1 // SPDX-License-Identifier: GPL-2.0-only 2 3 /* 4 * Local APIC virtualization 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2007 Novell 8 * Copyright (C) 2007 Intel 9 * Copyright 2009 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Dor Laor <dor.laor@qumranet.com> 13 * Gregory Haskins <ghaskins@novell.com> 14 * Yaozu (Eddie) Dong <eddie.dong@intel.com> 15 * 16 * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation. 17 */ 18 19 #include <linux/kvm_host.h> 20 #include <linux/kvm.h> 21 #include <linux/mm.h> 22 #include <linux/highmem.h> 23 #include <linux/smp.h> 24 #include <linux/hrtimer.h> 25 #include <linux/io.h> 26 #include <linux/export.h> 27 #include <linux/math64.h> 28 #include <linux/slab.h> 29 #include <asm/processor.h> 30 #include <asm/msr.h> 31 #include <asm/page.h> 32 #include <asm/current.h> 33 #include <asm/apicdef.h> 34 #include <asm/delay.h> 35 #include <linux/atomic.h> 36 #include <linux/jump_label.h> 37 #include "kvm_cache_regs.h" 38 #include "irq.h" 39 #include "ioapic.h" 40 #include "trace.h" 41 #include "x86.h" 42 #include "cpuid.h" 43 #include "hyperv.h" 44 45 #ifndef CONFIG_X86_64 46 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y)) 47 #else 48 #define mod_64(x, y) ((x) % (y)) 49 #endif 50 51 #define PRId64 "d" 52 #define PRIx64 "llx" 53 #define PRIu64 "u" 54 #define PRIo64 "o" 55 56 /* 14 is the version for Xeon and Pentium 8.4.8*/ 57 #define APIC_VERSION (0x14UL | ((KVM_APIC_LVT_NUM - 1) << 16)) 58 #define LAPIC_MMIO_LENGTH (1 << 12) 59 /* followed define is not in apicdef.h */ 60 #define MAX_APIC_VECTOR 256 61 #define APIC_VECTORS_PER_REG 32 62 63 static bool lapic_timer_advance_dynamic __read_mostly; 64 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN 100 /* clock cycles */ 65 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX 10000 /* clock cycles */ 66 #define LAPIC_TIMER_ADVANCE_NS_INIT 1000 67 #define LAPIC_TIMER_ADVANCE_NS_MAX 5000 68 /* step-by-step approximation to mitigate fluctuation */ 69 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8 70 71 static inline void __kvm_lapic_set_reg(char *regs, int reg_off, u32 val) 72 { 73 *((u32 *) (regs + reg_off)) = val; 74 } 75 76 static inline void kvm_lapic_set_reg(struct kvm_lapic *apic, int reg_off, u32 val) 77 { 78 __kvm_lapic_set_reg(apic->regs, reg_off, val); 79 } 80 81 static __always_inline u64 __kvm_lapic_get_reg64(char *regs, int reg) 82 { 83 BUILD_BUG_ON(reg != APIC_ICR); 84 return *((u64 *) (regs + reg)); 85 } 86 87 static __always_inline u64 kvm_lapic_get_reg64(struct kvm_lapic *apic, int reg) 88 { 89 return __kvm_lapic_get_reg64(apic->regs, reg); 90 } 91 92 static __always_inline void __kvm_lapic_set_reg64(char *regs, int reg, u64 val) 93 { 94 BUILD_BUG_ON(reg != APIC_ICR); 95 *((u64 *) (regs + reg)) = val; 96 } 97 98 static __always_inline void kvm_lapic_set_reg64(struct kvm_lapic *apic, 99 int reg, u64 val) 100 { 101 __kvm_lapic_set_reg64(apic->regs, reg, val); 102 } 103 104 static inline int apic_test_vector(int vec, void *bitmap) 105 { 106 return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 107 } 108 109 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector) 110 { 111 struct kvm_lapic *apic = vcpu->arch.apic; 112 113 return apic_test_vector(vector, apic->regs + APIC_ISR) || 114 apic_test_vector(vector, apic->regs + APIC_IRR); 115 } 116 117 static inline int __apic_test_and_set_vector(int vec, void *bitmap) 118 { 119 return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 120 } 121 122 static inline int __apic_test_and_clear_vector(int vec, void *bitmap) 123 { 124 return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 125 } 126 127 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_hw_disabled, HZ); 128 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_sw_disabled, HZ); 129 130 static inline int apic_enabled(struct kvm_lapic *apic) 131 { 132 return kvm_apic_sw_enabled(apic) && kvm_apic_hw_enabled(apic); 133 } 134 135 #define LVT_MASK \ 136 (APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK) 137 138 #define LINT_MASK \ 139 (LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \ 140 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER) 141 142 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic) 143 { 144 return apic->vcpu->vcpu_id; 145 } 146 147 static bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu) 148 { 149 return pi_inject_timer && kvm_vcpu_apicv_active(vcpu) && 150 (kvm_mwait_in_guest(vcpu->kvm) || kvm_hlt_in_guest(vcpu->kvm)); 151 } 152 153 bool kvm_can_use_hv_timer(struct kvm_vcpu *vcpu) 154 { 155 return kvm_x86_ops.set_hv_timer 156 && !(kvm_mwait_in_guest(vcpu->kvm) || 157 kvm_can_post_timer_interrupt(vcpu)); 158 } 159 EXPORT_SYMBOL_GPL(kvm_can_use_hv_timer); 160 161 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu) 162 { 163 return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE; 164 } 165 166 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map, 167 u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) { 168 switch (map->mode) { 169 case KVM_APIC_MODE_X2APIC: { 170 u32 offset = (dest_id >> 16) * 16; 171 u32 max_apic_id = map->max_apic_id; 172 173 if (offset <= max_apic_id) { 174 u8 cluster_size = min(max_apic_id - offset + 1, 16U); 175 176 offset = array_index_nospec(offset, map->max_apic_id + 1); 177 *cluster = &map->phys_map[offset]; 178 *mask = dest_id & (0xffff >> (16 - cluster_size)); 179 } else { 180 *mask = 0; 181 } 182 183 return true; 184 } 185 case KVM_APIC_MODE_XAPIC_FLAT: 186 *cluster = map->xapic_flat_map; 187 *mask = dest_id & 0xff; 188 return true; 189 case KVM_APIC_MODE_XAPIC_CLUSTER: 190 *cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf]; 191 *mask = dest_id & 0xf; 192 return true; 193 default: 194 /* Not optimized. */ 195 return false; 196 } 197 } 198 199 static void kvm_apic_map_free(struct rcu_head *rcu) 200 { 201 struct kvm_apic_map *map = container_of(rcu, struct kvm_apic_map, rcu); 202 203 kvfree(map); 204 } 205 206 /* 207 * CLEAN -> DIRTY and UPDATE_IN_PROGRESS -> DIRTY changes happen without a lock. 208 * 209 * DIRTY -> UPDATE_IN_PROGRESS and UPDATE_IN_PROGRESS -> CLEAN happen with 210 * apic_map_lock_held. 211 */ 212 enum { 213 CLEAN, 214 UPDATE_IN_PROGRESS, 215 DIRTY 216 }; 217 218 void kvm_recalculate_apic_map(struct kvm *kvm) 219 { 220 struct kvm_apic_map *new, *old = NULL; 221 struct kvm_vcpu *vcpu; 222 unsigned long i; 223 u32 max_id = 255; /* enough space for any xAPIC ID */ 224 225 /* Read kvm->arch.apic_map_dirty before kvm->arch.apic_map. */ 226 if (atomic_read_acquire(&kvm->arch.apic_map_dirty) == CLEAN) 227 return; 228 229 WARN_ONCE(!irqchip_in_kernel(kvm), 230 "Dirty APIC map without an in-kernel local APIC"); 231 232 mutex_lock(&kvm->arch.apic_map_lock); 233 /* 234 * Read kvm->arch.apic_map_dirty before kvm->arch.apic_map 235 * (if clean) or the APIC registers (if dirty). 236 */ 237 if (atomic_cmpxchg_acquire(&kvm->arch.apic_map_dirty, 238 DIRTY, UPDATE_IN_PROGRESS) == CLEAN) { 239 /* Someone else has updated the map. */ 240 mutex_unlock(&kvm->arch.apic_map_lock); 241 return; 242 } 243 244 kvm_for_each_vcpu(i, vcpu, kvm) 245 if (kvm_apic_present(vcpu)) 246 max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic)); 247 248 new = kvzalloc(sizeof(struct kvm_apic_map) + 249 sizeof(struct kvm_lapic *) * ((u64)max_id + 1), 250 GFP_KERNEL_ACCOUNT); 251 252 if (!new) 253 goto out; 254 255 new->max_apic_id = max_id; 256 257 kvm_for_each_vcpu(i, vcpu, kvm) { 258 struct kvm_lapic *apic = vcpu->arch.apic; 259 struct kvm_lapic **cluster; 260 u16 mask; 261 u32 ldr; 262 u8 xapic_id; 263 u32 x2apic_id; 264 265 if (!kvm_apic_present(vcpu)) 266 continue; 267 268 xapic_id = kvm_xapic_id(apic); 269 x2apic_id = kvm_x2apic_id(apic); 270 271 /* Hotplug hack: see kvm_apic_match_physical_addr(), ... */ 272 if ((apic_x2apic_mode(apic) || x2apic_id > 0xff) && 273 x2apic_id <= new->max_apic_id) 274 new->phys_map[x2apic_id] = apic; 275 /* 276 * ... xAPIC ID of VCPUs with APIC ID > 0xff will wrap-around, 277 * prevent them from masking VCPUs with APIC ID <= 0xff. 278 */ 279 if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id]) 280 new->phys_map[xapic_id] = apic; 281 282 if (!kvm_apic_sw_enabled(apic)) 283 continue; 284 285 ldr = kvm_lapic_get_reg(apic, APIC_LDR); 286 287 if (apic_x2apic_mode(apic)) { 288 new->mode |= KVM_APIC_MODE_X2APIC; 289 } else if (ldr) { 290 ldr = GET_APIC_LOGICAL_ID(ldr); 291 if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT) 292 new->mode |= KVM_APIC_MODE_XAPIC_FLAT; 293 else 294 new->mode |= KVM_APIC_MODE_XAPIC_CLUSTER; 295 } 296 297 if (!kvm_apic_map_get_logical_dest(new, ldr, &cluster, &mask)) 298 continue; 299 300 if (mask) 301 cluster[ffs(mask) - 1] = apic; 302 } 303 out: 304 old = rcu_dereference_protected(kvm->arch.apic_map, 305 lockdep_is_held(&kvm->arch.apic_map_lock)); 306 rcu_assign_pointer(kvm->arch.apic_map, new); 307 /* 308 * Write kvm->arch.apic_map before clearing apic->apic_map_dirty. 309 * If another update has come in, leave it DIRTY. 310 */ 311 atomic_cmpxchg_release(&kvm->arch.apic_map_dirty, 312 UPDATE_IN_PROGRESS, CLEAN); 313 mutex_unlock(&kvm->arch.apic_map_lock); 314 315 if (old) 316 call_rcu(&old->rcu, kvm_apic_map_free); 317 318 kvm_make_scan_ioapic_request(kvm); 319 } 320 321 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val) 322 { 323 bool enabled = val & APIC_SPIV_APIC_ENABLED; 324 325 kvm_lapic_set_reg(apic, APIC_SPIV, val); 326 327 if (enabled != apic->sw_enabled) { 328 apic->sw_enabled = enabled; 329 if (enabled) 330 static_branch_slow_dec_deferred(&apic_sw_disabled); 331 else 332 static_branch_inc(&apic_sw_disabled.key); 333 334 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 335 } 336 337 /* Check if there are APF page ready requests pending */ 338 if (enabled) 339 kvm_make_request(KVM_REQ_APF_READY, apic->vcpu); 340 } 341 342 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id) 343 { 344 kvm_lapic_set_reg(apic, APIC_ID, id << 24); 345 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 346 } 347 348 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id) 349 { 350 kvm_lapic_set_reg(apic, APIC_LDR, id); 351 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 352 } 353 354 static inline void kvm_apic_set_dfr(struct kvm_lapic *apic, u32 val) 355 { 356 kvm_lapic_set_reg(apic, APIC_DFR, val); 357 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 358 } 359 360 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id) 361 { 362 return ((id >> 4) << 16) | (1 << (id & 0xf)); 363 } 364 365 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id) 366 { 367 u32 ldr = kvm_apic_calc_x2apic_ldr(id); 368 369 WARN_ON_ONCE(id != apic->vcpu->vcpu_id); 370 371 kvm_lapic_set_reg(apic, APIC_ID, id); 372 kvm_lapic_set_reg(apic, APIC_LDR, ldr); 373 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 374 } 375 376 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type) 377 { 378 return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED); 379 } 380 381 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic) 382 { 383 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT; 384 } 385 386 static inline int apic_lvtt_period(struct kvm_lapic *apic) 387 { 388 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC; 389 } 390 391 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic) 392 { 393 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE; 394 } 395 396 static inline int apic_lvt_nmi_mode(u32 lvt_val) 397 { 398 return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI; 399 } 400 401 void kvm_apic_set_version(struct kvm_vcpu *vcpu) 402 { 403 struct kvm_lapic *apic = vcpu->arch.apic; 404 u32 v = APIC_VERSION; 405 406 if (!lapic_in_kernel(vcpu)) 407 return; 408 409 /* 410 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation) 411 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with 412 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC 413 * version first and level-triggered interrupts never get EOIed in 414 * IOAPIC. 