1 // SPDX-License-Identifier: GPL-2.0-only 2 3 /* 4 * Local APIC virtualization 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2007 Novell 8 * Copyright (C) 2007 Intel 9 * Copyright 2009 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Dor Laor <dor.laor@qumranet.com> 13 * Gregory Haskins <ghaskins@novell.com> 14 * Yaozu (Eddie) Dong <eddie.dong@intel.com> 15 * 16 * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation. 17 */ 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/kvm_host.h> 21 #include <linux/kvm.h> 22 #include <linux/mm.h> 23 #include <linux/highmem.h> 24 #include <linux/smp.h> 25 #include <linux/hrtimer.h> 26 #include <linux/io.h> 27 #include <linux/export.h> 28 #include <linux/math64.h> 29 #include <linux/slab.h> 30 #include <asm/processor.h> 31 #include <asm/mce.h> 32 #include <asm/msr.h> 33 #include <asm/page.h> 34 #include <asm/current.h> 35 #include <asm/apicdef.h> 36 #include <asm/delay.h> 37 #include <linux/atomic.h> 38 #include <linux/jump_label.h> 39 #include "kvm_cache_regs.h" 40 #include "irq.h" 41 #include "ioapic.h" 42 #include "trace.h" 43 #include "x86.h" 44 #include "xen.h" 45 #include "cpuid.h" 46 #include "hyperv.h" 47 #include "smm.h" 48 49 #ifndef CONFIG_X86_64 50 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y)) 51 #else 52 #define mod_64(x, y) ((x) % (y)) 53 #endif 54 55 /* 14 is the version for Xeon and Pentium 8.4.8*/ 56 #define APIC_VERSION 0x14UL 57 #define LAPIC_MMIO_LENGTH (1 << 12) 58 /* followed define is not in apicdef.h */ 59 #define MAX_APIC_VECTOR 256 60 #define APIC_VECTORS_PER_REG 32 61 62 /* 63 * Enable local APIC timer advancement (tscdeadline mode only) with adaptive 64 * tuning. When enabled, KVM programs the host timer event to fire early, i.e. 65 * before the deadline expires, to account for the delay between taking the 66 * VM-Exit (to inject the guest event) and the subsequent VM-Enter to resume 67 * the guest, i.e. so that the interrupt arrives in the guest with minimal 68 * latency relative to the deadline programmed by the guest. 69 */ 70 static bool lapic_timer_advance __read_mostly = true; 71 module_param(lapic_timer_advance, bool, 0444); 72 73 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN 100 /* clock cycles */ 74 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX 10000 /* clock cycles */ 75 #define LAPIC_TIMER_ADVANCE_NS_INIT 1000 76 #define LAPIC_TIMER_ADVANCE_NS_MAX 5000 77 /* step-by-step approximation to mitigate fluctuation */ 78 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8 79 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data); 80 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data); 81 82 static inline void __kvm_lapic_set_reg(char *regs, int reg_off, u32 val) 83 { 84 *((u32 *) (regs + reg_off)) = val; 85 } 86 87 static inline void kvm_lapic_set_reg(struct kvm_lapic *apic, int reg_off, u32 val) 88 { 89 __kvm_lapic_set_reg(apic->regs, reg_off, val); 90 } 91 92 static __always_inline u64 __kvm_lapic_get_reg64(char *regs, int reg) 93 { 94 BUILD_BUG_ON(reg != APIC_ICR); 95 return *((u64 *) (regs + reg)); 96 } 97 98 static __always_inline u64 kvm_lapic_get_reg64(struct kvm_lapic *apic, int reg) 99 { 100 return __kvm_lapic_get_reg64(apic->regs, reg); 101 } 102 103 static __always_inline void __kvm_lapic_set_reg64(char *regs, int reg, u64 val) 104 { 105 BUILD_BUG_ON(reg != APIC_ICR); 106 *((u64 *) (regs + reg)) = val; 107 } 108 109 static __always_inline void kvm_lapic_set_reg64(struct kvm_lapic *apic, 110 int reg, u64 val) 111 { 112 __kvm_lapic_set_reg64(apic->regs, reg, val); 113 } 114 115 static inline int apic_test_vector(int vec, void *bitmap) 116 { 117 return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 118 } 119 120 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector) 121 { 122 struct kvm_lapic *apic = vcpu->arch.apic; 123 124 return apic_test_vector(vector, apic->regs + APIC_ISR) || 125 apic_test_vector(vector, apic->regs + APIC_IRR); 126 } 127 128 static inline int __apic_test_and_set_vector(int vec, void *bitmap) 129 { 130 return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 131 } 132 133 static inline int __apic_test_and_clear_vector(int vec, void *bitmap) 134 { 135 return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 136 } 137 138 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); 139 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); 140 141 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_hw_disabled, HZ); 142 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_sw_disabled, HZ); 143 144 static inline int apic_enabled(struct kvm_lapic *apic) 145 { 146 return kvm_apic_sw_enabled(apic) && kvm_apic_hw_enabled(apic); 147 } 148 149 #define LVT_MASK \ 150 (APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK) 151 152 #define LINT_MASK \ 153 (LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \ 154 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER) 155 156 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic) 157 { 158 return apic->vcpu->vcpu_id; 159 } 160 161 static bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu) 162 { 163 return pi_inject_timer && kvm_vcpu_apicv_active(vcpu) && 164 (kvm_mwait_in_guest(vcpu->kvm) || kvm_hlt_in_guest(vcpu->kvm)); 165 } 166 167 bool kvm_can_use_hv_timer(struct kvm_vcpu *vcpu) 168 { 169 return kvm_x86_ops.set_hv_timer 170 && !(kvm_mwait_in_guest(vcpu->kvm) || 171 kvm_can_post_timer_interrupt(vcpu)); 172 } 173 174 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu) 175 { 176 return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE; 177 } 178 179 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id) 180 { 181 return ((id >> 4) << 16) | (1 << (id & 0xf)); 182 } 183 184 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map, 185 u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) { 186 switch (map->logical_mode) { 187 case KVM_APIC_MODE_SW_DISABLED: 188 /* Arbitrarily use the flat map so that @cluster isn't NULL. */ 189 *cluster = map->xapic_flat_map; 190 *mask = 0; 191 return true; 192 case KVM_APIC_MODE_X2APIC: { 193 u32 offset = (dest_id >> 16) * 16; 194 u32 max_apic_id = map->max_apic_id; 195 196 if (offset <= max_apic_id) { 197 u8 cluster_size = min(max_apic_id - offset + 1, 16U); 198 199 offset = array_index_nospec(offset, map->max_apic_id + 1); 200 *cluster = &map->phys_map[offset]; 201 *mask = dest_id & (0xffff >> (16 - cluster_size)); 202 } else { 203 *mask = 0; 204 } 205 206 return true; 207 } 208 case KVM_APIC_MODE_XAPIC_FLAT: 209 *cluster = map->xapic_flat_map; 210 *mask = dest_id & 0xff; 211 return true; 212 case KVM_APIC_MODE_XAPIC_CLUSTER: 213 *cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf]; 214 *mask = dest_id & 0xf; 215 return true; 216 case KVM_APIC_MODE_MAP_DISABLED: 217 return false; 218 default: 219 WARN_ON_ONCE(1); 220 return false; 221 } 222 } 223 224 static void kvm_apic_map_free(struct rcu_head *rcu) 225 { 226 struct kvm_apic_map *map = container_of(rcu, struct kvm_apic_map, rcu); 227 228 kvfree(map); 229 } 230 231 static int kvm_recalculate_phys_map(struct kvm_apic_map *new, 232 struct kvm_vcpu *vcpu, 233 bool *xapic_id_mismatch) 234 { 235 struct kvm_lapic *apic = vcpu->arch.apic; 236 u32 x2apic_id = kvm_x2apic_id(apic); 237 u32 xapic_id = kvm_xapic_id(apic); 238 u32 physical_id; 239 240 /* 241 * For simplicity, KVM always allocates enough space for all possible 242 * xAPIC IDs. Yell, but don't kill the VM, as KVM can continue on 243 * without the optimized map. 244 */ 245 if (WARN_ON_ONCE(xapic_id > new->max_apic_id)) 246 return -EINVAL; 247 248 /* 249 * Bail if a vCPU was added and/or enabled its APIC between allocating 250 * the map and doing the actual calculations for the map. Note, KVM 251 * hardcodes the x2APIC ID to vcpu_id, i.e. there's no TOCTOU bug if 252 * the compiler decides to reload x2apic_id after this check. 253 */ 254 if (x2apic_id > new->max_apic_id) 255 return -E2BIG; 256 257 /* 258 * Deliberately truncate the vCPU ID when detecting a mismatched APIC 259 * ID to avoid false positives if the vCPU ID, i.e. x2APIC ID, is a 260 * 32-bit value. Any unwanted aliasing due to truncation results will 261 * be detected below. 262 */ 263 if (!apic_x2apic_mode(apic) && xapic_id != (u8)vcpu->vcpu_id) 264 *xapic_id_mismatch = true; 265 266 /* 267 * Apply KVM's hotplug hack if userspace has enable 32-bit APIC IDs. 268 * Allow sending events to vCPUs by their x2APIC ID even if the target 269 * vCPU is in legacy xAPIC mode, and silently ignore aliased xAPIC IDs 270 * (the x2APIC ID is truncated to 8 bits, causing IDs > 0xff to wrap 271 * and collide). 272 * 273 * Honor the architectural (and KVM's non-optimized) behavior if 274 * userspace has not enabled 32-bit x2APIC IDs. Each APIC is supposed 275 * to process messages independently. If multiple vCPUs have the same 276 * effective APIC ID, e.g. due to the x2APIC wrap or because the guest 277 * manually modified its xAPIC IDs, events targeting that ID are 278 * supposed to be recognized by all vCPUs with said ID. 279 */ 280 if (vcpu->kvm->arch.x2apic_format) { 281 /* See also kvm_apic_match_physical_addr(). */ 282 if (apic_x2apic_mode(apic) || x2apic_id > 0xff) 283 new->phys_map[x2apic_id] = apic; 284 285 if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id]) 286 new->phys_map[xapic_id] = apic; 287 } else { 288 /* 289 * Disable the optimized map if the physical APIC ID is already 290 * mapped, i.e. is aliased to multiple vCPUs. The optimized 291 * map requires a strict 1:1 mapping between IDs and vCPUs. 292 */ 293 if (apic_x2apic_mode(apic)) 294 physical_id = x2apic_id; 295 else 296 physical_id = xapic_id; 297 298 if (new->phys_map[physical_id]) 299 return -EINVAL; 300 301 new->phys_map[physical_id] = apic; 302 } 303 304 return 0; 305 } 306 307 static void kvm_recalculate_logical_map(struct kvm_apic_map *new, 308 struct kvm_vcpu *vcpu) 309 { 310 struct kvm_lapic *apic = vcpu->arch.apic; 311 enum kvm_apic_logical_mode logical_mode; 312 struct kvm_lapic **cluster; 313 u16 mask; 314 u32 ldr; 315 316 if (new->logical_mode == KVM_APIC_MODE_MAP_DISABLED) 317 return; 318 319 if (!kvm_apic_sw_enabled(apic)) 320 return; 321 322 ldr = kvm_lapic_get_reg(apic, APIC_LDR); 323 if (!ldr) 324 return; 325 326 if (apic_x2apic_mode(apic)) { 327 logical_mode = KVM_APIC_MODE_X2APIC; 328 } else { 329 ldr = GET_APIC_LOGICAL_ID(ldr); 330 if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT) 331 logical_mode = KVM_APIC_MODE_XAPIC_FLAT; 332 else 333 logical_mode = KVM_APIC_MODE_XAPIC_CLUSTER; 334 } 335 336 /* 337 * To optimize logical mode delivery, all software-enabled APICs must 338 * be configured for the same mode. 339 */ 340 if (new->logical_mode == KVM_APIC_MODE_SW_DISABLED) { 341 new->logical_mode = logical_mode; 342 } else if (new->logical_mode != logical_mode) { 343 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED; 344 return; 345 } 346 347 /* 348 * In x2APIC mode, the LDR is read-only and derived directly from the 349 * x2APIC ID, thus is guaranteed to be addressable. KVM reuses 350 * kvm_apic_map.phys_map to optimize logical mode x2APIC interrupts by 351 * reversing the LDR calculation to get cluster of APICs, i.e. no 352 * additional work is required. 353 */ 354 if (apic_x2apic_mode(apic)) 355 return; 356 357 if (WARN_ON_ONCE(!kvm_apic_map_get_logical_dest(new, ldr, 358 &cluster, &mask))) { 359 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED; 360 return; 361 } 362 363 if (!mask) 364 return; 365 366 ldr = ffs(mask) - 1; 367 if (!is_power_of_2(mask) || cluster[ldr]) 368 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED; 369 else 370 cluster[ldr] = apic; 371 } 372 373 /* 374 * CLEAN -> DIRTY and UPDATE_IN_PROGRESS -> DIRTY changes happen without a lock. 375 * 376 * DIRTY -> UPDATE_IN_PROGRESS and UPDATE_IN_PROGRESS -> CLEAN happen with 377 * apic_map_lock_held. 378 */ 379 enum { 380 CLEAN, 381 UPDATE_IN_PROGRESS, 382 DIRTY 383 }; 384 385 void kvm_recalculate_apic_map(struct kvm *kvm) 386 { 387 struct kvm_apic_map *new, *old = NULL; 388 struct kvm_vcpu *vcpu; 389 unsigned long i; 390 u32 max_id = 255; /* enough space for any xAPIC ID */ 391 bool xapic_id_mismatch; 392 int r; 393 394 /* Read kvm->arch.apic_map_dirty before kvm->arch.apic_map. */ 395 if (atomic_read_acquire(&kvm->arch.apic_map_dirty) == CLEAN) 396 return; 397 398 WARN_ONCE(!irqchip_in_kernel(kvm), 399 "Dirty APIC map without an in-kernel local APIC"); 400 401 mutex_lock(&kvm->arch.apic_map_lock); 402 403 retry: 404 /* 405 * Read kvm->arch.apic_map_dirty before kvm->arch.apic_map (if clean) 406 * or the APIC registers (if dirty). Note, on retry the map may have 407 * not yet been marked dirty by whatever task changed a vCPU's x2APIC 408 * ID, i.e. the map may still show up as in-progress. In that case 409 * this task still needs to retry and complete its calculation. 