xref: /linux/arch/x86/kvm/lapic.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 
3 /*
4  * Local APIC virtualization
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2007 Novell
8  * Copyright (C) 2007 Intel
9  * Copyright 2009 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Dor Laor <dor.laor@qumranet.com>
13  *   Gregory Haskins <ghaskins@novell.com>
14  *   Yaozu (Eddie) Dong <eddie.dong@intel.com>
15  *
16  * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation.
17  */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/smp.h>
25 #include <linux/hrtimer.h>
26 #include <linux/io.h>
27 #include <linux/export.h>
28 #include <linux/math64.h>
29 #include <linux/slab.h>
30 #include <asm/processor.h>
31 #include <asm/mce.h>
32 #include <asm/msr.h>
33 #include <asm/page.h>
34 #include <asm/current.h>
35 #include <asm/apicdef.h>
36 #include <asm/delay.h>
37 #include <linux/atomic.h>
38 #include <linux/jump_label.h>
39 #include "kvm_cache_regs.h"
40 #include "irq.h"
41 #include "ioapic.h"
42 #include "trace.h"
43 #include "x86.h"
44 #include "xen.h"
45 #include "cpuid.h"
46 #include "hyperv.h"
47 #include "smm.h"
48 
49 #ifndef CONFIG_X86_64
50 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
51 #else
52 #define mod_64(x, y) ((x) % (y))
53 #endif
54 
55 /* 14 is the version for Xeon and Pentium 8.4.8*/
56 #define APIC_VERSION			0x14UL
57 #define LAPIC_MMIO_LENGTH		(1 << 12)
58 /* followed define is not in apicdef.h */
59 #define MAX_APIC_VECTOR			256
60 #define APIC_VECTORS_PER_REG		32
61 
62 /*
63  * Enable local APIC timer advancement (tscdeadline mode only) with adaptive
64  * tuning.  When enabled, KVM programs the host timer event to fire early, i.e.
65  * before the deadline expires, to account for the delay between taking the
66  * VM-Exit (to inject the guest event) and the subsequent VM-Enter to resume
67  * the guest, i.e. so that the interrupt arrives in the guest with minimal
68  * latency relative to the deadline programmed by the guest.
69  */
70 static bool lapic_timer_advance __read_mostly = true;
71 module_param(lapic_timer_advance, bool, 0444);
72 
73 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN	100	/* clock cycles */
74 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX	10000	/* clock cycles */
75 #define LAPIC_TIMER_ADVANCE_NS_INIT	1000
76 #define LAPIC_TIMER_ADVANCE_NS_MAX     5000
77 /* step-by-step approximation to mitigate fluctuation */
78 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8
79 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data);
80 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data);
81 
82 static inline void __kvm_lapic_set_reg(char *regs, int reg_off, u32 val)
83 {
84 	*((u32 *) (regs + reg_off)) = val;
85 }
86 
87 static inline void kvm_lapic_set_reg(struct kvm_lapic *apic, int reg_off, u32 val)
88 {
89 	__kvm_lapic_set_reg(apic->regs, reg_off, val);
90 }
91 
92 static __always_inline u64 __kvm_lapic_get_reg64(char *regs, int reg)
93 {
94 	BUILD_BUG_ON(reg != APIC_ICR);
95 	return *((u64 *) (regs + reg));
96 }
97 
98 static __always_inline u64 kvm_lapic_get_reg64(struct kvm_lapic *apic, int reg)
99 {
100 	return __kvm_lapic_get_reg64(apic->regs, reg);
101 }
102 
103 static __always_inline void __kvm_lapic_set_reg64(char *regs, int reg, u64 val)
104 {
105 	BUILD_BUG_ON(reg != APIC_ICR);
106 	*((u64 *) (regs + reg)) = val;
107 }
108 
109 static __always_inline void kvm_lapic_set_reg64(struct kvm_lapic *apic,
110 						int reg, u64 val)
111 {
112 	__kvm_lapic_set_reg64(apic->regs, reg, val);
113 }
114 
115 static inline int apic_test_vector(int vec, void *bitmap)
116 {
117 	return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
118 }
119 
120 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector)
121 {
122 	struct kvm_lapic *apic = vcpu->arch.apic;
123 
124 	return apic_test_vector(vector, apic->regs + APIC_ISR) ||
125 		apic_test_vector(vector, apic->regs + APIC_IRR);
126 }
127 
128 static inline int __apic_test_and_set_vector(int vec, void *bitmap)
129 {
130 	return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
131 }
132 
133 static inline int __apic_test_and_clear_vector(int vec, void *bitmap)
134 {
135 	return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
136 }
137 
138 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
139 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
140 
141 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_hw_disabled, HZ);
142 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_sw_disabled, HZ);
143 
144 static inline int apic_enabled(struct kvm_lapic *apic)
145 {
146 	return kvm_apic_sw_enabled(apic) &&	kvm_apic_hw_enabled(apic);
147 }
148 
149 #define LVT_MASK	\
150 	(APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK)
151 
152 #define LINT_MASK	\
153 	(LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \
154 	 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER)
155 
156 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic)
157 {
158 	return apic->vcpu->vcpu_id;
159 }
160 
161 static bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu)
162 {
163 	return pi_inject_timer && kvm_vcpu_apicv_active(vcpu) &&
164 		(kvm_mwait_in_guest(vcpu->kvm) || kvm_hlt_in_guest(vcpu->kvm));
165 }
166 
167 bool kvm_can_use_hv_timer(struct kvm_vcpu *vcpu)
168 {
169 	return kvm_x86_ops.set_hv_timer
170 	       && !(kvm_mwait_in_guest(vcpu->kvm) ||
171 		    kvm_can_post_timer_interrupt(vcpu));
172 }
173 
174 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu)
175 {
176 	return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE;
177 }
178 
179 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id)
180 {
181 	return ((id >> 4) << 16) | (1 << (id & 0xf));
182 }
183 
184 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map,
185 		u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) {
186 	switch (map->logical_mode) {
187 	case KVM_APIC_MODE_SW_DISABLED:
188 		/* Arbitrarily use the flat map so that @cluster isn't NULL. */
189 		*cluster = map->xapic_flat_map;
190 		*mask = 0;
191 		return true;
192 	case KVM_APIC_MODE_X2APIC: {
193 		u32 offset = (dest_id >> 16) * 16;
194 		u32 max_apic_id = map->max_apic_id;
195 
196 		if (offset <= max_apic_id) {
197 			u8 cluster_size = min(max_apic_id - offset + 1, 16U);
198 
199 			offset = array_index_nospec(offset, map->max_apic_id + 1);
200 			*cluster = &map->phys_map[offset];
201 			*mask = dest_id & (0xffff >> (16 - cluster_size));
202 		} else {
203 			*mask = 0;
204 		}
205 
206 		return true;
207 		}
208 	case KVM_APIC_MODE_XAPIC_FLAT:
209 		*cluster = map->xapic_flat_map;
210 		*mask = dest_id & 0xff;
211 		return true;
212 	case KVM_APIC_MODE_XAPIC_CLUSTER:
213 		*cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf];
214 		*mask = dest_id & 0xf;
215 		return true;
216 	case KVM_APIC_MODE_MAP_DISABLED:
217 		return false;
218 	default:
219 		WARN_ON_ONCE(1);
220 		return false;
221 	}
222 }
223 
224 static void kvm_apic_map_free(struct rcu_head *rcu)
225 {
226 	struct kvm_apic_map *map = container_of(rcu, struct kvm_apic_map, rcu);
227 
228 	kvfree(map);
229 }
230 
231 static int kvm_recalculate_phys_map(struct kvm_apic_map *new,
232 				    struct kvm_vcpu *vcpu,
233 				    bool *xapic_id_mismatch)
234 {
235 	struct kvm_lapic *apic = vcpu->arch.apic;
236 	u32 x2apic_id = kvm_x2apic_id(apic);
237 	u32 xapic_id = kvm_xapic_id(apic);
238 	u32 physical_id;
239 
240 	/*
241 	 * For simplicity, KVM always allocates enough space for all possible
242 	 * xAPIC IDs.  Yell, but don't kill the VM, as KVM can continue on
243 	 * without the optimized map.
244 	 */
245 	if (WARN_ON_ONCE(xapic_id > new->max_apic_id))
246 		return -EINVAL;
247 
248 	/*
249 	 * Bail if a vCPU was added and/or enabled its APIC between allocating
250 	 * the map and doing the actual calculations for the map.  Note, KVM
251 	 * hardcodes the x2APIC ID to vcpu_id, i.e. there's no TOCTOU bug if
252 	 * the compiler decides to reload x2apic_id after this check.
253 	 */
254 	if (x2apic_id > new->max_apic_id)
255 		return -E2BIG;
256 
257 	/*
258 	 * Deliberately truncate the vCPU ID when detecting a mismatched APIC
259 	 * ID to avoid false positives if the vCPU ID, i.e. x2APIC ID, is a
260 	 * 32-bit value.  Any unwanted aliasing due to truncation results will
261 	 * be detected below.
262 	 */
263 	if (!apic_x2apic_mode(apic) && xapic_id != (u8)vcpu->vcpu_id)
264 		*xapic_id_mismatch = true;
265 
266 	/*
267 	 * Apply KVM's hotplug hack if userspace has enable 32-bit APIC IDs.
268 	 * Allow sending events to vCPUs by their x2APIC ID even if the target
269 	 * vCPU is in legacy xAPIC mode, and silently ignore aliased xAPIC IDs
270 	 * (the x2APIC ID is truncated to 8 bits, causing IDs > 0xff to wrap
271 	 * and collide).
272 	 *
273 	 * Honor the architectural (and KVM's non-optimized) behavior if
274 	 * userspace has not enabled 32-bit x2APIC IDs.  Each APIC is supposed
275 	 * to process messages independently.  If multiple vCPUs have the same
276 	 * effective APIC ID, e.g. due to the x2APIC wrap or because the guest
277 	 * manually modified its xAPIC IDs, events targeting that ID are
278 	 * supposed to be recognized by all vCPUs with said ID.
279 	 */
280 	if (vcpu->kvm->arch.x2apic_format) {
281 		/* See also kvm_apic_match_physical_addr(). */
282 		if (apic_x2apic_mode(apic) || x2apic_id > 0xff)
283 			new->phys_map[x2apic_id] = apic;
284 
285 		if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id])
286 			new->phys_map[xapic_id] = apic;
287 	} else {
288 		/*
289 		 * Disable the optimized map if the physical APIC ID is already
290 		 * mapped, i.e. is aliased to multiple vCPUs.  The optimized
291 		 * map requires a strict 1:1 mapping between IDs and vCPUs.
292 		 */
293 		if (apic_x2apic_mode(apic))
294 			physical_id = x2apic_id;
295 		else
296 			physical_id = xapic_id;
297 
298 		if (new->phys_map[physical_id])
299 			return -EINVAL;
300 
301 		new->phys_map[physical_id] = apic;
302 	}
303 
304 	return 0;
305 }
306 
307 static void kvm_recalculate_logical_map(struct kvm_apic_map *new,
308 					struct kvm_vcpu *vcpu)
309 {
310 	struct kvm_lapic *apic = vcpu->arch.apic;
311 	enum kvm_apic_logical_mode logical_mode;
312 	struct kvm_lapic **cluster;
313 	u16 mask;
314 	u32 ldr;
315 
316 	if (new->logical_mode == KVM_APIC_MODE_MAP_DISABLED)
317 		return;
318 
319 	if (!kvm_apic_sw_enabled(apic))
320 		return;
321 
322 	ldr = kvm_lapic_get_reg(apic, APIC_LDR);
323 	if (!ldr)
324 		return;
325 
326 	if (apic_x2apic_mode(apic)) {
327 		logical_mode = KVM_APIC_MODE_X2APIC;
328 	} else {
329 		ldr = GET_APIC_LOGICAL_ID(ldr);
330 		if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT)
331 			logical_mode = KVM_APIC_MODE_XAPIC_FLAT;
332 		else
333 			logical_mode = KVM_APIC_MODE_XAPIC_CLUSTER;
334 	}
335 
336 	/*
337 	 * To optimize logical mode delivery, all software-enabled APICs must
338 	 * be configured for the same mode.
339 	 */
340 	if (new->logical_mode == KVM_APIC_MODE_SW_DISABLED) {
341 		new->logical_mode = logical_mode;
342 	} else if (new->logical_mode != logical_mode) {
343 		new->logical_mode = KVM_APIC_MODE_MAP_DISABLED;
344 		return;
345 	}
346 
347 	/*
348 	 * In x2APIC mode, the LDR is read-only and derived directly from the
349 	 * x2APIC ID, thus is guaranteed to be addressable.  KVM reuses
350 	 * kvm_apic_map.phys_map to optimize logical mode x2APIC interrupts by
351 	 * reversing the LDR calculation to get cluster of APICs, i.e. no
352 	 * additional work is required.
353 	 */
354 	if (apic_x2apic_mode(apic))
355 		return;
356 
357 	if (WARN_ON_ONCE(!kvm_apic_map_get_logical_dest(new, ldr,
358 							&cluster, &mask))) {
359 		new->logical_mode = KVM_APIC_MODE_MAP_DISABLED;
360 		return;
361 	}
362 
363 	if (!mask)
364 		return;
365 
366 	ldr = ffs(mask) - 1;
367 	if (!is_power_of_2(mask) || cluster[ldr])
368 		new->logical_mode = KVM_APIC_MODE_MAP_DISABLED;
369 	else
370 		cluster[ldr] = apic;
371 }
372 
373 /*
374  * CLEAN -> DIRTY and UPDATE_IN_PROGRESS -> DIRTY changes happen without a lock.
375  *
376  * DIRTY -> UPDATE_IN_PROGRESS and UPDATE_IN_PROGRESS -> CLEAN happen with
377  * apic_map_lock_held.
378  */
379 enum {
380 	CLEAN,
381 	UPDATE_IN_PROGRESS,
382 	DIRTY
383 };
384 
385 void kvm_recalculate_apic_map(struct kvm *kvm)
386 {
387 	struct kvm_apic_map *new, *old = NULL;
388 	struct kvm_vcpu *vcpu;
389 	unsigned long i;
390 	u32 max_id = 255; /* enough space for any xAPIC ID */
391 	bool xapic_id_mismatch;
392 	int r;
393 
394 	/* Read kvm->arch.apic_map_dirty before kvm->arch.apic_map.  */
395 	if (atomic_read_acquire(&kvm->arch.apic_map_dirty) == CLEAN)
396 		return;
397 
398 	WARN_ONCE(!irqchip_in_kernel(kvm),
399 		  "Dirty APIC map without an in-kernel local APIC");
400 
401 	mutex_lock(&kvm->arch.apic_map_lock);
402 
403 retry:
404 	/*
405 	 * Read kvm->arch.apic_map_dirty before kvm->arch.apic_map (if clean)
406 	 * or the APIC registers (if dirty).  Note, on retry the map may have
407 	 * not yet been marked dirty by whatever task changed a vCPU's x2APIC
408 	 * ID, i.e. the map may still show up as in-progress.  In that case
409 	 * this task still needs to retry and complete its calculation.
