1 // SPDX-License-Identifier: GPL-2.0-only 2 3 /* 4 * Local APIC virtualization 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2007 Novell 8 * Copyright (C) 2007 Intel 9 * Copyright 2009 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Dor Laor <dor.laor@qumranet.com> 13 * Gregory Haskins <ghaskins@novell.com> 14 * Yaozu (Eddie) Dong <eddie.dong@intel.com> 15 * 16 * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation. 17 */ 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/kvm_host.h> 21 #include <linux/kvm.h> 22 #include <linux/mm.h> 23 #include <linux/highmem.h> 24 #include <linux/smp.h> 25 #include <linux/hrtimer.h> 26 #include <linux/io.h> 27 #include <linux/export.h> 28 #include <linux/math64.h> 29 #include <linux/slab.h> 30 #include <asm/apic.h> 31 #include <asm/processor.h> 32 #include <asm/mce.h> 33 #include <asm/msr.h> 34 #include <asm/page.h> 35 #include <asm/current.h> 36 #include <asm/apicdef.h> 37 #include <asm/delay.h> 38 #include <linux/atomic.h> 39 #include <linux/jump_label.h> 40 #include "kvm_cache_regs.h" 41 #include "irq.h" 42 #include "ioapic.h" 43 #include "trace.h" 44 #include "x86.h" 45 #include "xen.h" 46 #include "cpuid.h" 47 #include "hyperv.h" 48 #include "smm.h" 49 50 #ifndef CONFIG_X86_64 51 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y)) 52 #else 53 #define mod_64(x, y) ((x) % (y)) 54 #endif 55 56 /* 14 is the version for Xeon and Pentium 8.4.8*/ 57 #define APIC_VERSION 0x14UL 58 #define LAPIC_MMIO_LENGTH (1 << 12) 59 60 /* 61 * Enable local APIC timer advancement (tscdeadline mode only) with adaptive 62 * tuning. When enabled, KVM programs the host timer event to fire early, i.e. 63 * before the deadline expires, to account for the delay between taking the 64 * VM-Exit (to inject the guest event) and the subsequent VM-Enter to resume 65 * the guest, i.e. so that the interrupt arrives in the guest with minimal 66 * latency relative to the deadline programmed by the guest. 67 */ 68 static bool lapic_timer_advance __read_mostly = true; 69 module_param(lapic_timer_advance, bool, 0444); 70 71 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN 100 /* clock cycles */ 72 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX 10000 /* clock cycles */ 73 #define LAPIC_TIMER_ADVANCE_NS_INIT 1000 74 #define LAPIC_TIMER_ADVANCE_NS_MAX 5000 75 /* step-by-step approximation to mitigate fluctuation */ 76 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8 77 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data); 78 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data); 79 80 static inline void kvm_lapic_set_reg(struct kvm_lapic *apic, int reg_off, u32 val) 81 { 82 apic_set_reg(apic->regs, reg_off, val); 83 } 84 85 static __always_inline u64 kvm_lapic_get_reg64(struct kvm_lapic *apic, int reg) 86 { 87 return apic_get_reg64(apic->regs, reg); 88 } 89 90 static __always_inline void kvm_lapic_set_reg64(struct kvm_lapic *apic, 91 int reg, u64 val) 92 { 93 apic_set_reg64(apic->regs, reg, val); 94 } 95 96 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector) 97 { 98 struct kvm_lapic *apic = vcpu->arch.apic; 99 100 return apic_test_vector(vector, apic->regs + APIC_ISR) || 101 apic_test_vector(vector, apic->regs + APIC_IRR); 102 } 103 104 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); 105 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); 106 107 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_hw_disabled, HZ); 108 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_sw_disabled, HZ); 109 110 static inline int apic_enabled(struct kvm_lapic *apic) 111 { 112 return kvm_apic_sw_enabled(apic) && kvm_apic_hw_enabled(apic); 113 } 114 115 #define LVT_MASK \ 116 (APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK) 117 118 #define LINT_MASK \ 119 (LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \ 120 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER) 121 122 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic) 123 { 124 return apic->vcpu->vcpu_id; 125 } 126 127 static bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu) 128 { 129 return pi_inject_timer && kvm_vcpu_apicv_active(vcpu) && 130 (kvm_mwait_in_guest(vcpu->kvm) || kvm_hlt_in_guest(vcpu->kvm)); 131 } 132 133 bool kvm_can_use_hv_timer(struct kvm_vcpu *vcpu) 134 { 135 return kvm_x86_ops.set_hv_timer 136 && !(kvm_mwait_in_guest(vcpu->kvm) || 137 kvm_can_post_timer_interrupt(vcpu)); 138 } 139 140 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu) 141 { 142 return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE; 143 } 144 145 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id) 146 { 147 return ((id >> 4) << 16) | (1 << (id & 0xf)); 148 } 149 150 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map, 151 u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) { 152 switch (map->logical_mode) { 153 case KVM_APIC_MODE_SW_DISABLED: 154 /* Arbitrarily use the flat map so that @cluster isn't NULL. */ 155 *cluster = map->xapic_flat_map; 156 *mask = 0; 157 return true; 158 case KVM_APIC_MODE_X2APIC: { 159 u32 offset = (dest_id >> 16) * 16; 160 u32 max_apic_id = map->max_apic_id; 161 162 if (offset <= max_apic_id) { 163 u8 cluster_size = min(max_apic_id - offset + 1, 16U); 164 165 offset = array_index_nospec(offset, map->max_apic_id + 1); 166 *cluster = &map->phys_map[offset]; 167 *mask = dest_id & (0xffff >> (16 - cluster_size)); 168 } else { 169 *mask = 0; 170 } 171 172 return true; 173 } 174 case KVM_APIC_MODE_XAPIC_FLAT: 175 *cluster = map->xapic_flat_map; 176 *mask = dest_id & 0xff; 177 return true; 178 case KVM_APIC_MODE_XAPIC_CLUSTER: 179 *cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf]; 180 *mask = dest_id & 0xf; 181 return true; 182 case KVM_APIC_MODE_MAP_DISABLED: 183 return false; 184 default: 185 WARN_ON_ONCE(1); 186 return false; 187 } 188 } 189 190 static int kvm_recalculate_phys_map(struct kvm_apic_map *new, 191 struct kvm_vcpu *vcpu, 192 bool *xapic_id_mismatch) 193 { 194 struct kvm_lapic *apic = vcpu->arch.apic; 195 u32 x2apic_id = kvm_x2apic_id(apic); 196 u32 xapic_id = kvm_xapic_id(apic); 197 u32 physical_id; 198 199 /* 200 * For simplicity, KVM always allocates enough space for all possible 201 * xAPIC IDs. Yell, but don't kill the VM, as KVM can continue on 202 * without the optimized map. 203 */ 204 if (WARN_ON_ONCE(xapic_id > new->max_apic_id)) 205 return -EINVAL; 206 207 /* 208 * Bail if a vCPU was added and/or enabled its APIC between allocating 209 * the map and doing the actual calculations for the map. Note, KVM 210 * hardcodes the x2APIC ID to vcpu_id, i.e. there's no TOCTOU bug if 211 * the compiler decides to reload x2apic_id after this check. 212 */ 213 if (x2apic_id > new->max_apic_id) 214 return -E2BIG; 215 216 /* 217 * Deliberately truncate the vCPU ID when detecting a mismatched APIC 218 * ID to avoid false positives if the vCPU ID, i.e. x2APIC ID, is a 219 * 32-bit value. Any unwanted aliasing due to truncation results will 220 * be detected below. 221 */ 222 if (!apic_x2apic_mode(apic) && xapic_id != (u8)vcpu->vcpu_id) 223 *xapic_id_mismatch = true; 224 225 /* 226 * Apply KVM's hotplug hack if userspace has enable 32-bit APIC IDs. 227 * Allow sending events to vCPUs by their x2APIC ID even if the target 228 * vCPU is in legacy xAPIC mode, and silently ignore aliased xAPIC IDs 229 * (the x2APIC ID is truncated to 8 bits, causing IDs > 0xff to wrap 230 * and collide). 231 * 232 * Honor the architectural (and KVM's non-optimized) behavior if 233 * userspace has not enabled 32-bit x2APIC IDs. Each APIC is supposed 234 * to process messages independently. If multiple vCPUs have the same 235 * effective APIC ID, e.g. due to the x2APIC wrap or because the guest 236 * manually modified its xAPIC IDs, events targeting that ID are 237 * supposed to be recognized by all vCPUs with said ID. 238 */ 239 if (vcpu->kvm->arch.x2apic_format) { 240 /* See also kvm_apic_match_physical_addr(). */ 241 if (apic_x2apic_mode(apic) || x2apic_id > 0xff) 242 new->phys_map[x2apic_id] = apic; 243 244 if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id]) 245 new->phys_map[xapic_id] = apic; 246 } else { 247 /* 248 * Disable the optimized map if the physical APIC ID is already 249 * mapped, i.e. is aliased to multiple vCPUs. The optimized 250 * map requires a strict 1:1 mapping between IDs and vCPUs. 251 */ 252 if (apic_x2apic_mode(apic)) 253 physical_id = x2apic_id; 254 else 255 physical_id = xapic_id; 256 257 if (new->phys_map[physical_id]) 258 return -EINVAL; 259 260 new->phys_map[physical_id] = apic; 261 } 262 263 return 0; 264 } 265 266 static void kvm_recalculate_logical_map(struct kvm_apic_map *new, 267 struct kvm_vcpu *vcpu) 268 { 269 struct kvm_lapic *apic = vcpu->arch.apic; 270 enum kvm_apic_logical_mode logical_mode; 271 struct kvm_lapic **cluster; 272 u16 mask; 273 u32 ldr; 274 275 if (new->logical_mode == KVM_APIC_MODE_MAP_DISABLED) 276 return; 277 278 if (!kvm_apic_sw_enabled(apic)) 279 return; 280 281 ldr = kvm_lapic_get_reg(apic, APIC_LDR); 282 if (!ldr) 283 return; 284 285 if (apic_x2apic_mode(apic)) { 286 logical_mode = KVM_APIC_MODE_X2APIC; 287 } else { 288 ldr = GET_APIC_LOGICAL_ID(ldr); 289 if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT) 290 logical_mode = KVM_APIC_MODE_XAPIC_FLAT; 291 else 292 logical_mode = KVM_APIC_MODE_XAPIC_CLUSTER; 293 } 294 295 /* 296 * To optimize logical mode delivery, all software-enabled APICs must 297 * be configured for the same mode. 298 */ 299 if (new->logical_mode == KVM_APIC_MODE_SW_DISABLED) { 300 new->logical_mode = logical_mode; 301 } else if (new->logical_mode != logical_mode) { 302 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED; 303 return; 304 } 305 306 /* 307 * In x2APIC mode, the LDR is read-only and derived directly from the 308 * x2APIC ID, thus is guaranteed to be addressable. KVM reuses 309 * kvm_apic_map.phys_map to optimize logical mode x2APIC interrupts by 310 * reversing the LDR calculation to get cluster of APICs, i.e. no 311 * additional work is required. 312 */ 313 if (apic_x2apic_mode(apic)) 314 return; 315 316 if (WARN_ON_ONCE(!kvm_apic_map_get_logical_dest(new, ldr, 317 &cluster, &mask))) { 318 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED; 319 return; 320 } 321 322 if (!mask) 323 return; 324 325 ldr = ffs(mask) - 1; 326 if (!is_power_of_2(mask) || cluster[ldr]) 327 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED; 328 else 329 cluster[ldr] = apic; 330 } 331 332 /* 333 * CLEAN -> DIRTY and UPDATE_IN_PROGRESS -> DIRTY changes happen without a lock. 334 * 335 * DIRTY -> UPDATE_IN_PROGRESS and UPDATE_IN_PROGRESS -> CLEAN happen with 336 * apic_map_lock_held. 337 */ 338 enum { 339 CLEAN, 340 UPDATE_IN_PROGRESS, 341 DIRTY 342 }; 343 344 static void kvm_recalculate_apic_map(struct kvm *kvm) 345 { 346 struct kvm_apic_map *new, *old = NULL; 347 struct kvm_vcpu *vcpu; 348 unsigned long i; 349 u32 max_id = 255; /* enough space for any xAPIC ID */ 350 bool xapic_id_mismatch; 351 int r; 352 353 /* Read kvm->arch.apic_map_dirty before kvm->arch.apic_map. */ 354 if (atomic_read_acquire(&kvm->arch.apic_map_dirty) == CLEAN) 355 return; 356 357 WARN_ONCE(!irqchip_in_kernel(kvm), 358 "Dirty APIC map without an in-kernel local APIC"); 359 360 mutex_lock(&kvm->arch.apic_map_lock); 361 362 retry: 363 /* 364 * Read kvm->arch.apic_map_dirty before kvm->arch.apic_map (if clean) 365 * or the APIC registers (if dirty). Note, on retry the map may have 366 * not yet been marked dirty by whatever task changed a vCPU's x2APIC 367 * ID, i.e. the map may still show up as in-progress. In that case 368 * this task still needs to retry and complete its calculation. 