1 // SPDX-License-Identifier: GPL-2.0-only 2 3 /* 4 * Local APIC virtualization 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2007 Novell 8 * Copyright (C) 2007 Intel 9 * Copyright 2009 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Dor Laor <dor.laor@qumranet.com> 13 * Gregory Haskins <ghaskins@novell.com> 14 * Yaozu (Eddie) Dong <eddie.dong@intel.com> 15 * 16 * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation. 17 */ 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/kvm_host.h> 21 #include <linux/kvm.h> 22 #include <linux/mm.h> 23 #include <linux/highmem.h> 24 #include <linux/smp.h> 25 #include <linux/hrtimer.h> 26 #include <linux/io.h> 27 #include <linux/export.h> 28 #include <linux/math64.h> 29 #include <linux/slab.h> 30 #include <asm/processor.h> 31 #include <asm/mce.h> 32 #include <asm/msr.h> 33 #include <asm/page.h> 34 #include <asm/current.h> 35 #include <asm/apicdef.h> 36 #include <asm/delay.h> 37 #include <linux/atomic.h> 38 #include <linux/jump_label.h> 39 #include "kvm_cache_regs.h" 40 #include "irq.h" 41 #include "ioapic.h" 42 #include "trace.h" 43 #include "x86.h" 44 #include "xen.h" 45 #include "cpuid.h" 46 #include "hyperv.h" 47 #include "smm.h" 48 49 #ifndef CONFIG_X86_64 50 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y)) 51 #else 52 #define mod_64(x, y) ((x) % (y)) 53 #endif 54 55 /* 14 is the version for Xeon and Pentium 8.4.8*/ 56 #define APIC_VERSION 0x14UL 57 #define LAPIC_MMIO_LENGTH (1 << 12) 58 /* followed define is not in apicdef.h */ 59 #define MAX_APIC_VECTOR 256 60 #define APIC_VECTORS_PER_REG 32 61 62 /* 63 * Enable local APIC timer advancement (tscdeadline mode only) with adaptive 64 * tuning. When enabled, KVM programs the host timer event to fire early, i.e. 65 * before the deadline expires, to account for the delay between taking the 66 * VM-Exit (to inject the guest event) and the subsequent VM-Enter to resume 67 * the guest, i.e. so that the interrupt arrives in the guest with minimal 68 * latency relative to the deadline programmed by the guest. 69 */ 70 static bool lapic_timer_advance __read_mostly = true; 71 module_param(lapic_timer_advance, bool, 0444); 72 73 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN 100 /* clock cycles */ 74 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX 10000 /* clock cycles */ 75 #define LAPIC_TIMER_ADVANCE_NS_INIT 1000 76 #define LAPIC_TIMER_ADVANCE_NS_MAX 5000 77 /* step-by-step approximation to mitigate fluctuation */ 78 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8 79 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data); 80 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data); 81 82 static inline void __kvm_lapic_set_reg(char *regs, int reg_off, u32 val) 83 { 84 *((u32 *) (regs + reg_off)) = val; 85 } 86 87 static inline void kvm_lapic_set_reg(struct kvm_lapic *apic, int reg_off, u32 val) 88 { 89 __kvm_lapic_set_reg(apic->regs, reg_off, val); 90 } 91 92 static __always_inline u64 __kvm_lapic_get_reg64(char *regs, int reg) 93 { 94 BUILD_BUG_ON(reg != APIC_ICR); 95 return *((u64 *) (regs + reg)); 96 } 97 98 static __always_inline u64 kvm_lapic_get_reg64(struct kvm_lapic *apic, int reg) 99 { 100 return __kvm_lapic_get_reg64(apic->regs, reg); 101 } 102 103 static __always_inline void __kvm_lapic_set_reg64(char *regs, int reg, u64 val) 104 { 105 BUILD_BUG_ON(reg != APIC_ICR); 106 *((u64 *) (regs + reg)) = val; 107 } 108 109 static __always_inline void kvm_lapic_set_reg64(struct kvm_lapic *apic, 110 int reg, u64 val) 111 { 112 __kvm_lapic_set_reg64(apic->regs, reg, val); 113 } 114 115 static inline int apic_test_vector(int vec, void *bitmap) 116 { 117 return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 118 } 119 120 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector) 121 { 122 struct kvm_lapic *apic = vcpu->arch.apic; 123 124 return apic_test_vector(vector, apic->regs + APIC_ISR) || 125 apic_test_vector(vector, apic->regs + APIC_IRR); 126 } 127 128 static inline int __apic_test_and_set_vector(int vec, void *bitmap) 129 { 130 return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 131 } 132 133 static inline int __apic_test_and_clear_vector(int vec, void *bitmap) 134 { 135 return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 136 } 137 138 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); 139 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); 140 141 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_hw_disabled, HZ); 142 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_sw_disabled, HZ); 143 144 static inline int apic_enabled(struct kvm_lapic *apic) 145 { 146 return kvm_apic_sw_enabled(apic) && kvm_apic_hw_enabled(apic); 147 } 148 149 #define LVT_MASK \ 150 (APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK) 151 152 #define LINT_MASK \ 153 (LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \ 154 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER) 155 156 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic) 157 { 158 return apic->vcpu->vcpu_id; 159 } 160 161 static bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu) 162 { 163 return pi_inject_timer && kvm_vcpu_apicv_active(vcpu) && 164 (kvm_mwait_in_guest(vcpu->kvm) || kvm_hlt_in_guest(vcpu->kvm)); 165 } 166 167 bool kvm_can_use_hv_timer(struct kvm_vcpu *vcpu) 168 { 169 return kvm_x86_ops.set_hv_timer 170 && !(kvm_mwait_in_guest(vcpu->kvm) || 171 kvm_can_post_timer_interrupt(vcpu)); 172 } 173 174 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu) 175 { 176 return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE; 177 } 178 179 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id) 180 { 181 return ((id >> 4) << 16) | (1 << (id & 0xf)); 182 } 183 184 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map, 185 u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) { 186 switch (map->logical_mode) { 187 case KVM_APIC_MODE_SW_DISABLED: 188 /* Arbitrarily use the flat map so that @cluster isn't NULL. */ 189 *cluster = map->xapic_flat_map; 190 *mask = 0; 191 return true; 192 case KVM_APIC_MODE_X2APIC: { 193 u32 offset = (dest_id >> 16) * 16; 194 u32 max_apic_id = map->max_apic_id; 195 196 if (offset <= max_apic_id) { 197 u8 cluster_size = min(max_apic_id - offset + 1, 16U); 198 199 offset = array_index_nospec(offset, map->max_apic_id + 1); 200 *cluster = &map->phys_map[offset]; 201 *mask = dest_id & (0xffff >> (16 - cluster_size)); 202 } else { 203 *mask = 0; 204 } 205 206 return true; 207 } 208 case KVM_APIC_MODE_XAPIC_FLAT: 209 *cluster = map->xapic_flat_map; 210 *mask = dest_id & 0xff; 211 return true; 212 case KVM_APIC_MODE_XAPIC_CLUSTER: 213 *cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf]; 214 *mask = dest_id & 0xf; 215 return true; 216 case KVM_APIC_MODE_MAP_DISABLED: 217 return false; 218 default: 219 WARN_ON_ONCE(1); 220 return false; 221 } 222 } 223 224 static void kvm_apic_map_free(struct rcu_head *rcu) 225 { 226 struct kvm_apic_map *map = container_of(rcu, struct kvm_apic_map, rcu); 227 228 kvfree(map); 229 } 230 231 static int kvm_recalculate_phys_map(struct kvm_apic_map *new, 232 struct kvm_vcpu *vcpu, 233 bool *xapic_id_mismatch) 234 { 235 struct kvm_lapic *apic = vcpu->arch.apic; 236 u32 x2apic_id = kvm_x2apic_id(apic); 237 u32 xapic_id = kvm_xapic_id(apic); 238 u32 physical_id; 239 240 /* 241 * For simplicity, KVM always allocates enough space for all possible 242 * xAPIC IDs. Yell, but don't kill the VM, as KVM can continue on 243 * without the optimized map. 244 */ 245 if (WARN_ON_ONCE(xapic_id > new->max_apic_id)) 246 return -EINVAL; 247 248 /* 249 * Bail if a vCPU was added and/or enabled its APIC between allocating 250 * the map and doing the actual calculations for the map. Note, KVM 251 * hardcodes the x2APIC ID to vcpu_id, i.e. there's no TOCTOU bug if 252 * the compiler decides to reload x2apic_id after this check. 253 */ 254 if (x2apic_id > new->max_apic_id) 255 return -E2BIG; 256 257 /* 258 * Deliberately truncate the vCPU ID when detecting a mismatched APIC 259 * ID to avoid false positives if the vCPU ID, i.e. x2APIC ID, is a 260 * 32-bit value. Any unwanted aliasing due to truncation results will 261 * be detected below. 262 */ 263 if (!apic_x2apic_mode(apic) && xapic_id != (u8)vcpu->vcpu_id) 264 *xapic_id_mismatch = true; 265 266 /* 267 * Apply KVM's hotplug hack if userspace has enable 32-bit APIC IDs. 268 * Allow sending events to vCPUs by their x2APIC ID even if the target 269 * vCPU is in legacy xAPIC mode, and silently ignore aliased xAPIC IDs 270 * (the x2APIC ID is truncated to 8 bits, causing IDs > 0xff to wrap 271 * and collide). 272 * 273 * Honor the architectural (and KVM's non-optimized) behavior if 274 * userspace has not enabled 32-bit x2APIC IDs. Each APIC is supposed 275 * to process messages independently. If multiple vCPUs have the same 276 * effective APIC ID, e.g. due to the x2APIC wrap or because the guest 277 * manually modified its xAPIC IDs, events targeting that ID are 278 * supposed to be recognized by all vCPUs with said ID. 279 */ 280 if (vcpu->kvm->arch.x2apic_format) { 281 /* See also kvm_apic_match_physical_addr(). */ 282 if (apic_x2apic_mode(apic) || x2apic_id > 0xff) 283 new->phys_map[x2apic_id] = apic; 284 285 if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id]) 286 new->phys_map[xapic_id] = apic; 287 } else { 288 /* 289 * Disable the optimized map if the physical APIC ID is already 290 * mapped, i.e. is aliased to multiple vCPUs. The optimized 291 * map requires a strict 1:1 mapping between IDs and vCPUs. 292 */ 293 if (apic_x2apic_mode(apic)) 294 physical_id = x2apic_id; 295 else 296 physical_id = xapic_id; 297 298 if (new->phys_map[physical_id]) 299 return -EINVAL; 300 301 new->phys_map[physical_id] = apic; 302 } 303 304 return 0; 305 } 306 307 static void kvm_recalculate_logical_map(struct kvm_apic_map *new, 308 struct kvm_vcpu *vcpu) 309 { 310 struct kvm_lapic *apic = vcpu->arch.apic; 311 enum kvm_apic_logical_mode logical_mode; 312 struct kvm_lapic **cluster; 313 u16 mask; 314 u32 ldr; 315 316 if (new->logical_mode == KVM_APIC_MODE_MAP_DISABLED) 317 return; 318 319 if (!kvm_apic_sw_enabled(apic)) 320 return; 321 322 ldr = kvm_lapic_get_reg(apic, APIC_LDR); 323 if (!ldr) 324 return; 325 326 if (apic_x2apic_mode(apic)) { 327 logical_mode = KVM_APIC_MODE_X2APIC; 328 } else { 329 ldr = GET_APIC_LOGICAL_ID(ldr); 330 if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT) 331 logical_mode = KVM_APIC_MODE_XAPIC_FLAT; 332 else 333 logical_mode = KVM_APIC_MODE_XAPIC_CLUSTER; 334 } 335 336 /* 337 * To optimize logical mode delivery, all software-enabled APICs must 338 * be configured for the same mode. 339 */ 340 if (new->logical_mode == KVM_APIC_MODE_SW_DISABLED) { 341 new->logical_mode = logical_mode; 342 } else if (new->logical_mode != logical_mode) { 343 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED; 344 return; 345 } 346 347 /* 348 * In x2APIC mode, the LDR is read-only and derived directly from the 349 * x2APIC ID, thus is guaranteed to be addressable. KVM reuses 350 * kvm_apic_map.phys_map to optimize logical mode x2APIC interrupts by 351 * reversing the LDR calculation to get cluster of APICs, i.e. no 352 * additional work is required. 353 */ 354 if (apic_x2apic_mode(apic)) 355 return; 356 357 if (WARN_ON_ONCE(!kvm_apic_map_get_logical_dest(new, ldr, 358 &cluster, &mask))) { 359 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED; 360 return; 361 } 362 363 if (!mask) 364 return; 365 366 ldr = ffs(mask) - 1; 367 if (!is_power_of_2(mask) || cluster[ldr]) 368 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED; 369 else 370 cluster[ldr] = apic; 371 } 372 373 /* 374 * CLEAN -> DIRTY and UPDATE_IN_PROGRESS -> DIRTY changes happen without a lock. 375 * 376 * DIRTY -> UPDATE_IN_PROGRESS and UPDATE_IN_PROGRESS -> CLEAN happen with 377 * apic_map_lock_held. 378 */ 379 enum { 380 CLEAN, 381 UPDATE_IN_PROGRESS, 382 DIRTY 383 }; 384 385 static void kvm_recalculate_apic_map(struct kvm *kvm) 386 { 387 struct kvm_apic_map *new, *old = NULL; 388 struct kvm_vcpu *vcpu; 389 unsigned long i; 390 u32 max_id = 255; /* enough space for any xAPIC ID */ 391 bool xapic_id_mismatch; 392 int r; 393 394 /* Read kvm->arch.apic_map_dirty before kvm->arch.apic_map. */ 395 if (atomic_read_acquire(&kvm->arch.apic_map_dirty) == CLEAN) 396 return; 397 398 WARN_ONCE(!irqchip_in_kernel(kvm), 399 "Dirty APIC map without an in-kernel local APIC"); 400 401 mutex_lock(&kvm->arch.apic_map_lock); 402 403 retry: 404 /* 405 * Read kvm->arch.apic_map_dirty before kvm->arch.apic_map (if clean) 406 * or the APIC registers (if dirty). Note, on retry the map may have 407 * not yet been marked dirty by whatever task changed a vCPU's x2APIC 408 * ID, i.e. the map may still show up as in-progress. In that case 409 * this task still needs to retry and complete its calculation. 