410 	 */
411 	if (atomic_cmpxchg_acquire(&kvm->arch.apic_map_dirty,
412 				   DIRTY, UPDATE_IN_PROGRESS) == CLEAN) {
413 		/* Someone else has updated the map. */
414 		mutex_unlock(&kvm->arch.apic_map_lock);
415 		return;
416 	}
417 
418 	/*
419 	 * Reset the mismatch flag between attempts so that KVM does the right
420 	 * thing if a vCPU changes its xAPIC ID, but do NOT reset max_id, i.e.
421 	 * keep max_id strictly increasing.  Disallowing max_id from shrinking
422 	 * ensures KVM won't get stuck in an infinite loop, e.g. if the vCPU
423 	 * with the highest x2APIC ID is toggling its APIC on and off.
424 	 */
425 	xapic_id_mismatch = false;
426 
427 	kvm_for_each_vcpu(i, vcpu, kvm)
428 		if (kvm_apic_present(vcpu))
429 			max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic));
430 
431 	new = kvzalloc(sizeof(struct kvm_apic_map) +
432 	                   sizeof(struct kvm_lapic *) * ((u64)max_id + 1),
433 			   GFP_KERNEL_ACCOUNT);
434 
435 	if (!new)
436 		goto out;
437 
438 	new->max_apic_id = max_id;
439 	new->logical_mode = KVM_APIC_MODE_SW_DISABLED;
440 
441 	kvm_for_each_vcpu(i, vcpu, kvm) {
442 		if (!kvm_apic_present(vcpu))
443 			continue;
444 
445 		r = kvm_recalculate_phys_map(new, vcpu, &xapic_id_mismatch);
446 		if (r) {
447 			kvfree(new);
448 			new = NULL;
449 			if (r == -E2BIG) {
450 				cond_resched();
451 				goto retry;
452 			}
453 
454 			goto out;
455 		}
456 
457 		kvm_recalculate_logical_map(new, vcpu);
458 	}
459 out:
460 	/*
461 	 * The optimized map is effectively KVM's internal version of APICv,
462 	 * and all unwanted aliasing that results in disabling the optimized
463 	 * map also applies to APICv.
464 	 */
465 	if (!new)
466 		kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED);
467 	else
468 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED);
469 
470 	if (!new || new->logical_mode == KVM_APIC_MODE_MAP_DISABLED)
471 		kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED);
472 	else
473 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED);
474 
475 	if (xapic_id_mismatch)
476 		kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED);
477 	else
478 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED);
479 
480 	old = rcu_dereference_protected(kvm->arch.apic_map,
481 			lockdep_is_held(&kvm->arch.apic_map_lock));
482 	rcu_assign_pointer(kvm->arch.apic_map, new);
483 	/*
484 	 * Write kvm->arch.apic_map before clearing apic->apic_map_dirty.
485 	 * If another update has come in, leave it DIRTY.
486 	 */
487 	atomic_cmpxchg_release(&kvm->arch.apic_map_dirty,
488 			       UPDATE_IN_PROGRESS, CLEAN);
489 	mutex_unlock(&kvm->arch.apic_map_lock);
490 
491 	if (old)
492 		call_rcu(&old->rcu, kvm_apic_map_free);
493 
494 	kvm_make_scan_ioapic_request(kvm);
495 }
496 
497 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val)
498 {
499 	bool enabled = val & APIC_SPIV_APIC_ENABLED;
500 
501 	kvm_lapic_set_reg(apic, APIC_SPIV, val);
502 
503 	if (enabled != apic->sw_enabled) {
504 		apic->sw_enabled = enabled;
505 		if (enabled)
506 			static_branch_slow_dec_deferred(&apic_sw_disabled);
507 		else
508 			static_branch_inc(&apic_sw_disabled.key);
509 
510 		atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
511 	}
512 
513 	/* Check if there are APF page ready requests pending */
514 	if (enabled) {
515 		kvm_make_request(KVM_REQ_APF_READY, apic->vcpu);
516 		kvm_xen_sw_enable_lapic(apic->vcpu);
517 	}
518 }
519 
520 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id)
521 {
522 	kvm_lapic_set_reg(apic, APIC_ID, id << 24);
523 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
524 }
525 
526 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id)
527 {
528 	kvm_lapic_set_reg(apic, APIC_LDR, id);
529 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
530 }
531 
532 static inline void kvm_apic_set_dfr(struct kvm_lapic *apic, u32 val)
533 {
534 	kvm_lapic_set_reg(apic, APIC_DFR, val);
535 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
536 }
537 
538 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id)
539 {
540 	u32 ldr = kvm_apic_calc_x2apic_ldr(id);
541 
542 	WARN_ON_ONCE(id != apic->vcpu->vcpu_id);
543 
544 	kvm_lapic_set_reg(apic, APIC_ID, id);
545 	kvm_lapic_set_reg(apic, APIC_LDR, ldr);
546 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
547 }
548 
549 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type)
550 {
551 	return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED);
552 }
553 
554 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic)
555 {
556 	return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT;
557 }
558 
559 static inline int apic_lvtt_period(struct kvm_lapic *apic)
560 {
561 	return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC;
562 }
563 
564 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic)
565 {
566 	return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE;
567 }
568 
569 static inline int apic_lvt_nmi_mode(u32 lvt_val)
570 {
571 	return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI;
572 }
573 
574 static inline bool kvm_lapic_lvt_supported(struct kvm_lapic *apic, int lvt_index)
575 {
576 	return apic->nr_lvt_entries > lvt_index;
577 }
578 
579 static inline int kvm_apic_calc_nr_lvt_entries(struct kvm_vcpu *vcpu)
580 {
581 	return KVM_APIC_MAX_NR_LVT_ENTRIES - !(vcpu->arch.mcg_cap & MCG_CMCI_P);
582 }
583 
584 void kvm_apic_set_version(struct kvm_vcpu *vcpu)
585 {
586 	struct kvm_lapic *apic = vcpu->arch.apic;
587 	u32 v = 0;
588 
589 	if (!lapic_in_kernel(vcpu))
590 		return;
591 
592 	v = APIC_VERSION | ((apic->nr_lvt_entries - 1) << 16);
593 
594 	/*
595 	 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation)
596 	 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with
597 	 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC
598 	 * version first and level-triggered interrupts never get EOIed in
599 	 * IOAPIC.
600 	 */
601 	if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) &&
602 	    !ioapic_in_kernel(vcpu->kvm))
603 		v |= APIC_LVR_DIRECTED_EOI;
604 	kvm_lapic_set_reg(apic, APIC_LVR, v);
605 }
606 
607 void kvm_apic_after_set_mcg_cap(struct kvm_vcpu *vcpu)
608 {
609 	int nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu);
610 	struct kvm_lapic *apic = vcpu->arch.apic;
611 	int i;
612 
613 	if (!lapic_in_kernel(vcpu) || nr_lvt_entries == apic->nr_lvt_entries)
614 		return;
615 
616 	/* Initialize/mask any "new" LVT entries. */
617 	for (i = apic->nr_lvt_entries; i < nr_lvt_entries; i++)
618 		kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED);
619 
620 	apic->nr_lvt_entries = nr_lvt_entries;
621 
622 	/* The number of LVT entries is reflected in the version register. */
623 	kvm_apic_set_version(vcpu);
624 }
625 
626 static const unsigned int apic_lvt_mask[KVM_APIC_MAX_NR_LVT_ENTRIES] = {
627 	[LVT_TIMER] = LVT_MASK,      /* timer mode mask added at runtime */
628 	[LVT_THERMAL_MONITOR] = LVT_MASK | APIC_MODE_MASK,
629 	[LVT_PERFORMANCE_COUNTER] = LVT_MASK | APIC_MODE_MASK,
630 	[LVT_LINT0] = LINT_MASK,
631 	[LVT_LINT1] = LINT_MASK,
632 	[LVT_ERROR] = LVT_MASK,
633 	[LVT_CMCI] = LVT_MASK | APIC_MODE_MASK
634 };
635 
636 static int find_highest_vector(void *bitmap)
637 {
638 	int vec;
639 	u32 *reg;
640 
641 	for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG;
642 	     vec >= 0; vec -= APIC_VECTORS_PER_REG) {
643 		reg = bitmap + REG_POS(vec);
644 		if (*reg)
645 			return __fls(*reg) + vec;
646 	}
647 
648 	return -1;
649 }
650 
651 static u8 count_vectors(void *bitmap)
652 {
653 	int vec;
654 	u32 *reg;
655 	u8 count = 0;
656 
657 	for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) {
658 		reg = bitmap + REG_POS(vec);
659 		count += hweight32(*reg);
660 	}
661 
662 	return count;
663 }
664 
665 bool __kvm_apic_update_irr(u32 *pir, void *regs, int *max_irr)
666 {
667 	u32 i, vec;
668 	u32 pir_val, irr_val, prev_irr_val;
669 	int max_updated_irr;
670 
671 	max_updated_irr = -1;
672 	*max_irr = -1;
673 
674 	for (i = vec = 0; i <= 7; i++, vec += 32) {
675 		u32 *p_irr = (u32 *)(regs + APIC_IRR + i * 0x10);
676 
677 		irr_val = *p_irr;
678 		pir_val = READ_ONCE(pir[i]);
679 
680 		if (pir_val) {
681 			pir_val = xchg(&pir[i], 0);
682 
683 			prev_irr_val = irr_val;
684 			do {
685 				irr_val = prev_irr_val | pir_val;
686 			} while (prev_irr_val != irr_val &&
687 				 !try_cmpxchg(p_irr, &prev_irr_val, irr_val));
688 
689 			if (prev_irr_val != irr_val)
690 				max_updated_irr = __fls(irr_val ^ prev_irr_val) + vec;
691 		}
692 		if (irr_val)
693 			*max_irr = __fls(irr_val) + vec;
694 	}
695 
696 	return ((max_updated_irr != -1) &&
697 		(max_updated_irr == *max_irr));
698 }
699 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr);
700 
701 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir, int *max_irr)
702 {
703 	struct kvm_lapic *apic = vcpu->arch.apic;
704 	bool irr_updated = __kvm_apic_update_irr(pir, apic->regs, max_irr);
705 
706 	if (unlikely(!apic->apicv_active && irr_updated))
707 		apic->irr_pending = true;
708 	return irr_updated;
709 }
710 EXPORT_SYMBOL_GPL(kvm_apic_update_irr);
711 
712 static inline int apic_search_irr(struct kvm_lapic *apic)
713 {
714 	return find_highest_vector(apic->regs + APIC_IRR);
715 }
716 
717 static inline int apic_find_highest_irr(struct kvm_lapic *apic)
718 {
719 	int result;
720 
721 	/*
722 	 * Note that irr_pending is just a hint. It will be always
723 	 * true with virtual interrupt delivery enabled.
724 	 */
725 	if (!apic->irr_pending)
726 		return -1;
727 
728 	result = apic_search_irr(apic);
729 	ASSERT(result == -1 || result >= 16);
730 
731 	return result;
732 }
733 
734 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic)
735 {
736 	if (unlikely(apic->apicv_active)) {
737 		/* need to update RVI */
738 		kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR);
739 		kvm_x86_call(hwapic_irr_update)(apic->vcpu,
740 						apic_find_highest_irr(apic));
741 	} else {
742 		apic->irr_pending = false;
743 		kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR);
744 		if (apic_search_irr(apic) != -1)
745 			apic->irr_pending = true;
746 	}
747 }
748 
749 void kvm_apic_clear_irr(struct kvm_vcpu *vcpu, int vec)
750 {
751 	apic_clear_irr(vec, vcpu->arch.apic);
752 }
753 EXPORT_SYMBOL_GPL(kvm_apic_clear_irr);
754 
755 static inline void apic_set_isr(int vec, struct kvm_lapic *apic)
756 {
757 	if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR))
758 		return;
759 
760 	/*
761 	 * With APIC virtualization enabled, all caching is disabled
762 	 * because the processor can modify ISR under the hood.  Instead
763 	 * just set SVI.
764 	 */
765 	if (unlikely(apic->apicv_active))
766 		kvm_x86_call(hwapic_isr_update)(vec);
767 	else {
768 		++apic->isr_count;
769 		BUG_ON(apic->isr_count > MAX_APIC_VECTOR);
770 		/*
771 		 * ISR (in service register) bit is set when injecting an interrupt.
772 		 * The highest vector is injected. Thus the latest bit set matches
773 		 * the highest bit in ISR.
774 		 */
775 		apic->highest_isr_cache = vec;
776 	}
777 }
778 
779 static inline int apic_find_highest_isr(struct kvm_lapic *apic)
780 {
781 	int result;
782 
783 	/*
784 	 * Note that isr_count is always 1, and highest_isr_cache
785 	 * is always -1, with APIC virtualization enabled.
786 	 */
787 	if (!apic->isr_count)
788 		return -1;
789 	if (likely(apic->highest_isr_cache != -1))
790 		return apic->highest_isr_cache;
791 
792 	result = find_highest_vector(apic->regs + APIC_ISR);
793 	ASSERT(result == -1 || result >= 16);
794 
795 	return result;
796 }
797 
798 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic)
799 {
800 	if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR))
801 		return;
802 
803 	/*
804 	 * We do get here for APIC virtualization enabled if the guest
805 	 * uses the Hyper-V APIC enlightenment.  In this case we may need
806 	 * to trigger a new interrupt delivery by writing the SVI field;
807 	 * on the other hand isr_count and highest_isr_cache are unused
808 	 * and must be left alone.
809 	 */
810 	if (unlikely(apic->apicv_active))
811 		kvm_x86_call(hwapic_isr_update)(apic_find_highest_isr(apic));
812 	else {
813 		--apic->isr_count;
814 		BUG_ON(apic->isr_count < 0);
815 		apic->highest_isr_cache = -1;
816 	}
817 }
818 
819 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu)
820 {
821 	/* This may race with setting of irr in __apic_accept_irq() and
822 	 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq
823 	 * will cause vmexit immediately and the value will be recalculated
824 	 * on the next vmentry.
