1 // SPDX-License-Identifier: GPL-2.0-only 2 3 /* 4 * Local APIC virtualization 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2007 Novell 8 * Copyright (C) 2007 Intel 9 * Copyright 2009 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Dor Laor <dor.laor@qumranet.com> 13 * Gregory Haskins <ghaskins@novell.com> 14 * Yaozu (Eddie) Dong <eddie.dong@intel.com> 15 * 16 * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation. 17 */ 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/kvm_host.h> 21 #include <linux/kvm.h> 22 #include <linux/mm.h> 23 #include <linux/highmem.h> 24 #include <linux/smp.h> 25 #include <linux/hrtimer.h> 26 #include <linux/io.h> 27 #include <linux/export.h> 28 #include <linux/math64.h> 29 #include <linux/slab.h> 30 #include <asm/apic.h> 31 #include <asm/processor.h> 32 #include <asm/mce.h> 33 #include <asm/msr.h> 34 #include <asm/page.h> 35 #include <asm/current.h> 36 #include <asm/apicdef.h> 37 #include <asm/delay.h> 38 #include <linux/atomic.h> 39 #include <linux/jump_label.h> 40 #include "kvm_cache_regs.h" 41 #include "irq.h" 42 #include "ioapic.h" 43 #include "trace.h" 44 #include "x86.h" 45 #include "xen.h" 46 #include "cpuid.h" 47 #include "hyperv.h" 48 #include "smm.h" 49 50 #ifndef CONFIG_X86_64 51 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y)) 52 #else 53 #define mod_64(x, y) ((x) % (y)) 54 #endif 55 56 /* 14 is the version for Xeon and Pentium 8.4.8*/ 57 #define APIC_VERSION 0x14UL 58 #define LAPIC_MMIO_LENGTH (1 << 12) 59 60 /* 61 * Enable local APIC timer advancement (tscdeadline mode only) with adaptive 62 * tuning. When enabled, KVM programs the host timer event to fire early, i.e. 63 * before the deadline expires, to account for the delay between taking the 64 * VM-Exit (to inject the guest event) and the subsequent VM-Enter to resume 65 * the guest, i.e. so that the interrupt arrives in the guest with minimal 66 * latency relative to the deadline programmed by the guest. 67 */ 68 static bool lapic_timer_advance __read_mostly = true; 69 module_param(lapic_timer_advance, bool, 0444); 70 71 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN 100 /* clock cycles */ 72 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX 10000 /* clock cycles */ 73 #define LAPIC_TIMER_ADVANCE_NS_INIT 1000 74 #define LAPIC_TIMER_ADVANCE_NS_MAX 5000 75 /* step-by-step approximation to mitigate fluctuation */ 76 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8 77 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data); 78 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data); 79 80 static inline void kvm_lapic_set_reg(struct kvm_lapic *apic, int reg_off, u32 val) 81 { 82 apic_set_reg(apic->regs, reg_off, val); 83 } 84 85 static __always_inline u64 kvm_lapic_get_reg64(struct kvm_lapic *apic, int reg) 86 { 87 return apic_get_reg64(apic->regs, reg); 88 } 89 90 static __always_inline void kvm_lapic_set_reg64(struct kvm_lapic *apic, 91 int reg, u64 val) 92 { 93 apic_set_reg64(apic->regs, reg, val); 94 } 95 96 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector) 97 { 98 struct kvm_lapic *apic = vcpu->arch.apic; 99 100 return apic_test_vector(vector, apic->regs + APIC_ISR) || 101 apic_test_vector(vector, apic->regs + APIC_IRR); 102 } 103 104 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); 105 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); 106 107 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_hw_disabled, HZ); 108 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_sw_disabled, HZ); 109 110 static inline int apic_enabled(struct kvm_lapic *apic) 111 { 112 return kvm_apic_sw_enabled(apic) && kvm_apic_hw_enabled(apic); 113 } 114 115 #define LVT_MASK \ 116 (APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK) 117 118 #define LINT_MASK \ 119 (LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \ 120 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER) 121 122 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic) 123 { 124 return apic->vcpu->vcpu_id; 125 } 126 127 static bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu) 128 { 129 return pi_inject_timer && kvm_vcpu_apicv_active(vcpu) && 130 (kvm_mwait_in_guest(vcpu->kvm) || kvm_hlt_in_guest(vcpu->kvm)); 131 } 132 133 bool kvm_can_use_hv_timer(struct kvm_vcpu *vcpu) 134 { 135 return kvm_x86_ops.set_hv_timer 136 && !(kvm_mwait_in_guest(vcpu->kvm) || 137 kvm_can_post_timer_interrupt(vcpu)); 138 } 139 140 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu) 141 { 142 return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE; 143 } 144 145 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id) 146 { 147 return ((id >> 4) << 16) | (1 << (id & 0xf)); 148 } 149 150 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map, 151 u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) { 152 switch (map->logical_mode) { 153 case KVM_APIC_MODE_SW_DISABLED: 154 /* Arbitrarily use the flat map so that @cluster isn't NULL. */ 155 *cluster = map->xapic_flat_map; 156 *mask = 0; 157 return true; 158 case KVM_APIC_MODE_X2APIC: { 159 u32 offset = (dest_id >> 16) * 16; 160 u32 max_apic_id = map->max_apic_id; 161 162 if (offset <= max_apic_id) { 163 u8 cluster_size = min(max_apic_id - offset + 1, 16U); 164 165 offset = array_index_nospec(offset, map->max_apic_id + 1); 166 *cluster = &map->phys_map[offset]; 167 *mask = dest_id & (0xffff >> (16 - cluster_size)); 168 } else { 169 *mask = 0; 170 } 171 172 return true; 173 } 174 case KVM_APIC_MODE_XAPIC_FLAT: 175 *cluster = map->xapic_flat_map; 176 *mask = dest_id & 0xff; 177 return true; 178 case KVM_APIC_MODE_XAPIC_CLUSTER: 179 *cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf]; 180 *mask = dest_id & 0xf; 181 return true; 182 case KVM_APIC_MODE_MAP_DISABLED: 183 return false; 184 default: 185 WARN_ON_ONCE(1); 186 return false; 187 } 188 } 189 190 static int kvm_recalculate_phys_map(struct kvm_apic_map *new, 191 struct kvm_vcpu *vcpu, 192 bool *xapic_id_mismatch) 193 { 194 struct kvm_lapic *apic = vcpu->arch.apic; 195 u32 x2apic_id = kvm_x2apic_id(apic); 196 u32 xapic_id = kvm_xapic_id(apic); 197 u32 physical_id; 198 199 /* 200 * For simplicity, KVM always allocates enough space for all possible 201 * xAPIC IDs. Yell, but don't kill the VM, as KVM can continue on 202 * without the optimized map. 203 */ 204 if (WARN_ON_ONCE(xapic_id > new->max_apic_id)) 205 return -EINVAL; 206 207 /* 208 * Bail if a vCPU was added and/or enabled its APIC between allocating 209 * the map and doing the actual calculations for the map. Note, KVM 210 * hardcodes the x2APIC ID to vcpu_id, i.e. there's no TOCTOU bug if 211 * the compiler decides to reload x2apic_id after this check. 212 */ 213 if (x2apic_id > new->max_apic_id) 214 return -E2BIG; 215 216 /* 217 * Deliberately truncate the vCPU ID when detecting a mismatched APIC 218 * ID to avoid false positives if the vCPU ID, i.e. x2APIC ID, is a 219 * 32-bit value. Any unwanted aliasing due to truncation results will 220 * be detected below. 221 */ 222 if (!apic_x2apic_mode(apic) && xapic_id != (u8)vcpu->vcpu_id) 223 *xapic_id_mismatch = true; 224 225 /* 226 * Apply KVM's hotplug hack if userspace has enable 32-bit APIC IDs. 227 * Allow sending events to vCPUs by their x2APIC ID even if the target 228 * vCPU is in legacy xAPIC mode, and silently ignore aliased xAPIC IDs 229 * (the x2APIC ID is truncated to 8 bits, causing IDs > 0xff to wrap 230 * and collide). 231 * 232 * Honor the architectural (and KVM's non-optimized) behavior if 233 * userspace has not enabled 32-bit x2APIC IDs. Each APIC is supposed 234 * to process messages independently. If multiple vCPUs have the same 235 * effective APIC ID, e.g. due to the x2APIC wrap or because the guest 236 * manually modified its xAPIC IDs, events targeting that ID are 237 * supposed to be recognized by all vCPUs with said ID. 238 */ 239 if (vcpu->kvm->arch.x2apic_format) { 240 /* See also kvm_apic_match_physical_addr(). */ 241 if (apic_x2apic_mode(apic) || x2apic_id > 0xff) 242 new->phys_map[x2apic_id] = apic; 243 244 if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id]) 245 new->phys_map[xapic_id] = apic; 246 } else { 247 /* 248 * Disable the optimized map if the physical APIC ID is already 249 * mapped, i.e. is aliased to multiple vCPUs. The optimized 250 * map requires a strict 1:1 mapping between IDs and vCPUs. 251 */ 252 if (apic_x2apic_mode(apic)) 253 physical_id = x2apic_id; 254 else 255 physical_id = xapic_id; 256 257 if (new->phys_map[physical_id]) 258 return -EINVAL; 259 260 new->phys_map[physical_id] = apic; 261 } 262 263 return 0; 264 } 265 266 static void kvm_recalculate_logical_map(struct kvm_apic_map *new, 267 struct kvm_vcpu *vcpu) 268 { 269 struct kvm_lapic *apic = vcpu->arch.apic; 270 enum kvm_apic_logical_mode logical_mode; 271 struct kvm_lapic **cluster; 272 u16 mask; 273 u32 ldr; 274 275 if (new->logical_mode == KVM_APIC_MODE_MAP_DISABLED) 276 return; 277 278 if (!kvm_apic_sw_enabled(apic)) 279 return; 280 281 ldr = kvm_lapic_get_reg(apic, APIC_LDR); 282 if (!ldr) 283 return; 284 285 if (apic_x2apic_mode(apic)) { 286 logical_mode = KVM_APIC_MODE_X2APIC; 287 } else { 288 ldr = GET_APIC_LOGICAL_ID(ldr); 289 if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT) 290 logical_mode = KVM_APIC_MODE_XAPIC_FLAT; 291 else 292 logical_mode = KVM_APIC_MODE_XAPIC_CLUSTER; 293 } 294 295 /* 296 * To optimize logical mode delivery, all software-enabled APICs must 297 * be configured for the same mode. 298 */ 299 if (new->logical_mode == KVM_APIC_MODE_SW_DISABLED) { 300 new->logical_mode = logical_mode; 301 } else if (new->logical_mode != logical_mode) { 302 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED; 303 return; 304 } 305 306 /* 307 * In x2APIC mode, the LDR is read-only and derived directly from the 308 * x2APIC ID, thus is guaranteed to be addressable. KVM reuses 309 * kvm_apic_map.phys_map to optimize logical mode x2APIC interrupts by 310 * reversing the LDR calculation to get cluster of APICs, i.e. no 311 * additional work is required. 312 */ 313 if (apic_x2apic_mode(apic)) 314 return; 315 316 if (WARN_ON_ONCE(!kvm_apic_map_get_logical_dest(new, ldr, 317 &cluster, &mask))) { 318 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED; 319 return; 320 } 321 322 if (!mask) 323 return; 324 325 ldr = ffs(mask) - 1; 326 if (!is_power_of_2(mask) || cluster[ldr]) 327 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED; 328 else 329 cluster[ldr] = apic; 330 } 331 332 /* 333 * CLEAN -> DIRTY and UPDATE_IN_PROGRESS -> DIRTY changes happen without a lock. 334 * 335 * DIRTY -> UPDATE_IN_PROGRESS and UPDATE_IN_PROGRESS -> CLEAN happen with 336 * apic_map_lock_held. 337 */ 338 enum { 339 CLEAN, 340 UPDATE_IN_PROGRESS, 341 DIRTY 342 }; 343 344 static void kvm_recalculate_apic_map(struct kvm *kvm) 345 { 346 struct kvm_apic_map *new, *old = NULL; 347 struct kvm_vcpu *vcpu; 348 unsigned long i; 349 u32 max_id = 255; /* enough space for any xAPIC ID */ 350 bool xapic_id_mismatch; 351 int r; 352 353 /* Read kvm->arch.apic_map_dirty before kvm->arch.apic_map. */ 354 if (atomic_read_acquire(&kvm->arch.apic_map_dirty) == CLEAN) 355 return; 356 357 WARN_ONCE(!irqchip_in_kernel(kvm), 358 "Dirty APIC map without an in-kernel local APIC"); 359 360 mutex_lock(&kvm->arch.apic_map_lock); 361 362 retry: 363 /* 364 * Read kvm->arch.apic_map_dirty before kvm->arch.apic_map (if clean) 365 * or the APIC registers (if dirty). Note, on retry the map may have 366 * not yet been marked dirty by whatever task changed a vCPU's x2APIC 367 * ID, i.e. the map may still show up as in-progress. In that case 368 * this task still needs to retry and complete its calculation. 369 */ 370 if (atomic_cmpxchg_acquire(&kvm->arch.apic_map_dirty, 371 DIRTY, UPDATE_IN_PROGRESS) == CLEAN) { 372 /* Someone else has updated the map. */ 373 mutex_unlock(&kvm->arch.apic_map_lock); 374 return; 375 } 376 377 /* 378 * Reset the mismatch flag between attempts so that KVM does the right 379 * thing if a vCPU changes its xAPIC ID, but do NOT reset max_id, i.e. 380 * keep max_id strictly increasing. Disallowing max_id from shrinking 381 * ensures KVM won't get stuck in an infinite loop, e.g. if the vCPU 382 * with the highest x2APIC ID is toggling its APIC on and off. 383 */ 384 xapic_id_mismatch = false; 385 386 kvm_for_each_vcpu(i, vcpu, kvm) 387 if (kvm_apic_present(vcpu)) 388 max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic)); 389 390 new = kvzalloc(sizeof(struct kvm_apic_map) + 391 sizeof(struct kvm_lapic *) * ((u64)max_id + 1), 392 GFP_KERNEL_ACCOUNT); 393 394 if (!new) 395 goto out; 396 397 new->max_apic_id = max_id; 398 new->logical_mode = KVM_APIC_MODE_SW_DISABLED; 399 400 kvm_for_each_vcpu(i, vcpu, kvm) { 401 if (!kvm_apic_present(vcpu)) 402 continue; 403 404 r = kvm_recalculate_phys_map(new, vcpu, &xapic_id_mismatch); 405 if (r) { 406 kvfree(new); 407 new = NULL; 408 if (r == -E2BIG) { 409 cond_resched(); 410 goto retry; 411 } 412 413 goto out; 414 } 415 416 kvm_recalculate_logical_map(new, vcpu); 417 } 418 out: 419 /* 420 * The optimized map is effectively KVM's internal version of APICv, 421 * and all unwanted aliasing that results in disabling the optimized 422 * map also applies to APICv. 