410 */ 411 if (atomic_cmpxchg_acquire(&kvm->arch.apic_map_dirty, 412 DIRTY, UPDATE_IN_PROGRESS) == CLEAN) { 413 /* Someone else has updated the map. */ 414 mutex_unlock(&kvm->arch.apic_map_lock); 415 return; 416 } 417 418 /* 419 * Reset the mismatch flag between attempts so that KVM does the right 420 * thing if a vCPU changes its xAPIC ID, but do NOT reset max_id, i.e. 421 * keep max_id strictly increasing. Disallowing max_id from shrinking 422 * ensures KVM won't get stuck in an infinite loop, e.g. if the vCPU 423 * with the highest x2APIC ID is toggling its APIC on and off. 424 */ 425 xapic_id_mismatch = false; 426 427 kvm_for_each_vcpu(i, vcpu, kvm) 428 if (kvm_apic_present(vcpu)) 429 max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic)); 430 431 new = kvzalloc(sizeof(struct kvm_apic_map) + 432 sizeof(struct kvm_lapic *) * ((u64)max_id + 1), 433 GFP_KERNEL_ACCOUNT); 434 435 if (!new) 436 goto out; 437 438 new->max_apic_id = max_id; 439 new->logical_mode = KVM_APIC_MODE_SW_DISABLED; 440 441 kvm_for_each_vcpu(i, vcpu, kvm) { 442 if (!kvm_apic_present(vcpu)) 443 continue; 444 445 r = kvm_recalculate_phys_map(new, vcpu, &xapic_id_mismatch); 446 if (r) { 447 kvfree(new); 448 new = NULL; 449 if (r == -E2BIG) { 450 cond_resched(); 451 goto retry; 452 } 453 454 goto out; 455 } 456 457 kvm_recalculate_logical_map(new, vcpu); 458 } 459 out: 460 /* 461 * The optimized map is effectively KVM's internal version of APICv, 462 * and all unwanted aliasing that results in disabling the optimized 463 * map also applies to APICv. 464 */ 465 if (!new) 466 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED); 467 else 468 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED); 469 470 if (!new || new->logical_mode == KVM_APIC_MODE_MAP_DISABLED) 471 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED); 472 else 473 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED); 474 475 if (xapic_id_mismatch) 476 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED); 477 else 478 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED); 479 480 old = rcu_dereference_protected(kvm->arch.apic_map, 481 lockdep_is_held(&kvm->arch.apic_map_lock)); 482 rcu_assign_pointer(kvm->arch.apic_map, new); 483 /* 484 * Write kvm->arch.apic_map before clearing apic->apic_map_dirty. 485 * If another update has come in, leave it DIRTY. 486 */ 487 atomic_cmpxchg_release(&kvm->arch.apic_map_dirty, 488 UPDATE_IN_PROGRESS, CLEAN); 489 mutex_unlock(&kvm->arch.apic_map_lock); 490 491 if (old) 492 call_rcu(&old->rcu, kvm_apic_map_free); 493 494 kvm_make_scan_ioapic_request(kvm); 495 } 496 497 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val) 498 { 499 bool enabled = val & APIC_SPIV_APIC_ENABLED; 500 501 kvm_lapic_set_reg(apic, APIC_SPIV, val); 502 503 if (enabled != apic->sw_enabled) { 504 apic->sw_enabled = enabled; 505 if (enabled) 506 static_branch_slow_dec_deferred(&apic_sw_disabled); 507 else 508 static_branch_inc(&apic_sw_disabled.key); 509 510 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 511 } 512 513 /* Check if there are APF page ready requests pending */ 514 if (enabled) { 515 kvm_make_request(KVM_REQ_APF_READY, apic->vcpu); 516 kvm_xen_sw_enable_lapic(apic->vcpu); 517 } 518 } 519 520 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id) 521 { 522 kvm_lapic_set_reg(apic, APIC_ID, id << 24); 523 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 524 } 525 526 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id) 527 { 528 kvm_lapic_set_reg(apic, APIC_LDR, id); 529 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 530 } 531 532 static inline void kvm_apic_set_dfr(struct kvm_lapic *apic, u32 val) 533 { 534 kvm_lapic_set_reg(apic, APIC_DFR, val); 535 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 536 } 537 538 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id) 539 { 540 u32 ldr = kvm_apic_calc_x2apic_ldr(id); 541 542 WARN_ON_ONCE(id != apic->vcpu->vcpu_id); 543 544 kvm_lapic_set_reg(apic, APIC_ID, id); 545 kvm_lapic_set_reg(apic, APIC_LDR, ldr); 546 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 547 } 548 549 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type) 550 { 551 return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED); 552 } 553 554 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic) 555 { 556 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT; 557 } 558 559 static inline int apic_lvtt_period(struct kvm_lapic *apic) 560 { 561 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC; 562 } 563 564 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic) 565 { 566 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE; 567 } 568 569 static inline int apic_lvt_nmi_mode(u32 lvt_val) 570 { 571 return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI; 572 } 573 574 static inline bool kvm_lapic_lvt_supported(struct kvm_lapic *apic, int lvt_index) 575 { 576 return apic->nr_lvt_entries > lvt_index; 577 } 578 579 static inline int kvm_apic_calc_nr_lvt_entries(struct kvm_vcpu *vcpu) 580 { 581 return KVM_APIC_MAX_NR_LVT_ENTRIES - !(vcpu->arch.mcg_cap & MCG_CMCI_P); 582 } 583 584 void kvm_apic_set_version(struct kvm_vcpu *vcpu) 585 { 586 struct kvm_lapic *apic = vcpu->arch.apic; 587 u32 v = 0; 588 589 if (!lapic_in_kernel(vcpu)) 590 return; 591 592 v = APIC_VERSION | ((apic->nr_lvt_entries - 1) << 16); 593 594 /* 595 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation) 596 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with 597 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC 598 * version first and level-triggered interrupts never get EOIed in 599 * IOAPIC. 600 */ 601 if (guest_cpu_cap_has(vcpu, X86_FEATURE_X2APIC) && 602 !ioapic_in_kernel(vcpu->kvm)) 603 v |= APIC_LVR_DIRECTED_EOI; 604 kvm_lapic_set_reg(apic, APIC_LVR, v); 605 } 606 607 void kvm_apic_after_set_mcg_cap(struct kvm_vcpu *vcpu) 608 { 609 int nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu); 610 struct kvm_lapic *apic = vcpu->arch.apic; 611 int i; 612 613 if (!lapic_in_kernel(vcpu) || nr_lvt_entries == apic->nr_lvt_entries) 614 return; 615 616 /* Initialize/mask any "new" LVT entries. */ 617 for (i = apic->nr_lvt_entries; i < nr_lvt_entries; i++) 618 kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED); 619 620 apic->nr_lvt_entries = nr_lvt_entries; 621 622 /* The number of LVT entries is reflected in the version register. */ 623 kvm_apic_set_version(vcpu); 624 } 625 626 static const unsigned int apic_lvt_mask[KVM_APIC_MAX_NR_LVT_ENTRIES] = { 627 [LVT_TIMER] = LVT_MASK, /* timer mode mask added at runtime */ 628 [LVT_THERMAL_MONITOR] = LVT_MASK | APIC_MODE_MASK, 629 [LVT_PERFORMANCE_COUNTER] = LVT_MASK | APIC_MODE_MASK, 630 [LVT_LINT0] = LINT_MASK, 631 [LVT_LINT1] = LINT_MASK, 632 [LVT_ERROR] = LVT_MASK, 633 [LVT_CMCI] = LVT_MASK | APIC_MODE_MASK 634 }; 635 636 static int find_highest_vector(void *bitmap) 637 { 638 int vec; 639 u32 *reg; 640 641 for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG; 642 vec >= 0; vec -= APIC_VECTORS_PER_REG) { 643 reg = bitmap + REG_POS(vec); 644 if (*reg) 645 return __fls(*reg) + vec; 646 } 647 648 return -1; 649 } 650 651 static u8 count_vectors(void *bitmap) 652 { 653 int vec; 654 u32 *reg; 655 u8 count = 0; 656 657 for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) { 658 reg = bitmap + REG_POS(vec); 659 count += hweight32(*reg); 660 } 661 662 return count; 663 } 664 665 bool __kvm_apic_update_irr(u32 *pir, void *regs, int *max_irr) 666 { 667 u32 i, vec; 668 u32 pir_val, irr_val, prev_irr_val; 669 int max_updated_irr; 670 671 max_updated_irr = -1; 672 *max_irr = -1; 673 674 for (i = vec = 0; i <= 7; i++, vec += 32) { 675 u32 *p_irr = (u32 *)(regs + APIC_IRR + i * 0x10); 676 677 irr_val = *p_irr; 678 pir_val = READ_ONCE(pir[i]); 679 680 if (pir_val) { 681 pir_val = xchg(&pir[i], 0); 682 683 prev_irr_val = irr_val; 684 do { 685 irr_val = prev_irr_val | pir_val; 686 } while (prev_irr_val != irr_val && 687 !try_cmpxchg(p_irr, &prev_irr_val, irr_val)); 688 689 if (prev_irr_val != irr_val) 690 max_updated_irr = __fls(irr_val ^ prev_irr_val) + vec; 691 } 692 if (irr_val) 693 *max_irr = __fls(irr_val) + vec; 694 } 695 696 return ((max_updated_irr != -1) && 697 (max_updated_irr == *max_irr)); 698 } 699 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr); 700 701 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir, int *max_irr) 702 { 703 struct kvm_lapic *apic = vcpu->arch.apic; 704 bool irr_updated = __kvm_apic_update_irr(pir, apic->regs, max_irr); 705 706 if (unlikely(!apic->apicv_active && irr_updated)) 707 apic->irr_pending = true; 708 return irr_updated; 709 } 710 EXPORT_SYMBOL_GPL(kvm_apic_update_irr); 711 712 static inline int apic_search_irr(struct kvm_lapic *apic) 713 { 714 return find_highest_vector(apic->regs + APIC_IRR); 715 } 716 717 static inline int apic_find_highest_irr(struct kvm_lapic *apic) 718 { 719 int result; 720 721 /* 722 * Note that irr_pending is just a hint. It will be always 723 * true with virtual interrupt delivery enabled. 724 */ 725 if (!apic->irr_pending) 726 return -1; 727 728 result = apic_search_irr(apic); 729 ASSERT(result == -1 || result >= 16); 730 731 return result; 732 } 733 734 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic) 735 { 736 if (unlikely(apic->apicv_active)) { 737 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR); 738 } else { 739 apic->irr_pending = false; 740 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR); 741 if (apic_search_irr(apic) != -1) 742 apic->irr_pending = true; 743 } 744 } 745 746 void kvm_apic_clear_irr(struct kvm_vcpu *vcpu, int vec) 747 { 748 apic_clear_irr(vec, vcpu->arch.apic); 749 } 750 EXPORT_SYMBOL_GPL(kvm_apic_clear_irr); 751 752 static inline void apic_set_isr(int vec, struct kvm_lapic *apic) 753 { 754 if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR)) 755 return; 756 757 /* 758 * With APIC virtualization enabled, all caching is disabled 759 * because the processor can modify ISR under the hood. Instead 760 * just set SVI. 761 */ 762 if (unlikely(apic->apicv_active)) 763 kvm_x86_call(hwapic_isr_update)(apic->vcpu, vec); 764 else { 765 ++apic->isr_count; 766 BUG_ON(apic->isr_count > MAX_APIC_VECTOR); 767 /* 768 * ISR (in service register) bit is set when injecting an interrupt. 769 * The highest vector is injected. Thus the latest bit set matches 770 * the highest bit in ISR. 771 */ 772 apic->highest_isr_cache = vec; 773 } 774 } 775 776 static inline int apic_find_highest_isr(struct kvm_lapic *apic) 777 { 778 int result; 779 780 /* 781 * Note that isr_count is always 1, and highest_isr_cache 782 * is always -1, with APIC virtualization enabled. 783 */ 784 if (!apic->isr_count) 785 return -1; 786 if (likely(apic->highest_isr_cache != -1)) 787 return apic->highest_isr_cache; 788 789 result = find_highest_vector(apic->regs + APIC_ISR); 790 ASSERT(result == -1 || result >= 16); 791 792 return result; 793 } 794 795 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic) 796 { 797 if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR)) 798 return; 799 800 /* 801 * We do get here for APIC virtualization enabled if the guest 802 * uses the Hyper-V APIC enlightenment. In this case we may need 803 * to trigger a new interrupt delivery by writing the SVI field; 804 * on the other hand isr_count and highest_isr_cache are unused 805 * and must be left alone. 806 */ 807 if (unlikely(apic->apicv_active)) 808 kvm_x86_call(hwapic_isr_update)(apic->vcpu, apic_find_highest_isr(apic)); 809 else { 810 --apic->isr_count; 811 BUG_ON(apic->isr_count < 0); 812 apic->highest_isr_cache = -1; 813 } 814 } 815 816 void kvm_apic_update_hwapic_isr(struct kvm_vcpu *vcpu) 817 { 818 struct kvm_lapic *apic = vcpu->arch.apic; 819 820 if (WARN_ON_ONCE(!lapic_in_kernel(vcpu)) || !apic->apicv_active) 821 return; 822 823 kvm_x86_call(hwapic_isr_update)(vcpu, apic_find_highest_isr(apic)); 824 } 825 EXPORT_SYMBOL_GPL(kvm_apic_update_hwapic_isr); 826 827 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu) 828 { 829 /* This may race with setting of irr in __apic_accept_irq() and 830 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq 831 * will cause vmexit immediately and the value will be recalculated 832 * on the next vmentry. 