1 // SPDX-License-Identifier: GPL-2.0-only 2 3 /* 4 * Local APIC virtualization 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2007 Novell 8 * Copyright (C) 2007 Intel 9 * Copyright 2009 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Dor Laor <dor.laor@qumranet.com> 13 * Gregory Haskins <ghaskins@novell.com> 14 * Yaozu (Eddie) Dong <eddie.dong@intel.com> 15 * 16 * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation. 17 */ 18 19 #include <linux/kvm_host.h> 20 #include <linux/kvm.h> 21 #include <linux/mm.h> 22 #include <linux/highmem.h> 23 #include <linux/smp.h> 24 #include <linux/hrtimer.h> 25 #include <linux/io.h> 26 #include <linux/export.h> 27 #include <linux/math64.h> 28 #include <linux/slab.h> 29 #include <asm/processor.h> 30 #include <asm/msr.h> 31 #include <asm/page.h> 32 #include <asm/current.h> 33 #include <asm/apicdef.h> 34 #include <asm/delay.h> 35 #include <linux/atomic.h> 36 #include <linux/jump_label.h> 37 #include "kvm_cache_regs.h" 38 #include "irq.h" 39 #include "trace.h" 40 #include "x86.h" 41 #include "cpuid.h" 42 #include "hyperv.h" 43 44 #ifndef CONFIG_X86_64 45 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y)) 46 #else 47 #define mod_64(x, y) ((x) % (y)) 48 #endif 49 50 #define PRId64 "d" 51 #define PRIx64 "llx" 52 #define PRIu64 "u" 53 #define PRIo64 "o" 54 55 /* 14 is the version for Xeon and Pentium 8.4.8*/ 56 #define APIC_VERSION (0x14UL | ((KVM_APIC_LVT_NUM - 1) << 16)) 57 #define LAPIC_MMIO_LENGTH (1 << 12) 58 /* followed define is not in apicdef.h */ 59 #define APIC_SHORT_MASK 0xc0000 60 #define APIC_DEST_NOSHORT 0x0 61 #define APIC_DEST_MASK 0x800 62 #define MAX_APIC_VECTOR 256 63 #define APIC_VECTORS_PER_REG 32 64 65 #define APIC_BROADCAST 0xFF 66 #define X2APIC_BROADCAST 0xFFFFFFFFul 67 68 static bool lapic_timer_advance_dynamic __read_mostly; 69 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN 100 /* clock cycles */ 70 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX 10000 /* clock cycles */ 71 #define LAPIC_TIMER_ADVANCE_NS_INIT 1000 72 #define LAPIC_TIMER_ADVANCE_NS_MAX 5000 73 /* step-by-step approximation to mitigate fluctuation */ 74 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8 75 76 static inline int apic_test_vector(int vec, void *bitmap) 77 { 78 return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 79 } 80 81 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector) 82 { 83 struct kvm_lapic *apic = vcpu->arch.apic; 84 85 return apic_test_vector(vector, apic->regs + APIC_ISR) || 86 apic_test_vector(vector, apic->regs + APIC_IRR); 87 } 88 89 static inline int __apic_test_and_set_vector(int vec, void *bitmap) 90 { 91 return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 92 } 93 94 static inline int __apic_test_and_clear_vector(int vec, void *bitmap) 95 { 96 return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 97 } 98 99 struct static_key_deferred apic_hw_disabled __read_mostly; 100 struct static_key_deferred apic_sw_disabled __read_mostly; 101 102 static inline int apic_enabled(struct kvm_lapic *apic) 103 { 104 return kvm_apic_sw_enabled(apic) && kvm_apic_hw_enabled(apic); 105 } 106 107 #define LVT_MASK \ 108 (APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK) 109 110 #define LINT_MASK \ 111 (LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \ 112 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER) 113 114 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic) 115 { 116 return apic->vcpu->vcpu_id; 117 } 118 119 bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu) 120 { 121 return pi_inject_timer && kvm_vcpu_apicv_active(vcpu); 122 } 123 EXPORT_SYMBOL_GPL(kvm_can_post_timer_interrupt); 124 125 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu) 126 { 127 return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE; 128 } 129 130 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map, 131 u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) { 132 switch (map->mode) { 133 case KVM_APIC_MODE_X2APIC: { 134 u32 offset = (dest_id >> 16) * 16; 135 u32 max_apic_id = map->max_apic_id; 136 137 if (offset <= max_apic_id) { 138 u8 cluster_size = min(max_apic_id - offset + 1, 16U); 139 140 offset = array_index_nospec(offset, map->max_apic_id + 1); 141 *cluster = &map->phys_map[offset]; 142 *mask = dest_id & (0xffff >> (16 - cluster_size)); 143 } else { 144 *mask = 0; 145 } 146 147 return true; 148 } 149 case KVM_APIC_MODE_XAPIC_FLAT: 150 *cluster = map->xapic_flat_map; 151 *mask = dest_id & 0xff; 152 return true; 153 case KVM_APIC_MODE_XAPIC_CLUSTER: 154 *cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf]; 155 *mask = dest_id & 0xf; 156 return true; 157 default: 158 /* Not optimized. */ 159 return false; 160 } 161 } 162 163 static void kvm_apic_map_free(struct rcu_head *rcu) 164 { 165 struct kvm_apic_map *map = container_of(rcu, struct kvm_apic_map, rcu); 166 167 kvfree(map); 168 } 169 170 static void recalculate_apic_map(struct kvm *kvm) 171 { 172 struct kvm_apic_map *new, *old = NULL; 173 struct kvm_vcpu *vcpu; 174 int i; 175 u32 max_id = 255; /* enough space for any xAPIC ID */ 176 177 mutex_lock(&kvm->arch.apic_map_lock); 178 179 kvm_for_each_vcpu(i, vcpu, kvm) 180 if (kvm_apic_present(vcpu)) 181 max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic)); 182 183 new = kvzalloc(sizeof(struct kvm_apic_map) + 184 sizeof(struct kvm_lapic *) * ((u64)max_id + 1), 185 GFP_KERNEL_ACCOUNT); 186 187 if (!new) 188 goto out; 189 190 new->max_apic_id = max_id; 191 192 kvm_for_each_vcpu(i, vcpu, kvm) { 193 struct kvm_lapic *apic = vcpu->arch.apic; 194 struct kvm_lapic **cluster; 195 u16 mask; 196 u32 ldr; 197 u8 xapic_id; 198 u32 x2apic_id; 199 200 if (!kvm_apic_present(vcpu)) 201 continue; 202 203 xapic_id = kvm_xapic_id(apic); 204 x2apic_id = kvm_x2apic_id(apic); 205 206 /* Hotplug hack: see kvm_apic_match_physical_addr(), ... */ 207 if ((apic_x2apic_mode(apic) || x2apic_id > 0xff) && 208 x2apic_id <= new->max_apic_id) 209 new->phys_map[x2apic_id] = apic; 210 /* 211 * ... xAPIC ID of VCPUs with APIC ID > 0xff will wrap-around, 212 * prevent them from masking VCPUs with APIC ID <= 0xff. 213 */ 214 if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id]) 215 new->phys_map[xapic_id] = apic; 216 217 if (!kvm_apic_sw_enabled(apic)) 218 continue; 219 220 ldr = kvm_lapic_get_reg(apic, APIC_LDR); 221 222 if (apic_x2apic_mode(apic)) { 223 new->mode |= KVM_APIC_MODE_X2APIC; 224 } else if (ldr) { 225 ldr = GET_APIC_LOGICAL_ID(ldr); 226 if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT) 227 new->mode |= KVM_APIC_MODE_XAPIC_FLAT; 228 else 229 new->mode |= KVM_APIC_MODE_XAPIC_CLUSTER; 230 } 231 232 if (!kvm_apic_map_get_logical_dest(new, ldr, &cluster, &mask)) 233 continue; 234 235 if (mask) 236 cluster[ffs(mask) - 1] = apic; 237 } 238 out: 239 old = rcu_dereference_protected(kvm->arch.apic_map, 240 lockdep_is_held(&kvm->arch.apic_map_lock)); 241 rcu_assign_pointer(kvm->arch.apic_map, new); 242 mutex_unlock(&kvm->arch.apic_map_lock); 243 244 if (old) 245 call_rcu(&old->rcu, kvm_apic_map_free); 246 247 kvm_make_scan_ioapic_request(kvm); 248 } 249 250 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val) 251 { 252 bool enabled = val & APIC_SPIV_APIC_ENABLED; 253 254 kvm_lapic_set_reg(apic, APIC_SPIV, val); 255 256 if (enabled != apic->sw_enabled) { 257 apic->sw_enabled = enabled; 258 if (enabled) 259 static_key_slow_dec_deferred(&apic_sw_disabled); 260 else 261 static_key_slow_inc(&apic_sw_disabled.key); 262 263 recalculate_apic_map(apic->vcpu->kvm); 264 } 265 } 266 267 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id) 268 { 269 kvm_lapic_set_reg(apic, APIC_ID, id << 24); 270 recalculate_apic_map(apic->vcpu->kvm); 271 } 272 273 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id) 274 { 275 kvm_lapic_set_reg(apic, APIC_LDR, id); 276 recalculate_apic_map(apic->vcpu->kvm); 277 } 278 279 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id) 280 { 281 return ((id >> 4) << 16) | (1 << (id & 0xf)); 282 } 283 284 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id) 285 { 286 u32 ldr = kvm_apic_calc_x2apic_ldr(id); 287 288 WARN_ON_ONCE(id != apic->vcpu->vcpu_id); 289 290 kvm_lapic_set_reg(apic, APIC_ID, id); 291 kvm_lapic_set_reg(apic, APIC_LDR, ldr); 292 recalculate_apic_map(apic->vcpu->kvm); 293 } 294 295 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type) 296 { 297 return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED); 298 } 299 300 static inline int apic_lvt_vector(struct kvm_lapic *apic, int lvt_type) 301 { 302 return kvm_lapic_get_reg(apic, lvt_type) & APIC_VECTOR_MASK; 303 } 304 305 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic) 306 { 307 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT; 308 } 309 310 static inline int apic_lvtt_period(struct kvm_lapic *apic) 311 { 312 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC; 313 } 314 315 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic) 316 { 317 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE; 318 } 319 320 static inline int apic_lvt_nmi_mode(u32 lvt_val) 321 { 322 return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI; 323 } 324 325 void kvm_apic_set_version(struct kvm_vcpu *vcpu) 326 { 327 struct kvm_lapic *apic = vcpu->arch.apic; 328 struct kvm_cpuid_entry2 *feat; 329 u32 v = APIC_VERSION; 330 331 if (!lapic_in_kernel(vcpu)) 332 return; 333 334 /* 335 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation) 336 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with 337 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC 338 * version first and level-triggered interrupts never get EOIed in 339 * IOAPIC. 