1 // SPDX-License-Identifier: GPL-2.0-only 2 3 /* 4 * Local APIC virtualization 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2007 Novell 8 * Copyright (C) 2007 Intel 9 * Copyright 2009 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Dor Laor <dor.laor@qumranet.com> 13 * Gregory Haskins <ghaskins@novell.com> 14 * Yaozu (Eddie) Dong <eddie.dong@intel.com> 15 * 16 * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation. 17 */ 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/kvm_host.h> 21 #include <linux/kvm.h> 22 #include <linux/mm.h> 23 #include <linux/highmem.h> 24 #include <linux/smp.h> 25 #include <linux/hrtimer.h> 26 #include <linux/io.h> 27 #include <linux/export.h> 28 #include <linux/math64.h> 29 #include <linux/slab.h> 30 #include <asm/processor.h> 31 #include <asm/mce.h> 32 #include <asm/msr.h> 33 #include <asm/page.h> 34 #include <asm/current.h> 35 #include <asm/apicdef.h> 36 #include <asm/delay.h> 37 #include <linux/atomic.h> 38 #include <linux/jump_label.h> 39 #include "kvm_cache_regs.h" 40 #include "irq.h" 41 #include "ioapic.h" 42 #include "trace.h" 43 #include "x86.h" 44 #include "cpuid.h" 45 #include "hyperv.h" 46 #include "smm.h" 47 48 #ifndef CONFIG_X86_64 49 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y)) 50 #else 51 #define mod_64(x, y) ((x) % (y)) 52 #endif 53 54 #define PRId64 "d" 55 #define PRIx64 "llx" 56 #define PRIu64 "u" 57 #define PRIo64 "o" 58 59 /* 14 is the version for Xeon and Pentium 8.4.8*/ 60 #define APIC_VERSION 0x14UL 61 #define LAPIC_MMIO_LENGTH (1 << 12) 62 /* followed define is not in apicdef.h */ 63 #define MAX_APIC_VECTOR 256 64 #define APIC_VECTORS_PER_REG 32 65 66 static bool lapic_timer_advance_dynamic __read_mostly; 67 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN 100 /* clock cycles */ 68 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX 10000 /* clock cycles */ 69 #define LAPIC_TIMER_ADVANCE_NS_INIT 1000 70 #define LAPIC_TIMER_ADVANCE_NS_MAX 5000 71 /* step-by-step approximation to mitigate fluctuation */ 72 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8 73 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data); 74 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data); 75 76 static inline void __kvm_lapic_set_reg(char *regs, int reg_off, u32 val) 77 { 78 *((u32 *) (regs + reg_off)) = val; 79 } 80 81 static inline void kvm_lapic_set_reg(struct kvm_lapic *apic, int reg_off, u32 val) 82 { 83 __kvm_lapic_set_reg(apic->regs, reg_off, val); 84 } 85 86 static __always_inline u64 __kvm_lapic_get_reg64(char *regs, int reg) 87 { 88 BUILD_BUG_ON(reg != APIC_ICR); 89 return *((u64 *) (regs + reg)); 90 } 91 92 static __always_inline u64 kvm_lapic_get_reg64(struct kvm_lapic *apic, int reg) 93 { 94 return __kvm_lapic_get_reg64(apic->regs, reg); 95 } 96 97 static __always_inline void __kvm_lapic_set_reg64(char *regs, int reg, u64 val) 98 { 99 BUILD_BUG_ON(reg != APIC_ICR); 100 *((u64 *) (regs + reg)) = val; 101 } 102 103 static __always_inline void kvm_lapic_set_reg64(struct kvm_lapic *apic, 104 int reg, u64 val) 105 { 106 __kvm_lapic_set_reg64(apic->regs, reg, val); 107 } 108 109 static inline int apic_test_vector(int vec, void *bitmap) 110 { 111 return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 112 } 113 114 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector) 115 { 116 struct kvm_lapic *apic = vcpu->arch.apic; 117 118 return apic_test_vector(vector, apic->regs + APIC_ISR) || 119 apic_test_vector(vector, apic->regs + APIC_IRR); 120 } 121 122 static inline int __apic_test_and_set_vector(int vec, void *bitmap) 123 { 124 return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 125 } 126 127 static inline int __apic_test_and_clear_vector(int vec, void *bitmap) 128 { 129 return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 130 } 131 132 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_hw_disabled, HZ); 133 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_sw_disabled, HZ); 134 135 static inline int apic_enabled(struct kvm_lapic *apic) 136 { 137 return kvm_apic_sw_enabled(apic) && kvm_apic_hw_enabled(apic); 138 } 139 140 #define LVT_MASK \ 141 (APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK) 142 143 #define LINT_MASK \ 144 (LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \ 145 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER) 146 147 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic) 148 { 149 return apic->vcpu->vcpu_id; 150 } 151 152 static bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu) 153 { 154 return pi_inject_timer && kvm_vcpu_apicv_active(vcpu) && 155 (kvm_mwait_in_guest(vcpu->kvm) || kvm_hlt_in_guest(vcpu->kvm)); 156 } 157 158 bool kvm_can_use_hv_timer(struct kvm_vcpu *vcpu) 159 { 160 return kvm_x86_ops.set_hv_timer 161 && !(kvm_mwait_in_guest(vcpu->kvm) || 162 kvm_can_post_timer_interrupt(vcpu)); 163 } 164 165 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu) 166 { 167 return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE; 168 } 169 170 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id) 171 { 172 return ((id >> 4) << 16) | (1 << (id & 0xf)); 173 } 174 175 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map, 176 u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) { 177 switch (map->logical_mode) { 178 case KVM_APIC_MODE_SW_DISABLED: 179 /* Arbitrarily use the flat map so that @cluster isn't NULL. */ 180 *cluster = map->xapic_flat_map; 181 *mask = 0; 182 return true; 183 case KVM_APIC_MODE_X2APIC: { 184 u32 offset = (dest_id >> 16) * 16; 185 u32 max_apic_id = map->max_apic_id; 186 187 if (offset <= max_apic_id) { 188 u8 cluster_size = min(max_apic_id - offset + 1, 16U); 189 190 offset = array_index_nospec(offset, map->max_apic_id + 1); 191 *cluster = &map->phys_map[offset]; 192 *mask = dest_id & (0xffff >> (16 - cluster_size)); 193 } else { 194 *mask = 0; 195 } 196 197 return true; 198 } 199 case KVM_APIC_MODE_XAPIC_FLAT: 200 *cluster = map->xapic_flat_map; 201 *mask = dest_id & 0xff; 202 return true; 203 case KVM_APIC_MODE_XAPIC_CLUSTER: 204 *cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf]; 205 *mask = dest_id & 0xf; 206 return true; 207 case KVM_APIC_MODE_MAP_DISABLED: 208 return false; 209 default: 210 WARN_ON_ONCE(1); 211 return false; 212 } 213 } 214 215 static void kvm_apic_map_free(struct rcu_head *rcu) 216 { 217 struct kvm_apic_map *map = container_of(rcu, struct kvm_apic_map, rcu); 218 219 kvfree(map); 220 } 221 222 static int kvm_recalculate_phys_map(struct kvm_apic_map *new, 223 struct kvm_vcpu *vcpu, 224 bool *xapic_id_mismatch) 225 { 226 struct kvm_lapic *apic = vcpu->arch.apic; 227 u32 x2apic_id = kvm_x2apic_id(apic); 228 u32 xapic_id = kvm_xapic_id(apic); 229 u32 physical_id; 230 231 /* 232 * Deliberately truncate the vCPU ID when detecting a mismatched APIC 233 * ID to avoid false positives if the vCPU ID, i.e. x2APIC ID, is a 234 * 32-bit value. Any unwanted aliasing due to truncation results will 235 * be detected below. 236 */ 237 if (!apic_x2apic_mode(apic) && xapic_id != (u8)vcpu->vcpu_id) 238 *xapic_id_mismatch = true; 239 240 /* 241 * Apply KVM's hotplug hack if userspace has enable 32-bit APIC IDs. 242 * Allow sending events to vCPUs by their x2APIC ID even if the target 243 * vCPU is in legacy xAPIC mode, and silently ignore aliased xAPIC IDs 244 * (the x2APIC ID is truncated to 8 bits, causing IDs > 0xff to wrap 245 * and collide). 246 * 247 * Honor the architectural (and KVM's non-optimized) behavior if 248 * userspace has not enabled 32-bit x2APIC IDs. Each APIC is supposed 249 * to process messages independently. If multiple vCPUs have the same 250 * effective APIC ID, e.g. due to the x2APIC wrap or because the guest 251 * manually modified its xAPIC IDs, events targeting that ID are 252 * supposed to be recognized by all vCPUs with said ID. 253 */ 254 if (vcpu->kvm->arch.x2apic_format) { 255 /* See also kvm_apic_match_physical_addr(). */ 256 if ((apic_x2apic_mode(apic) || x2apic_id > 0xff) && 257 x2apic_id <= new->max_apic_id) 258 new->phys_map[x2apic_id] = apic; 259 260 if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id]) 261 new->phys_map[xapic_id] = apic; 262 } else { 263 /* 264 * Disable the optimized map if the physical APIC ID is already 265 * mapped, i.e. is aliased to multiple vCPUs. The optimized 266 * map requires a strict 1:1 mapping between IDs and vCPUs. 267 */ 268 if (apic_x2apic_mode(apic)) 269 physical_id = x2apic_id; 270 else 271 physical_id = xapic_id; 272 273 if (new->phys_map[physical_id]) 274 return -EINVAL; 275 276 new->phys_map[physical_id] = apic; 277 } 278 279 return 0; 280 } 281 282 static void kvm_recalculate_logical_map(struct kvm_apic_map *new, 283 struct kvm_vcpu *vcpu) 284 { 285 struct kvm_lapic *apic = vcpu->arch.apic; 286 enum kvm_apic_logical_mode logical_mode; 287 struct kvm_lapic **cluster; 288 u16 mask; 289 u32 ldr; 290 291 if (new->logical_mode == KVM_APIC_MODE_MAP_DISABLED) 292 return; 293 294 if (!kvm_apic_sw_enabled(apic)) 295 return; 296 297 ldr = kvm_lapic_get_reg(apic, APIC_LDR); 298 if (!ldr) 299 return; 300 301 if (apic_x2apic_mode(apic)) { 302 logical_mode = KVM_APIC_MODE_X2APIC; 303 } else { 304 ldr = GET_APIC_LOGICAL_ID(ldr); 305 if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT) 306 logical_mode = KVM_APIC_MODE_XAPIC_FLAT; 307 else 308 logical_mode = KVM_APIC_MODE_XAPIC_CLUSTER; 309 } 310 311 /* 312 * To optimize logical mode delivery, all software-enabled APICs must 313 * be configured for the same mode. 314 */ 315 if (new->logical_mode == KVM_APIC_MODE_SW_DISABLED) { 316 new->logical_mode = logical_mode; 317 } else if (new->logical_mode != logical_mode) { 318 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED; 319 return; 320 } 321 322 /* 323 * In x2APIC mode, the LDR is read-only and derived directly from the 324 * x2APIC ID, thus is guaranteed to be addressable. KVM reuses 325 * kvm_apic_map.phys_map to optimize logical mode x2APIC interrupts by 326 * reversing the LDR calculation to get cluster of APICs, i.e. no 327 * additional work is required. 328 */ 329 if (apic_x2apic_mode(apic)) { 330 WARN_ON_ONCE(ldr != kvm_apic_calc_x2apic_ldr(kvm_x2apic_id(apic))); 331 return; 332 } 333 334 if (WARN_ON_ONCE(!kvm_apic_map_get_logical_dest(new, ldr, 335 &cluster, &mask))) { 336 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED; 337 return; 338 } 339 340 if (!mask) 341 return; 342 343 ldr = ffs(mask) - 1; 344 if (!is_power_of_2(mask) || cluster[ldr]) 345 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED; 346 else 347 cluster[ldr] = apic; 348 } 349 350 /* 351 * CLEAN -> DIRTY and UPDATE_IN_PROGRESS -> DIRTY changes happen without a lock. 352 * 353 * DIRTY -> UPDATE_IN_PROGRESS and UPDATE_IN_PROGRESS -> CLEAN happen with 354 * apic_map_lock_held. 355 */ 356 enum { 357 CLEAN, 358 UPDATE_IN_PROGRESS, 359 DIRTY 360 }; 361 362 void kvm_recalculate_apic_map(struct kvm *kvm) 363 { 364 struct kvm_apic_map *new, *old = NULL; 365 struct kvm_vcpu *vcpu; 366 unsigned long i; 367 u32 max_id = 255; /* enough space for any xAPIC ID */ 368 bool xapic_id_mismatch = false; 369 370 /* Read kvm->arch.apic_map_dirty before kvm->arch.apic_map. */ 371 if (atomic_read_acquire(&kvm->arch.apic_map_dirty) == CLEAN) 372 return; 373 374 WARN_ONCE(!irqchip_in_kernel(kvm), 375 "Dirty APIC map without an in-kernel local APIC"); 376 377 mutex_lock(&kvm->arch.apic_map_lock); 378 /* 379 * Read kvm->arch.apic_map_dirty before kvm->arch.apic_map 380 * (if clean) or the APIC registers (if dirty). 