833 */ 834 return apic_find_highest_irr(vcpu->arch.apic); 835 } 836 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr); 837 838 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 839 int vector, int level, int trig_mode, 840 struct dest_map *dest_map); 841 842 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq, 843 struct dest_map *dest_map) 844 { 845 struct kvm_lapic *apic = vcpu->arch.apic; 846 847 return __apic_accept_irq(apic, irq->delivery_mode, irq->vector, 848 irq->level, irq->trig_mode, dest_map); 849 } 850 851 static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map, 852 struct kvm_lapic_irq *irq, u32 min) 853 { 854 int i, count = 0; 855 struct kvm_vcpu *vcpu; 856 857 if (min > map->max_apic_id) 858 return 0; 859 860 for_each_set_bit(i, ipi_bitmap, 861 min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) { 862 if (map->phys_map[min + i]) { 863 vcpu = map->phys_map[min + i]->vcpu; 864 count += kvm_apic_set_irq(vcpu, irq, NULL); 865 } 866 } 867 868 return count; 869 } 870 871 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 872 unsigned long ipi_bitmap_high, u32 min, 873 unsigned long icr, int op_64_bit) 874 { 875 struct kvm_apic_map *map; 876 struct kvm_lapic_irq irq = {0}; 877 int cluster_size = op_64_bit ? 64 : 32; 878 int count; 879 880 if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK)) 881 return -KVM_EINVAL; 882 883 irq.vector = icr & APIC_VECTOR_MASK; 884 irq.delivery_mode = icr & APIC_MODE_MASK; 885 irq.level = (icr & APIC_INT_ASSERT) != 0; 886 irq.trig_mode = icr & APIC_INT_LEVELTRIG; 887 888 rcu_read_lock(); 889 map = rcu_dereference(kvm->arch.apic_map); 890 891 count = -EOPNOTSUPP; 892 if (likely(map)) { 893 count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min); 894 min += cluster_size; 895 count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min); 896 } 897 898 rcu_read_unlock(); 899 return count; 900 } 901 902 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val) 903 { 904 905 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val, 906 sizeof(val)); 907 } 908 909 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val) 910 { 911 912 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val, 913 sizeof(*val)); 914 } 915 916 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu) 917 { 918 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED; 919 } 920 921 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu) 922 { 923 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0) 924 return; 925 926 __set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 927 } 928 929 static bool pv_eoi_test_and_clr_pending(struct kvm_vcpu *vcpu) 930 { 931 u8 val; 932 933 if (pv_eoi_get_user(vcpu, &val) < 0) 934 return false; 935 936 val &= KVM_PV_EOI_ENABLED; 937 938 if (val && pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0) 939 return false; 940 941 /* 942 * Clear pending bit in any case: it will be set again on vmentry. 943 * While this might not be ideal from performance point of view, 944 * this makes sure pv eoi is only enabled when we know it's safe. 945 */ 946 __clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 947 948 return val; 949 } 950 951 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr) 952 { 953 int highest_irr; 954 if (kvm_x86_ops.sync_pir_to_irr) 955 highest_irr = kvm_x86_call(sync_pir_to_irr)(apic->vcpu); 956 else 957 highest_irr = apic_find_highest_irr(apic); 958 if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr) 959 return -1; 960 return highest_irr; 961 } 962 963 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr) 964 { 965 u32 tpr, isrv, ppr, old_ppr; 966 int isr; 967 968 old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI); 969 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI); 970 isr = apic_find_highest_isr(apic); 971 isrv = (isr != -1) ? isr : 0; 972 973 if ((tpr & 0xf0) >= (isrv & 0xf0)) 974 ppr = tpr & 0xff; 975 else 976 ppr = isrv & 0xf0; 977 978 *new_ppr = ppr; 979 if (old_ppr != ppr) 980 kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr); 981 982 return ppr < old_ppr; 983 } 984 985 static void apic_update_ppr(struct kvm_lapic *apic) 986 { 987 u32 ppr; 988 989 if (__apic_update_ppr(apic, &ppr) && 990 apic_has_interrupt_for_ppr(apic, ppr) != -1) 991 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 992 } 993 994 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu) 995 { 996 apic_update_ppr(vcpu->arch.apic); 997 } 998 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr); 999 1000 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr) 1001 { 1002 kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr); 1003 apic_update_ppr(apic); 1004 } 1005 1006 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda) 1007 { 1008 return mda == (apic_x2apic_mode(apic) ? 1009 X2APIC_BROADCAST : APIC_BROADCAST); 1010 } 1011 1012 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda) 1013 { 1014 if (kvm_apic_broadcast(apic, mda)) 1015 return true; 1016 1017 /* 1018 * Hotplug hack: Accept interrupts for vCPUs in xAPIC mode as if they 1019 * were in x2APIC mode if the target APIC ID can't be encoded as an 1020 * xAPIC ID. This allows unique addressing of hotplugged vCPUs (which 1021 * start in xAPIC mode) with an APIC ID that is unaddressable in xAPIC 1022 * mode. Match the x2APIC ID if and only if the target APIC ID can't 1023 * be encoded in xAPIC to avoid spurious matches against a vCPU that 1024 * changed its (addressable) xAPIC ID (which is writable). 1025 */ 1026 if (apic_x2apic_mode(apic) || mda > 0xff) 1027 return mda == kvm_x2apic_id(apic); 1028 1029 return mda == kvm_xapic_id(apic); 1030 } 1031 1032 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda) 1033 { 1034 u32 logical_id; 1035 1036 if (kvm_apic_broadcast(apic, mda)) 1037 return true; 1038 1039 logical_id = kvm_lapic_get_reg(apic, APIC_LDR); 1040 1041 if (apic_x2apic_mode(apic)) 1042 return ((logical_id >> 16) == (mda >> 16)) 1043 && (logical_id & mda & 0xffff) != 0; 1044 1045 logical_id = GET_APIC_LOGICAL_ID(logical_id); 1046 1047 switch (kvm_lapic_get_reg(apic, APIC_DFR)) { 1048 case APIC_DFR_FLAT: 1049 return (logical_id & mda) != 0; 1050 case APIC_DFR_CLUSTER: 1051 return ((logical_id >> 4) == (mda >> 4)) 1052 && (logical_id & mda & 0xf) != 0; 1053 default: 1054 return false; 1055 } 1056 } 1057 1058 /* The KVM local APIC implementation has two quirks: 1059 * 1060 * - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs 1061 * in xAPIC mode if the "destination & 0xff" matches its xAPIC ID. 1062 * KVM doesn't do that aliasing. 1063 * 1064 * - in-kernel IOAPIC messages have to be delivered directly to 1065 * x2APIC, because the kernel does not support interrupt remapping. 1066 * In order to support broadcast without interrupt remapping, x2APIC 1067 * rewrites the destination of non-IPI messages from APIC_BROADCAST 1068 * to X2APIC_BROADCAST. 1069 * 1070 * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API. This is 1071 * important when userspace wants to use x2APIC-format MSIs, because 1072 * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7". 1073 */ 1074 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id, 1075 struct kvm_lapic *source, struct kvm_lapic *target) 1076 { 1077 bool ipi = source != NULL; 1078 1079 if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled && 1080 !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target)) 1081 return X2APIC_BROADCAST; 1082 1083 return dest_id; 1084 } 1085 1086 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source, 1087 int shorthand, unsigned int dest, int dest_mode) 1088 { 1089 struct kvm_lapic *target = vcpu->arch.apic; 1090 u32 mda = kvm_apic_mda(vcpu, dest, source, target); 1091 1092 ASSERT(target); 1093 switch (shorthand) { 1094 case APIC_DEST_NOSHORT: 1095 if (dest_mode == APIC_DEST_PHYSICAL) 1096 return kvm_apic_match_physical_addr(target, mda); 1097 else 1098 return kvm_apic_match_logical_addr(target, mda); 1099 case APIC_DEST_SELF: 1100 return target == source; 1101 case APIC_DEST_ALLINC: 1102 return true; 1103 case APIC_DEST_ALLBUT: 1104 return target != source; 1105 default: 1106 return false; 1107 } 1108 } 1109 EXPORT_SYMBOL_GPL(kvm_apic_match_dest); 1110 1111 int kvm_vector_to_index(u32 vector, u32 dest_vcpus, 1112 const unsigned long *bitmap, u32 bitmap_size) 1113 { 1114 u32 mod; 1115 int i, idx = -1; 1116 1117 mod = vector % dest_vcpus; 1118 1119 for (i = 0; i <= mod; i++) { 1120 idx = find_next_bit(bitmap, bitmap_size, idx + 1); 1121 BUG_ON(idx == bitmap_size); 1122 } 1123 1124 return idx; 1125 } 1126 1127 static void kvm_apic_disabled_lapic_found(struct kvm *kvm) 1128 { 1129 if (!kvm->arch.disabled_lapic_found) { 1130 kvm->arch.disabled_lapic_found = true; 1131 pr_info("Disabled LAPIC found during irq injection\n"); 1132 } 1133 } 1134 1135 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src, 1136 struct kvm_lapic_irq *irq, struct kvm_apic_map *map) 1137 { 1138 if (kvm->arch.x2apic_broadcast_quirk_disabled) { 1139 if ((irq->dest_id == APIC_BROADCAST && 1140 map->logical_mode != KVM_APIC_MODE_X2APIC)) 1141 return true; 1142 if (irq->dest_id == X2APIC_BROADCAST) 1143 return true; 1144 } else { 1145 bool x2apic_ipi = src && *src && apic_x2apic_mode(*src); 1146 if (irq->dest_id == (x2apic_ipi ? 1147 X2APIC_BROADCAST : APIC_BROADCAST)) 1148 return true; 1149 } 1150 1151 return false; 1152 } 1153 1154 /* Return true if the interrupt can be handled by using *bitmap as index mask 1155 * for valid destinations in *dst array. 1156 * Return false if kvm_apic_map_get_dest_lapic did nothing useful. 1157 * Note: we may have zero kvm_lapic destinations when we return true, which 1158 * means that the interrupt should be dropped. In this case, *bitmap would be 1159 * zero and *dst undefined. 1160 */ 1161 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm, 1162 struct kvm_lapic **src, struct kvm_lapic_irq *irq, 1163 struct kvm_apic_map *map, struct kvm_lapic ***dst, 1164 unsigned long *bitmap) 1165 { 1166 int i, lowest; 1167 1168 if (irq->shorthand == APIC_DEST_SELF && src) { 1169 *dst = src; 1170 *bitmap = 1; 1171 return true; 1172 } else if (irq->shorthand) 1173 return false; 1174 1175 if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map)) 1176 return false; 1177 1178 if (irq->dest_mode == APIC_DEST_PHYSICAL) { 1179 if (irq->dest_id > map->max_apic_id) { 1180 *bitmap = 0; 1181 } else { 1182 u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1); 1183 *dst = &map->phys_map[dest_id]; 1184 *bitmap = 1; 1185 } 1186 return true; 1187 } 1188 1189 *bitmap = 0; 1190 if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst, 1191 (u16 *)bitmap)) 1192 return false; 1193 1194 if (!kvm_lowest_prio_delivery(irq)) 1195 return true; 1196 1197 if (!kvm_vector_hashing_enabled()) { 1198 lowest = -1; 1199 for_each_set_bit(i, bitmap, 16) { 1200 if (!(*dst)[i]) 1201 continue; 1202 if (lowest < 0) 1203 lowest = i; 1204 else if (kvm_apic_compare_prio((*dst)[i]->vcpu, 1205 (*dst)[lowest]->vcpu) < 0) 1206 lowest = i; 1207 } 1208 } else { 1209 if (!*bitmap) 1210 return true; 1211 1212 lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap), 1213 bitmap, 16); 1214 1215 if (!(*dst)[lowest]) { 1216 kvm_apic_disabled_lapic_found(kvm); 1217 *bitmap = 0; 1218 return true; 1219 } 1220 } 1221 1222 *bitmap = (lowest >= 0) ? 1 << lowest : 0; 1223 1224 return true; 1225 } 1226 1227 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src, 1228 struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map) 1229 { 1230 struct kvm_apic_map *map; 1231 unsigned long bitmap; 1232 struct kvm_lapic **dst = NULL; 1233 int i; 1234 bool ret; 1235 1236 *r = -1; 1237 1238 if (irq->shorthand == APIC_DEST_SELF) { 1239 if (KVM_BUG_ON(!src, kvm)) { 1240 *r = 0; 1241 return true; 1242 } 1243 *r = kvm_apic_set_irq(src->vcpu, irq, dest_map); 1244 return true; 1245 } 1246 1247 rcu_read_lock(); 1248 map = rcu_dereference(kvm->arch.apic_map); 1249 1250 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap); 1251 if (ret) { 1252 *r = 0; 1253 for_each_set_bit(i, &bitmap, 16) { 1254 if (!dst[i]) 1255 continue; 1256 *r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map); 1257 } 1258 } 1259 1260 rcu_read_unlock(); 1261 return ret; 1262 } 1263 1264 /* 1265 * This routine tries to handle interrupts in posted mode, here is how 1266 * it deals with different cases: 1267 * - For single-destination interrupts, handle it in posted mode 1268 * - Else if vector hashing is enabled and it is a lowest-priority 1269 * interrupt, handle it in posted mode and use the following mechanism 1270 * to find the destination vCPU. 1271 * 1. For lowest-priority interrupts, store all the possible 1272 * destination vCPUs in an array. 1273 * 2. Use "guest vector % max number of destination vCPUs" to find 1274 * the right destination vCPU in the array for the lowest-priority 1275 * interrupt. 1276 * - Otherwise, use remapped mode to inject the interrupt. 1277 */ 1278 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq, 1279 struct kvm_vcpu **dest_vcpu) 1280 { 1281 struct kvm_apic_map *map; 1282 unsigned long bitmap; 1283 struct kvm_lapic **dst = NULL; 1284 bool ret = false; 1285 1286 if (irq->shorthand) 1287 return false; 1288 1289 rcu_read_lock(); 1290 map = rcu_dereference(kvm->arch.apic_map); 1291 1292 if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) && 1293 hweight16(bitmap) == 1) { 1294 unsigned long i = find_first_bit(&bitmap, 16); 1295 1296 if (dst[i]) { 1297 *dest_vcpu = dst[i]->vcpu; 1298 ret = true; 1299 } 1300 } 1301 1302 rcu_read_unlock(); 1303 return ret; 1304 } 1305 1306 /* 1307 * Add a pending IRQ into lapic. 