423 */ 424 if (!new) 425 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED); 426 else 427 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED); 428 429 if (!new || new->logical_mode == KVM_APIC_MODE_MAP_DISABLED) 430 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED); 431 else 432 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED); 433 434 if (xapic_id_mismatch) 435 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED); 436 else 437 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED); 438 439 old = rcu_dereference_protected(kvm->arch.apic_map, 440 lockdep_is_held(&kvm->arch.apic_map_lock)); 441 rcu_assign_pointer(kvm->arch.apic_map, new); 442 /* 443 * Write kvm->arch.apic_map before clearing apic->apic_map_dirty. 444 * If another update has come in, leave it DIRTY. 445 */ 446 atomic_cmpxchg_release(&kvm->arch.apic_map_dirty, 447 UPDATE_IN_PROGRESS, CLEAN); 448 mutex_unlock(&kvm->arch.apic_map_lock); 449 450 if (old) 451 kvfree_rcu(old, rcu); 452 453 kvm_make_scan_ioapic_request(kvm); 454 } 455 456 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val) 457 { 458 bool enabled = val & APIC_SPIV_APIC_ENABLED; 459 460 kvm_lapic_set_reg(apic, APIC_SPIV, val); 461 462 if (enabled != apic->sw_enabled) { 463 apic->sw_enabled = enabled; 464 if (enabled) 465 static_branch_slow_dec_deferred(&apic_sw_disabled); 466 else 467 static_branch_inc(&apic_sw_disabled.key); 468 469 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 470 } 471 472 /* Check if there are APF page ready requests pending */ 473 if (enabled) { 474 kvm_make_request(KVM_REQ_APF_READY, apic->vcpu); 475 kvm_xen_sw_enable_lapic(apic->vcpu); 476 } 477 } 478 479 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id) 480 { 481 kvm_lapic_set_reg(apic, APIC_ID, id << 24); 482 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 483 } 484 485 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id) 486 { 487 kvm_lapic_set_reg(apic, APIC_LDR, id); 488 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 489 } 490 491 static inline void kvm_apic_set_dfr(struct kvm_lapic *apic, u32 val) 492 { 493 kvm_lapic_set_reg(apic, APIC_DFR, val); 494 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 495 } 496 497 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id) 498 { 499 u32 ldr = kvm_apic_calc_x2apic_ldr(id); 500 501 WARN_ON_ONCE(id != apic->vcpu->vcpu_id); 502 503 kvm_lapic_set_reg(apic, APIC_ID, id); 504 kvm_lapic_set_reg(apic, APIC_LDR, ldr); 505 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 506 } 507 508 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type) 509 { 510 return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED); 511 } 512 513 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic) 514 { 515 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT; 516 } 517 518 static inline int apic_lvtt_period(struct kvm_lapic *apic) 519 { 520 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC; 521 } 522 523 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic) 524 { 525 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE; 526 } 527 528 static inline int apic_lvt_nmi_mode(u32 lvt_val) 529 { 530 return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI; 531 } 532 533 static inline bool kvm_lapic_lvt_supported(struct kvm_lapic *apic, int lvt_index) 534 { 535 return apic->nr_lvt_entries > lvt_index; 536 } 537 538 static inline int kvm_apic_calc_nr_lvt_entries(struct kvm_vcpu *vcpu) 539 { 540 return KVM_APIC_MAX_NR_LVT_ENTRIES - !(vcpu->arch.mcg_cap & MCG_CMCI_P); 541 } 542 543 void kvm_apic_set_version(struct kvm_vcpu *vcpu) 544 { 545 struct kvm_lapic *apic = vcpu->arch.apic; 546 u32 v = 0; 547 548 if (!lapic_in_kernel(vcpu)) 549 return; 550 551 v = APIC_VERSION | ((apic->nr_lvt_entries - 1) << 16); 552 553 /* 554 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation) 555 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with 556 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC 557 * version first and level-triggered interrupts never get EOIed in 558 * IOAPIC. 559 */ 560 if (guest_cpu_cap_has(vcpu, X86_FEATURE_X2APIC) && 561 !ioapic_in_kernel(vcpu->kvm)) 562 v |= APIC_LVR_DIRECTED_EOI; 563 kvm_lapic_set_reg(apic, APIC_LVR, v); 564 } 565 566 void kvm_apic_after_set_mcg_cap(struct kvm_vcpu *vcpu) 567 { 568 int nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu); 569 struct kvm_lapic *apic = vcpu->arch.apic; 570 int i; 571 572 if (!lapic_in_kernel(vcpu) || nr_lvt_entries == apic->nr_lvt_entries) 573 return; 574 575 /* Initialize/mask any "new" LVT entries. */ 576 for (i = apic->nr_lvt_entries; i < nr_lvt_entries; i++) 577 kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED); 578 579 apic->nr_lvt_entries = nr_lvt_entries; 580 581 /* The number of LVT entries is reflected in the version register. */ 582 kvm_apic_set_version(vcpu); 583 } 584 585 static const unsigned int apic_lvt_mask[KVM_APIC_MAX_NR_LVT_ENTRIES] = { 586 [LVT_TIMER] = LVT_MASK, /* timer mode mask added at runtime */ 587 [LVT_THERMAL_MONITOR] = LVT_MASK | APIC_MODE_MASK, 588 [LVT_PERFORMANCE_COUNTER] = LVT_MASK | APIC_MODE_MASK, 589 [LVT_LINT0] = LINT_MASK, 590 [LVT_LINT1] = LINT_MASK, 591 [LVT_ERROR] = LVT_MASK, 592 [LVT_CMCI] = LVT_MASK | APIC_MODE_MASK 593 }; 594 595 static u8 count_vectors(void *bitmap) 596 { 597 int vec; 598 u32 *reg; 599 u8 count = 0; 600 601 for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) { 602 reg = bitmap + APIC_VECTOR_TO_REG_OFFSET(vec); 603 count += hweight32(*reg); 604 } 605 606 return count; 607 } 608 609 bool __kvm_apic_update_irr(unsigned long *pir, void *regs, int *max_irr) 610 { 611 unsigned long pir_vals[NR_PIR_WORDS]; 612 u32 *__pir = (void *)pir_vals; 613 u32 i, vec; 614 u32 irr_val, prev_irr_val; 615 int max_updated_irr; 616 617 max_updated_irr = -1; 618 *max_irr = -1; 619 620 if (!pi_harvest_pir(pir, pir_vals)) 621 return false; 622 623 for (i = vec = 0; i <= 7; i++, vec += 32) { 624 u32 *p_irr = (u32 *)(regs + APIC_IRR + i * 0x10); 625 626 irr_val = READ_ONCE(*p_irr); 627 628 if (__pir[i]) { 629 prev_irr_val = irr_val; 630 do { 631 irr_val = prev_irr_val | __pir[i]; 632 } while (prev_irr_val != irr_val && 633 !try_cmpxchg(p_irr, &prev_irr_val, irr_val)); 634 635 if (prev_irr_val != irr_val) 636 max_updated_irr = __fls(irr_val ^ prev_irr_val) + vec; 637 } 638 if (irr_val) 639 *max_irr = __fls(irr_val) + vec; 640 } 641 642 return ((max_updated_irr != -1) && 643 (max_updated_irr == *max_irr)); 644 } 645 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr); 646 647 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, unsigned long *pir, int *max_irr) 648 { 649 struct kvm_lapic *apic = vcpu->arch.apic; 650 bool irr_updated = __kvm_apic_update_irr(pir, apic->regs, max_irr); 651 652 if (unlikely(!apic->apicv_active && irr_updated)) 653 apic->irr_pending = true; 654 return irr_updated; 655 } 656 EXPORT_SYMBOL_GPL(kvm_apic_update_irr); 657 658 static inline int apic_search_irr(struct kvm_lapic *apic) 659 { 660 return apic_find_highest_vector(apic->regs + APIC_IRR); 661 } 662 663 static inline int apic_find_highest_irr(struct kvm_lapic *apic) 664 { 665 int result; 666 667 /* 668 * Note that irr_pending is just a hint. It will be always 669 * true with virtual interrupt delivery enabled. 670 */ 671 if (!apic->irr_pending) 672 return -1; 673 674 result = apic_search_irr(apic); 675 ASSERT(result == -1 || result >= 16); 676 677 return result; 678 } 679 680 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic) 681 { 682 if (unlikely(apic->apicv_active)) { 683 apic_clear_vector(vec, apic->regs + APIC_IRR); 684 } else { 685 apic->irr_pending = false; 686 apic_clear_vector(vec, apic->regs + APIC_IRR); 687 if (apic_search_irr(apic) != -1) 688 apic->irr_pending = true; 689 } 690 } 691 692 void kvm_apic_clear_irr(struct kvm_vcpu *vcpu, int vec) 693 { 694 apic_clear_irr(vec, vcpu->arch.apic); 695 } 696 EXPORT_SYMBOL_GPL(kvm_apic_clear_irr); 697 698 static void *apic_vector_to_isr(int vec, struct kvm_lapic *apic) 699 { 700 return apic->regs + APIC_ISR + APIC_VECTOR_TO_REG_OFFSET(vec); 701 } 702 703 static inline void apic_set_isr(int vec, struct kvm_lapic *apic) 704 { 705 if (__test_and_set_bit(APIC_VECTOR_TO_BIT_NUMBER(vec), 706 apic_vector_to_isr(vec, apic))) 707 return; 708 709 /* 710 * With APIC virtualization enabled, all caching is disabled 711 * because the processor can modify ISR under the hood. Instead 712 * just set SVI. 713 */ 714 if (unlikely(apic->apicv_active)) 715 kvm_x86_call(hwapic_isr_update)(apic->vcpu, vec); 716 else { 717 ++apic->isr_count; 718 BUG_ON(apic->isr_count > MAX_APIC_VECTOR); 719 /* 720 * ISR (in service register) bit is set when injecting an interrupt. 721 * The highest vector is injected. Thus the latest bit set matches 722 * the highest bit in ISR. 723 */ 724 apic->highest_isr_cache = vec; 725 } 726 } 727 728 static inline int apic_find_highest_isr(struct kvm_lapic *apic) 729 { 730 int result; 731 732 /* 733 * Note that isr_count is always 1, and highest_isr_cache 734 * is always -1, with APIC virtualization enabled. 735 */ 736 if (!apic->isr_count) 737 return -1; 738 if (likely(apic->highest_isr_cache != -1)) 739 return apic->highest_isr_cache; 740 741 result = apic_find_highest_vector(apic->regs + APIC_ISR); 742 ASSERT(result == -1 || result >= 16); 743 744 return result; 745 } 746 747 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic) 748 { 749 if (!__test_and_clear_bit(APIC_VECTOR_TO_BIT_NUMBER(vec), 750 apic_vector_to_isr(vec, apic))) 751 return; 752 753 /* 754 * We do get here for APIC virtualization enabled if the guest 755 * uses the Hyper-V APIC enlightenment. In this case we may need 756 * to trigger a new interrupt delivery by writing the SVI field; 757 * on the other hand isr_count and highest_isr_cache are unused 758 * and must be left alone. 759 */ 760 if (unlikely(apic->apicv_active)) 761 kvm_x86_call(hwapic_isr_update)(apic->vcpu, apic_find_highest_isr(apic)); 762 else { 763 --apic->isr_count; 764 BUG_ON(apic->isr_count < 0); 765 apic->highest_isr_cache = -1; 766 } 767 } 768 769 void kvm_apic_update_hwapic_isr(struct kvm_vcpu *vcpu) 770 { 771 struct kvm_lapic *apic = vcpu->arch.apic; 772 773 if (WARN_ON_ONCE(!lapic_in_kernel(vcpu)) || !apic->apicv_active) 774 return; 775 776 kvm_x86_call(hwapic_isr_update)(vcpu, apic_find_highest_isr(apic)); 777 } 778 EXPORT_SYMBOL_GPL(kvm_apic_update_hwapic_isr); 779 780 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu) 781 { 782 /* This may race with setting of irr in __apic_accept_irq() and 783 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq 784 * will cause vmexit immediately and the value will be recalculated 785 * on the next vmentry. 786 */ 787 return apic_find_highest_irr(vcpu->arch.apic); 788 } 789 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr); 790 791 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 792 int vector, int level, int trig_mode, 793 struct dest_map *dest_map); 794 795 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq, 796 struct dest_map *dest_map) 797 { 798 struct kvm_lapic *apic = vcpu->arch.apic; 799 800 return __apic_accept_irq(apic, irq->delivery_mode, irq->vector, 801 irq->level, irq->trig_mode, dest_map); 802 } 803 804 static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map, 805 struct kvm_lapic_irq *irq, u32 min) 806 { 807 int i, count = 0; 808 struct kvm_vcpu *vcpu; 809 810 if (min > map->max_apic_id) 811 return 0; 812 813 min = array_index_nospec(min, map->max_apic_id + 1); 814 815 for_each_set_bit(i, ipi_bitmap, 816 min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) { 817 if (map->phys_map[min + i]) { 818 vcpu = map->phys_map[min + i]->vcpu; 819 count += kvm_apic_set_irq(vcpu, irq, NULL); 820 } 821 } 822 823 return count; 824 } 825 826 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 827 unsigned long ipi_bitmap_high, u32 min, 828 unsigned long icr, int op_64_bit) 829 { 830 struct kvm_apic_map *map; 831 struct kvm_lapic_irq irq = {0}; 832 int cluster_size = op_64_bit ? 