825 	 */
826 	return apic_find_highest_irr(vcpu->arch.apic);
827 }
828 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr);
829 
830 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
831 			     int vector, int level, int trig_mode,
832 			     struct dest_map *dest_map);
833 
834 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq,
835 		     struct dest_map *dest_map)
836 {
837 	struct kvm_lapic *apic = vcpu->arch.apic;
838 
839 	return __apic_accept_irq(apic, irq->delivery_mode, irq->vector,
840 			irq->level, irq->trig_mode, dest_map);
841 }
842 
843 static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map,
844 			 struct kvm_lapic_irq *irq, u32 min)
845 {
846 	int i, count = 0;
847 	struct kvm_vcpu *vcpu;
848 
849 	if (min > map->max_apic_id)
850 		return 0;
851 
852 	for_each_set_bit(i, ipi_bitmap,
853 		min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) {
854 		if (map->phys_map[min + i]) {
855 			vcpu = map->phys_map[min + i]->vcpu;
856 			count += kvm_apic_set_irq(vcpu, irq, NULL);
857 		}
858 	}
859 
860 	return count;
861 }
862 
863 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
864 		    unsigned long ipi_bitmap_high, u32 min,
865 		    unsigned long icr, int op_64_bit)
866 {
867 	struct kvm_apic_map *map;
868 	struct kvm_lapic_irq irq = {0};
869 	int cluster_size = op_64_bit ? 64 : 32;
870 	int count;
871 
872 	if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK))
873 		return -KVM_EINVAL;
874 
875 	irq.vector = icr & APIC_VECTOR_MASK;
876 	irq.delivery_mode = icr & APIC_MODE_MASK;
877 	irq.level = (icr & APIC_INT_ASSERT) != 0;
878 	irq.trig_mode = icr & APIC_INT_LEVELTRIG;
879 
880 	rcu_read_lock();
881 	map = rcu_dereference(kvm->arch.apic_map);
882 
883 	count = -EOPNOTSUPP;
884 	if (likely(map)) {
885 		count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min);
886 		min += cluster_size;
887 		count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min);
888 	}
889 
890 	rcu_read_unlock();
891 	return count;
892 }
893 
894 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val)
895 {
896 
897 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val,
898 				      sizeof(val));
899 }
900 
901 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val)
902 {
903 
904 	return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val,
905 				      sizeof(*val));
906 }
907 
908 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu)
909 {
910 	return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
911 }
912 
913 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu)
914 {
915 	if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0)
916 		return;
917 
918 	__set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
919 }
920 
921 static bool pv_eoi_test_and_clr_pending(struct kvm_vcpu *vcpu)
922 {
923 	u8 val;
924 
925 	if (pv_eoi_get_user(vcpu, &val) < 0)
926 		return false;
927 
928 	val &= KVM_PV_EOI_ENABLED;
929 
930 	if (val && pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0)
931 		return false;
932 
933 	/*
934 	 * Clear pending bit in any case: it will be set again on vmentry.
935 	 * While this might not be ideal from performance point of view,
936 	 * this makes sure pv eoi is only enabled when we know it's safe.
937 	 */
938 	__clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
939 
940 	return val;
941 }
942 
943 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr)
944 {
945 	int highest_irr;
946 	if (kvm_x86_ops.sync_pir_to_irr)
947 		highest_irr = kvm_x86_call(sync_pir_to_irr)(apic->vcpu);
948 	else
949 		highest_irr = apic_find_highest_irr(apic);
950 	if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr)
951 		return -1;
952 	return highest_irr;
953 }
954 
955 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr)
956 {
957 	u32 tpr, isrv, ppr, old_ppr;
958 	int isr;
959 
960 	old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI);
961 	tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI);
962 	isr = apic_find_highest_isr(apic);
963 	isrv = (isr != -1) ? isr : 0;
964 
965 	if ((tpr & 0xf0) >= (isrv & 0xf0))
966 		ppr = tpr & 0xff;
967 	else
968 		ppr = isrv & 0xf0;
969 
970 	*new_ppr = ppr;
971 	if (old_ppr != ppr)
972 		kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr);
973 
974 	return ppr < old_ppr;
975 }
976 
977 static void apic_update_ppr(struct kvm_lapic *apic)
978 {
979 	u32 ppr;
980 
981 	if (__apic_update_ppr(apic, &ppr) &&
982 	    apic_has_interrupt_for_ppr(apic, ppr) != -1)
983 		kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
984 }
985 
986 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu)
987 {
988 	apic_update_ppr(vcpu->arch.apic);
989 }
990 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr);
991 
992 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr)
993 {
994 	kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr);
995 	apic_update_ppr(apic);
996 }
997 
998 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda)
999 {
1000 	return mda == (apic_x2apic_mode(apic) ?
1001 			X2APIC_BROADCAST : APIC_BROADCAST);
1002 }
1003 
1004 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda)
1005 {
1006 	if (kvm_apic_broadcast(apic, mda))
1007 		return true;
1008 
1009 	/*
1010 	 * Hotplug hack: Accept interrupts for vCPUs in xAPIC mode as if they
1011 	 * were in x2APIC mode if the target APIC ID can't be encoded as an
1012 	 * xAPIC ID.  This allows unique addressing of hotplugged vCPUs (which
1013 	 * start in xAPIC mode) with an APIC ID that is unaddressable in xAPIC
1014 	 * mode.  Match the x2APIC ID if and only if the target APIC ID can't
1015 	 * be encoded in xAPIC to avoid spurious matches against a vCPU that
1016 	 * changed its (addressable) xAPIC ID (which is writable).
1017 	 */
1018 	if (apic_x2apic_mode(apic) || mda > 0xff)
1019 		return mda == kvm_x2apic_id(apic);
1020 
1021 	return mda == kvm_xapic_id(apic);
1022 }
1023 
1024 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda)
1025 {
1026 	u32 logical_id;
1027 
1028 	if (kvm_apic_broadcast(apic, mda))
1029 		return true;
1030 
1031 	logical_id = kvm_lapic_get_reg(apic, APIC_LDR);
1032 
1033 	if (apic_x2apic_mode(apic))
1034 		return ((logical_id >> 16) == (mda >> 16))
1035 		       && (logical_id & mda & 0xffff) != 0;
1036 
1037 	logical_id = GET_APIC_LOGICAL_ID(logical_id);
1038 
1039 	switch (kvm_lapic_get_reg(apic, APIC_DFR)) {
1040 	case APIC_DFR_FLAT:
1041 		return (logical_id & mda) != 0;
1042 	case APIC_DFR_CLUSTER:
1043 		return ((logical_id >> 4) == (mda >> 4))
1044 		       && (logical_id & mda & 0xf) != 0;
1045 	default:
1046 		return false;
1047 	}
1048 }
1049 
1050 /* The KVM local APIC implementation has two quirks:
1051  *
1052  *  - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs
1053  *    in xAPIC mode if the "destination & 0xff" matches its xAPIC ID.
1054  *    KVM doesn't do that aliasing.
1055  *
1056  *  - in-kernel IOAPIC messages have to be delivered directly to
1057  *    x2APIC, because the kernel does not support interrupt remapping.
1058  *    In order to support broadcast without interrupt remapping, x2APIC
1059  *    rewrites the destination of non-IPI messages from APIC_BROADCAST
1060  *    to X2APIC_BROADCAST.
1061  *
1062  * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API.  This is
1063  * important when userspace wants to use x2APIC-format MSIs, because
1064  * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7".
1065  */
1066 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id,
1067 		struct kvm_lapic *source, struct kvm_lapic *target)
1068 {
1069 	bool ipi = source != NULL;
1070 
1071 	if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled &&
1072 	    !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target))
1073 		return X2APIC_BROADCAST;
1074 
1075 	return dest_id;
1076 }
1077 
1078 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
1079 			   int shorthand, unsigned int dest, int dest_mode)
1080 {
1081 	struct kvm_lapic *target = vcpu->arch.apic;
1082 	u32 mda = kvm_apic_mda(vcpu, dest, source, target);
1083 
1084 	ASSERT(target);
1085 	switch (shorthand) {
1086 	case APIC_DEST_NOSHORT:
1087 		if (dest_mode == APIC_DEST_PHYSICAL)
1088 			return kvm_apic_match_physical_addr(target, mda);
1089 		else
1090 			return kvm_apic_match_logical_addr(target, mda);
1091 	case APIC_DEST_SELF:
1092 		return target == source;
1093 	case APIC_DEST_ALLINC:
1094 		return true;
1095 	case APIC_DEST_ALLBUT:
1096 		return target != source;
1097 	default:
1098 		return false;
1099 	}
1100 }
1101 EXPORT_SYMBOL_GPL(kvm_apic_match_dest);
1102 
1103 int kvm_vector_to_index(u32 vector, u32 dest_vcpus,
1104 		       const unsigned long *bitmap, u32 bitmap_size)
1105 {
1106 	u32 mod;
1107 	int i, idx = -1;
1108 
1109 	mod = vector % dest_vcpus;
1110 
1111 	for (i = 0; i <= mod; i++) {
1112 		idx = find_next_bit(bitmap, bitmap_size, idx + 1);
1113 		BUG_ON(idx == bitmap_size);
1114 	}
1115 
1116 	return idx;
1117 }
1118 
1119 static void kvm_apic_disabled_lapic_found(struct kvm *kvm)
1120 {
1121 	if (!kvm->arch.disabled_lapic_found) {
1122 		kvm->arch.disabled_lapic_found = true;
1123 		pr_info("Disabled LAPIC found during irq injection\n");
1124 	}
1125 }
1126 
1127 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src,
1128 		struct kvm_lapic_irq *irq, struct kvm_apic_map *map)
1129 {
1130 	if (kvm->arch.x2apic_broadcast_quirk_disabled) {
1131 		if ((irq->dest_id == APIC_BROADCAST &&
1132 		     map->logical_mode != KVM_APIC_MODE_X2APIC))
1133 			return true;
1134 		if (irq->dest_id == X2APIC_BROADCAST)
1135 			return true;
1136 	} else {
1137 		bool x2apic_ipi = src && *src && apic_x2apic_mode(*src);
1138 		if (irq->dest_id == (x2apic_ipi ?
1139 		                     X2APIC_BROADCAST : APIC_BROADCAST))
1140 			return true;
1141 	}
1142 
1143 	return false;
1144 }
1145 
1146 /* Return true if the interrupt can be handled by using *bitmap as index mask
1147  * for valid destinations in *dst array.
1148  * Return false if kvm_apic_map_get_dest_lapic did nothing useful.
1149  * Note: we may have zero kvm_lapic destinations when we return true, which
1150  * means that the interrupt should be dropped.  In this case, *bitmap would be
1151  * zero and *dst undefined.
1152  */
1153 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm,
1154 		struct kvm_lapic **src, struct kvm_lapic_irq *irq,
1155 		struct kvm_apic_map *map, struct kvm_lapic ***dst,
1156 		unsigned long *bitmap)
1157 {
1158 	int i, lowest;
1159 
1160 	if (irq->shorthand == APIC_DEST_SELF && src) {
1161 		*dst = src;
1162 		*bitmap = 1;
1163 		return true;
1164 	} else if (irq->shorthand)
1165 		return false;
1166 
1167 	if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map))
1168 		return false;
1169 
1170 	if (irq->dest_mode == APIC_DEST_PHYSICAL) {
1171 		if (irq->dest_id > map->max_apic_id) {
1172 			*bitmap = 0;
1173 		} else {
1174 			u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1);
1175 			*dst = &map->phys_map[dest_id];
1176 			*bitmap = 1;
1177 		}
1178 		return true;
1179 	}
1180 
1181 	*bitmap = 0;
1182 	if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst,
1183 				(u16 *)bitmap))
1184 		return false;
1185 
1186 	if (!kvm_lowest_prio_delivery(irq))
1187 		return true;
1188 
1189 	if (!kvm_vector_hashing_enabled()) {
1190 		lowest = -1;
1191 		for_each_set_bit(i, bitmap, 16) {
1192 			if (!(*dst)[i])
1193 				continue;
1194 			if (lowest < 0)
1195 				lowest = i;
1196 			else if (kvm_apic_compare_prio((*dst)[i]->vcpu,
1197 						(*dst)[lowest]->vcpu) < 0)
1198 				lowest = i;
1199 		}
1200 	} else {
1201 		if (!*bitmap)
1202 			return true;
1203 
1204 		lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap),
1205 				bitmap, 16);
1206 
1207 		if (!(*dst)[lowest]) {
1208 			kvm_apic_disabled_lapic_found(kvm);
1209 			*bitmap = 0;
1210 			return true;
1211 		}
1212 	}
1213 
1214 	*bitmap = (lowest >= 0) ? 1 << lowest : 0;
1215 
1216 	return true;
1217 }
1218 
1219 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src,
1220 		struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map)
1221 {
1222 	struct kvm_apic_map *map;
1223 	unsigned long bitmap;
1224 	struct kvm_lapic **dst = NULL;
1225 	int i;
1226 	bool ret;
1227 
1228 	*r = -1;
1229 
1230 	if (irq->shorthand == APIC_DEST_SELF) {
1231 		if (KVM_BUG_ON(!src, kvm)) {
1232 			*r = 0;
1233 			return true;
1234 		}
1235 		*r = kvm_apic_set_irq(src->vcpu, irq, dest_map);
1236 		return true;
1237 	}
1238 
1239 	rcu_read_lock();
1240 	map = rcu_dereference(kvm->arch.apic_map);
1241 
1242 	ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap);
1243 	if (ret) {
1244 		*r = 0;
1245 		for_each_set_bit(i, &bitmap, 16) {
1246 			if (!dst[i])
1247 				continue;
1248 			*r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map);
1249 		}
1250 	}
1251 
1252 	rcu_read_unlock();
1253 	return ret;
1254 }
1255 
1256 /*
1257  * This routine tries to handle interrupts in posted mode, here is how
1258  * it deals with different cases:
1259  * - For single-destination interrupts, handle it in posted mode
1260  * - Else if vector hashing is enabled and it is a lowest-priority
1261  *   interrupt, handle it in posted mode and use the following mechanism
1262  *   to find the destination vCPU.
1263  *	1. For lowest-priority interrupts, store all the possible
1264  *	   destination vCPUs in an array.
1265  *	2. Use "guest vector % max number of destination vCPUs" to find
1266  *	   the right destination vCPU in the array for the lowest-priority
1267  *	   interrupt.
1268  * - Otherwise, use remapped mode to inject the interrupt.
1269  */
1270 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq,
1271 			struct kvm_vcpu **dest_vcpu)
1272 {
1273 	struct kvm_apic_map *map;
1274 	unsigned long bitmap;
1275 	struct kvm_lapic **dst = NULL;
1276 	bool ret = false;
1277 
1278 	if (irq->shorthand)
1279 		return false;
1280 
1281 	rcu_read_lock();
1282 	map = rcu_dereference(kvm->arch.apic_map);
1283 
1284 	if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) &&
1285 			hweight16(bitmap) == 1) {
1286 		unsigned long i = find_first_bit(&bitmap, 16);
1287 
1288 		if (dst[i]) {
1289 			*dest_vcpu = dst[i]->vcpu;
1290 			ret = true;
1291 		}
1292 	}
1293 
1294 	rcu_read_unlock();
1295 	return ret;
1296 }
1297 
1298 /*
1299  * Add a pending IRQ into lapic.
1300  * Return 1 if successfully added and 0 if discarded.
