1 // SPDX-License-Identifier: GPL-2.0-only 2 3 /* 4 * Local APIC virtualization 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2007 Novell 8 * Copyright (C) 2007 Intel 9 * Copyright 2009 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Dor Laor <dor.laor@qumranet.com> 13 * Gregory Haskins <ghaskins@novell.com> 14 * Yaozu (Eddie) Dong <eddie.dong@intel.com> 15 * 16 * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation. 17 */ 18 19 #include <linux/kvm_host.h> 20 #include <linux/kvm.h> 21 #include <linux/mm.h> 22 #include <linux/highmem.h> 23 #include <linux/smp.h> 24 #include <linux/hrtimer.h> 25 #include <linux/io.h> 26 #include <linux/export.h> 27 #include <linux/math64.h> 28 #include <linux/slab.h> 29 #include <asm/processor.h> 30 #include <asm/msr.h> 31 #include <asm/page.h> 32 #include <asm/current.h> 33 #include <asm/apicdef.h> 34 #include <asm/delay.h> 35 #include <linux/atomic.h> 36 #include <linux/jump_label.h> 37 #include "kvm_cache_regs.h" 38 #include "irq.h" 39 #include "ioapic.h" 40 #include "trace.h" 41 #include "x86.h" 42 #include "cpuid.h" 43 #include "hyperv.h" 44 45 #ifndef CONFIG_X86_64 46 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y)) 47 #else 48 #define mod_64(x, y) ((x) % (y)) 49 #endif 50 51 #define PRId64 "d" 52 #define PRIx64 "llx" 53 #define PRIu64 "u" 54 #define PRIo64 "o" 55 56 /* 14 is the version for Xeon and Pentium 8.4.8*/ 57 #define APIC_VERSION (0x14UL | ((KVM_APIC_LVT_NUM - 1) << 16)) 58 #define LAPIC_MMIO_LENGTH (1 << 12) 59 /* followed define is not in apicdef.h */ 60 #define MAX_APIC_VECTOR 256 61 #define APIC_VECTORS_PER_REG 32 62 63 static bool lapic_timer_advance_dynamic __read_mostly; 64 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN 100 /* clock cycles */ 65 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX 10000 /* clock cycles */ 66 #define LAPIC_TIMER_ADVANCE_NS_INIT 1000 67 #define LAPIC_TIMER_ADVANCE_NS_MAX 5000 68 /* step-by-step approximation to mitigate fluctuation */ 69 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8 70 71 static inline int apic_test_vector(int vec, void *bitmap) 72 { 73 return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 74 } 75 76 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector) 77 { 78 struct kvm_lapic *apic = vcpu->arch.apic; 79 80 return apic_test_vector(vector, apic->regs + APIC_ISR) || 81 apic_test_vector(vector, apic->regs + APIC_IRR); 82 } 83 84 static inline int __apic_test_and_set_vector(int vec, void *bitmap) 85 { 86 return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 87 } 88 89 static inline int __apic_test_and_clear_vector(int vec, void *bitmap) 90 { 91 return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 92 } 93 94 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_hw_disabled, HZ); 95 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_sw_disabled, HZ); 96 97 static inline int apic_enabled(struct kvm_lapic *apic) 98 { 99 return kvm_apic_sw_enabled(apic) && kvm_apic_hw_enabled(apic); 100 } 101 102 #define LVT_MASK \ 103 (APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK) 104 105 #define LINT_MASK \ 106 (LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \ 107 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER) 108 109 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic) 110 { 111 return apic->vcpu->vcpu_id; 112 } 113 114 static bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu) 115 { 116 return pi_inject_timer && kvm_vcpu_apicv_active(vcpu); 117 } 118 119 bool kvm_can_use_hv_timer(struct kvm_vcpu *vcpu) 120 { 121 return kvm_x86_ops.set_hv_timer 122 && !(kvm_mwait_in_guest(vcpu->kvm) || 123 kvm_can_post_timer_interrupt(vcpu)); 124 } 125 EXPORT_SYMBOL_GPL(kvm_can_use_hv_timer); 126 127 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu) 128 { 129 return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE; 130 } 131 132 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map, 133 u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) { 134 switch (map->mode) { 135 case KVM_APIC_MODE_X2APIC: { 136 u32 offset = (dest_id >> 16) * 16; 137 u32 max_apic_id = map->max_apic_id; 138 139 if (offset <= max_apic_id) { 140 u8 cluster_size = min(max_apic_id - offset + 1, 16U); 141 142 offset = array_index_nospec(offset, map->max_apic_id + 1); 143 *cluster = &map->phys_map[offset]; 144 *mask = dest_id & (0xffff >> (16 - cluster_size)); 145 } else { 146 *mask = 0; 147 } 148 149 return true; 150 } 151 case KVM_APIC_MODE_XAPIC_FLAT: 152 *cluster = map->xapic_flat_map; 153 *mask = dest_id & 0xff; 154 return true; 155 case KVM_APIC_MODE_XAPIC_CLUSTER: 156 *cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf]; 157 *mask = dest_id & 0xf; 158 return true; 159 default: 160 /* Not optimized. */ 161 return false; 162 } 163 } 164 165 static void kvm_apic_map_free(struct rcu_head *rcu) 166 { 167 struct kvm_apic_map *map = container_of(rcu, struct kvm_apic_map, rcu); 168 169 kvfree(map); 170 } 171 172 /* 173 * CLEAN -> DIRTY and UPDATE_IN_PROGRESS -> DIRTY changes happen without a lock. 174 * 175 * DIRTY -> UPDATE_IN_PROGRESS and UPDATE_IN_PROGRESS -> CLEAN happen with 176 * apic_map_lock_held. 177 */ 178 enum { 179 CLEAN, 180 UPDATE_IN_PROGRESS, 181 DIRTY 182 }; 183 184 void kvm_recalculate_apic_map(struct kvm *kvm) 185 { 186 struct kvm_apic_map *new, *old = NULL; 187 struct kvm_vcpu *vcpu; 188 unsigned long i; 189 u32 max_id = 255; /* enough space for any xAPIC ID */ 190 191 /* Read kvm->arch.apic_map_dirty before kvm->arch.apic_map. */ 192 if (atomic_read_acquire(&kvm->arch.apic_map_dirty) == CLEAN) 193 return; 194 195 WARN_ONCE(!irqchip_in_kernel(kvm), 196 "Dirty APIC map without an in-kernel local APIC"); 197 198 mutex_lock(&kvm->arch.apic_map_lock); 199 /* 200 * Read kvm->arch.apic_map_dirty before kvm->arch.apic_map 201 * (if clean) or the APIC registers (if dirty). 202 */ 203 if (atomic_cmpxchg_acquire(&kvm->arch.apic_map_dirty, 204 DIRTY, UPDATE_IN_PROGRESS) == CLEAN) { 205 /* Someone else has updated the map. */ 206 mutex_unlock(&kvm->arch.apic_map_lock); 207 return; 208 } 209 210 kvm_for_each_vcpu(i, vcpu, kvm) 211 if (kvm_apic_present(vcpu)) 212 max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic)); 213 214 new = kvzalloc(sizeof(struct kvm_apic_map) + 215 sizeof(struct kvm_lapic *) * ((u64)max_id + 1), 216 GFP_KERNEL_ACCOUNT); 217 218 if (!new) 219 goto out; 220 221 new->max_apic_id = max_id; 222 223 kvm_for_each_vcpu(i, vcpu, kvm) { 224 struct kvm_lapic *apic = vcpu->arch.apic; 225 struct kvm_lapic **cluster; 226 u16 mask; 227 u32 ldr; 228 u8 xapic_id; 229 u32 x2apic_id; 230 231 if (!kvm_apic_present(vcpu)) 232 continue; 233 234 xapic_id = kvm_xapic_id(apic); 235 x2apic_id = kvm_x2apic_id(apic); 236 237 /* Hotplug hack: see kvm_apic_match_physical_addr(), ... */ 238 if ((apic_x2apic_mode(apic) || x2apic_id > 0xff) && 239 x2apic_id <= new->max_apic_id) 240 new->phys_map[x2apic_id] = apic; 241 /* 242 * ... xAPIC ID of VCPUs with APIC ID > 0xff will wrap-around, 243 * prevent them from masking VCPUs with APIC ID <= 0xff. 244 */ 245 if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id]) 246 new->phys_map[xapic_id] = apic; 247 248 if (!kvm_apic_sw_enabled(apic)) 249 continue; 250 251 ldr = kvm_lapic_get_reg(apic, APIC_LDR); 252 253 if (apic_x2apic_mode(apic)) { 254 new->mode |= KVM_APIC_MODE_X2APIC; 255 } else if (ldr) { 256 ldr = GET_APIC_LOGICAL_ID(ldr); 257 if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT) 258 new->mode |= KVM_APIC_MODE_XAPIC_FLAT; 259 else 260 new->mode |= KVM_APIC_MODE_XAPIC_CLUSTER; 261 } 262 263 if (!kvm_apic_map_get_logical_dest(new, ldr, &cluster, &mask)) 264 continue; 265 266 if (mask) 267 cluster[ffs(mask) - 1] = apic; 268 } 269 out: 270 old = rcu_dereference_protected(kvm->arch.apic_map, 271 lockdep_is_held(&kvm->arch.apic_map_lock)); 272 rcu_assign_pointer(kvm->arch.apic_map, new); 273 /* 274 * Write kvm->arch.apic_map before clearing apic->apic_map_dirty. 275 * If another update has come in, leave it DIRTY. 276 */ 277 atomic_cmpxchg_release(&kvm->arch.apic_map_dirty, 278 UPDATE_IN_PROGRESS, CLEAN); 279 mutex_unlock(&kvm->arch.apic_map_lock); 280 281 if (old) 282 call_rcu(&old->rcu, kvm_apic_map_free); 283 284 kvm_make_scan_ioapic_request(kvm); 285 } 286 287 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val) 288 { 289 bool enabled = val & APIC_SPIV_APIC_ENABLED; 290 291 kvm_lapic_set_reg(apic, APIC_SPIV, val); 292 293 if (enabled != apic->sw_enabled) { 294 apic->sw_enabled = enabled; 295 if (enabled) 296 static_branch_slow_dec_deferred(&apic_sw_disabled); 297 else 298 static_branch_inc(&apic_sw_disabled.key); 299 300 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 301 } 302 303 /* Check if there are APF page ready requests pending */ 304 if (enabled) 305 kvm_make_request(KVM_REQ_APF_READY, apic->vcpu); 306 } 307 308 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id) 309 { 310 kvm_lapic_set_reg(apic, APIC_ID, id << 24); 311 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 312 } 313 314 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id) 315 { 316 kvm_lapic_set_reg(apic, APIC_LDR, id); 317 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 318 } 319 320 static inline void kvm_apic_set_dfr(struct kvm_lapic *apic, u32 val) 321 { 322 kvm_lapic_set_reg(apic, APIC_DFR, val); 323 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 324 } 325 326 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id) 327 { 328 return ((id >> 4) << 16) | (1 << (id & 0xf)); 329 } 330 331 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id) 332 { 333 u32 ldr = kvm_apic_calc_x2apic_ldr(id); 334 335 WARN_ON_ONCE(id != apic->vcpu->vcpu_id); 336 337 kvm_lapic_set_reg(apic, APIC_ID, id); 338 kvm_lapic_set_reg(apic, APIC_LDR, ldr); 339 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 340 } 341 342 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type) 343 { 344 return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED); 345 } 346 347 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic) 348 { 349 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT; 350 } 351 352 static inline int apic_lvtt_period(struct kvm_lapic *apic) 353 { 354 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC; 355 } 356 357 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic) 358 { 359 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE; 360 } 361 362 static inline int apic_lvt_nmi_mode(u32 lvt_val) 363 { 364 return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI; 365 } 366 367 void kvm_apic_set_version(struct kvm_vcpu *vcpu) 368 { 369 struct kvm_lapic *apic = vcpu->arch.apic; 370 u32 v = APIC_VERSION; 371 372 if (!lapic_in_kernel(vcpu)) 373 return; 374 375 /* 376 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation) 377 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with 378 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC 379 * version first and level-triggered interrupts never get EOIed in 380 * IOAPIC. 