == 1) { 1010 unsigned long i = find_first_bit(&bitmap, 16); 1011 1012 if (dst[i]) { 1013 *dest_vcpu = dst[i]->vcpu; 1014 ret = true; 1015 } 1016 } 1017 1018 rcu_read_unlock(); 1019 return ret; 1020 } 1021 1022 /* 1023 * Add a pending IRQ into lapic. 1024 * Return 1 if successfully added and 0 if discarded. 1025 */ 1026 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 1027 int vector, int level, int trig_mode, 1028 struct dest_map *dest_map) 1029 { 1030 int result = 0; 1031 struct kvm_vcpu *vcpu = apic->vcpu; 1032 1033 trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode, 1034 trig_mode, vector); 1035 switch (delivery_mode) { 1036 case APIC_DM_LOWEST: 1037 vcpu->arch.apic_arb_prio++; 1038 /* fall through */ 1039 case APIC_DM_FIXED: 1040 if (unlikely(trig_mode && !level)) 1041 break; 1042 1043 /* FIXME add logic for vcpu on reset */ 1044 if (unlikely(!apic_enabled(apic))) 1045 break; 1046 1047 result = 1; 1048 1049 if (dest_map) { 1050 __set_bit(vcpu->vcpu_id, dest_map->map); 1051 dest_map->vectors[vcpu->vcpu_id] = vector; 1052 } 1053 1054 if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) { 1055 if (trig_mode) 1056 kvm_lapic_set_vector(vector, 1057 apic->regs + APIC_TMR); 1058 else 1059 kvm_lapic_clear_vector(vector, 1060 apic->regs + APIC_TMR); 1061 } 1062 1063 if (kvm_x86_ops.deliver_posted_interrupt(vcpu, vector)) { 1064 kvm_lapic_set_irr(vector, apic); 1065 kvm_make_request(KVM_REQ_EVENT, vcpu); 1066 kvm_vcpu_kick(vcpu); 1067 } 1068 break; 1069 1070 case APIC_DM_REMRD: 1071 result = 1; 1072 vcpu->arch.pv.pv_unhalted = 1; 1073 kvm_make_request(KVM_REQ_EVENT, vcpu); 1074 kvm_vcpu_kick(vcpu); 1075 break; 1076 1077 case APIC_DM_SMI: 1078 result = 1; 1079 kvm_make_request(KVM_REQ_SMI, vcpu); 1080 kvm_vcpu_kick(vcpu); 1081 break; 1082 1083 case APIC_DM_NMI: 1084 result = 1; 1085 kvm_inject_nmi(vcpu); 1086 kvm_vcpu_kick(vcpu); 1087 break; 1088 1089 case APIC_DM_INIT: 1090 if (!trig_mode || level) { 1091 result = 1; 1092 /* assumes that there are only KVM_APIC_INIT/SIPI */ 1093 apic->pending_events = (1UL << KVM_APIC_INIT); 1094 kvm_make_request(KVM_REQ_EVENT, vcpu); 1095 kvm_vcpu_kick(vcpu); 1096 } 1097 break; 1098 1099 case APIC_DM_STARTUP: 1100 result = 1; 1101 apic->sipi_vector = vector; 1102 /* make sure sipi_vector is visible for the receiver */ 1103 smp_wmb(); 1104 set_bit(KVM_APIC_SIPI, &apic->pending_events); 1105 kvm_make_request(KVM_REQ_EVENT, vcpu); 1106 kvm_vcpu_kick(vcpu); 1107 break; 1108 1109 case APIC_DM_EXTINT: 1110 /* 1111 * Should only be called by kvm_apic_local_deliver() with LVT0, 1112 * before NMI watchdog was enabled. Already handled by 1113 * kvm_apic_accept_pic_intr(). 1114 */ 1115 break; 1116 1117 default: 1118 printk(KERN_ERR "TODO: unsupported delivery mode %x\n", 1119 delivery_mode); 1120 break; 1121 } 1122 return result; 1123 } 1124 1125 /* 1126 * This routine identifies the destination vcpus mask meant to receive the 1127 * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find 1128 * out the destination vcpus array and set the bitmap or it traverses to 1129 * each available vcpu to identify the same. 1130 */ 1131 void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq, 1132 unsigned long *vcpu_bitmap) 1133 { 1134 struct kvm_lapic **dest_vcpu = NULL; 1135 struct kvm_lapic *src = NULL; 1136 struct kvm_apic_map *map; 1137 struct kvm_vcpu *vcpu; 1138 unsigned long bitmap; 1139 int i, vcpu_idx; 1140 bool ret; 1141 1142 rcu_read_lock(); 1143 map = rcu_dereference(kvm->arch.apic_map); 1144 1145 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu, 1146 &bitmap); 1147 if (ret) { 1148 for_each_set_bit(i, &bitmap, 16) { 1149 if (!dest_vcpu[i]) 1150 continue; 1151 vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx; 1152 __set_bit(vcpu_idx, vcpu_bitmap); 1153 } 1154 } else { 1155 kvm_for_each_vcpu(i, vcpu, kvm) { 1156 if (!kvm_apic_present(vcpu)) 1157 continue; 1158 if (!kvm_apic_match_dest(vcpu, NULL, 1159 irq->shorthand, 1160 irq->dest_id, 1161 irq->dest_mode)) 1162 continue; 1163 __set_bit(i, vcpu_bitmap); 1164 } 1165 } 1166 rcu_read_unlock(); 1167 } 1168 1169 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2) 1170 { 1171 return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio; 1172 } 1173 1174 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector) 1175 { 1176 return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors); 1177 } 1178 1179 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector) 1180 { 1181 int trigger_mode; 1182 1183 /* Eoi the ioapic only if the ioapic doesn't own the vector. */ 1184 if (!kvm_ioapic_handles_vector(apic, vector)) 1185 return; 1186 1187 /* Request a KVM exit to inform the userspace IOAPIC. */ 1188 if (irqchip_split(apic->vcpu->kvm)) { 1189 apic->vcpu->arch.pending_ioapic_eoi = vector; 1190 kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu); 1191 return; 1192 } 1193 1194 if (apic_test_vector(vector, apic->regs + APIC_TMR)) 1195 trigger_mode = IOAPIC_LEVEL_TRIG; 1196 else 1197 trigger_mode = IOAPIC_EDGE_TRIG; 1198 1199 kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode); 1200 } 1201 1202 static int apic_set_eoi(struct kvm_lapic *apic) 1203 { 1204 int vector = apic_find_highest_isr(apic); 1205 1206 trace_kvm_eoi(apic, vector); 1207 1208 /* 1209 * Not every write EOI will has corresponding ISR, 1210 * one example is when Kernel check timer on setup_IO_APIC 1211 */ 1212 if (vector == -1) 1213 return vector; 1214 1215 apic_clear_isr(vector, apic); 1216 apic_update_ppr(apic); 1217 1218 if (test_bit(vector, vcpu_to_synic(apic->vcpu)->vec_bitmap)) 1219 kvm_hv_synic_send_eoi(apic->vcpu, vector); 1220 1221 kvm_ioapic_send_eoi(apic, vector); 1222 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1223 return vector; 1224 } 1225 1226 /* 1227 * this interface assumes a trap-like exit, which has already finished 1228 * desired side effect including vISR and vPPR update. 