340 */ 341 feat = kvm_find_cpuid_entry(apic->vcpu, 0x1, 0); 342 if (feat && (feat->ecx & (1 << (X86_FEATURE_X2APIC & 31))) && 343 !ioapic_in_kernel(vcpu->kvm)) 344 v |= APIC_LVR_DIRECTED_EOI; 345 kvm_lapic_set_reg(apic, APIC_LVR, v); 346 } 347 348 static const unsigned int apic_lvt_mask[KVM_APIC_LVT_NUM] = { 349 LVT_MASK , /* part LVTT mask, timer mode mask added at runtime */ 350 LVT_MASK | APIC_MODE_MASK, /* LVTTHMR */ 351 LVT_MASK | APIC_MODE_MASK, /* LVTPC */ 352 LINT_MASK, LINT_MASK, /* LVT0-1 */ 353 LVT_MASK /* LVTERR */ 354 }; 355 356 static int find_highest_vector(void *bitmap) 357 { 358 int vec; 359 u32 *reg; 360 361 for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG; 362 vec >= 0; vec -= APIC_VECTORS_PER_REG) { 363 reg = bitmap + REG_POS(vec); 364 if (*reg) 365 return __fls(*reg) + vec; 366 } 367 368 return -1; 369 } 370 371 static u8 count_vectors(void *bitmap) 372 { 373 int vec; 374 u32 *reg; 375 u8 count = 0; 376 377 for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) { 378 reg = bitmap + REG_POS(vec); 379 count += hweight32(*reg); 380 } 381 382 return count; 383 } 384 385 bool __kvm_apic_update_irr(u32 *pir, void *regs, int *max_irr) 386 { 387 u32 i, vec; 388 u32 pir_val, irr_val, prev_irr_val; 389 int max_updated_irr; 390 391 max_updated_irr = -1; 392 *max_irr = -1; 393 394 for (i = vec = 0; i <= 7; i++, vec += 32) { 395 pir_val = READ_ONCE(pir[i]); 396 irr_val = *((u32 *)(regs + APIC_IRR + i * 0x10)); 397 if (pir_val) { 398 prev_irr_val = irr_val; 399 irr_val |= xchg(&pir[i], 0); 400 *((u32 *)(regs + APIC_IRR + i * 0x10)) = irr_val; 401 if (prev_irr_val != irr_val) { 402 max_updated_irr = 403 __fls(irr_val ^ prev_irr_val) + vec; 404 } 405 } 406 if (irr_val) 407 *max_irr = __fls(irr_val) + vec; 408 } 409 410 return ((max_updated_irr != -1) && 411 (max_updated_irr == *max_irr)); 412 } 413 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr); 414 415 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir, int *max_irr) 416 { 417 struct kvm_lapic *apic = vcpu->arch.apic; 418 419 return __kvm_apic_update_irr(pir, apic->regs, max_irr); 420 } 421 EXPORT_SYMBOL_GPL(kvm_apic_update_irr); 422 423 static inline int apic_search_irr(struct kvm_lapic *apic) 424 { 425 return find_highest_vector(apic->regs + APIC_IRR); 426 } 427 428 static inline int apic_find_highest_irr(struct kvm_lapic *apic) 429 { 430 int result; 431 432 /* 433 * Note that irr_pending is just a hint. It will be always 434 * true with virtual interrupt delivery enabled. 435 */ 436 if (!apic->irr_pending) 437 return -1; 438 439 result = apic_search_irr(apic); 440 ASSERT(result == -1 || result >= 16); 441 442 return result; 443 } 444 445 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic) 446 { 447 struct kvm_vcpu *vcpu; 448 449 vcpu = apic->vcpu; 450 451 if (unlikely(vcpu->arch.apicv_active)) { 452 /* need to update RVI */ 453 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR); 454 kvm_x86_ops->hwapic_irr_update(vcpu, 455 apic_find_highest_irr(apic)); 456 } else { 457 apic->irr_pending = false; 458 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR); 459 if (apic_search_irr(apic) != -1) 460 apic->irr_pending = true; 461 } 462 } 463 464 static inline void apic_set_isr(int vec, struct kvm_lapic *apic) 465 { 466 struct kvm_vcpu *vcpu; 467 468 if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR)) 469 return; 470 471 vcpu = apic->vcpu; 472 473 /* 474 * With APIC virtualization enabled, all caching is disabled 475 * because the processor can modify ISR under the hood. Instead 476 * just set SVI. 477 */ 478 if (unlikely(vcpu->arch.apicv_active)) 479 kvm_x86_ops->hwapic_isr_update(vcpu, vec); 480 else { 481 ++apic->isr_count; 482 BUG_ON(apic->isr_count > MAX_APIC_VECTOR); 483 /* 484 * ISR (in service register) bit is set when injecting an interrupt. 485 * The highest vector is injected. Thus the latest bit set matches 486 * the highest bit in ISR. 487 */ 488 apic->highest_isr_cache = vec; 489 } 490 } 491 492 static inline int apic_find_highest_isr(struct kvm_lapic *apic) 493 { 494 int result; 495 496 /* 497 * Note that isr_count is always 1, and highest_isr_cache 498 * is always -1, with APIC virtualization enabled. 499 */ 500 if (!apic->isr_count) 501 return -1; 502 if (likely(apic->highest_isr_cache != -1)) 503 return apic->highest_isr_cache; 504 505 result = find_highest_vector(apic->regs + APIC_ISR); 506 ASSERT(result == -1 || result >= 16); 507 508 return result; 509 } 510 511 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic) 512 { 513 struct kvm_vcpu *vcpu; 514 if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR)) 515 return; 516 517 vcpu = apic->vcpu; 518 519 /* 520 * We do get here for APIC virtualization enabled if the guest 521 * uses the Hyper-V APIC enlightenment. In this case we may need 522 * to trigger a new interrupt delivery by writing the SVI field; 523 * on the other hand isr_count and highest_isr_cache are unused 524 * and must be left alone. 525 */ 526 if (unlikely(vcpu->arch.apicv_active)) 527 kvm_x86_ops->hwapic_isr_update(vcpu, 528 apic_find_highest_isr(apic)); 529 else { 530 --apic->isr_count; 531 BUG_ON(apic->isr_count < 0); 532 apic->highest_isr_cache = -1; 533 } 534 } 535 536 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu) 537 { 538 /* This may race with setting of irr in __apic_accept_irq() and 539 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq 540 * will cause vmexit immediately and the value will be recalculated 541 * on the next vmentry. 542 */ 543 return apic_find_highest_irr(vcpu->arch.apic); 544 } 545 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr); 546 547 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 548 int vector, int level, int trig_mode, 549 struct dest_map *dest_map); 550 551 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq, 552 struct dest_map *dest_map) 553 { 554 struct kvm_lapic *apic = vcpu->arch.apic; 555 556 return __apic_accept_irq(apic, irq->delivery_mode, irq->vector, 557 irq->level, irq->trig_mode, dest_map); 558 } 559 560 static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map, 561 struct kvm_lapic_irq *irq, u32 min) 562 { 563 int i, count = 0; 564 struct kvm_vcpu *vcpu; 565 566 if (min > map->max_apic_id) 567 return 0; 568 569 for_each_set_bit(i, ipi_bitmap, 570 min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) { 571 if (map->phys_map[min + i]) { 572 vcpu = map->phys_map[min + i]->vcpu; 573 count += kvm_apic_set_irq(vcpu, irq, NULL); 574 } 575 } 576 577 return count; 578 } 579 580 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 581 unsigned long ipi_bitmap_high, u32 min, 582 unsigned long icr, int op_64_bit) 583 { 584 struct kvm_apic_map *map; 585 struct kvm_lapic_irq irq = {0}; 586 int cluster_size = op_64_bit ? 64 : 32; 587 int count; 588 589 if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK)) 590 return -KVM_EINVAL; 591 592 irq.vector = icr & APIC_VECTOR_MASK; 593 irq.delivery_mode = icr & APIC_MODE_MASK; 594 irq.level = (icr & APIC_INT_ASSERT) != 0; 595 irq.trig_mode = icr & APIC_INT_LEVELTRIG; 596 597 rcu_read_lock(); 598 map = rcu_dereference(kvm->arch.apic_map); 599 600 count = -EOPNOTSUPP; 601 if (likely(map)) { 602 count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min); 603 min += cluster_size; 604 count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min); 605 } 606 607 rcu_read_unlock(); 608 return count; 609 } 610 611 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val) 612 { 613 614 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val, 615 sizeof(val)); 616 } 617 618 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val) 619 { 620 621 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val, 622 sizeof(*val)); 623 } 624 625 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu) 626 { 627 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED; 628 } 629 630 static bool pv_eoi_get_pending(struct kvm_vcpu *vcpu) 631 { 632 u8 val; 633 if (pv_eoi_get_user(vcpu, &val) < 0) 634 printk(KERN_WARNING "Can't read EOI MSR value: 0x%llx\n", 635 (unsigned long long)vcpu->arch.pv_eoi.msr_val); 636 return val & 0x1; 637 } 638 639 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu) 640 { 641 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0) { 642 printk(KERN_WARNING "Can't set EOI MSR value: 0x%llx\n", 643 (unsigned long long)vcpu->arch.pv_eoi.msr_val); 644 return; 645 } 646 __set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 647 } 648 649 static void pv_eoi_clr_pending(struct kvm_vcpu *vcpu) 650 { 651 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0) { 652 printk(KERN_WARNING "Can't clear EOI MSR value: 0x%llx\n", 653 (unsigned long long)vcpu->arch.pv_eoi.msr_val); 654 return; 655 } 656 __clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 657 } 658 659 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr) 660 { 661 int highest_irr; 662 if (apic->vcpu->arch.apicv_active) 663 highest_irr = kvm_x86_ops->sync_pir_to_irr(apic->vcpu); 664 else 665 highest_irr = apic_find_highest_irr(apic); 666 if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr) 667 return -1; 668 return highest_irr; 669 } 670 671 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr) 672 { 673 u32 tpr, isrv, ppr, old_ppr; 674 int isr; 675 676 old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI); 677 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI); 678 isr = apic_find_highest_isr(apic); 679 isrv = (isr != -1) ? isr : 0; 680 681 if ((tpr & 0xf0) >= (isrv & 0xf0)) 682 ppr = tpr & 0xff; 683 else 684 ppr = isrv & 0xf0; 685 686 *new_ppr = ppr; 687 if (old_ppr != ppr) 688 kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr); 689 690 return ppr < old_ppr; 691 } 692 693 static void apic_update_ppr(struct kvm_lapic *apic) 694 { 695 u32 ppr; 696 697 if (__apic_update_ppr(apic, &ppr) && 698 apic_has_interrupt_for_ppr(apic, ppr) != -1) 699 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 700 } 701 702 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu) 703 { 704 apic_update_ppr(vcpu->arch.apic); 705 } 706 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr); 707 708 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr) 709 { 710 kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr); 711 apic_update_ppr(apic); 712 } 713 714 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda) 715 { 716 return mda == (apic_x2apic_mode(apic) ? 