410 */ 411 if (atomic_cmpxchg_acquire(&kvm->arch.apic_map_dirty, 412 DIRTY, UPDATE_IN_PROGRESS) == CLEAN) { 413 /* Someone else has updated the map. */ 414 mutex_unlock(&kvm->arch.apic_map_lock); 415 return; 416 } 417 418 /* 419 * Reset the mismatch flag between attempts so that KVM does the right 420 * thing if a vCPU changes its xAPIC ID, but do NOT reset max_id, i.e. 421 * keep max_id strictly increasing. Disallowing max_id from shrinking 422 * ensures KVM won't get stuck in an infinite loop, e.g. if the vCPU 423 * with the highest x2APIC ID is toggling its APIC on and off. 424 */ 425 xapic_id_mismatch = false; 426 427 kvm_for_each_vcpu(i, vcpu, kvm) 428 if (kvm_apic_present(vcpu)) 429 max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic)); 430 431 new = kvzalloc(sizeof(struct kvm_apic_map) + 432 sizeof(struct kvm_lapic *) * ((u64)max_id + 1), 433 GFP_KERNEL_ACCOUNT); 434 435 if (!new) 436 goto out; 437 438 new->max_apic_id = max_id; 439 new->logical_mode = KVM_APIC_MODE_SW_DISABLED; 440 441 kvm_for_each_vcpu(i, vcpu, kvm) { 442 if (!kvm_apic_present(vcpu)) 443 continue; 444 445 r = kvm_recalculate_phys_map(new, vcpu, &xapic_id_mismatch); 446 if (r) { 447 kvfree(new); 448 new = NULL; 449 if (r == -E2BIG) { 450 cond_resched(); 451 goto retry; 452 } 453 454 goto out; 455 } 456 457 kvm_recalculate_logical_map(new, vcpu); 458 } 459 out: 460 /* 461 * The optimized map is effectively KVM's internal version of APICv, 462 * and all unwanted aliasing that results in disabling the optimized 463 * map also applies to APICv. 464 */ 465 if (!new) 466 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED); 467 else 468 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED); 469 470 if (!new || new->logical_mode == KVM_APIC_MODE_MAP_DISABLED) 471 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED); 472 else 473 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED); 474 475 if (xapic_id_mismatch) 476 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED); 477 else 478 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED); 479 480 old = rcu_dereference_protected(kvm->arch.apic_map, 481 lockdep_is_held(&kvm->arch.apic_map_lock)); 482 rcu_assign_pointer(kvm->arch.apic_map, new); 483 /* 484 * Write kvm->arch.apic_map before clearing apic->apic_map_dirty. 485 * If another update has come in, leave it DIRTY. 486 */ 487 atomic_cmpxchg_release(&kvm->arch.apic_map_dirty, 488 UPDATE_IN_PROGRESS, CLEAN); 489 mutex_unlock(&kvm->arch.apic_map_lock); 490 491 if (old) 492 call_rcu(&old->rcu, kvm_apic_map_free); 493 494 kvm_make_scan_ioapic_request(kvm); 495 } 496 497 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val) 498 { 499 bool enabled = val & APIC_SPIV_APIC_ENABLED; 500 501 kvm_lapic_set_reg(apic, APIC_SPIV, val); 502 503 if (enabled != apic->sw_enabled) { 504 apic->sw_enabled = enabled; 505 if (enabled) 506 static_branch_slow_dec_deferred(&apic_sw_disabled); 507 else 508 static_branch_inc(&apic_sw_disabled.key); 509 510 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 511 } 512 513 /* Check if there are APF page ready requests pending */ 514 if (enabled) { 515 kvm_make_request(KVM_REQ_APF_READY, apic->vcpu); 516 kvm_xen_sw_enable_lapic(apic->vcpu); 517 } 518 } 519 520 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id) 521 { 522 kvm_lapic_set_reg(apic, APIC_ID, id << 24); 523 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 524 } 525 526 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id) 527 { 528 kvm_lapic_set_reg(apic, APIC_LDR, id); 529 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 530 } 531 532 static inline void kvm_apic_set_dfr(struct kvm_lapic *apic, u32 val) 533 { 534 kvm_lapic_set_reg(apic, APIC_DFR, val); 535 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 536 } 537 538 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id) 539 { 540 u32 ldr = kvm_apic_calc_x2apic_ldr(id); 541 542 WARN_ON_ONCE(id != apic->vcpu->vcpu_id); 543 544 kvm_lapic_set_reg(apic, APIC_ID, id); 545 kvm_lapic_set_reg(apic, APIC_LDR, ldr); 546 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 547 } 548 549 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type) 550 { 551 return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED); 552 } 553 554 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic) 555 { 556 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT; 557 } 558 559 static inline int apic_lvtt_period(struct kvm_lapic *apic) 560 { 561 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC; 562 } 563 564 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic) 565 { 566 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE; 567 } 568 569 static inline int apic_lvt_nmi_mode(u32 lvt_val) 570 { 571 return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI; 572 } 573 574 static inline bool kvm_lapic_lvt_supported(struct kvm_lapic *apic, int lvt_index) 575 { 576 return apic->nr_lvt_entries > lvt_index; 577 } 578 579 static inline int kvm_apic_calc_nr_lvt_entries(struct kvm_vcpu *vcpu) 580 { 581 return KVM_APIC_MAX_NR_LVT_ENTRIES - !(vcpu->arch.mcg_cap & MCG_CMCI_P); 582 } 583 584 void kvm_apic_set_version(struct kvm_vcpu *vcpu) 585 { 586 struct kvm_lapic *apic = vcpu->arch.apic; 587 u32 v = 0; 588 589 if (!lapic_in_kernel(vcpu)) 590 return; 591 592 v = APIC_VERSION | ((apic->nr_lvt_entries - 1) << 16); 593 594 /* 595 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation) 596 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with 597 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC 598 * version first and level-triggered interrupts never get EOIed in 599 * IOAPIC. 600 */ 601 if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) && 602 !ioapic_in_kernel(vcpu->kvm)) 603 v |= APIC_LVR_DIRECTED_EOI; 604 kvm_lapic_set_reg(apic, APIC_LVR, v); 605 } 606 607 void kvm_apic_after_set_mcg_cap(struct kvm_vcpu *vcpu) 608 { 609 int nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu); 610 struct kvm_lapic *apic = vcpu->arch.apic; 611 int i; 612 613 if (!lapic_in_kernel(vcpu) || nr_lvt_entries == apic->nr_lvt_entries) 614 return; 615 616 /* Initialize/mask any "new" LVT entries. */ 617 for (i = apic->nr_lvt_entries; i < nr_lvt_entries; i++) 618 kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED); 619 620 apic->nr_lvt_entries = nr_lvt_entries; 621 622 /* The number of LVT entries is reflected in the version register. */ 623 kvm_apic_set_version(vcpu); 624 } 625 626 static const unsigned int apic_lvt_mask[KVM_APIC_MAX_NR_LVT_ENTRIES] = { 627 [LVT_TIMER] = LVT_MASK, /* timer mode mask added at runtime */ 628 [LVT_THERMAL_MONITOR] = LVT_MASK | APIC_MODE_MASK, 629 [LVT_PERFORMANCE_COUNTER] = LVT_MASK | APIC_MODE_MASK, 630 [LVT_LINT0] = LINT_MASK, 631 [LVT_LINT1] = LINT_MASK, 632 [LVT_ERROR] = LVT_MASK, 633 [LVT_CMCI] = LVT_MASK | APIC_MODE_MASK 634 }; 635 636 static int find_highest_vector(void *bitmap) 637 { 638 int vec; 639 u32 *reg; 640 641 for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG; 642 vec >= 0; vec -= APIC_VECTORS_PER_REG) { 643 reg = bitmap + REG_POS(vec); 644 if (*reg) 645 return __fls(*reg) + vec; 646 } 647 648 return -1; 649 } 650 651 static u8 count_vectors(void *bitmap) 652 { 653 int vec; 654 u32 *reg; 655 u8 count = 0; 656 657 for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) { 658 reg = bitmap + REG_POS(vec); 659 count += hweight32(*reg); 660 } 661 662 return count; 663 } 664 665 bool __kvm_apic_update_irr(u32 *pir, void *regs, int *max_irr) 666 { 667 u32 i, vec; 668 u32 pir_val, irr_val, prev_irr_val; 669 int max_updated_irr; 670 671 max_updated_irr = -1; 672 *max_irr = -1; 673 674 for (i = vec = 0; i <= 7; i++, vec += 32) { 675 u32 *p_irr = (u32 *)(regs + APIC_IRR + i * 0x10); 676 677 irr_val = *p_irr; 678 pir_val = READ_ONCE(pir[i]); 679 680 if (pir_val) { 681 pir_val = xchg(&pir[i], 0); 682 683 prev_irr_val = irr_val; 684 do { 685 irr_val = prev_irr_val | pir_val; 686 } while (prev_irr_val != irr_val && 687 !try_cmpxchg(p_irr, &prev_irr_val, irr_val)); 688 689 if (prev_irr_val != irr_val) 690 max_updated_irr = __fls(irr_val ^ prev_irr_val) + vec; 691 } 692 if (irr_val) 693 *max_irr = __fls(irr_val) + vec; 694 } 695 696 return ((max_updated_irr != -1) && 697 (max_updated_irr == *max_irr)); 698 } 699 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr); 700 701 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir, int *max_irr) 702 { 703 struct kvm_lapic *apic = vcpu->arch.apic; 704 bool irr_updated = __kvm_apic_update_irr(pir, apic->regs, max_irr); 705 706 if (unlikely(!apic->apicv_active && irr_updated)) 707 apic->irr_pending = true; 708 return irr_updated; 709 } 710 EXPORT_SYMBOL_GPL(kvm_apic_update_irr); 711 712 static inline int apic_search_irr(struct kvm_lapic *apic) 713 { 714 return find_highest_vector(apic->regs + APIC_IRR); 715 } 716 717 static inline int apic_find_highest_irr(struct kvm_lapic *apic) 718 { 719 int result; 720 721 /* 722 * Note that irr_pending is just a hint. It will be always 723 * true with virtual interrupt delivery enabled. 724 */ 725 if (!apic->irr_pending) 726 return -1; 727 728 result = apic_search_irr(apic); 729 ASSERT(result == -1 || result >= 16); 730 731 return result; 732 } 733 734 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic) 735 { 736 if (unlikely(apic->apicv_active)) { 737 /* need to update RVI */ 738 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR); 739 kvm_x86_call(hwapic_irr_update)(apic->vcpu, 740 apic_find_highest_irr(apic)); 741 } else { 742 apic->irr_pending = false; 743 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR); 744 if (apic_search_irr(apic) != -1) 745 apic->irr_pending = true; 746 } 747 } 748 749 void kvm_apic_clear_irr(struct kvm_vcpu *vcpu, int vec) 750 { 751 apic_clear_irr(vec, vcpu->arch.apic); 752 } 753 EXPORT_SYMBOL_GPL(kvm_apic_clear_irr); 754 755 static inline void apic_set_isr(int vec, struct kvm_lapic *apic) 756 { 757 if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR)) 758 return; 759 760 /* 761 * With APIC virtualization enabled, all caching is disabled 762 * because the processor can modify ISR under the hood. Instead 763 * just set SVI. 764 */ 765 if (unlikely(apic->apicv_active)) 766 kvm_x86_call(hwapic_isr_update)(vec); 767 else { 768 ++apic->isr_count; 769 BUG_ON(apic->isr_count > MAX_APIC_VECTOR); 770 /* 771 * ISR (in service register) bit is set when injecting an interrupt. 772 * The highest vector is injected. Thus the latest bit set matches 773 * the highest bit in ISR. 774 */ 775 apic->highest_isr_cache = vec; 776 } 777 } 778 779 static inline int apic_find_highest_isr(struct kvm_lapic *apic) 780 { 781 int result; 782 783 /* 784 * Note that isr_count is always 1, and highest_isr_cache 785 * is always -1, with APIC virtualization enabled. 786 */ 787 if (!apic->isr_count) 788 return -1; 789 if (likely(apic->highest_isr_cache != -1)) 790 return apic->highest_isr_cache; 791 792 result = find_highest_vector(apic->regs + APIC_ISR); 793 ASSERT(result == -1 || result >= 16); 794 795 return result; 796 } 797 798 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic) 799 { 800 if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR)) 801 return; 802 803 /* 804 * We do get here for APIC virtualization enabled if the guest 805 * uses the Hyper-V APIC enlightenment. In this case we may need 806 * to trigger a new interrupt delivery by writing the SVI field; 807 * on the other hand isr_count and highest_isr_cache are unused 808 * and must be left alone. 809 */ 810 if (unlikely(apic->apicv_active)) 811 kvm_x86_call(hwapic_isr_update)(apic_find_highest_isr(apic)); 812 else { 813 --apic->isr_count; 814 BUG_ON(apic->isr_count < 0); 815 apic->highest_isr_cache = -1; 816 } 817 } 818 819 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu) 820 { 821 /* This may race with setting of irr in __apic_accept_irq() and 822 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq 823 * will cause vmexit immediately and the value will be recalculated 824 * on the next vmentry. 