1229 */ 1230 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector) 1231 { 1232 struct kvm_lapic *apic = vcpu->arch.apic; 1233 1234 trace_kvm_eoi(apic, vector); 1235 1236 kvm_ioapic_send_eoi(apic, vector); 1237 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1238 } 1239 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated); 1240 1241 void kvm_apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high) 1242 { 1243 struct kvm_lapic_irq irq; 1244 1245 irq.vector = icr_low & APIC_VECTOR_MASK; 1246 irq.delivery_mode = icr_low & APIC_MODE_MASK; 1247 irq.dest_mode = icr_low & APIC_DEST_MASK; 1248 irq.level = (icr_low & APIC_INT_ASSERT) != 0; 1249 irq.trig_mode = icr_low & APIC_INT_LEVELTRIG; 1250 irq.shorthand = icr_low & APIC_SHORT_MASK; 1251 irq.msi_redir_hint = false; 1252 if (apic_x2apic_mode(apic)) 1253 irq.dest_id = icr_high; 1254 else 1255 irq.dest_id = GET_APIC_DEST_FIELD(icr_high); 1256 1257 trace_kvm_apic_ipi(icr_low, irq.dest_id); 1258 1259 kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL); 1260 } 1261 1262 static u32 apic_get_tmcct(struct kvm_lapic *apic) 1263 { 1264 ktime_t remaining, now; 1265 s64 ns; 1266 u32 tmcct; 1267 1268 ASSERT(apic != NULL); 1269 1270 /* if initial count is 0, current count should also be 0 */ 1271 if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 || 1272 apic->lapic_timer.period == 0) 1273 return 0; 1274 1275 now = ktime_get(); 1276 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 1277 if (ktime_to_ns(remaining) < 0) 1278 remaining = 0; 1279 1280 ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period); 1281 tmcct = div64_u64(ns, 1282 (APIC_BUS_CYCLE_NS * apic->divide_count)); 1283 1284 return tmcct; 1285 } 1286 1287 static void __report_tpr_access(struct kvm_lapic *apic, bool write) 1288 { 1289 struct kvm_vcpu *vcpu = apic->vcpu; 1290 struct kvm_run *run = vcpu->run; 1291 1292 kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu); 1293 run->tpr_access.rip = kvm_rip_read(vcpu); 1294 run->tpr_access.is_write = write; 1295 } 1296 1297 static inline void report_tpr_access(struct kvm_lapic *apic, bool write) 1298 { 1299 if (apic->vcpu->arch.tpr_access_reporting) 1300 __report_tpr_access(apic, write); 1301 } 1302 1303 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset) 1304 { 1305 u32 val = 0; 1306 1307 if (offset >= LAPIC_MMIO_LENGTH) 1308 return 0; 1309 1310 switch (offset) { 1311 case APIC_ARBPRI: 1312 break; 1313 1314 case APIC_TMCCT: /* Timer CCR */ 1315 if (apic_lvtt_tscdeadline(apic)) 1316 return 0; 1317 1318 val = apic_get_tmcct(apic); 1319 break; 1320 case APIC_PROCPRI: 1321 apic_update_ppr(apic); 1322 val = kvm_lapic_get_reg(apic, offset); 1323 break; 1324 case APIC_TASKPRI: 1325 report_tpr_access(apic, false); 1326 /* fall thru */ 1327 default: 1328 val = kvm_lapic_get_reg(apic, offset); 1329 break; 1330 } 1331 1332 return val; 1333 } 1334 1335 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev) 1336 { 1337 return container_of(dev, struct kvm_lapic, dev); 1338 } 1339 1340 #define APIC_REG_MASK(reg) (1ull << ((reg) >> 4)) 1341 #define APIC_REGS_MASK(first, count) \ 1342 (APIC_REG_MASK(first) * ((1ull << (count)) - 1)) 1343 1344 int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len, 1345 void *data) 1346 { 1347 unsigned char alignment = offset & 0xf; 1348 u32 result; 1349 /* this bitmask has a bit cleared for each reserved register */ 1350 u64 valid_reg_mask = 1351 APIC_REG_MASK(APIC_ID) | 1352 APIC_REG_MASK(APIC_LVR) | 1353 APIC_REG_MASK(APIC_TASKPRI) | 1354 APIC_REG_MASK(APIC_PROCPRI) | 1355 APIC_REG_MASK(APIC_LDR) | 1356 APIC_REG_MASK(APIC_DFR) | 1357 APIC_REG_MASK(APIC_SPIV) | 1358 APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) | 1359 APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) | 1360 APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) | 1361 APIC_REG_MASK(APIC_ESR) | 1362 APIC_REG_MASK(APIC_ICR) | 1363 APIC_REG_MASK(APIC_ICR2) | 1364 APIC_REG_MASK(APIC_LVTT) | 1365 APIC_REG_MASK(APIC_LVTTHMR) | 1366 APIC_REG_MASK(APIC_LVTPC) | 1367 APIC_REG_MASK(APIC_LVT0) | 1368 APIC_REG_MASK(APIC_LVT1) | 1369 APIC_REG_MASK(APIC_LVTERR) | 1370 APIC_REG_MASK(APIC_TMICT) | 1371 APIC_REG_MASK(APIC_TMCCT) | 1372 APIC_REG_MASK(APIC_TDCR); 1373 1374 /* ARBPRI is not valid on x2APIC */ 1375 if (!apic_x2apic_mode(apic)) 1376 valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI); 1377 1378 if (offset > 0x3f0 || !(valid_reg_mask & APIC_REG_MASK(offset))) 1379 return 1; 1380 1381 result = __apic_read(apic, offset & ~0xf); 1382 1383 trace_kvm_apic_read(offset, result); 1384 1385 switch (len) { 1386 case 1: 1387 case 2: 1388 case 4: 1389 memcpy(data, (char *)&result + alignment, len); 1390 break; 1391 default: 1392 printk(KERN_ERR "Local APIC read with len = %x, " 1393 "should be 1,2, or 4 instead\n", len); 1394 break; 1395 } 1396 return 0; 1397 } 1398 EXPORT_SYMBOL_GPL(kvm_lapic_reg_read); 1399 1400 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr) 1401 { 1402 return addr >= apic->base_address && 1403 addr < apic->base_address + LAPIC_MMIO_LENGTH; 1404 } 1405 1406 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 1407 gpa_t address, int len, void *data) 1408 { 1409 struct kvm_lapic *apic = to_lapic(this); 1410 u32 offset = address - apic->base_address; 1411 1412 if (!apic_mmio_in_range(apic, address)) 1413 return -EOPNOTSUPP; 1414 1415 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 1416 if (!kvm_check_has_quirk(vcpu->kvm, 1417 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 1418 return -EOPNOTSUPP; 1419 1420 memset(data, 0xff, len); 1421 return 0; 1422 } 1423 1424 kvm_lapic_reg_read(apic, offset, len, data); 1425 1426 return 0; 1427 } 1428 1429 static void update_divide_count(struct kvm_lapic *apic) 1430 { 1431 u32 tmp1, tmp2, tdcr; 1432 1433 tdcr = kvm_lapic_get_reg(apic, APIC_TDCR); 1434 tmp1 = tdcr & 0xf; 1435 tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1; 1436 apic->divide_count = 0x1 << (tmp2 & 0x7); 1437 } 1438 1439 static void limit_periodic_timer_frequency(struct kvm_lapic *apic) 1440 { 1441 /* 1442 * Do not allow the guest to program periodic timers with small 1443 * interval, since the hrtimers are not throttled by the host 1444 * scheduler. 1445 */ 1446 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 1447 s64 min_period = min_timer_period_us * 1000LL; 1448 1449 if (apic->lapic_timer.period < min_period) { 1450 pr_info_ratelimited( 1451 "kvm: vcpu %i: requested %lld ns " 1452 "lapic timer period limited to %lld ns\n", 1453 apic->vcpu->vcpu_id, 1454 apic->lapic_timer.period, min_period); 1455 apic->lapic_timer.period = min_period; 1456 } 1457 } 1458 } 1459 1460 static void cancel_hv_timer(struct kvm_lapic *apic); 1461 1462 static void apic_update_lvtt(struct kvm_lapic *apic) 1463 { 1464 u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) & 1465 apic->lapic_timer.timer_mode_mask; 1466 1467 if (apic->lapic_timer.timer_mode != timer_mode) { 1468 if (apic_lvtt_tscdeadline(apic) != (timer_mode == 1469 APIC_LVT_TIMER_TSCDEADLINE)) { 1470 hrtimer_cancel(&apic->lapic_timer.timer); 1471 preempt_disable(); 1472 if (apic->lapic_timer.hv_timer_in_use) 1473 cancel_hv_timer(apic); 1474 preempt_enable(); 1475 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 1476 apic->lapic_timer.period = 0; 1477 