xref: /linux/arch/x86/kvm/lapic.c (revision 8b6d678fede700db6466d73f11fcbad496fa515e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 
3 /*
4  * Local APIC virtualization
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2007 Novell
8  * Copyright (C) 2007 Intel
9  * Copyright 2009 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Dor Laor <dor.laor@qumranet.com>
13  *   Gregory Haskins <ghaskins@novell.com>
14  *   Yaozu (Eddie) Dong <eddie.dong@intel.com>
15  *
16  * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation.
17  */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/smp.h>
25 #include <linux/hrtimer.h>
26 #include <linux/io.h>
27 #include <linux/export.h>
28 #include <linux/math64.h>
29 #include <linux/slab.h>
30 #include <asm/processor.h>
31 #include <asm/mce.h>
32 #include <asm/msr.h>
33 #include <asm/page.h>
34 #include <asm/current.h>
35 #include <asm/apicdef.h>
36 #include <asm/delay.h>
37 #include <linux/atomic.h>
38 #include <linux/jump_label.h>
39 #include "kvm_cache_regs.h"
40 #include "irq.h"
41 #include "ioapic.h"
42 #include "trace.h"
43 #include "x86.h"
44 #include "xen.h"
45 #include "cpuid.h"
46 #include "hyperv.h"
47 #include "smm.h"
48 
49 #ifndef CONFIG_X86_64
50 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
51 #else
52 #define mod_64(x, y) ((x) % (y))
53 #endif
54 
55 /* 14 is the version for Xeon and Pentium 8.4.8*/
56 #define APIC_VERSION			0x14UL
57 #define LAPIC_MMIO_LENGTH		(1 << 12)
58 /* followed define is not in apicdef.h */
59 #define MAX_APIC_VECTOR			256
60 #define APIC_VECTORS_PER_REG		32
61 
62 static bool lapic_timer_advance_dynamic __read_mostly;
63 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN	100	/* clock cycles */
64 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX	10000	/* clock cycles */
65 #define LAPIC_TIMER_ADVANCE_NS_INIT	1000
66 #define LAPIC_TIMER_ADVANCE_NS_MAX     5000
67 /* step-by-step approximation to mitigate fluctuation */
68 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8
69 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data);
70 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data);
71 
72 static inline void __kvm_lapic_set_reg(char *regs, int reg_off, u32 val)
73 {
74 	*((u32 *) (regs + reg_off)) = val;
75 }
76 
77 static inline void kvm_lapic_set_reg(struct kvm_lapic *apic, int reg_off, u32 val)
78 {
79 	__kvm_lapic_set_reg(apic->regs, reg_off, val);
80 }
81 
82 static __always_inline u64 __kvm_lapic_get_reg64(char *regs, int reg)
83 {
84 	BUILD_BUG_ON(reg != APIC_ICR);
85 	return *((u64 *) (regs + reg));
86 }
87 
88 static __always_inline u64 kvm_lapic_get_reg64(struct kvm_lapic *apic, int reg)
89 {
90 	return __kvm_lapic_get_reg64(apic->regs, reg);
91 }
92 
93 static __always_inline void __kvm_lapic_set_reg64(char *regs, int reg, u64 val)
94 {
95 	BUILD_BUG_ON(reg != APIC_ICR);
96 	*((u64 *) (regs + reg)) = val;
97 }
98 
99 static __always_inline void kvm_lapic_set_reg64(struct kvm_lapic *apic,
100 						int reg, u64 val)
101 {
102 	__kvm_lapic_set_reg64(apic->regs, reg, val);
103 }
104 
105 static inline int apic_test_vector(int vec, void *bitmap)
106 {
107 	return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
108 }
109 
110 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector)
111 {
112 	struct kvm_lapic *apic = vcpu->arch.apic;
113 
114 	return apic_test_vector(vector, apic->regs + APIC_ISR) ||
115 		apic_test_vector(vector, apic->regs + APIC_IRR);
116 }
117 
118 static inline int __apic_test_and_set_vector(int vec, void *bitmap)
119 {
120 	return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
121 }
122 
123 static inline int __apic_test_and_clear_vector(int vec, void *bitmap)
124 {
125 	return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
126 }
127 
128 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
129 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
130 
131 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_hw_disabled, HZ);
132 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_sw_disabled, HZ);
133 
134 static inline int apic_enabled(struct kvm_lapic *apic)
135 {
136 	return kvm_apic_sw_enabled(apic) &&	kvm_apic_hw_enabled(apic);
137 }
138 
139 #define LVT_MASK	\
140 	(APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK)
141 
142 #define LINT_MASK	\
143 	(LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \
144 	 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER)
145 
146 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic)
147 {
148 	return apic->vcpu->vcpu_id;
149 }
150 
151 static bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu)
152 {
153 	return pi_inject_timer && kvm_vcpu_apicv_active(vcpu) &&
154 		(kvm_mwait_in_guest(vcpu->kvm) || kvm_hlt_in_guest(vcpu->kvm));
155 }
156 
157 bool kvm_can_use_hv_timer(struct kvm_vcpu *vcpu)
158 {
159 	return kvm_x86_ops.set_hv_timer
160 	       && !(kvm_mwait_in_guest(vcpu->kvm) ||
161 		    kvm_can_post_timer_interrupt(vcpu));
162 }
163 
164 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu)
165 {
166 	return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE;
167 }
168 
169 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id)
170 {
171 	return ((id >> 4) << 16) | (1 << (id & 0xf));
172 }
173 
174 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map,
175 		u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) {
176 	switch (map->logical_mode) {
177 	case KVM_APIC_MODE_SW_DISABLED:
178 		/* Arbitrarily use the flat map so that @cluster isn't NULL. */
179 		*cluster = map->xapic_flat_map;
180 		*mask = 0;
181 		return true;
182 	case KVM_APIC_MODE_X2APIC: {
183 		u32 offset = (dest_id >> 16) * 16;
184 		u32 max_apic_id = map->max_apic_id;
185 
186 		if (offset <= max_apic_id) {
187 			u8 cluster_size = min(max_apic_id - offset + 1, 16U);
188 
189 			offset = array_index_nospec(offset, map->max_apic_id + 1);
190 			*cluster = &map->phys_map[offset];
191 			*mask = dest_id & (0xffff >> (16 - cluster_size));
192 		} else {
193 			*mask = 0;
194 		}
195 
196 		return true;
197 		}
198 	case KVM_APIC_MODE_XAPIC_FLAT:
199 		*cluster = map->xapic_flat_map;
200 		*mask = dest_id & 0xff;
201 		return true;
202 	case KVM_APIC_MODE_XAPIC_CLUSTER:
203 		*cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf];
204 		*mask = dest_id & 0xf;
205 		return true;
206 	case KVM_APIC_MODE_MAP_DISABLED:
207 		return false;
208 	default:
209 		WARN_ON_ONCE(1);
210 		return false;
211 	}
212 }
213 
214 static void kvm_apic_map_free(struct rcu_head *rcu)
215 {
216 	struct kvm_apic_map *map = container_of(rcu, struct kvm_apic_map, rcu);
217 
218 	kvfree(map);
219 }
220 
221 static int kvm_recalculate_phys_map(struct kvm_apic_map *new,
222 				    struct kvm_vcpu *vcpu,
223 				    bool *xapic_id_mismatch)
224 {
225 	struct kvm_lapic *apic = vcpu->arch.apic;
226 	u32 x2apic_id = kvm_x2apic_id(apic);
227 	u32 xapic_id = kvm_xapic_id(apic);
228 	u32 physical_id;
229 
230 	/*
231 	 * For simplicity, KVM always allocates enough space for all possible
232 	 * xAPIC IDs.  Yell, but don't kill the VM, as KVM can continue on
233 	 * without the optimized map.
234 	 */
235 	if (WARN_ON_ONCE(xapic_id > new->max_apic_id))
236 		return -EINVAL;
237 
238 	/*
239 	 * Bail if a vCPU was added and/or enabled its APIC between allocating
240 	 * the map and doing the actual calculations for the map.  Note, KVM
241 	 * hardcodes the x2APIC ID to vcpu_id, i.e. there's no TOCTOU bug if
242 	 * the compiler decides to reload x2apic_id after this check.
243 	 */
244 	if (x2apic_id > new->max_apic_id)
245 		return -E2BIG;
246 
247 	/*
248 	 * Deliberately truncate the vCPU ID when detecting a mismatched APIC
249 	 * ID to avoid false positives if the vCPU ID, i.e. x2APIC ID, is a
250 	 * 32-bit value.  Any unwanted aliasing due to truncation results will
251 	 * be detected below.
252 	 */
253 	if (!apic_x2apic_mode(apic) && xapic_id != (u8)vcpu->vcpu_id)
254 		*xapic_id_mismatch = true;
255 
256 	/*
257 	 * Apply KVM's hotplug hack if userspace has enable 32-bit APIC IDs.
258 	 * Allow sending events to vCPUs by their x2APIC ID even if the target
259 	 * vCPU is in legacy xAPIC mode, and silently ignore aliased xAPIC IDs
260 	 * (the x2APIC ID is truncated to 8 bits, causing IDs > 0xff to wrap
261 	 * and collide).
262 	 *
263 	 * Honor the architectural (and KVM's non-optimized) behavior if
264 	 * userspace has not enabled 32-bit x2APIC IDs.  Each APIC is supposed
265 	 * to process messages independently.  If multiple vCPUs have the same
266 	 * effective APIC ID, e.g. due to the x2APIC wrap or because the guest
267 	 * manually modified its xAPIC IDs, events targeting that ID are
268 	 * supposed to be recognized by all vCPUs with said ID.
269 	 */
270 	if (vcpu->kvm->arch.x2apic_format) {
271 		/* See also kvm_apic_match_physical_addr(). */
272 		if (apic_x2apic_mode(apic) || x2apic_id > 0xff)
273 			new->phys_map[x2apic_id] = apic;
274 
275 		if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id])
276 			new->phys_map[xapic_id] = apic;
277 	} else {
278 		/*
279 		 * Disable the optimized map if the physical APIC ID is already
280 		 * mapped, i.e. is aliased to multiple vCPUs.  The optimized
281 		 * map requires a strict 1:1 mapping between IDs and vCPUs.
282 		 */
283 		if (apic_x2apic_mode(apic))
284 			physical_id = x2apic_id;
285 		else
286 			physical_id = xapic_id;
287 
288 		if (new->phys_map[physical_id])
289 			return -EINVAL;
290 
291 		new->phys_map[physical_id] = apic;
292 	}
293 
294 	return 0;
295 }
296 
297 static void kvm_recalculate_logical_map(struct kvm_apic_map *new,
298 					struct kvm_vcpu *vcpu)
299 {
300 	struct kvm_lapic *apic = vcpu->arch.apic;
301 	enum kvm_apic_logical_mode logical_mode;
302 	struct kvm_lapic **cluster;
303 	u16 mask;
304 	u32 ldr;
305 
306 	if (new->logical_mode == KVM_APIC_MODE_MAP_DISABLED)
307 		return;
308 
309 	if (!kvm_apic_sw_enabled(apic))
310 		return;
311 
312 	ldr = kvm_lapic_get_reg(apic, APIC_LDR);
313 	if (!ldr)
314 		return;
315 
316 	if (apic_x2apic_mode(apic)) {
317 		logical_mode = KVM_APIC_MODE_X2APIC;
318 	} else {
319 		ldr = GET_APIC_LOGICAL_ID(ldr);
320 		if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT)
321 			logical_mode = KVM_APIC_MODE_XAPIC_FLAT;
322 		else
323 			logical_mode = KVM_APIC_MODE_XAPIC_CLUSTER;
324 	}
325 
326 	/*
327 	 * To optimize logical mode delivery, all software-enabled APICs must
328 	 * be configured for the same mode.
329 	 */
330 	if (new->logical_mode == KVM_APIC_MODE_SW_DISABLED) {
331 		new->logical_mode = logical_mode;
332 	} else if (new->logical_mode != logical_mode) {
333 		new->logical_mode = KVM_APIC_MODE_MAP_DISABLED;
334 		return;
335 	}
336 
337 	/*
338 	 * In x2APIC mode, the LDR is read-only and derived directly from the
339 	 * x2APIC ID, thus is guaranteed to be addressable.  KVM reuses
340 	 * kvm_apic_map.phys_map to optimize logical mode x2APIC interrupts by
341 	 * reversing the LDR calculation to get cluster of APICs, i.e. no
342 	 * additional work is required.
343 	 */
344 	if (apic_x2apic_mode(apic)) {
345 		WARN_ON_ONCE(ldr != kvm_apic_calc_x2apic_ldr(kvm_x2apic_id(apic)));
346 		return;
347 	}
348 
349 	if (WARN_ON_ONCE(!kvm_apic_map_get_logical_dest(new, ldr,
350 							&cluster, &mask))) {
351 		new->logical_mode = KVM_APIC_MODE_MAP_DISABLED;
352 		return;
353 	}
354 
355 	if (!mask)
356 		return;
357 
358 	ldr = ffs(mask) - 1;
359 	if (!is_power_of_2(mask) || cluster[ldr])
360 		new->logical_mode = KVM_APIC_MODE_MAP_DISABLED;
361 	else
362 		cluster[ldr] = apic;
363 }
364 
365 /*
366  * CLEAN -> DIRTY and UPDATE_IN_PROGRESS -> DIRTY changes happen without a lock.
367  *
368  * DIRTY -> UPDATE_IN_PROGRESS and UPDATE_IN_PROGRESS -> CLEAN happen with
369  * apic_map_lock_held.
370  */
371 enum {
372 	CLEAN,
373 	UPDATE_IN_PROGRESS,
374 	DIRTY
375 };
376 
377 void kvm_recalculate_apic_map(struct kvm *kvm)
378 {
379 	struct kvm_apic_map *new, *old = NULL;
380 	struct kvm_vcpu *vcpu;
381 	unsigned long i;
382 	u32 max_id = 255; /* enough space for any xAPIC ID */
383 	bool xapic_id_mismatch;
384 	int r;
385 
386 	/* Read kvm->arch.apic_map_dirty before kvm->arch.apic_map.  */
387 	if (atomic_read_acquire(&kvm->arch.apic_map_dirty) == CLEAN)
388 		return;
389 
390 	WARN_ONCE(!irqchip_in_kernel(kvm),
391 		  "Dirty APIC map without an in-kernel local APIC");
392 
393 	mutex_lock(&kvm->arch.apic_map_lock);
394 
395 retry:
396 	/*
397 	 * Read kvm->arch.apic_map_dirty before kvm->arch.apic_map (if clean)
398 	 * or the APIC registers (if dirty).  Note, on retry the map may have
399 	 * not yet been marked dirty by whatever task changed a vCPU's x2APIC
400 	 * ID, i.e. the map may still show up as in-progress.  In that case
401 	 * this task still needs to retry and complete its calculation.