717 X2APIC_BROADCAST : APIC_BROADCAST); 718 } 719 720 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda) 721 { 722 if (kvm_apic_broadcast(apic, mda)) 723 return true; 724 725 if (apic_x2apic_mode(apic)) 726 return mda == kvm_x2apic_id(apic); 727 728 /* 729 * Hotplug hack: Make LAPIC in xAPIC mode also accept interrupts as if 730 * it were in x2APIC mode. Hotplugged VCPUs start in xAPIC mode and 731 * this allows unique addressing of VCPUs with APIC ID over 0xff. 732 * The 0xff condition is needed because writeable xAPIC ID. 733 */ 734 if (kvm_x2apic_id(apic) > 0xff && mda == kvm_x2apic_id(apic)) 735 return true; 736 737 return mda == kvm_xapic_id(apic); 738 } 739 740 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda) 741 { 742 u32 logical_id; 743 744 if (kvm_apic_broadcast(apic, mda)) 745 return true; 746 747 logical_id = kvm_lapic_get_reg(apic, APIC_LDR); 748 749 if (apic_x2apic_mode(apic)) 750 return ((logical_id >> 16) == (mda >> 16)) 751 && (logical_id & mda & 0xffff) != 0; 752 753 logical_id = GET_APIC_LOGICAL_ID(logical_id); 754 755 switch (kvm_lapic_get_reg(apic, APIC_DFR)) { 756 case APIC_DFR_FLAT: 757 return (logical_id & mda) != 0; 758 case APIC_DFR_CLUSTER: 759 return ((logical_id >> 4) == (mda >> 4)) 760 && (logical_id & mda & 0xf) != 0; 761 default: 762 return false; 763 } 764 } 765 766 /* The KVM local APIC implementation has two quirks: 767 * 768 * - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs 769 * in xAPIC mode if the "destination & 0xff" matches its xAPIC ID. 770 * KVM doesn't do that aliasing. 771 * 772 * - in-kernel IOAPIC messages have to be delivered directly to 773 * x2APIC, because the kernel does not support interrupt remapping. 774 * In order to support broadcast without interrupt remapping, x2APIC 775 * rewrites the destination of non-IPI messages from APIC_BROADCAST 776 * to X2APIC_BROADCAST. 777 * 778 * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API. This is 779 * important when userspace wants to use x2APIC-format MSIs, because 780 * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7". 781 */ 782 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id, 783 struct kvm_lapic *source, struct kvm_lapic *target) 784 { 785 bool ipi = source != NULL; 786 787 if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled && 788 !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target)) 789 return X2APIC_BROADCAST; 790 791 return dest_id; 792 } 793 794 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source, 795 int short_hand, unsigned int dest, int dest_mode) 796 { 797 struct kvm_lapic *target = vcpu->arch.apic; 798 u32 mda = kvm_apic_mda(vcpu, dest, source, target); 799 800 ASSERT(target); 801 switch (short_hand) { 802 case APIC_DEST_NOSHORT: 803 if (dest_mode == APIC_DEST_PHYSICAL) 804 return kvm_apic_match_physical_addr(target, mda); 805 else 806 return kvm_apic_match_logical_addr(target, mda); 807 case APIC_DEST_SELF: 808 return target == source; 809 case APIC_DEST_ALLINC: 810 return true; 811 case APIC_DEST_ALLBUT: 812 return target != source; 813 default: 814 return false; 815 } 816 } 817 EXPORT_SYMBOL_GPL(kvm_apic_match_dest); 818 819 int kvm_vector_to_index(u32 vector, u32 dest_vcpus, 820 const unsigned long *bitmap, u32 bitmap_size) 821 { 822 u32 mod; 823 int i, idx = -1; 824 825 mod = vector % dest_vcpus; 826 827 for (i = 0; i <= mod; i++) { 828 idx = find_next_bit(bitmap, bitmap_size, idx + 1); 829 BUG_ON(idx == bitmap_size); 830 } 831 832 return idx; 833 } 834 835 static void kvm_apic_disabled_lapic_found(struct kvm *kvm) 836 { 837 if (!kvm->arch.disabled_lapic_found) { 838 kvm->arch.disabled_lapic_found = true; 839 printk(KERN_INFO 840 "Disabled LAPIC found during irq injection\n"); 841 } 842 } 843 844 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src, 845 struct kvm_lapic_irq *irq, struct kvm_apic_map *map) 846 { 847 if (kvm->arch.x2apic_broadcast_quirk_disabled) { 848 if ((irq->dest_id == APIC_BROADCAST && 849 map->mode != KVM_APIC_MODE_X2APIC)) 850 return true; 851 if (irq->dest_id == X2APIC_BROADCAST) 852 return true; 853 } else { 854 bool x2apic_ipi = src && *src && apic_x2apic_mode(*src); 855 if (irq->dest_id == (x2apic_ipi ? 856 X2APIC_BROADCAST : APIC_BROADCAST)) 857 return true; 858 } 859 860 return false; 861 } 862 863 /* Return true if the interrupt can be handled by using *bitmap as index mask 864 * for valid destinations in *dst array. 865 * Return false if kvm_apic_map_get_dest_lapic did nothing useful. 866 * Note: we may have zero kvm_lapic destinations when we return true, which 867 * means that the interrupt should be dropped. In this case, *bitmap would be 868 * zero and *dst undefined. 869 */ 870 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm, 871 struct kvm_lapic **src, struct kvm_lapic_irq *irq, 872 struct kvm_apic_map *map, struct kvm_lapic ***dst, 873 unsigned long *bitmap) 874 { 875 int i, lowest; 876 877 if (irq->shorthand == APIC_DEST_SELF && src) { 878 *dst = src; 879 *bitmap = 1; 880 return true; 881 } else if (irq->shorthand) 882 return false; 883 884 if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map)) 885 return false; 886 887 if (irq->dest_mode == APIC_DEST_PHYSICAL) { 888 if (irq->dest_id > map->max_apic_id) { 889 *bitmap = 0; 890 } else { 891 u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1); 892 *dst = &map->phys_map[dest_id]; 893 *bitmap = 1; 894 } 895 return true; 896 } 897 898 *bitmap = 0; 899 if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst, 900 (u16 *)bitmap)) 901 return false; 902 903 if (!kvm_lowest_prio_delivery(irq)) 904 return true; 905 906 if (!kvm_vector_hashing_enabled()) { 907 lowest = -1; 908 for_each_set_bit(i, bitmap, 16) { 909 if (!(*dst)[i]) 910 continue; 911 if (lowest < 0) 912 lowest = i; 913 else if (kvm_apic_compare_prio((*dst)[i]->vcpu, 914 (*dst)[lowest]->vcpu) < 0) 915 lowest = i; 916 } 917 } else { 918 if (!*bitmap) 919 return true; 920 921 lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap), 922 bitmap, 16); 923 924 if (!(*dst)[lowest]) { 925 kvm_apic_disabled_lapic_found(kvm); 926 *bitmap = 0; 927 return true; 928 } 929 } 930 931 *bitmap = (lowest >= 0) ? 1 << lowest : 0; 932 933 return true; 934 } 935 936 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src, 937 struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map) 938 { 939 struct kvm_apic_map *map; 940 unsigned long bitmap; 941 struct kvm_lapic **dst = NULL; 942 int i; 943 bool ret; 944 945 *r = -1; 946 947 if (irq->shorthand == APIC_DEST_SELF) { 948 *r = kvm_apic_set_irq(src->vcpu, irq, dest_map); 949 return true; 950 } 951 952 rcu_read_lock(); 953 map = rcu_dereference(kvm->arch.apic_map); 954 955 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap); 956 if (ret) { 957 *r = 0; 958 for_each_set_bit(i, &bitmap, 16) { 959 if (!dst[i]) 960 continue; 961 *r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map); 962 } 963 } 964 965 rcu_read_unlock(); 966 return ret; 967 } 968 969 /* 970 * This routine tries to handler interrupts in posted mode, here is how 971 * it deals with different cases: 972 * - For single-destination interrupts, handle it in posted mode 973 * - Else if vector hashing is enabled and it is a lowest-priority 974 * interrupt, handle it in posted mode and use the following mechanism 975 * to find the destinaiton vCPU. 976 * 1. For lowest-priority interrupts, store all the possible 977 * destination vCPUs in an array. 978 * 2. Use "guest vector % max number of destination vCPUs" to find 979 * the right destination vCPU in the array for the lowest-priority 980 * interrupt. 981 * - Otherwise, use remapped mode to inject the interrupt. 982 */ 983 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq, 984 struct kvm_vcpu **dest_vcpu) 985 { 986 struct kvm_apic_map *map; 987 unsigned long bitmap; 988 struct kvm_lapic **dst = NULL; 989 bool ret = false; 990 991 if (irq->shorthand) 992 return false; 993 994 rcu_read_lock(); 995 map = rcu_dereference(kvm->arch.apic_map); 996 997 if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) && 998 hweight16(bitmap) == 1) { 999 unsigned long i = find_first_bit(&bitmap, 16); 1000 1001 if (dst[i]) { 1002 *dest_vcpu = dst[i]->vcpu; 1003 ret = true; 1004 } 1005 } 1006 1007 rcu_read_unlock(); 1008 return ret; 1009 } 1010 1011 /* 1012 * Add a pending IRQ into lapic. 1013 * Return 1 if successfully added and 0 if discarded. 1014 */ 1015 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 1016 int vector, int level, int trig_mode, 1017 struct dest_map *dest_map) 1018 { 1019 int result = 0; 1020 struct kvm_vcpu *vcpu = apic->vcpu; 1021 1022 trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode, 1023 trig_mode, vector); 1024 switch (delivery_mode) { 1025 case APIC_DM_LOWEST: 1026 vcpu->arch.apic_arb_prio++; 1027 /* fall through */ 1028 case APIC_DM_FIXED: 1029 if (unlikely(trig_mode && !level)) 1030 break; 1031 1032 /* FIXME add logic for vcpu on reset */ 1033 if (unlikely(!apic_enabled(apic))) 1034 break; 1035 1036 result = 1; 1037 1038 if (dest_map) { 1039 __set_bit(vcpu->vcpu_id, dest_map->map); 1040 dest_map->vectors[vcpu->vcpu_id] = vector; 1041 } 1042 1043 if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) { 1044 if (trig_mode) 1045 kvm_lapic_set_vector(vector, 1046 apic->regs + APIC_TMR); 1047 else 1048 kvm_lapic_clear_vector(vector, 1049 apic->regs + APIC_TMR); 1050 } 1051 1052 if (vcpu->arch.apicv_active) 1053 kvm_x86_ops->deliver_posted_interrupt(vcpu, vector); 1054 else { 1055 kvm_lapic_set_irr(vector, apic); 1056 1057 kvm_make_request(KVM_REQ_EVENT, vcpu); 1058 kvm_vcpu_kick(vcpu); 1059 } 1060 break; 1061 1062 case APIC_DM_REMRD: 1063 result = 1; 1064 vcpu->arch.pv.pv_unhalted = 1; 1065 kvm_make_request(KVM_REQ_EVENT, vcpu); 1066 kvm_vcpu_kick(vcpu); 1067 break; 1068 1069 case APIC_DM_SMI: 1070 result = 1; 1071 kvm_make_request(KVM_REQ_SMI, vcpu); 1072 kvm_vcpu_kick(vcpu); 1073 break; 1074 1075 case APIC_DM_NMI: 1076 result = 1; 1077 kvm_inject_nmi(vcpu); 1078 kvm_vcpu_kick(vcpu); 1079 break; 1080 1081 case APIC_DM_INIT: 1082 if (!trig_mode || level) { 1083 result = 1; 1084 /* assumes that there are only KVM_APIC_INIT/SIPI */ 1085 apic->pending_events = (1UL << KVM_APIC_INIT); 1086 /* make sure pending_events is visible before sending 1087 * the request */ 1088 smp_wmb(); 1089 kvm_make_request(KVM_REQ_EVENT, vcpu); 1090 kvm_vcpu_kick(vcpu); 1091 } 1092 break; 1093 1094 case APIC_DM_STARTUP: 1095 result = 1; 1096 apic->sipi_vector = vector; 1097 /* make sure sipi_vector is visible for the receiver */ 1098 smp_wmb(); 1099 set_bit(KVM_APIC_SIPI, &apic->pending_events); 1100 kvm_make_request(KVM_REQ_EVENT, vcpu); 1101 kvm_vcpu_kick(vcpu); 1102 break; 1103 1104 case APIC_DM_EXTINT: 1105 /* 1106 * Should only be called by kvm_apic_local_deliver() with LVT0, 1107 * before NMI watchdog was enabled. Already handled by 1108 * kvm_apic_accept_pic_intr(). 