1 // SPDX-License-Identifier: GPL-2.0-only 2 3 /* 4 * Local APIC virtualization 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2007 Novell 8 * Copyright (C) 2007 Intel 9 * Copyright 2009 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Dor Laor <dor.laor@qumranet.com> 13 * Gregory Haskins <ghaskins@novell.com> 14 * Yaozu (Eddie) Dong <eddie.dong@intel.com> 15 * 16 * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation. 17 */ 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/kvm_host.h> 21 #include <linux/kvm.h> 22 #include <linux/mm.h> 23 #include <linux/highmem.h> 24 #include <linux/smp.h> 25 #include <linux/hrtimer.h> 26 #include <linux/io.h> 27 #include <linux/export.h> 28 #include <linux/math64.h> 29 #include <linux/slab.h> 30 #include <asm/processor.h> 31 #include <asm/mce.h> 32 #include <asm/msr.h> 33 #include <asm/page.h> 34 #include <asm/current.h> 35 #include <asm/apicdef.h> 36 #include <asm/delay.h> 37 #include <linux/atomic.h> 38 #include <linux/jump_label.h> 39 #include "kvm_cache_regs.h" 40 #include "irq.h" 41 #include "ioapic.h" 42 #include "trace.h" 43 #include "x86.h" 44 #include "xen.h" 45 #include "cpuid.h" 46 #include "hyperv.h" 47 #include "smm.h" 48 49 #ifndef CONFIG_X86_64 50 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y)) 51 #else 52 #define mod_64(x, y) ((x) % (y)) 53 #endif 54 55 /* 14 is the version for Xeon and Pentium 8.4.8*/ 56 #define APIC_VERSION 0x14UL 57 #define LAPIC_MMIO_LENGTH (1 << 12) 58 /* followed define is not in apicdef.h */ 59 #define MAX_APIC_VECTOR 256 60 #define APIC_VECTORS_PER_REG 32 61 62 /* 63 * Enable local APIC timer advancement (tscdeadline mode only) with adaptive 64 * tuning. When enabled, KVM programs the host timer event to fire early, i.e. 65 * before the deadline expires, to account for the delay between taking the 66 * VM-Exit (to inject the guest event) and the subsequent VM-Enter to resume 67 * the guest, i.e. so that the interrupt arrives in the guest with minimal 68 * latency relative to the deadline programmed by the guest. 69 */ 70 static bool lapic_timer_advance __read_mostly = true; 71 module_param(lapic_timer_advance, bool, 0444); 72 73 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN 100 /* clock cycles */ 74 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX 10000 /* clock cycles */ 75 #define LAPIC_TIMER_ADVANCE_NS_INIT 1000 76 #define LAPIC_TIMER_ADVANCE_NS_MAX 5000 77 /* step-by-step approximation to mitigate fluctuation */ 78 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8 79 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data); 80 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data); 81 82 static inline void __kvm_lapic_set_reg(char *regs, int reg_off, u32 val) 83 { 84 *((u32 *) (regs + reg_off)) = val; 85 } 86 87 static inline void kvm_lapic_set_reg(struct kvm_lapic *apic, int reg_off, u32 val) 88 { 89 __kvm_lapic_set_reg(apic->regs, reg_off, val); 90 } 91 92 static __always_inline u64 __kvm_lapic_get_reg64(char *regs, int reg) 93 { 94 BUILD_BUG_ON(reg != APIC_ICR); 95 return *((u64 *) (regs + reg)); 96 } 97 98 static __always_inline u64 kvm_lapic_get_reg64(struct kvm_lapic *apic, int reg) 99 { 100 return __kvm_lapic_get_reg64(apic->regs, reg); 101 } 102 103 static __always_inline void __kvm_lapic_set_reg64(char *regs, int reg, u64 val) 104 { 105 BUILD_BUG_ON(reg != APIC_ICR); 106 *((u64 *) (regs + reg)) = val; 107 } 108 109 static __always_inline void kvm_lapic_set_reg64(struct kvm_lapic *apic, 110 int reg, u64 val) 111 { 112 __kvm_lapic_set_reg64(apic->regs, reg, val); 113 } 114 115 static inline int apic_test_vector(int vec, void *bitmap) 116 { 117 return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 118 } 119 120 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector) 121 { 122 struct kvm_lapic *apic = vcpu->arch.apic; 123 124 return apic_test_vector(vector, apic->regs + APIC_ISR) || 125 apic_test_vector(vector, apic->regs + APIC_IRR); 126 } 127 128 static inline int __apic_test_and_set_vector(int vec, void *bitmap) 129 { 130 return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 131 } 132 133 static inline int __apic_test_and_clear_vector(int vec, void *bitmap) 134 { 135 return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 136 } 137 138 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); 139 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); 140 141 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_hw_disabled, HZ); 142 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_sw_disabled, HZ); 143 144 static inline int apic_enabled(struct kvm_lapic *apic) 145 { 146 return kvm_apic_sw_enabled(apic) && kvm_apic_hw_enabled(apic); 147 } 148 149 #define LVT_MASK \ 150 (APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK) 151 152 #define LINT_MASK \ 153 (LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \ 154 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER) 155 156 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic) 157 { 158 return apic->vcpu->vcpu_id; 159 } 160 161 static bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu) 162 { 163 return pi_inject_timer && kvm_vcpu_apicv_active(vcpu) && 164 (kvm_mwait_in_guest(vcpu->kvm) || kvm_hlt_in_guest(vcpu->kvm)); 165 } 166 167 bool kvm_can_use_hv_timer(struct kvm_vcpu *vcpu) 168 { 169 return kvm_x86_ops.set_hv_timer 170 && !(kvm_mwait_in_guest(vcpu->kvm) || 171 kvm_can_post_timer_interrupt(vcpu)); 172 } 173 174 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu) 175 { 176 return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE; 177 } 178 179 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id) 180 { 181 return ((id >> 4) << 16) | (1 << (id & 0xf)); 182 } 183 184 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map, 185 u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) { 186 switch (map->logical_mode) { 187 case KVM_APIC_MODE_SW_DISABLED: 188 /* Arbitrarily use the flat map so that @cluster isn't NULL. */ 189 *cluster = map->xapic_flat_map; 190 *mask = 0; 191 return true; 192 case KVM_APIC_MODE_X2APIC: { 193 u32 offset = (dest_id >> 16) * 16; 194 u32 max_apic_id = map->max_apic_id; 195 196 if (offset <= max_apic_id) { 197 u8 cluster_size = min(max_apic_id - offset + 1, 16U); 198 199 offset = array_index_nospec(offset, map->max_apic_id + 1); 200 *cluster = &map->phys_map[offset]; 201 *mask = dest_id & (0xffff >> (16 - cluster_size)); 202 } else { 203 *mask = 0; 204 } 205 206 return true; 207 } 208 case KVM_APIC_MODE_XAPIC_FLAT: 209 *cluster = map->xapic_flat_map; 210 *mask = dest_id & 0xff; 211 return true; 212 case KVM_APIC_MODE_XAPIC_CLUSTER: 213 *cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf]; 214 *mask = dest_id & 0xf; 215 return true; 216 case KVM_APIC_MODE_MAP_DISABLED: 217 return false; 218 default: 219 WARN_ON_ONCE(1); 220 return false; 221 } 222 } 223 224 static void kvm_apic_map_free(struct rcu_head *rcu) 225 { 226 struct kvm_apic_map *map = container_of(rcu, struct kvm_apic_map, rcu); 227 228 kvfree(map); 229 } 230 231 static int kvm_recalculate_phys_map(struct kvm_apic_map *new, 232 struct kvm_vcpu *vcpu, 233 bool *xapic_id_mismatch) 234 { 235 struct kvm_lapic *apic = vcpu->arch.apic; 236 u32 x2apic_id = kvm_x2apic_id(apic); 237 u32 xapic_id = kvm_xapic_id(apic); 238 u32 physical_id; 239 240 /* 241 * For simplicity, KVM always allocates enough space for all possible 242 * xAPIC IDs. Yell, but don't kill the VM, as KVM can continue on 243 * without the optimized map. 244 */ 245 if (WARN_ON_ONCE(xapic_id > new->max_apic_id)) 246 return -EINVAL; 247 248 /* 249 * Bail if a vCPU was added and/or enabled its APIC between allocating 250 * the map and doing the actual calculations for the map. Note, KVM 251 * hardcodes the x2APIC ID to vcpu_id, i.e. there's no TOCTOU bug if 252 * the compiler decides to reload x2apic_id after this check. 253 */ 254 if (x2apic_id > new->max_apic_id) 255 return -E2BIG; 256 257 /* 258 * Deliberately truncate the vCPU ID when detecting a mismatched APIC 259 * ID to avoid false positives if the vCPU ID, i.e. x2APIC ID, is a 260 * 32-bit value. Any unwanted aliasing due to truncation results will 261 * be detected below. 262 */ 263 if (!apic_x2apic_mode(apic) && xapic_id != (u8)vcpu->vcpu_id) 264 *xapic_id_mismatch = true; 265 266 /* 267 * Apply KVM's hotplug hack if userspace has enable 32-bit APIC IDs. 268 * Allow sending events to vCPUs by their x2APIC ID even if the target 269 * vCPU is in legacy xAPIC mode, and silently ignore aliased xAPIC IDs 270 * (the x2APIC ID is truncated to 8 bits, causing IDs > 0xff to wrap 271 * and collide). 272 * 273 * Honor the architectural (and KVM's non-optimized) behavior if 274 * userspace has not enabled 32-bit x2APIC IDs. Each APIC is supposed 275 * to process messages independently. If multiple vCPUs have the same 276 * effective APIC ID, e.g. due to the x2APIC wrap or because the guest 277 * manually modified its xAPIC IDs, events targeting that ID are 278 * supposed to be recognized by all vCPUs with said ID. 279 */ 280 if (vcpu->kvm->arch.x2apic_format) { 281 /* See also kvm_apic_match_physical_addr(). */ 282 if (apic_x2apic_mode(apic) || x2apic_id > 0xff) 283 new->phys_map[x2apic_id] = apic; 284 285 if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id]) 286 new->phys_map[xapic_id] = apic; 287 } else { 288 /* 289 * Disable the optimized map if the physical APIC ID is already 290 * mapped, i.e. is aliased to multiple vCPUs. The optimized 291 * map requires a strict 1:1 mapping between IDs and vCPUs. 292 */ 293 if (apic_x2apic_mode(apic)) 294 physical_id = x2apic_id; 295 else 296 physical_id = xapic_id; 297 298 if (new->phys_map[physical_id]) 299 return -EINVAL; 300 301 new->phys_map[physical_id] = apic; 302 } 303 304 return 0; 305 } 306 307 static void kvm_recalculate_logical_map(struct kvm_apic_map *new, 308 struct kvm_vcpu *vcpu) 309 { 310 struct kvm_lapic *apic = vcpu->arch.apic; 311 enum kvm_apic_logical_mode logical_mode; 312 struct kvm_lapic **cluster; 313 u16 mask; 314 u32 ldr; 315 316 if (new->logical_mode == KVM_APIC_MODE_MAP_DISABLED) 317 return; 318 319 if (!kvm_apic_sw_enabled(apic)) 320 return; 321 322 ldr = kvm_lapic_get_reg(apic, APIC_LDR); 323 if (!ldr) 324 return; 325 326 if (apic_x2apic_mode(apic)) { 327 logical_mode = KVM_APIC_MODE_X2APIC; 328 } else { 329 ldr = GET_APIC_LOGICAL_ID(ldr); 330 if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT) 331 logical_mode = KVM_APIC_MODE_XAPIC_FLAT; 332 else 333 logical_mode = KVM_APIC_MODE_XAPIC_CLUSTER; 334 } 335 336 /* 337 * To optimize logical mode delivery, all software-enabled APICs must 338 * be configured for the same mode. 339 */ 340 if (new->logical_mode == KVM_APIC_MODE_SW_DISABLED) { 341 new->logical_mode = logical_mode; 342 } else if (new->logical_mode != logical_mode) { 343 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED; 344 return; 345 } 346 347 /* 348 * In x2APIC mode, the LDR is read-only and derived directly from the 349 * x2APIC ID, thus is guaranteed to be addressable. KVM reuses 350 * kvm_apic_map.phys_map to optimize logical mode x2APIC interrupts by 351 * reversing the LDR calculation to get cluster of APICs, i.e. no 352 * additional work is required. 353 */ 354 if (apic_x2apic_mode(apic)) { 355 WARN_ON_ONCE(ldr != kvm_apic_calc_x2apic_ldr(kvm_x2apic_id(apic))); 356 return; 357 } 358 359 if (WARN_ON_ONCE(!kvm_apic_map_get_logical_dest(new, ldr, 360 &cluster, &mask))) { 361 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED; 362 return; 363 } 364 365 if (!mask) 366 return; 367 368 ldr = ffs(mask) - 1; 369 if (!is_power_of_2(mask) || cluster[ldr]) 370 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED; 371 else 372 cluster[ldr] = apic; 373 } 374 375 /* 376 * CLEAN -> DIRTY and UPDATE_IN_PROGRESS -> DIRTY changes happen without a lock. 377 * 378 * DIRTY -> UPDATE_IN_PROGRESS and UPDATE_IN_PROGRESS -> CLEAN happen with 379 * apic_map_lock_held. 380 */ 381 enum { 382 CLEAN, 383 UPDATE_IN_PROGRESS, 384 DIRTY 385 }; 386 387 void kvm_recalculate_apic_map(struct kvm *kvm) 388 { 389 struct kvm_apic_map *new, *old = NULL; 390 struct kvm_vcpu *vcpu; 391 unsigned long i; 392 u32 max_id = 255; /* enough space for any xAPIC ID */ 393 bool xapic_id_mismatch; 394 int r; 395 396 /* Read kvm->arch.apic_map_dirty before kvm->arch.apic_map. */ 397 if (atomic_read_acquire(&kvm->arch.apic_map_dirty) == CLEAN) 398 return; 399 400 WARN_ONCE(!irqchip_in_kernel(kvm), 401 "Dirty APIC map without an in-kernel local APIC"); 402 403 mutex_lock(&kvm->arch.apic_map_lock); 404 405 retry: 406 /* 407 * Read kvm->arch.apic_map_dirty before kvm->arch.apic_map (if clean) 408 * or the APIC registers (if dirty). Note, on retry the map may have 409 * not yet been marked dirty by whatever task changed a vCPU's x2APIC 410 * ID, i.e. the map may still show up as in-progress. In that case 411 * this task still needs to retry and complete its calculation. 