64 : 32; 833 int count; 834 835 if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK)) 836 return -KVM_EINVAL; 837 838 irq.vector = icr & APIC_VECTOR_MASK; 839 irq.delivery_mode = icr & APIC_MODE_MASK; 840 irq.level = (icr & APIC_INT_ASSERT) != 0; 841 irq.trig_mode = icr & APIC_INT_LEVELTRIG; 842 843 rcu_read_lock(); 844 map = rcu_dereference(kvm->arch.apic_map); 845 846 count = -EOPNOTSUPP; 847 if (likely(map)) { 848 count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min); 849 min += cluster_size; 850 count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min); 851 } 852 853 rcu_read_unlock(); 854 return count; 855 } 856 857 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val) 858 { 859 860 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val, 861 sizeof(val)); 862 } 863 864 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val) 865 { 866 867 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val, 868 sizeof(*val)); 869 } 870 871 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu) 872 { 873 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED; 874 } 875 876 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu) 877 { 878 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0) 879 return; 880 881 __set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 882 } 883 884 static bool pv_eoi_test_and_clr_pending(struct kvm_vcpu *vcpu) 885 { 886 u8 val; 887 888 if (pv_eoi_get_user(vcpu, &val) < 0) 889 return false; 890 891 val &= KVM_PV_EOI_ENABLED; 892 893 if (val && pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0) 894 return false; 895 896 /* 897 * Clear pending bit in any case: it will be set again on vmentry. 898 * While this might not be ideal from performance point of view, 899 * this makes sure pv eoi is only enabled when we know it's safe. 900 */ 901 __clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 902 903 return val; 904 } 905 906 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr) 907 { 908 int highest_irr; 909 if (kvm_x86_ops.sync_pir_to_irr) 910 highest_irr = kvm_x86_call(sync_pir_to_irr)(apic->vcpu); 911 else 912 highest_irr = apic_find_highest_irr(apic); 913 if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr) 914 return -1; 915 return highest_irr; 916 } 917 918 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr) 919 { 920 u32 tpr, isrv, ppr, old_ppr; 921 int isr; 922 923 old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI); 924 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI); 925 isr = apic_find_highest_isr(apic); 926 isrv = (isr != -1) ? isr : 0; 927 928 if ((tpr & 0xf0) >= (isrv & 0xf0)) 929 ppr = tpr & 0xff; 930 else 931 ppr = isrv & 0xf0; 932 933 *new_ppr = ppr; 934 if (old_ppr != ppr) 935 kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr); 936 937 return ppr < old_ppr; 938 } 939 940 static void apic_update_ppr(struct kvm_lapic *apic) 941 { 942 u32 ppr; 943 944 if (__apic_update_ppr(apic, &ppr) && 945 apic_has_interrupt_for_ppr(apic, ppr) != -1) 946 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 947 } 948 949 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu) 950 { 951 apic_update_ppr(vcpu->arch.apic); 952 } 953 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr); 954 955 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr) 956 { 957 kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr); 958 apic_update_ppr(apic); 959 } 960 961 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda) 962 { 963 return mda == (apic_x2apic_mode(apic) ? 964 X2APIC_BROADCAST : APIC_BROADCAST); 965 } 966 967 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda) 968 { 969 if (kvm_apic_broadcast(apic, mda)) 970 return true; 971 972 /* 973 * Hotplug hack: Accept interrupts for vCPUs in xAPIC mode as if they 974 * were in x2APIC mode if the target APIC ID can't be encoded as an 975 * xAPIC ID. This allows unique addressing of hotplugged vCPUs (which 976 * start in xAPIC mode) with an APIC ID that is unaddressable in xAPIC 977 * mode. Match the x2APIC ID if and only if the target APIC ID can't 978 * be encoded in xAPIC to avoid spurious matches against a vCPU that 979 * changed its (addressable) xAPIC ID (which is writable). 980 */ 981 if (apic_x2apic_mode(apic) || mda > 0xff) 982 return mda == kvm_x2apic_id(apic); 983 984 return mda == kvm_xapic_id(apic); 985 } 986 987 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda) 988 { 989 u32 logical_id; 990 991 if (kvm_apic_broadcast(apic, mda)) 992 return true; 993 994 logical_id = kvm_lapic_get_reg(apic, APIC_LDR); 995 996 if (apic_x2apic_mode(apic)) 997 return ((logical_id >> 16) == (mda >> 16)) 998 && (logical_id & mda & 0xffff) != 0; 999 1000 logical_id = GET_APIC_LOGICAL_ID(logical_id); 1001 1002 switch (kvm_lapic_get_reg(apic, APIC_DFR)) { 1003 case APIC_DFR_FLAT: 1004 return (logical_id & mda) != 0; 1005 case APIC_DFR_CLUSTER: 1006 return ((logical_id >> 4) == (mda >> 4)) 1007 && (logical_id & mda & 0xf) != 0; 1008 default: 1009 return false; 1010 } 1011 } 1012 1013 /* The KVM local APIC implementation has two quirks: 1014 * 1015 * - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs 1016 * in xAPIC mode if the "destination & 0xff" matches its xAPIC ID. 1017 * KVM doesn't do that aliasing. 1018 * 1019 * - in-kernel IOAPIC messages have to be delivered directly to 1020 * x2APIC, because the kernel does not support interrupt remapping. 1021 * In order to support broadcast without interrupt remapping, x2APIC 1022 * rewrites the destination of non-IPI messages from APIC_BROADCAST 1023 * to X2APIC_BROADCAST. 1024 * 1025 * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API. This is 1026 * important when userspace wants to use x2APIC-format MSIs, because 1027 * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7". 1028 */ 1029 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id, 1030 struct kvm_lapic *source, struct kvm_lapic *target) 1031 { 1032 bool ipi = source != NULL; 1033 1034 if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled && 1035 !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target)) 1036 return X2APIC_BROADCAST; 1037 1038 return dest_id; 1039 } 1040 1041 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source, 1042 int shorthand, unsigned int dest, int dest_mode) 1043 { 1044 struct kvm_lapic *target = vcpu->arch.apic; 1045 u32 mda = kvm_apic_mda(vcpu, dest, source, target); 1046 1047 ASSERT(target); 1048 switch (shorthand) { 1049 case APIC_DEST_NOSHORT: 1050 if (dest_mode == APIC_DEST_PHYSICAL) 1051 return kvm_apic_match_physical_addr(target, mda); 1052 else 1053 return kvm_apic_match_logical_addr(target, mda); 1054 case APIC_DEST_SELF: 1055 return target == source; 1056 case APIC_DEST_ALLINC: 1057 return true; 1058 case APIC_DEST_ALLBUT: 1059 return target != source; 1060 default: 1061 return false; 1062 } 1063 } 1064 EXPORT_SYMBOL_GPL(kvm_apic_match_dest); 1065 1066 int kvm_vector_to_index(u32 vector, u32 dest_vcpus, 1067 const unsigned long *bitmap, u32 bitmap_size) 1068 { 1069 u32 mod; 1070 int i, idx = -1; 1071 1072 mod = vector % dest_vcpus; 1073 1074 for (i = 0; i <= mod; i++) { 1075 idx = find_next_bit(bitmap, bitmap_size, idx + 1); 1076 BUG_ON(idx == bitmap_size); 1077 } 1078 1079 return idx; 1080 } 1081 1082 static void kvm_apic_disabled_lapic_found(struct kvm *kvm) 1083 { 1084 if (!kvm->arch.disabled_lapic_found) { 1085 kvm->arch.disabled_lapic_found = true; 1086 pr_info("Disabled LAPIC found during irq injection\n"); 1087 } 1088 } 1089 1090 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src, 1091 struct kvm_lapic_irq *irq, struct kvm_apic_map *map) 1092 { 1093 if (kvm->arch.x2apic_broadcast_quirk_disabled) { 1094 if ((irq->dest_id == APIC_BROADCAST && 1095 map->logical_mode != KVM_APIC_MODE_X2APIC)) 1096 return true; 1097 if (irq->dest_id == X2APIC_BROADCAST) 1098 return true; 1099 } else { 1100 bool x2apic_ipi = src && *src && apic_x2apic_mode(*src); 1101 if (irq->dest_id == (x2apic_ipi ? 1102 X2APIC_BROADCAST : APIC_BROADCAST)) 1103 return true; 1104 } 1105 1106 return false; 1107 } 1108 1109 /* Return true if the interrupt can be handled by using *bitmap as index mask 1110 * for valid destinations in *dst array. 1111 * Return false if kvm_apic_map_get_dest_lapic did nothing useful. 1112 * Note: we may have zero kvm_lapic destinations when we return true, which 1113 * means that the interrupt should be dropped. In this case, *bitmap would be 1114 * zero and *dst undefined. 1115 */ 1116 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm, 1117 struct kvm_lapic **src, struct kvm_lapic_irq *irq, 1118 struct kvm_apic_map *map, struct kvm_lapic ***dst, 1119 unsigned long *bitmap) 1120 { 1121 int i, lowest; 1122 1123 if (irq->shorthand == APIC_DEST_SELF && src) { 1124 *dst = src; 1125 *bitmap = 1; 1126 return true; 1127 } else if (irq->shorthand) 1128 return false; 1129 1130 if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map)) 1131 return false; 1132 1133 if (irq->dest_mode == APIC_DEST_PHYSICAL) { 1134 if (irq->dest_id > map->max_apic_id) { 1135 *bitmap = 0; 1136 } else { 1137 u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1); 1138 *dst = &map->phys_map[dest_id]; 1139 *bitmap = 1; 1140 } 1141 return true; 1142 } 1143 1144 *bitmap = 0; 1145 if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst, 1146 (u16 *)bitmap)) 1147 return false; 1148 1149 if (!kvm_lowest_prio_delivery(irq)) 1150 return true; 1151 1152 if (!kvm_vector_hashing_enabled()) { 1153 lowest = -1; 1154 for_each_set_bit(i, bitmap, 16) { 1155 if (!(*dst)[i]) 1156 continue; 1157 if (lowest < 0) 1158 lowest = i; 1159 else if (kvm_apic_compare_prio((*dst)[i]->vcpu, 1160 (*dst)[lowest]->vcpu) < 0) 1161 lowest = i; 1162 } 1163 } else { 1164 if (!*bitmap) 1165 return true; 1166 1167 lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap), 1168 bitmap, 16); 1169 1170 if (!(*dst)[lowest]) { 1171 kvm_apic_disabled_lapic_found(kvm); 1172 *bitmap = 0; 1173 return true; 1174 } 1175 } 1176 1177 *bitmap = (lowest >= 0) ? 1 << lowest : 0; 1178 1179 return true; 1180 } 1181 1182 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src, 1183 struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map) 1184 { 1185 struct kvm_apic_map *map; 1186 unsigned long bitmap; 1187 struct kvm_lapic **dst = NULL; 1188 int i; 1189 bool ret; 1190 1191 *r = -1; 1192 1193 if (irq->shorthand == APIC_DEST_SELF) { 1194 if (KVM_BUG_ON(!src, kvm)) { 1195 *r = 0; 1196 return true; 1197 } 1198 *r = kvm_apic_set_irq(src->vcpu, irq, dest_map); 1199 return true; 1200 } 1201 1202 rcu_read_lock(); 1203 map = rcu_dereference(kvm->arch.apic_map); 1204 1205 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap); 1206 if (ret) { 1207 *r = 0; 1208 for_each_set_bit(i, &bitmap, 16) { 1209 if (!dst[i]) 1210 continue; 1211 *r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map); 1212 } 1213 } 1214 1215 rcu_read_unlock(); 1216 return ret; 1217 } 1218 1219 /* 1220 * This routine tries to handle interrupts in posted mode, here is how 1221 * it deals with different cases: 1222 * - For single-destination interrupts, handle it in posted mode 1223 * - Else if vector hashing is enabled and it is a lowest-priority 1224 * interrupt, handle it in posted mode and use the following mechanism 1225 * to find the destination vCPU. 1226 * 1. For lowest-priority interrupts, store all the possible 1227 * destination vCPUs in an array. 1228 * 2. Use "guest vector % max number of destination vCPUs" to find 1229 * the right destination vCPU in the array for the lowest-priority 1230 * interrupt. 1231 * - Otherwise, use remapped mode to inject the interrupt. 1232 */ 1233 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq, 1234 struct kvm_vcpu **dest_vcpu) 1235 { 1236 struct kvm_apic_map *map; 1237 unsigned long bitmap; 1238 struct kvm_lapic **dst = NULL; 1239 bool ret = false; 1240 1241 if (irq->shorthand) 1242 return false; 1243 1244 rcu_read_lock(); 1245 map = rcu_dereference(kvm->arch.apic_map); 1246 1247 if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) && 1248 hweight16(bitmap) == 1) { 1249 unsigned long i = find_first_bit(&bitmap, 16); 1250 1251 if (dst[i]) { 1252 *dest_vcpu = dst[i]->vcpu; 1253 ret = true; 1254 } 1255 } 1256 1257 rcu_read_unlock(); 1258 return ret; 1259 } 1260 1261 /* 1262 * Add a pending IRQ into lapic. 1263 * Return 1 if successfully added and 0 if discarded. 