apic->lapic_timer.tscdeadline = 0; 1478 } 1479 apic->lapic_timer.timer_mode = timer_mode; 1480 limit_periodic_timer_frequency(apic); 1481 } 1482 } 1483 1484 /* 1485 * On APICv, this test will cause a busy wait 1486 * during a higher-priority task. 1487 */ 1488 1489 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu) 1490 { 1491 struct kvm_lapic *apic = vcpu->arch.apic; 1492 u32 reg = kvm_lapic_get_reg(apic, APIC_LVTT); 1493 1494 if (kvm_apic_hw_enabled(apic)) { 1495 int vec = reg & APIC_VECTOR_MASK; 1496 void *bitmap = apic->regs + APIC_ISR; 1497 1498 if (vcpu->arch.apicv_active) 1499 bitmap = apic->regs + APIC_IRR; 1500 1501 if (apic_test_vector(vec, bitmap)) 1502 return true; 1503 } 1504 return false; 1505 } 1506 1507 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles) 1508 { 1509 u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns; 1510 1511 /* 1512 * If the guest TSC is running at a different ratio than the host, then 1513 * convert the delay to nanoseconds to achieve an accurate delay. Note 1514 * that __delay() uses delay_tsc whenever the hardware has TSC, thus 1515 * always for VMX enabled hardware. 1516 */ 1517 if (vcpu->arch.tsc_scaling_ratio == kvm_default_tsc_scaling_ratio) { 1518 __delay(min(guest_cycles, 1519 nsec_to_cycles(vcpu, timer_advance_ns))); 1520 } else { 1521 u64 delay_ns = guest_cycles * 1000000ULL; 1522 do_div(delay_ns, vcpu->arch.virtual_tsc_khz); 1523 ndelay(min_t(u32, delay_ns, timer_advance_ns)); 1524 } 1525 } 1526 1527 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu, 1528 s64 advance_expire_delta) 1529 { 1530 struct kvm_lapic *apic = vcpu->arch.apic; 1531 u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns; 1532 u64 ns; 1533 1534 /* Do not adjust for tiny fluctuations or large random spikes. */ 1535 if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX || 1536 abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN) 1537 return; 1538 1539 /* too early */ 1540 if (advance_expire_delta < 0) { 1541 ns = -advance_expire_delta * 1000000ULL; 1542 do_div(ns, vcpu->arch.virtual_tsc_khz); 1543 timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; 1544 } else { 1545 /* too late */ 1546 ns = advance_expire_delta * 1000000ULL; 1547 do_div(ns, vcpu->arch.virtual_tsc_khz); 1548 timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; 1549 } 1550 1551 if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX)) 1552 timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; 1553 apic->lapic_timer.timer_advance_ns = timer_advance_ns; 1554 } 1555 1556 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1557 { 1558 struct kvm_lapic *apic = vcpu->arch.apic; 1559 u64 guest_tsc, tsc_deadline; 1560 1561 if (apic->lapic_timer.expired_tscdeadline == 0) 1562 return; 1563 1564 tsc_deadline = apic->lapic_timer.expired_tscdeadline; 1565 apic->lapic_timer.expired_tscdeadline = 0; 1566 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1567 apic->lapic_timer.advance_expire_delta = guest_tsc - tsc_deadline; 1568 1569 if (guest_tsc < tsc_deadline) 1570 __wait_lapic_expire(vcpu, tsc_deadline - guest_tsc); 1571 1572 if (lapic_timer_advance_dynamic) 1573 adjust_lapic_timer_advance(vcpu, apic->lapic_timer.advance_expire_delta); 1574 } 1575 1576 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1577 { 1578 if (lapic_timer_int_injected(vcpu)) 1579 __kvm_wait_lapic_expire(vcpu); 1580 } 1581 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire); 1582 1583 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic) 1584 { 1585 struct kvm_timer *ktimer = &apic->lapic_timer; 1586 1587 kvm_apic_local_deliver(apic, APIC_LVTT); 1588 if (apic_lvtt_tscdeadline(apic)) { 1589 ktimer->tscdeadline = 0; 1590 } else if (apic_lvtt_oneshot(apic)) { 1591 ktimer->tscdeadline = 0; 1592 ktimer->target_expiration = 0; 1593 } 1594 } 1595 1596 static void apic_timer_expired(struct kvm_lapic *apic) 1597 { 1598 struct kvm_vcpu *vcpu = apic->vcpu; 1599 struct kvm_timer *ktimer = &apic->lapic_timer; 1600 1601 if (atomic_read(&apic->lapic_timer.pending)) 1602 return; 1603 1604 if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use) 1605 ktimer->expired_tscdeadline = ktimer->tscdeadline; 1606 1607 if (kvm_use_posted_timer_interrupt(apic->vcpu)) { 1608 if (apic->lapic_timer.timer_advance_ns) 1609 __kvm_wait_lapic_expire(vcpu); 1610 kvm_apic_inject_pending_timer_irqs(apic); 1611 return; 1612 } 1613 1614 atomic_inc(&apic->lapic_timer.pending); 1615 kvm_set_pending_timer(vcpu); 1616 } 1617 1618 static void start_sw_tscdeadline(struct kvm_lapic *apic) 1619 { 1620 struct kvm_timer *ktimer = &apic->lapic_timer; 1621 u64 guest_tsc, tscdeadline = ktimer->tscdeadline; 1622 u64 ns = 0; 1623 ktime_t expire; 1624 struct kvm_vcpu *vcpu = apic->vcpu; 1625 unsigned long this_tsc_khz = vcpu->arch.virtual_tsc_khz; 1626 unsigned long flags; 1627 ktime_t now; 1628 1629 if (unlikely(!tscdeadline || !this_tsc_khz)) 1630 return; 1631 1632 local_irq_save(flags); 1633 1634 now = ktime_get(); 1635 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1636 1637 ns = (tscdeadline - guest_tsc) * 1000000ULL; 1638 do_div(ns, this_tsc_khz); 1639 1640 if (likely(tscdeadline > guest_tsc) && 1641 likely(ns > apic->lapic_timer.timer_advance_ns)) { 1642 expire = ktime_add_ns(now, ns); 1643 expire = ktime_sub_ns(expire, ktimer->timer_advance_ns); 1644 hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD); 1645 } else 1646 apic_timer_expired(apic); 1647 1648 local_irq_restore(flags); 1649 } 1650 1651 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor) 1652 { 1653 ktime_t now, remaining; 1654 u64 ns_remaining_old, ns_remaining_new; 1655 1656 apic->lapic_timer.period = (u64)kvm_lapic_get_reg(apic, APIC_TMICT) 1657 * APIC_BUS_CYCLE_NS * apic->divide_count; 1658 limit_periodic_timer_frequency(apic); 1659 1660 now = ktime_get(); 1661 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 1662 if (ktime_to_ns(remaining) < 0) 1663 remaining = 0; 1664 1665 ns_remaining_old = ktime_to_ns(remaining); 1666 ns_remaining_new = mul_u64_u32_div(ns_remaining_old, 1667 apic->divide_count, old_divisor); 1668 1669 apic->lapic_timer.tscdeadline += 1670 nsec_to_cycles(apic->vcpu, ns_remaining_new) - 1671 nsec_to_cycles(apic->vcpu, ns_remaining_old); 1672 apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new); 1673 } 1674 1675 static bool set_target_expiration(struct kvm_lapic *apic) 1676 { 1677 ktime_t now; 1678 u64 tscl = rdtsc(); 1679 1680 now = ktime_get(); 1681 apic->lapic_timer.period = (u64)kvm_lapic_get_reg(apic, APIC_TMICT) 1682 * APIC_BUS_CYCLE_NS * apic->divide_count; 1683 1684 if (!apic->lapic_timer.period) { 1685 apic->lapic_timer.tscdeadline = 0; 1686 return false; 1687 } 1688 1689 limit_periodic_timer_frequency(apic); 1690 1691 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 1692 nsec_to_cycles(apic->vcpu, apic->lapic_timer.period); 1693 apic->lapic_timer.target_expiration = ktime_add_ns(now, apic->lapic_timer.period); 1694 1695 return true; 1696 } 1697 1698 static void advance_periodic_target_expiration(struct kvm_lapic *apic) 1699 { 1700 ktime_t now = ktime_get(); 1701 u64 tscl = rdtsc(); 1702 ktime_t delta; 1703 1704 /* 1705 * Synchronize both deadlines to the same time source or 1706 * differences in the periods (caused by differences in the 1707 * underlying clocks or numerical approximation errors) will 1708 * cause the two to drift apart over time as the errors 1709 * accumulate. 