1301  */
1302 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
1303 			     int vector, int level, int trig_mode,
1304 			     struct dest_map *dest_map)
1305 {
1306 	int result = 0;
1307 	struct kvm_vcpu *vcpu = apic->vcpu;
1308 
1309 	trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode,
1310 				  trig_mode, vector);
1311 	switch (delivery_mode) {
1312 	case APIC_DM_LOWEST:
1313 		vcpu->arch.apic_arb_prio++;
1314 		fallthrough;
1315 	case APIC_DM_FIXED:
1316 		if (unlikely(trig_mode && !level))
1317 			break;
1318 
1319 		/* FIXME add logic for vcpu on reset */
1320 		if (unlikely(!apic_enabled(apic)))
1321 			break;
1322 
1323 		result = 1;
1324 
1325 		if (dest_map) {
1326 			__set_bit(vcpu->vcpu_id, dest_map->map);
1327 			dest_map->vectors[vcpu->vcpu_id] = vector;
1328 		}
1329 
1330 		if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) {
1331 			if (trig_mode)
1332 				kvm_lapic_set_vector(vector,
1333 						     apic->regs + APIC_TMR);
1334 			else
1335 				kvm_lapic_clear_vector(vector,
1336 						       apic->regs + APIC_TMR);
1337 		}
1338 
1339 		kvm_x86_call(deliver_interrupt)(apic, delivery_mode,
1340 						trig_mode, vector);
1341 		break;
1342 
1343 	case APIC_DM_REMRD:
1344 		result = 1;
1345 		vcpu->arch.pv.pv_unhalted = 1;
1346 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1347 		kvm_vcpu_kick(vcpu);
1348 		break;
1349 
1350 	case APIC_DM_SMI:
1351 		if (!kvm_inject_smi(vcpu)) {
1352 			kvm_vcpu_kick(vcpu);
1353 			result = 1;
1354 		}
1355 		break;
1356 
1357 	case APIC_DM_NMI:
1358 		result = 1;
1359 		kvm_inject_nmi(vcpu);
1360 		kvm_vcpu_kick(vcpu);
1361 		break;
1362 
1363 	case APIC_DM_INIT:
1364 		if (!trig_mode || level) {
1365 			result = 1;
1366 			/* assumes that there are only KVM_APIC_INIT/SIPI */
1367 			apic->pending_events = (1UL << KVM_APIC_INIT);
1368 			kvm_make_request(KVM_REQ_EVENT, vcpu);
1369 			kvm_vcpu_kick(vcpu);
1370 		}
1371 		break;
1372 
1373 	case APIC_DM_STARTUP:
1374 		result = 1;
1375 		apic->sipi_vector = vector;
1376 		/* make sure sipi_vector is visible for the receiver */
1377 		smp_wmb();
1378 		set_bit(KVM_APIC_SIPI, &apic->pending_events);
1379 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1380 		kvm_vcpu_kick(vcpu);
1381 		break;
1382 
1383 	case APIC_DM_EXTINT:
1384 		/*
1385 		 * Should only be called by kvm_apic_local_deliver() with LVT0,
1386 		 * before NMI watchdog was enabled. Already handled by
1387 		 * kvm_apic_accept_pic_intr().
1388 		 */
1389 		break;
1390 
1391 	default:
1392 		printk(KERN_ERR "TODO: unsupported delivery mode %x\n",
1393 		       delivery_mode);
1394 		break;
1395 	}
1396 	return result;
1397 }
1398 
1399 /*
1400  * This routine identifies the destination vcpus mask meant to receive the
1401  * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find
1402  * out the destination vcpus array and set the bitmap or it traverses to
1403  * each available vcpu to identify the same.
1404  */
1405 void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq,
1406 			      unsigned long *vcpu_bitmap)
1407 {
1408 	struct kvm_lapic **dest_vcpu = NULL;
1409 	struct kvm_lapic *src = NULL;
1410 	struct kvm_apic_map *map;
1411 	struct kvm_vcpu *vcpu;
1412 	unsigned long bitmap, i;
1413 	int vcpu_idx;
1414 	bool ret;
1415 
1416 	rcu_read_lock();
1417 	map = rcu_dereference(kvm->arch.apic_map);
1418 
1419 	ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu,
1420 					  &bitmap);
1421 	if (ret) {
1422 		for_each_set_bit(i, &bitmap, 16) {
1423 			if (!dest_vcpu[i])
1424 				continue;
1425 			vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx;
1426 			__set_bit(vcpu_idx, vcpu_bitmap);
1427 		}
1428 	} else {
1429 		kvm_for_each_vcpu(i, vcpu, kvm) {
1430 			if (!kvm_apic_present(vcpu))
1431 				continue;
1432 			if (!kvm_apic_match_dest(vcpu, NULL,
1433 						 irq->shorthand,
1434 						 irq->dest_id,
1435 						 irq->dest_mode))
1436 				continue;
1437 			__set_bit(i, vcpu_bitmap);
1438 		}
1439 	}
1440 	rcu_read_unlock();
1441 }
1442 
1443 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
1444 {
1445 	return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio;
1446 }
1447 
1448 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector)
1449 {
1450 	return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors);
1451 }
1452 
1453 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector)
1454 {
1455 	int trigger_mode;
1456 
1457 	/* Eoi the ioapic only if the ioapic doesn't own the vector. */
1458 	if (!kvm_ioapic_handles_vector(apic, vector))
1459 		return;
1460 
1461 	/* Request a KVM exit to inform the userspace IOAPIC. */
1462 	if (irqchip_split(apic->vcpu->kvm)) {
1463 		apic->vcpu->arch.pending_ioapic_eoi = vector;
1464 		kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu);
1465 		return;
1466 	}
1467 
1468 	if (apic_test_vector(vector, apic->regs + APIC_TMR))
1469 		trigger_mode = IOAPIC_LEVEL_TRIG;
1470 	else
1471 		trigger_mode = IOAPIC_EDGE_TRIG;
1472 
1473 	kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode);
1474 }
1475 
1476 static int apic_set_eoi(struct kvm_lapic *apic)
1477 {
1478 	int vector = apic_find_highest_isr(apic);
1479 
1480 	trace_kvm_eoi(apic, vector);
1481 
1482 	/*
1483 	 * Not every write EOI will has corresponding ISR,
1484 	 * one example is when Kernel check timer on setup_IO_APIC
1485 	 */
1486 	if (vector == -1)
1487 		return vector;
1488 
1489 	apic_clear_isr(vector, apic);
1490 	apic_update_ppr(apic);
1491 
1492 	if (kvm_hv_synic_has_vector(apic->vcpu, vector))
1493 		kvm_hv_synic_send_eoi(apic->vcpu, vector);
1494 
1495 	kvm_ioapic_send_eoi(apic, vector);
1496 	kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1497 	return vector;
1498 }
1499 
1500 /*
1501  * this interface assumes a trap-like exit, which has already finished
1502  * desired side effect including vISR and vPPR update.
1503  */
1504 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector)
1505 {
1506 	struct kvm_lapic *apic = vcpu->arch.apic;
1507 
1508 	trace_kvm_eoi(apic, vector);
1509 
1510 	kvm_ioapic_send_eoi(apic, vector);
1511 	kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1512 }
1513 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated);
1514 
1515 void kvm_apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high)
1516 {
1517 	struct kvm_lapic_irq irq;
1518 
1519 	/* KVM has no delay and should always clear the BUSY/PENDING flag. */
1520 	WARN_ON_ONCE(icr_low & APIC_ICR_BUSY);
1521 
1522 	irq.vector = icr_low & APIC_VECTOR_MASK;
1523 	irq.delivery_mode = icr_low & APIC_MODE_MASK;
1524 	irq.dest_mode = icr_low & APIC_DEST_MASK;
1525 	irq.level = (icr_low & APIC_INT_ASSERT) != 0;
1526 	irq.trig_mode = icr_low & APIC_INT_LEVELTRIG;
1527 	irq.shorthand = icr_low & APIC_SHORT_MASK;
1528 	irq.msi_redir_hint = false;
1529 	if (apic_x2apic_mode(apic))
1530 		irq.dest_id = icr_high;
1531 	else
1532 		irq.dest_id = GET_XAPIC_DEST_FIELD(icr_high);
1533 
1534 	trace_kvm_apic_ipi(icr_low, irq.dest_id);
1535 
1536 	kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL);
1537 }
1538 EXPORT_SYMBOL_GPL(kvm_apic_send_ipi);
1539 
1540 static u32 apic_get_tmcct(struct kvm_lapic *apic)
1541 {
1542 	ktime_t remaining, now;
1543 	s64 ns;
1544 
1545 	ASSERT(apic != NULL);
1546 
1547 	/* if initial count is 0, current count should also be 0 */
1548 	if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 ||
1549 		apic->lapic_timer.period == 0)
1550 		return 0;
1551 
1552 	now = ktime_get();
1553 	remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1554 	if (ktime_to_ns(remaining) < 0)
1555 		remaining = 0;
1556 
1557 	ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period);
1558 	return div64_u64(ns, (apic->vcpu->kvm->arch.apic_bus_cycle_ns *
1559 			      apic->divide_count));
1560 }
1561 
1562 static void __report_tpr_access(struct kvm_lapic *apic, bool write)
1563 {
1564 	struct kvm_vcpu *vcpu = apic->vcpu;
1565 	struct kvm_run *run = vcpu->run;
1566 
1567 	kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu);
1568 	run->tpr_access.rip = kvm_rip_read(vcpu);
1569 	run->tpr_access.is_write = write;
1570 }
1571 
1572 static inline void report_tpr_access(struct kvm_lapic *apic, bool write)
1573 {
1574 	if (apic->vcpu->arch.tpr_access_reporting)
1575 		__report_tpr_access(apic, write);
1576 }
1577 
1578 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset)
1579 {
1580 	u32 val = 0;
1581 
1582 	if (offset >= LAPIC_MMIO_LENGTH)
1583 		return 0;
1584 
1585 	switch (offset) {
1586 	case APIC_ARBPRI:
1587 		break;
1588 
1589 	case APIC_TMCCT:	/* Timer CCR */
1590 		if (apic_lvtt_tscdeadline(apic))
1591 			return 0;
1592 
1593 		val = apic_get_tmcct(apic);
1594 		break;
1595 	case APIC_PROCPRI:
1596 		apic_update_ppr(apic);
1597 		val = kvm_lapic_get_reg(apic, offset);
1598 		break;
1599 	case APIC_TASKPRI:
1600 		report_tpr_access(apic, false);
1601 		fallthrough;
1602 	default:
1603 		val = kvm_lapic_get_reg(apic, offset);
1604 		break;
1605 	}
1606 
1607 	return val;
1608 }
1609 
1610 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev)
1611 {
1612 	return container_of(dev, struct kvm_lapic, dev);
1613 }
1614 
1615 #define APIC_REG_MASK(reg)	(1ull << ((reg) >> 4))
1616 #define APIC_REGS_MASK(first, count) \
1617 	(APIC_REG_MASK(first) * ((1ull << (count)) - 1))
1618 
1619 u64 kvm_lapic_readable_reg_mask(struct kvm_lapic *apic)
1620 {
1621 	/* Leave bits '0' for reserved and write-only registers. */
1622 	u64 valid_reg_mask =
1623 		APIC_REG_MASK(APIC_ID) |
1624 		APIC_REG_MASK(APIC_LVR) |
1625 		APIC_REG_MASK(APIC_TASKPRI) |
1626 		APIC_REG_MASK(APIC_PROCPRI) |
1627 		APIC_REG_MASK(APIC_LDR) |
1628 		APIC_REG_MASK(APIC_SPIV) |
1629 		APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) |
1630 		APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) |
1631 		APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) |
1632 		APIC_REG_MASK(APIC_ESR) |
1633 		APIC_REG_MASK(APIC_ICR) |
1634 		APIC_REG_MASK(APIC_LVTT) |
1635 		APIC_REG_MASK(APIC_LVTTHMR) |
1636 		APIC_REG_MASK(APIC_LVTPC) |
1637 		APIC_REG_MASK(APIC_LVT0) |
1638 		APIC_REG_MASK(APIC_LVT1) |
1639 		APIC_REG_MASK(APIC_LVTERR) |
1640 		APIC_REG_MASK(APIC_TMICT) |
1641 		APIC_REG_MASK(APIC_TMCCT) |
1642 		APIC_REG_MASK(APIC_TDCR);
1643 
1644 	if (kvm_lapic_lvt_supported(apic, LVT_CMCI))
1645 		valid_reg_mask |= APIC_REG_MASK(APIC_LVTCMCI);
1646 
1647 	/* ARBPRI, DFR, and ICR2 are not valid in x2APIC mode. */
1648 	if (!apic_x2apic_mode(apic))
1649 		valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI) |
1650 				  APIC_REG_MASK(APIC_DFR) |
1651 				  APIC_REG_MASK(APIC_ICR2);
1652 
1653 	return valid_reg_mask;
1654 }
1655 EXPORT_SYMBOL_GPL(kvm_lapic_readable_reg_mask);
1656 
1657 static int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len,
1658 			      void *data)
1659 {
1660 	unsigned char alignment = offset & 0xf;
1661 	u32 result;
1662 
1663 	/*
1664 	 * WARN if KVM reads ICR in x2APIC mode, as it's an 8-byte register in
1665 	 * x2APIC and needs to be manually handled by the caller.
1666 	 */
1667 	WARN_ON_ONCE(apic_x2apic_mode(apic) && offset == APIC_ICR);
1668 
1669 	if (alignment + len > 4)
1670 		return 1;
1671 
1672 	if (offset > 0x3f0 ||
1673 	    !(kvm_lapic_readable_reg_mask(apic) & APIC_REG_MASK(offset)))
1674 		return 1;
1675 
1676 	result = __apic_read(apic, offset & ~0xf);
1677 
1678 	trace_kvm_apic_read(offset, result);
1679 
1680 	switch (len) {
1681 	case 1:
1682 	case 2:
1683 	case 4:
1684 		memcpy(data, (char *)&result + alignment, len);
1685 		break;
1686 	default:
1687 		printk(KERN_ERR "Local APIC read with len = %x, "
1688 		       "should be 1,2, or 4 instead\n", len);
1689 		break;
1690 	}
1691 	return 0;
1692 }
1693 
1694 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr)
1695 {
1696 	return addr >= apic->base_address &&
1697 		addr < apic->base_address + LAPIC_MMIO_LENGTH;
1698 }
1699 
1700 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
1701 			   gpa_t address, int len, void *data)
1702 {
1703 	struct kvm_lapic *apic = to_lapic(this);
1704 	u32 offset = address - apic->base_address;
1705 
1706 	if (!apic_mmio_in_range(apic, address))
1707 		return -EOPNOTSUPP;
1708 
1709 	if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
1710 		if (!kvm_check_has_quirk(vcpu->kvm,
1711 					 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
1712 			return -EOPNOTSUPP;
1713 
1714 		memset(data, 0xff, len);
1715 		return 0;
1716 	}
1717 
1718 	kvm_lapic_reg_read(apic, offset, len, data);
1719 
1720 	return 0;
1721 }
1722 
1723 static void update_divide_count(struct kvm_lapic *apic)
1724 {
1725 	u32 tmp1, tmp2, tdcr;
1726 
1727 	tdcr = kvm_lapic_get_reg(apic, APIC_TDCR);
1728 	tmp1 = tdcr & 0xf;
1729 	tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1;
1730 	apic->divide_count = 0x1 << (tmp2 & 0x7);
1731 }
1732 
1733 static void limit_periodic_timer_frequency(struct kvm_lapic *apic)
1734 {
1735 	/*
1736 	 * Do not allow the guest to program periodic timers with small
1737 	 * interval, since the hrtimers are not throttled by the host
1738 	 * scheduler.