381 */ 382 if (atomic_cmpxchg_acquire(&kvm->arch.apic_map_dirty, 383 DIRTY, UPDATE_IN_PROGRESS) == CLEAN) { 384 /* Someone else has updated the map. */ 385 mutex_unlock(&kvm->arch.apic_map_lock); 386 return; 387 } 388 389 kvm_for_each_vcpu(i, vcpu, kvm) 390 if (kvm_apic_present(vcpu)) 391 max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic)); 392 393 new = kvzalloc(sizeof(struct kvm_apic_map) + 394 sizeof(struct kvm_lapic *) * ((u64)max_id + 1), 395 GFP_KERNEL_ACCOUNT); 396 397 if (!new) 398 goto out; 399 400 new->max_apic_id = max_id; 401 new->logical_mode = KVM_APIC_MODE_SW_DISABLED; 402 403 kvm_for_each_vcpu(i, vcpu, kvm) { 404 if (!kvm_apic_present(vcpu)) 405 continue; 406 407 if (kvm_recalculate_phys_map(new, vcpu, &xapic_id_mismatch)) { 408 kvfree(new); 409 new = NULL; 410 goto out; 411 } 412 413 kvm_recalculate_logical_map(new, vcpu); 414 } 415 out: 416 /* 417 * The optimized map is effectively KVM's internal version of APICv, 418 * and all unwanted aliasing that results in disabling the optimized 419 * map also applies to APICv. 420 */ 421 if (!new) 422 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED); 423 else 424 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED); 425 426 if (!new || new->logical_mode == KVM_APIC_MODE_MAP_DISABLED) 427 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED); 428 else 429 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED); 430 431 if (xapic_id_mismatch) 432 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED); 433 else 434 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED); 435 436 old = rcu_dereference_protected(kvm->arch.apic_map, 437 lockdep_is_held(&kvm->arch.apic_map_lock)); 438 rcu_assign_pointer(kvm->arch.apic_map, new); 439 /* 440 * Write kvm->arch.apic_map before clearing apic->apic_map_dirty. 441 * If another update has come in, leave it DIRTY. 442 */ 443 atomic_cmpxchg_release(&kvm->arch.apic_map_dirty, 444 UPDATE_IN_PROGRESS, CLEAN); 445 mutex_unlock(&kvm->arch.apic_map_lock); 446 447 if (old) 448 call_rcu(&old->rcu, kvm_apic_map_free); 449 450 kvm_make_scan_ioapic_request(kvm); 451 } 452 453 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val) 454 { 455 bool enabled = val & APIC_SPIV_APIC_ENABLED; 456 457 kvm_lapic_set_reg(apic, APIC_SPIV, val); 458 459 if (enabled != apic->sw_enabled) { 460 apic->sw_enabled = enabled; 461 if (enabled) 462 static_branch_slow_dec_deferred(&apic_sw_disabled); 463 else 464 static_branch_inc(&apic_sw_disabled.key); 465 466 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 467 } 468 469 /* Check if there are APF page ready requests pending */ 470 if (enabled) 471 kvm_make_request(KVM_REQ_APF_READY, apic->vcpu); 472 } 473 474 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id) 475 { 476 kvm_lapic_set_reg(apic, APIC_ID, id << 24); 477 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 478 } 479 480 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id) 481 { 482 kvm_lapic_set_reg(apic, APIC_LDR, id); 483 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 484 } 485 486 static inline void kvm_apic_set_dfr(struct kvm_lapic *apic, u32 val) 487 { 488 kvm_lapic_set_reg(apic, APIC_DFR, val); 489 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 490 } 491 492 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id) 493 { 494 u32 ldr = kvm_apic_calc_x2apic_ldr(id); 495 496 WARN_ON_ONCE(id != apic->vcpu->vcpu_id); 497 498 kvm_lapic_set_reg(apic, APIC_ID, id); 499 kvm_lapic_set_reg(apic, APIC_LDR, ldr); 500 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 501 } 502 503 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type) 504 { 505 return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED); 506 } 507 508 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic) 509 { 510 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT; 511 } 512 513 static inline int apic_lvtt_period(struct kvm_lapic *apic) 514 { 515 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC; 516 } 517 518 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic) 519 { 520 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE; 521 } 522 523 static inline int apic_lvt_nmi_mode(u32 lvt_val) 524 { 525 return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI; 526 } 527 528 static inline bool kvm_lapic_lvt_supported(struct kvm_lapic *apic, int lvt_index) 529 { 530 return apic->nr_lvt_entries > lvt_index; 531 } 532 533 static inline int kvm_apic_calc_nr_lvt_entries(struct kvm_vcpu *vcpu) 534 { 535 return KVM_APIC_MAX_NR_LVT_ENTRIES - !(vcpu->arch.mcg_cap & MCG_CMCI_P); 536 } 537 538 void kvm_apic_set_version(struct kvm_vcpu *vcpu) 539 { 540 struct kvm_lapic *apic = vcpu->arch.apic; 541 u32 v = 0; 542 543 if (!lapic_in_kernel(vcpu)) 544 return; 545 546 v = APIC_VERSION | ((apic->nr_lvt_entries - 1) << 16); 547 548 /* 549 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation) 550 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with 551 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC 552 * version first and level-triggered interrupts never get EOIed in 553 * IOAPIC. 554 */ 555 if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) && 556 !ioapic_in_kernel(vcpu->kvm)) 557 v |= APIC_LVR_DIRECTED_EOI; 558 kvm_lapic_set_reg(apic, APIC_LVR, v); 559 } 560 561 void kvm_apic_after_set_mcg_cap(struct kvm_vcpu *vcpu) 562 { 563 int nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu); 564 struct kvm_lapic *apic = vcpu->arch.apic; 565 int i; 566 567 if (!lapic_in_kernel(vcpu) || nr_lvt_entries == apic->nr_lvt_entries) 568 return; 569 570 /* Initialize/mask any "new" LVT entries. */ 571 for (i = apic->nr_lvt_entries; i < nr_lvt_entries; i++) 572 kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED); 573 574 apic->nr_lvt_entries = nr_lvt_entries; 575 576 /* The number of LVT entries is reflected in the version register. */ 577 kvm_apic_set_version(vcpu); 578 } 579 580 static const unsigned int apic_lvt_mask[KVM_APIC_MAX_NR_LVT_ENTRIES] = { 581 [LVT_TIMER] = LVT_MASK, /* timer mode mask added at runtime */ 582 [LVT_THERMAL_MONITOR] = LVT_MASK | APIC_MODE_MASK, 583 [LVT_PERFORMANCE_COUNTER] = LVT_MASK | APIC_MODE_MASK, 584 [LVT_LINT0] = LINT_MASK, 585 [LVT_LINT1] = LINT_MASK, 586 [LVT_ERROR] = LVT_MASK, 587 [LVT_CMCI] = LVT_MASK | APIC_MODE_MASK 588 }; 589 590 static int find_highest_vector(void *bitmap) 591 { 592 int vec; 593 u32 *reg; 594 595 for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG; 596 vec >= 0; vec -= APIC_VECTORS_PER_REG) { 597 reg = bitmap + REG_POS(vec); 598 if (*reg) 599 return __fls(*reg) + vec; 600 } 601 602 return -1; 603 } 604 605 static u8 count_vectors(void *bitmap) 606 { 607 int vec; 608 u32 *reg; 609 u8 count = 0; 610 611 for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) { 612 reg = bitmap + REG_POS(vec); 613 count += hweight32(*reg); 614 } 615 616 return count; 617 } 618 619 bool __kvm_apic_update_irr(u32 *pir, void *regs, int *max_irr) 620 { 621 u32 i, vec; 622 u32 pir_val, irr_val, prev_irr_val; 623 int max_updated_irr; 624 625 max_updated_irr = -1; 626 *max_irr = -1; 627 628 for (i = vec = 0; i <= 7; i++, vec += 32) { 629 pir_val = READ_ONCE(pir[i]); 630 irr_val = *((u32 *)(regs + APIC_IRR + i * 0x10)); 631 if (pir_val) { 632 prev_irr_val = irr_val; 633 irr_val |= xchg(&pir[i], 0); 634 *((u32 *)(regs + APIC_IRR + i * 0x10)) = irr_val; 635 if (prev_irr_val != irr_val) { 636 max_updated_irr = 637 __fls(irr_val ^ prev_irr_val) + vec; 638 } 639 } 640 if (irr_val) 641 *max_irr = __fls(irr_val) + vec; 642 } 643 644 return ((max_updated_irr != -1) && 645 (max_updated_irr == *max_irr)); 646 } 647 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr); 648 649 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir, int *max_irr) 650 { 651 struct kvm_lapic *apic = vcpu->arch.apic; 652 653 return __kvm_apic_update_irr(pir, apic->regs, max_irr); 654 } 655 EXPORT_SYMBOL_GPL(kvm_apic_update_irr); 656 657 static inline int apic_search_irr(struct kvm_lapic *apic) 658 { 659 return find_highest_vector(apic->regs + APIC_IRR); 660 } 661 662 static inline int apic_find_highest_irr(struct kvm_lapic *apic) 663 { 664 int result; 665 666 /* 667 * Note that irr_pending is just a hint. It will be always 668 * true with virtual interrupt delivery enabled. 669 */ 670 if (!apic->irr_pending) 671 return -1; 672 673 result = apic_search_irr(apic); 674 ASSERT(result == -1 || result >= 16); 675 676 return result; 677 } 678 679 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic) 680 { 681 if (unlikely(apic->apicv_active)) { 682 /* need to update RVI */ 683 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR); 684 static_call_cond(kvm_x86_hwapic_irr_update)(apic->vcpu, 685 apic_find_highest_irr(apic)); 686 } else { 687 apic->irr_pending = false; 688 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR); 689 if (apic_search_irr(apic) != -1) 690 apic->irr_pending = true; 691 } 692 } 693 694 void kvm_apic_clear_irr(struct kvm_vcpu *vcpu, int vec) 695 { 696 apic_clear_irr(vec, vcpu->arch.apic); 697 } 698 EXPORT_SYMBOL_GPL(kvm_apic_clear_irr); 699 700 static inline void apic_set_isr(int vec, struct kvm_lapic *apic) 701 { 702 if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR)) 703 return; 704 705 /* 706 * With APIC virtualization enabled, all caching is disabled 707 * because the processor can modify ISR under the hood. Instead 708 * just set SVI. 709 */ 710 if (unlikely(apic->apicv_active)) 711 static_call_cond(kvm_x86_hwapic_isr_update)(vec); 712 else { 713 ++apic->isr_count; 714 BUG_ON(apic->isr_count > MAX_APIC_VECTOR); 715 /* 716 * ISR (in service register) bit is set when injecting an interrupt. 717 * The highest vector is injected. Thus the latest bit set matches 718 * the highest bit in ISR. 719 */ 720 apic->highest_isr_cache = vec; 721 } 722 } 723 724 static inline int apic_find_highest_isr(struct kvm_lapic *apic) 725 { 726 int result; 727 728 /* 729 * Note that isr_count is always 1, and highest_isr_cache 730 * is always -1, with APIC virtualization enabled. 731 */ 732 if (!apic->isr_count) 733 return -1; 734 if (likely(apic->highest_isr_cache != -1)) 735 return apic->highest_isr_cache; 736 737 result = find_highest_vector(apic->regs + APIC_ISR); 738 ASSERT(result == -1 || result >= 16); 739 740 return result; 741 } 742 743 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic) 744 { 745 if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR)) 746 return; 747 748 /* 749 * We do get here for APIC virtualization enabled if the guest 750 * uses the Hyper-V APIC enlightenment. In this case we may need 751 * to trigger a new interrupt delivery by writing the SVI field; 752 * on the other hand isr_count and highest_isr_cache are unused 753 * and must be left alone. 754 */ 755 if (unlikely(apic->apicv_active)) 756 static_call_cond(kvm_x86_hwapic_isr_update)(apic_find_highest_isr(apic)); 757 else { 758 --apic->isr_count; 759 BUG_ON(apic->isr_count < 0); 760 apic->highest_isr_cache = -1; 761 } 762 } 763 764 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu) 765 { 766 /* This may race with setting of irr in __apic_accept_irq() and 767 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq 768 * will cause vmexit immediately and the value will be recalculated 769 * on the next vmentry. 770 */ 771 return apic_find_highest_irr(vcpu->arch.apic); 772 } 773 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr); 774 775 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 776 int vector, int level, int trig_mode, 777 struct dest_map *dest_map); 778 779 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq, 780 struct dest_map *dest_map) 781 { 782 struct kvm_lapic *apic = vcpu->arch.apic; 783 784 return __apic_accept_irq(apic, irq->delivery_mode, irq->vector, 785 irq->level, irq->trig_mode, dest_map); 786 } 787 788 static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map, 789 struct kvm_lapic_irq *irq, u32 min) 790 { 791 int i, count = 0; 792 struct kvm_vcpu *vcpu; 793 794 if (min > map->max_apic_id) 795 return 0; 796 797 for_each_set_bit(i, ipi_bitmap, 798 min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) { 799 if (map->phys_map[min + i]) { 800 vcpu = map->phys_map[min + i]->vcpu; 801 count += kvm_apic_set_irq(vcpu, irq, NULL); 802 } 803 } 804 805 return count; 806 } 807 808 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 809 unsigned long ipi_bitmap_high, u32 min, 810 unsigned long icr, int op_64_bit) 811 { 812 struct kvm_apic_map *map; 813 struct kvm_lapic_irq irq = {0}; 814 int cluster_size = op_64_bit ? 