1264 */ 1265 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 1266 int vector, int level, int trig_mode, 1267 struct dest_map *dest_map) 1268 { 1269 int result = 0; 1270 struct kvm_vcpu *vcpu = apic->vcpu; 1271 1272 trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode, 1273 trig_mode, vector); 1274 switch (delivery_mode) { 1275 case APIC_DM_LOWEST: 1276 vcpu->arch.apic_arb_prio++; 1277 fallthrough; 1278 case APIC_DM_FIXED: 1279 if (unlikely(trig_mode && !level)) 1280 break; 1281 1282 /* FIXME add logic for vcpu on reset */ 1283 if (unlikely(!apic_enabled(apic))) 1284 break; 1285 1286 result = 1; 1287 1288 if (dest_map) { 1289 __set_bit(vcpu->vcpu_id, dest_map->map); 1290 dest_map->vectors[vcpu->vcpu_id] = vector; 1291 } 1292 1293 if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) { 1294 if (trig_mode) 1295 apic_set_vector(vector, apic->regs + APIC_TMR); 1296 else 1297 apic_clear_vector(vector, apic->regs + APIC_TMR); 1298 } 1299 1300 kvm_x86_call(deliver_interrupt)(apic, delivery_mode, 1301 trig_mode, vector); 1302 break; 1303 1304 case APIC_DM_REMRD: 1305 result = 1; 1306 vcpu->arch.pv.pv_unhalted = 1; 1307 kvm_make_request(KVM_REQ_EVENT, vcpu); 1308 kvm_vcpu_kick(vcpu); 1309 break; 1310 1311 case APIC_DM_SMI: 1312 if (!kvm_inject_smi(vcpu)) { 1313 kvm_vcpu_kick(vcpu); 1314 result = 1; 1315 } 1316 break; 1317 1318 case APIC_DM_NMI: 1319 result = 1; 1320 kvm_inject_nmi(vcpu); 1321 kvm_vcpu_kick(vcpu); 1322 break; 1323 1324 case APIC_DM_INIT: 1325 if (!trig_mode || level) { 1326 result = 1; 1327 /* assumes that there are only KVM_APIC_INIT/SIPI */ 1328 apic->pending_events = (1UL << KVM_APIC_INIT); 1329 kvm_make_request(KVM_REQ_EVENT, vcpu); 1330 kvm_vcpu_kick(vcpu); 1331 } 1332 break; 1333 1334 case APIC_DM_STARTUP: 1335 result = 1; 1336 apic->sipi_vector = vector; 1337 /* make sure sipi_vector is visible for the receiver */ 1338 smp_wmb(); 1339 set_bit(KVM_APIC_SIPI, &apic->pending_events); 1340 kvm_make_request(KVM_REQ_EVENT, vcpu); 1341 kvm_vcpu_kick(vcpu); 1342 break; 1343 1344 case APIC_DM_EXTINT: 1345 /* 1346 * Should only be called by kvm_apic_local_deliver() with LVT0, 1347 * before NMI watchdog was enabled. Already handled by 1348 * kvm_apic_accept_pic_intr(). 1349 */ 1350 break; 1351 1352 default: 1353 printk(KERN_ERR "TODO: unsupported delivery mode %x\n", 1354 delivery_mode); 1355 break; 1356 } 1357 return result; 1358 } 1359 1360 /* 1361 * This routine identifies the destination vcpus mask meant to receive the 1362 * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find 1363 * out the destination vcpus array and set the bitmap or it traverses to 1364 * each available vcpu to identify the same. 1365 */ 1366 void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq, 1367 unsigned long *vcpu_bitmap) 1368 { 1369 struct kvm_lapic **dest_vcpu = NULL; 1370 struct kvm_lapic *src = NULL; 1371 struct kvm_apic_map *map; 1372 struct kvm_vcpu *vcpu; 1373 unsigned long bitmap, i; 1374 int vcpu_idx; 1375 bool ret; 1376 1377 rcu_read_lock(); 1378 map = rcu_dereference(kvm->arch.apic_map); 1379 1380 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu, 1381 &bitmap); 1382 if (ret) { 1383 for_each_set_bit(i, &bitmap, 16) { 1384 if (!dest_vcpu[i]) 1385 continue; 1386 vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx; 1387 __set_bit(vcpu_idx, vcpu_bitmap); 1388 } 1389 } else { 1390 kvm_for_each_vcpu(i, vcpu, kvm) { 1391 if (!kvm_apic_present(vcpu)) 1392 continue; 1393 if (!kvm_apic_match_dest(vcpu, NULL, 1394 irq->shorthand, 1395 irq->dest_id, 1396 irq->dest_mode)) 1397 continue; 1398 __set_bit(i, vcpu_bitmap); 1399 } 1400 } 1401 rcu_read_unlock(); 1402 } 1403 1404 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2) 1405 { 1406 return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio; 1407 } 1408 1409 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector) 1410 { 1411 return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors); 1412 } 1413 1414 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector) 1415 { 1416 int __maybe_unused trigger_mode; 1417 1418 /* Eoi the ioapic only if the ioapic doesn't own the vector. */ 1419 if (!kvm_ioapic_handles_vector(apic, vector)) 1420 return; 1421 1422 /* 1423 * If the intercepted EOI is for an IRQ that was pending from previous 1424 * routing, then re-scan the I/O APIC routes as EOIs for the IRQ likely 1425 * no longer need to be intercepted. 1426 */ 1427 if (apic->vcpu->arch.highest_stale_pending_ioapic_eoi == vector) 1428 kvm_make_request(KVM_REQ_SCAN_IOAPIC, apic->vcpu); 1429 1430 /* Request a KVM exit to inform the userspace IOAPIC. */ 1431 if (irqchip_split(apic->vcpu->kvm)) { 1432 apic->vcpu->arch.pending_ioapic_eoi = vector; 1433 kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu); 1434 return; 1435 } 1436 1437 #ifdef CONFIG_KVM_IOAPIC 1438 if (apic_test_vector(vector, apic->regs + APIC_TMR)) 1439 trigger_mode = IOAPIC_LEVEL_TRIG; 1440 else 1441 trigger_mode = IOAPIC_EDGE_TRIG; 1442 1443 kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode); 1444 #endif 1445 } 1446 1447 static int apic_set_eoi(struct kvm_lapic *apic) 1448 { 1449 int vector = apic_find_highest_isr(apic); 1450 1451 trace_kvm_eoi(apic, vector); 1452 1453 /* 1454 * Not every write EOI will has corresponding ISR, 1455 * one example is when Kernel check timer on setup_IO_APIC 1456 */ 1457 if (vector == -1) 1458 return vector; 1459 1460 apic_clear_isr(vector, apic); 1461 apic_update_ppr(apic); 1462 1463 if (kvm_hv_synic_has_vector(apic->vcpu, vector)) 1464 kvm_hv_synic_send_eoi(apic->vcpu, vector); 1465 1466 kvm_ioapic_send_eoi(apic, vector); 1467 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1468 return vector; 1469 } 1470 1471 /* 1472 * this interface assumes a trap-like exit, which has already finished 1473 * desired side effect including vISR and vPPR update. 1474 */ 1475 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector) 1476 { 1477 struct kvm_lapic *apic = vcpu->arch.apic; 1478 1479 trace_kvm_eoi(apic, vector); 1480 1481 kvm_ioapic_send_eoi(apic, vector); 1482 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1483 } 1484 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated); 1485 1486 void kvm_apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high) 1487 { 1488 struct kvm_lapic_irq irq; 1489 1490 /* KVM has no delay and should always clear the BUSY/PENDING flag. */ 1491 WARN_ON_ONCE(icr_low & APIC_ICR_BUSY); 1492 1493 irq.vector = icr_low & APIC_VECTOR_MASK; 1494 irq.delivery_mode = icr_low & APIC_MODE_MASK; 1495 irq.dest_mode = icr_low & APIC_DEST_MASK; 1496 irq.level = (icr_low & APIC_INT_ASSERT) != 0; 1497 irq.trig_mode = icr_low & APIC_INT_LEVELTRIG; 1498 irq.shorthand = icr_low & APIC_SHORT_MASK; 1499 irq.msi_redir_hint = false; 1500 if (apic_x2apic_mode(apic)) 1501 irq.dest_id = icr_high; 1502 else 1503 irq.dest_id = GET_XAPIC_DEST_FIELD(icr_high); 1504 1505 trace_kvm_apic_ipi(icr_low, irq.dest_id); 1506 1507 kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL); 1508 } 1509 EXPORT_SYMBOL_GPL(kvm_apic_send_ipi); 1510 1511 static u32 apic_get_tmcct(struct kvm_lapic *apic) 1512 { 1513 ktime_t remaining, now; 1514 s64 ns; 1515 1516 ASSERT(apic != NULL); 1517 1518 /* if initial count is 0, current count should also be 0 */ 1519 if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 || 1520 apic->lapic_timer.period == 0) 1521 return 0; 1522 1523 now = ktime_get(); 1524 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 1525 if (ktime_to_ns(remaining) < 0) 1526 remaining = 0; 1527 1528 ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period); 1529 return div64_u64(ns, (apic->vcpu->kvm->arch.apic_bus_cycle_ns * 1530 apic->divide_count)); 1531 } 1532 1533 static void __report_tpr_access(struct kvm_lapic *apic, bool write) 1534 { 1535 struct kvm_vcpu *vcpu = apic->vcpu; 1536 struct kvm_run *run = vcpu->run; 1537 1538 kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu); 1539 run->tpr_access.rip = kvm_rip_read(vcpu); 1540 run->tpr_access.is_write = write; 1541 } 1542 1543 static inline void report_tpr_access(struct kvm_lapic *apic, bool write) 1544 { 1545 if (apic->vcpu->arch.tpr_access_reporting) 1546 __report_tpr_access(apic, write); 1547 } 1548 1549 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset) 1550 { 1551 u32 val = 0; 1552 1553 if (offset >= LAPIC_MMIO_LENGTH) 1554 return 0; 1555 1556 switch (offset) { 1557 case APIC_ARBPRI: 1558 break; 1559 1560 case APIC_TMCCT: /* Timer CCR */ 1561 if (apic_lvtt_tscdeadline(apic)) 1562 return 0; 1563 1564 val = apic_get_tmcct(apic); 1565 break; 1566 case APIC_PROCPRI: 1567 apic_update_ppr(apic); 1568 val = kvm_lapic_get_reg(apic, offset); 1569 break; 1570 case APIC_TASKPRI: 1571 report_tpr_access(apic, false); 1572 fallthrough; 1573 default: 1574 val = kvm_lapic_get_reg(apic, offset); 1575 break; 1576 } 1577 1578 return val; 1579 } 1580 1581 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev) 1582 { 1583 return container_of(dev, struct kvm_lapic, dev); 1584 } 1585 1586 #define APIC_REG_MASK(reg) (1ull << ((reg) >> 4)) 1587 #define APIC_REGS_MASK(first, count) \ 1588 (APIC_REG_MASK(first) * ((1ull << (count)) - 1)) 1589 1590 u64 kvm_lapic_readable_reg_mask(struct kvm_lapic *apic) 1591 { 1592 /* Leave bits '0' for reserved and write-only registers. */ 1593 u64 valid_reg_mask = 1594 APIC_REG_MASK(APIC_ID) | 1595 APIC_REG_MASK(APIC_LVR) | 1596 APIC_REG_MASK(APIC_TASKPRI) | 1597 APIC_REG_MASK(APIC_PROCPRI) | 1598 APIC_REG_MASK(APIC_LDR) | 1599 APIC_REG_MASK(APIC_SPIV) | 1600 APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) | 1601 APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) | 1602 APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) | 1603 APIC_REG_MASK(APIC_ESR) | 1604 APIC_REG_MASK(APIC_ICR) | 1605 APIC_REG_MASK(APIC_LVTT) | 1606 APIC_REG_MASK(APIC_LVTTHMR) | 1607 APIC_REG_MASK(APIC_LVTPC) | 1608 APIC_REG_MASK(APIC_LVT0) | 1609 APIC_REG_MASK(APIC_LVT1) | 1610 APIC_REG_MASK(APIC_LVTERR) | 1611 APIC_REG_MASK(APIC_TMICT) | 1612 APIC_REG_MASK(APIC_TMCCT) | 1613 APIC_REG_MASK(APIC_TDCR); 1614 1615 if (kvm_lapic_lvt_supported(apic, LVT_CMCI)) 1616 valid_reg_mask |= APIC_REG_MASK(APIC_LVTCMCI); 1617 1618 /* ARBPRI, DFR, and ICR2 are not valid in x2APIC mode. */ 1619 if (!apic_x2apic_mode(apic)) 1620 valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI) | 1621 APIC_REG_MASK(APIC_DFR) | 1622 APIC_REG_MASK(APIC_ICR2); 1623 1624 return valid_reg_mask; 1625 } 1626 EXPORT_SYMBOL_GPL(kvm_lapic_readable_reg_mask); 1627 1628 static int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len, 1629 void *data) 1630 { 1631 unsigned char alignment = offset & 0xf; 1632 u32 result; 1633 1634 /* 1635 * WARN if KVM reads ICR in x2APIC mode, as it's an 8-byte register in 1636 * x2APIC and needs to be manually handled by the caller. 1637 */ 1638 WARN_ON_ONCE(apic_x2apic_mode(apic) && offset == APIC_ICR); 1639 1640 if (alignment + len > 4) 1641 return 1; 1642 1643 if (offset > 0x3f0 || 1644 !(kvm_lapic_readable_reg_mask(apic) & APIC_REG_MASK(offset))) 1645 return 1; 1646 1647 result = __apic_read(apic, offset & ~0xf); 1648 1649 trace_kvm_apic_read(offset, result); 1650 1651 switch (len) { 1652 case 1: 1653 case 2: 1654 case 4: 1655 memcpy(data, (char *)&result + alignment, len); 1656 break; 1657 default: 1658 printk(KERN_ERR "Local APIC read with len = %x, " 1659 "should be 1,2, or 4 instead\n", len); 1660 break; 1661 } 1662 return 0; 1663 } 1664 1665 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr) 1666 { 1667 return addr >= apic->base_address && 1668 addr < apic->base_address + LAPIC_MMIO_LENGTH; 1669 } 1670 1671 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 1672 gpa_t address, int len, void *data) 1673 { 1674 struct kvm_lapic *apic = to_lapic(this); 1675 u32 offset = address - apic->base_address; 1676 1677 if (!apic_mmio_in_range(apic, address)) 1678 return -EOPNOTSUPP; 1679 1680 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 1681 if (!kvm_check_has_quirk(vcpu->kvm, 1682 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 1683 return -EOPNOTSUPP; 1684 1685 memset(data, 0xff, len); 1686 return 0; 1687 } 1688 1689 kvm_lapic_reg_read(apic, offset, len, data); 1690 1691 return 0; 1692 } 1693 1694 static void update_divide_count(struct kvm_lapic *apic) 1695 { 1696 u32 tmp1, tmp2, tdcr; 1697 1698 tdcr = kvm_lapic_get_reg(apic, APIC_TDCR); 1699 tmp1 = tdcr & 0xf; 1700 tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1; 1701 apic->divide_count = 0x1 << (tmp2 & 0x7); 1702 } 1703 1704 static void limit_periodic_timer_frequency(struct kvm_lapic *apic) 1705 { 1706 /* 1707 * Do not allow the guest to program periodic timers with small 1708 * interval, since the hrtimers are not throttled by the host 1709 * scheduler. 