1710 */ 1711 apic->lapic_timer.target_expiration = 1712 ktime_add_ns(apic->lapic_timer.target_expiration, 1713 apic->lapic_timer.period); 1714 delta = ktime_sub(apic->lapic_timer.target_expiration, now); 1715 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 1716 nsec_to_cycles(apic->vcpu, delta); 1717 } 1718 1719 static void start_sw_period(struct kvm_lapic *apic) 1720 { 1721 if (!apic->lapic_timer.period) 1722 return; 1723 1724 if (ktime_after(ktime_get(), 1725 apic->lapic_timer.target_expiration)) { 1726 apic_timer_expired(apic); 1727 1728 if (apic_lvtt_oneshot(apic)) 1729 return; 1730 1731 advance_periodic_target_expiration(apic); 1732 } 1733 1734 hrtimer_start(&apic->lapic_timer.timer, 1735 apic->lapic_timer.target_expiration, 1736 HRTIMER_MODE_ABS_HARD); 1737 } 1738 1739 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu) 1740 { 1741 if (!lapic_in_kernel(vcpu)) 1742 return false; 1743 1744 return vcpu->arch.apic->lapic_timer.hv_timer_in_use; 1745 } 1746 EXPORT_SYMBOL_GPL(kvm_lapic_hv_timer_in_use); 1747 1748 static void cancel_hv_timer(struct kvm_lapic *apic) 1749 { 1750 WARN_ON(preemptible()); 1751 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 1752 kvm_x86_ops.cancel_hv_timer(apic->vcpu); 1753 apic->lapic_timer.hv_timer_in_use = false; 1754 } 1755 1756 static bool start_hv_timer(struct kvm_lapic *apic) 1757 { 1758 struct kvm_timer *ktimer = &apic->lapic_timer; 1759 struct kvm_vcpu *vcpu = apic->vcpu; 1760 bool expired; 1761 1762 WARN_ON(preemptible()); 1763 if (!kvm_x86_ops.set_hv_timer) 1764 return false; 1765 1766 if (!ktimer->tscdeadline) 1767 return false; 1768 1769 if (kvm_x86_ops.set_hv_timer(vcpu, ktimer->tscdeadline, &expired)) 1770 return false; 1771 1772 ktimer->hv_timer_in_use = true; 1773 hrtimer_cancel(&ktimer->timer); 1774 1775 /* 1776 * To simplify handling the periodic timer, leave the hv timer running 1777 * even if the deadline timer has expired, i.e. rely on the resulting 1778 * VM-Exit to recompute the periodic timer's target expiration. 1779 */ 1780 if (!apic_lvtt_period(apic)) { 1781 /* 1782 * Cancel the hv timer if the sw timer fired while the hv timer 1783 * was being programmed, or if the hv timer itself expired. 1784 */ 1785 if (atomic_read(&ktimer->pending)) { 1786 cancel_hv_timer(apic); 1787 } else if (expired) { 1788 apic_timer_expired(apic); 1789 cancel_hv_timer(apic); 1790 } 1791 } 1792 1793 trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use); 1794 1795 return true; 1796 } 1797 1798 static void start_sw_timer(struct kvm_lapic *apic) 1799 { 1800 struct kvm_timer *ktimer = &apic->lapic_timer; 1801 1802 WARN_ON(preemptible()); 1803 if (apic->lapic_timer.hv_timer_in_use) 1804 cancel_hv_timer(apic); 1805 if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending)) 1806 return; 1807 1808 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 1809 start_sw_period(apic); 1810 else if (apic_lvtt_tscdeadline(apic)) 1811 start_sw_tscdeadline(apic); 1812 trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false); 1813 } 1814 1815 static void restart_apic_timer(struct kvm_lapic *apic) 1816 { 1817 preempt_disable(); 1818 1819 if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending)) 1820 goto out; 1821 1822 if (!start_hv_timer(apic)) 1823 start_sw_timer(apic); 1824 out: 1825 preempt_enable(); 1826 } 1827 1828 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu) 1829 { 1830 struct kvm_lapic *apic = vcpu->arch.apic; 1831 1832 preempt_disable(); 1833 /* If the preempt notifier has already run, it also called apic_timer_expired */ 1834 if (!apic->lapic_timer.hv_timer_in_use) 1835 goto out; 1836 WARN_ON(swait_active(&vcpu->wq)); 1837 cancel_hv_timer(apic); 1838 apic_timer_expired(apic); 1839 1840 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 1841 advance_periodic_target_expiration(apic); 1842 restart_apic_timer(apic); 1843 } 1844 out: 1845 preempt_enable(); 1846 } 1847 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer); 1848 1849 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu) 1850 { 1851 restart_apic_timer(vcpu->arch.apic); 1852 } 1853 EXPORT_SYMBOL_GPL(kvm_lapic_switch_to_hv_timer); 1854 1855 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu) 1856 { 1857 struct kvm_lapic *apic = vcpu->arch.apic; 1858 1859 preempt_disable(); 1860 /* Possibly the TSC deadline timer is not enabled yet */ 1861 if (apic->lapic_timer.hv_timer_in_use) 1862 start_sw_timer(apic); 1863 preempt_enable(); 1864 } 1865 EXPORT_SYMBOL_GPL(kvm_lapic_switch_to_sw_timer); 1866 1867 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu) 1868 { 1869 struct kvm_lapic *apic = vcpu->arch.apic; 1870 1871 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 1872 restart_apic_timer(apic); 1873 } 1874 1875 static void start_apic_timer(struct kvm_lapic *apic) 1876 { 1877 atomic_set(&apic->lapic_timer.pending, 0); 1878 1879 if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 1880 && !set_target_expiration(apic)) 1881 return; 1882 1883 restart_apic_timer(apic); 1884 } 1885 1886 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val) 1887 { 1888 bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val); 1889 1890 if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) { 1891 apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode; 1892 if (lvt0_in_nmi_mode) { 1893 atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 1894 } else 1895 atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 1896 } 1897 } 1898 1899 int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val) 1900 { 1901 int ret = 0; 1902 1903 trace_kvm_apic_write(reg, val); 1904 1905 switch (reg) { 1906 case APIC_ID: /* Local APIC ID */ 1907 if (!apic_x2apic_mode(apic)) 1908 kvm_apic_set_xapic_id(apic, val >> 24); 1909 else 1910 ret = 1; 1911 break; 1912 1913 case APIC_TASKPRI: 1914 report_tpr_access(apic, true); 1915 apic_set_tpr(apic, val & 0xff); 1916 break; 1917 1918 case APIC_EOI: 1919 apic_set_eoi(apic); 1920 break; 1921 1922 case APIC_LDR: 1923 if (!apic_x2apic_mode(apic)) 1924 kvm_apic_set_ldr(apic, val & APIC_LDR_MASK); 1925 else 1926 ret = 1; 1927 break; 1928 1929 case APIC_DFR: 1930 if (!apic_x2apic_mode(apic)) { 1931 kvm_lapic_set_reg(apic, APIC_DFR, val | 0x0FFFFFFF); 1932 apic->vcpu->kvm->arch.apic_map_dirty = true; 1933 } else 1934 ret = 1; 1935 break; 1936 1937 case APIC_SPIV: { 1938 u32 mask = 0x3ff; 1939 if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI) 1940 mask |= APIC_SPIV_DIRECTED_EOI; 1941 apic_set_spiv(apic, val & mask); 1942 if (!