369 */ 370 if (atomic_cmpxchg_acquire(&kvm->arch.apic_map_dirty, 371 DIRTY, UPDATE_IN_PROGRESS) == CLEAN) { 372 /* Someone else has updated the map. */ 373 mutex_unlock(&kvm->arch.apic_map_lock); 374 return; 375 } 376 377 /* 378 * Reset the mismatch flag between attempts so that KVM does the right 379 * thing if a vCPU changes its xAPIC ID, but do NOT reset max_id, i.e. 380 * keep max_id strictly increasing. Disallowing max_id from shrinking 381 * ensures KVM won't get stuck in an infinite loop, e.g. if the vCPU 382 * with the highest x2APIC ID is toggling its APIC on and off. 383 */ 384 xapic_id_mismatch = false; 385 386 kvm_for_each_vcpu(i, vcpu, kvm) 387 if (kvm_apic_present(vcpu)) 388 max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic)); 389 390 new = kvzalloc(sizeof(struct kvm_apic_map) + 391 sizeof(struct kvm_lapic *) * ((u64)max_id + 1), 392 GFP_KERNEL_ACCOUNT); 393 394 if (!new) 395 goto out; 396 397 new->max_apic_id = max_id; 398 new->logical_mode = KVM_APIC_MODE_SW_DISABLED; 399 400 kvm_for_each_vcpu(i, vcpu, kvm) { 401 if (!kvm_apic_present(vcpu)) 402 continue; 403 404 r = kvm_recalculate_phys_map(new, vcpu, &xapic_id_mismatch); 405 if (r) { 406 kvfree(new); 407 new = NULL; 408 if (r == -E2BIG) { 409 cond_resched(); 410 goto retry; 411 } 412 413 goto out; 414 } 415 416 kvm_recalculate_logical_map(new, vcpu); 417 } 418 out: 419 /* 420 * The optimized map is effectively KVM's internal version of APICv, 421 * and all unwanted aliasing that results in disabling the optimized 422 * map also applies to APICv. 423 */ 424 if (!new) 425 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED); 426 else 427 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED); 428 429 if (!new || new->logical_mode == KVM_APIC_MODE_MAP_DISABLED) 430 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED); 431 else 432 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED); 433 434 if (xapic_id_mismatch) 435 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED); 436 else 437 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED); 438 439 old = rcu_dereference_protected(kvm->arch.apic_map, 440 lockdep_is_held(&kvm->arch.apic_map_lock)); 441 rcu_assign_pointer(kvm->arch.apic_map, new); 442 /* 443 * Write kvm->arch.apic_map before clearing apic->apic_map_dirty. 444 * If another update has come in, leave it DIRTY. 445 */ 446 atomic_cmpxchg_release(&kvm->arch.apic_map_dirty, 447 UPDATE_IN_PROGRESS, CLEAN); 448 mutex_unlock(&kvm->arch.apic_map_lock); 449 450 if (old) 451 kvfree_rcu(old, rcu); 452 453 kvm_make_scan_ioapic_request(kvm); 454 } 455 456 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val) 457 { 458 bool enabled = val & APIC_SPIV_APIC_ENABLED; 459 460 kvm_lapic_set_reg(apic, APIC_SPIV, val); 461 462 if (enabled != apic->sw_enabled) { 463 apic->sw_enabled = enabled; 464 if (enabled) 465 static_branch_slow_dec_deferred(&apic_sw_disabled); 466 else 467 static_branch_inc(&apic_sw_disabled.key); 468 469 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 470 } 471 472 /* Check if there are APF page ready requests pending */ 473 if (enabled) { 474 kvm_make_request(KVM_REQ_APF_READY, apic->vcpu); 475 kvm_xen_sw_enable_lapic(apic->vcpu); 476 } 477 } 478 479 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id) 480 { 481 kvm_lapic_set_reg(apic, APIC_ID, id << 24); 482 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 483 } 484 485 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id) 486 { 487 kvm_lapic_set_reg(apic, APIC_LDR, id); 488 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 489 } 490 491 static inline void kvm_apic_set_dfr(struct kvm_lapic *apic, u32 val) 492 { 493 kvm_lapic_set_reg(apic, APIC_DFR, val); 494 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 495 } 496 497 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id) 498 { 499 u32 ldr = kvm_apic_calc_x2apic_ldr(id); 500 501 WARN_ON_ONCE(id != apic->vcpu->vcpu_id); 502 503 kvm_lapic_set_reg(apic, APIC_ID, id); 504 kvm_lapic_set_reg(apic, APIC_LDR, ldr); 505 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 506 } 507 508 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type) 509 { 510 return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED); 511 } 512 513 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic) 514 { 515 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT; 516 } 517 518 static inline int apic_lvtt_period(struct kvm_lapic *apic) 519 { 520 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC; 521 } 522 523 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic) 524 { 525 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE; 526 } 527 528 static inline int apic_lvt_nmi_mode(u32 lvt_val) 529 { 530 return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI; 531 } 532 533 static inline bool kvm_lapic_lvt_supported(struct kvm_lapic *apic, int lvt_index) 534 { 535 return apic->nr_lvt_entries > lvt_index; 536 } 537 538 static inline int kvm_apic_calc_nr_lvt_entries(struct kvm_vcpu *vcpu) 539 { 540 return KVM_APIC_MAX_NR_LVT_ENTRIES - !(vcpu->arch.mcg_cap & MCG_CMCI_P); 541 } 542 543 void kvm_apic_set_version(struct kvm_vcpu *vcpu) 544 { 545 struct kvm_lapic *apic = vcpu->arch.apic; 546 u32 v = 0; 547 548 if (!lapic_in_kernel(vcpu)) 549 return; 550 551 v = APIC_VERSION | ((apic->nr_lvt_entries - 1) << 16); 552 553 /* 554 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation) 555 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with 556 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC 557 * version first and level-triggered interrupts never get EOIed in 558 * IOAPIC. 559 */ 560 if (guest_cpu_cap_has(vcpu, X86_FEATURE_X2APIC) && 561 !ioapic_in_kernel(vcpu->kvm)) 562 v |= APIC_LVR_DIRECTED_EOI; 563 kvm_lapic_set_reg(apic, APIC_LVR, v); 564 } 565 566 void kvm_apic_after_set_mcg_cap(struct kvm_vcpu *vcpu) 567 { 568 int nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu); 569 struct kvm_lapic *apic = vcpu->arch.apic; 570 int i; 571 572 if (!lapic_in_kernel(vcpu) || nr_lvt_entries == apic->nr_lvt_entries) 573 return; 574 575 /* Initialize/mask any "new" LVT entries. */ 576 for (i = apic->nr_lvt_entries; i < nr_lvt_entries; i++) 577 kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED); 578 579 apic->nr_lvt_entries = nr_lvt_entries; 580 581 /* The number of LVT entries is reflected in the version register. */ 582 kvm_apic_set_version(vcpu); 583 } 584 585 static const unsigned int apic_lvt_mask[KVM_APIC_MAX_NR_LVT_ENTRIES] = { 586 [LVT_TIMER] = LVT_MASK, /* timer mode mask added at runtime */ 587 [LVT_THERMAL_MONITOR] = LVT_MASK | APIC_MODE_MASK, 588 [LVT_PERFORMANCE_COUNTER] = LVT_MASK | APIC_MODE_MASK, 589 [LVT_LINT0] = LINT_MASK, 590 [LVT_LINT1] = LINT_MASK, 591 [LVT_ERROR] = LVT_MASK, 592 [LVT_CMCI] = LVT_MASK | APIC_MODE_MASK 593 }; 594 595 static u8 count_vectors(void *bitmap) 596 { 597 int vec; 598 u32 *reg; 599 u8 count = 0; 600 601 for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) { 602 reg = bitmap + APIC_VECTOR_TO_REG_OFFSET(vec); 603 count += hweight32(*reg); 604 } 605 606 return count; 607 } 608 609 bool __kvm_apic_update_irr(unsigned long *pir, void *regs, int *max_irr) 610 { 611 unsigned long pir_vals[NR_PIR_WORDS]; 612 u32 *__pir = (void *)pir_vals; 613 u32 i, vec; 614 u32 irr_val, prev_irr_val; 615 int max_updated_irr; 616 617 max_updated_irr = -1; 618 *max_irr = -1; 619 620 if (!pi_harvest_pir(pir, pir_vals)) 621 return false; 622 623 for (i = vec = 0; i <= 7; i++, vec += 32) { 624 u32 *p_irr = (u32 *)(regs + APIC_IRR + i * 0x10); 625 626 irr_val = READ_ONCE(*p_irr); 627 628 if (__pir[i]) { 629 prev_irr_val = irr_val; 630 do { 631 irr_val = prev_irr_val | __pir[i]; 632 } while (prev_irr_val != irr_val && 633 !try_cmpxchg(p_irr, &prev_irr_val, irr_val)); 634 635 if (prev_irr_val != irr_val) 636 max_updated_irr = __fls(irr_val ^ prev_irr_val) + vec; 637 } 638 if (irr_val) 639 *max_irr = __fls(irr_val) + vec; 640 } 641 642 return ((max_updated_irr != -1) && 643 (max_updated_irr == *max_irr)); 644 } 645 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr); 646 647 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, unsigned long *pir, int *max_irr) 648 { 649 struct kvm_lapic *apic = vcpu->arch.apic; 650 bool irr_updated = __kvm_apic_update_irr(pir, apic->regs, max_irr); 651 652 if (unlikely(!apic->apicv_active && irr_updated)) 653 apic->irr_pending = true; 654 return irr_updated; 655 } 656 EXPORT_SYMBOL_GPL(kvm_apic_update_irr); 657 658 static inline int apic_search_irr(struct kvm_lapic *apic) 659 { 660 return apic_find_highest_vector(apic->regs + APIC_IRR); 661 } 662 663 static inline int apic_find_highest_irr(struct kvm_lapic *apic) 664 { 665 int result; 666 667 /* 668 * Note that irr_pending is just a hint. It will be always 669 * true with virtual interrupt delivery enabled. 670 */ 671 if (!apic->irr_pending) 672 return -1; 673 674 result = apic_search_irr(apic); 675 ASSERT(result == -1 || result >= 16); 676 677 return result; 678 } 679 680 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic) 681 { 682 if (unlikely(apic->apicv_active)) { 683 apic_clear_vector(vec, apic->regs + APIC_IRR); 684 } else { 685 apic->irr_pending = false; 686 apic_clear_vector(vec, apic->regs + APIC_IRR); 687 if (apic_search_irr(apic) != -1) 688 apic->irr_pending = true; 689 } 690 } 691 692 void kvm_apic_clear_irr(struct kvm_vcpu *vcpu, int vec) 693 { 694 apic_clear_irr(vec, vcpu->arch.apic); 695 } 696 EXPORT_SYMBOL_GPL(kvm_apic_clear_irr); 697 698 static void *apic_vector_to_isr(int vec, struct kvm_lapic *apic) 699 { 700 return apic->regs + APIC_ISR + APIC_VECTOR_TO_REG_OFFSET(vec); 701 } 702 703 static inline void apic_set_isr(int vec, struct kvm_lapic *apic) 704 { 705 if (__test_and_set_bit(APIC_VECTOR_TO_BIT_NUMBER(vec), 706 apic_vector_to_isr(vec, apic))) 707 return; 708 709 /* 710 * With APIC virtualization enabled, all caching is disabled 711 * because the processor can modify ISR under the hood. Instead 712 * just set SVI. 713 */ 714 if (unlikely(apic->apicv_active)) 715 kvm_x86_call(hwapic_isr_update)(apic->vcpu, vec); 716 else { 717 ++apic->isr_count; 718 BUG_ON(apic->isr_count > MAX_APIC_VECTOR); 719 /* 720 * ISR (in service register) bit is set when injecting an interrupt. 721 * The highest vector is injected. Thus the latest bit set matches 722 * the highest bit in ISR. 723 */ 724 apic->highest_isr_cache = vec; 725 } 726 } 727 728 static inline int apic_find_highest_isr(struct kvm_lapic *apic) 729 { 730 int result; 731 732 /* 733 * Note that isr_count is always 1, and highest_isr_cache 734 * is always -1, with APIC virtualization enabled. 735 */ 736 if (!apic->isr_count) 737 return -1; 738 if (likely(apic->highest_isr_cache != -1)) 739 return apic->highest_isr_cache; 740 741 result = apic_find_highest_vector(apic->regs + APIC_ISR); 742 ASSERT(result == -1 || result >= 16); 743 744 return result; 745 } 746 747 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic) 748 { 749 if (!__test_and_clear_bit(APIC_VECTOR_TO_BIT_NUMBER(vec), 750 apic_vector_to_isr(vec, apic))) 751 return; 752 753 /* 754 * We do get here for APIC virtualization enabled if the guest 755 * uses the Hyper-V APIC enlightenment. In this case we may need 756 * to trigger a new interrupt delivery by writing the SVI field; 757 * on the other hand isr_count and highest_isr_cache are unused 758 * and must be left alone. 