1 // SPDX-License-Identifier: GPL-2.0-only 2 3 /* 4 * Local APIC virtualization 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2007 Novell 8 * Copyright (C) 2007 Intel 9 * Copyright 2009 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Dor Laor <dor.laor@qumranet.com> 13 * Gregory Haskins <ghaskins@novell.com> 14 * Yaozu (Eddie) Dong <eddie.dong@intel.com> 15 * 16 * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation. 17 */ 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/kvm_host.h> 21 #include <linux/kvm.h> 22 #include <linux/mm.h> 23 #include <linux/highmem.h> 24 #include <linux/smp.h> 25 #include <linux/hrtimer.h> 26 #include <linux/io.h> 27 #include <linux/export.h> 28 #include <linux/math64.h> 29 #include <linux/slab.h> 30 #include <asm/apic.h> 31 #include <asm/processor.h> 32 #include <asm/mce.h> 33 #include <asm/msr.h> 34 #include <asm/page.h> 35 #include <asm/current.h> 36 #include <asm/apicdef.h> 37 #include <asm/delay.h> 38 #include <linux/atomic.h> 39 #include <linux/jump_label.h> 40 #include "kvm_cache_regs.h" 41 #include "irq.h" 42 #include "ioapic.h" 43 #include "trace.h" 44 #include "x86.h" 45 #include "xen.h" 46 #include "cpuid.h" 47 #include "hyperv.h" 48 #include "smm.h" 49 50 #ifndef CONFIG_X86_64 51 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y)) 52 #else 53 #define mod_64(x, y) ((x) % (y)) 54 #endif 55 56 /* 14 is the version for Xeon and Pentium 8.4.8*/ 57 #define APIC_VERSION 0x14UL 58 #define LAPIC_MMIO_LENGTH (1 << 12) 59 60 /* 61 * Enable local APIC timer advancement (tscdeadline mode only) with adaptive 62 * tuning. When enabled, KVM programs the host timer event to fire early, i.e. 63 * before the deadline expires, to account for the delay between taking the 64 * VM-Exit (to inject the guest event) and the subsequent VM-Enter to resume 65 * the guest, i.e. so that the interrupt arrives in the guest with minimal 66 * latency relative to the deadline programmed by the guest. 67 */ 68 static bool lapic_timer_advance __read_mostly = true; 69 module_param(lapic_timer_advance, bool, 0444); 70 71 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN 100 /* clock cycles */ 72 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX 10000 /* clock cycles */ 73 #define LAPIC_TIMER_ADVANCE_NS_INIT 1000 74 #define LAPIC_TIMER_ADVANCE_NS_MAX 5000 75 /* step-by-step approximation to mitigate fluctuation */ 76 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8 77 78 static bool __read_mostly vector_hashing_enabled = true; 79 module_param_named(vector_hashing, vector_hashing_enabled, bool, 0444); 80 81 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data); 82 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data); 83 84 static inline void kvm_lapic_set_reg(struct kvm_lapic *apic, int reg_off, u32 val) 85 { 86 apic_set_reg(apic->regs, reg_off, val); 87 } 88 89 static __always_inline u64 kvm_lapic_get_reg64(struct kvm_lapic *apic, int reg) 90 { 91 return apic_get_reg64(apic->regs, reg); 92 } 93 94 static __always_inline void kvm_lapic_set_reg64(struct kvm_lapic *apic, 95 int reg, u64 val) 96 { 97 apic_set_reg64(apic->regs, reg, val); 98 } 99 100 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector) 101 { 102 struct kvm_lapic *apic = vcpu->arch.apic; 103 104 return apic_test_vector(vector, apic->regs + APIC_ISR) || 105 apic_test_vector(vector, apic->regs + APIC_IRR); 106 } 107 108 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); 109 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_has_noapic_vcpu); 110 111 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_hw_disabled, HZ); 112 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_sw_disabled, HZ); 113 114 static inline int apic_enabled(struct kvm_lapic *apic) 115 { 116 return kvm_apic_sw_enabled(apic) && kvm_apic_hw_enabled(apic); 117 } 118 119 #define LVT_MASK \ 120 (APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK) 121 122 #define LINT_MASK \ 123 (LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \ 124 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER) 125 126 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic) 127 { 128 return apic->vcpu->vcpu_id; 129 } 130 131 static bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu) 132 { 133 return pi_inject_timer && kvm_vcpu_apicv_active(vcpu) && 134 (kvm_mwait_in_guest(vcpu->kvm) || kvm_hlt_in_guest(vcpu->kvm)); 135 } 136 137 static bool kvm_can_use_hv_timer(struct kvm_vcpu *vcpu) 138 { 139 return kvm_x86_ops.set_hv_timer 140 && !(kvm_mwait_in_guest(vcpu->kvm) || 141 kvm_can_post_timer_interrupt(vcpu)); 142 } 143 144 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu) 145 { 146 return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE; 147 } 148 149 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id) 150 { 151 return ((id >> 4) << 16) | (1 << (id & 0xf)); 152 } 153 154 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map, 155 u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) { 156 switch (map->logical_mode) { 157 case KVM_APIC_MODE_SW_DISABLED: 158 /* Arbitrarily use the flat map so that @cluster isn't NULL. */ 159 *cluster = map->xapic_flat_map; 160 *mask = 0; 161 return true; 162 case KVM_APIC_MODE_X2APIC: { 163 u32 offset = (dest_id >> 16) * 16; 164 u32 max_apic_id = map->max_apic_id; 165 166 if (offset <= max_apic_id) { 167 u8 cluster_size = min(max_apic_id - offset + 1, 16U); 168 169 offset = array_index_nospec(offset, map->max_apic_id + 1); 170 *cluster = &map->phys_map[offset]; 171 *mask = dest_id & (0xffff >> (16 - cluster_size)); 172 } else { 173 *mask = 0; 174 } 175 176 return true; 177 } 178 case KVM_APIC_MODE_XAPIC_FLAT: 179 *cluster = map->xapic_flat_map; 180 *mask = dest_id & 0xff; 181 return true; 182 case KVM_APIC_MODE_XAPIC_CLUSTER: 183 *cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf]; 184 *mask = dest_id & 0xf; 185 return true; 186 case KVM_APIC_MODE_MAP_DISABLED: 187 return false; 188 default: 189 WARN_ON_ONCE(1); 190 return false; 191 } 192 } 193 194 static int kvm_recalculate_phys_map(struct kvm_apic_map *new, 195 struct kvm_vcpu *vcpu, 196 bool *xapic_id_mismatch) 197 { 198 struct kvm_lapic *apic = vcpu->arch.apic; 199 u32 x2apic_id = kvm_x2apic_id(apic); 200 u32 xapic_id = kvm_xapic_id(apic); 201 u32 physical_id; 202 203 /* 204 * For simplicity, KVM always allocates enough space for all possible 205 * xAPIC IDs. Yell, but don't kill the VM, as KVM can continue on 206 * without the optimized map. 207 */ 208 if (WARN_ON_ONCE(xapic_id > new->max_apic_id)) 209 return -EINVAL; 210 211 /* 212 * Bail if a vCPU was added and/or enabled its APIC between allocating 213 * the map and doing the actual calculations for the map. Note, KVM 214 * hardcodes the x2APIC ID to vcpu_id, i.e. there's no TOCTOU bug if 215 * the compiler decides to reload x2apic_id after this check. 216 */ 217 if (x2apic_id > new->max_apic_id) 218 return -E2BIG; 219 220 /* 221 * Deliberately truncate the vCPU ID when detecting a mismatched APIC 222 * ID to avoid false positives if the vCPU ID, i.e. x2APIC ID, is a 223 * 32-bit value. Any unwanted aliasing due to truncation results will 224 * be detected below. 225 */ 226 if (!apic_x2apic_mode(apic) && xapic_id != (u8)vcpu->vcpu_id) 227 *xapic_id_mismatch = true; 228 229 /* 230 * Apply KVM's hotplug hack if userspace has enable 32-bit APIC IDs. 231 * Allow sending events to vCPUs by their x2APIC ID even if the target 232 * vCPU is in legacy xAPIC mode, and silently ignore aliased xAPIC IDs 233 * (the x2APIC ID is truncated to 8 bits, causing IDs > 0xff to wrap 234 * and collide). 235 * 236 * Honor the architectural (and KVM's non-optimized) behavior if 237 * userspace has not enabled 32-bit x2APIC IDs. Each APIC is supposed 238 * to process messages independently. If multiple vCPUs have the same 239 * effective APIC ID, e.g. due to the x2APIC wrap or because the guest 240 * manually modified its xAPIC IDs, events targeting that ID are 241 * supposed to be recognized by all vCPUs with said ID. 242 */ 243 if (vcpu->kvm->arch.x2apic_format) { 244 /* See also kvm_apic_match_physical_addr(). */ 245 if (apic_x2apic_mode(apic) || x2apic_id > 0xff) 246 new->phys_map[x2apic_id] = apic; 247 248 if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id]) 249 new->phys_map[xapic_id] = apic; 250 } else { 251 /* 252 * Disable the optimized map if the physical APIC ID is already 253 * mapped, i.e. is aliased to multiple vCPUs. The optimized 254 * map requires a strict 1:1 mapping between IDs and vCPUs. 255 */ 256 if (apic_x2apic_mode(apic)) 257 physical_id = x2apic_id; 258 else 259 physical_id = xapic_id; 260 261 if (new->phys_map[physical_id]) 262 return -EINVAL; 263 264 new->phys_map[physical_id] = apic; 265 } 266 267 return 0; 268 } 269 270 static void kvm_recalculate_logical_map(struct kvm_apic_map *new, 271 struct kvm_vcpu *vcpu) 272 { 273 struct kvm_lapic *apic = vcpu->arch.apic; 274 enum kvm_apic_logical_mode logical_mode; 275 struct kvm_lapic **cluster; 276 u16 mask; 277 u32 ldr; 278 279 if (new->logical_mode == KVM_APIC_MODE_MAP_DISABLED) 280 return; 281 282 if (!kvm_apic_sw_enabled(apic)) 283 return; 284 285 ldr = kvm_lapic_get_reg(apic, APIC_LDR); 286 if (!ldr) 287 return; 288 289 if (apic_x2apic_mode(apic)) { 290 logical_mode = KVM_APIC_MODE_X2APIC; 291 } else { 292 ldr = GET_APIC_LOGICAL_ID(ldr); 293 if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT) 294 logical_mode = KVM_APIC_MODE_XAPIC_FLAT; 295 else 296 logical_mode = KVM_APIC_MODE_XAPIC_CLUSTER; 297 } 298 299 /* 300 * To optimize logical mode delivery, all software-enabled APICs must 301 * be configured for the same mode. 302 */ 303 if (new->logical_mode == KVM_APIC_MODE_SW_DISABLED) { 304 new->logical_mode = logical_mode; 305 } else if (new->logical_mode != logical_mode) { 306 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED; 307 return; 308 } 309 310 /* 311 * In x2APIC mode, the LDR is read-only and derived directly from the 312 * x2APIC ID, thus is guaranteed to be addressable. KVM reuses 313 * kvm_apic_map.phys_map to optimize logical mode x2APIC interrupts by 314 * reversing the LDR calculation to get cluster of APICs, i.e. no 315 * additional work is required. 316 */ 317 if (apic_x2apic_mode(apic)) 318 return; 319 320 if (WARN_ON_ONCE(!kvm_apic_map_get_logical_dest(new, ldr, 321 &cluster, &mask))) { 322 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED; 323 return; 324 } 325 326 if (!mask) 327 return; 328 329 ldr = ffs(mask) - 1; 330 if (!is_power_of_2(mask) || cluster[ldr]) 331 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED; 332 else 333 cluster[ldr] = apic; 334 } 335 336 /* 337 * CLEAN -> DIRTY and UPDATE_IN_PROGRESS -> DIRTY changes happen without a lock. 338 * 339 * DIRTY -> UPDATE_IN_PROGRESS and UPDATE_IN_PROGRESS -> CLEAN happen with 340 * apic_map_lock_held. 341 */ 342 enum { 343 CLEAN, 344 UPDATE_IN_PROGRESS, 345 DIRTY 346 }; 347 348 static void kvm_recalculate_apic_map(struct kvm *kvm) 349 { 350 struct kvm_apic_map *new, *old = NULL; 351 struct kvm_vcpu *vcpu; 352 unsigned long i; 353 u32 max_id = 255; /* enough space for any xAPIC ID */ 354 bool xapic_id_mismatch; 355 int r; 356 357 /* Read kvm->arch.apic_map_dirty before kvm->arch.apic_map. */ 358 if (atomic_read_acquire(&kvm->arch.apic_map_dirty) == CLEAN) 359 return; 360 361 WARN_ONCE(!irqchip_in_kernel(kvm), 362 "Dirty APIC map without an in-kernel local APIC"); 363 364 mutex_lock(&kvm->arch.apic_map_lock); 365 366 retry: 367 /* 368 * Read kvm->arch.apic_map_dirty before kvm->arch.apic_map (if clean) 369 * or the APIC registers (if dirty). Note, on retry the map may have 370 * not yet been marked dirty by whatever task changed a vCPU's x2APIC 371 * ID, i.e. the map may still show up as in-progress. In that case 372 * this task still needs to retry and complete its calculation. 373 */ 374 if (atomic_cmpxchg_acquire(&kvm->arch.apic_map_dirty, 375 DIRTY, UPDATE_IN_PROGRESS) == CLEAN) { 376 /* Someone else has updated the map. */ 377 mutex_unlock(&kvm->arch.apic_map_lock); 378 return; 379 } 380 381 /* 382 * Reset the mismatch flag between attempts so that KVM does the right 383 * thing if a vCPU changes its xAPIC ID, but do NOT reset max_id, i.e. 384 * keep max_id strictly increasing. Disallowing max_id from shrinking 385 * ensures KVM won't get stuck in an infinite loop, e.g. if the vCPU 386 * with the highest x2APIC ID is toggling its APIC on and off. 387 */ 388 xapic_id_mismatch = false; 389 390 kvm_for_each_vcpu(i, vcpu, kvm) 391 if (kvm_apic_present(vcpu)) 392 max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic)); 393 394 new = kvzalloc(sizeof(struct kvm_apic_map) + 395 sizeof(struct kvm_lapic *) * ((u64)max_id + 1), 396 GFP_KERNEL_ACCOUNT); 397 398 if (!new) 399 goto out; 400 401 new->max_apic_id = max_id; 402 new->logical_mode = KVM_APIC_MODE_SW_DISABLED; 403 404 kvm_for_each_vcpu(i, vcpu, kvm) { 405 if (!kvm_apic_present(vcpu)) 406 continue; 407 408 r = kvm_recalculate_phys_map(new, vcpu, &xapic_id_mismatch); 409 if (r) { 410 kvfree(new); 411 new = NULL; 412 if (r == -E2BIG) { 413 cond_resched(); 414 goto retry; 415 } 416 417 goto out; 418 } 419 420 kvm_recalculate_logical_map(new, vcpu); 421 } 422 out: 423 /* 424 * The optimized map is effectively KVM's internal version of APICv, 425 * and all unwanted aliasing that results in disabling the optimized 426 * map also applies to APICv. 