412 */ 413 if (atomic_cmpxchg_acquire(&kvm->arch.apic_map_dirty, 414 DIRTY, UPDATE_IN_PROGRESS) == CLEAN) { 415 /* Someone else has updated the map. */ 416 mutex_unlock(&kvm->arch.apic_map_lock); 417 return; 418 } 419 420 /* 421 * Reset the mismatch flag between attempts so that KVM does the right 422 * thing if a vCPU changes its xAPIC ID, but do NOT reset max_id, i.e. 423 * keep max_id strictly increasing. Disallowing max_id from shrinking 424 * ensures KVM won't get stuck in an infinite loop, e.g. if the vCPU 425 * with the highest x2APIC ID is toggling its APIC on and off. 426 */ 427 xapic_id_mismatch = false; 428 429 kvm_for_each_vcpu(i, vcpu, kvm) 430 if (kvm_apic_present(vcpu)) 431 max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic)); 432 433 new = kvzalloc(sizeof(struct kvm_apic_map) + 434 sizeof(struct kvm_lapic *) * ((u64)max_id + 1), 435 GFP_KERNEL_ACCOUNT); 436 437 if (!new) 438 goto out; 439 440 new->max_apic_id = max_id; 441 new->logical_mode = KVM_APIC_MODE_SW_DISABLED; 442 443 kvm_for_each_vcpu(i, vcpu, kvm) { 444 if (!kvm_apic_present(vcpu)) 445 continue; 446 447 r = kvm_recalculate_phys_map(new, vcpu, &xapic_id_mismatch); 448 if (r) { 449 kvfree(new); 450 new = NULL; 451 if (r == -E2BIG) { 452 cond_resched(); 453 goto retry; 454 } 455 456 goto out; 457 } 458 459 kvm_recalculate_logical_map(new, vcpu); 460 } 461 out: 462 /* 463 * The optimized map is effectively KVM's internal version of APICv, 464 * and all unwanted aliasing that results in disabling the optimized 465 * map also applies to APICv. 466 */ 467 if (!new) 468 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED); 469 else 470 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED); 471 472 if (!new || new->logical_mode == KVM_APIC_MODE_MAP_DISABLED) 473 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED); 474 else 475 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED); 476 477 if (xapic_id_mismatch) 478 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED); 479 else 480 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED); 481 482 old = rcu_dereference_protected(kvm->arch.apic_map, 483 lockdep_is_held(&kvm->arch.apic_map_lock)); 484 rcu_assign_pointer(kvm->arch.apic_map, new); 485 /* 486 * Write kvm->arch.apic_map before clearing apic->apic_map_dirty. 487 * If another update has come in, leave it DIRTY. 488 */ 489 atomic_cmpxchg_release(&kvm->arch.apic_map_dirty, 490 UPDATE_IN_PROGRESS, CLEAN); 491 mutex_unlock(&kvm->arch.apic_map_lock); 492 493 if (old) 494 call_rcu(&old->rcu, kvm_apic_map_free); 495 496 kvm_make_scan_ioapic_request(kvm); 497 } 498 499 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val) 500 { 501 bool enabled = val & APIC_SPIV_APIC_ENABLED; 502 503 kvm_lapic_set_reg(apic, APIC_SPIV, val); 504 505 if (enabled != apic->sw_enabled) { 506 apic->sw_enabled = enabled; 507 if (enabled) 508 static_branch_slow_dec_deferred(&apic_sw_disabled); 509 else 510 static_branch_inc(&apic_sw_disabled.key); 511 512 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 513 } 514 515 /* Check if there are APF page ready requests pending */ 516 if (enabled) { 517 kvm_make_request(KVM_REQ_APF_READY, apic->vcpu); 518 kvm_xen_sw_enable_lapic(apic->vcpu); 519 } 520 } 521 522 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id) 523 { 524 kvm_lapic_set_reg(apic, APIC_ID, id << 24); 525 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 526 } 527 528 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id) 529 { 530 kvm_lapic_set_reg(apic, APIC_LDR, id); 531 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 532 } 533 534 static inline void kvm_apic_set_dfr(struct kvm_lapic *apic, u32 val) 535 { 536 kvm_lapic_set_reg(apic, APIC_DFR, val); 537 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 538 } 539 540 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id) 541 { 542 u32 ldr = kvm_apic_calc_x2apic_ldr(id); 543 544 WARN_ON_ONCE(id != apic->vcpu->vcpu_id); 545 546 kvm_lapic_set_reg(apic, APIC_ID, id); 547 kvm_lapic_set_reg(apic, APIC_LDR, ldr); 548 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 549 } 550 551 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type) 552 { 553 return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED); 554 } 555 556 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic) 557 { 558 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT; 559 } 560 561 static inline int apic_lvtt_period(struct kvm_lapic *apic) 562 { 563 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC; 564 } 565 566 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic) 567 { 568 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE; 569 } 570 571 static inline int apic_lvt_nmi_mode(u32 lvt_val) 572 { 573 return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI; 574 } 575 576 static inline bool kvm_lapic_lvt_supported(struct kvm_lapic *apic, int lvt_index) 577 { 578 return apic->nr_lvt_entries > lvt_index; 579 } 580 581 static inline int kvm_apic_calc_nr_lvt_entries(struct kvm_vcpu *vcpu) 582 { 583 return KVM_APIC_MAX_NR_LVT_ENTRIES - !(vcpu->arch.mcg_cap & MCG_CMCI_P); 584 } 585 586 void kvm_apic_set_version(struct kvm_vcpu *vcpu) 587 { 588 struct kvm_lapic *apic = vcpu->arch.apic; 589 u32 v = 0; 590 591 if (!lapic_in_kernel(vcpu)) 592 return; 593 594 v = APIC_VERSION | ((apic->nr_lvt_entries - 1) << 16); 595 596 /* 597 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation) 598 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with 599 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC 600 * version first and level-triggered interrupts never get EOIed in 601 * IOAPIC. 602 */ 603 if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) && 604 !ioapic_in_kernel(vcpu->kvm)) 605 v |= APIC_LVR_DIRECTED_EOI; 606 kvm_lapic_set_reg(apic, APIC_LVR, v); 607 } 608 609 void kvm_apic_after_set_mcg_cap(struct kvm_vcpu *vcpu) 610 { 611 int nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu); 612 struct kvm_lapic *apic = vcpu->arch.apic; 613 int i; 614 615 if (!lapic_in_kernel(vcpu) || nr_lvt_entries == apic->nr_lvt_entries) 616 return; 617 618 /* Initialize/mask any "new" LVT entries. */ 619 for (i = apic->nr_lvt_entries; i < nr_lvt_entries; i++) 620 kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED); 621 622 apic->nr_lvt_entries = nr_lvt_entries; 623 624 /* The number of LVT entries is reflected in the version register. */ 625 kvm_apic_set_version(vcpu); 626 } 627 628 static const unsigned int apic_lvt_mask[KVM_APIC_MAX_NR_LVT_ENTRIES] = { 629 [LVT_TIMER] = LVT_MASK, /* timer mode mask added at runtime */ 630 [LVT_THERMAL_MONITOR] = LVT_MASK | APIC_MODE_MASK, 631 [LVT_PERFORMANCE_COUNTER] = LVT_MASK | APIC_MODE_MASK, 632 [LVT_LINT0] = LINT_MASK, 633 [LVT_LINT1] = LINT_MASK, 634 [LVT_ERROR] = LVT_MASK, 635 [LVT_CMCI] = LVT_MASK | APIC_MODE_MASK 636 }; 637 638 static int find_highest_vector(void *bitmap) 639 { 640 int vec; 641 u32 *reg; 642 643 for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG; 644 vec >= 0; vec -= APIC_VECTORS_PER_REG) { 645 reg = bitmap + REG_POS(vec); 646 if (*reg) 647 return __fls(*reg) + vec; 648 } 649 650 return -1; 651 } 652 653 static u8 count_vectors(void *bitmap) 654 { 655 int vec; 656 u32 *reg; 657 u8 count = 0; 658 659 for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) { 660 reg = bitmap + REG_POS(vec); 661 count += hweight32(*reg); 662 } 663 664 return count; 665 } 666 667 bool __kvm_apic_update_irr(u32 *pir, void *regs, int *max_irr) 668 { 669 u32 i, vec; 670 u32 pir_val, irr_val, prev_irr_val; 671 int max_updated_irr; 672 673 max_updated_irr = -1; 674 *max_irr = -1; 675 676 for (i = vec = 0; i <= 7; i++, vec += 32) { 677 u32 *p_irr = (u32 *)(regs + APIC_IRR + i * 0x10); 678 679 irr_val = *p_irr; 680 pir_val = READ_ONCE(pir[i]); 681 682 if (pir_val) { 683 pir_val = xchg(&pir[i], 0); 684 685 prev_irr_val = irr_val; 686 do { 687 irr_val = prev_irr_val | pir_val; 688 } while (prev_irr_val != irr_val && 689 !try_cmpxchg(p_irr, &prev_irr_val, irr_val)); 690 691 if (prev_irr_val != irr_val) 692 max_updated_irr = __fls(irr_val ^ prev_irr_val) + vec; 693 } 694 if (irr_val) 695 *max_irr = __fls(irr_val) + vec; 696 } 697 698 return ((max_updated_irr != -1) && 699 (max_updated_irr == *max_irr)); 700 } 701 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr); 702 703 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir, int *max_irr) 704 { 705 struct kvm_lapic *apic = vcpu->arch.apic; 706 bool irr_updated = __kvm_apic_update_irr(pir, apic->regs, max_irr); 707 708 if (unlikely(!apic->apicv_active && irr_updated)) 709 apic->irr_pending = true; 710 return irr_updated; 711 } 712 EXPORT_SYMBOL_GPL(kvm_apic_update_irr); 713 714 static inline int apic_search_irr(struct kvm_lapic *apic) 715 { 716 return find_highest_vector(apic->regs + APIC_IRR); 717 } 718 719 static inline int apic_find_highest_irr(struct kvm_lapic *apic) 720 { 721 int result; 722 723 /* 724 * Note that irr_pending is just a hint. It will be always 725 * true with virtual interrupt delivery enabled. 726 */ 727 if (!apic->irr_pending) 728 return -1; 729 730 result = apic_search_irr(apic); 731 ASSERT(result == -1 || result >= 16); 732 733 return result; 734 } 735 736 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic) 737 { 738 if (unlikely(apic->apicv_active)) { 739 /* need to update RVI */ 740 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR); 741 kvm_x86_call(hwapic_irr_update)(apic->vcpu, 742 apic_find_highest_irr(apic)); 743 } else { 744 apic->irr_pending = false; 745 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR); 746 if (apic_search_irr(apic) != -1) 747 apic->irr_pending = true; 748 } 749 } 750 751 void kvm_apic_clear_irr(struct kvm_vcpu *vcpu, int vec) 752 { 753 apic_clear_irr(vec, vcpu->arch.apic); 754 } 755 EXPORT_SYMBOL_GPL(kvm_apic_clear_irr); 756 757 static inline void apic_set_isr(int vec, struct kvm_lapic *apic) 758 { 759 if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR)) 760 return; 761 762 /* 763 * With APIC virtualization enabled, all caching is disabled 764 * because the processor can modify ISR under the hood. Instead 765 * just set SVI. 766 */ 767 if (unlikely(apic->apicv_active)) 768 kvm_x86_call(hwapic_isr_update)(vec); 769 else { 770 ++apic->isr_count; 771 BUG_ON(apic->isr_count > MAX_APIC_VECTOR); 772 /* 773 * ISR (in service register) bit is set when injecting an interrupt. 774 * The highest vector is injected. Thus the latest bit set matches 775 * the highest bit in ISR. 776 */ 777 apic->highest_isr_cache = vec; 778 } 779 } 780 781 static inline int apic_find_highest_isr(struct kvm_lapic *apic) 782 { 783 int result; 784 785 /* 786 * Note that isr_count is always 1, and highest_isr_cache 787 * is always -1, with APIC virtualization enabled. 788 */ 789 if (!apic->isr_count) 790 return -1; 791 if (likely(apic->highest_isr_cache != -1)) 792 return apic->highest_isr_cache; 793 794 result = find_highest_vector(apic->regs + APIC_ISR); 795 ASSERT(result == -1 || result >= 16); 796 797 return result; 798 } 799 800 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic) 801 { 802 if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR)) 803 return; 804 805 /* 806 * We do get here for APIC virtualization enabled if the guest 807 * uses the Hyper-V APIC enlightenment. In this case we may need 808 * to trigger a new interrupt delivery by writing the SVI field; 809 * on the other hand isr_count and highest_isr_cache are unused 810 * and must be left alone. 811 */ 812 if (unlikely(apic->apicv_active)) 813 kvm_x86_call(hwapic_isr_update)(apic_find_highest_isr(apic)); 814 else { 815 --apic->isr_count; 816 BUG_ON(apic->isr_count < 0); 817 apic->highest_isr_cache = -1; 818 } 819 } 820 821 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu) 822 { 823 /* This may race with setting of irr in __apic_accept_irq() and 824 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq 825 * will cause vmexit immediately and the value will be recalculated 826 * on the next vmentry. 