759 */ 760 if (unlikely(apic->apicv_active)) 761 kvm_x86_call(hwapic_isr_update)(apic->vcpu, apic_find_highest_isr(apic)); 762 else { 763 --apic->isr_count; 764 BUG_ON(apic->isr_count < 0); 765 apic->highest_isr_cache = -1; 766 } 767 } 768 769 void kvm_apic_update_hwapic_isr(struct kvm_vcpu *vcpu) 770 { 771 struct kvm_lapic *apic = vcpu->arch.apic; 772 773 if (WARN_ON_ONCE(!lapic_in_kernel(vcpu)) || !apic->apicv_active) 774 return; 775 776 kvm_x86_call(hwapic_isr_update)(vcpu, apic_find_highest_isr(apic)); 777 } 778 EXPORT_SYMBOL_GPL(kvm_apic_update_hwapic_isr); 779 780 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu) 781 { 782 /* This may race with setting of irr in __apic_accept_irq() and 783 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq 784 * will cause vmexit immediately and the value will be recalculated 785 * on the next vmentry. 786 */ 787 return apic_find_highest_irr(vcpu->arch.apic); 788 } 789 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr); 790 791 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 792 int vector, int level, int trig_mode, 793 struct dest_map *dest_map); 794 795 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq, 796 struct dest_map *dest_map) 797 { 798 struct kvm_lapic *apic = vcpu->arch.apic; 799 800 return __apic_accept_irq(apic, irq->delivery_mode, irq->vector, 801 irq->level, irq->trig_mode, dest_map); 802 } 803 804 static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map, 805 struct kvm_lapic_irq *irq, u32 min) 806 { 807 int i, count = 0; 808 struct kvm_vcpu *vcpu; 809 810 if (min > map->max_apic_id) 811 return 0; 812 813 for_each_set_bit(i, ipi_bitmap, 814 min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) { 815 if (map->phys_map[min + i]) { 816 vcpu = map->phys_map[min + i]->vcpu; 817 count += kvm_apic_set_irq(vcpu, irq, NULL); 818 } 819 } 820 821 return count; 822 } 823 824 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 825 unsigned long ipi_bitmap_high, u32 min, 826 unsigned long icr, int op_64_bit) 827 { 828 struct kvm_apic_map *map; 829 struct kvm_lapic_irq irq = {0}; 830 int cluster_size = op_64_bit ? 64 : 32; 831 int count; 832 833 if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK)) 834 return -KVM_EINVAL; 835 836 irq.vector = icr & APIC_VECTOR_MASK; 837 irq.delivery_mode = icr & APIC_MODE_MASK; 838 irq.level = (icr & APIC_INT_ASSERT) != 0; 839 irq.trig_mode = icr & APIC_INT_LEVELTRIG; 840 841 rcu_read_lock(); 842 map = rcu_dereference(kvm->arch.apic_map); 843 844 count = -EOPNOTSUPP; 845 if (likely(map)) { 846 count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min); 847 min += cluster_size; 848 count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min); 849 } 850 851 rcu_read_unlock(); 852 return count; 853 } 854 855 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val) 856 { 857 858 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val, 859 sizeof(val)); 860 } 861 862 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val) 863 { 864 865 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val, 866 sizeof(*val)); 867 } 868 869 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu) 870 { 871 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED; 872 } 873 874 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu) 875 { 876 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0) 877 return; 878 879 __set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 880 } 881 882 static bool pv_eoi_test_and_clr_pending(struct kvm_vcpu *vcpu) 883 { 884 u8 val; 885 886 if (pv_eoi_get_user(vcpu, &val) < 0) 887 return false; 888 889 val &= KVM_PV_EOI_ENABLED; 890 891 if (val && pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0) 892 return false; 893 894 /* 895 * Clear pending bit in any case: it will be set again on vmentry. 896 * While this might not be ideal from performance point of view, 897 * this makes sure pv eoi is only enabled when we know it's safe. 898 */ 899 __clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 900 901 return val; 902 } 903 904 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr) 905 { 906 int highest_irr; 907 if (kvm_x86_ops.sync_pir_to_irr) 908 highest_irr = kvm_x86_call(sync_pir_to_irr)(apic->vcpu); 909 else 910 highest_irr = apic_find_highest_irr(apic); 911 if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr) 912 return -1; 913 return highest_irr; 914 } 915 916 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr) 917 { 918 u32 tpr, isrv, ppr, old_ppr; 919 int isr; 920 921 old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI); 922 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI); 923 isr = apic_find_highest_isr(apic); 924 isrv = (isr != -1) ? isr : 0; 925 926 if ((tpr & 0xf0) >= (isrv & 0xf0)) 927 ppr = tpr & 0xff; 928 else 929 ppr = isrv & 0xf0; 930 931 *new_ppr = ppr; 932 if (old_ppr != ppr) 933 kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr); 934 935 return ppr < old_ppr; 936 } 937 938 static void apic_update_ppr(struct kvm_lapic *apic) 939 { 940 u32 ppr; 941 942 if (__apic_update_ppr(apic, &ppr) && 943 apic_has_interrupt_for_ppr(apic, ppr) != -1) 944 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 945 } 946 947 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu) 948 { 949 apic_update_ppr(vcpu->arch.apic); 950 } 951 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr); 952 953 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr) 954 { 955 kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr); 956 apic_update_ppr(apic); 957 } 958 959 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda) 960 { 961 return mda == (apic_x2apic_mode(apic) ? 962 X2APIC_BROADCAST : APIC_BROADCAST); 963 } 964 965 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda) 966 { 967 if (kvm_apic_broadcast(apic, mda)) 968 return true; 969 970 /* 971 * Hotplug hack: Accept interrupts for vCPUs in xAPIC mode as if they 972 * were in x2APIC mode if the target APIC ID can't be encoded as an 973 * xAPIC ID. This allows unique addressing of hotplugged vCPUs (which 974 * start in xAPIC mode) with an APIC ID that is unaddressable in xAPIC 975 * mode. Match the x2APIC ID if and only if the target APIC ID can't 976 * be encoded in xAPIC to avoid spurious matches against a vCPU that 977 * changed its (addressable) xAPIC ID (which is writable). 978 */ 979 if (apic_x2apic_mode(apic) || mda > 0xff) 980 return mda == kvm_x2apic_id(apic); 981 982 return mda == kvm_xapic_id(apic); 983 } 984 985 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda) 986 { 987 u32 logical_id; 988 989 if (kvm_apic_broadcast(apic, mda)) 990 return true; 991 992 logical_id = kvm_lapic_get_reg(apic, APIC_LDR); 993 994 if (apic_x2apic_mode(apic)) 995 return ((logical_id >> 16) == (mda >> 16)) 996 && (logical_id & mda & 0xffff) != 0; 997 998 logical_id = GET_APIC_LOGICAL_ID(logical_id); 999 1000 switch (kvm_lapic_get_reg(apic, APIC_DFR)) { 1001 case APIC_DFR_FLAT: 1002 return (logical_id & mda) != 0; 1003 case APIC_DFR_CLUSTER: 1004 return ((logical_id >> 4) == (mda >> 4)) 1005 && (logical_id & mda & 0xf) != 0; 1006 default: 1007 return false; 1008 } 1009 } 1010 1011 /* The KVM local APIC implementation has two quirks: 1012 * 1013 * - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs 1014 * in xAPIC mode if the "destination & 0xff" matches its xAPIC ID. 1015 * KVM doesn't do that aliasing. 1016 * 1017 * - in-kernel IOAPIC messages have to be delivered directly to 1018 * x2APIC, because the kernel does not support interrupt remapping. 1019 * In order to support broadcast without interrupt remapping, x2APIC 1020 * rewrites the destination of non-IPI messages from APIC_BROADCAST 1021 * to X2APIC_BROADCAST. 1022 * 1023 * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API. This is 1024 * important when userspace wants to use x2APIC-format MSIs, because 1025 * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7". 1026 */ 1027 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id, 1028 struct kvm_lapic *source, struct kvm_lapic *target) 1029 { 1030 bool ipi = source != NULL; 1031 1032 if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled && 1033 !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target)) 1034 return X2APIC_BROADCAST; 1035 1036 return dest_id; 1037 } 1038 1039 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source, 1040 int shorthand, unsigned int dest, int dest_mode) 1041 { 1042 struct kvm_lapic *target = vcpu->arch.apic; 1043 u32 mda = kvm_apic_mda(vcpu, dest, source, target); 1044 1045 ASSERT(target); 1046 switch (shorthand) { 1047 case APIC_DEST_NOSHORT: 1048 if (dest_mode == APIC_DEST_PHYSICAL) 1049 return kvm_apic_match_physical_addr(target, mda); 1050 else 1051 return kvm_apic_match_logical_addr(target, mda); 1052 case APIC_DEST_SELF: 1053 return target == source; 1054 case APIC_DEST_ALLINC: 1055 return true; 1056 case APIC_DEST_ALLBUT: 1057 return target != source; 1058 default: 1059 return false; 1060 } 1061 } 1062 EXPORT_SYMBOL_GPL(kvm_apic_match_dest); 1063 1064 int kvm_vector_to_index(u32 vector, u32 dest_vcpus, 1065 const unsigned long *bitmap, u32 bitmap_size) 1066 { 1067 u32 mod; 1068 int i, idx = -1; 1069 1070 mod = vector % dest_vcpus; 1071 1072 for (i = 0; i <= mod; i++) { 1073 idx = find_next_bit(bitmap, bitmap_size, idx + 1); 1074 BUG_ON(idx == bitmap_size); 1075 } 1076 1077 return idx; 1078 } 1079 1080 static void kvm_apic_disabled_lapic_found(struct kvm *kvm) 1081 { 1082 if (!kvm->arch.disabled_lapic_found) { 1083 kvm->arch.disabled_lapic_found = true; 1084 pr_info("Disabled LAPIC found during irq injection\n"); 1085 } 1086 } 1087 1088 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src, 1089 struct kvm_lapic_irq *irq, struct kvm_apic_map *map) 1090 { 1091 if (kvm->arch.x2apic_broadcast_quirk_disabled) { 1092 if ((irq->dest_id == APIC_BROADCAST && 1093 map->logical_mode != KVM_APIC_MODE_X2APIC)) 1094 return true; 1095 if (irq->dest_id == X2APIC_BROADCAST) 1096 return true; 1097 } else { 1098 bool x2apic_ipi = src && *src && apic_x2apic_mode(*src); 1099 if (irq->dest_id == (x2apic_ipi ? 1100 X2APIC_BROADCAST : APIC_BROADCAST)) 1101 return true; 1102 } 1103 1104 return false; 1105 } 1106 1107 /* Return true if the interrupt can be handled by using *bitmap as index mask 1108 * for valid destinations in *dst array. 1109 * Return false if kvm_apic_map_get_dest_lapic did nothing useful. 1110 * Note: we may have zero kvm_lapic destinations when we return true, which 1111 * means that the interrupt should be dropped. In this case, *bitmap would be 1112 * zero and *dst undefined. 1113 */ 1114 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm, 1115 struct kvm_lapic **src, struct kvm_lapic_irq *irq, 1116 struct kvm_apic_map *map, struct kvm_lapic ***dst, 1117 unsigned long *bitmap) 1118 { 1119 int i, lowest; 1120 1121 if (irq->shorthand == APIC_DEST_SELF && src) { 1122 *dst = src; 1123 *bitmap = 1; 1124 return true; 1125 } else if (irq->shorthand) 1126 return false; 1127 1128 if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map)) 1129 return false; 1130 1131 if (irq->dest_mode == APIC_DEST_PHYSICAL) { 1132 if (irq->dest_id > map->max_apic_id) { 1133 *bitmap = 0; 1134 } else { 1135 u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1); 1136 *dst = &map->phys_map[dest_id]; 1137 *bitmap = 1; 1138 } 1139 return true; 1140 } 1141 1142 *bitmap = 0; 1143 if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst, 1144 (u16 *)bitmap)) 1145 return false; 1146 1147 if (!kvm_lowest_prio_delivery(irq)) 1148 return true; 1149 1150 if (!kvm_vector_hashing_enabled()) { 1151 lowest = -1; 1152 for_each_set_bit(i, bitmap, 16) { 1153 if (!