825 */ 826 return apic_find_highest_irr(vcpu->arch.apic); 827 } 828 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr); 829 830 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 831 int vector, int level, int trig_mode, 832 struct dest_map *dest_map); 833 834 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq, 835 struct dest_map *dest_map) 836 { 837 struct kvm_lapic *apic = vcpu->arch.apic; 838 839 return __apic_accept_irq(apic, irq->delivery_mode, irq->vector, 840 irq->level, irq->trig_mode, dest_map); 841 } 842 843 static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map, 844 struct kvm_lapic_irq *irq, u32 min) 845 { 846 int i, count = 0; 847 struct kvm_vcpu *vcpu; 848 849 if (min > map->max_apic_id) 850 return 0; 851 852 for_each_set_bit(i, ipi_bitmap, 853 min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) { 854 if (map->phys_map[min + i]) { 855 vcpu = map->phys_map[min + i]->vcpu; 856 count += kvm_apic_set_irq(vcpu, irq, NULL); 857 } 858 } 859 860 return count; 861 } 862 863 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 864 unsigned long ipi_bitmap_high, u32 min, 865 unsigned long icr, int op_64_bit) 866 { 867 struct kvm_apic_map *map; 868 struct kvm_lapic_irq irq = {0}; 869 int cluster_size = op_64_bit ? 64 : 32; 870 int count; 871 872 if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK)) 873 return -KVM_EINVAL; 874 875 irq.vector = icr & APIC_VECTOR_MASK; 876 irq.delivery_mode = icr & APIC_MODE_MASK; 877 irq.level = (icr & APIC_INT_ASSERT) != 0; 878 irq.trig_mode = icr & APIC_INT_LEVELTRIG; 879 880 rcu_read_lock(); 881 map = rcu_dereference(kvm->arch.apic_map); 882 883 count = -EOPNOTSUPP; 884 if (likely(map)) { 885 count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min); 886 min += cluster_size; 887 count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min); 888 } 889 890 rcu_read_unlock(); 891 return count; 892 } 893 894 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val) 895 { 896 897 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val, 898 sizeof(val)); 899 } 900 901 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val) 902 { 903 904 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val, 905 sizeof(*val)); 906 } 907 908 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu) 909 { 910 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED; 911 } 912 913 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu) 914 { 915 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0) 916 return; 917 918 __set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 919 } 920 921 static bool pv_eoi_test_and_clr_pending(struct kvm_vcpu *vcpu) 922 { 923 u8 val; 924 925 if (pv_eoi_get_user(vcpu, &val) < 0) 926 return false; 927 928 val &= KVM_PV_EOI_ENABLED; 929 930 if (val && pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0) 931 return false; 932 933 /* 934 * Clear pending bit in any case: it will be set again on vmentry. 935 * While this might not be ideal from performance point of view, 936 * this makes sure pv eoi is only enabled when we know it's safe. 937 */ 938 __clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 939 940 return val; 941 } 942 943 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr) 944 { 945 int highest_irr; 946 if (kvm_x86_ops.sync_pir_to_irr) 947 highest_irr = kvm_x86_call(sync_pir_to_irr)(apic->vcpu); 948 else 949 highest_irr = apic_find_highest_irr(apic); 950 if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr) 951 return -1; 952 return highest_irr; 953 } 954 955 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr) 956 { 957 u32 tpr, isrv, ppr, old_ppr; 958 int isr; 959 960 old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI); 961 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI); 962 isr = apic_find_highest_isr(apic); 963 isrv = (isr != -1) ? isr : 0; 964 965 if ((tpr & 0xf0) >= (isrv & 0xf0)) 966 ppr = tpr & 0xff; 967 else 968 ppr = isrv & 0xf0; 969 970 *new_ppr = ppr; 971 if (old_ppr != ppr) 972 kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr); 973 974 return ppr < old_ppr; 975 } 976 977 static void apic_update_ppr(struct kvm_lapic *apic) 978 { 979 u32 ppr; 980 981 if (__apic_update_ppr(apic, &ppr) && 982 apic_has_interrupt_for_ppr(apic, ppr) != -1) 983 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 984 } 985 986 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu) 987 { 988 apic_update_ppr(vcpu->arch.apic); 989 } 990 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr); 991 992 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr) 993 { 994 kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr); 995 apic_update_ppr(apic); 996 } 997 998 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda) 999 { 1000 return mda == (apic_x2apic_mode(apic) ? 1001 X2APIC_BROADCAST : APIC_BROADCAST); 1002 } 1003 1004 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda) 1005 { 1006 if (kvm_apic_broadcast(apic, mda)) 1007 return true; 1008 1009 /* 1010 * Hotplug hack: Accept interrupts for vCPUs in xAPIC mode as if they 1011 * were in x2APIC mode if the target APIC ID can't be encoded as an 1012 * xAPIC ID. This allows unique addressing of hotplugged vCPUs (which 1013 * start in xAPIC mode) with an APIC ID that is unaddressable in xAPIC 1014 * mode. Match the x2APIC ID if and only if the target APIC ID can't 1015 * be encoded in xAPIC to avoid spurious matches against a vCPU that 1016 * changed its (addressable) xAPIC ID (which is writable). 1017 */ 1018 if (apic_x2apic_mode(apic) || mda > 0xff) 1019 return mda == kvm_x2apic_id(apic); 1020 1021 return mda == kvm_xapic_id(apic); 1022 } 1023 1024 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda) 1025 { 1026 u32 logical_id; 1027 1028 if (kvm_apic_broadcast(apic, mda)) 1029 return true; 1030 1031 logical_id = kvm_lapic_get_reg(apic, APIC_LDR); 1032 1033 if (apic_x2apic_mode(apic)) 1034 return ((logical_id >> 16) == (mda >> 16)) 1035 && (logical_id & mda & 0xffff) != 0; 1036 1037 logical_id = GET_APIC_LOGICAL_ID(logical_id); 1038 1039 switch (kvm_lapic_get_reg(apic, APIC_DFR)) { 1040 case APIC_DFR_FLAT: 1041 return (logical_id & mda) != 0; 1042 case APIC_DFR_CLUSTER: 1043 return ((logical_id >> 4) == (mda >> 4)) 1044 && (logical_id & mda & 0xf) != 0; 1045 default: 1046 return false; 1047 } 1048 } 1049 1050 /* The KVM local APIC implementation has two quirks: 1051 * 1052 * - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs 1053 * in xAPIC mode if the "destination & 0xff" matches its xAPIC ID. 1054 * KVM doesn't do that aliasing. 1055 * 1056 * - in-kernel IOAPIC messages have to be delivered directly to 1057 * x2APIC, because the kernel does not support interrupt remapping. 1058 * In order to support broadcast without interrupt remapping, x2APIC 1059 * rewrites the destination of non-IPI messages from APIC_BROADCAST 1060 * to X2APIC_BROADCAST. 1061 * 1062 * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API. This is 1063 * important when userspace wants to use x2APIC-format MSIs, because 1064 * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7". 1065 */ 1066 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id, 1067 struct kvm_lapic *source, struct kvm_lapic *target) 1068 { 1069 bool ipi = source != NULL; 1070 1071 if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled && 1072 !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target)) 1073 return X2APIC_BROADCAST; 1074 1075 return dest_id; 1076 } 1077 1078 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source, 1079 int shorthand, unsigned int dest, int dest_mode) 1080 { 1081 struct kvm_lapic *target = vcpu->arch.apic; 1082 u32 mda = kvm_apic_mda(vcpu, dest, source, target); 1083 1084 ASSERT(target); 1085 switch (shorthand) { 1086 case APIC_DEST_NOSHORT: 1087 if (dest_mode == APIC_DEST_PHYSICAL) 1088 return kvm_apic_match_physical_addr(target, mda); 1089 else 1090 return kvm_apic_match_logical_addr(target, mda); 1091 case APIC_DEST_SELF: 1092 return target == source; 1093 case APIC_DEST_ALLINC: 1094 return true; 1095 case APIC_DEST_ALLBUT: 1096 return target != source; 1097 default: 1098 return false; 1099 } 1100 } 1101 EXPORT_SYMBOL_GPL(kvm_apic_match_dest); 1102 1103 int kvm_vector_to_index(u32 vector, u32 dest_vcpus, 1104 const unsigned long *bitmap, u32 bitmap_size) 1105 { 1106 u32 mod; 1107 int i, idx = -1; 1108 1109 mod = vector % dest_vcpus; 1110 1111 for (i = 0; i <= mod; i++) { 1112 idx = find_next_bit(bitmap, bitmap_size, idx + 1); 1113 BUG_ON(idx == bitmap_size); 1114 } 1115 1116 return idx; 1117 } 1118 1119 static void kvm_apic_disabled_lapic_found(struct kvm *kvm) 1120 { 1121 if (!kvm->arch.disabled_lapic_found) { 1122 kvm->arch.disabled_lapic_found = true; 1123 pr_info("Disabled LAPIC found during irq injection\n"); 1124 } 1125 } 1126 1127 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src, 1128 struct kvm_lapic_irq *irq, struct kvm_apic_map *map) 1129 { 1130 if (kvm->arch.x2apic_broadcast_quirk_disabled) { 1131 if ((irq->dest_id == APIC_BROADCAST && 1132 map->logical_mode != KVM_APIC_MODE_X2APIC)) 1133 return true; 1134 if (irq->dest_id == X2APIC_BROADCAST) 1135 return true; 1136 } else { 1137 bool x2apic_ipi = src && *src && apic_x2apic_mode(*src); 1138 if (irq->dest_id == (x2apic_ipi ? 1139 X2APIC_BROADCAST : APIC_BROADCAST)) 1140 return true; 1141 } 1142 1143 return false; 1144 } 1145 1146 /* Return true if the interrupt can be handled by using *bitmap as index mask 1147 * for valid destinations in *dst array. 1148 * Return false if kvm_apic_map_get_dest_lapic did nothing useful. 1149 * Note: we may have zero kvm_lapic destinations when we return true, which 1150 * means that the interrupt should be dropped. In this case, *bitmap would be 1151 * zero and *dst undefined. 1152 */ 1153 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm, 1154 struct kvm_lapic **src, struct kvm_lapic_irq *irq, 1155 struct kvm_apic_map *map, struct kvm_lapic ***dst, 1156 unsigned long *bitmap) 1157 { 1158 int i, lowest; 1159 1160 if (irq->shorthand == APIC_DEST_SELF && src) { 1161 *dst = src; 1162 *bitmap = 1; 1163 return true; 1164 } else if (irq->shorthand) 1165 return false; 1166 1167 if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map)) 1168 return false; 1169 1170 if (irq->dest_mode == APIC_DEST_PHYSICAL) { 1171 if (irq->dest_id > map->max_apic_id) { 1172 *bitmap = 0; 1173 } else { 1174 u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1); 1175 *dst = &map->phys_map[dest_id]; 1176 *bitmap = 1; 1177 } 1178 return true; 1179 } 1180 1181 *bitmap = 0; 1182 if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst, 1183 (u16 *)bitmap)) 1184 return false; 1185 1186 if (!kvm_lowest_prio_delivery(irq)) 1187 return true; 1188 1189 if (!kvm_vector_hashing_enabled()) { 1190 lowest = -1; 1191 for_each_set_bit(i, bitmap, 16) { 1192 if (!(*dst)[i]) 1193 continue; 1194 if (lowest < 0) 1195 lowest = i; 1196 else if (kvm_apic_compare_prio((*dst)[i]->vcpu, 1197 (*dst)[lowest]->vcpu) < 0) 1198 lowest = i; 1199 } 1200 } else { 1201 if (!*bitmap) 1202 return true; 1203 1204 lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap), 1205 bitmap, 16); 1206 1207 if (!(*dst)[lowest]) { 1208 kvm_apic_disabled_lapic_found(kvm); 1209 *bitmap = 0; 1210 return true; 1211 } 1212 } 1213 1214 *bitmap = (lowest >= 0) ? 1 << lowest : 0; 1215 1216 return true; 1217 } 1218 1219 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src, 1220 struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map) 1221 { 1222 struct kvm_apic_map *map; 1223 unsigned long bitmap; 1224 struct kvm_lapic **dst = NULL; 1225 int i; 1226 bool ret; 1227 1228 *r = -1; 1229 1230 if (irq->shorthand == APIC_DEST_SELF) { 1231 if (KVM_BUG_ON(!src, kvm)) { 1232 *r = 0; 1233 return true; 1234 } 1235 *r = kvm_apic_set_irq(src->vcpu, irq, dest_map); 1236 return true; 1237 } 1238 1239 rcu_read_lock(); 1240 map = rcu_dereference(kvm->arch.apic_map); 1241 1242 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap); 1243 if (ret) { 1244 *r = 0; 1245 for_each_set_bit(i, &bitmap, 16) { 1246 if (!dst[i]) 1247 continue; 1248 *r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map); 1249 } 1250 } 1251 1252 rcu_read_unlock(); 1253 return ret; 1254 } 1255 1256 /* 1257 * This routine tries to handle interrupts in posted mode, here is how 1258 * it deals with different cases: 1259 * - For single-destination interrupts, handle it in posted mode 1260 * - Else if vector hashing is enabled and it is a lowest-priority 1261 * interrupt, handle it in posted mode and use the following mechanism 1262 * to find the destination vCPU. 1263 * 1. For lowest-priority interrupts, store all the possible 1264 * destination vCPUs in an array. 1265 * 2. Use "guest vector % max number of destination vCPUs" to find 1266 * the right destination vCPU in the array for the lowest-priority 1267 * interrupt. 1268 * - Otherwise, use remapped mode to inject the interrupt. 