1308 * Return 1 if successfully added and 0 if discarded. 1309 */ 1310 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 1311 int vector, int level, int trig_mode, 1312 struct dest_map *dest_map) 1313 { 1314 int result = 0; 1315 struct kvm_vcpu *vcpu = apic->vcpu; 1316 1317 trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode, 1318 trig_mode, vector); 1319 switch (delivery_mode) { 1320 case APIC_DM_LOWEST: 1321 vcpu->arch.apic_arb_prio++; 1322 fallthrough; 1323 case APIC_DM_FIXED: 1324 if (unlikely(trig_mode && !level)) 1325 break; 1326 1327 /* FIXME add logic for vcpu on reset */ 1328 if (unlikely(!apic_enabled(apic))) 1329 break; 1330 1331 result = 1; 1332 1333 if (dest_map) { 1334 __set_bit(vcpu->vcpu_id, dest_map->map); 1335 dest_map->vectors[vcpu->vcpu_id] = vector; 1336 } 1337 1338 if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) { 1339 if (trig_mode) 1340 kvm_lapic_set_vector(vector, 1341 apic->regs + APIC_TMR); 1342 else 1343 kvm_lapic_clear_vector(vector, 1344 apic->regs + APIC_TMR); 1345 } 1346 1347 kvm_x86_call(deliver_interrupt)(apic, delivery_mode, 1348 trig_mode, vector); 1349 break; 1350 1351 case APIC_DM_REMRD: 1352 result = 1; 1353 vcpu->arch.pv.pv_unhalted = 1; 1354 kvm_make_request(KVM_REQ_EVENT, vcpu); 1355 kvm_vcpu_kick(vcpu); 1356 break; 1357 1358 case APIC_DM_SMI: 1359 if (!kvm_inject_smi(vcpu)) { 1360 kvm_vcpu_kick(vcpu); 1361 result = 1; 1362 } 1363 break; 1364 1365 case APIC_DM_NMI: 1366 result = 1; 1367 kvm_inject_nmi(vcpu); 1368 kvm_vcpu_kick(vcpu); 1369 break; 1370 1371 case APIC_DM_INIT: 1372 if (!trig_mode || level) { 1373 result = 1; 1374 /* assumes that there are only KVM_APIC_INIT/SIPI */ 1375 apic->pending_events = (1UL << KVM_APIC_INIT); 1376 kvm_make_request(KVM_REQ_EVENT, vcpu); 1377 kvm_vcpu_kick(vcpu); 1378 } 1379 break; 1380 1381 case APIC_DM_STARTUP: 1382 result = 1; 1383 apic->sipi_vector = vector; 1384 /* make sure sipi_vector is visible for the receiver */ 1385 smp_wmb(); 1386 set_bit(KVM_APIC_SIPI, &apic->pending_events); 1387 kvm_make_request(KVM_REQ_EVENT, vcpu); 1388 kvm_vcpu_kick(vcpu); 1389 break; 1390 1391 case APIC_DM_EXTINT: 1392 /* 1393 * Should only be called by kvm_apic_local_deliver() with LVT0, 1394 * before NMI watchdog was enabled. Already handled by 1395 * kvm_apic_accept_pic_intr(). 1396 */ 1397 break; 1398 1399 default: 1400 printk(KERN_ERR "TODO: unsupported delivery mode %x\n", 1401 delivery_mode); 1402 break; 1403 } 1404 return result; 1405 } 1406 1407 /* 1408 * This routine identifies the destination vcpus mask meant to receive the 1409 * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find 1410 * out the destination vcpus array and set the bitmap or it traverses to 1411 * each available vcpu to identify the same. 1412 */ 1413 void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq, 1414 unsigned long *vcpu_bitmap) 1415 { 1416 struct kvm_lapic **dest_vcpu = NULL; 1417 struct kvm_lapic *src = NULL; 1418 struct kvm_apic_map *map; 1419 struct kvm_vcpu *vcpu; 1420 unsigned long bitmap, i; 1421 int vcpu_idx; 1422 bool ret; 1423 1424 rcu_read_lock(); 1425 map = rcu_dereference(kvm->arch.apic_map); 1426 1427 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu, 1428 &bitmap); 1429 if (ret) { 1430 for_each_set_bit(i, &bitmap, 16) { 1431 if (!dest_vcpu[i]) 1432 continue; 1433 vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx; 1434 __set_bit(vcpu_idx, vcpu_bitmap); 1435 } 1436 } else { 1437 kvm_for_each_vcpu(i, vcpu, kvm) { 1438 if (!kvm_apic_present(vcpu)) 1439 continue; 1440 if (!kvm_apic_match_dest(vcpu, NULL, 1441 irq->shorthand, 1442 irq->dest_id, 1443 irq->dest_mode)) 1444 continue; 1445 __set_bit(i, vcpu_bitmap); 1446 } 1447 } 1448 rcu_read_unlock(); 1449 } 1450 1451 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2) 1452 { 1453 return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio; 1454 } 1455 1456 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector) 1457 { 1458 return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors); 1459 } 1460 1461 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector) 1462 { 1463 int trigger_mode; 1464 1465 /* Eoi the ioapic only if the ioapic doesn't own the vector. */ 1466 if (!kvm_ioapic_handles_vector(apic, vector)) 1467 return; 1468 1469 /* Request a KVM exit to inform the userspace IOAPIC. */ 1470 if (irqchip_split(apic->vcpu->kvm)) { 1471 apic->vcpu->arch.pending_ioapic_eoi = vector; 1472 kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu); 1473 return; 1474 } 1475 1476 if (apic_test_vector(vector, apic->regs + APIC_TMR)) 1477 trigger_mode = IOAPIC_LEVEL_TRIG; 1478 else 1479 trigger_mode = IOAPIC_EDGE_TRIG; 1480 1481 kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode); 1482 } 1483 1484 static int apic_set_eoi(struct kvm_lapic *apic) 1485 { 1486 int vector = apic_find_highest_isr(apic); 1487 1488 trace_kvm_eoi(apic, vector); 1489 1490 /* 1491 * Not every write EOI will has corresponding ISR, 1492 * one example is when Kernel check timer on setup_IO_APIC 1493 */ 1494 if (vector == -1) 1495 return vector; 1496 1497 apic_clear_isr(vector, apic); 1498 apic_update_ppr(apic); 1499 1500 if (kvm_hv_synic_has_vector(apic->vcpu, vector)) 1501 kvm_hv_synic_send_eoi(apic->vcpu, vector); 1502 1503 kvm_ioapic_send_eoi(apic, vector); 1504 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1505 return vector; 1506 } 1507 1508 /* 1509 * this interface assumes a trap-like exit, which has already finished 1510 * desired side effect including vISR and vPPR update. 1511 */ 1512 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector) 1513 { 1514 struct kvm_lapic *apic = vcpu->arch.apic; 1515 1516 trace_kvm_eoi(apic, vector); 1517 1518 kvm_ioapic_send_eoi(apic, vector); 1519 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1520 } 1521 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated); 1522 1523 void kvm_apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high) 1524 { 1525 struct kvm_lapic_irq irq; 1526 1527 /* KVM has no delay and should always clear the BUSY/PENDING flag. */ 1528 WARN_ON_ONCE(icr_low & APIC_ICR_BUSY); 1529 1530 irq.vector = icr_low & APIC_VECTOR_MASK; 1531 irq.delivery_mode = icr_low & APIC_MODE_MASK; 1532 irq.dest_mode = icr_low & APIC_DEST_MASK; 1533 irq.level = (icr_low & APIC_INT_ASSERT) != 0; 1534 irq.trig_mode = icr_low & APIC_INT_LEVELTRIG; 1535 irq.shorthand = icr_low & APIC_SHORT_MASK; 1536 irq.msi_redir_hint = false; 1537 if (apic_x2apic_mode(apic)) 1538 irq.dest_id = icr_high; 1539 else 1540 irq.dest_id = GET_XAPIC_DEST_FIELD(icr_high); 1541 1542 trace_kvm_apic_ipi(icr_low, irq.dest_id); 1543 1544 kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL); 1545 } 1546 EXPORT_SYMBOL_GPL(kvm_apic_send_ipi); 1547 1548 static u32 apic_get_tmcct(struct kvm_lapic *apic) 1549 { 1550 ktime_t remaining, now; 1551 s64 ns; 1552 1553 ASSERT(apic != NULL); 1554 1555 /* if initial count is 0, current count should also be 0 */ 1556 if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 || 1557 apic->lapic_timer.period == 0) 1558 return 0; 1559 1560 now = ktime_get(); 1561 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 1562 if (ktime_to_ns(remaining) < 0) 1563 remaining = 0; 1564 1565 ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period); 1566 return div64_u64(ns, (apic->vcpu->kvm->arch.apic_bus_cycle_ns * 1567 apic->divide_count)); 1568 } 1569 1570 static void __report_tpr_access(struct kvm_lapic *apic, bool write) 1571 { 1572 struct kvm_vcpu *vcpu = apic->vcpu; 1573 struct kvm_run *run = vcpu->run; 1574 1575 kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu); 1576 run->tpr_access.rip = kvm_rip_read(vcpu); 1577 run->tpr_access.is_write = write; 1578 } 1579 1580 static inline void report_tpr_access(struct kvm_lapic *apic, bool write) 1581 { 1582 if (apic->vcpu->arch.tpr_access_reporting) 1583 __report_tpr_access(apic, write); 1584 } 1585 1586 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset) 1587 { 1588 u32 val = 0; 1589 1590 if (offset >= LAPIC_MMIO_LENGTH) 1591 return 0; 1592 1593 switch (offset) { 1594 case APIC_ARBPRI: 1595 break; 1596 1597 case APIC_TMCCT: /* Timer CCR */ 1598 if (apic_lvtt_tscdeadline(apic)) 1599 return 0; 1600 1601 val = apic_get_tmcct(apic); 1602 break; 1603 case APIC_PROCPRI: 1604 apic_update_ppr(apic); 1605 val = kvm_lapic_get_reg(apic, offset); 1606 break; 1607 case APIC_TASKPRI: 1608 report_tpr_access(apic, false); 1609 fallthrough; 1610 default: 1611 val = kvm_lapic_get_reg(apic, offset); 1612 break; 1613 } 1614 1615 return val; 1616 } 1617 1618 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev) 1619 { 1620 return container_of(dev, struct kvm_lapic, dev); 1621 } 1622 1623 #define APIC_REG_MASK(reg) (1ull << ((reg) >> 4)) 1624 #define APIC_REGS_MASK(first, count) \ 1625 (APIC_REG_MASK(first) * ((1ull << (count)) - 1)) 1626 1627 u64 kvm_lapic_readable_reg_mask(struct kvm_lapic *apic) 1628 { 1629 /* Leave bits '0' for reserved and write-only registers. */ 1630 u64 valid_reg_mask = 1631 APIC_REG_MASK(APIC_ID) | 1632 APIC_REG_MASK(APIC_LVR) | 1633 APIC_REG_MASK(APIC_TASKPRI) | 1634 APIC_REG_MASK(APIC_PROCPRI) | 1635 APIC_REG_MASK(APIC_LDR) | 1636 APIC_REG_MASK(APIC_SPIV) | 1637 APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) | 1638 APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) | 1639 APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) | 1640 APIC_REG_MASK(APIC_ESR) | 1641 APIC_REG_MASK(APIC_ICR) | 1642 APIC_REG_MASK(APIC_LVTT) | 1643 APIC_REG_MASK(APIC_LVTTHMR) | 1644 APIC_REG_MASK(APIC_LVTPC) | 1645 APIC_REG_MASK(APIC_LVT0) | 1646 APIC_REG_MASK(APIC_LVT1) | 1647 APIC_REG_MASK(APIC_LVTERR) | 1648 APIC_REG_MASK(APIC_TMICT) | 1649 APIC_REG_MASK(APIC_TMCCT) | 1650 APIC_REG_MASK(APIC_TDCR); 1651 1652 if (kvm_lapic_lvt_supported(apic, LVT_CMCI)) 1653 valid_reg_mask |= APIC_REG_MASK(APIC_LVTCMCI); 1654 1655 /* ARBPRI, DFR, and ICR2 are not valid in x2APIC mode. */ 1656 if (!apic_x2apic_mode(apic)) 1657 valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI) | 1658 APIC_REG_MASK(APIC_DFR) | 1659 APIC_REG_MASK(APIC_ICR2); 1660 1661 return valid_reg_mask; 1662 } 1663 EXPORT_SYMBOL_GPL(kvm_lapic_readable_reg_mask); 1664 1665 static int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len, 1666 void *data) 1667 { 1668 unsigned char alignment = offset & 0xf; 1669 u32 result; 1670 1671 /* 1672 * WARN if KVM reads ICR in x2APIC mode, as it's an 8-byte register in 1673 * x2APIC and needs to be manually handled by the caller. 1674 */ 1675 WARN_ON_ONCE(apic_x2apic_mode(apic) && offset == APIC_ICR); 1676 1677 if (alignment + len > 4) 1678 return 1; 1679 1680 if (offset > 0x3f0 || 1681 !(kvm_lapic_readable_reg_mask(apic) & APIC_REG_MASK(offset))) 1682 return 1; 1683 1684 result = __apic_read(apic, offset & ~0xf); 1685 1686 trace_kvm_apic_read(offset, result); 1687 1688 switch (len) { 1689 case 1: 1690 case 2: 1691 case 4: 1692 memcpy(data, (char *)&result + alignment, len); 1693 break; 1694 default: 1695 printk(KERN_ERR "Local APIC read with len = %x, " 1696 "should be 1,2, or 4 instead\n", len); 1697 break; 1698 } 1699 return 0; 1700 } 1701 1702 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr) 1703 { 1704 return addr >= apic->base_address && 1705 addr < apic->base_address + LAPIC_MMIO_LENGTH; 1706 } 1707 1708 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 1709 gpa_t address, int len, void *data) 1710 { 1711 struct kvm_lapic *apic = to_lapic(this); 1712 u32 offset = address - apic->base_address; 1713 1714 if (!apic_mmio_in_range(apic, address)) 1715 return -EOPNOTSUPP; 1716 1717 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 1718 if (!kvm_check_has_quirk(vcpu->kvm, 1719 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 1720 return -EOPNOTSUPP; 1721 1722 memset(data, 0xff, len); 1723 return 0; 1724 } 1725 1726 kvm_lapic_reg_read(apic, offset, len, data); 1727 1728 return 0; 1729 } 1730 1731 static void update_divide_count(struct kvm_lapic *apic) 1732 { 1733 u32 tmp1, tmp2, tdcr; 1734 1735 tdcr = kvm_lapic_get_reg(apic, APIC_TDCR); 1736 tmp1 = tdcr & 0xf; 1737 tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1; 1738 apic->divide_count = 0x1 << (tmp2 & 0x7); 1739 } 1740 1741 static void limit_periodic_timer_frequency(struct kvm_lapic *apic) 1742 { 1743 /* 1744 * Do not allow the guest to program periodic timers with small 1745 * interval, since the hrtimers are not throttled by the host 1746 * scheduler. 