(*dst)[i]) 1154 continue; 1155 if (lowest < 0) 1156 lowest = i; 1157 else if (kvm_apic_compare_prio((*dst)[i]->vcpu, 1158 (*dst)[lowest]->vcpu) < 0) 1159 lowest = i; 1160 } 1161 } else { 1162 if (!*bitmap) 1163 return true; 1164 1165 lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap), 1166 bitmap, 16); 1167 1168 if (!(*dst)[lowest]) { 1169 kvm_apic_disabled_lapic_found(kvm); 1170 *bitmap = 0; 1171 return true; 1172 } 1173 } 1174 1175 *bitmap = (lowest >= 0) ? 1 << lowest : 0; 1176 1177 return true; 1178 } 1179 1180 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src, 1181 struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map) 1182 { 1183 struct kvm_apic_map *map; 1184 unsigned long bitmap; 1185 struct kvm_lapic **dst = NULL; 1186 int i; 1187 bool ret; 1188 1189 *r = -1; 1190 1191 if (irq->shorthand == APIC_DEST_SELF) { 1192 if (KVM_BUG_ON(!src, kvm)) { 1193 *r = 0; 1194 return true; 1195 } 1196 *r = kvm_apic_set_irq(src->vcpu, irq, dest_map); 1197 return true; 1198 } 1199 1200 rcu_read_lock(); 1201 map = rcu_dereference(kvm->arch.apic_map); 1202 1203 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap); 1204 if (ret) { 1205 *r = 0; 1206 for_each_set_bit(i, &bitmap, 16) { 1207 if (!dst[i]) 1208 continue; 1209 *r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map); 1210 } 1211 } 1212 1213 rcu_read_unlock(); 1214 return ret; 1215 } 1216 1217 /* 1218 * This routine tries to handle interrupts in posted mode, here is how 1219 * it deals with different cases: 1220 * - For single-destination interrupts, handle it in posted mode 1221 * - Else if vector hashing is enabled and it is a lowest-priority 1222 * interrupt, handle it in posted mode and use the following mechanism 1223 * to find the destination vCPU. 1224 * 1. For lowest-priority interrupts, store all the possible 1225 * destination vCPUs in an array. 1226 * 2. Use "guest vector % max number of destination vCPUs" to find 1227 * the right destination vCPU in the array for the lowest-priority 1228 * interrupt. 1229 * - Otherwise, use remapped mode to inject the interrupt. 1230 */ 1231 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq, 1232 struct kvm_vcpu **dest_vcpu) 1233 { 1234 struct kvm_apic_map *map; 1235 unsigned long bitmap; 1236 struct kvm_lapic **dst = NULL; 1237 bool ret = false; 1238 1239 if (irq->shorthand) 1240 return false; 1241 1242 rcu_read_lock(); 1243 map = rcu_dereference(kvm->arch.apic_map); 1244 1245 if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) && 1246 hweight16(bitmap) == 1) { 1247 unsigned long i = find_first_bit(&bitmap, 16); 1248 1249 if (dst[i]) { 1250 *dest_vcpu = dst[i]->vcpu; 1251 ret = true; 1252 } 1253 } 1254 1255 rcu_read_unlock(); 1256 return ret; 1257 } 1258 1259 /* 1260 * Add a pending IRQ into lapic. 1261 * Return 1 if successfully added and 0 if discarded. 1262 */ 1263 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 1264 int vector, int level, int trig_mode, 1265 struct dest_map *dest_map) 1266 { 1267 int result = 0; 1268 struct kvm_vcpu *vcpu = apic->vcpu; 1269 1270 trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode, 1271 trig_mode, vector); 1272 switch (delivery_mode) { 1273 case APIC_DM_LOWEST: 1274 vcpu->arch.apic_arb_prio++; 1275 fallthrough; 1276 case APIC_DM_FIXED: 1277 if (unlikely(trig_mode && !level)) 1278 break; 1279 1280 /* FIXME add logic for vcpu on reset */ 1281 if (unlikely(!apic_enabled(apic))) 1282 break; 1283 1284 result = 1; 1285 1286 if (dest_map) { 1287 __set_bit(vcpu->vcpu_id, dest_map->map); 1288 dest_map->vectors[vcpu->vcpu_id] = vector; 1289 } 1290 1291 if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) { 1292 if (trig_mode) 1293 apic_set_vector(vector, apic->regs + APIC_TMR); 1294 else 1295 apic_clear_vector(vector, apic->regs + APIC_TMR); 1296 } 1297 1298 kvm_x86_call(deliver_interrupt)(apic, delivery_mode, 1299 trig_mode, vector); 1300 break; 1301 1302 case APIC_DM_REMRD: 1303 result = 1; 1304 vcpu->arch.pv.pv_unhalted = 1; 1305 kvm_make_request(KVM_REQ_EVENT, vcpu); 1306 kvm_vcpu_kick(vcpu); 1307 break; 1308 1309 case APIC_DM_SMI: 1310 if (!kvm_inject_smi(vcpu)) { 1311 kvm_vcpu_kick(vcpu); 1312 result = 1; 1313 } 1314 break; 1315 1316 case APIC_DM_NMI: 1317 result = 1; 1318 kvm_inject_nmi(vcpu); 1319 kvm_vcpu_kick(vcpu); 1320 break; 1321 1322 case APIC_DM_INIT: 1323 if (!trig_mode || level) { 1324 result = 1; 1325 /* assumes that there are only KVM_APIC_INIT/SIPI */ 1326 apic->pending_events = (1UL << KVM_APIC_INIT); 1327 kvm_make_request(KVM_REQ_EVENT, vcpu); 1328 kvm_vcpu_kick(vcpu); 1329 } 1330 break; 1331 1332 case APIC_DM_STARTUP: 1333 result = 1; 1334 apic->sipi_vector = vector; 1335 /* make sure sipi_vector is visible for the receiver */ 1336 smp_wmb(); 1337 set_bit(KVM_APIC_SIPI, &apic->pending_events); 1338 kvm_make_request(KVM_REQ_EVENT, vcpu); 1339 kvm_vcpu_kick(vcpu); 1340 break; 1341 1342 case APIC_DM_EXTINT: 1343 /* 1344 * Should only be called by kvm_apic_local_deliver() with LVT0, 1345 * before NMI watchdog was enabled. Already handled by 1346 * kvm_apic_accept_pic_intr(). 1347 */ 1348 break; 1349 1350 default: 1351 printk(KERN_ERR "TODO: unsupported delivery mode %x\n", 1352 delivery_mode); 1353 break; 1354 } 1355 return result; 1356 } 1357 1358 /* 1359 * This routine identifies the destination vcpus mask meant to receive the 1360 * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find 1361 * out the destination vcpus array and set the bitmap or it traverses to 1362 * each available vcpu to identify the same. 1363 */ 1364 void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq, 1365 unsigned long *vcpu_bitmap) 1366 { 1367 struct kvm_lapic **dest_vcpu = NULL; 1368 struct kvm_lapic *src = NULL; 1369 struct kvm_apic_map *map; 1370 struct kvm_vcpu *vcpu; 1371 unsigned long bitmap, i; 1372 int vcpu_idx; 1373 bool ret; 1374 1375 rcu_read_lock(); 1376 map = rcu_dereference(kvm->arch.apic_map); 1377 1378 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu, 1379 &bitmap); 1380 if (ret) { 1381 for_each_set_bit(i, &bitmap, 16) { 1382 if (!dest_vcpu[i]) 1383 continue; 1384 vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx; 1385 __set_bit(vcpu_idx, vcpu_bitmap); 1386 } 1387 } else { 1388 kvm_for_each_vcpu(i, vcpu, kvm) { 1389 if (!kvm_apic_present(vcpu)) 1390 continue; 1391 if (!kvm_apic_match_dest(vcpu, NULL, 1392 irq->shorthand, 1393 irq->dest_id, 1394 irq->dest_mode)) 1395 continue; 1396 __set_bit(i, vcpu_bitmap); 1397 } 1398 } 1399 rcu_read_unlock(); 1400 } 1401 1402 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2) 1403 { 1404 return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio; 1405 } 1406 1407 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector) 1408 { 1409 return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors); 1410 } 1411 1412 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector) 1413 { 1414 int __maybe_unused trigger_mode; 1415 1416 /* Eoi the ioapic only if the ioapic doesn't own the vector. */ 1417 if (!kvm_ioapic_handles_vector(apic, vector)) 1418 return; 1419 1420 /* 1421 * If the intercepted EOI is for an IRQ that was pending from previous 1422 * routing, then re-scan the I/O APIC routes as EOIs for the IRQ likely 1423 * no longer need to be intercepted. 1424 */ 1425 if (apic->vcpu->arch.highest_stale_pending_ioapic_eoi == vector) 1426 kvm_make_request(KVM_REQ_SCAN_IOAPIC, apic->vcpu); 1427 1428 /* Request a KVM exit to inform the userspace IOAPIC. */ 1429 if (irqchip_split(apic->vcpu->kvm)) { 1430 apic->vcpu->arch.pending_ioapic_eoi = vector; 1431 kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu); 1432 return; 1433 } 1434 1435 #ifdef CONFIG_KVM_IOAPIC 1436 if (apic_test_vector(vector, apic->regs + APIC_TMR)) 1437 trigger_mode = IOAPIC_LEVEL_TRIG; 1438 else 1439 trigger_mode = IOAPIC_EDGE_TRIG; 1440 1441 kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode); 1442 #endif 1443 } 1444 1445 static int apic_set_eoi(struct kvm_lapic *apic) 1446 { 1447 int vector = apic_find_highest_isr(apic); 1448 1449 trace_kvm_eoi(apic, vector); 1450 1451 /* 1452 * Not every write EOI will has corresponding ISR, 1453 * one example is when Kernel check timer on setup_IO_APIC 1454 */ 1455 if (vector == -1) 1456 return vector; 1457 1458 apic_clear_isr(vector, apic); 1459 apic_update_ppr(apic); 1460 1461 if (kvm_hv_synic_has_vector(apic->vcpu, vector)) 1462 kvm_hv_synic_send_eoi(apic->vcpu, vector); 1463 1464 kvm_ioapic_send_eoi(apic, vector); 1465 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1466 return vector; 1467 } 1468 1469 /* 1470 * this interface assumes a trap-like exit, which has already finished 1471 * desired side effect including vISR and vPPR update. 1472 */ 1473 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector) 1474 { 1475 struct kvm_lapic *apic = vcpu->arch.apic; 1476 1477 trace_kvm_eoi(apic, vector); 1478 1479 kvm_ioapic_send_eoi(apic, vector); 1480 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1481 } 1482 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated); 1483 1484 void kvm_apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high) 1485 { 1486 struct kvm_lapic_irq irq; 1487 1488 /* KVM has no delay and should always clear the BUSY/PENDING flag. */ 1489 WARN_ON_ONCE(icr_low & APIC_ICR_BUSY); 1490 1491 irq.vector = icr_low & APIC_VECTOR_MASK; 1492 irq.delivery_mode = icr_low & APIC_MODE_MASK; 1493 irq.dest_mode = icr_low & APIC_DEST_MASK; 1494 irq.level = (icr_low & APIC_INT_ASSERT) != 0; 1495 irq.trig_mode = icr_low & APIC_INT_LEVELTRIG; 1496 irq.shorthand = icr_low & APIC_SHORT_MASK; 1497 irq.msi_redir_hint = false; 1498 if (apic_x2apic_mode(apic)) 1499 irq.dest_id = icr_high; 1500 else 1501 irq.dest_id = GET_XAPIC_DEST_FIELD(icr_high); 1502 1503 trace_kvm_apic_ipi(icr_low, irq.dest_id); 1504 1505 kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL); 1506 } 1507 EXPORT_SYMBOL_GPL(kvm_apic_send_ipi); 1508 1509 static u32 apic_get_tmcct(struct kvm_lapic *apic) 1510 { 1511 ktime_t remaining, now; 1512 s64 ns; 1513 1514 ASSERT(apic != NULL); 1515 1516 /* if initial count is 0, current count should also be 0 */ 1517 if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 || 1518 apic->lapic_timer.period == 0) 1519 return 0; 1520 1521 now = ktime_get(); 1522 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 1523 if (ktime_to_ns(remaining) < 0) 1524 remaining = 0; 1525 1526 ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period); 1527 return div64_u64(ns, (apic->vcpu->kvm->arch.apic_bus_cycle_ns * 1528 apic->divide_count)); 1529 } 1530 1531 static void __report_tpr_access(struct kvm_lapic *apic, bool write) 1532 { 1533 struct kvm_vcpu *vcpu = apic->vcpu; 1534 struct kvm_run *run = vcpu->run; 1535 1536 kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu); 1537 run->tpr_access.rip = kvm_rip_read(vcpu); 1538 run->tpr_access.is_write = write; 1539 } 1540 1541 static inline void report_tpr_access(struct kvm_lapic *apic, bool write) 1542 { 1543 if (apic->vcpu->arch.tpr_access_reporting) 1544 __report_tpr_access(apic, write); 1545 } 1546 1547 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset) 1548 { 1549 u32 val = 0; 1550 1551 if (offset >= LAPIC_MMIO_LENGTH) 1552 return 0; 1553 1554 switch (offset) { 1555 case APIC_ARBPRI: 1556 break; 1557 1558 case APIC_TMCCT: /* Timer CCR */ 1559 if (apic_lvtt_tscdeadline(apic)) 1560 return 0; 1561 1562 val = apic_get_tmcct(apic); 1563 break; 1564 case APIC_PROCPRI: 1565 apic_update_ppr(apic); 1566 val = kvm_lapic_get_reg(apic, offset); 1567 break; 1568 case APIC_TASKPRI: 1569 