381 */ 382 if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) && 383 !ioapic_in_kernel(vcpu->kvm)) 384 v |= APIC_LVR_DIRECTED_EOI; 385 kvm_lapic_set_reg(apic, APIC_LVR, v); 386 } 387 388 static const unsigned int apic_lvt_mask[KVM_APIC_LVT_NUM] = { 389 LVT_MASK , /* part LVTT mask, timer mode mask added at runtime */ 390 LVT_MASK | APIC_MODE_MASK, /* LVTTHMR */ 391 LVT_MASK | APIC_MODE_MASK, /* LVTPC */ 392 LINT_MASK, LINT_MASK, /* LVT0-1 */ 393 LVT_MASK /* LVTERR */ 394 }; 395 396 static int find_highest_vector(void *bitmap) 397 { 398 int vec; 399 u32 *reg; 400 401 for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG; 402 vec >= 0; vec -= APIC_VECTORS_PER_REG) { 403 reg = bitmap + REG_POS(vec); 404 if (*reg) 405 return __fls(*reg) + vec; 406 } 407 408 return -1; 409 } 410 411 static u8 count_vectors(void *bitmap) 412 { 413 int vec; 414 u32 *reg; 415 u8 count = 0; 416 417 for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) { 418 reg = bitmap + REG_POS(vec); 419 count += hweight32(*reg); 420 } 421 422 return count; 423 } 424 425 bool __kvm_apic_update_irr(u32 *pir, void *regs, int *max_irr) 426 { 427 u32 i, vec; 428 u32 pir_val, irr_val, prev_irr_val; 429 int max_updated_irr; 430 431 max_updated_irr = -1; 432 *max_irr = -1; 433 434 for (i = vec = 0; i <= 7; i++, vec += 32) { 435 pir_val = READ_ONCE(pir[i]); 436 irr_val = *((u32 *)(regs + APIC_IRR + i * 0x10)); 437 if (pir_val) { 438 prev_irr_val = irr_val; 439 irr_val |= xchg(&pir[i], 0); 440 *((u32 *)(regs + APIC_IRR + i * 0x10)) = irr_val; 441 if (prev_irr_val != irr_val) { 442 max_updated_irr = 443 __fls(irr_val ^ prev_irr_val) + vec; 444 } 445 } 446 if (irr_val) 447 *max_irr = __fls(irr_val) + vec; 448 } 449 450 return ((max_updated_irr != -1) && 451 (max_updated_irr == *max_irr)); 452 } 453 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr); 454 455 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir, int *max_irr) 456 { 457 struct kvm_lapic *apic = vcpu->arch.apic; 458 459 return __kvm_apic_update_irr(pir, apic->regs, max_irr); 460 } 461 EXPORT_SYMBOL_GPL(kvm_apic_update_irr); 462 463 static inline int apic_search_irr(struct kvm_lapic *apic) 464 { 465 return find_highest_vector(apic->regs + APIC_IRR); 466 } 467 468 static inline int apic_find_highest_irr(struct kvm_lapic *apic) 469 { 470 int result; 471 472 /* 473 * Note that irr_pending is just a hint. It will be always 474 * true with virtual interrupt delivery enabled. 475 */ 476 if (!apic->irr_pending) 477 return -1; 478 479 result = apic_search_irr(apic); 480 ASSERT(result == -1 || result >= 16); 481 482 return result; 483 } 484 485 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic) 486 { 487 struct kvm_vcpu *vcpu; 488 489 vcpu = apic->vcpu; 490 491 if (unlikely(vcpu->arch.apicv_active)) { 492 /* need to update RVI */ 493 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR); 494 static_call(kvm_x86_hwapic_irr_update)(vcpu, 495 apic_find_highest_irr(apic)); 496 } else { 497 apic->irr_pending = false; 498 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR); 499 if (apic_search_irr(apic) != -1) 500 apic->irr_pending = true; 501 } 502 } 503 504 void kvm_apic_clear_irr(struct kvm_vcpu *vcpu, int vec) 505 { 506 apic_clear_irr(vec, vcpu->arch.apic); 507 } 508 EXPORT_SYMBOL_GPL(kvm_apic_clear_irr); 509 510 static inline void apic_set_isr(int vec, struct kvm_lapic *apic) 511 { 512 struct kvm_vcpu *vcpu; 513 514 if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR)) 515 return; 516 517 vcpu = apic->vcpu; 518 519 /* 520 * With APIC virtualization enabled, all caching is disabled 521 * because the processor can modify ISR under the hood. Instead 522 * just set SVI. 523 */ 524 if (unlikely(vcpu->arch.apicv_active)) 525 static_call(kvm_x86_hwapic_isr_update)(vcpu, vec); 526 else { 527 ++apic->isr_count; 528 BUG_ON(apic->isr_count > MAX_APIC_VECTOR); 529 /* 530 * ISR (in service register) bit is set when injecting an interrupt. 531 * The highest vector is injected. Thus the latest bit set matches 532 * the highest bit in ISR. 533 */ 534 apic->highest_isr_cache = vec; 535 } 536 } 537 538 static inline int apic_find_highest_isr(struct kvm_lapic *apic) 539 { 540 int result; 541 542 /* 543 * Note that isr_count is always 1, and highest_isr_cache 544 * is always -1, with APIC virtualization enabled. 545 */ 546 if (!apic->isr_count) 547 return -1; 548 if (likely(apic->highest_isr_cache != -1)) 549 return apic->highest_isr_cache; 550 551 result = find_highest_vector(apic->regs + APIC_ISR); 552 ASSERT(result == -1 || result >= 16); 553 554 return result; 555 } 556 557 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic) 558 { 559 struct kvm_vcpu *vcpu; 560 if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR)) 561 return; 562 563 vcpu = apic->vcpu; 564 565 /* 566 * We do get here for APIC virtualization enabled if the guest 567 * uses the Hyper-V APIC enlightenment. In this case we may need 568 * to trigger a new interrupt delivery by writing the SVI field; 569 * on the other hand isr_count and highest_isr_cache are unused 570 * and must be left alone. 571 */ 572 if (unlikely(vcpu->arch.apicv_active)) 573 static_call(kvm_x86_hwapic_isr_update)(vcpu, 574 apic_find_highest_isr(apic)); 575 else { 576 --apic->isr_count; 577 BUG_ON(apic->isr_count < 0); 578 apic->highest_isr_cache = -1; 579 } 580 } 581 582 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu) 583 { 584 /* This may race with setting of irr in __apic_accept_irq() and 585 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq 586 * will cause vmexit immediately and the value will be recalculated 587 * on the next vmentry. 588 */ 589 return apic_find_highest_irr(vcpu->arch.apic); 590 } 591 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr); 592 593 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 594 int vector, int level, int trig_mode, 595 struct dest_map *dest_map); 596 597 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq, 598 struct dest_map *dest_map) 599 { 600 struct kvm_lapic *apic = vcpu->arch.apic; 601 602 return __apic_accept_irq(apic, irq->delivery_mode, irq->vector, 603 irq->level, irq->trig_mode, dest_map); 604 } 605 606 static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map, 607 struct kvm_lapic_irq *irq, u32 min) 608 { 609 int i, count = 0; 610 struct kvm_vcpu *vcpu; 611 612 if (min > map->max_apic_id) 613 return 0; 614 615 for_each_set_bit(i, ipi_bitmap, 616 min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) { 617 if (map->phys_map[min + i]) { 618 vcpu = map->phys_map[min + i]->vcpu; 619 count += kvm_apic_set_irq(vcpu, irq, NULL); 620 } 621 } 622 623 return count; 624 } 625 626 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 627 unsigned long ipi_bitmap_high, u32 min, 628 unsigned long icr, int op_64_bit) 629 { 630 struct kvm_apic_map *map; 631 struct kvm_lapic_irq irq = {0}; 632 int cluster_size = op_64_bit ? 64 : 32; 633 int count; 634 635 if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK)) 636 return -KVM_EINVAL; 637 638 irq.vector = icr & APIC_VECTOR_MASK; 639 irq.delivery_mode = icr & APIC_MODE_MASK; 640 irq.level = (icr & APIC_INT_ASSERT) != 0; 641 irq.trig_mode = icr & APIC_INT_LEVELTRIG; 642 643 rcu_read_lock(); 644 map = rcu_dereference(kvm->arch.apic_map); 645 646 count = -EOPNOTSUPP; 647 if (likely(map)) { 648 count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min); 649 min += cluster_size; 650 count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min); 651 } 652 653 rcu_read_unlock(); 654 return count; 655 } 656 657 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val) 658 { 659 660 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val, 661 sizeof(val)); 662 } 663 664 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val) 665 { 666 667 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val, 668 sizeof(*val)); 669 } 670 671 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu) 672 { 673 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED; 674 } 675 676 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu) 677 { 678 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0) 679 return; 680 681 __set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 682 } 683 684 static bool pv_eoi_test_and_clr_pending(struct kvm_vcpu *vcpu) 685 { 686 u8 val; 687 688 if (pv_eoi_get_user(vcpu, &val) < 0) 689 return false; 690 691 val &= KVM_PV_EOI_ENABLED; 692 693 if (val && pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0) 694 return false; 695 696 /* 697 * Clear pending bit in any case: it will be set again on vmentry. 698 * While this might not be ideal from performance point of view, 699 * this makes sure pv eoi is only enabled when we know it's safe. 700 */ 701 __clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 702 703 return val; 704 } 705 706 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr) 707 { 708 int highest_irr; 709 if (kvm_x86_ops.sync_pir_to_irr) 710 highest_irr = static_call(kvm_x86_sync_pir_to_irr)(apic->vcpu); 711 else 712 highest_irr = apic_find_highest_irr(apic); 713 if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr) 714 return -1; 715 return highest_irr; 716 } 717 718 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr) 719 { 720 u32 tpr, isrv, ppr, old_ppr; 721 int isr; 722 723 old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI); 724 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI); 725 isr = apic_find_highest_isr(apic); 726 isrv = (isr != -1) ? isr : 0; 727 728 if ((tpr & 0xf0) >= (isrv & 0xf0)) 729 ppr = tpr & 0xff; 730 else 731 ppr = isrv & 0xf0; 732 733 *new_ppr = ppr; 734 if (old_ppr != ppr) 735 kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr); 736 737 return ppr < old_ppr; 738 } 739 740 static void apic_update_ppr(struct kvm_lapic *apic) 741 { 742 u32 ppr; 743 744 if (__apic_update_ppr(apic, &ppr) && 745 apic_has_interrupt_for_ppr(apic, ppr) != -1) 746 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 747 } 748 749 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu) 750 { 751 apic_update_ppr(vcpu->arch.apic); 752 } 753 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr); 754 755 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr) 756 { 757 kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr); 758 apic_update_ppr(apic); 759 } 760 761 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda) 762 { 763 return mda == (apic_x2apic_mode(apic) ? 