1109 */ 1110 break; 1111 1112 default: 1113 printk(KERN_ERR "TODO: unsupported delivery mode %x\n", 1114 delivery_mode); 1115 break; 1116 } 1117 return result; 1118 } 1119 1120 /* 1121 * This routine identifies the destination vcpus mask meant to receive the 1122 * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find 1123 * out the destination vcpus array and set the bitmap or it traverses to 1124 * each available vcpu to identify the same. 1125 */ 1126 void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq, 1127 unsigned long *vcpu_bitmap) 1128 { 1129 struct kvm_lapic **dest_vcpu = NULL; 1130 struct kvm_lapic *src = NULL; 1131 struct kvm_apic_map *map; 1132 struct kvm_vcpu *vcpu; 1133 unsigned long bitmap; 1134 int i, vcpu_idx; 1135 bool ret; 1136 1137 rcu_read_lock(); 1138 map = rcu_dereference(kvm->arch.apic_map); 1139 1140 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu, 1141 &bitmap); 1142 if (ret) { 1143 for_each_set_bit(i, &bitmap, 16) { 1144 if (!dest_vcpu[i]) 1145 continue; 1146 vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx; 1147 __set_bit(vcpu_idx, vcpu_bitmap); 1148 } 1149 } else { 1150 kvm_for_each_vcpu(i, vcpu, kvm) { 1151 if (!kvm_apic_present(vcpu)) 1152 continue; 1153 if (!kvm_apic_match_dest(vcpu, NULL, 1154 irq->delivery_mode, 1155 irq->dest_id, 1156 irq->dest_mode)) 1157 continue; 1158 __set_bit(i, vcpu_bitmap); 1159 } 1160 } 1161 rcu_read_unlock(); 1162 } 1163 1164 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2) 1165 { 1166 return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio; 1167 } 1168 1169 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector) 1170 { 1171 return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors); 1172 } 1173 1174 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector) 1175 { 1176 int trigger_mode; 1177 1178 /* Eoi the ioapic only if the ioapic doesn't own the vector. */ 1179 if (!kvm_ioapic_handles_vector(apic, vector)) 1180 return; 1181 1182 /* Request a KVM exit to inform the userspace IOAPIC. */ 1183 if (irqchip_split(apic->vcpu->kvm)) { 1184 apic->vcpu->arch.pending_ioapic_eoi = vector; 1185 kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu); 1186 return; 1187 } 1188 1189 if (apic_test_vector(vector, apic->regs + APIC_TMR)) 1190 trigger_mode = IOAPIC_LEVEL_TRIG; 1191 else 1192 trigger_mode = IOAPIC_EDGE_TRIG; 1193 1194 kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode); 1195 } 1196 1197 static int apic_set_eoi(struct kvm_lapic *apic) 1198 { 1199 int vector = apic_find_highest_isr(apic); 1200 1201 trace_kvm_eoi(apic, vector); 1202 1203 /* 1204 * Not every write EOI will has corresponding ISR, 1205 * one example is when Kernel check timer on setup_IO_APIC 1206 */ 1207 if (vector == -1) 1208 return vector; 1209 1210 apic_clear_isr(vector, apic); 1211 apic_update_ppr(apic); 1212 1213 if (test_bit(vector, vcpu_to_synic(apic->vcpu)->vec_bitmap)) 1214 kvm_hv_synic_send_eoi(apic->vcpu, vector); 1215 1216 kvm_ioapic_send_eoi(apic, vector); 1217 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1218 return vector; 1219 } 1220 1221 /* 1222 * this interface assumes a trap-like exit, which has already finished 1223 * desired side effect including vISR and vPPR update. 1224 */ 1225 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector) 1226 { 1227 struct kvm_lapic *apic = vcpu->arch.apic; 1228 1229 trace_kvm_eoi(apic, vector); 1230 1231 kvm_ioapic_send_eoi(apic, vector); 1232 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1233 } 1234 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated); 1235 1236 static void apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high) 1237 { 1238 struct kvm_lapic_irq irq; 1239 1240 irq.vector = icr_low & APIC_VECTOR_MASK; 1241 irq.delivery_mode = icr_low & APIC_MODE_MASK; 1242 irq.dest_mode = icr_low & APIC_DEST_MASK; 1243 irq.level = (icr_low & APIC_INT_ASSERT) != 0; 1244 irq.trig_mode = icr_low & APIC_INT_LEVELTRIG; 1245 irq.shorthand = icr_low & APIC_SHORT_MASK; 1246 irq.msi_redir_hint = false; 1247 if (apic_x2apic_mode(apic)) 1248 irq.dest_id = icr_high; 1249 else 1250 irq.dest_id = GET_APIC_DEST_FIELD(icr_high); 1251 1252 trace_kvm_apic_ipi(icr_low, irq.dest_id); 1253 1254 kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL); 1255 } 1256 1257 static u32 apic_get_tmcct(struct kvm_lapic *apic) 1258 { 1259 ktime_t remaining, now; 1260 s64 ns; 1261 u32 tmcct; 1262 1263 ASSERT(apic != NULL); 1264 1265 /* if initial count is 0, current count should also be 0 */ 1266 if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 || 1267 apic->lapic_timer.period == 0) 1268 return 0; 1269 1270 now = ktime_get(); 1271 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 1272 if (ktime_to_ns(remaining) < 0) 1273 remaining = 0; 1274 1275 ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period); 1276 tmcct = div64_u64(ns, 1277 (APIC_BUS_CYCLE_NS * apic->divide_count)); 1278 1279 return tmcct; 1280 } 1281 1282 static void __report_tpr_access(struct kvm_lapic *apic, bool write) 1283 { 1284 struct kvm_vcpu *vcpu = apic->vcpu; 1285 struct kvm_run *run = vcpu->run; 1286 1287 kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu); 1288 run->tpr_access.rip = kvm_rip_read(vcpu); 1289 run->tpr_access.is_write = write; 1290 } 1291 1292 static inline void report_tpr_access(struct kvm_lapic *apic, bool write) 1293 { 1294 if (apic->vcpu->arch.tpr_access_reporting) 1295 __report_tpr_access(apic, write); 1296 } 1297 1298 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset) 1299 { 1300 u32 val = 0; 1301 1302 if (offset >= LAPIC_MMIO_LENGTH) 1303 return 0; 1304 1305 switch (offset) { 1306 case APIC_ARBPRI: 1307 break; 1308 1309 case APIC_TMCCT: /* Timer CCR */ 1310 if (apic_lvtt_tscdeadline(apic)) 1311 return 0; 1312 1313 val = apic_get_tmcct(apic); 1314 break; 1315 case APIC_PROCPRI: 1316 apic_update_ppr(apic); 1317 val = kvm_lapic_get_reg(apic, offset); 1318 break; 1319 case APIC_TASKPRI: 1320 report_tpr_access(apic, false); 1321 /* fall thru */ 1322 default: 1323 val = kvm_lapic_get_reg(apic, offset); 1324 break; 1325 } 1326 1327 return val; 1328 } 1329 1330 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev) 1331 { 1332 return container_of(dev, struct kvm_lapic, dev); 1333 } 1334 1335 #define APIC_REG_MASK(reg) (1ull << ((reg) >> 4)) 1336 #define APIC_REGS_MASK(first, count) \ 1337 (APIC_REG_MASK(first) * ((1ull << (count)) - 1)) 1338 1339 int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len, 1340 void *data) 1341 { 1342 unsigned char alignment = offset & 0xf; 1343 u32 result; 1344 /* this bitmask has a bit cleared for each reserved register */ 1345 u64 valid_reg_mask = 1346 APIC_REG_MASK(APIC_ID) | 1347 APIC_REG_MASK(APIC_LVR) | 1348 APIC_REG_MASK(APIC_TASKPRI) | 1349 APIC_REG_MASK(APIC_PROCPRI) | 1350 APIC_REG_MASK(APIC_LDR) | 1351 APIC_REG_MASK(APIC_DFR) | 1352 APIC_REG_MASK(APIC_SPIV) | 1353 APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) | 1354 APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) | 1355 APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) | 1356 APIC_REG_MASK(APIC_ESR) | 1357 APIC_REG_MASK(APIC_ICR) | 1358 APIC_REG_MASK(APIC_ICR2) | 1359 APIC_REG_MASK(APIC_LVTT) | 1360 APIC_REG_MASK(APIC_LVTTHMR) | 1361 APIC_REG_MASK(APIC_LVTPC) | 1362 APIC_REG_MASK(APIC_LVT0) | 1363 APIC_REG_MASK(APIC_LVT1) | 1364 APIC_REG_MASK(APIC_LVTERR) | 1365 APIC_REG_MASK(APIC_TMICT) | 1366 APIC_REG_MASK(APIC_TMCCT) | 1367 APIC_REG_MASK(APIC_TDCR); 1368 1369 /* ARBPRI is not valid on x2APIC */ 1370 if (!apic_x2apic_mode(apic)) 1371 valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI); 1372 1373 if (offset > 0x3f0 || !(valid_reg_mask & APIC_REG_MASK(offset))) 1374 return 1; 1375 1376 result = __apic_read(apic, offset & ~0xf); 1377 1378 trace_kvm_apic_read(offset, result); 1379 1380 switch (len) { 1381 case 1: 1382 case 2: 1383 case 4: 1384 memcpy(data, (char *)&result + alignment, len); 1385 break; 1386 default: 1387 printk(KERN_ERR "Local APIC read with len = %x, " 1388 "should be 1,2, or 4 instead\n", len); 1389 break; 1390 } 1391 return 0; 1392 } 1393 EXPORT_SYMBOL_GPL(kvm_lapic_reg_read); 1394 1395 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr) 1396 { 1397 return addr >= apic->base_address && 1398 addr < apic->base_address + LAPIC_MMIO_LENGTH; 1399 } 1400 1401 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 1402 gpa_t address, int len, void *data) 1403 { 1404 struct kvm_lapic *apic = to_lapic(this); 1405 u32 offset = address - apic->base_address; 1406 1407 if (!apic_mmio_in_range(apic, address)) 1408 return -EOPNOTSUPP; 1409 1410 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 1411 if (!kvm_check_has_quirk(vcpu->kvm, 1412 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 1413 return -EOPNOTSUPP; 1414 1415 memset(data, 0xff, len); 1416 return 0; 1417 } 1418 1419 kvm_lapic_reg_read(apic, offset, len, data); 1420 1421 return 0; 1422 } 1423 1424 static void update_divide_count(struct kvm_lapic *apic) 1425 { 1426 u32 tmp1, tmp2, tdcr; 1427 1428 tdcr = kvm_lapic_get_reg(apic, APIC_TDCR); 1429 tmp1 = tdcr & 0xf; 1430 tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1; 1431 apic->divide_count = 0x1 << (tmp2 & 0x7); 1432 } 1433 1434 static void limit_periodic_timer_frequency(struct kvm_lapic *apic) 1435 { 1436 /* 1437 * Do not allow the guest to program periodic timers with small 1438 * interval, since the hrtimers are not throttled by the host 1439 * scheduler. 