402 	 */
403 	if (atomic_cmpxchg_acquire(&kvm->arch.apic_map_dirty,
404 				   DIRTY, UPDATE_IN_PROGRESS) == CLEAN) {
405 		/* Someone else has updated the map. */
406 		mutex_unlock(&kvm->arch.apic_map_lock);
407 		return;
408 	}
409 
410 	/*
411 	 * Reset the mismatch flag between attempts so that KVM does the right
412 	 * thing if a vCPU changes its xAPIC ID, but do NOT reset max_id, i.e.
413 	 * keep max_id strictly increasing.  Disallowing max_id from shrinking
414 	 * ensures KVM won't get stuck in an infinite loop, e.g. if the vCPU
415 	 * with the highest x2APIC ID is toggling its APIC on and off.
416 	 */
417 	xapic_id_mismatch = false;
418 
419 	kvm_for_each_vcpu(i, vcpu, kvm)
420 		if (kvm_apic_present(vcpu))
421 			max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic));
422 
423 	new = kvzalloc(sizeof(struct kvm_apic_map) +
424 	                   sizeof(struct kvm_lapic *) * ((u64)max_id + 1),
425 			   GFP_KERNEL_ACCOUNT);
426 
427 	if (!new)
428 		goto out;
429 
430 	new->max_apic_id = max_id;
431 	new->logical_mode = KVM_APIC_MODE_SW_DISABLED;
432 
433 	kvm_for_each_vcpu(i, vcpu, kvm) {
434 		if (!kvm_apic_present(vcpu))
435 			continue;
436 
437 		r = kvm_recalculate_phys_map(new, vcpu, &xapic_id_mismatch);
438 		if (r) {
439 			kvfree(new);
440 			new = NULL;
441 			if (r == -E2BIG) {
442 				cond_resched();
443 				goto retry;
444 			}
445 
446 			goto out;
447 		}
448 
449 		kvm_recalculate_logical_map(new, vcpu);
450 	}
451 out:
452 	/*
453 	 * The optimized map is effectively KVM's internal version of APICv,
454 	 * and all unwanted aliasing that results in disabling the optimized
455 	 * map also applies to APICv.
456 	 */
457 	if (!new)
458 		kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED);
459 	else
460 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED);
461 
462 	if (!new || new->logical_mode == KVM_APIC_MODE_MAP_DISABLED)
463 		kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED);
464 	else
465 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED);
466 
467 	if (xapic_id_mismatch)
468 		kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED);
469 	else
470 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED);
471 
472 	old = rcu_dereference_protected(kvm->arch.apic_map,
473 			lockdep_is_held(&kvm->arch.apic_map_lock));
474 	rcu_assign_pointer(kvm->arch.apic_map, new);
475 	/*
476 	 * Write kvm->arch.apic_map before clearing apic->apic_map_dirty.
477 	 * If another update has come in, leave it DIRTY.
478 	 */
479 	atomic_cmpxchg_release(&kvm->arch.apic_map_dirty,
480 			       UPDATE_IN_PROGRESS, CLEAN);
481 	mutex_unlock(&kvm->arch.apic_map_lock);
482 
483 	if (old)
484 		call_rcu(&old->rcu, kvm_apic_map_free);
485 
486 	kvm_make_scan_ioapic_request(kvm);
487 }
488 
489 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val)
490 {
491 	bool enabled = val & APIC_SPIV_APIC_ENABLED;
492 
493 	kvm_lapic_set_reg(apic, APIC_SPIV, val);
494 
495 	if (enabled != apic->sw_enabled) {
496 		apic->sw_enabled = enabled;
497 		if (enabled)
498 			static_branch_slow_dec_deferred(&apic_sw_disabled);
499 		else
500 			static_branch_inc(&apic_sw_disabled.key);
501 
502 		atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
503 	}
504 
505 	/* Check if there are APF page ready requests pending */
506 	if (enabled) {
507 		kvm_make_request(KVM_REQ_APF_READY, apic->vcpu);
508 		kvm_xen_sw_enable_lapic(apic->vcpu);
509 	}
510 }
511 
512 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id)
513 {
514 	kvm_lapic_set_reg(apic, APIC_ID, id << 24);
515 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
516 }
517 
518 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id)
519 {
520 	kvm_lapic_set_reg(apic, APIC_LDR, id);
521 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
522 }
523 
524 static inline void kvm_apic_set_dfr(struct kvm_lapic *apic, u32 val)
525 {
526 	kvm_lapic_set_reg(apic, APIC_DFR, val);
527 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
528 }
529 
530 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id)
531 {
532 	u32 ldr = kvm_apic_calc_x2apic_ldr(id);
533 
534 	WARN_ON_ONCE(id != apic->vcpu->vcpu_id);
535 
536 	kvm_lapic_set_reg(apic, APIC_ID, id);
537 	kvm_lapic_set_reg(apic, APIC_LDR, ldr);
538 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
539 }
540 
541 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type)
542 {
543 	return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED);
544 }
545 
546 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic)
547 {
548 	return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT;
549 }
550 
551 static inline int apic_lvtt_period(struct kvm_lapic *apic)
552 {
553 	return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC;
554 }
555 
556 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic)
557 {
558 	return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE;
559 }
560 
561 static inline int apic_lvt_nmi_mode(u32 lvt_val)
562 {
563 	return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI;
564 }
565 
566 static inline bool kvm_lapic_lvt_supported(struct kvm_lapic *apic, int lvt_index)
567 {
568 	return apic->nr_lvt_entries > lvt_index;
569 }
570 
571 static inline int kvm_apic_calc_nr_lvt_entries(struct kvm_vcpu *vcpu)
572 {
573 	return KVM_APIC_MAX_NR_LVT_ENTRIES - !(vcpu->arch.mcg_cap & MCG_CMCI_P);
574 }
575 
576 void kvm_apic_set_version(struct kvm_vcpu *vcpu)
577 {
578 	struct kvm_lapic *apic = vcpu->arch.apic;
579 	u32 v = 0;
580 
581 	if (!lapic_in_kernel(vcpu))
582 		return;
583 
584 	v = APIC_VERSION | ((apic->nr_lvt_entries - 1) << 16);
585 
586 	/*
587 	 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation)
588 	 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with
589 	 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC
590 	 * version first and level-triggered interrupts never get EOIed in
591 	 * IOAPIC.
592 	 */
593 	if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) &&
594 	    !ioapic_in_kernel(vcpu->kvm))
595 		v |= APIC_LVR_DIRECTED_EOI;
596 	kvm_lapic_set_reg(apic, APIC_LVR, v);
597 }
598 
599 void kvm_apic_after_set_mcg_cap(struct kvm_vcpu *vcpu)
600 {
601 	int nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu);
602 	struct kvm_lapic *apic = vcpu->arch.apic;
603 	int i;
604 
605 	if (!lapic_in_kernel(vcpu) || nr_lvt_entries == apic->nr_lvt_entries)
606 		return;
607 
608 	/* Initialize/mask any "new" LVT entries. */
609 	for (i = apic->nr_lvt_entries; i < nr_lvt_entries; i++)
610 		kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED);
611 
612 	apic->nr_lvt_entries = nr_lvt_entries;
613 
614 	/* The number of LVT entries is reflected in the version register. */
615 	kvm_apic_set_version(vcpu);
616 }
617 
618 static const unsigned int apic_lvt_mask[KVM_APIC_MAX_NR_LVT_ENTRIES] = {
619 	[LVT_TIMER] = LVT_MASK,      /* timer mode mask added at runtime */
620 	[LVT_THERMAL_MONITOR] = LVT_MASK | APIC_MODE_MASK,
621 	[LVT_PERFORMANCE_COUNTER] = LVT_MASK | APIC_MODE_MASK,
622 	[LVT_LINT0] = LINT_MASK,
623 	[LVT_LINT1] = LINT_MASK,
624 	[LVT_ERROR] = LVT_MASK,
625 	[LVT_CMCI] = LVT_MASK | APIC_MODE_MASK
626 };
627 
628 static int find_highest_vector(void *bitmap)
629 {
630 	int vec;
631 	u32 *reg;
632 
633 	for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG;
634 	     vec >= 0; vec -= APIC_VECTORS_PER_REG) {
635 		reg = bitmap + REG_POS(vec);
636 		if (*reg)
637 			return __fls(*reg) + vec;
638 	}
639 
640 	return -1;
641 }
642 
643 static u8 count_vectors(void *bitmap)
644 {
645 	int vec;
646 	u32 *reg;
647 	u8 count = 0;
648 
649 	for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) {
650 		reg = bitmap + REG_POS(vec);
651 		count += hweight32(*reg);
652 	}
653 
654 	return count;
655 }
656 
657 bool __kvm_apic_update_irr(u32 *pir, void *regs, int *max_irr)
658 {
659 	u32 i, vec;
660 	u32 pir_val, irr_val, prev_irr_val;
661 	int max_updated_irr;
662 
663 	max_updated_irr = -1;
664 	*max_irr = -1;
665 
666 	for (i = vec = 0; i <= 7; i++, vec += 32) {
667 		u32 *p_irr = (u32 *)(regs + APIC_IRR + i * 0x10);
668 
669 		irr_val = *p_irr;
670 		pir_val = READ_ONCE(pir[i]);
671 
672 		if (pir_val) {
673 			pir_val = xchg(&pir[i], 0);
674 
675 			prev_irr_val = irr_val;
676 			do {
677 				irr_val = prev_irr_val | pir_val;
678 			} while (prev_irr_val != irr_val &&
679 				 !try_cmpxchg(p_irr, &prev_irr_val, irr_val));
680 
681 			if (prev_irr_val != irr_val)
682 				max_updated_irr = __fls(irr_val ^ prev_irr_val) + vec;
683 		}
684 		if (irr_val)
685 			*max_irr = __fls(irr_val) + vec;
686 	}
687 
688 	return ((max_updated_irr != -1) &&
689 		(max_updated_irr == *max_irr));
690 }
691 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr);
692 
693 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir, int *max_irr)
694 {
695 	struct kvm_lapic *apic = vcpu->arch.apic;
696 	bool irr_updated = __kvm_apic_update_irr(pir, apic->regs, max_irr);
697 
698 	if (unlikely(!apic->apicv_active && irr_updated))
699 		apic->irr_pending = true;
700 	return irr_updated;
701 }
702 EXPORT_SYMBOL_GPL(kvm_apic_update_irr);
703 
704 static inline int apic_search_irr(struct kvm_lapic *apic)
705 {
706 	return find_highest_vector(apic->regs + APIC_IRR);
707 }
708 
709 static inline int apic_find_highest_irr(struct kvm_lapic *apic)
710 {
711 	int result;
712 
713 	/*
714 	 * Note that irr_pending is just a hint. It will be always
715 	 * true with virtual interrupt delivery enabled.
716 	 */
717 	if (!apic->irr_pending)
718 		return -1;
719 
720 	result = apic_search_irr(apic);
721 	ASSERT(result == -1 || result >= 16);
722 
723 	return result;
724 }
725 
726 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic)
727 {
728 	if (unlikely(apic->apicv_active)) {
729 		/* need to update RVI */
730 		kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR);
731 		static_call_cond(kvm_x86_hwapic_irr_update)(apic->vcpu,
732 							    apic_find_highest_irr(apic));
733 	} else {
734 		apic->irr_pending = false;
735 		kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR);
736 		if (apic_search_irr(apic) != -1)
737 			apic->irr_pending = true;
738 	}
739 }
740 
741 void kvm_apic_clear_irr(struct kvm_vcpu *vcpu, int vec)
742 {
743 	apic_clear_irr(vec, vcpu->arch.apic);
744 }
745 EXPORT_SYMBOL_GPL(kvm_apic_clear_irr);
746 
747 static inline void apic_set_isr(int vec, struct kvm_lapic *apic)
748 {
749 	if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR))
750 		return;
751 
752 	/*
753 	 * With APIC virtualization enabled, all caching is disabled
754 	 * because the processor can modify ISR under the hood.  Instead
755 	 * just set SVI.
756 	 */
757 	if (unlikely(apic->apicv_active))
758 		static_call_cond(kvm_x86_hwapic_isr_update)(vec);
759 	else {
760 		++apic->isr_count;
761 		BUG_ON(apic->isr_count > MAX_APIC_VECTOR);
762 		/*
763 		 * ISR (in service register) bit is set when injecting an interrupt.
764 		 * The highest vector is injected. Thus the latest bit set matches
765 		 * the highest bit in ISR.
766 		 */
767 		apic->highest_isr_cache = vec;
768 	}
769 }
770 
771 static inline int apic_find_highest_isr(struct kvm_lapic *apic)
772 {
773 	int result;
774 
775 	/*
776 	 * Note that isr_count is always 1, and highest_isr_cache
777 	 * is always -1, with APIC virtualization enabled.
778 	 */
779 	if (!apic->isr_count)
780 		return -1;
781 	if (likely(apic->highest_isr_cache != -1))
782 		return apic->highest_isr_cache;
783 
784 	result = find_highest_vector(apic->regs + APIC_ISR);
785 	ASSERT(result == -1 || result >= 16);
786 
787 	return result;
788 }
789 
790 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic)
791 {
792 	if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR))
793 		return;
794 
795 	/*
796 	 * We do get here for APIC virtualization enabled if the guest
797 	 * uses the Hyper-V APIC enlightenment.  In this case we may need
798 	 * to trigger a new interrupt delivery by writing the SVI field;
799 	 * on the other hand isr_count and highest_isr_cache are unused
800 	 * and must be left alone.
801 	 */
802 	if (unlikely(apic->apicv_active))
803 		static_call_cond(kvm_x86_hwapic_isr_update)(apic_find_highest_isr(apic));
804 	else {
805 		--apic->isr_count;
806 		BUG_ON(apic->isr_count < 0);
807 		apic->highest_isr_cache = -1;
808 	}
809 }
810 
811 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu)
812 {
813 	/* This may race with setting of irr in __apic_accept_irq() and
814 	 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq
815 	 * will cause vmexit immediately and the value will be recalculated
816 	 * on the next vmentry.