64 : 32; 815 int count; 816 817 if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK)) 818 return -KVM_EINVAL; 819 820 irq.vector = icr & APIC_VECTOR_MASK; 821 irq.delivery_mode = icr & APIC_MODE_MASK; 822 irq.level = (icr & APIC_INT_ASSERT) != 0; 823 irq.trig_mode = icr & APIC_INT_LEVELTRIG; 824 825 rcu_read_lock(); 826 map = rcu_dereference(kvm->arch.apic_map); 827 828 count = -EOPNOTSUPP; 829 if (likely(map)) { 830 count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min); 831 min += cluster_size; 832 count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min); 833 } 834 835 rcu_read_unlock(); 836 return count; 837 } 838 839 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val) 840 { 841 842 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val, 843 sizeof(val)); 844 } 845 846 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val) 847 { 848 849 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val, 850 sizeof(*val)); 851 } 852 853 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu) 854 { 855 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED; 856 } 857 858 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu) 859 { 860 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0) 861 return; 862 863 __set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 864 } 865 866 static bool pv_eoi_test_and_clr_pending(struct kvm_vcpu *vcpu) 867 { 868 u8 val; 869 870 if (pv_eoi_get_user(vcpu, &val) < 0) 871 return false; 872 873 val &= KVM_PV_EOI_ENABLED; 874 875 if (val && pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0) 876 return false; 877 878 /* 879 * Clear pending bit in any case: it will be set again on vmentry. 880 * While this might not be ideal from performance point of view, 881 * this makes sure pv eoi is only enabled when we know it's safe. 882 */ 883 __clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 884 885 return val; 886 } 887 888 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr) 889 { 890 int highest_irr; 891 if (kvm_x86_ops.sync_pir_to_irr) 892 highest_irr = static_call(kvm_x86_sync_pir_to_irr)(apic->vcpu); 893 else 894 highest_irr = apic_find_highest_irr(apic); 895 if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr) 896 return -1; 897 return highest_irr; 898 } 899 900 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr) 901 { 902 u32 tpr, isrv, ppr, old_ppr; 903 int isr; 904 905 old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI); 906 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI); 907 isr = apic_find_highest_isr(apic); 908 isrv = (isr != -1) ? isr : 0; 909 910 if ((tpr & 0xf0) >= (isrv & 0xf0)) 911 ppr = tpr & 0xff; 912 else 913 ppr = isrv & 0xf0; 914 915 *new_ppr = ppr; 916 if (old_ppr != ppr) 917 kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr); 918 919 return ppr < old_ppr; 920 } 921 922 static void apic_update_ppr(struct kvm_lapic *apic) 923 { 924 u32 ppr; 925 926 if (__apic_update_ppr(apic, &ppr) && 927 apic_has_interrupt_for_ppr(apic, ppr) != -1) 928 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 929 } 930 931 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu) 932 { 933 apic_update_ppr(vcpu->arch.apic); 934 } 935 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr); 936 937 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr) 938 { 939 kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr); 940 apic_update_ppr(apic); 941 } 942 943 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda) 944 { 945 return mda == (apic_x2apic_mode(apic) ? 946 X2APIC_BROADCAST : APIC_BROADCAST); 947 } 948 949 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda) 950 { 951 if (kvm_apic_broadcast(apic, mda)) 952 return true; 953 954 /* 955 * Hotplug hack: Accept interrupts for vCPUs in xAPIC mode as if they 956 * were in x2APIC mode if the target APIC ID can't be encoded as an 957 * xAPIC ID. This allows unique addressing of hotplugged vCPUs (which 958 * start in xAPIC mode) with an APIC ID that is unaddressable in xAPIC 959 * mode. Match the x2APIC ID if and only if the target APIC ID can't 960 * be encoded in xAPIC to avoid spurious matches against a vCPU that 961 * changed its (addressable) xAPIC ID (which is writable). 962 */ 963 if (apic_x2apic_mode(apic) || mda > 0xff) 964 return mda == kvm_x2apic_id(apic); 965 966 return mda == kvm_xapic_id(apic); 967 } 968 969 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda) 970 { 971 u32 logical_id; 972 973 if (kvm_apic_broadcast(apic, mda)) 974 return true; 975 976 logical_id = kvm_lapic_get_reg(apic, APIC_LDR); 977 978 if (apic_x2apic_mode(apic)) 979 return ((logical_id >> 16) == (mda >> 16)) 980 && (logical_id & mda & 0xffff) != 0; 981 982 logical_id = GET_APIC_LOGICAL_ID(logical_id); 983 984 switch (kvm_lapic_get_reg(apic, APIC_DFR)) { 985 case APIC_DFR_FLAT: 986 return (logical_id & mda) != 0; 987 case APIC_DFR_CLUSTER: 988 return ((logical_id >> 4) == (mda >> 4)) 989 && (logical_id & mda & 0xf) != 0; 990 default: 991 return false; 992 } 993 } 994 995 /* The KVM local APIC implementation has two quirks: 996 * 997 * - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs 998 * in xAPIC mode if the "destination & 0xff" matches its xAPIC ID. 999 * KVM doesn't do that aliasing. 1000 * 1001 * - in-kernel IOAPIC messages have to be delivered directly to 1002 * x2APIC, because the kernel does not support interrupt remapping. 1003 * In order to support broadcast without interrupt remapping, x2APIC 1004 * rewrites the destination of non-IPI messages from APIC_BROADCAST 1005 * to X2APIC_BROADCAST. 1006 * 1007 * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API. This is 1008 * important when userspace wants to use x2APIC-format MSIs, because 1009 * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7". 1010 */ 1011 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id, 1012 struct kvm_lapic *source, struct kvm_lapic *target) 1013 { 1014 bool ipi = source != NULL; 1015 1016 if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled && 1017 !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target)) 1018 return X2APIC_BROADCAST; 1019 1020 return dest_id; 1021 } 1022 1023 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source, 1024 int shorthand, unsigned int dest, int dest_mode) 1025 { 1026 struct kvm_lapic *target = vcpu->arch.apic; 1027 u32 mda = kvm_apic_mda(vcpu, dest, source, target); 1028 1029 ASSERT(target); 1030 switch (shorthand) { 1031 case APIC_DEST_NOSHORT: 1032 if (dest_mode == APIC_DEST_PHYSICAL) 1033 return kvm_apic_match_physical_addr(target, mda); 1034 else 1035 return kvm_apic_match_logical_addr(target, mda); 1036 case APIC_DEST_SELF: 1037 return target == source; 1038 case APIC_DEST_ALLINC: 1039 return true; 1040 case APIC_DEST_ALLBUT: 1041 return target != source; 1042 default: 1043 return false; 1044 } 1045 } 1046 EXPORT_SYMBOL_GPL(kvm_apic_match_dest); 1047 1048 int kvm_vector_to_index(u32 vector, u32 dest_vcpus, 1049 const unsigned long *bitmap, u32 bitmap_size) 1050 { 1051 u32 mod; 1052 int i, idx = -1; 1053 1054 mod = vector % dest_vcpus; 1055 1056 for (i = 0; i <= mod; i++) { 1057 idx = find_next_bit(bitmap, bitmap_size, idx + 1); 1058 BUG_ON(idx == bitmap_size); 1059 } 1060 1061 return idx; 1062 } 1063 1064 static void kvm_apic_disabled_lapic_found(struct kvm *kvm) 1065 { 1066 if (!kvm->arch.disabled_lapic_found) { 1067 kvm->arch.disabled_lapic_found = true; 1068 pr_info("Disabled LAPIC found during irq injection\n"); 1069 } 1070 } 1071 1072 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src, 1073 struct kvm_lapic_irq *irq, struct kvm_apic_map *map) 1074 { 1075 if (kvm->arch.x2apic_broadcast_quirk_disabled) { 1076 if ((irq->dest_id == APIC_BROADCAST && 1077 map->logical_mode != KVM_APIC_MODE_X2APIC)) 1078 return true; 1079 if (irq->dest_id == X2APIC_BROADCAST) 1080 return true; 1081 } else { 1082 bool x2apic_ipi = src && *src && apic_x2apic_mode(*src); 1083 if (irq->dest_id == (x2apic_ipi ? 1084 X2APIC_BROADCAST : APIC_BROADCAST)) 1085 return true; 1086 } 1087 1088 return false; 1089 } 1090 1091 /* Return true if the interrupt can be handled by using *bitmap as index mask 1092 * for valid destinations in *dst array. 1093 * Return false if kvm_apic_map_get_dest_lapic did nothing useful. 1094 * Note: we may have zero kvm_lapic destinations when we return true, which 1095 * means that the interrupt should be dropped. In this case, *bitmap would be 1096 * zero and *dst undefined. 1097 */ 1098 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm, 1099 struct kvm_lapic **src, struct kvm_lapic_irq *irq, 1100 struct kvm_apic_map *map, struct kvm_lapic ***dst, 1101 unsigned long *bitmap) 1102 { 1103 int i, lowest; 1104 1105 if (irq->shorthand == APIC_DEST_SELF && src) { 1106 *dst = src; 1107 *bitmap = 1; 1108 return true; 1109 } else if (irq->shorthand) 1110 return false; 1111 1112 if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map)) 1113 return false; 1114 1115 if (irq->dest_mode == APIC_DEST_PHYSICAL) { 1116 if (irq->dest_id > map->max_apic_id) { 1117 *bitmap = 0; 1118 } else { 1119 u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1); 1120 *dst = &map->phys_map[dest_id]; 1121 *bitmap = 1; 1122 } 1123 return true; 1124 } 1125 1126 *bitmap = 0; 1127 if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst, 1128 (u16 *)bitmap)) 1129 return false; 1130 1131 if (!kvm_lowest_prio_delivery(irq)) 1132 return true; 1133 1134 if (!kvm_vector_hashing_enabled()) { 1135 lowest = -1; 1136 for_each_set_bit(i, bitmap, 16) { 1137 if (!(*dst)[i]) 1138 continue; 1139 if (lowest < 0) 1140 lowest = i; 1141 else if (kvm_apic_compare_prio((*dst)[i]->vcpu, 1142 (*dst)[lowest]->vcpu) < 0) 1143 lowest = i; 1144 } 1145 } else { 1146 if (!*bitmap) 1147 return true; 1148 1149 lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap), 1150 bitmap, 16); 1151 1152 if (!(*dst)[lowest]) { 1153 kvm_apic_disabled_lapic_found(kvm); 1154 *bitmap = 0; 1155 return true; 1156 } 1157 } 1158 1159 *bitmap = (lowest >= 0) ? 1 << lowest : 0; 1160 1161 return true; 1162 } 1163 1164 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src, 1165 struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map) 1166 { 1167 struct kvm_apic_map *map; 1168 unsigned long bitmap; 1169 struct kvm_lapic **dst = NULL; 1170 int i; 1171 bool ret; 1172 1173 *r = -1; 1174 1175 if (irq->shorthand == APIC_DEST_SELF) { 1176 if (KVM_BUG_ON(!src, kvm)) { 1177 *r = 0; 1178 return true; 1179 } 1180 *r = kvm_apic_set_irq(src->vcpu, irq, dest_map); 1181 return true; 1182 } 1183 1184 rcu_read_lock(); 1185 map = rcu_dereference(kvm->arch.apic_map); 1186 1187 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap); 1188 if (ret) { 1189 *r = 0; 1190 for_each_set_bit(i, &bitmap, 16) { 1191 if (!dst[i]) 1192 continue; 1193 *r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map); 1194 } 1195 } 1196 1197 rcu_read_unlock(); 1198 return ret; 1199 } 1200 1201 /* 1202 * This routine tries to handle interrupts in posted mode, here is how 1203 * it deals with different cases: 1204 * - For single-destination interrupts, handle it in posted mode 1205 * - Else if vector hashing is enabled and it is a lowest-priority 1206 * interrupt, handle it in posted mode and use the following mechanism 1207 * to find the destination vCPU. 1208 * 1. For lowest-priority interrupts, store all the possible 1209 * destination vCPUs in an array. 1210 * 2. Use "guest vector % max number of destination vCPUs" to find 1211 * the right destination vCPU in the array for the lowest-priority 1212 * interrupt. 1213 * - Otherwise, use remapped mode to inject the interrupt. 1214 */ 1215 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq, 1216 struct kvm_vcpu **dest_vcpu) 1217 { 1218 struct kvm_apic_map *map; 1219 unsigned long bitmap; 1220 struct kvm_lapic **dst = NULL; 1221 bool ret = false; 1222 1223 if (irq->shorthand) 1224 return false; 1225 1226 rcu_read_lock(); 1227 map = rcu_dereference(kvm->arch.apic_map); 1228 1229 if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) && 1230 hweight16(bitmap) == 1) { 1231 unsigned long i = find_first_bit(&bitmap, 16); 1232 1233 if (dst[i]) { 1234 *dest_vcpu = dst[i]->vcpu; 1235 ret = true; 1236 } 1237 } 1238 1239 rcu_read_unlock(); 1240 return ret; 1241 } 1242 1243 /* 1244 * Add a pending IRQ into lapic. 