1747 */ 1748 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 1749 s64 min_period = min_timer_period_us * 1000LL; 1750 1751 if (apic->lapic_timer.period < min_period) { 1752 pr_info_once( 1753 "vcpu %i: requested %lld ns " 1754 "lapic timer period limited to %lld ns\n", 1755 apic->vcpu->vcpu_id, 1756 apic->lapic_timer.period, min_period); 1757 apic->lapic_timer.period = min_period; 1758 } 1759 } 1760 } 1761 1762 static void cancel_hv_timer(struct kvm_lapic *apic); 1763 1764 static void cancel_apic_timer(struct kvm_lapic *apic) 1765 { 1766 hrtimer_cancel(&apic->lapic_timer.timer); 1767 preempt_disable(); 1768 if (apic->lapic_timer.hv_timer_in_use) 1769 cancel_hv_timer(apic); 1770 preempt_enable(); 1771 atomic_set(&apic->lapic_timer.pending, 0); 1772 } 1773 1774 static void apic_update_lvtt(struct kvm_lapic *apic) 1775 { 1776 u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) & 1777 apic->lapic_timer.timer_mode_mask; 1778 1779 if (apic->lapic_timer.timer_mode != timer_mode) { 1780 if (apic_lvtt_tscdeadline(apic) != (timer_mode == 1781 APIC_LVT_TIMER_TSCDEADLINE)) { 1782 cancel_apic_timer(apic); 1783 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 1784 apic->lapic_timer.period = 0; 1785 apic->lapic_timer.tscdeadline = 0; 1786 } 1787 apic->lapic_timer.timer_mode = timer_mode; 1788 limit_periodic_timer_frequency(apic); 1789 } 1790 } 1791 1792 /* 1793 * On APICv, this test will cause a busy wait 1794 * during a higher-priority task. 1795 */ 1796 1797 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu) 1798 { 1799 struct kvm_lapic *apic = vcpu->arch.apic; 1800 u32 reg = kvm_lapic_get_reg(apic, APIC_LVTT); 1801 1802 if (kvm_apic_hw_enabled(apic)) { 1803 int vec = reg & APIC_VECTOR_MASK; 1804 void *bitmap = apic->regs + APIC_ISR; 1805 1806 if (apic->apicv_active) 1807 bitmap = apic->regs + APIC_IRR; 1808 1809 if (apic_test_vector(vec, bitmap)) 1810 return true; 1811 } 1812 return false; 1813 } 1814 1815 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles) 1816 { 1817 u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns; 1818 1819 /* 1820 * If the guest TSC is running at a different ratio than the host, then 1821 * convert the delay to nanoseconds to achieve an accurate delay. Note 1822 * that __delay() uses delay_tsc whenever the hardware has TSC, thus 1823 * always for VMX enabled hardware. 1824 */ 1825 if (vcpu->arch.tsc_scaling_ratio == kvm_caps.default_tsc_scaling_ratio) { 1826 __delay(min(guest_cycles, 1827 nsec_to_cycles(vcpu, timer_advance_ns))); 1828 } else { 1829 u64 delay_ns = guest_cycles * 1000000ULL; 1830 do_div(delay_ns, vcpu->arch.virtual_tsc_khz); 1831 ndelay(min_t(u32, delay_ns, timer_advance_ns)); 1832 } 1833 } 1834 1835 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu, 1836 s64 advance_expire_delta) 1837 { 1838 struct kvm_lapic *apic = vcpu->arch.apic; 1839 u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns; 1840 u64 ns; 1841 1842 /* Do not adjust for tiny fluctuations or large random spikes. */ 1843 if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX || 1844 abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN) 1845 return; 1846 1847 /* too early */ 1848 if (advance_expire_delta < 0) { 1849 ns = -advance_expire_delta * 1000000ULL; 1850 do_div(ns, vcpu->arch.virtual_tsc_khz); 1851 timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; 1852 } else { 1853 /* too late */ 1854 ns = advance_expire_delta * 1000000ULL; 1855 do_div(ns, vcpu->arch.virtual_tsc_khz); 1856 timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; 1857 } 1858 1859 if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX)) 1860 timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; 1861 apic->lapic_timer.timer_advance_ns = timer_advance_ns; 1862 } 1863 1864 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1865 { 1866 struct kvm_lapic *apic = vcpu->arch.apic; 1867 u64 guest_tsc, tsc_deadline; 1868 1869 tsc_deadline = apic->lapic_timer.expired_tscdeadline; 1870 apic->lapic_timer.expired_tscdeadline = 0; 1871 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1872 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, guest_tsc - tsc_deadline); 1873 1874 adjust_lapic_timer_advance(vcpu, guest_tsc - tsc_deadline); 1875 1876 /* 1877 * If the timer fired early, reread the TSC to account for the overhead 1878 * of the above adjustment to avoid waiting longer than is necessary. 1879 */ 1880 if (guest_tsc < tsc_deadline) 1881 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1882 1883 if (guest_tsc < tsc_deadline) 1884 __wait_lapic_expire(vcpu, tsc_deadline - guest_tsc); 1885 } 1886 1887 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1888 { 1889 if (lapic_in_kernel(vcpu) && 1890 vcpu->arch.apic->lapic_timer.expired_tscdeadline && 1891 vcpu->arch.apic->lapic_timer.timer_advance_ns && 1892 lapic_timer_int_injected(vcpu)) 1893 __kvm_wait_lapic_expire(vcpu); 1894 } 1895 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire); 1896 1897 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic) 1898 { 1899 struct kvm_timer *ktimer = &apic->lapic_timer; 1900 1901 kvm_apic_local_deliver(apic, APIC_LVTT); 1902 if (apic_lvtt_tscdeadline(apic)) { 1903 ktimer->tscdeadline = 0; 1904 } else if (apic_lvtt_oneshot(apic)) { 1905 ktimer->tscdeadline = 0; 1906 ktimer->target_expiration = 0; 1907 } 1908 } 1909 1910 static void apic_timer_expired(struct kvm_lapic *apic, bool from_timer_fn) 1911 { 1912 struct kvm_vcpu *vcpu = apic->vcpu; 1913 struct kvm_timer *ktimer = &apic->lapic_timer; 1914 1915 if (atomic_read(&apic->lapic_timer.pending)) 1916 return; 1917 1918 if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use) 1919 ktimer->expired_tscdeadline = ktimer->tscdeadline; 1920 1921 if (!from_timer_fn && apic->apicv_active) { 1922 WARN_ON(kvm_get_running_vcpu() != vcpu); 1923 kvm_apic_inject_pending_timer_irqs(apic); 1924 return; 1925 } 1926 1927 if (kvm_use_posted_timer_interrupt(apic->vcpu)) { 1928 /* 1929 * Ensure the guest's timer has truly expired before posting an 1930 * interrupt. Open code the relevant checks to avoid querying 1931 * lapic_timer_int_injected(), which will be false since the 1932 * interrupt isn't yet injected. Waiting until after injecting 1933 * is not an option since that won't help a posted interrupt. 1934 */ 1935 if (vcpu->arch.apic->lapic_timer.expired_tscdeadline && 1936 vcpu->arch.apic->lapic_timer.timer_advance_ns) 1937 __kvm_wait_lapic_expire(vcpu); 1938 kvm_apic_inject_pending_timer_irqs(apic); 1939 return; 1940 } 1941 1942 atomic_inc(&apic->lapic_timer.pending); 1943 kvm_make_request(KVM_REQ_UNBLOCK, vcpu); 1944 if (from_timer_fn) 1945 kvm_vcpu_kick(vcpu); 1946 } 1947 1948 static void start_sw_tscdeadline(struct kvm_lapic *apic) 1949 { 1950 struct kvm_timer *ktimer = &apic->lapic_timer; 1951 u64 guest_tsc, tscdeadline = ktimer->tscdeadline; 1952 u64 ns = 0; 1953 ktime_t expire; 1954 struct kvm_vcpu *vcpu = apic->vcpu; 1955 u32 this_tsc_khz = vcpu->arch.virtual_tsc_khz; 1956 unsigned long flags; 1957 ktime_t now; 1958 1959 if (unlikely(!tscdeadline || !this_tsc_khz)) 1960 return; 1961 1962 local_irq_save(flags); 1963 1964 now = ktime_get(); 1965 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1966 1967 ns = (tscdeadline - guest_tsc) * 1000000ULL; 1968 do_div(ns, this_tsc_khz); 1969 1970 if (likely(tscdeadline > guest_tsc) && 1971 likely(ns > apic->lapic_timer.timer_advance_ns)) { 1972 expire = ktime_add_ns(now, ns); 1973 expire = ktime_sub_ns(expire, ktimer->timer_advance_ns); 1974 hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD); 1975 } else 1976 apic_timer_expired(apic, false); 1977 1978 local_irq_restore(flags); 1979 } 1980 1981 static inline u64 tmict_to_ns(struct kvm_lapic *apic, u32 tmict) 1982 { 1983 return (u64)tmict * apic->vcpu->kvm->arch.apic_bus_cycle_ns * 1984 (u64)apic->divide_count; 1985 } 1986 1987 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor) 1988 { 1989 ktime_t now, remaining; 1990 u64 ns_remaining_old, ns_remaining_new; 1991 1992 apic->lapic_timer.period = 1993 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT)); 1994 limit_periodic_timer_frequency(apic); 1995 1996 now = ktime_get(); 1997 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 1998 if (ktime_to_ns(remaining) < 0) 1999 remaining = 0; 2000 2001 ns_remaining_old = ktime_to_ns(remaining); 2002 ns_remaining_new = mul_u64_u32_div(ns_remaining_old, 2003 apic->divide_count, old_divisor); 2004 2005 apic->lapic_timer.tscdeadline += 2006 nsec_to_cycles(apic->vcpu, ns_remaining_new) - 2007 nsec_to_cycles(apic->vcpu, ns_remaining_old); 2008 apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new); 2009 } 2010 2011 static bool set_target_expiration(struct kvm_lapic *apic, u32 count_reg) 2012 { 2013 ktime_t now; 2014 u64 tscl = rdtsc(); 2015 s64 deadline; 2016 2017 now = ktime_get(); 2018 apic->lapic_timer.period = 2019 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT)); 2020 2021 if (!apic->lapic_timer.period) { 2022 apic->lapic_timer.tscdeadline = 0; 2023 return false; 2024 } 2025 2026 limit_periodic_timer_frequency(apic); 2027 deadline = apic->lapic_timer.period; 2028 2029 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) { 2030 if (unlikely(count_reg != APIC_TMICT)) { 2031 deadline = tmict_to_ns(apic, 2032 kvm_lapic_get_reg(apic, count_reg)); 2033 if (unlikely(deadline <= 0)) { 2034 if (apic_lvtt_period(apic)) 2035 deadline = apic->lapic_timer.period; 2036 else 2037 deadline = 0; 2038 } 2039 else if (unlikely(deadline > apic->lapic_timer.period)) { 2040 pr_info_ratelimited( 2041 "vcpu %i: requested lapic timer restore with " 2042 "starting count register %#x=%u (%lld ns) > initial count (%lld ns). " 2043 "Using initial count to start timer.\n", 2044 apic->vcpu->vcpu_id, 2045 count_reg, 2046 kvm_lapic_get_reg(apic, count_reg), 2047 deadline, apic->lapic_timer.period); 2048 kvm_lapic_set_reg(apic, count_reg, 0); 2049 deadline = apic->lapic_timer.period; 2050 } 2051 } 2052 } 2053 2054 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 2055 nsec_to_cycles(apic->vcpu, deadline); 2056 apic->lapic_timer.target_expiration = ktime_add_ns(now, deadline); 2057 2058 return true; 2059 } 2060 2061 static void advance_periodic_target_expiration(struct kvm_lapic *apic) 2062 { 2063 ktime_t now = ktime_get(); 2064 u64 tscl = rdtsc(); 2065 ktime_t delta; 2066 2067 /* 2068 * Synchronize both deadlines to the same time source or 2069 * differences in the periods (caused by differences in the 2070 * underlying clocks or numerical approximation errors) will 2071 * cause the two to drift apart over time as the errors 2072 * accumulate. 2073 */ 2074 apic->lapic_timer.target_expiration = 2075 ktime_add_ns(apic->lapic_timer.target_expiration, 2076 apic->lapic_timer.period); 2077 delta = ktime_sub(apic->lapic_timer.target_expiration, now); 2078 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 2079 nsec_to_cycles(apic->vcpu, delta); 2080 } 2081 2082 static void start_sw_period(struct kvm_lapic *apic) 2083 { 2084 if (!apic->lapic_timer.period) 2085 return; 2086 2087 if (ktime_after(ktime_get(), 2088 apic->lapic_timer.target_expiration)) { 2089 apic_timer_expired(apic, false); 2090 2091 if (apic_lvtt_oneshot(apic)) 2092 return; 2093 2094 advance_periodic_target_expiration(apic); 2095 } 2096 2097 hrtimer_start(&apic->lapic_timer.timer, 2098 apic->lapic_timer.target_expiration, 2099 HRTIMER_MODE_ABS_HARD); 2100 } 2101 2102 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu) 2103 { 2104 if (!lapic_in_kernel(vcpu)) 2105 return false; 2106 2107 return vcpu->arch.apic->lapic_timer.hv_timer_in_use; 2108 } 2109 2110 static void cancel_hv_timer(struct kvm_lapic *apic) 2111 { 2112 WARN_ON(preemptible()); 2113 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 2114 kvm_x86_call(cancel_hv_timer)(apic->vcpu); 2115 apic->lapic_timer.hv_timer_in_use = false; 2116 } 2117 2118 static bool start_hv_timer(struct kvm_lapic *apic) 2119 { 2120 struct kvm_timer *ktimer = &apic->lapic_timer; 2121 struct kvm_vcpu *vcpu = apic->vcpu; 2122 bool expired; 2123 2124 WARN_ON(preemptible()); 2125 if (!kvm_can_use_hv_timer(vcpu)) 2126 return false; 2127 2128 if (!ktimer->tscdeadline) 2129 return false; 2130 2131 if (kvm_x86_call(set_hv_timer)(vcpu, ktimer->tscdeadline, &expired)) 2132 return false; 2133 2134 ktimer->hv_timer_in_use = true; 2135 hrtimer_cancel(&ktimer->timer); 2136 2137 /* 2138 * To simplify handling the periodic timer, leave the hv timer running 2139 * even if the deadline timer has expired, i.e. rely on the resulting 2140 * VM-Exit to recompute the periodic timer's target expiration. 2141 */ 2142 if (!apic_lvtt_period(apic)) { 2143 /* 2144 * Cancel the hv timer if the sw timer fired while the hv timer 2145 * was being programmed, or if the hv timer itself expired. 