report_tpr_access(apic, false); 1570 fallthrough; 1571 default: 1572 val = kvm_lapic_get_reg(apic, offset); 1573 break; 1574 } 1575 1576 return val; 1577 } 1578 1579 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev) 1580 { 1581 return container_of(dev, struct kvm_lapic, dev); 1582 } 1583 1584 #define APIC_REG_MASK(reg) (1ull << ((reg) >> 4)) 1585 #define APIC_REGS_MASK(first, count) \ 1586 (APIC_REG_MASK(first) * ((1ull << (count)) - 1)) 1587 1588 u64 kvm_lapic_readable_reg_mask(struct kvm_lapic *apic) 1589 { 1590 /* Leave bits '0' for reserved and write-only registers. */ 1591 u64 valid_reg_mask = 1592 APIC_REG_MASK(APIC_ID) | 1593 APIC_REG_MASK(APIC_LVR) | 1594 APIC_REG_MASK(APIC_TASKPRI) | 1595 APIC_REG_MASK(APIC_PROCPRI) | 1596 APIC_REG_MASK(APIC_LDR) | 1597 APIC_REG_MASK(APIC_SPIV) | 1598 APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) | 1599 APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) | 1600 APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) | 1601 APIC_REG_MASK(APIC_ESR) | 1602 APIC_REG_MASK(APIC_ICR) | 1603 APIC_REG_MASK(APIC_LVTT) | 1604 APIC_REG_MASK(APIC_LVTTHMR) | 1605 APIC_REG_MASK(APIC_LVTPC) | 1606 APIC_REG_MASK(APIC_LVT0) | 1607 APIC_REG_MASK(APIC_LVT1) | 1608 APIC_REG_MASK(APIC_LVTERR) | 1609 APIC_REG_MASK(APIC_TMICT) | 1610 APIC_REG_MASK(APIC_TMCCT) | 1611 APIC_REG_MASK(APIC_TDCR); 1612 1613 if (kvm_lapic_lvt_supported(apic, LVT_CMCI)) 1614 valid_reg_mask |= APIC_REG_MASK(APIC_LVTCMCI); 1615 1616 /* ARBPRI, DFR, and ICR2 are not valid in x2APIC mode. */ 1617 if (!apic_x2apic_mode(apic)) 1618 valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI) | 1619 APIC_REG_MASK(APIC_DFR) | 1620 APIC_REG_MASK(APIC_ICR2); 1621 1622 return valid_reg_mask; 1623 } 1624 EXPORT_SYMBOL_GPL(kvm_lapic_readable_reg_mask); 1625 1626 static int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len, 1627 void *data) 1628 { 1629 unsigned char alignment = offset & 0xf; 1630 u32 result; 1631 1632 /* 1633 * WARN if KVM reads ICR in x2APIC mode, as it's an 8-byte register in 1634 * x2APIC and needs to be manually handled by the caller. 1635 */ 1636 WARN_ON_ONCE(apic_x2apic_mode(apic) && offset == APIC_ICR); 1637 1638 if (alignment + len > 4) 1639 return 1; 1640 1641 if (offset > 0x3f0 || 1642 !(kvm_lapic_readable_reg_mask(apic) & APIC_REG_MASK(offset))) 1643 return 1; 1644 1645 result = __apic_read(apic, offset & ~0xf); 1646 1647 trace_kvm_apic_read(offset, result); 1648 1649 switch (len) { 1650 case 1: 1651 case 2: 1652 case 4: 1653 memcpy(data, (char *)&result + alignment, len); 1654 break; 1655 default: 1656 printk(KERN_ERR "Local APIC read with len = %x, " 1657 "should be 1,2, or 4 instead\n", len); 1658 break; 1659 } 1660 return 0; 1661 } 1662 1663 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr) 1664 { 1665 return addr >= apic->base_address && 1666 addr < apic->base_address + LAPIC_MMIO_LENGTH; 1667 } 1668 1669 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 1670 gpa_t address, int len, void *data) 1671 { 1672 struct kvm_lapic *apic = to_lapic(this); 1673 u32 offset = address - apic->base_address; 1674 1675 if (!apic_mmio_in_range(apic, address)) 1676 return -EOPNOTSUPP; 1677 1678 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 1679 if (!kvm_check_has_quirk(vcpu->kvm, 1680 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 1681 return -EOPNOTSUPP; 1682 1683 memset(data, 0xff, len); 1684 return 0; 1685 } 1686 1687 kvm_lapic_reg_read(apic, offset, len, data); 1688 1689 return 0; 1690 } 1691 1692 static void update_divide_count(struct kvm_lapic *apic) 1693 { 1694 u32 tmp1, tmp2, tdcr; 1695 1696 tdcr = kvm_lapic_get_reg(apic, APIC_TDCR); 1697 tmp1 = tdcr & 0xf; 1698 tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1; 1699 apic->divide_count = 0x1 << (tmp2 & 0x7); 1700 } 1701 1702 static void limit_periodic_timer_frequency(struct kvm_lapic *apic) 1703 { 1704 /* 1705 * Do not allow the guest to program periodic timers with small 1706 * interval, since the hrtimers are not throttled by the host 1707 * scheduler. 1708 */ 1709 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 1710 s64 min_period = min_timer_period_us * 1000LL; 1711 1712 if (apic->lapic_timer.period < min_period) { 1713 pr_info_once( 1714 "vcpu %i: requested %lld ns " 1715 "lapic timer period limited to %lld ns\n", 1716 apic->vcpu->vcpu_id, 1717 apic->lapic_timer.period, min_period); 1718 apic->lapic_timer.period = min_period; 1719 } 1720 } 1721 } 1722 1723 static void cancel_hv_timer(struct kvm_lapic *apic); 1724 1725 static void cancel_apic_timer(struct kvm_lapic *apic) 1726 { 1727 hrtimer_cancel(&apic->lapic_timer.timer); 1728 preempt_disable(); 1729 if (apic->lapic_timer.hv_timer_in_use) 1730 cancel_hv_timer(apic); 1731 preempt_enable(); 1732 atomic_set(&apic->lapic_timer.pending, 0); 1733 } 1734 1735 static void apic_update_lvtt(struct kvm_lapic *apic) 1736 { 1737 u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) & 1738 apic->lapic_timer.timer_mode_mask; 1739 1740 if (apic->lapic_timer.timer_mode != timer_mode) { 1741 if (apic_lvtt_tscdeadline(apic) != (timer_mode == 1742 APIC_LVT_TIMER_TSCDEADLINE)) { 1743 cancel_apic_timer(apic); 1744 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 1745 apic->lapic_timer.period = 0; 1746 apic->lapic_timer.tscdeadline = 0; 1747 } 1748 apic->lapic_timer.timer_mode = timer_mode; 1749 limit_periodic_timer_frequency(apic); 1750 } 1751 } 1752 1753 /* 1754 * On APICv, this test will cause a busy wait 1755 * during a higher-priority task. 1756 */ 1757 1758 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu) 1759 { 1760 struct kvm_lapic *apic = vcpu->arch.apic; 1761 u32 reg; 1762 1763 /* 1764 * Assume a timer IRQ was "injected" if the APIC is protected. KVM's 1765 * copy of the vIRR is bogus, it's the responsibility of the caller to 1766 * precisely check whether or not a timer IRQ is pending. 1767 */ 1768 if (apic->guest_apic_protected) 1769 return true; 1770 1771 reg = kvm_lapic_get_reg(apic, APIC_LVTT); 1772 if (kvm_apic_hw_enabled(apic)) { 1773 int vec = reg & APIC_VECTOR_MASK; 1774 void *bitmap = apic->regs + APIC_ISR; 1775 1776 if (apic->apicv_active) 1777 bitmap = apic->regs + APIC_IRR; 1778 1779 if (apic_test_vector(vec, bitmap)) 1780 return true; 1781 } 1782 return false; 1783 } 1784 1785 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles) 1786 { 1787 u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns; 1788 1789 /* 1790 * If the guest TSC is running at a different ratio than the host, then 1791 * convert the delay to nanoseconds to achieve an accurate delay. Note 1792 * that __delay() uses delay_tsc whenever the hardware has TSC, thus 1793 * always for VMX enabled hardware. 1794 */ 1795 if (vcpu->arch.tsc_scaling_ratio == kvm_caps.default_tsc_scaling_ratio) { 1796 __delay(min(guest_cycles, 1797 nsec_to_cycles(vcpu, timer_advance_ns))); 1798 } else { 1799 u64 delay_ns = guest_cycles * 1000000ULL; 1800 do_div(delay_ns, vcpu->arch.virtual_tsc_khz); 1801 ndelay(min_t(u32, delay_ns, timer_advance_ns)); 1802 } 1803 } 1804 1805 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu, 1806 s64 advance_expire_delta) 1807 { 1808 struct kvm_lapic *apic = vcpu->arch.apic; 1809 u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns; 1810 u64 ns; 1811 1812 /* Do not adjust for tiny fluctuations or large random spikes. */ 1813 if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX || 1814 abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN) 1815 return; 1816 1817 /* too early */ 1818 if (advance_expire_delta < 0) { 1819 ns = -advance_expire_delta * 1000000ULL; 1820 do_div(ns, vcpu->arch.virtual_tsc_khz); 1821 timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; 1822 } else { 1823 /* too late */ 1824 ns = advance_expire_delta * 1000000ULL; 1825 do_div(ns, vcpu->arch.virtual_tsc_khz); 1826 timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; 1827 } 1828 1829 if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX)) 1830 timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; 1831 apic->lapic_timer.timer_advance_ns = timer_advance_ns; 1832 } 1833 1834 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1835 { 1836 struct kvm_lapic *apic = vcpu->arch.apic; 1837 u64 guest_tsc, tsc_deadline; 1838 1839 tsc_deadline = apic->lapic_timer.expired_tscdeadline; 1840 apic->lapic_timer.expired_tscdeadline = 0; 1841 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1842 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, guest_tsc - tsc_deadline); 1843 1844 adjust_lapic_timer_advance(vcpu, guest_tsc - tsc_deadline); 1845 1846 /* 1847 * If the timer fired early, reread the TSC to account for the overhead 1848 * of the above adjustment to avoid waiting longer than is necessary. 1849 */ 1850 if (guest_tsc < tsc_deadline) 1851 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1852 1853 if (guest_tsc < tsc_deadline) 1854 __wait_lapic_expire(vcpu, tsc_deadline - guest_tsc); 1855 } 1856 1857 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1858 { 1859 if (lapic_in_kernel(vcpu) && 1860 vcpu->arch.apic->lapic_timer.expired_tscdeadline && 1861 vcpu->arch.apic->lapic_timer.timer_advance_ns && 1862 lapic_timer_int_injected(vcpu)) 1863 __kvm_wait_lapic_expire(vcpu); 1864 } 1865 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire); 1866 1867 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic) 1868 { 1869 struct kvm_timer *ktimer = &apic->lapic_timer; 1870 1871 kvm_apic_local_deliver(apic, APIC_LVTT); 1872 if (apic_lvtt_tscdeadline(apic)) { 1873 ktimer->tscdeadline = 0; 1874 } else if (apic_lvtt_oneshot(apic)) { 1875 ktimer->tscdeadline = 0; 1876 ktimer->target_expiration = 0; 1877 } 1878 } 1879 1880 static void apic_timer_expired(struct kvm_lapic *apic, bool from_timer_fn) 1881 { 1882 struct kvm_vcpu *vcpu = apic->vcpu; 1883 struct kvm_timer *ktimer = &apic->lapic_timer; 1884 1885 if (atomic_read(&apic->lapic_timer.pending)) 1886 return; 1887 1888 if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use) 1889 ktimer->expired_tscdeadline = ktimer->tscdeadline; 1890 1891 if (!from_timer_fn && apic->apicv_active) { 1892 WARN_ON(kvm_get_running_vcpu() != vcpu); 1893 kvm_apic_inject_pending_timer_irqs(apic); 1894 return; 1895 } 1896 1897 if (kvm_use_posted_timer_interrupt(apic->vcpu)) { 1898 /* 1899 * Ensure the guest's timer has truly expired before posting an 1900 * interrupt. Open code the relevant checks to avoid querying 1901 * lapic_timer_int_injected(), which will be false since the 1902 * interrupt isn't yet injected. Waiting until after injecting 1903 * is not an option since that won't help a posted interrupt. 