1245 * Return 1 if successfully added and 0 if discarded. 1246 */ 1247 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 1248 int vector, int level, int trig_mode, 1249 struct dest_map *dest_map) 1250 { 1251 int result = 0; 1252 struct kvm_vcpu *vcpu = apic->vcpu; 1253 1254 trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode, 1255 trig_mode, vector); 1256 switch (delivery_mode) { 1257 case APIC_DM_LOWEST: 1258 vcpu->arch.apic_arb_prio++; 1259 fallthrough; 1260 case APIC_DM_FIXED: 1261 if (unlikely(trig_mode && !level)) 1262 break; 1263 1264 /* FIXME add logic for vcpu on reset */ 1265 if (unlikely(!apic_enabled(apic))) 1266 break; 1267 1268 result = 1; 1269 1270 if (dest_map) { 1271 __set_bit(vcpu->vcpu_id, dest_map->map); 1272 dest_map->vectors[vcpu->vcpu_id] = vector; 1273 } 1274 1275 if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) { 1276 if (trig_mode) 1277 kvm_lapic_set_vector(vector, 1278 apic->regs + APIC_TMR); 1279 else 1280 kvm_lapic_clear_vector(vector, 1281 apic->regs + APIC_TMR); 1282 } 1283 1284 static_call(kvm_x86_deliver_interrupt)(apic, delivery_mode, 1285 trig_mode, vector); 1286 break; 1287 1288 case APIC_DM_REMRD: 1289 result = 1; 1290 vcpu->arch.pv.pv_unhalted = 1; 1291 kvm_make_request(KVM_REQ_EVENT, vcpu); 1292 kvm_vcpu_kick(vcpu); 1293 break; 1294 1295 case APIC_DM_SMI: 1296 if (!kvm_inject_smi(vcpu)) { 1297 kvm_vcpu_kick(vcpu); 1298 result = 1; 1299 } 1300 break; 1301 1302 case APIC_DM_NMI: 1303 result = 1; 1304 kvm_inject_nmi(vcpu); 1305 kvm_vcpu_kick(vcpu); 1306 break; 1307 1308 case APIC_DM_INIT: 1309 if (!trig_mode || level) { 1310 result = 1; 1311 /* assumes that there are only KVM_APIC_INIT/SIPI */ 1312 apic->pending_events = (1UL << KVM_APIC_INIT); 1313 kvm_make_request(KVM_REQ_EVENT, vcpu); 1314 kvm_vcpu_kick(vcpu); 1315 } 1316 break; 1317 1318 case APIC_DM_STARTUP: 1319 result = 1; 1320 apic->sipi_vector = vector; 1321 /* make sure sipi_vector is visible for the receiver */ 1322 smp_wmb(); 1323 set_bit(KVM_APIC_SIPI, &apic->pending_events); 1324 kvm_make_request(KVM_REQ_EVENT, vcpu); 1325 kvm_vcpu_kick(vcpu); 1326 break; 1327 1328 case APIC_DM_EXTINT: 1329 /* 1330 * Should only be called by kvm_apic_local_deliver() with LVT0, 1331 * before NMI watchdog was enabled. Already handled by 1332 * kvm_apic_accept_pic_intr(). 1333 */ 1334 break; 1335 1336 default: 1337 printk(KERN_ERR "TODO: unsupported delivery mode %x\n", 1338 delivery_mode); 1339 break; 1340 } 1341 return result; 1342 } 1343 1344 /* 1345 * This routine identifies the destination vcpus mask meant to receive the 1346 * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find 1347 * out the destination vcpus array and set the bitmap or it traverses to 1348 * each available vcpu to identify the same. 1349 */ 1350 void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq, 1351 unsigned long *vcpu_bitmap) 1352 { 1353 struct kvm_lapic **dest_vcpu = NULL; 1354 struct kvm_lapic *src = NULL; 1355 struct kvm_apic_map *map; 1356 struct kvm_vcpu *vcpu; 1357 unsigned long bitmap, i; 1358 int vcpu_idx; 1359 bool ret; 1360 1361 rcu_read_lock(); 1362 map = rcu_dereference(kvm->arch.apic_map); 1363 1364 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu, 1365 &bitmap); 1366 if (ret) { 1367 for_each_set_bit(i, &bitmap, 16) { 1368 if (!dest_vcpu[i]) 1369 continue; 1370 vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx; 1371 __set_bit(vcpu_idx, vcpu_bitmap); 1372 } 1373 } else { 1374 kvm_for_each_vcpu(i, vcpu, kvm) { 1375 if (!kvm_apic_present(vcpu)) 1376 continue; 1377 if (!kvm_apic_match_dest(vcpu, NULL, 1378 irq->shorthand, 1379 irq->dest_id, 1380 irq->dest_mode)) 1381 continue; 1382 __set_bit(i, vcpu_bitmap); 1383 } 1384 } 1385 rcu_read_unlock(); 1386 } 1387 1388 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2) 1389 { 1390 return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio; 1391 } 1392 1393 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector) 1394 { 1395 return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors); 1396 } 1397 1398 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector) 1399 { 1400 int trigger_mode; 1401 1402 /* Eoi the ioapic only if the ioapic doesn't own the vector. */ 1403 if (!kvm_ioapic_handles_vector(apic, vector)) 1404 return; 1405 1406 /* Request a KVM exit to inform the userspace IOAPIC. */ 1407 if (irqchip_split(apic->vcpu->kvm)) { 1408 apic->vcpu->arch.pending_ioapic_eoi = vector; 1409 kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu); 1410 return; 1411 } 1412 1413 if (apic_test_vector(vector, apic->regs + APIC_TMR)) 1414 trigger_mode = IOAPIC_LEVEL_TRIG; 1415 else 1416 trigger_mode = IOAPIC_EDGE_TRIG; 1417 1418 kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode); 1419 } 1420 1421 static int apic_set_eoi(struct kvm_lapic *apic) 1422 { 1423 int vector = apic_find_highest_isr(apic); 1424 1425 trace_kvm_eoi(apic, vector); 1426 1427 /* 1428 * Not every write EOI will has corresponding ISR, 1429 * one example is when Kernel check timer on setup_IO_APIC 1430 */ 1431 if (vector == -1) 1432 return vector; 1433 1434 apic_clear_isr(vector, apic); 1435 apic_update_ppr(apic); 1436 1437 if (to_hv_vcpu(apic->vcpu) && 1438 test_bit(vector, to_hv_synic(apic->vcpu)->vec_bitmap)) 1439 kvm_hv_synic_send_eoi(apic->vcpu, vector); 1440 1441 kvm_ioapic_send_eoi(apic, vector); 1442 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1443 return vector; 1444 } 1445 1446 /* 1447 * this interface assumes a trap-like exit, which has already finished 1448 * desired side effect including vISR and vPPR update. 1449 */ 1450 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector) 1451 { 1452 struct kvm_lapic *apic = vcpu->arch.apic; 1453 1454 trace_kvm_eoi(apic, vector); 1455 1456 kvm_ioapic_send_eoi(apic, vector); 1457 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1458 } 1459 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated); 1460 1461 void kvm_apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high) 1462 { 1463 struct kvm_lapic_irq irq; 1464 1465 /* KVM has no delay and should always clear the BUSY/PENDING flag. */ 1466 WARN_ON_ONCE(icr_low & APIC_ICR_BUSY); 1467 1468 irq.vector = icr_low & APIC_VECTOR_MASK; 1469 irq.delivery_mode = icr_low & APIC_MODE_MASK; 1470 irq.dest_mode = icr_low & APIC_DEST_MASK; 1471 irq.level = (icr_low & APIC_INT_ASSERT) != 0; 1472 irq.trig_mode = icr_low & APIC_INT_LEVELTRIG; 1473 irq.shorthand = icr_low & APIC_SHORT_MASK; 1474 irq.msi_redir_hint = false; 1475 if (apic_x2apic_mode(apic)) 1476 irq.dest_id = icr_high; 1477 else 1478 irq.dest_id = GET_XAPIC_DEST_FIELD(icr_high); 1479 1480 trace_kvm_apic_ipi(icr_low, irq.dest_id); 1481 1482 kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL); 1483 } 1484 EXPORT_SYMBOL_GPL(kvm_apic_send_ipi); 1485 1486 static u32 apic_get_tmcct(struct kvm_lapic *apic) 1487 { 1488 ktime_t remaining, now; 1489 s64 ns; 1490 1491 ASSERT(apic != NULL); 1492 1493 /* if initial count is 0, current count should also be 0 */ 1494 if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 || 1495 apic->lapic_timer.period == 0) 1496 return 0; 1497 1498 now = ktime_get(); 1499 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 1500 if (ktime_to_ns(remaining) < 0) 1501 remaining = 0; 1502 1503 ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period); 1504 return div64_u64(ns, (APIC_BUS_CYCLE_NS * apic->divide_count)); 1505 } 1506 1507 static void __report_tpr_access(struct kvm_lapic *apic, bool write) 1508 { 1509 struct kvm_vcpu *vcpu = apic->vcpu; 1510 struct kvm_run *run = vcpu->run; 1511 1512 kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu); 1513 run->tpr_access.rip = kvm_rip_read(vcpu); 1514 run->tpr_access.is_write = write; 1515 } 1516 1517 static inline void report_tpr_access(struct kvm_lapic *apic, bool write) 1518 { 1519 if (apic->vcpu->arch.tpr_access_reporting) 1520 __report_tpr_access(apic, write); 1521 } 1522 1523 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset) 1524 { 1525 u32 val = 0; 1526 1527 if (offset >= LAPIC_MMIO_LENGTH) 1528 return 0; 1529 1530 switch (offset) { 1531 case APIC_ARBPRI: 1532 break; 1533 1534 case APIC_TMCCT: /* Timer CCR */ 1535 if (apic_lvtt_tscdeadline(apic)) 1536 return 0; 1537 1538 val = apic_get_tmcct(apic); 1539 break; 1540 case APIC_PROCPRI: 1541 apic_update_ppr(apic); 1542 val = kvm_lapic_get_reg(apic, offset); 1543 break; 1544 case APIC_TASKPRI: 1545 report_tpr_access(apic, false); 1546 fallthrough; 1547 default: 1548 val = kvm_lapic_get_reg(apic, offset); 1549 break; 1550 } 1551 1552 return val; 1553 } 1554 1555 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev) 1556 { 1557 return container_of(dev, struct kvm_lapic, dev); 1558 } 1559 1560 #define APIC_REG_MASK(reg) (1ull << ((reg) >> 4)) 1561 #define APIC_REGS_MASK(first, count) \ 1562 (APIC_REG_MASK(first) * ((1ull << (count)) - 1)) 1563 1564 u64 kvm_lapic_readable_reg_mask(struct kvm_lapic *apic) 1565 { 1566 /* Leave bits '0' for reserved and write-only registers. */ 1567 u64 valid_reg_mask = 1568 APIC_REG_MASK(APIC_ID) | 1569 APIC_REG_MASK(APIC_LVR) | 1570 APIC_REG_MASK(APIC_TASKPRI) | 1571 APIC_REG_MASK(APIC_PROCPRI) | 1572 APIC_REG_MASK(APIC_LDR) | 1573 APIC_REG_MASK(APIC_SPIV) | 1574 APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) | 1575 APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) | 1576 APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) | 1577 APIC_REG_MASK(APIC_ESR) | 1578 APIC_REG_MASK(APIC_ICR) | 1579 APIC_REG_MASK(APIC_LVTT) | 1580 APIC_REG_MASK(APIC_LVTTHMR) | 1581 APIC_REG_MASK(APIC_LVTPC) | 1582 APIC_REG_MASK(APIC_LVT0) | 1583 APIC_REG_MASK(APIC_LVT1) | 1584 APIC_REG_MASK(APIC_LVTERR) | 1585 APIC_REG_MASK(APIC_TMICT) | 1586 APIC_REG_MASK(APIC_TMCCT) | 1587 APIC_REG_MASK(APIC_TDCR); 1588 1589 if (kvm_lapic_lvt_supported(apic, LVT_CMCI)) 1590 valid_reg_mask |= APIC_REG_MASK(APIC_LVTCMCI); 1591 1592 /* ARBPRI, DFR, and ICR2 are not valid in x2APIC mode. */ 1593 if (!apic_x2apic_mode(apic)) 1594 valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI) | 1595 APIC_REG_MASK(APIC_DFR) | 1596 APIC_REG_MASK(APIC_ICR2); 1597 1598 return valid_reg_mask; 1599 } 1600 EXPORT_SYMBOL_GPL(kvm_lapic_readable_reg_mask); 1601 1602 static int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len, 1603 void *data) 1604 { 1605 unsigned char alignment = offset & 0xf; 1606 u32 result; 1607 1608 /* 1609 * WARN if KVM reads ICR in x2APIC mode, as it's an 8-byte register in 1610 * x2APIC and needs to be manually handled by the caller. 1611 */ 1612 WARN_ON_ONCE(apic_x2apic_mode(apic) && offset == APIC_ICR); 1613 1614 if (alignment + len > 4) 1615 return 1; 1616 1617 if (offset > 0x3f0 || 1618 !(kvm_lapic_readable_reg_mask(apic) & APIC_REG_MASK(offset))) 1619 return 1; 1620 1621 result = __apic_read(apic, offset & ~0xf); 1622 1623 trace_kvm_apic_read(offset, result); 1624 1625 switch (len) { 1626 case 1: 1627 case 2: 1628 case 4: 1629 memcpy(data, (char *)&result + alignment, len); 1630 break; 1631 default: 1632 printk(KERN_ERR "Local APIC read with len = %x, " 1633 "should be 1,2, or 4 instead\n", len); 1634 break; 1635 } 1636 return 0; 1637 } 1638 1639 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr) 1640 { 1641 return addr >= apic->base_address && 1642 addr < apic->base_address + LAPIC_MMIO_LENGTH; 1643 } 1644 1645 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 1646 gpa_t address, int len, void *data) 1647 { 1648 struct kvm_lapic *apic = to_lapic(this); 1649 u32 offset = address - apic->base_address; 1650 1651 if (!apic_mmio_in_range(apic, address)) 1652 return -EOPNOTSUPP; 1653 1654 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 1655 if (!kvm_check_has_quirk(vcpu->kvm, 1656 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 1657 return -EOPNOTSUPP; 1658 1659 memset(data, 0xff, len); 1660 return 0; 1661 } 1662 1663 kvm_lapic_reg_read(apic, offset, len, data); 1664 1665 return 0; 1666 } 1667 1668 static void update_divide_count(struct kvm_lapic *apic) 1669 { 1670 u32 tmp1, tmp2, tdcr; 1671 1672 tdcr = kvm_lapic_get_reg(apic, APIC_TDCR); 1673 tmp1 = tdcr & 0xf; 1674 tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1; 1675 apic->divide_count = 0x1 << (tmp2 & 0x7); 1676 } 1677 1678 static void limit_periodic_timer_frequency(struct kvm_lapic *apic) 1679 { 1680 /* 1681 * Do not allow the guest to program periodic timers with small 1682 * interval, since the hrtimers are not throttled by the host 1683 * scheduler. 