1269 */ 1270 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq, 1271 struct kvm_vcpu **dest_vcpu) 1272 { 1273 struct kvm_apic_map *map; 1274 unsigned long bitmap; 1275 struct kvm_lapic **dst = NULL; 1276 bool ret = false; 1277 1278 if (irq->shorthand) 1279 return false; 1280 1281 rcu_read_lock(); 1282 map = rcu_dereference(kvm->arch.apic_map); 1283 1284 if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) && 1285 hweight16(bitmap) == 1) { 1286 unsigned long i = find_first_bit(&bitmap, 16); 1287 1288 if (dst[i]) { 1289 *dest_vcpu = dst[i]->vcpu; 1290 ret = true; 1291 } 1292 } 1293 1294 rcu_read_unlock(); 1295 return ret; 1296 } 1297 1298 /* 1299 * Add a pending IRQ into lapic. 1300 * Return 1 if successfully added and 0 if discarded. 1301 */ 1302 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 1303 int vector, int level, int trig_mode, 1304 struct dest_map *dest_map) 1305 { 1306 int result = 0; 1307 struct kvm_vcpu *vcpu = apic->vcpu; 1308 1309 trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode, 1310 trig_mode, vector); 1311 switch (delivery_mode) { 1312 case APIC_DM_LOWEST: 1313 vcpu->arch.apic_arb_prio++; 1314 fallthrough; 1315 case APIC_DM_FIXED: 1316 if (unlikely(trig_mode && !level)) 1317 break; 1318 1319 /* FIXME add logic for vcpu on reset */ 1320 if (unlikely(!apic_enabled(apic))) 1321 break; 1322 1323 result = 1; 1324 1325 if (dest_map) { 1326 __set_bit(vcpu->vcpu_id, dest_map->map); 1327 dest_map->vectors[vcpu->vcpu_id] = vector; 1328 } 1329 1330 if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) { 1331 if (trig_mode) 1332 kvm_lapic_set_vector(vector, 1333 apic->regs + APIC_TMR); 1334 else 1335 kvm_lapic_clear_vector(vector, 1336 apic->regs + APIC_TMR); 1337 } 1338 1339 kvm_x86_call(deliver_interrupt)(apic, delivery_mode, 1340 trig_mode, vector); 1341 break; 1342 1343 case APIC_DM_REMRD: 1344 result = 1; 1345 vcpu->arch.pv.pv_unhalted = 1; 1346 kvm_make_request(KVM_REQ_EVENT, vcpu); 1347 kvm_vcpu_kick(vcpu); 1348 break; 1349 1350 case APIC_DM_SMI: 1351 if (!kvm_inject_smi(vcpu)) { 1352 kvm_vcpu_kick(vcpu); 1353 result = 1; 1354 } 1355 break; 1356 1357 case APIC_DM_NMI: 1358 result = 1; 1359 kvm_inject_nmi(vcpu); 1360 kvm_vcpu_kick(vcpu); 1361 break; 1362 1363 case APIC_DM_INIT: 1364 if (!trig_mode || level) { 1365 result = 1; 1366 /* assumes that there are only KVM_APIC_INIT/SIPI */ 1367 apic->pending_events = (1UL << KVM_APIC_INIT); 1368 kvm_make_request(KVM_REQ_EVENT, vcpu); 1369 kvm_vcpu_kick(vcpu); 1370 } 1371 break; 1372 1373 case APIC_DM_STARTUP: 1374 result = 1; 1375 apic->sipi_vector = vector; 1376 /* make sure sipi_vector is visible for the receiver */ 1377 smp_wmb(); 1378 set_bit(KVM_APIC_SIPI, &apic->pending_events); 1379 kvm_make_request(KVM_REQ_EVENT, vcpu); 1380 kvm_vcpu_kick(vcpu); 1381 break; 1382 1383 case APIC_DM_EXTINT: 1384 /* 1385 * Should only be called by kvm_apic_local_deliver() with LVT0, 1386 * before NMI watchdog was enabled. Already handled by 1387 * kvm_apic_accept_pic_intr(). 1388 */ 1389 break; 1390 1391 default: 1392 printk(KERN_ERR "TODO: unsupported delivery mode %x\n", 1393 delivery_mode); 1394 break; 1395 } 1396 return result; 1397 } 1398 1399 /* 1400 * This routine identifies the destination vcpus mask meant to receive the 1401 * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find 1402 * out the destination vcpus array and set the bitmap or it traverses to 1403 * each available vcpu to identify the same. 1404 */ 1405 void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq, 1406 unsigned long *vcpu_bitmap) 1407 { 1408 struct kvm_lapic **dest_vcpu = NULL; 1409 struct kvm_lapic *src = NULL; 1410 struct kvm_apic_map *map; 1411 struct kvm_vcpu *vcpu; 1412 unsigned long bitmap, i; 1413 int vcpu_idx; 1414 bool ret; 1415 1416 rcu_read_lock(); 1417 map = rcu_dereference(kvm->arch.apic_map); 1418 1419 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu, 1420 &bitmap); 1421 if (ret) { 1422 for_each_set_bit(i, &bitmap, 16) { 1423 if (!dest_vcpu[i]) 1424 continue; 1425 vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx; 1426 __set_bit(vcpu_idx, vcpu_bitmap); 1427 } 1428 } else { 1429 kvm_for_each_vcpu(i, vcpu, kvm) { 1430 if (!kvm_apic_present(vcpu)) 1431 continue; 1432 if (!kvm_apic_match_dest(vcpu, NULL, 1433 irq->shorthand, 1434 irq->dest_id, 1435 irq->dest_mode)) 1436 continue; 1437 __set_bit(i, vcpu_bitmap); 1438 } 1439 } 1440 rcu_read_unlock(); 1441 } 1442 1443 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2) 1444 { 1445 return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio; 1446 } 1447 1448 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector) 1449 { 1450 return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors); 1451 } 1452 1453 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector) 1454 { 1455 int trigger_mode; 1456 1457 /* Eoi the ioapic only if the ioapic doesn't own the vector. */ 1458 if (!kvm_ioapic_handles_vector(apic, vector)) 1459 return; 1460 1461 /* Request a KVM exit to inform the userspace IOAPIC. */ 1462 if (irqchip_split(apic->vcpu->kvm)) { 1463 apic->vcpu->arch.pending_ioapic_eoi = vector; 1464 kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu); 1465 return; 1466 } 1467 1468 if (apic_test_vector(vector, apic->regs + APIC_TMR)) 1469 trigger_mode = IOAPIC_LEVEL_TRIG; 1470 else 1471 trigger_mode = IOAPIC_EDGE_TRIG; 1472 1473 kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode); 1474 } 1475 1476 static int apic_set_eoi(struct kvm_lapic *apic) 1477 { 1478 int vector = apic_find_highest_isr(apic); 1479 1480 trace_kvm_eoi(apic, vector); 1481 1482 /* 1483 * Not every write EOI will has corresponding ISR, 1484 * one example is when Kernel check timer on setup_IO_APIC 1485 */ 1486 if (vector == -1) 1487 return vector; 1488 1489 apic_clear_isr(vector, apic); 1490 apic_update_ppr(apic); 1491 1492 if (kvm_hv_synic_has_vector(apic->vcpu, vector)) 1493 kvm_hv_synic_send_eoi(apic->vcpu, vector); 1494 1495 kvm_ioapic_send_eoi(apic, vector); 1496 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1497 return vector; 1498 } 1499 1500 /* 1501 * this interface assumes a trap-like exit, which has already finished 1502 * desired side effect including vISR and vPPR update. 1503 */ 1504 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector) 1505 { 1506 struct kvm_lapic *apic = vcpu->arch.apic; 1507 1508 trace_kvm_eoi(apic, vector); 1509 1510 kvm_ioapic_send_eoi(apic, vector); 1511 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1512 } 1513 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated); 1514 1515 void kvm_apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high) 1516 { 1517 struct kvm_lapic_irq irq; 1518 1519 /* KVM has no delay and should always clear the BUSY/PENDING flag. */ 1520 WARN_ON_ONCE(icr_low & APIC_ICR_BUSY); 1521 1522 irq.vector = icr_low & APIC_VECTOR_MASK; 1523 irq.delivery_mode = icr_low & APIC_MODE_MASK; 1524 irq.dest_mode = icr_low & APIC_DEST_MASK; 1525 irq.level = (icr_low & APIC_INT_ASSERT) != 0; 1526 irq.trig_mode = icr_low & APIC_INT_LEVELTRIG; 1527 irq.shorthand = icr_low & APIC_SHORT_MASK; 1528 irq.msi_redir_hint = false; 1529 if (apic_x2apic_mode(apic)) 1530 irq.dest_id = icr_high; 1531 else 1532 irq.dest_id = GET_XAPIC_DEST_FIELD(icr_high); 1533 1534 trace_kvm_apic_ipi(icr_low, irq.dest_id); 1535 1536 kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL); 1537 } 1538 EXPORT_SYMBOL_GPL(kvm_apic_send_ipi); 1539 1540 static u32 apic_get_tmcct(struct kvm_lapic *apic) 1541 { 1542 ktime_t remaining, now; 1543 s64 ns; 1544 1545 ASSERT(apic != NULL); 1546 1547 /* if initial count is 0, current count should also be 0 */ 1548 if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 || 1549 apic->lapic_timer.period == 0) 1550 return 0; 1551 1552 now = ktime_get(); 1553 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 1554 if (ktime_to_ns(remaining) < 0) 1555 remaining = 0; 1556 1557 ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period); 1558 return div64_u64(ns, (apic->vcpu->kvm->arch.apic_bus_cycle_ns * 1559 apic->divide_count)); 1560 } 1561 1562 static void __report_tpr_access(struct kvm_lapic *apic, bool write) 1563 { 1564 struct kvm_vcpu *vcpu = apic->vcpu; 1565 struct kvm_run *run = vcpu->run; 1566 1567 kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu); 1568 run->tpr_access.rip = kvm_rip_read(vcpu); 1569 run->tpr_access.is_write = write; 1570 } 1571 1572 static inline void report_tpr_access(struct kvm_lapic *apic, bool write) 1573 { 1574 if (apic->vcpu->arch.tpr_access_reporting) 1575 __report_tpr_access(apic, write); 1576 } 1577 1578 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset) 1579 { 1580 u32 val = 0; 1581 1582 if (offset >= LAPIC_MMIO_LENGTH) 1583 return 0; 1584 1585 switch (offset) { 1586 case APIC_ARBPRI: 1587 break; 1588 1589 case APIC_TMCCT: /* Timer CCR */ 1590 if (apic_lvtt_tscdeadline(apic)) 1591 return 0; 1592 1593 val = apic_get_tmcct(apic); 1594 break; 1595 case APIC_PROCPRI: 1596 apic_update_ppr(apic); 1597 val = kvm_lapic_get_reg(apic, offset); 1598 break; 1599 case APIC_TASKPRI: 1600 report_tpr_access(apic, false); 1601 fallthrough; 1602 default: 1603 val = kvm_lapic_get_reg(apic, offset); 1604 break; 1605 } 1606 1607 return val; 1608 } 1609 1610 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev) 1611 { 1612 return container_of(dev, struct kvm_lapic, dev); 1613 } 1614 1615 #define APIC_REG_MASK(reg) (1ull << ((reg) >> 4)) 1616 #define APIC_REGS_MASK(first, count) \ 1617 (APIC_REG_MASK(first) * ((1ull << (count)) - 1)) 1618 1619 u64 kvm_lapic_readable_reg_mask(struct kvm_lapic *apic) 1620 { 1621 /* Leave bits '0' for reserved and write-only registers. */ 1622 u64 valid_reg_mask = 1623 APIC_REG_MASK(APIC_ID) | 1624 APIC_REG_MASK(APIC_LVR) | 1625 APIC_REG_MASK(APIC_TASKPRI) | 1626 APIC_REG_MASK(APIC_PROCPRI) | 1627 APIC_REG_MASK(APIC_LDR) | 1628 APIC_REG_MASK(APIC_SPIV) | 1629 APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) | 1630 APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) | 1631 APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) | 1632 APIC_REG_MASK(APIC_ESR) | 1633 APIC_REG_MASK(APIC_ICR) | 1634 APIC_REG_MASK(APIC_LVTT) | 1635 APIC_REG_MASK(APIC_LVTTHMR) | 1636 APIC_REG_MASK(APIC_LVTPC) | 1637 APIC_REG_MASK(APIC_LVT0) | 1638 APIC_REG_MASK(APIC_LVT1) | 1639 APIC_REG_MASK(APIC_LVTERR) | 1640 APIC_REG_MASK(APIC_TMICT) | 1641 APIC_REG_MASK(APIC_TMCCT) | 1642 APIC_REG_MASK(APIC_TDCR); 1643 1644 if (kvm_lapic_lvt_supported(apic, LVT_CMCI)) 1645 valid_reg_mask |= APIC_REG_MASK(APIC_LVTCMCI); 1646 1647 /* ARBPRI, DFR, and ICR2 are not valid in x2APIC mode. */ 1648 if (!apic_x2apic_mode(apic)) 1649 valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI) | 1650 APIC_REG_MASK(APIC_DFR) | 1651 APIC_REG_MASK(APIC_ICR2); 1652 1653 return valid_reg_mask; 1654 } 1655 EXPORT_SYMBOL_GPL(kvm_lapic_readable_reg_mask); 1656 1657 static int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len, 1658 void *data) 1659 { 1660 unsigned char alignment = offset & 0xf; 1661 u32 result; 1662 1663 /* 1664 * WARN if KVM reads ICR in x2APIC mode, as it's an 8-byte register in 1665 * x2APIC and needs to be manually handled by the caller. 1666 */ 1667 WARN_ON_ONCE(apic_x2apic_mode(apic) && offset == APIC_ICR); 1668 1669 if (alignment + len > 4) 1670 return 1; 1671 1672 if (offset > 0x3f0 || 1673 !(kvm_lapic_readable_reg_mask(apic) & APIC_REG_MASK(offset))) 1674 return 1; 1675 1676 result = __apic_read(apic, offset & ~0xf); 1677 1678 trace_kvm_apic_read(offset, result); 1679 1680 switch (len) { 1681 case 1: 1682 case 2: 1683 case 4: 1684 memcpy(data, (char *)&result + alignment, len); 1685 break; 1686 default: 1687 printk(KERN_ERR "Local APIC read with len = %x, " 1688 "should be 1,2, or 4 instead\n", len); 1689 break; 1690 } 1691 return 0; 1692 } 1693 1694 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr) 1695 { 1696 return addr >= apic->base_address && 1697 addr < apic->base_address + LAPIC_MMIO_LENGTH; 1698 } 1699 1700 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 1701 gpa_t address, int len, void *data) 1702 { 1703 struct kvm_lapic *apic = to_lapic(this); 1704 u32 offset = address - apic->base_address; 1705 1706 if (!apic_mmio_in_range(apic, address)) 1707 return -EOPNOTSUPP; 1708 1709 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 1710 if (!kvm_check_has_quirk(vcpu->kvm, 1711 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 1712 return -EOPNOTSUPP; 1713 1714 memset(data, 0xff, len); 1715 return 0; 1716 } 1717 1718 kvm_lapic_reg_read(apic, offset, len, data); 1719 1720 return 0; 1721 } 1722 1723 static void update_divide_count(struct kvm_lapic *apic) 1724 { 1725 u32 tmp1, tmp2, tdcr; 1726 1727 tdcr = kvm_lapic_get_reg(apic, APIC_TDCR); 1728 tmp1 = tdcr & 0xf; 1729 tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1; 1730 apic->divide_count = 0x1 << (tmp2 & 0x7); 1731 } 1732 1733 static void limit_periodic_timer_frequency(struct kvm_lapic *apic) 1734 { 1735 /* 1736 * Do not allow the guest to program periodic timers with small 1737 * interval, since the hrtimers are not throttled by the host 1738 * scheduler. 