2146 */ 2147 if (atomic_read(&ktimer->pending)) { 2148 cancel_hv_timer(apic); 2149 } else if (expired) { 2150 apic_timer_expired(apic, false); 2151 cancel_hv_timer(apic); 2152 } 2153 } 2154 2155 trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use); 2156 2157 return true; 2158 } 2159 2160 static void start_sw_timer(struct kvm_lapic *apic) 2161 { 2162 struct kvm_timer *ktimer = &apic->lapic_timer; 2163 2164 WARN_ON(preemptible()); 2165 if (apic->lapic_timer.hv_timer_in_use) 2166 cancel_hv_timer(apic); 2167 if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending)) 2168 return; 2169 2170 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 2171 start_sw_period(apic); 2172 else if (apic_lvtt_tscdeadline(apic)) 2173 start_sw_tscdeadline(apic); 2174 trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false); 2175 } 2176 2177 static void restart_apic_timer(struct kvm_lapic *apic) 2178 { 2179 preempt_disable(); 2180 2181 if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending)) 2182 goto out; 2183 2184 if (!start_hv_timer(apic)) 2185 start_sw_timer(apic); 2186 out: 2187 preempt_enable(); 2188 } 2189 2190 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu) 2191 { 2192 struct kvm_lapic *apic = vcpu->arch.apic; 2193 2194 preempt_disable(); 2195 /* If the preempt notifier has already run, it also called apic_timer_expired */ 2196 if (!apic->lapic_timer.hv_timer_in_use) 2197 goto out; 2198 WARN_ON(kvm_vcpu_is_blocking(vcpu)); 2199 apic_timer_expired(apic, false); 2200 cancel_hv_timer(apic); 2201 2202 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 2203 advance_periodic_target_expiration(apic); 2204 restart_apic_timer(apic); 2205 } 2206 out: 2207 preempt_enable(); 2208 } 2209 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer); 2210 2211 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu) 2212 { 2213 restart_apic_timer(vcpu->arch.apic); 2214 } 2215 2216 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu) 2217 { 2218 struct kvm_lapic *apic = vcpu->arch.apic; 2219 2220 preempt_disable(); 2221 /* Possibly the TSC deadline timer is not enabled yet */ 2222 if (apic->lapic_timer.hv_timer_in_use) 2223 start_sw_timer(apic); 2224 preempt_enable(); 2225 } 2226 2227 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu) 2228 { 2229 struct kvm_lapic *apic = vcpu->arch.apic; 2230 2231 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 2232 restart_apic_timer(apic); 2233 } 2234 2235 static void __start_apic_timer(struct kvm_lapic *apic, u32 count_reg) 2236 { 2237 atomic_set(&apic->lapic_timer.pending, 0); 2238 2239 if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 2240 && !set_target_expiration(apic, count_reg)) 2241 return; 2242 2243 restart_apic_timer(apic); 2244 } 2245 2246 static void start_apic_timer(struct kvm_lapic *apic) 2247 { 2248 __start_apic_timer(apic, APIC_TMICT); 2249 } 2250 2251 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val) 2252 { 2253 bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val); 2254 2255 if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) { 2256 apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode; 2257 if (lvt0_in_nmi_mode) { 2258 atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 2259 } else 2260 atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 2261 } 2262 } 2263 2264 static int get_lvt_index(u32 reg) 2265 { 2266 if (reg == APIC_LVTCMCI) 2267 return LVT_CMCI; 2268 if (reg < APIC_LVTT || reg > APIC_LVTERR) 2269 return -1; 2270 return array_index_nospec( 2271 (reg - APIC_LVTT) >> 4, KVM_APIC_MAX_NR_LVT_ENTRIES); 2272 } 2273 2274 static int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val) 2275 { 2276 int ret = 0; 2277 2278 trace_kvm_apic_write(reg, val); 2279 2280 switch (reg) { 2281 case APIC_ID: /* Local APIC ID */ 2282 if (!apic_x2apic_mode(apic)) { 2283 kvm_apic_set_xapic_id(apic, val >> 24); 2284 } else { 2285 ret = 1; 2286 } 2287 break; 2288 2289 case APIC_TASKPRI: 2290 report_tpr_access(apic, true); 2291 apic_set_tpr(apic, val & 0xff); 2292 break; 2293 2294 case APIC_EOI: 2295 apic_set_eoi(apic); 2296 break; 2297 2298 case APIC_LDR: 2299 if (!apic_x2apic_mode(apic)) 2300 kvm_apic_set_ldr(apic, val & APIC_LDR_MASK); 2301 else 2302 ret = 1; 2303 break; 2304 2305 case APIC_DFR: 2306 if (!apic_x2apic_mode(apic)) 2307 kvm_apic_set_dfr(apic, val | 0x0FFFFFFF); 2308 else 2309 ret = 1; 2310 break; 2311 2312 case APIC_SPIV: { 2313 u32 mask = 0x3ff; 2314 if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI) 2315 mask |= APIC_SPIV_DIRECTED_EOI; 2316 apic_set_spiv(apic, val & mask); 2317 if (!(val & APIC_SPIV_APIC_ENABLED)) { 2318 int i; 2319 2320 for (i = 0; i < apic->nr_lvt_entries; i++) { 2321 kvm_lapic_set_reg(apic, APIC_LVTx(i), 2322 kvm_lapic_get_reg(apic, APIC_LVTx(i)) | APIC_LVT_MASKED); 2323 } 2324 apic_update_lvtt(apic); 2325 atomic_set(&apic->lapic_timer.pending, 0); 2326 2327 } 2328 break; 2329 } 2330 case APIC_ICR: 2331 WARN_ON_ONCE(apic_x2apic_mode(apic)); 2332 2333 /* No delay here, so we always clear the pending bit */ 2334 val &= ~APIC_ICR_BUSY; 2335 kvm_apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2)); 2336 kvm_lapic_set_reg(apic, APIC_ICR, val); 2337 break; 2338 case APIC_ICR2: 2339 if (apic_x2apic_mode(apic)) 2340 ret = 1; 2341 else 2342 kvm_lapic_set_reg(apic, APIC_ICR2, val & 0xff000000); 2343 break; 2344 2345 case APIC_LVT0: 2346 apic_manage_nmi_watchdog(apic, val); 2347 fallthrough; 2348 case APIC_LVTTHMR: 2349 case APIC_LVTPC: 2350 case APIC_LVT1: 2351 case APIC_LVTERR: 2352 case APIC_LVTCMCI: { 2353 u32 index = get_lvt_index(reg); 2354 if (!kvm_lapic_lvt_supported(apic, index)) { 2355 ret = 1; 2356 break; 2357 } 2358 if (!kvm_apic_sw_enabled(apic)) 2359 val |= APIC_LVT_MASKED; 2360 val &= apic_lvt_mask[index]; 2361 kvm_lapic_set_reg(apic, reg, val); 2362 break; 2363 } 2364 2365 case APIC_LVTT: 2366 if (!kvm_apic_sw_enabled(apic)) 2367 val |= APIC_LVT_MASKED; 2368 val &= (apic_lvt_mask[LVT_TIMER] | apic->lapic_timer.timer_mode_mask); 2369 kvm_lapic_set_reg(apic, APIC_LVTT, val); 2370 apic_update_lvtt(apic); 2371 break; 2372 2373 case APIC_TMICT: 2374 if (apic_lvtt_tscdeadline(apic)) 2375 break; 2376 2377 cancel_apic_timer(apic); 2378 kvm_lapic_set_reg(apic, APIC_TMICT, val); 2379 start_apic_timer(apic); 2380 break; 2381 2382 case APIC_TDCR: { 2383 uint32_t old_divisor = apic->divide_count; 2384 2385 kvm_lapic_set_reg(apic, APIC_TDCR, val & 0xb); 2386 update_divide_count(apic); 2387 if (apic->divide_count != old_divisor && 2388 apic->lapic_timer.period) { 2389 hrtimer_cancel(&apic->lapic_timer.timer); 2390 update_target_expiration(apic, old_divisor); 2391 restart_apic_timer(apic); 2392 } 2393 break; 2394 } 2395 case APIC_ESR: 2396 if (apic_x2apic_mode(apic) && val != 0) 2397 ret = 1; 2398 break; 2399 2400 case APIC_SELF_IPI: 2401 /* 2402 * Self-IPI exists only when x2APIC is enabled. Bits 7:0 hold 2403 * the vector, everything else is reserved. 2404 */ 2405 if (!apic_x2apic_mode(apic) || (val & ~APIC_VECTOR_MASK)) 2406 ret = 1; 2407 else 2408 kvm_apic_send_ipi(apic, APIC_DEST_SELF | val, 0); 2409 break; 2410 default: 2411 ret = 1; 2412 break; 2413 } 2414 2415 /* 2416 * Recalculate APIC maps if necessary, e.g. if the software enable bit 2417 * was toggled, the APIC ID changed, etc... The maps are marked dirty 2418 * on relevant changes, i.e. this is a nop for most writes. 2419 */ 2420 kvm_recalculate_apic_map(apic->vcpu->kvm); 2421 2422 return ret; 2423 } 2424 2425 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 2426 gpa_t address, int len, const void *data) 2427 { 2428 struct kvm_lapic *apic = to_lapic(this); 2429 unsigned int offset = address - apic->base_address; 2430 u32 val; 2431 2432 if (!apic_mmio_in_range(apic, address)) 2433 return -EOPNOTSUPP; 2434 2435 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 2436 if (!kvm_check_has_quirk(vcpu->kvm, 2437 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 2438 return -EOPNOTSUPP; 2439 2440 return 0; 2441 } 2442 2443 /* 2444 * APIC register must be aligned on 128-bits boundary. 2445 * 32/64/128 bits registers must be accessed thru 32 bits. 2446 * Refer SDM 8.4.1 2447 */ 2448 if (len != 4 || (offset & 0xf)) 2449 return 0; 2450 2451 val = *(u32*)data; 2452 2453 kvm_lapic_reg_write(apic, offset & 0xff0, val); 2454 2455 return 0; 2456 } 2457 2458 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu) 2459 { 2460 kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0); 2461 } 2462 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi); 2463 2464 #define X2APIC_ICR_RESERVED_BITS (GENMASK_ULL(31, 20) | GENMASK_ULL(17, 16) | BIT(13)) 2465 2466 int kvm_x2apic_icr_write(struct kvm_lapic *apic, u64 data) 2467 { 2468 if (data & X2APIC_ICR_RESERVED_BITS) 2469 return 1; 2470 2471 /* 2472 * The BUSY bit is reserved on both Intel and AMD in x2APIC mode, but 2473 * only AMD requires it to be zero, Intel essentially just ignores the 2474 * bit. And if IPI virtualization (Intel) or x2AVIC (AMD) is enabled, 2475 * the CPU performs the reserved bits checks, i.e. the underlying CPU 2476 * behavior will "win". Arbitrarily clear the BUSY bit, as there is no 2477 * sane way to provide consistent behavior with respect to hardware. 2478 */ 2479 data &= ~APIC_ICR_BUSY; 2480 2481 kvm_apic_send_ipi(apic, (u32)data, (u32)(data >> 32)); 2482 if (kvm_x86_ops.x2apic_icr_is_split) { 2483 kvm_lapic_set_reg(apic, APIC_ICR, data); 2484 kvm_lapic_set_reg(apic, APIC_ICR2, data >> 32); 2485 } else { 2486 kvm_lapic_set_reg64(apic, APIC_ICR, data); 2487 } 2488 trace_kvm_apic_write(APIC_ICR, data); 2489 return 0; 2490 } 2491 2492 static u64 kvm_x2apic_icr_read(struct kvm_lapic *apic) 2493 { 2494 if (kvm_x86_ops.x2apic_icr_is_split) 2495 return (u64)kvm_lapic_get_reg(apic, APIC_ICR) | 2496 (u64)kvm_lapic_get_reg(apic, APIC_ICR2) << 32; 2497 2498 return kvm_lapic_get_reg64(apic, APIC_ICR); 2499 } 2500 2501 /* emulate APIC access in a trap manner */ 2502 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset) 2503 { 2504 struct kvm_lapic *apic = vcpu->arch.apic; 2505 2506 /* 2507 * ICR is a single 64-bit register when x2APIC is enabled, all others 2508 * registers hold 32-bit values. For legacy xAPIC, ICR writes need to 2509 * go down the common path to get the upper half from ICR2. 2510 * 2511 * Note, using the write helpers may incur an unnecessary write to the 2512 * virtual APIC state, but KVM needs to conditionally modify the value 2513 * in certain cases, e.g. to clear the ICR busy bit. The cost of extra 2514 * conditional branches is likely a wash relative to the cost of the 2515 * maybe-unecessary write, and both are in the noise anyways. 2516 */ 2517 if (apic_x2apic_mode(apic) && offset == APIC_ICR) 2518 WARN_ON_ONCE(kvm_x2apic_icr_write(apic, kvm_x2apic_icr_read(apic))); 2519 else 2520 kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset)); 2521 } 2522 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode); 2523 2524 void kvm_free_lapic(struct kvm_vcpu *vcpu) 2525 { 2526 struct kvm_lapic *apic = vcpu->arch.apic; 2527 2528 if (!vcpu->arch.apic) { 2529 static_branch_dec(&kvm_has_noapic_vcpu); 2530 return; 2531 } 2532 2533 hrtimer_cancel(&apic->lapic_timer.timer); 2534 2535 if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)) 2536 static_branch_slow_dec_deferred(&apic_hw_disabled); 2537 2538 if (!apic->sw_enabled) 2539 static_branch_slow_dec_deferred(&apic_sw_disabled); 2540 2541 if (apic->regs) 2542 free_page((unsigned long)apic->regs); 2543 2544 kfree(apic); 2545 } 2546 2547 /* 2548 *---------------------------------------------------------------------- 2549 * LAPIC interface 2550 *---------------------------------------------------------------------- 2551 */ 2552 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu) 2553 { 2554 struct kvm_lapic *apic = vcpu->arch.apic; 2555 2556 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic)) 2557 return 0; 2558 2559 return apic->lapic_timer.tscdeadline; 2560 } 2561 2562 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data) 2563 { 2564 struct kvm_lapic *apic = vcpu->arch.apic; 2565 2566 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic)) 2567 return; 2568 2569 hrtimer_cancel(&apic->lapic_timer.timer); 2570 apic->lapic_timer.tscdeadline = data; 2571 start_apic_timer(apic); 2572 } 2573 2574 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8) 2575 { 2576 apic_set_tpr(vcpu->arch.apic, (cr8 & 0x0f) << 4); 2577 } 2578 2579 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu) 2580 { 2581 u64 tpr; 2582 2583 tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI); 2584 2585 return (tpr & 0xf0) >> 4; 2586 } 2587 2588 static void __kvm_apic_set_base(struct kvm_vcpu *vcpu, u64 value) 2589 { 2590 u64 old_value = vcpu->arch.apic_base; 2591 struct kvm_lapic *apic = vcpu->arch.apic; 2592 2593 vcpu->arch.apic_base = value; 2594 2595 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) 2596 kvm_update_cpuid_runtime(vcpu); 2597 2598 if (!apic) 2599 return; 2600 2601 /* update jump label if enable bit changes */ 2602 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) { 2603 if (value & MSR_IA32_APICBASE_ENABLE) { 2604 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2605 static_branch_slow_dec_deferred(&apic_hw_disabled); 2606 /* Check if there are APF page ready requests pending */ 2607 kvm_make_request(KVM_REQ_APF_READY, vcpu); 2608 } else { 2609 static_branch_inc(&apic_hw_disabled.key); 2610 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 2611 } 2612 } 2613 2614 if ((old_value ^ value) & X2APIC_ENABLE) { 2615 if (value & X2APIC_ENABLE) 2616 kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id); 2617 else if (value & MSR_IA32_APICBASE_ENABLE) 2618 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2619 } 2620 2621 if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) { 2622 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 2623 kvm_x86_call(set_virtual_apic_mode)(vcpu); 2624 } 2625 2626 apic->base_address = apic->vcpu->arch.apic_base & 2627 MSR_IA32_APICBASE_BASE; 2628 2629 if ((value & MSR_IA32_APICBASE_ENABLE) && 2630 apic->base_address != APIC_DEFAULT_PHYS_BASE) { 2631 kvm_set_apicv_inhibit(apic->vcpu->kvm, 2632 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED); 2633 } 2634 } 2635 2636 int kvm_apic_set_base(struct kvm_vcpu *vcpu, u64 value, bool host_initiated) 2637 { 2638 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 2639 enum lapic_mode new_mode = kvm_apic_mode(value); 2640 2641 if (vcpu->arch.apic_base == value) 2642 return 0; 2643 2644 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 2645 (guest_cpu_cap_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 2646 2647 if ((value & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 2648 return 1; 2649 if (!host_initiated) { 2650 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 2651 return 1; 2652 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 2653 return 1; 2654 } 2655 2656 __kvm_apic_set_base(vcpu, value); 2657 kvm_recalculate_apic_map(vcpu->kvm); 2658 return 0; 2659 } 2660 2661 void kvm_apic_update_apicv(struct kvm_vcpu *vcpu) 2662 { 2663 struct kvm_lapic *apic = vcpu->arch.apic; 2664 2665 /* 2666 * When APICv is enabled, KVM must always search the IRR for a pending 2667 * IRQ, as other vCPUs and devices can set IRR bits even if the vCPU 2668 * isn't running. If APICv is disabled, KVM _should_ search the IRR 2669 * for a pending IRQ. But KVM currently doesn't ensure *all* hardware, 2670 * e.g. CPUs and IOMMUs, has seen the change in state, i.e. searching 2671 * the IRR at this time could race with IRQ delivery from hardware that 2672 * still sees APICv as being enabled. 2673 * 2674 * FIXME: Ensure other vCPUs and devices observe the change in APICv 2675 * state prior to updating KVM's metadata caches, so that KVM 2676 * can safely search the IRR and set irr_pending accordingly. 2677 */ 2678 apic->irr_pending = true; 2679 2680 if (apic->apicv_active) 2681 apic->isr_count = 1; 2682 else 2683 apic->isr_count = count_vectors(apic->regs + APIC_ISR); 2684 2685 apic->highest_isr_cache = -1; 2686 } 2687 2688 int kvm_alloc_apic_access_page(struct kvm *kvm) 2689 { 2690 void __user *hva; 2691 int ret = 0; 2692 2693 mutex_lock(&kvm->slots_lock); 2694 if (kvm->arch.apic_access_memslot_enabled || 2695 kvm->arch.apic_access_memslot_inhibited) 2696 goto out; 2697 2698 hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 2699 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE); 2700 if (IS_ERR(hva)) { 2701 ret = PTR_ERR(hva); 2702 goto out; 2703 } 2704 2705 kvm->arch.apic_access_memslot_enabled = true; 2706 out: 2707 mutex_unlock(&kvm->slots_lock); 2708 return ret; 2709 } 2710 EXPORT_SYMBOL_GPL(kvm_alloc_apic_access_page); 2711 2712 void kvm_inhibit_apic_access_page(struct kvm_vcpu *vcpu) 2713 { 2714 struct kvm *kvm = vcpu->kvm; 2715 2716 if (!kvm->arch.apic_access_memslot_enabled) 2717 return; 2718 2719 kvm_vcpu_srcu_read_unlock(vcpu); 2720 2721 mutex_lock(&kvm->slots_lock); 2722 2723 if (kvm->arch.apic_access_memslot_enabled) { 2724 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0); 2725 /* 2726 * Clear "enabled" after the memslot is deleted so that a 2727 * different vCPU doesn't get a false negative when checking 2728 * the flag out of slots_lock. No additional memory barrier is 2729 * needed as modifying memslots requires waiting other vCPUs to 2730 * drop SRCU (see above), and false positives are ok as the 2731 * flag is rechecked after acquiring slots_lock. 2732 */ 2733 kvm->arch.apic_access_memslot_enabled = false; 2734 2735 /* 2736 * Mark the memslot as inhibited to prevent reallocating the 2737 * memslot during vCPU creation, e.g. if a vCPU is hotplugged. 2738 */ 2739 kvm->arch.apic_access_memslot_inhibited = true; 2740 } 2741 2742 mutex_unlock(&kvm->slots_lock); 2743 2744 kvm_vcpu_srcu_read_lock(vcpu); 2745 } 2746 2747 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event) 2748 { 2749 struct kvm_lapic *apic = vcpu->arch.apic; 2750 u64 msr_val; 2751 int i; 2752 2753 kvm_x86_call(apicv_pre_state_restore)(vcpu); 2754 2755 if (!init_event) { 2756 msr_val = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE; 2757 if (kvm_vcpu_is_reset_bsp(vcpu)) 2758 msr_val |= MSR_IA32_APICBASE_BSP; 2759 2760 /* 2761 * Use the inner helper to avoid an extra recalcuation of the 2762 * optimized APIC map if some other task has dirtied the map. 2763 * The recalculation needed for this vCPU will be done after 2764 * all APIC state has been initialized (see below). 2765 */ 2766 __kvm_apic_set_base(vcpu, msr_val); 2767 } 2768 2769 if (!apic) 2770 return; 2771 2772 /* Stop the timer in case it's a reset to an active apic */ 2773 hrtimer_cancel(&apic->lapic_timer.timer); 2774 2775 /* The xAPIC ID is set at RESET even if the APIC was already enabled. */ 2776 if (!init_event) 2777 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2778 kvm_apic_set_version(apic->vcpu); 2779 2780 for (i = 0; i < apic->nr_lvt_entries; i++) 2781 kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED); 2782 apic_update_lvtt(apic); 2783 if (kvm_vcpu_is_reset_bsp(vcpu) && 2784 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED)) 2785 kvm_lapic_set_reg(apic, APIC_LVT0, 2786 SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT)); 2787 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 2788 2789 kvm_apic_set_dfr(apic, 0xffffffffU); 2790 apic_set_spiv(apic, 0xff); 2791 kvm_lapic_set_reg(apic, APIC_TASKPRI, 0); 2792 if (!apic_x2apic_mode(apic)) 2793 kvm_apic_set_ldr(apic, 0); 2794 kvm_lapic_set_reg(apic, APIC_ESR, 0); 2795 if (!apic_x2apic_mode(apic)) { 2796 kvm_lapic_set_reg(apic, APIC_ICR, 0); 2797 kvm_lapic_set_reg(apic, APIC_ICR2, 0); 2798 } else { 2799 kvm_lapic_set_reg64(apic, APIC_ICR, 0); 2800 } 2801 kvm_lapic_set_reg(apic, APIC_TDCR, 0); 2802 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 2803 for (i = 0; i < 8; i++) { 2804 kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0); 2805 kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0); 2806 kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0); 2807 } 2808 kvm_apic_update_apicv(vcpu); 2809 update_divide_count(apic); 2810 atomic_set(&apic->lapic_timer.pending, 0); 2811 2812 vcpu->arch.pv_eoi.msr_val = 0; 2813 apic_update_ppr(apic); 2814 if (apic->apicv_active) { 2815 kvm_x86_call(apicv_post_state_restore)(vcpu); 2816 kvm_x86_call(hwapic_isr_update)(vcpu, -1); 2817 } 2818 2819 vcpu->arch.apic_arb_prio = 0; 2820 vcpu->arch.apic_attention = 0; 2821 2822 kvm_recalculate_apic_map(vcpu->kvm); 2823 } 2824 2825 /* 2826 *---------------------------------------------------------------------- 2827 * timer interface 2828 *---------------------------------------------------------------------- 2829 */ 2830 2831 static bool lapic_is_periodic(struct kvm_lapic *apic) 2832 { 2833 return apic_lvtt_period(apic); 2834 } 2835 2836 int apic_has_pending_timer(struct kvm_vcpu *vcpu) 2837 { 2838 struct kvm_lapic *apic = vcpu->arch.apic; 2839 2840 if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT)) 2841 return atomic_read(&apic->lapic_timer.pending); 2842 2843 return 0; 2844 } 2845 2846 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type) 2847 { 2848 u32 reg = kvm_lapic_get_reg(apic, lvt_type); 2849 int vector, mode, trig_mode; 2850 int r; 2851 2852 if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) { 2853 vector = reg & APIC_VECTOR_MASK; 2854 mode = reg & APIC_MODE_MASK; 2855 trig_mode = reg & APIC_LVT_LEVEL_TRIGGER; 2856 2857 r = __apic_accept_irq(apic, mode, vector, 1, trig_mode, NULL); 2858 if (r && lvt_type == APIC_LVTPC && 2859 guest_cpuid_is_intel_compatible(apic->vcpu)) 2860 kvm_lapic_set_reg(apic, APIC_LVTPC, reg | APIC_LVT_MASKED); 2861 return r; 2862 } 2863 return 0; 2864 } 2865 2866 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu) 2867 { 2868 struct kvm_lapic *apic = vcpu->arch.apic; 2869 2870 if (apic) 2871 kvm_apic_local_deliver(apic, APIC_LVT0); 2872 } 2873 2874 static const struct kvm_io_device_ops apic_mmio_ops = { 2875 .read = apic_mmio_read, 2876 .write = apic_mmio_write, 2877 }; 2878 2879 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data) 2880 { 2881 struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer); 2882 struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer); 2883 2884 apic_timer_expired(apic, true); 2885 2886 if (lapic_is_periodic(apic)) { 2887 advance_periodic_target_expiration(apic); 2888 hrtimer_add_expires_ns(&ktimer->timer, ktimer->period); 2889 return HRTIMER_RESTART; 2890 } else 2891 return HRTIMER_NORESTART; 2892 } 2893 2894 int kvm_create_lapic(struct kvm_vcpu *vcpu) 2895 { 2896 struct kvm_lapic *apic; 2897 2898 ASSERT(vcpu != NULL); 2899 2900 if (!irqchip_in_kernel(vcpu->kvm)) { 2901 static_branch_inc(&kvm_has_noapic_vcpu); 2902 return 0; 2903 } 2904 2905 apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT); 2906 if (!apic) 2907 goto nomem; 2908 2909 vcpu->arch.apic = apic; 2910 2911 if (kvm_x86_ops.alloc_apic_backing_page) 2912 apic->regs = kvm_x86_call(alloc_apic_backing_page)(vcpu); 2913 else 2914 apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 2915 if (!apic->regs) { 2916 printk(KERN_ERR "malloc apic regs error for vcpu %x\n", 2917 vcpu->vcpu_id); 2918 goto nomem_free_apic; 2919 } 2920 apic->vcpu = vcpu; 2921 2922 apic->nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu); 2923 2924 hrtimer_init(&apic->lapic_timer.timer, CLOCK_MONOTONIC, 2925 HRTIMER_MODE_ABS_HARD); 2926 apic->lapic_timer.timer.function = apic_timer_fn; 2927 if (lapic_timer_advance) 2928 apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; 2929 2930 /* 2931 * Stuff the APIC ENABLE bit in lieu of temporarily incrementing 2932 * apic_hw_disabled; the full RESET value is set by kvm_lapic_reset(). 2933 */ 2934 vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE; 2935 static_branch_inc(&apic_sw_disabled.key); /* sw disabled at reset */ 2936 kvm_iodevice_init(&apic->dev, &apic_mmio_ops); 2937 2938 /* 2939 * Defer evaluating inhibits until the vCPU is first run, as this vCPU 2940 * will not get notified of any changes until this vCPU is visible to 2941 * other vCPUs (marked online and added to the set of vCPUs). 2942 * 2943 * Opportunistically mark APICv active as VMX in particularly is highly 2944 * unlikely to have inhibits. Ignore the current per-VM APICv state so 2945 * that vCPU creation is guaranteed to run with a deterministic value, 2946 * the request will ensure the vCPU gets the correct state before VM-Entry. 2947 */ 2948 if (enable_apicv) { 2949 apic->apicv_active = true; 2950 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 2951 } 2952 2953 return 0; 2954 nomem_free_apic: 2955 kfree(apic); 2956 vcpu->arch.apic = NULL; 2957 nomem: 2958 return -ENOMEM; 2959 } 2960 2961 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu) 2962 { 2963 struct kvm_lapic *apic = vcpu->arch.apic; 2964 u32 ppr; 2965 2966 if (!kvm_apic_present(vcpu)) 2967 return -1; 2968 2969 __apic_update_ppr(apic, &ppr); 2970 return apic_has_interrupt_for_ppr(apic, ppr); 2971 } 2972 EXPORT_SYMBOL_GPL(kvm_apic_has_interrupt); 2973 2974 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu) 2975 { 2976 u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0); 2977 2978 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 2979 return 1; 2980 if ((lvt0 & APIC_LVT_MASKED) == 0 && 2981 GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT) 2982 return 1; 2983 return 0; 2984 } 2985 2986 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu) 2987 { 2988 struct kvm_lapic *apic = vcpu->arch.apic; 2989 2990 if (atomic_read(&apic->lapic_timer.pending) > 0) { 2991 kvm_apic_inject_pending_timer_irqs(apic); 2992 atomic_set(&apic->lapic_timer.pending, 0); 2993 } 2994 } 2995 2996 void kvm_apic_ack_interrupt(struct kvm_vcpu *vcpu, int vector) 2997 { 2998 struct kvm_lapic *apic = vcpu->arch.apic; 2999 u32 ppr; 3000 3001 if (WARN_ON_ONCE(vector < 0 || !apic)) 3002 return; 3003 3004 /* 3005 * We get here even with APIC virtualization enabled, if doing 3006 * nested virtualization and L1 runs with the "acknowledge interrupt 3007 * on exit" mode. Then we cannot inject the interrupt via RVI, 3008 * because the process would deliver it through the IDT. 3009 */ 3010 3011 apic_clear_irr(vector, apic); 3012 if (kvm_hv_synic_auto_eoi_set(vcpu, vector)) { 3013 /* 3014 * For auto-EOI interrupts, there might be another pending 3015 * interrupt above PPR, so check whether to raise another 3016 * KVM_REQ_EVENT. 