1684 */ 1685 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 1686 s64 min_period = min_timer_period_us * 1000LL; 1687 1688 if (apic->lapic_timer.period < min_period) { 1689 pr_info_ratelimited( 1690 "vcpu %i: requested %lld ns " 1691 "lapic timer period limited to %lld ns\n", 1692 apic->vcpu->vcpu_id, 1693 apic->lapic_timer.period, min_period); 1694 apic->lapic_timer.period = min_period; 1695 } 1696 } 1697 } 1698 1699 static void cancel_hv_timer(struct kvm_lapic *apic); 1700 1701 static void cancel_apic_timer(struct kvm_lapic *apic) 1702 { 1703 hrtimer_cancel(&apic->lapic_timer.timer); 1704 preempt_disable(); 1705 if (apic->lapic_timer.hv_timer_in_use) 1706 cancel_hv_timer(apic); 1707 preempt_enable(); 1708 atomic_set(&apic->lapic_timer.pending, 0); 1709 } 1710 1711 static void apic_update_lvtt(struct kvm_lapic *apic) 1712 { 1713 u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) & 1714 apic->lapic_timer.timer_mode_mask; 1715 1716 if (apic->lapic_timer.timer_mode != timer_mode) { 1717 if (apic_lvtt_tscdeadline(apic) != (timer_mode == 1718 APIC_LVT_TIMER_TSCDEADLINE)) { 1719 cancel_apic_timer(apic); 1720 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 1721 apic->lapic_timer.period = 0; 1722 apic->lapic_timer.tscdeadline = 0; 1723 } 1724 apic->lapic_timer.timer_mode = timer_mode; 1725 limit_periodic_timer_frequency(apic); 1726 } 1727 } 1728 1729 /* 1730 * On APICv, this test will cause a busy wait 1731 * during a higher-priority task. 1732 */ 1733 1734 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu) 1735 { 1736 struct kvm_lapic *apic = vcpu->arch.apic; 1737 u32 reg = kvm_lapic_get_reg(apic, APIC_LVTT); 1738 1739 if (kvm_apic_hw_enabled(apic)) { 1740 int vec = reg & APIC_VECTOR_MASK; 1741 void *bitmap = apic->regs + APIC_ISR; 1742 1743 if (apic->apicv_active) 1744 bitmap = apic->regs + APIC_IRR; 1745 1746 if (apic_test_vector(vec, bitmap)) 1747 return true; 1748 } 1749 return false; 1750 } 1751 1752 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles) 1753 { 1754 u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns; 1755 1756 /* 1757 * If the guest TSC is running at a different ratio than the host, then 1758 * convert the delay to nanoseconds to achieve an accurate delay. Note 1759 * that __delay() uses delay_tsc whenever the hardware has TSC, thus 1760 * always for VMX enabled hardware. 1761 */ 1762 if (vcpu->arch.tsc_scaling_ratio == kvm_caps.default_tsc_scaling_ratio) { 1763 __delay(min(guest_cycles, 1764 nsec_to_cycles(vcpu, timer_advance_ns))); 1765 } else { 1766 u64 delay_ns = guest_cycles * 1000000ULL; 1767 do_div(delay_ns, vcpu->arch.virtual_tsc_khz); 1768 ndelay(min_t(u32, delay_ns, timer_advance_ns)); 1769 } 1770 } 1771 1772 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu, 1773 s64 advance_expire_delta) 1774 { 1775 struct kvm_lapic *apic = vcpu->arch.apic; 1776 u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns; 1777 u64 ns; 1778 1779 /* Do not adjust for tiny fluctuations or large random spikes. */ 1780 if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX || 1781 abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN) 1782 return; 1783 1784 /* too early */ 1785 if (advance_expire_delta < 0) { 1786 ns = -advance_expire_delta * 1000000ULL; 1787 do_div(ns, vcpu->arch.virtual_tsc_khz); 1788 timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; 1789 } else { 1790 /* too late */ 1791 ns = advance_expire_delta * 1000000ULL; 1792 do_div(ns, vcpu->arch.virtual_tsc_khz); 1793 timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; 1794 } 1795 1796 if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX)) 1797 timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; 1798 apic->lapic_timer.timer_advance_ns = timer_advance_ns; 1799 } 1800 1801 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1802 { 1803 struct kvm_lapic *apic = vcpu->arch.apic; 1804 u64 guest_tsc, tsc_deadline; 1805 1806 tsc_deadline = apic->lapic_timer.expired_tscdeadline; 1807 apic->lapic_timer.expired_tscdeadline = 0; 1808 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1809 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, guest_tsc - tsc_deadline); 1810 1811 if (lapic_timer_advance_dynamic) { 1812 adjust_lapic_timer_advance(vcpu, guest_tsc - tsc_deadline); 1813 /* 1814 * If the timer fired early, reread the TSC to account for the 1815 * overhead of the above adjustment to avoid waiting longer 1816 * than is necessary. 1817 */ 1818 if (guest_tsc < tsc_deadline) 1819 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1820 } 1821 1822 if (guest_tsc < tsc_deadline) 1823 __wait_lapic_expire(vcpu, tsc_deadline - guest_tsc); 1824 } 1825 1826 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1827 { 1828 if (lapic_in_kernel(vcpu) && 1829 vcpu->arch.apic->lapic_timer.expired_tscdeadline && 1830 vcpu->arch.apic->lapic_timer.timer_advance_ns && 1831 lapic_timer_int_injected(vcpu)) 1832 __kvm_wait_lapic_expire(vcpu); 1833 } 1834 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire); 1835 1836 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic) 1837 { 1838 struct kvm_timer *ktimer = &apic->lapic_timer; 1839 1840 kvm_apic_local_deliver(apic, APIC_LVTT); 1841 if (apic_lvtt_tscdeadline(apic)) { 1842 ktimer->tscdeadline = 0; 1843 } else if (apic_lvtt_oneshot(apic)) { 1844 ktimer->tscdeadline = 0; 1845 ktimer->target_expiration = 0; 1846 } 1847 } 1848 1849 static void apic_timer_expired(struct kvm_lapic *apic, bool from_timer_fn) 1850 { 1851 struct kvm_vcpu *vcpu = apic->vcpu; 1852 struct kvm_timer *ktimer = &apic->lapic_timer; 1853 1854 if (atomic_read(&apic->lapic_timer.pending)) 1855 return; 1856 1857 if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use) 1858 ktimer->expired_tscdeadline = ktimer->tscdeadline; 1859 1860 if (!from_timer_fn && apic->apicv_active) { 1861 WARN_ON(kvm_get_running_vcpu() != vcpu); 1862 kvm_apic_inject_pending_timer_irqs(apic); 1863 return; 1864 } 1865 1866 if (kvm_use_posted_timer_interrupt(apic->vcpu)) { 1867 /* 1868 * Ensure the guest's timer has truly expired before posting an 1869 * interrupt. Open code the relevant checks to avoid querying 1870 * lapic_timer_int_injected(), which will be false since the 1871 * interrupt isn't yet injected. Waiting until after injecting 1872 * is not an option since that won't help a posted interrupt. 1873 */ 1874 if (vcpu->arch.apic->lapic_timer.expired_tscdeadline && 1875 vcpu->arch.apic->lapic_timer.timer_advance_ns) 1876 __kvm_wait_lapic_expire(vcpu); 1877 kvm_apic_inject_pending_timer_irqs(apic); 1878 return; 1879 } 1880 1881 atomic_inc(&apic->lapic_timer.pending); 1882 kvm_make_request(KVM_REQ_UNBLOCK, vcpu); 1883 if (from_timer_fn) 1884 kvm_vcpu_kick(vcpu); 1885 } 1886 1887 static void start_sw_tscdeadline(struct kvm_lapic *apic) 1888 { 1889 struct kvm_timer *ktimer = &apic->lapic_timer; 1890 u64 guest_tsc, tscdeadline = ktimer->tscdeadline; 1891 u64 ns = 0; 1892 ktime_t expire; 1893 struct kvm_vcpu *vcpu = apic->vcpu; 1894 unsigned long this_tsc_khz = vcpu->arch.virtual_tsc_khz; 1895 unsigned long flags; 1896 ktime_t now; 1897 1898 if (unlikely(!tscdeadline || !this_tsc_khz)) 1899 return; 1900 1901 local_irq_save(flags); 1902 1903 now = ktime_get(); 1904 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1905 1906 ns = (tscdeadline - guest_tsc) * 1000000ULL; 1907 do_div(ns, this_tsc_khz); 1908 1909 if (likely(tscdeadline > guest_tsc) && 1910 likely(ns > apic->lapic_timer.timer_advance_ns)) { 1911 expire = ktime_add_ns(now, ns); 1912 expire = ktime_sub_ns(expire, ktimer->timer_advance_ns); 1913 hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD); 1914 } else 1915 apic_timer_expired(apic, false); 1916 1917 local_irq_restore(flags); 1918 } 1919 1920 static inline u64 tmict_to_ns(struct kvm_lapic *apic, u32 tmict) 1921 { 1922 return (u64)tmict * APIC_BUS_CYCLE_NS * (u64)apic->divide_count; 1923 } 1924 1925 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor) 1926 { 1927 ktime_t now, remaining; 1928 u64 ns_remaining_old, ns_remaining_new; 1929 1930 apic->lapic_timer.period = 1931 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT)); 1932 limit_periodic_timer_frequency(apic); 1933 1934 now = ktime_get(); 1935 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 1936 if (ktime_to_ns(remaining) < 0) 1937 remaining = 0; 1938 1939 ns_remaining_old = ktime_to_ns(remaining); 1940 ns_remaining_new = mul_u64_u32_div(ns_remaining_old, 1941 apic->divide_count, old_divisor); 1942 1943 apic->lapic_timer.tscdeadline += 1944 nsec_to_cycles(apic->vcpu, ns_remaining_new) - 1945 nsec_to_cycles(apic->vcpu, ns_remaining_old); 1946 apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new); 1947 } 1948 1949 static bool set_target_expiration(struct kvm_lapic *apic, u32 count_reg) 1950 { 1951 ktime_t now; 1952 u64 tscl = rdtsc(); 1953 s64 deadline; 1954 1955 now = ktime_get(); 1956 apic->lapic_timer.period = 1957 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT)); 1958 1959 if (!apic->lapic_timer.period) { 1960 apic->lapic_timer.tscdeadline = 0; 1961 return false; 1962 } 1963 1964 limit_periodic_timer_frequency(apic); 1965 deadline = apic->lapic_timer.period; 1966 1967 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) { 1968 if (unlikely(count_reg != APIC_TMICT)) { 1969 deadline = tmict_to_ns(apic, 1970 kvm_lapic_get_reg(apic, count_reg)); 1971 if (unlikely(deadline <= 0)) { 1972 if (apic_lvtt_period(apic)) 1973 deadline = apic->lapic_timer.period; 1974 else 1975 deadline = 0; 1976 } 1977 else if (unlikely(deadline > apic->lapic_timer.period)) { 1978 pr_info_ratelimited( 1979 "vcpu %i: requested lapic timer restore with " 1980 "starting count register %#x=%u (%lld ns) > initial count (%lld ns). " 1981 "Using initial count to start timer.\n", 1982 apic->vcpu->vcpu_id, 1983 count_reg, 1984 kvm_lapic_get_reg(apic, count_reg), 1985 deadline, apic->lapic_timer.period); 1986 kvm_lapic_set_reg(apic, count_reg, 0); 1987 deadline = apic->lapic_timer.period; 1988 } 1989 } 1990 } 1991 1992 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 1993 nsec_to_cycles(apic->vcpu, deadline); 1994 apic->lapic_timer.target_expiration = ktime_add_ns(now, deadline); 1995 1996 return true; 1997 } 1998 1999 static void advance_periodic_target_expiration(struct kvm_lapic *apic) 2000 { 2001 ktime_t now = ktime_get(); 2002 u64 tscl = rdtsc(); 2003 ktime_t delta; 2004 2005 /* 2006 * Synchronize both deadlines to the same time source or 2007 * differences in the periods (caused by differences in the 2008 * underlying clocks or numerical approximation errors) will 2009 * cause the two to drift apart over time as the errors 2010 * accumulate. 