427 */ 428 if (!new) 429 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED); 430 else 431 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED); 432 433 if (!new || new->logical_mode == KVM_APIC_MODE_MAP_DISABLED) 434 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED); 435 else 436 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED); 437 438 if (xapic_id_mismatch) 439 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED); 440 else 441 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED); 442 443 old = rcu_dereference_protected(kvm->arch.apic_map, 444 lockdep_is_held(&kvm->arch.apic_map_lock)); 445 rcu_assign_pointer(kvm->arch.apic_map, new); 446 /* 447 * Write kvm->arch.apic_map before clearing apic->apic_map_dirty. 448 * If another update has come in, leave it DIRTY. 449 */ 450 atomic_cmpxchg_release(&kvm->arch.apic_map_dirty, 451 UPDATE_IN_PROGRESS, CLEAN); 452 mutex_unlock(&kvm->arch.apic_map_lock); 453 454 if (old) 455 kvfree_rcu(old, rcu); 456 457 kvm_make_scan_ioapic_request(kvm); 458 } 459 460 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val) 461 { 462 bool enabled = val & APIC_SPIV_APIC_ENABLED; 463 464 kvm_lapic_set_reg(apic, APIC_SPIV, val); 465 466 if (enabled != apic->sw_enabled) { 467 apic->sw_enabled = enabled; 468 if (enabled) 469 static_branch_slow_dec_deferred(&apic_sw_disabled); 470 else 471 static_branch_inc(&apic_sw_disabled.key); 472 473 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 474 } 475 476 /* Check if there are APF page ready requests pending */ 477 if (enabled) { 478 kvm_make_request(KVM_REQ_APF_READY, apic->vcpu); 479 kvm_xen_sw_enable_lapic(apic->vcpu); 480 } 481 } 482 483 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id) 484 { 485 kvm_lapic_set_reg(apic, APIC_ID, id << 24); 486 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 487 } 488 489 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id) 490 { 491 kvm_lapic_set_reg(apic, APIC_LDR, id); 492 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 493 } 494 495 static inline void kvm_apic_set_dfr(struct kvm_lapic *apic, u32 val) 496 { 497 kvm_lapic_set_reg(apic, APIC_DFR, val); 498 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 499 } 500 501 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id) 502 { 503 u32 ldr = kvm_apic_calc_x2apic_ldr(id); 504 505 WARN_ON_ONCE(id != apic->vcpu->vcpu_id); 506 507 kvm_lapic_set_reg(apic, APIC_ID, id); 508 kvm_lapic_set_reg(apic, APIC_LDR, ldr); 509 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 510 } 511 512 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type) 513 { 514 return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED); 515 } 516 517 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic) 518 { 519 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT; 520 } 521 522 static inline int apic_lvtt_period(struct kvm_lapic *apic) 523 { 524 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC; 525 } 526 527 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic) 528 { 529 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE; 530 } 531 532 static inline int apic_lvt_nmi_mode(u32 lvt_val) 533 { 534 return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI; 535 } 536 537 static inline bool kvm_lapic_lvt_supported(struct kvm_lapic *apic, int lvt_index) 538 { 539 return apic->nr_lvt_entries > lvt_index; 540 } 541 542 static inline int kvm_apic_calc_nr_lvt_entries(struct kvm_vcpu *vcpu) 543 { 544 return KVM_APIC_MAX_NR_LVT_ENTRIES - !(vcpu->arch.mcg_cap & MCG_CMCI_P); 545 } 546 547 void kvm_apic_set_version(struct kvm_vcpu *vcpu) 548 { 549 struct kvm_lapic *apic = vcpu->arch.apic; 550 u32 v = 0; 551 552 if (!lapic_in_kernel(vcpu)) 553 return; 554 555 v = APIC_VERSION | ((apic->nr_lvt_entries - 1) << 16); 556 557 /* 558 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation) 559 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with 560 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC 561 * version first and level-triggered interrupts never get EOIed in 562 * IOAPIC. 563 */ 564 if (guest_cpu_cap_has(vcpu, X86_FEATURE_X2APIC) && 565 !ioapic_in_kernel(vcpu->kvm)) 566 v |= APIC_LVR_DIRECTED_EOI; 567 kvm_lapic_set_reg(apic, APIC_LVR, v); 568 } 569 570 void kvm_apic_after_set_mcg_cap(struct kvm_vcpu *vcpu) 571 { 572 int nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu); 573 struct kvm_lapic *apic = vcpu->arch.apic; 574 int i; 575 576 if (!lapic_in_kernel(vcpu) || nr_lvt_entries == apic->nr_lvt_entries) 577 return; 578 579 /* Initialize/mask any "new" LVT entries. */ 580 for (i = apic->nr_lvt_entries; i < nr_lvt_entries; i++) 581 kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED); 582 583 apic->nr_lvt_entries = nr_lvt_entries; 584 585 /* The number of LVT entries is reflected in the version register. */ 586 kvm_apic_set_version(vcpu); 587 } 588 589 static const unsigned int apic_lvt_mask[KVM_APIC_MAX_NR_LVT_ENTRIES] = { 590 [LVT_TIMER] = LVT_MASK, /* timer mode mask added at runtime */ 591 [LVT_THERMAL_MONITOR] = LVT_MASK | APIC_MODE_MASK, 592 [LVT_PERFORMANCE_COUNTER] = LVT_MASK | APIC_MODE_MASK, 593 [LVT_LINT0] = LINT_MASK, 594 [LVT_LINT1] = LINT_MASK, 595 [LVT_ERROR] = LVT_MASK, 596 [LVT_CMCI] = LVT_MASK | APIC_MODE_MASK 597 }; 598 599 static u8 count_vectors(void *bitmap) 600 { 601 int vec; 602 u32 *reg; 603 u8 count = 0; 604 605 for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) { 606 reg = bitmap + APIC_VECTOR_TO_REG_OFFSET(vec); 607 count += hweight32(*reg); 608 } 609 610 return count; 611 } 612 613 bool __kvm_apic_update_irr(unsigned long *pir, void *regs, int *max_irr) 614 { 615 unsigned long pir_vals[NR_PIR_WORDS]; 616 u32 *__pir = (void *)pir_vals; 617 u32 i, vec; 618 u32 irr_val, prev_irr_val; 619 int max_updated_irr; 620 621 max_updated_irr = -1; 622 *max_irr = -1; 623 624 if (!pi_harvest_pir(pir, pir_vals)) 625 return false; 626 627 for (i = vec = 0; i <= 7; i++, vec += 32) { 628 u32 *p_irr = (u32 *)(regs + APIC_IRR + i * 0x10); 629 630 irr_val = READ_ONCE(*p_irr); 631 632 if (__pir[i]) { 633 prev_irr_val = irr_val; 634 do { 635 irr_val = prev_irr_val | __pir[i]; 636 } while (prev_irr_val != irr_val && 637 !try_cmpxchg(p_irr, &prev_irr_val, irr_val)); 638 639 if (prev_irr_val != irr_val) 640 max_updated_irr = __fls(irr_val ^ prev_irr_val) + vec; 641 } 642 if (irr_val) 643 *max_irr = __fls(irr_val) + vec; 644 } 645 646 return ((max_updated_irr != -1) && 647 (max_updated_irr == *max_irr)); 648 } 649 EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_apic_update_irr); 650 651 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, unsigned long *pir, int *max_irr) 652 { 653 struct kvm_lapic *apic = vcpu->arch.apic; 654 bool irr_updated = __kvm_apic_update_irr(pir, apic->regs, max_irr); 655 656 if (unlikely(!apic->apicv_active && irr_updated)) 657 apic->irr_pending = true; 658 return irr_updated; 659 } 660 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_apic_update_irr); 661 662 static inline int apic_search_irr(struct kvm_lapic *apic) 663 { 664 return apic_find_highest_vector(apic->regs + APIC_IRR); 665 } 666 667 static inline int apic_find_highest_irr(struct kvm_lapic *apic) 668 { 669 int result; 670 671 /* 672 * Note that irr_pending is just a hint. It will be always 673 * true with virtual interrupt delivery enabled. 674 */ 675 if (!apic->irr_pending) 676 return -1; 677 678 result = apic_search_irr(apic); 679 ASSERT(result == -1 || result >= 16); 680 681 return result; 682 } 683 684 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic) 685 { 686 if (unlikely(apic->apicv_active)) { 687 apic_clear_vector(vec, apic->regs + APIC_IRR); 688 } else { 689 apic->irr_pending = false; 690 apic_clear_vector(vec, apic->regs + APIC_IRR); 691 if (apic_search_irr(apic) != -1) 692 apic->irr_pending = true; 693 } 694 } 695 696 void kvm_apic_clear_irr(struct kvm_vcpu *vcpu, int vec) 697 { 698 apic_clear_irr(vec, vcpu->arch.apic); 699 } 700 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_apic_clear_irr); 701 702 static void *apic_vector_to_isr(int vec, struct kvm_lapic *apic) 703 { 704 return apic->regs + APIC_ISR + APIC_VECTOR_TO_REG_OFFSET(vec); 705 } 706 707 static inline void apic_set_isr(int vec, struct kvm_lapic *apic) 708 { 709 if (__test_and_set_bit(APIC_VECTOR_TO_BIT_NUMBER(vec), 710 apic_vector_to_isr(vec, apic))) 711 return; 712 713 /* 714 * With APIC virtualization enabled, all caching is disabled 715 * because the processor can modify ISR under the hood. Instead 716 * just set SVI. 717 */ 718 if (unlikely(apic->apicv_active)) 719 kvm_x86_call(hwapic_isr_update)(apic->vcpu, vec); 720 else { 721 ++apic->isr_count; 722 BUG_ON(apic->isr_count > MAX_APIC_VECTOR); 723 /* 724 * ISR (in service register) bit is set when injecting an interrupt. 725 * The highest vector is injected. Thus the latest bit set matches 726 * the highest bit in ISR. 727 */ 728 apic->highest_isr_cache = vec; 729 } 730 } 731 732 static inline int apic_find_highest_isr(struct kvm_lapic *apic) 733 { 734 int result; 735 736 /* 737 * Note that isr_count is always 1, and highest_isr_cache 738 * is always -1, with APIC virtualization enabled. 739 */ 740 if (!apic->isr_count) 741 return -1; 742 if (likely(apic->highest_isr_cache != -1)) 743 return apic->highest_isr_cache; 744 745 result = apic_find_highest_vector(apic->regs + APIC_ISR); 746 ASSERT(result == -1 || result >= 16); 747 748 return result; 749 } 750 751 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic) 752 { 753 if (!__test_and_clear_bit(APIC_VECTOR_TO_BIT_NUMBER(vec), 754 apic_vector_to_isr(vec, apic))) 755 return; 756 757 /* 758 * We do get here for APIC virtualization enabled if the guest 759 * uses the Hyper-V APIC enlightenment. In this case we may need 760 * to trigger a new interrupt delivery by writing the SVI field; 761 * on the other hand isr_count and highest_isr_cache are unused 762 * and must be left alone. 763 */ 764 if (unlikely(apic->apicv_active)) 765 kvm_x86_call(hwapic_isr_update)(apic->vcpu, apic_find_highest_isr(apic)); 766 else { 767 --apic->isr_count; 768 BUG_ON(apic->isr_count < 0); 769 apic->highest_isr_cache = -1; 770 } 771 } 772 773 void kvm_apic_update_hwapic_isr(struct kvm_vcpu *vcpu) 774 { 775 struct kvm_lapic *apic = vcpu->arch.apic; 776 777 if (WARN_ON_ONCE(!lapic_in_kernel(vcpu)) || !apic->apicv_active) 778 return; 779 780 kvm_x86_call(hwapic_isr_update)(vcpu, apic_find_highest_isr(apic)); 781 } 782 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_apic_update_hwapic_isr); 783 784 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu) 785 { 786 /* This may race with setting of irr in __apic_accept_irq() and 787 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq 788 * will cause vmexit immediately and the value will be recalculated 789 * on the next vmentry. 790 */ 791 return apic_find_highest_irr(vcpu->arch.apic); 792 } 793 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_lapic_find_highest_irr); 794 795 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 796 int vector, int level, int trig_mode, 797 struct dest_map *dest_map); 798 799 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq, 800 struct dest_map *dest_map) 801 { 802 struct kvm_lapic *apic = vcpu->arch.apic; 803 804 return __apic_accept_irq(apic, irq->delivery_mode, irq->vector, 805 irq->level, irq->trig_mode, dest_map); 806 } 807 808 static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map, 809 struct kvm_lapic_irq *irq, u32 min) 810 { 811 int i, count = 0; 812 struct kvm_vcpu *vcpu; 813 814 if (min > map->max_apic_id) 815 return 0; 816 817 min = array_index_nospec(min, map->max_apic_id + 1); 818 819 for_each_set_bit(i, ipi_bitmap, 820 min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) { 821 if (map->phys_map[min + i]) { 822 vcpu = map->phys_map[min + i]->vcpu; 823 count += kvm_apic_set_irq(vcpu, irq, NULL); 824 } 825 } 826 827 return count; 828 } 829 830 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 831 unsigned long ipi_bitmap_high, u32 min, 832 unsigned long icr, int op_64_bit) 833 { 834 struct kvm_apic_map *map; 835 struct kvm_lapic_irq irq = {0}; 836 int cluster_size = op_64_bit ? 64 : 32; 837 int count; 838 839 if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK)) 840 return -KVM_EINVAL; 841 842 irq.vector = icr & APIC_VECTOR_MASK; 843 irq.delivery_mode = icr & APIC_MODE_MASK; 844 irq.level = (icr & APIC_INT_ASSERT) != 0; 845 irq.trig_mode = icr & APIC_INT_LEVELTRIG; 846 847 rcu_read_lock(); 848 map = rcu_dereference(kvm->arch.apic_map); 849 850 count = -EOPNOTSUPP; 851 if (likely(map)) { 852 count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min); 853 min += cluster_size; 854 count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min); 855 } 856 857 rcu_read_unlock(); 858 return count; 859 } 860 861 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val) 862 { 863 864 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val, 865 sizeof(val)); 866 } 867 868 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val) 869 { 870 871 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val, 872 sizeof(*val)); 873 } 874 875 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu) 876 { 877 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED; 878 } 879 880 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu) 881 { 882 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0) 883 return; 884 885 __set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 886 } 887 888 static bool pv_eoi_test_and_clr_pending(struct kvm_vcpu *vcpu) 889 { 890 u8 val; 891 892 if (pv_eoi_get_user(vcpu, &val) < 0) 893 return false; 894 895 val &= KVM_PV_EOI_ENABLED; 896 897 if (val && pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0) 898 return false; 899 900 /* 901 * Clear pending bit in any case: it will be set again on vmentry. 