827 */ 828 return apic_find_highest_irr(vcpu->arch.apic); 829 } 830 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr); 831 832 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 833 int vector, int level, int trig_mode, 834 struct dest_map *dest_map); 835 836 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq, 837 struct dest_map *dest_map) 838 { 839 struct kvm_lapic *apic = vcpu->arch.apic; 840 841 return __apic_accept_irq(apic, irq->delivery_mode, irq->vector, 842 irq->level, irq->trig_mode, dest_map); 843 } 844 845 static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map, 846 struct kvm_lapic_irq *irq, u32 min) 847 { 848 int i, count = 0; 849 struct kvm_vcpu *vcpu; 850 851 if (min > map->max_apic_id) 852 return 0; 853 854 for_each_set_bit(i, ipi_bitmap, 855 min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) { 856 if (map->phys_map[min + i]) { 857 vcpu = map->phys_map[min + i]->vcpu; 858 count += kvm_apic_set_irq(vcpu, irq, NULL); 859 } 860 } 861 862 return count; 863 } 864 865 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 866 unsigned long ipi_bitmap_high, u32 min, 867 unsigned long icr, int op_64_bit) 868 { 869 struct kvm_apic_map *map; 870 struct kvm_lapic_irq irq = {0}; 871 int cluster_size = op_64_bit ? 64 : 32; 872 int count; 873 874 if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK)) 875 return -KVM_EINVAL; 876 877 irq.vector = icr & APIC_VECTOR_MASK; 878 irq.delivery_mode = icr & APIC_MODE_MASK; 879 irq.level = (icr & APIC_INT_ASSERT) != 0; 880 irq.trig_mode = icr & APIC_INT_LEVELTRIG; 881 882 rcu_read_lock(); 883 map = rcu_dereference(kvm->arch.apic_map); 884 885 count = -EOPNOTSUPP; 886 if (likely(map)) { 887 count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min); 888 min += cluster_size; 889 count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min); 890 } 891 892 rcu_read_unlock(); 893 return count; 894 } 895 896 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val) 897 { 898 899 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val, 900 sizeof(val)); 901 } 902 903 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val) 904 { 905 906 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val, 907 sizeof(*val)); 908 } 909 910 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu) 911 { 912 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED; 913 } 914 915 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu) 916 { 917 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0) 918 return; 919 920 __set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 921 } 922 923 static bool pv_eoi_test_and_clr_pending(struct kvm_vcpu *vcpu) 924 { 925 u8 val; 926 927 if (pv_eoi_get_user(vcpu, &val) < 0) 928 return false; 929 930 val &= KVM_PV_EOI_ENABLED; 931 932 if (val && pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0) 933 return false; 934 935 /* 936 * Clear pending bit in any case: it will be set again on vmentry. 937 * While this might not be ideal from performance point of view, 938 * this makes sure pv eoi is only enabled when we know it's safe. 939 */ 940 __clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 941 942 return val; 943 } 944 945 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr) 946 { 947 int highest_irr; 948 if (kvm_x86_ops.sync_pir_to_irr) 949 highest_irr = kvm_x86_call(sync_pir_to_irr)(apic->vcpu); 950 else 951 highest_irr = apic_find_highest_irr(apic); 952 if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr) 953 return -1; 954 return highest_irr; 955 } 956 957 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr) 958 { 959 u32 tpr, isrv, ppr, old_ppr; 960 int isr; 961 962 old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI); 963 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI); 964 isr = apic_find_highest_isr(apic); 965 isrv = (isr != -1) ? isr : 0; 966 967 if ((tpr & 0xf0) >= (isrv & 0xf0)) 968 ppr = tpr & 0xff; 969 else 970 ppr = isrv & 0xf0; 971 972 *new_ppr = ppr; 973 if (old_ppr != ppr) 974 kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr); 975 976 return ppr < old_ppr; 977 } 978 979 static void apic_update_ppr(struct kvm_lapic *apic) 980 { 981 u32 ppr; 982 983 if (__apic_update_ppr(apic, &ppr) && 984 apic_has_interrupt_for_ppr(apic, ppr) != -1) 985 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 986 } 987 988 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu) 989 { 990 apic_update_ppr(vcpu->arch.apic); 991 } 992 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr); 993 994 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr) 995 { 996 kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr); 997 apic_update_ppr(apic); 998 } 999 1000 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda) 1001 { 1002 return mda == (apic_x2apic_mode(apic) ? 1003 X2APIC_BROADCAST : APIC_BROADCAST); 1004 } 1005 1006 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda) 1007 { 1008 if (kvm_apic_broadcast(apic, mda)) 1009 return true; 1010 1011 /* 1012 * Hotplug hack: Accept interrupts for vCPUs in xAPIC mode as if they 1013 * were in x2APIC mode if the target APIC ID can't be encoded as an 1014 * xAPIC ID. This allows unique addressing of hotplugged vCPUs (which 1015 * start in xAPIC mode) with an APIC ID that is unaddressable in xAPIC 1016 * mode. Match the x2APIC ID if and only if the target APIC ID can't 1017 * be encoded in xAPIC to avoid spurious matches against a vCPU that 1018 * changed its (addressable) xAPIC ID (which is writable). 1019 */ 1020 if (apic_x2apic_mode(apic) || mda > 0xff) 1021 return mda == kvm_x2apic_id(apic); 1022 1023 return mda == kvm_xapic_id(apic); 1024 } 1025 1026 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda) 1027 { 1028 u32 logical_id; 1029 1030 if (kvm_apic_broadcast(apic, mda)) 1031 return true; 1032 1033 logical_id = kvm_lapic_get_reg(apic, APIC_LDR); 1034 1035 if (apic_x2apic_mode(apic)) 1036 return ((logical_id >> 16) == (mda >> 16)) 1037 && (logical_id & mda & 0xffff) != 0; 1038 1039 logical_id = GET_APIC_LOGICAL_ID(logical_id); 1040 1041 switch (kvm_lapic_get_reg(apic, APIC_DFR)) { 1042 case APIC_DFR_FLAT: 1043 return (logical_id & mda) != 0; 1044 case APIC_DFR_CLUSTER: 1045 return ((logical_id >> 4) == (mda >> 4)) 1046 && (logical_id & mda & 0xf) != 0; 1047 default: 1048 return false; 1049 } 1050 } 1051 1052 /* The KVM local APIC implementation has two quirks: 1053 * 1054 * - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs 1055 * in xAPIC mode if the "destination & 0xff" matches its xAPIC ID. 1056 * KVM doesn't do that aliasing. 1057 * 1058 * - in-kernel IOAPIC messages have to be delivered directly to 1059 * x2APIC, because the kernel does not support interrupt remapping. 1060 * In order to support broadcast without interrupt remapping, x2APIC 1061 * rewrites the destination of non-IPI messages from APIC_BROADCAST 1062 * to X2APIC_BROADCAST. 1063 * 1064 * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API. This is 1065 * important when userspace wants to use x2APIC-format MSIs, because 1066 * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7". 1067 */ 1068 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id, 1069 struct kvm_lapic *source, struct kvm_lapic *target) 1070 { 1071 bool ipi = source != NULL; 1072 1073 if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled && 1074 !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target)) 1075 return X2APIC_BROADCAST; 1076 1077 return dest_id; 1078 } 1079 1080 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source, 1081 int shorthand, unsigned int dest, int dest_mode) 1082 { 1083 struct kvm_lapic *target = vcpu->arch.apic; 1084 u32 mda = kvm_apic_mda(vcpu, dest, source, target); 1085 1086 ASSERT(target); 1087 switch (shorthand) { 1088 case APIC_DEST_NOSHORT: 1089 if (dest_mode == APIC_DEST_PHYSICAL) 1090 return kvm_apic_match_physical_addr(target, mda); 1091 else 1092 return kvm_apic_match_logical_addr(target, mda); 1093 case APIC_DEST_SELF: 1094 return target == source; 1095 case APIC_DEST_ALLINC: 1096 return true; 1097 case APIC_DEST_ALLBUT: 1098 return target != source; 1099 default: 1100 return false; 1101 } 1102 } 1103 EXPORT_SYMBOL_GPL(kvm_apic_match_dest); 1104 1105 int kvm_vector_to_index(u32 vector, u32 dest_vcpus, 1106 const unsigned long *bitmap, u32 bitmap_size) 1107 { 1108 u32 mod; 1109 int i, idx = -1; 1110 1111 mod = vector % dest_vcpus; 1112 1113 for (i = 0; i <= mod; i++) { 1114 idx = find_next_bit(bitmap, bitmap_size, idx + 1); 1115 BUG_ON(idx == bitmap_size); 1116 } 1117 1118 return idx; 1119 } 1120 1121 static void kvm_apic_disabled_lapic_found(struct kvm *kvm) 1122 { 1123 if (!kvm->arch.disabled_lapic_found) { 1124 kvm->arch.disabled_lapic_found = true; 1125 pr_info("Disabled LAPIC found during irq injection\n"); 1126 } 1127 } 1128 1129 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src, 1130 struct kvm_lapic_irq *irq, struct kvm_apic_map *map) 1131 { 1132 if (kvm->arch.x2apic_broadcast_quirk_disabled) { 1133 if ((irq->dest_id == APIC_BROADCAST && 1134 map->logical_mode != KVM_APIC_MODE_X2APIC)) 1135 return true; 1136 if (irq->dest_id == X2APIC_BROADCAST) 1137 return true; 1138 } else { 1139 bool x2apic_ipi = src && *src && apic_x2apic_mode(*src); 1140 if (irq->dest_id == (x2apic_ipi ? 1141 X2APIC_BROADCAST : APIC_BROADCAST)) 1142 return true; 1143 } 1144 1145 return false; 1146 } 1147 1148 /* Return true if the interrupt can be handled by using *bitmap as index mask 1149 * for valid destinations in *dst array. 1150 * Return false if kvm_apic_map_get_dest_lapic did nothing useful. 1151 * Note: we may have zero kvm_lapic destinations when we return true, which 1152 * means that the interrupt should be dropped. In this case, *bitmap would be 1153 * zero and *dst undefined. 1154 */ 1155 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm, 1156 struct kvm_lapic **src, struct kvm_lapic_irq *irq, 1157 struct kvm_apic_map *map, struct kvm_lapic ***dst, 1158 unsigned long *bitmap) 1159 { 1160 int i, lowest; 1161 1162 if (irq->shorthand == APIC_DEST_SELF && src) { 1163 *dst = src; 1164 *bitmap = 1; 1165 return true; 1166 } else if (irq->shorthand) 1167 return false; 1168 1169 if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map)) 1170 return false; 1171 1172 if (irq->dest_mode == APIC_DEST_PHYSICAL) { 1173 if (irq->dest_id > map->max_apic_id) { 1174 *bitmap = 0; 1175 } else { 1176 u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1); 1177 *dst = &map->phys_map[dest_id]; 1178 *bitmap = 1; 1179 } 1180 return true; 1181 } 1182 1183 *bitmap = 0; 1184 if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst, 1185 (u16 *)bitmap)) 1186 return false; 1187 1188 if (!kvm_lowest_prio_delivery(irq)) 1189 return true; 1190 1191 if (!kvm_vector_hashing_enabled()) { 1192 lowest = -1; 1193 for_each_set_bit(i, bitmap, 16) { 1194 if (!(*dst)[i]) 1195 continue; 1196 if (lowest < 0) 1197 lowest = i; 1198 else if (kvm_apic_compare_prio((*dst)[i]->vcpu, 1199 (*dst)[lowest]->vcpu) < 0) 1200 lowest = i; 1201 } 1202 } else { 1203 if (!*bitmap) 1204 return true; 1205 1206 lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap), 1207 bitmap, 16); 1208 1209 if (!(*dst)[lowest]) { 1210 kvm_apic_disabled_lapic_found(kvm); 1211 *bitmap = 0; 1212 return true; 1213 } 1214 } 1215 1216 *bitmap = (lowest >= 0) ? 1 << lowest : 0; 1217 1218 return true; 1219 } 1220 1221 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src, 1222 struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map) 1223 { 1224 struct kvm_apic_map *map; 1225 unsigned long bitmap; 1226 struct kvm_lapic **dst = NULL; 1227 int i; 1228 bool ret; 1229 1230 *r = -1; 1231 1232 if (irq->shorthand == APIC_DEST_SELF) { 1233 if (KVM_BUG_ON(!src, kvm)) { 1234 *r = 0; 1235 return true; 1236 } 1237 *r = kvm_apic_set_irq(src->vcpu, irq, dest_map); 1238 return true; 1239 } 1240 1241 rcu_read_lock(); 1242 map = rcu_dereference(kvm->arch.apic_map); 1243 1244 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap); 1245 if (ret) { 1246 *r = 0; 1247 for_each_set_bit(i, &bitmap, 16) { 1248 if (!dst[i]) 1249 continue; 1250 *r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map); 1251 } 1252 } 1253 1254 rcu_read_unlock(); 1255 return ret; 1256 } 1257 1258 /* 1259 * This routine tries to handle interrupts in posted mode, here is how 1260 * it deals with different cases: 1261 * - For single-destination interrupts, handle it in posted mode 1262 * - Else if vector hashing is enabled and it is a lowest-priority 1263 * interrupt, handle it in posted mode and use the following mechanism 1264 * to find the destination vCPU. 1265 * 1. For lowest-priority interrupts, store all the possible 1266 * destination vCPUs in an array. 