415 */ 416 if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) && 417 !ioapic_in_kernel(vcpu->kvm)) 418 v |= APIC_LVR_DIRECTED_EOI; 419 kvm_lapic_set_reg(apic, APIC_LVR, v); 420 } 421 422 static const unsigned int apic_lvt_mask[KVM_APIC_LVT_NUM] = { 423 LVT_MASK , /* part LVTT mask, timer mode mask added at runtime */ 424 LVT_MASK | APIC_MODE_MASK, /* LVTTHMR */ 425 LVT_MASK | APIC_MODE_MASK, /* LVTPC */ 426 LINT_MASK, LINT_MASK, /* LVT0-1 */ 427 LVT_MASK /* LVTERR */ 428 }; 429 430 static int find_highest_vector(void *bitmap) 431 { 432 int vec; 433 u32 *reg; 434 435 for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG; 436 vec >= 0; vec -= APIC_VECTORS_PER_REG) { 437 reg = bitmap + REG_POS(vec); 438 if (*reg) 439 return __fls(*reg) + vec; 440 } 441 442 return -1; 443 } 444 445 static u8 count_vectors(void *bitmap) 446 { 447 int vec; 448 u32 *reg; 449 u8 count = 0; 450 451 for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) { 452 reg = bitmap + REG_POS(vec); 453 count += hweight32(*reg); 454 } 455 456 return count; 457 } 458 459 bool __kvm_apic_update_irr(u32 *pir, void *regs, int *max_irr) 460 { 461 u32 i, vec; 462 u32 pir_val, irr_val, prev_irr_val; 463 int max_updated_irr; 464 465 max_updated_irr = -1; 466 *max_irr = -1; 467 468 for (i = vec = 0; i <= 7; i++, vec += 32) { 469 pir_val = READ_ONCE(pir[i]); 470 irr_val = *((u32 *)(regs + APIC_IRR + i * 0x10)); 471 if (pir_val) { 472 prev_irr_val = irr_val; 473 irr_val |= xchg(&pir[i], 0); 474 *((u32 *)(regs + APIC_IRR + i * 0x10)) = irr_val; 475 if (prev_irr_val != irr_val) { 476 max_updated_irr = 477 __fls(irr_val ^ prev_irr_val) + vec; 478 } 479 } 480 if (irr_val) 481 *max_irr = __fls(irr_val) + vec; 482 } 483 484 return ((max_updated_irr != -1) && 485 (max_updated_irr == *max_irr)); 486 } 487 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr); 488 489 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir, int *max_irr) 490 { 491 struct kvm_lapic *apic = vcpu->arch.apic; 492 493 return __kvm_apic_update_irr(pir, apic->regs, max_irr); 494 } 495 EXPORT_SYMBOL_GPL(kvm_apic_update_irr); 496 497 static inline int apic_search_irr(struct kvm_lapic *apic) 498 { 499 return find_highest_vector(apic->regs + APIC_IRR); 500 } 501 502 static inline int apic_find_highest_irr(struct kvm_lapic *apic) 503 { 504 int result; 505 506 /* 507 * Note that irr_pending is just a hint. It will be always 508 * true with virtual interrupt delivery enabled. 509 */ 510 if (!apic->irr_pending) 511 return -1; 512 513 result = apic_search_irr(apic); 514 ASSERT(result == -1 || result >= 16); 515 516 return result; 517 } 518 519 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic) 520 { 521 struct kvm_vcpu *vcpu; 522 523 vcpu = apic->vcpu; 524 525 if (unlikely(vcpu->arch.apicv_active)) { 526 /* need to update RVI */ 527 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR); 528 static_call_cond(kvm_x86_hwapic_irr_update)(vcpu, apic_find_highest_irr(apic)); 529 } else { 530 apic->irr_pending = false; 531 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR); 532 if (apic_search_irr(apic) != -1) 533 apic->irr_pending = true; 534 } 535 } 536 537 void kvm_apic_clear_irr(struct kvm_vcpu *vcpu, int vec) 538 { 539 apic_clear_irr(vec, vcpu->arch.apic); 540 } 541 EXPORT_SYMBOL_GPL(kvm_apic_clear_irr); 542 543 static inline void apic_set_isr(int vec, struct kvm_lapic *apic) 544 { 545 struct kvm_vcpu *vcpu; 546 547 if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR)) 548 return; 549 550 vcpu = apic->vcpu; 551 552 /* 553 * With APIC virtualization enabled, all caching is disabled 554 * because the processor can modify ISR under the hood. Instead 555 * just set SVI. 556 */ 557 if (unlikely(vcpu->arch.apicv_active)) 558 static_call_cond(kvm_x86_hwapic_isr_update)(vcpu, vec); 559 else { 560 ++apic->isr_count; 561 BUG_ON(apic->isr_count > MAX_APIC_VECTOR); 562 /* 563 * ISR (in service register) bit is set when injecting an interrupt. 564 * The highest vector is injected. Thus the latest bit set matches 565 * the highest bit in ISR. 566 */ 567 apic->highest_isr_cache = vec; 568 } 569 } 570 571 static inline int apic_find_highest_isr(struct kvm_lapic *apic) 572 { 573 int result; 574 575 /* 576 * Note that isr_count is always 1, and highest_isr_cache 577 * is always -1, with APIC virtualization enabled. 578 */ 579 if (!apic->isr_count) 580 return -1; 581 if (likely(apic->highest_isr_cache != -1)) 582 return apic->highest_isr_cache; 583 584 result = find_highest_vector(apic->regs + APIC_ISR); 585 ASSERT(result == -1 || result >= 16); 586 587 return result; 588 } 589 590 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic) 591 { 592 struct kvm_vcpu *vcpu; 593 if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR)) 594 return; 595 596 vcpu = apic->vcpu; 597 598 /* 599 * We do get here for APIC virtualization enabled if the guest 600 * uses the Hyper-V APIC enlightenment. In this case we may need 601 * to trigger a new interrupt delivery by writing the SVI field; 602 * on the other hand isr_count and highest_isr_cache are unused 603 * and must be left alone. 604 */ 605 if (unlikely(vcpu->arch.apicv_active)) 606 static_call_cond(kvm_x86_hwapic_isr_update)(vcpu, apic_find_highest_isr(apic)); 607 else { 608 --apic->isr_count; 609 BUG_ON(apic->isr_count < 0); 610 apic->highest_isr_cache = -1; 611 } 612 } 613 614 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu) 615 { 616 /* This may race with setting of irr in __apic_accept_irq() and 617 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq 618 * will cause vmexit immediately and the value will be recalculated 619 * on the next vmentry. 620 */ 621 return apic_find_highest_irr(vcpu->arch.apic); 622 } 623 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr); 624 625 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 626 int vector, int level, int trig_mode, 627 struct dest_map *dest_map); 628 629 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq, 630 struct dest_map *dest_map) 631 { 632 struct kvm_lapic *apic = vcpu->arch.apic; 633 634 return __apic_accept_irq(apic, irq->delivery_mode, irq->vector, 635 irq->level, irq->trig_mode, dest_map); 636 } 637 638 static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map, 639 struct kvm_lapic_irq *irq, u32 min) 640 { 641 int i, count = 0; 642 struct kvm_vcpu *vcpu; 643 644 if (min > map->max_apic_id) 645 return 0; 646 647 for_each_set_bit(i, ipi_bitmap, 648 min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) { 649 if (map->phys_map[min + i]) { 650 vcpu = map->phys_map[min + i]->vcpu; 651 count += kvm_apic_set_irq(vcpu, irq, NULL); 652 } 653 } 654 655 return count; 656 } 657 658 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 659 unsigned long ipi_bitmap_high, u32 min, 660 unsigned long icr, int op_64_bit) 661 { 662 struct kvm_apic_map *map; 663 struct kvm_lapic_irq irq = {0}; 664 int cluster_size = op_64_bit ? 64 : 32; 665 int count; 666 667 if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK)) 668 return -KVM_EINVAL; 669 670 irq.vector = icr & APIC_VECTOR_MASK; 671 irq.delivery_mode = icr & APIC_MODE_MASK; 672 irq.level = (icr & APIC_INT_ASSERT) != 0; 673 irq.trig_mode = icr & APIC_INT_LEVELTRIG; 674 675 rcu_read_lock(); 676 map = rcu_dereference(kvm->arch.apic_map); 677 678 count = -EOPNOTSUPP; 679 if (likely(map)) { 680 count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min); 681 min += cluster_size; 682 count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min); 683 } 684 685 rcu_read_unlock(); 686 return count; 687 } 688 689 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val) 690 { 691 692 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val, 693 sizeof(val)); 694 } 695 696 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val) 697 { 698 699 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val, 700 sizeof(*val)); 701 } 702 703 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu) 704 { 705 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED; 706 } 707 708 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu) 709 { 710 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0) 711 return; 712 713 __set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 714 } 715 716 static bool pv_eoi_test_and_clr_pending(struct kvm_vcpu *vcpu) 717 { 718 u8 val; 719 720 if (pv_eoi_get_user(vcpu, &val) < 0) 721 return false; 722 723 val &= KVM_PV_EOI_ENABLED; 724 725 if (val && pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0) 726 return false; 727 728 /* 729 * Clear pending bit in any case: it will be set again on vmentry. 730 * While this might not be ideal from performance point of view, 731 * this makes sure pv eoi is only enabled when we know it's safe. 732 */ 733 __clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 734 735 return val; 736 } 737 738 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr) 739 { 740 int highest_irr; 741 if (kvm_x86_ops.sync_pir_to_irr) 742 highest_irr = static_call(kvm_x86_sync_pir_to_irr)(apic->vcpu); 743 else 744 highest_irr = apic_find_highest_irr(apic); 745 if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr) 746 return -1; 747 return highest_irr; 748 } 749 750 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr) 751 { 752 u32 tpr, isrv, ppr, old_ppr; 753 int isr; 754 755 old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI); 756 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI); 757 isr = apic_find_highest_isr(apic); 758 isrv = (isr != -1) ? isr : 0; 759 760 if ((tpr & 0xf0) >= (isrv & 0xf0)) 761 ppr = tpr & 0xff; 762 else 763 ppr = isrv & 0xf0; 764 765 *new_ppr = ppr; 766 if (old_ppr != ppr) 767 kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr); 768 769 return ppr < old_ppr; 770 } 771 772 static void apic_update_ppr(struct kvm_lapic *apic) 773 { 774 u32 ppr; 775 776 if (__apic_update_ppr(apic, &ppr) && 777 apic_has_interrupt_for_ppr(apic, ppr) != -1) 778 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 779 } 780 781 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu) 782 { 783 apic_update_ppr(vcpu->arch.apic); 784 } 785 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr); 786 787 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr) 788 { 789 kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr); 790 apic_update_ppr(apic); 791 } 792 793 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda) 794 { 795 return mda == (apic_x2apic_mode(apic) ? 