902 * While this might not be ideal from performance point of view, 903 * this makes sure pv eoi is only enabled when we know it's safe. 904 */ 905 __clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 906 907 return val; 908 } 909 910 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr) 911 { 912 int highest_irr; 913 if (kvm_x86_ops.sync_pir_to_irr) 914 highest_irr = kvm_x86_call(sync_pir_to_irr)(apic->vcpu); 915 else 916 highest_irr = apic_find_highest_irr(apic); 917 if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr) 918 return -1; 919 return highest_irr; 920 } 921 922 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr) 923 { 924 u32 tpr, isrv, ppr, old_ppr; 925 int isr; 926 927 old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI); 928 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI); 929 isr = apic_find_highest_isr(apic); 930 isrv = (isr != -1) ? isr : 0; 931 932 if ((tpr & 0xf0) >= (isrv & 0xf0)) 933 ppr = tpr & 0xff; 934 else 935 ppr = isrv & 0xf0; 936 937 *new_ppr = ppr; 938 if (old_ppr != ppr) 939 kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr); 940 941 return ppr < old_ppr; 942 } 943 944 static void apic_update_ppr(struct kvm_lapic *apic) 945 { 946 u32 ppr; 947 948 if (__apic_update_ppr(apic, &ppr) && 949 apic_has_interrupt_for_ppr(apic, ppr) != -1) 950 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 951 } 952 953 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu) 954 { 955 apic_update_ppr(vcpu->arch.apic); 956 } 957 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_apic_update_ppr); 958 959 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr) 960 { 961 kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr); 962 apic_update_ppr(apic); 963 } 964 965 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda) 966 { 967 return mda == (apic_x2apic_mode(apic) ? 968 X2APIC_BROADCAST : APIC_BROADCAST); 969 } 970 971 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda) 972 { 973 if (kvm_apic_broadcast(apic, mda)) 974 return true; 975 976 /* 977 * Hotplug hack: Accept interrupts for vCPUs in xAPIC mode as if they 978 * were in x2APIC mode if the target APIC ID can't be encoded as an 979 * xAPIC ID. This allows unique addressing of hotplugged vCPUs (which 980 * start in xAPIC mode) with an APIC ID that is unaddressable in xAPIC 981 * mode. Match the x2APIC ID if and only if the target APIC ID can't 982 * be encoded in xAPIC to avoid spurious matches against a vCPU that 983 * changed its (addressable) xAPIC ID (which is writable). 984 */ 985 if (apic_x2apic_mode(apic) || mda > 0xff) 986 return mda == kvm_x2apic_id(apic); 987 988 return mda == kvm_xapic_id(apic); 989 } 990 991 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda) 992 { 993 u32 logical_id; 994 995 if (kvm_apic_broadcast(apic, mda)) 996 return true; 997 998 logical_id = kvm_lapic_get_reg(apic, APIC_LDR); 999 1000 if (apic_x2apic_mode(apic)) 1001 return ((logical_id >> 16) == (mda >> 16)) 1002 && (logical_id & mda & 0xffff) != 0; 1003 1004 logical_id = GET_APIC_LOGICAL_ID(logical_id); 1005 1006 switch (kvm_lapic_get_reg(apic, APIC_DFR)) { 1007 case APIC_DFR_FLAT: 1008 return (logical_id & mda) != 0; 1009 case APIC_DFR_CLUSTER: 1010 return ((logical_id >> 4) == (mda >> 4)) 1011 && (logical_id & mda & 0xf) != 0; 1012 default: 1013 return false; 1014 } 1015 } 1016 1017 /* The KVM local APIC implementation has two quirks: 1018 * 1019 * - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs 1020 * in xAPIC mode if the "destination & 0xff" matches its xAPIC ID. 1021 * KVM doesn't do that aliasing. 1022 * 1023 * - in-kernel IOAPIC messages have to be delivered directly to 1024 * x2APIC, because the kernel does not support interrupt remapping. 1025 * In order to support broadcast without interrupt remapping, x2APIC 1026 * rewrites the destination of non-IPI messages from APIC_BROADCAST 1027 * to X2APIC_BROADCAST. 1028 * 1029 * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API. This is 1030 * important when userspace wants to use x2APIC-format MSIs, because 1031 * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7". 1032 */ 1033 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id, 1034 struct kvm_lapic *source, struct kvm_lapic *target) 1035 { 1036 bool ipi = source != NULL; 1037 1038 if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled && 1039 !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target)) 1040 return X2APIC_BROADCAST; 1041 1042 return dest_id; 1043 } 1044 1045 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source, 1046 int shorthand, unsigned int dest, int dest_mode) 1047 { 1048 struct kvm_lapic *target = vcpu->arch.apic; 1049 u32 mda = kvm_apic_mda(vcpu, dest, source, target); 1050 1051 ASSERT(target); 1052 switch (shorthand) { 1053 case APIC_DEST_NOSHORT: 1054 if (dest_mode == APIC_DEST_PHYSICAL) 1055 return kvm_apic_match_physical_addr(target, mda); 1056 else 1057 return kvm_apic_match_logical_addr(target, mda); 1058 case APIC_DEST_SELF: 1059 return target == source; 1060 case APIC_DEST_ALLINC: 1061 return true; 1062 case APIC_DEST_ALLBUT: 1063 return target != source; 1064 default: 1065 return false; 1066 } 1067 } 1068 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_apic_match_dest); 1069 1070 static int kvm_vector_to_index(u32 vector, u32 dest_vcpus, 1071 const unsigned long *bitmap, u32 bitmap_size) 1072 { 1073 int idx = find_nth_bit(bitmap, bitmap_size, vector % dest_vcpus); 1074 1075 BUG_ON(idx >= bitmap_size); 1076 return idx; 1077 } 1078 1079 static void kvm_apic_disabled_lapic_found(struct kvm *kvm) 1080 { 1081 if (!kvm->arch.disabled_lapic_found) { 1082 kvm->arch.disabled_lapic_found = true; 1083 pr_info("Disabled LAPIC found during irq injection\n"); 1084 } 1085 } 1086 1087 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src, 1088 struct kvm_lapic_irq *irq, struct kvm_apic_map *map) 1089 { 1090 if (kvm->arch.x2apic_broadcast_quirk_disabled) { 1091 if ((irq->dest_id == APIC_BROADCAST && 1092 map->logical_mode != KVM_APIC_MODE_X2APIC)) 1093 return true; 1094 if (irq->dest_id == X2APIC_BROADCAST) 1095 return true; 1096 } else { 1097 bool x2apic_ipi = src && *src && apic_x2apic_mode(*src); 1098 if (irq->dest_id == (x2apic_ipi ? 1099 X2APIC_BROADCAST : APIC_BROADCAST)) 1100 return true; 1101 } 1102 1103 return false; 1104 } 1105 1106 static bool kvm_lowest_prio_delivery(struct kvm_lapic_irq *irq) 1107 { 1108 return (irq->delivery_mode == APIC_DM_LOWEST || irq->msi_redir_hint); 1109 } 1110 1111 static int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2) 1112 { 1113 return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio; 1114 } 1115 1116 /* Return true if the interrupt can be handled by using *bitmap as index mask 1117 * for valid destinations in *dst array. 1118 * Return false if kvm_apic_map_get_dest_lapic did nothing useful. 1119 * Note: we may have zero kvm_lapic destinations when we return true, which 1120 * means that the interrupt should be dropped. In this case, *bitmap would be 1121 * zero and *dst undefined. 1122 */ 1123 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm, 1124 struct kvm_lapic **src, struct kvm_lapic_irq *irq, 1125 struct kvm_apic_map *map, struct kvm_lapic ***dst, 1126 unsigned long *bitmap) 1127 { 1128 int i, lowest; 1129 1130 if (irq->shorthand == APIC_DEST_SELF && src) { 1131 *dst = src; 1132 *bitmap = 1; 1133 return true; 1134 } else if (irq->shorthand) 1135 return false; 1136 1137 if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map)) 1138 return false; 1139 1140 if (irq->dest_mode == APIC_DEST_PHYSICAL) { 1141 if (irq->dest_id > map->max_apic_id) { 1142 *bitmap = 0; 1143 } else { 1144 u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1); 1145 *dst = &map->phys_map[dest_id]; 1146 *bitmap = 1; 1147 } 1148 return true; 1149 } 1150 1151 *bitmap = 0; 1152 if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst, 1153 (u16 *)bitmap)) 1154 return false; 1155 1156 if (!kvm_lowest_prio_delivery(irq)) 1157 return true; 1158 1159 if (!vector_hashing_enabled) { 1160 lowest = -1; 1161 for_each_set_bit(i, bitmap, 16) { 1162 if (!(*dst)[i]) 1163 continue; 1164 if (lowest < 0) 1165 lowest = i; 1166 else if (kvm_apic_compare_prio((*dst)[i]->vcpu, 1167 (*dst)[lowest]->vcpu) < 0) 1168 lowest = i; 1169 } 1170 } else { 1171 if (!*bitmap) 1172 return true; 1173 1174 lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap), 1175 bitmap, 16); 1176 1177 if (!(*dst)[lowest]) { 1178 kvm_apic_disabled_lapic_found(kvm); 1179 *bitmap = 0; 1180 return true; 1181 } 1182 } 1183 1184 *bitmap = (lowest >= 0) ? 1 << lowest : 0; 1185 1186 return true; 1187 } 1188 1189 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src, 1190 struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map) 1191 { 1192 struct kvm_apic_map *map; 1193 unsigned long bitmap; 1194 struct kvm_lapic **dst = NULL; 1195 int i; 1196 bool ret; 1197 1198 *r = -1; 1199 1200 if (irq->shorthand == APIC_DEST_SELF) { 1201 if (KVM_BUG_ON(!src, kvm)) { 1202 *r = 0; 1203 return true; 1204 } 1205 *r = kvm_apic_set_irq(src->vcpu, irq, dest_map); 1206 return true; 1207 } 1208 1209 rcu_read_lock(); 1210 map = rcu_dereference(kvm->arch.apic_map); 1211 1212 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap); 1213 if (ret) { 1214 *r = 0; 1215 for_each_set_bit(i, &bitmap, 16) { 1216 if (!dst[i]) 1217 continue; 1218 *r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map); 1219 } 1220 } 1221 1222 rcu_read_unlock(); 1223 return ret; 1224 } 1225 1226 /* 1227 * This routine tries to handle interrupts in posted mode, here is how 1228 * it deals with different cases: 1229 * - For single-destination interrupts, handle it in posted mode 1230 * - Else if vector hashing is enabled and it is a lowest-priority 1231 * interrupt, handle it in posted mode and use the following mechanism 1232 * to find the destination vCPU. 1233 * 1. For lowest-priority interrupts, store all the possible 1234 * destination vCPUs in an array. 1235 * 2. Use "guest vector % max number of destination vCPUs" to find 1236 * the right destination vCPU in the array for the lowest-priority 1237 * interrupt. 1238 * - Otherwise, use remapped mode to inject the interrupt. 1239 */ 1240 static bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, 1241 struct kvm_lapic_irq *irq, 1242 struct kvm_vcpu **dest_vcpu) 1243 { 1244 struct kvm_apic_map *map; 1245 unsigned long bitmap; 1246 struct kvm_lapic **dst = NULL; 1247 bool ret = false; 1248 1249 if (irq->shorthand) 1250 return false; 1251 1252 rcu_read_lock(); 1253 map = rcu_dereference(kvm->arch.apic_map); 1254 1255 if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) && 1256 hweight16(bitmap) == 1) { 1257 unsigned long i = find_first_bit(&bitmap, 16); 1258 1259 if (dst[i]) { 1260 *dest_vcpu = dst[i]->vcpu; 1261 ret = true; 1262 } 1263 } 1264 1265 rcu_read_unlock(); 1266 return ret; 1267 } 1268 1269 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq, 1270 struct kvm_vcpu **dest_vcpu) 1271 { 1272 int r = 0; 1273 unsigned long i; 1274 struct kvm_vcpu *vcpu; 1275 1276 if (kvm_intr_is_single_vcpu_fast(kvm, irq, dest_vcpu)) 1277 return true; 1278 1279 kvm_for_each_vcpu(i, vcpu, kvm) { 1280 if (!kvm_apic_present(vcpu)) 1281 continue; 1282 1283 if (!kvm_apic_match_dest(vcpu, NULL, irq->shorthand, 1284 irq->dest_id, irq->dest_mode)) 1285 continue; 1286 1287 if (++r == 2) 1288 return false; 1289 1290 *dest_vcpu = vcpu; 1291 } 1292 1293 return r == 1; 1294 } 1295 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_intr_is_single_vcpu); 1296 1297 int kvm_irq_delivery_to_apic(struct kvm *kvm, struct kvm_lapic *src, 1298 struct kvm_lapic_irq *irq, struct dest_map *dest_map) 1299 { 1300 int r = -1; 1301 struct kvm_vcpu *vcpu, *lowest = NULL; 1302 unsigned long i, dest_vcpu_bitmap[BITS_TO_LONGS(KVM_MAX_VCPUS)]; 1303 unsigned int dest_vcpus = 0; 1304 1305 if (kvm_irq_delivery_to_apic_fast(kvm, src, irq, &r, dest_map)) 1306 return r; 1307 1308 if (irq->dest_mode == APIC_DEST_PHYSICAL && 1309 irq->dest_id == 0xff && kvm_lowest_prio_delivery(irq)) { 1310 pr_info("apic: phys broadcast and lowest prio\n"); 1311 irq->delivery_mode = APIC_DM_FIXED; 1312 } 1313 1314 memset(dest_vcpu_bitmap, 0, sizeof(dest_vcpu_bitmap)); 1315 1316 kvm_for_each_vcpu(i, vcpu, kvm) { 1317 if (!kvm_apic_present(vcpu)) 1318 continue; 1319 1320 if (!kvm_apic_match_dest(vcpu, src, irq->shorthand, 1321 irq->dest_id, irq->dest_mode)) 1322 continue; 1323 1324 if (!kvm_lowest_prio_delivery(irq)) { 1325 if (r < 0) 1326 r = 0; 1327 r += kvm_apic_set_irq(vcpu, irq, dest_map); 1328 } else if (kvm_apic_sw_enabled(vcpu->arch.apic)) { 1329 if (!vector_hashing_enabled) { 1330 if (!lowest) 1331 lowest = vcpu; 1332 else if (kvm_apic_compare_prio(vcpu, lowest) < 0) 1333 lowest = vcpu; 1334 } else { 1335 __set_bit(i, dest_vcpu_bitmap); 1336 dest_vcpus++; 1337 } 1338 } 1339 } 1340 1341 if (dest_vcpus != 0) { 1342 int idx = kvm_vector_to_index(irq->vector, dest_vcpus, 1343 dest_vcpu_bitmap, KVM_MAX_VCPUS); 1344 1345 lowest = kvm_get_vcpu(kvm, idx); 1346 } 1347 1348 if (lowest) 1349 r = kvm_apic_set_irq(lowest, irq, dest_map); 1350 1351 return r; 1352 } 1353 1354 /* 1355 * Add a pending IRQ into lapic. 