1710 */ 1711 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 1712 s64 min_period = min_timer_period_us * 1000LL; 1713 1714 if (apic->lapic_timer.period < min_period) { 1715 pr_info_once( 1716 "vcpu %i: requested %lld ns " 1717 "lapic timer period limited to %lld ns\n", 1718 apic->vcpu->vcpu_id, 1719 apic->lapic_timer.period, min_period); 1720 apic->lapic_timer.period = min_period; 1721 } 1722 } 1723 } 1724 1725 static void cancel_hv_timer(struct kvm_lapic *apic); 1726 1727 static void cancel_apic_timer(struct kvm_lapic *apic) 1728 { 1729 hrtimer_cancel(&apic->lapic_timer.timer); 1730 preempt_disable(); 1731 if (apic->lapic_timer.hv_timer_in_use) 1732 cancel_hv_timer(apic); 1733 preempt_enable(); 1734 atomic_set(&apic->lapic_timer.pending, 0); 1735 } 1736 1737 static void apic_update_lvtt(struct kvm_lapic *apic) 1738 { 1739 u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) & 1740 apic->lapic_timer.timer_mode_mask; 1741 1742 if (apic->lapic_timer.timer_mode != timer_mode) { 1743 if (apic_lvtt_tscdeadline(apic) != (timer_mode == 1744 APIC_LVT_TIMER_TSCDEADLINE)) { 1745 cancel_apic_timer(apic); 1746 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 1747 apic->lapic_timer.period = 0; 1748 apic->lapic_timer.tscdeadline = 0; 1749 } 1750 apic->lapic_timer.timer_mode = timer_mode; 1751 limit_periodic_timer_frequency(apic); 1752 } 1753 } 1754 1755 /* 1756 * On APICv, this test will cause a busy wait 1757 * during a higher-priority task. 1758 */ 1759 1760 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu) 1761 { 1762 struct kvm_lapic *apic = vcpu->arch.apic; 1763 u32 reg; 1764 1765 /* 1766 * Assume a timer IRQ was "injected" if the APIC is protected. KVM's 1767 * copy of the vIRR is bogus, it's the responsibility of the caller to 1768 * precisely check whether or not a timer IRQ is pending. 1769 */ 1770 if (apic->guest_apic_protected) 1771 return true; 1772 1773 reg = kvm_lapic_get_reg(apic, APIC_LVTT); 1774 if (kvm_apic_hw_enabled(apic)) { 1775 int vec = reg & APIC_VECTOR_MASK; 1776 void *bitmap = apic->regs + APIC_ISR; 1777 1778 if (apic->apicv_active) 1779 bitmap = apic->regs + APIC_IRR; 1780 1781 if (apic_test_vector(vec, bitmap)) 1782 return true; 1783 } 1784 return false; 1785 } 1786 1787 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles) 1788 { 1789 u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns; 1790 1791 /* 1792 * If the guest TSC is running at a different ratio than the host, then 1793 * convert the delay to nanoseconds to achieve an accurate delay. Note 1794 * that __delay() uses delay_tsc whenever the hardware has TSC, thus 1795 * always for VMX enabled hardware. 1796 */ 1797 if (vcpu->arch.tsc_scaling_ratio == kvm_caps.default_tsc_scaling_ratio) { 1798 __delay(min(guest_cycles, 1799 nsec_to_cycles(vcpu, timer_advance_ns))); 1800 } else { 1801 u64 delay_ns = guest_cycles * 1000000ULL; 1802 do_div(delay_ns, vcpu->arch.virtual_tsc_khz); 1803 ndelay(min_t(u32, delay_ns, timer_advance_ns)); 1804 } 1805 } 1806 1807 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu, 1808 s64 advance_expire_delta) 1809 { 1810 struct kvm_lapic *apic = vcpu->arch.apic; 1811 u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns; 1812 u64 ns; 1813 1814 /* Do not adjust for tiny fluctuations or large random spikes. */ 1815 if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX || 1816 abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN) 1817 return; 1818 1819 /* too early */ 1820 if (advance_expire_delta < 0) { 1821 ns = -advance_expire_delta * 1000000ULL; 1822 do_div(ns, vcpu->arch.virtual_tsc_khz); 1823 timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; 1824 } else { 1825 /* too late */ 1826 ns = advance_expire_delta * 1000000ULL; 1827 do_div(ns, vcpu->arch.virtual_tsc_khz); 1828 timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; 1829 } 1830 1831 if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX)) 1832 timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; 1833 apic->lapic_timer.timer_advance_ns = timer_advance_ns; 1834 } 1835 1836 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1837 { 1838 struct kvm_lapic *apic = vcpu->arch.apic; 1839 u64 guest_tsc, tsc_deadline; 1840 1841 tsc_deadline = apic->lapic_timer.expired_tscdeadline; 1842 apic->lapic_timer.expired_tscdeadline = 0; 1843 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1844 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, guest_tsc - tsc_deadline); 1845 1846 adjust_lapic_timer_advance(vcpu, guest_tsc - tsc_deadline); 1847 1848 /* 1849 * If the timer fired early, reread the TSC to account for the overhead 1850 * of the above adjustment to avoid waiting longer than is necessary. 1851 */ 1852 if (guest_tsc < tsc_deadline) 1853 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1854 1855 if (guest_tsc < tsc_deadline) 1856 __wait_lapic_expire(vcpu, tsc_deadline - guest_tsc); 1857 } 1858 1859 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1860 { 1861 if (lapic_in_kernel(vcpu) && 1862 vcpu->arch.apic->lapic_timer.expired_tscdeadline && 1863 vcpu->arch.apic->lapic_timer.timer_advance_ns && 1864 lapic_timer_int_injected(vcpu)) 1865 __kvm_wait_lapic_expire(vcpu); 1866 } 1867 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire); 1868 1869 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic) 1870 { 1871 struct kvm_timer *ktimer = &apic->lapic_timer; 1872 1873 kvm_apic_local_deliver(apic, APIC_LVTT); 1874 if (apic_lvtt_tscdeadline(apic)) { 1875 ktimer->tscdeadline = 0; 1876 } else if (apic_lvtt_oneshot(apic)) { 1877 ktimer->tscdeadline = 0; 1878 ktimer->target_expiration = 0; 1879 } 1880 } 1881 1882 static void apic_timer_expired(struct kvm_lapic *apic, bool from_timer_fn) 1883 { 1884 struct kvm_vcpu *vcpu = apic->vcpu; 1885 struct kvm_timer *ktimer = &apic->lapic_timer; 1886 1887 if (atomic_read(&apic->lapic_timer.pending)) 1888 return; 1889 1890 if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use) 1891 ktimer->expired_tscdeadline = ktimer->tscdeadline; 1892 1893 if (!from_timer_fn && apic->apicv_active) { 1894 WARN_ON(kvm_get_running_vcpu() != vcpu); 1895 kvm_apic_inject_pending_timer_irqs(apic); 1896 return; 1897 } 1898 1899 if (kvm_use_posted_timer_interrupt(apic->vcpu)) { 1900 /* 1901 * Ensure the guest's timer has truly expired before posting an 1902 * interrupt. Open code the relevant checks to avoid querying 1903 * lapic_timer_int_injected(), which will be false since the 1904 * interrupt isn't yet injected. Waiting until after injecting 1905 * is not an option since that won't help a posted interrupt. 1906 */ 1907 if (vcpu->arch.apic->lapic_timer.expired_tscdeadline && 1908 vcpu->arch.apic->lapic_timer.timer_advance_ns) 1909 __kvm_wait_lapic_expire(vcpu); 1910 kvm_apic_inject_pending_timer_irqs(apic); 1911 return; 1912 } 1913 1914 atomic_inc(&apic->lapic_timer.pending); 1915 kvm_make_request(KVM_REQ_UNBLOCK, vcpu); 1916 if (from_timer_fn) 1917 kvm_vcpu_kick(vcpu); 1918 } 1919 1920 static void start_sw_tscdeadline(struct kvm_lapic *apic) 1921 { 1922 struct kvm_timer *ktimer = &apic->lapic_timer; 1923 u64 guest_tsc, tscdeadline = ktimer->tscdeadline; 1924 u64 ns = 0; 1925 ktime_t expire; 1926 struct kvm_vcpu *vcpu = apic->vcpu; 1927 u32 this_tsc_khz = vcpu->arch.virtual_tsc_khz; 1928 unsigned long flags; 1929 ktime_t now; 1930 1931 if (unlikely(!tscdeadline || !this_tsc_khz)) 1932 return; 1933 1934 local_irq_save(flags); 1935 1936 now = ktime_get(); 1937 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1938 1939 ns = (tscdeadline - guest_tsc) * 1000000ULL; 1940 do_div(ns, this_tsc_khz); 1941 1942 if (likely(tscdeadline > guest_tsc) && 1943 likely(ns > apic->lapic_timer.timer_advance_ns)) { 1944 expire = ktime_add_ns(now, ns); 1945 expire = ktime_sub_ns(expire, ktimer->timer_advance_ns); 1946 hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD); 1947 } else 1948 apic_timer_expired(apic, false); 1949 1950 local_irq_restore(flags); 1951 } 1952 1953 static inline u64 tmict_to_ns(struct kvm_lapic *apic, u32 tmict) 1954 { 1955 return (u64)tmict * apic->vcpu->kvm->arch.apic_bus_cycle_ns * 1956 (u64)apic->divide_count; 1957 } 1958 1959 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor) 1960 { 1961 ktime_t now, remaining; 1962 u64 ns_remaining_old, ns_remaining_new; 1963 1964 apic->lapic_timer.period = 1965 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT)); 1966 limit_periodic_timer_frequency(apic); 1967 1968 now = ktime_get(); 1969 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 1970 if (ktime_to_ns(remaining) < 0) 1971 remaining = 0; 1972 1973 ns_remaining_old = ktime_to_ns(remaining); 1974 ns_remaining_new = mul_u64_u32_div(ns_remaining_old, 1975 apic->divide_count, old_divisor); 1976 1977 apic->lapic_timer.tscdeadline += 1978 nsec_to_cycles(apic->vcpu, ns_remaining_new) - 1979 nsec_to_cycles(apic->vcpu, ns_remaining_old); 1980 apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new); 1981 } 1982 1983 static bool set_target_expiration(struct kvm_lapic *apic, u32 count_reg) 1984 { 1985 ktime_t now; 1986 u64 tscl = rdtsc(); 1987 s64 deadline; 1988 1989 now = ktime_get(); 1990 apic->lapic_timer.period = 1991 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT)); 1992 1993 if (!apic->lapic_timer.period) { 1994 apic->lapic_timer.tscdeadline = 0; 1995 return false; 1996 } 1997 1998 limit_periodic_timer_frequency(apic); 1999 deadline = apic->lapic_timer.period; 2000 2001 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) { 2002 if (unlikely(count_reg != APIC_TMICT)) { 2003 deadline = tmict_to_ns(apic, 2004 kvm_lapic_get_reg(apic, count_reg)); 2005 if (unlikely(deadline <= 0)) { 2006 if (apic_lvtt_period(apic)) 2007 deadline = apic->lapic_timer.period; 2008 else 2009 deadline = 0; 2010 } 2011 else if (unlikely(deadline > apic->lapic_timer.period)) { 2012 pr_info_ratelimited( 2013 "vcpu %i: requested lapic timer restore with " 2014 "starting count register %#x=%u (%lld ns) > initial count (%lld ns). " 2015 "Using initial count to start timer.\n", 2016 apic->vcpu->vcpu_id, 2017 count_reg, 2018 kvm_lapic_get_reg(apic, count_reg), 2019 deadline, apic->lapic_timer.period); 2020 kvm_lapic_set_reg(apic, count_reg, 0); 2021 deadline = apic->lapic_timer.period; 2022 } 2023 } 2024 } 2025 2026 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 2027 nsec_to_cycles(apic->vcpu, deadline); 2028 apic->lapic_timer.target_expiration = ktime_add_ns(now, deadline); 2029 2030 return true; 2031 } 2032 2033 static void advance_periodic_target_expiration(struct kvm_lapic *apic) 2034 { 2035 ktime_t now = ktime_get(); 2036 u64 tscl = rdtsc(); 2037 ktime_t delta; 2038 2039 /* 2040 * Synchronize both deadlines to the same time source or 2041 * differences in the periods (caused by differences in the 2042 * underlying clocks or numerical approximation errors) will 2043 * cause the two to drift apart over time as the errors 2044 * accumulate. 2045 */ 2046 apic->lapic_timer.target_expiration = 2047 ktime_add_ns(apic->lapic_timer.target_expiration, 2048 apic->lapic_timer.period); 2049 delta = ktime_sub(apic->lapic_timer.target_expiration, now); 2050 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 2051 nsec_to_cycles(apic->vcpu, delta); 2052 } 2053 2054 static void start_sw_period(struct kvm_lapic *apic) 2055 { 2056 if (!apic->lapic_timer.period) 2057 return; 2058 2059 if (ktime_after(ktime_get(), 2060 apic->lapic_timer.target_expiration)) { 2061 apic_timer_expired(apic, false); 2062 2063 if (apic_lvtt_oneshot(apic)) 2064 return; 2065 2066 advance_periodic_target_expiration(apic); 2067 } 2068 2069 hrtimer_start(&apic->lapic_timer.timer, 2070 apic->lapic_timer.target_expiration, 2071 HRTIMER_MODE_ABS_HARD); 2072 } 2073 2074 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu) 2075 { 2076 if (!lapic_in_kernel(vcpu)) 2077 return false; 2078 2079 return vcpu->arch.apic->lapic_timer.hv_timer_in_use; 2080 } 2081 2082 static void cancel_hv_timer(struct kvm_lapic *apic) 2083 { 2084 WARN_ON(preemptible()); 2085 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 2086 kvm_x86_call(cancel_hv_timer)(apic->vcpu); 2087 apic->lapic_timer.hv_timer_in_use = false; 2088 } 2089 2090 static bool start_hv_timer(struct kvm_lapic *apic) 2091 { 2092 struct kvm_timer *ktimer = &apic->lapic_timer; 2093 struct kvm_vcpu *vcpu = apic->vcpu; 2094 bool expired; 2095 2096 WARN_ON(preemptible()); 2097 if (!kvm_can_use_hv_timer(vcpu)) 2098 return false; 2099 2100 if (!ktimer->tscdeadline) 2101 return false; 2102 2103 if (kvm_x86_call(set_hv_timer)(vcpu, ktimer->tscdeadline, &expired)) 2104 return false; 2105 2106 ktimer->hv_timer_in_use = true; 2107 hrtimer_cancel(&ktimer->timer); 2108 2109 /* 2110 * To simplify handling the periodic timer, leave the hv timer running 2111 * even if the deadline timer has expired, i.e. rely on the resulting 2112 * VM-Exit to recompute the periodic timer's target expiration. 2113 */ 2114 if (!apic_lvtt_period(apic)) { 2115 /* 2116 * Cancel the hv timer if the sw timer fired while the hv timer 2117 * was being programmed, or if the hv timer itself expired. 