796 X2APIC_BROADCAST : APIC_BROADCAST); 797 } 798 799 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda) 800 { 801 if (kvm_apic_broadcast(apic, mda)) 802 return true; 803 804 if (apic_x2apic_mode(apic)) 805 return mda == kvm_x2apic_id(apic); 806 807 /* 808 * Hotplug hack: Make LAPIC in xAPIC mode also accept interrupts as if 809 * it were in x2APIC mode. Hotplugged VCPUs start in xAPIC mode and 810 * this allows unique addressing of VCPUs with APIC ID over 0xff. 811 * The 0xff condition is needed because writeable xAPIC ID. 812 */ 813 if (kvm_x2apic_id(apic) > 0xff && mda == kvm_x2apic_id(apic)) 814 return true; 815 816 return mda == kvm_xapic_id(apic); 817 } 818 819 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda) 820 { 821 u32 logical_id; 822 823 if (kvm_apic_broadcast(apic, mda)) 824 return true; 825 826 logical_id = kvm_lapic_get_reg(apic, APIC_LDR); 827 828 if (apic_x2apic_mode(apic)) 829 return ((logical_id >> 16) == (mda >> 16)) 830 && (logical_id & mda & 0xffff) != 0; 831 832 logical_id = GET_APIC_LOGICAL_ID(logical_id); 833 834 switch (kvm_lapic_get_reg(apic, APIC_DFR)) { 835 case APIC_DFR_FLAT: 836 return (logical_id & mda) != 0; 837 case APIC_DFR_CLUSTER: 838 return ((logical_id >> 4) == (mda >> 4)) 839 && (logical_id & mda & 0xf) != 0; 840 default: 841 return false; 842 } 843 } 844 845 /* The KVM local APIC implementation has two quirks: 846 * 847 * - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs 848 * in xAPIC mode if the "destination & 0xff" matches its xAPIC ID. 849 * KVM doesn't do that aliasing. 850 * 851 * - in-kernel IOAPIC messages have to be delivered directly to 852 * x2APIC, because the kernel does not support interrupt remapping. 853 * In order to support broadcast without interrupt remapping, x2APIC 854 * rewrites the destination of non-IPI messages from APIC_BROADCAST 855 * to X2APIC_BROADCAST. 856 * 857 * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API. This is 858 * important when userspace wants to use x2APIC-format MSIs, because 859 * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7". 860 */ 861 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id, 862 struct kvm_lapic *source, struct kvm_lapic *target) 863 { 864 bool ipi = source != NULL; 865 866 if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled && 867 !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target)) 868 return X2APIC_BROADCAST; 869 870 return dest_id; 871 } 872 873 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source, 874 int shorthand, unsigned int dest, int dest_mode) 875 { 876 struct kvm_lapic *target = vcpu->arch.apic; 877 u32 mda = kvm_apic_mda(vcpu, dest, source, target); 878 879 ASSERT(target); 880 switch (shorthand) { 881 case APIC_DEST_NOSHORT: 882 if (dest_mode == APIC_DEST_PHYSICAL) 883 return kvm_apic_match_physical_addr(target, mda); 884 else 885 return kvm_apic_match_logical_addr(target, mda); 886 case APIC_DEST_SELF: 887 return target == source; 888 case APIC_DEST_ALLINC: 889 return true; 890 case APIC_DEST_ALLBUT: 891 return target != source; 892 default: 893 return false; 894 } 895 } 896 EXPORT_SYMBOL_GPL(kvm_apic_match_dest); 897 898 int kvm_vector_to_index(u32 vector, u32 dest_vcpus, 899 const unsigned long *bitmap, u32 bitmap_size) 900 { 901 u32 mod; 902 int i, idx = -1; 903 904 mod = vector % dest_vcpus; 905 906 for (i = 0; i <= mod; i++) { 907 idx = find_next_bit(bitmap, bitmap_size, idx + 1); 908 BUG_ON(idx == bitmap_size); 909 } 910 911 return idx; 912 } 913 914 static void kvm_apic_disabled_lapic_found(struct kvm *kvm) 915 { 916 if (!kvm->arch.disabled_lapic_found) { 917 kvm->arch.disabled_lapic_found = true; 918 printk(KERN_INFO 919 "Disabled LAPIC found during irq injection\n"); 920 } 921 } 922 923 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src, 924 struct kvm_lapic_irq *irq, struct kvm_apic_map *map) 925 { 926 if (kvm->arch.x2apic_broadcast_quirk_disabled) { 927 if ((irq->dest_id == APIC_BROADCAST && 928 map->mode != KVM_APIC_MODE_X2APIC)) 929 return true; 930 if (irq->dest_id == X2APIC_BROADCAST) 931 return true; 932 } else { 933 bool x2apic_ipi = src && *src && apic_x2apic_mode(*src); 934 if (irq->dest_id == (x2apic_ipi ? 935 X2APIC_BROADCAST : APIC_BROADCAST)) 936 return true; 937 } 938 939 return false; 940 } 941 942 /* Return true if the interrupt can be handled by using *bitmap as index mask 943 * for valid destinations in *dst array. 944 * Return false if kvm_apic_map_get_dest_lapic did nothing useful. 945 * Note: we may have zero kvm_lapic destinations when we return true, which 946 * means that the interrupt should be dropped. In this case, *bitmap would be 947 * zero and *dst undefined. 948 */ 949 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm, 950 struct kvm_lapic **src, struct kvm_lapic_irq *irq, 951 struct kvm_apic_map *map, struct kvm_lapic ***dst, 952 unsigned long *bitmap) 953 { 954 int i, lowest; 955 956 if (irq->shorthand == APIC_DEST_SELF && src) { 957 *dst = src; 958 *bitmap = 1; 959 return true; 960 } else if (irq->shorthand) 961 return false; 962 963 if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map)) 964 return false; 965 966 if (irq->dest_mode == APIC_DEST_PHYSICAL) { 967 if (irq->dest_id > map->max_apic_id) { 968 *bitmap = 0; 969 } else { 970 u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1); 971 *dst = &map->phys_map[dest_id]; 972 *bitmap = 1; 973 } 974 return true; 975 } 976 977 *bitmap = 0; 978 if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst, 979 (u16 *)bitmap)) 980 return false; 981 982 if (!kvm_lowest_prio_delivery(irq)) 983 return true; 984 985 if (!kvm_vector_hashing_enabled()) { 986 lowest = -1; 987 for_each_set_bit(i, bitmap, 16) { 988 if (!(*dst)[i]) 989 continue; 990 if (lowest < 0) 991 lowest = i; 992 else if (kvm_apic_compare_prio((*dst)[i]->vcpu, 993 (*dst)[lowest]->vcpu) < 0) 994 lowest = i; 995 } 996 } else { 997 if (!*bitmap) 998 return true; 999 1000 lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap), 1001 bitmap, 16); 1002 1003 if (!(*dst)[lowest]) { 1004 kvm_apic_disabled_lapic_found(kvm); 1005 *bitmap = 0; 1006 return true; 1007 } 1008 } 1009 1010 *bitmap = (lowest >= 0) ? 1 << lowest : 0; 1011 1012 return true; 1013 } 1014 1015 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src, 1016 struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map) 1017 { 1018 struct kvm_apic_map *map; 1019 unsigned long bitmap; 1020 struct kvm_lapic **dst = NULL; 1021 int i; 1022 bool ret; 1023 1024 *r = -1; 1025 1026 if (irq->shorthand == APIC_DEST_SELF) { 1027 if (KVM_BUG_ON(!src, kvm)) { 1028 *r = 0; 1029 return true; 1030 } 1031 *r = kvm_apic_set_irq(src->vcpu, irq, dest_map); 1032 return true; 1033 } 1034 1035 rcu_read_lock(); 1036 map = rcu_dereference(kvm->arch.apic_map); 1037 1038 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap); 1039 if (ret) { 1040 *r = 0; 1041 for_each_set_bit(i, &bitmap, 16) { 1042 if (!dst[i]) 1043 continue; 1044 *r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map); 1045 } 1046 } 1047 1048 rcu_read_unlock(); 1049 return ret; 1050 } 1051 1052 /* 1053 * This routine tries to handle interrupts in posted mode, here is how 1054 * it deals with different cases: 1055 * - For single-destination interrupts, handle it in posted mode 1056 * - Else if vector hashing is enabled and it is a lowest-priority 1057 * interrupt, handle it in posted mode and use the following mechanism 1058 * to find the destination vCPU. 1059 * 1. For lowest-priority interrupts, store all the possible 1060 * destination vCPUs in an array. 1061 * 2. Use "guest vector % max number of destination vCPUs" to find 1062 * the right destination vCPU in the array for the lowest-priority 1063 * interrupt. 1064 * - Otherwise, use remapped mode to inject the interrupt. 1065 */ 1066 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq, 1067 struct kvm_vcpu **dest_vcpu) 1068 { 1069 struct kvm_apic_map *map; 1070 unsigned long bitmap; 1071 struct kvm_lapic **dst = NULL; 1072 bool ret = false; 1073 1074 if (irq->shorthand) 1075 return false; 1076 1077 rcu_read_lock(); 1078 map = rcu_dereference(kvm->arch.apic_map); 1079 1080 if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) && 1081 hweight16(bitmap) == 1) { 1082 unsigned long i = find_first_bit(&bitmap, 16); 1083 1084 if (dst[i]) { 1085 *dest_vcpu = dst[i]->vcpu; 1086 ret = true; 1087 } 1088 } 1089 1090 rcu_read_unlock(); 1091 return ret; 1092 } 1093 1094 /* 1095 * Add a pending IRQ into lapic. 1096 * Return 1 if successfully added and 0 if discarded. 1097 */ 1098 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 1099 int vector, int level, int trig_mode, 1100 struct dest_map *dest_map) 1101 { 1102 int result = 0; 1103 struct kvm_vcpu *vcpu = apic->vcpu; 1104 1105 trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode, 1106 trig_mode, vector); 1107 switch (delivery_mode) { 1108 case APIC_DM_LOWEST: 1109 vcpu->arch.apic_arb_prio++; 1110 fallthrough; 1111 case APIC_DM_FIXED: 1112 if (unlikely(trig_mode && !level)) 1113 break; 1114 1115 /* FIXME add logic for vcpu on reset */ 1116 if (unlikely(!apic_enabled(apic))) 1117 break; 1118 1119 result = 1; 1120 1121 if (dest_map) { 1122 __set_bit(vcpu->vcpu_id, dest_map->map); 1123 dest_map->vectors[vcpu->vcpu_id] = vector; 1124 } 1125 1126 if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) { 1127 if (trig_mode) 1128 kvm_lapic_set_vector(vector, 1129 apic->regs + APIC_TMR); 1130 else 1131 kvm_lapic_clear_vector(vector, 1132 apic->regs + APIC_TMR); 1133 } 1134 1135 static_call(kvm_x86_deliver_interrupt)(apic, delivery_mode, 1136 trig_mode, vector); 1137 break; 1138 1139 case APIC_DM_REMRD: 1140 result = 1; 1141 vcpu->arch.pv.pv_unhalted = 1; 1142 kvm_make_request(KVM_REQ_EVENT, vcpu); 1143 kvm_vcpu_kick(vcpu); 1144 break; 1145 1146 case APIC_DM_SMI: 1147 result = 1; 1148 kvm_make_request(KVM_REQ_SMI, vcpu); 1149 kvm_vcpu_kick(vcpu); 1150 break; 1151 1152 case APIC_DM_NMI: 1153 result = 1; 1154 kvm_inject_nmi(vcpu); 1155 kvm_vcpu_kick(vcpu); 1156 break; 1157 1158 case APIC_DM_INIT: 1159 if (!trig_mode || level) { 1160 result = 1; 1161 /* assumes that there are only KVM_APIC_INIT/SIPI */ 1162 apic->pending_events = (1UL << KVM_APIC_INIT); 1163 kvm_make_request(KVM_REQ_EVENT, vcpu); 1164 kvm_vcpu_kick(vcpu); 1165 } 1166 break; 1167 1168 case APIC_DM_STARTUP: 1169 result = 1; 1170 apic->sipi_vector = vector; 1171 /* make sure sipi_vector is visible for the receiver */ 1172 smp_wmb(); 1173 set_bit(KVM_APIC_SIPI, &apic->pending_events); 1174 kvm_make_request(KVM_REQ_EVENT, vcpu); 1175 kvm_vcpu_kick(vcpu); 1176 break; 1177 1178 case APIC_DM_EXTINT: 1179 /* 1180 * Should only be called by kvm_apic_local_deliver() with LVT0, 1181 * before NMI watchdog was enabled. Already handled by 1182 * kvm_apic_accept_pic_intr(). 