1904 */ 1905 if (vcpu->arch.apic->lapic_timer.expired_tscdeadline && 1906 vcpu->arch.apic->lapic_timer.timer_advance_ns) 1907 __kvm_wait_lapic_expire(vcpu); 1908 kvm_apic_inject_pending_timer_irqs(apic); 1909 return; 1910 } 1911 1912 atomic_inc(&apic->lapic_timer.pending); 1913 kvm_make_request(KVM_REQ_UNBLOCK, vcpu); 1914 if (from_timer_fn) 1915 kvm_vcpu_kick(vcpu); 1916 } 1917 1918 static void start_sw_tscdeadline(struct kvm_lapic *apic) 1919 { 1920 struct kvm_timer *ktimer = &apic->lapic_timer; 1921 u64 guest_tsc, tscdeadline = ktimer->tscdeadline; 1922 u64 ns = 0; 1923 ktime_t expire; 1924 struct kvm_vcpu *vcpu = apic->vcpu; 1925 u32 this_tsc_khz = vcpu->arch.virtual_tsc_khz; 1926 unsigned long flags; 1927 ktime_t now; 1928 1929 if (unlikely(!tscdeadline || !this_tsc_khz)) 1930 return; 1931 1932 local_irq_save(flags); 1933 1934 now = ktime_get(); 1935 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1936 1937 ns = (tscdeadline - guest_tsc) * 1000000ULL; 1938 do_div(ns, this_tsc_khz); 1939 1940 if (likely(tscdeadline > guest_tsc) && 1941 likely(ns > apic->lapic_timer.timer_advance_ns)) { 1942 expire = ktime_add_ns(now, ns); 1943 expire = ktime_sub_ns(expire, ktimer->timer_advance_ns); 1944 hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD); 1945 } else 1946 apic_timer_expired(apic, false); 1947 1948 local_irq_restore(flags); 1949 } 1950 1951 static inline u64 tmict_to_ns(struct kvm_lapic *apic, u32 tmict) 1952 { 1953 return (u64)tmict * apic->vcpu->kvm->arch.apic_bus_cycle_ns * 1954 (u64)apic->divide_count; 1955 } 1956 1957 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor) 1958 { 1959 ktime_t now, remaining; 1960 u64 ns_remaining_old, ns_remaining_new; 1961 1962 apic->lapic_timer.period = 1963 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT)); 1964 limit_periodic_timer_frequency(apic); 1965 1966 now = ktime_get(); 1967 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 1968 if (ktime_to_ns(remaining) < 0) 1969 remaining = 0; 1970 1971 ns_remaining_old = ktime_to_ns(remaining); 1972 ns_remaining_new = mul_u64_u32_div(ns_remaining_old, 1973 apic->divide_count, old_divisor); 1974 1975 apic->lapic_timer.tscdeadline += 1976 nsec_to_cycles(apic->vcpu, ns_remaining_new) - 1977 nsec_to_cycles(apic->vcpu, ns_remaining_old); 1978 apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new); 1979 } 1980 1981 static bool set_target_expiration(struct kvm_lapic *apic, u32 count_reg) 1982 { 1983 ktime_t now; 1984 u64 tscl = rdtsc(); 1985 s64 deadline; 1986 1987 now = ktime_get(); 1988 apic->lapic_timer.period = 1989 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT)); 1990 1991 if (!apic->lapic_timer.period) { 1992 apic->lapic_timer.tscdeadline = 0; 1993 return false; 1994 } 1995 1996 limit_periodic_timer_frequency(apic); 1997 deadline = apic->lapic_timer.period; 1998 1999 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) { 2000 if (unlikely(count_reg != APIC_TMICT)) { 2001 deadline = tmict_to_ns(apic, 2002 kvm_lapic_get_reg(apic, count_reg)); 2003 if (unlikely(deadline <= 0)) { 2004 if (apic_lvtt_period(apic)) 2005 deadline = apic->lapic_timer.period; 2006 else 2007 deadline = 0; 2008 } 2009 else if (unlikely(deadline > apic->lapic_timer.period)) { 2010 pr_info_ratelimited( 2011 "vcpu %i: requested lapic timer restore with " 2012 "starting count register %#x=%u (%lld ns) > initial count (%lld ns). " 2013 "Using initial count to start timer.\n", 2014 apic->vcpu->vcpu_id, 2015 count_reg, 2016 kvm_lapic_get_reg(apic, count_reg), 2017 deadline, apic->lapic_timer.period); 2018 kvm_lapic_set_reg(apic, count_reg, 0); 2019 deadline = apic->lapic_timer.period; 2020 } 2021 } 2022 } 2023 2024 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 2025 nsec_to_cycles(apic->vcpu, deadline); 2026 apic->lapic_timer.target_expiration = ktime_add_ns(now, deadline); 2027 2028 return true; 2029 } 2030 2031 static void advance_periodic_target_expiration(struct kvm_lapic *apic) 2032 { 2033 ktime_t now = ktime_get(); 2034 u64 tscl = rdtsc(); 2035 ktime_t delta; 2036 2037 /* 2038 * Synchronize both deadlines to the same time source or 2039 * differences in the periods (caused by differences in the 2040 * underlying clocks or numerical approximation errors) will 2041 * cause the two to drift apart over time as the errors 2042 * accumulate. 2043 */ 2044 apic->lapic_timer.target_expiration = 2045 ktime_add_ns(apic->lapic_timer.target_expiration, 2046 apic->lapic_timer.period); 2047 delta = ktime_sub(apic->lapic_timer.target_expiration, now); 2048 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 2049 nsec_to_cycles(apic->vcpu, delta); 2050 } 2051 2052 static void start_sw_period(struct kvm_lapic *apic) 2053 { 2054 if (!apic->lapic_timer.period) 2055 return; 2056 2057 if (ktime_after(ktime_get(), 2058 apic->lapic_timer.target_expiration)) { 2059 apic_timer_expired(apic, false); 2060 2061 if (apic_lvtt_oneshot(apic)) 2062 return; 2063 2064 advance_periodic_target_expiration(apic); 2065 } 2066 2067 hrtimer_start(&apic->lapic_timer.timer, 2068 apic->lapic_timer.target_expiration, 2069 HRTIMER_MODE_ABS_HARD); 2070 } 2071 2072 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu) 2073 { 2074 if (!lapic_in_kernel(vcpu)) 2075 return false; 2076 2077 return vcpu->arch.apic->lapic_timer.hv_timer_in_use; 2078 } 2079 2080 static void cancel_hv_timer(struct kvm_lapic *apic) 2081 { 2082 WARN_ON(preemptible()); 2083 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 2084 kvm_x86_call(cancel_hv_timer)(apic->vcpu); 2085 apic->lapic_timer.hv_timer_in_use = false; 2086 } 2087 2088 static bool start_hv_timer(struct kvm_lapic *apic) 2089 { 2090 struct kvm_timer *ktimer = &apic->lapic_timer; 2091 struct kvm_vcpu *vcpu = apic->vcpu; 2092 bool expired; 2093 2094 WARN_ON(preemptible()); 2095 if (!kvm_can_use_hv_timer(vcpu)) 2096 return false; 2097 2098 if (!ktimer->tscdeadline) 2099 return false; 2100 2101 if (kvm_x86_call(set_hv_timer)(vcpu, ktimer->tscdeadline, &expired)) 2102 return false; 2103 2104 ktimer->hv_timer_in_use = true; 2105 hrtimer_cancel(&ktimer->timer); 2106 2107 /* 2108 * To simplify handling the periodic timer, leave the hv timer running 2109 * even if the deadline timer has expired, i.e. rely on the resulting 2110 * VM-Exit to recompute the periodic timer's target expiration. 2111 */ 2112 if (!apic_lvtt_period(apic)) { 2113 /* 2114 * Cancel the hv timer if the sw timer fired while the hv timer 2115 * was being programmed, or if the hv timer itself expired. 2116 */ 2117 if (atomic_read(&ktimer->pending)) { 2118 cancel_hv_timer(apic); 2119 } else if (expired) { 2120 apic_timer_expired(apic, false); 2121 cancel_hv_timer(apic); 2122 } 2123 } 2124 2125 trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use); 2126 2127 return true; 2128 } 2129 2130 static void start_sw_timer(struct kvm_lapic *apic) 2131 { 2132 struct kvm_timer *ktimer = &apic->lapic_timer; 2133 2134 WARN_ON(preemptible()); 2135 if (apic->lapic_timer.hv_timer_in_use) 2136 cancel_hv_timer(apic); 2137 if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending)) 2138 return; 2139 2140 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 2141 start_sw_period(apic); 2142 else if (apic_lvtt_tscdeadline(apic)) 2143 start_sw_tscdeadline(apic); 2144 trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false); 2145 } 2146 2147 static void restart_apic_timer(struct kvm_lapic *apic) 2148 { 2149 preempt_disable(); 2150 2151 if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending)) 2152 goto out; 2153 2154 if (!start_hv_timer(apic)) 2155 start_sw_timer(apic); 2156 out: 2157 preempt_enable(); 2158 } 2159 2160 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu) 2161 { 2162 struct kvm_lapic *apic = vcpu->arch.apic; 2163 2164 preempt_disable(); 2165 /* If the preempt notifier has already run, it also called apic_timer_expired */ 2166 if (!apic->lapic_timer.hv_timer_in_use) 2167 goto out; 2168 WARN_ON(kvm_vcpu_is_blocking(vcpu)); 2169 apic_timer_expired(apic, false); 2170 cancel_hv_timer(apic); 2171 2172 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 2173 advance_periodic_target_expiration(apic); 2174 restart_apic_timer(apic); 2175 } 2176 out: 2177 preempt_enable(); 2178 } 2179 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer); 2180 2181 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu) 2182 { 2183 restart_apic_timer(vcpu->arch.apic); 2184 } 2185 2186 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu) 2187 { 2188 struct kvm_lapic *apic = vcpu->arch.apic; 2189 2190 preempt_disable(); 2191 /* Possibly the TSC deadline timer is not enabled yet */ 2192 if (apic->lapic_timer.hv_timer_in_use) 2193 start_sw_timer(apic); 2194 preempt_enable(); 2195 } 2196 2197 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu) 2198 { 2199 struct kvm_lapic *apic = vcpu->arch.apic; 2200 2201 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 2202 restart_apic_timer(apic); 2203 } 2204 2205 static void __start_apic_timer(struct kvm_lapic *apic, u32 count_reg) 2206 { 2207 atomic_set(&apic->lapic_timer.pending, 0); 2208 2209 if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 2210 && !set_target_expiration(apic, count_reg)) 2211 return; 2212 2213 restart_apic_timer(apic); 2214 } 2215 2216 static void start_apic_timer(struct kvm_lapic *apic) 2217 { 2218 __start_apic_timer(apic, APIC_TMICT); 2219 } 2220 2221 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val) 2222 { 2223 bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val); 2224 2225 if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) { 2226 apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode; 2227 if (lvt0_in_nmi_mode) { 2228 atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 2229 } else 2230 atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 2231 } 2232 } 2233 2234 static int get_lvt_index(u32 reg) 2235 { 2236 if (reg == APIC_LVTCMCI) 2237 return LVT_CMCI; 2238 if (reg < APIC_LVTT || reg > APIC_LVTERR) 2239 return -1; 2240 return array_index_nospec( 2241 (reg - APIC_LVTT) >> 4, KVM_APIC_MAX_NR_LVT_ENTRIES); 2242 } 2243 2244 static int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val) 2245 { 2246 int ret = 0; 2247 2248 trace_kvm_apic_write(reg, val); 2249 2250 switch (reg) { 2251 case APIC_ID: /* Local APIC ID */ 2252 if (!apic_x2apic_mode(apic)) { 2253 kvm_apic_set_xapic_id(apic, val >> 24); 2254 } else { 2255 ret = 1; 2256 } 2257 break; 2258 2259 case APIC_TASKPRI: 2260 report_tpr_access(apic, true); 2261 apic_set_tpr(apic, val & 0xff); 2262 break; 2263 2264 case APIC_EOI: 2265 apic_set_eoi(apic); 2266 break; 2267 2268 case APIC_LDR: 2269 if (!apic_x2apic_mode(apic)) 2270 kvm_apic_set_ldr(apic, val & APIC_LDR_MASK); 2271 else 2272 ret = 1; 2273 break; 2274 2275 case APIC_DFR: 2276 if (!apic_x2apic_mode(apic)) 2277 kvm_apic_set_dfr(apic, val | 0x0FFFFFFF); 2278 else 2279 ret = 1; 2280 break; 2281 2282 case APIC_SPIV: { 2283 u32 mask = 0x3ff; 2284 if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI) 2285 mask |= APIC_SPIV_DIRECTED_EOI; 2286 apic_set_spiv(apic, val & mask); 2287 if (!(val & APIC_SPIV_APIC_ENABLED)) { 2288 int i; 2289 2290 for (i = 0; i < apic->nr_lvt_entries; i++) { 2291 kvm_lapic_set_reg(apic, APIC_LVTx(i), 2292 kvm_lapic_get_reg(apic, APIC_LVTx(i)) | APIC_LVT_MASKED); 2293 } 2294 apic_update_lvtt(apic); 2295 atomic_set(&apic->lapic_timer.pending, 0); 2296 2297 } 2298 break; 2299 } 2300 case APIC_ICR: 2301 WARN_ON_ONCE(apic_x2apic_mode(apic)); 2302 2303 /* No delay here, so we always clear the pending bit */ 2304 val &= ~APIC_ICR_BUSY; 2305 kvm_apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2)); 2306 kvm_lapic_set_reg(apic, APIC_ICR, val); 2307 break; 2308 case APIC_ICR2: 2309 if (apic_x2apic_mode(apic)) 2310 ret = 1; 2311 else 2312 kvm_lapic_set_reg(apic, APIC_ICR2, val & 0xff000000); 2313 break; 2314 2315 case APIC_LVT0: 2316 apic_manage_nmi_watchdog(apic, val); 2317 fallthrough; 2318 case APIC_LVTTHMR: 2319 case APIC_LVTPC: 2320 case APIC_LVT1: 2321 case APIC_LVTERR: 2322 case APIC_LVTCMCI: { 2323 u32 index = get_lvt_index(reg); 2324 if (!kvm_lapic_lvt_supported(apic, index)) { 2325 ret = 1; 2326 break; 2327 } 2328 if (!kvm_apic_sw_enabled(apic)) 2329 val |= APIC_LVT_MASKED; 2330 val &= apic_lvt_mask[index]; 2331 kvm_lapic_set_reg(apic, reg, val); 2332 break; 2333 } 2334 2335 case APIC_LVTT: 2336 if (!kvm_apic_sw_enabled(apic)) 2337 val |= APIC_LVT_MASKED; 2338 val &= (apic_lvt_mask[LVT_TIMER] | apic->lapic_timer.timer_mode_mask); 2339 kvm_lapic_set_reg(apic, APIC_LVTT, val); 2340 apic_update_lvtt(apic); 2341 break; 2342 2343 case APIC_TMICT: 2344 if (apic_lvtt_tscdeadline(apic)) 2345 break; 2346 2347 cancel_apic_timer(apic); 2348 kvm_lapic_set_reg(apic, APIC_TMICT, val); 2349 start_apic_timer(apic); 2350 break; 2351 2352 case APIC_TDCR: { 2353 uint32_t old_divisor = apic->divide_count; 2354 2355 kvm_lapic_set_reg(apic, APIC_TDCR, val & 0xb); 2356 update_divide_count(apic); 2357 if (apic->divide_count != old_divisor && 2358 apic->lapic_timer.period) { 2359 hrtimer_cancel(&apic->lapic_timer.timer); 2360 update_target_expiration(apic, old_divisor); 2361 restart_apic_timer(apic); 2362 } 2363 break; 2364 } 2365 case APIC_ESR: 2366 if (apic_x2apic_mode(apic) && val != 0) 2367 ret = 1; 2368 break; 2369 2370 case APIC_SELF_IPI: 2371 /* 2372 * Self-IPI exists only when x2APIC is enabled. Bits 7:0 hold 2373 * the vector, everything else is reserved. 