1267 * 2. Use "guest vector % max number of destination vCPUs" to find 1268 * the right destination vCPU in the array for the lowest-priority 1269 * interrupt. 1270 * - Otherwise, use remapped mode to inject the interrupt. 1271 */ 1272 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq, 1273 struct kvm_vcpu **dest_vcpu) 1274 { 1275 struct kvm_apic_map *map; 1276 unsigned long bitmap; 1277 struct kvm_lapic **dst = NULL; 1278 bool ret = false; 1279 1280 if (irq->shorthand) 1281 return false; 1282 1283 rcu_read_lock(); 1284 map = rcu_dereference(kvm->arch.apic_map); 1285 1286 if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) && 1287 hweight16(bitmap) == 1) { 1288 unsigned long i = find_first_bit(&bitmap, 16); 1289 1290 if (dst[i]) { 1291 *dest_vcpu = dst[i]->vcpu; 1292 ret = true; 1293 } 1294 } 1295 1296 rcu_read_unlock(); 1297 return ret; 1298 } 1299 1300 /* 1301 * Add a pending IRQ into lapic. 1302 * Return 1 if successfully added and 0 if discarded. 1303 */ 1304 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 1305 int vector, int level, int trig_mode, 1306 struct dest_map *dest_map) 1307 { 1308 int result = 0; 1309 struct kvm_vcpu *vcpu = apic->vcpu; 1310 1311 trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode, 1312 trig_mode, vector); 1313 switch (delivery_mode) { 1314 case APIC_DM_LOWEST: 1315 vcpu->arch.apic_arb_prio++; 1316 fallthrough; 1317 case APIC_DM_FIXED: 1318 if (unlikely(trig_mode && !level)) 1319 break; 1320 1321 /* FIXME add logic for vcpu on reset */ 1322 if (unlikely(!apic_enabled(apic))) 1323 break; 1324 1325 result = 1; 1326 1327 if (dest_map) { 1328 __set_bit(vcpu->vcpu_id, dest_map->map); 1329 dest_map->vectors[vcpu->vcpu_id] = vector; 1330 } 1331 1332 if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) { 1333 if (trig_mode) 1334 kvm_lapic_set_vector(vector, 1335 apic->regs + APIC_TMR); 1336 else 1337 kvm_lapic_clear_vector(vector, 1338 apic->regs + APIC_TMR); 1339 } 1340 1341 kvm_x86_call(deliver_interrupt)(apic, delivery_mode, 1342 trig_mode, vector); 1343 break; 1344 1345 case APIC_DM_REMRD: 1346 result = 1; 1347 vcpu->arch.pv.pv_unhalted = 1; 1348 kvm_make_request(KVM_REQ_EVENT, vcpu); 1349 kvm_vcpu_kick(vcpu); 1350 break; 1351 1352 case APIC_DM_SMI: 1353 if (!kvm_inject_smi(vcpu)) { 1354 kvm_vcpu_kick(vcpu); 1355 result = 1; 1356 } 1357 break; 1358 1359 case APIC_DM_NMI: 1360 result = 1; 1361 kvm_inject_nmi(vcpu); 1362 kvm_vcpu_kick(vcpu); 1363 break; 1364 1365 case APIC_DM_INIT: 1366 if (!trig_mode || level) { 1367 result = 1; 1368 /* assumes that there are only KVM_APIC_INIT/SIPI */ 1369 apic->pending_events = (1UL << KVM_APIC_INIT); 1370 kvm_make_request(KVM_REQ_EVENT, vcpu); 1371 kvm_vcpu_kick(vcpu); 1372 } 1373 break; 1374 1375 case APIC_DM_STARTUP: 1376 result = 1; 1377 apic->sipi_vector = vector; 1378 /* make sure sipi_vector is visible for the receiver */ 1379 smp_wmb(); 1380 set_bit(KVM_APIC_SIPI, &apic->pending_events); 1381 kvm_make_request(KVM_REQ_EVENT, vcpu); 1382 kvm_vcpu_kick(vcpu); 1383 break; 1384 1385 case APIC_DM_EXTINT: 1386 /* 1387 * Should only be called by kvm_apic_local_deliver() with LVT0, 1388 * before NMI watchdog was enabled. Already handled by 1389 * kvm_apic_accept_pic_intr(). 1390 */ 1391 break; 1392 1393 default: 1394 printk(KERN_ERR "TODO: unsupported delivery mode %x\n", 1395 delivery_mode); 1396 break; 1397 } 1398 return result; 1399 } 1400 1401 /* 1402 * This routine identifies the destination vcpus mask meant to receive the 1403 * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find 1404 * out the destination vcpus array and set the bitmap or it traverses to 1405 * each available vcpu to identify the same. 1406 */ 1407 void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq, 1408 unsigned long *vcpu_bitmap) 1409 { 1410 struct kvm_lapic **dest_vcpu = NULL; 1411 struct kvm_lapic *src = NULL; 1412 struct kvm_apic_map *map; 1413 struct kvm_vcpu *vcpu; 1414 unsigned long bitmap, i; 1415 int vcpu_idx; 1416 bool ret; 1417 1418 rcu_read_lock(); 1419 map = rcu_dereference(kvm->arch.apic_map); 1420 1421 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu, 1422 &bitmap); 1423 if (ret) { 1424 for_each_set_bit(i, &bitmap, 16) { 1425 if (!dest_vcpu[i]) 1426 continue; 1427 vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx; 1428 __set_bit(vcpu_idx, vcpu_bitmap); 1429 } 1430 } else { 1431 kvm_for_each_vcpu(i, vcpu, kvm) { 1432 if (!kvm_apic_present(vcpu)) 1433 continue; 1434 if (!kvm_apic_match_dest(vcpu, NULL, 1435 irq->shorthand, 1436 irq->dest_id, 1437 irq->dest_mode)) 1438 continue; 1439 __set_bit(i, vcpu_bitmap); 1440 } 1441 } 1442 rcu_read_unlock(); 1443 } 1444 1445 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2) 1446 { 1447 return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio; 1448 } 1449 1450 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector) 1451 { 1452 return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors); 1453 } 1454 1455 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector) 1456 { 1457 int trigger_mode; 1458 1459 /* Eoi the ioapic only if the ioapic doesn't own the vector. */ 1460 if (!kvm_ioapic_handles_vector(apic, vector)) 1461 return; 1462 1463 /* Request a KVM exit to inform the userspace IOAPIC. */ 1464 if (irqchip_split(apic->vcpu->kvm)) { 1465 apic->vcpu->arch.pending_ioapic_eoi = vector; 1466 kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu); 1467 return; 1468 } 1469 1470 if (apic_test_vector(vector, apic->regs + APIC_TMR)) 1471 trigger_mode = IOAPIC_LEVEL_TRIG; 1472 else 1473 trigger_mode = IOAPIC_EDGE_TRIG; 1474 1475 kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode); 1476 } 1477 1478 static int apic_set_eoi(struct kvm_lapic *apic) 1479 { 1480 int vector = apic_find_highest_isr(apic); 1481 1482 trace_kvm_eoi(apic, vector); 1483 1484 /* 1485 * Not every write EOI will has corresponding ISR, 1486 * one example is when Kernel check timer on setup_IO_APIC 1487 */ 1488 if (vector == -1) 1489 return vector; 1490 1491 apic_clear_isr(vector, apic); 1492 apic_update_ppr(apic); 1493 1494 if (kvm_hv_synic_has_vector(apic->vcpu, vector)) 1495 kvm_hv_synic_send_eoi(apic->vcpu, vector); 1496 1497 kvm_ioapic_send_eoi(apic, vector); 1498 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1499 return vector; 1500 } 1501 1502 /* 1503 * this interface assumes a trap-like exit, which has already finished 1504 * desired side effect including vISR and vPPR update. 1505 */ 1506 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector) 1507 { 1508 struct kvm_lapic *apic = vcpu->arch.apic; 1509 1510 trace_kvm_eoi(apic, vector); 1511 1512 kvm_ioapic_send_eoi(apic, vector); 1513 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1514 } 1515 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated); 1516 1517 void kvm_apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high) 1518 { 1519 struct kvm_lapic_irq irq; 1520 1521 /* KVM has no delay and should always clear the BUSY/PENDING flag. */ 1522 WARN_ON_ONCE(icr_low & APIC_ICR_BUSY); 1523 1524 irq.vector = icr_low & APIC_VECTOR_MASK; 1525 irq.delivery_mode = icr_low & APIC_MODE_MASK; 1526 irq.dest_mode = icr_low & APIC_DEST_MASK; 1527 irq.level = (icr_low & APIC_INT_ASSERT) != 0; 1528 irq.trig_mode = icr_low & APIC_INT_LEVELTRIG; 1529 irq.shorthand = icr_low & APIC_SHORT_MASK; 1530 irq.msi_redir_hint = false; 1531 if (apic_x2apic_mode(apic)) 1532 irq.dest_id = icr_high; 1533 else 1534 irq.dest_id = GET_XAPIC_DEST_FIELD(icr_high); 1535 1536 trace_kvm_apic_ipi(icr_low, irq.dest_id); 1537 1538 kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL); 1539 } 1540 EXPORT_SYMBOL_GPL(kvm_apic_send_ipi); 1541 1542 static u32 apic_get_tmcct(struct kvm_lapic *apic) 1543 { 1544 ktime_t remaining, now; 1545 s64 ns; 1546 1547 ASSERT(apic != NULL); 1548 1549 /* if initial count is 0, current count should also be 0 */ 1550 if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 || 1551 apic->lapic_timer.period == 0) 1552 return 0; 1553 1554 now = ktime_get(); 1555 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 1556 if (ktime_to_ns(remaining) < 0) 1557 remaining = 0; 1558 1559 ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period); 1560 return div64_u64(ns, (apic->vcpu->kvm->arch.apic_bus_cycle_ns * 1561 apic->divide_count)); 1562 } 1563 1564 static void __report_tpr_access(struct kvm_lapic *apic, bool write) 1565 { 1566 struct kvm_vcpu *vcpu = apic->vcpu; 1567 struct kvm_run *run = vcpu->run; 1568 1569 kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu); 1570 run->tpr_access.rip = kvm_rip_read(vcpu); 1571 run->tpr_access.is_write = write; 1572 } 1573 1574 static inline void report_tpr_access(struct kvm_lapic *apic, bool write) 1575 { 1576 if (apic->vcpu->arch.tpr_access_reporting) 1577 __report_tpr_access(apic, write); 1578 } 1579 1580 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset) 1581 { 1582 u32 val = 0; 1583 1584 if (offset >= LAPIC_MMIO_LENGTH) 1585 return 0; 1586 1587 switch (offset) { 1588 case APIC_ARBPRI: 1589 break; 1590 1591 case APIC_TMCCT: /* Timer CCR */ 1592 if (apic_lvtt_tscdeadline(apic)) 1593 return 0; 1594 1595 val = apic_get_tmcct(apic); 1596 break; 1597 case APIC_PROCPRI: 1598 apic_update_ppr(apic); 1599 val = kvm_lapic_get_reg(apic, offset); 1600 break; 1601 case APIC_TASKPRI: 1602 report_tpr_access(apic, false); 1603 fallthrough; 1604 default: 1605 val = kvm_lapic_get_reg(apic, offset); 1606 break; 1607 } 1608 1609 return val; 1610 } 1611 1612 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev) 1613 { 1614 return container_of(dev, struct kvm_lapic, dev); 1615 } 1616 1617 #define APIC_REG_MASK(reg) (1ull << ((reg) >> 4)) 1618 #define APIC_REGS_MASK(first, count) \ 1619 (APIC_REG_MASK(first) * ((1ull << (count)) - 1)) 1620 1621 u64 kvm_lapic_readable_reg_mask(struct kvm_lapic *apic) 1622 { 1623 /* Leave bits '0' for reserved and write-only registers. */ 1624 u64 valid_reg_mask = 1625 APIC_REG_MASK(APIC_ID) | 1626 APIC_REG_MASK(APIC_LVR) | 1627 APIC_REG_MASK(APIC_TASKPRI) | 1628 APIC_REG_MASK(APIC_PROCPRI) | 1629 APIC_REG_MASK(APIC_LDR) | 1630 APIC_REG_MASK(APIC_SPIV) | 1631 APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) | 1632 APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) | 1633 APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) | 1634 APIC_REG_MASK(APIC_ESR) | 1635 APIC_REG_MASK(APIC_ICR) | 1636 APIC_REG_MASK(APIC_LVTT) | 1637 APIC_REG_MASK(APIC_LVTTHMR) | 1638 APIC_REG_MASK(APIC_LVTPC) | 1639 APIC_REG_MASK(APIC_LVT0) | 1640 APIC_REG_MASK(APIC_LVT1) | 1641 APIC_REG_MASK(APIC_LVTERR) | 1642 APIC_REG_MASK(APIC_TMICT) | 1643 APIC_REG_MASK(APIC_TMCCT) | 1644 APIC_REG_MASK(APIC_TDCR); 1645 1646 if (kvm_lapic_lvt_supported(apic, LVT_CMCI)) 1647 valid_reg_mask |= APIC_REG_MASK(APIC_LVTCMCI); 1648 1649 /* ARBPRI, DFR, and ICR2 are not valid in x2APIC mode. */ 1650 if (!apic_x2apic_mode(apic)) 1651 valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI) | 1652 APIC_REG_MASK(APIC_DFR) | 1653 APIC_REG_MASK(APIC_ICR2); 1654 1655 return valid_reg_mask; 1656 } 1657 EXPORT_SYMBOL_GPL(kvm_lapic_readable_reg_mask); 1658 1659 static int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len, 1660 void *data) 1661 { 1662 unsigned char alignment = offset & 0xf; 1663 u32 result; 1664 1665 /* 1666 * WARN if KVM reads ICR in x2APIC mode, as it's an 8-byte register in 1667 * x2APIC and needs to be manually handled by the caller. 1668 */ 1669 WARN_ON_ONCE(apic_x2apic_mode(apic) && offset == APIC_ICR); 1670 1671 if (alignment + len > 4) 1672 return 1; 1673 1674 if (offset > 0x3f0 || 1675 !