1183 */ 1184 break; 1185 1186 default: 1187 printk(KERN_ERR "TODO: unsupported delivery mode %x\n", 1188 delivery_mode); 1189 break; 1190 } 1191 return result; 1192 } 1193 1194 /* 1195 * This routine identifies the destination vcpus mask meant to receive the 1196 * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find 1197 * out the destination vcpus array and set the bitmap or it traverses to 1198 * each available vcpu to identify the same. 1199 */ 1200 void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq, 1201 unsigned long *vcpu_bitmap) 1202 { 1203 struct kvm_lapic **dest_vcpu = NULL; 1204 struct kvm_lapic *src = NULL; 1205 struct kvm_apic_map *map; 1206 struct kvm_vcpu *vcpu; 1207 unsigned long bitmap, i; 1208 int vcpu_idx; 1209 bool ret; 1210 1211 rcu_read_lock(); 1212 map = rcu_dereference(kvm->arch.apic_map); 1213 1214 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu, 1215 &bitmap); 1216 if (ret) { 1217 for_each_set_bit(i, &bitmap, 16) { 1218 if (!dest_vcpu[i]) 1219 continue; 1220 vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx; 1221 __set_bit(vcpu_idx, vcpu_bitmap); 1222 } 1223 } else { 1224 kvm_for_each_vcpu(i, vcpu, kvm) { 1225 if (!kvm_apic_present(vcpu)) 1226 continue; 1227 if (!kvm_apic_match_dest(vcpu, NULL, 1228 irq->shorthand, 1229 irq->dest_id, 1230 irq->dest_mode)) 1231 continue; 1232 __set_bit(i, vcpu_bitmap); 1233 } 1234 } 1235 rcu_read_unlock(); 1236 } 1237 1238 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2) 1239 { 1240 return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio; 1241 } 1242 1243 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector) 1244 { 1245 return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors); 1246 } 1247 1248 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector) 1249 { 1250 int trigger_mode; 1251 1252 /* Eoi the ioapic only if the ioapic doesn't own the vector. */ 1253 if (!kvm_ioapic_handles_vector(apic, vector)) 1254 return; 1255 1256 /* Request a KVM exit to inform the userspace IOAPIC. */ 1257 if (irqchip_split(apic->vcpu->kvm)) { 1258 apic->vcpu->arch.pending_ioapic_eoi = vector; 1259 kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu); 1260 return; 1261 } 1262 1263 if (apic_test_vector(vector, apic->regs + APIC_TMR)) 1264 trigger_mode = IOAPIC_LEVEL_TRIG; 1265 else 1266 trigger_mode = IOAPIC_EDGE_TRIG; 1267 1268 kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode); 1269 } 1270 1271 static int apic_set_eoi(struct kvm_lapic *apic) 1272 { 1273 int vector = apic_find_highest_isr(apic); 1274 1275 trace_kvm_eoi(apic, vector); 1276 1277 /* 1278 * Not every write EOI will has corresponding ISR, 1279 * one example is when Kernel check timer on setup_IO_APIC 1280 */ 1281 if (vector == -1) 1282 return vector; 1283 1284 apic_clear_isr(vector, apic); 1285 apic_update_ppr(apic); 1286 1287 if (to_hv_vcpu(apic->vcpu) && 1288 test_bit(vector, to_hv_synic(apic->vcpu)->vec_bitmap)) 1289 kvm_hv_synic_send_eoi(apic->vcpu, vector); 1290 1291 kvm_ioapic_send_eoi(apic, vector); 1292 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1293 return vector; 1294 } 1295 1296 /* 1297 * this interface assumes a trap-like exit, which has already finished 1298 * desired side effect including vISR and vPPR update. 1299 */ 1300 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector) 1301 { 1302 struct kvm_lapic *apic = vcpu->arch.apic; 1303 1304 trace_kvm_eoi(apic, vector); 1305 1306 kvm_ioapic_send_eoi(apic, vector); 1307 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1308 } 1309 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated); 1310 1311 void kvm_apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high) 1312 { 1313 struct kvm_lapic_irq irq; 1314 1315 /* KVM has no delay and should always clear the BUSY/PENDING flag. */ 1316 WARN_ON_ONCE(icr_low & APIC_ICR_BUSY); 1317 1318 irq.vector = icr_low & APIC_VECTOR_MASK; 1319 irq.delivery_mode = icr_low & APIC_MODE_MASK; 1320 irq.dest_mode = icr_low & APIC_DEST_MASK; 1321 irq.level = (icr_low & APIC_INT_ASSERT) != 0; 1322 irq.trig_mode = icr_low & APIC_INT_LEVELTRIG; 1323 irq.shorthand = icr_low & APIC_SHORT_MASK; 1324 irq.msi_redir_hint = false; 1325 if (apic_x2apic_mode(apic)) 1326 irq.dest_id = icr_high; 1327 else 1328 irq.dest_id = GET_APIC_DEST_FIELD(icr_high); 1329 1330 trace_kvm_apic_ipi(icr_low, irq.dest_id); 1331 1332 kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL); 1333 } 1334 EXPORT_SYMBOL_GPL(kvm_apic_send_ipi); 1335 1336 static u32 apic_get_tmcct(struct kvm_lapic *apic) 1337 { 1338 ktime_t remaining, now; 1339 s64 ns; 1340 u32 tmcct; 1341 1342 ASSERT(apic != NULL); 1343 1344 /* if initial count is 0, current count should also be 0 */ 1345 if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 || 1346 apic->lapic_timer.period == 0) 1347 return 0; 1348 1349 now = ktime_get(); 1350 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 1351 if (ktime_to_ns(remaining) < 0) 1352 remaining = 0; 1353 1354 ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period); 1355 tmcct = div64_u64(ns, 1356 (APIC_BUS_CYCLE_NS * apic->divide_count)); 1357 1358 return tmcct; 1359 } 1360 1361 static void __report_tpr_access(struct kvm_lapic *apic, bool write) 1362 { 1363 struct kvm_vcpu *vcpu = apic->vcpu; 1364 struct kvm_run *run = vcpu->run; 1365 1366 kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu); 1367 run->tpr_access.rip = kvm_rip_read(vcpu); 1368 run->tpr_access.is_write = write; 1369 } 1370 1371 static inline void report_tpr_access(struct kvm_lapic *apic, bool write) 1372 { 1373 if (apic->vcpu->arch.tpr_access_reporting) 1374 __report_tpr_access(apic, write); 1375 } 1376 1377 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset) 1378 { 1379 u32 val = 0; 1380 1381 if (offset >= LAPIC_MMIO_LENGTH) 1382 return 0; 1383 1384 switch (offset) { 1385 case APIC_ARBPRI: 1386 break; 1387 1388 case APIC_TMCCT: /* Timer CCR */ 1389 if (apic_lvtt_tscdeadline(apic)) 1390 return 0; 1391 1392 val = apic_get_tmcct(apic); 1393 break; 1394 case APIC_PROCPRI: 1395 apic_update_ppr(apic); 1396 val = kvm_lapic_get_reg(apic, offset); 1397 break; 1398 case APIC_TASKPRI: 1399 report_tpr_access(apic, false); 1400 fallthrough; 1401 default: 1402 val = kvm_lapic_get_reg(apic, offset); 1403 break; 1404 } 1405 1406 return val; 1407 } 1408 1409 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev) 1410 { 1411 return container_of(dev, struct kvm_lapic, dev); 1412 } 1413 1414 #define APIC_REG_MASK(reg) (1ull << ((reg) >> 4)) 1415 #define APIC_REGS_MASK(first, count) \ 1416 (APIC_REG_MASK(first) * ((1ull << (count)) - 1)) 1417 1418 static int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len, 1419 void *data) 1420 { 1421 unsigned char alignment = offset & 0xf; 1422 u32 result; 1423 /* this bitmask has a bit cleared for each reserved register */ 1424 u64 valid_reg_mask = 1425 APIC_REG_MASK(APIC_ID) | 1426 APIC_REG_MASK(APIC_LVR) | 1427 APIC_REG_MASK(APIC_TASKPRI) | 1428 APIC_REG_MASK(APIC_PROCPRI) | 1429 APIC_REG_MASK(APIC_LDR) | 1430 APIC_REG_MASK(APIC_DFR) | 1431 APIC_REG_MASK(APIC_SPIV) | 1432 APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) | 1433 APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) | 1434 APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) | 1435 APIC_REG_MASK(APIC_ESR) | 1436 APIC_REG_MASK(APIC_ICR) | 1437 APIC_REG_MASK(APIC_LVTT) | 1438 APIC_REG_MASK(APIC_LVTTHMR) | 1439 APIC_REG_MASK(APIC_LVTPC) | 1440 APIC_REG_MASK(APIC_LVT0) | 1441 APIC_REG_MASK(APIC_LVT1) | 1442 APIC_REG_MASK(APIC_LVTERR) | 1443 APIC_REG_MASK(APIC_TMICT) | 1444 APIC_REG_MASK(APIC_TMCCT) | 1445 APIC_REG_MASK(APIC_TDCR); 1446 1447 /* 1448 * ARBPRI and ICR2 are not valid in x2APIC mode. WARN if KVM reads ICR 1449 * in x2APIC mode as it's an 8-byte register in x2APIC and needs to be 1450 * manually handled by the caller. 1451 */ 1452 if (!apic_x2apic_mode(apic)) 1453 valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI) | 1454 APIC_REG_MASK(APIC_ICR2); 1455 else 1456 WARN_ON_ONCE(offset == APIC_ICR); 1457 1458 if (alignment + len > 4) 1459 return 1; 1460 1461 if (offset > 0x3f0 || !(valid_reg_mask & APIC_REG_MASK(offset))) 1462 return 1; 1463 1464 result = __apic_read(apic, offset & ~0xf); 1465 1466 trace_kvm_apic_read(offset, result); 1467 1468 switch (len) { 1469 case 1: 1470 case 2: 1471 case 4: 1472 memcpy(data, (char *)&result + alignment, len); 1473 break; 1474 default: 1475 printk(KERN_ERR "Local APIC read with len = %x, " 1476 "should be 1,2, or 4 instead\n", len); 1477 break; 1478 } 1479 return 0; 1480 } 1481 1482 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr) 1483 { 1484 return addr >= apic->base_address && 1485 addr < apic->base_address + LAPIC_MMIO_LENGTH; 1486 } 1487 1488 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 1489 gpa_t address, int len, void *data) 1490 { 1491 struct kvm_lapic *apic = to_lapic(this); 1492 u32 offset = address - apic->base_address; 1493 1494 if (!apic_mmio_in_range(apic, address)) 1495 return -EOPNOTSUPP; 1496 1497 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 1498 if (!kvm_check_has_quirk(vcpu->kvm, 1499 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 1500 return -EOPNOTSUPP; 1501 1502 memset(data, 0xff, len); 1503 return 0; 1504 } 1505 1506 kvm_lapic_reg_read(apic, offset, len, data); 1507 1508 return 0; 1509 } 1510 1511 static void update_divide_count(struct kvm_lapic *apic) 1512 { 1513 u32 tmp1, tmp2, tdcr; 1514 1515 tdcr = kvm_lapic_get_reg(apic, APIC_TDCR); 1516 tmp1 = tdcr & 0xf; 1517 tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1; 1518 apic->divide_count = 0x1 << (tmp2 & 0x7); 1519 } 1520 1521 static void limit_periodic_timer_frequency(struct kvm_lapic *apic) 1522 { 1523 /* 1524 * Do not allow the guest to program periodic timers with small 1525 * interval, since the hrtimers are not throttled by the host 1526 * scheduler. 