2011 */ 2012 apic->lapic_timer.target_expiration = 2013 ktime_add_ns(apic->lapic_timer.target_expiration, 2014 apic->lapic_timer.period); 2015 delta = ktime_sub(apic->lapic_timer.target_expiration, now); 2016 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 2017 nsec_to_cycles(apic->vcpu, delta); 2018 } 2019 2020 static void start_sw_period(struct kvm_lapic *apic) 2021 { 2022 if (!apic->lapic_timer.period) 2023 return; 2024 2025 if (ktime_after(ktime_get(), 2026 apic->lapic_timer.target_expiration)) { 2027 apic_timer_expired(apic, false); 2028 2029 if (apic_lvtt_oneshot(apic)) 2030 return; 2031 2032 advance_periodic_target_expiration(apic); 2033 } 2034 2035 hrtimer_start(&apic->lapic_timer.timer, 2036 apic->lapic_timer.target_expiration, 2037 HRTIMER_MODE_ABS_HARD); 2038 } 2039 2040 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu) 2041 { 2042 if (!lapic_in_kernel(vcpu)) 2043 return false; 2044 2045 return vcpu->arch.apic->lapic_timer.hv_timer_in_use; 2046 } 2047 2048 static void cancel_hv_timer(struct kvm_lapic *apic) 2049 { 2050 WARN_ON(preemptible()); 2051 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 2052 static_call(kvm_x86_cancel_hv_timer)(apic->vcpu); 2053 apic->lapic_timer.hv_timer_in_use = false; 2054 } 2055 2056 static bool start_hv_timer(struct kvm_lapic *apic) 2057 { 2058 struct kvm_timer *ktimer = &apic->lapic_timer; 2059 struct kvm_vcpu *vcpu = apic->vcpu; 2060 bool expired; 2061 2062 WARN_ON(preemptible()); 2063 if (!kvm_can_use_hv_timer(vcpu)) 2064 return false; 2065 2066 if (!ktimer->tscdeadline) 2067 return false; 2068 2069 if (static_call(kvm_x86_set_hv_timer)(vcpu, ktimer->tscdeadline, &expired)) 2070 return false; 2071 2072 ktimer->hv_timer_in_use = true; 2073 hrtimer_cancel(&ktimer->timer); 2074 2075 /* 2076 * To simplify handling the periodic timer, leave the hv timer running 2077 * even if the deadline timer has expired, i.e. rely on the resulting 2078 * VM-Exit to recompute the periodic timer's target expiration. 2079 */ 2080 if (!apic_lvtt_period(apic)) { 2081 /* 2082 * Cancel the hv timer if the sw timer fired while the hv timer 2083 * was being programmed, or if the hv timer itself expired. 2084 */ 2085 if (atomic_read(&ktimer->pending)) { 2086 cancel_hv_timer(apic); 2087 } else if (expired) { 2088 apic_timer_expired(apic, false); 2089 cancel_hv_timer(apic); 2090 } 2091 } 2092 2093 trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use); 2094 2095 return true; 2096 } 2097 2098 static void start_sw_timer(struct kvm_lapic *apic) 2099 { 2100 struct kvm_timer *ktimer = &apic->lapic_timer; 2101 2102 WARN_ON(preemptible()); 2103 if (apic->lapic_timer.hv_timer_in_use) 2104 cancel_hv_timer(apic); 2105 if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending)) 2106 return; 2107 2108 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 2109 start_sw_period(apic); 2110 else if (apic_lvtt_tscdeadline(apic)) 2111 start_sw_tscdeadline(apic); 2112 trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false); 2113 } 2114 2115 static void restart_apic_timer(struct kvm_lapic *apic) 2116 { 2117 preempt_disable(); 2118 2119 if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending)) 2120 goto out; 2121 2122 if (!start_hv_timer(apic)) 2123 start_sw_timer(apic); 2124 out: 2125 preempt_enable(); 2126 } 2127 2128 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu) 2129 { 2130 struct kvm_lapic *apic = vcpu->arch.apic; 2131 2132 preempt_disable(); 2133 /* If the preempt notifier has already run, it also called apic_timer_expired */ 2134 if (!apic->lapic_timer.hv_timer_in_use) 2135 goto out; 2136 WARN_ON(kvm_vcpu_is_blocking(vcpu)); 2137 apic_timer_expired(apic, false); 2138 cancel_hv_timer(apic); 2139 2140 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 2141 advance_periodic_target_expiration(apic); 2142 restart_apic_timer(apic); 2143 } 2144 out: 2145 preempt_enable(); 2146 } 2147 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer); 2148 2149 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu) 2150 { 2151 restart_apic_timer(vcpu->arch.apic); 2152 } 2153 2154 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu) 2155 { 2156 struct kvm_lapic *apic = vcpu->arch.apic; 2157 2158 preempt_disable(); 2159 /* Possibly the TSC deadline timer is not enabled yet */ 2160 if (apic->lapic_timer.hv_timer_in_use) 2161 start_sw_timer(apic); 2162 preempt_enable(); 2163 } 2164 2165 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu) 2166 { 2167 struct kvm_lapic *apic = vcpu->arch.apic; 2168 2169 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 2170 restart_apic_timer(apic); 2171 } 2172 2173 static void __start_apic_timer(struct kvm_lapic *apic, u32 count_reg) 2174 { 2175 atomic_set(&apic->lapic_timer.pending, 0); 2176 2177 if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 2178 && !set_target_expiration(apic, count_reg)) 2179 return; 2180 2181 restart_apic_timer(apic); 2182 } 2183 2184 static void start_apic_timer(struct kvm_lapic *apic) 2185 { 2186 __start_apic_timer(apic, APIC_TMICT); 2187 } 2188 2189 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val) 2190 { 2191 bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val); 2192 2193 if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) { 2194 apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode; 2195 if (lvt0_in_nmi_mode) { 2196 atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 2197 } else 2198 atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 2199 } 2200 } 2201 2202 static int get_lvt_index(u32 reg) 2203 { 2204 if (reg == APIC_LVTCMCI) 2205 return LVT_CMCI; 2206 if (reg < APIC_LVTT || reg > APIC_LVTERR) 2207 return -1; 2208 return array_index_nospec( 2209 (reg - APIC_LVTT) >> 4, KVM_APIC_MAX_NR_LVT_ENTRIES); 2210 } 2211 2212 static int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val) 2213 { 2214 int ret = 0; 2215 2216 trace_kvm_apic_write(reg, val); 2217 2218 switch (reg) { 2219 case APIC_ID: /* Local APIC ID */ 2220 if (!apic_x2apic_mode(apic)) { 2221 kvm_apic_set_xapic_id(apic, val >> 24); 2222 } else { 2223 ret = 1; 2224 } 2225 break; 2226 2227 case APIC_TASKPRI: 2228 report_tpr_access(apic, true); 2229 apic_set_tpr(apic, val & 0xff); 2230 break; 2231 2232 case APIC_EOI: 2233 apic_set_eoi(apic); 2234 break; 2235 2236 case APIC_LDR: 2237 if (!apic_x2apic_mode(apic)) 2238 kvm_apic_set_ldr(apic, val & APIC_LDR_MASK); 2239 else 2240 ret = 1; 2241 break; 2242 2243 case APIC_DFR: 2244 if (!apic_x2apic_mode(apic)) 2245 kvm_apic_set_dfr(apic, val | 0x0FFFFFFF); 2246 else 2247 ret = 1; 2248 break; 2249 2250 case APIC_SPIV: { 2251 u32 mask = 0x3ff; 2252 if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI) 2253 mask |= APIC_SPIV_DIRECTED_EOI; 2254 apic_set_spiv(apic, val & mask); 2255 if (!(val & APIC_SPIV_APIC_ENABLED)) { 2256 int i; 2257 2258 for (i = 0; i < apic->nr_lvt_entries; i++) { 2259 kvm_lapic_set_reg(apic, APIC_LVTx(i), 2260 kvm_lapic_get_reg(apic, APIC_LVTx(i)) | APIC_LVT_MASKED); 2261 } 2262 apic_update_lvtt(apic); 2263 atomic_set(&apic->lapic_timer.pending, 0); 2264 2265 } 2266 break; 2267 } 2268 case APIC_ICR: 2269 WARN_ON_ONCE(apic_x2apic_mode(apic)); 2270 2271 /* No delay here, so we always clear the pending bit */ 2272 val &= ~APIC_ICR_BUSY; 2273 kvm_apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2)); 2274 kvm_lapic_set_reg(apic, APIC_ICR, val); 2275 break; 2276 case APIC_ICR2: 2277 if (apic_x2apic_mode(apic)) 2278 ret = 1; 2279 else 2280 kvm_lapic_set_reg(apic, APIC_ICR2, val & 0xff000000); 2281 break; 2282 2283 case APIC_LVT0: 2284 apic_manage_nmi_watchdog(apic, val); 2285 fallthrough; 2286 case APIC_LVTTHMR: 2287 case APIC_LVTPC: 2288 case APIC_LVT1: 2289 case APIC_LVTERR: 2290 case APIC_LVTCMCI: { 2291 u32 index = get_lvt_index(reg); 2292 if (!kvm_lapic_lvt_supported(apic, index)) { 2293 ret = 1; 2294 break; 2295 } 2296 if (!kvm_apic_sw_enabled(apic)) 2297 val |= APIC_LVT_MASKED; 2298 val &= apic_lvt_mask[index]; 2299 kvm_lapic_set_reg(apic, reg, val); 2300 break; 2301 } 2302 2303 case APIC_LVTT: 2304 if (!kvm_apic_sw_enabled(apic)) 2305 val |= APIC_LVT_MASKED; 2306 val &= (apic_lvt_mask[0] | apic->lapic_timer.timer_mode_mask); 2307 kvm_lapic_set_reg(apic, APIC_LVTT, val); 2308 apic_update_lvtt(apic); 2309 break; 2310 2311 case APIC_TMICT: 2312 if (apic_lvtt_tscdeadline(apic)) 2313 break; 2314 2315 cancel_apic_timer(apic); 2316 kvm_lapic_set_reg(apic, APIC_TMICT, val); 2317 start_apic_timer(apic); 2318 break; 2319 2320 case APIC_TDCR: { 2321 uint32_t old_divisor = apic->divide_count; 2322 2323 kvm_lapic_set_reg(apic, APIC_TDCR, val & 0xb); 2324 update_divide_count(apic); 2325 if (apic->divide_count != old_divisor && 2326 apic->lapic_timer.period) { 2327 hrtimer_cancel(&apic->lapic_timer.timer); 2328 update_target_expiration(apic, old_divisor); 2329 restart_apic_timer(apic); 2330 } 2331 break; 2332 } 2333 case APIC_ESR: 2334 if (apic_x2apic_mode(apic) && val != 0) 2335 ret = 1; 2336 break; 2337 2338 case APIC_SELF_IPI: 2339 /* 2340 * Self-IPI exists only when x2APIC is enabled. Bits 7:0 hold 2341 * the vector, everything else is reserved. 2342 */ 2343 if (!apic_x2apic_mode(apic) || (val & ~APIC_VECTOR_MASK)) 2344 ret = 1; 2345 else 2346 kvm_apic_send_ipi(apic, APIC_DEST_SELF | val, 0); 2347 break; 2348 default: 2349 ret = 1; 2350 break; 2351 } 2352 2353 /* 2354 * Recalculate APIC maps if necessary, e.g. if the software enable bit 2355 * was toggled, the APIC ID changed, etc... The maps are marked dirty 2356 * on relevant changes, i.e. this is a nop for most writes. 2357 */ 2358 kvm_recalculate_apic_map(apic->vcpu->kvm); 2359 2360 return ret; 2361 } 2362 2363 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 2364 gpa_t address, int len, const void *data) 2365 { 2366 struct kvm_lapic *apic = to_lapic(this); 2367 unsigned int offset = address - apic->base_address; 2368 u32 val; 2369 2370 if (!apic_mmio_in_range(apic, address)) 2371 return -EOPNOTSUPP; 2372 2373 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 2374 if (!kvm_check_has_quirk(vcpu->kvm, 2375 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 2376 return -EOPNOTSUPP; 2377 2378 return 0; 2379 } 2380 2381 /* 2382 * APIC register must be aligned on 128-bits boundary. 2383 * 32/64/128 bits registers must be accessed thru 32 bits. 2384 * Refer SDM 8.4.1 2385 */ 2386 if (len != 4 || (offset & 0xf)) 2387 return 0; 2388 2389 val = *(u32*)data; 2390 2391 kvm_lapic_reg_write(apic, offset & 0xff0, val); 2392 2393 return 0; 2394 } 2395 2396 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu) 2397 { 2398 kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0); 2399 } 2400 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi); 2401 2402 /* emulate APIC access in a trap manner */ 2403 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset) 2404 { 2405 struct kvm_lapic *apic = vcpu->arch.apic; 2406 u64 val; 2407 2408 /* 2409 * ICR is a single 64-bit register when x2APIC is enabled. For legacy 2410 * xAPIC, ICR writes need to go down the common (slightly slower) path 2411 * to get the upper half from ICR2. 