817 	 */
818 	return apic_find_highest_irr(vcpu->arch.apic);
819 }
820 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr);
821 
822 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
823 			     int vector, int level, int trig_mode,
824 			     struct dest_map *dest_map);
825 
826 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq,
827 		     struct dest_map *dest_map)
828 {
829 	struct kvm_lapic *apic = vcpu->arch.apic;
830 
831 	return __apic_accept_irq(apic, irq->delivery_mode, irq->vector,
832 			irq->level, irq->trig_mode, dest_map);
833 }
834 
835 static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map,
836 			 struct kvm_lapic_irq *irq, u32 min)
837 {
838 	int i, count = 0;
839 	struct kvm_vcpu *vcpu;
840 
841 	if (min > map->max_apic_id)
842 		return 0;
843 
844 	for_each_set_bit(i, ipi_bitmap,
845 		min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) {
846 		if (map->phys_map[min + i]) {
847 			vcpu = map->phys_map[min + i]->vcpu;
848 			count += kvm_apic_set_irq(vcpu, irq, NULL);
849 		}
850 	}
851 
852 	return count;
853 }
854 
855 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
856 		    unsigned long ipi_bitmap_high, u32 min,
857 		    unsigned long icr, int op_64_bit)
858 {
859 	struct kvm_apic_map *map;
860 	struct kvm_lapic_irq irq = {0};
861 	int cluster_size = op_64_bit ? 64 : 32;
862 	int count;
863 
864 	if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK))
865 		return -KVM_EINVAL;
866 
867 	irq.vector = icr & APIC_VECTOR_MASK;
868 	irq.delivery_mode = icr & APIC_MODE_MASK;
869 	irq.level = (icr & APIC_INT_ASSERT) != 0;
870 	irq.trig_mode = icr & APIC_INT_LEVELTRIG;
871 
872 	rcu_read_lock();
873 	map = rcu_dereference(kvm->arch.apic_map);
874 
875 	count = -EOPNOTSUPP;
876 	if (likely(map)) {
877 		count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min);
878 		min += cluster_size;
879 		count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min);
880 	}
881 
882 	rcu_read_unlock();
883 	return count;
884 }
885 
886 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val)
887 {
888 
889 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val,
890 				      sizeof(val));
891 }
892 
893 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val)
894 {
895 
896 	return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val,
897 				      sizeof(*val));
898 }
899 
900 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu)
901 {
902 	return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
903 }
904 
905 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu)
906 {
907 	if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0)
908 		return;
909 
910 	__set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
911 }
912 
913 static bool pv_eoi_test_and_clr_pending(struct kvm_vcpu *vcpu)
914 {
915 	u8 val;
916 
917 	if (pv_eoi_get_user(vcpu, &val) < 0)
918 		return false;
919 
920 	val &= KVM_PV_EOI_ENABLED;
921 
922 	if (val && pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0)
923 		return false;
924 
925 	/*
926 	 * Clear pending bit in any case: it will be set again on vmentry.
927 	 * While this might not be ideal from performance point of view,
928 	 * this makes sure pv eoi is only enabled when we know it's safe.
929 	 */
930 	__clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
931 
932 	return val;
933 }
934 
935 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr)
936 {
937 	int highest_irr;
938 	if (kvm_x86_ops.sync_pir_to_irr)
939 		highest_irr = static_call(kvm_x86_sync_pir_to_irr)(apic->vcpu);
940 	else
941 		highest_irr = apic_find_highest_irr(apic);
942 	if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr)
943 		return -1;
944 	return highest_irr;
945 }
946 
947 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr)
948 {
949 	u32 tpr, isrv, ppr, old_ppr;
950 	int isr;
951 
952 	old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI);
953 	tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI);
954 	isr = apic_find_highest_isr(apic);
955 	isrv = (isr != -1) ? isr : 0;
956 
957 	if ((tpr & 0xf0) >= (isrv & 0xf0))
958 		ppr = tpr & 0xff;
959 	else
960 		ppr = isrv & 0xf0;
961 
962 	*new_ppr = ppr;
963 	if (old_ppr != ppr)
964 		kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr);
965 
966 	return ppr < old_ppr;
967 }
968 
969 static void apic_update_ppr(struct kvm_lapic *apic)
970 {
971 	u32 ppr;
972 
973 	if (__apic_update_ppr(apic, &ppr) &&
974 	    apic_has_interrupt_for_ppr(apic, ppr) != -1)
975 		kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
976 }
977 
978 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu)
979 {
980 	apic_update_ppr(vcpu->arch.apic);
981 }
982 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr);
983 
984 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr)
985 {
986 	kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr);
987 	apic_update_ppr(apic);
988 }
989 
990 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda)
991 {
992 	return mda == (apic_x2apic_mode(apic) ?
993 			X2APIC_BROADCAST : APIC_BROADCAST);
994 }
995 
996 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda)
997 {
998 	if (kvm_apic_broadcast(apic, mda))
999 		return true;
1000 
1001 	/*
1002 	 * Hotplug hack: Accept interrupts for vCPUs in xAPIC mode as if they
1003 	 * were in x2APIC mode if the target APIC ID can't be encoded as an
1004 	 * xAPIC ID.  This allows unique addressing of hotplugged vCPUs (which
1005 	 * start in xAPIC mode) with an APIC ID that is unaddressable in xAPIC
1006 	 * mode.  Match the x2APIC ID if and only if the target APIC ID can't
1007 	 * be encoded in xAPIC to avoid spurious matches against a vCPU that
1008 	 * changed its (addressable) xAPIC ID (which is writable).
1009 	 */
1010 	if (apic_x2apic_mode(apic) || mda > 0xff)
1011 		return mda == kvm_x2apic_id(apic);
1012 
1013 	return mda == kvm_xapic_id(apic);
1014 }
1015 
1016 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda)
1017 {
1018 	u32 logical_id;
1019 
1020 	if (kvm_apic_broadcast(apic, mda))
1021 		return true;
1022 
1023 	logical_id = kvm_lapic_get_reg(apic, APIC_LDR);
1024 
1025 	if (apic_x2apic_mode(apic))
1026 		return ((logical_id >> 16) == (mda >> 16))
1027 		       && (logical_id & mda & 0xffff) != 0;
1028 
1029 	logical_id = GET_APIC_LOGICAL_ID(logical_id);
1030 
1031 	switch (kvm_lapic_get_reg(apic, APIC_DFR)) {
1032 	case APIC_DFR_FLAT:
1033 		return (logical_id & mda) != 0;
1034 	case APIC_DFR_CLUSTER:
1035 		return ((logical_id >> 4) == (mda >> 4))
1036 		       && (logical_id & mda & 0xf) != 0;
1037 	default:
1038 		return false;
1039 	}
1040 }
1041 
1042 /* The KVM local APIC implementation has two quirks:
1043  *
1044  *  - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs
1045  *    in xAPIC mode if the "destination & 0xff" matches its xAPIC ID.
1046  *    KVM doesn't do that aliasing.
1047  *
1048  *  - in-kernel IOAPIC messages have to be delivered directly to
1049  *    x2APIC, because the kernel does not support interrupt remapping.
1050  *    In order to support broadcast without interrupt remapping, x2APIC
1051  *    rewrites the destination of non-IPI messages from APIC_BROADCAST
1052  *    to X2APIC_BROADCAST.
1053  *
1054  * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API.  This is
1055  * important when userspace wants to use x2APIC-format MSIs, because
1056  * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7".
1057  */
1058 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id,
1059 		struct kvm_lapic *source, struct kvm_lapic *target)
1060 {
1061 	bool ipi = source != NULL;
1062 
1063 	if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled &&
1064 	    !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target))
1065 		return X2APIC_BROADCAST;
1066 
1067 	return dest_id;
1068 }
1069 
1070 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
1071 			   int shorthand, unsigned int dest, int dest_mode)
1072 {
1073 	struct kvm_lapic *target = vcpu->arch.apic;
1074 	u32 mda = kvm_apic_mda(vcpu, dest, source, target);
1075 
1076 	ASSERT(target);
1077 	switch (shorthand) {
1078 	case APIC_DEST_NOSHORT:
1079 		if (dest_mode == APIC_DEST_PHYSICAL)
1080 			return kvm_apic_match_physical_addr(target, mda);
1081 		else
1082 			return kvm_apic_match_logical_addr(target, mda);
1083 	case APIC_DEST_SELF:
1084 		return target == source;
1085 	case APIC_DEST_ALLINC:
1086 		return true;
1087 	case APIC_DEST_ALLBUT:
1088 		return target != source;
1089 	default:
1090 		return false;
1091 	}
1092 }
1093 EXPORT_SYMBOL_GPL(kvm_apic_match_dest);
1094 
1095 int kvm_vector_to_index(u32 vector, u32 dest_vcpus,
1096 		       const unsigned long *bitmap, u32 bitmap_size)
1097 {
1098 	u32 mod;
1099 	int i, idx = -1;
1100 
1101 	mod = vector % dest_vcpus;
1102 
1103 	for (i = 0; i <= mod; i++) {
1104 		idx = find_next_bit(bitmap, bitmap_size, idx + 1);
1105 		BUG_ON(idx == bitmap_size);
1106 	}
1107 
1108 	return idx;
1109 }
1110 
1111 static void kvm_apic_disabled_lapic_found(struct kvm *kvm)
1112 {
1113 	if (!kvm->arch.disabled_lapic_found) {
1114 		kvm->arch.disabled_lapic_found = true;
1115 		pr_info("Disabled LAPIC found during irq injection\n");
1116 	}
1117 }
1118 
1119 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src,
1120 		struct kvm_lapic_irq *irq, struct kvm_apic_map *map)
1121 {
1122 	if (kvm->arch.x2apic_broadcast_quirk_disabled) {
1123 		if ((irq->dest_id == APIC_BROADCAST &&
1124 		     map->logical_mode != KVM_APIC_MODE_X2APIC))
1125 			return true;
1126 		if (irq->dest_id == X2APIC_BROADCAST)
1127 			return true;
1128 	} else {
1129 		bool x2apic_ipi = src && *src && apic_x2apic_mode(*src);
1130 		if (irq->dest_id == (x2apic_ipi ?
1131 		                     X2APIC_BROADCAST : APIC_BROADCAST))
1132 			return true;
1133 	}
1134 
1135 	return false;
1136 }
1137 
1138 /* Return true if the interrupt can be handled by using *bitmap as index mask
1139  * for valid destinations in *dst array.
1140  * Return false if kvm_apic_map_get_dest_lapic did nothing useful.
1141  * Note: we may have zero kvm_lapic destinations when we return true, which
1142  * means that the interrupt should be dropped.  In this case, *bitmap would be
1143  * zero and *dst undefined.
1144  */
1145 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm,
1146 		struct kvm_lapic **src, struct kvm_lapic_irq *irq,
1147 		struct kvm_apic_map *map, struct kvm_lapic ***dst,
1148 		unsigned long *bitmap)
1149 {
1150 	int i, lowest;
1151 
1152 	if (irq->shorthand == APIC_DEST_SELF && src) {
1153 		*dst = src;
1154 		*bitmap = 1;
1155 		return true;
1156 	} else if (irq->shorthand)
1157 		return false;
1158 
1159 	if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map))
1160 		return false;
1161 
1162 	if (irq->dest_mode == APIC_DEST_PHYSICAL) {
1163 		if (irq->dest_id > map->max_apic_id) {
1164 			*bitmap = 0;
1165 		} else {
1166 			u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1);
1167 			*dst = &map->phys_map[dest_id];
1168 			*bitmap = 1;
1169 		}
1170 		return true;
1171 	}
1172 
1173 	*bitmap = 0;
1174 	if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst,
1175 				(u16 *)bitmap))
1176 		return false;
1177 
1178 	if (!kvm_lowest_prio_delivery(irq))
1179 		return true;
1180 
1181 	if (!kvm_vector_hashing_enabled()) {
1182 		lowest = -1;
1183 		for_each_set_bit(i, bitmap, 16) {
1184 			if (!(*dst)[i])
1185 				continue;
1186 			if (lowest < 0)
1187 				lowest = i;
1188 			else if (kvm_apic_compare_prio((*dst)[i]->vcpu,
1189 						(*dst)[lowest]->vcpu) < 0)
1190 				lowest = i;
1191 		}
1192 	} else {
1193 		if (!*bitmap)
1194 			return true;
1195 
1196 		lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap),
1197 				bitmap, 16);
1198 
1199 		if (!(*dst)[lowest]) {
1200 			kvm_apic_disabled_lapic_found(kvm);
1201 			*bitmap = 0;
1202 			return true;
1203 		}
1204 	}
1205 
1206 	*bitmap = (lowest >= 0) ? 1 << lowest : 0;
1207 
1208 	return true;
1209 }
1210 
1211 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src,
1212 		struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map)
1213 {
1214 	struct kvm_apic_map *map;
1215 	unsigned long bitmap;
1216 	struct kvm_lapic **dst = NULL;
1217 	int i;
1218 	bool ret;
1219 
1220 	*r = -1;
1221 
1222 	if (irq->shorthand == APIC_DEST_SELF) {
1223 		if (KVM_BUG_ON(!src, kvm)) {
1224 			*r = 0;
1225 			return true;
1226 		}
1227 		*r = kvm_apic_set_irq(src->vcpu, irq, dest_map);
1228 		return true;
1229 	}
1230 
1231 	rcu_read_lock();
1232 	map = rcu_dereference(kvm->arch.apic_map);
1233 
1234 	ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap);
1235 	if (ret) {
1236 		*r = 0;
1237 		for_each_set_bit(i, &bitmap, 16) {
1238 			if (!dst[i])
1239 				continue;
1240 			*r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map);
1241 		}
1242 	}
1243 
1244 	rcu_read_unlock();
1245 	return ret;
1246 }
1247 
1248 /*
1249  * This routine tries to handle interrupts in posted mode, here is how
1250  * it deals with different cases:
1251  * - For single-destination interrupts, handle it in posted mode
1252  * - Else if vector hashing is enabled and it is a lowest-priority
1253  *   interrupt, handle it in posted mode and use the following mechanism
1254  *   to find the destination vCPU.
1255  *	1. For lowest-priority interrupts, store all the possible
1256  *	   destination vCPUs in an array.
1257  *	2. Use "guest vector % max number of destination vCPUs" to find
1258  *	   the right destination vCPU in the array for the lowest-priority
1259  *	   interrupt.
1260  * - Otherwise, use remapped mode to inject the interrupt.
1261  */
1262 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq,
1263 			struct kvm_vcpu **dest_vcpu)
1264 {
1265 	struct kvm_apic_map *map;
1266 	unsigned long bitmap;
1267 	struct kvm_lapic **dst = NULL;
1268 	bool ret = false;
1269 
1270 	if (irq->shorthand)
1271 		return false;
1272 
1273 	rcu_read_lock();
1274 	map = rcu_dereference(kvm->arch.apic_map);
1275 
1276 	if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) &&
1277 			hweight16(bitmap) == 1) {
1278 		unsigned long i = find_first_bit(&bitmap, 16);
1279 
1280 		if (dst[i]) {
1281 			*dest_vcpu = dst[i]->vcpu;
1282 			ret = true;
1283 		}
1284 	}
1285 
1286 	rcu_read_unlock();
1287 	return ret;
1288 }
1289 
1290 /*
1291  * Add a pending IRQ into lapic.
1292  * Return 1 if successfully added and 0 if discarded.