1527 */ 1528 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 1529 s64 min_period = min_timer_period_us * 1000LL; 1530 1531 if (apic->lapic_timer.period < min_period) { 1532 pr_info_ratelimited( 1533 "kvm: vcpu %i: requested %lld ns " 1534 "lapic timer period limited to %lld ns\n", 1535 apic->vcpu->vcpu_id, 1536 apic->lapic_timer.period, min_period); 1537 apic->lapic_timer.period = min_period; 1538 } 1539 } 1540 } 1541 1542 static void cancel_hv_timer(struct kvm_lapic *apic); 1543 1544 static void cancel_apic_timer(struct kvm_lapic *apic) 1545 { 1546 hrtimer_cancel(&apic->lapic_timer.timer); 1547 preempt_disable(); 1548 if (apic->lapic_timer.hv_timer_in_use) 1549 cancel_hv_timer(apic); 1550 preempt_enable(); 1551 atomic_set(&apic->lapic_timer.pending, 0); 1552 } 1553 1554 static void apic_update_lvtt(struct kvm_lapic *apic) 1555 { 1556 u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) & 1557 apic->lapic_timer.timer_mode_mask; 1558 1559 if (apic->lapic_timer.timer_mode != timer_mode) { 1560 if (apic_lvtt_tscdeadline(apic) != (timer_mode == 1561 APIC_LVT_TIMER_TSCDEADLINE)) { 1562 cancel_apic_timer(apic); 1563 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 1564 apic->lapic_timer.period = 0; 1565 apic->lapic_timer.tscdeadline = 0; 1566 } 1567 apic->lapic_timer.timer_mode = timer_mode; 1568 limit_periodic_timer_frequency(apic); 1569 } 1570 } 1571 1572 /* 1573 * On APICv, this test will cause a busy wait 1574 * during a higher-priority task. 1575 */ 1576 1577 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu) 1578 { 1579 struct kvm_lapic *apic = vcpu->arch.apic; 1580 u32 reg = kvm_lapic_get_reg(apic, APIC_LVTT); 1581 1582 if (kvm_apic_hw_enabled(apic)) { 1583 int vec = reg & APIC_VECTOR_MASK; 1584 void *bitmap = apic->regs + APIC_ISR; 1585 1586 if (vcpu->arch.apicv_active) 1587 bitmap = apic->regs + APIC_IRR; 1588 1589 if (apic_test_vector(vec, bitmap)) 1590 return true; 1591 } 1592 return false; 1593 } 1594 1595 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles) 1596 { 1597 u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns; 1598 1599 /* 1600 * If the guest TSC is running at a different ratio than the host, then 1601 * convert the delay to nanoseconds to achieve an accurate delay. Note 1602 * that __delay() uses delay_tsc whenever the hardware has TSC, thus 1603 * always for VMX enabled hardware. 1604 */ 1605 if (vcpu->arch.tsc_scaling_ratio == kvm_default_tsc_scaling_ratio) { 1606 __delay(min(guest_cycles, 1607 nsec_to_cycles(vcpu, timer_advance_ns))); 1608 } else { 1609 u64 delay_ns = guest_cycles * 1000000ULL; 1610 do_div(delay_ns, vcpu->arch.virtual_tsc_khz); 1611 ndelay(min_t(u32, delay_ns, timer_advance_ns)); 1612 } 1613 } 1614 1615 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu, 1616 s64 advance_expire_delta) 1617 { 1618 struct kvm_lapic *apic = vcpu->arch.apic; 1619 u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns; 1620 u64 ns; 1621 1622 /* Do not adjust for tiny fluctuations or large random spikes. */ 1623 if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX || 1624 abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN) 1625 return; 1626 1627 /* too early */ 1628 if (advance_expire_delta < 0) { 1629 ns = -advance_expire_delta * 1000000ULL; 1630 do_div(ns, vcpu->arch.virtual_tsc_khz); 1631 timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; 1632 } else { 1633 /* too late */ 1634 ns = advance_expire_delta * 1000000ULL; 1635 do_div(ns, vcpu->arch.virtual_tsc_khz); 1636 timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; 1637 } 1638 1639 if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX)) 1640 timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; 1641 apic->lapic_timer.timer_advance_ns = timer_advance_ns; 1642 } 1643 1644 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1645 { 1646 struct kvm_lapic *apic = vcpu->arch.apic; 1647 u64 guest_tsc, tsc_deadline; 1648 1649 tsc_deadline = apic->lapic_timer.expired_tscdeadline; 1650 apic->lapic_timer.expired_tscdeadline = 0; 1651 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1652 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, guest_tsc - tsc_deadline); 1653 1654 if (lapic_timer_advance_dynamic) { 1655 adjust_lapic_timer_advance(vcpu, guest_tsc - tsc_deadline); 1656 /* 1657 * If the timer fired early, reread the TSC to account for the 1658 * overhead of the above adjustment to avoid waiting longer 1659 * than is necessary. 1660 */ 1661 if (guest_tsc < tsc_deadline) 1662 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1663 } 1664 1665 if (guest_tsc < tsc_deadline) 1666 __wait_lapic_expire(vcpu, tsc_deadline - guest_tsc); 1667 } 1668 1669 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1670 { 1671 if (lapic_in_kernel(vcpu) && 1672 vcpu->arch.apic->lapic_timer.expired_tscdeadline && 1673 vcpu->arch.apic->lapic_timer.timer_advance_ns && 1674 lapic_timer_int_injected(vcpu)) 1675 __kvm_wait_lapic_expire(vcpu); 1676 } 1677 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire); 1678 1679 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic) 1680 { 1681 struct kvm_timer *ktimer = &apic->lapic_timer; 1682 1683 kvm_apic_local_deliver(apic, APIC_LVTT); 1684 if (apic_lvtt_tscdeadline(apic)) { 1685 ktimer->tscdeadline = 0; 1686 } else if (apic_lvtt_oneshot(apic)) { 1687 ktimer->tscdeadline = 0; 1688 ktimer->target_expiration = 0; 1689 } 1690 } 1691 1692 static void apic_timer_expired(struct kvm_lapic *apic, bool from_timer_fn) 1693 { 1694 struct kvm_vcpu *vcpu = apic->vcpu; 1695 struct kvm_timer *ktimer = &apic->lapic_timer; 1696 1697 if (atomic_read(&apic->lapic_timer.pending)) 1698 return; 1699 1700 if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use) 1701 ktimer->expired_tscdeadline = ktimer->tscdeadline; 1702 1703 if (!from_timer_fn && vcpu->arch.apicv_active) { 1704 WARN_ON(kvm_get_running_vcpu() != vcpu); 1705 kvm_apic_inject_pending_timer_irqs(apic); 1706 return; 1707 } 1708 1709 if (kvm_use_posted_timer_interrupt(apic->vcpu)) { 1710 /* 1711 * Ensure the guest's timer has truly expired before posting an 1712 * interrupt. Open code the relevant checks to avoid querying 1713 * lapic_timer_int_injected(), which will be false since the 1714 * interrupt isn't yet injected. Waiting until after injecting 1715 * is not an option since that won't help a posted interrupt. 1716 */ 1717 if (vcpu->arch.apic->lapic_timer.expired_tscdeadline && 1718 vcpu->arch.apic->lapic_timer.timer_advance_ns) 1719 __kvm_wait_lapic_expire(vcpu); 1720 kvm_apic_inject_pending_timer_irqs(apic); 1721 return; 1722 } 1723 1724 atomic_inc(&apic->lapic_timer.pending); 1725 kvm_make_request(KVM_REQ_UNBLOCK, vcpu); 1726 if (from_timer_fn) 1727 kvm_vcpu_kick(vcpu); 1728 } 1729 1730 static void start_sw_tscdeadline(struct kvm_lapic *apic) 1731 { 1732 struct kvm_timer *ktimer = &apic->lapic_timer; 1733 u64 guest_tsc, tscdeadline = ktimer->tscdeadline; 1734 u64 ns = 0; 1735 ktime_t expire; 1736 struct kvm_vcpu *vcpu = apic->vcpu; 1737 unsigned long this_tsc_khz = vcpu->arch.virtual_tsc_khz; 1738 unsigned long flags; 1739 ktime_t now; 1740 1741 if (unlikely(!tscdeadline || !this_tsc_khz)) 1742 return; 1743 1744 local_irq_save(flags); 1745 1746 now = ktime_get(); 1747 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1748 1749 ns = (tscdeadline - guest_tsc) * 1000000ULL; 1750 do_div(ns, this_tsc_khz); 1751 1752 if (likely(tscdeadline > guest_tsc) && 1753 likely(ns > apic->lapic_timer.timer_advance_ns)) { 1754 expire = ktime_add_ns(now, ns); 1755 expire = ktime_sub_ns(expire, ktimer->timer_advance_ns); 1756 hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD); 1757 } else 1758 apic_timer_expired(apic, false); 1759 1760 local_irq_restore(flags); 1761 } 1762 1763 static inline u64 tmict_to_ns(struct kvm_lapic *apic, u32 tmict) 1764 { 1765 return (u64)tmict * APIC_BUS_CYCLE_NS * (u64)apic->divide_count; 1766 } 1767 1768 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor) 1769 { 1770 ktime_t now, remaining; 1771 u64 ns_remaining_old, ns_remaining_new; 1772 1773 apic->lapic_timer.period = 1774 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT)); 1775 limit_periodic_timer_frequency(apic); 1776 1777 now = ktime_get(); 1778 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 1779 if (ktime_to_ns(remaining) < 0) 1780 remaining = 0; 1781 1782 ns_remaining_old = ktime_to_ns(remaining); 1783 ns_remaining_new = mul_u64_u32_div(ns_remaining_old, 1784 apic->divide_count, old_divisor); 1785 1786 apic->lapic_timer.tscdeadline += 1787 nsec_to_cycles(apic->vcpu, ns_remaining_new) - 1788 nsec_to_cycles(apic->vcpu, ns_remaining_old); 1789 apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new); 1790 } 1791 1792 static bool set_target_expiration(struct kvm_lapic *apic, u32 count_reg) 1793 { 1794 ktime_t now; 1795 u64 tscl = rdtsc(); 1796 s64 deadline; 1797 1798 now = ktime_get(); 1799 apic->lapic_timer.period = 1800 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT)); 1801 1802 if (!apic->lapic_timer.period) { 1803 apic->lapic_timer.tscdeadline = 0; 1804 return false; 1805 } 1806 1807 limit_periodic_timer_frequency(apic); 1808 deadline = apic->lapic_timer.period; 1809 1810 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) { 1811 if (unlikely(count_reg != APIC_TMICT)) { 1812 deadline = tmict_to_ns(apic, 1813 kvm_lapic_get_reg(apic, count_reg)); 1814 if (unlikely(deadline <= 0)) 1815 deadline = apic->lapic_timer.period; 1816 else if (unlikely(deadline > apic->lapic_timer.period)) { 1817 pr_info_ratelimited( 1818 "kvm: vcpu %i: requested lapic timer restore with " 1819 "starting count register %#x=%u (%lld ns) > initial count (%lld ns). " 1820 "Using initial count to start timer.\n", 1821 apic->vcpu->vcpu_id, 1822 count_reg, 1823 kvm_lapic_get_reg(apic, count_reg), 1824 deadline, apic->lapic_timer.period); 1825 kvm_lapic_set_reg(apic, count_reg, 0); 1826 deadline = apic->lapic_timer.period; 1827 } 1828 } 1829 } 1830 1831 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 1832 nsec_to_cycles(apic->vcpu, deadline); 1833 apic->lapic_timer.target_expiration = ktime_add_ns(now, deadline); 1834 1835 return true; 1836 } 1837 1838 static void advance_periodic_target_expiration(struct kvm_lapic *apic) 1839 { 1840 ktime_t now = ktime_get(); 1841 u64 tscl = rdtsc(); 1842 ktime_t delta; 1843 1844 /* 1845 * Synchronize both deadlines to the same time source or 1846 * differences in the periods (caused by differences in the 1847 * underlying clocks or numerical approximation errors) will 1848 * cause the two to drift apart over time as the errors 1849 * accumulate. 1850 */ 1851 apic->lapic_timer.target_expiration = 1852 ktime_add_ns(apic->lapic_timer.target_expiration, 1853 apic->lapic_timer.period); 1854 delta = ktime_sub(apic->lapic_timer.target_expiration, now); 1855 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 1856 nsec_to_cycles(apic->vcpu, delta); 1857 } 1858 1859 static void start_sw_period(struct kvm_lapic *apic) 1860 { 1861 if (!apic->lapic_timer.period) 1862 return; 1863 1864 if (ktime_after(ktime_get(), 1865 apic->lapic_timer.target_expiration)) { 1866 apic_timer_expired(apic, false); 1867 1868 if (apic_lvtt_oneshot(apic)) 1869 return; 1870 1871 advance_periodic_target_expiration(apic); 1872 } 1873 1874 hrtimer_start(&apic->lapic_timer.timer, 1875 apic->lapic_timer.target_expiration, 1876 HRTIMER_MODE_ABS_HARD); 1877 } 1878 1879 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu) 1880 { 1881 if (!lapic_in_kernel(vcpu)) 1882 return false; 1883 1884 return vcpu->arch.apic->lapic_timer.hv_timer_in_use; 1885 } 1886 EXPORT_SYMBOL_GPL(kvm_lapic_hv_timer_in_use); 1887 1888 static void cancel_hv_timer(struct kvm_lapic *apic) 1889 { 1890 WARN_ON(preemptible()); 1891 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 1892 static_call(kvm_x86_cancel_hv_timer)(apic->vcpu); 1893 apic->lapic_timer.hv_timer_in_use = false; 1894 } 1895 1896 static bool start_hv_timer(struct kvm_lapic *apic) 1897 { 1898 struct kvm_timer *ktimer = &apic->lapic_timer; 1899 struct kvm_vcpu *vcpu = apic->vcpu; 1900 bool expired; 1901 1902 WARN_ON(preemptible()); 1903 if (!kvm_can_use_hv_timer(vcpu)) 1904 return false; 1905 1906 if (!ktimer->tscdeadline) 1907 return false; 1908 1909 if (static_call(kvm_x86_set_hv_timer)(vcpu, ktimer->tscdeadline, &expired)) 1910 return false; 1911 1912 ktimer->hv_timer_in_use = true; 1913 hrtimer_cancel(&ktimer->timer); 1914 1915 /* 1916 * To simplify handling the periodic timer, leave the hv timer running 1917 * even if the deadline timer has expired, i.e. rely on the resulting 1918 * VM-Exit to recompute the periodic timer's target expiration. 