3017 */ 3018 apic_update_ppr(apic); 3019 } else { 3020 /* 3021 * For normal interrupts, PPR has been raised and there cannot 3022 * be a higher-priority pending interrupt---except if there was 3023 * a concurrent interrupt injection, but that would have 3024 * triggered KVM_REQ_EVENT already. 3025 */ 3026 apic_set_isr(vector, apic); 3027 __apic_update_ppr(apic, &ppr); 3028 } 3029 3030 } 3031 EXPORT_SYMBOL_GPL(kvm_apic_ack_interrupt); 3032 3033 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu, 3034 struct kvm_lapic_state *s, bool set) 3035 { 3036 if (apic_x2apic_mode(vcpu->arch.apic)) { 3037 u32 x2apic_id = kvm_x2apic_id(vcpu->arch.apic); 3038 u32 *id = (u32 *)(s->regs + APIC_ID); 3039 u32 *ldr = (u32 *)(s->regs + APIC_LDR); 3040 u64 icr; 3041 3042 if (vcpu->kvm->arch.x2apic_format) { 3043 if (*id != x2apic_id) 3044 return -EINVAL; 3045 } else { 3046 /* 3047 * Ignore the userspace value when setting APIC state. 3048 * KVM's model is that the x2APIC ID is readonly, e.g. 3049 * KVM only supports delivering interrupts to KVM's 3050 * version of the x2APIC ID. However, for backwards 3051 * compatibility, don't reject attempts to set a 3052 * mismatched ID for userspace that hasn't opted into 3053 * x2apic_format. 3054 */ 3055 if (set) 3056 *id = x2apic_id; 3057 else 3058 *id = x2apic_id << 24; 3059 } 3060 3061 /* 3062 * In x2APIC mode, the LDR is fixed and based on the id. And 3063 * if the ICR is _not_ split, ICR is internally a single 64-bit 3064 * register, but needs to be split to ICR+ICR2 in userspace for 3065 * backwards compatibility. 3066 */ 3067 if (set) 3068 *ldr = kvm_apic_calc_x2apic_ldr(x2apic_id); 3069 3070 if (!kvm_x86_ops.x2apic_icr_is_split) { 3071 if (set) { 3072 icr = __kvm_lapic_get_reg(s->regs, APIC_ICR) | 3073 (u64)__kvm_lapic_get_reg(s->regs, APIC_ICR2) << 32; 3074 __kvm_lapic_set_reg64(s->regs, APIC_ICR, icr); 3075 } else { 3076 icr = __kvm_lapic_get_reg64(s->regs, APIC_ICR); 3077 __kvm_lapic_set_reg(s->regs, APIC_ICR2, icr >> 32); 3078 } 3079 } 3080 } 3081 3082 return 0; 3083 } 3084 3085 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 3086 { 3087 memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s)); 3088 3089 /* 3090 * Get calculated timer current count for remaining timer period (if 3091 * any) and store it in the returned register set. 3092 */ 3093 __kvm_lapic_set_reg(s->regs, APIC_TMCCT, 3094 __apic_read(vcpu->arch.apic, APIC_TMCCT)); 3095 3096 return kvm_apic_state_fixup(vcpu, s, false); 3097 } 3098 3099 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 3100 { 3101 struct kvm_lapic *apic = vcpu->arch.apic; 3102 int r; 3103 3104 kvm_x86_call(apicv_pre_state_restore)(vcpu); 3105 3106 /* set SPIV separately to get count of SW disabled APICs right */ 3107 apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV))); 3108 3109 r = kvm_apic_state_fixup(vcpu, s, true); 3110 if (r) { 3111 kvm_recalculate_apic_map(vcpu->kvm); 3112 return r; 3113 } 3114 memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s)); 3115 3116 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 3117 kvm_recalculate_apic_map(vcpu->kvm); 3118 kvm_apic_set_version(vcpu); 3119 3120 apic_update_ppr(apic); 3121 cancel_apic_timer(apic); 3122 apic->lapic_timer.expired_tscdeadline = 0; 3123 apic_update_lvtt(apic); 3124 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 3125 update_divide_count(apic); 3126 __start_apic_timer(apic, APIC_TMCCT); 3127 kvm_lapic_set_reg(apic, APIC_TMCCT, 0); 3128 kvm_apic_update_apicv(vcpu); 3129 if (apic->apicv_active) { 3130 kvm_x86_call(apicv_post_state_restore)(vcpu); 3131 kvm_x86_call(hwapic_isr_update)(vcpu, apic_find_highest_isr(apic)); 3132 } 3133 kvm_make_request(KVM_REQ_EVENT, vcpu); 3134 if (ioapic_in_kernel(vcpu->kvm)) 3135 kvm_rtc_eoi_tracking_restore_one(vcpu); 3136 3137 vcpu->arch.apic_arb_prio = 0; 3138 3139 return 0; 3140 } 3141 3142 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu) 3143 { 3144 struct hrtimer *timer; 3145 3146 if (!lapic_in_kernel(vcpu) || 3147 kvm_can_post_timer_interrupt(vcpu)) 3148 return; 3149 3150 timer = &vcpu->arch.apic->lapic_timer.timer; 3151 if (hrtimer_cancel(timer)) 3152 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD); 3153 } 3154 3155 /* 3156 * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt 3157 * 3158 * Detect whether guest triggered PV EOI since the 3159 * last entry. If yes, set EOI on guests's behalf. 3160 * Clear PV EOI in guest memory in any case. 3161 */ 3162 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu, 3163 struct kvm_lapic *apic) 3164 { 3165 int vector; 3166 /* 3167 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host 3168 * and KVM_PV_EOI_ENABLED in guest memory as follows: 3169 * 3170 * KVM_APIC_PV_EOI_PENDING is unset: 3171 * -> host disabled PV EOI. 3172 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set: 3173 * -> host enabled PV EOI, guest did not execute EOI yet. 3174 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset: 3175 * -> host enabled PV EOI, guest executed EOI. 3176 */ 3177 BUG_ON(!pv_eoi_enabled(vcpu)); 3178 3179 if (pv_eoi_test_and_clr_pending(vcpu)) 3180 return; 3181 vector = apic_set_eoi(apic); 3182 trace_kvm_pv_eoi(apic, vector); 3183 } 3184 3185 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu) 3186 { 3187 u32 data; 3188 3189 if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention)) 3190 apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic); 3191 3192 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 3193 return; 3194 3195 if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 3196 sizeof(u32))) 3197 return; 3198 3199 apic_set_tpr(vcpu->arch.apic, data & 0xff); 3200 } 3201 3202 /* 3203 * apic_sync_pv_eoi_to_guest - called before vmentry 3204 * 3205 * Detect whether it's safe to enable PV EOI and 3206 * if yes do so. 3207 */ 3208 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu, 3209 struct kvm_lapic *apic) 3210 { 3211 if (!pv_eoi_enabled(vcpu) || 3212 /* IRR set or many bits in ISR: could be nested. */ 3213 apic->irr_pending || 3214 /* Cache not set: could be safe but we don't bother. */ 3215 apic->highest_isr_cache == -1 || 3216 /* Need EOI to update ioapic. */ 3217 kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) { 3218 /* 3219 * PV EOI was disabled by apic_sync_pv_eoi_from_guest 3220 * so we need not do anything here. 3221 */ 3222 return; 3223 } 3224 3225 pv_eoi_set_pending(apic->vcpu); 3226 } 3227 3228 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu) 3229 { 3230 u32 data, tpr; 3231 int max_irr, max_isr; 3232 struct kvm_lapic *apic = vcpu->arch.apic; 3233 3234 apic_sync_pv_eoi_to_guest(vcpu, apic); 3235 3236 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 3237 return; 3238 3239 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff; 3240 max_irr = apic_find_highest_irr(apic); 3241 if (max_irr < 0) 3242 max_irr = 0; 3243 max_isr = apic_find_highest_isr(apic); 3244 if (max_isr < 0) 3245 max_isr = 0; 3246 data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24); 3247 3248 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 3249 sizeof(u32)); 3250 } 3251 3252 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr) 3253 { 3254 if (vapic_addr) { 3255 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, 3256 &vcpu->arch.apic->vapic_cache, 3257 vapic_addr, sizeof(u32))) 3258 return -EINVAL; 3259 __set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 3260 } else { 3261 __clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 3262 } 3263 3264 vcpu->arch.apic->vapic_addr = vapic_addr; 3265 return 0; 3266 } 3267 3268 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data) 3269 { 3270 u32 low; 3271 3272 if (reg == APIC_ICR) { 3273 *data = kvm_x2apic_icr_read(apic); 3274 return 0; 3275 } 3276 3277 if (kvm_lapic_reg_read(apic, reg, 4, &low)) 3278 return 1; 3279 3280 *data = low; 3281 3282 return 0; 3283 } 3284 3285 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data) 3286 { 3287 /* 3288 * ICR is a 64-bit register in x2APIC mode (and Hyper-V PV vAPIC) and 3289 * can be written as such, all other registers remain accessible only 3290 * through 32-bit reads/writes. 3291 */ 3292 if (reg == APIC_ICR) 3293 return kvm_x2apic_icr_write(apic, data); 3294 3295 /* Bits 63:32 are reserved in all other registers. */ 3296 if (data >> 32) 3297 return 1; 3298 3299 return kvm_lapic_reg_write(apic, reg, (u32)data); 3300 } 3301 3302 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data) 3303 { 3304 struct kvm_lapic *apic = vcpu->arch.apic; 3305 u32 reg = (msr - APIC_BASE_MSR) << 4; 3306 3307 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 3308 return 1; 3309 3310 return kvm_lapic_msr_write(apic, reg, data); 3311 } 3312 3313 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data) 3314 { 3315 struct kvm_lapic *apic = vcpu->arch.apic; 3316 u32 reg = (msr - APIC_BASE_MSR) << 4; 3317 3318 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 3319 return 1; 3320 3321 return kvm_lapic_msr_read(apic, reg, data); 3322 } 3323 3324 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data) 3325 { 3326 if (!lapic_in_kernel(vcpu)) 3327 return 1; 3328 3329 return kvm_lapic_msr_write(vcpu->arch.apic, reg, data); 3330 } 3331 3332 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data) 3333 { 3334 if (!lapic_in_kernel(vcpu)) 3335 return 1; 3336 3337 return kvm_lapic_msr_read(vcpu->arch.apic, reg, data); 3338 } 3339 3340 int kvm_lapic_set_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len) 3341 { 3342 u64 addr = data & ~KVM_MSR_ENABLED; 3343 struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data; 3344 unsigned long new_len; 3345 int ret; 3346 3347 if (!IS_ALIGNED(addr, 4)) 3348 return 1; 3349 3350 if (data & KVM_MSR_ENABLED) { 3351 if (addr == ghc->gpa && len <= ghc->len) 3352 new_len = ghc->len; 3353 else 3354 new_len = len; 3355 3356 ret = kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len); 3357 if (ret) 3358 return ret; 3359 } 3360 3361 vcpu->arch.pv_eoi.msr_val = data; 3362 3363 return 0; 3364 } 3365 3366 int kvm_apic_accept_events(struct kvm_vcpu *vcpu) 3367 { 3368 struct kvm_lapic *apic = vcpu->arch.apic; 3369 u8 sipi_vector; 3370 int r; 3371 3372 if (!kvm_apic_has_pending_init_or_sipi(vcpu)) 3373 return 0; 3374 3375 if (is_guest_mode(vcpu)) { 3376 r = kvm_check_nested_events(vcpu); 3377 if (r < 0) 3378 return r == -EBUSY ? 0 : r; 3379 /* 3380 * Continue processing INIT/SIPI even if a nested VM-Exit 3381 * occurred, e.g. pending SIPIs should be dropped if INIT+SIPI 3382 * are blocked as a result of transitioning to VMX root mode. 3383 */ 3384 } 3385 3386 /* 3387 * INITs are blocked while CPU is in specific states (SMM, VMX root 3388 * mode, SVM with GIF=0), while SIPIs are dropped if the CPU isn't in 3389 * wait-for-SIPI (WFS). 3390 */ 3391 if (!kvm_apic_init_sipi_allowed(vcpu)) { 3392 WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED); 3393 clear_bit(KVM_APIC_SIPI, &apic->pending_events); 3394 return 0; 3395 } 3396 3397 if (test_and_clear_bit(KVM_APIC_INIT, &apic->pending_events)) { 3398 kvm_vcpu_reset(vcpu, true); 3399 if (kvm_vcpu_is_bsp(apic->vcpu)) 3400 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 3401 else 3402 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 3403 } 3404 if (test_and_clear_bit(KVM_APIC_SIPI, &apic->pending_events)) { 3405 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 3406 /* evaluate pending_events before reading the vector */ 3407 smp_rmb(); 3408 sipi_vector = apic->sipi_vector; 3409 kvm_x86_call(vcpu_deliver_sipi_vector)(vcpu, 3410 sipi_vector); 3411 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 3412 } 3413 } 3414 return 0; 3415 } 3416 3417 void kvm_lapic_exit(void) 3418 { 3419 static_key_deferred_flush(&apic_hw_disabled); 3420 WARN_ON(static_branch_unlikely(&apic_hw_disabled.key)); 3421 static_key_deferred_flush(&apic_sw_disabled); 3422 WARN_ON(static_branch_unlikely(&apic_sw_disabled.key)); 3423 } 3424