1293  */
1294 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
1295 			     int vector, int level, int trig_mode,
1296 			     struct dest_map *dest_map)
1297 {
1298 	int result = 0;
1299 	struct kvm_vcpu *vcpu = apic->vcpu;
1300 
1301 	trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode,
1302 				  trig_mode, vector);
1303 	switch (delivery_mode) {
1304 	case APIC_DM_LOWEST:
1305 		vcpu->arch.apic_arb_prio++;
1306 		fallthrough;
1307 	case APIC_DM_FIXED:
1308 		if (unlikely(trig_mode && !level))
1309 			break;
1310 
1311 		/* FIXME add logic for vcpu on reset */
1312 		if (unlikely(!apic_enabled(apic)))
1313 			break;
1314 
1315 		result = 1;
1316 
1317 		if (dest_map) {
1318 			__set_bit(vcpu->vcpu_id, dest_map->map);
1319 			dest_map->vectors[vcpu->vcpu_id] = vector;
1320 		}
1321 
1322 		if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) {
1323 			if (trig_mode)
1324 				kvm_lapic_set_vector(vector,
1325 						     apic->regs + APIC_TMR);
1326 			else
1327 				kvm_lapic_clear_vector(vector,
1328 						       apic->regs + APIC_TMR);
1329 		}
1330 
1331 		static_call(kvm_x86_deliver_interrupt)(apic, delivery_mode,
1332 						       trig_mode, vector);
1333 		break;
1334 
1335 	case APIC_DM_REMRD:
1336 		result = 1;
1337 		vcpu->arch.pv.pv_unhalted = 1;
1338 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1339 		kvm_vcpu_kick(vcpu);
1340 		break;
1341 
1342 	case APIC_DM_SMI:
1343 		if (!kvm_inject_smi(vcpu)) {
1344 			kvm_vcpu_kick(vcpu);
1345 			result = 1;
1346 		}
1347 		break;
1348 
1349 	case APIC_DM_NMI:
1350 		result = 1;
1351 		kvm_inject_nmi(vcpu);
1352 		kvm_vcpu_kick(vcpu);
1353 		break;
1354 
1355 	case APIC_DM_INIT:
1356 		if (!trig_mode || level) {
1357 			result = 1;
1358 			/* assumes that there are only KVM_APIC_INIT/SIPI */
1359 			apic->pending_events = (1UL << KVM_APIC_INIT);
1360 			kvm_make_request(KVM_REQ_EVENT, vcpu);
1361 			kvm_vcpu_kick(vcpu);
1362 		}
1363 		break;
1364 
1365 	case APIC_DM_STARTUP:
1366 		result = 1;
1367 		apic->sipi_vector = vector;
1368 		/* make sure sipi_vector is visible for the receiver */
1369 		smp_wmb();
1370 		set_bit(KVM_APIC_SIPI, &apic->pending_events);
1371 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1372 		kvm_vcpu_kick(vcpu);
1373 		break;
1374 
1375 	case APIC_DM_EXTINT:
1376 		/*
1377 		 * Should only be called by kvm_apic_local_deliver() with LVT0,
1378 		 * before NMI watchdog was enabled. Already handled by
1379 		 * kvm_apic_accept_pic_intr().
1380 		 */
1381 		break;
1382 
1383 	default:
1384 		printk(KERN_ERR "TODO: unsupported delivery mode %x\n",
1385 		       delivery_mode);
1386 		break;
1387 	}
1388 	return result;
1389 }
1390 
1391 /*
1392  * This routine identifies the destination vcpus mask meant to receive the
1393  * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find
1394  * out the destination vcpus array and set the bitmap or it traverses to
1395  * each available vcpu to identify the same.
1396  */
1397 void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq,
1398 			      unsigned long *vcpu_bitmap)
1399 {
1400 	struct kvm_lapic **dest_vcpu = NULL;
1401 	struct kvm_lapic *src = NULL;
1402 	struct kvm_apic_map *map;
1403 	struct kvm_vcpu *vcpu;
1404 	unsigned long bitmap, i;
1405 	int vcpu_idx;
1406 	bool ret;
1407 
1408 	rcu_read_lock();
1409 	map = rcu_dereference(kvm->arch.apic_map);
1410 
1411 	ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu,
1412 					  &bitmap);
1413 	if (ret) {
1414 		for_each_set_bit(i, &bitmap, 16) {
1415 			if (!dest_vcpu[i])
1416 				continue;
1417 			vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx;
1418 			__set_bit(vcpu_idx, vcpu_bitmap);
1419 		}
1420 	} else {
1421 		kvm_for_each_vcpu(i, vcpu, kvm) {
1422 			if (!kvm_apic_present(vcpu))
1423 				continue;
1424 			if (!kvm_apic_match_dest(vcpu, NULL,
1425 						 irq->shorthand,
1426 						 irq->dest_id,
1427 						 irq->dest_mode))
1428 				continue;
1429 			__set_bit(i, vcpu_bitmap);
1430 		}
1431 	}
1432 	rcu_read_unlock();
1433 }
1434 
1435 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
1436 {
1437 	return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio;
1438 }
1439 
1440 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector)
1441 {
1442 	return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors);
1443 }
1444 
1445 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector)
1446 {
1447 	int trigger_mode;
1448 
1449 	/* Eoi the ioapic only if the ioapic doesn't own the vector. */
1450 	if (!kvm_ioapic_handles_vector(apic, vector))
1451 		return;
1452 
1453 	/* Request a KVM exit to inform the userspace IOAPIC. */
1454 	if (irqchip_split(apic->vcpu->kvm)) {
1455 		apic->vcpu->arch.pending_ioapic_eoi = vector;
1456 		kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu);
1457 		return;
1458 	}
1459 
1460 	if (apic_test_vector(vector, apic->regs + APIC_TMR))
1461 		trigger_mode = IOAPIC_LEVEL_TRIG;
1462 	else
1463 		trigger_mode = IOAPIC_EDGE_TRIG;
1464 
1465 	kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode);
1466 }
1467 
1468 static int apic_set_eoi(struct kvm_lapic *apic)
1469 {
1470 	int vector = apic_find_highest_isr(apic);
1471 
1472 	trace_kvm_eoi(apic, vector);
1473 
1474 	/*
1475 	 * Not every write EOI will has corresponding ISR,
1476 	 * one example is when Kernel check timer on setup_IO_APIC
1477 	 */
1478 	if (vector == -1)
1479 		return vector;
1480 
1481 	apic_clear_isr(vector, apic);
1482 	apic_update_ppr(apic);
1483 
1484 	if (kvm_hv_synic_has_vector(apic->vcpu, vector))
1485 		kvm_hv_synic_send_eoi(apic->vcpu, vector);
1486 
1487 	kvm_ioapic_send_eoi(apic, vector);
1488 	kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1489 	return vector;
1490 }
1491 
1492 /*
1493  * this interface assumes a trap-like exit, which has already finished
1494  * desired side effect including vISR and vPPR update.
1495  */
1496 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector)
1497 {
1498 	struct kvm_lapic *apic = vcpu->arch.apic;
1499 
1500 	trace_kvm_eoi(apic, vector);
1501 
1502 	kvm_ioapic_send_eoi(apic, vector);
1503 	kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1504 }
1505 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated);
1506 
1507 void kvm_apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high)
1508 {
1509 	struct kvm_lapic_irq irq;
1510 
1511 	/* KVM has no delay and should always clear the BUSY/PENDING flag. */
1512 	WARN_ON_ONCE(icr_low & APIC_ICR_BUSY);
1513 
1514 	irq.vector = icr_low & APIC_VECTOR_MASK;
1515 	irq.delivery_mode = icr_low & APIC_MODE_MASK;
1516 	irq.dest_mode = icr_low & APIC_DEST_MASK;
1517 	irq.level = (icr_low & APIC_INT_ASSERT) != 0;
1518 	irq.trig_mode = icr_low & APIC_INT_LEVELTRIG;
1519 	irq.shorthand = icr_low & APIC_SHORT_MASK;
1520 	irq.msi_redir_hint = false;
1521 	if (apic_x2apic_mode(apic))
1522 		irq.dest_id = icr_high;
1523 	else
1524 		irq.dest_id = GET_XAPIC_DEST_FIELD(icr_high);
1525 
1526 	trace_kvm_apic_ipi(icr_low, irq.dest_id);
1527 
1528 	kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL);
1529 }
1530 EXPORT_SYMBOL_GPL(kvm_apic_send_ipi);
1531 
1532 static u32 apic_get_tmcct(struct kvm_lapic *apic)
1533 {
1534 	ktime_t remaining, now;
1535 	s64 ns;
1536 
1537 	ASSERT(apic != NULL);
1538 
1539 	/* if initial count is 0, current count should also be 0 */
1540 	if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 ||
1541 		apic->lapic_timer.period == 0)
1542 		return 0;
1543 
1544 	now = ktime_get();
1545 	remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1546 	if (ktime_to_ns(remaining) < 0)
1547 		remaining = 0;
1548 
1549 	ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period);
1550 	return div64_u64(ns, (APIC_BUS_CYCLE_NS * apic->divide_count));
1551 }
1552 
1553 static void __report_tpr_access(struct kvm_lapic *apic, bool write)
1554 {
1555 	struct kvm_vcpu *vcpu = apic->vcpu;
1556 	struct kvm_run *run = vcpu->run;
1557 
1558 	kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu);
1559 	run->tpr_access.rip = kvm_rip_read(vcpu);
1560 	run->tpr_access.is_write = write;
1561 }
1562 
1563 static inline void report_tpr_access(struct kvm_lapic *apic, bool write)
1564 {
1565 	if (apic->vcpu->arch.tpr_access_reporting)
1566 		__report_tpr_access(apic, write);
1567 }
1568 
1569 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset)
1570 {
1571 	u32 val = 0;
1572 
1573 	if (offset >= LAPIC_MMIO_LENGTH)
1574 		return 0;
1575 
1576 	switch (offset) {
1577 	case APIC_ARBPRI:
1578 		break;
1579 
1580 	case APIC_TMCCT:	/* Timer CCR */
1581 		if (apic_lvtt_tscdeadline(apic))
1582 			return 0;
1583 
1584 		val = apic_get_tmcct(apic);
1585 		break;
1586 	case APIC_PROCPRI:
1587 		apic_update_ppr(apic);
1588 		val = kvm_lapic_get_reg(apic, offset);
1589 		break;
1590 	case APIC_TASKPRI:
1591 		report_tpr_access(apic, false);
1592 		fallthrough;
1593 	default:
1594 		val = kvm_lapic_get_reg(apic, offset);
1595 		break;
1596 	}
1597 
1598 	return val;
1599 }
1600 
1601 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev)
1602 {
1603 	return container_of(dev, struct kvm_lapic, dev);
1604 }
1605 
1606 #define APIC_REG_MASK(reg)	(1ull << ((reg) >> 4))
1607 #define APIC_REGS_MASK(first, count) \
1608 	(APIC_REG_MASK(first) * ((1ull << (count)) - 1))
1609 
1610 u64 kvm_lapic_readable_reg_mask(struct kvm_lapic *apic)
1611 {
1612 	/* Leave bits '0' for reserved and write-only registers. */
1613 	u64 valid_reg_mask =
1614 		APIC_REG_MASK(APIC_ID) |
1615 		APIC_REG_MASK(APIC_LVR) |
1616 		APIC_REG_MASK(APIC_TASKPRI) |
1617 		APIC_REG_MASK(APIC_PROCPRI) |
1618 		APIC_REG_MASK(APIC_LDR) |
1619 		APIC_REG_MASK(APIC_SPIV) |
1620 		APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) |
1621 		APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) |
1622 		APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) |
1623 		APIC_REG_MASK(APIC_ESR) |
1624 		APIC_REG_MASK(APIC_ICR) |
1625 		APIC_REG_MASK(APIC_LVTT) |
1626 		APIC_REG_MASK(APIC_LVTTHMR) |
1627 		APIC_REG_MASK(APIC_LVTPC) |
1628 		APIC_REG_MASK(APIC_LVT0) |
1629 		APIC_REG_MASK(APIC_LVT1) |
1630 		APIC_REG_MASK(APIC_LVTERR) |
1631 		APIC_REG_MASK(APIC_TMICT) |
1632 		APIC_REG_MASK(APIC_TMCCT) |
1633 		APIC_REG_MASK(APIC_TDCR);
1634 
1635 	if (kvm_lapic_lvt_supported(apic, LVT_CMCI))
1636 		valid_reg_mask |= APIC_REG_MASK(APIC_LVTCMCI);
1637 
1638 	/* ARBPRI, DFR, and ICR2 are not valid in x2APIC mode. */
1639 	if (!apic_x2apic_mode(apic))
1640 		valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI) |
1641 				  APIC_REG_MASK(APIC_DFR) |
1642 				  APIC_REG_MASK(APIC_ICR2);
1643 
1644 	return valid_reg_mask;
1645 }
1646 EXPORT_SYMBOL_GPL(kvm_lapic_readable_reg_mask);
1647 
1648 static int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len,
1649 			      void *data)
1650 {
1651 	unsigned char alignment = offset & 0xf;
1652 	u32 result;
1653 
1654 	/*
1655 	 * WARN if KVM reads ICR in x2APIC mode, as it's an 8-byte register in
1656 	 * x2APIC and needs to be manually handled by the caller.
1657 	 */
1658 	WARN_ON_ONCE(apic_x2apic_mode(apic) && offset == APIC_ICR);
1659 
1660 	if (alignment + len > 4)
1661 		return 1;
1662 
1663 	if (offset > 0x3f0 ||
1664 	    !(kvm_lapic_readable_reg_mask(apic) & APIC_REG_MASK(offset)))
1665 		return 1;
1666 
1667 	result = __apic_read(apic, offset & ~0xf);
1668 
1669 	trace_kvm_apic_read(offset, result);
1670 
1671 	switch (len) {
1672 	case 1:
1673 	case 2:
1674 	case 4:
1675 		memcpy(data, (char *)&result + alignment, len);
1676 		break;
1677 	default:
1678 		printk(KERN_ERR "Local APIC read with len = %x, "
1679 		       "should be 1,2, or 4 instead\n", len);
1680 		break;
1681 	}
1682 	return 0;
1683 }
1684 
1685 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr)
1686 {
1687 	return addr >= apic->base_address &&
1688 		addr < apic->base_address + LAPIC_MMIO_LENGTH;
1689 }
1690 
1691 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
1692 			   gpa_t address, int len, void *data)
1693 {
1694 	struct kvm_lapic *apic = to_lapic(this);
1695 	u32 offset = address - apic->base_address;
1696 
1697 	if (!apic_mmio_in_range(apic, address))
1698 		return -EOPNOTSUPP;
1699 
1700 	if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
1701 		if (!kvm_check_has_quirk(vcpu->kvm,
1702 					 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
1703 			return -EOPNOTSUPP;
1704 
1705 		memset(data, 0xff, len);
1706 		return 0;
1707 	}
1708 
1709 	kvm_lapic_reg_read(apic, offset, len, data);
1710 
1711 	return 0;
1712 }
1713 
1714 static void update_divide_count(struct kvm_lapic *apic)
1715 {
1716 	u32 tmp1, tmp2, tdcr;
1717 
1718 	tdcr = kvm_lapic_get_reg(apic, APIC_TDCR);
1719 	tmp1 = tdcr & 0xf;
1720 	tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1;
1721 	apic->divide_count = 0x1 << (tmp2 & 0x7);
1722 }
1723 
1724 static void limit_periodic_timer_frequency(struct kvm_lapic *apic)
1725 {
1726 	/*
1727 	 * Do not allow the guest to program periodic timers with small
1728 	 * interval, since the hrtimers are not throttled by the host
1729 	 * scheduler.