1919 */ 1920 if (!apic_lvtt_period(apic)) { 1921 /* 1922 * Cancel the hv timer if the sw timer fired while the hv timer 1923 * was being programmed, or if the hv timer itself expired. 1924 */ 1925 if (atomic_read(&ktimer->pending)) { 1926 cancel_hv_timer(apic); 1927 } else if (expired) { 1928 apic_timer_expired(apic, false); 1929 cancel_hv_timer(apic); 1930 } 1931 } 1932 1933 trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use); 1934 1935 return true; 1936 } 1937 1938 static void start_sw_timer(struct kvm_lapic *apic) 1939 { 1940 struct kvm_timer *ktimer = &apic->lapic_timer; 1941 1942 WARN_ON(preemptible()); 1943 if (apic->lapic_timer.hv_timer_in_use) 1944 cancel_hv_timer(apic); 1945 if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending)) 1946 return; 1947 1948 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 1949 start_sw_period(apic); 1950 else if (apic_lvtt_tscdeadline(apic)) 1951 start_sw_tscdeadline(apic); 1952 trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false); 1953 } 1954 1955 static void restart_apic_timer(struct kvm_lapic *apic) 1956 { 1957 preempt_disable(); 1958 1959 if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending)) 1960 goto out; 1961 1962 if (!start_hv_timer(apic)) 1963 start_sw_timer(apic); 1964 out: 1965 preempt_enable(); 1966 } 1967 1968 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu) 1969 { 1970 struct kvm_lapic *apic = vcpu->arch.apic; 1971 1972 preempt_disable(); 1973 /* If the preempt notifier has already run, it also called apic_timer_expired */ 1974 if (!apic->lapic_timer.hv_timer_in_use) 1975 goto out; 1976 WARN_ON(kvm_vcpu_is_blocking(vcpu)); 1977 apic_timer_expired(apic, false); 1978 cancel_hv_timer(apic); 1979 1980 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 1981 advance_periodic_target_expiration(apic); 1982 restart_apic_timer(apic); 1983 } 1984 out: 1985 preempt_enable(); 1986 } 1987 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer); 1988 1989 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu) 1990 { 1991 restart_apic_timer(vcpu->arch.apic); 1992 } 1993 1994 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu) 1995 { 1996 struct kvm_lapic *apic = vcpu->arch.apic; 1997 1998 preempt_disable(); 1999 /* Possibly the TSC deadline timer is not enabled yet */ 2000 if (apic->lapic_timer.hv_timer_in_use) 2001 start_sw_timer(apic); 2002 preempt_enable(); 2003 } 2004 2005 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu) 2006 { 2007 struct kvm_lapic *apic = vcpu->arch.apic; 2008 2009 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 2010 restart_apic_timer(apic); 2011 } 2012 2013 static void __start_apic_timer(struct kvm_lapic *apic, u32 count_reg) 2014 { 2015 atomic_set(&apic->lapic_timer.pending, 0); 2016 2017 if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 2018 && !set_target_expiration(apic, count_reg)) 2019 return; 2020 2021 restart_apic_timer(apic); 2022 } 2023 2024 static void start_apic_timer(struct kvm_lapic *apic) 2025 { 2026 __start_apic_timer(apic, APIC_TMICT); 2027 } 2028 2029 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val) 2030 { 2031 bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val); 2032 2033 if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) { 2034 apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode; 2035 if (lvt0_in_nmi_mode) { 2036 atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 2037 } else 2038 atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 2039 } 2040 } 2041 2042 static void kvm_lapic_xapic_id_updated(struct kvm_lapic *apic) 2043 { 2044 struct kvm *kvm = apic->vcpu->kvm; 2045 2046 if (KVM_BUG_ON(apic_x2apic_mode(apic), kvm)) 2047 return; 2048 2049 if (kvm_xapic_id(apic) == apic->vcpu->vcpu_id) 2050 return; 2051 2052 kvm_set_apicv_inhibit(apic->vcpu->kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED); 2053 } 2054 2055 static int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val) 2056 { 2057 int ret = 0; 2058 2059 trace_kvm_apic_write(reg, val); 2060 2061 switch (reg) { 2062 case APIC_ID: /* Local APIC ID */ 2063 if (!apic_x2apic_mode(apic)) { 2064 kvm_apic_set_xapic_id(apic, val >> 24); 2065 kvm_lapic_xapic_id_updated(apic); 2066 } else { 2067 ret = 1; 2068 } 2069 break; 2070 2071 case APIC_TASKPRI: 2072 report_tpr_access(apic, true); 2073 apic_set_tpr(apic, val & 0xff); 2074 break; 2075 2076 case APIC_EOI: 2077 apic_set_eoi(apic); 2078 break; 2079 2080 case APIC_LDR: 2081 if (!apic_x2apic_mode(apic)) 2082 kvm_apic_set_ldr(apic, val & APIC_LDR_MASK); 2083 else 2084 ret = 1; 2085 break; 2086 2087 case APIC_DFR: 2088 if (!apic_x2apic_mode(apic)) 2089 kvm_apic_set_dfr(apic, val | 0x0FFFFFFF); 2090 else 2091 ret = 1; 2092 break; 2093 2094 case APIC_SPIV: { 2095 u32 mask = 0x3ff; 2096 if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI) 2097 mask |= APIC_SPIV_DIRECTED_EOI; 2098 apic_set_spiv(apic, val & mask); 2099 if (!(val & APIC_SPIV_APIC_ENABLED)) { 2100 int i; 2101 u32 lvt_val; 2102 2103 for (i = 0; i < KVM_APIC_LVT_NUM; i++) { 2104 lvt_val = kvm_lapic_get_reg(apic, 2105 APIC_LVTT + 0x10 * i); 2106 kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i, 2107 lvt_val | APIC_LVT_MASKED); 2108 } 2109 apic_update_lvtt(apic); 2110 atomic_set(&apic->lapic_timer.pending, 0); 2111 2112 } 2113 break; 2114 } 2115 case APIC_ICR: 2116 WARN_ON_ONCE(apic_x2apic_mode(apic)); 2117 2118 /* No delay here, so we always clear the pending bit */ 2119 val &= ~APIC_ICR_BUSY; 2120 kvm_apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2)); 2121 kvm_lapic_set_reg(apic, APIC_ICR, val); 2122 break; 2123 case APIC_ICR2: 2124 if (apic_x2apic_mode(apic)) 2125 ret = 1; 2126 else 2127 kvm_lapic_set_reg(apic, APIC_ICR2, val & 0xff000000); 2128 break; 2129 2130 case APIC_LVT0: 2131 apic_manage_nmi_watchdog(apic, val); 2132 fallthrough; 2133 case APIC_LVTTHMR: 2134 case APIC_LVTPC: 2135 case APIC_LVT1: 2136 case APIC_LVTERR: { 2137 /* TODO: Check vector */ 2138 size_t size; 2139 u32 index; 2140 2141 if (!kvm_apic_sw_enabled(apic)) 2142 val |= APIC_LVT_MASKED; 2143 size = ARRAY_SIZE(apic_lvt_mask); 2144 index = array_index_nospec( 2145 (reg - APIC_LVTT) >> 4, size); 2146 val &= apic_lvt_mask[index]; 2147 kvm_lapic_set_reg(apic, reg, val); 2148 break; 2149 } 2150 2151 case APIC_LVTT: 2152 if (!kvm_apic_sw_enabled(apic)) 2153 val |= APIC_LVT_MASKED; 2154 val &= (apic_lvt_mask[0] | apic->lapic_timer.timer_mode_mask); 2155 kvm_lapic_set_reg(apic, APIC_LVTT, val); 2156 apic_update_lvtt(apic); 2157 break; 2158 2159 case APIC_TMICT: 2160 if (apic_lvtt_tscdeadline(apic)) 2161 break; 2162 2163 cancel_apic_timer(apic); 2164 kvm_lapic_set_reg(apic, APIC_TMICT, val); 2165 start_apic_timer(apic); 2166 break; 2167 2168 case APIC_TDCR: { 2169 uint32_t old_divisor = apic->divide_count; 2170 2171 kvm_lapic_set_reg(apic, APIC_TDCR, val & 0xb); 2172 update_divide_count(apic); 2173 if (apic->divide_count != old_divisor && 2174 apic->lapic_timer.period) { 2175 hrtimer_cancel(&apic->lapic_timer.timer); 2176 update_target_expiration(apic, old_divisor); 2177 restart_apic_timer(apic); 2178 } 2179 break; 2180 } 2181 case APIC_ESR: 2182 if (apic_x2apic_mode(apic) && val != 0) 2183 ret = 1; 2184 break; 2185 2186 case APIC_SELF_IPI: 2187 if (apic_x2apic_mode(apic)) 2188 kvm_apic_send_ipi(apic, APIC_DEST_SELF | (val & APIC_VECTOR_MASK), 0); 2189 else 2190 ret = 1; 2191 break; 2192 default: 2193 ret = 1; 2194 break; 2195 } 2196 2197 /* 2198 * Recalculate APIC maps if necessary, e.g. if the software enable bit 2199 * was toggled, the APIC ID changed, etc... The maps are marked dirty 2200 * on relevant changes, i.e. this is a nop for most writes. 2201 */ 2202 kvm_recalculate_apic_map(apic->vcpu->kvm); 2203 2204 return ret; 2205 } 2206 2207 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 2208 gpa_t address, int len, const void *data) 2209 { 2210 struct kvm_lapic *apic = to_lapic(this); 2211 unsigned int offset = address - apic->base_address; 2212 u32 val; 2213 2214 if (!apic_mmio_in_range(apic, address)) 2215 return -EOPNOTSUPP; 2216 2217 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 2218 if (!kvm_check_has_quirk(vcpu->kvm, 2219 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 2220 return -EOPNOTSUPP; 2221 2222 return 0; 2223 } 2224 2225 /* 2226 * APIC register must be aligned on 128-bits boundary. 2227 * 32/64/128 bits registers must be accessed thru 32 bits. 2228 * Refer SDM 8.4.1 2229 */ 2230 if (len != 4 || (offset & 0xf)) 2231 return 0; 2232 2233 val = *(u32*)data; 2234 2235 kvm_lapic_reg_write(apic, offset & 0xff0, val); 2236 2237 return 0; 2238 } 2239 2240 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu) 2241 { 2242 kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0); 2243 } 2244 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi); 2245 2246 /* emulate APIC access in a trap manner */ 2247 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset) 2248 { 2249 u32 val = kvm_lapic_get_reg(vcpu->arch.apic, offset); 2250 2251 /* TODO: optimize to just emulate side effect w/o one more write */ 2252 kvm_lapic_reg_write(vcpu->arch.apic, offset, val); 2253 } 2254 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode); 2255 2256 void kvm_free_lapic(struct kvm_vcpu *vcpu) 2257 { 2258 struct kvm_lapic *apic = vcpu->arch.apic; 2259 2260 if (!vcpu->arch.apic) 2261 return; 2262 2263 hrtimer_cancel(&apic->lapic_timer.timer); 2264 2265 if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)) 2266 static_branch_slow_dec_deferred(&apic_hw_disabled); 2267 2268 if (!apic->sw_enabled) 2269 static_branch_slow_dec_deferred(&apic_sw_disabled); 2270 2271 if (apic->regs) 2272 free_page((unsigned long)apic->regs); 2273 2274 kfree(apic); 2275 } 2276 2277 /* 2278 *---------------------------------------------------------------------- 2279 * LAPIC interface 2280 *---------------------------------------------------------------------- 2281 */ 2282 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu) 2283 { 2284 struct kvm_lapic *apic = vcpu->arch.apic; 2285 2286 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic)) 2287 return 0; 2288 2289 return apic->lapic_timer.tscdeadline; 2290 } 2291 2292 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data) 2293 { 2294 struct kvm_lapic *apic = vcpu->arch.apic; 2295 2296 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic)) 2297 return; 2298 2299 hrtimer_cancel(&apic->lapic_timer.timer); 2300 apic->lapic_timer.tscdeadline = data; 2301 start_apic_timer(apic); 2302 } 2303 2304 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8) 