764 X2APIC_BROADCAST : APIC_BROADCAST); 765 } 766 767 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda) 768 { 769 if (kvm_apic_broadcast(apic, mda)) 770 return true; 771 772 if (apic_x2apic_mode(apic)) 773 return mda == kvm_x2apic_id(apic); 774 775 /* 776 * Hotplug hack: Make LAPIC in xAPIC mode also accept interrupts as if 777 * it were in x2APIC mode. Hotplugged VCPUs start in xAPIC mode and 778 * this allows unique addressing of VCPUs with APIC ID over 0xff. 779 * The 0xff condition is needed because writeable xAPIC ID. 780 */ 781 if (kvm_x2apic_id(apic) > 0xff && mda == kvm_x2apic_id(apic)) 782 return true; 783 784 return mda == kvm_xapic_id(apic); 785 } 786 787 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda) 788 { 789 u32 logical_id; 790 791 if (kvm_apic_broadcast(apic, mda)) 792 return true; 793 794 logical_id = kvm_lapic_get_reg(apic, APIC_LDR); 795 796 if (apic_x2apic_mode(apic)) 797 return ((logical_id >> 16) == (mda >> 16)) 798 && (logical_id & mda & 0xffff) != 0; 799 800 logical_id = GET_APIC_LOGICAL_ID(logical_id); 801 802 switch (kvm_lapic_get_reg(apic, APIC_DFR)) { 803 case APIC_DFR_FLAT: 804 return (logical_id & mda) != 0; 805 case APIC_DFR_CLUSTER: 806 return ((logical_id >> 4) == (mda >> 4)) 807 && (logical_id & mda & 0xf) != 0; 808 default: 809 return false; 810 } 811 } 812 813 /* The KVM local APIC implementation has two quirks: 814 * 815 * - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs 816 * in xAPIC mode if the "destination & 0xff" matches its xAPIC ID. 817 * KVM doesn't do that aliasing. 818 * 819 * - in-kernel IOAPIC messages have to be delivered directly to 820 * x2APIC, because the kernel does not support interrupt remapping. 821 * In order to support broadcast without interrupt remapping, x2APIC 822 * rewrites the destination of non-IPI messages from APIC_BROADCAST 823 * to X2APIC_BROADCAST. 824 * 825 * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API. This is 826 * important when userspace wants to use x2APIC-format MSIs, because 827 * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7". 828 */ 829 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id, 830 struct kvm_lapic *source, struct kvm_lapic *target) 831 { 832 bool ipi = source != NULL; 833 834 if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled && 835 !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target)) 836 return X2APIC_BROADCAST; 837 838 return dest_id; 839 } 840 841 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source, 842 int shorthand, unsigned int dest, int dest_mode) 843 { 844 struct kvm_lapic *target = vcpu->arch.apic; 845 u32 mda = kvm_apic_mda(vcpu, dest, source, target); 846 847 ASSERT(target); 848 switch (shorthand) { 849 case APIC_DEST_NOSHORT: 850 if (dest_mode == APIC_DEST_PHYSICAL) 851 return kvm_apic_match_physical_addr(target, mda); 852 else 853 return kvm_apic_match_logical_addr(target, mda); 854 case APIC_DEST_SELF: 855 return target == source; 856 case APIC_DEST_ALLINC: 857 return true; 858 case APIC_DEST_ALLBUT: 859 return target != source; 860 default: 861 return false; 862 } 863 } 864 EXPORT_SYMBOL_GPL(kvm_apic_match_dest); 865 866 int kvm_vector_to_index(u32 vector, u32 dest_vcpus, 867 const unsigned long *bitmap, u32 bitmap_size) 868 { 869 u32 mod; 870 int i, idx = -1; 871 872 mod = vector % dest_vcpus; 873 874 for (i = 0; i <= mod; i++) { 875 idx = find_next_bit(bitmap, bitmap_size, idx + 1); 876 BUG_ON(idx == bitmap_size); 877 } 878 879 return idx; 880 } 881 882 static void kvm_apic_disabled_lapic_found(struct kvm *kvm) 883 { 884 if (!kvm->arch.disabled_lapic_found) { 885 kvm->arch.disabled_lapic_found = true; 886 printk(KERN_INFO 887 "Disabled LAPIC found during irq injection\n"); 888 } 889 } 890 891 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src, 892 struct kvm_lapic_irq *irq, struct kvm_apic_map *map) 893 { 894 if (kvm->arch.x2apic_broadcast_quirk_disabled) { 895 if ((irq->dest_id == APIC_BROADCAST && 896 map->mode != KVM_APIC_MODE_X2APIC)) 897 return true; 898 if (irq->dest_id == X2APIC_BROADCAST) 899 return true; 900 } else { 901 bool x2apic_ipi = src && *src && apic_x2apic_mode(*src); 902 if (irq->dest_id == (x2apic_ipi ? 903 X2APIC_BROADCAST : APIC_BROADCAST)) 904 return true; 905 } 906 907 return false; 908 } 909 910 /* Return true if the interrupt can be handled by using *bitmap as index mask 911 * for valid destinations in *dst array. 912 * Return false if kvm_apic_map_get_dest_lapic did nothing useful. 913 * Note: we may have zero kvm_lapic destinations when we return true, which 914 * means that the interrupt should be dropped. In this case, *bitmap would be 915 * zero and *dst undefined. 916 */ 917 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm, 918 struct kvm_lapic **src, struct kvm_lapic_irq *irq, 919 struct kvm_apic_map *map, struct kvm_lapic ***dst, 920 unsigned long *bitmap) 921 { 922 int i, lowest; 923 924 if (irq->shorthand == APIC_DEST_SELF && src) { 925 *dst = src; 926 *bitmap = 1; 927 return true; 928 } else if (irq->shorthand) 929 return false; 930 931 if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map)) 932 return false; 933 934 if (irq->dest_mode == APIC_DEST_PHYSICAL) { 935 if (irq->dest_id > map->max_apic_id) { 936 *bitmap = 0; 937 } else { 938 u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1); 939 *dst = &map->phys_map[dest_id]; 940 *bitmap = 1; 941 } 942 return true; 943 } 944 945 *bitmap = 0; 946 if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst, 947 (u16 *)bitmap)) 948 return false; 949 950 if (!kvm_lowest_prio_delivery(irq)) 951 return true; 952 953 if (!kvm_vector_hashing_enabled()) { 954 lowest = -1; 955 for_each_set_bit(i, bitmap, 16) { 956 if (!(*dst)[i]) 957 continue; 958 if (lowest < 0) 959 lowest = i; 960 else if (kvm_apic_compare_prio((*dst)[i]->vcpu, 961 (*dst)[lowest]->vcpu) < 0) 962 lowest = i; 963 } 964 } else { 965 if (!*bitmap) 966 return true; 967 968 lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap), 969 bitmap, 16); 970 971 if (!(*dst)[lowest]) { 972 kvm_apic_disabled_lapic_found(kvm); 973 *bitmap = 0; 974 return true; 975 } 976 } 977 978 *bitmap = (lowest >= 0) ? 1 << lowest : 0; 979 980 return true; 981 } 982 983 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src, 984 struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map) 985 { 986 struct kvm_apic_map *map; 987 unsigned long bitmap; 988 struct kvm_lapic **dst = NULL; 989 int i; 990 bool ret; 991 992 *r = -1; 993 994 if (irq->shorthand == APIC_DEST_SELF) { 995 *r = kvm_apic_set_irq(src->vcpu, irq, dest_map); 996 return true; 997 } 998 999 rcu_read_lock(); 1000 map = rcu_dereference(kvm->arch.apic_map); 1001 1002 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap); 1003 if (ret) { 1004 *r = 0; 1005 for_each_set_bit(i, &bitmap, 16) { 1006 if (!dst[i]) 1007 continue; 1008 *r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map); 1009 } 1010 } 1011 1012 rcu_read_unlock(); 1013 return ret; 1014 } 1015 1016 /* 1017 * This routine tries to handle interrupts in posted mode, here is how 1018 * it deals with different cases: 1019 * - For single-destination interrupts, handle it in posted mode 1020 * - Else if vector hashing is enabled and it is a lowest-priority 1021 * interrupt, handle it in posted mode and use the following mechanism 1022 * to find the destination vCPU. 1023 * 1. For lowest-priority interrupts, store all the possible 1024 * destination vCPUs in an array. 1025 * 2. Use "guest vector % max number of destination vCPUs" to find 1026 * the right destination vCPU in the array for the lowest-priority 1027 * interrupt. 1028 * - Otherwise, use remapped mode to inject the interrupt. 1029 */ 1030 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq, 1031 struct kvm_vcpu **dest_vcpu) 1032 { 1033 struct kvm_apic_map *map; 1034 unsigned long bitmap; 1035 struct kvm_lapic **dst = NULL; 1036 bool ret = false; 1037 1038 if (irq->shorthand) 1039 return false; 1040 1041 rcu_read_lock(); 1042 map = rcu_dereference(kvm->arch.apic_map); 1043 1044 if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) && 1045 hweight16(bitmap) == 1) { 1046 unsigned long i = find_first_bit(&bitmap, 16); 1047 1048 if (dst[i]) { 1049 *dest_vcpu = dst[i]->vcpu; 1050 ret = true; 1051 } 1052 } 1053 1054 rcu_read_unlock(); 1055 return ret; 1056 } 1057 1058 /* 1059 * Add a pending IRQ into lapic. 1060 * Return 1 if successfully added and 0 if discarded. 1061 */ 1062 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 1063 int vector, int level, int trig_mode, 1064 struct dest_map *dest_map) 1065 { 1066 int result = 0; 1067 struct kvm_vcpu *vcpu = apic->vcpu; 1068 1069 trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode, 1070 trig_mode, vector); 1071 switch (delivery_mode) { 1072 case APIC_DM_LOWEST: 1073 vcpu->arch.apic_arb_prio++; 1074 fallthrough; 1075 case APIC_DM_FIXED: 1076 if (unlikely(trig_mode && !level)) 1077 break; 1078 1079 /* FIXME add logic for vcpu on reset */ 1080 if (unlikely(!apic_enabled(apic))) 1081 break; 1082 1083 result = 1; 1084 1085 if (dest_map) { 1086 __set_bit(vcpu->vcpu_id, dest_map->map); 1087 dest_map->vectors[vcpu->vcpu_id] = vector; 1088 } 1089 1090 if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) { 1091 if (trig_mode) 1092 kvm_lapic_set_vector(vector, 1093 apic->regs + APIC_TMR); 1094 else 1095 kvm_lapic_clear_vector(vector, 1096 apic->regs + APIC_TMR); 1097 } 1098 1099 if (static_call(kvm_x86_deliver_posted_interrupt)(vcpu, vector)) { 1100 kvm_lapic_set_irr(vector, apic); 1101 kvm_make_request(KVM_REQ_EVENT, vcpu); 1102 kvm_vcpu_kick(vcpu); 1103 } else { 1104 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, 1105 trig_mode, vector); 1106 } 1107 break; 1108 1109 case APIC_DM_REMRD: 1110 result = 1; 1111 vcpu->arch.pv.pv_unhalted = 1; 1112 kvm_make_request(KVM_REQ_EVENT, vcpu); 1113 kvm_vcpu_kick(vcpu); 1114 break; 1115 1116 case APIC_DM_SMI: 1117 result = 1; 1118 kvm_make_request(KVM_REQ_SMI, vcpu); 1119 kvm_vcpu_kick(vcpu); 1120 break; 1121 1122 case APIC_DM_NMI: 1123 result = 1; 1124 kvm_inject_nmi(vcpu); 1125 kvm_vcpu_kick(vcpu); 1126 break; 1127 1128 case APIC_DM_INIT: 1129 if (!trig_mode || level) { 1130 result = 1; 1131 /* assumes that there are only KVM_APIC_INIT/SIPI */ 1132 apic->pending_events = (1UL << KVM_APIC_INIT); 1133 kvm_make_request(KVM_REQ_EVENT, vcpu); 1134 kvm_vcpu_kick(vcpu); 1135 } 1136 break; 1137 1138 case APIC_DM_STARTUP: 1139 result = 1; 1140 apic->sipi_vector = vector; 1141 /* make sure sipi_vector is visible for the receiver */ 1142 smp_wmb(); 1143 set_bit(KVM_APIC_SIPI, &apic->pending_events); 1144 kvm_make_request(KVM_REQ_EVENT, vcpu); 1145 kvm_vcpu_kick(vcpu); 1146 break; 1147 1148 case APIC_DM_EXTINT: 1149 /* 1150 * Should only be called by kvm_apic_local_deliver() with LVT0, 1151 * before NMI watchdog was enabled. Already handled by 1152 * kvm_apic_accept_pic_intr(). 