1730 	 */
1731 	if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
1732 		s64 min_period = min_timer_period_us * 1000LL;
1733 
1734 		if (apic->lapic_timer.period < min_period) {
1735 			pr_info_ratelimited(
1736 			    "vcpu %i: requested %lld ns "
1737 			    "lapic timer period limited to %lld ns\n",
1738 			    apic->vcpu->vcpu_id,
1739 			    apic->lapic_timer.period, min_period);
1740 			apic->lapic_timer.period = min_period;
1741 		}
1742 	}
1743 }
1744 
1745 static void cancel_hv_timer(struct kvm_lapic *apic);
1746 
1747 static void cancel_apic_timer(struct kvm_lapic *apic)
1748 {
1749 	hrtimer_cancel(&apic->lapic_timer.timer);
1750 	preempt_disable();
1751 	if (apic->lapic_timer.hv_timer_in_use)
1752 		cancel_hv_timer(apic);
1753 	preempt_enable();
1754 	atomic_set(&apic->lapic_timer.pending, 0);
1755 }
1756 
1757 static void apic_update_lvtt(struct kvm_lapic *apic)
1758 {
1759 	u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) &
1760 			apic->lapic_timer.timer_mode_mask;
1761 
1762 	if (apic->lapic_timer.timer_mode != timer_mode) {
1763 		if (apic_lvtt_tscdeadline(apic) != (timer_mode ==
1764 				APIC_LVT_TIMER_TSCDEADLINE)) {
1765 			cancel_apic_timer(apic);
1766 			kvm_lapic_set_reg(apic, APIC_TMICT, 0);
1767 			apic->lapic_timer.period = 0;
1768 			apic->lapic_timer.tscdeadline = 0;
1769 		}
1770 		apic->lapic_timer.timer_mode = timer_mode;
1771 		limit_periodic_timer_frequency(apic);
1772 	}
1773 }
1774 
1775 /*
1776  * On APICv, this test will cause a busy wait
1777  * during a higher-priority task.
1778  */
1779 
1780 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu)
1781 {
1782 	struct kvm_lapic *apic = vcpu->arch.apic;
1783 	u32 reg = kvm_lapic_get_reg(apic, APIC_LVTT);
1784 
1785 	if (kvm_apic_hw_enabled(apic)) {
1786 		int vec = reg & APIC_VECTOR_MASK;
1787 		void *bitmap = apic->regs + APIC_ISR;
1788 
1789 		if (apic->apicv_active)
1790 			bitmap = apic->regs + APIC_IRR;
1791 
1792 		if (apic_test_vector(vec, bitmap))
1793 			return true;
1794 	}
1795 	return false;
1796 }
1797 
1798 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles)
1799 {
1800 	u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns;
1801 
1802 	/*
1803 	 * If the guest TSC is running at a different ratio than the host, then
1804 	 * convert the delay to nanoseconds to achieve an accurate delay.  Note
1805 	 * that __delay() uses delay_tsc whenever the hardware has TSC, thus
1806 	 * always for VMX enabled hardware.
1807 	 */
1808 	if (vcpu->arch.tsc_scaling_ratio == kvm_caps.default_tsc_scaling_ratio) {
1809 		__delay(min(guest_cycles,
1810 			nsec_to_cycles(vcpu, timer_advance_ns)));
1811 	} else {
1812 		u64 delay_ns = guest_cycles * 1000000ULL;
1813 		do_div(delay_ns, vcpu->arch.virtual_tsc_khz);
1814 		ndelay(min_t(u32, delay_ns, timer_advance_ns));
1815 	}
1816 }
1817 
1818 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu,
1819 					      s64 advance_expire_delta)
1820 {
1821 	struct kvm_lapic *apic = vcpu->arch.apic;
1822 	u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns;
1823 	u64 ns;
1824 
1825 	/* Do not adjust for tiny fluctuations or large random spikes. */
1826 	if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX ||
1827 	    abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN)
1828 		return;
1829 
1830 	/* too early */
1831 	if (advance_expire_delta < 0) {
1832 		ns = -advance_expire_delta * 1000000ULL;
1833 		do_div(ns, vcpu->arch.virtual_tsc_khz);
1834 		timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
1835 	} else {
1836 	/* too late */
1837 		ns = advance_expire_delta * 1000000ULL;
1838 		do_div(ns, vcpu->arch.virtual_tsc_khz);
1839 		timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
1840 	}
1841 
1842 	if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX))
1843 		timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
1844 	apic->lapic_timer.timer_advance_ns = timer_advance_ns;
1845 }
1846 
1847 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1848 {
1849 	struct kvm_lapic *apic = vcpu->arch.apic;
1850 	u64 guest_tsc, tsc_deadline;
1851 
1852 	tsc_deadline = apic->lapic_timer.expired_tscdeadline;
1853 	apic->lapic_timer.expired_tscdeadline = 0;
1854 	guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1855 	trace_kvm_wait_lapic_expire(vcpu->vcpu_id, guest_tsc - tsc_deadline);
1856 
1857 	if (lapic_timer_advance_dynamic) {
1858 		adjust_lapic_timer_advance(vcpu, guest_tsc - tsc_deadline);
1859 		/*
1860 		 * If the timer fired early, reread the TSC to account for the
1861 		 * overhead of the above adjustment to avoid waiting longer
1862 		 * than is necessary.
1863 		 */
1864 		if (guest_tsc < tsc_deadline)
1865 			guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1866 	}
1867 
1868 	if (guest_tsc < tsc_deadline)
1869 		__wait_lapic_expire(vcpu, tsc_deadline - guest_tsc);
1870 }
1871 
1872 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1873 {
1874 	if (lapic_in_kernel(vcpu) &&
1875 	    vcpu->arch.apic->lapic_timer.expired_tscdeadline &&
1876 	    vcpu->arch.apic->lapic_timer.timer_advance_ns &&
1877 	    lapic_timer_int_injected(vcpu))
1878 		__kvm_wait_lapic_expire(vcpu);
1879 }
1880 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire);
1881 
1882 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic)
1883 {
1884 	struct kvm_timer *ktimer = &apic->lapic_timer;
1885 
1886 	kvm_apic_local_deliver(apic, APIC_LVTT);
1887 	if (apic_lvtt_tscdeadline(apic)) {
1888 		ktimer->tscdeadline = 0;
1889 	} else if (apic_lvtt_oneshot(apic)) {
1890 		ktimer->tscdeadline = 0;
1891 		ktimer->target_expiration = 0;
1892 	}
1893 }
1894 
1895 static void apic_timer_expired(struct kvm_lapic *apic, bool from_timer_fn)
1896 {
1897 	struct kvm_vcpu *vcpu = apic->vcpu;
1898 	struct kvm_timer *ktimer = &apic->lapic_timer;
1899 
1900 	if (atomic_read(&apic->lapic_timer.pending))
1901 		return;
1902 
1903 	if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use)
1904 		ktimer->expired_tscdeadline = ktimer->tscdeadline;
1905 
1906 	if (!from_timer_fn && apic->apicv_active) {
1907 		WARN_ON(kvm_get_running_vcpu() != vcpu);
1908 		kvm_apic_inject_pending_timer_irqs(apic);
1909 		return;
1910 	}
1911 
1912 	if (kvm_use_posted_timer_interrupt(apic->vcpu)) {
1913 		/*
1914 		 * Ensure the guest's timer has truly expired before posting an
1915 		 * interrupt.  Open code the relevant checks to avoid querying
1916 		 * lapic_timer_int_injected(), which will be false since the
1917 		 * interrupt isn't yet injected.  Waiting until after injecting
1918 		 * is not an option since that won't help a posted interrupt.
1919 		 */
1920 		if (vcpu->arch.apic->lapic_timer.expired_tscdeadline &&
1921 		    vcpu->arch.apic->lapic_timer.timer_advance_ns)
1922 			__kvm_wait_lapic_expire(vcpu);
1923 		kvm_apic_inject_pending_timer_irqs(apic);
1924 		return;
1925 	}
1926 
1927 	atomic_inc(&apic->lapic_timer.pending);
1928 	kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1929 	if (from_timer_fn)
1930 		kvm_vcpu_kick(vcpu);
1931 }
1932 
1933 static void start_sw_tscdeadline(struct kvm_lapic *apic)
1934 {
1935 	struct kvm_timer *ktimer = &apic->lapic_timer;
1936 	u64 guest_tsc, tscdeadline = ktimer->tscdeadline;
1937 	u64 ns = 0;
1938 	ktime_t expire;
1939 	struct kvm_vcpu *vcpu = apic->vcpu;
1940 	unsigned long this_tsc_khz = vcpu->arch.virtual_tsc_khz;
1941 	unsigned long flags;
1942 	ktime_t now;
1943 
1944 	if (unlikely(!tscdeadline || !this_tsc_khz))
1945 		return;
1946 
1947 	local_irq_save(flags);
1948 
1949 	now = ktime_get();
1950 	guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1951 
1952 	ns = (tscdeadline - guest_tsc) * 1000000ULL;
1953 	do_div(ns, this_tsc_khz);
1954 
1955 	if (likely(tscdeadline > guest_tsc) &&
1956 	    likely(ns > apic->lapic_timer.timer_advance_ns)) {
1957 		expire = ktime_add_ns(now, ns);
1958 		expire = ktime_sub_ns(expire, ktimer->timer_advance_ns);
1959 		hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD);
1960 	} else
1961 		apic_timer_expired(apic, false);
1962 
1963 	local_irq_restore(flags);
1964 }
1965 
1966 static inline u64 tmict_to_ns(struct kvm_lapic *apic, u32 tmict)
1967 {
1968 	return (u64)tmict * APIC_BUS_CYCLE_NS * (u64)apic->divide_count;
1969 }
1970 
1971 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor)
1972 {
1973 	ktime_t now, remaining;
1974 	u64 ns_remaining_old, ns_remaining_new;
1975 
1976 	apic->lapic_timer.period =
1977 			tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT));
1978 	limit_periodic_timer_frequency(apic);
1979 
1980 	now = ktime_get();
1981 	remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1982 	if (ktime_to_ns(remaining) < 0)
1983 		remaining = 0;
1984 
1985 	ns_remaining_old = ktime_to_ns(remaining);
1986 	ns_remaining_new = mul_u64_u32_div(ns_remaining_old,
1987 	                                   apic->divide_count, old_divisor);
1988 
1989 	apic->lapic_timer.tscdeadline +=
1990 		nsec_to_cycles(apic->vcpu, ns_remaining_new) -
1991 		nsec_to_cycles(apic->vcpu, ns_remaining_old);
1992 	apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new);
1993 }
1994 
1995 static bool set_target_expiration(struct kvm_lapic *apic, u32 count_reg)
1996 {
1997 	ktime_t now;
1998 	u64 tscl = rdtsc();
1999 	s64 deadline;
2000 
2001 	now = ktime_get();
2002 	apic->lapic_timer.period =
2003 			tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT));
2004 
2005 	if (!apic->lapic_timer.period) {
2006 		apic->lapic_timer.tscdeadline = 0;
2007 		return false;
2008 	}
2009 
2010 	limit_periodic_timer_frequency(apic);
2011 	deadline = apic->lapic_timer.period;
2012 
2013 	if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) {
2014 		if (unlikely(count_reg != APIC_TMICT)) {
2015 			deadline = tmict_to_ns(apic,
2016 				     kvm_lapic_get_reg(apic, count_reg));
2017 			if (unlikely(deadline <= 0)) {
2018 				if (apic_lvtt_period(apic))
2019 					deadline = apic->lapic_timer.period;
2020 				else
2021 					deadline = 0;
2022 			}
2023 			else if (unlikely(deadline > apic->lapic_timer.period)) {
2024 				pr_info_ratelimited(
2025 				    "vcpu %i: requested lapic timer restore with "
2026 				    "starting count register %#x=%u (%lld ns) > initial count (%lld ns). "
2027 				    "Using initial count to start timer.\n",
2028 				    apic->vcpu->vcpu_id,
2029 				    count_reg,
2030 				    kvm_lapic_get_reg(apic, count_reg),
2031 				    deadline, apic->lapic_timer.period);
2032 				kvm_lapic_set_reg(apic, count_reg, 0);
2033 				deadline = apic->lapic_timer.period;
2034 			}
2035 		}
2036 	}
2037 
2038 	apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
2039 		nsec_to_cycles(apic->vcpu, deadline);
2040 	apic->lapic_timer.target_expiration = ktime_add_ns(now, deadline);
2041 
2042 	return true;
2043 }
2044 
2045 static void advance_periodic_target_expiration(struct kvm_lapic *apic)
2046 {
2047 	ktime_t now = ktime_get();
2048 	u64 tscl = rdtsc();
2049 	ktime_t delta;
2050 
2051 	/*
2052 	 * Synchronize both deadlines to the same time source or
2053 	 * differences in the periods (caused by differences in the
2054 	 * underlying clocks or numerical approximation errors) will
2055 	 * cause the two to drift apart over time as the errors
2056 	 * accumulate.
2057 	 */
2058 	apic->lapic_timer.target_expiration =
2059 		ktime_add_ns(apic->lapic_timer.target_expiration,
2060 				apic->lapic_timer.period);
2061 	delta = ktime_sub(apic->lapic_timer.target_expiration, now);
2062 	apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
2063 		nsec_to_cycles(apic->vcpu, delta);
2064 }
2065 
2066 static void start_sw_period(struct kvm_lapic *apic)
2067 {
2068 	if (!apic->lapic_timer.period)
2069 		return;
2070 
2071 	if (ktime_after(ktime_get(),
2072 			apic->lapic_timer.target_expiration)) {
2073 		apic_timer_expired(apic, false);
2074 
2075 		if (apic_lvtt_oneshot(apic))
2076 			return;
2077 
2078 		advance_periodic_target_expiration(apic);
2079 	}
2080 
2081 	hrtimer_start(&apic->lapic_timer.timer,
2082 		apic->lapic_timer.target_expiration,
2083 		HRTIMER_MODE_ABS_HARD);
2084 }
2085 
2086 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu)
2087 {
2088 	if (!lapic_in_kernel(vcpu))
2089 		return false;
2090 
2091 	return vcpu->arch.apic->lapic_timer.hv_timer_in_use;
2092 }
2093 
2094 static void cancel_hv_timer(struct kvm_lapic *apic)
2095 {
2096 	WARN_ON(preemptible());
2097 	WARN_ON(!apic->lapic_timer.hv_timer_in_use);
2098 	static_call(kvm_x86_cancel_hv_timer)(apic->vcpu);
2099 	apic->lapic_timer.hv_timer_in_use = false;
2100 }
2101 
2102 static bool start_hv_timer(struct kvm_lapic *apic)
2103 {
2104 	struct kvm_timer *ktimer = &apic->lapic_timer;
2105 	struct kvm_vcpu *vcpu = apic->vcpu;
2106 	bool expired;
2107 
2108 	WARN_ON(preemptible());
2109 	if (!kvm_can_use_hv_timer(vcpu))
2110 		return false;
2111 
2112 	if (!ktimer->tscdeadline)
2113 		return false;
2114 
2115 	if (static_call(kvm_x86_set_hv_timer)(vcpu, ktimer->tscdeadline, &expired))
2116 		return false;
2117 
2118 	ktimer->hv_timer_in_use = true;
2119 	hrtimer_cancel(&ktimer->timer);
2120 
2121 	/*
2122 	 * To simplify handling the periodic timer, leave the hv timer running
2123 	 * even if the deadline timer has expired, i.e. rely on the resulting
2124 	 * VM-Exit to recompute the periodic timer's target expiration.