1440 */ 1441 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 1442 s64 min_period = min_timer_period_us * 1000LL; 1443 1444 if (apic->lapic_timer.period < min_period) { 1445 pr_info_ratelimited( 1446 "kvm: vcpu %i: requested %lld ns " 1447 "lapic timer period limited to %lld ns\n", 1448 apic->vcpu->vcpu_id, 1449 apic->lapic_timer.period, min_period); 1450 apic->lapic_timer.period = min_period; 1451 } 1452 } 1453 } 1454 1455 static void apic_update_lvtt(struct kvm_lapic *apic) 1456 { 1457 u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) & 1458 apic->lapic_timer.timer_mode_mask; 1459 1460 if (apic->lapic_timer.timer_mode != timer_mode) { 1461 if (apic_lvtt_tscdeadline(apic) != (timer_mode == 1462 APIC_LVT_TIMER_TSCDEADLINE)) { 1463 hrtimer_cancel(&apic->lapic_timer.timer); 1464 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 1465 apic->lapic_timer.period = 0; 1466 apic->lapic_timer.tscdeadline = 0; 1467 } 1468 apic->lapic_timer.timer_mode = timer_mode; 1469 limit_periodic_timer_frequency(apic); 1470 } 1471 } 1472 1473 /* 1474 * On APICv, this test will cause a busy wait 1475 * during a higher-priority task. 1476 */ 1477 1478 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu) 1479 { 1480 struct kvm_lapic *apic = vcpu->arch.apic; 1481 u32 reg = kvm_lapic_get_reg(apic, APIC_LVTT); 1482 1483 if (kvm_apic_hw_enabled(apic)) { 1484 int vec = reg & APIC_VECTOR_MASK; 1485 void *bitmap = apic->regs + APIC_ISR; 1486 1487 if (vcpu->arch.apicv_active) 1488 bitmap = apic->regs + APIC_IRR; 1489 1490 if (apic_test_vector(vec, bitmap)) 1491 return true; 1492 } 1493 return false; 1494 } 1495 1496 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles) 1497 { 1498 u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns; 1499 1500 /* 1501 * If the guest TSC is running at a different ratio than the host, then 1502 * convert the delay to nanoseconds to achieve an accurate delay. Note 1503 * that __delay() uses delay_tsc whenever the hardware has TSC, thus 1504 * always for VMX enabled hardware. 1505 */ 1506 if (vcpu->arch.tsc_scaling_ratio == kvm_default_tsc_scaling_ratio) { 1507 __delay(min(guest_cycles, 1508 nsec_to_cycles(vcpu, timer_advance_ns))); 1509 } else { 1510 u64 delay_ns = guest_cycles * 1000000ULL; 1511 do_div(delay_ns, vcpu->arch.virtual_tsc_khz); 1512 ndelay(min_t(u32, delay_ns, timer_advance_ns)); 1513 } 1514 } 1515 1516 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu, 1517 s64 advance_expire_delta) 1518 { 1519 struct kvm_lapic *apic = vcpu->arch.apic; 1520 u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns; 1521 u64 ns; 1522 1523 /* Do not adjust for tiny fluctuations or large random spikes. */ 1524 if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX || 1525 abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN) 1526 return; 1527 1528 /* too early */ 1529 if (advance_expire_delta < 0) { 1530 ns = -advance_expire_delta * 1000000ULL; 1531 do_div(ns, vcpu->arch.virtual_tsc_khz); 1532 timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; 1533 } else { 1534 /* too late */ 1535 ns = advance_expire_delta * 1000000ULL; 1536 do_div(ns, vcpu->arch.virtual_tsc_khz); 1537 timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; 1538 } 1539 1540 if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX)) 1541 timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; 1542 apic->lapic_timer.timer_advance_ns = timer_advance_ns; 1543 } 1544 1545 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1546 { 1547 struct kvm_lapic *apic = vcpu->arch.apic; 1548 u64 guest_tsc, tsc_deadline; 1549 1550 if (apic->lapic_timer.expired_tscdeadline == 0) 1551 return; 1552 1553 tsc_deadline = apic->lapic_timer.expired_tscdeadline; 1554 apic->lapic_timer.expired_tscdeadline = 0; 1555 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1556 apic->lapic_timer.advance_expire_delta = guest_tsc - tsc_deadline; 1557 1558 if (guest_tsc < tsc_deadline) 1559 __wait_lapic_expire(vcpu, tsc_deadline - guest_tsc); 1560 1561 if (lapic_timer_advance_dynamic) 1562 adjust_lapic_timer_advance(vcpu, apic->lapic_timer.advance_expire_delta); 1563 } 1564 1565 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1566 { 1567 if (lapic_timer_int_injected(vcpu)) 1568 __kvm_wait_lapic_expire(vcpu); 1569 } 1570 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire); 1571 1572 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic) 1573 { 1574 struct kvm_timer *ktimer = &apic->lapic_timer; 1575 1576 kvm_apic_local_deliver(apic, APIC_LVTT); 1577 if (apic_lvtt_tscdeadline(apic)) 1578 ktimer->tscdeadline = 0; 1579 if (apic_lvtt_oneshot(apic)) { 1580 ktimer->tscdeadline = 0; 1581 ktimer->target_expiration = 0; 1582 } 1583 } 1584 1585 static void apic_timer_expired(struct kvm_lapic *apic) 1586 { 1587 struct kvm_vcpu *vcpu = apic->vcpu; 1588 struct kvm_timer *ktimer = &apic->lapic_timer; 1589 1590 if (atomic_read(&apic->lapic_timer.pending)) 1591 return; 1592 1593 if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use) 1594 ktimer->expired_tscdeadline = ktimer->tscdeadline; 1595 1596 if (kvm_use_posted_timer_interrupt(apic->vcpu)) { 1597 if (apic->lapic_timer.timer_advance_ns) 1598 __kvm_wait_lapic_expire(vcpu); 1599 kvm_apic_inject_pending_timer_irqs(apic); 1600 return; 1601 } 1602 1603 atomic_inc(&apic->lapic_timer.pending); 1604 kvm_set_pending_timer(vcpu); 1605 } 1606 1607 static void start_sw_tscdeadline(struct kvm_lapic *apic) 1608 { 1609 struct kvm_timer *ktimer = &apic->lapic_timer; 1610 u64 guest_tsc, tscdeadline = ktimer->tscdeadline; 1611 u64 ns = 0; 1612 ktime_t expire; 1613 struct kvm_vcpu *vcpu = apic->vcpu; 1614 unsigned long this_tsc_khz = vcpu->arch.virtual_tsc_khz; 1615 unsigned long flags; 1616 ktime_t now; 1617 1618 if (unlikely(!tscdeadline || !this_tsc_khz)) 1619 return; 1620 1621 local_irq_save(flags); 1622 1623 now = ktime_get(); 1624 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1625 1626 ns = (tscdeadline - guest_tsc) * 1000000ULL; 1627 do_div(ns, this_tsc_khz); 1628 1629 if (likely(tscdeadline > guest_tsc) && 1630 likely(ns > apic->lapic_timer.timer_advance_ns)) { 1631 expire = ktime_add_ns(now, ns); 1632 expire = ktime_sub_ns(expire, ktimer->timer_advance_ns); 1633 hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD); 1634 } else 1635 apic_timer_expired(apic); 1636 1637 local_irq_restore(flags); 1638 } 1639 1640 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor) 1641 { 1642 ktime_t now, remaining; 1643 u64 ns_remaining_old, ns_remaining_new; 1644 1645 apic->lapic_timer.period = (u64)kvm_lapic_get_reg(apic, APIC_TMICT) 1646 * APIC_BUS_CYCLE_NS * apic->divide_count; 1647 limit_periodic_timer_frequency(apic); 1648 1649 now = ktime_get(); 1650 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 1651 if (ktime_to_ns(remaining) < 0) 1652 remaining = 0; 1653 1654 ns_remaining_old = ktime_to_ns(remaining); 1655 ns_remaining_new = mul_u64_u32_div(ns_remaining_old, 1656 apic->divide_count, old_divisor); 1657 1658 apic->lapic_timer.tscdeadline += 1659 nsec_to_cycles(apic->vcpu, ns_remaining_new) - 1660 nsec_to_cycles(apic->vcpu, ns_remaining_old); 1661 apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new); 1662 } 1663 1664 static bool set_target_expiration(struct kvm_lapic *apic) 1665 { 1666 ktime_t now; 1667 u64 tscl = rdtsc(); 1668 1669 now = ktime_get(); 1670 apic->lapic_timer.period = (u64)kvm_lapic_get_reg(apic, APIC_TMICT) 1671 * APIC_BUS_CYCLE_NS * apic->divide_count; 1672 1673 if (!apic->lapic_timer.period) { 1674 apic->lapic_timer.tscdeadline = 0; 1675 return false; 1676 } 1677 1678 limit_periodic_timer_frequency(apic); 1679 1680 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 1681 nsec_to_cycles(apic->vcpu, apic->lapic_timer.period); 1682 apic->lapic_timer.target_expiration = ktime_add_ns(now, apic->lapic_timer.period); 1683 1684 return true; 1685 } 1686 1687 static void advance_periodic_target_expiration(struct kvm_lapic *apic) 1688 { 1689 ktime_t now = ktime_get(); 1690 u64 tscl = rdtsc(); 1691 ktime_t delta; 1692 1693 /* 1694 * Synchronize both deadlines to the same time source or 1695 * differences in the periods (caused by differences in the 1696 * underlying clocks or numerical approximation errors) will 1697 * cause the two to drift apart over time as the errors 1698 * accumulate. 1699 */ 1700 apic->lapic_timer.target_expiration = 1701 ktime_add_ns(apic->lapic_timer.target_expiration, 1702 apic->lapic_timer.period); 1703 delta = ktime_sub(apic->lapic_timer.target_expiration, now); 1704 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 1705 nsec_to_cycles(apic->vcpu, delta); 1706 } 1707 1708 static void start_sw_period(struct kvm_lapic *apic) 1709 { 1710 if (!apic->lapic_timer.period) 1711 return; 1712 1713 if (ktime_after(ktime_get(), 1714 apic->lapic_timer.target_expiration)) { 1715 apic_timer_expired(apic); 1716 1717 if (apic_lvtt_oneshot(apic)) 1718 return; 1719 1720 advance_periodic_target_expiration(apic); 1721 } 1722 1723 hrtimer_start(&apic->lapic_timer.timer, 1724 apic->lapic_timer.target_expiration, 1725 HRTIMER_MODE_ABS); 1726 } 1727 1728 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu) 1729 { 1730 if (!lapic_in_kernel(vcpu)) 1731 return false; 1732 1733 return vcpu->arch.apic->lapic_timer.hv_timer_in_use; 1734 } 1735 EXPORT_SYMBOL_GPL(kvm_lapic_hv_timer_in_use); 1736 1737 static void cancel_hv_timer(struct kvm_lapic *apic) 1738 { 1739 WARN_ON(preemptible()); 1740 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 1741 kvm_x86_ops->cancel_hv_timer(apic->vcpu); 1742 apic->lapic_timer.hv_timer_in_use = false; 1743 } 1744 1745 static bool start_hv_timer(struct kvm_lapic *apic) 1746 { 1747 struct kvm_timer *ktimer = &apic->lapic_timer; 1748 struct kvm_vcpu *vcpu = apic->vcpu; 1749 bool expired; 1750 1751 WARN_ON(preemptible()); 1752 if (!kvm_x86_ops->set_hv_timer) 1753 return false; 1754 1755 if (!ktimer->tscdeadline) 1756 return false; 1757 1758 if (kvm_x86_ops->set_hv_timer(vcpu, ktimer->tscdeadline, &expired)) 1759 return false; 1760 1761 ktimer->hv_timer_in_use = true; 1762 hrtimer_cancel(&ktimer->timer); 1763 1764 /* 1765 * To simplify handling the periodic timer, leave the hv timer running 1766 * even if the deadline timer has expired, i.e. rely on the resulting 1767 * VM-Exit to recompute the periodic timer's target expiration. 