1153 */ 1154 break; 1155 1156 default: 1157 printk(KERN_ERR "TODO: unsupported delivery mode %x\n", 1158 delivery_mode); 1159 break; 1160 } 1161 return result; 1162 } 1163 1164 /* 1165 * This routine identifies the destination vcpus mask meant to receive the 1166 * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find 1167 * out the destination vcpus array and set the bitmap or it traverses to 1168 * each available vcpu to identify the same. 1169 */ 1170 void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq, 1171 unsigned long *vcpu_bitmap) 1172 { 1173 struct kvm_lapic **dest_vcpu = NULL; 1174 struct kvm_lapic *src = NULL; 1175 struct kvm_apic_map *map; 1176 struct kvm_vcpu *vcpu; 1177 unsigned long bitmap, i; 1178 int vcpu_idx; 1179 bool ret; 1180 1181 rcu_read_lock(); 1182 map = rcu_dereference(kvm->arch.apic_map); 1183 1184 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu, 1185 &bitmap); 1186 if (ret) { 1187 for_each_set_bit(i, &bitmap, 16) { 1188 if (!dest_vcpu[i]) 1189 continue; 1190 vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx; 1191 __set_bit(vcpu_idx, vcpu_bitmap); 1192 } 1193 } else { 1194 kvm_for_each_vcpu(i, vcpu, kvm) { 1195 if (!kvm_apic_present(vcpu)) 1196 continue; 1197 if (!kvm_apic_match_dest(vcpu, NULL, 1198 irq->shorthand, 1199 irq->dest_id, 1200 irq->dest_mode)) 1201 continue; 1202 __set_bit(i, vcpu_bitmap); 1203 } 1204 } 1205 rcu_read_unlock(); 1206 } 1207 1208 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2) 1209 { 1210 return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio; 1211 } 1212 1213 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector) 1214 { 1215 return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors); 1216 } 1217 1218 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector) 1219 { 1220 int trigger_mode; 1221 1222 /* Eoi the ioapic only if the ioapic doesn't own the vector. */ 1223 if (!kvm_ioapic_handles_vector(apic, vector)) 1224 return; 1225 1226 /* Request a KVM exit to inform the userspace IOAPIC. */ 1227 if (irqchip_split(apic->vcpu->kvm)) { 1228 apic->vcpu->arch.pending_ioapic_eoi = vector; 1229 kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu); 1230 return; 1231 } 1232 1233 if (apic_test_vector(vector, apic->regs + APIC_TMR)) 1234 trigger_mode = IOAPIC_LEVEL_TRIG; 1235 else 1236 trigger_mode = IOAPIC_EDGE_TRIG; 1237 1238 kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode); 1239 } 1240 1241 static int apic_set_eoi(struct kvm_lapic *apic) 1242 { 1243 int vector = apic_find_highest_isr(apic); 1244 1245 trace_kvm_eoi(apic, vector); 1246 1247 /* 1248 * Not every write EOI will has corresponding ISR, 1249 * one example is when Kernel check timer on setup_IO_APIC 1250 */ 1251 if (vector == -1) 1252 return vector; 1253 1254 apic_clear_isr(vector, apic); 1255 apic_update_ppr(apic); 1256 1257 if (to_hv_vcpu(apic->vcpu) && 1258 test_bit(vector, to_hv_synic(apic->vcpu)->vec_bitmap)) 1259 kvm_hv_synic_send_eoi(apic->vcpu, vector); 1260 1261 kvm_ioapic_send_eoi(apic, vector); 1262 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1263 return vector; 1264 } 1265 1266 /* 1267 * this interface assumes a trap-like exit, which has already finished 1268 * desired side effect including vISR and vPPR update. 1269 */ 1270 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector) 1271 { 1272 struct kvm_lapic *apic = vcpu->arch.apic; 1273 1274 trace_kvm_eoi(apic, vector); 1275 1276 kvm_ioapic_send_eoi(apic, vector); 1277 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1278 } 1279 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated); 1280 1281 void kvm_apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high) 1282 { 1283 struct kvm_lapic_irq irq; 1284 1285 irq.vector = icr_low & APIC_VECTOR_MASK; 1286 irq.delivery_mode = icr_low & APIC_MODE_MASK; 1287 irq.dest_mode = icr_low & APIC_DEST_MASK; 1288 irq.level = (icr_low & APIC_INT_ASSERT) != 0; 1289 irq.trig_mode = icr_low & APIC_INT_LEVELTRIG; 1290 irq.shorthand = icr_low & APIC_SHORT_MASK; 1291 irq.msi_redir_hint = false; 1292 if (apic_x2apic_mode(apic)) 1293 irq.dest_id = icr_high; 1294 else 1295 irq.dest_id = GET_APIC_DEST_FIELD(icr_high); 1296 1297 trace_kvm_apic_ipi(icr_low, irq.dest_id); 1298 1299 kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL); 1300 } 1301 1302 static u32 apic_get_tmcct(struct kvm_lapic *apic) 1303 { 1304 ktime_t remaining, now; 1305 s64 ns; 1306 u32 tmcct; 1307 1308 ASSERT(apic != NULL); 1309 1310 /* if initial count is 0, current count should also be 0 */ 1311 if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 || 1312 apic->lapic_timer.period == 0) 1313 return 0; 1314 1315 now = ktime_get(); 1316 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 1317 if (ktime_to_ns(remaining) < 0) 1318 remaining = 0; 1319 1320 ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period); 1321 tmcct = div64_u64(ns, 1322 (APIC_BUS_CYCLE_NS * apic->divide_count)); 1323 1324 return tmcct; 1325 } 1326 1327 static void __report_tpr_access(struct kvm_lapic *apic, bool write) 1328 { 1329 struct kvm_vcpu *vcpu = apic->vcpu; 1330 struct kvm_run *run = vcpu->run; 1331 1332 kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu); 1333 run->tpr_access.rip = kvm_rip_read(vcpu); 1334 run->tpr_access.is_write = write; 1335 } 1336 1337 static inline void report_tpr_access(struct kvm_lapic *apic, bool write) 1338 { 1339 if (apic->vcpu->arch.tpr_access_reporting) 1340 __report_tpr_access(apic, write); 1341 } 1342 1343 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset) 1344 { 1345 u32 val = 0; 1346 1347 if (offset >= LAPIC_MMIO_LENGTH) 1348 return 0; 1349 1350 switch (offset) { 1351 case APIC_ARBPRI: 1352 break; 1353 1354 case APIC_TMCCT: /* Timer CCR */ 1355 if (apic_lvtt_tscdeadline(apic)) 1356 return 0; 1357 1358 val = apic_get_tmcct(apic); 1359 break; 1360 case APIC_PROCPRI: 1361 apic_update_ppr(apic); 1362 val = kvm_lapic_get_reg(apic, offset); 1363 break; 1364 case APIC_TASKPRI: 1365 report_tpr_access(apic, false); 1366 fallthrough; 1367 default: 1368 val = kvm_lapic_get_reg(apic, offset); 1369 break; 1370 } 1371 1372 return val; 1373 } 1374 1375 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev) 1376 { 1377 return container_of(dev, struct kvm_lapic, dev); 1378 } 1379 1380 #define APIC_REG_MASK(reg) (1ull << ((reg) >> 4)) 1381 #define APIC_REGS_MASK(first, count) \ 1382 (APIC_REG_MASK(first) * ((1ull << (count)) - 1)) 1383 1384 int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len, 1385 void *data) 1386 { 1387 unsigned char alignment = offset & 0xf; 1388 u32 result; 1389 /* this bitmask has a bit cleared for each reserved register */ 1390 u64 valid_reg_mask = 1391 APIC_REG_MASK(APIC_ID) | 1392 APIC_REG_MASK(APIC_LVR) | 1393 APIC_REG_MASK(APIC_TASKPRI) | 1394 APIC_REG_MASK(APIC_PROCPRI) | 1395 APIC_REG_MASK(APIC_LDR) | 1396 APIC_REG_MASK(APIC_DFR) | 1397 APIC_REG_MASK(APIC_SPIV) | 1398 APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) | 1399 APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) | 1400 APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) | 1401 APIC_REG_MASK(APIC_ESR) | 1402 APIC_REG_MASK(APIC_ICR) | 1403 APIC_REG_MASK(APIC_ICR2) | 1404 APIC_REG_MASK(APIC_LVTT) | 1405 APIC_REG_MASK(APIC_LVTTHMR) | 1406 APIC_REG_MASK(APIC_LVTPC) | 1407 APIC_REG_MASK(APIC_LVT0) | 1408 APIC_REG_MASK(APIC_LVT1) | 1409 APIC_REG_MASK(APIC_LVTERR) | 1410 APIC_REG_MASK(APIC_TMICT) | 1411 APIC_REG_MASK(APIC_TMCCT) | 1412 APIC_REG_MASK(APIC_TDCR); 1413 1414 /* ARBPRI is not valid on x2APIC */ 1415 if (!apic_x2apic_mode(apic)) 1416 valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI); 1417 1418 if (alignment + len > 4) 1419 return 1; 1420 1421 if (offset > 0x3f0 || !(valid_reg_mask & APIC_REG_MASK(offset))) 1422 return 1; 1423 1424 result = __apic_read(apic, offset & ~0xf); 1425 1426 trace_kvm_apic_read(offset, result); 1427 1428 switch (len) { 1429 case 1: 1430 case 2: 1431 case 4: 1432 memcpy(data, (char *)&result + alignment, len); 1433 break; 1434 default: 1435 printk(KERN_ERR "Local APIC read with len = %x, " 1436 "should be 1,2, or 4 instead\n", len); 1437 break; 1438 } 1439 return 0; 1440 } 1441 EXPORT_SYMBOL_GPL(kvm_lapic_reg_read); 1442 1443 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr) 1444 { 1445 return addr >= apic->base_address && 1446 addr < apic->base_address + LAPIC_MMIO_LENGTH; 1447 } 1448 1449 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 1450 gpa_t address, int len, void *data) 1451 { 1452 struct kvm_lapic *apic = to_lapic(this); 1453 u32 offset = address - apic->base_address; 1454 1455 if (!apic_mmio_in_range(apic, address)) 1456 return -EOPNOTSUPP; 1457 1458 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 1459 if (!kvm_check_has_quirk(vcpu->kvm, 1460 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 1461 return -EOPNOTSUPP; 1462 1463 memset(data, 0xff, len); 1464 return 0; 1465 } 1466 1467 kvm_lapic_reg_read(apic, offset, len, data); 1468 1469 return 0; 1470 } 1471 1472 static void update_divide_count(struct kvm_lapic *apic) 1473 { 1474 u32 tmp1, tmp2, tdcr; 1475 1476 tdcr = kvm_lapic_get_reg(apic, APIC_TDCR); 1477 tmp1 = tdcr & 0xf; 1478 tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1; 1479 apic->divide_count = 0x1 << (tmp2 & 0x7); 1480 } 1481 1482 static void limit_periodic_timer_frequency(struct kvm_lapic *apic) 1483 { 1484 /* 1485 * Do not allow the guest to program periodic timers with small 1486 * interval, since the hrtimers are not throttled by the host 1487 * scheduler. 