(kvm_lapic_readable_reg_mask(apic) & APIC_REG_MASK(offset))) 1676 return 1; 1677 1678 result = __apic_read(apic, offset & ~0xf); 1679 1680 trace_kvm_apic_read(offset, result); 1681 1682 switch (len) { 1683 case 1: 1684 case 2: 1685 case 4: 1686 memcpy(data, (char *)&result + alignment, len); 1687 break; 1688 default: 1689 printk(KERN_ERR "Local APIC read with len = %x, " 1690 "should be 1,2, or 4 instead\n", len); 1691 break; 1692 } 1693 return 0; 1694 } 1695 1696 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr) 1697 { 1698 return addr >= apic->base_address && 1699 addr < apic->base_address + LAPIC_MMIO_LENGTH; 1700 } 1701 1702 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 1703 gpa_t address, int len, void *data) 1704 { 1705 struct kvm_lapic *apic = to_lapic(this); 1706 u32 offset = address - apic->base_address; 1707 1708 if (!apic_mmio_in_range(apic, address)) 1709 return -EOPNOTSUPP; 1710 1711 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 1712 if (!kvm_check_has_quirk(vcpu->kvm, 1713 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 1714 return -EOPNOTSUPP; 1715 1716 memset(data, 0xff, len); 1717 return 0; 1718 } 1719 1720 kvm_lapic_reg_read(apic, offset, len, data); 1721 1722 return 0; 1723 } 1724 1725 static void update_divide_count(struct kvm_lapic *apic) 1726 { 1727 u32 tmp1, tmp2, tdcr; 1728 1729 tdcr = kvm_lapic_get_reg(apic, APIC_TDCR); 1730 tmp1 = tdcr & 0xf; 1731 tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1; 1732 apic->divide_count = 0x1 << (tmp2 & 0x7); 1733 } 1734 1735 static void limit_periodic_timer_frequency(struct kvm_lapic *apic) 1736 { 1737 /* 1738 * Do not allow the guest to program periodic timers with small 1739 * interval, since the hrtimers are not throttled by the host 1740 * scheduler. 1741 */ 1742 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 1743 s64 min_period = min_timer_period_us * 1000LL; 1744 1745 if (apic->lapic_timer.period < min_period) { 1746 pr_info_ratelimited( 1747 "vcpu %i: requested %lld ns " 1748 "lapic timer period limited to %lld ns\n", 1749 apic->vcpu->vcpu_id, 1750 apic->lapic_timer.period, min_period); 1751 apic->lapic_timer.period = min_period; 1752 } 1753 } 1754 } 1755 1756 static void cancel_hv_timer(struct kvm_lapic *apic); 1757 1758 static void cancel_apic_timer(struct kvm_lapic *apic) 1759 { 1760 hrtimer_cancel(&apic->lapic_timer.timer); 1761 preempt_disable(); 1762 if (apic->lapic_timer.hv_timer_in_use) 1763 cancel_hv_timer(apic); 1764 preempt_enable(); 1765 atomic_set(&apic->lapic_timer.pending, 0); 1766 } 1767 1768 static void apic_update_lvtt(struct kvm_lapic *apic) 1769 { 1770 u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) & 1771 apic->lapic_timer.timer_mode_mask; 1772 1773 if (apic->lapic_timer.timer_mode != timer_mode) { 1774 if (apic_lvtt_tscdeadline(apic) != (timer_mode == 1775 APIC_LVT_TIMER_TSCDEADLINE)) { 1776 cancel_apic_timer(apic); 1777 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 1778 apic->lapic_timer.period = 0; 1779 apic->lapic_timer.tscdeadline = 0; 1780 } 1781 apic->lapic_timer.timer_mode = timer_mode; 1782 limit_periodic_timer_frequency(apic); 1783 } 1784 } 1785 1786 /* 1787 * On APICv, this test will cause a busy wait 1788 * during a higher-priority task. 1789 */ 1790 1791 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu) 1792 { 1793 struct kvm_lapic *apic = vcpu->arch.apic; 1794 u32 reg = kvm_lapic_get_reg(apic, APIC_LVTT); 1795 1796 if (kvm_apic_hw_enabled(apic)) { 1797 int vec = reg & APIC_VECTOR_MASK; 1798 void *bitmap = apic->regs + APIC_ISR; 1799 1800 if (apic->apicv_active) 1801 bitmap = apic->regs + APIC_IRR; 1802 1803 if (apic_test_vector(vec, bitmap)) 1804 return true; 1805 } 1806 return false; 1807 } 1808 1809 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles) 1810 { 1811 u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns; 1812 1813 /* 1814 * If the guest TSC is running at a different ratio than the host, then 1815 * convert the delay to nanoseconds to achieve an accurate delay. Note 1816 * that __delay() uses delay_tsc whenever the hardware has TSC, thus 1817 * always for VMX enabled hardware. 1818 */ 1819 if (vcpu->arch.tsc_scaling_ratio == kvm_caps.default_tsc_scaling_ratio) { 1820 __delay(min(guest_cycles, 1821 nsec_to_cycles(vcpu, timer_advance_ns))); 1822 } else { 1823 u64 delay_ns = guest_cycles * 1000000ULL; 1824 do_div(delay_ns, vcpu->arch.virtual_tsc_khz); 1825 ndelay(min_t(u32, delay_ns, timer_advance_ns)); 1826 } 1827 } 1828 1829 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu, 1830 s64 advance_expire_delta) 1831 { 1832 struct kvm_lapic *apic = vcpu->arch.apic; 1833 u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns; 1834 u64 ns; 1835 1836 /* Do not adjust for tiny fluctuations or large random spikes. */ 1837 if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX || 1838 abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN) 1839 return; 1840 1841 /* too early */ 1842 if (advance_expire_delta < 0) { 1843 ns = -advance_expire_delta * 1000000ULL; 1844 do_div(ns, vcpu->arch.virtual_tsc_khz); 1845 timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; 1846 } else { 1847 /* too late */ 1848 ns = advance_expire_delta * 1000000ULL; 1849 do_div(ns, vcpu->arch.virtual_tsc_khz); 1850 timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; 1851 } 1852 1853 if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX)) 1854 timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; 1855 apic->lapic_timer.timer_advance_ns = timer_advance_ns; 1856 } 1857 1858 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1859 { 1860 struct kvm_lapic *apic = vcpu->arch.apic; 1861 u64 guest_tsc, tsc_deadline; 1862 1863 tsc_deadline = apic->lapic_timer.expired_tscdeadline; 1864 apic->lapic_timer.expired_tscdeadline = 0; 1865 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1866 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, guest_tsc - tsc_deadline); 1867 1868 adjust_lapic_timer_advance(vcpu, guest_tsc - tsc_deadline); 1869 1870 /* 1871 * If the timer fired early, reread the TSC to account for the overhead 1872 * of the above adjustment to avoid waiting longer than is necessary. 1873 */ 1874 if (guest_tsc < tsc_deadline) 1875 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1876 1877 if (guest_tsc < tsc_deadline) 1878 __wait_lapic_expire(vcpu, tsc_deadline - guest_tsc); 1879 } 1880 1881 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1882 { 1883 if (lapic_in_kernel(vcpu) && 1884 vcpu->arch.apic->lapic_timer.expired_tscdeadline && 1885 vcpu->arch.apic->lapic_timer.timer_advance_ns && 1886 lapic_timer_int_injected(vcpu)) 1887 __kvm_wait_lapic_expire(vcpu); 1888 } 1889 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire); 1890 1891 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic) 1892 { 1893 struct kvm_timer *ktimer = &apic->lapic_timer; 1894 1895 kvm_apic_local_deliver(apic, APIC_LVTT); 1896 if (apic_lvtt_tscdeadline(apic)) { 1897 ktimer->tscdeadline = 0; 1898 } else if (apic_lvtt_oneshot(apic)) { 1899 ktimer->tscdeadline = 0; 1900 ktimer->target_expiration = 0; 1901 } 1902 } 1903 1904 static void apic_timer_expired(struct kvm_lapic *apic, bool from_timer_fn) 1905 { 1906 struct kvm_vcpu *vcpu = apic->vcpu; 1907 struct kvm_timer *ktimer = &apic->lapic_timer; 1908 1909 if (atomic_read(&apic->lapic_timer.pending)) 1910 return; 1911 1912 if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use) 1913 ktimer->expired_tscdeadline = ktimer->tscdeadline; 1914 1915 if (!from_timer_fn && apic->apicv_active) { 1916 WARN_ON(kvm_get_running_vcpu() != vcpu); 1917 kvm_apic_inject_pending_timer_irqs(apic); 1918 return; 1919 } 1920 1921 if (kvm_use_posted_timer_interrupt(apic->vcpu)) { 1922 /* 1923 * Ensure the guest's timer has truly expired before posting an 1924 * interrupt. Open code the relevant checks to avoid querying 1925 * lapic_timer_int_injected(), which will be false since the 1926 * interrupt isn't yet injected. Waiting until after injecting 1927 * is not an option since that won't help a posted interrupt. 1928 */ 1929 if (vcpu->arch.apic->lapic_timer.expired_tscdeadline && 1930 vcpu->arch.apic->lapic_timer.timer_advance_ns) 1931 __kvm_wait_lapic_expire(vcpu); 1932 kvm_apic_inject_pending_timer_irqs(apic); 1933 return; 1934 } 1935 1936 atomic_inc(&apic->lapic_timer.pending); 1937 kvm_make_request(KVM_REQ_UNBLOCK, vcpu); 1938 if (from_timer_fn) 1939 kvm_vcpu_kick(vcpu); 1940 } 1941 1942 static void start_sw_tscdeadline(struct kvm_lapic *apic) 1943 { 1944 struct kvm_timer *ktimer = &apic->lapic_timer; 1945 u64 guest_tsc, tscdeadline = ktimer->tscdeadline; 1946 u64 ns = 0; 1947 ktime_t expire; 1948 struct kvm_vcpu *vcpu = apic->vcpu; 1949 unsigned long this_tsc_khz = vcpu->arch.virtual_tsc_khz; 1950 unsigned long flags; 1951 ktime_t now; 1952 1953 if (unlikely(!tscdeadline || !this_tsc_khz)) 1954 return; 1955 1956 local_irq_save(flags); 1957 1958 now = ktime_get(); 1959 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1960 1961 ns = (tscdeadline - guest_tsc) * 1000000ULL; 1962 do_div(ns, this_tsc_khz); 1963 1964 if (likely(tscdeadline > guest_tsc) && 1965 likely(ns > apic->lapic_timer.timer_advance_ns)) { 1966 expire = ktime_add_ns(now, ns); 1967 expire = ktime_sub_ns(expire, ktimer->timer_advance_ns); 1968 hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD); 1969 } else 1970 apic_timer_expired(apic, false); 1971 1972 local_irq_restore(flags); 1973 } 1974 1975 static inline u64 tmict_to_ns(struct kvm_lapic *apic, u32 tmict) 1976 { 1977 return (u64)tmict * apic->vcpu->kvm->arch.apic_bus_cycle_ns * 1978 (u64)apic->divide_count; 1979 } 1980 1981 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor) 1982 { 1983 ktime_t now, remaining; 1984 u64 ns_remaining_old, ns_remaining_new; 1985 1986 apic->lapic_timer.period = 1987 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT)); 1988 limit_periodic_timer_frequency(apic); 1989 1990 now = ktime_get(); 1991 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 1992 if (ktime_to_ns(remaining) < 0) 1993 remaining = 0; 1994 1995 ns_remaining_old = ktime_to_ns(remaining); 1996 ns_remaining_new = mul_u64_u32_div(ns_remaining_old, 1997 apic->divide_count, old_divisor); 1998 1999 apic->lapic_timer.tscdeadline += 2000 nsec_to_cycles(apic->vcpu, ns_remaining_new) - 2001 nsec_to_cycles(apic->vcpu, ns_remaining_old); 2002 apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new); 2003 } 2004 2005 static bool set_target_expiration(struct kvm_lapic *apic, u32 count_reg) 2006 { 2007 ktime_t now; 2008 u64 tscl = rdtsc(); 2009 s64 deadline; 2010 2011 now = ktime_get(); 2012 apic->lapic_timer.period = 2013 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT)); 2014 2015 if (!apic->lapic_timer.period) { 2016 apic->lapic_timer.tscdeadline = 0; 2017 return false; 2018 } 2019 2020 limit_periodic_timer_frequency(apic); 2021 deadline = apic->lapic_timer.period; 2022 2023 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) { 2024 if (unlikely(count_reg != APIC_TMICT)) { 2025 deadline = tmict_to_ns(apic, 2026 kvm_lapic_get_reg(apic, count_reg)); 2027 if (unlikely(deadline <= 0)) { 2028 if (apic_lvtt_period(apic)) 2029 deadline = apic->lapic_timer.period; 2030 else 2031 deadline = 0; 2032 } 2033 else if (unlikely(deadline > apic->lapic_timer.period)) { 2034 pr_info_ratelimited( 2035 "vcpu %i: requested lapic timer restore with " 2036 "starting count register %#x=%u (%lld ns) > initial count (%lld ns). " 2037 "Using initial count to start timer.\n", 2038 apic->vcpu->vcpu_id, 2039 count_reg, 2040 kvm_lapic_get_reg(apic, count_reg), 2041 deadline, apic->lapic_timer.period); 2042 kvm_lapic_set_reg(apic, count_reg, 0); 2043 deadline = apic->lapic_timer.period; 2044 } 2045 } 2046 } 2047 2048 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 2049 nsec_to_cycles(apic->vcpu, deadline); 2050 apic->lapic_timer.target_expiration = ktime_add_ns(now, deadline); 2051 2052 return true; 2053 } 2054 2055 static void advance_periodic_target_expiration(struct kvm_lapic *apic) 2056 { 2057 ktime_t now = ktime_get(); 2058 u64 tscl = rdtsc(); 2059 ktime_t delta; 2060 2061 /* 2062 * Synchronize both deadlines to the same time source or 2063 * differences in the periods (caused by differences in the 2064 * underlying clocks or numerical approximation errors) will 2065 * cause the two to drift apart over time as the errors 2066 * accumulate. 