1739 	 */
1740 	if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
1741 		s64 min_period = min_timer_period_us * 1000LL;
1742 
1743 		if (apic->lapic_timer.period < min_period) {
1744 			pr_info_once(
1745 			    "vcpu %i: requested %lld ns "
1746 			    "lapic timer period limited to %lld ns\n",
1747 			    apic->vcpu->vcpu_id,
1748 			    apic->lapic_timer.period, min_period);
1749 			apic->lapic_timer.period = min_period;
1750 		}
1751 	}
1752 }
1753 
1754 static void cancel_hv_timer(struct kvm_lapic *apic);
1755 
1756 static void cancel_apic_timer(struct kvm_lapic *apic)
1757 {
1758 	hrtimer_cancel(&apic->lapic_timer.timer);
1759 	preempt_disable();
1760 	if (apic->lapic_timer.hv_timer_in_use)
1761 		cancel_hv_timer(apic);
1762 	preempt_enable();
1763 	atomic_set(&apic->lapic_timer.pending, 0);
1764 }
1765 
1766 static void apic_update_lvtt(struct kvm_lapic *apic)
1767 {
1768 	u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) &
1769 			apic->lapic_timer.timer_mode_mask;
1770 
1771 	if (apic->lapic_timer.timer_mode != timer_mode) {
1772 		if (apic_lvtt_tscdeadline(apic) != (timer_mode ==
1773 				APIC_LVT_TIMER_TSCDEADLINE)) {
1774 			cancel_apic_timer(apic);
1775 			kvm_lapic_set_reg(apic, APIC_TMICT, 0);
1776 			apic->lapic_timer.period = 0;
1777 			apic->lapic_timer.tscdeadline = 0;
1778 		}
1779 		apic->lapic_timer.timer_mode = timer_mode;
1780 		limit_periodic_timer_frequency(apic);
1781 	}
1782 }
1783 
1784 /*
1785  * On APICv, this test will cause a busy wait
1786  * during a higher-priority task.
1787  */
1788 
1789 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu)
1790 {
1791 	struct kvm_lapic *apic = vcpu->arch.apic;
1792 	u32 reg = kvm_lapic_get_reg(apic, APIC_LVTT);
1793 
1794 	if (kvm_apic_hw_enabled(apic)) {
1795 		int vec = reg & APIC_VECTOR_MASK;
1796 		void *bitmap = apic->regs + APIC_ISR;
1797 
1798 		if (apic->apicv_active)
1799 			bitmap = apic->regs + APIC_IRR;
1800 
1801 		if (apic_test_vector(vec, bitmap))
1802 			return true;
1803 	}
1804 	return false;
1805 }
1806 
1807 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles)
1808 {
1809 	u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns;
1810 
1811 	/*
1812 	 * If the guest TSC is running at a different ratio than the host, then
1813 	 * convert the delay to nanoseconds to achieve an accurate delay.  Note
1814 	 * that __delay() uses delay_tsc whenever the hardware has TSC, thus
1815 	 * always for VMX enabled hardware.
1816 	 */
1817 	if (vcpu->arch.tsc_scaling_ratio == kvm_caps.default_tsc_scaling_ratio) {
1818 		__delay(min(guest_cycles,
1819 			nsec_to_cycles(vcpu, timer_advance_ns)));
1820 	} else {
1821 		u64 delay_ns = guest_cycles * 1000000ULL;
1822 		do_div(delay_ns, vcpu->arch.virtual_tsc_khz);
1823 		ndelay(min_t(u32, delay_ns, timer_advance_ns));
1824 	}
1825 }
1826 
1827 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu,
1828 					      s64 advance_expire_delta)
1829 {
1830 	struct kvm_lapic *apic = vcpu->arch.apic;
1831 	u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns;
1832 	u64 ns;
1833 
1834 	/* Do not adjust for tiny fluctuations or large random spikes. */
1835 	if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX ||
1836 	    abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN)
1837 		return;
1838 
1839 	/* too early */
1840 	if (advance_expire_delta < 0) {
1841 		ns = -advance_expire_delta * 1000000ULL;
1842 		do_div(ns, vcpu->arch.virtual_tsc_khz);
1843 		timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
1844 	} else {
1845 	/* too late */
1846 		ns = advance_expire_delta * 1000000ULL;
1847 		do_div(ns, vcpu->arch.virtual_tsc_khz);
1848 		timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
1849 	}
1850 
1851 	if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX))
1852 		timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
1853 	apic->lapic_timer.timer_advance_ns = timer_advance_ns;
1854 }
1855 
1856 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1857 {
1858 	struct kvm_lapic *apic = vcpu->arch.apic;
1859 	u64 guest_tsc, tsc_deadline;
1860 
1861 	tsc_deadline = apic->lapic_timer.expired_tscdeadline;
1862 	apic->lapic_timer.expired_tscdeadline = 0;
1863 	guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1864 	trace_kvm_wait_lapic_expire(vcpu->vcpu_id, guest_tsc - tsc_deadline);
1865 
1866 	adjust_lapic_timer_advance(vcpu, guest_tsc - tsc_deadline);
1867 
1868 	/*
1869 	 * If the timer fired early, reread the TSC to account for the overhead
1870 	 * of the above adjustment to avoid waiting longer than is necessary.
1871 	 */
1872 	if (guest_tsc < tsc_deadline)
1873 		guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1874 
1875 	if (guest_tsc < tsc_deadline)
1876 		__wait_lapic_expire(vcpu, tsc_deadline - guest_tsc);
1877 }
1878 
1879 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1880 {
1881 	if (lapic_in_kernel(vcpu) &&
1882 	    vcpu->arch.apic->lapic_timer.expired_tscdeadline &&
1883 	    vcpu->arch.apic->lapic_timer.timer_advance_ns &&
1884 	    lapic_timer_int_injected(vcpu))
1885 		__kvm_wait_lapic_expire(vcpu);
1886 }
1887 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire);
1888 
1889 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic)
1890 {
1891 	struct kvm_timer *ktimer = &apic->lapic_timer;
1892 
1893 	kvm_apic_local_deliver(apic, APIC_LVTT);
1894 	if (apic_lvtt_tscdeadline(apic)) {
1895 		ktimer->tscdeadline = 0;
1896 	} else if (apic_lvtt_oneshot(apic)) {
1897 		ktimer->tscdeadline = 0;
1898 		ktimer->target_expiration = 0;
1899 	}
1900 }
1901 
1902 static void apic_timer_expired(struct kvm_lapic *apic, bool from_timer_fn)
1903 {
1904 	struct kvm_vcpu *vcpu = apic->vcpu;
1905 	struct kvm_timer *ktimer = &apic->lapic_timer;
1906 
1907 	if (atomic_read(&apic->lapic_timer.pending))
1908 		return;
1909 
1910 	if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use)
1911 		ktimer->expired_tscdeadline = ktimer->tscdeadline;
1912 
1913 	if (!from_timer_fn && apic->apicv_active) {
1914 		WARN_ON(kvm_get_running_vcpu() != vcpu);
1915 		kvm_apic_inject_pending_timer_irqs(apic);
1916 		return;
1917 	}
1918 
1919 	if (kvm_use_posted_timer_interrupt(apic->vcpu)) {
1920 		/*
1921 		 * Ensure the guest's timer has truly expired before posting an
1922 		 * interrupt.  Open code the relevant checks to avoid querying
1923 		 * lapic_timer_int_injected(), which will be false since the
1924 		 * interrupt isn't yet injected.  Waiting until after injecting
1925 		 * is not an option since that won't help a posted interrupt.
1926 		 */
1927 		if (vcpu->arch.apic->lapic_timer.expired_tscdeadline &&
1928 		    vcpu->arch.apic->lapic_timer.timer_advance_ns)
1929 			__kvm_wait_lapic_expire(vcpu);
1930 		kvm_apic_inject_pending_timer_irqs(apic);
1931 		return;
1932 	}
1933 
1934 	atomic_inc(&apic->lapic_timer.pending);
1935 	kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1936 	if (from_timer_fn)
1937 		kvm_vcpu_kick(vcpu);
1938 }
1939 
1940 static void start_sw_tscdeadline(struct kvm_lapic *apic)
1941 {
1942 	struct kvm_timer *ktimer = &apic->lapic_timer;
1943 	u64 guest_tsc, tscdeadline = ktimer->tscdeadline;
1944 	u64 ns = 0;
1945 	ktime_t expire;
1946 	struct kvm_vcpu *vcpu = apic->vcpu;
1947 	u32 this_tsc_khz = vcpu->arch.virtual_tsc_khz;
1948 	unsigned long flags;
1949 	ktime_t now;
1950 
1951 	if (unlikely(!tscdeadline || !this_tsc_khz))
1952 		return;
1953 
1954 	local_irq_save(flags);
1955 
1956 	now = ktime_get();
1957 	guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1958 
1959 	ns = (tscdeadline - guest_tsc) * 1000000ULL;
1960 	do_div(ns, this_tsc_khz);
1961 
1962 	if (likely(tscdeadline > guest_tsc) &&
1963 	    likely(ns > apic->lapic_timer.timer_advance_ns)) {
1964 		expire = ktime_add_ns(now, ns);
1965 		expire = ktime_sub_ns(expire, ktimer->timer_advance_ns);
1966 		hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD);
1967 	} else
1968 		apic_timer_expired(apic, false);
1969 
1970 	local_irq_restore(flags);
1971 }
1972 
1973 static inline u64 tmict_to_ns(struct kvm_lapic *apic, u32 tmict)
1974 {
1975 	return (u64)tmict * apic->vcpu->kvm->arch.apic_bus_cycle_ns *
1976 		(u64)apic->divide_count;
1977 }
1978 
1979 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor)
1980 {
1981 	ktime_t now, remaining;
1982 	u64 ns_remaining_old, ns_remaining_new;
1983 
1984 	apic->lapic_timer.period =
1985 			tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT));
1986 	limit_periodic_timer_frequency(apic);
1987 
1988 	now = ktime_get();
1989 	remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1990 	if (ktime_to_ns(remaining) < 0)
1991 		remaining = 0;
1992 
1993 	ns_remaining_old = ktime_to_ns(remaining);
1994 	ns_remaining_new = mul_u64_u32_div(ns_remaining_old,
1995 	                                   apic->divide_count, old_divisor);
1996 
1997 	apic->lapic_timer.tscdeadline +=
1998 		nsec_to_cycles(apic->vcpu, ns_remaining_new) -
1999 		nsec_to_cycles(apic->vcpu, ns_remaining_old);
2000 	apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new);
2001 }
2002 
2003 static bool set_target_expiration(struct kvm_lapic *apic, u32 count_reg)
2004 {
2005 	ktime_t now;
2006 	u64 tscl = rdtsc();
2007 	s64 deadline;
2008 
2009 	now = ktime_get();
2010 	apic->lapic_timer.period =
2011 			tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT));
2012 
2013 	if (!apic->lapic_timer.period) {
2014 		apic->lapic_timer.tscdeadline = 0;
2015 		return false;
2016 	}
2017 
2018 	limit_periodic_timer_frequency(apic);
2019 	deadline = apic->lapic_timer.period;
2020 
2021 	if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) {
2022 		if (unlikely(count_reg != APIC_TMICT)) {
2023 			deadline = tmict_to_ns(apic,
2024 				     kvm_lapic_get_reg(apic, count_reg));
2025 			if (unlikely(deadline <= 0)) {
2026 				if (apic_lvtt_period(apic))
2027 					deadline = apic->lapic_timer.period;
2028 				else
2029 					deadline = 0;
2030 			}
2031 			else if (unlikely(deadline > apic->lapic_timer.period)) {
2032 				pr_info_ratelimited(
2033 				    "vcpu %i: requested lapic timer restore with "
2034 				    "starting count register %#x=%u (%lld ns) > initial count (%lld ns). "
2035 				    "Using initial count to start timer.\n",
2036 				    apic->vcpu->vcpu_id,
2037 				    count_reg,
2038 				    kvm_lapic_get_reg(apic, count_reg),
2039 				    deadline, apic->lapic_timer.period);
2040 				kvm_lapic_set_reg(apic, count_reg, 0);
2041 				deadline = apic->lapic_timer.period;
2042 			}
2043 		}
2044 	}
2045 
2046 	apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
2047 		nsec_to_cycles(apic->vcpu, deadline);
2048 	apic->lapic_timer.target_expiration = ktime_add_ns(now, deadline);
2049 
2050 	return true;
2051 }
2052 
2053 static void advance_periodic_target_expiration(struct kvm_lapic *apic)
2054 {
2055 	ktime_t now = ktime_get();
2056 	u64 tscl = rdtsc();
2057 	ktime_t delta;
2058 
2059 	/*
2060 	 * Synchronize both deadlines to the same time source or
2061 	 * differences in the periods (caused by differences in the
2062 	 * underlying clocks or numerical approximation errors) will
2063 	 * cause the two to drift apart over time as the errors
2064 	 * accumulate.
2065 	 */
2066 	apic->lapic_timer.target_expiration =
2067 		ktime_add_ns(apic->lapic_timer.target_expiration,
2068 				apic->lapic_timer.period);
2069 	delta = ktime_sub(apic->lapic_timer.target_expiration, now);
2070 	apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
2071 		nsec_to_cycles(apic->vcpu, delta);
2072 }
2073 
2074 static void start_sw_period(struct kvm_lapic *apic)
2075 {
2076 	if (!apic->lapic_timer.period)
2077 		return;
2078 
2079 	if (ktime_after(ktime_get(),
2080 			apic->lapic_timer.target_expiration)) {
2081 		apic_timer_expired(apic, false);
2082 
2083 		if (apic_lvtt_oneshot(apic))
2084 			return;
2085 
2086 		advance_periodic_target_expiration(apic);
2087 	}
2088 
2089 	hrtimer_start(&apic->lapic_timer.timer,
2090 		apic->lapic_timer.target_expiration,
2091 		HRTIMER_MODE_ABS_HARD);
2092 }
2093 
2094 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu)
2095 {
2096 	if (!lapic_in_kernel(vcpu))
2097 		return false;
2098 
2099 	return vcpu->arch.apic->lapic_timer.hv_timer_in_use;
2100 }
2101 
2102 static void cancel_hv_timer(struct kvm_lapic *apic)
2103 {
2104 	WARN_ON(preemptible());
2105 	WARN_ON(!apic->lapic_timer.hv_timer_in_use);
2106 	kvm_x86_call(cancel_hv_timer)(apic->vcpu);
2107 	apic->lapic_timer.hv_timer_in_use = false;
2108 }
2109 
2110 static bool start_hv_timer(struct kvm_lapic *apic)
2111 {
2112 	struct kvm_timer *ktimer = &apic->lapic_timer;
2113 	struct kvm_vcpu *vcpu = apic->vcpu;
2114 	bool expired;
2115 
2116 	WARN_ON(preemptible());
2117 	if (!kvm_can_use_hv_timer(vcpu))
2118 		return false;
2119 
2120 	if (!ktimer->tscdeadline)
2121 		return false;
2122 
2123 	if (kvm_x86_call(set_hv_timer)(vcpu, ktimer->tscdeadline, &expired))
2124 		return false;
2125 
2126 	ktimer->hv_timer_in_use = true;
2127 	hrtimer_cancel(&ktimer->timer);
2128 
2129 	/*
2130 	 * To simplify handling the periodic timer, leave the hv timer running
2131 	 * even if the deadline timer has expired, i.e. rely on the resulting
2132 	 * VM-Exit to recompute the periodic timer's target expiration.