2305 { 2306 apic_set_tpr(vcpu->arch.apic, (cr8 & 0x0f) << 4); 2307 } 2308 2309 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu) 2310 { 2311 u64 tpr; 2312 2313 tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI); 2314 2315 return (tpr & 0xf0) >> 4; 2316 } 2317 2318 void kvm_lapic_set_base(struct kvm_vcpu *vcpu, u64 value) 2319 { 2320 u64 old_value = vcpu->arch.apic_base; 2321 struct kvm_lapic *apic = vcpu->arch.apic; 2322 2323 vcpu->arch.apic_base = value; 2324 2325 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) 2326 kvm_update_cpuid_runtime(vcpu); 2327 2328 if (!apic) 2329 return; 2330 2331 /* update jump label if enable bit changes */ 2332 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) { 2333 if (value & MSR_IA32_APICBASE_ENABLE) { 2334 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2335 static_branch_slow_dec_deferred(&apic_hw_disabled); 2336 /* Check if there are APF page ready requests pending */ 2337 kvm_make_request(KVM_REQ_APF_READY, vcpu); 2338 } else { 2339 static_branch_inc(&apic_hw_disabled.key); 2340 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 2341 } 2342 } 2343 2344 if (((old_value ^ value) & X2APIC_ENABLE) && (value & X2APIC_ENABLE)) 2345 kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id); 2346 2347 if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) 2348 static_call_cond(kvm_x86_set_virtual_apic_mode)(vcpu); 2349 2350 apic->base_address = apic->vcpu->arch.apic_base & 2351 MSR_IA32_APICBASE_BASE; 2352 2353 if ((value & MSR_IA32_APICBASE_ENABLE) && 2354 apic->base_address != APIC_DEFAULT_PHYS_BASE) { 2355 kvm_set_apicv_inhibit(apic->vcpu->kvm, 2356 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED); 2357 } 2358 } 2359 2360 void kvm_apic_update_apicv(struct kvm_vcpu *vcpu) 2361 { 2362 struct kvm_lapic *apic = vcpu->arch.apic; 2363 2364 if (vcpu->arch.apicv_active) { 2365 /* irr_pending is always true when apicv is activated. */ 2366 apic->irr_pending = true; 2367 apic->isr_count = 1; 2368 } else { 2369 /* 2370 * Don't clear irr_pending, searching the IRR can race with 2371 * updates from the CPU as APICv is still active from hardware's 2372 * perspective. The flag will be cleared as appropriate when 2373 * KVM injects the interrupt. 2374 */ 2375 apic->isr_count = count_vectors(apic->regs + APIC_ISR); 2376 } 2377 } 2378 EXPORT_SYMBOL_GPL(kvm_apic_update_apicv); 2379 2380 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event) 2381 { 2382 struct kvm_lapic *apic = vcpu->arch.apic; 2383 u64 msr_val; 2384 int i; 2385 2386 if (!init_event) { 2387 msr_val = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE; 2388 if (kvm_vcpu_is_reset_bsp(vcpu)) 2389 msr_val |= MSR_IA32_APICBASE_BSP; 2390 kvm_lapic_set_base(vcpu, msr_val); 2391 } 2392 2393 if (!apic) 2394 return; 2395 2396 /* Stop the timer in case it's a reset to an active apic */ 2397 hrtimer_cancel(&apic->lapic_timer.timer); 2398 2399 /* The xAPIC ID is set at RESET even if the APIC was already enabled. */ 2400 if (!init_event) 2401 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2402 kvm_apic_set_version(apic->vcpu); 2403 2404 for (i = 0; i < KVM_APIC_LVT_NUM; i++) 2405 kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i, APIC_LVT_MASKED); 2406 apic_update_lvtt(apic); 2407 if (kvm_vcpu_is_reset_bsp(vcpu) && 2408 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED)) 2409 kvm_lapic_set_reg(apic, APIC_LVT0, 2410 SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT)); 2411 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 2412 2413 kvm_apic_set_dfr(apic, 0xffffffffU); 2414 apic_set_spiv(apic, 0xff); 2415 kvm_lapic_set_reg(apic, APIC_TASKPRI, 0); 2416 if (!apic_x2apic_mode(apic)) 2417 kvm_apic_set_ldr(apic, 0); 2418 kvm_lapic_set_reg(apic, APIC_ESR, 0); 2419 if (!apic_x2apic_mode(apic)) { 2420 kvm_lapic_set_reg(apic, APIC_ICR, 0); 2421 kvm_lapic_set_reg(apic, APIC_ICR2, 0); 2422 } else { 2423 kvm_lapic_set_reg64(apic, APIC_ICR, 0); 2424 } 2425 kvm_lapic_set_reg(apic, APIC_TDCR, 0); 2426 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 2427 for (i = 0; i < 8; i++) { 2428 kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0); 2429 kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0); 2430 kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0); 2431 } 2432 kvm_apic_update_apicv(vcpu); 2433 apic->highest_isr_cache = -1; 2434 update_divide_count(apic); 2435 atomic_set(&apic->lapic_timer.pending, 0); 2436 2437 vcpu->arch.pv_eoi.msr_val = 0; 2438 apic_update_ppr(apic); 2439 if (vcpu->arch.apicv_active) { 2440 static_call_cond(kvm_x86_apicv_post_state_restore)(vcpu); 2441 static_call_cond(kvm_x86_hwapic_irr_update)(vcpu, -1); 2442 static_call_cond(kvm_x86_hwapic_isr_update)(vcpu, -1); 2443 } 2444 2445 vcpu->arch.apic_arb_prio = 0; 2446 vcpu->arch.apic_attention = 0; 2447 2448 kvm_recalculate_apic_map(vcpu->kvm); 2449 } 2450 2451 /* 2452 *---------------------------------------------------------------------- 2453 * timer interface 2454 *---------------------------------------------------------------------- 2455 */ 2456 2457 static bool lapic_is_periodic(struct kvm_lapic *apic) 2458 { 2459 return apic_lvtt_period(apic); 2460 } 2461 2462 int apic_has_pending_timer(struct kvm_vcpu *vcpu) 2463 { 2464 struct kvm_lapic *apic = vcpu->arch.apic; 2465 2466 if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT)) 2467 return atomic_read(&apic->lapic_timer.pending); 2468 2469 return 0; 2470 } 2471 2472 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type) 2473 { 2474 u32 reg = kvm_lapic_get_reg(apic, lvt_type); 2475 int vector, mode, trig_mode; 2476 2477 if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) { 2478 vector = reg & APIC_VECTOR_MASK; 2479 mode = reg & APIC_MODE_MASK; 2480 trig_mode = reg & APIC_LVT_LEVEL_TRIGGER; 2481 return __apic_accept_irq(apic, mode, vector, 1, trig_mode, 2482 NULL); 2483 } 2484 return 0; 2485 } 2486 2487 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu) 2488 { 2489 struct kvm_lapic *apic = vcpu->arch.apic; 2490 2491 if (apic) 2492 kvm_apic_local_deliver(apic, APIC_LVT0); 2493 } 2494 2495 static const struct kvm_io_device_ops apic_mmio_ops = { 2496 .read = apic_mmio_read, 2497 .write = apic_mmio_write, 2498 }; 2499 2500 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data) 2501 { 2502 struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer); 2503 struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer); 2504 2505 apic_timer_expired(apic, true); 2506 2507 if (lapic_is_periodic(apic)) { 2508 advance_periodic_target_expiration(apic); 2509 hrtimer_add_expires_ns(&ktimer->timer, ktimer->period); 2510 return HRTIMER_RESTART; 2511 } else 2512 return HRTIMER_NORESTART; 2513 } 2514 2515 int kvm_create_lapic(struct kvm_vcpu *vcpu, int timer_advance_ns) 2516 { 2517 struct kvm_lapic *apic; 2518 2519 ASSERT(vcpu != NULL); 2520 2521 apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT); 2522 if (!apic) 2523 goto nomem; 2524 2525 vcpu->arch.apic = apic; 2526 2527 apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 2528 if (!apic->regs) { 2529 printk(KERN_ERR "malloc apic regs error for vcpu %x\n", 2530 vcpu->vcpu_id); 2531 goto nomem_free_apic; 2532 } 2533 apic->vcpu = vcpu; 2534 2535 hrtimer_init(&apic->lapic_timer.timer, CLOCK_MONOTONIC, 2536 HRTIMER_MODE_ABS_HARD); 2537 apic->lapic_timer.timer.function = apic_timer_fn; 2538 if (timer_advance_ns == -1) { 2539 apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; 2540 lapic_timer_advance_dynamic = true; 2541 } else { 2542 apic->lapic_timer.timer_advance_ns = timer_advance_ns; 2543 lapic_timer_advance_dynamic = false; 2544 } 2545 2546 /* 2547 * Stuff the APIC ENABLE bit in lieu of temporarily incrementing 2548 * apic_hw_disabled; the full RESET value is set by kvm_lapic_reset(). 2549 */ 2550 vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE; 2551 static_branch_inc(&apic_sw_disabled.key); /* sw disabled at reset */ 2552 kvm_iodevice_init(&apic->dev, &apic_mmio_ops); 2553 2554 return 0; 2555 nomem_free_apic: 2556 kfree(apic); 2557 vcpu->arch.apic = NULL; 2558 nomem: 2559 return -ENOMEM; 2560 } 2561 2562 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu) 2563 { 2564 struct kvm_lapic *apic = vcpu->arch.apic; 2565 u32 ppr; 2566 2567 if (!kvm_apic_present(vcpu)) 2568 return -1; 2569 2570 __apic_update_ppr(apic, &ppr); 2571 return apic_has_interrupt_for_ppr(apic, ppr); 2572 } 2573 EXPORT_SYMBOL_GPL(kvm_apic_has_interrupt); 2574 2575 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu) 2576 { 2577 u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0); 2578 2579 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 2580 return 1; 2581 if ((lvt0 & APIC_LVT_MASKED) == 0 && 2582 GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT) 2583 return 1; 2584 return 0; 2585 } 2586 2587 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu) 2588 { 2589 struct kvm_lapic *apic = vcpu->arch.apic; 2590 2591 if (atomic_read(&apic->lapic_timer.pending) > 0) { 2592 kvm_apic_inject_pending_timer_irqs(apic); 2593 atomic_set(&apic->lapic_timer.pending, 0); 2594 } 2595 } 2596 2597 int kvm_get_apic_interrupt(struct kvm_vcpu *vcpu) 2598 { 2599 int vector = kvm_apic_has_interrupt(vcpu); 2600 struct kvm_lapic *apic = vcpu->arch.apic; 2601 u32 ppr; 2602 2603 if (vector == -1) 2604 return -1; 2605 2606 /* 2607 * We get here even with APIC virtualization enabled, if doing 2608 * nested virtualization and L1 runs with the "acknowledge interrupt 2609 * on exit" mode. Then we cannot inject the interrupt via RVI, 2610 * because the process would deliver it through the IDT. 2611 */ 2612 2613 apic_clear_irr(vector, apic); 2614 if (to_hv_vcpu(vcpu) && test_bit(vector, to_hv_synic(vcpu)->auto_eoi_bitmap)) { 2615 /* 2616 * For auto-EOI interrupts, there might be another pending 2617 * interrupt above PPR, so check whether to raise another 2618 * KVM_REQ_EVENT. 2619 */ 2620 apic_update_ppr(apic); 2621 } else { 2622 /* 2623 * For normal interrupts, PPR has been raised and there cannot 2624 * be a higher-priority pending interrupt---except if there was 2625 * a concurrent interrupt injection, but that would have 2626 * triggered KVM_REQ_EVENT already. 2627 */ 2628 apic_set_isr(vector, apic); 2629 __apic_update_ppr(apic, &ppr); 2630 } 2631 2632 return vector; 2633 } 2634 2635 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu, 2636 struct kvm_lapic_state *s, bool set) 2637 { 2638 if (apic_x2apic_mode(vcpu->arch.apic)) { 2639 u32 *id = (u32 *)(s->regs + APIC_ID); 2640 u32 *ldr = (u32 *)(s->regs + APIC_LDR); 2641 u64 icr; 2642 2643 if (vcpu->kvm->arch.x2apic_format) { 2644 if (*id != vcpu->vcpu_id) 2645 return -EINVAL; 2646 } else { 2647 if (set) 2648 *id >>= 24; 2649 else 2650 *id <<= 24; 2651 } 2652 2653 /* 2654 * In x2APIC mode, the LDR is fixed and based on the id. And 2655 * ICR is internally a single 64-bit register, but needs to be 2656 * split to ICR+ICR2 in userspace for backwards compatibility. 