(val & APIC_SPIV_APIC_ENABLED)) { 1943 int i; 1944 u32 lvt_val; 1945 1946 for (i = 0; i < KVM_APIC_LVT_NUM; i++) { 1947 lvt_val = kvm_lapic_get_reg(apic, 1948 APIC_LVTT + 0x10 * i); 1949 kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i, 1950 lvt_val | APIC_LVT_MASKED); 1951 } 1952 apic_update_lvtt(apic); 1953 atomic_set(&apic->lapic_timer.pending, 0); 1954 1955 } 1956 break; 1957 } 1958 case APIC_ICR: 1959 /* No delay here, so we always clear the pending bit */ 1960 val &= ~(1 << 12); 1961 kvm_apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2)); 1962 kvm_lapic_set_reg(apic, APIC_ICR, val); 1963 break; 1964 1965 case APIC_ICR2: 1966 if (!apic_x2apic_mode(apic)) 1967 val &= 0xff000000; 1968 kvm_lapic_set_reg(apic, APIC_ICR2, val); 1969 break; 1970 1971 case APIC_LVT0: 1972 apic_manage_nmi_watchdog(apic, val); 1973 /* fall through */ 1974 case APIC_LVTTHMR: 1975 case APIC_LVTPC: 1976 case APIC_LVT1: 1977 case APIC_LVTERR: { 1978 /* TODO: Check vector */ 1979 size_t size; 1980 u32 index; 1981 1982 if (!kvm_apic_sw_enabled(apic)) 1983 val |= APIC_LVT_MASKED; 1984 size = ARRAY_SIZE(apic_lvt_mask); 1985 index = array_index_nospec( 1986 (reg - APIC_LVTT) >> 4, size); 1987 val &= apic_lvt_mask[index]; 1988 kvm_lapic_set_reg(apic, reg, val); 1989 break; 1990 } 1991 1992 case APIC_LVTT: 1993 if (!kvm_apic_sw_enabled(apic)) 1994 val |= APIC_LVT_MASKED; 1995 val &= (apic_lvt_mask[0] | apic->lapic_timer.timer_mode_mask); 1996 kvm_lapic_set_reg(apic, APIC_LVTT, val); 1997 apic_update_lvtt(apic); 1998 break; 1999 2000 case APIC_TMICT: 2001 if (apic_lvtt_tscdeadline(apic)) 2002 break; 2003 2004 hrtimer_cancel(&apic->lapic_timer.timer); 2005 kvm_lapic_set_reg(apic, APIC_TMICT, val); 2006 start_apic_timer(apic); 2007 break; 2008 2009 case APIC_TDCR: { 2010 uint32_t old_divisor = apic->divide_count; 2011 2012 kvm_lapic_set_reg(apic, APIC_TDCR, val); 2013 update_divide_count(apic); 2014 if (apic->divide_count != old_divisor && 2015 apic->lapic_timer.period) { 2016 hrtimer_cancel(&apic->lapic_timer.timer); 2017 update_target_expiration(apic, old_divisor); 2018 restart_apic_timer(apic); 2019 } 2020 break; 2021 } 2022 case APIC_ESR: 2023 if (apic_x2apic_mode(apic) && val != 0) 2024 ret = 1; 2025 break; 2026 2027 case APIC_SELF_IPI: 2028 if (apic_x2apic_mode(apic)) { 2029 kvm_lapic_reg_write(apic, APIC_ICR, 0x40000 | (val & 0xff)); 2030 } else 2031 ret = 1; 2032 break; 2033 default: 2034 ret = 1; 2035 break; 2036 } 2037 2038 kvm_recalculate_apic_map(apic->vcpu->kvm); 2039 2040 return ret; 2041 } 2042 EXPORT_SYMBOL_GPL(kvm_lapic_reg_write); 2043 2044 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 2045 gpa_t address, int len, const void *data) 2046 { 2047 struct kvm_lapic *apic = to_lapic(this); 2048 unsigned int offset = address - apic->base_address; 2049 u32 val; 2050 2051 if (!apic_mmio_in_range(apic, address)) 2052 return -EOPNOTSUPP; 2053 2054 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 2055 if (!kvm_check_has_quirk(vcpu->kvm, 2056 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 2057 return -EOPNOTSUPP; 2058 2059 return 0; 2060 } 2061 2062 /* 2063 * APIC register must be aligned on 128-bits boundary. 2064 * 32/64/128 bits registers must be accessed thru 32 bits. 2065 * Refer SDM 8.4.1 2066 */ 2067 if (len != 4 || (offset & 0xf)) 2068 return 0; 2069 2070 val = *(u32*)data; 2071 2072 kvm_lapic_reg_write(apic, offset & 0xff0, val); 2073 2074 return 0; 2075 } 2076 2077 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu) 2078 { 2079 kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0); 2080 } 2081 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi); 2082 2083 /* emulate APIC access in a trap manner */ 2084 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset) 2085 { 2086 u32 val = 0; 2087 2088 /* hw has done the conditional check and inst decode */ 2089 offset &= 0xff0; 2090 2091 kvm_lapic_reg_read(vcpu->arch.apic, offset, 4, &val); 2092 2093 /* TODO: optimize to just emulate side effect w/o one more write */ 2094 kvm_lapic_reg_write(vcpu->arch.apic, offset, val); 2095 } 2096 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode); 2097 2098 void kvm_free_lapic(struct kvm_vcpu *vcpu) 2099 { 2100 struct kvm_lapic *apic = vcpu->arch.apic; 2101 2102 if (!vcpu->arch.apic) 2103 return; 2104 2105 hrtimer_cancel(&apic->lapic_timer.timer); 2106 2107 if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)) 2108 static_key_slow_dec_deferred(&apic_hw_disabled); 2109 2110 if (!apic->sw_enabled) 2111 static_key_slow_dec_deferred(&apic_sw_disabled); 2112 2113 if (apic->regs) 2114 free_page((unsigned long)apic->regs); 2115 2116 kfree(apic); 2117 } 2118 2119 /* 2120 *---------------------------------------------------------------------- 2121 * LAPIC interface 2122 *---------------------------------------------------------------------- 2123 */ 2124 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu) 2125 { 2126 struct kvm_lapic *apic = vcpu->arch.apic; 2127 2128 if (!lapic_in_kernel(vcpu) || 2129 !apic_lvtt_tscdeadline(apic)) 2130 return 0; 2131 2132 return apic->lapic_timer.tscdeadline; 2133 } 2134 2135 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data) 2136 { 2137 struct kvm_lapic *apic = vcpu->arch.apic; 2138 2139 if (!lapic_in_kernel(vcpu) || apic_lvtt_oneshot(apic) || 2140 apic_lvtt_period(apic)) 2141 return; 2142 2143 hrtimer_cancel(&apic->lapic_timer.timer); 2144 apic->lapic_timer.tscdeadline = data; 2145 start_apic_timer(apic); 2146 } 2147 2148 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8) 2149 { 2150 struct kvm_lapic *apic = vcpu->arch.apic; 2151 2152 apic_set_tpr(apic, ((cr8 & 0x0f) << 4) 2153 | (kvm_lapic_get_reg(apic, APIC_TASKPRI) & 4)); 2154 } 2155 2156 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu) 2157 { 2158 u64 tpr; 2159 2160 tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI); 2161 2162 