2125 	 */
2126 	if (!apic_lvtt_period(apic)) {
2127 		/*
2128 		 * Cancel the hv timer if the sw timer fired while the hv timer
2129 		 * was being programmed, or if the hv timer itself expired.
2130 		 */
2131 		if (atomic_read(&ktimer->pending)) {
2132 			cancel_hv_timer(apic);
2133 		} else if (expired) {
2134 			apic_timer_expired(apic, false);
2135 			cancel_hv_timer(apic);
2136 		}
2137 	}
2138 
2139 	trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use);
2140 
2141 	return true;
2142 }
2143 
2144 static void start_sw_timer(struct kvm_lapic *apic)
2145 {
2146 	struct kvm_timer *ktimer = &apic->lapic_timer;
2147 
2148 	WARN_ON(preemptible());
2149 	if (apic->lapic_timer.hv_timer_in_use)
2150 		cancel_hv_timer(apic);
2151 	if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending))
2152 		return;
2153 
2154 	if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
2155 		start_sw_period(apic);
2156 	else if (apic_lvtt_tscdeadline(apic))
2157 		start_sw_tscdeadline(apic);
2158 	trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false);
2159 }
2160 
2161 static void restart_apic_timer(struct kvm_lapic *apic)
2162 {
2163 	preempt_disable();
2164 
2165 	if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending))
2166 		goto out;
2167 
2168 	if (!start_hv_timer(apic))
2169 		start_sw_timer(apic);
2170 out:
2171 	preempt_enable();
2172 }
2173 
2174 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu)
2175 {
2176 	struct kvm_lapic *apic = vcpu->arch.apic;
2177 
2178 	preempt_disable();
2179 	/* If the preempt notifier has already run, it also called apic_timer_expired */
2180 	if (!apic->lapic_timer.hv_timer_in_use)
2181 		goto out;
2182 	WARN_ON(kvm_vcpu_is_blocking(vcpu));
2183 	apic_timer_expired(apic, false);
2184 	cancel_hv_timer(apic);
2185 
2186 	if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
2187 		advance_periodic_target_expiration(apic);
2188 		restart_apic_timer(apic);
2189 	}
2190 out:
2191 	preempt_enable();
2192 }
2193 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer);
2194 
2195 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu)
2196 {
2197 	restart_apic_timer(vcpu->arch.apic);
2198 }
2199 
2200 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu)
2201 {
2202 	struct kvm_lapic *apic = vcpu->arch.apic;
2203 
2204 	preempt_disable();
2205 	/* Possibly the TSC deadline timer is not enabled yet */
2206 	if (apic->lapic_timer.hv_timer_in_use)
2207 		start_sw_timer(apic);
2208 	preempt_enable();
2209 }
2210 
2211 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu)
2212 {
2213 	struct kvm_lapic *apic = vcpu->arch.apic;
2214 
2215 	WARN_ON(!apic->lapic_timer.hv_timer_in_use);
2216 	restart_apic_timer(apic);
2217 }
2218 
2219 static void __start_apic_timer(struct kvm_lapic *apic, u32 count_reg)
2220 {
2221 	atomic_set(&apic->lapic_timer.pending, 0);
2222 
2223 	if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
2224 	    && !set_target_expiration(apic, count_reg))
2225 		return;
2226 
2227 	restart_apic_timer(apic);
2228 }
2229 
2230 static void start_apic_timer(struct kvm_lapic *apic)
2231 {
2232 	__start_apic_timer(apic, APIC_TMICT);
2233 }
2234 
2235 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val)
2236 {
2237 	bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val);
2238 
2239 	if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) {
2240 		apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode;
2241 		if (lvt0_in_nmi_mode) {
2242 			atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
2243 		} else
2244 			atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
2245 	}
2246 }
2247 
2248 static int get_lvt_index(u32 reg)
2249 {
2250 	if (reg == APIC_LVTCMCI)
2251 		return LVT_CMCI;
2252 	if (reg < APIC_LVTT || reg > APIC_LVTERR)
2253 		return -1;
2254 	return array_index_nospec(
2255 			(reg - APIC_LVTT) >> 4, KVM_APIC_MAX_NR_LVT_ENTRIES);
2256 }
2257 
2258 static int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val)
2259 {
2260 	int ret = 0;
2261 
2262 	trace_kvm_apic_write(reg, val);
2263 
2264 	switch (reg) {
2265 	case APIC_ID:		/* Local APIC ID */
2266 		if (!apic_x2apic_mode(apic)) {
2267 			kvm_apic_set_xapic_id(apic, val >> 24);
2268 		} else {
2269 			ret = 1;
2270 		}
2271 		break;
2272 
2273 	case APIC_TASKPRI:
2274 		report_tpr_access(apic, true);
2275 		apic_set_tpr(apic, val & 0xff);
2276 		break;
2277 
2278 	case APIC_EOI:
2279 		apic_set_eoi(apic);
2280 		break;
2281 
2282 	case APIC_LDR:
2283 		if (!apic_x2apic_mode(apic))
2284 			kvm_apic_set_ldr(apic, val & APIC_LDR_MASK);
2285 		else
2286 			ret = 1;
2287 		break;
2288 
2289 	case APIC_DFR:
2290 		if (!apic_x2apic_mode(apic))
2291 			kvm_apic_set_dfr(apic, val | 0x0FFFFFFF);
2292 		else
2293 			ret = 1;
2294 		break;
2295 
2296 	case APIC_SPIV: {
2297 		u32 mask = 0x3ff;
2298 		if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI)
2299 			mask |= APIC_SPIV_DIRECTED_EOI;
2300 		apic_set_spiv(apic, val & mask);
2301 		if (!(val & APIC_SPIV_APIC_ENABLED)) {
2302 			int i;
2303 
2304 			for (i = 0; i < apic->nr_lvt_entries; i++) {
2305 				kvm_lapic_set_reg(apic, APIC_LVTx(i),
2306 					kvm_lapic_get_reg(apic, APIC_LVTx(i)) | APIC_LVT_MASKED);
2307 			}
2308 			apic_update_lvtt(apic);
2309 			atomic_set(&apic->lapic_timer.pending, 0);
2310 
2311 		}
2312 		break;
2313 	}
2314 	case APIC_ICR:
2315 		WARN_ON_ONCE(apic_x2apic_mode(apic));
2316 
2317 		/* No delay here, so we always clear the pending bit */
2318 		val &= ~APIC_ICR_BUSY;
2319 		kvm_apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2));
2320 		kvm_lapic_set_reg(apic, APIC_ICR, val);
2321 		break;
2322 	case APIC_ICR2:
2323 		if (apic_x2apic_mode(apic))
2324 			ret = 1;
2325 		else
2326 			kvm_lapic_set_reg(apic, APIC_ICR2, val & 0xff000000);
2327 		break;
2328 
2329 	case APIC_LVT0:
2330 		apic_manage_nmi_watchdog(apic, val);
2331 		fallthrough;
2332 	case APIC_LVTTHMR:
2333 	case APIC_LVTPC:
2334 	case APIC_LVT1:
2335 	case APIC_LVTERR:
2336 	case APIC_LVTCMCI: {
2337 		u32 index = get_lvt_index(reg);
2338 		if (!kvm_lapic_lvt_supported(apic, index)) {
2339 			ret = 1;
2340 			break;
2341 		}
2342 		if (!kvm_apic_sw_enabled(apic))
2343 			val |= APIC_LVT_MASKED;
2344 		val &= apic_lvt_mask[index];
2345 		kvm_lapic_set_reg(apic, reg, val);
2346 		break;
2347 	}
2348 
2349 	case APIC_LVTT:
2350 		if (!kvm_apic_sw_enabled(apic))
2351 			val |= APIC_LVT_MASKED;
2352 		val &= (apic_lvt_mask[0] | apic->lapic_timer.timer_mode_mask);
2353 		kvm_lapic_set_reg(apic, APIC_LVTT, val);
2354 		apic_update_lvtt(apic);
2355 		break;
2356 
2357 	case APIC_TMICT:
2358 		if (apic_lvtt_tscdeadline(apic))
2359 			break;
2360 
2361 		cancel_apic_timer(apic);
2362 		kvm_lapic_set_reg(apic, APIC_TMICT, val);
2363 		start_apic_timer(apic);
2364 		break;
2365 
2366 	case APIC_TDCR: {
2367 		uint32_t old_divisor = apic->divide_count;
2368 
2369 		kvm_lapic_set_reg(apic, APIC_TDCR, val & 0xb);
2370 		update_divide_count(apic);
2371 		if (apic->divide_count != old_divisor &&
2372 				apic->lapic_timer.period) {
2373 			hrtimer_cancel(&apic->lapic_timer.timer);
2374 			update_target_expiration(apic, old_divisor);
2375 			restart_apic_timer(apic);
2376 		}
2377 		break;
2378 	}
2379 	case APIC_ESR:
2380 		if (apic_x2apic_mode(apic) && val != 0)
2381 			ret = 1;
2382 		break;
2383 
2384 	case APIC_SELF_IPI:
2385 		/*
2386 		 * Self-IPI exists only when x2APIC is enabled.  Bits 7:0 hold
2387 		 * the vector, everything else is reserved.
2388 		 */
2389 		if (!apic_x2apic_mode(apic) || (val & ~APIC_VECTOR_MASK))
2390 			ret = 1;
2391 		else
2392 			kvm_apic_send_ipi(apic, APIC_DEST_SELF | val, 0);
2393 		break;
2394 	default:
2395 		ret = 1;
2396 		break;
2397 	}
2398 
2399 	/*
2400 	 * Recalculate APIC maps if necessary, e.g. if the software enable bit
2401 	 * was toggled, the APIC ID changed, etc...   The maps are marked dirty
2402 	 * on relevant changes, i.e. this is a nop for most writes.
2403 	 */
2404 	kvm_recalculate_apic_map(apic->vcpu->kvm);
2405 
2406 	return ret;
2407 }
2408 
2409 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
2410 			    gpa_t address, int len, const void *data)
2411 {
2412 	struct kvm_lapic *apic = to_lapic(this);
2413 	unsigned int offset = address - apic->base_address;
2414 	u32 val;
2415 
2416 	if (!apic_mmio_in_range(apic, address))
2417 		return -EOPNOTSUPP;
2418 
2419 	if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
2420 		if (!kvm_check_has_quirk(vcpu->kvm,
2421 					 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
2422 			return -EOPNOTSUPP;
2423 
2424 		return 0;
2425 	}
2426 
2427 	/*
2428 	 * APIC register must be aligned on 128-bits boundary.
2429 	 * 32/64/128 bits registers must be accessed thru 32 bits.
2430 	 * Refer SDM 8.4.1
2431 	 */
2432 	if (len != 4 || (offset & 0xf))
2433 		return 0;
2434 
2435 	val = *(u32*)data;
2436 
2437 	kvm_lapic_reg_write(apic, offset & 0xff0, val);
2438 
2439 	return 0;
2440 }
2441 
2442 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu)
2443 {
2444 	kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0);
2445 }
2446 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi);
2447 
2448 /* emulate APIC access in a trap manner */
2449 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset)
2450 {
2451 	struct kvm_lapic *apic = vcpu->arch.apic;
2452 
2453 	/*
2454 	 * ICR is a single 64-bit register when x2APIC is enabled, all others
2455 	 * registers hold 32-bit values.  For legacy xAPIC, ICR writes need to
2456 	 * go down the common path to get the upper half from ICR2.
2457 	 *
2458 	 * Note, using the write helpers may incur an unnecessary write to the
2459 	 * virtual APIC state, but KVM needs to conditionally modify the value
2460 	 * in certain cases, e.g. to clear the ICR busy bit.  The cost of extra
2461 	 * conditional branches is likely a wash relative to the cost of the
2462 	 * maybe-unecessary write, and both are in the noise anyways.