1768 */ 1769 if (!apic_lvtt_period(apic)) { 1770 /* 1771 * Cancel the hv timer if the sw timer fired while the hv timer 1772 * was being programmed, or if the hv timer itself expired. 1773 */ 1774 if (atomic_read(&ktimer->pending)) { 1775 cancel_hv_timer(apic); 1776 } else if (expired) { 1777 apic_timer_expired(apic); 1778 cancel_hv_timer(apic); 1779 } 1780 } 1781 1782 trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use); 1783 1784 return true; 1785 } 1786 1787 static void start_sw_timer(struct kvm_lapic *apic) 1788 { 1789 struct kvm_timer *ktimer = &apic->lapic_timer; 1790 1791 WARN_ON(preemptible()); 1792 if (apic->lapic_timer.hv_timer_in_use) 1793 cancel_hv_timer(apic); 1794 if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending)) 1795 return; 1796 1797 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 1798 start_sw_period(apic); 1799 else if (apic_lvtt_tscdeadline(apic)) 1800 start_sw_tscdeadline(apic); 1801 trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false); 1802 } 1803 1804 static void restart_apic_timer(struct kvm_lapic *apic) 1805 { 1806 preempt_disable(); 1807 1808 if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending)) 1809 goto out; 1810 1811 if (!start_hv_timer(apic)) 1812 start_sw_timer(apic); 1813 out: 1814 preempt_enable(); 1815 } 1816 1817 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu) 1818 { 1819 struct kvm_lapic *apic = vcpu->arch.apic; 1820 1821 preempt_disable(); 1822 /* If the preempt notifier has already run, it also called apic_timer_expired */ 1823 if (!apic->lapic_timer.hv_timer_in_use) 1824 goto out; 1825 WARN_ON(swait_active(&vcpu->wq)); 1826 cancel_hv_timer(apic); 1827 apic_timer_expired(apic); 1828 1829 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 1830 advance_periodic_target_expiration(apic); 1831 restart_apic_timer(apic); 1832 } 1833 out: 1834 preempt_enable(); 1835 } 1836 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer); 1837 1838 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu) 1839 { 1840 restart_apic_timer(vcpu->arch.apic); 1841 } 1842 EXPORT_SYMBOL_GPL(kvm_lapic_switch_to_hv_timer); 1843 1844 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu) 1845 { 1846 struct kvm_lapic *apic = vcpu->arch.apic; 1847 1848 preempt_disable(); 1849 /* Possibly the TSC deadline timer is not enabled yet */ 1850 if (apic->lapic_timer.hv_timer_in_use) 1851 start_sw_timer(apic); 1852 preempt_enable(); 1853 } 1854 EXPORT_SYMBOL_GPL(kvm_lapic_switch_to_sw_timer); 1855 1856 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu) 1857 { 1858 struct kvm_lapic *apic = vcpu->arch.apic; 1859 1860 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 1861 restart_apic_timer(apic); 1862 } 1863 1864 static void start_apic_timer(struct kvm_lapic *apic) 1865 { 1866 atomic_set(&apic->lapic_timer.pending, 0); 1867 1868 if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 1869 && !set_target_expiration(apic)) 1870 return; 1871 1872 restart_apic_timer(apic); 1873 } 1874 1875 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val) 1876 { 1877 bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val); 1878 1879 if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) { 1880 apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode; 1881 if (lvt0_in_nmi_mode) { 1882 atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 1883 } else 1884 atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 1885 } 1886 } 1887 1888 int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val) 1889 { 1890 int ret = 0; 1891 1892 trace_kvm_apic_write(reg, val); 1893 1894 switch (reg) { 1895 case APIC_ID: /* Local APIC ID */ 1896 if (!apic_x2apic_mode(apic)) 1897 kvm_apic_set_xapic_id(apic, val >> 24); 1898 else 1899 ret = 1; 1900 break; 1901 1902 case APIC_TASKPRI: 1903 report_tpr_access(apic, true); 1904 apic_set_tpr(apic, val & 0xff); 1905 break; 1906 1907 case APIC_EOI: 1908 apic_set_eoi(apic); 1909 break; 1910 1911 case APIC_LDR: 1912 if (!apic_x2apic_mode(apic)) 1913 kvm_apic_set_ldr(apic, val & APIC_LDR_MASK); 1914 else 1915 ret = 1; 1916 break; 1917 1918 case APIC_DFR: 1919 if (!apic_x2apic_mode(apic)) { 1920 kvm_lapic_set_reg(apic, APIC_DFR, val | 0x0FFFFFFF); 1921 recalculate_apic_map(apic->vcpu->kvm); 1922 } else 1923 ret = 1; 1924 break; 1925 1926 case APIC_SPIV: { 1927 u32 mask = 0x3ff; 1928 if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI) 1929 mask |= APIC_SPIV_DIRECTED_EOI; 1930 apic_set_spiv(apic, val & mask); 1931 if (!(val & APIC_SPIV_APIC_ENABLED)) { 1932 int i; 1933 u32 lvt_val; 1934 1935 for (i = 0; i < KVM_APIC_LVT_NUM; i++) { 1936 lvt_val = kvm_lapic_get_reg(apic, 1937 APIC_LVTT + 0x10 * i); 1938 kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i, 1939 lvt_val | APIC_LVT_MASKED); 1940 } 1941 apic_update_lvtt(apic); 1942 atomic_set(&apic->lapic_timer.pending, 0); 1943 1944 } 1945 break; 1946 } 1947 case APIC_ICR: 1948 /* No delay here, so we always clear the pending bit */ 1949 val &= ~(1 << 12); 1950 apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2)); 1951 kvm_lapic_set_reg(apic, APIC_ICR, val); 1952 break; 1953 1954 case APIC_ICR2: 1955 if (!apic_x2apic_mode(apic)) 1956 val &= 0xff000000; 1957 kvm_lapic_set_reg(apic, APIC_ICR2, val); 1958 break; 1959 1960 case APIC_LVT0: 1961 apic_manage_nmi_watchdog(apic, val); 1962 /* fall through */ 1963 case APIC_LVTTHMR: 1964 case APIC_LVTPC: 1965 case APIC_LVT1: 1966 case APIC_LVTERR: 1967 /* TODO: Check vector */ 1968 if (!kvm_apic_sw_enabled(apic)) 1969 val |= APIC_LVT_MASKED; 1970 1971 val &= apic_lvt_mask[(reg - APIC_LVTT) >> 4]; 1972 kvm_lapic_set_reg(apic, reg, val); 1973 1974 break; 1975 1976 case APIC_LVTT: 1977 if (!kvm_apic_sw_enabled(apic)) 1978 val |= APIC_LVT_MASKED; 1979 val &= (apic_lvt_mask[0] | apic->lapic_timer.timer_mode_mask); 1980 kvm_lapic_set_reg(apic, APIC_LVTT, val); 1981 apic_update_lvtt(apic); 1982 break; 1983 1984 case APIC_TMICT: 1985 if (apic_lvtt_tscdeadline(apic)) 1986 break; 1987 1988 hrtimer_cancel(&apic->lapic_timer.timer); 1989 kvm_lapic_set_reg(apic, APIC_TMICT, val); 1990 start_apic_timer(apic); 1991 break; 1992 1993 case APIC_TDCR: { 1994 uint32_t old_divisor = apic->divide_count; 1995 1996 kvm_lapic_set_reg(apic, APIC_TDCR, val); 1997 update_divide_count(apic); 1998 if (apic->divide_count != old_divisor && 1999 apic->lapic_timer.period) { 2000 hrtimer_cancel(&apic->lapic_timer.timer); 2001 update_target_expiration(apic, old_divisor); 2002 restart_apic_timer(apic); 2003 } 2004 break; 2005 } 2006 case APIC_ESR: 2007 if (apic_x2apic_mode(apic) && val != 0) 2008 ret = 1; 2009 break; 2010 2011 case APIC_SELF_IPI: 2012 if (apic_x2apic_mode(apic)) { 2013 kvm_lapic_reg_write(apic, APIC_ICR, 0x40000 | (val & 0xff)); 2014 } else 2015 ret = 1; 2016 break; 2017 default: 2018 ret = 1; 2019 break; 2020 } 2021 2022 return ret; 2023 } 2024 EXPORT_SYMBOL_GPL(kvm_lapic_reg_write); 2025 2026 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 2027 gpa_t address, int len, const void *data) 2028 { 2029 struct kvm_lapic *apic = to_lapic(this); 2030 unsigned int offset = address - apic->base_address; 2031 u32 val; 2032 2033 if (!apic_mmio_in_range(apic, address)) 2034 return -EOPNOTSUPP; 2035 2036 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 2037 if (!kvm_check_has_quirk(vcpu->kvm, 2038 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 2039 return -EOPNOTSUPP; 2040 2041 return 0; 2042 } 2043 2044 /* 2045 * APIC register must be aligned on 128-bits boundary. 2046 * 32/64/128 bits registers must be accessed thru 32 bits. 2047 * Refer SDM 8.4.1 2048 */ 2049 if (len != 4 || (offset & 0xf)) 2050 return 0; 2051 2052 val = *(u32*)data; 2053 2054 kvm_lapic_reg_write(apic, offset & 0xff0, val); 2055 2056 return 0; 2057 } 2058 2059 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu) 2060 { 2061 kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0); 2062 } 2063 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi); 2064 2065 /* emulate APIC access in a trap manner */ 2066 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset) 2067 { 2068 u32 val = 0; 2069 2070 /* hw has done the conditional check and inst decode */ 2071 offset &= 0xff0; 2072 2073 kvm_lapic_reg_read(vcpu->arch.apic, offset, 4, &val); 2074 2075 /* TODO: optimize to just emulate side effect w/o one more write */ 2076 kvm_lapic_reg_write(vcpu->arch.apic, offset, val); 2077 } 2078 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode); 2079 2080 void kvm_free_lapic(struct kvm_vcpu *vcpu) 2081 { 2082 struct kvm_lapic *apic = vcpu->arch.apic; 2083 2084 if (!vcpu->arch.apic) 2085 return; 2086 2087 hrtimer_cancel(&apic->lapic_timer.timer); 2088 2089 if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)) 2090 static_key_slow_dec_deferred(&apic_hw_disabled); 2091 2092 if (!apic->sw_enabled) 2093 static_key_slow_dec_deferred(&apic_sw_disabled); 2094 2095 if (apic->regs) 2096 free_page((unsigned long)apic->regs); 2097 2098 kfree(apic); 2099 } 2100 2101 /* 2102 *---------------------------------------------------------------------- 2103 * LAPIC interface 2104 *---------------------------------------------------------------------- 2105 */ 2106 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu) 2107 { 2108 struct kvm_lapic *apic = vcpu->arch.apic; 2109 2110 if (!lapic_in_kernel(vcpu) || 2111 !apic_lvtt_tscdeadline(apic)) 2112 return 0; 2113 2114 return apic->lapic_timer.tscdeadline; 2115 } 2116 2117 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data) 