2374 */ 2375 if (!apic_x2apic_mode(apic) || (val & ~APIC_VECTOR_MASK)) 2376 ret = 1; 2377 else 2378 kvm_apic_send_ipi(apic, APIC_DEST_SELF | val, 0); 2379 break; 2380 default: 2381 ret = 1; 2382 break; 2383 } 2384 2385 /* 2386 * Recalculate APIC maps if necessary, e.g. if the software enable bit 2387 * was toggled, the APIC ID changed, etc... The maps are marked dirty 2388 * on relevant changes, i.e. this is a nop for most writes. 2389 */ 2390 kvm_recalculate_apic_map(apic->vcpu->kvm); 2391 2392 return ret; 2393 } 2394 2395 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 2396 gpa_t address, int len, const void *data) 2397 { 2398 struct kvm_lapic *apic = to_lapic(this); 2399 unsigned int offset = address - apic->base_address; 2400 u32 val; 2401 2402 if (!apic_mmio_in_range(apic, address)) 2403 return -EOPNOTSUPP; 2404 2405 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 2406 if (!kvm_check_has_quirk(vcpu->kvm, 2407 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 2408 return -EOPNOTSUPP; 2409 2410 return 0; 2411 } 2412 2413 /* 2414 * APIC register must be aligned on 128-bits boundary. 2415 * 32/64/128 bits registers must be accessed thru 32 bits. 2416 * Refer SDM 8.4.1 2417 */ 2418 if (len != 4 || (offset & 0xf)) 2419 return 0; 2420 2421 val = *(u32*)data; 2422 2423 kvm_lapic_reg_write(apic, offset & 0xff0, val); 2424 2425 return 0; 2426 } 2427 2428 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu) 2429 { 2430 kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0); 2431 } 2432 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi); 2433 2434 #define X2APIC_ICR_RESERVED_BITS (GENMASK_ULL(31, 20) | GENMASK_ULL(17, 16) | BIT(13)) 2435 2436 int kvm_x2apic_icr_write(struct kvm_lapic *apic, u64 data) 2437 { 2438 if (data & X2APIC_ICR_RESERVED_BITS) 2439 return 1; 2440 2441 /* 2442 * The BUSY bit is reserved on both Intel and AMD in x2APIC mode, but 2443 * only AMD requires it to be zero, Intel essentially just ignores the 2444 * bit. And if IPI virtualization (Intel) or x2AVIC (AMD) is enabled, 2445 * the CPU performs the reserved bits checks, i.e. the underlying CPU 2446 * behavior will "win". Arbitrarily clear the BUSY bit, as there is no 2447 * sane way to provide consistent behavior with respect to hardware. 2448 */ 2449 data &= ~APIC_ICR_BUSY; 2450 2451 kvm_apic_send_ipi(apic, (u32)data, (u32)(data >> 32)); 2452 if (kvm_x86_ops.x2apic_icr_is_split) { 2453 kvm_lapic_set_reg(apic, APIC_ICR, data); 2454 kvm_lapic_set_reg(apic, APIC_ICR2, data >> 32); 2455 } else { 2456 kvm_lapic_set_reg64(apic, APIC_ICR, data); 2457 } 2458 trace_kvm_apic_write(APIC_ICR, data); 2459 return 0; 2460 } 2461 2462 static u64 kvm_x2apic_icr_read(struct kvm_lapic *apic) 2463 { 2464 if (kvm_x86_ops.x2apic_icr_is_split) 2465 return (u64)kvm_lapic_get_reg(apic, APIC_ICR) | 2466 (u64)kvm_lapic_get_reg(apic, APIC_ICR2) << 32; 2467 2468 return kvm_lapic_get_reg64(apic, APIC_ICR); 2469 } 2470 2471 /* emulate APIC access in a trap manner */ 2472 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset) 2473 { 2474 struct kvm_lapic *apic = vcpu->arch.apic; 2475 2476 /* 2477 * ICR is a single 64-bit register when x2APIC is enabled, all others 2478 * registers hold 32-bit values. For legacy xAPIC, ICR writes need to 2479 * go down the common path to get the upper half from ICR2. 2480 * 2481 * Note, using the write helpers may incur an unnecessary write to the 2482 * virtual APIC state, but KVM needs to conditionally modify the value 2483 * in certain cases, e.g. to clear the ICR busy bit. The cost of extra 2484 * conditional branches is likely a wash relative to the cost of the 2485 * maybe-unecessary write, and both are in the noise anyways. 2486 */ 2487 if (apic_x2apic_mode(apic) && offset == APIC_ICR) 2488 WARN_ON_ONCE(kvm_x2apic_icr_write(apic, kvm_x2apic_icr_read(apic))); 2489 else 2490 kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset)); 2491 } 2492 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode); 2493 2494 void kvm_free_lapic(struct kvm_vcpu *vcpu) 2495 { 2496 struct kvm_lapic *apic = vcpu->arch.apic; 2497 2498 if (!vcpu->arch.apic) { 2499 static_branch_dec(&kvm_has_noapic_vcpu); 2500 return; 2501 } 2502 2503 hrtimer_cancel(&apic->lapic_timer.timer); 2504 2505 if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)) 2506 static_branch_slow_dec_deferred(&apic_hw_disabled); 2507 2508 if (!apic->sw_enabled) 2509 static_branch_slow_dec_deferred(&apic_sw_disabled); 2510 2511 if (apic->regs) 2512 free_page((unsigned long)apic->regs); 2513 2514 kfree(apic); 2515 } 2516 2517 /* 2518 *---------------------------------------------------------------------- 2519 * LAPIC interface 2520 *---------------------------------------------------------------------- 2521 */ 2522 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu) 2523 { 2524 struct kvm_lapic *apic = vcpu->arch.apic; 2525 2526 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic)) 2527 return 0; 2528 2529 return apic->lapic_timer.tscdeadline; 2530 } 2531 2532 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data) 2533 { 2534 struct kvm_lapic *apic = vcpu->arch.apic; 2535 2536 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic)) 2537 return; 2538 2539 hrtimer_cancel(&apic->lapic_timer.timer); 2540 apic->lapic_timer.tscdeadline = data; 2541 start_apic_timer(apic); 2542 } 2543 2544 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8) 2545 { 2546 apic_set_tpr(vcpu->arch.apic, (cr8 & 0x0f) << 4); 2547 } 2548 2549 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu) 2550 { 2551 u64 tpr; 2552 2553 tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI); 2554 2555 return (tpr & 0xf0) >> 4; 2556 } 2557 2558 static void __kvm_apic_set_base(struct kvm_vcpu *vcpu, u64 value) 2559 { 2560 u64 old_value = vcpu->arch.apic_base; 2561 struct kvm_lapic *apic = vcpu->arch.apic; 2562 2563 vcpu->arch.apic_base = value; 2564 2565 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) 2566 vcpu->arch.cpuid_dynamic_bits_dirty = true; 2567 2568 if (!apic) 2569 return; 2570 2571 /* update jump label if enable bit changes */ 2572 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) { 2573 if (value & MSR_IA32_APICBASE_ENABLE) { 2574 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2575 static_branch_slow_dec_deferred(&apic_hw_disabled); 2576 /* Check if there are APF page ready requests pending */ 2577 kvm_make_request(KVM_REQ_APF_READY, vcpu); 2578 } else { 2579 static_branch_inc(&apic_hw_disabled.key); 2580 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 2581 } 2582 } 2583 2584 if ((old_value ^ value) & X2APIC_ENABLE) { 2585 if (value & X2APIC_ENABLE) 2586 kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id); 2587 else if (value & MSR_IA32_APICBASE_ENABLE) 2588 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2589 } 2590 2591 if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) { 2592 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 2593 kvm_x86_call(set_virtual_apic_mode)(vcpu); 2594 } 2595 2596 apic->base_address = apic->vcpu->arch.apic_base & 2597 MSR_IA32_APICBASE_BASE; 2598 2599 if ((value & MSR_IA32_APICBASE_ENABLE) && 2600 apic->base_address != APIC_DEFAULT_PHYS_BASE) { 2601 kvm_set_apicv_inhibit(apic->vcpu->kvm, 2602 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED); 2603 } 2604 } 2605 2606 int kvm_apic_set_base(struct kvm_vcpu *vcpu, u64 value, bool host_initiated) 2607 { 2608 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 2609 enum lapic_mode new_mode = kvm_apic_mode(value); 2610 2611 if (vcpu->arch.apic_base == value) 2612 return 0; 2613 2614 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 2615 (guest_cpu_cap_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 2616 2617 if ((value & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 2618 return 1; 2619 if (!host_initiated) { 2620 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 2621 return 1; 2622 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 2623 return 1; 2624 } 2625 2626 __kvm_apic_set_base(vcpu, value); 2627 kvm_recalculate_apic_map(vcpu->kvm); 2628 return 0; 2629 } 2630 EXPORT_SYMBOL_GPL(kvm_apic_set_base); 2631 2632 void kvm_apic_update_apicv(struct kvm_vcpu *vcpu) 2633 { 2634 struct kvm_lapic *apic = vcpu->arch.apic; 2635 2636 /* 2637 * When APICv is enabled, KVM must always search the IRR for a pending 2638 * IRQ, as other vCPUs and devices can set IRR bits even if the vCPU 2639 * isn't running. If APICv is disabled, KVM _should_ search the IRR 2640 * for a pending IRQ. But KVM currently doesn't ensure *all* hardware, 2641 * e.g. CPUs and IOMMUs, has seen the change in state, i.e. searching 2642 * the IRR at this time could race with IRQ delivery from hardware that 2643 * still sees APICv as being enabled. 2644 * 2645 * FIXME: Ensure other vCPUs and devices observe the change in APICv 2646 * state prior to updating KVM's metadata caches, so that KVM 2647 * can safely search the IRR and set irr_pending accordingly. 2648 */ 2649 apic->irr_pending = true; 2650 2651 if (apic->apicv_active) 2652 apic->isr_count = 1; 2653 else 2654 apic->isr_count = count_vectors(apic->regs + APIC_ISR); 2655 2656 apic->highest_isr_cache = -1; 2657 } 2658 2659 int kvm_alloc_apic_access_page(struct kvm *kvm) 2660 { 2661 void __user *hva; 2662 int ret = 0; 2663 2664 mutex_lock(&kvm->slots_lock); 2665 if (kvm->arch.apic_access_memslot_enabled || 2666 kvm->arch.apic_access_memslot_inhibited) 2667 goto out; 2668 2669 hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 2670 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE); 2671 if (IS_ERR(hva)) { 2672 ret = PTR_ERR(hva); 2673 goto out; 2674 } 2675 2676 kvm->arch.apic_access_memslot_enabled = true; 2677 out: 2678 mutex_unlock(&kvm->slots_lock); 2679 return ret; 2680 } 2681 EXPORT_SYMBOL_GPL(kvm_alloc_apic_access_page); 2682 2683 void kvm_inhibit_apic_access_page(struct kvm_vcpu *vcpu) 2684 { 2685 struct kvm *kvm = vcpu->kvm; 2686 2687 if (!kvm->arch.apic_access_memslot_enabled) 2688 return; 2689 2690 kvm_vcpu_srcu_read_unlock(vcpu); 2691 2692 mutex_lock(&kvm->slots_lock); 2693 2694 if (kvm->arch.apic_access_memslot_enabled) { 2695 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0); 2696 /* 2697 * Clear "enabled" after the memslot is deleted so that a 2698 * different vCPU doesn't get a false negative when checking 2699 * the flag out of slots_lock. No additional memory barrier is 2700 * needed as modifying memslots requires waiting other vCPUs to 2701 * drop SRCU (see above), and false positives are ok as the 2702 * flag is rechecked after acquiring slots_lock. 2703 */ 2704 kvm->arch.apic_access_memslot_enabled = false; 2705 2706 /* 2707 * Mark the memslot as inhibited to prevent reallocating the 2708 * memslot during vCPU creation, e.g. if a vCPU is hotplugged. 