1356 * Return 1 if successfully added and 0 if discarded. 1357 */ 1358 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 1359 int vector, int level, int trig_mode, 1360 struct dest_map *dest_map) 1361 { 1362 int result = 0; 1363 struct kvm_vcpu *vcpu = apic->vcpu; 1364 1365 trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode, 1366 trig_mode, vector); 1367 switch (delivery_mode) { 1368 case APIC_DM_LOWEST: 1369 vcpu->arch.apic_arb_prio++; 1370 fallthrough; 1371 case APIC_DM_FIXED: 1372 if (unlikely(trig_mode && !level)) 1373 break; 1374 1375 /* FIXME add logic for vcpu on reset */ 1376 if (unlikely(!apic_enabled(apic))) 1377 break; 1378 1379 result = 1; 1380 1381 if (dest_map) { 1382 __set_bit(vcpu->vcpu_id, dest_map->map); 1383 dest_map->vectors[vcpu->vcpu_id] = vector; 1384 } 1385 1386 if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) { 1387 if (trig_mode) 1388 apic_set_vector(vector, apic->regs + APIC_TMR); 1389 else 1390 apic_clear_vector(vector, apic->regs + APIC_TMR); 1391 } 1392 1393 kvm_x86_call(deliver_interrupt)(apic, delivery_mode, 1394 trig_mode, vector); 1395 break; 1396 1397 case APIC_DM_REMRD: 1398 result = 1; 1399 vcpu->arch.pv.pv_unhalted = 1; 1400 kvm_make_request(KVM_REQ_EVENT, vcpu); 1401 kvm_vcpu_kick(vcpu); 1402 break; 1403 1404 case APIC_DM_SMI: 1405 if (!kvm_inject_smi(vcpu)) { 1406 kvm_vcpu_kick(vcpu); 1407 result = 1; 1408 } 1409 break; 1410 1411 case APIC_DM_NMI: 1412 result = 1; 1413 kvm_inject_nmi(vcpu); 1414 kvm_vcpu_kick(vcpu); 1415 break; 1416 1417 case APIC_DM_INIT: 1418 if (!trig_mode || level) { 1419 result = 1; 1420 /* assumes that there are only KVM_APIC_INIT/SIPI */ 1421 apic->pending_events = (1UL << KVM_APIC_INIT); 1422 kvm_make_request(KVM_REQ_EVENT, vcpu); 1423 kvm_vcpu_kick(vcpu); 1424 } 1425 break; 1426 1427 case APIC_DM_STARTUP: 1428 result = 1; 1429 apic->sipi_vector = vector; 1430 /* make sure sipi_vector is visible for the receiver */ 1431 smp_wmb(); 1432 set_bit(KVM_APIC_SIPI, &apic->pending_events); 1433 kvm_make_request(KVM_REQ_EVENT, vcpu); 1434 kvm_vcpu_kick(vcpu); 1435 break; 1436 1437 case APIC_DM_EXTINT: 1438 /* 1439 * Should only be called by kvm_apic_local_deliver() with LVT0, 1440 * before NMI watchdog was enabled. Already handled by 1441 * kvm_apic_accept_pic_intr(). 1442 */ 1443 break; 1444 1445 default: 1446 printk(KERN_ERR "TODO: unsupported delivery mode %x\n", 1447 delivery_mode); 1448 break; 1449 } 1450 return result; 1451 } 1452 1453 /* 1454 * This routine identifies the destination vcpus mask meant to receive the 1455 * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find 1456 * out the destination vcpus array and set the bitmap or it traverses to 1457 * each available vcpu to identify the same. 1458 */ 1459 void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq, 1460 unsigned long *vcpu_bitmap) 1461 { 1462 struct kvm_lapic **dest_vcpu = NULL; 1463 struct kvm_lapic *src = NULL; 1464 struct kvm_apic_map *map; 1465 struct kvm_vcpu *vcpu; 1466 unsigned long bitmap, i; 1467 int vcpu_idx; 1468 bool ret; 1469 1470 rcu_read_lock(); 1471 map = rcu_dereference(kvm->arch.apic_map); 1472 1473 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu, 1474 &bitmap); 1475 if (ret) { 1476 for_each_set_bit(i, &bitmap, 16) { 1477 if (!dest_vcpu[i]) 1478 continue; 1479 vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx; 1480 __set_bit(vcpu_idx, vcpu_bitmap); 1481 } 1482 } else { 1483 kvm_for_each_vcpu(i, vcpu, kvm) { 1484 if (!kvm_apic_present(vcpu)) 1485 continue; 1486 if (!kvm_apic_match_dest(vcpu, NULL, 1487 irq->shorthand, 1488 irq->dest_id, 1489 irq->dest_mode)) 1490 continue; 1491 __set_bit(i, vcpu_bitmap); 1492 } 1493 } 1494 rcu_read_unlock(); 1495 } 1496 1497 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector) 1498 { 1499 return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors); 1500 } 1501 1502 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector) 1503 { 1504 int __maybe_unused trigger_mode; 1505 1506 /* Eoi the ioapic only if the ioapic doesn't own the vector. */ 1507 if (!kvm_ioapic_handles_vector(apic, vector)) 1508 return; 1509 1510 /* 1511 * If the intercepted EOI is for an IRQ that was pending from previous 1512 * routing, then re-scan the I/O APIC routes as EOIs for the IRQ likely 1513 * no longer need to be intercepted. 1514 */ 1515 if (apic->vcpu->arch.highest_stale_pending_ioapic_eoi == vector) 1516 kvm_make_request(KVM_REQ_SCAN_IOAPIC, apic->vcpu); 1517 1518 /* Request a KVM exit to inform the userspace IOAPIC. */ 1519 if (irqchip_split(apic->vcpu->kvm)) { 1520 apic->vcpu->arch.pending_ioapic_eoi = vector; 1521 kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu); 1522 return; 1523 } 1524 1525 #ifdef CONFIG_KVM_IOAPIC 1526 if (apic_test_vector(vector, apic->regs + APIC_TMR)) 1527 trigger_mode = IOAPIC_LEVEL_TRIG; 1528 else 1529 trigger_mode = IOAPIC_EDGE_TRIG; 1530 1531 kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode); 1532 #endif 1533 } 1534 1535 static int apic_set_eoi(struct kvm_lapic *apic) 1536 { 1537 int vector = apic_find_highest_isr(apic); 1538 1539 trace_kvm_eoi(apic, vector); 1540 1541 /* 1542 * Not every write EOI will has corresponding ISR, 1543 * one example is when Kernel check timer on setup_IO_APIC 1544 */ 1545 if (vector == -1) 1546 return vector; 1547 1548 apic_clear_isr(vector, apic); 1549 apic_update_ppr(apic); 1550 1551 if (kvm_hv_synic_has_vector(apic->vcpu, vector)) 1552 kvm_hv_synic_send_eoi(apic->vcpu, vector); 1553 1554 kvm_ioapic_send_eoi(apic, vector); 1555 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1556 return vector; 1557 } 1558 1559 /* 1560 * this interface assumes a trap-like exit, which has already finished 1561 * desired side effect including vISR and vPPR update. 1562 */ 1563 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector) 1564 { 1565 struct kvm_lapic *apic = vcpu->arch.apic; 1566 1567 trace_kvm_eoi(apic, vector); 1568 1569 kvm_ioapic_send_eoi(apic, vector); 1570 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1571 } 1572 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_apic_set_eoi_accelerated); 1573 1574 static void kvm_icr_to_lapic_irq(struct kvm_lapic *apic, u32 icr_low, 1575 u32 icr_high, struct kvm_lapic_irq *irq) 1576 { 1577 /* KVM has no delay and should always clear the BUSY/PENDING flag. */ 1578 WARN_ON_ONCE(icr_low & APIC_ICR_BUSY); 1579 1580 irq->vector = icr_low & APIC_VECTOR_MASK; 1581 irq->delivery_mode = icr_low & APIC_MODE_MASK; 1582 irq->dest_mode = icr_low & APIC_DEST_MASK; 1583 irq->level = (icr_low & APIC_INT_ASSERT) != 0; 1584 irq->trig_mode = icr_low & APIC_INT_LEVELTRIG; 1585 irq->shorthand = icr_low & APIC_SHORT_MASK; 1586 irq->msi_redir_hint = false; 1587 if (apic_x2apic_mode(apic)) 1588 irq->dest_id = icr_high; 1589 else 1590 irq->dest_id = GET_XAPIC_DEST_FIELD(icr_high); 1591 } 1592 1593 void kvm_apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high) 1594 { 1595 struct kvm_lapic_irq irq; 1596 1597 kvm_icr_to_lapic_irq(apic, icr_low, icr_high, &irq); 1598 1599 trace_kvm_apic_ipi(icr_low, irq.dest_id); 1600 1601 kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL); 1602 } 1603 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_apic_send_ipi); 1604 1605 static u32 apic_get_tmcct(struct kvm_lapic *apic) 1606 { 1607 ktime_t remaining, now; 1608 s64 ns; 1609 1610 ASSERT(apic != NULL); 1611 1612 /* if initial count is 0, current count should also be 0 */ 1613 if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 || 1614 apic->lapic_timer.period == 0) 1615 return 0; 1616 1617 now = ktime_get(); 1618 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 1619 if (ktime_to_ns(remaining) < 0) 1620 remaining = 0; 1621 1622 ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period); 1623 return div64_u64(ns, (apic->vcpu->kvm->arch.apic_bus_cycle_ns * 1624 apic->divide_count)); 1625 } 1626 1627 static void __report_tpr_access(struct kvm_lapic *apic, bool write) 1628 { 1629 struct kvm_vcpu *vcpu = apic->vcpu; 1630 struct kvm_run *run = vcpu->run; 1631 1632 kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu); 1633 run->tpr_access.rip = kvm_rip_read(vcpu); 1634 run->tpr_access.is_write = write; 1635 } 1636 1637 static inline void report_tpr_access(struct kvm_lapic *apic, bool write) 1638 { 1639 if (apic->vcpu->arch.tpr_access_reporting) 1640 __report_tpr_access(apic, write); 1641 } 1642 1643 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset) 1644 { 1645 u32 val = 0; 1646 1647 if (offset >= LAPIC_MMIO_LENGTH) 1648 return 0; 1649 1650 switch (offset) { 1651 case APIC_ARBPRI: 1652 break; 1653 1654 case APIC_TMCCT: /* Timer CCR */ 1655 if (apic_lvtt_tscdeadline(apic)) 1656 return 0; 1657 1658 val = apic_get_tmcct(apic); 1659 break; 1660 case APIC_PROCPRI: 1661 apic_update_ppr(apic); 1662 val = kvm_lapic_get_reg(apic, offset); 1663 break; 1664 case APIC_TASKPRI: 1665 report_tpr_access(apic, false); 1666 fallthrough; 1667 default: 1668 val = kvm_lapic_get_reg(apic, offset); 1669 break; 1670 } 1671 1672 return val; 1673 } 1674 1675 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev) 1676 { 1677 return container_of(dev, struct kvm_lapic, dev); 1678 } 1679 1680 #define APIC_REG_MASK(reg) (1ull << ((reg) >> 4)) 1681 #define APIC_REGS_MASK(first, count) \ 1682 (APIC_REG_MASK(first) * ((1ull << (count)) - 1)) 1683 1684 u64 kvm_lapic_readable_reg_mask(struct kvm_lapic *apic) 1685 { 1686 /* Leave bits '0' for reserved and write-only registers. */ 1687 u64 valid_reg_mask = 1688 APIC_REG_MASK(APIC_ID) | 1689 APIC_REG_MASK(APIC_LVR) | 1690 APIC_REG_MASK(APIC_TASKPRI) | 1691 APIC_REG_MASK(APIC_PROCPRI) | 1692 APIC_REG_MASK(APIC_LDR) | 1693 APIC_REG_MASK(APIC_SPIV) | 1694 APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) | 1695 APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) | 1696 APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) | 1697 APIC_REG_MASK(APIC_ESR) | 1698 APIC_REG_MASK(APIC_ICR) | 1699 APIC_REG_MASK(APIC_LVTT) | 1700 APIC_REG_MASK(APIC_LVTTHMR) | 1701 APIC_REG_MASK(APIC_LVTPC) | 1702 APIC_REG_MASK(APIC_LVT0) | 1703 APIC_REG_MASK(APIC_LVT1) | 1704 APIC_REG_MASK(APIC_LVTERR) | 1705 APIC_REG_MASK(APIC_TMICT) | 1706 APIC_REG_MASK(APIC_TMCCT) | 1707 APIC_REG_MASK(APIC_TDCR); 1708 1709 if (kvm_lapic_lvt_supported(apic, LVT_CMCI)) 1710 valid_reg_mask |= APIC_REG_MASK(APIC_LVTCMCI); 1711 1712 /* ARBPRI, DFR, and ICR2 are not valid in x2APIC mode. */ 1713 if (!apic_x2apic_mode(apic)) 1714 valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI) | 1715 APIC_REG_MASK(APIC_DFR) | 1716 APIC_REG_MASK(APIC_ICR2); 1717 1718 return valid_reg_mask; 1719 } 1720 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_lapic_readable_reg_mask); 1721 1722 static int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len, 1723 void *data) 1724 { 1725 unsigned char alignment = offset & 0xf; 1726 u32 result; 1727 1728 /* 1729 * WARN if KVM reads ICR in x2APIC mode, as it's an 8-byte register in 1730 * x2APIC and needs to be manually handled by the caller. 1731 */ 1732 WARN_ON_ONCE(apic_x2apic_mode(apic) && offset == APIC_ICR); 1733 1734 if (alignment + len > 4) 1735 return 1; 1736 1737 if (offset > 0x3f0 || 1738 !(kvm_lapic_readable_reg_mask(apic) & APIC_REG_MASK(offset))) 1739 return 1; 1740 1741 result = __apic_read(apic, offset & ~0xf); 1742 1743 trace_kvm_apic_read(offset, result); 1744 1745 switch (len) { 1746 case 1: 1747 case 2: 1748 case 4: 1749 memcpy(data, (char *)&result + alignment, len); 1750 break; 1751 default: 1752 printk(KERN_ERR "Local APIC read with len = %x, " 1753 "should be 1,2, or 4 instead\n", len); 1754 break; 1755 } 1756 return 0; 1757 } 1758 1759 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr) 1760 { 1761 return addr >= apic->base_address && 1762 addr < apic->base_address + LAPIC_MMIO_LENGTH; 1763 } 1764 1765 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 1766 gpa_t address, int len, void *data) 1767 { 1768 struct kvm_lapic *apic = to_lapic(this); 1769 u32 offset = address - apic->base_address; 1770 1771 if (!apic_mmio_in_range(apic, address)) 1772 return -EOPNOTSUPP; 1773 1774 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 1775 if (!kvm_check_has_quirk(vcpu->kvm, 1776 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 1777 return -EOPNOTSUPP; 1778 1779 memset(data, 0xff, len); 1780 return 0; 1781 } 1782 1783 kvm_lapic_reg_read(apic, offset, len, data); 1784 1785 return 0; 1786 } 1787 1788 static void update_divide_count(struct kvm_lapic *apic) 1789 { 1790 u32 tmp1, tmp2, tdcr; 1791 1792 tdcr = kvm_lapic_get_reg(apic, APIC_TDCR); 1793 tmp1 = tdcr & 0xf; 1794 tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1; 1795 apic->divide_count = 0x1 << (tmp2 & 0x7); 1796 } 1797 1798 static void limit_periodic_timer_frequency(struct kvm_lapic *apic) 1799 { 1800 /* 1801 * Do not allow the guest to program periodic timers with small 1802 * interval, since the hrtimers are not throttled by the host 1803 * scheduler. 