1739 */ 1740 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 1741 s64 min_period = min_timer_period_us * 1000LL; 1742 1743 if (apic->lapic_timer.period < min_period) { 1744 pr_info_once( 1745 "vcpu %i: requested %lld ns " 1746 "lapic timer period limited to %lld ns\n", 1747 apic->vcpu->vcpu_id, 1748 apic->lapic_timer.period, min_period); 1749 apic->lapic_timer.period = min_period; 1750 } 1751 } 1752 } 1753 1754 static void cancel_hv_timer(struct kvm_lapic *apic); 1755 1756 static void cancel_apic_timer(struct kvm_lapic *apic) 1757 { 1758 hrtimer_cancel(&apic->lapic_timer.timer); 1759 preempt_disable(); 1760 if (apic->lapic_timer.hv_timer_in_use) 1761 cancel_hv_timer(apic); 1762 preempt_enable(); 1763 atomic_set(&apic->lapic_timer.pending, 0); 1764 } 1765 1766 static void apic_update_lvtt(struct kvm_lapic *apic) 1767 { 1768 u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) & 1769 apic->lapic_timer.timer_mode_mask; 1770 1771 if (apic->lapic_timer.timer_mode != timer_mode) { 1772 if (apic_lvtt_tscdeadline(apic) != (timer_mode == 1773 APIC_LVT_TIMER_TSCDEADLINE)) { 1774 cancel_apic_timer(apic); 1775 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 1776 apic->lapic_timer.period = 0; 1777 apic->lapic_timer.tscdeadline = 0; 1778 } 1779 apic->lapic_timer.timer_mode = timer_mode; 1780 limit_periodic_timer_frequency(apic); 1781 } 1782 } 1783 1784 /* 1785 * On APICv, this test will cause a busy wait 1786 * during a higher-priority task. 1787 */ 1788 1789 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu) 1790 { 1791 struct kvm_lapic *apic = vcpu->arch.apic; 1792 u32 reg = kvm_lapic_get_reg(apic, APIC_LVTT); 1793 1794 if (kvm_apic_hw_enabled(apic)) { 1795 int vec = reg & APIC_VECTOR_MASK; 1796 void *bitmap = apic->regs + APIC_ISR; 1797 1798 if (apic->apicv_active) 1799 bitmap = apic->regs + APIC_IRR; 1800 1801 if (apic_test_vector(vec, bitmap)) 1802 return true; 1803 } 1804 return false; 1805 } 1806 1807 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles) 1808 { 1809 u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns; 1810 1811 /* 1812 * If the guest TSC is running at a different ratio than the host, then 1813 * convert the delay to nanoseconds to achieve an accurate delay. Note 1814 * that __delay() uses delay_tsc whenever the hardware has TSC, thus 1815 * always for VMX enabled hardware. 1816 */ 1817 if (vcpu->arch.tsc_scaling_ratio == kvm_caps.default_tsc_scaling_ratio) { 1818 __delay(min(guest_cycles, 1819 nsec_to_cycles(vcpu, timer_advance_ns))); 1820 } else { 1821 u64 delay_ns = guest_cycles * 1000000ULL; 1822 do_div(delay_ns, vcpu->arch.virtual_tsc_khz); 1823 ndelay(min_t(u32, delay_ns, timer_advance_ns)); 1824 } 1825 } 1826 1827 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu, 1828 s64 advance_expire_delta) 1829 { 1830 struct kvm_lapic *apic = vcpu->arch.apic; 1831 u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns; 1832 u64 ns; 1833 1834 /* Do not adjust for tiny fluctuations or large random spikes. */ 1835 if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX || 1836 abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN) 1837 return; 1838 1839 /* too early */ 1840 if (advance_expire_delta < 0) { 1841 ns = -advance_expire_delta * 1000000ULL; 1842 do_div(ns, vcpu->arch.virtual_tsc_khz); 1843 timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; 1844 } else { 1845 /* too late */ 1846 ns = advance_expire_delta * 1000000ULL; 1847 do_div(ns, vcpu->arch.virtual_tsc_khz); 1848 timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; 1849 } 1850 1851 if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX)) 1852 timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; 1853 apic->lapic_timer.timer_advance_ns = timer_advance_ns; 1854 } 1855 1856 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1857 { 1858 struct kvm_lapic *apic = vcpu->arch.apic; 1859 u64 guest_tsc, tsc_deadline; 1860 1861 tsc_deadline = apic->lapic_timer.expired_tscdeadline; 1862 apic->lapic_timer.expired_tscdeadline = 0; 1863 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1864 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, guest_tsc - tsc_deadline); 1865 1866 adjust_lapic_timer_advance(vcpu, guest_tsc - tsc_deadline); 1867 1868 /* 1869 * If the timer fired early, reread the TSC to account for the overhead 1870 * of the above adjustment to avoid waiting longer than is necessary. 1871 */ 1872 if (guest_tsc < tsc_deadline) 1873 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1874 1875 if (guest_tsc < tsc_deadline) 1876 __wait_lapic_expire(vcpu, tsc_deadline - guest_tsc); 1877 } 1878 1879 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1880 { 1881 if (lapic_in_kernel(vcpu) && 1882 vcpu->arch.apic->lapic_timer.expired_tscdeadline && 1883 vcpu->arch.apic->lapic_timer.timer_advance_ns && 1884 lapic_timer_int_injected(vcpu)) 1885 __kvm_wait_lapic_expire(vcpu); 1886 } 1887 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire); 1888 1889 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic) 1890 { 1891 struct kvm_timer *ktimer = &apic->lapic_timer; 1892 1893 kvm_apic_local_deliver(apic, APIC_LVTT); 1894 if (apic_lvtt_tscdeadline(apic)) { 1895 ktimer->tscdeadline = 0; 1896 } else if (apic_lvtt_oneshot(apic)) { 1897 ktimer->tscdeadline = 0; 1898 ktimer->target_expiration = 0; 1899 } 1900 } 1901 1902 static void apic_timer_expired(struct kvm_lapic *apic, bool from_timer_fn) 1903 { 1904 struct kvm_vcpu *vcpu = apic->vcpu; 1905 struct kvm_timer *ktimer = &apic->lapic_timer; 1906 1907 if (atomic_read(&apic->lapic_timer.pending)) 1908 return; 1909 1910 if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use) 1911 ktimer->expired_tscdeadline = ktimer->tscdeadline; 1912 1913 if (!from_timer_fn && apic->apicv_active) { 1914 WARN_ON(kvm_get_running_vcpu() != vcpu); 1915 kvm_apic_inject_pending_timer_irqs(apic); 1916 return; 1917 } 1918 1919 if (kvm_use_posted_timer_interrupt(apic->vcpu)) { 1920 /* 1921 * Ensure the guest's timer has truly expired before posting an 1922 * interrupt. Open code the relevant checks to avoid querying 1923 * lapic_timer_int_injected(), which will be false since the 1924 * interrupt isn't yet injected. Waiting until after injecting 1925 * is not an option since that won't help a posted interrupt. 1926 */ 1927 if (vcpu->arch.apic->lapic_timer.expired_tscdeadline && 1928 vcpu->arch.apic->lapic_timer.timer_advance_ns) 1929 __kvm_wait_lapic_expire(vcpu); 1930 kvm_apic_inject_pending_timer_irqs(apic); 1931 return; 1932 } 1933 1934 atomic_inc(&apic->lapic_timer.pending); 1935 kvm_make_request(KVM_REQ_UNBLOCK, vcpu); 1936 if (from_timer_fn) 1937 kvm_vcpu_kick(vcpu); 1938 } 1939 1940 static void start_sw_tscdeadline(struct kvm_lapic *apic) 1941 { 1942 struct kvm_timer *ktimer = &apic->lapic_timer; 1943 u64 guest_tsc, tscdeadline = ktimer->tscdeadline; 1944 u64 ns = 0; 1945 ktime_t expire; 1946 struct kvm_vcpu *vcpu = apic->vcpu; 1947 u32 this_tsc_khz = vcpu->arch.virtual_tsc_khz; 1948 unsigned long flags; 1949 ktime_t now; 1950 1951 if (unlikely(!tscdeadline || !this_tsc_khz)) 1952 return; 1953 1954 local_irq_save(flags); 1955 1956 now = ktime_get(); 1957 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1958 1959 ns = (tscdeadline - guest_tsc) * 1000000ULL; 1960 do_div(ns, this_tsc_khz); 1961 1962 if (likely(tscdeadline > guest_tsc) && 1963 likely(ns > apic->lapic_timer.timer_advance_ns)) { 1964 expire = ktime_add_ns(now, ns); 1965 expire = ktime_sub_ns(expire, ktimer->timer_advance_ns); 1966 hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD); 1967 } else 1968 apic_timer_expired(apic, false); 1969 1970 local_irq_restore(flags); 1971 } 1972 1973 static inline u64 tmict_to_ns(struct kvm_lapic *apic, u32 tmict) 1974 { 1975 return (u64)tmict * apic->vcpu->kvm->arch.apic_bus_cycle_ns * 1976 (u64)apic->divide_count; 1977 } 1978 1979 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor) 1980 { 1981 ktime_t now, remaining; 1982 u64 ns_remaining_old, ns_remaining_new; 1983 1984 apic->lapic_timer.period = 1985 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT)); 1986 limit_periodic_timer_frequency(apic); 1987 1988 now = ktime_get(); 1989 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 1990 if (ktime_to_ns(remaining) < 0) 1991 remaining = 0; 1992 1993 ns_remaining_old = ktime_to_ns(remaining); 1994 ns_remaining_new = mul_u64_u32_div(ns_remaining_old, 1995 apic->divide_count, old_divisor); 1996 1997 apic->lapic_timer.tscdeadline += 1998 nsec_to_cycles(apic->vcpu, ns_remaining_new) - 1999 nsec_to_cycles(apic->vcpu, ns_remaining_old); 2000 apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new); 2001 } 2002 2003 static bool set_target_expiration(struct kvm_lapic *apic, u32 count_reg) 2004 { 2005 ktime_t now; 2006 u64 tscl = rdtsc(); 2007 s64 deadline; 2008 2009 now = ktime_get(); 2010 apic->lapic_timer.period = 2011 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT)); 2012 2013 if (!apic->lapic_timer.period) { 2014 apic->lapic_timer.tscdeadline = 0; 2015 return false; 2016 } 2017 2018 limit_periodic_timer_frequency(apic); 2019 deadline = apic->lapic_timer.period; 2020 2021 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) { 2022 if (unlikely(count_reg != APIC_TMICT)) { 2023 deadline = tmict_to_ns(apic, 2024 kvm_lapic_get_reg(apic, count_reg)); 2025 if (unlikely(deadline <= 0)) { 2026 if (apic_lvtt_period(apic)) 2027 deadline = apic->lapic_timer.period; 2028 else 2029 deadline = 0; 2030 } 2031 else if (unlikely(deadline > apic->lapic_timer.period)) { 2032 pr_info_ratelimited( 2033 "vcpu %i: requested lapic timer restore with " 2034 "starting count register %#x=%u (%lld ns) > initial count (%lld ns). " 2035 "Using initial count to start timer.\n", 2036 apic->vcpu->vcpu_id, 2037 count_reg, 2038 kvm_lapic_get_reg(apic, count_reg), 2039 deadline, apic->lapic_timer.period); 2040 kvm_lapic_set_reg(apic, count_reg, 0); 2041 deadline = apic->lapic_timer.period; 2042 } 2043 } 2044 } 2045 2046 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 2047 nsec_to_cycles(apic->vcpu, deadline); 2048 apic->lapic_timer.target_expiration = ktime_add_ns(now, deadline); 2049 2050 return true; 2051 } 2052 2053 static void advance_periodic_target_expiration(struct kvm_lapic *apic) 2054 { 2055 ktime_t now = ktime_get(); 2056 u64 tscl = rdtsc(); 2057 ktime_t delta; 2058 2059 /* 2060 * Synchronize both deadlines to the same time source or 2061 * differences in the periods (caused by differences in the 2062 * underlying clocks or numerical approximation errors) will 2063 * cause the two to drift apart over time as the errors 2064 * accumulate. 2065 */ 2066 apic->lapic_timer.target_expiration = 2067 ktime_add_ns(apic->lapic_timer.target_expiration, 2068 apic->lapic_timer.period); 2069 delta = ktime_sub(apic->lapic_timer.target_expiration, now); 2070 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 2071 nsec_to_cycles(apic->vcpu, delta); 2072 } 2073 2074 static void start_sw_period(struct kvm_lapic *apic) 2075 { 2076 if (!apic->lapic_timer.period) 2077 return; 2078 2079 if (ktime_after(ktime_get(), 2080 apic->lapic_timer.target_expiration)) { 2081 apic_timer_expired(apic, false); 2082 2083 if (apic_lvtt_oneshot(apic)) 2084 return; 2085 2086 advance_periodic_target_expiration(apic); 2087 } 2088 2089 hrtimer_start(&apic->lapic_timer.timer, 2090 apic->lapic_timer.target_expiration, 2091 HRTIMER_MODE_ABS_HARD); 2092 } 2093 2094 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu) 2095 { 2096 if (!lapic_in_kernel(vcpu)) 2097 return false; 2098 2099 return vcpu->arch.apic->lapic_timer.hv_timer_in_use; 2100 } 2101 2102 static void cancel_hv_timer(struct kvm_lapic *apic) 2103 { 2104 WARN_ON(preemptible()); 2105 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 2106 kvm_x86_call(cancel_hv_timer)(apic->vcpu); 2107 apic->lapic_timer.hv_timer_in_use = false; 2108 } 2109 2110 static bool start_hv_timer(struct kvm_lapic *apic) 2111 { 2112 struct kvm_timer *ktimer = &apic->lapic_timer; 2113 struct kvm_vcpu *vcpu = apic->vcpu; 2114 bool expired; 2115 2116 WARN_ON(preemptible()); 2117 if (!kvm_can_use_hv_timer(vcpu)) 2118 return false; 2119 2120 if (!ktimer->tscdeadline) 2121 return false; 2122 2123 if (kvm_x86_call(set_hv_timer)(vcpu, ktimer->tscdeadline, &expired)) 2124 return false; 2125 2126 ktimer->hv_timer_in_use = true; 2127 hrtimer_cancel(&ktimer->timer); 2128 2129 /* 2130 * To simplify handling the periodic timer, leave the hv timer running 2131 * even if the deadline timer has expired, i.e. rely on the resulting 2132 * VM-Exit to recompute the periodic timer's target expiration. 