1488 */ 1489 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 1490 s64 min_period = min_timer_period_us * 1000LL; 1491 1492 if (apic->lapic_timer.period < min_period) { 1493 pr_info_ratelimited( 1494 "kvm: vcpu %i: requested %lld ns " 1495 "lapic timer period limited to %lld ns\n", 1496 apic->vcpu->vcpu_id, 1497 apic->lapic_timer.period, min_period); 1498 apic->lapic_timer.period = min_period; 1499 } 1500 } 1501 } 1502 1503 static void cancel_hv_timer(struct kvm_lapic *apic); 1504 1505 static void cancel_apic_timer(struct kvm_lapic *apic) 1506 { 1507 hrtimer_cancel(&apic->lapic_timer.timer); 1508 preempt_disable(); 1509 if (apic->lapic_timer.hv_timer_in_use) 1510 cancel_hv_timer(apic); 1511 preempt_enable(); 1512 } 1513 1514 static void apic_update_lvtt(struct kvm_lapic *apic) 1515 { 1516 u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) & 1517 apic->lapic_timer.timer_mode_mask; 1518 1519 if (apic->lapic_timer.timer_mode != timer_mode) { 1520 if (apic_lvtt_tscdeadline(apic) != (timer_mode == 1521 APIC_LVT_TIMER_TSCDEADLINE)) { 1522 cancel_apic_timer(apic); 1523 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 1524 apic->lapic_timer.period = 0; 1525 apic->lapic_timer.tscdeadline = 0; 1526 } 1527 apic->lapic_timer.timer_mode = timer_mode; 1528 limit_periodic_timer_frequency(apic); 1529 } 1530 } 1531 1532 /* 1533 * On APICv, this test will cause a busy wait 1534 * during a higher-priority task. 1535 */ 1536 1537 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu) 1538 { 1539 struct kvm_lapic *apic = vcpu->arch.apic; 1540 u32 reg = kvm_lapic_get_reg(apic, APIC_LVTT); 1541 1542 if (kvm_apic_hw_enabled(apic)) { 1543 int vec = reg & APIC_VECTOR_MASK; 1544 void *bitmap = apic->regs + APIC_ISR; 1545 1546 if (vcpu->arch.apicv_active) 1547 bitmap = apic->regs + APIC_IRR; 1548 1549 if (apic_test_vector(vec, bitmap)) 1550 return true; 1551 } 1552 return false; 1553 } 1554 1555 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles) 1556 { 1557 u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns; 1558 1559 /* 1560 * If the guest TSC is running at a different ratio than the host, then 1561 * convert the delay to nanoseconds to achieve an accurate delay. Note 1562 * that __delay() uses delay_tsc whenever the hardware has TSC, thus 1563 * always for VMX enabled hardware. 1564 */ 1565 if (vcpu->arch.tsc_scaling_ratio == kvm_default_tsc_scaling_ratio) { 1566 __delay(min(guest_cycles, 1567 nsec_to_cycles(vcpu, timer_advance_ns))); 1568 } else { 1569 u64 delay_ns = guest_cycles * 1000000ULL; 1570 do_div(delay_ns, vcpu->arch.virtual_tsc_khz); 1571 ndelay(min_t(u32, delay_ns, timer_advance_ns)); 1572 } 1573 } 1574 1575 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu, 1576 s64 advance_expire_delta) 1577 { 1578 struct kvm_lapic *apic = vcpu->arch.apic; 1579 u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns; 1580 u64 ns; 1581 1582 /* Do not adjust for tiny fluctuations or large random spikes. */ 1583 if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX || 1584 abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN) 1585 return; 1586 1587 /* too early */ 1588 if (advance_expire_delta < 0) { 1589 ns = -advance_expire_delta * 1000000ULL; 1590 do_div(ns, vcpu->arch.virtual_tsc_khz); 1591 timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; 1592 } else { 1593 /* too late */ 1594 ns = advance_expire_delta * 1000000ULL; 1595 do_div(ns, vcpu->arch.virtual_tsc_khz); 1596 timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; 1597 } 1598 1599 if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX)) 1600 timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; 1601 apic->lapic_timer.timer_advance_ns = timer_advance_ns; 1602 } 1603 1604 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1605 { 1606 struct kvm_lapic *apic = vcpu->arch.apic; 1607 u64 guest_tsc, tsc_deadline; 1608 1609 tsc_deadline = apic->lapic_timer.expired_tscdeadline; 1610 apic->lapic_timer.expired_tscdeadline = 0; 1611 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1612 apic->lapic_timer.advance_expire_delta = guest_tsc - tsc_deadline; 1613 1614 if (lapic_timer_advance_dynamic) { 1615 adjust_lapic_timer_advance(vcpu, apic->lapic_timer.advance_expire_delta); 1616 /* 1617 * If the timer fired early, reread the TSC to account for the 1618 * overhead of the above adjustment to avoid waiting longer 1619 * than is necessary. 1620 */ 1621 if (guest_tsc < tsc_deadline) 1622 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1623 } 1624 1625 if (guest_tsc < tsc_deadline) 1626 __wait_lapic_expire(vcpu, tsc_deadline - guest_tsc); 1627 } 1628 1629 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1630 { 1631 if (lapic_in_kernel(vcpu) && 1632 vcpu->arch.apic->lapic_timer.expired_tscdeadline && 1633 vcpu->arch.apic->lapic_timer.timer_advance_ns && 1634 lapic_timer_int_injected(vcpu)) 1635 __kvm_wait_lapic_expire(vcpu); 1636 } 1637 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire); 1638 1639 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic) 1640 { 1641 struct kvm_timer *ktimer = &apic->lapic_timer; 1642 1643 kvm_apic_local_deliver(apic, APIC_LVTT); 1644 if (apic_lvtt_tscdeadline(apic)) { 1645 ktimer->tscdeadline = 0; 1646 } else if (apic_lvtt_oneshot(apic)) { 1647 ktimer->tscdeadline = 0; 1648 ktimer->target_expiration = 0; 1649 } 1650 } 1651 1652 static void apic_timer_expired(struct kvm_lapic *apic, bool from_timer_fn) 1653 { 1654 struct kvm_vcpu *vcpu = apic->vcpu; 1655 struct kvm_timer *ktimer = &apic->lapic_timer; 1656 1657 if (atomic_read(&apic->lapic_timer.pending)) 1658 return; 1659 1660 if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use) 1661 ktimer->expired_tscdeadline = ktimer->tscdeadline; 1662 1663 if (!from_timer_fn && vcpu->arch.apicv_active) { 1664 WARN_ON(kvm_get_running_vcpu() != vcpu); 1665 kvm_apic_inject_pending_timer_irqs(apic); 1666 return; 1667 } 1668 1669 if (kvm_use_posted_timer_interrupt(apic->vcpu)) { 1670 /* 1671 * Ensure the guest's timer has truly expired before posting an 1672 * interrupt. Open code the relevant checks to avoid querying 1673 * lapic_timer_int_injected(), which will be false since the 1674 * interrupt isn't yet injected. Waiting until after injecting 1675 * is not an option since that won't help a posted interrupt. 1676 */ 1677 if (vcpu->arch.apic->lapic_timer.expired_tscdeadline && 1678 vcpu->arch.apic->lapic_timer.timer_advance_ns) 1679 __kvm_wait_lapic_expire(vcpu); 1680 kvm_apic_inject_pending_timer_irqs(apic); 1681 return; 1682 } 1683 1684 atomic_inc(&apic->lapic_timer.pending); 1685 kvm_make_request(KVM_REQ_UNBLOCK, vcpu); 1686 if (from_timer_fn) 1687 kvm_vcpu_kick(vcpu); 1688 } 1689 1690 static void start_sw_tscdeadline(struct kvm_lapic *apic) 1691 { 1692 struct kvm_timer *ktimer = &apic->lapic_timer; 1693 u64 guest_tsc, tscdeadline = ktimer->tscdeadline; 1694 u64 ns = 0; 1695 ktime_t expire; 1696 struct kvm_vcpu *vcpu = apic->vcpu; 1697 unsigned long this_tsc_khz = vcpu->arch.virtual_tsc_khz; 1698 unsigned long flags; 1699 ktime_t now; 1700 1701 if (unlikely(!tscdeadline || !this_tsc_khz)) 1702 return; 1703 1704 local_irq_save(flags); 1705 1706 now = ktime_get(); 1707 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1708 1709 ns = (tscdeadline - guest_tsc) * 1000000ULL; 1710 do_div(ns, this_tsc_khz); 1711 1712 if (likely(tscdeadline > guest_tsc) && 1713 likely(ns > apic->lapic_timer.timer_advance_ns)) { 1714 expire = ktime_add_ns(now, ns); 1715 expire = ktime_sub_ns(expire, ktimer->timer_advance_ns); 1716 hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD); 1717 } else 1718 apic_timer_expired(apic, false); 1719 1720 local_irq_restore(flags); 1721 } 1722 1723 static inline u64 tmict_to_ns(struct kvm_lapic *apic, u32 tmict) 1724 { 1725 return (u64)tmict * APIC_BUS_CYCLE_NS * (u64)apic->divide_count; 1726 } 1727 1728 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor) 1729 { 1730 ktime_t now, remaining; 1731 u64 ns_remaining_old, ns_remaining_new; 1732 1733 apic->lapic_timer.period = 1734 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT)); 1735 limit_periodic_timer_frequency(apic); 1736 1737 now = ktime_get(); 1738 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 1739 if (ktime_to_ns(remaining) < 0) 1740 remaining = 0; 1741 1742 ns_remaining_old = ktime_to_ns(remaining); 1743 ns_remaining_new = mul_u64_u32_div(ns_remaining_old, 1744 apic->divide_count, old_divisor); 1745 1746 apic->lapic_timer.tscdeadline += 1747 nsec_to_cycles(apic->vcpu, ns_remaining_new) - 1748 nsec_to_cycles(apic->vcpu, ns_remaining_old); 1749 apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new); 1750 } 1751 1752 static bool set_target_expiration(struct kvm_lapic *apic, u32 count_reg) 1753 { 1754 ktime_t now; 1755 u64 tscl = rdtsc(); 1756 s64 deadline; 1757 1758 now = ktime_get(); 1759 apic->lapic_timer.period = 1760 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT)); 1761 1762 if (!apic->lapic_timer.period) { 1763 apic->lapic_timer.tscdeadline = 0; 1764 return false; 1765 } 1766 1767 limit_periodic_timer_frequency(apic); 1768 deadline = apic->lapic_timer.period; 1769 1770 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) { 1771 if (unlikely(count_reg != APIC_TMICT)) { 1772 deadline = tmict_to_ns(apic, 1773 kvm_lapic_get_reg(apic, count_reg)); 1774 if (unlikely(deadline <= 0)) 1775 deadline = apic->lapic_timer.period; 1776 else if (unlikely(deadline > apic->lapic_timer.period)) { 1777 pr_info_ratelimited( 1778 "kvm: vcpu %i: requested lapic timer restore with " 1779 "starting count register %#x=%u (%lld ns) > initial count (%lld ns). " 1780 "Using initial count to start timer.\n", 1781 apic->vcpu->vcpu_id, 1782 count_reg, 1783 kvm_lapic_get_reg(apic, count_reg), 1784 deadline, apic->lapic_timer.period); 1785 kvm_lapic_set_reg(apic, count_reg, 0); 1786 deadline = apic->lapic_timer.period; 1787 } 1788 } 1789 } 1790 1791 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 1792 nsec_to_cycles(apic->vcpu, deadline); 1793 apic->lapic_timer.target_expiration = ktime_add_ns(now, deadline); 1794 1795 return true; 1796 } 1797 1798 static void advance_periodic_target_expiration(struct kvm_lapic *apic) 1799 { 1800 ktime_t now = ktime_get(); 1801 u64 tscl = rdtsc(); 1802 ktime_t delta; 1803 1804 /* 1805 * Synchronize both deadlines to the same time source or 1806 * differences in the periods (caused by differences in the 1807 * underlying clocks or numerical approximation errors) will 1808 * cause the two to drift apart over time as the errors 1809 * accumulate. 1810 */ 1811 apic->lapic_timer.target_expiration = 1812 ktime_add_ns(apic->lapic_timer.target_expiration, 1813 apic->lapic_timer.period); 1814 delta = ktime_sub(apic->lapic_timer.target_expiration, now); 1815 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 1816 nsec_to_cycles(apic->vcpu, delta); 1817 } 1818 1819 static void start_sw_period(struct kvm_lapic *apic) 1820 { 1821 if (!apic->lapic_timer.period) 1822 return; 1823 1824 if (ktime_after(ktime_get(), 1825 apic->lapic_timer.target_expiration)) { 1826 apic_timer_expired(apic, false); 1827 1828 if (apic_lvtt_oneshot(apic)) 1829 return; 1830 1831 advance_periodic_target_expiration(apic); 1832 } 1833 1834 hrtimer_start(&apic->lapic_timer.timer, 1835 apic->lapic_timer.target_expiration, 1836 HRTIMER_MODE_ABS_HARD); 1837 } 1838 1839 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu) 1840 { 1841 if (!lapic_in_kernel(vcpu)) 1842 return false; 1843 1844 return vcpu->arch.apic->lapic_timer.hv_timer_in_use; 1845 } 1846 EXPORT_SYMBOL_GPL(kvm_lapic_hv_timer_in_use); 1847 1848 static void cancel_hv_timer(struct kvm_lapic *apic) 1849 { 1850 WARN_ON(preemptible()); 1851 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 1852 static_call(kvm_x86_cancel_hv_timer)(apic->vcpu); 1853 apic->lapic_timer.hv_timer_in_use = false; 1854 } 1855 1856 static bool start_hv_timer(struct kvm_lapic *apic) 1857 { 1858 struct kvm_timer *ktimer = &apic->lapic_timer; 1859 struct kvm_vcpu *vcpu = apic->vcpu; 1860 bool expired; 1861 1862 WARN_ON(preemptible()); 1863 if (!kvm_can_use_hv_timer(vcpu)) 1864 return false; 1865 1866 if (!ktimer->tscdeadline) 1867 return false; 1868 1869 if (static_call(kvm_x86_set_hv_timer)(vcpu, ktimer->tscdeadline, &expired)) 1870 return false; 1871 1872 ktimer->hv_timer_in_use = true; 1873 hrtimer_cancel(&ktimer->timer); 1874 1875 /* 1876 * To simplify handling the periodic timer, leave the hv timer running 1877 * even if the deadline timer has expired, i.e. rely on the resulting 1878 * VM-Exit to recompute the periodic timer's target expiration. 