2067 */ 2068 apic->lapic_timer.target_expiration = 2069 ktime_add_ns(apic->lapic_timer.target_expiration, 2070 apic->lapic_timer.period); 2071 delta = ktime_sub(apic->lapic_timer.target_expiration, now); 2072 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 2073 nsec_to_cycles(apic->vcpu, delta); 2074 } 2075 2076 static void start_sw_period(struct kvm_lapic *apic) 2077 { 2078 if (!apic->lapic_timer.period) 2079 return; 2080 2081 if (ktime_after(ktime_get(), 2082 apic->lapic_timer.target_expiration)) { 2083 apic_timer_expired(apic, false); 2084 2085 if (apic_lvtt_oneshot(apic)) 2086 return; 2087 2088 advance_periodic_target_expiration(apic); 2089 } 2090 2091 hrtimer_start(&apic->lapic_timer.timer, 2092 apic->lapic_timer.target_expiration, 2093 HRTIMER_MODE_ABS_HARD); 2094 } 2095 2096 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu) 2097 { 2098 if (!lapic_in_kernel(vcpu)) 2099 return false; 2100 2101 return vcpu->arch.apic->lapic_timer.hv_timer_in_use; 2102 } 2103 2104 static void cancel_hv_timer(struct kvm_lapic *apic) 2105 { 2106 WARN_ON(preemptible()); 2107 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 2108 kvm_x86_call(cancel_hv_timer)(apic->vcpu); 2109 apic->lapic_timer.hv_timer_in_use = false; 2110 } 2111 2112 static bool start_hv_timer(struct kvm_lapic *apic) 2113 { 2114 struct kvm_timer *ktimer = &apic->lapic_timer; 2115 struct kvm_vcpu *vcpu = apic->vcpu; 2116 bool expired; 2117 2118 WARN_ON(preemptible()); 2119 if (!kvm_can_use_hv_timer(vcpu)) 2120 return false; 2121 2122 if (!ktimer->tscdeadline) 2123 return false; 2124 2125 if (kvm_x86_call(set_hv_timer)(vcpu, ktimer->tscdeadline, &expired)) 2126 return false; 2127 2128 ktimer->hv_timer_in_use = true; 2129 hrtimer_cancel(&ktimer->timer); 2130 2131 /* 2132 * To simplify handling the periodic timer, leave the hv timer running 2133 * even if the deadline timer has expired, i.e. rely on the resulting 2134 * VM-Exit to recompute the periodic timer's target expiration. 2135 */ 2136 if (!apic_lvtt_period(apic)) { 2137 /* 2138 * Cancel the hv timer if the sw timer fired while the hv timer 2139 * was being programmed, or if the hv timer itself expired. 2140 */ 2141 if (atomic_read(&ktimer->pending)) { 2142 cancel_hv_timer(apic); 2143 } else if (expired) { 2144 apic_timer_expired(apic, false); 2145 cancel_hv_timer(apic); 2146 } 2147 } 2148 2149 trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use); 2150 2151 return true; 2152 } 2153 2154 static void start_sw_timer(struct kvm_lapic *apic) 2155 { 2156 struct kvm_timer *ktimer = &apic->lapic_timer; 2157 2158 WARN_ON(preemptible()); 2159 if (apic->lapic_timer.hv_timer_in_use) 2160 cancel_hv_timer(apic); 2161 if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending)) 2162 return; 2163 2164 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 2165 start_sw_period(apic); 2166 else if (apic_lvtt_tscdeadline(apic)) 2167 start_sw_tscdeadline(apic); 2168 trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false); 2169 } 2170 2171 static void restart_apic_timer(struct kvm_lapic *apic) 2172 { 2173 preempt_disable(); 2174 2175 if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending)) 2176 goto out; 2177 2178 if (!start_hv_timer(apic)) 2179 start_sw_timer(apic); 2180 out: 2181 preempt_enable(); 2182 } 2183 2184 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu) 2185 { 2186 struct kvm_lapic *apic = vcpu->arch.apic; 2187 2188 preempt_disable(); 2189 /* If the preempt notifier has already run, it also called apic_timer_expired */ 2190 if (!apic->lapic_timer.hv_timer_in_use) 2191 goto out; 2192 WARN_ON(kvm_vcpu_is_blocking(vcpu)); 2193 apic_timer_expired(apic, false); 2194 cancel_hv_timer(apic); 2195 2196 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 2197 advance_periodic_target_expiration(apic); 2198 restart_apic_timer(apic); 2199 } 2200 out: 2201 preempt_enable(); 2202 } 2203 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer); 2204 2205 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu) 2206 { 2207 restart_apic_timer(vcpu->arch.apic); 2208 } 2209 2210 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu) 2211 { 2212 struct kvm_lapic *apic = vcpu->arch.apic; 2213 2214 preempt_disable(); 2215 /* Possibly the TSC deadline timer is not enabled yet */ 2216 if (apic->lapic_timer.hv_timer_in_use) 2217 start_sw_timer(apic); 2218 preempt_enable(); 2219 } 2220 2221 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu) 2222 { 2223 struct kvm_lapic *apic = vcpu->arch.apic; 2224 2225 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 2226 restart_apic_timer(apic); 2227 } 2228 2229 static void __start_apic_timer(struct kvm_lapic *apic, u32 count_reg) 2230 { 2231 atomic_set(&apic->lapic_timer.pending, 0); 2232 2233 if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 2234 && !set_target_expiration(apic, count_reg)) 2235 return; 2236 2237 restart_apic_timer(apic); 2238 } 2239 2240 static void start_apic_timer(struct kvm_lapic *apic) 2241 { 2242 __start_apic_timer(apic, APIC_TMICT); 2243 } 2244 2245 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val) 2246 { 2247 bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val); 2248 2249 if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) { 2250 apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode; 2251 if (lvt0_in_nmi_mode) { 2252 atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 2253 } else 2254 atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 2255 } 2256 } 2257 2258 static int get_lvt_index(u32 reg) 2259 { 2260 if (reg == APIC_LVTCMCI) 2261 return LVT_CMCI; 2262 if (reg < APIC_LVTT || reg > APIC_LVTERR) 2263 return -1; 2264 return array_index_nospec( 2265 (reg - APIC_LVTT) >> 4, KVM_APIC_MAX_NR_LVT_ENTRIES); 2266 } 2267 2268 static int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val) 2269 { 2270 int ret = 0; 2271 2272 trace_kvm_apic_write(reg, val); 2273 2274 switch (reg) { 2275 case APIC_ID: /* Local APIC ID */ 2276 if (!apic_x2apic_mode(apic)) { 2277 kvm_apic_set_xapic_id(apic, val >> 24); 2278 } else { 2279 ret = 1; 2280 } 2281 break; 2282 2283 case APIC_TASKPRI: 2284 report_tpr_access(apic, true); 2285 apic_set_tpr(apic, val & 0xff); 2286 break; 2287 2288 case APIC_EOI: 2289 apic_set_eoi(apic); 2290 break; 2291 2292 case APIC_LDR: 2293 if (!apic_x2apic_mode(apic)) 2294 kvm_apic_set_ldr(apic, val & APIC_LDR_MASK); 2295 else 2296 ret = 1; 2297 break; 2298 2299 case APIC_DFR: 2300 if (!apic_x2apic_mode(apic)) 2301 kvm_apic_set_dfr(apic, val | 0x0FFFFFFF); 2302 else 2303 ret = 1; 2304 break; 2305 2306 case APIC_SPIV: { 2307 u32 mask = 0x3ff; 2308 if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI) 2309 mask |= APIC_SPIV_DIRECTED_EOI; 2310 apic_set_spiv(apic, val & mask); 2311 if (!(val & APIC_SPIV_APIC_ENABLED)) { 2312 int i; 2313 2314 for (i = 0; i < apic->nr_lvt_entries; i++) { 2315 kvm_lapic_set_reg(apic, APIC_LVTx(i), 2316 kvm_lapic_get_reg(apic, APIC_LVTx(i)) | APIC_LVT_MASKED); 2317 } 2318 apic_update_lvtt(apic); 2319 atomic_set(&apic->lapic_timer.pending, 0); 2320 2321 } 2322 break; 2323 } 2324 case APIC_ICR: 2325 WARN_ON_ONCE(apic_x2apic_mode(apic)); 2326 2327 /* No delay here, so we always clear the pending bit */ 2328 val &= ~APIC_ICR_BUSY; 2329 kvm_apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2)); 2330 kvm_lapic_set_reg(apic, APIC_ICR, val); 2331 break; 2332 case APIC_ICR2: 2333 if (apic_x2apic_mode(apic)) 2334 ret = 1; 2335 else 2336 kvm_lapic_set_reg(apic, APIC_ICR2, val & 0xff000000); 2337 break; 2338 2339 case APIC_LVT0: 2340 apic_manage_nmi_watchdog(apic, val); 2341 fallthrough; 2342 case APIC_LVTTHMR: 2343 case APIC_LVTPC: 2344 case APIC_LVT1: 2345 case APIC_LVTERR: 2346 case APIC_LVTCMCI: { 2347 u32 index = get_lvt_index(reg); 2348 if (!kvm_lapic_lvt_supported(apic, index)) { 2349 ret = 1; 2350 break; 2351 } 2352 if (!kvm_apic_sw_enabled(apic)) 2353 val |= APIC_LVT_MASKED; 2354 val &= apic_lvt_mask[index]; 2355 kvm_lapic_set_reg(apic, reg, val); 2356 break; 2357 } 2358 2359 case APIC_LVTT: 2360 if (!kvm_apic_sw_enabled(apic)) 2361 val |= APIC_LVT_MASKED; 2362 val &= (apic_lvt_mask[0] | apic->lapic_timer.timer_mode_mask); 2363 kvm_lapic_set_reg(apic, APIC_LVTT, val); 2364 apic_update_lvtt(apic); 2365 break; 2366 2367 case APIC_TMICT: 2368 if (apic_lvtt_tscdeadline(apic)) 2369 break; 2370 2371 cancel_apic_timer(apic); 2372 kvm_lapic_set_reg(apic, APIC_TMICT, val); 2373 start_apic_timer(apic); 2374 break; 2375 2376 case APIC_TDCR: { 2377 uint32_t old_divisor = apic->divide_count; 2378 2379 kvm_lapic_set_reg(apic, APIC_TDCR, val & 0xb); 2380 update_divide_count(apic); 2381 if (apic->divide_count != old_divisor && 2382 apic->lapic_timer.period) { 2383 hrtimer_cancel(&apic->lapic_timer.timer); 2384 update_target_expiration(apic, old_divisor); 2385 restart_apic_timer(apic); 2386 } 2387 break; 2388 } 2389 case APIC_ESR: 2390 if (apic_x2apic_mode(apic) && val != 0) 2391 ret = 1; 2392 break; 2393 2394 case APIC_SELF_IPI: 2395 /* 2396 * Self-IPI exists only when x2APIC is enabled. Bits 7:0 hold 2397 * the vector, everything else is reserved. 2398 */ 2399 if (!apic_x2apic_mode(apic) || (val & ~APIC_VECTOR_MASK)) 2400 ret = 1; 2401 else 2402 kvm_apic_send_ipi(apic, APIC_DEST_SELF | val, 0); 2403 break; 2404 default: 2405 ret = 1; 2406 break; 2407 } 2408 2409 /* 2410 * Recalculate APIC maps if necessary, e.g. if the software enable bit 2411 * was toggled, the APIC ID changed, etc... The maps are marked dirty 2412 * on relevant changes, i.e. this is a nop for most writes. 2413 */ 2414 kvm_recalculate_apic_map(apic->vcpu->kvm); 2415 2416 return ret; 2417 } 2418 2419 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 2420 gpa_t address, int len, const void *data) 2421 { 2422 struct kvm_lapic *apic = to_lapic(this); 2423 unsigned int offset = address - apic->base_address; 2424 u32 val; 2425 2426 if (!apic_mmio_in_range(apic, address)) 2427 return -EOPNOTSUPP; 2428 2429 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 2430 if (!kvm_check_has_quirk(vcpu->kvm, 2431 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 2432 return -EOPNOTSUPP; 2433 2434 return 0; 2435 } 2436 2437 /* 2438 * APIC register must be aligned on 128-bits boundary. 2439 * 32/64/128 bits registers must be accessed thru 32 bits. 2440 * Refer SDM 8.4.1 2441 */ 2442 if (len != 4 || (offset & 0xf)) 2443 return 0; 2444 2445 val = *(u32*)data; 2446 2447 kvm_lapic_reg_write(apic, offset & 0xff0, val); 2448 2449 return 0; 2450 } 2451 2452 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu) 2453 { 2454 kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0); 2455 } 2456 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi); 2457 2458 /* emulate APIC access in a trap manner */ 2459 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset) 2460 { 2461 struct kvm_lapic *apic = vcpu->arch.apic; 2462 2463 /* 2464 * ICR is a single 64-bit register when x2APIC is enabled, all others 2465 * registers hold 32-bit values. For legacy xAPIC, ICR writes need to 2466 * go down the common path to get the upper half from ICR2. 2467 * 2468 * Note, using the write helpers may incur an unnecessary write to the 2469 * virtual APIC state, but KVM needs to conditionally modify the value 2470 * in certain cases, e.g. to clear the ICR busy bit. The cost of extra 2471 * conditional branches is likely a wash relative to the cost of the 2472 * maybe-unecessary write, and both are in the noise anyways. 