2463 	 */
2464 	if (apic_x2apic_mode(apic) && offset == APIC_ICR)
2465 		kvm_x2apic_icr_write(apic, kvm_lapic_get_reg64(apic, APIC_ICR));
2466 	else
2467 		kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
2468 }
2469 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode);
2470 
2471 void kvm_free_lapic(struct kvm_vcpu *vcpu)
2472 {
2473 	struct kvm_lapic *apic = vcpu->arch.apic;
2474 
2475 	if (!vcpu->arch.apic) {
2476 		static_branch_dec(&kvm_has_noapic_vcpu);
2477 		return;
2478 	}
2479 
2480 	hrtimer_cancel(&apic->lapic_timer.timer);
2481 
2482 	if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE))
2483 		static_branch_slow_dec_deferred(&apic_hw_disabled);
2484 
2485 	if (!apic->sw_enabled)
2486 		static_branch_slow_dec_deferred(&apic_sw_disabled);
2487 
2488 	if (apic->regs)
2489 		free_page((unsigned long)apic->regs);
2490 
2491 	kfree(apic);
2492 }
2493 
2494 /*
2495  *----------------------------------------------------------------------
2496  * LAPIC interface
2497  *----------------------------------------------------------------------
2498  */
2499 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu)
2500 {
2501 	struct kvm_lapic *apic = vcpu->arch.apic;
2502 
2503 	if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic))
2504 		return 0;
2505 
2506 	return apic->lapic_timer.tscdeadline;
2507 }
2508 
2509 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data)
2510 {
2511 	struct kvm_lapic *apic = vcpu->arch.apic;
2512 
2513 	if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic))
2514 		return;
2515 
2516 	hrtimer_cancel(&apic->lapic_timer.timer);
2517 	apic->lapic_timer.tscdeadline = data;
2518 	start_apic_timer(apic);
2519 }
2520 
2521 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8)
2522 {
2523 	apic_set_tpr(vcpu->arch.apic, (cr8 & 0x0f) << 4);
2524 }
2525 
2526 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu)
2527 {
2528 	u64 tpr;
2529 
2530 	tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI);
2531 
2532 	return (tpr & 0xf0) >> 4;
2533 }
2534 
2535 void kvm_lapic_set_base(struct kvm_vcpu *vcpu, u64 value)
2536 {
2537 	u64 old_value = vcpu->arch.apic_base;
2538 	struct kvm_lapic *apic = vcpu->arch.apic;
2539 
2540 	vcpu->arch.apic_base = value;
2541 
2542 	if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE)
2543 		kvm_update_cpuid_runtime(vcpu);
2544 
2545 	if (!apic)
2546 		return;
2547 
2548 	/* update jump label if enable bit changes */
2549 	if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) {
2550 		if (value & MSR_IA32_APICBASE_ENABLE) {
2551 			kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2552 			static_branch_slow_dec_deferred(&apic_hw_disabled);
2553 			/* Check if there are APF page ready requests pending */
2554 			kvm_make_request(KVM_REQ_APF_READY, vcpu);
2555 		} else {
2556 			static_branch_inc(&apic_hw_disabled.key);
2557 			atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
2558 		}
2559 	}
2560 
2561 	if ((old_value ^ value) & X2APIC_ENABLE) {
2562 		if (value & X2APIC_ENABLE)
2563 			kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id);
2564 		else if (value & MSR_IA32_APICBASE_ENABLE)
2565 			kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2566 	}
2567 
2568 	if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) {
2569 		kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
2570 		static_call_cond(kvm_x86_set_virtual_apic_mode)(vcpu);
2571 	}
2572 
2573 	apic->base_address = apic->vcpu->arch.apic_base &
2574 			     MSR_IA32_APICBASE_BASE;
2575 
2576 	if ((value & MSR_IA32_APICBASE_ENABLE) &&
2577 	     apic->base_address != APIC_DEFAULT_PHYS_BASE) {
2578 		kvm_set_apicv_inhibit(apic->vcpu->kvm,
2579 				      APICV_INHIBIT_REASON_APIC_BASE_MODIFIED);
2580 	}
2581 }
2582 
2583 void kvm_apic_update_apicv(struct kvm_vcpu *vcpu)
2584 {
2585 	struct kvm_lapic *apic = vcpu->arch.apic;
2586 
2587 	if (apic->apicv_active) {
2588 		/* irr_pending is always true when apicv is activated. */
2589 		apic->irr_pending = true;
2590 		apic->isr_count = 1;
2591 	} else {
2592 		/*
2593 		 * Don't clear irr_pending, searching the IRR can race with
2594 		 * updates from the CPU as APICv is still active from hardware's
2595 		 * perspective.  The flag will be cleared as appropriate when
2596 		 * KVM injects the interrupt.
2597 		 */
2598 		apic->isr_count = count_vectors(apic->regs + APIC_ISR);
2599 	}
2600 	apic->highest_isr_cache = -1;
2601 }
2602 
2603 int kvm_alloc_apic_access_page(struct kvm *kvm)
2604 {
2605 	struct page *page;
2606 	void __user *hva;
2607 	int ret = 0;
2608 
2609 	mutex_lock(&kvm->slots_lock);
2610 	if (kvm->arch.apic_access_memslot_enabled ||
2611 	    kvm->arch.apic_access_memslot_inhibited)
2612 		goto out;
2613 
2614 	hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
2615 				      APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
2616 	if (IS_ERR(hva)) {
2617 		ret = PTR_ERR(hva);
2618 		goto out;
2619 	}
2620 
2621 	page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
2622 	if (is_error_page(page)) {
2623 		ret = -EFAULT;
2624 		goto out;
2625 	}
2626 
2627 	/*
2628 	 * Do not pin the page in memory, so that memory hot-unplug
2629 	 * is able to migrate it.
2630 	 */
2631 	put_page(page);
2632 	kvm->arch.apic_access_memslot_enabled = true;
2633 out:
2634 	mutex_unlock(&kvm->slots_lock);
2635 	return ret;
2636 }
2637 EXPORT_SYMBOL_GPL(kvm_alloc_apic_access_page);
2638 
2639 void kvm_inhibit_apic_access_page(struct kvm_vcpu *vcpu)
2640 {
2641 	struct kvm *kvm = vcpu->kvm;
2642 
2643 	if (!kvm->arch.apic_access_memslot_enabled)
2644 		return;
2645 
2646 	kvm_vcpu_srcu_read_unlock(vcpu);
2647 
2648 	mutex_lock(&kvm->slots_lock);
2649 
2650 	if (kvm->arch.apic_access_memslot_enabled) {
2651 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
2652 		/*
2653 		 * Clear "enabled" after the memslot is deleted so that a
2654 		 * different vCPU doesn't get a false negative when checking
2655 		 * the flag out of slots_lock.  No additional memory barrier is
2656 		 * needed as modifying memslots requires waiting other vCPUs to
2657 		 * drop SRCU (see above), and false positives are ok as the
2658 		 * flag is rechecked after acquiring slots_lock.
2659 		 */
2660 		kvm->arch.apic_access_memslot_enabled = false;
2661 
2662 		/*
2663 		 * Mark the memslot as inhibited to prevent reallocating the
2664 		 * memslot during vCPU creation, e.g. if a vCPU is hotplugged.
2665 		 */
2666 		kvm->arch.apic_access_memslot_inhibited = true;
2667 	}
2668 
2669 	mutex_unlock(&kvm->slots_lock);
2670 
2671 	kvm_vcpu_srcu_read_lock(vcpu);
2672 }
2673 
2674 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event)
2675 {
2676 	struct kvm_lapic *apic = vcpu->arch.apic;
2677 	u64 msr_val;
2678 	int i;
2679 
2680 	static_call_cond(kvm_x86_apicv_pre_state_restore)(vcpu);
2681 
2682 	if (!init_event) {
2683 		msr_val = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE;
2684 		if (kvm_vcpu_is_reset_bsp(vcpu))
2685 			msr_val |= MSR_IA32_APICBASE_BSP;
2686 		kvm_lapic_set_base(vcpu, msr_val);
2687 	}
2688 
2689 	if (!apic)
2690 		return;
2691 
2692 	/* Stop the timer in case it's a reset to an active apic */
2693 	hrtimer_cancel(&apic->lapic_timer.timer);
2694 
2695 	/* The xAPIC ID is set at RESET even if the APIC was already enabled. */
2696 	if (!init_event)
2697 		kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2698 	kvm_apic_set_version(apic->vcpu);
2699 
2700 	for (i = 0; i < apic->nr_lvt_entries; i++)
2701 		kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED);
2702 	apic_update_lvtt(apic);
2703 	if (kvm_vcpu_is_reset_bsp(vcpu) &&
2704 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED))
2705 		kvm_lapic_set_reg(apic, APIC_LVT0,
2706 			     SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT));
2707 	apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
2708 
2709 	kvm_apic_set_dfr(apic, 0xffffffffU);
2710 	apic_set_spiv(apic, 0xff);
2711 	kvm_lapic_set_reg(apic, APIC_TASKPRI, 0);
2712 	if (!apic_x2apic_mode(apic))
2713 		kvm_apic_set_ldr(apic, 0);
2714 	kvm_lapic_set_reg(apic, APIC_ESR, 0);
2715 	if (!apic_x2apic_mode(apic)) {
2716 		kvm_lapic_set_reg(apic, APIC_ICR, 0);
2717 		kvm_lapic_set_reg(apic, APIC_ICR2, 0);
2718 	} else {
2719 		kvm_lapic_set_reg64(apic, APIC_ICR, 0);
2720 	}
2721 	kvm_lapic_set_reg(apic, APIC_TDCR, 0);
2722 	kvm_lapic_set_reg(apic, APIC_TMICT, 0);
2723 	for (i = 0; i < 8; i++) {
2724 		kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0);
2725 		kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0);
2726 		kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0);
2727 	}
2728 	kvm_apic_update_apicv(vcpu);
2729 	update_divide_count(apic);
2730 	atomic_set(&apic->lapic_timer.pending, 0);
2731 
2732 	vcpu->arch.pv_eoi.msr_val = 0;
2733 	apic_update_ppr(apic);
2734 	if (apic->apicv_active) {
2735 		static_call_cond(kvm_x86_apicv_post_state_restore)(vcpu);
2736 		static_call_cond(kvm_x86_hwapic_irr_update)(vcpu, -1);
2737 		static_call_cond(kvm_x86_hwapic_isr_update)(-1);
2738 	}
2739 
2740 	vcpu->arch.apic_arb_prio = 0;
2741 	vcpu->arch.apic_attention = 0;
2742 
2743 	kvm_recalculate_apic_map(vcpu->kvm);
2744 }
2745 
2746 /*
2747  *----------------------------------------------------------------------
2748  * timer interface
2749  *----------------------------------------------------------------------
2750  */
2751 
2752 static bool lapic_is_periodic(struct kvm_lapic *apic)
2753 {
2754 	return apic_lvtt_period(apic);
2755 }
2756 
2757 int apic_has_pending_timer(struct kvm_vcpu *vcpu)
2758 {
2759 	struct kvm_lapic *apic = vcpu->arch.apic;
2760 
2761 	if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT))
2762 		return atomic_read(&apic->lapic_timer.pending);
2763 
2764 	return 0;
2765 }
2766 
2767 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type)
2768 {
2769 	u32 reg = kvm_lapic_get_reg(apic, lvt_type);
2770 	int vector, mode, trig_mode;
2771 	int r;
2772 
2773 	if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) {
2774 		vector = reg & APIC_VECTOR_MASK;
2775 		mode = reg & APIC_MODE_MASK;
2776 		trig_mode = reg & APIC_LVT_LEVEL_TRIGGER;
2777 
2778 		r = __apic_accept_irq(apic, mode, vector, 1, trig_mode, NULL);
2779 		if (r && lvt_type == APIC_LVTPC)
2780 			kvm_lapic_set_reg(apic, APIC_LVTPC, reg | APIC_LVT_MASKED);
2781 		return r;
2782 	}
2783 	return 0;
2784 }
2785 
2786 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu)
2787 {
2788 	struct kvm_lapic *apic = vcpu->arch.apic;
2789 
2790 	if (apic)
2791 		kvm_apic_local_deliver(apic, APIC_LVT0);
2792 }
2793 
2794 static const struct kvm_io_device_ops apic_mmio_ops = {
2795 	.read     = apic_mmio_read,
2796 	.write    = apic_mmio_write,
2797 };
2798 
2799 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data)
2800 {
2801 	struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer);
2802 	struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer);
2803 
2804 	apic_timer_expired(apic, true);
2805 
2806 	if (lapic_is_periodic(apic)) {
2807 		advance_periodic_target_expiration(apic);
2808 		hrtimer_add_expires_ns(&ktimer->timer, ktimer->period);
2809 		return HRTIMER_RESTART;
2810 	} else
2811 		return HRTIMER_NORESTART;
2812 }
2813 
2814 int kvm_create_lapic(struct kvm_vcpu *vcpu, int timer_advance_ns)
2815 {
2816 	struct kvm_lapic *apic;
2817 
2818 	ASSERT(vcpu != NULL);
2819 
2820 	if (!irqchip_in_kernel(vcpu->kvm)) {
2821 		static_branch_inc(&kvm_has_noapic_vcpu);
2822 		return 0;
2823 	}
2824 
2825 	apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT);
2826 	if (!apic)
2827 		goto nomem;
2828 
2829 	vcpu->arch.apic = apic;
2830 
2831 	if (kvm_x86_ops.alloc_apic_backing_page)
2832 		apic->regs = static_call(kvm_x86_alloc_apic_backing_page)(vcpu);
2833 	else
2834 		apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
2835 	if (!apic->regs) {
2836 		printk(KERN_ERR "malloc apic regs error for vcpu %x\n",
2837 		       vcpu->vcpu_id);
2838 		goto nomem_free_apic;
2839 	}
2840 	apic->vcpu = vcpu;
2841 
2842 	apic->nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu);
2843 
2844 	hrtimer_init(&apic->lapic_timer.timer, CLOCK_MONOTONIC,
2845 		     HRTIMER_MODE_ABS_HARD);
2846 	apic->lapic_timer.timer.function = apic_timer_fn;
2847 	if (timer_advance_ns == -1) {
2848 		apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
2849 		lapic_timer_advance_dynamic = true;
2850 	} else {
2851 		apic->lapic_timer.timer_advance_ns = timer_advance_ns;
2852 		lapic_timer_advance_dynamic = false;
2853 	}
2854 
2855 	/*
2856 	 * Stuff the APIC ENABLE bit in lieu of temporarily incrementing
2857 	 * apic_hw_disabled; the full RESET value is set by kvm_lapic_reset().
2858 	 */
2859 	vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE;
2860 	static_branch_inc(&apic_sw_disabled.key); /* sw disabled at reset */
2861 	kvm_iodevice_init(&apic->dev, &apic_mmio_ops);
2862 
2863 	/*
2864 	 * Defer evaluating inhibits until the vCPU is first run, as this vCPU
2865 	 * will not get notified of any changes until this vCPU is visible to
2866 	 * other vCPUs (marked online and added to the set of vCPUs).
2867 	 *
2868 	 * Opportunistically mark APICv active as VMX in particularly is highly
2869 	 * unlikely to have inhibits.  Ignore the current per-VM APICv state so
2870 	 * that vCPU creation is guaranteed to run with a deterministic value,
2871 	 * the request will ensure the vCPU gets the correct state before VM-Entry.
2872 	 */
2873 	if (enable_apicv) {
2874 		apic->apicv_active = true;
2875 		kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
2876 	}
2877 
2878 	return 0;
2879 nomem_free_apic:
2880 	kfree(apic);
2881 	vcpu->arch.apic = NULL;
2882 nomem:
2883 	return -ENOMEM;
2884 }
2885 
2886 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu)
2887 {
2888 	struct kvm_lapic *apic = vcpu->arch.apic;
2889 	u32 ppr;
2890 
2891 	if (!kvm_apic_present(vcpu))
2892 		return -1;
2893 
2894 	__apic_update_ppr(apic, &ppr);
2895 	return apic_has_interrupt_for_ppr(apic, ppr);
2896 }
2897 EXPORT_SYMBOL_GPL(kvm_apic_has_interrupt);
2898 
2899 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu)
2900 {
2901 	u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0);
2902 
2903 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
2904 		return 1;
2905 	if ((lvt0 & APIC_LVT_MASKED) == 0 &&
2906 	    GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT)
2907 		return 1;
2908 	return 0;
2909 }
2910 
2911 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu)
2912 {
2913 	struct kvm_lapic *apic = vcpu->arch.apic;
2914 
2915 	if (atomic_read(&apic->lapic_timer.pending) > 0) {
2916 		kvm_apic_inject_pending_timer_irqs(apic);
2917 		atomic_set(&apic->lapic_timer.pending, 0);
2918 	}
2919 }
2920 
2921 int kvm_get_apic_interrupt(struct kvm_vcpu *vcpu)
2922 {
2923 	int vector = kvm_apic_has_interrupt(vcpu);
2924 	struct kvm_lapic *apic = vcpu->arch.apic;
2925 	u32 ppr;
2926 
2927 	if (vector == -1)
2928 		return -1;
2929 
2930 	/*
2931 	 * We get here even with APIC virtualization enabled, if doing
2932 	 * nested virtualization and L1 runs with the "acknowledge interrupt
2933 	 * on exit" mode.  Then we cannot inject the interrupt via RVI,
2934 	 * because the process would deliver it through the IDT.