2133 	 */
2134 	if (!apic_lvtt_period(apic)) {
2135 		/*
2136 		 * Cancel the hv timer if the sw timer fired while the hv timer
2137 		 * was being programmed, or if the hv timer itself expired.
2138 		 */
2139 		if (atomic_read(&ktimer->pending)) {
2140 			cancel_hv_timer(apic);
2141 		} else if (expired) {
2142 			apic_timer_expired(apic, false);
2143 			cancel_hv_timer(apic);
2144 		}
2145 	}
2146 
2147 	trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use);
2148 
2149 	return true;
2150 }
2151 
2152 static void start_sw_timer(struct kvm_lapic *apic)
2153 {
2154 	struct kvm_timer *ktimer = &apic->lapic_timer;
2155 
2156 	WARN_ON(preemptible());
2157 	if (apic->lapic_timer.hv_timer_in_use)
2158 		cancel_hv_timer(apic);
2159 	if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending))
2160 		return;
2161 
2162 	if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
2163 		start_sw_period(apic);
2164 	else if (apic_lvtt_tscdeadline(apic))
2165 		start_sw_tscdeadline(apic);
2166 	trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false);
2167 }
2168 
2169 static void restart_apic_timer(struct kvm_lapic *apic)
2170 {
2171 	preempt_disable();
2172 
2173 	if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending))
2174 		goto out;
2175 
2176 	if (!start_hv_timer(apic))
2177 		start_sw_timer(apic);
2178 out:
2179 	preempt_enable();
2180 }
2181 
2182 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu)
2183 {
2184 	struct kvm_lapic *apic = vcpu->arch.apic;
2185 
2186 	preempt_disable();
2187 	/* If the preempt notifier has already run, it also called apic_timer_expired */
2188 	if (!apic->lapic_timer.hv_timer_in_use)
2189 		goto out;
2190 	WARN_ON(kvm_vcpu_is_blocking(vcpu));
2191 	apic_timer_expired(apic, false);
2192 	cancel_hv_timer(apic);
2193 
2194 	if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
2195 		advance_periodic_target_expiration(apic);
2196 		restart_apic_timer(apic);
2197 	}
2198 out:
2199 	preempt_enable();
2200 }
2201 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer);
2202 
2203 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu)
2204 {
2205 	restart_apic_timer(vcpu->arch.apic);
2206 }
2207 
2208 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu)
2209 {
2210 	struct kvm_lapic *apic = vcpu->arch.apic;
2211 
2212 	preempt_disable();
2213 	/* Possibly the TSC deadline timer is not enabled yet */
2214 	if (apic->lapic_timer.hv_timer_in_use)
2215 		start_sw_timer(apic);
2216 	preempt_enable();
2217 }
2218 
2219 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu)
2220 {
2221 	struct kvm_lapic *apic = vcpu->arch.apic;
2222 
2223 	WARN_ON(!apic->lapic_timer.hv_timer_in_use);
2224 	restart_apic_timer(apic);
2225 }
2226 
2227 static void __start_apic_timer(struct kvm_lapic *apic, u32 count_reg)
2228 {
2229 	atomic_set(&apic->lapic_timer.pending, 0);
2230 
2231 	if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
2232 	    && !set_target_expiration(apic, count_reg))
2233 		return;
2234 
2235 	restart_apic_timer(apic);
2236 }
2237 
2238 static void start_apic_timer(struct kvm_lapic *apic)
2239 {
2240 	__start_apic_timer(apic, APIC_TMICT);
2241 }
2242 
2243 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val)
2244 {
2245 	bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val);
2246 
2247 	if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) {
2248 		apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode;
2249 		if (lvt0_in_nmi_mode) {
2250 			atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
2251 		} else
2252 			atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
2253 	}
2254 }
2255 
2256 static int get_lvt_index(u32 reg)
2257 {
2258 	if (reg == APIC_LVTCMCI)
2259 		return LVT_CMCI;
2260 	if (reg < APIC_LVTT || reg > APIC_LVTERR)
2261 		return -1;
2262 	return array_index_nospec(
2263 			(reg - APIC_LVTT) >> 4, KVM_APIC_MAX_NR_LVT_ENTRIES);
2264 }
2265 
2266 static int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val)
2267 {
2268 	int ret = 0;
2269 
2270 	trace_kvm_apic_write(reg, val);
2271 
2272 	switch (reg) {
2273 	case APIC_ID:		/* Local APIC ID */
2274 		if (!apic_x2apic_mode(apic)) {
2275 			kvm_apic_set_xapic_id(apic, val >> 24);
2276 		} else {
2277 			ret = 1;
2278 		}
2279 		break;
2280 
2281 	case APIC_TASKPRI:
2282 		report_tpr_access(apic, true);
2283 		apic_set_tpr(apic, val & 0xff);
2284 		break;
2285 
2286 	case APIC_EOI:
2287 		apic_set_eoi(apic);
2288 		break;
2289 
2290 	case APIC_LDR:
2291 		if (!apic_x2apic_mode(apic))
2292 			kvm_apic_set_ldr(apic, val & APIC_LDR_MASK);
2293 		else
2294 			ret = 1;
2295 		break;
2296 
2297 	case APIC_DFR:
2298 		if (!apic_x2apic_mode(apic))
2299 			kvm_apic_set_dfr(apic, val | 0x0FFFFFFF);
2300 		else
2301 			ret = 1;
2302 		break;
2303 
2304 	case APIC_SPIV: {
2305 		u32 mask = 0x3ff;
2306 		if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI)
2307 			mask |= APIC_SPIV_DIRECTED_EOI;
2308 		apic_set_spiv(apic, val & mask);
2309 		if (!(val & APIC_SPIV_APIC_ENABLED)) {
2310 			int i;
2311 
2312 			for (i = 0; i < apic->nr_lvt_entries; i++) {
2313 				kvm_lapic_set_reg(apic, APIC_LVTx(i),
2314 					kvm_lapic_get_reg(apic, APIC_LVTx(i)) | APIC_LVT_MASKED);
2315 			}
2316 			apic_update_lvtt(apic);
2317 			atomic_set(&apic->lapic_timer.pending, 0);
2318 
2319 		}
2320 		break;
2321 	}
2322 	case APIC_ICR:
2323 		WARN_ON_ONCE(apic_x2apic_mode(apic));
2324 
2325 		/* No delay here, so we always clear the pending bit */
2326 		val &= ~APIC_ICR_BUSY;
2327 		kvm_apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2));
2328 		kvm_lapic_set_reg(apic, APIC_ICR, val);
2329 		break;
2330 	case APIC_ICR2:
2331 		if (apic_x2apic_mode(apic))
2332 			ret = 1;
2333 		else
2334 			kvm_lapic_set_reg(apic, APIC_ICR2, val & 0xff000000);
2335 		break;
2336 
2337 	case APIC_LVT0:
2338 		apic_manage_nmi_watchdog(apic, val);
2339 		fallthrough;
2340 	case APIC_LVTTHMR:
2341 	case APIC_LVTPC:
2342 	case APIC_LVT1:
2343 	case APIC_LVTERR:
2344 	case APIC_LVTCMCI: {
2345 		u32 index = get_lvt_index(reg);
2346 		if (!kvm_lapic_lvt_supported(apic, index)) {
2347 			ret = 1;
2348 			break;
2349 		}
2350 		if (!kvm_apic_sw_enabled(apic))
2351 			val |= APIC_LVT_MASKED;
2352 		val &= apic_lvt_mask[index];
2353 		kvm_lapic_set_reg(apic, reg, val);
2354 		break;
2355 	}
2356 
2357 	case APIC_LVTT:
2358 		if (!kvm_apic_sw_enabled(apic))
2359 			val |= APIC_LVT_MASKED;
2360 		val &= (apic_lvt_mask[0] | apic->lapic_timer.timer_mode_mask);
2361 		kvm_lapic_set_reg(apic, APIC_LVTT, val);
2362 		apic_update_lvtt(apic);
2363 		break;
2364 
2365 	case APIC_TMICT:
2366 		if (apic_lvtt_tscdeadline(apic))
2367 			break;
2368 
2369 		cancel_apic_timer(apic);
2370 		kvm_lapic_set_reg(apic, APIC_TMICT, val);
2371 		start_apic_timer(apic);
2372 		break;
2373 
2374 	case APIC_TDCR: {
2375 		uint32_t old_divisor = apic->divide_count;
2376 
2377 		kvm_lapic_set_reg(apic, APIC_TDCR, val & 0xb);
2378 		update_divide_count(apic);
2379 		if (apic->divide_count != old_divisor &&
2380 				apic->lapic_timer.period) {
2381 			hrtimer_cancel(&apic->lapic_timer.timer);
2382 			update_target_expiration(apic, old_divisor);
2383 			restart_apic_timer(apic);
2384 		}
2385 		break;
2386 	}
2387 	case APIC_ESR:
2388 		if (apic_x2apic_mode(apic) && val != 0)
2389 			ret = 1;
2390 		break;
2391 
2392 	case APIC_SELF_IPI:
2393 		/*
2394 		 * Self-IPI exists only when x2APIC is enabled.  Bits 7:0 hold
2395 		 * the vector, everything else is reserved.
2396 		 */
2397 		if (!apic_x2apic_mode(apic) || (val & ~APIC_VECTOR_MASK))
2398 			ret = 1;
2399 		else
2400 			kvm_apic_send_ipi(apic, APIC_DEST_SELF | val, 0);
2401 		break;
2402 	default:
2403 		ret = 1;
2404 		break;
2405 	}
2406 
2407 	/*
2408 	 * Recalculate APIC maps if necessary, e.g. if the software enable bit
2409 	 * was toggled, the APIC ID changed, etc...   The maps are marked dirty
2410 	 * on relevant changes, i.e. this is a nop for most writes.
2411 	 */
2412 	kvm_recalculate_apic_map(apic->vcpu->kvm);
2413 
2414 	return ret;
2415 }
2416 
2417 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
2418 			    gpa_t address, int len, const void *data)
2419 {
2420 	struct kvm_lapic *apic = to_lapic(this);
2421 	unsigned int offset = address - apic->base_address;
2422 	u32 val;
2423 
2424 	if (!apic_mmio_in_range(apic, address))
2425 		return -EOPNOTSUPP;
2426 
2427 	if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
2428 		if (!kvm_check_has_quirk(vcpu->kvm,
2429 					 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
2430 			return -EOPNOTSUPP;
2431 
2432 		return 0;
2433 	}
2434 
2435 	/*
2436 	 * APIC register must be aligned on 128-bits boundary.
2437 	 * 32/64/128 bits registers must be accessed thru 32 bits.
2438 	 * Refer SDM 8.4.1
2439 	 */
2440 	if (len != 4 || (offset & 0xf))
2441 		return 0;
2442 
2443 	val = *(u32*)data;
2444 
2445 	kvm_lapic_reg_write(apic, offset & 0xff0, val);
2446 
2447 	return 0;
2448 }
2449 
2450 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu)
2451 {
2452 	kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0);
2453 }
2454 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi);
2455 
2456 #define X2APIC_ICR_RESERVED_BITS (GENMASK_ULL(31, 20) | GENMASK_ULL(17, 16) | BIT(13))
2457 
2458 int kvm_x2apic_icr_write(struct kvm_lapic *apic, u64 data)
2459 {
2460 	if (data & X2APIC_ICR_RESERVED_BITS)
2461 		return 1;
2462 
2463 	/*
2464 	 * The BUSY bit is reserved on both Intel and AMD in x2APIC mode, but
2465 	 * only AMD requires it to be zero, Intel essentially just ignores the
2466 	 * bit.  And if IPI virtualization (Intel) or x2AVIC (AMD) is enabled,
2467 	 * the CPU performs the reserved bits checks, i.e. the underlying CPU
2468 	 * behavior will "win".  Arbitrarily clear the BUSY bit, as there is no
2469 	 * sane way to provide consistent behavior with respect to hardware.
2470 	 */
2471 	data &= ~APIC_ICR_BUSY;
2472 
2473 	kvm_apic_send_ipi(apic, (u32)data, (u32)(data >> 32));
2474 	if (kvm_x86_ops.x2apic_icr_is_split) {
2475 		kvm_lapic_set_reg(apic, APIC_ICR, data);
2476 		kvm_lapic_set_reg(apic, APIC_ICR2, data >> 32);
2477 	} else {
2478 		kvm_lapic_set_reg64(apic, APIC_ICR, data);
2479 	}
2480 	trace_kvm_apic_write(APIC_ICR, data);
2481 	return 0;
2482 }
2483 
2484 static u64 kvm_x2apic_icr_read(struct kvm_lapic *apic)
2485 {
2486 	if (kvm_x86_ops.x2apic_icr_is_split)
2487 		return (u64)kvm_lapic_get_reg(apic, APIC_ICR) |
2488 		       (u64)kvm_lapic_get_reg(apic, APIC_ICR2) << 32;
2489 
2490 	return kvm_lapic_get_reg64(apic, APIC_ICR);
2491 }
2492 
2493 /* emulate APIC access in a trap manner */
2494 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset)
2495 {
2496 	struct kvm_lapic *apic = vcpu->arch.apic;
2497 
2498 	/*
2499 	 * ICR is a single 64-bit register when x2APIC is enabled, all others
2500 	 * registers hold 32-bit values.  For legacy xAPIC, ICR writes need to
2501 	 * go down the common path to get the upper half from ICR2.
2502 	 *
2503 	 * Note, using the write helpers may incur an unnecessary write to the
2504 	 * virtual APIC state, but KVM needs to conditionally modify the value
2505 	 * in certain cases, e.g. to clear the ICR busy bit.  The cost of extra
2506 	 * conditional branches is likely a wash relative to the cost of the
2507 	 * maybe-unecessary write, and both are in the noise anyways.