2473 */ 2474 if (apic_x2apic_mode(apic) && offset == APIC_ICR) 2475 kvm_x2apic_icr_write(apic, kvm_lapic_get_reg64(apic, APIC_ICR)); 2476 else 2477 kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset)); 2478 } 2479 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode); 2480 2481 void kvm_free_lapic(struct kvm_vcpu *vcpu) 2482 { 2483 struct kvm_lapic *apic = vcpu->arch.apic; 2484 2485 if (!vcpu->arch.apic) { 2486 static_branch_dec(&kvm_has_noapic_vcpu); 2487 return; 2488 } 2489 2490 hrtimer_cancel(&apic->lapic_timer.timer); 2491 2492 if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)) 2493 static_branch_slow_dec_deferred(&apic_hw_disabled); 2494 2495 if (!apic->sw_enabled) 2496 static_branch_slow_dec_deferred(&apic_sw_disabled); 2497 2498 if (apic->regs) 2499 free_page((unsigned long)apic->regs); 2500 2501 kfree(apic); 2502 } 2503 2504 /* 2505 *---------------------------------------------------------------------- 2506 * LAPIC interface 2507 *---------------------------------------------------------------------- 2508 */ 2509 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu) 2510 { 2511 struct kvm_lapic *apic = vcpu->arch.apic; 2512 2513 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic)) 2514 return 0; 2515 2516 return apic->lapic_timer.tscdeadline; 2517 } 2518 2519 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data) 2520 { 2521 struct kvm_lapic *apic = vcpu->arch.apic; 2522 2523 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic)) 2524 return; 2525 2526 hrtimer_cancel(&apic->lapic_timer.timer); 2527 apic->lapic_timer.tscdeadline = data; 2528 start_apic_timer(apic); 2529 } 2530 2531 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8) 2532 { 2533 apic_set_tpr(vcpu->arch.apic, (cr8 & 0x0f) << 4); 2534 } 2535 2536 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu) 2537 { 2538 u64 tpr; 2539 2540 tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI); 2541 2542 return (tpr & 0xf0) >> 4; 2543 } 2544 2545 void kvm_lapic_set_base(struct kvm_vcpu *vcpu, u64 value) 2546 { 2547 u64 old_value = vcpu->arch.apic_base; 2548 struct kvm_lapic *apic = vcpu->arch.apic; 2549 2550 vcpu->arch.apic_base = value; 2551 2552 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) 2553 kvm_update_cpuid_runtime(vcpu); 2554 2555 if (!apic) 2556 return; 2557 2558 /* update jump label if enable bit changes */ 2559 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) { 2560 if (value & MSR_IA32_APICBASE_ENABLE) { 2561 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2562 static_branch_slow_dec_deferred(&apic_hw_disabled); 2563 /* Check if there are APF page ready requests pending */ 2564 kvm_make_request(KVM_REQ_APF_READY, vcpu); 2565 } else { 2566 static_branch_inc(&apic_hw_disabled.key); 2567 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 2568 } 2569 } 2570 2571 if ((old_value ^ value) & X2APIC_ENABLE) { 2572 if (value & X2APIC_ENABLE) 2573 kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id); 2574 else if (value & MSR_IA32_APICBASE_ENABLE) 2575 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2576 } 2577 2578 if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) { 2579 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 2580 kvm_x86_call(set_virtual_apic_mode)(vcpu); 2581 } 2582 2583 apic->base_address = apic->vcpu->arch.apic_base & 2584 MSR_IA32_APICBASE_BASE; 2585 2586 if ((value & MSR_IA32_APICBASE_ENABLE) && 2587 apic->base_address != APIC_DEFAULT_PHYS_BASE) { 2588 kvm_set_apicv_inhibit(apic->vcpu->kvm, 2589 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED); 2590 } 2591 } 2592 2593 void kvm_apic_update_apicv(struct kvm_vcpu *vcpu) 2594 { 2595 struct kvm_lapic *apic = vcpu->arch.apic; 2596 2597 if (apic->apicv_active) { 2598 /* irr_pending is always true when apicv is activated. */ 2599 apic->irr_pending = true; 2600 apic->isr_count = 1; 2601 } else { 2602 /* 2603 * Don't clear irr_pending, searching the IRR can race with 2604 * updates from the CPU as APICv is still active from hardware's 2605 * perspective. The flag will be cleared as appropriate when 2606 * KVM injects the interrupt. 2607 */ 2608 apic->isr_count = count_vectors(apic->regs + APIC_ISR); 2609 } 2610 apic->highest_isr_cache = -1; 2611 } 2612 2613 int kvm_alloc_apic_access_page(struct kvm *kvm) 2614 { 2615 struct page *page; 2616 void __user *hva; 2617 int ret = 0; 2618 2619 mutex_lock(&kvm->slots_lock); 2620 if (kvm->arch.apic_access_memslot_enabled || 2621 kvm->arch.apic_access_memslot_inhibited) 2622 goto out; 2623 2624 hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 2625 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE); 2626 if (IS_ERR(hva)) { 2627 ret = PTR_ERR(hva); 2628 goto out; 2629 } 2630 2631 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 2632 if (is_error_page(page)) { 2633 ret = -EFAULT; 2634 goto out; 2635 } 2636 2637 /* 2638 * Do not pin the page in memory, so that memory hot-unplug 2639 * is able to migrate it. 2640 */ 2641 put_page(page); 2642 kvm->arch.apic_access_memslot_enabled = true; 2643 out: 2644 mutex_unlock(&kvm->slots_lock); 2645 return ret; 2646 } 2647 EXPORT_SYMBOL_GPL(kvm_alloc_apic_access_page); 2648 2649 void kvm_inhibit_apic_access_page(struct kvm_vcpu *vcpu) 2650 { 2651 struct kvm *kvm = vcpu->kvm; 2652 2653 if (!kvm->arch.apic_access_memslot_enabled) 2654 return; 2655 2656 kvm_vcpu_srcu_read_unlock(vcpu); 2657 2658 mutex_lock(&kvm->slots_lock); 2659 2660 if (kvm->arch.apic_access_memslot_enabled) { 2661 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0); 2662 /* 2663 * Clear "enabled" after the memslot is deleted so that a 2664 * different vCPU doesn't get a false negative when checking 2665 * the flag out of slots_lock. No additional memory barrier is 2666 * needed as modifying memslots requires waiting other vCPUs to 2667 * drop SRCU (see above), and false positives are ok as the 2668 * flag is rechecked after acquiring slots_lock. 2669 */ 2670 kvm->arch.apic_access_memslot_enabled = false; 2671 2672 /* 2673 * Mark the memslot as inhibited to prevent reallocating the 2674 * memslot during vCPU creation, e.g. if a vCPU is hotplugged. 2675 */ 2676 kvm->arch.apic_access_memslot_inhibited = true; 2677 } 2678 2679 mutex_unlock(&kvm->slots_lock); 2680 2681 kvm_vcpu_srcu_read_lock(vcpu); 2682 } 2683 2684 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event) 2685 { 2686 struct kvm_lapic *apic = vcpu->arch.apic; 2687 u64 msr_val; 2688 int i; 2689 2690 kvm_x86_call(apicv_pre_state_restore)(vcpu); 2691 2692 if (!init_event) { 2693 msr_val = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE; 2694 if (kvm_vcpu_is_reset_bsp(vcpu)) 2695 msr_val |= MSR_IA32_APICBASE_BSP; 2696 kvm_lapic_set_base(vcpu, msr_val); 2697 } 2698 2699 if (!apic) 2700 return; 2701 2702 /* Stop the timer in case it's a reset to an active apic */ 2703 hrtimer_cancel(&apic->lapic_timer.timer); 2704 2705 /* The xAPIC ID is set at RESET even if the APIC was already enabled. */ 2706 if (!init_event) 2707 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2708 kvm_apic_set_version(apic->vcpu); 2709 2710 for (i = 0; i < apic->nr_lvt_entries; i++) 2711 kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED); 2712 apic_update_lvtt(apic); 2713 if (kvm_vcpu_is_reset_bsp(vcpu) && 2714 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED)) 2715 kvm_lapic_set_reg(apic, APIC_LVT0, 2716 SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT)); 2717 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 2718 2719 kvm_apic_set_dfr(apic, 0xffffffffU); 2720 apic_set_spiv(apic, 0xff); 2721 kvm_lapic_set_reg(apic, APIC_TASKPRI, 0); 2722 if (!apic_x2apic_mode(apic)) 2723 kvm_apic_set_ldr(apic, 0); 2724 kvm_lapic_set_reg(apic, APIC_ESR, 0); 2725 if (!apic_x2apic_mode(apic)) { 2726 kvm_lapic_set_reg(apic, APIC_ICR, 0); 2727 kvm_lapic_set_reg(apic, APIC_ICR2, 0); 2728 } else { 2729 kvm_lapic_set_reg64(apic, APIC_ICR, 0); 2730 } 2731 kvm_lapic_set_reg(apic, APIC_TDCR, 0); 2732 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 2733 for (i = 0; i < 8; i++) { 2734 kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0); 2735 kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0); 2736 kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0); 2737 } 2738 kvm_apic_update_apicv(vcpu); 2739 update_divide_count(apic); 2740 atomic_set(&apic->lapic_timer.pending, 0); 2741 2742 vcpu->arch.pv_eoi.msr_val = 0; 2743 apic_update_ppr(apic); 2744 if (apic->apicv_active) { 2745 kvm_x86_call(apicv_post_state_restore)(vcpu); 2746 kvm_x86_call(hwapic_irr_update)(vcpu, -1); 2747 kvm_x86_call(hwapic_isr_update)(-1); 2748 } 2749 2750 vcpu->arch.apic_arb_prio = 0; 2751 vcpu->arch.apic_attention = 0; 2752 2753 kvm_recalculate_apic_map(vcpu->kvm); 2754 } 2755 2756 /* 2757 *---------------------------------------------------------------------- 2758 * timer interface 2759 *---------------------------------------------------------------------- 2760 */ 2761 2762 static bool lapic_is_periodic(struct kvm_lapic *apic) 2763 { 2764 return apic_lvtt_period(apic); 2765 } 2766 2767 int apic_has_pending_timer(struct kvm_vcpu *vcpu) 2768 { 2769 struct kvm_lapic *apic = vcpu->arch.apic; 2770 2771 if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT)) 2772 return atomic_read(&apic->lapic_timer.pending); 2773 2774 return 0; 2775 } 2776 2777 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type) 2778 { 2779 u32 reg = kvm_lapic_get_reg(apic, lvt_type); 2780 int vector, mode, trig_mode; 2781 int r; 2782 2783 if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) { 2784 vector = reg & APIC_VECTOR_MASK; 2785 mode = reg & APIC_MODE_MASK; 2786 trig_mode = reg & APIC_LVT_LEVEL_TRIGGER; 2787 2788 r = __apic_accept_irq(apic, mode, vector, 1, trig_mode, NULL); 2789 if (r && lvt_type == APIC_LVTPC && 2790 guest_cpuid_is_intel_compatible(apic->vcpu)) 2791 kvm_lapic_set_reg(apic, APIC_LVTPC, reg | APIC_LVT_MASKED); 2792 return r; 2793 } 2794 return 0; 2795 } 2796 2797 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu) 2798 { 2799 struct kvm_lapic *apic = vcpu->arch.apic; 2800 2801 if (apic) 2802 kvm_apic_local_deliver(apic, APIC_LVT0); 2803 } 2804 2805 static const struct kvm_io_device_ops apic_mmio_ops = { 2806 .read = apic_mmio_read, 2807 .write = apic_mmio_write, 2808 }; 2809 2810 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data) 2811 { 2812 struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer); 2813 struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer); 2814 2815 apic_timer_expired(apic, true); 2816 2817 if (lapic_is_periodic(apic)) { 2818 advance_periodic_target_expiration(apic); 2819 hrtimer_add_expires_ns(&ktimer->timer, ktimer->period); 2820 return HRTIMER_RESTART; 2821 } else 2822 return HRTIMER_NORESTART; 2823 } 2824 2825 int kvm_create_lapic(struct kvm_vcpu *vcpu) 2826 { 2827 struct kvm_lapic *apic; 2828 2829 ASSERT(vcpu != NULL); 2830 2831 if (!irqchip_in_kernel(vcpu->kvm)) { 2832 static_branch_inc(&kvm_has_noapic_vcpu); 2833 return 0; 2834 } 2835 2836 apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT); 2837 if (!apic) 2838 goto nomem; 2839 2840 vcpu->arch.apic = apic; 2841 2842 if (kvm_x86_ops.alloc_apic_backing_page) 2843 apic->regs = kvm_x86_call(alloc_apic_backing_page)(vcpu); 2844 else 2845 apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 2846 if (!apic->regs) { 2847 printk(KERN_ERR "malloc apic regs error for vcpu %x\n", 2848 vcpu->vcpu_id); 2849 goto nomem_free_apic; 2850 } 2851 apic->vcpu = vcpu; 2852 2853 apic->nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu); 2854 2855 hrtimer_init(&apic->lapic_timer.timer, CLOCK_MONOTONIC, 2856 HRTIMER_MODE_ABS_HARD); 2857 apic->lapic_timer.timer.function = apic_timer_fn; 2858 if (lapic_timer_advance) 2859 apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; 2860 2861 /* 2862 * Stuff the APIC ENABLE bit in lieu of temporarily incrementing 2863 * apic_hw_disabled; the full RESET value is set by kvm_lapic_reset(). 2864 */ 2865 vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE; 2866 static_branch_inc(&apic_sw_disabled.key); /* sw disabled at reset */ 2867 kvm_iodevice_init(&apic->dev, &apic_mmio_ops); 2868 2869 /* 2870 * Defer evaluating inhibits until the vCPU is first run, as this vCPU 2871 * will not get notified of any changes until this vCPU is visible to 2872 * other vCPUs (marked online and added to the set of vCPUs). 2873 * 2874 * Opportunistically mark APICv active as VMX in particularly is highly 2875 * unlikely to have inhibits. Ignore the current per-VM APICv state so 2876 * that vCPU creation is guaranteed to run with a deterministic value, 2877 * the request will ensure the vCPU gets the correct state before VM-Entry. 2878 */ 2879 if (enable_apicv) { 2880 apic->apicv_active = true; 2881 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 2882 } 2883 2884 return 0; 2885 nomem_free_apic: 2886 kfree(apic); 2887 vcpu->arch.apic = NULL; 2888 nomem: 2889 return -ENOMEM; 2890 } 2891 2892 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu) 2893 { 2894 struct kvm_lapic *apic = vcpu->arch.apic; 2895 u32 ppr; 2896 2897 if (!kvm_apic_present(vcpu)) 2898 return -1; 2899 2900 __apic_update_ppr(apic, &ppr); 2901 return apic_has_interrupt_for_ppr(apic, ppr); 2902 } 2903 EXPORT_SYMBOL_GPL(kvm_apic_has_interrupt); 2904 2905 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu) 2906 { 2907 u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0); 2908 2909 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 2910 return 1; 2911 if ((lvt0 & APIC_LVT_MASKED) == 0 && 2912 GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT) 2913 return 1; 2914 return 0; 2915 } 2916 2917 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu) 2918 { 2919 struct kvm_lapic *apic = vcpu->arch.apic; 2920 2921 if (atomic_read(&apic->lapic_timer.pending) > 0) { 2922 kvm_apic_inject_pending_timer_irqs(apic); 2923 atomic_set(&apic->lapic_timer.pending, 0); 2924 } 2925 } 2926 2927 int kvm_get_apic_interrupt(struct kvm_vcpu *vcpu) 2928 { 2929 int vector = kvm_apic_has_interrupt(vcpu); 2930 struct kvm_lapic *apic = vcpu->arch.apic; 2931 u32 ppr; 2932 2933 if (vector == -1) 2934 return -1; 2935 2936 /* 2937 * We get here even with APIC virtualization enabled, if doing 2938 * nested virtualization and L1 runs with the "acknowledge interrupt 2939 * on exit" mode. Then we cannot inject the interrupt via RVI, 2940 * because the process would deliver it through the IDT. 2941 */ 2942 2943 apic_clear_irr(vector, apic); 2944 if (kvm_hv_synic_auto_eoi_set(vcpu, vector)) { 2945 /* 2946 * For auto-EOI interrupts, there might be another pending 2947 * interrupt above PPR, so check whether to raise another 2948 * KVM_REQ_EVENT. 