1804 */ 1805 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 1806 s64 min_period = min_timer_period_us * 1000LL; 1807 1808 if (apic->lapic_timer.period < min_period) { 1809 pr_info_once( 1810 "vcpu %i: requested %lld ns " 1811 "lapic timer period limited to %lld ns\n", 1812 apic->vcpu->vcpu_id, 1813 apic->lapic_timer.period, min_period); 1814 apic->lapic_timer.period = min_period; 1815 } 1816 } 1817 } 1818 1819 static void cancel_hv_timer(struct kvm_lapic *apic); 1820 1821 static void cancel_apic_timer(struct kvm_lapic *apic) 1822 { 1823 hrtimer_cancel(&apic->lapic_timer.timer); 1824 preempt_disable(); 1825 if (apic->lapic_timer.hv_timer_in_use) 1826 cancel_hv_timer(apic); 1827 preempt_enable(); 1828 atomic_set(&apic->lapic_timer.pending, 0); 1829 } 1830 1831 static void apic_update_lvtt(struct kvm_lapic *apic) 1832 { 1833 u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) & 1834 apic->lapic_timer.timer_mode_mask; 1835 1836 if (apic->lapic_timer.timer_mode != timer_mode) { 1837 if (apic_lvtt_tscdeadline(apic) != (timer_mode == 1838 APIC_LVT_TIMER_TSCDEADLINE)) { 1839 cancel_apic_timer(apic); 1840 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 1841 apic->lapic_timer.period = 0; 1842 apic->lapic_timer.tscdeadline = 0; 1843 } 1844 apic->lapic_timer.timer_mode = timer_mode; 1845 limit_periodic_timer_frequency(apic); 1846 } 1847 } 1848 1849 /* 1850 * On APICv, this test will cause a busy wait 1851 * during a higher-priority task. 1852 */ 1853 1854 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu) 1855 { 1856 struct kvm_lapic *apic = vcpu->arch.apic; 1857 u32 reg; 1858 1859 /* 1860 * Assume a timer IRQ was "injected" if the APIC is protected. KVM's 1861 * copy of the vIRR is bogus, it's the responsibility of the caller to 1862 * precisely check whether or not a timer IRQ is pending. 1863 */ 1864 if (apic->guest_apic_protected) 1865 return true; 1866 1867 reg = kvm_lapic_get_reg(apic, APIC_LVTT); 1868 if (kvm_apic_hw_enabled(apic)) { 1869 int vec = reg & APIC_VECTOR_MASK; 1870 void *bitmap = apic->regs + APIC_ISR; 1871 1872 if (apic->apicv_active) 1873 bitmap = apic->regs + APIC_IRR; 1874 1875 if (apic_test_vector(vec, bitmap)) 1876 return true; 1877 } 1878 return false; 1879 } 1880 1881 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles) 1882 { 1883 u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns; 1884 1885 /* 1886 * If the guest TSC is running at a different ratio than the host, then 1887 * convert the delay to nanoseconds to achieve an accurate delay. Note 1888 * that __delay() uses delay_tsc whenever the hardware has TSC, thus 1889 * always for VMX enabled hardware. 1890 */ 1891 if (vcpu->arch.tsc_scaling_ratio == kvm_caps.default_tsc_scaling_ratio) { 1892 __delay(min(guest_cycles, 1893 nsec_to_cycles(vcpu, timer_advance_ns))); 1894 } else { 1895 u64 delay_ns = guest_cycles * 1000000ULL; 1896 do_div(delay_ns, vcpu->arch.virtual_tsc_khz); 1897 ndelay(min_t(u32, delay_ns, timer_advance_ns)); 1898 } 1899 } 1900 1901 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu, 1902 s64 advance_expire_delta) 1903 { 1904 struct kvm_lapic *apic = vcpu->arch.apic; 1905 u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns; 1906 u64 ns; 1907 1908 /* Do not adjust for tiny fluctuations or large random spikes. */ 1909 if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX || 1910 abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN) 1911 return; 1912 1913 /* too early */ 1914 if (advance_expire_delta < 0) { 1915 ns = -advance_expire_delta * 1000000ULL; 1916 do_div(ns, vcpu->arch.virtual_tsc_khz); 1917 timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; 1918 } else { 1919 /* too late */ 1920 ns = advance_expire_delta * 1000000ULL; 1921 do_div(ns, vcpu->arch.virtual_tsc_khz); 1922 timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; 1923 } 1924 1925 if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX)) 1926 timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; 1927 apic->lapic_timer.timer_advance_ns = timer_advance_ns; 1928 } 1929 1930 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1931 { 1932 struct kvm_lapic *apic = vcpu->arch.apic; 1933 u64 guest_tsc, tsc_deadline; 1934 1935 tsc_deadline = apic->lapic_timer.expired_tscdeadline; 1936 apic->lapic_timer.expired_tscdeadline = 0; 1937 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1938 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, guest_tsc - tsc_deadline); 1939 1940 adjust_lapic_timer_advance(vcpu, guest_tsc - tsc_deadline); 1941 1942 /* 1943 * If the timer fired early, reread the TSC to account for the overhead 1944 * of the above adjustment to avoid waiting longer than is necessary. 1945 */ 1946 if (guest_tsc < tsc_deadline) 1947 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1948 1949 if (guest_tsc < tsc_deadline) 1950 __wait_lapic_expire(vcpu, tsc_deadline - guest_tsc); 1951 } 1952 1953 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1954 { 1955 if (lapic_in_kernel(vcpu) && 1956 vcpu->arch.apic->lapic_timer.expired_tscdeadline && 1957 vcpu->arch.apic->lapic_timer.timer_advance_ns && 1958 lapic_timer_int_injected(vcpu)) 1959 __kvm_wait_lapic_expire(vcpu); 1960 } 1961 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_wait_lapic_expire); 1962 1963 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic) 1964 { 1965 struct kvm_timer *ktimer = &apic->lapic_timer; 1966 1967 kvm_apic_local_deliver(apic, APIC_LVTT); 1968 if (apic_lvtt_tscdeadline(apic)) { 1969 ktimer->tscdeadline = 0; 1970 } else if (apic_lvtt_oneshot(apic)) { 1971 ktimer->tscdeadline = 0; 1972 ktimer->target_expiration = 0; 1973 } 1974 } 1975 1976 static void apic_timer_expired(struct kvm_lapic *apic, bool from_timer_fn) 1977 { 1978 struct kvm_vcpu *vcpu = apic->vcpu; 1979 struct kvm_timer *ktimer = &apic->lapic_timer; 1980 1981 if (atomic_read(&apic->lapic_timer.pending)) 1982 return; 1983 1984 if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use) 1985 ktimer->expired_tscdeadline = ktimer->tscdeadline; 1986 1987 if (!from_timer_fn && apic->apicv_active) { 1988 WARN_ON(kvm_get_running_vcpu() != vcpu); 1989 kvm_apic_inject_pending_timer_irqs(apic); 1990 return; 1991 } 1992 1993 if (kvm_use_posted_timer_interrupt(apic->vcpu)) { 1994 /* 1995 * Ensure the guest's timer has truly expired before posting an 1996 * interrupt. Open code the relevant checks to avoid querying 1997 * lapic_timer_int_injected(), which will be false since the 1998 * interrupt isn't yet injected. Waiting until after injecting 1999 * is not an option since that won't help a posted interrupt. 2000 */ 2001 if (vcpu->arch.apic->lapic_timer.expired_tscdeadline && 2002 vcpu->arch.apic->lapic_timer.timer_advance_ns) 2003 __kvm_wait_lapic_expire(vcpu); 2004 kvm_apic_inject_pending_timer_irqs(apic); 2005 return; 2006 } 2007 2008 atomic_inc(&apic->lapic_timer.pending); 2009 kvm_make_request(KVM_REQ_UNBLOCK, vcpu); 2010 if (from_timer_fn) 2011 kvm_vcpu_kick(vcpu); 2012 } 2013 2014 static void start_sw_tscdeadline(struct kvm_lapic *apic) 2015 { 2016 struct kvm_timer *ktimer = &apic->lapic_timer; 2017 u64 guest_tsc, tscdeadline = ktimer->tscdeadline; 2018 u64 ns = 0; 2019 ktime_t expire; 2020 struct kvm_vcpu *vcpu = apic->vcpu; 2021 u32 this_tsc_khz = vcpu->arch.virtual_tsc_khz; 2022 unsigned long flags; 2023 ktime_t now; 2024 2025 if (unlikely(!tscdeadline || !this_tsc_khz)) 2026 return; 2027 2028 local_irq_save(flags); 2029 2030 now = ktime_get(); 2031 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 2032 2033 ns = (tscdeadline - guest_tsc) * 1000000ULL; 2034 do_div(ns, this_tsc_khz); 2035 2036 if (likely(tscdeadline > guest_tsc) && 2037 likely(ns > apic->lapic_timer.timer_advance_ns)) { 2038 expire = ktime_add_ns(now, ns); 2039 expire = ktime_sub_ns(expire, ktimer->timer_advance_ns); 2040 hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD); 2041 } else 2042 apic_timer_expired(apic, false); 2043 2044 local_irq_restore(flags); 2045 } 2046 2047 static inline u64 tmict_to_ns(struct kvm_lapic *apic, u32 tmict) 2048 { 2049 return (u64)tmict * apic->vcpu->kvm->arch.apic_bus_cycle_ns * 2050 (u64)apic->divide_count; 2051 } 2052 2053 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor) 2054 { 2055 ktime_t now, remaining; 2056 u64 ns_remaining_old, ns_remaining_new; 2057 2058 apic->lapic_timer.period = 2059 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT)); 2060 limit_periodic_timer_frequency(apic); 2061 2062 now = ktime_get(); 2063 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 2064 if (ktime_to_ns(remaining) < 0) 2065 remaining = 0; 2066 2067 ns_remaining_old = ktime_to_ns(remaining); 2068 ns_remaining_new = mul_u64_u32_div(ns_remaining_old, 2069 apic->divide_count, old_divisor); 2070 2071 apic->lapic_timer.tscdeadline += 2072 nsec_to_cycles(apic->vcpu, ns_remaining_new) - 2073 nsec_to_cycles(apic->vcpu, ns_remaining_old); 2074 apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new); 2075 } 2076 2077 static bool set_target_expiration(struct kvm_lapic *apic, u32 count_reg) 2078 { 2079 ktime_t now; 2080 u64 tscl = rdtsc(); 2081 s64 deadline; 2082 2083 now = ktime_get(); 2084 apic->lapic_timer.period = 2085 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT)); 2086 2087 if (!apic->lapic_timer.period) { 2088 apic->lapic_timer.tscdeadline = 0; 2089 return false; 2090 } 2091 2092 limit_periodic_timer_frequency(apic); 2093 deadline = apic->lapic_timer.period; 2094 2095 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) { 2096 if (unlikely(count_reg != APIC_TMICT)) { 2097 deadline = tmict_to_ns(apic, 2098 kvm_lapic_get_reg(apic, count_reg)); 2099 if (unlikely(deadline <= 0)) { 2100 if (apic_lvtt_period(apic)) 2101 deadline = apic->lapic_timer.period; 2102 else 2103 deadline = 0; 2104 } 2105 else if (unlikely(deadline > apic->lapic_timer.period)) { 2106 pr_info_ratelimited( 2107 "vcpu %i: requested lapic timer restore with " 2108 "starting count register %#x=%u (%lld ns) > initial count (%lld ns). " 2109 "Using initial count to start timer.\n", 2110 apic->vcpu->vcpu_id, 2111 count_reg, 2112 kvm_lapic_get_reg(apic, count_reg), 2113 deadline, apic->lapic_timer.period); 2114 kvm_lapic_set_reg(apic, count_reg, 0); 2115 deadline = apic->lapic_timer.period; 2116 } 2117 } 2118 } 2119 2120 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 2121 nsec_to_cycles(apic->vcpu, deadline); 2122 apic->lapic_timer.target_expiration = ktime_add_ns(now, deadline); 2123 2124 return true; 2125 } 2126 2127 static void advance_periodic_target_expiration(struct kvm_lapic *apic) 2128 { 2129 ktime_t now = ktime_get(); 2130 u64 tscl = rdtsc(); 2131 ktime_t delta; 2132 2133 /* 2134 * Synchronize both deadlines to the same time source or 2135 * differences in the periods (caused by differences in the 2136 * underlying clocks or numerical approximation errors) will 2137 * cause the two to drift apart over time as the errors 2138 * accumulate. 2139 */ 2140 apic->lapic_timer.target_expiration = 2141 ktime_add_ns(apic->lapic_timer.target_expiration, 2142 apic->lapic_timer.period); 2143 delta = ktime_sub(apic->lapic_timer.target_expiration, now); 2144 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 2145 nsec_to_cycles(apic->vcpu, delta); 2146 } 2147 2148 static void start_sw_period(struct kvm_lapic *apic) 2149 { 2150 if (!apic->lapic_timer.period) 2151 return; 2152 2153 if (ktime_after(ktime_get(), 2154 apic->lapic_timer.target_expiration)) { 2155 apic_timer_expired(apic, false); 2156 2157 if (apic_lvtt_oneshot(apic)) 2158 return; 2159 2160 advance_periodic_target_expiration(apic); 2161 } 2162 2163 hrtimer_start(&apic->lapic_timer.timer, 2164 apic->lapic_timer.target_expiration, 2165 HRTIMER_MODE_ABS_HARD); 2166 } 2167 2168 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu) 2169 { 2170 if (!lapic_in_kernel(vcpu)) 2171 return false; 2172 2173 return vcpu->arch.apic->lapic_timer.hv_timer_in_use; 2174 } 2175 2176 static void cancel_hv_timer(struct kvm_lapic *apic) 2177 { 2178 WARN_ON(preemptible()); 2179 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 2180 kvm_x86_call(cancel_hv_timer)(apic->vcpu); 2181 apic->lapic_timer.hv_timer_in_use = false; 2182 } 2183 2184 static bool start_hv_timer(struct kvm_lapic *apic) 2185 { 2186 struct kvm_timer *ktimer = &apic->lapic_timer; 2187 struct kvm_vcpu *vcpu = apic->vcpu; 2188 bool expired; 2189 2190 WARN_ON(preemptible()); 2191 if (!kvm_can_use_hv_timer(vcpu)) 2192 return false; 2193 2194 if (!ktimer->tscdeadline) 2195 return false; 2196 2197 if (kvm_x86_call(set_hv_timer)(vcpu, ktimer->tscdeadline, &expired)) 2198 return false; 2199 2200 ktimer->hv_timer_in_use = true; 2201 hrtimer_cancel(&ktimer->timer); 2202 2203 /* 2204 * To simplify handling the periodic timer, leave the hv timer running 2205 * even if the deadline timer has expired, i.e. rely on the resulting 2206 * VM-Exit to recompute the periodic timer's target expiration. 