2508 	 */
2509 	if (apic_x2apic_mode(apic) && offset == APIC_ICR)
2510 		WARN_ON_ONCE(kvm_x2apic_icr_write(apic, kvm_x2apic_icr_read(apic)));
2511 	else
2512 		kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
2513 }
2514 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode);
2515 
2516 void kvm_free_lapic(struct kvm_vcpu *vcpu)
2517 {
2518 	struct kvm_lapic *apic = vcpu->arch.apic;
2519 
2520 	if (!vcpu->arch.apic) {
2521 		static_branch_dec(&kvm_has_noapic_vcpu);
2522 		return;
2523 	}
2524 
2525 	hrtimer_cancel(&apic->lapic_timer.timer);
2526 
2527 	if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE))
2528 		static_branch_slow_dec_deferred(&apic_hw_disabled);
2529 
2530 	if (!apic->sw_enabled)
2531 		static_branch_slow_dec_deferred(&apic_sw_disabled);
2532 
2533 	if (apic->regs)
2534 		free_page((unsigned long)apic->regs);
2535 
2536 	kfree(apic);
2537 }
2538 
2539 /*
2540  *----------------------------------------------------------------------
2541  * LAPIC interface
2542  *----------------------------------------------------------------------
2543  */
2544 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu)
2545 {
2546 	struct kvm_lapic *apic = vcpu->arch.apic;
2547 
2548 	if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic))
2549 		return 0;
2550 
2551 	return apic->lapic_timer.tscdeadline;
2552 }
2553 
2554 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data)
2555 {
2556 	struct kvm_lapic *apic = vcpu->arch.apic;
2557 
2558 	if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic))
2559 		return;
2560 
2561 	hrtimer_cancel(&apic->lapic_timer.timer);
2562 	apic->lapic_timer.tscdeadline = data;
2563 	start_apic_timer(apic);
2564 }
2565 
2566 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8)
2567 {
2568 	apic_set_tpr(vcpu->arch.apic, (cr8 & 0x0f) << 4);
2569 }
2570 
2571 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu)
2572 {
2573 	u64 tpr;
2574 
2575 	tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI);
2576 
2577 	return (tpr & 0xf0) >> 4;
2578 }
2579 
2580 void kvm_lapic_set_base(struct kvm_vcpu *vcpu, u64 value)
2581 {
2582 	u64 old_value = vcpu->arch.apic_base;
2583 	struct kvm_lapic *apic = vcpu->arch.apic;
2584 
2585 	vcpu->arch.apic_base = value;
2586 
2587 	if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE)
2588 		kvm_update_cpuid_runtime(vcpu);
2589 
2590 	if (!apic)
2591 		return;
2592 
2593 	/* update jump label if enable bit changes */
2594 	if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) {
2595 		if (value & MSR_IA32_APICBASE_ENABLE) {
2596 			kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2597 			static_branch_slow_dec_deferred(&apic_hw_disabled);
2598 			/* Check if there are APF page ready requests pending */
2599 			kvm_make_request(KVM_REQ_APF_READY, vcpu);
2600 		} else {
2601 			static_branch_inc(&apic_hw_disabled.key);
2602 			atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
2603 		}
2604 	}
2605 
2606 	if ((old_value ^ value) & X2APIC_ENABLE) {
2607 		if (value & X2APIC_ENABLE)
2608 			kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id);
2609 		else if (value & MSR_IA32_APICBASE_ENABLE)
2610 			kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2611 	}
2612 
2613 	if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) {
2614 		kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
2615 		kvm_x86_call(set_virtual_apic_mode)(vcpu);
2616 	}
2617 
2618 	apic->base_address = apic->vcpu->arch.apic_base &
2619 			     MSR_IA32_APICBASE_BASE;
2620 
2621 	if ((value & MSR_IA32_APICBASE_ENABLE) &&
2622 	     apic->base_address != APIC_DEFAULT_PHYS_BASE) {
2623 		kvm_set_apicv_inhibit(apic->vcpu->kvm,
2624 				      APICV_INHIBIT_REASON_APIC_BASE_MODIFIED);
2625 	}
2626 }
2627 
2628 void kvm_apic_update_apicv(struct kvm_vcpu *vcpu)
2629 {
2630 	struct kvm_lapic *apic = vcpu->arch.apic;
2631 
2632 	if (apic->apicv_active) {
2633 		/* irr_pending is always true when apicv is activated. */
2634 		apic->irr_pending = true;
2635 		apic->isr_count = 1;
2636 	} else {
2637 		/*
2638 		 * Don't clear irr_pending, searching the IRR can race with
2639 		 * updates from the CPU as APICv is still active from hardware's
2640 		 * perspective.  The flag will be cleared as appropriate when
2641 		 * KVM injects the interrupt.
2642 		 */
2643 		apic->isr_count = count_vectors(apic->regs + APIC_ISR);
2644 	}
2645 	apic->highest_isr_cache = -1;
2646 }
2647 
2648 int kvm_alloc_apic_access_page(struct kvm *kvm)
2649 {
2650 	struct page *page;
2651 	void __user *hva;
2652 	int ret = 0;
2653 
2654 	mutex_lock(&kvm->slots_lock);
2655 	if (kvm->arch.apic_access_memslot_enabled ||
2656 	    kvm->arch.apic_access_memslot_inhibited)
2657 		goto out;
2658 
2659 	hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
2660 				      APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
2661 	if (IS_ERR(hva)) {
2662 		ret = PTR_ERR(hva);
2663 		goto out;
2664 	}
2665 
2666 	page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
2667 	if (is_error_page(page)) {
2668 		ret = -EFAULT;
2669 		goto out;
2670 	}
2671 
2672 	/*
2673 	 * Do not pin the page in memory, so that memory hot-unplug
2674 	 * is able to migrate it.
2675 	 */
2676 	put_page(page);
2677 	kvm->arch.apic_access_memslot_enabled = true;
2678 out:
2679 	mutex_unlock(&kvm->slots_lock);
2680 	return ret;
2681 }
2682 EXPORT_SYMBOL_GPL(kvm_alloc_apic_access_page);
2683 
2684 void kvm_inhibit_apic_access_page(struct kvm_vcpu *vcpu)
2685 {
2686 	struct kvm *kvm = vcpu->kvm;
2687 
2688 	if (!kvm->arch.apic_access_memslot_enabled)
2689 		return;
2690 
2691 	kvm_vcpu_srcu_read_unlock(vcpu);
2692 
2693 	mutex_lock(&kvm->slots_lock);
2694 
2695 	if (kvm->arch.apic_access_memslot_enabled) {
2696 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
2697 		/*
2698 		 * Clear "enabled" after the memslot is deleted so that a
2699 		 * different vCPU doesn't get a false negative when checking
2700 		 * the flag out of slots_lock.  No additional memory barrier is
2701 		 * needed as modifying memslots requires waiting other vCPUs to
2702 		 * drop SRCU (see above), and false positives are ok as the
2703 		 * flag is rechecked after acquiring slots_lock.
2704 		 */
2705 		kvm->arch.apic_access_memslot_enabled = false;
2706 
2707 		/*
2708 		 * Mark the memslot as inhibited to prevent reallocating the
2709 		 * memslot during vCPU creation, e.g. if a vCPU is hotplugged.
2710 		 */
2711 		kvm->arch.apic_access_memslot_inhibited = true;
2712 	}
2713 
2714 	mutex_unlock(&kvm->slots_lock);
2715 
2716 	kvm_vcpu_srcu_read_lock(vcpu);
2717 }
2718 
2719 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event)
2720 {
2721 	struct kvm_lapic *apic = vcpu->arch.apic;
2722 	u64 msr_val;
2723 	int i;
2724 
2725 	kvm_x86_call(apicv_pre_state_restore)(vcpu);
2726 
2727 	if (!init_event) {
2728 		msr_val = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE;
2729 		if (kvm_vcpu_is_reset_bsp(vcpu))
2730 			msr_val |= MSR_IA32_APICBASE_BSP;
2731 		kvm_lapic_set_base(vcpu, msr_val);
2732 	}
2733 
2734 	if (!apic)
2735 		return;
2736 
2737 	/* Stop the timer in case it's a reset to an active apic */
2738 	hrtimer_cancel(&apic->lapic_timer.timer);
2739 
2740 	/* The xAPIC ID is set at RESET even if the APIC was already enabled. */
2741 	if (!init_event)
2742 		kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2743 	kvm_apic_set_version(apic->vcpu);
2744 
2745 	for (i = 0; i < apic->nr_lvt_entries; i++)
2746 		kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED);
2747 	apic_update_lvtt(apic);
2748 	if (kvm_vcpu_is_reset_bsp(vcpu) &&
2749 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED))
2750 		kvm_lapic_set_reg(apic, APIC_LVT0,
2751 			     SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT));
2752 	apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
2753 
2754 	kvm_apic_set_dfr(apic, 0xffffffffU);
2755 	apic_set_spiv(apic, 0xff);
2756 	kvm_lapic_set_reg(apic, APIC_TASKPRI, 0);
2757 	if (!apic_x2apic_mode(apic))
2758 		kvm_apic_set_ldr(apic, 0);
2759 	kvm_lapic_set_reg(apic, APIC_ESR, 0);
2760 	if (!apic_x2apic_mode(apic)) {
2761 		kvm_lapic_set_reg(apic, APIC_ICR, 0);
2762 		kvm_lapic_set_reg(apic, APIC_ICR2, 0);
2763 	} else {
2764 		kvm_lapic_set_reg64(apic, APIC_ICR, 0);
2765 	}
2766 	kvm_lapic_set_reg(apic, APIC_TDCR, 0);
2767 	kvm_lapic_set_reg(apic, APIC_TMICT, 0);
2768 	for (i = 0; i < 8; i++) {
2769 		kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0);
2770 		kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0);
2771 		kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0);
2772 	}
2773 	kvm_apic_update_apicv(vcpu);
2774 	update_divide_count(apic);
2775 	atomic_set(&apic->lapic_timer.pending, 0);
2776 
2777 	vcpu->arch.pv_eoi.msr_val = 0;
2778 	apic_update_ppr(apic);
2779 	if (apic->apicv_active) {
2780 		kvm_x86_call(apicv_post_state_restore)(vcpu);
2781 		kvm_x86_call(hwapic_irr_update)(vcpu, -1);
2782 		kvm_x86_call(hwapic_isr_update)(-1);
2783 	}
2784 
2785 	vcpu->arch.apic_arb_prio = 0;
2786 	vcpu->arch.apic_attention = 0;
2787 
2788 	kvm_recalculate_apic_map(vcpu->kvm);
2789 }
2790 
2791 /*
2792  *----------------------------------------------------------------------
2793  * timer interface
2794  *----------------------------------------------------------------------
2795  */
2796 
2797 static bool lapic_is_periodic(struct kvm_lapic *apic)
2798 {
2799 	return apic_lvtt_period(apic);
2800 }
2801 
2802 int apic_has_pending_timer(struct kvm_vcpu *vcpu)
2803 {
2804 	struct kvm_lapic *apic = vcpu->arch.apic;
2805 
2806 	if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT))
2807 		return atomic_read(&apic->lapic_timer.pending);
2808 
2809 	return 0;
2810 }
2811 
2812 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type)
2813 {
2814 	u32 reg = kvm_lapic_get_reg(apic, lvt_type);
2815 	int vector, mode, trig_mode;
2816 	int r;
2817 
2818 	if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) {
2819 		vector = reg & APIC_VECTOR_MASK;
2820 		mode = reg & APIC_MODE_MASK;
2821 		trig_mode = reg & APIC_LVT_LEVEL_TRIGGER;
2822 
2823 		r = __apic_accept_irq(apic, mode, vector, 1, trig_mode, NULL);
2824 		if (r && lvt_type == APIC_LVTPC &&
2825 		    guest_cpuid_is_intel_compatible(apic->vcpu))
2826 			kvm_lapic_set_reg(apic, APIC_LVTPC, reg | APIC_LVT_MASKED);
2827 		return r;
2828 	}
2829 	return 0;
2830 }
2831 
2832 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu)
2833 {
2834 	struct kvm_lapic *apic = vcpu->arch.apic;
2835 
2836 	if (apic)
2837 		kvm_apic_local_deliver(apic, APIC_LVT0);
2838 }
2839 
2840 static const struct kvm_io_device_ops apic_mmio_ops = {
2841 	.read     = apic_mmio_read,
2842 	.write    = apic_mmio_write,
2843 };
2844 
2845 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data)
2846 {
2847 	struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer);
2848 	struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer);
2849 
2850 	apic_timer_expired(apic, true);
2851 
2852 	if (lapic_is_periodic(apic)) {
2853 		advance_periodic_target_expiration(apic);
2854 		hrtimer_add_expires_ns(&ktimer->timer, ktimer->period);
2855 		return HRTIMER_RESTART;
2856 	} else
2857 		return HRTIMER_NORESTART;
2858 }
2859 
2860 int kvm_create_lapic(struct kvm_vcpu *vcpu)
2861 {
2862 	struct kvm_lapic *apic;
2863 
2864 	ASSERT(vcpu != NULL);
2865 
2866 	if (!irqchip_in_kernel(vcpu->kvm)) {
2867 		static_branch_inc(&kvm_has_noapic_vcpu);
2868 		return 0;
2869 	}
2870 
2871 	apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT);
2872 	if (!apic)
2873 		goto nomem;
2874 
2875 	vcpu->arch.apic = apic;
2876 
2877 	if (kvm_x86_ops.alloc_apic_backing_page)
2878 		apic->regs = kvm_x86_call(alloc_apic_backing_page)(vcpu);
2879 	else
2880 		apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
2881 	if (!apic->regs) {
2882 		printk(KERN_ERR "malloc apic regs error for vcpu %x\n",
2883 		       vcpu->vcpu_id);
2884 		goto nomem_free_apic;
2885 	}
2886 	apic->vcpu = vcpu;
2887 
2888 	apic->nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu);
2889 
2890 	hrtimer_init(&apic->lapic_timer.timer, CLOCK_MONOTONIC,
2891 		     HRTIMER_MODE_ABS_HARD);
2892 	apic->lapic_timer.timer.function = apic_timer_fn;
2893 	if (lapic_timer_advance)
2894 		apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
2895 
2896 	/*
2897 	 * Stuff the APIC ENABLE bit in lieu of temporarily incrementing
2898 	 * apic_hw_disabled; the full RESET value is set by kvm_lapic_reset().
2899 	 */
2900 	vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE;
2901 	static_branch_inc(&apic_sw_disabled.key); /* sw disabled at reset */
2902 	kvm_iodevice_init(&apic->dev, &apic_mmio_ops);
2903 
2904 	/*
2905 	 * Defer evaluating inhibits until the vCPU is first run, as this vCPU
2906 	 * will not get notified of any changes until this vCPU is visible to
2907 	 * other vCPUs (marked online and added to the set of vCPUs).
2908 	 *
2909 	 * Opportunistically mark APICv active as VMX in particularly is highly
2910 	 * unlikely to have inhibits.  Ignore the current per-VM APICv state so
2911 	 * that vCPU creation is guaranteed to run with a deterministic value,
2912 	 * the request will ensure the vCPU gets the correct state before VM-Entry.
2913 	 */
2914 	if (enable_apicv) {
2915 		apic->apicv_active = true;
2916 		kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
2917 	}
2918 
2919 	return 0;
2920 nomem_free_apic:
2921 	kfree(apic);
2922 	vcpu->arch.apic = NULL;
2923 nomem:
2924 	return -ENOMEM;
2925 }
2926 
2927 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu)
2928 {
2929 	struct kvm_lapic *apic = vcpu->arch.apic;
2930 	u32 ppr;
2931 
2932 	if (!kvm_apic_present(vcpu))
2933 		return -1;
2934 
2935 	__apic_update_ppr(apic, &ppr);
2936 	return apic_has_interrupt_for_ppr(apic, ppr);
2937 }
2938 EXPORT_SYMBOL_GPL(kvm_apic_has_interrupt);
2939 
2940 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu)
2941 {
2942 	u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0);
2943 
2944 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
2945 		return 1;
2946 	if ((lvt0 & APIC_LVT_MASKED) == 0 &&
2947 	    GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT)
2948 		return 1;
2949 	return 0;
2950 }
2951 
2952 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu)
2953 {
2954 	struct kvm_lapic *apic = vcpu->arch.apic;
2955 
2956 	if (atomic_read(&apic->lapic_timer.pending) > 0) {
2957 		kvm_apic_inject_pending_timer_irqs(apic);
2958 		atomic_set(&apic->lapic_timer.pending, 0);
2959 	}
2960 }
2961 
2962 void kvm_apic_ack_interrupt(struct kvm_vcpu *vcpu, int vector)
2963 {
2964 	struct kvm_lapic *apic = vcpu->arch.apic;
2965 	u32 ppr;
2966 
2967 	if (WARN_ON_ONCE(vector < 0 || !apic))
2968 		return;
2969 
2970 	/*
2971 	 * We get here even with APIC virtualization enabled, if doing
2972 	 * nested virtualization and L1 runs with the "acknowledge interrupt
2973 	 * on exit" mode.  Then we cannot inject the interrupt via RVI,
2974 	 * because the process would deliver it through the IDT.