2118 { 2119 struct kvm_lapic *apic = vcpu->arch.apic; 2120 2121 if (!lapic_in_kernel(vcpu) || apic_lvtt_oneshot(apic) || 2122 apic_lvtt_period(apic)) 2123 return; 2124 2125 hrtimer_cancel(&apic->lapic_timer.timer); 2126 apic->lapic_timer.tscdeadline = data; 2127 start_apic_timer(apic); 2128 } 2129 2130 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8) 2131 { 2132 struct kvm_lapic *apic = vcpu->arch.apic; 2133 2134 apic_set_tpr(apic, ((cr8 & 0x0f) << 4) 2135 | (kvm_lapic_get_reg(apic, APIC_TASKPRI) & 4)); 2136 } 2137 2138 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu) 2139 { 2140 u64 tpr; 2141 2142 tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI); 2143 2144 return (tpr & 0xf0) >> 4; 2145 } 2146 2147 void kvm_lapic_set_base(struct kvm_vcpu *vcpu, u64 value) 2148 { 2149 u64 old_value = vcpu->arch.apic_base; 2150 struct kvm_lapic *apic = vcpu->arch.apic; 2151 2152 if (!apic) 2153 value |= MSR_IA32_APICBASE_BSP; 2154 2155 vcpu->arch.apic_base = value; 2156 2157 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) 2158 kvm_update_cpuid(vcpu); 2159 2160 if (!apic) 2161 return; 2162 2163 /* update jump label if enable bit changes */ 2164 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) { 2165 if (value & MSR_IA32_APICBASE_ENABLE) { 2166 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2167 static_key_slow_dec_deferred(&apic_hw_disabled); 2168 } else { 2169 static_key_slow_inc(&apic_hw_disabled.key); 2170 recalculate_apic_map(vcpu->kvm); 2171 } 2172 } 2173 2174 if (((old_value ^ value) & X2APIC_ENABLE) && (value & X2APIC_ENABLE)) 2175 kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id); 2176 2177 if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) 2178 kvm_x86_ops->set_virtual_apic_mode(vcpu); 2179 2180 apic->base_address = apic->vcpu->arch.apic_base & 2181 MSR_IA32_APICBASE_BASE; 2182 2183 if ((value & MSR_IA32_APICBASE_ENABLE) && 2184 apic->base_address != APIC_DEFAULT_PHYS_BASE) 2185 pr_warn_once("APIC base relocation is unsupported by KVM"); 2186 } 2187 2188 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event) 2189 { 2190 struct kvm_lapic *apic = vcpu->arch.apic; 2191 int i; 2192 2193 if (!apic) 2194 return; 2195 2196 /* Stop the timer in case it's a reset to an active apic */ 2197 hrtimer_cancel(&apic->lapic_timer.timer); 2198 2199 if (!init_event) { 2200 kvm_lapic_set_base(vcpu, APIC_DEFAULT_PHYS_BASE | 2201 MSR_IA32_APICBASE_ENABLE); 2202 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2203 } 2204 kvm_apic_set_version(apic->vcpu); 2205 2206 for (i = 0; i < KVM_APIC_LVT_NUM; i++) 2207 kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i, APIC_LVT_MASKED); 2208 apic_update_lvtt(apic); 2209 if (kvm_vcpu_is_reset_bsp(vcpu) && 2210 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED)) 2211 kvm_lapic_set_reg(apic, APIC_LVT0, 2212 SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT)); 2213 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 2214 2215 kvm_lapic_set_reg(apic, APIC_DFR, 0xffffffffU); 2216 apic_set_spiv(apic, 0xff); 2217 kvm_lapic_set_reg(apic, APIC_TASKPRI, 0); 2218 if (!apic_x2apic_mode(apic)) 2219 kvm_apic_set_ldr(apic, 0); 2220 kvm_lapic_set_reg(apic, APIC_ESR, 0); 2221 kvm_lapic_set_reg(apic, APIC_ICR, 0); 2222 kvm_lapic_set_reg(apic, APIC_ICR2, 0); 2223 kvm_lapic_set_reg(apic, APIC_TDCR, 0); 2224 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 2225 for (i = 0; i < 8; i++) { 2226 kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0); 2227 kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0); 2228 kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0); 2229 } 2230 apic->irr_pending = vcpu->arch.apicv_active; 2231 apic->isr_count = vcpu->arch.apicv_active ? 1 : 0; 2232 apic->highest_isr_cache = -1; 2233 update_divide_count(apic); 2234 atomic_set(&apic->lapic_timer.pending, 0); 2235 if (kvm_vcpu_is_bsp(vcpu)) 2236 kvm_lapic_set_base(vcpu, 2237 vcpu->arch.apic_base | MSR_IA32_APICBASE_BSP); 2238 vcpu->arch.pv_eoi.msr_val = 0; 2239 apic_update_ppr(apic); 2240 if (vcpu->arch.apicv_active) { 2241 kvm_x86_ops->apicv_post_state_restore(vcpu); 2242 kvm_x86_ops->hwapic_irr_update(vcpu, -1); 2243 kvm_x86_ops->hwapic_isr_update(vcpu, -1); 2244 } 2245 2246 vcpu->arch.apic_arb_prio = 0; 2247 vcpu->arch.apic_attention = 0; 2248 } 2249 2250 /* 2251 *---------------------------------------------------------------------- 2252 * timer interface 2253 *---------------------------------------------------------------------- 2254 */ 2255 2256 static bool lapic_is_periodic(struct kvm_lapic *apic) 2257 { 2258 return apic_lvtt_period(apic); 2259 } 2260 2261 int apic_has_pending_timer(struct kvm_vcpu *vcpu) 2262 { 2263 struct kvm_lapic *apic = vcpu->arch.apic; 2264 2265 if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT)) 2266 return atomic_read(&apic->lapic_timer.pending); 2267 2268 return 0; 2269 } 2270 2271 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type) 2272 { 2273 u32 reg = kvm_lapic_get_reg(apic, lvt_type); 2274 int vector, mode, trig_mode; 2275 2276 if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) { 2277 vector = reg & APIC_VECTOR_MASK; 2278 mode = reg & APIC_MODE_MASK; 2279 trig_mode = reg & APIC_LVT_LEVEL_TRIGGER; 2280 return __apic_accept_irq(apic, mode, vector, 1, trig_mode, 2281 NULL); 2282 } 2283 return 0; 2284 } 2285 2286 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu) 2287 { 2288 struct kvm_lapic *apic = vcpu->arch.apic; 2289 2290 if (apic) 2291 kvm_apic_local_deliver(apic, APIC_LVT0); 2292 } 2293 2294 static const struct kvm_io_device_ops apic_mmio_ops = { 2295 .read = apic_mmio_read, 2296 .write = apic_mmio_write, 2297 }; 2298 2299 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data) 2300 { 2301 struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer); 2302 struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer); 2303 2304 apic_timer_expired(apic); 2305 2306 if (lapic_is_periodic(apic)) { 2307 advance_periodic_target_expiration(apic); 2308 hrtimer_add_expires_ns(&ktimer->timer, ktimer->period); 2309 return HRTIMER_RESTART; 2310 } else 2311 return HRTIMER_NORESTART; 2312 } 2313 2314 int kvm_create_lapic(struct kvm_vcpu *vcpu, int timer_advance_ns) 2315 { 2316 struct kvm_lapic *apic; 2317 2318 ASSERT(vcpu != NULL); 2319 2320 apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT); 2321 if (!apic) 2322 goto nomem; 2323 2324 vcpu->arch.apic = apic; 2325 2326 apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 2327 if (!apic->regs) { 2328 printk(KERN_ERR "malloc apic regs error for vcpu %x\n", 2329 vcpu->vcpu_id); 2330 goto nomem_free_apic; 2331 } 2332 apic->vcpu = vcpu; 2333 2334 hrtimer_init(&apic->lapic_timer.timer, CLOCK_MONOTONIC, 2335 HRTIMER_MODE_ABS_HARD); 2336 apic->lapic_timer.timer.function = apic_timer_fn; 2337 if (timer_advance_ns == -1) { 2338 apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; 2339 lapic_timer_advance_dynamic = true; 2340 } else { 2341 apic->lapic_timer.timer_advance_ns = timer_advance_ns; 2342 lapic_timer_advance_dynamic = false; 2343 } 2344 2345 /* 2346 * APIC is created enabled. This will prevent kvm_lapic_set_base from 2347 * thinking that APIC state has changed. 2348 */ 2349 vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE; 2350 static_key_slow_inc(&apic_sw_disabled.key); /* sw disabled at reset */ 2351 kvm_iodevice_init(&apic->dev, &apic_mmio_ops); 2352 2353 return 0; 2354 nomem_free_apic: 2355 kfree(apic); 2356 vcpu->arch.apic = NULL; 2357 nomem: 2358 return -ENOMEM; 2359 } 2360 2361 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu) 2362 { 2363 struct kvm_lapic *apic = vcpu->arch.apic; 2364 u32 ppr; 2365 2366 if (!kvm_apic_hw_enabled(apic)) 2367 return -1; 2368 2369 __apic_update_ppr(apic, &ppr); 2370 return apic_has_interrupt_for_ppr(apic, ppr); 2371 } 2372 2373 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu) 2374 { 2375 u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0); 2376 int r = 0; 2377 2378 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 2379 r = 1; 2380 if ((lvt0 & APIC_LVT_MASKED) == 0 && 2381 GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT) 2382 r = 1; 2383 return r; 2384 } 2385 2386 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu) 2387 { 2388 struct kvm_lapic *apic = vcpu->arch.apic; 2389 2390 if (atomic_read(&apic->lapic_timer.pending) > 0) { 2391 kvm_apic_inject_pending_timer_irqs(apic); 2392 atomic_set(&apic->lapic_timer.pending, 0); 2393 } 2394 } 2395 2396 int kvm_get_apic_interrupt(struct kvm_vcpu *vcpu) 2397 { 2398 int vector = kvm_apic_has_interrupt(vcpu); 2399 struct kvm_lapic *apic = vcpu->arch.apic; 2400 u32 ppr; 2401 2402 if (vector == -1) 2403 return -1; 2404 2405 /* 2406 * We get here even with APIC virtualization enabled, if doing 2407 * nested virtualization and L1 runs with the "acknowledge interrupt 2408 * on exit" mode. Then we cannot inject the interrupt via RVI, 2409 * because the process would deliver it through the IDT. 2410 */ 2411 2412 apic_clear_irr(vector, apic); 2413 if (test_bit(vector, vcpu_to_synic(vcpu)->auto_eoi_bitmap)) { 2414 /* 2415 * For auto-EOI interrupts, there might be another pending 2416 * interrupt above PPR, so check whether to raise another 2417 * KVM_REQ_EVENT. 2418 */ 2419 apic_update_ppr(apic); 2420 } else { 2421 /* 2422 * For normal interrupts, PPR has been raised and there cannot 2423 * be a higher-priority pending interrupt---except if there was 2424 * a concurrent interrupt injection, but that would have 2425 * triggered KVM_REQ_EVENT already. 