2207 */ 2208 if (!apic_lvtt_period(apic)) { 2209 /* 2210 * Cancel the hv timer if the sw timer fired while the hv timer 2211 * was being programmed, or if the hv timer itself expired. 2212 */ 2213 if (atomic_read(&ktimer->pending)) { 2214 cancel_hv_timer(apic); 2215 } else if (expired) { 2216 apic_timer_expired(apic, false); 2217 cancel_hv_timer(apic); 2218 } 2219 } 2220 2221 trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use); 2222 2223 return true; 2224 } 2225 2226 static void start_sw_timer(struct kvm_lapic *apic) 2227 { 2228 struct kvm_timer *ktimer = &apic->lapic_timer; 2229 2230 WARN_ON(preemptible()); 2231 if (apic->lapic_timer.hv_timer_in_use) 2232 cancel_hv_timer(apic); 2233 if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending)) 2234 return; 2235 2236 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 2237 start_sw_period(apic); 2238 else if (apic_lvtt_tscdeadline(apic)) 2239 start_sw_tscdeadline(apic); 2240 trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false); 2241 } 2242 2243 static void restart_apic_timer(struct kvm_lapic *apic) 2244 { 2245 preempt_disable(); 2246 2247 if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending)) 2248 goto out; 2249 2250 if (!start_hv_timer(apic)) 2251 start_sw_timer(apic); 2252 out: 2253 preempt_enable(); 2254 } 2255 2256 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu) 2257 { 2258 struct kvm_lapic *apic = vcpu->arch.apic; 2259 2260 preempt_disable(); 2261 /* If the preempt notifier has already run, it also called apic_timer_expired */ 2262 if (!apic->lapic_timer.hv_timer_in_use) 2263 goto out; 2264 WARN_ON(kvm_vcpu_is_blocking(vcpu)); 2265 apic_timer_expired(apic, false); 2266 cancel_hv_timer(apic); 2267 2268 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 2269 advance_periodic_target_expiration(apic); 2270 restart_apic_timer(apic); 2271 } 2272 out: 2273 preempt_enable(); 2274 } 2275 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_lapic_expired_hv_timer); 2276 2277 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu) 2278 { 2279 restart_apic_timer(vcpu->arch.apic); 2280 } 2281 2282 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu) 2283 { 2284 struct kvm_lapic *apic = vcpu->arch.apic; 2285 2286 preempt_disable(); 2287 /* Possibly the TSC deadline timer is not enabled yet */ 2288 if (apic->lapic_timer.hv_timer_in_use) 2289 start_sw_timer(apic); 2290 preempt_enable(); 2291 } 2292 2293 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu) 2294 { 2295 struct kvm_lapic *apic = vcpu->arch.apic; 2296 2297 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 2298 restart_apic_timer(apic); 2299 } 2300 2301 static void __start_apic_timer(struct kvm_lapic *apic, u32 count_reg) 2302 { 2303 atomic_set(&apic->lapic_timer.pending, 0); 2304 2305 if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 2306 && !set_target_expiration(apic, count_reg)) 2307 return; 2308 2309 restart_apic_timer(apic); 2310 } 2311 2312 static void start_apic_timer(struct kvm_lapic *apic) 2313 { 2314 __start_apic_timer(apic, APIC_TMICT); 2315 } 2316 2317 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val) 2318 { 2319 bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val); 2320 2321 if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) { 2322 apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode; 2323 if (lvt0_in_nmi_mode) { 2324 atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 2325 } else 2326 atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 2327 } 2328 } 2329 2330 static int get_lvt_index(u32 reg) 2331 { 2332 if (reg == APIC_LVTCMCI) 2333 return LVT_CMCI; 2334 if (reg < APIC_LVTT || reg > APIC_LVTERR) 2335 return -1; 2336 return array_index_nospec( 2337 (reg - APIC_LVTT) >> 4, KVM_APIC_MAX_NR_LVT_ENTRIES); 2338 } 2339 2340 static int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val) 2341 { 2342 int ret = 0; 2343 2344 trace_kvm_apic_write(reg, val); 2345 2346 switch (reg) { 2347 case APIC_ID: /* Local APIC ID */ 2348 if (!apic_x2apic_mode(apic)) { 2349 kvm_apic_set_xapic_id(apic, val >> 24); 2350 } else { 2351 ret = 1; 2352 } 2353 break; 2354 2355 case APIC_TASKPRI: 2356 report_tpr_access(apic, true); 2357 apic_set_tpr(apic, val & 0xff); 2358 break; 2359 2360 case APIC_EOI: 2361 apic_set_eoi(apic); 2362 break; 2363 2364 case APIC_LDR: 2365 if (!apic_x2apic_mode(apic)) 2366 kvm_apic_set_ldr(apic, val & APIC_LDR_MASK); 2367 else 2368 ret = 1; 2369 break; 2370 2371 case APIC_DFR: 2372 if (!apic_x2apic_mode(apic)) 2373 kvm_apic_set_dfr(apic, val | 0x0FFFFFFF); 2374 else 2375 ret = 1; 2376 break; 2377 2378 case APIC_SPIV: { 2379 u32 mask = 0x3ff; 2380 if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI) 2381 mask |= APIC_SPIV_DIRECTED_EOI; 2382 apic_set_spiv(apic, val & mask); 2383 if (!(val & APIC_SPIV_APIC_ENABLED)) { 2384 int i; 2385 2386 for (i = 0; i < apic->nr_lvt_entries; i++) { 2387 kvm_lapic_set_reg(apic, APIC_LVTx(i), 2388 kvm_lapic_get_reg(apic, APIC_LVTx(i)) | APIC_LVT_MASKED); 2389 } 2390 apic_update_lvtt(apic); 2391 atomic_set(&apic->lapic_timer.pending, 0); 2392 2393 } 2394 break; 2395 } 2396 case APIC_ICR: 2397 WARN_ON_ONCE(apic_x2apic_mode(apic)); 2398 2399 /* No delay here, so we always clear the pending bit */ 2400 val &= ~APIC_ICR_BUSY; 2401 kvm_apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2)); 2402 kvm_lapic_set_reg(apic, APIC_ICR, val); 2403 break; 2404 case APIC_ICR2: 2405 if (apic_x2apic_mode(apic)) 2406 ret = 1; 2407 else 2408 kvm_lapic_set_reg(apic, APIC_ICR2, val & 0xff000000); 2409 break; 2410 2411 case APIC_LVT0: 2412 apic_manage_nmi_watchdog(apic, val); 2413 fallthrough; 2414 case APIC_LVTTHMR: 2415 case APIC_LVTPC: 2416 case APIC_LVT1: 2417 case APIC_LVTERR: 2418 case APIC_LVTCMCI: { 2419 u32 index = get_lvt_index(reg); 2420 if (!kvm_lapic_lvt_supported(apic, index)) { 2421 ret = 1; 2422 break; 2423 } 2424 if (!kvm_apic_sw_enabled(apic)) 2425 val |= APIC_LVT_MASKED; 2426 val &= apic_lvt_mask[index]; 2427 kvm_lapic_set_reg(apic, reg, val); 2428 break; 2429 } 2430 2431 case APIC_LVTT: 2432 if (!kvm_apic_sw_enabled(apic)) 2433 val |= APIC_LVT_MASKED; 2434 val &= (apic_lvt_mask[LVT_TIMER] | apic->lapic_timer.timer_mode_mask); 2435 kvm_lapic_set_reg(apic, APIC_LVTT, val); 2436 apic_update_lvtt(apic); 2437 break; 2438 2439 case APIC_TMICT: 2440 if (apic_lvtt_tscdeadline(apic)) 2441 break; 2442 2443 cancel_apic_timer(apic); 2444 kvm_lapic_set_reg(apic, APIC_TMICT, val); 2445 start_apic_timer(apic); 2446 break; 2447 2448 case APIC_TDCR: { 2449 uint32_t old_divisor = apic->divide_count; 2450 2451 kvm_lapic_set_reg(apic, APIC_TDCR, val & 0xb); 2452 update_divide_count(apic); 2453 if (apic->divide_count != old_divisor && 2454 apic->lapic_timer.period) { 2455 hrtimer_cancel(&apic->lapic_timer.timer); 2456 update_target_expiration(apic, old_divisor); 2457 restart_apic_timer(apic); 2458 } 2459 break; 2460 } 2461 case APIC_ESR: 2462 if (apic_x2apic_mode(apic) && val != 0) 2463 ret = 1; 2464 break; 2465 2466 case APIC_SELF_IPI: 2467 /* 2468 * Self-IPI exists only when x2APIC is enabled. Bits 7:0 hold 2469 * the vector, everything else is reserved. 2470 */ 2471 if (!apic_x2apic_mode(apic) || (val & ~APIC_VECTOR_MASK)) 2472 ret = 1; 2473 else 2474 kvm_apic_send_ipi(apic, APIC_DEST_SELF | val, 0); 2475 break; 2476 default: 2477 ret = 1; 2478 break; 2479 } 2480 2481 /* 2482 * Recalculate APIC maps if necessary, e.g. if the software enable bit 2483 * was toggled, the APIC ID changed, etc... The maps are marked dirty 2484 * on relevant changes, i.e. this is a nop for most writes. 2485 */ 2486 kvm_recalculate_apic_map(apic->vcpu->kvm); 2487 2488 return ret; 2489 } 2490 2491 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 2492 gpa_t address, int len, const void *data) 2493 { 2494 struct kvm_lapic *apic = to_lapic(this); 2495 unsigned int offset = address - apic->base_address; 2496 u32 val; 2497 2498 if (!apic_mmio_in_range(apic, address)) 2499 return -EOPNOTSUPP; 2500 2501 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 2502 if (!kvm_check_has_quirk(vcpu->kvm, 2503 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 2504 return -EOPNOTSUPP; 2505 2506 return 0; 2507 } 2508 2509 /* 2510 * APIC register must be aligned on 128-bits boundary. 2511 * 32/64/128 bits registers must be accessed thru 32 bits. 2512 * Refer SDM 8.4.1 2513 */ 2514 if (len != 4 || (offset & 0xf)) 2515 return 0; 2516 2517 val = *(u32*)data; 2518 2519 kvm_lapic_reg_write(apic, offset & 0xff0, val); 2520 2521 return 0; 2522 } 2523 2524 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu) 2525 { 2526 kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0); 2527 } 2528 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_lapic_set_eoi); 2529 2530 #define X2APIC_ICR_RESERVED_BITS (GENMASK_ULL(31, 20) | GENMASK_ULL(17, 16) | BIT(13)) 2531 2532 static int __kvm_x2apic_icr_write(struct kvm_lapic *apic, u64 data, bool fast) 2533 { 2534 if (data & X2APIC_ICR_RESERVED_BITS) 2535 return 1; 2536 2537 /* 2538 * The BUSY bit is reserved on both Intel and AMD in x2APIC mode, but 2539 * only AMD requires it to be zero, Intel essentially just ignores the 2540 * bit. And if IPI virtualization (Intel) or x2AVIC (AMD) is enabled, 2541 * the CPU performs the reserved bits checks, i.e. the underlying CPU 2542 * behavior will "win". Arbitrarily clear the BUSY bit, as there is no 2543 * sane way to provide consistent behavior with respect to hardware. 2544 */ 2545 data &= ~APIC_ICR_BUSY; 2546 2547 if (fast) { 2548 struct kvm_lapic_irq irq; 2549 int ignored; 2550 2551 kvm_icr_to_lapic_irq(apic, (u32)data, (u32)(data >> 32), &irq); 2552 2553 if (!kvm_irq_delivery_to_apic_fast(apic->vcpu->kvm, apic, &irq, 2554 &ignored, NULL)) 2555 return -EWOULDBLOCK; 2556 2557 trace_kvm_apic_ipi((u32)data, irq.dest_id); 2558 } else { 2559 kvm_apic_send_ipi(apic, (u32)data, (u32)(data >> 32)); 2560 } 2561 if (kvm_x86_ops.x2apic_icr_is_split) { 2562 kvm_lapic_set_reg(apic, APIC_ICR, data); 2563 kvm_lapic_set_reg(apic, APIC_ICR2, data >> 32); 2564 } else { 2565 kvm_lapic_set_reg64(apic, APIC_ICR, data); 2566 } 2567 trace_kvm_apic_write(APIC_ICR, data); 2568 return 0; 2569 } 2570 2571 static int kvm_x2apic_icr_write(struct kvm_lapic *apic, u64 data) 2572 { 2573 return __kvm_x2apic_icr_write(apic, data, false); 2574 } 2575 2576 int kvm_x2apic_icr_write_fast(struct kvm_lapic *apic, u64 data) 2577 { 2578 return __kvm_x2apic_icr_write(apic, data, true); 2579 } 2580 2581 static u64 kvm_x2apic_icr_read(struct kvm_lapic *apic) 2582 { 2583 if (kvm_x86_ops.x2apic_icr_is_split) 2584 return (u64)kvm_lapic_get_reg(apic, APIC_ICR) | 2585 (u64)kvm_lapic_get_reg(apic, APIC_ICR2) << 32; 2586 2587 return kvm_lapic_get_reg64(apic, APIC_ICR); 2588 } 2589 2590 /* emulate APIC access in a trap manner */ 2591 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset) 2592 { 2593 struct kvm_lapic *apic = vcpu->arch.apic; 2594 2595 /* 2596 * ICR is a single 64-bit register when x2APIC is enabled, all others 2597 * registers hold 32-bit values. For legacy xAPIC, ICR writes need to 2598 * go down the common path to get the upper half from ICR2. 2599 * 2600 * Note, using the write helpers may incur an unnecessary write to the 2601 * virtual APIC state, but KVM needs to conditionally modify the value 2602 * in certain cases, e.g. to clear the ICR busy bit. The cost of extra 2603 * conditional branches is likely a wash relative to the cost of the 2604 * maybe-unecessary write, and both are in the noise anyways. 