2949 */ 2950 apic_update_ppr(apic); 2951 } else { 2952 /* 2953 * For normal interrupts, PPR has been raised and there cannot 2954 * be a higher-priority pending interrupt---except if there was 2955 * a concurrent interrupt injection, but that would have 2956 * triggered KVM_REQ_EVENT already. 2957 */ 2958 apic_set_isr(vector, apic); 2959 __apic_update_ppr(apic, &ppr); 2960 } 2961 2962 return vector; 2963 } 2964 2965 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu, 2966 struct kvm_lapic_state *s, bool set) 2967 { 2968 if (apic_x2apic_mode(vcpu->arch.apic)) { 2969 u32 *id = (u32 *)(s->regs + APIC_ID); 2970 u32 *ldr = (u32 *)(s->regs + APIC_LDR); 2971 u64 icr; 2972 2973 if (vcpu->kvm->arch.x2apic_format) { 2974 if (*id != vcpu->vcpu_id) 2975 return -EINVAL; 2976 } else { 2977 if (set) 2978 *id >>= 24; 2979 else 2980 *id <<= 24; 2981 } 2982 2983 /* 2984 * In x2APIC mode, the LDR is fixed and based on the id. And 2985 * ICR is internally a single 64-bit register, but needs to be 2986 * split to ICR+ICR2 in userspace for backwards compatibility. 2987 */ 2988 if (set) { 2989 *ldr = kvm_apic_calc_x2apic_ldr(*id); 2990 2991 icr = __kvm_lapic_get_reg(s->regs, APIC_ICR) | 2992 (u64)__kvm_lapic_get_reg(s->regs, APIC_ICR2) << 32; 2993 __kvm_lapic_set_reg64(s->regs, APIC_ICR, icr); 2994 } else { 2995 icr = __kvm_lapic_get_reg64(s->regs, APIC_ICR); 2996 __kvm_lapic_set_reg(s->regs, APIC_ICR2, icr >> 32); 2997 } 2998 } 2999 3000 return 0; 3001 } 3002 3003 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 3004 { 3005 memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s)); 3006 3007 /* 3008 * Get calculated timer current count for remaining timer period (if 3009 * any) and store it in the returned register set. 3010 */ 3011 __kvm_lapic_set_reg(s->regs, APIC_TMCCT, 3012 __apic_read(vcpu->arch.apic, APIC_TMCCT)); 3013 3014 return kvm_apic_state_fixup(vcpu, s, false); 3015 } 3016 3017 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 3018 { 3019 struct kvm_lapic *apic = vcpu->arch.apic; 3020 int r; 3021 3022 kvm_x86_call(apicv_pre_state_restore)(vcpu); 3023 3024 kvm_lapic_set_base(vcpu, vcpu->arch.apic_base); 3025 /* set SPIV separately to get count of SW disabled APICs right */ 3026 apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV))); 3027 3028 r = kvm_apic_state_fixup(vcpu, s, true); 3029 if (r) { 3030 kvm_recalculate_apic_map(vcpu->kvm); 3031 return r; 3032 } 3033 memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s)); 3034 3035 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 3036 kvm_recalculate_apic_map(vcpu->kvm); 3037 kvm_apic_set_version(vcpu); 3038 3039 apic_update_ppr(apic); 3040 cancel_apic_timer(apic); 3041 apic->lapic_timer.expired_tscdeadline = 0; 3042 apic_update_lvtt(apic); 3043 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 3044 update_divide_count(apic); 3045 __start_apic_timer(apic, APIC_TMCCT); 3046 kvm_lapic_set_reg(apic, APIC_TMCCT, 0); 3047 kvm_apic_update_apicv(vcpu); 3048 if (apic->apicv_active) { 3049 kvm_x86_call(apicv_post_state_restore)(vcpu); 3050 kvm_x86_call(hwapic_irr_update)(vcpu, 3051 apic_find_highest_irr(apic)); 3052 kvm_x86_call(hwapic_isr_update)(apic_find_highest_isr(apic)); 3053 } 3054 kvm_make_request(KVM_REQ_EVENT, vcpu); 3055 if (ioapic_in_kernel(vcpu->kvm)) 3056 kvm_rtc_eoi_tracking_restore_one(vcpu); 3057 3058 vcpu->arch.apic_arb_prio = 0; 3059 3060 return 0; 3061 } 3062 3063 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu) 3064 { 3065 struct hrtimer *timer; 3066 3067 if (!lapic_in_kernel(vcpu) || 3068 kvm_can_post_timer_interrupt(vcpu)) 3069 return; 3070 3071 timer = &vcpu->arch.apic->lapic_timer.timer; 3072 if (hrtimer_cancel(timer)) 3073 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD); 3074 } 3075 3076 /* 3077 * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt 3078 * 3079 * Detect whether guest triggered PV EOI since the 3080 * last entry. If yes, set EOI on guests's behalf. 3081 * Clear PV EOI in guest memory in any case. 3082 */ 3083 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu, 3084 struct kvm_lapic *apic) 3085 { 3086 int vector; 3087 /* 3088 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host 3089 * and KVM_PV_EOI_ENABLED in guest memory as follows: 3090 * 3091 * KVM_APIC_PV_EOI_PENDING is unset: 3092 * -> host disabled PV EOI. 3093 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set: 3094 * -> host enabled PV EOI, guest did not execute EOI yet. 3095 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset: 3096 * -> host enabled PV EOI, guest executed EOI. 3097 */ 3098 BUG_ON(!pv_eoi_enabled(vcpu)); 3099 3100 if (pv_eoi_test_and_clr_pending(vcpu)) 3101 return; 3102 vector = apic_set_eoi(apic); 3103 trace_kvm_pv_eoi(apic, vector); 3104 } 3105 3106 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu) 3107 { 3108 u32 data; 3109 3110 if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention)) 3111 apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic); 3112 3113 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 3114 return; 3115 3116 if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 3117 sizeof(u32))) 3118 return; 3119 3120 apic_set_tpr(vcpu->arch.apic, data & 0xff); 3121 } 3122 3123 /* 3124 * apic_sync_pv_eoi_to_guest - called before vmentry 3125 * 3126 * Detect whether it's safe to enable PV EOI and 3127 * if yes do so. 3128 */ 3129 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu, 3130 struct kvm_lapic *apic) 3131 { 3132 if (!pv_eoi_enabled(vcpu) || 3133 /* IRR set or many bits in ISR: could be nested. */ 3134 apic->irr_pending || 3135 /* Cache not set: could be safe but we don't bother. */ 3136 apic->highest_isr_cache == -1 || 3137 /* Need EOI to update ioapic. */ 3138 kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) { 3139 /* 3140 * PV EOI was disabled by apic_sync_pv_eoi_from_guest 3141 * so we need not do anything here. 3142 */ 3143 return; 3144 } 3145 3146 pv_eoi_set_pending(apic->vcpu); 3147 } 3148 3149 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu) 3150 { 3151 u32 data, tpr; 3152 int max_irr, max_isr; 3153 struct kvm_lapic *apic = vcpu->arch.apic; 3154 3155 apic_sync_pv_eoi_to_guest(vcpu, apic); 3156 3157 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 3158 return; 3159 3160 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff; 3161 max_irr = apic_find_highest_irr(apic); 3162 if (max_irr < 0) 3163 max_irr = 0; 3164 max_isr = apic_find_highest_isr(apic); 3165 if (max_isr < 0) 3166 max_isr = 0; 3167 data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24); 3168 3169 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 3170 sizeof(u32)); 3171 } 3172 3173 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr) 3174 { 3175 if (vapic_addr) { 3176 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, 3177 &vcpu->arch.apic->vapic_cache, 3178 vapic_addr, sizeof(u32))) 3179 return -EINVAL; 3180 __set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 3181 } else { 3182 __clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 3183 } 3184 3185 vcpu->arch.apic->vapic_addr = vapic_addr; 3186 return 0; 3187 } 3188 3189 int kvm_x2apic_icr_write(struct kvm_lapic *apic, u64 data) 3190 { 3191 data &= ~APIC_ICR_BUSY; 3192 3193 kvm_apic_send_ipi(apic, (u32)data, (u32)(data >> 32)); 3194 kvm_lapic_set_reg64(apic, APIC_ICR, data); 3195 trace_kvm_apic_write(APIC_ICR, data); 3196 return 0; 3197 } 3198 3199 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data) 3200 { 3201 u32 low; 3202 3203 if (reg == APIC_ICR) { 3204 *data = kvm_lapic_get_reg64(apic, APIC_ICR); 3205 return 0; 3206 } 3207 3208 if (kvm_lapic_reg_read(apic, reg, 4, &low)) 3209 return 1; 3210 3211 *data = low; 3212 3213 return 0; 3214 } 3215 3216 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data) 3217 { 3218 /* 3219 * ICR is a 64-bit register in x2APIC mode (and Hyper-V PV vAPIC) and 3220 * can be written as such, all other registers remain accessible only 3221 * through 32-bit reads/writes. 3222 */ 3223 if (reg == APIC_ICR) 3224 return kvm_x2apic_icr_write(apic, data); 3225 3226 /* Bits 63:32 are reserved in all other registers. */ 3227 if (data >> 32) 3228 return 1; 3229 3230 return kvm_lapic_reg_write(apic, reg, (u32)data); 3231 } 3232 3233 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data) 3234 { 3235 struct kvm_lapic *apic = vcpu->arch.apic; 3236 u32 reg = (msr - APIC_BASE_MSR) << 4; 3237 3238 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 3239 return 1; 3240 3241 return kvm_lapic_msr_write(apic, reg, data); 3242 } 3243 3244 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data) 3245 { 3246 struct kvm_lapic *apic = vcpu->arch.apic; 3247 u32 reg = (msr - APIC_BASE_MSR) << 4; 3248 3249 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 3250 return 1; 3251 3252 return kvm_lapic_msr_read(apic, reg, data); 3253 } 3254 3255 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data) 3256 { 3257 if (!lapic_in_kernel(vcpu)) 3258 return 1; 3259 3260 return kvm_lapic_msr_write(vcpu->arch.apic, reg, data); 3261 } 3262 3263 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data) 3264 { 3265 if (!lapic_in_kernel(vcpu)) 3266 return 1; 3267 3268 return kvm_lapic_msr_read(vcpu->arch.apic, reg, data); 3269 } 3270 3271 int kvm_lapic_set_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len) 3272 { 3273 u64 addr = data & ~KVM_MSR_ENABLED; 3274 struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data; 3275 unsigned long new_len; 3276 int ret; 3277 3278 if (!IS_ALIGNED(addr, 4)) 3279 return 1; 3280 3281 if (data & KVM_MSR_ENABLED) { 3282 if (addr == ghc->gpa && len <= ghc->len) 3283 new_len = ghc->len; 3284 else 3285 new_len = len; 3286 3287 ret = kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len); 3288 if (ret) 3289 return ret; 3290 } 3291 3292 vcpu->arch.pv_eoi.msr_val = data; 3293 3294 return 0; 3295 } 3296 3297 int kvm_apic_accept_events(struct kvm_vcpu *vcpu) 3298 { 3299 struct kvm_lapic *apic = vcpu->arch.apic; 3300 u8 sipi_vector; 3301 int r; 3302 3303 if (!kvm_apic_has_pending_init_or_sipi(vcpu)) 3304 return 0; 3305 3306 if (is_guest_mode(vcpu)) { 3307 r = kvm_check_nested_events(vcpu); 3308 if (r < 0) 3309 return r == -EBUSY ? 0 : r; 3310 /* 3311 * Continue processing INIT/SIPI even if a nested VM-Exit 3312 * occurred, e.g. pending SIPIs should be dropped if INIT+SIPI 3313 * are blocked as a result of transitioning to VMX root mode. 3314 */ 3315 } 3316 3317 /* 3318 * INITs are blocked while CPU is in specific states (SMM, VMX root 3319 * mode, SVM with GIF=0), while SIPIs are dropped if the CPU isn't in 3320 * wait-for-SIPI (WFS). 3321 */ 3322 if (!kvm_apic_init_sipi_allowed(vcpu)) { 3323 WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED); 3324 clear_bit(KVM_APIC_SIPI, &apic->pending_events); 3325 return 0; 3326 } 3327 3328 if (test_and_clear_bit(KVM_APIC_INIT, &apic->pending_events)) { 3329 kvm_vcpu_reset(vcpu, true); 3330 if (kvm_vcpu_is_bsp(apic->vcpu)) 3331 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 3332 else 3333 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 3334 } 3335 if (test_and_clear_bit(KVM_APIC_SIPI, &apic->pending_events)) { 3336 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 3337 /* evaluate pending_events before reading the vector */ 3338 smp_rmb(); 3339 sipi_vector = apic->sipi_vector; 3340 kvm_x86_call(vcpu_deliver_sipi_vector)(vcpu, 3341 sipi_vector); 3342 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 3343 } 3344 } 3345 return 0; 3346 } 3347 3348 void kvm_lapic_exit(void) 3349 { 3350 static_key_deferred_flush(&apic_hw_disabled); 3351 WARN_ON(static_branch_unlikely(&apic_hw_disabled.key)); 3352 static_key_deferred_flush(&apic_sw_disabled); 3353 WARN_ON(static_branch_unlikely(&apic_sw_disabled.key)); 3354 } 3355