2133 */ 2134 if (!apic_lvtt_period(apic)) { 2135 /* 2136 * Cancel the hv timer if the sw timer fired while the hv timer 2137 * was being programmed, or if the hv timer itself expired. 2138 */ 2139 if (atomic_read(&ktimer->pending)) { 2140 cancel_hv_timer(apic); 2141 } else if (expired) { 2142 apic_timer_expired(apic, false); 2143 cancel_hv_timer(apic); 2144 } 2145 } 2146 2147 trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use); 2148 2149 return true; 2150 } 2151 2152 static void start_sw_timer(struct kvm_lapic *apic) 2153 { 2154 struct kvm_timer *ktimer = &apic->lapic_timer; 2155 2156 WARN_ON(preemptible()); 2157 if (apic->lapic_timer.hv_timer_in_use) 2158 cancel_hv_timer(apic); 2159 if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending)) 2160 return; 2161 2162 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 2163 start_sw_period(apic); 2164 else if (apic_lvtt_tscdeadline(apic)) 2165 start_sw_tscdeadline(apic); 2166 trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false); 2167 } 2168 2169 static void restart_apic_timer(struct kvm_lapic *apic) 2170 { 2171 preempt_disable(); 2172 2173 if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending)) 2174 goto out; 2175 2176 if (!start_hv_timer(apic)) 2177 start_sw_timer(apic); 2178 out: 2179 preempt_enable(); 2180 } 2181 2182 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu) 2183 { 2184 struct kvm_lapic *apic = vcpu->arch.apic; 2185 2186 preempt_disable(); 2187 /* If the preempt notifier has already run, it also called apic_timer_expired */ 2188 if (!apic->lapic_timer.hv_timer_in_use) 2189 goto out; 2190 WARN_ON(kvm_vcpu_is_blocking(vcpu)); 2191 apic_timer_expired(apic, false); 2192 cancel_hv_timer(apic); 2193 2194 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 2195 advance_periodic_target_expiration(apic); 2196 restart_apic_timer(apic); 2197 } 2198 out: 2199 preempt_enable(); 2200 } 2201 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer); 2202 2203 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu) 2204 { 2205 restart_apic_timer(vcpu->arch.apic); 2206 } 2207 2208 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu) 2209 { 2210 struct kvm_lapic *apic = vcpu->arch.apic; 2211 2212 preempt_disable(); 2213 /* Possibly the TSC deadline timer is not enabled yet */ 2214 if (apic->lapic_timer.hv_timer_in_use) 2215 start_sw_timer(apic); 2216 preempt_enable(); 2217 } 2218 2219 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu) 2220 { 2221 struct kvm_lapic *apic = vcpu->arch.apic; 2222 2223 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 2224 restart_apic_timer(apic); 2225 } 2226 2227 static void __start_apic_timer(struct kvm_lapic *apic, u32 count_reg) 2228 { 2229 atomic_set(&apic->lapic_timer.pending, 0); 2230 2231 if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 2232 && !set_target_expiration(apic, count_reg)) 2233 return; 2234 2235 restart_apic_timer(apic); 2236 } 2237 2238 static void start_apic_timer(struct kvm_lapic *apic) 2239 { 2240 __start_apic_timer(apic, APIC_TMICT); 2241 } 2242 2243 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val) 2244 { 2245 bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val); 2246 2247 if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) { 2248 apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode; 2249 if (lvt0_in_nmi_mode) { 2250 atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 2251 } else 2252 atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 2253 } 2254 } 2255 2256 static int get_lvt_index(u32 reg) 2257 { 2258 if (reg == APIC_LVTCMCI) 2259 return LVT_CMCI; 2260 if (reg < APIC_LVTT || reg > APIC_LVTERR) 2261 return -1; 2262 return array_index_nospec( 2263 (reg - APIC_LVTT) >> 4, KVM_APIC_MAX_NR_LVT_ENTRIES); 2264 } 2265 2266 static int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val) 2267 { 2268 int ret = 0; 2269 2270 trace_kvm_apic_write(reg, val); 2271 2272 switch (reg) { 2273 case APIC_ID: /* Local APIC ID */ 2274 if (!apic_x2apic_mode(apic)) { 2275 kvm_apic_set_xapic_id(apic, val >> 24); 2276 } else { 2277 ret = 1; 2278 } 2279 break; 2280 2281 case APIC_TASKPRI: 2282 report_tpr_access(apic, true); 2283 apic_set_tpr(apic, val & 0xff); 2284 break; 2285 2286 case APIC_EOI: 2287 apic_set_eoi(apic); 2288 break; 2289 2290 case APIC_LDR: 2291 if (!apic_x2apic_mode(apic)) 2292 kvm_apic_set_ldr(apic, val & APIC_LDR_MASK); 2293 else 2294 ret = 1; 2295 break; 2296 2297 case APIC_DFR: 2298 if (!apic_x2apic_mode(apic)) 2299 kvm_apic_set_dfr(apic, val | 0x0FFFFFFF); 2300 else 2301 ret = 1; 2302 break; 2303 2304 case APIC_SPIV: { 2305 u32 mask = 0x3ff; 2306 if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI) 2307 mask |= APIC_SPIV_DIRECTED_EOI; 2308 apic_set_spiv(apic, val & mask); 2309 if (!(val & APIC_SPIV_APIC_ENABLED)) { 2310 int i; 2311 2312 for (i = 0; i < apic->nr_lvt_entries; i++) { 2313 kvm_lapic_set_reg(apic, APIC_LVTx(i), 2314 kvm_lapic_get_reg(apic, APIC_LVTx(i)) | APIC_LVT_MASKED); 2315 } 2316 apic_update_lvtt(apic); 2317 atomic_set(&apic->lapic_timer.pending, 0); 2318 2319 } 2320 break; 2321 } 2322 case APIC_ICR: 2323 WARN_ON_ONCE(apic_x2apic_mode(apic)); 2324 2325 /* No delay here, so we always clear the pending bit */ 2326 val &= ~APIC_ICR_BUSY; 2327 kvm_apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2)); 2328 kvm_lapic_set_reg(apic, APIC_ICR, val); 2329 break; 2330 case APIC_ICR2: 2331 if (apic_x2apic_mode(apic)) 2332 ret = 1; 2333 else 2334 kvm_lapic_set_reg(apic, APIC_ICR2, val & 0xff000000); 2335 break; 2336 2337 case APIC_LVT0: 2338 apic_manage_nmi_watchdog(apic, val); 2339 fallthrough; 2340 case APIC_LVTTHMR: 2341 case APIC_LVTPC: 2342 case APIC_LVT1: 2343 case APIC_LVTERR: 2344 case APIC_LVTCMCI: { 2345 u32 index = get_lvt_index(reg); 2346 if (!kvm_lapic_lvt_supported(apic, index)) { 2347 ret = 1; 2348 break; 2349 } 2350 if (!kvm_apic_sw_enabled(apic)) 2351 val |= APIC_LVT_MASKED; 2352 val &= apic_lvt_mask[index]; 2353 kvm_lapic_set_reg(apic, reg, val); 2354 break; 2355 } 2356 2357 case APIC_LVTT: 2358 if (!kvm_apic_sw_enabled(apic)) 2359 val |= APIC_LVT_MASKED; 2360 val &= (apic_lvt_mask[0] | apic->lapic_timer.timer_mode_mask); 2361 kvm_lapic_set_reg(apic, APIC_LVTT, val); 2362 apic_update_lvtt(apic); 2363 break; 2364 2365 case APIC_TMICT: 2366 if (apic_lvtt_tscdeadline(apic)) 2367 break; 2368 2369 cancel_apic_timer(apic); 2370 kvm_lapic_set_reg(apic, APIC_TMICT, val); 2371 start_apic_timer(apic); 2372 break; 2373 2374 case APIC_TDCR: { 2375 uint32_t old_divisor = apic->divide_count; 2376 2377 kvm_lapic_set_reg(apic, APIC_TDCR, val & 0xb); 2378 update_divide_count(apic); 2379 if (apic->divide_count != old_divisor && 2380 apic->lapic_timer.period) { 2381 hrtimer_cancel(&apic->lapic_timer.timer); 2382 update_target_expiration(apic, old_divisor); 2383 restart_apic_timer(apic); 2384 } 2385 break; 2386 } 2387 case APIC_ESR: 2388 if (apic_x2apic_mode(apic) && val != 0) 2389 ret = 1; 2390 break; 2391 2392 case APIC_SELF_IPI: 2393 /* 2394 * Self-IPI exists only when x2APIC is enabled. Bits 7:0 hold 2395 * the vector, everything else is reserved. 2396 */ 2397 if (!apic_x2apic_mode(apic) || (val & ~APIC_VECTOR_MASK)) 2398 ret = 1; 2399 else 2400 kvm_apic_send_ipi(apic, APIC_DEST_SELF | val, 0); 2401 break; 2402 default: 2403 ret = 1; 2404 break; 2405 } 2406 2407 /* 2408 * Recalculate APIC maps if necessary, e.g. if the software enable bit 2409 * was toggled, the APIC ID changed, etc... The maps are marked dirty 2410 * on relevant changes, i.e. this is a nop for most writes. 2411 */ 2412 kvm_recalculate_apic_map(apic->vcpu->kvm); 2413 2414 return ret; 2415 } 2416 2417 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 2418 gpa_t address, int len, const void *data) 2419 { 2420 struct kvm_lapic *apic = to_lapic(this); 2421 unsigned int offset = address - apic->base_address; 2422 u32 val; 2423 2424 if (!apic_mmio_in_range(apic, address)) 2425 return -EOPNOTSUPP; 2426 2427 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 2428 if (!kvm_check_has_quirk(vcpu->kvm, 2429 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 2430 return -EOPNOTSUPP; 2431 2432 return 0; 2433 } 2434 2435 /* 2436 * APIC register must be aligned on 128-bits boundary. 2437 * 32/64/128 bits registers must be accessed thru 32 bits. 2438 * Refer SDM 8.4.1 2439 */ 2440 if (len != 4 || (offset & 0xf)) 2441 return 0; 2442 2443 val = *(u32*)data; 2444 2445 kvm_lapic_reg_write(apic, offset & 0xff0, val); 2446 2447 return 0; 2448 } 2449 2450 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu) 2451 { 2452 kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0); 2453 } 2454 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi); 2455 2456 #define X2APIC_ICR_RESERVED_BITS (GENMASK_ULL(31, 20) | GENMASK_ULL(17, 16) | BIT(13)) 2457 2458 int kvm_x2apic_icr_write(struct kvm_lapic *apic, u64 data) 2459 { 2460 if (data & X2APIC_ICR_RESERVED_BITS) 2461 return 1; 2462 2463 /* 2464 * The BUSY bit is reserved on both Intel and AMD in x2APIC mode, but 2465 * only AMD requires it to be zero, Intel essentially just ignores the 2466 * bit. And if IPI virtualization (Intel) or x2AVIC (AMD) is enabled, 2467 * the CPU performs the reserved bits checks, i.e. the underlying CPU 2468 * behavior will "win". Arbitrarily clear the BUSY bit, as there is no 2469 * sane way to provide consistent behavior with respect to hardware. 2470 */ 2471 data &= ~APIC_ICR_BUSY; 2472 2473 kvm_apic_send_ipi(apic, (u32)data, (u32)(data >> 32)); 2474 if (kvm_x86_ops.x2apic_icr_is_split) { 2475 kvm_lapic_set_reg(apic, APIC_ICR, data); 2476 kvm_lapic_set_reg(apic, APIC_ICR2, data >> 32); 2477 } else { 2478 kvm_lapic_set_reg64(apic, APIC_ICR, data); 2479 } 2480 trace_kvm_apic_write(APIC_ICR, data); 2481 return 0; 2482 } 2483 2484 static u64 kvm_x2apic_icr_read(struct kvm_lapic *apic) 2485 { 2486 if (kvm_x86_ops.x2apic_icr_is_split) 2487 return (u64)kvm_lapic_get_reg(apic, APIC_ICR) | 2488 (u64)kvm_lapic_get_reg(apic, APIC_ICR2) << 32; 2489 2490 return kvm_lapic_get_reg64(apic, APIC_ICR); 2491 } 2492 2493 /* emulate APIC access in a trap manner */ 2494 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset) 2495 { 2496 struct kvm_lapic *apic = vcpu->arch.apic; 2497 2498 /* 2499 * ICR is a single 64-bit register when x2APIC is enabled, all others 2500 * registers hold 32-bit values. For legacy xAPIC, ICR writes need to 2501 * go down the common path to get the upper half from ICR2. 2502 * 2503 * Note, using the write helpers may incur an unnecessary write to the 2504 * virtual APIC state, but KVM needs to conditionally modify the value 2505 * in certain cases, e.g. to clear the ICR busy bit. The cost of extra 2506 * conditional branches is likely a wash relative to the cost of the 2507 * maybe-unecessary write, and both are in the noise anyways. 