2118 */ 2119 if (atomic_read(&ktimer->pending)) { 2120 cancel_hv_timer(apic); 2121 } else if (expired) { 2122 apic_timer_expired(apic, false); 2123 cancel_hv_timer(apic); 2124 } 2125 } 2126 2127 trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use); 2128 2129 return true; 2130 } 2131 2132 static void start_sw_timer(struct kvm_lapic *apic) 2133 { 2134 struct kvm_timer *ktimer = &apic->lapic_timer; 2135 2136 WARN_ON(preemptible()); 2137 if (apic->lapic_timer.hv_timer_in_use) 2138 cancel_hv_timer(apic); 2139 if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending)) 2140 return; 2141 2142 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 2143 start_sw_period(apic); 2144 else if (apic_lvtt_tscdeadline(apic)) 2145 start_sw_tscdeadline(apic); 2146 trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false); 2147 } 2148 2149 static void restart_apic_timer(struct kvm_lapic *apic) 2150 { 2151 preempt_disable(); 2152 2153 if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending)) 2154 goto out; 2155 2156 if (!start_hv_timer(apic)) 2157 start_sw_timer(apic); 2158 out: 2159 preempt_enable(); 2160 } 2161 2162 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu) 2163 { 2164 struct kvm_lapic *apic = vcpu->arch.apic; 2165 2166 preempt_disable(); 2167 /* If the preempt notifier has already run, it also called apic_timer_expired */ 2168 if (!apic->lapic_timer.hv_timer_in_use) 2169 goto out; 2170 WARN_ON(kvm_vcpu_is_blocking(vcpu)); 2171 apic_timer_expired(apic, false); 2172 cancel_hv_timer(apic); 2173 2174 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 2175 advance_periodic_target_expiration(apic); 2176 restart_apic_timer(apic); 2177 } 2178 out: 2179 preempt_enable(); 2180 } 2181 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer); 2182 2183 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu) 2184 { 2185 restart_apic_timer(vcpu->arch.apic); 2186 } 2187 2188 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu) 2189 { 2190 struct kvm_lapic *apic = vcpu->arch.apic; 2191 2192 preempt_disable(); 2193 /* Possibly the TSC deadline timer is not enabled yet */ 2194 if (apic->lapic_timer.hv_timer_in_use) 2195 start_sw_timer(apic); 2196 preempt_enable(); 2197 } 2198 2199 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu) 2200 { 2201 struct kvm_lapic *apic = vcpu->arch.apic; 2202 2203 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 2204 restart_apic_timer(apic); 2205 } 2206 2207 static void __start_apic_timer(struct kvm_lapic *apic, u32 count_reg) 2208 { 2209 atomic_set(&apic->lapic_timer.pending, 0); 2210 2211 if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 2212 && !set_target_expiration(apic, count_reg)) 2213 return; 2214 2215 restart_apic_timer(apic); 2216 } 2217 2218 static void start_apic_timer(struct kvm_lapic *apic) 2219 { 2220 __start_apic_timer(apic, APIC_TMICT); 2221 } 2222 2223 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val) 2224 { 2225 bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val); 2226 2227 if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) { 2228 apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode; 2229 if (lvt0_in_nmi_mode) { 2230 atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 2231 } else 2232 atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 2233 } 2234 } 2235 2236 static int get_lvt_index(u32 reg) 2237 { 2238 if (reg == APIC_LVTCMCI) 2239 return LVT_CMCI; 2240 if (reg < APIC_LVTT || reg > APIC_LVTERR) 2241 return -1; 2242 return array_index_nospec( 2243 (reg - APIC_LVTT) >> 4, KVM_APIC_MAX_NR_LVT_ENTRIES); 2244 } 2245 2246 static int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val) 2247 { 2248 int ret = 0; 2249 2250 trace_kvm_apic_write(reg, val); 2251 2252 switch (reg) { 2253 case APIC_ID: /* Local APIC ID */ 2254 if (!apic_x2apic_mode(apic)) { 2255 kvm_apic_set_xapic_id(apic, val >> 24); 2256 } else { 2257 ret = 1; 2258 } 2259 break; 2260 2261 case APIC_TASKPRI: 2262 report_tpr_access(apic, true); 2263 apic_set_tpr(apic, val & 0xff); 2264 break; 2265 2266 case APIC_EOI: 2267 apic_set_eoi(apic); 2268 break; 2269 2270 case APIC_LDR: 2271 if (!apic_x2apic_mode(apic)) 2272 kvm_apic_set_ldr(apic, val & APIC_LDR_MASK); 2273 else 2274 ret = 1; 2275 break; 2276 2277 case APIC_DFR: 2278 if (!apic_x2apic_mode(apic)) 2279 kvm_apic_set_dfr(apic, val | 0x0FFFFFFF); 2280 else 2281 ret = 1; 2282 break; 2283 2284 case APIC_SPIV: { 2285 u32 mask = 0x3ff; 2286 if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI) 2287 mask |= APIC_SPIV_DIRECTED_EOI; 2288 apic_set_spiv(apic, val & mask); 2289 if (!(val & APIC_SPIV_APIC_ENABLED)) { 2290 int i; 2291 2292 for (i = 0; i < apic->nr_lvt_entries; i++) { 2293 kvm_lapic_set_reg(apic, APIC_LVTx(i), 2294 kvm_lapic_get_reg(apic, APIC_LVTx(i)) | APIC_LVT_MASKED); 2295 } 2296 apic_update_lvtt(apic); 2297 atomic_set(&apic->lapic_timer.pending, 0); 2298 2299 } 2300 break; 2301 } 2302 case APIC_ICR: 2303 WARN_ON_ONCE(apic_x2apic_mode(apic)); 2304 2305 /* No delay here, so we always clear the pending bit */ 2306 val &= ~APIC_ICR_BUSY; 2307 kvm_apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2)); 2308 kvm_lapic_set_reg(apic, APIC_ICR, val); 2309 break; 2310 case APIC_ICR2: 2311 if (apic_x2apic_mode(apic)) 2312 ret = 1; 2313 else 2314 kvm_lapic_set_reg(apic, APIC_ICR2, val & 0xff000000); 2315 break; 2316 2317 case APIC_LVT0: 2318 apic_manage_nmi_watchdog(apic, val); 2319 fallthrough; 2320 case APIC_LVTTHMR: 2321 case APIC_LVTPC: 2322 case APIC_LVT1: 2323 case APIC_LVTERR: 2324 case APIC_LVTCMCI: { 2325 u32 index = get_lvt_index(reg); 2326 if (!kvm_lapic_lvt_supported(apic, index)) { 2327 ret = 1; 2328 break; 2329 } 2330 if (!kvm_apic_sw_enabled(apic)) 2331 val |= APIC_LVT_MASKED; 2332 val &= apic_lvt_mask[index]; 2333 kvm_lapic_set_reg(apic, reg, val); 2334 break; 2335 } 2336 2337 case APIC_LVTT: 2338 if (!kvm_apic_sw_enabled(apic)) 2339 val |= APIC_LVT_MASKED; 2340 val &= (apic_lvt_mask[LVT_TIMER] | apic->lapic_timer.timer_mode_mask); 2341 kvm_lapic_set_reg(apic, APIC_LVTT, val); 2342 apic_update_lvtt(apic); 2343 break; 2344 2345 case APIC_TMICT: 2346 if (apic_lvtt_tscdeadline(apic)) 2347 break; 2348 2349 cancel_apic_timer(apic); 2350 kvm_lapic_set_reg(apic, APIC_TMICT, val); 2351 start_apic_timer(apic); 2352 break; 2353 2354 case APIC_TDCR: { 2355 uint32_t old_divisor = apic->divide_count; 2356 2357 kvm_lapic_set_reg(apic, APIC_TDCR, val & 0xb); 2358 update_divide_count(apic); 2359 if (apic->divide_count != old_divisor && 2360 apic->lapic_timer.period) { 2361 hrtimer_cancel(&apic->lapic_timer.timer); 2362 update_target_expiration(apic, old_divisor); 2363 restart_apic_timer(apic); 2364 } 2365 break; 2366 } 2367 case APIC_ESR: 2368 if (apic_x2apic_mode(apic) && val != 0) 2369 ret = 1; 2370 break; 2371 2372 case APIC_SELF_IPI: 2373 /* 2374 * Self-IPI exists only when x2APIC is enabled. Bits 7:0 hold 2375 * the vector, everything else is reserved. 2376 */ 2377 if (!apic_x2apic_mode(apic) || (val & ~APIC_VECTOR_MASK)) 2378 ret = 1; 2379 else 2380 kvm_apic_send_ipi(apic, APIC_DEST_SELF | val, 0); 2381 break; 2382 default: 2383 ret = 1; 2384 break; 2385 } 2386 2387 /* 2388 * Recalculate APIC maps if necessary, e.g. if the software enable bit 2389 * was toggled, the APIC ID changed, etc... The maps are marked dirty 2390 * on relevant changes, i.e. this is a nop for most writes. 2391 */ 2392 kvm_recalculate_apic_map(apic->vcpu->kvm); 2393 2394 return ret; 2395 } 2396 2397 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 2398 gpa_t address, int len, const void *data) 2399 { 2400 struct kvm_lapic *apic = to_lapic(this); 2401 unsigned int offset = address - apic->base_address; 2402 u32 val; 2403 2404 if (!apic_mmio_in_range(apic, address)) 2405 return -EOPNOTSUPP; 2406 2407 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 2408 if (!kvm_check_has_quirk(vcpu->kvm, 2409 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 2410 return -EOPNOTSUPP; 2411 2412 return 0; 2413 } 2414 2415 /* 2416 * APIC register must be aligned on 128-bits boundary. 2417 * 32/64/128 bits registers must be accessed thru 32 bits. 2418 * Refer SDM 8.4.1 2419 */ 2420 if (len != 4 || (offset & 0xf)) 2421 return 0; 2422 2423 val = *(u32*)data; 2424 2425 kvm_lapic_reg_write(apic, offset & 0xff0, val); 2426 2427 return 0; 2428 } 2429 2430 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu) 2431 { 2432 kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0); 2433 } 2434 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi); 2435 2436 #define X2APIC_ICR_RESERVED_BITS (GENMASK_ULL(31, 20) | GENMASK_ULL(17, 16) | BIT(13)) 2437 2438 int kvm_x2apic_icr_write(struct kvm_lapic *apic, u64 data) 2439 { 2440 if (data & X2APIC_ICR_RESERVED_BITS) 2441 return 1; 2442 2443 /* 2444 * The BUSY bit is reserved on both Intel and AMD in x2APIC mode, but 2445 * only AMD requires it to be zero, Intel essentially just ignores the 2446 * bit. And if IPI virtualization (Intel) or x2AVIC (AMD) is enabled, 2447 * the CPU performs the reserved bits checks, i.e. the underlying CPU 2448 * behavior will "win". Arbitrarily clear the BUSY bit, as there is no 2449 * sane way to provide consistent behavior with respect to hardware. 2450 */ 2451 data &= ~APIC_ICR_BUSY; 2452 2453 kvm_apic_send_ipi(apic, (u32)data, (u32)(data >> 32)); 2454 if (kvm_x86_ops.x2apic_icr_is_split) { 2455 kvm_lapic_set_reg(apic, APIC_ICR, data); 2456 kvm_lapic_set_reg(apic, APIC_ICR2, data >> 32); 2457 } else { 2458 kvm_lapic_set_reg64(apic, APIC_ICR, data); 2459 } 2460 trace_kvm_apic_write(APIC_ICR, data); 2461 return 0; 2462 } 2463 2464 static u64 kvm_x2apic_icr_read(struct kvm_lapic *apic) 2465 { 2466 if (kvm_x86_ops.x2apic_icr_is_split) 2467 return (u64)kvm_lapic_get_reg(apic, APIC_ICR) | 2468 (u64)kvm_lapic_get_reg(apic, APIC_ICR2) << 32; 2469 2470 return kvm_lapic_get_reg64(apic, APIC_ICR); 2471 } 2472 2473 /* emulate APIC access in a trap manner */ 2474 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset) 2475 { 2476 struct kvm_lapic *apic = vcpu->arch.apic; 2477 2478 /* 2479 * ICR is a single 64-bit register when x2APIC is enabled, all others 2480 * registers hold 32-bit values. For legacy xAPIC, ICR writes need to 2481 * go down the common path to get the upper half from ICR2. 2482 * 2483 * Note, using the write helpers may incur an unnecessary write to the 2484 * virtual APIC state, but KVM needs to conditionally modify the value 2485 * in certain cases, e.g. to clear the ICR busy bit. The cost of extra 2486 * conditional branches is likely a wash relative to the cost of the 2487 * maybe-unecessary write, and both are in the noise anyways. 2488 */ 2489 if (apic_x2apic_mode(apic) && offset == APIC_ICR) 2490 WARN_ON_ONCE(kvm_x2apic_icr_write(apic, kvm_x2apic_icr_read(apic))); 2491 else 2492 kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset)); 2493 } 2494 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode); 2495 2496 void kvm_free_lapic(struct kvm_vcpu *vcpu) 2497 { 2498 struct kvm_lapic *apic = vcpu->arch.apic; 2499 2500 if (!vcpu->arch.apic) { 2501 static_branch_dec(&kvm_has_noapic_vcpu); 2502 return; 2503 } 2504 2505 hrtimer_cancel(&apic->lapic_timer.timer); 2506 2507 if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)) 2508 static_branch_slow_dec_deferred(&apic_hw_disabled); 2509 2510 if (!apic->sw_enabled) 2511 static_branch_slow_dec_deferred(&apic_sw_disabled); 2512 2513 if (apic->regs) 2514 free_page((unsigned long)apic->regs); 2515 2516 kfree(apic); 2517 } 2518 2519 /* 2520 *---------------------------------------------------------------------- 2521 * LAPIC interface 2522 *---------------------------------------------------------------------- 2523 */ 2524 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu) 2525 { 2526 struct kvm_lapic *apic = vcpu->arch.apic; 2527 2528 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic)) 2529 return 0; 2530 2531 return apic->lapic_timer.tscdeadline; 2532 } 2533 2534 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data) 2535 { 2536 struct kvm_lapic *apic = vcpu->arch.apic; 2537 2538 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic)) 2539 return; 2540 2541 hrtimer_cancel(&apic->lapic_timer.timer); 2542 apic->lapic_timer.tscdeadline = data; 2543 start_apic_timer(apic); 2544 } 2545 2546 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8) 2547 { 2548 apic_set_tpr(vcpu->arch.apic, (cr8 & 0x0f) << 4); 2549 } 2550 2551 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu) 2552 { 2553 u64 tpr; 2554 2555 tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI); 2556 2557 return (tpr & 0xf0) >> 4; 2558 } 2559 2560 static void __kvm_apic_set_base(struct kvm_vcpu *vcpu, u64 value) 2561 { 2562 u64 old_value = vcpu->arch.apic_base; 2563 struct kvm_lapic *apic = vcpu->arch.apic; 2564 2565 vcpu->arch.apic_base = value; 2566 2567 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) 2568 vcpu->arch.cpuid_dynamic_bits_dirty = true; 2569 2570 if (!apic) 2571 return; 2572 2573 /* update jump