2426 */ 2427 apic_set_isr(vector, apic); 2428 __apic_update_ppr(apic, &ppr); 2429 } 2430 2431 return vector; 2432 } 2433 2434 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu, 2435 struct kvm_lapic_state *s, bool set) 2436 { 2437 if (apic_x2apic_mode(vcpu->arch.apic)) { 2438 u32 *id = (u32 *)(s->regs + APIC_ID); 2439 u32 *ldr = (u32 *)(s->regs + APIC_LDR); 2440 2441 if (vcpu->kvm->arch.x2apic_format) { 2442 if (*id != vcpu->vcpu_id) 2443 return -EINVAL; 2444 } else { 2445 if (set) 2446 *id >>= 24; 2447 else 2448 *id <<= 24; 2449 } 2450 2451 /* In x2APIC mode, the LDR is fixed and based on the id */ 2452 if (set) 2453 *ldr = kvm_apic_calc_x2apic_ldr(*id); 2454 } 2455 2456 return 0; 2457 } 2458 2459 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 2460 { 2461 memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s)); 2462 return kvm_apic_state_fixup(vcpu, s, false); 2463 } 2464 2465 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 2466 { 2467 struct kvm_lapic *apic = vcpu->arch.apic; 2468 int r; 2469 2470 2471 kvm_lapic_set_base(vcpu, vcpu->arch.apic_base); 2472 /* set SPIV separately to get count of SW disabled APICs right */ 2473 apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV))); 2474 2475 r = kvm_apic_state_fixup(vcpu, s, true); 2476 if (r) 2477 return r; 2478 memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s)); 2479 2480 recalculate_apic_map(vcpu->kvm); 2481 kvm_apic_set_version(vcpu); 2482 2483 apic_update_ppr(apic); 2484 hrtimer_cancel(&apic->lapic_timer.timer); 2485 apic_update_lvtt(apic); 2486 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 2487 update_divide_count(apic); 2488 start_apic_timer(apic); 2489 apic->irr_pending = true; 2490 apic->isr_count = vcpu->arch.apicv_active ? 2491 1 : count_vectors(apic->regs + APIC_ISR); 2492 apic->highest_isr_cache = -1; 2493 if (vcpu->arch.apicv_active) { 2494 kvm_x86_ops->apicv_post_state_restore(vcpu); 2495 kvm_x86_ops->hwapic_irr_update(vcpu, 2496 apic_find_highest_irr(apic)); 2497 kvm_x86_ops->hwapic_isr_update(vcpu, 2498 apic_find_highest_isr(apic)); 2499 } 2500 kvm_make_request(KVM_REQ_EVENT, vcpu); 2501 if (ioapic_in_kernel(vcpu->kvm)) 2502 kvm_rtc_eoi_tracking_restore_one(vcpu); 2503 2504 vcpu->arch.apic_arb_prio = 0; 2505 2506 return 0; 2507 } 2508 2509 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu) 2510 { 2511 struct hrtimer *timer; 2512 2513 if (!lapic_in_kernel(vcpu) || 2514 kvm_can_post_timer_interrupt(vcpu)) 2515 return; 2516 2517 timer = &vcpu->arch.apic->lapic_timer.timer; 2518 if (hrtimer_cancel(timer)) 2519 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD); 2520 } 2521 2522 /* 2523 * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt 2524 * 2525 * Detect whether guest triggered PV EOI since the 2526 * last entry. If yes, set EOI on guests's behalf. 2527 * Clear PV EOI in guest memory in any case. 2528 */ 2529 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu, 2530 struct kvm_lapic *apic) 2531 { 2532 bool pending; 2533 int vector; 2534 /* 2535 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host 2536 * and KVM_PV_EOI_ENABLED in guest memory as follows: 2537 * 2538 * KVM_APIC_PV_EOI_PENDING is unset: 2539 * -> host disabled PV EOI. 2540 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set: 2541 * -> host enabled PV EOI, guest did not execute EOI yet. 2542 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset: 2543 * -> host enabled PV EOI, guest executed EOI. 2544 */ 2545 BUG_ON(!pv_eoi_enabled(vcpu)); 2546 pending = pv_eoi_get_pending(vcpu); 2547 /* 2548 * Clear pending bit in any case: it will be set again on vmentry. 2549 * While this might not be ideal from performance point of view, 2550 * this makes sure pv eoi is only enabled when we know it's safe. 2551 */ 2552 pv_eoi_clr_pending(vcpu); 2553 if (pending) 2554 return; 2555 vector = apic_set_eoi(apic); 2556 trace_kvm_pv_eoi(apic, vector); 2557 } 2558 2559 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu) 2560 { 2561 u32 data; 2562 2563 if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention)) 2564 apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic); 2565 2566 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 2567 return; 2568 2569 if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 2570 sizeof(u32))) 2571 return; 2572 2573 apic_set_tpr(vcpu->arch.apic, data & 0xff); 2574 } 2575 2576 /* 2577 * apic_sync_pv_eoi_to_guest - called before vmentry 2578 * 2579 * Detect whether it's safe to enable PV EOI and 2580 * if yes do so. 2581 */ 2582 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu, 2583 struct kvm_lapic *apic) 2584 { 2585 if (!pv_eoi_enabled(vcpu) || 2586 /* IRR set or many bits in ISR: could be nested. */ 2587 apic->irr_pending || 2588 /* Cache not set: could be safe but we don't bother. */ 2589 apic->highest_isr_cache == -1 || 2590 /* Need EOI to update ioapic. */ 2591 kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) { 2592 /* 2593 * PV EOI was disabled by apic_sync_pv_eoi_from_guest 2594 * so we need not do anything here. 2595 */ 2596 return; 2597 } 2598 2599 pv_eoi_set_pending(apic->vcpu); 2600 } 2601 2602 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu) 2603 { 2604 u32 data, tpr; 2605 int max_irr, max_isr; 2606 struct kvm_lapic *apic = vcpu->arch.apic; 2607 2608 apic_sync_pv_eoi_to_guest(vcpu, apic); 2609 2610 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 2611 return; 2612 2613 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff; 2614 max_irr = apic_find_highest_irr(apic); 2615 if (max_irr < 0) 2616 max_irr = 0; 2617 max_isr = apic_find_highest_isr(apic); 2618 if (max_isr < 0) 2619 max_isr = 0; 2620 data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24); 2621 2622 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 2623 sizeof(u32)); 2624 } 2625 2626 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr) 2627 { 2628 if (vapic_addr) { 2629 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, 2630 &vcpu->arch.apic->vapic_cache, 2631 vapic_addr, sizeof(u32))) 2632 return -EINVAL; 2633 __set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 2634 } else { 2635 __clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 2636 } 2637 2638 vcpu->arch.apic->vapic_addr = vapic_addr; 2639 return 0; 2640 } 2641 2642 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data) 2643 { 2644 struct kvm_lapic *apic = vcpu->arch.apic; 2645 u32 reg = (msr - APIC_BASE_MSR) << 4; 2646 2647 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 2648 return 1; 2649 2650 if (reg == APIC_ICR2) 2651 return 1; 2652 2653 /* if this is ICR write vector before command */ 2654 if (reg == APIC_ICR) 2655 kvm_lapic_reg_write(apic, APIC_ICR2, (u32)(data >> 32)); 2656 return kvm_lapic_reg_write(apic, reg, (u32)data); 2657 } 2658 2659 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data) 2660 { 2661 struct kvm_lapic *apic = vcpu->arch.apic; 2662 u32 reg = (msr - APIC_BASE_MSR) << 4, low, high = 0; 2663 2664 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 2665 return 1; 2666 2667 if (reg == APIC_DFR || reg == APIC_ICR2) 2668 return 1; 2669 2670 if (kvm_lapic_reg_read(apic, reg, 4, &low)) 2671 return 1; 2672 if (reg == APIC_ICR) 2673 kvm_lapic_reg_read(apic, APIC_ICR2, 4, &high); 2674 2675 *data = (((u64)high) << 32) | low; 2676 2677 return 0; 2678 } 2679 2680 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data) 2681 { 2682 struct kvm_lapic *apic = vcpu->arch.apic; 2683 2684 if (!lapic_in_kernel(vcpu)) 2685 return 1; 2686 2687 /* if this is ICR write vector before command */ 2688 if (reg == APIC_ICR) 2689 kvm_lapic_reg_write(apic, APIC_ICR2, (u32)(data >> 32)); 2690 return kvm_lapic_reg_write(apic, reg, (u32)data); 2691 } 2692 2693 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data) 2694 { 2695 struct kvm_lapic *apic = vcpu->arch.apic; 2696 u32 low, high = 0; 2697 2698 if (!lapic_in_kernel(vcpu)) 2699 return 1; 2700 2701 if (kvm_lapic_reg_read(apic, reg, 4, &low)) 2702 return 1; 2703 if (reg == APIC_ICR) 2704 kvm_lapic_reg_read(apic, APIC_ICR2, 4, &high); 2705 2706 *data = (((u64)high) << 32) | low; 2707 2708 return 0; 2709 } 2710 2711 int kvm_lapic_enable_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len) 2712 { 2713 u64 addr = data & ~KVM_MSR_ENABLED; 2714 struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data; 2715 unsigned long new_len; 2716 2717 if (!IS_ALIGNED(addr, 4)) 2718 return 1; 2719 2720 vcpu->arch.pv_eoi.msr_val = data; 2721 if (!pv_eoi_enabled(vcpu)) 2722 return 0; 2723 2724 if (addr == ghc->gpa && len <= ghc->len) 2725 new_len = ghc->len; 2726 else 2727 new_len = len; 2728 2729 return kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len); 2730 } 2731 2732 void kvm_apic_accept_events(struct kvm_vcpu *vcpu) 2733 { 2734 struct kvm_lapic *apic = vcpu->arch.apic; 2735 u8 sipi_vector; 2736 unsigned long pe; 2737 2738 if (!lapic_in_kernel(vcpu) || !apic->pending_events) 2739 return; 2740 2741 /* 2742 * INITs are latched while CPU is in specific states 2743 * (SMM, VMX non-root mode, SVM with GIF=0). 2744 * Because a CPU cannot be in these states immediately 2745 * after it has processed an INIT signal (and thus in 2746 * KVM_MP_STATE_INIT_RECEIVED state), just eat SIPIs 2747 * and leave the INIT pending. 2748 */ 2749 if (kvm_vcpu_latch_init(vcpu)) { 2750 WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED); 2751 if (test_bit(KVM_APIC_SIPI, &apic->pending_events)) 2752 clear_bit(KVM_APIC_SIPI, &apic->pending_events); 2753 return; 2754 } 2755 2756 pe = xchg(&apic->pending_events, 0); 2757 if (test_bit(KVM_APIC_INIT, &pe)) { 2758 kvm_vcpu_reset(vcpu, true); 2759 if (kvm_vcpu_is_bsp(apic->vcpu)) 2760 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 2761 else 2762 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 2763 } 2764 if (test_bit(KVM_APIC_SIPI, &pe) && 2765 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 2766 /* evaluate pending_events before reading the vector */ 2767 smp_rmb(); 2768 sipi_vector = apic->sipi_vector; 2769 kvm_vcpu_deliver_sipi_vector(vcpu, sipi_vector); 2770 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 2771 } 2772 } 2773 2774 void kvm_lapic_init(void) 2775 { 2776 /* do not patch jump label more than once per second */ 2777 jump_label_rate_limit(&apic_hw_disabled, HZ); 2778 jump_label_rate_limit(&apic_sw_disabled, HZ); 2779 } 2780 2781 void kvm_lapic_exit(void) 2782 { 2783 static_key_deferred_flush(&apic_hw_disabled); 2784 static_key_deferred_flush(&apic_sw_disabled); 2785 } 2786