return (tpr & 0xf0) >> 4; 2163 } 2164 2165 void kvm_lapic_set_base(struct kvm_vcpu *vcpu, u64 value) 2166 { 2167 u64 old_value = vcpu->arch.apic_base; 2168 struct kvm_lapic *apic = vcpu->arch.apic; 2169 2170 if (!apic) 2171 value |= MSR_IA32_APICBASE_BSP; 2172 2173 vcpu->arch.apic_base = value; 2174 2175 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) 2176 kvm_update_cpuid(vcpu); 2177 2178 if (!apic) 2179 return; 2180 2181 /* update jump label if enable bit changes */ 2182 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) { 2183 if (value & MSR_IA32_APICBASE_ENABLE) { 2184 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2185 static_key_slow_dec_deferred(&apic_hw_disabled); 2186 } else { 2187 static_key_slow_inc(&apic_hw_disabled.key); 2188 vcpu->kvm->arch.apic_map_dirty = true; 2189 } 2190 } 2191 2192 if (((old_value ^ value) & X2APIC_ENABLE) && (value & X2APIC_ENABLE)) 2193 kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id); 2194 2195 if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) 2196 kvm_x86_ops.set_virtual_apic_mode(vcpu); 2197 2198 apic->base_address = apic->vcpu->arch.apic_base & 2199 MSR_IA32_APICBASE_BASE; 2200 2201 if ((value & MSR_IA32_APICBASE_ENABLE) && 2202 apic->base_address != APIC_DEFAULT_PHYS_BASE) 2203 pr_warn_once("APIC base relocation is unsupported by KVM"); 2204 } 2205 2206 void kvm_apic_update_apicv(struct kvm_vcpu *vcpu) 2207 { 2208 struct kvm_lapic *apic = vcpu->arch.apic; 2209 2210 if (vcpu->arch.apicv_active) { 2211 /* irr_pending is always true when apicv is activated. */ 2212 apic->irr_pending = true; 2213 apic->isr_count = 1; 2214 } else { 2215 apic->irr_pending = (apic_search_irr(apic) != -1); 2216 apic->isr_count = count_vectors(apic->regs + APIC_ISR); 2217 } 2218 } 2219 EXPORT_SYMBOL_GPL(kvm_apic_update_apicv); 2220 2221 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event) 2222 { 2223 struct kvm_lapic *apic = vcpu->arch.apic; 2224 int i; 2225 2226 if (!apic) 2227 return; 2228 2229 vcpu->kvm->arch.apic_map_dirty = false; 2230 /* Stop the timer in case it's a reset to an active apic */ 2231 hrtimer_cancel(&apic->lapic_timer.timer); 2232 2233 if (!init_event) { 2234 kvm_lapic_set_base(vcpu, APIC_DEFAULT_PHYS_BASE | 2235 MSR_IA32_APICBASE_ENABLE); 2236 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2237 } 2238 kvm_apic_set_version(apic->vcpu); 2239 2240 for (i = 0; i < KVM_APIC_LVT_NUM; i++) 2241 kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i, APIC_LVT_MASKED); 2242 apic_update_lvtt(apic); 2243 if (kvm_vcpu_is_reset_bsp(vcpu) && 2244 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED)) 2245 kvm_lapic_set_reg(apic, APIC_LVT0, 2246 SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT)); 2247 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 2248 2249 kvm_lapic_set_reg(apic, APIC_DFR, 0xffffffffU); 2250 apic_set_spiv(apic, 0xff); 2251 kvm_lapic_set_reg(apic, APIC_TASKPRI, 0); 2252 if (!apic_x2apic_mode(apic)) 2253 kvm_apic_set_ldr(apic, 0); 2254 kvm_lapic_set_reg(apic, APIC_ESR, 0); 2255 kvm_lapic_set_reg(apic, APIC_ICR, 0); 2256 kvm_lapic_set_reg(apic, APIC_ICR2, 0); 2257 kvm_lapic_set_reg(apic, APIC_TDCR, 0); 2258 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 2259 for (i = 0; i < 8; i++) { 2260 kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0); 2261 kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0); 2262 kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0); 2263 } 2264 kvm_apic_update_apicv(vcpu); 2265 apic->highest_isr_cache = -1; 2266 update_divide_count(apic); 2267 atomic_set(&apic->lapic_timer.pending, 0); 2268 if (kvm_vcpu_is_bsp(vcpu)) 2269 kvm_lapic_set_base(vcpu, 2270 vcpu->arch.apic_base | MSR_IA32_APICBASE_BSP); 2271 vcpu->arch.pv_eoi.msr_val = 0; 2272 apic_update_ppr(apic); 2273 if (vcpu->arch.apicv_active) { 2274 kvm_x86_ops.apicv_post_state_restore(vcpu); 2275 kvm_x86_ops.hwapic_irr_update(vcpu, -1); 2276 kvm_x86_ops.hwapic_isr_update(vcpu, -1); 2277 } 2278 2279 vcpu->arch.apic_arb_prio = 0; 2280 vcpu->arch.apic_attention = 0; 2281 2282 kvm_recalculate_apic_map(vcpu->kvm); 2283 } 2284 2285 /* 2286 *---------------------------------------------------------------------- 2287 * timer interface 2288 *---------------------------------------------------------------------- 2289 */ 2290 2291 static bool lapic_is_periodic(struct kvm_lapic *apic) 2292 { 2293 return apic_lvtt_period(apic); 2294 } 2295 2296 int apic_has_pending_timer(struct kvm_vcpu *vcpu) 2297 { 2298 struct kvm_lapic *apic = vcpu->arch.apic; 2299 2300 if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT)) 2301 return atomic_read(&apic->lapic_timer.pending); 2302 2303 return 0; 2304 } 2305 2306 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type) 2307 { 2308 u32 reg = kvm_lapic_get_reg(apic, lvt_type); 2309 int vector, mode, trig_mode; 2310 2311 if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) { 2312 vector = reg & APIC_VECTOR_MASK; 2313 mode = reg & APIC_MODE_MASK; 2314 trig_mode = reg & APIC_LVT_LEVEL_TRIGGER; 2315 return __apic_accept_irq(apic, mode, vector, 1, trig_mode, 2316 NULL); 2317 } 2318 return 0; 2319 } 2320 2321 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu) 2322 { 2323 struct kvm_lapic *apic = vcpu->arch.apic; 2324 2325 if (apic) 2326 kvm_apic_local_deliver(apic, APIC_LVT0); 2327 } 2328 2329 static const struct kvm_io_device_ops apic_mmio_ops = { 2330 .read = apic_mmio_read, 2331 .write = apic_mmio_write, 2332 }; 2333 2334 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data) 2335 { 2336 struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer); 2337 struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer); 2338 2339 apic_timer_expired(apic); 2340 2341 if (lapic_is_periodic(apic)) { 2342 advance_periodic_target_expiration(apic); 2343 hrtimer_add_expires_ns(&ktimer->timer, ktimer->period); 2344 return HRTIMER_RESTART; 2345 } else 2346 return HRTIMER_NORESTART; 2347 } 2348 2349 int kvm_create_lapic(struct kvm_vcpu *vcpu, int timer_advance_ns) 2350 { 2351 struct kvm_lapic *apic; 2352 2353 ASSERT(vcpu != NULL); 2354 2355 apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT); 2356 if (!apic) 2357 goto nomem; 2358 2359 vcpu->arch.apic = apic; 2360 2361 apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 2362 if (!apic->regs) { 2363 printk(KERN_ERR "malloc apic regs error for vcpu %x\n", 2364 vcpu->vcpu_id); 2365 goto nomem_free_apic; 2366 } 2367 apic->vcpu = vcpu; 2368 2369 hrtimer_init(&apic->lapic_timer.timer, CLOCK_MONOTONIC, 2370 HRTIMER_MODE_ABS_HARD); 2371 apic->lapic_timer.timer.function = apic_timer_fn; 2372 if (timer_advance_ns == -1) { 2373 apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; 2374 lapic_timer_advance_dynamic = true; 2375 } else { 2376 apic->lapic_timer.timer_advance_ns = timer_advance_ns; 2377 lapic_timer_advance_dynamic = false; 2378 } 2379 2380 /* 2381 * APIC is created enabled. This will prevent kvm_lapic_set_base from 2382 * thinking that APIC state has changed. 