2605 */ 2606 if (apic_x2apic_mode(apic) && offset == APIC_ICR) 2607 WARN_ON_ONCE(kvm_x2apic_icr_write(apic, kvm_x2apic_icr_read(apic))); 2608 else 2609 kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset)); 2610 } 2611 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_apic_write_nodecode); 2612 2613 void kvm_free_lapic(struct kvm_vcpu *vcpu) 2614 { 2615 struct kvm_lapic *apic = vcpu->arch.apic; 2616 2617 if (!vcpu->arch.apic) { 2618 static_branch_dec(&kvm_has_noapic_vcpu); 2619 return; 2620 } 2621 2622 hrtimer_cancel(&apic->lapic_timer.timer); 2623 2624 if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)) 2625 static_branch_slow_dec_deferred(&apic_hw_disabled); 2626 2627 if (!apic->sw_enabled) 2628 static_branch_slow_dec_deferred(&apic_sw_disabled); 2629 2630 if (apic->regs) 2631 free_page((unsigned long)apic->regs); 2632 2633 kfree(apic); 2634 } 2635 2636 /* 2637 *---------------------------------------------------------------------- 2638 * LAPIC interface 2639 *---------------------------------------------------------------------- 2640 */ 2641 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu) 2642 { 2643 struct kvm_lapic *apic = vcpu->arch.apic; 2644 2645 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic)) 2646 return 0; 2647 2648 return apic->lapic_timer.tscdeadline; 2649 } 2650 2651 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data) 2652 { 2653 struct kvm_lapic *apic = vcpu->arch.apic; 2654 2655 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic)) 2656 return; 2657 2658 hrtimer_cancel(&apic->lapic_timer.timer); 2659 apic->lapic_timer.tscdeadline = data; 2660 start_apic_timer(apic); 2661 } 2662 2663 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8) 2664 { 2665 apic_set_tpr(vcpu->arch.apic, (cr8 & 0x0f) << 4); 2666 } 2667 2668 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu) 2669 { 2670 u64 tpr; 2671 2672 tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI); 2673 2674 return (tpr & 0xf0) >> 4; 2675 } 2676 2677 static void __kvm_apic_set_base(struct kvm_vcpu *vcpu, u64 value) 2678 { 2679 u64 old_value = vcpu->arch.apic_base; 2680 struct kvm_lapic *apic = vcpu->arch.apic; 2681 2682 vcpu->arch.apic_base = value; 2683 2684 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) 2685 vcpu->arch.cpuid_dynamic_bits_dirty = true; 2686 2687 if (!apic) 2688 return; 2689 2690 /* update jump label if enable bit changes */ 2691 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) { 2692 if (value & MSR_IA32_APICBASE_ENABLE) { 2693 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2694 static_branch_slow_dec_deferred(&apic_hw_disabled); 2695 /* Check if there are APF page ready requests pending */ 2696 kvm_make_request(KVM_REQ_APF_READY, vcpu); 2697 } else { 2698 static_branch_inc(&apic_hw_disabled.key); 2699 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 2700 } 2701 } 2702 2703 if ((old_value ^ value) & X2APIC_ENABLE) { 2704 if (value & X2APIC_ENABLE) 2705 kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id); 2706 else if (value & MSR_IA32_APICBASE_ENABLE) 2707 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2708 } 2709 2710 if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) { 2711 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 2712 kvm_x86_call(set_virtual_apic_mode)(vcpu); 2713 } 2714 2715 apic->base_address = apic->vcpu->arch.apic_base & 2716 MSR_IA32_APICBASE_BASE; 2717 2718 if ((value & MSR_IA32_APICBASE_ENABLE) && 2719 apic->base_address != APIC_DEFAULT_PHYS_BASE) { 2720 kvm_set_apicv_inhibit(apic->vcpu->kvm, 2721 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED); 2722 } 2723 } 2724 2725 int kvm_apic_set_base(struct kvm_vcpu *vcpu, u64 value, bool host_initiated) 2726 { 2727 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 2728 enum lapic_mode new_mode = kvm_apic_mode(value); 2729 2730 if (vcpu->arch.apic_base == value) 2731 return 0; 2732 2733 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 2734 (guest_cpu_cap_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 2735 2736 if ((value & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 2737 return 1; 2738 if (!host_initiated) { 2739 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 2740 return 1; 2741 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 2742 return 1; 2743 } 2744 2745 __kvm_apic_set_base(vcpu, value); 2746 kvm_recalculate_apic_map(vcpu->kvm); 2747 return 0; 2748 } 2749 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_apic_set_base); 2750 2751 void kvm_apic_update_apicv(struct kvm_vcpu *vcpu) 2752 { 2753 struct kvm_lapic *apic = vcpu->arch.apic; 2754 2755 /* 2756 * When APICv is enabled, KVM must always search the IRR for a pending 2757 * IRQ, as other vCPUs and devices can set IRR bits even if the vCPU 2758 * isn't running. If APICv is disabled, KVM _should_ search the IRR 2759 * for a pending IRQ. But KVM currently doesn't ensure *all* hardware, 2760 * e.g. CPUs and IOMMUs, has seen the change in state, i.e. searching 2761 * the IRR at this time could race with IRQ delivery from hardware that 2762 * still sees APICv as being enabled. 2763 * 2764 * FIXME: Ensure other vCPUs and devices observe the change in APICv 2765 * state prior to updating KVM's metadata caches, so that KVM 2766 * can safely search the IRR and set irr_pending accordingly. 2767 */ 2768 apic->irr_pending = true; 2769 2770 if (apic->apicv_active) 2771 apic->isr_count = 1; 2772 else 2773 apic->isr_count = count_vectors(apic->regs + APIC_ISR); 2774 2775 apic->highest_isr_cache = -1; 2776 } 2777 2778 int kvm_alloc_apic_access_page(struct kvm *kvm) 2779 { 2780 void __user *hva; 2781 2782 guard(mutex)(&kvm->slots_lock); 2783 2784 if (kvm->arch.apic_access_memslot_enabled || 2785 kvm->arch.apic_access_memslot_inhibited) 2786 return 0; 2787 2788 hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 2789 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE); 2790 if (IS_ERR(hva)) 2791 return PTR_ERR(hva); 2792 2793 kvm->arch.apic_access_memslot_enabled = true; 2794 2795 return 0; 2796 } 2797 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_alloc_apic_access_page); 2798 2799 void kvm_inhibit_apic_access_page(struct kvm_vcpu *vcpu) 2800 { 2801 struct kvm *kvm = vcpu->kvm; 2802 2803 if (!kvm->arch.apic_access_memslot_enabled) 2804 return; 2805 2806 kvm_vcpu_srcu_read_unlock(vcpu); 2807 2808 mutex_lock(&kvm->slots_lock); 2809 2810 if (kvm->arch.apic_access_memslot_enabled) { 2811 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0); 2812 /* 2813 * Clear "enabled" after the memslot is deleted so that a 2814 * different vCPU doesn't get a false negative when checking 2815 * the flag out of slots_lock. No additional memory barrier is 2816 * needed as modifying memslots requires waiting other vCPUs to 2817 * drop SRCU (see above), and false positives are ok as the 2818 * flag is rechecked after acquiring slots_lock. 2819 */ 2820 kvm->arch.apic_access_memslot_enabled = false; 2821 2822 /* 2823 * Mark the memslot as inhibited to prevent reallocating the 2824 * memslot during vCPU creation, e.g. if a vCPU is hotplugged. 2825 */ 2826 kvm->arch.apic_access_memslot_inhibited = true; 2827 } 2828 2829 mutex_unlock(&kvm->slots_lock); 2830 2831 kvm_vcpu_srcu_read_lock(vcpu); 2832 } 2833 2834 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event) 2835 { 2836 struct kvm_lapic *apic = vcpu->arch.apic; 2837 u64 msr_val; 2838 int i; 2839 2840 kvm_x86_call(apicv_pre_state_restore)(vcpu); 2841 2842 if (!init_event) { 2843 msr_val = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE; 2844 if (kvm_vcpu_is_reset_bsp(vcpu)) 2845 msr_val |= MSR_IA32_APICBASE_BSP; 2846 2847 /* 2848 * Use the inner helper to avoid an extra recalcuation of the 2849 * optimized APIC map if some other task has dirtied the map. 2850 * The recalculation needed for this vCPU will be done after 2851 * all APIC state has been initialized (see below). 2852 */ 2853 __kvm_apic_set_base(vcpu, msr_val); 2854 } 2855 2856 if (!apic) 2857 return; 2858 2859 /* Stop the timer in case it's a reset to an active apic */ 2860 hrtimer_cancel(&apic->lapic_timer.timer); 2861 2862 /* The xAPIC ID is set at RESET even if the APIC was already enabled. */ 2863 if (!init_event) 2864 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2865 kvm_apic_set_version(apic->vcpu); 2866 2867 for (i = 0; i < apic->nr_lvt_entries; i++) 2868 kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED); 2869 apic_update_lvtt(apic); 2870 if (kvm_vcpu_is_reset_bsp(vcpu) && 2871 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED)) 2872 kvm_lapic_set_reg(apic, APIC_LVT0, 2873 SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT)); 2874 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 2875 2876 kvm_apic_set_dfr(apic, 0xffffffffU); 2877 apic_set_spiv(apic, 0xff); 2878 kvm_lapic_set_reg(apic, APIC_TASKPRI, 0); 2879 if (!apic_x2apic_mode(apic)) 2880 kvm_apic_set_ldr(apic, 0); 2881 kvm_lapic_set_reg(apic, APIC_ESR, 0); 2882 if (!apic_x2apic_mode(apic)) { 2883 kvm_lapic_set_reg(apic, APIC_ICR, 0); 2884 kvm_lapic_set_reg(apic, APIC_ICR2, 0); 2885 } else { 2886 kvm_lapic_set_reg64(apic, APIC_ICR, 0); 2887 } 2888 kvm_lapic_set_reg(apic, APIC_TDCR, 0); 2889 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 2890 for (i = 0; i < 8; i++) { 2891 kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0); 2892 kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0); 2893 kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0); 2894 } 2895 kvm_apic_update_apicv(vcpu); 2896 update_divide_count(apic); 2897 atomic_set(&apic->lapic_timer.pending, 0); 2898 2899 vcpu->arch.pv_eoi.msr_val = 0; 2900 apic_update_ppr(apic); 2901 if (apic->apicv_active) { 2902 kvm_x86_call(apicv_post_state_restore)(vcpu); 2903 kvm_x86_call(hwapic_isr_update)(vcpu, -1); 2904 } 2905 2906 vcpu->arch.apic_arb_prio = 0; 2907 vcpu->arch.apic_attention = 0; 2908 2909 kvm_recalculate_apic_map(vcpu->kvm); 2910 } 2911 2912 /* 2913 *---------------------------------------------------------------------- 2914 * timer interface 2915 *---------------------------------------------------------------------- 2916 */ 2917 2918 static bool lapic_is_periodic(struct kvm_lapic *apic) 2919 { 2920 return apic_lvtt_period(apic); 2921 } 2922 2923 int apic_has_pending_timer(struct kvm_vcpu *vcpu) 2924 { 2925 struct kvm_lapic *apic = vcpu->arch.apic; 2926 2927 if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT)) 2928 return atomic_read(&apic->lapic_timer.pending); 2929 2930 return 0; 2931 } 2932 2933 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type) 2934 { 2935 u32 reg = kvm_lapic_get_reg(apic, lvt_type); 2936 int vector, mode, trig_mode; 2937 int r; 2938 2939 if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) { 2940 vector = reg & APIC_VECTOR_MASK; 2941 mode = reg & APIC_MODE_MASK; 2942 trig_mode = reg & APIC_LVT_LEVEL_TRIGGER; 2943 2944 r = __apic_accept_irq(apic, mode, vector, 1, trig_mode, NULL); 2945 if (r && lvt_type == APIC_LVTPC && 2946 guest_cpuid_is_intel_compatible(apic->vcpu)) 2947 kvm_lapic_set_reg(apic, APIC_LVTPC, reg | APIC_LVT_MASKED); 2948 return r; 2949 } 2950 return 0; 2951 } 2952 2953 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu) 2954 { 2955 struct kvm_lapic *apic = vcpu->arch.apic; 2956 2957 if (apic) 2958 kvm_apic_local_deliver(apic, APIC_LVT0); 2959 } 2960 2961 static const struct kvm_io_device_ops apic_mmio_ops = { 2962 .read = apic_mmio_read, 2963 .write = apic_mmio_write, 2964 }; 2965 2966 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data) 2967 { 2968 struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer); 2969 struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer); 2970 2971 apic_timer_expired(apic, true); 2972 2973 if (lapic_is_periodic(apic)) { 2974 advance_periodic_target_expiration(apic); 2975 hrtimer_add_expires_ns(&ktimer->timer, ktimer->period); 2976 return HRTIMER_RESTART; 2977 } else 2978 return HRTIMER_NORESTART; 2979 } 2980 2981 int kvm_create_lapic(struct kvm_vcpu *vcpu) 2982 { 2983 struct kvm_lapic *apic; 2984 2985 ASSERT(vcpu != NULL); 2986 2987 if (!irqchip_in_kernel(vcpu->kvm)) { 2988 static_branch_inc(&kvm_has_noapic_vcpu); 2989 return 0; 2990 } 2991 2992 apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT); 2993 if (!apic) 2994 goto nomem; 2995 2996 vcpu->arch.apic = apic; 2997 2998 if (kvm_x86_ops.alloc_apic_backing_page) 2999 apic->regs = kvm_x86_call(alloc_apic_backing_page)(vcpu); 3000 else 3001 apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3002 if (!apic->regs) { 3003 printk(KERN_ERR "malloc apic regs error for vcpu %x\n", 3004 vcpu->vcpu_id); 3005 goto nomem_free_apic; 3006 } 3007 apic->vcpu = vcpu; 3008 3009 apic->nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu); 3010 3011 hrtimer_setup(&apic->lapic_timer.timer, apic_timer_fn, CLOCK_MONOTONIC, 3012 HRTIMER_MODE_ABS_HARD); 3013 if (lapic_timer_advance) 3014 apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; 3015 3016 /* 3017 * Stuff the APIC ENABLE bit in lieu of temporarily incrementing 3018 * apic_hw_disabled; the full RESET value is set by kvm_lapic_reset(). 3019 */ 3020 vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE; 3021 static_branch_inc(&apic_sw_disabled.key); /* sw disabled at reset */ 3022 kvm_iodevice_init(&apic->dev, &apic_mmio_ops); 3023 3024 /* 3025 * Defer evaluating inhibits until the vCPU is first run, as this vCPU 3026 * will not get notified of any changes until this vCPU is visible to 3027 * other vCPUs (marked online and added to the set of vCPUs). 3028 * 3029 * Opportunistically mark APICv active as VMX in particularly is highly 3030 * unlikely to have inhibits. Ignore the current per-VM APICv state so 3031 * that vCPU creation is guaranteed to run with a deterministic value, 3032 * the request will ensure the vCPU gets the correct state before VM-Entry. 