2508 */ 2509 if (apic_x2apic_mode(apic) && offset == APIC_ICR) 2510 WARN_ON_ONCE(kvm_x2apic_icr_write(apic, kvm_x2apic_icr_read(apic))); 2511 else 2512 kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset)); 2513 } 2514 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode); 2515 2516 void kvm_free_lapic(struct kvm_vcpu *vcpu) 2517 { 2518 struct kvm_lapic *apic = vcpu->arch.apic; 2519 2520 if (!vcpu->arch.apic) { 2521 static_branch_dec(&kvm_has_noapic_vcpu); 2522 return; 2523 } 2524 2525 hrtimer_cancel(&apic->lapic_timer.timer); 2526 2527 if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)) 2528 static_branch_slow_dec_deferred(&apic_hw_disabled); 2529 2530 if (!apic->sw_enabled) 2531 static_branch_slow_dec_deferred(&apic_sw_disabled); 2532 2533 if (apic->regs) 2534 free_page((unsigned long)apic->regs); 2535 2536 kfree(apic); 2537 } 2538 2539 /* 2540 *---------------------------------------------------------------------- 2541 * LAPIC interface 2542 *---------------------------------------------------------------------- 2543 */ 2544 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu) 2545 { 2546 struct kvm_lapic *apic = vcpu->arch.apic; 2547 2548 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic)) 2549 return 0; 2550 2551 return apic->lapic_timer.tscdeadline; 2552 } 2553 2554 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data) 2555 { 2556 struct kvm_lapic *apic = vcpu->arch.apic; 2557 2558 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic)) 2559 return; 2560 2561 hrtimer_cancel(&apic->lapic_timer.timer); 2562 apic->lapic_timer.tscdeadline = data; 2563 start_apic_timer(apic); 2564 } 2565 2566 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8) 2567 { 2568 apic_set_tpr(vcpu->arch.apic, (cr8 & 0x0f) << 4); 2569 } 2570 2571 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu) 2572 { 2573 u64 tpr; 2574 2575 tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI); 2576 2577 return (tpr & 0xf0) >> 4; 2578 } 2579 2580 void kvm_lapic_set_base(struct kvm_vcpu *vcpu, u64 value) 2581 { 2582 u64 old_value = vcpu->arch.apic_base; 2583 struct kvm_lapic *apic = vcpu->arch.apic; 2584 2585 vcpu->arch.apic_base = value; 2586 2587 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) 2588 kvm_update_cpuid_runtime(vcpu); 2589 2590 if (!apic) 2591 return; 2592 2593 /* update jump label if enable bit changes */ 2594 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) { 2595 if (value & MSR_IA32_APICBASE_ENABLE) { 2596 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2597 static_branch_slow_dec_deferred(&apic_hw_disabled); 2598 /* Check if there are APF page ready requests pending */ 2599 kvm_make_request(KVM_REQ_APF_READY, vcpu); 2600 } else { 2601 static_branch_inc(&apic_hw_disabled.key); 2602 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 2603 } 2604 } 2605 2606 if ((old_value ^ value) & X2APIC_ENABLE) { 2607 if (value & X2APIC_ENABLE) 2608 kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id); 2609 else if (value & MSR_IA32_APICBASE_ENABLE) 2610 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2611 } 2612 2613 if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) { 2614 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 2615 kvm_x86_call(set_virtual_apic_mode)(vcpu); 2616 } 2617 2618 apic->base_address = apic->vcpu->arch.apic_base & 2619 MSR_IA32_APICBASE_BASE; 2620 2621 if ((value & MSR_IA32_APICBASE_ENABLE) && 2622 apic->base_address != APIC_DEFAULT_PHYS_BASE) { 2623 kvm_set_apicv_inhibit(apic->vcpu->kvm, 2624 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED); 2625 } 2626 } 2627 2628 void kvm_apic_update_apicv(struct kvm_vcpu *vcpu) 2629 { 2630 struct kvm_lapic *apic = vcpu->arch.apic; 2631 2632 /* 2633 * When APICv is enabled, KVM must always search the IRR for a pending 2634 * IRQ, as other vCPUs and devices can set IRR bits even if the vCPU 2635 * isn't running. If APICv is disabled, KVM _should_ search the IRR 2636 * for a pending IRQ. But KVM currently doesn't ensure *all* hardware, 2637 * e.g. CPUs and IOMMUs, has seen the change in state, i.e. searching 2638 * the IRR at this time could race with IRQ delivery from hardware that 2639 * still sees APICv as being enabled. 2640 * 2641 * FIXME: Ensure other vCPUs and devices observe the change in APICv 2642 * state prior to updating KVM's metadata caches, so that KVM 2643 * can safely search the IRR and set irr_pending accordingly. 2644 */ 2645 apic->irr_pending = true; 2646 2647 if (apic->apicv_active) 2648 apic->isr_count = 1; 2649 else 2650 apic->isr_count = count_vectors(apic->regs + APIC_ISR); 2651 2652 apic->highest_isr_cache = -1; 2653 } 2654 2655 int kvm_alloc_apic_access_page(struct kvm *kvm) 2656 { 2657 struct page *page; 2658 void __user *hva; 2659 int ret = 0; 2660 2661 mutex_lock(&kvm->slots_lock); 2662 if (kvm->arch.apic_access_memslot_enabled || 2663 kvm->arch.apic_access_memslot_inhibited) 2664 goto out; 2665 2666 hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 2667 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE); 2668 if (IS_ERR(hva)) { 2669 ret = PTR_ERR(hva); 2670 goto out; 2671 } 2672 2673 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 2674 if (is_error_page(page)) { 2675 ret = -EFAULT; 2676 goto out; 2677 } 2678 2679 /* 2680 * Do not pin the page in memory, so that memory hot-unplug 2681 * is able to migrate it. 2682 */ 2683 put_page(page); 2684 kvm->arch.apic_access_memslot_enabled = true; 2685 out: 2686 mutex_unlock(&kvm->slots_lock); 2687 return ret; 2688 } 2689 EXPORT_SYMBOL_GPL(kvm_alloc_apic_access_page); 2690 2691 void kvm_inhibit_apic_access_page(struct kvm_vcpu *vcpu) 2692 { 2693 struct kvm *kvm = vcpu->kvm; 2694 2695 if (!kvm->arch.apic_access_memslot_enabled) 2696 return; 2697 2698 kvm_vcpu_srcu_read_unlock(vcpu); 2699 2700 mutex_lock(&kvm->slots_lock); 2701 2702 if (kvm->arch.apic_access_memslot_enabled) { 2703 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0); 2704 /* 2705 * Clear "enabled" after the memslot is deleted so that a 2706 * different vCPU doesn't get a false negative when checking 2707 * the flag out of slots_lock. No additional memory barrier is 2708 * needed as modifying memslots requires waiting other vCPUs to 2709 * drop SRCU (see above), and false positives are ok as the 2710 * flag is rechecked after acquiring slots_lock. 2711 */ 2712 kvm->arch.apic_access_memslot_enabled = false; 2713 2714 /* 2715 * Mark the memslot as inhibited to prevent reallocating the 2716 * memslot during vCPU creation, e.g. if a vCPU is hotplugged. 2717 */ 2718 kvm->arch.apic_access_memslot_inhibited = true; 2719 } 2720 2721 mutex_unlock(&kvm->slots_lock); 2722 2723 kvm_vcpu_srcu_read_lock(vcpu); 2724 } 2725 2726 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event) 2727 { 2728 struct kvm_lapic *apic = vcpu->arch.apic; 2729 u64 msr_val; 2730 int i; 2731 2732 kvm_x86_call(apicv_pre_state_restore)(vcpu); 2733 2734 if (!init_event) { 2735 msr_val = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE; 2736 if (kvm_vcpu_is_reset_bsp(vcpu)) 2737 msr_val |= MSR_IA32_APICBASE_BSP; 2738 kvm_lapic_set_base(vcpu, msr_val); 2739 } 2740 2741 if (!apic) 2742 return; 2743 2744 /* Stop the timer in case it's a reset to an active apic */ 2745 hrtimer_cancel(&apic->lapic_timer.timer); 2746 2747 /* The xAPIC ID is set at RESET even if the APIC was already enabled. */ 2748 if (!init_event) 2749 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2750 kvm_apic_set_version(apic->vcpu); 2751 2752 for (i = 0; i < apic->nr_lvt_entries; i++) 2753 kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED); 2754 apic_update_lvtt(apic); 2755 if (kvm_vcpu_is_reset_bsp(vcpu) && 2756 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED)) 2757 kvm_lapic_set_reg(apic, APIC_LVT0, 2758 SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT)); 2759 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 2760 2761 kvm_apic_set_dfr(apic, 0xffffffffU); 2762 apic_set_spiv(apic, 0xff); 2763 kvm_lapic_set_reg(apic, APIC_TASKPRI, 0); 2764 if (!apic_x2apic_mode(apic)) 2765 kvm_apic_set_ldr(apic, 0); 2766 kvm_lapic_set_reg(apic, APIC_ESR, 0); 2767 if (!apic_x2apic_mode(apic)) { 2768 kvm_lapic_set_reg(apic, APIC_ICR, 0); 2769 kvm_lapic_set_reg(apic, APIC_ICR2, 0); 2770 } else { 2771 kvm_lapic_set_reg64(apic, APIC_ICR, 0); 2772 } 2773 kvm_lapic_set_reg(apic, APIC_TDCR, 0); 2774 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 2775 for (i = 0; i < 8; i++) { 2776 kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0); 2777 kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0); 2778 kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0); 2779 } 2780 kvm_apic_update_apicv(vcpu); 2781 update_divide_count(apic); 2782 atomic_set(&apic->lapic_timer.pending, 0); 2783 2784 vcpu->arch.pv_eoi.msr_val = 0; 2785 apic_update_ppr(apic); 2786 if (apic->apicv_active) { 2787 kvm_x86_call(apicv_post_state_restore)(vcpu); 2788 kvm_x86_call(hwapic_irr_update)(vcpu, -1); 2789 kvm_x86_call(hwapic_isr_update)(-1); 2790 } 2791 2792 vcpu->arch.apic_arb_prio = 0; 2793 vcpu->arch.apic_attention = 0; 2794 2795 kvm_recalculate_apic_map(vcpu->kvm); 2796 } 2797 2798 /* 2799 *---------------------------------------------------------------------- 2800 * timer interface 2801 *---------------------------------------------------------------------- 2802 */ 2803 2804 static bool lapic_is_periodic(struct kvm_lapic *apic) 2805 { 2806 return apic_lvtt_period(apic); 2807 } 2808 2809 int apic_has_pending_timer(struct kvm_vcpu *vcpu) 2810 { 2811 struct kvm_lapic *apic = vcpu->arch.apic; 2812 2813 if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT)) 2814 return atomic_read(&apic->lapic_timer.pending); 2815 2816 return 0; 2817 } 2818 2819 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type) 2820 { 2821 u32 reg = kvm_lapic_get_reg(apic, lvt_type); 2822 int vector, mode, trig_mode; 2823 int r; 2824 2825 if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) { 2826 vector = reg & APIC_VECTOR_MASK; 2827 mode = reg & APIC_MODE_MASK; 2828 trig_mode = reg & APIC_LVT_LEVEL_TRIGGER; 2829 2830 r = __apic_accept_irq(apic, mode, vector, 1, trig_mode, NULL); 2831 if (r && lvt_type == APIC_LVTPC && 2832 guest_cpuid_is_intel_compatible(apic->vcpu)) 2833 kvm_lapic_set_reg(apic, APIC_LVTPC, reg | APIC_LVT_MASKED); 2834 return r; 2835 } 2836 return 0; 2837 } 2838 2839 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu) 2840 { 2841 struct kvm_lapic *apic = vcpu->arch.apic; 2842 2843 if (apic) 2844 kvm_apic_local_deliver(apic, APIC_LVT0); 2845 } 2846 2847 static const struct kvm_io_device_ops apic_mmio_ops = { 2848 .read = apic_mmio_read, 2849 .write = apic_mmio_write, 2850 }; 2851 2852 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data) 2853 { 2854 struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer); 2855 struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer); 2856 2857 apic_timer_expired(apic, true); 2858 2859 if (lapic_is_periodic(apic)) { 2860 advance_periodic_target_expiration(apic); 2861 hrtimer_add_expires_ns(&ktimer->timer, ktimer->period); 2862 return HRTIMER_RESTART; 2863 } else 2864 return HRTIMER_NORESTART; 2865 } 2866 2867 int kvm_create_lapic(struct kvm_vcpu *vcpu) 2868 { 2869 struct kvm_lapic *apic; 2870 2871 ASSERT(vcpu != NULL); 2872 2873 if (!irqchip_in_kernel(vcpu->kvm)) { 2874 static_branch_inc(&kvm_has_noapic_vcpu); 2875 return 0; 2876 } 2877 2878 apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT); 2879 if (!apic) 2880 goto nomem; 2881 2882 vcpu->arch.apic = apic; 2883 2884 if (kvm_x86_ops.alloc_apic_backing_page) 2885 apic->regs = kvm_x86_call(alloc_apic_backing_page)(vcpu); 2886 else 2887 apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 2888 if (!apic->regs) { 2889 printk(KERN_ERR "malloc apic regs error for vcpu %x\n", 2890 vcpu->vcpu_id); 2891 goto nomem_free_apic; 2892 } 2893 apic->vcpu = vcpu; 2894 2895 apic->nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu); 2896 2897 hrtimer_init(&apic->lapic_timer.timer, CLOCK_MONOTONIC, 2898 HRTIMER_MODE_ABS_HARD); 2899 apic->lapic_timer.timer.function = apic_timer_fn; 2900 if (lapic_timer_advance) 2901 apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; 2902 2903 /* 2904 * Stuff the APIC ENABLE bit in lieu of temporarily incrementing 2905 * apic_hw_disabled; the full RESET value is set by kvm_lapic_reset(). 2906 */ 2907 vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE; 2908 static_branch_inc(&apic_sw_disabled.key); /* sw disabled at reset */ 2909 kvm_iodevice_init(&apic->dev, &apic_mmio_ops); 2910 2911 /* 2912 * Defer evaluating inhibits until the vCPU is first run, as this vCPU 2913 * will not get notified of any changes until this vCPU is visible to 2914 * other vCPUs (marked online and added to the set of vCPUs). 2915 * 2916 * Opportunistically mark APICv active as VMX in particularly is highly 2917 * unlikely to have inhibits. Ignore the current per-VM APICv state so 2918 * that vCPU creation is guaranteed to run with a deterministic value, 2919 * the request will ensure the vCPU gets the correct state before VM-Entry. 2920 */ 2921 if (enable_apicv) { 2922 apic->apicv_active = true; 2923 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 2924 } 2925 2926 return 0; 2927 nomem_free_apic: 2928 kfree(apic); 2929 vcpu->arch.apic = NULL; 2930 nomem: 2931 return -ENOMEM; 2932 } 2933 2934 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu) 2935 { 2936 struct kvm_lapic *apic = vcpu->arch.apic; 2937 u32 ppr; 2938 2939 if (!kvm_apic_present(vcpu)) 2940 return -1; 2941 2942 __apic_update_ppr(apic, &ppr); 2943 return apic_has_interrupt_for_ppr(apic, ppr); 2944 } 2945 EXPORT_SYMBOL_GPL(kvm_apic_has_interrupt); 2946 2947 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu) 2948 { 2949 u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0); 2950 2951 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 2952 return 1; 2953 if ((lvt0 & APIC_LVT_MASKED) == 0 && 2954 GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT) 2955 return 1; 2956 return 0; 2957 } 2958 2959 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu) 2960 { 2961 struct kvm_lapic *apic = vcpu->arch.apic; 2962 2963 if (atomic_read(&apic->lapic_timer.pending) > 0) { 2964 kvm_apic_inject_pending_timer_irqs(apic); 2965 atomic_set(&apic->lapic_timer.pending, 0); 2966 } 2967 } 2968 2969 void kvm_apic_ack_interrupt(struct kvm_vcpu *vcpu, int vector) 2970 { 2971 struct kvm_lapic *apic = vcpu->arch.apic; 2972 u32 ppr; 2973 2974 if (WARN_ON_ONCE(vector < 0 || !apic)) 2975 return; 2976 2977 /* 2978 * We get here even with APIC virtualization enabled, if doing 2979 * nested virtualization and L1 runs with the "acknowledge interrupt 2980 * on exit" mode. Then we cannot inject the interrupt via RVI, 2981 * because the process would deliver it through the IDT. 2982 */ 2983 2984 apic_clear_irr(vector, apic); 2985 if (kvm_hv_synic_auto_eoi_set(vcpu, vector)) { 2986 /* 2987 * For auto-EOI interrupts, there might be another pending 2988 * interrupt above PPR, so check whether to raise another 2989 * KVM_REQ_EVENT. 