1879 */ 1880 if (!apic_lvtt_period(apic)) { 1881 /* 1882 * Cancel the hv timer if the sw timer fired while the hv timer 1883 * was being programmed, or if the hv timer itself expired. 1884 */ 1885 if (atomic_read(&ktimer->pending)) { 1886 cancel_hv_timer(apic); 1887 } else if (expired) { 1888 apic_timer_expired(apic, false); 1889 cancel_hv_timer(apic); 1890 } 1891 } 1892 1893 trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use); 1894 1895 return true; 1896 } 1897 1898 static void start_sw_timer(struct kvm_lapic *apic) 1899 { 1900 struct kvm_timer *ktimer = &apic->lapic_timer; 1901 1902 WARN_ON(preemptible()); 1903 if (apic->lapic_timer.hv_timer_in_use) 1904 cancel_hv_timer(apic); 1905 if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending)) 1906 return; 1907 1908 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 1909 start_sw_period(apic); 1910 else if (apic_lvtt_tscdeadline(apic)) 1911 start_sw_tscdeadline(apic); 1912 trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false); 1913 } 1914 1915 static void restart_apic_timer(struct kvm_lapic *apic) 1916 { 1917 preempt_disable(); 1918 1919 if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending)) 1920 goto out; 1921 1922 if (!start_hv_timer(apic)) 1923 start_sw_timer(apic); 1924 out: 1925 preempt_enable(); 1926 } 1927 1928 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu) 1929 { 1930 struct kvm_lapic *apic = vcpu->arch.apic; 1931 1932 preempt_disable(); 1933 /* If the preempt notifier has already run, it also called apic_timer_expired */ 1934 if (!apic->lapic_timer.hv_timer_in_use) 1935 goto out; 1936 WARN_ON(kvm_vcpu_is_blocking(vcpu)); 1937 apic_timer_expired(apic, false); 1938 cancel_hv_timer(apic); 1939 1940 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 1941 advance_periodic_target_expiration(apic); 1942 restart_apic_timer(apic); 1943 } 1944 out: 1945 preempt_enable(); 1946 } 1947 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer); 1948 1949 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu) 1950 { 1951 restart_apic_timer(vcpu->arch.apic); 1952 } 1953 1954 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu) 1955 { 1956 struct kvm_lapic *apic = vcpu->arch.apic; 1957 1958 preempt_disable(); 1959 /* Possibly the TSC deadline timer is not enabled yet */ 1960 if (apic->lapic_timer.hv_timer_in_use) 1961 start_sw_timer(apic); 1962 preempt_enable(); 1963 } 1964 1965 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu) 1966 { 1967 struct kvm_lapic *apic = vcpu->arch.apic; 1968 1969 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 1970 restart_apic_timer(apic); 1971 } 1972 1973 static void __start_apic_timer(struct kvm_lapic *apic, u32 count_reg) 1974 { 1975 atomic_set(&apic->lapic_timer.pending, 0); 1976 1977 if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 1978 && !set_target_expiration(apic, count_reg)) 1979 return; 1980 1981 restart_apic_timer(apic); 1982 } 1983 1984 static void start_apic_timer(struct kvm_lapic *apic) 1985 { 1986 __start_apic_timer(apic, APIC_TMICT); 1987 } 1988 1989 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val) 1990 { 1991 bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val); 1992 1993 if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) { 1994 apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode; 1995 if (lvt0_in_nmi_mode) { 1996 atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 1997 } else 1998 atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 1999 } 2000 } 2001 2002 int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val) 2003 { 2004 int ret = 0; 2005 2006 trace_kvm_apic_write(reg, val); 2007 2008 switch (reg) { 2009 case APIC_ID: /* Local APIC ID */ 2010 if (!apic_x2apic_mode(apic)) 2011 kvm_apic_set_xapic_id(apic, val >> 24); 2012 else 2013 ret = 1; 2014 break; 2015 2016 case APIC_TASKPRI: 2017 report_tpr_access(apic, true); 2018 apic_set_tpr(apic, val & 0xff); 2019 break; 2020 2021 case APIC_EOI: 2022 apic_set_eoi(apic); 2023 break; 2024 2025 case APIC_LDR: 2026 if (!apic_x2apic_mode(apic)) 2027 kvm_apic_set_ldr(apic, val & APIC_LDR_MASK); 2028 else 2029 ret = 1; 2030 break; 2031 2032 case APIC_DFR: 2033 if (!apic_x2apic_mode(apic)) 2034 kvm_apic_set_dfr(apic, val | 0x0FFFFFFF); 2035 else 2036 ret = 1; 2037 break; 2038 2039 case APIC_SPIV: { 2040 u32 mask = 0x3ff; 2041 if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI) 2042 mask |= APIC_SPIV_DIRECTED_EOI; 2043 apic_set_spiv(apic, val & mask); 2044 if (!(val & APIC_SPIV_APIC_ENABLED)) { 2045 int i; 2046 u32 lvt_val; 2047 2048 for (i = 0; i < KVM_APIC_LVT_NUM; i++) { 2049 lvt_val = kvm_lapic_get_reg(apic, 2050 APIC_LVTT + 0x10 * i); 2051 kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i, 2052 lvt_val | APIC_LVT_MASKED); 2053 } 2054 apic_update_lvtt(apic); 2055 atomic_set(&apic->lapic_timer.pending, 0); 2056 2057 } 2058 break; 2059 } 2060 case APIC_ICR: 2061 /* No delay here, so we always clear the pending bit */ 2062 val &= ~(1 << 12); 2063 kvm_apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2)); 2064 kvm_lapic_set_reg(apic, APIC_ICR, val); 2065 break; 2066 2067 case APIC_ICR2: 2068 if (!apic_x2apic_mode(apic)) 2069 val &= 0xff000000; 2070 kvm_lapic_set_reg(apic, APIC_ICR2, val); 2071 break; 2072 2073 case APIC_LVT0: 2074 apic_manage_nmi_watchdog(apic, val); 2075 fallthrough; 2076 case APIC_LVTTHMR: 2077 case APIC_LVTPC: 2078 case APIC_LVT1: 2079 case APIC_LVTERR: { 2080 /* TODO: Check vector */ 2081 size_t size; 2082 u32 index; 2083 2084 if (!kvm_apic_sw_enabled(apic)) 2085 val |= APIC_LVT_MASKED; 2086 size = ARRAY_SIZE(apic_lvt_mask); 2087 index = array_index_nospec( 2088 (reg - APIC_LVTT) >> 4, size); 2089 val &= apic_lvt_mask[index]; 2090 kvm_lapic_set_reg(apic, reg, val); 2091 break; 2092 } 2093 2094 case APIC_LVTT: 2095 if (!kvm_apic_sw_enabled(apic)) 2096 val |= APIC_LVT_MASKED; 2097 val &= (apic_lvt_mask[0] | apic->lapic_timer.timer_mode_mask); 2098 kvm_lapic_set_reg(apic, APIC_LVTT, val); 2099 apic_update_lvtt(apic); 2100 break; 2101 2102 case APIC_TMICT: 2103 if (apic_lvtt_tscdeadline(apic)) 2104 break; 2105 2106 cancel_apic_timer(apic); 2107 kvm_lapic_set_reg(apic, APIC_TMICT, val); 2108 start_apic_timer(apic); 2109 break; 2110 2111 case APIC_TDCR: { 2112 uint32_t old_divisor = apic->divide_count; 2113 2114 kvm_lapic_set_reg(apic, APIC_TDCR, val & 0xb); 2115 update_divide_count(apic); 2116 if (apic->divide_count != old_divisor && 2117 apic->lapic_timer.period) { 2118 hrtimer_cancel(&apic->lapic_timer.timer); 2119 update_target_expiration(apic, old_divisor); 2120 restart_apic_timer(apic); 2121 } 2122 break; 2123 } 2124 case APIC_ESR: 2125 if (apic_x2apic_mode(apic) && val != 0) 2126 ret = 1; 2127 break; 2128 2129 case APIC_SELF_IPI: 2130 if (apic_x2apic_mode(apic)) { 2131 kvm_lapic_reg_write(apic, APIC_ICR, 2132 APIC_DEST_SELF | (val & APIC_VECTOR_MASK)); 2133 } else 2134 ret = 1; 2135 break; 2136 default: 2137 ret = 1; 2138 break; 2139 } 2140 2141 kvm_recalculate_apic_map(apic->vcpu->kvm); 2142 2143 return ret; 2144 } 2145 EXPORT_SYMBOL_GPL(kvm_lapic_reg_write); 2146 2147 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 2148 gpa_t address, int len, const void *data) 2149 { 2150 struct kvm_lapic *apic = to_lapic(this); 2151 unsigned int offset = address - apic->base_address; 2152 u32 val; 2153 2154 if (!apic_mmio_in_range(apic, address)) 2155 return -EOPNOTSUPP; 2156 2157 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 2158 if (!kvm_check_has_quirk(vcpu->kvm, 2159 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 2160 return -EOPNOTSUPP; 2161 2162 return 0; 2163 } 2164 2165 /* 2166 * APIC register must be aligned on 128-bits boundary. 2167 * 32/64/128 bits registers must be accessed thru 32 bits. 2168 * Refer SDM 8.4.1 2169 */ 2170 if (len != 4 || (offset & 0xf)) 2171 return 0; 2172 2173 val = *(u32*)data; 2174 2175 kvm_lapic_reg_write(apic, offset & 0xff0, val); 2176 2177 return 0; 2178 } 2179 2180 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu) 2181 { 2182 kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0); 2183 } 2184 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi); 2185 2186 /* emulate APIC access in a trap manner */ 2187 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset) 2188 { 2189 u32 val = 0; 2190 2191 /* hw has done the conditional check and inst decode */ 2192 offset &= 0xff0; 2193 2194 kvm_lapic_reg_read(vcpu->arch.apic, offset, 4, &val); 2195 2196 /* TODO: optimize to just emulate side effect w/o one more write */ 2197 kvm_lapic_reg_write(vcpu->arch.apic, offset, val); 2198 } 2199 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode); 2200 2201 void kvm_free_lapic(struct kvm_vcpu *vcpu) 2202 { 2203 struct kvm_lapic *apic = vcpu->arch.apic; 2204 2205 if (!vcpu->arch.apic) 2206 return; 2207 2208 hrtimer_cancel(&apic->lapic_timer.timer); 2209 2210 if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)) 2211 static_branch_slow_dec_deferred(&apic_hw_disabled); 2212 2213 if (!apic->sw_enabled) 2214 static_branch_slow_dec_deferred(&apic_sw_disabled); 2215 2216 if (apic->regs) 2217 free_page((unsigned long)apic->regs); 2218 2219 kfree(apic); 2220 } 2221 2222 /* 2223 *---------------------------------------------------------------------- 2224 * LAPIC interface 2225 *---------------------------------------------------------------------- 2226 */ 2227 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu) 2228 { 2229 struct kvm_lapic *apic = vcpu->arch.apic; 2230 2231 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic)) 2232 return 0; 2233 2234 return apic->lapic_timer.tscdeadline; 2235 } 2236 2237 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data) 2238 { 2239 struct kvm_lapic *apic = vcpu->arch.apic; 2240 2241 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic)) 2242 return; 2243 2244 hrtimer_cancel(&apic->lapic_timer.timer); 2245 apic->lapic_timer.tscdeadline = data; 2246 start_apic_timer(apic); 2247 } 2248 2249 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8) 2250 { 2251 struct kvm_lapic *apic = vcpu->arch.apic; 2252 2253 apic_set_tpr(apic, ((cr8 & 0x0f) << 4) 2254 | (kvm_lapic_get_reg(apic, APIC_TASKPRI) & 4)); 2255 } 2256 2257 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu) 2258 { 2259 u64 tpr; 2260 2261 tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI); 2262 2263 return (tpr & 0xf0) >> 4; 2264 } 2265 2266 void kvm_lapic_set_base(struct kvm_vcpu *vcpu, u64 value) 2267 { 2268 u64 old_value = vcpu->arch.apic_base; 2269 struct kvm_lapic *apic = vcpu->arch.apic; 2270 2271 vcpu->arch.apic_base = value; 2272 2273 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) 2274 kvm_update_cpuid_runtime(vcpu); 2275 2276 if (!apic) 2277 return; 2278 2279 /* update jump label if enable bit changes */ 2280 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) { 2281 if (value & MSR_IA32_APICBASE_ENABLE) { 2282 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2283 static_branch_slow_dec_deferred(&apic_hw_disabled); 2284 /* Check if there are APF page ready requests pending */ 2285 kvm_make_request(KVM_REQ_APF_READY, vcpu); 2286 } else { 2287 static_branch_inc(&apic_hw_disabled.key); 2288 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 2289 } 2290 } 2291 2292 if (((old_value ^ value) & X2APIC_ENABLE) && (value & X2APIC_ENABLE)) 2293 kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id); 2294 2295 if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) 2296 static_call(kvm_x86_set_virtual_apic_mode)(vcpu); 2297 2298 apic->base_address = apic->vcpu->arch.apic_base & 2299 MSR_IA32_APICBASE_BASE; 2300 2301 if ((value & MSR_IA32_APICBASE_ENABLE) && 2302 apic->base_address != APIC_DEFAULT_PHYS_BASE) 2303 pr_warn_once("APIC base relocation is unsupported by KVM"); 2304 } 2305 2306 void kvm_apic_update_apicv(struct kvm_vcpu *vcpu) 2307 { 2308 struct kvm_lapic *apic = vcpu->arch.apic; 2309 2310 if (vcpu->arch.apicv_active) { 2311 /* irr_pending is always true when apicv is activated. */ 2312 apic->irr_pending = true; 2313 apic->isr_count = 1; 2314 } else { 2315 apic->irr_pending = (apic_search_irr(apic) != -1); 2316 apic->isr_count = count_vectors(apic->regs + APIC_ISR); 2317 } 2318 } 2319 EXPORT_SYMBOL_GPL(kvm_apic_update_apicv); 2320 2321 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event) 2322 { 2323 struct kvm_lapic *apic = vcpu->arch.apic; 2324 u64 msr_val; 2325 int i; 2326 2327 if (!init_event) { 2328 msr_val = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE; 2329 if (kvm_vcpu_is_reset_bsp(vcpu)) 2330 msr_val |= MSR_IA32_APICBASE_BSP; 2331 kvm_lapic_set_base(vcpu, msr_val); 2332 } 2333 2334 if (!apic) 2335 return; 2336 2337 /* Stop the timer in case it's a reset to an active apic */ 2338 hrtimer_cancel(&apic->lapic_timer.timer); 2339 2340 /* The xAPIC ID is set at RESET even if the APIC was already enabled. */ 2341 if (!init_event) 2342 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2343 kvm_apic_set_version(apic->vcpu); 2344 2345 for (i = 0; i < KVM_APIC_LVT_NUM; i++) 2346 kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i, APIC_LVT_MASKED); 2347 apic_update_lvtt(apic); 2348 if (kvm_vcpu_is_reset_bsp(vcpu) && 2349 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED)) 2350 kvm_lapic_set_reg(apic, APIC_LVT0, 2351 SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT)); 2352 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 2353 2354 kvm_apic_set_dfr(apic, 0xffffffffU); 2355 apic_set_spiv(apic, 0xff); 2356 kvm_lapic_set_reg(apic, APIC_TASKPRI, 0); 2357 if (!apic_x2apic_mode(apic)) 2358 kvm_apic_set_ldr(apic, 0); 2359 kvm_lapic_set_reg(apic, APIC_ESR, 0); 2360 kvm_lapic_set_reg(apic, APIC_ICR, 0); 2361 kvm_lapic_set_reg(apic, APIC_ICR2, 0); 2362 kvm_lapic_set_reg(apic, APIC_TDCR, 0); 2363 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 2364 for (i = 0; i < 8; i++) { 2365 kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0); 2366 kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0); 2367 kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0); 2368 } 2369 kvm_apic_update_apicv(vcpu); 2370 apic->highest_isr_cache = -1; 2371 update_divide_count(apic); 2372 atomic_set(&apic->lapic_timer.pending, 0); 2373 2374 vcpu->arch.pv_eoi.msr_val = 0; 2375 apic_update_ppr(apic); 2376 if (vcpu->arch.apicv_active) { 2377 static_call(kvm_x86_apicv_post_state_restore)(vcpu); 2378 static_call(kvm_x86_hwapic_irr_update)(vcpu, -1); 2379 static_call(kvm_x86_hwapic_isr_update)(vcpu, -1); 2380 } 2381 2382 vcpu->arch.apic_arb_prio = 0; 2383 vcpu->arch.apic_attention = 0; 2384 2385 kvm_recalculate_apic_map(vcpu->kvm); 2386 } 2387 2388 /* 2389 *---------------------------------------------------------------------- 2390 * timer interface 2391 *---------------------------------------------------------------------- 2392 */ 2393 2394 static bool lapic_is_periodic(struct kvm_lapic *apic) 2395 { 2396 return apic_lvtt_period(apic); 2397 } 2398 2399 int apic_has_pending_timer(struct kvm_vcpu *vcpu) 2400 { 2401 struct kvm_lapic *apic = vcpu->arch.apic; 2402 2403 if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT)) 2404 return atomic_read(&apic->lapic_timer.pending); 2405 2406 return 0; 2407 } 2408 2409 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type) 2410 { 2411 u32 reg = kvm_lapic_get_reg(apic, lvt_type); 2412 int vector, mode, trig_mode; 2413 2414 if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) { 2415 vector = reg & APIC_VECTOR_MASK; 2416 mode = reg & APIC_MODE_MASK; 2417 trig_mode = reg & APIC_LVT_LEVEL_TRIGGER; 2418 return __apic_accept_irq(apic, mode, vector, 1, trig_mode, 2419 NULL); 2420 } 2421 return 0; 2422 } 2423 2424 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu) 2425 { 2426 struct kvm_lapic *apic = vcpu->arch.apic; 2427 2428 if (apic) 2429 kvm_apic_local_deliver(apic, APIC_LVT0); 2430 } 2431 2432 static const struct kvm_io_device_ops apic_mmio_ops = { 2433 .read = apic_mmio_read, 2434 .write = apic_mmio_write, 2435 }; 2436 2437 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data) 2438 { 2439 struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer); 2440 struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer); 2441 2442 apic_timer_expired(apic, true); 2443 2444 if (lapic_is_periodic(apic)) { 2445 advance_periodic_target_expiration(apic); 2446 hrtimer_add_expires_ns(&ktimer->timer, ktimer->period); 2447 return HRTIMER_RESTART; 2448 } else 2449 return HRTIMER_NORESTART; 2450 } 2451 2452 int kvm_create_lapic(struct kvm_vcpu *vcpu, int timer_advance_ns) 2453 { 2454 struct kvm_lapic *apic; 2455 2456 ASSERT(vcpu != NULL); 2457 2458 apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT); 2459 if (!apic) 2460 goto nomem; 2461 2462 vcpu->arch.apic = apic; 2463 2464 apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 2465 if (!apic->regs) { 2466 printk(KERN_ERR "malloc apic regs error for vcpu %x\n", 2467 vcpu->vcpu_id); 2468 goto nomem_free_apic; 2469 } 2470 apic->vcpu = vcpu; 2471 2472 hrtimer_init(&apic->lapic_timer.timer, CLOCK_MONOTONIC, 2473 HRTIMER_MODE_ABS_HARD); 2474 apic->lapic_timer.timer.function = apic_timer_fn; 2475 if (timer_advance_ns == -1) { 2476 apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; 2477 lapic_timer_advance_dynamic = true; 2478 } else { 2479 apic->lapic_timer.timer_advance_ns = timer_advance_ns; 2480 lapic_timer_advance_dynamic = false; 2481 } 2482 2483 /* 2484 * Stuff the APIC ENABLE bit in lieu of temporarily incrementing 2485 * apic_hw_disabled; the full RESET value is set by kvm_lapic_reset(). 2486 */ 2487 vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE; 2488 static_branch_inc(&apic_sw_disabled.key); /* sw disabled at reset */ 2489 kvm_iodevice_init(&apic->dev, &apic_mmio_ops); 2490 2491 return 0; 2492 nomem_free_apic: 2493 kfree(apic); 2494 vcpu->arch.apic = NULL; 2495 nomem: 2496 return -ENOMEM; 2497 } 2498 2499 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu) 2500 { 2501 struct kvm_lapic *apic = vcpu->arch.apic; 2502 u32 ppr; 2503 2504 if (!kvm_apic_present(vcpu)) 2505 return -1; 2506 2507 __apic_update_ppr(apic, &ppr); 2508 return apic_has_interrupt_for_ppr(apic, ppr); 2509 } 2510 EXPORT_SYMBOL_GPL(kvm_apic_has_interrupt); 2511 2512 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu) 2513 { 2514 u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0); 2515 2516 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 2517 return 1; 2518 if ((lvt0 & APIC_LVT_MASKED) == 0 && 2519 GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT) 2520 return 1; 2521 return 0; 2522 } 2523 2524 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu) 2525 { 2526 struct kvm_lapic *apic = vcpu->arch.apic; 2527 2528 if (atomic_read(&apic->lapic_timer.pending) > 0) { 2529 kvm_apic_inject_pending_timer_irqs(apic); 2530 atomic_set(&apic->lapic_timer.pending, 0); 2531 } 2532 } 2533 2534 int kvm_get_apic_interrupt(struct kvm_vcpu *vcpu) 2535 { 2536 int vector = kvm_apic_has_interrupt(vcpu); 2537 struct kvm_lapic *apic = vcpu->arch.apic; 2538 u32 ppr; 2539 2540 if (vector == -1) 2541 return -1; 2542 2543 /* 2544 * We get here even with APIC virtualization enabled, if doing 2545 * nested virtualization and L1 runs with the "acknowledge interrupt 2546 * on exit" mode. Then we cannot inject the interrupt via RVI, 2547 * because the process would deliver it through the IDT. 2548 */ 2549 2550 apic_clear_irr(vector, apic); 2551 if (to_hv_vcpu(vcpu) && test_bit(vector, to_hv_synic(vcpu)->auto_eoi_bitmap)) { 2552 /* 2553 * For auto-EOI interrupts, there might be another pending 2554 * interrupt above PPR, so check whether to raise another 2555 * KVM_REQ_EVENT. 2556 */ 2557 apic_update_ppr(apic); 2558 } else { 2559 /* 2560 * For normal interrupts, PPR has been raised and there cannot 2561 * be a higher-priority pending interrupt---except if there was 2562 * a concurrent interrupt injection, but that would have 2563 * triggered KVM_REQ_EVENT already. 