3033 */ 3034 if (enable_apicv) { 3035 apic->apicv_active = true; 3036 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 3037 } 3038 3039 return 0; 3040 nomem_free_apic: 3041 kfree(apic); 3042 vcpu->arch.apic = NULL; 3043 nomem: 3044 return -ENOMEM; 3045 } 3046 3047 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu) 3048 { 3049 struct kvm_lapic *apic = vcpu->arch.apic; 3050 u32 ppr; 3051 3052 if (!kvm_apic_present(vcpu)) 3053 return -1; 3054 3055 if (apic->guest_apic_protected) 3056 return -1; 3057 3058 __apic_update_ppr(apic, &ppr); 3059 return apic_has_interrupt_for_ppr(apic, ppr); 3060 } 3061 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_apic_has_interrupt); 3062 3063 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu) 3064 { 3065 u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0); 3066 3067 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 3068 return 1; 3069 if ((lvt0 & APIC_LVT_MASKED) == 0 && 3070 GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT) 3071 return 1; 3072 return 0; 3073 } 3074 3075 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu) 3076 { 3077 struct kvm_lapic *apic = vcpu->arch.apic; 3078 3079 if (atomic_read(&apic->lapic_timer.pending) > 0) { 3080 kvm_apic_inject_pending_timer_irqs(apic); 3081 atomic_set(&apic->lapic_timer.pending, 0); 3082 } 3083 } 3084 3085 void kvm_apic_ack_interrupt(struct kvm_vcpu *vcpu, int vector) 3086 { 3087 struct kvm_lapic *apic = vcpu->arch.apic; 3088 u32 ppr; 3089 3090 if (WARN_ON_ONCE(vector < 0 || !apic)) 3091 return; 3092 3093 /* 3094 * We get here even with APIC virtualization enabled, if doing 3095 * nested virtualization and L1 runs with the "acknowledge interrupt 3096 * on exit" mode. Then we cannot inject the interrupt via RVI, 3097 * because the process would deliver it through the IDT. 3098 */ 3099 3100 apic_clear_irr(vector, apic); 3101 if (kvm_hv_synic_auto_eoi_set(vcpu, vector)) { 3102 /* 3103 * For auto-EOI interrupts, there might be another pending 3104 * interrupt above PPR, so check whether to raise another 3105 * KVM_REQ_EVENT. 3106 */ 3107 apic_update_ppr(apic); 3108 } else { 3109 /* 3110 * For normal interrupts, PPR has been raised and there cannot 3111 * be a higher-priority pending interrupt---except if there was 3112 * a concurrent interrupt injection, but that would have 3113 * triggered KVM_REQ_EVENT already. 3114 */ 3115 apic_set_isr(vector, apic); 3116 __apic_update_ppr(apic, &ppr); 3117 } 3118 3119 } 3120 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_apic_ack_interrupt); 3121 3122 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu, 3123 struct kvm_lapic_state *s, bool set) 3124 { 3125 if (apic_x2apic_mode(vcpu->arch.apic)) { 3126 u32 x2apic_id = kvm_x2apic_id(vcpu->arch.apic); 3127 u32 *id = (u32 *)(s->regs + APIC_ID); 3128 u32 *ldr = (u32 *)(s->regs + APIC_LDR); 3129 u64 icr; 3130 3131 if (vcpu->kvm->arch.x2apic_format) { 3132 if (*id != x2apic_id) 3133 return -EINVAL; 3134 } else { 3135 /* 3136 * Ignore the userspace value when setting APIC state. 3137 * KVM's model is that the x2APIC ID is readonly, e.g. 3138 * KVM only supports delivering interrupts to KVM's 3139 * version of the x2APIC ID. However, for backwards 3140 * compatibility, don't reject attempts to set a 3141 * mismatched ID for userspace that hasn't opted into 3142 * x2apic_format. 3143 */ 3144 if (set) 3145 *id = x2apic_id; 3146 else 3147 *id = x2apic_id << 24; 3148 } 3149 3150 /* 3151 * In x2APIC mode, the LDR is fixed and based on the id. And 3152 * if the ICR is _not_ split, ICR is internally a single 64-bit 3153 * register, but needs to be split to ICR+ICR2 in userspace for 3154 * backwards compatibility. 3155 */ 3156 if (set) 3157 *ldr = kvm_apic_calc_x2apic_ldr(x2apic_id); 3158 3159 if (!kvm_x86_ops.x2apic_icr_is_split) { 3160 if (set) { 3161 icr = apic_get_reg(s->regs, APIC_ICR) | 3162 (u64)apic_get_reg(s->regs, APIC_ICR2) << 32; 3163 apic_set_reg64(s->regs, APIC_ICR, icr); 3164 } else { 3165 icr = apic_get_reg64(s->regs, APIC_ICR); 3166 apic_set_reg(s->regs, APIC_ICR2, icr >> 32); 3167 } 3168 } 3169 } 3170 3171 return 0; 3172 } 3173 3174 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 3175 { 3176 memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s)); 3177 3178 /* 3179 * Get calculated timer current count for remaining timer period (if 3180 * any) and store it in the returned register set. 3181 */ 3182 apic_set_reg(s->regs, APIC_TMCCT, __apic_read(vcpu->arch.apic, APIC_TMCCT)); 3183 3184 return kvm_apic_state_fixup(vcpu, s, false); 3185 } 3186 3187 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 3188 { 3189 struct kvm_lapic *apic = vcpu->arch.apic; 3190 int r; 3191 3192 kvm_x86_call(apicv_pre_state_restore)(vcpu); 3193 3194 /* set SPIV separately to get count of SW disabled APICs right */ 3195 apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV))); 3196 3197 r = kvm_apic_state_fixup(vcpu, s, true); 3198 if (r) { 3199 kvm_recalculate_apic_map(vcpu->kvm); 3200 return r; 3201 } 3202 memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s)); 3203 3204 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 3205 kvm_recalculate_apic_map(vcpu->kvm); 3206 kvm_apic_set_version(vcpu); 3207 3208 apic_update_ppr(apic); 3209 cancel_apic_timer(apic); 3210 apic->lapic_timer.expired_tscdeadline = 0; 3211 apic_update_lvtt(apic); 3212 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 3213 update_divide_count(apic); 3214 __start_apic_timer(apic, APIC_TMCCT); 3215 kvm_lapic_set_reg(apic, APIC_TMCCT, 0); 3216 kvm_apic_update_apicv(vcpu); 3217 if (apic->apicv_active) { 3218 kvm_x86_call(apicv_post_state_restore)(vcpu); 3219 kvm_x86_call(hwapic_isr_update)(vcpu, apic_find_highest_isr(apic)); 3220 } 3221 kvm_make_request(KVM_REQ_EVENT, vcpu); 3222 3223 #ifdef CONFIG_KVM_IOAPIC 3224 if (ioapic_in_kernel(vcpu->kvm)) 3225 kvm_rtc_eoi_tracking_restore_one(vcpu); 3226 #endif 3227 3228 vcpu->arch.apic_arb_prio = 0; 3229 3230 return 0; 3231 } 3232 3233 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu) 3234 { 3235 struct hrtimer *timer; 3236 3237 if (!lapic_in_kernel(vcpu) || 3238 kvm_can_post_timer_interrupt(vcpu)) 3239 return; 3240 3241 timer = &vcpu->arch.apic->lapic_timer.timer; 3242 if (hrtimer_cancel(timer)) 3243 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD); 3244 } 3245 3246 /* 3247 * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt 3248 * 3249 * Detect whether guest triggered PV EOI since the 3250 * last entry. If yes, set EOI on guests's behalf. 3251 * Clear PV EOI in guest memory in any case. 3252 */ 3253 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu, 3254 struct kvm_lapic *apic) 3255 { 3256 int vector; 3257 /* 3258 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host 3259 * and KVM_PV_EOI_ENABLED in guest memory as follows: 3260 * 3261 * KVM_APIC_PV_EOI_PENDING is unset: 3262 * -> host disabled PV EOI. 3263 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set: 3264 * -> host enabled PV EOI, guest did not execute EOI yet. 3265 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset: 3266 * -> host enabled PV EOI, guest executed EOI. 3267 */ 3268 BUG_ON(!pv_eoi_enabled(vcpu)); 3269 3270 if (pv_eoi_test_and_clr_pending(vcpu)) 3271 return; 3272 vector = apic_set_eoi(apic); 3273 trace_kvm_pv_eoi(apic, vector); 3274 } 3275 3276 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu) 3277 { 3278 u32 data; 3279 3280 if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention)) 3281 apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic); 3282 3283 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 3284 return; 3285 3286 if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 3287 sizeof(u32))) 3288 return; 3289 3290 apic_set_tpr(vcpu->arch.apic, data & 0xff); 3291 } 3292 3293 /* 3294 * apic_sync_pv_eoi_to_guest - called before vmentry 3295 * 3296 * Detect whether it's safe to enable PV EOI and 3297 * if yes do so. 3298 */ 3299 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu, 3300 struct kvm_lapic *apic) 3301 { 3302 if (!pv_eoi_enabled(vcpu) || 3303 /* IRR set or many bits in ISR: could be nested. */ 3304 apic->irr_pending || 3305 /* Cache not set: could be safe but we don't bother. */ 3306 apic->highest_isr_cache == -1 || 3307 /* Need EOI to update ioapic. */ 3308 kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) { 3309 /* 3310 * PV EOI was disabled by apic_sync_pv_eoi_from_guest 3311 * so we need not do anything here. 3312 */ 3313 return; 3314 } 3315 3316 pv_eoi_set_pending(apic->vcpu); 3317 } 3318 3319 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu) 3320 { 3321 u32 data, tpr; 3322 int max_irr, max_isr; 3323 struct kvm_lapic *apic = vcpu->arch.apic; 3324 3325 apic_sync_pv_eoi_to_guest(vcpu, apic); 3326 3327 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 3328 return; 3329 3330 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff; 3331 max_irr = apic_find_highest_irr(apic); 3332 if (max_irr < 0) 3333 max_irr = 0; 3334 max_isr = apic_find_highest_isr(apic); 3335 if (max_isr < 0) 3336 max_isr = 0; 3337 data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24); 3338 3339 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 3340 sizeof(u32)); 3341 } 3342 3343 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr) 3344 { 3345 if (vapic_addr) { 3346 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, 3347 &vcpu->arch.apic->vapic_cache, 3348 vapic_addr, sizeof(u32))) 3349 return -EINVAL; 3350 __set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 3351 } else { 3352 __clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 3353 } 3354 3355 vcpu->arch.apic->vapic_addr = vapic_addr; 3356 return 0; 3357 } 3358 3359 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data) 3360 { 3361 u32 low; 3362 3363 if (reg == APIC_ICR) { 3364 *data = kvm_x2apic_icr_read(apic); 3365 return 0; 3366 } 3367 3368 if (kvm_lapic_reg_read(apic, reg, 4, &low)) 3369 return 1; 3370 3371 *data = low; 3372 3373 return 0; 3374 } 3375 3376 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data) 3377 { 3378 /* 3379 * ICR is a 64-bit register in x2APIC mode (and Hyper-V PV vAPIC) and 3380 * can be written as such, all other registers remain accessible only 3381 * through 32-bit reads/writes. 3382 */ 3383 if (reg == APIC_ICR) 3384 return kvm_x2apic_icr_write(apic, data); 3385 3386 /* Bits 63:32 are reserved in all other registers. */ 3387 if (data >> 32) 3388 return 1; 3389 3390 return kvm_lapic_reg_write(apic, reg, (u32)data); 3391 } 3392 3393 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data) 3394 { 3395 struct kvm_lapic *apic = vcpu->arch.apic; 3396 u32 reg = (msr - APIC_BASE_MSR) << 4; 3397 3398 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 3399 return 1; 3400 3401 return kvm_lapic_msr_write(apic, reg, data); 3402 } 3403 3404 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data) 3405 { 3406 struct kvm_lapic *apic = vcpu->arch.apic; 3407 u32 reg = (msr - APIC_BASE_MSR) << 4; 3408 3409 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 3410 return 1; 3411 3412 return kvm_lapic_msr_read(apic, reg, data); 3413 } 3414 3415 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data) 3416 { 3417 if (!lapic_in_kernel(vcpu)) 3418 return 1; 3419 3420 return kvm_lapic_msr_write(vcpu->arch.apic, reg, data); 3421 } 3422 3423 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data) 3424 { 3425 if (!lapic_in_kernel(vcpu)) 3426 return 1; 3427 3428 return kvm_lapic_msr_read(vcpu->arch.apic, reg, data); 3429 } 3430 3431 int kvm_lapic_set_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len) 3432 { 3433 u64 addr = data & ~KVM_MSR_ENABLED; 3434 struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data; 3435 unsigned long new_len; 3436 int ret; 3437 3438 if (!IS_ALIGNED(addr, 4)) 3439 return 1; 3440 3441 if (data & KVM_MSR_ENABLED) { 3442 if (addr == ghc->gpa && len <= ghc->len) 3443 new_len = ghc->len; 3444 else 3445 new_len = len; 3446 3447 ret = kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len); 3448 if (ret) 3449 return ret; 3450 } 3451 3452 vcpu->arch.pv_eoi.msr_val = data; 3453 3454 return 0; 3455 } 3456 3457 int kvm_apic_accept_events(struct kvm_vcpu *vcpu) 3458 { 3459 struct kvm_lapic *apic = vcpu->arch.apic; 3460 u8 sipi_vector; 3461 int r; 3462 3463 if (!kvm_apic_has_pending_init_or_sipi(vcpu)) 3464 return 0; 3465 3466 if (is_guest_mode(vcpu)) { 3467 r = kvm_check_nested_events(vcpu); 3468 if (r < 0) 3469 return r == -EBUSY ? 0 : r; 3470 /* 3471 * Continue processing INIT/SIPI even if a nested VM-Exit 3472 * occurred, e.g. pending SIPIs should be dropped if INIT+SIPI 3473 * are blocked as a result of transitioning to VMX root mode. 3474 */ 3475 } 3476 3477 /* 3478 * INITs are blocked while CPU is in specific states (SMM, VMX root 3479 * mode, SVM with GIF=0), while SIPIs are dropped if the CPU isn't in 3480 * wait-for-SIPI (WFS). 3481 */ 3482 if (!kvm_apic_init_sipi_allowed(vcpu)) { 3483 WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED); 3484 clear_bit(KVM_APIC_SIPI, &apic->pending_events); 3485 return 0; 3486 } 3487 3488 if (test_and_clear_bit(KVM_APIC_INIT, &apic->pending_events)) { 3489 kvm_vcpu_reset(vcpu, true); 3490 if (kvm_vcpu_is_bsp(apic->vcpu)) 3491 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); 3492 else 3493 kvm_set_mp_state(vcpu, KVM_MP_STATE_INIT_RECEIVED); 3494 } 3495 if (test_and_clear_bit(KVM_APIC_SIPI, &apic->pending_events)) { 3496 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 3497 /* evaluate pending_events before reading the vector */ 3498 smp_rmb(); 3499 sipi_vector = apic->sipi_vector; 3500 kvm_x86_call(vcpu_deliver_sipi_vector)(vcpu, 3501 sipi_vector); 3502 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); 3503 } 3504 } 3505 return 0; 3506 } 3507 3508 void kvm_lapic_exit(void) 3509 { 3510 static_key_deferred_flush(&apic_hw_disabled); 3511 WARN_ON(static_branch_unlikely(&apic_hw_disabled.key)); 3512 static_key_deferred_flush(&apic_sw_disabled); 3513 WARN_ON(static_branch_unlikely(&apic_sw_disabled.key)); 3514 } 3515