2383 */ 2384 vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE; 2385 static_key_slow_inc(&apic_sw_disabled.key); /* sw disabled at reset */ 2386 kvm_iodevice_init(&apic->dev, &apic_mmio_ops); 2387 2388 return 0; 2389 nomem_free_apic: 2390 kfree(apic); 2391 vcpu->arch.apic = NULL; 2392 nomem: 2393 return -ENOMEM; 2394 } 2395 2396 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu) 2397 { 2398 struct kvm_lapic *apic = vcpu->arch.apic; 2399 u32 ppr; 2400 2401 if (!kvm_apic_hw_enabled(apic)) 2402 return -1; 2403 2404 __apic_update_ppr(apic, &ppr); 2405 return apic_has_interrupt_for_ppr(apic, ppr); 2406 } 2407 2408 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu) 2409 { 2410 u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0); 2411 2412 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 2413 return 1; 2414 if ((lvt0 & APIC_LVT_MASKED) == 0 && 2415 GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT) 2416 return 1; 2417 return 0; 2418 } 2419 2420 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu) 2421 { 2422 struct kvm_lapic *apic = vcpu->arch.apic; 2423 2424 if (atomic_read(&apic->lapic_timer.pending) > 0) { 2425 kvm_apic_inject_pending_timer_irqs(apic); 2426 atomic_set(&apic->lapic_timer.pending, 0); 2427 } 2428 } 2429 2430 int kvm_get_apic_interrupt(struct kvm_vcpu *vcpu) 2431 { 2432 int vector = kvm_apic_has_interrupt(vcpu); 2433 struct kvm_lapic *apic = vcpu->arch.apic; 2434 u32 ppr; 2435 2436 if (vector == -1) 2437 return -1; 2438 2439 /* 2440 * We get here even with APIC virtualization enabled, if doing 2441 * nested virtualization and L1 runs with the "acknowledge interrupt 2442 * on exit" mode. Then we cannot inject the interrupt via RVI, 2443 * because the process would deliver it through the IDT. 2444 */ 2445 2446 apic_clear_irr(vector, apic); 2447 if (test_bit(vector, vcpu_to_synic(vcpu)->auto_eoi_bitmap)) { 2448 /* 2449 * For auto-EOI interrupts, there might be another pending 2450 * interrupt above PPR, so check whether to raise another 2451 * KVM_REQ_EVENT. 2452 */ 2453 apic_update_ppr(apic); 2454 } else { 2455 /* 2456 * For normal interrupts, PPR has been raised and there cannot 2457 * be a higher-priority pending interrupt---except if there was 2458 * a concurrent interrupt injection, but that would have 2459 * triggered KVM_REQ_EVENT already. 2460 */ 2461 apic_set_isr(vector, apic); 2462 __apic_update_ppr(apic, &ppr); 2463 } 2464 2465 return vector; 2466 } 2467 2468 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu, 2469 struct kvm_lapic_state *s, bool set) 2470 { 2471 if (apic_x2apic_mode(vcpu->arch.apic)) { 2472 u32 *id = (u32 *)(s->regs + APIC_ID); 2473 u32 *ldr = (u32 *)(s->regs + APIC_LDR); 2474 2475 if (vcpu->kvm->arch.x2apic_format) { 2476 if (*id != vcpu->vcpu_id) 2477 return -EINVAL; 2478 } else { 2479 if (set) 2480 *id >>= 24; 2481 else 2482 *id <<= 24; 2483 } 2484 2485 /* In x2APIC mode, the LDR is fixed and based on the id */ 2486 if (set) 2487 *ldr = kvm_apic_calc_x2apic_ldr(*id); 2488 } 2489 2490 return 0; 2491 } 2492 2493 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 2494 { 2495 memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s)); 2496 return kvm_apic_state_fixup(vcpu, s, false); 2497 } 2498 2499 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 2500 { 2501 struct kvm_lapic *apic = vcpu->arch.apic; 2502 int r; 2503 2504 kvm_lapic_set_base(vcpu, vcpu->arch.apic_base); 2505 /* set SPIV separately to get count of SW disabled APICs right */ 2506 apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV))); 2507 2508 r = kvm_apic_state_fixup(vcpu, s, true); 2509 if (r) { 2510 kvm_recalculate_apic_map(vcpu->kvm); 2511 return r; 2512 } 2513 memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s)); 2514 2515 kvm_recalculate_apic_map(vcpu->kvm); 2516 kvm_apic_set_version(vcpu); 2517 2518 apic_update_ppr(apic); 2519 hrtimer_cancel(&apic->lapic_timer.timer); 2520 apic_update_lvtt(apic); 2521 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 2522 update_divide_count(apic); 2523 start_apic_timer(apic); 2524 kvm_apic_update_apicv(vcpu); 2525 apic->highest_isr_cache = -1; 2526 if (vcpu->arch.apicv_active) { 2527 kvm_x86_ops.apicv_post_state_restore(vcpu); 2528 kvm_x86_ops.hwapic_irr_update(vcpu, 2529 apic_find_highest_irr(apic)); 2530 kvm_x86_ops.hwapic_isr_update(vcpu, 2531 apic_find_highest_isr(apic)); 2532 } 2533 kvm_make_request(KVM_REQ_EVENT, vcpu); 2534 if (ioapic_in_kernel(vcpu->kvm)) 2535 kvm_rtc_eoi_tracking_restore_one(vcpu); 2536 2537 vcpu->arch.apic_arb_prio = 0; 2538 2539 return 0; 2540 } 2541 2542 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu) 2543 { 2544 struct hrtimer *timer; 2545 2546 if (!lapic_in_kernel(vcpu) || 2547 kvm_can_post_timer_interrupt(vcpu)) 2548 return; 2549 2550 timer = &vcpu->arch.apic->lapic_timer.timer; 2551 if (hrtimer_cancel(timer)) 2552 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD); 2553 } 2554 2555 /* 2556 * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt 2557 * 2558 * Detect whether guest triggered PV EOI since the 2559 * last entry. If yes, set EOI on guests's behalf. 2560 * Clear PV EOI in guest memory in any case. 2561 */ 2562 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu, 2563 struct kvm_lapic *apic) 2564 { 2565 bool pending; 2566 int vector; 2567 /* 2568 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host 2569 * and KVM_PV_EOI_ENABLED in guest memory as follows: 2570 * 2571 * KVM_APIC_PV_EOI_PENDING is unset: 2572 * -> host disabled PV EOI. 2573 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set: 2574 * -> host enabled PV EOI, guest did not execute EOI yet. 2575 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset: 2576 * -> host enabled PV EOI, guest executed EOI. 2577 */ 2578 BUG_ON(!pv_eoi_enabled(vcpu)); 2579 pending = pv_eoi_get_pending(vcpu); 2580 /* 2581 * Clear pending bit in any case: it will be set again on vmentry. 