2412 */ 2413 if (apic_x2apic_mode(apic) && offset == APIC_ICR) { 2414 val = kvm_lapic_get_reg64(apic, APIC_ICR); 2415 kvm_apic_send_ipi(apic, (u32)val, (u32)(val >> 32)); 2416 trace_kvm_apic_write(APIC_ICR, val); 2417 } else { 2418 /* TODO: optimize to just emulate side effect w/o one more write */ 2419 val = kvm_lapic_get_reg(apic, offset); 2420 kvm_lapic_reg_write(apic, offset, (u32)val); 2421 } 2422 } 2423 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode); 2424 2425 void kvm_free_lapic(struct kvm_vcpu *vcpu) 2426 { 2427 struct kvm_lapic *apic = vcpu->arch.apic; 2428 2429 if (!vcpu->arch.apic) 2430 return; 2431 2432 hrtimer_cancel(&apic->lapic_timer.timer); 2433 2434 if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)) 2435 static_branch_slow_dec_deferred(&apic_hw_disabled); 2436 2437 if (!apic->sw_enabled) 2438 static_branch_slow_dec_deferred(&apic_sw_disabled); 2439 2440 if (apic->regs) 2441 free_page((unsigned long)apic->regs); 2442 2443 kfree(apic); 2444 } 2445 2446 /* 2447 *---------------------------------------------------------------------- 2448 * LAPIC interface 2449 *---------------------------------------------------------------------- 2450 */ 2451 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu) 2452 { 2453 struct kvm_lapic *apic = vcpu->arch.apic; 2454 2455 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic)) 2456 return 0; 2457 2458 return apic->lapic_timer.tscdeadline; 2459 } 2460 2461 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data) 2462 { 2463 struct kvm_lapic *apic = vcpu->arch.apic; 2464 2465 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic)) 2466 return; 2467 2468 hrtimer_cancel(&apic->lapic_timer.timer); 2469 apic->lapic_timer.tscdeadline = data; 2470 start_apic_timer(apic); 2471 } 2472 2473 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8) 2474 { 2475 apic_set_tpr(vcpu->arch.apic, (cr8 & 0x0f) << 4); 2476 } 2477 2478 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu) 2479 { 2480 u64 tpr; 2481 2482 tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI); 2483 2484 return (tpr & 0xf0) >> 4; 2485 } 2486 2487 void kvm_lapic_set_base(struct kvm_vcpu *vcpu, u64 value) 2488 { 2489 u64 old_value = vcpu->arch.apic_base; 2490 struct kvm_lapic *apic = vcpu->arch.apic; 2491 2492 vcpu->arch.apic_base = value; 2493 2494 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) 2495 kvm_update_cpuid_runtime(vcpu); 2496 2497 if (!apic) 2498 return; 2499 2500 /* update jump label if enable bit changes */ 2501 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) { 2502 if (value & MSR_IA32_APICBASE_ENABLE) { 2503 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2504 static_branch_slow_dec_deferred(&apic_hw_disabled); 2505 /* Check if there are APF page ready requests pending */ 2506 kvm_make_request(KVM_REQ_APF_READY, vcpu); 2507 } else { 2508 static_branch_inc(&apic_hw_disabled.key); 2509 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 2510 } 2511 } 2512 2513 if ((old_value ^ value) & X2APIC_ENABLE) { 2514 if (value & X2APIC_ENABLE) 2515 kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id); 2516 else if (value & MSR_IA32_APICBASE_ENABLE) 2517 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2518 } 2519 2520 if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) { 2521 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 2522 static_call_cond(kvm_x86_set_virtual_apic_mode)(vcpu); 2523 } 2524 2525 apic->base_address = apic->vcpu->arch.apic_base & 2526 MSR_IA32_APICBASE_BASE; 2527 2528 if ((value & MSR_IA32_APICBASE_ENABLE) && 2529 apic->base_address != APIC_DEFAULT_PHYS_BASE) { 2530 kvm_set_apicv_inhibit(apic->vcpu->kvm, 2531 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED); 2532 } 2533 } 2534 2535 void kvm_apic_update_apicv(struct kvm_vcpu *vcpu) 2536 { 2537 struct kvm_lapic *apic = vcpu->arch.apic; 2538 2539 if (apic->apicv_active) { 2540 /* irr_pending is always true when apicv is activated. */ 2541 apic->irr_pending = true; 2542 apic->isr_count = 1; 2543 } else { 2544 /* 2545 * Don't clear irr_pending, searching the IRR can race with 2546 * updates from the CPU as APICv is still active from hardware's 2547 * perspective. The flag will be cleared as appropriate when 2548 * KVM injects the interrupt. 2549 */ 2550 apic->isr_count = count_vectors(apic->regs + APIC_ISR); 2551 } 2552 apic->highest_isr_cache = -1; 2553 } 2554 2555 int kvm_alloc_apic_access_page(struct kvm *kvm) 2556 { 2557 struct page *page; 2558 void __user *hva; 2559 int ret = 0; 2560 2561 mutex_lock(&kvm->slots_lock); 2562 if (kvm->arch.apic_access_memslot_enabled || 2563 kvm->arch.apic_access_memslot_inhibited) 2564 goto out; 2565 2566 hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 2567 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE); 2568 if (IS_ERR(hva)) { 2569 ret = PTR_ERR(hva); 2570 goto out; 2571 } 2572 2573 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 2574 if (is_error_page(page)) { 2575 ret = -EFAULT; 2576 goto out; 2577 } 2578 2579 /* 2580 * Do not pin the page in memory, so that memory hot-unplug 2581 * is able to migrate it. 2582 */ 2583 put_page(page); 2584 kvm->arch.apic_access_memslot_enabled = true; 2585 out: 2586 mutex_unlock(&kvm->slots_lock); 2587 return ret; 2588 } 2589 EXPORT_SYMBOL_GPL(kvm_alloc_apic_access_page); 2590 2591 void kvm_inhibit_apic_access_page(struct kvm_vcpu *vcpu) 2592 { 2593 struct kvm *kvm = vcpu->kvm; 2594 2595 if (!kvm->arch.apic_access_memslot_enabled) 2596 return; 2597 2598 kvm_vcpu_srcu_read_unlock(vcpu); 2599 2600 mutex_lock(&kvm->slots_lock); 2601 2602 if (kvm->arch.apic_access_memslot_enabled) { 2603 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0); 2604 /* 2605 * Clear "enabled" after the memslot is deleted so that a 2606 * different vCPU doesn't get a false negative when checking 2607 * the flag out of slots_lock. No additional memory barrier is 2608 * needed as modifying memslots requires waiting other vCPUs to 2609 * drop SRCU (see above), and false positives are ok as the 2610 * flag is rechecked after acquiring slots_lock. 2611 */ 2612 kvm->arch.apic_access_memslot_enabled = false; 2613 2614 /* 2615 * Mark the memslot as inhibited to prevent reallocating the 2616 * memslot during vCPU creation, e.g. if a vCPU is hotplugged. 2617 */ 2618 kvm->arch.apic_access_memslot_inhibited = true; 2619 } 2620 2621 mutex_unlock(&kvm->slots_lock); 2622 2623 kvm_vcpu_srcu_read_lock(vcpu); 2624 } 2625 2626 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event) 2627 { 2628 struct kvm_lapic *apic = vcpu->arch.apic; 2629 u64 msr_val; 2630 int i; 2631 2632 if (!init_event) { 2633 msr_val = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE; 2634 if (kvm_vcpu_is_reset_bsp(vcpu)) 2635 msr_val |= MSR_IA32_APICBASE_BSP; 2636 kvm_lapic_set_base(vcpu, msr_val); 2637 } 2638 2639 if (!apic) 2640 return; 2641 2642 /* Stop the timer in case it's a reset to an active apic */ 2643 hrtimer_cancel(&apic->lapic_timer.timer); 2644 2645 /* The xAPIC ID is set at RESET even if the APIC was already enabled. */ 2646 if (!init_event) 2647 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2648 kvm_apic_set_version(apic->vcpu); 2649 2650 for (i = 0; i < apic->nr_lvt_entries; i++) 2651 kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED); 2652 apic_update_lvtt(apic); 2653 if (kvm_vcpu_is_reset_bsp(vcpu) && 2654 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED)) 2655 kvm_lapic_set_reg(apic, APIC_LVT0, 2656 SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT)); 2657 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 2658 2659 kvm_apic_set_dfr(apic, 0xffffffffU); 2660 apic_set_spiv(apic, 0xff); 2661 kvm_lapic_set_reg(apic, APIC_TASKPRI, 0); 2662 if (!apic_x2apic_mode(apic)) 2663 kvm_apic_set_ldr(apic, 0); 2664 kvm_lapic_set_reg(apic, APIC_ESR, 0); 2665 if (!apic_x2apic_mode(apic)) { 2666 kvm_lapic_set_reg(apic, APIC_ICR, 0); 2667 kvm_lapic_set_reg(apic, APIC_ICR2, 0); 2668 } else { 2669 kvm_lapic_set_reg64(apic, APIC_ICR, 0); 2670 } 2671 kvm_lapic_set_reg(apic, APIC_TDCR, 0); 2672 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 2673 for (i = 0; i < 8; i++) { 2674 kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0); 2675 kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0); 2676 kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0); 2677 } 2678 kvm_apic_update_apicv(vcpu); 2679 update_divide_count(apic); 2680 atomic_set(&apic->lapic_timer.pending, 0); 2681 2682 vcpu->arch.pv_eoi.msr_val = 0; 2683 apic_update_ppr(apic); 2684 if (apic->apicv_active) { 2685 static_call_cond(kvm_x86_apicv_post_state_restore)(vcpu); 2686 static_call_cond(kvm_x86_hwapic_irr_update)(vcpu, -1); 2687 static_call_cond(kvm_x86_hwapic_isr_update)(-1); 2688 } 2689 2690 vcpu->arch.apic_arb_prio = 0; 2691 vcpu->arch.apic_attention = 0; 2692 2693 kvm_recalculate_apic_map(vcpu->kvm); 2694 } 2695 2696 /* 2697 *---------------------------------------------------------------------- 2698 * timer interface 2699 *---------------------------------------------------------------------- 2700 */ 2701 2702 static bool lapic_is_periodic(struct kvm_lapic *apic) 2703 { 2704 return apic_lvtt_period(apic); 2705 } 2706 2707 int apic_has_pending_timer(struct kvm_vcpu *vcpu) 2708 { 2709 struct kvm_lapic *apic = vcpu->arch.apic; 2710 2711 if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT)) 2712 return atomic_read(&apic->lapic_timer.pending); 2713 2714 return 0; 2715 } 2716 2717 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type) 2718 { 2719 u32 reg = kvm_lapic_get_reg(apic, lvt_type); 2720 int vector, mode, trig_mode; 2721 2722 if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) { 2723 vector = reg & APIC_VECTOR_MASK; 2724 mode = reg & APIC_MODE_MASK; 2725 trig_mode = reg & APIC_LVT_LEVEL_TRIGGER; 2726 return __apic_accept_irq(apic, mode, vector, 1, trig_mode, 2727 NULL); 2728 } 2729 return 0; 2730 } 2731 2732 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu) 2733 { 2734 struct kvm_lapic *apic = vcpu->arch.apic; 2735 2736 if (apic) 2737 kvm_apic_local_deliver(apic, APIC_LVT0); 2738 } 2739 2740 static const struct kvm_io_device_ops apic_mmio_ops = { 2741 .read = apic_mmio_read, 2742 .write = apic_mmio_write, 2743 }; 2744 2745 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data) 2746 { 2747 struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer); 2748 struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer); 2749 2750 apic_timer_expired(apic, true); 2751 2752 if (lapic_is_periodic(apic)) { 2753 advance_periodic_target_expiration(apic); 2754 hrtimer_add_expires_ns(&ktimer->timer, ktimer->period); 2755 return HRTIMER_RESTART; 2756 } else 2757 return HRTIMER_NORESTART; 2758 } 2759 2760 int kvm_create_lapic(struct kvm_vcpu *vcpu, int timer_advance_ns) 2761 { 2762 struct kvm_lapic *apic; 2763 2764 ASSERT(vcpu != NULL); 2765 2766 apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT); 2767 if (!apic) 2768 goto nomem; 2769 2770 vcpu->arch.apic = apic; 2771 2772 apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 2773 if (!apic->regs) { 2774 printk(KERN_ERR "malloc apic regs error for vcpu %x\n", 2775 vcpu->vcpu_id); 2776 goto nomem_free_apic; 2777 } 2778 apic->vcpu = vcpu; 2779 2780 apic->nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu); 2781 2782 hrtimer_init(&apic->lapic_timer.timer, CLOCK_MONOTONIC, 2783 HRTIMER_MODE_ABS_HARD); 2784 apic->lapic_timer.timer.function = apic_timer_fn; 2785 if (timer_advance_ns == -1) { 2786 apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; 2787 lapic_timer_advance_dynamic = true; 2788 } else { 2789 apic->lapic_timer.timer_advance_ns = timer_advance_ns; 2790 lapic_timer_advance_dynamic = false; 2791 } 2792 2793 /* 2794 * Stuff the APIC ENABLE bit in lieu of temporarily incrementing 2795 * apic_hw_disabled; the full RESET value is set by kvm_lapic_reset(). 2796 */ 2797 vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE; 2798 static_branch_inc(&apic_sw_disabled.key); /* sw disabled at reset */ 2799 kvm_iodevice_init(&apic->dev, &apic_mmio_ops); 2800 2801 return 0; 2802 nomem_free_apic: 2803 kfree(apic); 2804 vcpu->arch.apic = NULL; 2805 nomem: 2806 return -ENOMEM; 2807 } 2808 2809 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu) 2810 { 2811 struct kvm_lapic *apic = vcpu->arch.apic; 2812 u32 ppr; 2813 2814 if (!kvm_apic_present(vcpu)) 2815 return -1; 2816 2817 __apic_update_ppr(apic, &ppr); 2818 return apic_has_interrupt_for_ppr(apic, ppr); 2819 } 2820 EXPORT_SYMBOL_GPL(kvm_apic_has_interrupt); 2821 2822 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu) 2823 { 2824 u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0); 2825 2826 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 2827 return 1; 2828 if ((lvt0 & APIC_LVT_MASKED) == 0 && 2829 GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT) 2830 return 1; 2831 return 0; 2832 } 2833 2834 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu) 2835 { 2836 struct kvm_lapic *apic = vcpu->arch.apic; 2837 2838 if (atomic_read(&apic->lapic_timer.pending) > 0) { 2839 kvm_apic_inject_pending_timer_irqs(apic); 2840 atomic_set(&apic->lapic_timer.pending, 0); 2841 } 2842 } 2843 2844 int kvm_get_apic_interrupt(struct kvm_vcpu *vcpu) 2845 { 2846 int vector = kvm_apic_has_interrupt(vcpu); 2847 struct kvm_lapic *apic = vcpu->arch.apic; 2848 u32 ppr; 2849 2850 if (vector == -1) 2851 return -1; 2852 2853 /* 2854 * We get here even with APIC virtualization enabled, if doing 2855 * nested virtualization and L1 runs with the "acknowledge interrupt 2856 * on exit" mode. Then we cannot inject the interrupt via RVI, 2857 * because the process would deliver it through the IDT. 2858 */ 2859 2860 apic_clear_irr(vector, apic); 2861 if (to_hv_vcpu(vcpu) && test_bit(vector, to_hv_synic(vcpu)->auto_eoi_bitmap)) { 2862 /* 2863 * For auto-EOI interrupts, there might be another pending 2864 * interrupt above PPR, so check whether to raise another 2865 * KVM_REQ_EVENT. 