label if enable bit changes */ 2574 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) { 2575 if (value & MSR_IA32_APICBASE_ENABLE) { 2576 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2577 static_branch_slow_dec_deferred(&apic_hw_disabled); 2578 /* Check if there are APF page ready requests pending */ 2579 kvm_make_request(KVM_REQ_APF_READY, vcpu); 2580 } else { 2581 static_branch_inc(&apic_hw_disabled.key); 2582 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 2583 } 2584 } 2585 2586 if ((old_value ^ value) & X2APIC_ENABLE) { 2587 if (value & X2APIC_ENABLE) 2588 kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id); 2589 else if (value & MSR_IA32_APICBASE_ENABLE) 2590 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2591 } 2592 2593 if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) { 2594 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 2595 kvm_x86_call(set_virtual_apic_mode)(vcpu); 2596 } 2597 2598 apic->base_address = apic->vcpu->arch.apic_base & 2599 MSR_IA32_APICBASE_BASE; 2600 2601 if ((value & MSR_IA32_APICBASE_ENABLE) && 2602 apic->base_address != APIC_DEFAULT_PHYS_BASE) { 2603 kvm_set_apicv_inhibit(apic->vcpu->kvm, 2604 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED); 2605 } 2606 } 2607 2608 int kvm_apic_set_base(struct kvm_vcpu *vcpu, u64 value, bool host_initiated) 2609 { 2610 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 2611 enum lapic_mode new_mode = kvm_apic_mode(value); 2612 2613 if (vcpu->arch.apic_base == value) 2614 return 0; 2615 2616 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 2617 (guest_cpu_cap_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 2618 2619 if ((value & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 2620 return 1; 2621 if (!host_initiated) { 2622 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 2623 return 1; 2624 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 2625 return 1; 2626 } 2627 2628 __kvm_apic_set_base(vcpu, value); 2629 kvm_recalculate_apic_map(vcpu->kvm); 2630 return 0; 2631 } 2632 EXPORT_SYMBOL_GPL(kvm_apic_set_base); 2633 2634 void kvm_apic_update_apicv(struct kvm_vcpu *vcpu) 2635 { 2636 struct kvm_lapic *apic = vcpu->arch.apic; 2637 2638 /* 2639 * When APICv is enabled, KVM must always search the IRR for a pending 2640 * IRQ, as other vCPUs and devices can set IRR bits even if the vCPU 2641 * isn't running. If APICv is disabled, KVM _should_ search the IRR 2642 * for a pending IRQ. But KVM currently doesn't ensure *all* hardware, 2643 * e.g. CPUs and IOMMUs, has seen the change in state, i.e. searching 2644 * the IRR at this time could race with IRQ delivery from hardware that 2645 * still sees APICv as being enabled. 2646 * 2647 * FIXME: Ensure other vCPUs and devices observe the change in APICv 2648 * state prior to updating KVM's metadata caches, so that KVM 2649 * can safely search the IRR and set irr_pending accordingly. 2650 */ 2651 apic->irr_pending = true; 2652 2653 if (apic->apicv_active) 2654 apic->isr_count = 1; 2655 else 2656 apic->isr_count = count_vectors(apic->regs + APIC_ISR); 2657 2658 apic->highest_isr_cache = -1; 2659 } 2660 2661 int kvm_alloc_apic_access_page(struct kvm *kvm) 2662 { 2663 void __user *hva; 2664 int ret = 0; 2665 2666 mutex_lock(&kvm->slots_lock); 2667 if (kvm->arch.apic_access_memslot_enabled || 2668 kvm->arch.apic_access_memslot_inhibited) 2669 goto out; 2670 2671 hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 2672 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE); 2673 if (IS_ERR(hva)) { 2674 ret = PTR_ERR(hva); 2675 goto out; 2676 } 2677 2678 kvm->arch.apic_access_memslot_enabled = true; 2679 out: 2680 mutex_unlock(&kvm->slots_lock); 2681 return ret; 2682 } 2683 EXPORT_SYMBOL_GPL(kvm_alloc_apic_access_page); 2684 2685 void kvm_inhibit_apic_access_page(struct kvm_vcpu *vcpu) 2686 { 2687 struct kvm *kvm = vcpu->kvm; 2688 2689 if (!kvm->arch.apic_access_memslot_enabled) 2690 return; 2691 2692 kvm_vcpu_srcu_read_unlock(vcpu); 2693 2694 mutex_lock(&kvm->slots_lock); 2695 2696 if (kvm->arch.apic_access_memslot_enabled) { 2697 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0); 2698 /* 2699 * Clear "enabled" after the memslot is deleted so that a 2700 * different vCPU doesn't get a false negative when checking 2701 * the flag out of slots_lock. No additional memory barrier is 2702 * needed as modifying memslots requires waiting other vCPUs to 2703 * drop SRCU (see above), and false positives are ok as the 2704 * flag is rechecked after acquiring slots_lock. 2705 */ 2706 kvm->arch.apic_access_memslot_enabled = false; 2707 2708 /* 2709 * Mark the memslot as inhibited to prevent reallocating the 2710 * memslot during vCPU creation, e.g. if a vCPU is hotplugged. 2711 */ 2712 kvm->arch.apic_access_memslot_inhibited = true; 2713 } 2714 2715 mutex_unlock(&kvm->slots_lock); 2716 2717 kvm_vcpu_srcu_read_lock(vcpu); 2718 } 2719 2720 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event) 2721 { 2722 struct kvm_lapic *apic = vcpu->arch.apic; 2723 u64 msr_val; 2724 int i; 2725 2726 kvm_x86_call(apicv_pre_state_restore)(vcpu); 2727 2728 if (!init_event) { 2729 msr_val = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE; 2730 if (kvm_vcpu_is_reset_bsp(vcpu)) 2731 msr_val |= MSR_IA32_APICBASE_BSP; 2732 2733 /* 2734 * Use the inner helper to avoid an extra recalcuation of the 2735 * optimized APIC map if some other task has dirtied the map. 2736 * The recalculation needed for this vCPU will be done after 2737 * all APIC state has been initialized (see below). 2738 */ 2739 __kvm_apic_set_base(vcpu, msr_val); 2740 } 2741 2742 if (!apic) 2743 return; 2744 2745 /* Stop the timer in case it's a reset to an active apic */ 2746 hrtimer_cancel(&apic->lapic_timer.timer); 2747 2748 /* The xAPIC ID is set at RESET even if the APIC was already enabled. */ 2749 if (!init_event) 2750 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2751 kvm_apic_set_version(apic->vcpu); 2752 2753 for (i = 0; i < apic->nr_lvt_entries; i++) 2754 kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED); 2755 apic_update_lvtt(apic); 2756 if (kvm_vcpu_is_reset_bsp(vcpu) && 2757 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED)) 2758 kvm_lapic_set_reg(apic, APIC_LVT0, 2759 SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT)); 2760 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 2761 2762 kvm_apic_set_dfr(apic, 0xffffffffU); 2763 apic_set_spiv(apic, 0xff); 2764 kvm_lapic_set_reg(apic, APIC_TASKPRI, 0); 2765 if (!apic_x2apic_mode(apic)) 2766 kvm_apic_set_ldr(apic, 0); 2767 kvm_lapic_set_reg(apic, APIC_ESR, 0); 2768 if (!apic_x2apic_mode(apic)) { 2769 kvm_lapic_set_reg(apic, APIC_ICR, 0); 2770 kvm_lapic_set_reg(apic, APIC_ICR2, 0); 2771 } else { 2772 kvm_lapic_set_reg64(apic, APIC_ICR, 0); 2773 } 2774 kvm_lapic_set_reg(apic, APIC_TDCR, 0); 2775 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 2776 for (i = 0; i < 8; i++) { 2777 kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0); 2778 kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0); 2779 kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0); 2780 } 2781 kvm_apic_update_apicv(vcpu); 2782 update_divide_count(apic); 2783 atomic_set(&apic->lapic_timer.pending, 0); 2784 2785 vcpu->arch.pv_eoi.msr_val = 0; 2786 apic_update_ppr(apic); 2787 if (apic->apicv_active) { 2788 kvm_x86_call(apicv_post_state_restore)(vcpu); 2789 kvm_x86_call(hwapic_isr_update)(vcpu, -1); 2790 } 2791 2792 vcpu->arch.apic_arb_prio = 0; 2793 vcpu->arch.apic_attention = 0; 2794 2795 kvm_recalculate_apic_map(vcpu->kvm); 2796 } 2797 2798 /* 2799 *---------------------------------------------------------------------- 2800 * timer interface 2801 *---------------------------------------------------------------------- 2802 */ 2803 2804 static bool lapic_is_periodic(struct kvm_lapic *apic) 2805 { 2806 return apic_lvtt_period(apic); 2807 } 2808 2809 int apic_has_pending_timer(struct kvm_vcpu *vcpu) 2810 { 2811 struct kvm_lapic *apic = vcpu->arch.apic; 2812 2813 if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT)) 2814 return atomic_read(&apic->lapic_timer.pending); 2815 2816 return 0; 2817 } 2818 2819 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type) 2820 { 2821 u32 reg = kvm_lapic_get_reg(apic, lvt_type); 2822 int vector, mode, trig_mode; 2823 int r; 2824 2825 if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) { 2826 vector = reg & APIC_VECTOR_MASK; 2827 mode = reg & APIC_MODE_MASK; 2828 trig_mode = reg & APIC_LVT_LEVEL_TRIGGER; 2829 2830 r = __apic_accept_irq(apic, mode, vector, 1, trig_mode, NULL); 2831 if (r && lvt_type == APIC_LVTPC && 2832 guest_cpuid_is_intel_compatible(apic->vcpu)) 2833 kvm_lapic_set_reg(apic, APIC_LVTPC, reg | APIC_LVT_MASKED); 2834 return r; 2835 } 2836 return 0; 2837 } 2838 2839 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu) 2840 { 2841 struct kvm_lapic *apic = vcpu->arch.apic; 2842 2843 if (apic) 2844 kvm_apic_local_deliver(apic, APIC_LVT0); 2845 } 2846 2847 static const struct kvm_io_device_ops apic_mmio_ops = { 2848 .read = apic_mmio_read, 2849 .write = apic_mmio_write, 2850 }; 2851 2852 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data) 2853 { 2854 struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer); 2855 struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer); 2856 2857 apic_timer_expired(apic, true); 2858 2859 if (lapic_is_periodic(apic)) { 2860 advance_periodic_target_expiration(apic); 2861 hrtimer_add_expires_ns(&ktimer->timer, ktimer->period); 2862 return HRTIMER_RESTART; 2863 } else 2864 return HRTIMER_NORESTART; 2865 } 2866 2867 int kvm_create_lapic(struct kvm_vcpu *vcpu) 2868 { 2869 struct kvm_lapic *apic; 2870 2871 ASSERT(vcpu != NULL); 2872 2873 if (!irqchip_in_kernel(vcpu->kvm)) { 2874 static_branch_inc(&kvm_has_noapic_vcpu); 2875 return 0; 2876 } 2877 2878 apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT); 2879 if (!apic) 2880 goto nomem; 2881 2882 vcpu->arch.apic = apic; 2883 2884 if (kvm_x86_ops.alloc_apic_backing_page) 2885 apic->regs = kvm_x86_call(alloc_apic_backing_page)(vcpu); 2886 else 2887 apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 2888 if (!apic->regs) { 2889 printk(KERN_ERR "malloc apic regs error for vcpu %x\n", 2890 vcpu->vcpu_id); 2891 goto nomem_free_apic; 2892 } 2893 apic->vcpu = vcpu; 2894 2895 apic->nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu); 2896 2897 hrtimer_setup(&apic->lapic_timer.timer, apic_timer_fn, CLOCK_MONOTONIC, 2898 HRTIMER_MODE_ABS_HARD); 2899 if (lapic_timer_advance) 2900 apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; 2901 2902 /* 2903 * Stuff the APIC ENABLE bit in lieu of temporarily incrementing 2904 * apic_hw_disabled; the full RESET value is set by kvm_lapic_reset(). 2905 */ 2906 vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE; 2907 static_branch_inc(&apic_sw_disabled.key); /* sw disabled at reset */ 2908 kvm_iodevice_init(&apic->dev, &apic_mmio_ops); 2909 2910 /* 2911 * Defer evaluating inhibits until the vCPU is first run, as this vCPU 2912 * will not get notified of any changes until this vCPU is visible to 2913 * other vCPUs (marked online and added to the set of vCPUs). 2914 * 2915 * Opportunistically mark APICv active as VMX in particularly is highly 2916 * unlikely to have inhibits. Ignore the current per-VM APICv state so 2917 * that vCPU creation is guaranteed to run with a deterministic value, 2918 * the request will ensure the vCPU gets the correct state before VM-Entry. 2919 */ 2920 if (enable_apicv) { 2921 apic->apicv_active = true; 2922 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 2923 } 2924 2925 return 0; 2926 nomem_free_apic: 2927 kfree(apic); 2928 vcpu->arch.apic = NULL; 2929 nomem: 2930 return -ENOMEM; 2931 } 2932 2933 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu) 2934 { 2935 struct kvm_lapic *apic = vcpu->arch.apic; 2936 u32 ppr; 2937 2938 if (!kvm_apic_present(vcpu)) 2939 return -1; 2940 2941 if (apic->guest_apic_protected) 2942 return -1; 2943 2944 __apic_update_ppr(apic, &ppr); 2945 return apic_has_interrupt_for_ppr(apic, ppr); 2946 } 2947 EXPORT_SYMBOL_GPL(kvm_apic_has_interrupt); 2948 2949 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu) 2950 { 2951 u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0); 2952 2953 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 2954 return 1; 2955 if ((lvt0 & APIC_LVT_MASKED) == 0 && 2956 GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT) 2957 return 1; 2958 return 0; 2959 } 2960 2961 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu) 2962 { 2963 struct kvm_lapic *apic = vcpu->arch.apic; 2964 2965 if (atomic_read(&apic->lapic_timer.pending) > 0) { 2966 kvm_apic_inject_pending_timer_irqs(apic); 2967 atomic_set(&apic->lapic_timer.pending, 0); 2968 } 2969 } 2970 2971 void kvm_apic_ack_interrupt(struct kvm_vcpu *vcpu, int vector) 2972 { 2973 struct kvm_lapic *apic = vcpu->arch.apic; 2974 u32 ppr; 2975 2976 if (WARN_ON_ONCE(vector < 0 || !apic)) 2977 return; 2978 2979 /* 2980 * We get here even with APIC virtualization enabled, if doing 2981 * nested virtualization and L1 runs with the "acknowledge interrupt 2982 * on exit" mode. Then we cannot inject the interrupt via RVI, 2983 * because the process would deliver it through the IDT. 2984 */ 2985 2986 apic_clear_irr(vector, apic); 2987 if (kvm_hv_synic_auto_eoi_set(vcpu, vector)) { 2988 /* 2989 * For auto-EOI interrupts, there might be another pending 2990 * interrupt above PPR, so check whether to raise another 2991 * KVM_REQ_EVENT. 