2990 */ 2991 apic_update_ppr(apic); 2992 } else { 2993 /* 2994 * For normal interrupts, PPR has been raised and there cannot 2995 * be a higher-priority pending interrupt---except if there was 2996 * a concurrent interrupt injection, but that would have 2997 * triggered KVM_REQ_EVENT already. 2998 */ 2999 apic_set_isr(vector, apic); 3000 __apic_update_ppr(apic, &ppr); 3001 } 3002 3003 } 3004 EXPORT_SYMBOL_GPL(kvm_apic_ack_interrupt); 3005 3006 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu, 3007 struct kvm_lapic_state *s, bool set) 3008 { 3009 if (apic_x2apic_mode(vcpu->arch.apic)) { 3010 u32 x2apic_id = kvm_x2apic_id(vcpu->arch.apic); 3011 u32 *id = (u32 *)(s->regs + APIC_ID); 3012 u32 *ldr = (u32 *)(s->regs + APIC_LDR); 3013 u64 icr; 3014 3015 if (vcpu->kvm->arch.x2apic_format) { 3016 if (*id != x2apic_id) 3017 return -EINVAL; 3018 } else { 3019 /* 3020 * Ignore the userspace value when setting APIC state. 3021 * KVM's model is that the x2APIC ID is readonly, e.g. 3022 * KVM only supports delivering interrupts to KVM's 3023 * version of the x2APIC ID. However, for backwards 3024 * compatibility, don't reject attempts to set a 3025 * mismatched ID for userspace that hasn't opted into 3026 * x2apic_format. 3027 */ 3028 if (set) 3029 *id = x2apic_id; 3030 else 3031 *id = x2apic_id << 24; 3032 } 3033 3034 /* 3035 * In x2APIC mode, the LDR is fixed and based on the id. And 3036 * if the ICR is _not_ split, ICR is internally a single 64-bit 3037 * register, but needs to be split to ICR+ICR2 in userspace for 3038 * backwards compatibility. 3039 */ 3040 if (set) 3041 *ldr = kvm_apic_calc_x2apic_ldr(x2apic_id); 3042 3043 if (!kvm_x86_ops.x2apic_icr_is_split) { 3044 if (set) { 3045 icr = __kvm_lapic_get_reg(s->regs, APIC_ICR) | 3046 (u64)__kvm_lapic_get_reg(s->regs, APIC_ICR2) << 32; 3047 __kvm_lapic_set_reg64(s->regs, APIC_ICR, icr); 3048 } else { 3049 icr = __kvm_lapic_get_reg64(s->regs, APIC_ICR); 3050 __kvm_lapic_set_reg(s->regs, APIC_ICR2, icr >> 32); 3051 } 3052 } 3053 } 3054 3055 return 0; 3056 } 3057 3058 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 3059 { 3060 memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s)); 3061 3062 /* 3063 * Get calculated timer current count for remaining timer period (if 3064 * any) and store it in the returned register set. 3065 */ 3066 __kvm_lapic_set_reg(s->regs, APIC_TMCCT, 3067 __apic_read(vcpu->arch.apic, APIC_TMCCT)); 3068 3069 return kvm_apic_state_fixup(vcpu, s, false); 3070 } 3071 3072 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 3073 { 3074 struct kvm_lapic *apic = vcpu->arch.apic; 3075 int r; 3076 3077 kvm_x86_call(apicv_pre_state_restore)(vcpu); 3078 3079 kvm_lapic_set_base(vcpu, vcpu->arch.apic_base); 3080 /* set SPIV separately to get count of SW disabled APICs right */ 3081 apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV))); 3082 3083 r = kvm_apic_state_fixup(vcpu, s, true); 3084 if (r) { 3085 kvm_recalculate_apic_map(vcpu->kvm); 3086 return r; 3087 } 3088 memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s)); 3089 3090 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 3091 kvm_recalculate_apic_map(vcpu->kvm); 3092 kvm_apic_set_version(vcpu); 3093 3094 apic_update_ppr(apic); 3095 cancel_apic_timer(apic); 3096 apic->lapic_timer.expired_tscdeadline = 0; 3097 apic_update_lvtt(apic); 3098 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 3099 update_divide_count(apic); 3100 __start_apic_timer(apic, APIC_TMCCT); 3101 kvm_lapic_set_reg(apic, APIC_TMCCT, 0); 3102 kvm_apic_update_apicv(vcpu); 3103 if (apic->apicv_active) { 3104 kvm_x86_call(apicv_post_state_restore)(vcpu); 3105 kvm_x86_call(hwapic_irr_update)(vcpu, 3106 apic_find_highest_irr(apic)); 3107 kvm_x86_call(hwapic_isr_update)(apic_find_highest_isr(apic)); 3108 } 3109 kvm_make_request(KVM_REQ_EVENT, vcpu); 3110 if (ioapic_in_kernel(vcpu->kvm)) 3111 kvm_rtc_eoi_tracking_restore_one(vcpu); 3112 3113 vcpu->arch.apic_arb_prio = 0; 3114 3115 return 0; 3116 } 3117 3118 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu) 3119 { 3120 struct hrtimer *timer; 3121 3122 if (!lapic_in_kernel(vcpu) || 3123 kvm_can_post_timer_interrupt(vcpu)) 3124 return; 3125 3126 timer = &vcpu->arch.apic->lapic_timer.timer; 3127 if (hrtimer_cancel(timer)) 3128 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD); 3129 } 3130 3131 /* 3132 * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt 3133 * 3134 * Detect whether guest triggered PV EOI since the 3135 * last entry. If yes, set EOI on guests's behalf. 3136 * Clear PV EOI in guest memory in any case. 3137 */ 3138 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu, 3139 struct kvm_lapic *apic) 3140 { 3141 int vector; 3142 /* 3143 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host 3144 * and KVM_PV_EOI_ENABLED in guest memory as follows: 3145 * 3146 * KVM_APIC_PV_EOI_PENDING is unset: 3147 * -> host disabled PV EOI. 3148 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set: 3149 * -> host enabled PV EOI, guest did not execute EOI yet. 3150 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset: 3151 * -> host enabled PV EOI, guest executed EOI. 3152 */ 3153 BUG_ON(!pv_eoi_enabled(vcpu)); 3154 3155 if (pv_eoi_test_and_clr_pending(vcpu)) 3156 return; 3157 vector = apic_set_eoi(apic); 3158 trace_kvm_pv_eoi(apic, vector); 3159 } 3160 3161 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu) 3162 { 3163 u32 data; 3164 3165 if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention)) 3166 apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic); 3167 3168 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 3169 return; 3170 3171 if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 3172 sizeof(u32))) 3173 return; 3174 3175 apic_set_tpr(vcpu->arch.apic, data & 0xff); 3176 } 3177 3178 /* 3179 * apic_sync_pv_eoi_to_guest - called before vmentry 3180 * 3181 * Detect whether it's safe to enable PV EOI and 3182 * if yes do so. 3183 */ 3184 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu, 3185 struct kvm_lapic *apic) 3186 { 3187 if (!pv_eoi_enabled(vcpu) || 3188 /* IRR set or many bits in ISR: could be nested. */ 3189 apic->irr_pending || 3190 /* Cache not set: could be safe but we don't bother. */ 3191 apic->highest_isr_cache == -1 || 3192 /* Need EOI to update ioapic. */ 3193 kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) { 3194 /* 3195 * PV EOI was disabled by apic_sync_pv_eoi_from_guest 3196 * so we need not do anything here. 3197 */ 3198 return; 3199 } 3200 3201 pv_eoi_set_pending(apic->vcpu); 3202 } 3203 3204 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu) 3205 { 3206 u32 data, tpr; 3207 int max_irr, max_isr; 3208 struct kvm_lapic *apic = vcpu->arch.apic; 3209 3210 apic_sync_pv_eoi_to_guest(vcpu, apic); 3211 3212 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 3213 return; 3214 3215 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff; 3216 max_irr = apic_find_highest_irr(apic); 3217 if (max_irr < 0) 3218 max_irr = 0; 3219 max_isr = apic_find_highest_isr(apic); 3220 if (max_isr < 0) 3221 max_isr = 0; 3222 data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24); 3223 3224 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 3225 sizeof(u32)); 3226 } 3227 3228 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr) 3229 { 3230 if (vapic_addr) { 3231 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, 3232 &vcpu->arch.apic->vapic_cache, 3233 vapic_addr, sizeof(u32))) 3234 return -EINVAL; 3235 __set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 3236 } else { 3237 __clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 3238 } 3239 3240 vcpu->arch.apic->vapic_addr = vapic_addr; 3241 return 0; 3242 } 3243 3244 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data) 3245 { 3246 u32 low; 3247 3248 if (reg == APIC_ICR) { 3249 *data = kvm_x2apic_icr_read(apic); 3250 return 0; 3251 } 3252 3253 if (kvm_lapic_reg_read(apic, reg, 4, &low)) 3254 return 1; 3255 3256 *data = low; 3257 3258 return 0; 3259 } 3260 3261 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data) 3262 { 3263 /* 3264 * ICR is a 64-bit register in x2APIC mode (and Hyper-V PV vAPIC) and 3265 * can be written as such, all other registers remain accessible only 3266 * through 32-bit reads/writes. 3267 */ 3268 if (reg == APIC_ICR) 3269 return kvm_x2apic_icr_write(apic, data); 3270 3271 /* Bits 63:32 are reserved in all other registers. */ 3272 if (data >> 32) 3273 return 1; 3274 3275 return kvm_lapic_reg_write(apic, reg, (u32)data); 3276 } 3277 3278 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data) 3279 { 3280 struct kvm_lapic *apic = vcpu->arch.apic; 3281 u32 reg = (msr - APIC_BASE_MSR) << 4; 3282 3283 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 3284 return 1; 3285 3286 return kvm_lapic_msr_write(apic, reg, data); 3287 } 3288 3289 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data) 3290 { 3291 struct kvm_lapic *apic = vcpu->arch.apic; 3292 u32 reg = (msr - APIC_BASE_MSR) << 4; 3293 3294 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 3295 return 1; 3296 3297 return kvm_lapic_msr_read(apic, reg, data); 3298 } 3299 3300 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data) 3301 { 3302 if (!lapic_in_kernel(vcpu)) 3303 return 1; 3304 3305 return kvm_lapic_msr_write(vcpu->arch.apic, reg, data); 3306 } 3307 3308 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data) 3309 { 3310 if (!lapic_in_kernel(vcpu)) 3311 return 1; 3312 3313 return kvm_lapic_msr_read(vcpu->arch.apic, reg, data); 3314 } 3315 3316 int kvm_lapic_set_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len) 3317 { 3318 u64 addr = data & ~KVM_MSR_ENABLED; 3319 struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data; 3320 unsigned long new_len; 3321 int ret; 3322 3323 if (!IS_ALIGNED(addr, 4)) 3324 return 1; 3325 3326 if (data & KVM_MSR_ENABLED) { 3327 if (addr == ghc->gpa && len <= ghc->len) 3328 new_len = ghc->len; 3329 else 3330 new_len = len; 3331 3332 ret = kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len); 3333 if (ret) 3334 return ret; 3335 } 3336 3337 vcpu->arch.pv_eoi.msr_val = data; 3338 3339 return 0; 3340 } 3341 3342 int kvm_apic_accept_events(struct kvm_vcpu *vcpu) 3343 { 3344 struct kvm_lapic *apic = vcpu->arch.apic; 3345 u8 sipi_vector; 3346 int r; 3347 3348 if (!kvm_apic_has_pending_init_or_sipi(vcpu)) 3349 return 0; 3350 3351 if (is_guest_mode(vcpu)) { 3352 r = kvm_check_nested_events(vcpu); 3353 if (r < 0) 3354 return r == -EBUSY ? 0 : r; 3355 /* 3356 * Continue processing INIT/SIPI even if a nested VM-Exit 3357 * occurred, e.g. pending SIPIs should be dropped if INIT+SIPI 3358 * are blocked as a result of transitioning to VMX root mode. 3359 */ 3360 } 3361 3362 /* 3363 * INITs are blocked while CPU is in specific states (SMM, VMX root 3364 * mode, SVM with GIF=0), while SIPIs are dropped if the CPU isn't in 3365 * wait-for-SIPI (WFS). 3366 */ 3367 if (!kvm_apic_init_sipi_allowed(vcpu)) { 3368 WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED); 3369 clear_bit(KVM_APIC_SIPI, &apic->pending_events); 3370 return 0; 3371 } 3372 3373 if (test_and_clear_bit(KVM_APIC_INIT, &apic->pending_events)) { 3374 kvm_vcpu_reset(vcpu, true); 3375 if (kvm_vcpu_is_bsp(apic->vcpu)) 3376 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 3377 else 3378 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 3379 } 3380 if (test_and_clear_bit(KVM_APIC_SIPI, &apic->pending_events)) { 3381 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 3382 /* evaluate pending_events before reading the vector */ 3383 smp_rmb(); 3384 sipi_vector = apic->sipi_vector; 3385 kvm_x86_call(vcpu_deliver_sipi_vector)(vcpu, 3386 sipi_vector); 3387 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 3388 } 3389 } 3390 return 0; 3391 } 3392 3393 void kvm_lapic_exit(void) 3394 { 3395 static_key_deferred_flush(&apic_hw_disabled); 3396 WARN_ON(static_branch_unlikely(&apic_hw_disabled.key)); 3397 static_key_deferred_flush(&apic_sw_disabled); 3398 WARN_ON(static_branch_unlikely(&apic_sw_disabled.key)); 3399 } 3400