2657 */ 2658 if (set) { 2659 *ldr = kvm_apic_calc_x2apic_ldr(*id); 2660 2661 icr = __kvm_lapic_get_reg(s->regs, APIC_ICR) | 2662 (u64)__kvm_lapic_get_reg(s->regs, APIC_ICR2) << 32; 2663 __kvm_lapic_set_reg64(s->regs, APIC_ICR, icr); 2664 } else { 2665 icr = __kvm_lapic_get_reg64(s->regs, APIC_ICR); 2666 __kvm_lapic_set_reg(s->regs, APIC_ICR2, icr >> 32); 2667 } 2668 } else { 2669 kvm_lapic_xapic_id_updated(vcpu->arch.apic); 2670 } 2671 2672 return 0; 2673 } 2674 2675 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 2676 { 2677 memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s)); 2678 2679 /* 2680 * Get calculated timer current count for remaining timer period (if 2681 * any) and store it in the returned register set. 2682 */ 2683 __kvm_lapic_set_reg(s->regs, APIC_TMCCT, 2684 __apic_read(vcpu->arch.apic, APIC_TMCCT)); 2685 2686 return kvm_apic_state_fixup(vcpu, s, false); 2687 } 2688 2689 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 2690 { 2691 struct kvm_lapic *apic = vcpu->arch.apic; 2692 int r; 2693 2694 kvm_lapic_set_base(vcpu, vcpu->arch.apic_base); 2695 /* set SPIV separately to get count of SW disabled APICs right */ 2696 apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV))); 2697 2698 r = kvm_apic_state_fixup(vcpu, s, true); 2699 if (r) { 2700 kvm_recalculate_apic_map(vcpu->kvm); 2701 return r; 2702 } 2703 memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s)); 2704 2705 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 2706 kvm_recalculate_apic_map(vcpu->kvm); 2707 kvm_apic_set_version(vcpu); 2708 2709 apic_update_ppr(apic); 2710 cancel_apic_timer(apic); 2711 apic->lapic_timer.expired_tscdeadline = 0; 2712 apic_update_lvtt(apic); 2713 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 2714 update_divide_count(apic); 2715 __start_apic_timer(apic, APIC_TMCCT); 2716 kvm_lapic_set_reg(apic, APIC_TMCCT, 0); 2717 kvm_apic_update_apicv(vcpu); 2718 apic->highest_isr_cache = -1; 2719 if (vcpu->arch.apicv_active) { 2720 static_call_cond(kvm_x86_apicv_post_state_restore)(vcpu); 2721 static_call_cond(kvm_x86_hwapic_irr_update)(vcpu, apic_find_highest_irr(apic)); 2722 static_call_cond(kvm_x86_hwapic_isr_update)(vcpu, apic_find_highest_isr(apic)); 2723 } 2724 kvm_make_request(KVM_REQ_EVENT, vcpu); 2725 if (ioapic_in_kernel(vcpu->kvm)) 2726 kvm_rtc_eoi_tracking_restore_one(vcpu); 2727 2728 vcpu->arch.apic_arb_prio = 0; 2729 2730 return 0; 2731 } 2732 2733 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu) 2734 { 2735 struct hrtimer *timer; 2736 2737 if (!lapic_in_kernel(vcpu) || 2738 kvm_can_post_timer_interrupt(vcpu)) 2739 return; 2740 2741 timer = &vcpu->arch.apic->lapic_timer.timer; 2742 if (hrtimer_cancel(timer)) 2743 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD); 2744 } 2745 2746 /* 2747 * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt 2748 * 2749 * Detect whether guest triggered PV EOI since the 2750 * last entry. If yes, set EOI on guests's behalf. 2751 * Clear PV EOI in guest memory in any case. 2752 */ 2753 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu, 2754 struct kvm_lapic *apic) 2755 { 2756 int vector; 2757 /* 2758 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host 2759 * and KVM_PV_EOI_ENABLED in guest memory as follows: 2760 * 2761 * KVM_APIC_PV_EOI_PENDING is unset: 2762 * -> host disabled PV EOI. 2763 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set: 2764 * -> host enabled PV EOI, guest did not execute EOI yet. 2765 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset: 2766 * -> host enabled PV EOI, guest executed EOI. 2767 */ 2768 BUG_ON(!pv_eoi_enabled(vcpu)); 2769 2770 if (pv_eoi_test_and_clr_pending(vcpu)) 2771 return; 2772 vector = apic_set_eoi(apic); 2773 trace_kvm_pv_eoi(apic, vector); 2774 } 2775 2776 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu) 2777 { 2778 u32 data; 2779 2780 if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention)) 2781 apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic); 2782 2783 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 2784 return; 2785 2786 if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 2787 sizeof(u32))) 2788 return; 2789 2790 apic_set_tpr(vcpu->arch.apic, data & 0xff); 2791 } 2792 2793 /* 2794 * apic_sync_pv_eoi_to_guest - called before vmentry 2795 * 2796 * Detect whether it's safe to enable PV EOI and 2797 * if yes do so. 2798 */ 2799 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu, 2800 struct kvm_lapic *apic) 2801 { 2802 if (!pv_eoi_enabled(vcpu) || 2803 /* IRR set or many bits in ISR: could be nested. */ 2804 apic->irr_pending || 2805 /* Cache not set: could be safe but we don't bother. */ 2806 apic->highest_isr_cache == -1 || 2807 /* Need EOI to update ioapic. */ 2808 kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) { 2809 /* 2810 * PV EOI was disabled by apic_sync_pv_eoi_from_guest 2811 * so we need not do anything here. 2812 */ 2813 return; 2814 } 2815 2816 pv_eoi_set_pending(apic->vcpu); 2817 } 2818 2819 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu) 2820 { 2821 u32 data, tpr; 2822 int max_irr, max_isr; 2823 struct kvm_lapic *apic = vcpu->arch.apic; 2824 2825 apic_sync_pv_eoi_to_guest(vcpu, apic); 2826 2827 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 2828 return; 2829 2830 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff; 2831 max_irr = apic_find_highest_irr(apic); 2832 if (max_irr < 0) 2833 max_irr = 0; 2834 max_isr = apic_find_highest_isr(apic); 2835 if (max_isr < 0) 2836 max_isr = 0; 2837 data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24); 2838 2839 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 2840 sizeof(u32)); 2841 } 2842 2843 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr) 2844 { 2845 if (vapic_addr) { 2846 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, 2847 &vcpu->arch.apic->vapic_cache, 2848 vapic_addr, sizeof(u32))) 2849 return -EINVAL; 2850 __set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 2851 } else { 2852 __clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 2853 } 2854 2855 vcpu->arch.apic->vapic_addr = vapic_addr; 2856 return 0; 2857 } 2858 2859 int kvm_x2apic_icr_write(struct kvm_lapic *apic, u64 data) 2860 { 2861 data &= ~APIC_ICR_BUSY; 2862 2863 kvm_apic_send_ipi(apic, (u32)data, (u32)(data >> 32)); 2864 kvm_lapic_set_reg64(apic, APIC_ICR, data); 2865 trace_kvm_apic_write(APIC_ICR, data); 2866 return 0; 2867 } 2868 2869 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data) 2870 { 2871 u32 low; 2872 2873 if (reg == APIC_ICR) { 2874 *data = kvm_lapic_get_reg64(apic, APIC_ICR); 2875 return 0; 2876 } 2877 2878 if (kvm_lapic_reg_read(apic, reg, 4, &low)) 2879 return 1; 2880 2881 *data = low; 2882 2883 return 0; 2884 } 2885 2886 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data) 2887 { 2888 /* 2889 * ICR is a 64-bit register in x2APIC mode (and Hyper'v PV vAPIC) and 2890 * can be written as such, all other registers remain accessible only 2891 * through 32-bit reads/writes. 2892 */ 2893 if (reg == APIC_ICR) 2894 return kvm_x2apic_icr_write(apic, data); 2895 2896 return kvm_lapic_reg_write(apic, reg, (u32)data); 2897 } 2898 2899 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data) 2900 { 2901 struct kvm_lapic *apic = vcpu->arch.apic; 2902 u32 reg = (msr - APIC_BASE_MSR) << 4; 2903 2904 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 2905 return 1; 2906 2907 return kvm_lapic_msr_write(apic, reg, data); 2908 } 2909 2910 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data) 2911 { 2912 struct kvm_lapic *apic = vcpu->arch.apic; 2913 u32 reg = (msr - APIC_BASE_MSR) << 4; 2914 2915 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 2916 return 1; 2917 2918 if (reg == APIC_DFR) 2919 return 1; 2920 2921 return kvm_lapic_msr_read(apic, reg, data); 2922 } 2923 2924 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data) 2925 { 2926 if (!lapic_in_kernel(vcpu)) 2927 return 1; 2928 2929 return kvm_lapic_msr_write(vcpu->arch.apic, reg, data); 2930 } 2931 2932 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data) 2933 { 2934 if (!lapic_in_kernel(vcpu)) 2935 return 1; 2936 2937 return kvm_lapic_msr_read(vcpu->arch.apic, reg, data); 2938 } 2939 2940 int kvm_lapic_set_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len) 2941 { 2942 u64 addr = data & ~KVM_MSR_ENABLED; 2943 struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data; 2944 unsigned long new_len; 2945 int ret; 2946 2947 if (!IS_ALIGNED(addr, 4)) 2948 return 1; 2949 2950 if (data & KVM_MSR_ENABLED) { 2951 if (addr == ghc->gpa && len <= ghc->len) 2952 new_len = ghc->len; 2953 else 2954 new_len = len; 2955 2956 ret = kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len); 2957 if (ret) 2958 return ret; 2959 } 2960 2961 vcpu->arch.pv_eoi.msr_val = data; 2962 2963 return 0; 2964 } 2965 2966 int kvm_apic_accept_events(struct kvm_vcpu *vcpu) 2967 { 2968 struct kvm_lapic *apic = vcpu->arch.apic; 2969 u8 sipi_vector; 2970 int r; 2971 unsigned long pe; 2972 2973 if (!lapic_in_kernel(vcpu)) 2974 return 0; 2975 2976 /* 2977 * Read pending events before calling the check_events 2978 * callback. 2979 */ 2980 pe = smp_load_acquire(&apic->pending_events); 2981 if (!pe) 2982 return 0; 2983 2984 if (is_guest_mode(vcpu)) { 2985 r = kvm_check_nested_events(vcpu); 2986 if (r < 0) 2987 return r == -EBUSY ? 0 : r; 2988 /* 2989 * If an event has happened and caused a vmexit, 2990 * we know INITs are latched and therefore 2991 * we will not incorrectly deliver an APIC 2992 * event instead of a vmexit. 2993 */ 2994 } 2995 2996 /* 2997 * INITs are latched while CPU is in specific states 2998 * (SMM, VMX root mode, SVM with GIF=0). 2999 * Because a CPU cannot be in these states immediately 3000 * after it has processed an INIT signal (and thus in 3001 * KVM_MP_STATE_INIT_RECEIVED state), just eat SIPIs 3002 * and leave the INIT pending. 3003 */ 3004 if (kvm_vcpu_latch_init(vcpu)) { 3005 WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED); 3006 if (test_bit(KVM_APIC_SIPI, &pe)) 3007 clear_bit(KVM_APIC_SIPI, &apic->pending_events); 3008 return 0; 3009 } 3010 3011 if (test_bit(KVM_APIC_INIT, &pe)) { 3012 clear_bit(KVM_APIC_INIT, &apic->pending_events); 3013 kvm_vcpu_reset(vcpu, true); 3014 if (kvm_vcpu_is_bsp(apic->vcpu)) 3015 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 3016 else 3017 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 3018 } 3019 if (test_bit(KVM_APIC_SIPI, &pe)) { 3020 clear_bit(KVM_APIC_SIPI, &apic->pending_events); 3021 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 3022 /* evaluate pending_events before reading the vector */ 3023 smp_rmb(); 3024 sipi_vector = apic->sipi_vector; 3025 static_call(kvm_x86_vcpu_deliver_sipi_vector)(vcpu, sipi_vector); 3026 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 3027 } 3028 } 3029 return 0; 3030 } 3031 3032 void kvm_lapic_exit(void) 3033 { 3034 static_key_deferred_flush(&apic_hw_disabled); 3035 WARN_ON(static_branch_unlikely(&apic_hw_disabled.key)); 3036 static_key_deferred_flush(&apic_sw_disabled); 3037 WARN_ON(static_branch_unlikely(&apic_sw_disabled.key)); 3038 } 3039