2975 	 */
2976 
2977 	apic_clear_irr(vector, apic);
2978 	if (kvm_hv_synic_auto_eoi_set(vcpu, vector)) {
2979 		/*
2980 		 * For auto-EOI interrupts, there might be another pending
2981 		 * interrupt above PPR, so check whether to raise another
2982 		 * KVM_REQ_EVENT.
2983 		 */
2984 		apic_update_ppr(apic);
2985 	} else {
2986 		/*
2987 		 * For normal interrupts, PPR has been raised and there cannot
2988 		 * be a higher-priority pending interrupt---except if there was
2989 		 * a concurrent interrupt injection, but that would have
2990 		 * triggered KVM_REQ_EVENT already.
2991 		 */
2992 		apic_set_isr(vector, apic);
2993 		__apic_update_ppr(apic, &ppr);
2994 	}
2995 
2996 }
2997 EXPORT_SYMBOL_GPL(kvm_apic_ack_interrupt);
2998 
2999 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu,
3000 		struct kvm_lapic_state *s, bool set)
3001 {
3002 	if (apic_x2apic_mode(vcpu->arch.apic)) {
3003 		u32 x2apic_id = kvm_x2apic_id(vcpu->arch.apic);
3004 		u32 *id = (u32 *)(s->regs + APIC_ID);
3005 		u32 *ldr = (u32 *)(s->regs + APIC_LDR);
3006 		u64 icr;
3007 
3008 		if (vcpu->kvm->arch.x2apic_format) {
3009 			if (*id != x2apic_id)
3010 				return -EINVAL;
3011 		} else {
3012 			/*
3013 			 * Ignore the userspace value when setting APIC state.
3014 			 * KVM's model is that the x2APIC ID is readonly, e.g.
3015 			 * KVM only supports delivering interrupts to KVM's
3016 			 * version of the x2APIC ID.  However, for backwards
3017 			 * compatibility, don't reject attempts to set a
3018 			 * mismatched ID for userspace that hasn't opted into
3019 			 * x2apic_format.
3020 			 */
3021 			if (set)
3022 				*id = x2apic_id;
3023 			else
3024 				*id = x2apic_id << 24;
3025 		}
3026 
3027 		/*
3028 		 * In x2APIC mode, the LDR is fixed and based on the id.  And
3029 		 * if the ICR is _not_ split, ICR is internally a single 64-bit
3030 		 * register, but needs to be split to ICR+ICR2 in userspace for
3031 		 * backwards compatibility.
3032 		 */
3033 		if (set)
3034 			*ldr = kvm_apic_calc_x2apic_ldr(x2apic_id);
3035 
3036 		if (!kvm_x86_ops.x2apic_icr_is_split) {
3037 			if (set) {
3038 				icr = __kvm_lapic_get_reg(s->regs, APIC_ICR) |
3039 				      (u64)__kvm_lapic_get_reg(s->regs, APIC_ICR2) << 32;
3040 				__kvm_lapic_set_reg64(s->regs, APIC_ICR, icr);
3041 			} else {
3042 				icr = __kvm_lapic_get_reg64(s->regs, APIC_ICR);
3043 				__kvm_lapic_set_reg(s->regs, APIC_ICR2, icr >> 32);
3044 			}
3045 		}
3046 	}
3047 
3048 	return 0;
3049 }
3050 
3051 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
3052 {
3053 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s));
3054 
3055 	/*
3056 	 * Get calculated timer current count for remaining timer period (if
3057 	 * any) and store it in the returned register set.
3058 	 */
3059 	__kvm_lapic_set_reg(s->regs, APIC_TMCCT,
3060 			    __apic_read(vcpu->arch.apic, APIC_TMCCT));
3061 
3062 	return kvm_apic_state_fixup(vcpu, s, false);
3063 }
3064 
3065 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
3066 {
3067 	struct kvm_lapic *apic = vcpu->arch.apic;
3068 	int r;
3069 
3070 	kvm_x86_call(apicv_pre_state_restore)(vcpu);
3071 
3072 	kvm_lapic_set_base(vcpu, vcpu->arch.apic_base);
3073 	/* set SPIV separately to get count of SW disabled APICs right */
3074 	apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV)));
3075 
3076 	r = kvm_apic_state_fixup(vcpu, s, true);
3077 	if (r) {
3078 		kvm_recalculate_apic_map(vcpu->kvm);
3079 		return r;
3080 	}
3081 	memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s));
3082 
3083 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
3084 	kvm_recalculate_apic_map(vcpu->kvm);
3085 	kvm_apic_set_version(vcpu);
3086 
3087 	apic_update_ppr(apic);
3088 	cancel_apic_timer(apic);
3089 	apic->lapic_timer.expired_tscdeadline = 0;
3090 	apic_update_lvtt(apic);
3091 	apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
3092 	update_divide_count(apic);
3093 	__start_apic_timer(apic, APIC_TMCCT);
3094 	kvm_lapic_set_reg(apic, APIC_TMCCT, 0);
3095 	kvm_apic_update_apicv(vcpu);
3096 	if (apic->apicv_active) {
3097 		kvm_x86_call(apicv_post_state_restore)(vcpu);
3098 		kvm_x86_call(hwapic_irr_update)(vcpu,
3099 						apic_find_highest_irr(apic));
3100 		kvm_x86_call(hwapic_isr_update)(apic_find_highest_isr(apic));
3101 	}
3102 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3103 	if (ioapic_in_kernel(vcpu->kvm))
3104 		kvm_rtc_eoi_tracking_restore_one(vcpu);
3105 
3106 	vcpu->arch.apic_arb_prio = 0;
3107 
3108 	return 0;
3109 }
3110 
3111 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu)
3112 {
3113 	struct hrtimer *timer;
3114 
3115 	if (!lapic_in_kernel(vcpu) ||
3116 		kvm_can_post_timer_interrupt(vcpu))
3117 		return;
3118 
3119 	timer = &vcpu->arch.apic->lapic_timer.timer;
3120 	if (hrtimer_cancel(timer))
3121 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD);
3122 }
3123 
3124 /*
3125  * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt
3126  *
3127  * Detect whether guest triggered PV EOI since the
3128  * last entry. If yes, set EOI on guests's behalf.
3129  * Clear PV EOI in guest memory in any case.
3130  */
3131 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu,
3132 					struct kvm_lapic *apic)
3133 {
3134 	int vector;
3135 	/*
3136 	 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host
3137 	 * and KVM_PV_EOI_ENABLED in guest memory as follows:
3138 	 *
3139 	 * KVM_APIC_PV_EOI_PENDING is unset:
3140 	 * 	-> host disabled PV EOI.
3141 	 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set:
3142 	 * 	-> host enabled PV EOI, guest did not execute EOI yet.
3143 	 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset:
3144 	 * 	-> host enabled PV EOI, guest executed EOI.
3145 	 */
3146 	BUG_ON(!pv_eoi_enabled(vcpu));
3147 
3148 	if (pv_eoi_test_and_clr_pending(vcpu))
3149 		return;
3150 	vector = apic_set_eoi(apic);
3151 	trace_kvm_pv_eoi(apic, vector);
3152 }
3153 
3154 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu)
3155 {
3156 	u32 data;
3157 
3158 	if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention))
3159 		apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic);
3160 
3161 	if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
3162 		return;
3163 
3164 	if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
3165 				  sizeof(u32)))
3166 		return;
3167 
3168 	apic_set_tpr(vcpu->arch.apic, data & 0xff);
3169 }
3170 
3171 /*
3172  * apic_sync_pv_eoi_to_guest - called before vmentry
3173  *
3174  * Detect whether it's safe to enable PV EOI and
3175  * if yes do so.
3176  */
3177 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu,
3178 					struct kvm_lapic *apic)
3179 {
3180 	if (!pv_eoi_enabled(vcpu) ||
3181 	    /* IRR set or many bits in ISR: could be nested. */
3182 	    apic->irr_pending ||
3183 	    /* Cache not set: could be safe but we don't bother. */
3184 	    apic->highest_isr_cache == -1 ||
3185 	    /* Need EOI to update ioapic. */
3186 	    kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) {
3187 		/*
3188 		 * PV EOI was disabled by apic_sync_pv_eoi_from_guest
3189 		 * so we need not do anything here.
3190 		 */
3191 		return;
3192 	}
3193 
3194 	pv_eoi_set_pending(apic->vcpu);
3195 }
3196 
3197 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu)
3198 {
3199 	u32 data, tpr;
3200 	int max_irr, max_isr;
3201 	struct kvm_lapic *apic = vcpu->arch.apic;
3202 
3203 	apic_sync_pv_eoi_to_guest(vcpu, apic);
3204 
3205 	if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
3206 		return;
3207 
3208 	tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff;
3209 	max_irr = apic_find_highest_irr(apic);
3210 	if (max_irr < 0)
3211 		max_irr = 0;
3212 	max_isr = apic_find_highest_isr(apic);
3213 	if (max_isr < 0)
3214 		max_isr = 0;
3215 	data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24);
3216 
3217 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
3218 				sizeof(u32));
3219 }
3220 
3221 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr)
3222 {
3223 	if (vapic_addr) {
3224 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
3225 					&vcpu->arch.apic->vapic_cache,
3226 					vapic_addr, sizeof(u32)))
3227 			return -EINVAL;
3228 		__set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
3229 	} else {
3230 		__clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
3231 	}
3232 
3233 	vcpu->arch.apic->vapic_addr = vapic_addr;
3234 	return 0;
3235 }
3236 
3237 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data)
3238 {
3239 	u32 low;
3240 
3241 	if (reg == APIC_ICR) {
3242 		*data = kvm_x2apic_icr_read(apic);
3243 		return 0;
3244 	}
3245 
3246 	if (kvm_lapic_reg_read(apic, reg, 4, &low))
3247 		return 1;
3248 
3249 	*data = low;
3250 
3251 	return 0;
3252 }
3253 
3254 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data)
3255 {
3256 	/*
3257 	 * ICR is a 64-bit register in x2APIC mode (and Hyper-V PV vAPIC) and
3258 	 * can be written as such, all other registers remain accessible only
3259 	 * through 32-bit reads/writes.
3260 	 */
3261 	if (reg == APIC_ICR)
3262 		return kvm_x2apic_icr_write(apic, data);
3263 
3264 	/* Bits 63:32 are reserved in all other registers. */
3265 	if (data >> 32)
3266 		return 1;
3267 
3268 	return kvm_lapic_reg_write(apic, reg, (u32)data);
3269 }
3270 
3271 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data)
3272 {
3273 	struct kvm_lapic *apic = vcpu->arch.apic;
3274 	u32 reg = (msr - APIC_BASE_MSR) << 4;
3275 
3276 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
3277 		return 1;
3278 
3279 	return kvm_lapic_msr_write(apic, reg, data);
3280 }
3281 
3282 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data)
3283 {
3284 	struct kvm_lapic *apic = vcpu->arch.apic;
3285 	u32 reg = (msr - APIC_BASE_MSR) << 4;
3286 
3287 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
3288 		return 1;
3289 
3290 	return kvm_lapic_msr_read(apic, reg, data);
3291 }
3292 
3293 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data)
3294 {
3295 	if (!lapic_in_kernel(vcpu))
3296 		return 1;
3297 
3298 	return kvm_lapic_msr_write(vcpu->arch.apic, reg, data);
3299 }
3300 
3301 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data)
3302 {
3303 	if (!lapic_in_kernel(vcpu))
3304 		return 1;
3305 
3306 	return kvm_lapic_msr_read(vcpu->arch.apic, reg, data);
3307 }
3308 
3309 int kvm_lapic_set_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len)
3310 {
3311 	u64 addr = data & ~KVM_MSR_ENABLED;
3312 	struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data;
3313 	unsigned long new_len;
3314 	int ret;
3315 
3316 	if (!IS_ALIGNED(addr, 4))
3317 		return 1;
3318 
3319 	if (data & KVM_MSR_ENABLED) {
3320 		if (addr == ghc->gpa && len <= ghc->len)
3321 			new_len = ghc->len;
3322 		else
3323 			new_len = len;
3324 
3325 		ret = kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len);
3326 		if (ret)
3327 			return ret;
3328 	}
3329 
3330 	vcpu->arch.pv_eoi.msr_val = data;
3331 
3332 	return 0;
3333 }
3334 
3335 int kvm_apic_accept_events(struct kvm_vcpu *vcpu)
3336 {
3337 	struct kvm_lapic *apic = vcpu->arch.apic;
3338 	u8 sipi_vector;
3339 	int r;
3340 
3341 	if (!kvm_apic_has_pending_init_or_sipi(vcpu))
3342 		return 0;
3343 
3344 	if (is_guest_mode(vcpu)) {
3345 		r = kvm_check_nested_events(vcpu);
3346 		if (r < 0)
3347 			return r == -EBUSY ? 0 : r;
3348 		/*
3349 		 * Continue processing INIT/SIPI even if a nested VM-Exit
3350 		 * occurred, e.g. pending SIPIs should be dropped if INIT+SIPI
3351 		 * are blocked as a result of transitioning to VMX root mode.
3352 		 */
3353 	}
3354 
3355 	/*
3356 	 * INITs are blocked while CPU is in specific states (SMM, VMX root
3357 	 * mode, SVM with GIF=0), while SIPIs are dropped if the CPU isn't in
3358 	 * wait-for-SIPI (WFS).
3359 	 */
3360 	if (!kvm_apic_init_sipi_allowed(vcpu)) {
3361 		WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED);
3362 		clear_bit(KVM_APIC_SIPI, &apic->pending_events);
3363 		return 0;
3364 	}
3365 
3366 	if (test_and_clear_bit(KVM_APIC_INIT, &apic->pending_events)) {
3367 		kvm_vcpu_reset(vcpu, true);
3368 		if (kvm_vcpu_is_bsp(apic->vcpu))
3369 			vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3370 		else
3371 			vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
3372 	}
3373 	if (test_and_clear_bit(KVM_APIC_SIPI, &apic->pending_events)) {
3374 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
3375 			/* evaluate pending_events before reading the vector */
3376 			smp_rmb();
3377 			sipi_vector = apic->sipi_vector;
3378 			kvm_x86_call(vcpu_deliver_sipi_vector)(vcpu,
3379 							       sipi_vector);
3380 			vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3381 		}
3382 	}
3383 	return 0;
3384 }
3385 
3386 void kvm_lapic_exit(void)
3387 {
3388 	static_key_deferred_flush(&apic_hw_disabled);
3389 	WARN_ON(static_branch_unlikely(&apic_hw_disabled.key));
3390 	static_key_deferred_flush(&apic_sw_disabled);
3391 	WARN_ON(static_branch_unlikely(&apic_sw_disabled.key));
3392 }
3393