2564 */ 2565 apic_set_isr(vector, apic); 2566 __apic_update_ppr(apic, &ppr); 2567 } 2568 2569 return vector; 2570 } 2571 2572 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu, 2573 struct kvm_lapic_state *s, bool set) 2574 { 2575 if (apic_x2apic_mode(vcpu->arch.apic)) { 2576 u32 *id = (u32 *)(s->regs + APIC_ID); 2577 u32 *ldr = (u32 *)(s->regs + APIC_LDR); 2578 2579 if (vcpu->kvm->arch.x2apic_format) { 2580 if (*id != vcpu->vcpu_id) 2581 return -EINVAL; 2582 } else { 2583 if (set) 2584 *id >>= 24; 2585 else 2586 *id <<= 24; 2587 } 2588 2589 /* In x2APIC mode, the LDR is fixed and based on the id */ 2590 if (set) 2591 *ldr = kvm_apic_calc_x2apic_ldr(*id); 2592 } 2593 2594 return 0; 2595 } 2596 2597 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 2598 { 2599 memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s)); 2600 2601 /* 2602 * Get calculated timer current count for remaining timer period (if 2603 * any) and store it in the returned register set. 2604 */ 2605 __kvm_lapic_set_reg(s->regs, APIC_TMCCT, 2606 __apic_read(vcpu->arch.apic, APIC_TMCCT)); 2607 2608 return kvm_apic_state_fixup(vcpu, s, false); 2609 } 2610 2611 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 2612 { 2613 struct kvm_lapic *apic = vcpu->arch.apic; 2614 int r; 2615 2616 kvm_lapic_set_base(vcpu, vcpu->arch.apic_base); 2617 /* set SPIV separately to get count of SW disabled APICs right */ 2618 apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV))); 2619 2620 r = kvm_apic_state_fixup(vcpu, s, true); 2621 if (r) { 2622 kvm_recalculate_apic_map(vcpu->kvm); 2623 return r; 2624 } 2625 memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s)); 2626 2627 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 2628 kvm_recalculate_apic_map(vcpu->kvm); 2629 kvm_apic_set_version(vcpu); 2630 2631 apic_update_ppr(apic); 2632 hrtimer_cancel(&apic->lapic_timer.timer); 2633 apic->lapic_timer.expired_tscdeadline = 0; 2634 apic_update_lvtt(apic); 2635 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 2636 update_divide_count(apic); 2637 __start_apic_timer(apic, APIC_TMCCT); 2638 kvm_lapic_set_reg(apic, APIC_TMCCT, 0); 2639 kvm_apic_update_apicv(vcpu); 2640 apic->highest_isr_cache = -1; 2641 if (vcpu->arch.apicv_active) { 2642 static_call(kvm_x86_apicv_post_state_restore)(vcpu); 2643 static_call(kvm_x86_hwapic_irr_update)(vcpu, 2644 apic_find_highest_irr(apic)); 2645 static_call(kvm_x86_hwapic_isr_update)(vcpu, 2646 apic_find_highest_isr(apic)); 2647 } 2648 kvm_make_request(KVM_REQ_EVENT, vcpu); 2649 if (ioapic_in_kernel(vcpu->kvm)) 2650 kvm_rtc_eoi_tracking_restore_one(vcpu); 2651 2652 vcpu->arch.apic_arb_prio = 0; 2653 2654 return 0; 2655 } 2656 2657 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu) 2658 { 2659 struct hrtimer *timer; 2660 2661 if (!lapic_in_kernel(vcpu) || 2662 kvm_can_post_timer_interrupt(vcpu)) 2663 return; 2664 2665 timer = &vcpu->arch.apic->lapic_timer.timer; 2666 if (hrtimer_cancel(timer)) 2667 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD); 2668 } 2669 2670 /* 2671 * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt 2672 * 2673 * Detect whether guest triggered PV EOI since the 2674 * last entry. If yes, set EOI on guests's behalf. 2675 * Clear PV EOI in guest memory in any case. 2676 */ 2677 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu, 2678 struct kvm_lapic *apic) 2679 { 2680 int vector; 2681 /* 2682 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host 2683 * and KVM_PV_EOI_ENABLED in guest memory as follows: 2684 * 2685 * KVM_APIC_PV_EOI_PENDING is unset: 2686 * -> host disabled PV EOI. 2687 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set: 2688 * -> host enabled PV EOI, guest did not execute EOI yet. 2689 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset: 2690 * -> host enabled PV EOI, guest executed EOI. 2691 */ 2692 BUG_ON(!pv_eoi_enabled(vcpu)); 2693 2694 if (pv_eoi_test_and_clr_pending(vcpu)) 2695 return; 2696 vector = apic_set_eoi(apic); 2697 trace_kvm_pv_eoi(apic, vector); 2698 } 2699 2700 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu) 2701 { 2702 u32 data; 2703 2704 if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention)) 2705 apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic); 2706 2707 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 2708 return; 2709 2710 if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 2711 sizeof(u32))) 2712 return; 2713 2714 apic_set_tpr(vcpu->arch.apic, data & 0xff); 2715 } 2716 2717 /* 2718 * apic_sync_pv_eoi_to_guest - called before vmentry 2719 * 2720 * Detect whether it's safe to enable PV EOI and 2721 * if yes do so. 2722 */ 2723 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu, 2724 struct kvm_lapic *apic) 2725 { 2726 if (!pv_eoi_enabled(vcpu) || 2727 /* IRR set or many bits in ISR: could be nested. */ 2728 apic->irr_pending || 2729 /* Cache not set: could be safe but we don't bother. */ 2730 apic->highest_isr_cache == -1 || 2731 /* Need EOI to update ioapic. */ 2732 kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) { 2733 /* 2734 * PV EOI was disabled by apic_sync_pv_eoi_from_guest 2735 * so we need not do anything here. 2736 */ 2737 return; 2738 } 2739 2740 pv_eoi_set_pending(apic->vcpu); 2741 } 2742 2743 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu) 2744 { 2745 u32 data, tpr; 2746 int max_irr, max_isr; 2747 struct kvm_lapic *apic = vcpu->arch.apic; 2748 2749 apic_sync_pv_eoi_to_guest(vcpu, apic); 2750 2751 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 2752 return; 2753 2754 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff; 2755 max_irr = apic_find_highest_irr(apic); 2756 if (max_irr < 0) 2757 max_irr = 0; 2758 max_isr = apic_find_highest_isr(apic); 2759 if (max_isr < 0) 2760 max_isr = 0; 2761 data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24); 2762 2763 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 2764 sizeof(u32)); 2765 } 2766 2767 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr) 2768 { 2769 if (vapic_addr) { 2770 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, 2771 &vcpu->arch.apic->vapic_cache, 2772 vapic_addr, sizeof(u32))) 2773 return -EINVAL; 2774 __set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 2775 } else { 2776 __clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 2777 } 2778 2779 vcpu->arch.apic->vapic_addr = vapic_addr; 2780 return 0; 2781 } 2782 2783 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data) 2784 { 2785 struct kvm_lapic *apic = vcpu->arch.apic; 2786 u32 reg = (msr - APIC_BASE_MSR) << 4; 2787 2788 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 2789 return 1; 2790 2791 if (reg == APIC_ICR2) 2792 return 1; 2793 2794 /* if this is ICR write vector before command */ 2795 if (reg == APIC_ICR) 2796 kvm_lapic_reg_write(apic, APIC_ICR2, (u32)(data >> 32)); 2797 return kvm_lapic_reg_write(apic, reg, (u32)data); 2798 } 2799 2800 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data) 2801 { 2802 struct kvm_lapic *apic = vcpu->arch.apic; 2803 u32 reg = (msr - APIC_BASE_MSR) << 4, low, high = 0; 2804 2805 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 2806 return 1; 2807 2808 if (reg == APIC_DFR || reg == APIC_ICR2) 2809 return 1; 2810 2811 if (kvm_lapic_reg_read(apic, reg, 4, &low)) 2812 return 1; 2813 if (reg == APIC_ICR) 2814 kvm_lapic_reg_read(apic, APIC_ICR2, 4, &high); 2815 2816 *data = (((u64)high) << 32) | low; 2817 2818 return 0; 2819 } 2820 2821 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data) 2822 { 2823 struct kvm_lapic *apic = vcpu->arch.apic; 2824 2825 if (!lapic_in_kernel(vcpu)) 2826 return 1; 2827 2828 /* if this is ICR write vector before command */ 2829 if (reg == APIC_ICR) 2830 kvm_lapic_reg_write(apic, APIC_ICR2, (u32)(data >> 32)); 2831 return kvm_lapic_reg_write(apic, reg, (u32)data); 2832 } 2833 2834 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data) 2835 { 2836 struct kvm_lapic *apic = vcpu->arch.apic; 2837 u32 low, high = 0; 2838 2839 if (!lapic_in_kernel(vcpu)) 2840 return 1; 2841 2842 if (kvm_lapic_reg_read(apic, reg, 4, &low)) 2843 return 1; 2844 if (reg == APIC_ICR) 2845 kvm_lapic_reg_read(apic, APIC_ICR2, 4, &high); 2846 2847 *data = (((u64)high) << 32) | low; 2848 2849 return 0; 2850 } 2851 2852 int kvm_lapic_set_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len) 2853 { 2854 u64 addr = data & ~KVM_MSR_ENABLED; 2855 struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data; 2856 unsigned long new_len; 2857 int ret; 2858 2859 if (!IS_ALIGNED(addr, 4)) 2860 return 1; 2861 2862 if (data & KVM_MSR_ENABLED) { 2863 if (addr == ghc->gpa && len <= ghc->len) 2864 new_len = ghc->len; 2865 else 2866 new_len = len; 2867 2868 ret = kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len); 2869 if (ret) 2870 return ret; 2871 } 2872 2873 vcpu->arch.pv_eoi.msr_val = data; 2874 2875 return 0; 2876 } 2877 2878 int kvm_apic_accept_events(struct kvm_vcpu *vcpu) 2879 { 2880 struct kvm_lapic *apic = vcpu->arch.apic; 2881 u8 sipi_vector; 2882 int r; 2883 unsigned long pe; 2884 2885 if (!lapic_in_kernel(vcpu)) 2886 return 0; 2887 2888 /* 2889 * Read pending events before calling the check_events 2890 * callback. 2891 */ 2892 pe = smp_load_acquire(&apic->pending_events); 2893 if (!pe) 2894 return 0; 2895 2896 if (is_guest_mode(vcpu)) { 2897 r = kvm_check_nested_events(vcpu); 2898 if (r < 0) 2899 return r == -EBUSY ? 0 : r; 2900 /* 2901 * If an event has happened and caused a vmexit, 2902 * we know INITs are latched and therefore 2903 * we will not incorrectly deliver an APIC 2904 * event instead of a vmexit. 2905 */ 2906 } 2907 2908 /* 2909 * INITs are latched while CPU is in specific states 2910 * (SMM, VMX root mode, SVM with GIF=0). 2911 * Because a CPU cannot be in these states immediately 2912 * after it has processed an INIT signal (and thus in 2913 * KVM_MP_STATE_INIT_RECEIVED state), just eat SIPIs 2914 * and leave the INIT pending. 2915 */ 2916 if (kvm_vcpu_latch_init(vcpu)) { 2917 WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED); 2918 if (test_bit(KVM_APIC_SIPI, &pe)) 2919 clear_bit(KVM_APIC_SIPI, &apic->pending_events); 2920 return 0; 2921 } 2922 2923 if (test_bit(KVM_APIC_INIT, &pe)) { 2924 clear_bit(KVM_APIC_INIT, &apic->pending_events); 2925 kvm_vcpu_reset(vcpu, true); 2926 if (kvm_vcpu_is_bsp(apic->vcpu)) 2927 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 2928 else 2929 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 2930 } 2931 if (test_bit(KVM_APIC_SIPI, &pe)) { 2932 clear_bit(KVM_APIC_SIPI, &apic->pending_events); 2933 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 2934 /* evaluate pending_events before reading the vector */ 2935 smp_rmb(); 2936 sipi_vector = apic->sipi_vector; 2937 kvm_x86_ops.vcpu_deliver_sipi_vector(vcpu, sipi_vector); 2938 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 2939 } 2940 } 2941 return 0; 2942 } 2943 2944 void kvm_lapic_exit(void) 2945 { 2946 static_key_deferred_flush(&apic_hw_disabled); 2947 WARN_ON(static_branch_unlikely(&apic_hw_disabled.key)); 2948 static_key_deferred_flush(&apic_sw_disabled); 2949 WARN_ON(static_branch_unlikely(&apic_sw_disabled.key)); 2950 } 2951