2866 */ 2867 apic_update_ppr(apic); 2868 } else { 2869 /* 2870 * For normal interrupts, PPR has been raised and there cannot 2871 * be a higher-priority pending interrupt---except if there was 2872 * a concurrent interrupt injection, but that would have 2873 * triggered KVM_REQ_EVENT already. 2874 */ 2875 apic_set_isr(vector, apic); 2876 __apic_update_ppr(apic, &ppr); 2877 } 2878 2879 return vector; 2880 } 2881 2882 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu, 2883 struct kvm_lapic_state *s, bool set) 2884 { 2885 if (apic_x2apic_mode(vcpu->arch.apic)) { 2886 u32 *id = (u32 *)(s->regs + APIC_ID); 2887 u32 *ldr = (u32 *)(s->regs + APIC_LDR); 2888 u64 icr; 2889 2890 if (vcpu->kvm->arch.x2apic_format) { 2891 if (*id != vcpu->vcpu_id) 2892 return -EINVAL; 2893 } else { 2894 if (set) 2895 *id >>= 24; 2896 else 2897 *id <<= 24; 2898 } 2899 2900 /* 2901 * In x2APIC mode, the LDR is fixed and based on the id. And 2902 * ICR is internally a single 64-bit register, but needs to be 2903 * split to ICR+ICR2 in userspace for backwards compatibility. 2904 */ 2905 if (set) { 2906 *ldr = kvm_apic_calc_x2apic_ldr(*id); 2907 2908 icr = __kvm_lapic_get_reg(s->regs, APIC_ICR) | 2909 (u64)__kvm_lapic_get_reg(s->regs, APIC_ICR2) << 32; 2910 __kvm_lapic_set_reg64(s->regs, APIC_ICR, icr); 2911 } else { 2912 icr = __kvm_lapic_get_reg64(s->regs, APIC_ICR); 2913 __kvm_lapic_set_reg(s->regs, APIC_ICR2, icr >> 32); 2914 } 2915 } 2916 2917 return 0; 2918 } 2919 2920 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 2921 { 2922 memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s)); 2923 2924 /* 2925 * Get calculated timer current count for remaining timer period (if 2926 * any) and store it in the returned register set. 2927 */ 2928 __kvm_lapic_set_reg(s->regs, APIC_TMCCT, 2929 __apic_read(vcpu->arch.apic, APIC_TMCCT)); 2930 2931 return kvm_apic_state_fixup(vcpu, s, false); 2932 } 2933 2934 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 2935 { 2936 struct kvm_lapic *apic = vcpu->arch.apic; 2937 int r; 2938 2939 kvm_lapic_set_base(vcpu, vcpu->arch.apic_base); 2940 /* set SPIV separately to get count of SW disabled APICs right */ 2941 apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV))); 2942 2943 r = kvm_apic_state_fixup(vcpu, s, true); 2944 if (r) { 2945 kvm_recalculate_apic_map(vcpu->kvm); 2946 return r; 2947 } 2948 memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s)); 2949 2950 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 2951 kvm_recalculate_apic_map(vcpu->kvm); 2952 kvm_apic_set_version(vcpu); 2953 2954 apic_update_ppr(apic); 2955 cancel_apic_timer(apic); 2956 apic->lapic_timer.expired_tscdeadline = 0; 2957 apic_update_lvtt(apic); 2958 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 2959 update_divide_count(apic); 2960 __start_apic_timer(apic, APIC_TMCCT); 2961 kvm_lapic_set_reg(apic, APIC_TMCCT, 0); 2962 kvm_apic_update_apicv(vcpu); 2963 if (apic->apicv_active) { 2964 static_call_cond(kvm_x86_apicv_post_state_restore)(vcpu); 2965 static_call_cond(kvm_x86_hwapic_irr_update)(vcpu, apic_find_highest_irr(apic)); 2966 static_call_cond(kvm_x86_hwapic_isr_update)(apic_find_highest_isr(apic)); 2967 } 2968 kvm_make_request(KVM_REQ_EVENT, vcpu); 2969 if (ioapic_in_kernel(vcpu->kvm)) 2970 kvm_rtc_eoi_tracking_restore_one(vcpu); 2971 2972 vcpu->arch.apic_arb_prio = 0; 2973 2974 return 0; 2975 } 2976 2977 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu) 2978 { 2979 struct hrtimer *timer; 2980 2981 if (!lapic_in_kernel(vcpu) || 2982 kvm_can_post_timer_interrupt(vcpu)) 2983 return; 2984 2985 timer = &vcpu->arch.apic->lapic_timer.timer; 2986 if (hrtimer_cancel(timer)) 2987 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD); 2988 } 2989 2990 /* 2991 * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt 2992 * 2993 * Detect whether guest triggered PV EOI since the 2994 * last entry. If yes, set EOI on guests's behalf. 2995 * Clear PV EOI in guest memory in any case. 2996 */ 2997 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu, 2998 struct kvm_lapic *apic) 2999 { 3000 int vector; 3001 /* 3002 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host 3003 * and KVM_PV_EOI_ENABLED in guest memory as follows: 3004 * 3005 * KVM_APIC_PV_EOI_PENDING is unset: 3006 * -> host disabled PV EOI. 3007 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set: 3008 * -> host enabled PV EOI, guest did not execute EOI yet. 3009 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset: 3010 * -> host enabled PV EOI, guest executed EOI. 3011 */ 3012 BUG_ON(!pv_eoi_enabled(vcpu)); 3013 3014 if (pv_eoi_test_and_clr_pending(vcpu)) 3015 return; 3016 vector = apic_set_eoi(apic); 3017 trace_kvm_pv_eoi(apic, vector); 3018 } 3019 3020 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu) 3021 { 3022 u32 data; 3023 3024 if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention)) 3025 apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic); 3026 3027 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 3028 return; 3029 3030 if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 3031 sizeof(u32))) 3032 return; 3033 3034 apic_set_tpr(vcpu->arch.apic, data & 0xff); 3035 } 3036 3037 /* 3038 * apic_sync_pv_eoi_to_guest - called before vmentry 3039 * 3040 * Detect whether it's safe to enable PV EOI and 3041 * if yes do so. 3042 */ 3043 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu, 3044 struct kvm_lapic *apic) 3045 { 3046 if (!pv_eoi_enabled(vcpu) || 3047 /* IRR set or many bits in ISR: could be nested. */ 3048 apic->irr_pending || 3049 /* Cache not set: could be safe but we don't bother. */ 3050 apic->highest_isr_cache == -1 || 3051 /* Need EOI to update ioapic. */ 3052 kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) { 3053 /* 3054 * PV EOI was disabled by apic_sync_pv_eoi_from_guest 3055 * so we need not do anything here. 3056 */ 3057 return; 3058 } 3059 3060 pv_eoi_set_pending(apic->vcpu); 3061 } 3062 3063 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu) 3064 { 3065 u32 data, tpr; 3066 int max_irr, max_isr; 3067 struct kvm_lapic *apic = vcpu->arch.apic; 3068 3069 apic_sync_pv_eoi_to_guest(vcpu, apic); 3070 3071 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 3072 return; 3073 3074 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff; 3075 max_irr = apic_find_highest_irr(apic); 3076 if (max_irr < 0) 3077 max_irr = 0; 3078 max_isr = apic_find_highest_isr(apic); 3079 if (max_isr < 0) 3080 max_isr = 0; 3081 data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24); 3082 3083 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 3084 sizeof(u32)); 3085 } 3086 3087 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr) 3088 { 3089 if (vapic_addr) { 3090 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, 3091 &vcpu->arch.apic->vapic_cache, 3092 vapic_addr, sizeof(u32))) 3093 return -EINVAL; 3094 __set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 3095 } else { 3096 __clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 3097 } 3098 3099 vcpu->arch.apic->vapic_addr = vapic_addr; 3100 return 0; 3101 } 3102 3103 int kvm_x2apic_icr_write(struct kvm_lapic *apic, u64 data) 3104 { 3105 data &= ~APIC_ICR_BUSY; 3106 3107 kvm_apic_send_ipi(apic, (u32)data, (u32)(data >> 32)); 3108 kvm_lapic_set_reg64(apic, APIC_ICR, data); 3109 trace_kvm_apic_write(APIC_ICR, data); 3110 return 0; 3111 } 3112 3113 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data) 3114 { 3115 u32 low; 3116 3117 if (reg == APIC_ICR) { 3118 *data = kvm_lapic_get_reg64(apic, APIC_ICR); 3119 return 0; 3120 } 3121 3122 if (kvm_lapic_reg_read(apic, reg, 4, &low)) 3123 return 1; 3124 3125 *data = low; 3126 3127 return 0; 3128 } 3129 3130 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data) 3131 { 3132 /* 3133 * ICR is a 64-bit register in x2APIC mode (and Hyper-V PV vAPIC) and 3134 * can be written as such, all other registers remain accessible only 3135 * through 32-bit reads/writes. 3136 */ 3137 if (reg == APIC_ICR) 3138 return kvm_x2apic_icr_write(apic, data); 3139 3140 /* Bits 63:32 are reserved in all other registers. */ 3141 if (data >> 32) 3142 return 1; 3143 3144 return kvm_lapic_reg_write(apic, reg, (u32)data); 3145 } 3146 3147 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data) 3148 { 3149 struct kvm_lapic *apic = vcpu->arch.apic; 3150 u32 reg = (msr - APIC_BASE_MSR) << 4; 3151 3152 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 3153 return 1; 3154 3155 return kvm_lapic_msr_write(apic, reg, data); 3156 } 3157 3158 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data) 3159 { 3160 struct kvm_lapic *apic = vcpu->arch.apic; 3161 u32 reg = (msr - APIC_BASE_MSR) << 4; 3162 3163 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 3164 return 1; 3165 3166 return kvm_lapic_msr_read(apic, reg, data); 3167 } 3168 3169 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data) 3170 { 3171 if (!lapic_in_kernel(vcpu)) 3172 return 1; 3173 3174 return kvm_lapic_msr_write(vcpu->arch.apic, reg, data); 3175 } 3176 3177 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data) 3178 { 3179 if (!lapic_in_kernel(vcpu)) 3180 return 1; 3181 3182 return kvm_lapic_msr_read(vcpu->arch.apic, reg, data); 3183 } 3184 3185 int kvm_lapic_set_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len) 3186 { 3187 u64 addr = data & ~KVM_MSR_ENABLED; 3188 struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data; 3189 unsigned long new_len; 3190 int ret; 3191 3192 if (!IS_ALIGNED(addr, 4)) 3193 return 1; 3194 3195 if (data & KVM_MSR_ENABLED) { 3196 if (addr == ghc->gpa && len <= ghc->len) 3197 new_len = ghc->len; 3198 else 3199 new_len = len; 3200 3201 ret = kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len); 3202 if (ret) 3203 return ret; 3204 } 3205 3206 vcpu->arch.pv_eoi.msr_val = data; 3207 3208 return 0; 3209 } 3210 3211 int kvm_apic_accept_events(struct kvm_vcpu *vcpu) 3212 { 3213 struct kvm_lapic *apic = vcpu->arch.apic; 3214 u8 sipi_vector; 3215 int r; 3216 3217 if (!kvm_apic_has_pending_init_or_sipi(vcpu)) 3218 return 0; 3219 3220 if (is_guest_mode(vcpu)) { 3221 r = kvm_check_nested_events(vcpu); 3222 if (r < 0) 3223 return r == -EBUSY ? 0 : r; 3224 /* 3225 * Continue processing INIT/SIPI even if a nested VM-Exit 3226 * occurred, e.g. pending SIPIs should be dropped if INIT+SIPI 3227 * are blocked as a result of transitioning to VMX root mode. 3228 */ 3229 } 3230 3231 /* 3232 * INITs are blocked while CPU is in specific states (SMM, VMX root 3233 * mode, SVM with GIF=0), while SIPIs are dropped if the CPU isn't in 3234 * wait-for-SIPI (WFS). 3235 */ 3236 if (!kvm_apic_init_sipi_allowed(vcpu)) { 3237 WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED); 3238 clear_bit(KVM_APIC_SIPI, &apic->pending_events); 3239 return 0; 3240 } 3241 3242 if (test_and_clear_bit(KVM_APIC_INIT, &apic->pending_events)) { 3243 kvm_vcpu_reset(vcpu, true); 3244 if (kvm_vcpu_is_bsp(apic->vcpu)) 3245 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 3246 else 3247 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 3248 } 3249 if (test_and_clear_bit(KVM_APIC_SIPI, &apic->pending_events)) { 3250 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 3251 /* evaluate pending_events before reading the vector */ 3252 smp_rmb(); 3253 sipi_vector = apic->sipi_vector; 3254 static_call(kvm_x86_vcpu_deliver_sipi_vector)(vcpu, sipi_vector); 3255 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 3256 } 3257 } 3258 return 0; 3259 } 3260 3261 void kvm_lapic_exit(void) 3262 { 3263 static_key_deferred_flush(&apic_hw_disabled); 3264 WARN_ON(static_branch_unlikely(&apic_hw_disabled.key)); 3265 static_key_deferred_flush(&apic_sw_disabled); 3266 WARN_ON(static_branch_unlikely(&apic_sw_disabled.key)); 3267 } 3268