2935 	 */
2936 
2937 	apic_clear_irr(vector, apic);
2938 	if (kvm_hv_synic_auto_eoi_set(vcpu, vector)) {
2939 		/*
2940 		 * For auto-EOI interrupts, there might be another pending
2941 		 * interrupt above PPR, so check whether to raise another
2942 		 * KVM_REQ_EVENT.
2943 		 */
2944 		apic_update_ppr(apic);
2945 	} else {
2946 		/*
2947 		 * For normal interrupts, PPR has been raised and there cannot
2948 		 * be a higher-priority pending interrupt---except if there was
2949 		 * a concurrent interrupt injection, but that would have
2950 		 * triggered KVM_REQ_EVENT already.
2951 		 */
2952 		apic_set_isr(vector, apic);
2953 		__apic_update_ppr(apic, &ppr);
2954 	}
2955 
2956 	return vector;
2957 }
2958 
2959 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu,
2960 		struct kvm_lapic_state *s, bool set)
2961 {
2962 	if (apic_x2apic_mode(vcpu->arch.apic)) {
2963 		u32 *id = (u32 *)(s->regs + APIC_ID);
2964 		u32 *ldr = (u32 *)(s->regs + APIC_LDR);
2965 		u64 icr;
2966 
2967 		if (vcpu->kvm->arch.x2apic_format) {
2968 			if (*id != vcpu->vcpu_id)
2969 				return -EINVAL;
2970 		} else {
2971 			if (set)
2972 				*id >>= 24;
2973 			else
2974 				*id <<= 24;
2975 		}
2976 
2977 		/*
2978 		 * In x2APIC mode, the LDR is fixed and based on the id.  And
2979 		 * ICR is internally a single 64-bit register, but needs to be
2980 		 * split to ICR+ICR2 in userspace for backwards compatibility.
2981 		 */
2982 		if (set) {
2983 			*ldr = kvm_apic_calc_x2apic_ldr(*id);
2984 
2985 			icr = __kvm_lapic_get_reg(s->regs, APIC_ICR) |
2986 			      (u64)__kvm_lapic_get_reg(s->regs, APIC_ICR2) << 32;
2987 			__kvm_lapic_set_reg64(s->regs, APIC_ICR, icr);
2988 		} else {
2989 			icr = __kvm_lapic_get_reg64(s->regs, APIC_ICR);
2990 			__kvm_lapic_set_reg(s->regs, APIC_ICR2, icr >> 32);
2991 		}
2992 	}
2993 
2994 	return 0;
2995 }
2996 
2997 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
2998 {
2999 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s));
3000 
3001 	/*
3002 	 * Get calculated timer current count for remaining timer period (if
3003 	 * any) and store it in the returned register set.
3004 	 */
3005 	__kvm_lapic_set_reg(s->regs, APIC_TMCCT,
3006 			    __apic_read(vcpu->arch.apic, APIC_TMCCT));
3007 
3008 	return kvm_apic_state_fixup(vcpu, s, false);
3009 }
3010 
3011 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
3012 {
3013 	struct kvm_lapic *apic = vcpu->arch.apic;
3014 	int r;
3015 
3016 	static_call_cond(kvm_x86_apicv_pre_state_restore)(vcpu);
3017 
3018 	kvm_lapic_set_base(vcpu, vcpu->arch.apic_base);
3019 	/* set SPIV separately to get count of SW disabled APICs right */
3020 	apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV)));
3021 
3022 	r = kvm_apic_state_fixup(vcpu, s, true);
3023 	if (r) {
3024 		kvm_recalculate_apic_map(vcpu->kvm);
3025 		return r;
3026 	}
3027 	memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s));
3028 
3029 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
3030 	kvm_recalculate_apic_map(vcpu->kvm);
3031 	kvm_apic_set_version(vcpu);
3032 
3033 	apic_update_ppr(apic);
3034 	cancel_apic_timer(apic);
3035 	apic->lapic_timer.expired_tscdeadline = 0;
3036 	apic_update_lvtt(apic);
3037 	apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
3038 	update_divide_count(apic);
3039 	__start_apic_timer(apic, APIC_TMCCT);
3040 	kvm_lapic_set_reg(apic, APIC_TMCCT, 0);
3041 	kvm_apic_update_apicv(vcpu);
3042 	if (apic->apicv_active) {
3043 		static_call_cond(kvm_x86_apicv_post_state_restore)(vcpu);
3044 		static_call_cond(kvm_x86_hwapic_irr_update)(vcpu, apic_find_highest_irr(apic));
3045 		static_call_cond(kvm_x86_hwapic_isr_update)(apic_find_highest_isr(apic));
3046 	}
3047 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3048 	if (ioapic_in_kernel(vcpu->kvm))
3049 		kvm_rtc_eoi_tracking_restore_one(vcpu);
3050 
3051 	vcpu->arch.apic_arb_prio = 0;
3052 
3053 	return 0;
3054 }
3055 
3056 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu)
3057 {
3058 	struct hrtimer *timer;
3059 
3060 	if (!lapic_in_kernel(vcpu) ||
3061 		kvm_can_post_timer_interrupt(vcpu))
3062 		return;
3063 
3064 	timer = &vcpu->arch.apic->lapic_timer.timer;
3065 	if (hrtimer_cancel(timer))
3066 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD);
3067 }
3068 
3069 /*
3070  * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt
3071  *
3072  * Detect whether guest triggered PV EOI since the
3073  * last entry. If yes, set EOI on guests's behalf.
3074  * Clear PV EOI in guest memory in any case.
3075  */
3076 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu,
3077 					struct kvm_lapic *apic)
3078 {
3079 	int vector;
3080 	/*
3081 	 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host
3082 	 * and KVM_PV_EOI_ENABLED in guest memory as follows:
3083 	 *
3084 	 * KVM_APIC_PV_EOI_PENDING is unset:
3085 	 * 	-> host disabled PV EOI.
3086 	 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set:
3087 	 * 	-> host enabled PV EOI, guest did not execute EOI yet.
3088 	 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset:
3089 	 * 	-> host enabled PV EOI, guest executed EOI.
3090 	 */
3091 	BUG_ON(!pv_eoi_enabled(vcpu));
3092 
3093 	if (pv_eoi_test_and_clr_pending(vcpu))
3094 		return;
3095 	vector = apic_set_eoi(apic);
3096 	trace_kvm_pv_eoi(apic, vector);
3097 }
3098 
3099 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu)
3100 {
3101 	u32 data;
3102 
3103 	if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention))
3104 		apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic);
3105 
3106 	if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
3107 		return;
3108 
3109 	if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
3110 				  sizeof(u32)))
3111 		return;
3112 
3113 	apic_set_tpr(vcpu->arch.apic, data & 0xff);
3114 }
3115 
3116 /*
3117  * apic_sync_pv_eoi_to_guest - called before vmentry
3118  *
3119  * Detect whether it's safe to enable PV EOI and
3120  * if yes do so.
3121  */
3122 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu,
3123 					struct kvm_lapic *apic)
3124 {
3125 	if (!pv_eoi_enabled(vcpu) ||
3126 	    /* IRR set or many bits in ISR: could be nested. */
3127 	    apic->irr_pending ||
3128 	    /* Cache not set: could be safe but we don't bother. */
3129 	    apic->highest_isr_cache == -1 ||
3130 	    /* Need EOI to update ioapic. */
3131 	    kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) {
3132 		/*
3133 		 * PV EOI was disabled by apic_sync_pv_eoi_from_guest
3134 		 * so we need not do anything here.
3135 		 */
3136 		return;
3137 	}
3138 
3139 	pv_eoi_set_pending(apic->vcpu);
3140 }
3141 
3142 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu)
3143 {
3144 	u32 data, tpr;
3145 	int max_irr, max_isr;
3146 	struct kvm_lapic *apic = vcpu->arch.apic;
3147 
3148 	apic_sync_pv_eoi_to_guest(vcpu, apic);
3149 
3150 	if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
3151 		return;
3152 
3153 	tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff;
3154 	max_irr = apic_find_highest_irr(apic);
3155 	if (max_irr < 0)
3156 		max_irr = 0;
3157 	max_isr = apic_find_highest_isr(apic);
3158 	if (max_isr < 0)
3159 		max_isr = 0;
3160 	data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24);
3161 
3162 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
3163 				sizeof(u32));
3164 }
3165 
3166 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr)
3167 {
3168 	if (vapic_addr) {
3169 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
3170 					&vcpu->arch.apic->vapic_cache,
3171 					vapic_addr, sizeof(u32)))
3172 			return -EINVAL;
3173 		__set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
3174 	} else {
3175 		__clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
3176 	}
3177 
3178 	vcpu->arch.apic->vapic_addr = vapic_addr;
3179 	return 0;
3180 }
3181 
3182 int kvm_x2apic_icr_write(struct kvm_lapic *apic, u64 data)
3183 {
3184 	data &= ~APIC_ICR_BUSY;
3185 
3186 	kvm_apic_send_ipi(apic, (u32)data, (u32)(data >> 32));
3187 	kvm_lapic_set_reg64(apic, APIC_ICR, data);
3188 	trace_kvm_apic_write(APIC_ICR, data);
3189 	return 0;
3190 }
3191 
3192 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data)
3193 {
3194 	u32 low;
3195 
3196 	if (reg == APIC_ICR) {
3197 		*data = kvm_lapic_get_reg64(apic, APIC_ICR);
3198 		return 0;
3199 	}
3200 
3201 	if (kvm_lapic_reg_read(apic, reg, 4, &low))
3202 		return 1;
3203 
3204 	*data = low;
3205 
3206 	return 0;
3207 }
3208 
3209 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data)
3210 {
3211 	/*
3212 	 * ICR is a 64-bit register in x2APIC mode (and Hyper-V PV vAPIC) and
3213 	 * can be written as such, all other registers remain accessible only
3214 	 * through 32-bit reads/writes.
3215 	 */
3216 	if (reg == APIC_ICR)
3217 		return kvm_x2apic_icr_write(apic, data);
3218 
3219 	/* Bits 63:32 are reserved in all other registers. */
3220 	if (data >> 32)
3221 		return 1;
3222 
3223 	return kvm_lapic_reg_write(apic, reg, (u32)data);
3224 }
3225 
3226 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data)
3227 {
3228 	struct kvm_lapic *apic = vcpu->arch.apic;
3229 	u32 reg = (msr - APIC_BASE_MSR) << 4;
3230 
3231 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
3232 		return 1;
3233 
3234 	return kvm_lapic_msr_write(apic, reg, data);
3235 }
3236 
3237 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data)
3238 {
3239 	struct kvm_lapic *apic = vcpu->arch.apic;
3240 	u32 reg = (msr - APIC_BASE_MSR) << 4;
3241 
3242 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
3243 		return 1;
3244 
3245 	return kvm_lapic_msr_read(apic, reg, data);
3246 }
3247 
3248 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data)
3249 {
3250 	if (!lapic_in_kernel(vcpu))
3251 		return 1;
3252 
3253 	return kvm_lapic_msr_write(vcpu->arch.apic, reg, data);
3254 }
3255 
3256 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data)
3257 {
3258 	if (!lapic_in_kernel(vcpu))
3259 		return 1;
3260 
3261 	return kvm_lapic_msr_read(vcpu->arch.apic, reg, data);
3262 }
3263 
3264 int kvm_lapic_set_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len)
3265 {
3266 	u64 addr = data & ~KVM_MSR_ENABLED;
3267 	struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data;
3268 	unsigned long new_len;
3269 	int ret;
3270 
3271 	if (!IS_ALIGNED(addr, 4))
3272 		return 1;
3273 
3274 	if (data & KVM_MSR_ENABLED) {
3275 		if (addr == ghc->gpa && len <= ghc->len)
3276 			new_len = ghc->len;
3277 		else
3278 			new_len = len;
3279 
3280 		ret = kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len);
3281 		if (ret)
3282 			return ret;
3283 	}
3284 
3285 	vcpu->arch.pv_eoi.msr_val = data;
3286 
3287 	return 0;
3288 }
3289 
3290 int kvm_apic_accept_events(struct kvm_vcpu *vcpu)
3291 {
3292 	struct kvm_lapic *apic = vcpu->arch.apic;
3293 	u8 sipi_vector;
3294 	int r;
3295 
3296 	if (!kvm_apic_has_pending_init_or_sipi(vcpu))
3297 		return 0;
3298 
3299 	if (is_guest_mode(vcpu)) {
3300 		r = kvm_check_nested_events(vcpu);
3301 		if (r < 0)
3302 			return r == -EBUSY ? 0 : r;
3303 		/*
3304 		 * Continue processing INIT/SIPI even if a nested VM-Exit
3305 		 * occurred, e.g. pending SIPIs should be dropped if INIT+SIPI
3306 		 * are blocked as a result of transitioning to VMX root mode.
3307 		 */
3308 	}
3309 
3310 	/*
3311 	 * INITs are blocked while CPU is in specific states (SMM, VMX root
3312 	 * mode, SVM with GIF=0), while SIPIs are dropped if the CPU isn't in
3313 	 * wait-for-SIPI (WFS).
3314 	 */
3315 	if (!kvm_apic_init_sipi_allowed(vcpu)) {
3316 		WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED);
3317 		clear_bit(KVM_APIC_SIPI, &apic->pending_events);
3318 		return 0;
3319 	}
3320 
3321 	if (test_and_clear_bit(KVM_APIC_INIT, &apic->pending_events)) {
3322 		kvm_vcpu_reset(vcpu, true);
3323 		if (kvm_vcpu_is_bsp(apic->vcpu))
3324 			vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3325 		else
3326 			vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
3327 	}
3328 	if (test_and_clear_bit(KVM_APIC_SIPI, &apic->pending_events)) {
3329 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
3330 			/* evaluate pending_events before reading the vector */
3331 			smp_rmb();
3332 			sipi_vector = apic->sipi_vector;
3333 			static_call(kvm_x86_vcpu_deliver_sipi_vector)(vcpu, sipi_vector);
3334 			vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3335 		}
3336 	}
3337 	return 0;
3338 }
3339 
3340 void kvm_lapic_exit(void)
3341 {
3342 	static_key_deferred_flush(&apic_hw_disabled);
3343 	WARN_ON(static_branch_unlikely(&apic_hw_disabled.key));
3344 	static_key_deferred_flush(&apic_sw_disabled);
3345 	WARN_ON(static_branch_unlikely(&apic_sw_disabled.key));
3346 }
3347