2992 */ 2993 apic_update_ppr(apic); 2994 } else { 2995 /* 2996 * For normal interrupts, PPR has been raised and there cannot 2997 * be a higher-priority pending interrupt---except if there was 2998 * a concurrent interrupt injection, but that would have 2999 * triggered KVM_REQ_EVENT already. 3000 */ 3001 apic_set_isr(vector, apic); 3002 __apic_update_ppr(apic, &ppr); 3003 } 3004 3005 } 3006 EXPORT_SYMBOL_GPL(kvm_apic_ack_interrupt); 3007 3008 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu, 3009 struct kvm_lapic_state *s, bool set) 3010 { 3011 if (apic_x2apic_mode(vcpu->arch.apic)) { 3012 u32 x2apic_id = kvm_x2apic_id(vcpu->arch.apic); 3013 u32 *id = (u32 *)(s->regs + APIC_ID); 3014 u32 *ldr = (u32 *)(s->regs + APIC_LDR); 3015 u64 icr; 3016 3017 if (vcpu->kvm->arch.x2apic_format) { 3018 if (*id != x2apic_id) 3019 return -EINVAL; 3020 } else { 3021 /* 3022 * Ignore the userspace value when setting APIC state. 3023 * KVM's model is that the x2APIC ID is readonly, e.g. 3024 * KVM only supports delivering interrupts to KVM's 3025 * version of the x2APIC ID. However, for backwards 3026 * compatibility, don't reject attempts to set a 3027 * mismatched ID for userspace that hasn't opted into 3028 * x2apic_format. 3029 */ 3030 if (set) 3031 *id = x2apic_id; 3032 else 3033 *id = x2apic_id << 24; 3034 } 3035 3036 /* 3037 * In x2APIC mode, the LDR is fixed and based on the id. And 3038 * if the ICR is _not_ split, ICR is internally a single 64-bit 3039 * register, but needs to be split to ICR+ICR2 in userspace for 3040 * backwards compatibility. 3041 */ 3042 if (set) 3043 *ldr = kvm_apic_calc_x2apic_ldr(x2apic_id); 3044 3045 if (!kvm_x86_ops.x2apic_icr_is_split) { 3046 if (set) { 3047 icr = apic_get_reg(s->regs, APIC_ICR) | 3048 (u64)apic_get_reg(s->regs, APIC_ICR2) << 32; 3049 apic_set_reg64(s->regs, APIC_ICR, icr); 3050 } else { 3051 icr = apic_get_reg64(s->regs, APIC_ICR); 3052 apic_set_reg(s->regs, APIC_ICR2, icr >> 32); 3053 } 3054 } 3055 } 3056 3057 return 0; 3058 } 3059 3060 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 3061 { 3062 memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s)); 3063 3064 /* 3065 * Get calculated timer current count for remaining timer period (if 3066 * any) and store it in the returned register set. 3067 */ 3068 apic_set_reg(s->regs, APIC_TMCCT, __apic_read(vcpu->arch.apic, APIC_TMCCT)); 3069 3070 return kvm_apic_state_fixup(vcpu, s, false); 3071 } 3072 3073 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 3074 { 3075 struct kvm_lapic *apic = vcpu->arch.apic; 3076 int r; 3077 3078 kvm_x86_call(apicv_pre_state_restore)(vcpu); 3079 3080 /* set SPIV separately to get count of SW disabled APICs right */ 3081 apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV))); 3082 3083 r = kvm_apic_state_fixup(vcpu, s, true); 3084 if (r) { 3085 kvm_recalculate_apic_map(vcpu->kvm); 3086 return r; 3087 } 3088 memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s)); 3089 3090 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 3091 kvm_recalculate_apic_map(vcpu->kvm); 3092 kvm_apic_set_version(vcpu); 3093 3094 apic_update_ppr(apic); 3095 cancel_apic_timer(apic); 3096 apic->lapic_timer.expired_tscdeadline = 0; 3097 apic_update_lvtt(apic); 3098 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 3099 update_divide_count(apic); 3100 __start_apic_timer(apic, APIC_TMCCT); 3101 kvm_lapic_set_reg(apic, APIC_TMCCT, 0); 3102 kvm_apic_update_apicv(vcpu); 3103 if (apic->apicv_active) { 3104 kvm_x86_call(apicv_post_state_restore)(vcpu); 3105 kvm_x86_call(hwapic_isr_update)(vcpu, apic_find_highest_isr(apic)); 3106 } 3107 kvm_make_request(KVM_REQ_EVENT, vcpu); 3108 3109 #ifdef CONFIG_KVM_IOAPIC 3110 if (ioapic_in_kernel(vcpu->kvm)) 3111 kvm_rtc_eoi_tracking_restore_one(vcpu); 3112 #endif 3113 3114 vcpu->arch.apic_arb_prio = 0; 3115 3116 return 0; 3117 } 3118 3119 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu) 3120 { 3121 struct hrtimer *timer; 3122 3123 if (!lapic_in_kernel(vcpu) || 3124 kvm_can_post_timer_interrupt(vcpu)) 3125 return; 3126 3127 timer = &vcpu->arch.apic->lapic_timer.timer; 3128 if (hrtimer_cancel(timer)) 3129 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD); 3130 } 3131 3132 /* 3133 * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt 3134 * 3135 * Detect whether guest triggered PV EOI since the 3136 * last entry. If yes, set EOI on guests's behalf. 3137 * Clear PV EOI in guest memory in any case. 3138 */ 3139 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu, 3140 struct kvm_lapic *apic) 3141 { 3142 int vector; 3143 /* 3144 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host 3145 * and KVM_PV_EOI_ENABLED in guest memory as follows: 3146 * 3147 * KVM_APIC_PV_EOI_PENDING is unset: 3148 * -> host disabled PV EOI. 3149 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set: 3150 * -> host enabled PV EOI, guest did not execute EOI yet. 3151 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset: 3152 * -> host enabled PV EOI, guest executed EOI. 3153 */ 3154 BUG_ON(!pv_eoi_enabled(vcpu)); 3155 3156 if (pv_eoi_test_and_clr_pending(vcpu)) 3157 return; 3158 vector = apic_set_eoi(apic); 3159 trace_kvm_pv_eoi(apic, vector); 3160 } 3161 3162 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu) 3163 { 3164 u32 data; 3165 3166 if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention)) 3167 apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic); 3168 3169 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 3170 return; 3171 3172 if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 3173 sizeof(u32))) 3174 return; 3175 3176 apic_set_tpr(vcpu->arch.apic, data & 0xff); 3177 } 3178 3179 /* 3180 * apic_sync_pv_eoi_to_guest - called before vmentry 3181 * 3182 * Detect whether it's safe to enable PV EOI and 3183 * if yes do so. 3184 */ 3185 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu, 3186 struct kvm_lapic *apic) 3187 { 3188 if (!pv_eoi_enabled(vcpu) || 3189 /* IRR set or many bits in ISR: could be nested. */ 3190 apic->irr_pending || 3191 /* Cache not set: could be safe but we don't bother. */ 3192 apic->highest_isr_cache == -1 || 3193 /* Need EOI to update ioapic. */ 3194 kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) { 3195 /* 3196 * PV EOI was disabled by apic_sync_pv_eoi_from_guest 3197 * so we need not do anything here. 3198 */ 3199 return; 3200 } 3201 3202 pv_eoi_set_pending(apic->vcpu); 3203 } 3204 3205 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu) 3206 { 3207 u32 data, tpr; 3208 int max_irr, max_isr; 3209 struct kvm_lapic *apic = vcpu->arch.apic; 3210 3211 apic_sync_pv_eoi_to_guest(vcpu, apic); 3212 3213 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 3214 return; 3215 3216 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff; 3217 max_irr = apic_find_highest_irr(apic); 3218 if (max_irr < 0) 3219 max_irr = 0; 3220 max_isr = apic_find_highest_isr(apic); 3221 if (max_isr < 0) 3222 max_isr = 0; 3223 data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24); 3224 3225 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 3226 sizeof(u32)); 3227 } 3228 3229 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr) 3230 { 3231 if (vapic_addr) { 3232 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, 3233 &vcpu->arch.apic->vapic_cache, 3234 vapic_addr, sizeof(u32))) 3235 return -EINVAL; 3236 __set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 3237 } else { 3238 __clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 3239 } 3240 3241 vcpu->arch.apic->vapic_addr = vapic_addr; 3242 return 0; 3243 } 3244 3245 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data) 3246 { 3247 u32 low; 3248 3249 if (reg == APIC_ICR) { 3250 *data = kvm_x2apic_icr_read(apic); 3251 return 0; 3252 } 3253 3254 if (kvm_lapic_reg_read(apic, reg, 4, &low)) 3255 return 1; 3256 3257 *data = low; 3258 3259 return 0; 3260 } 3261 3262 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data) 3263 { 3264 /* 3265 * ICR is a 64-bit register in x2APIC mode (and Hyper-V PV vAPIC) and 3266 * can be written as such, all other registers remain accessible only 3267 * through 32-bit reads/writes. 3268 */ 3269 if (reg == APIC_ICR) 3270 return kvm_x2apic_icr_write(apic, data); 3271 3272 /* Bits 63:32 are reserved in all other registers. */ 3273 if (data >> 32) 3274 return 1; 3275 3276 return kvm_lapic_reg_write(apic, reg, (u32)data); 3277 } 3278 3279 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data) 3280 { 3281 struct kvm_lapic *apic = vcpu->arch.apic; 3282 u32 reg = (msr - APIC_BASE_MSR) << 4; 3283 3284 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 3285 return 1; 3286 3287 return kvm_lapic_msr_write(apic, reg, data); 3288 } 3289 3290 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data) 3291 { 3292 struct kvm_lapic *apic = vcpu->arch.apic; 3293 u32 reg = (msr - APIC_BASE_MSR) << 4; 3294 3295 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 3296 return 1; 3297 3298 return kvm_lapic_msr_read(apic, reg, data); 3299 } 3300 3301 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data) 3302 { 3303 if (!lapic_in_kernel(vcpu)) 3304 return 1; 3305 3306 return kvm_lapic_msr_write(vcpu->arch.apic, reg, data); 3307 } 3308 3309 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data) 3310 { 3311 if (!lapic_in_kernel(vcpu)) 3312 return 1; 3313 3314 return kvm_lapic_msr_read(vcpu->arch.apic, reg, data); 3315 } 3316 3317 int kvm_lapic_set_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len) 3318 { 3319 u64 addr = data & ~KVM_MSR_ENABLED; 3320 struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data; 3321 unsigned long new_len; 3322 int ret; 3323 3324 if (!IS_ALIGNED(addr, 4)) 3325 return 1; 3326 3327 if (data & KVM_MSR_ENABLED) { 3328 if (addr == ghc->gpa && len <= ghc->len) 3329 new_len = ghc->len; 3330 else 3331 new_len = len; 3332 3333 ret = kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len); 3334 if (ret) 3335 return ret; 3336 } 3337 3338 vcpu->arch.pv_eoi.msr_val = data; 3339 3340 return 0; 3341 } 3342 3343 int kvm_apic_accept_events(struct kvm_vcpu *vcpu) 3344 { 3345 struct kvm_lapic *apic = vcpu->arch.apic; 3346 u8 sipi_vector; 3347 int r; 3348 3349 if (!kvm_apic_has_pending_init_or_sipi(vcpu)) 3350 return 0; 3351 3352 if (is_guest_mode(vcpu)) { 3353 r = kvm_check_nested_events(vcpu); 3354 if (r < 0) 3355 return r == -EBUSY ? 0 : r; 3356 /* 3357 * Continue processing INIT/SIPI even if a nested VM-Exit 3358 * occurred, e.g. pending SIPIs should be dropped if INIT+SIPI 3359 * are blocked as a result of transitioning to VMX root mode. 3360 */ 3361 } 3362 3363 /* 3364 * INITs are blocked while CPU is in specific states (SMM, VMX root 3365 * mode, SVM with GIF=0), while SIPIs are dropped if the CPU isn't in 3366 * wait-for-SIPI (WFS). 3367 */ 3368 if (!kvm_apic_init_sipi_allowed(vcpu)) { 3369 WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED); 3370 clear_bit(KVM_APIC_SIPI, &apic->pending_events); 3371 return 0; 3372 } 3373 3374 if (test_and_clear_bit(KVM_APIC_INIT, &apic->pending_events)) { 3375 kvm_vcpu_reset(vcpu, true); 3376 if (kvm_vcpu_is_bsp(apic->vcpu)) 3377 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); 3378 else 3379 kvm_set_mp_state(vcpu, KVM_MP_STATE_INIT_RECEIVED); 3380 } 3381 if (test_and_clear_bit(KVM_APIC_SIPI, &apic->pending_events)) { 3382 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 3383 /* evaluate pending_events before reading the vector */ 3384 smp_rmb(); 3385 sipi_vector = apic->sipi_vector; 3386 kvm_x86_call(vcpu_deliver_sipi_vector)(vcpu, 3387 sipi_vector); 3388 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); 3389 } 3390 } 3391 return 0; 3392 } 3393 3394 void kvm_lapic_exit(void) 3395 { 3396 static_key_deferred_flush(&apic_hw_disabled); 3397 WARN_ON(static_branch_unlikely(&apic_hw_disabled.key)); 3398 static_key_deferred_flush(&apic_sw_disabled); 3399 WARN_ON(static_branch_unlikely(&apic_sw_disabled.key)); 3400 } 3401