2582 * While this might not be ideal from performance point of view, 2583 * this makes sure pv eoi is only enabled when we know it's safe. 2584 */ 2585 pv_eoi_clr_pending(vcpu); 2586 if (pending) 2587 return; 2588 vector = apic_set_eoi(apic); 2589 trace_kvm_pv_eoi(apic, vector); 2590 } 2591 2592 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu) 2593 { 2594 u32 data; 2595 2596 if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention)) 2597 apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic); 2598 2599 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 2600 return; 2601 2602 if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 2603 sizeof(u32))) 2604 return; 2605 2606 apic_set_tpr(vcpu->arch.apic, data & 0xff); 2607 } 2608 2609 /* 2610 * apic_sync_pv_eoi_to_guest - called before vmentry 2611 * 2612 * Detect whether it's safe to enable PV EOI and 2613 * if yes do so. 2614 */ 2615 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu, 2616 struct kvm_lapic *apic) 2617 { 2618 if (!pv_eoi_enabled(vcpu) || 2619 /* IRR set or many bits in ISR: could be nested. */ 2620 apic->irr_pending || 2621 /* Cache not set: could be safe but we don't bother. */ 2622 apic->highest_isr_cache == -1 || 2623 /* Need EOI to update ioapic. */ 2624 kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) { 2625 /* 2626 * PV EOI was disabled by apic_sync_pv_eoi_from_guest 2627 * so we need not do anything here. 2628 */ 2629 return; 2630 } 2631 2632 pv_eoi_set_pending(apic->vcpu); 2633 } 2634 2635 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu) 2636 { 2637 u32 data, tpr; 2638 int max_irr, max_isr; 2639 struct kvm_lapic *apic = vcpu->arch.apic; 2640 2641 apic_sync_pv_eoi_to_guest(vcpu, apic); 2642 2643 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 2644 return; 2645 2646 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff; 2647 max_irr = apic_find_highest_irr(apic); 2648 if (max_irr < 0) 2649 max_irr = 0; 2650 max_isr = apic_find_highest_isr(apic); 2651 if (max_isr < 0) 2652 max_isr = 0; 2653 data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24); 2654 2655 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 2656 sizeof(u32)); 2657 } 2658 2659 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr) 2660 { 2661 if (vapic_addr) { 2662 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, 2663 &vcpu->arch.apic->vapic_cache, 2664 vapic_addr, sizeof(u32))) 2665 return -EINVAL; 2666 __set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 2667 } else { 2668 __clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 2669 } 2670 2671 vcpu->arch.apic->vapic_addr = vapic_addr; 2672 return 0; 2673 } 2674 2675 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data) 2676 { 2677 struct kvm_lapic *apic = vcpu->arch.apic; 2678 u32 reg = (msr - APIC_BASE_MSR) << 4; 2679 2680 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 2681 return 1; 2682 2683 if (reg == APIC_ICR2) 2684 return 1; 2685 2686 /* if this is ICR write vector before command */ 2687 if (reg == APIC_ICR) 2688 kvm_lapic_reg_write(apic, APIC_ICR2, (u32)(data >> 32)); 2689 return kvm_lapic_reg_write(apic, reg, (u32)data); 2690 } 2691 2692 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data) 2693 { 2694 struct kvm_lapic *apic = vcpu->arch.apic; 2695 u32 reg = (msr - APIC_BASE_MSR) << 4, low, high = 0; 2696 2697 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 2698 return 1; 2699 2700 if (reg == APIC_DFR || reg == APIC_ICR2) 2701 return 1; 2702 2703 if (kvm_lapic_reg_read(apic, reg, 4, &low)) 2704 return 1; 2705 if (reg == APIC_ICR) 2706 kvm_lapic_reg_read(apic, APIC_ICR2, 4, &high); 2707 2708 *data = (((u64)high) << 32) | low; 2709 2710 return 0; 2711 } 2712 2713 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data) 2714 { 2715 struct kvm_lapic *apic = vcpu->arch.apic; 2716 2717 if (!lapic_in_kernel(vcpu)) 2718 return 1; 2719 2720 /* if this is ICR write vector before command */ 2721 if (reg == APIC_ICR) 2722 kvm_lapic_reg_write(apic, APIC_ICR2, (u32)(data >> 32)); 2723 return kvm_lapic_reg_write(apic, reg, (u32)data); 2724 } 2725 2726 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data) 2727 { 2728 struct kvm_lapic *apic = vcpu->arch.apic; 2729 u32 low, high = 0; 2730 2731 if (!lapic_in_kernel(vcpu)) 2732 return 1; 2733 2734 if (kvm_lapic_reg_read(apic, reg, 4, &low)) 2735 return 1; 2736 if (reg == APIC_ICR) 2737 kvm_lapic_reg_read(apic, APIC_ICR2, 4, &high); 2738 2739 *data = (((u64)high) << 32) | low; 2740 2741 return 0; 2742 } 2743 2744 int kvm_lapic_enable_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len) 2745 { 2746 u64 addr = data & ~KVM_MSR_ENABLED; 2747 struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data; 2748 unsigned long new_len; 2749 2750 if (!IS_ALIGNED(addr, 4)) 2751 return 1; 2752 2753 vcpu->arch.pv_eoi.msr_val = data; 2754 if (!pv_eoi_enabled(vcpu)) 2755 return 0; 2756 2757 if (addr == ghc->gpa && len <= ghc->len) 2758 new_len = ghc->len; 2759 else 2760 new_len = len; 2761 2762 return kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len); 2763 } 2764 2765 void kvm_apic_accept_events(struct kvm_vcpu *vcpu) 2766 { 2767 struct kvm_lapic *apic = vcpu->arch.apic; 2768 u8 sipi_vector; 2769 unsigned long pe; 2770 2771 if (!lapic_in_kernel(vcpu) || !apic->pending_events) 2772 return; 2773 2774 /* 2775 * INITs are latched while CPU is in specific states 2776 * (SMM, VMX non-root mode, SVM with GIF=0). 2777 * Because a CPU cannot be in these states immediately 2778 * after it has processed an INIT signal (and thus in 2779 * KVM_MP_STATE_INIT_RECEIVED state), just eat SIPIs 2780 * and leave the INIT pending. 2781 */ 2782 if (kvm_vcpu_latch_init(vcpu)) { 2783 WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED); 2784 if (test_bit(KVM_APIC_SIPI, &apic->pending_events)) 2785 clear_bit(KVM_APIC_SIPI, &apic->pending_events); 2786 return; 2787 } 2788 2789 pe = xchg(&apic->pending_events, 0); 2790 if (test_bit(KVM_APIC_INIT, &pe)) { 2791 kvm_vcpu_reset(vcpu, true); 2792 if (kvm_vcpu_is_bsp(apic->vcpu)) 2793 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 2794 else 2795 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 2796 } 2797 if (test_bit(KVM_APIC_SIPI, &pe) && 2798 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 2799 /* evaluate pending_events before reading the vector */ 2800 smp_rmb(); 2801 sipi_vector = apic->sipi_vector; 2802 kvm_vcpu_deliver_sipi_vector(vcpu, sipi_vector); 2803 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 2804 } 2805 } 2806 2807 void kvm_lapic_init(void) 2808 { 2809 /* do not patch jump label more than once per second */ 2810 jump_label_rate_limit(&apic_hw_disabled, HZ); 2811 jump_label_rate_limit(&apic_sw_disabled, HZ); 2812 } 2813 2814 void kvm_lapic_exit(void) 2815 { 2816 static_key_deferred_flush(&apic_hw_disabled); 2817 static_key_deferred_flush(&apic_sw_disabled); 2818 } 2819