2709 */ 2710 kvm->arch.apic_access_memslot_inhibited = true; 2711 } 2712 2713 mutex_unlock(&kvm->slots_lock); 2714 2715 kvm_vcpu_srcu_read_lock(vcpu); 2716 } 2717 2718 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event) 2719 { 2720 struct kvm_lapic *apic = vcpu->arch.apic; 2721 u64 msr_val; 2722 int i; 2723 2724 kvm_x86_call(apicv_pre_state_restore)(vcpu); 2725 2726 if (!init_event) { 2727 msr_val = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE; 2728 if (kvm_vcpu_is_reset_bsp(vcpu)) 2729 msr_val |= MSR_IA32_APICBASE_BSP; 2730 2731 /* 2732 * Use the inner helper to avoid an extra recalcuation of the 2733 * optimized APIC map if some other task has dirtied the map. 2734 * The recalculation needed for this vCPU will be done after 2735 * all APIC state has been initialized (see below). 2736 */ 2737 __kvm_apic_set_base(vcpu, msr_val); 2738 } 2739 2740 if (!apic) 2741 return; 2742 2743 /* Stop the timer in case it's a reset to an active apic */ 2744 hrtimer_cancel(&apic->lapic_timer.timer); 2745 2746 /* The xAPIC ID is set at RESET even if the APIC was already enabled. */ 2747 if (!init_event) 2748 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2749 kvm_apic_set_version(apic->vcpu); 2750 2751 for (i = 0; i < apic->nr_lvt_entries; i++) 2752 kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED); 2753 apic_update_lvtt(apic); 2754 if (kvm_vcpu_is_reset_bsp(vcpu) && 2755 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED)) 2756 kvm_lapic_set_reg(apic, APIC_LVT0, 2757 SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT)); 2758 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 2759 2760 kvm_apic_set_dfr(apic, 0xffffffffU); 2761 apic_set_spiv(apic, 0xff); 2762 kvm_lapic_set_reg(apic, APIC_TASKPRI, 0); 2763 if (!apic_x2apic_mode(apic)) 2764 kvm_apic_set_ldr(apic, 0); 2765 kvm_lapic_set_reg(apic, APIC_ESR, 0); 2766 if (!apic_x2apic_mode(apic)) { 2767 kvm_lapic_set_reg(apic, APIC_ICR, 0); 2768 kvm_lapic_set_reg(apic, APIC_ICR2, 0); 2769 } else { 2770 kvm_lapic_set_reg64(apic, APIC_ICR, 0); 2771 } 2772 kvm_lapic_set_reg(apic, APIC_TDCR, 0); 2773 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 2774 for (i = 0; i < 8; i++) { 2775 kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0); 2776 kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0); 2777 kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0); 2778 } 2779 kvm_apic_update_apicv(vcpu); 2780 update_divide_count(apic); 2781 atomic_set(&apic->lapic_timer.pending, 0); 2782 2783 vcpu->arch.pv_eoi.msr_val = 0; 2784 apic_update_ppr(apic); 2785 if (apic->apicv_active) { 2786 kvm_x86_call(apicv_post_state_restore)(vcpu); 2787 kvm_x86_call(hwapic_isr_update)(vcpu, -1); 2788 } 2789 2790 vcpu->arch.apic_arb_prio = 0; 2791 vcpu->arch.apic_attention = 0; 2792 2793 kvm_recalculate_apic_map(vcpu->kvm); 2794 } 2795 2796 /* 2797 *---------------------------------------------------------------------- 2798 * timer interface 2799 *---------------------------------------------------------------------- 2800 */ 2801 2802 static bool lapic_is_periodic(struct kvm_lapic *apic) 2803 { 2804 return apic_lvtt_period(apic); 2805 } 2806 2807 int apic_has_pending_timer(struct kvm_vcpu *vcpu) 2808 { 2809 struct kvm_lapic *apic = vcpu->arch.apic; 2810 2811 if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT)) 2812 return atomic_read(&apic->lapic_timer.pending); 2813 2814 return 0; 2815 } 2816 2817 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type) 2818 { 2819 u32 reg = kvm_lapic_get_reg(apic, lvt_type); 2820 int vector, mode, trig_mode; 2821 int r; 2822 2823 if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) { 2824 vector = reg & APIC_VECTOR_MASK; 2825 mode = reg & APIC_MODE_MASK; 2826 trig_mode = reg & APIC_LVT_LEVEL_TRIGGER; 2827 2828 r = __apic_accept_irq(apic, mode, vector, 1, trig_mode, NULL); 2829 if (r && lvt_type == APIC_LVTPC && 2830 guest_cpuid_is_intel_compatible(apic->vcpu)) 2831 kvm_lapic_set_reg(apic, APIC_LVTPC, reg | APIC_LVT_MASKED); 2832 return r; 2833 } 2834 return 0; 2835 } 2836 2837 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu) 2838 { 2839 struct kvm_lapic *apic = vcpu->arch.apic; 2840 2841 if (apic) 2842 kvm_apic_local_deliver(apic, APIC_LVT0); 2843 } 2844 2845 static const struct kvm_io_device_ops apic_mmio_ops = { 2846 .read = apic_mmio_read, 2847 .write = apic_mmio_write, 2848 }; 2849 2850 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data) 2851 { 2852 struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer); 2853 struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer); 2854 2855 apic_timer_expired(apic, true); 2856 2857 if (lapic_is_periodic(apic)) { 2858 advance_periodic_target_expiration(apic); 2859 hrtimer_add_expires_ns(&ktimer->timer, ktimer->period); 2860 return HRTIMER_RESTART; 2861 } else 2862 return HRTIMER_NORESTART; 2863 } 2864 2865 int kvm_create_lapic(struct kvm_vcpu *vcpu) 2866 { 2867 struct kvm_lapic *apic; 2868 2869 ASSERT(vcpu != NULL); 2870 2871 if (!irqchip_in_kernel(vcpu->kvm)) { 2872 static_branch_inc(&kvm_has_noapic_vcpu); 2873 return 0; 2874 } 2875 2876 apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT); 2877 if (!apic) 2878 goto nomem; 2879 2880 vcpu->arch.apic = apic; 2881 2882 if (kvm_x86_ops.alloc_apic_backing_page) 2883 apic->regs = kvm_x86_call(alloc_apic_backing_page)(vcpu); 2884 else 2885 apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 2886 if (!apic->regs) { 2887 printk(KERN_ERR "malloc apic regs error for vcpu %x\n", 2888 vcpu->vcpu_id); 2889 goto nomem_free_apic; 2890 } 2891 apic->vcpu = vcpu; 2892 2893 apic->nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu); 2894 2895 hrtimer_setup(&apic->lapic_timer.timer, apic_timer_fn, CLOCK_MONOTONIC, 2896 HRTIMER_MODE_ABS_HARD); 2897 if (lapic_timer_advance) 2898 apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; 2899 2900 /* 2901 * Stuff the APIC ENABLE bit in lieu of temporarily incrementing 2902 * apic_hw_disabled; the full RESET value is set by kvm_lapic_reset(). 2903 */ 2904 vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE; 2905 static_branch_inc(&apic_sw_disabled.key); /* sw disabled at reset */ 2906 kvm_iodevice_init(&apic->dev, &apic_mmio_ops); 2907 2908 /* 2909 * Defer evaluating inhibits until the vCPU is first run, as this vCPU 2910 * will not get notified of any changes until this vCPU is visible to 2911 * other vCPUs (marked online and added to the set of vCPUs). 2912 * 2913 * Opportunistically mark APICv active as VMX in particularly is highly 2914 * unlikely to have inhibits. Ignore the current per-VM APICv state so 2915 * that vCPU creation is guaranteed to run with a deterministic value, 2916 * the request will ensure the vCPU gets the correct state before VM-Entry. 2917 */ 2918 if (enable_apicv) { 2919 apic->apicv_active = true; 2920 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 2921 } 2922 2923 return 0; 2924 nomem_free_apic: 2925 kfree(apic); 2926 vcpu->arch.apic = NULL; 2927 nomem: 2928 return -ENOMEM; 2929 } 2930 2931 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu) 2932 { 2933 struct kvm_lapic *apic = vcpu->arch.apic; 2934 u32 ppr; 2935 2936 if (!kvm_apic_present(vcpu)) 2937 return -1; 2938 2939 if (apic->guest_apic_protected) 2940 return -1; 2941 2942 __apic_update_ppr(apic, &ppr); 2943 return apic_has_interrupt_for_ppr(apic, ppr); 2944 } 2945 EXPORT_SYMBOL_GPL(kvm_apic_has_interrupt); 2946 2947 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu) 2948 { 2949 u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0); 2950 2951 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 2952 return 1; 2953 if ((lvt0 & APIC_LVT_MASKED) == 0 && 2954 GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT) 2955 return 1; 2956 return 0; 2957 } 2958 2959 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu) 2960 { 2961 struct kvm_lapic *apic = vcpu->arch.apic; 2962 2963 if (atomic_read(&apic->lapic_timer.pending) > 0) { 2964 kvm_apic_inject_pending_timer_irqs(apic); 2965 atomic_set(&apic->lapic_timer.pending, 0); 2966 } 2967 } 2968 2969 void kvm_apic_ack_interrupt(struct kvm_vcpu *vcpu, int vector) 2970 { 2971 struct kvm_lapic *apic = vcpu->arch.apic; 2972 u32 ppr; 2973 2974 if (WARN_ON_ONCE(vector < 0 || !apic)) 2975 return; 2976 2977 /* 2978 * We get here even with APIC virtualization enabled, if doing 2979 * nested virtualization and L1 runs with the "acknowledge interrupt 2980 * on exit" mode. Then we cannot inject the interrupt via RVI, 2981 * because the process would deliver it through the IDT. 2982 */ 2983 2984 apic_clear_irr(vector, apic); 2985 if (kvm_hv_synic_auto_eoi_set(vcpu, vector)) { 2986 /* 2987 * For auto-EOI interrupts, there might be another pending 2988 * interrupt above PPR, so check whether to raise another 2989 * KVM_REQ_EVENT. 2990 */ 2991 apic_update_ppr(apic); 2992 } else { 2993 /* 2994 * For normal interrupts, PPR has been raised and there cannot 2995 * be a higher-priority pending interrupt---except if there was 2996 * a concurrent interrupt injection, but that would have 2997 * triggered KVM_REQ_EVENT already. 2998 */ 2999 apic_set_isr(vector, apic); 3000 __apic_update_ppr(apic, &ppr); 3001 } 3002 3003 } 3004 EXPORT_SYMBOL_GPL(kvm_apic_ack_interrupt); 3005 3006 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu, 3007 struct kvm_lapic_state *s, bool set) 3008 { 3009 if (apic_x2apic_mode(vcpu->arch.apic)) { 3010 u32 x2apic_id = kvm_x2apic_id(vcpu->arch.apic); 3011 u32 *id = (u32 *)(s->regs + APIC_ID); 3012 u32 *ldr = (u32 *)(s->regs + APIC_LDR); 3013 u64 icr; 3014 3015 if (vcpu->kvm->arch.x2apic_format) { 3016 if (*id != x2apic_id) 3017 return -EINVAL; 3018 } else { 3019 /* 3020 * Ignore the userspace value when setting APIC state. 3021 * KVM's model is that the x2APIC ID is readonly, e.g. 3022 * KVM only supports delivering interrupts to KVM's 3023 * version of the x2APIC ID. However, for backwards 3024 * compatibility, don't reject attempts to set a 3025 * mismatched ID for userspace that hasn't opted into 3026 * x2apic_format. 3027 */ 3028 if (set) 3029 *id = x2apic_id; 3030 else 3031 *id = x2apic_id << 24; 3032 } 3033 3034 /* 3035 * In x2APIC mode, the LDR is fixed and based on the id. And 3036 * if the ICR is _not_ split, ICR is internally a single 64-bit 3037 * register, but needs to be split to ICR+ICR2 in userspace for 3038 * backwards compatibility. 3039 */ 3040 if (set) 3041 *ldr = kvm_apic_calc_x2apic_ldr(x2apic_id); 3042 3043 if (!kvm_x86_ops.x2apic_icr_is_split) { 3044 if (set) { 3045 icr = apic_get_reg(s->regs, APIC_ICR) | 3046 (u64)apic_get_reg(s->regs, APIC_ICR2) << 32; 3047 apic_set_reg64(s->regs, APIC_ICR, icr); 3048 } else { 3049 icr = apic_get_reg64(s->regs, APIC_ICR); 3050 apic_set_reg(s->regs, APIC_ICR2, icr >> 32); 3051 } 3052 } 3053 } 3054 3055 return 0; 3056 } 3057 3058 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 3059 { 3060 memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s)); 3061 3062 /* 3063 * Get calculated timer current count for remaining timer period (if 3064 * any) and store it in the returned register set. 3065 */ 3066 apic_set_reg(s->regs, APIC_TMCCT, __apic_read(vcpu->arch.apic, APIC_TMCCT)); 3067 3068 return kvm_apic_state_fixup(vcpu, s, false); 3069 } 3070 3071 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 3072 { 3073 struct kvm_lapic *apic = vcpu->arch.apic; 3074 int r; 3075 3076 kvm_x86_call(apicv_pre_state_restore)(vcpu); 3077 3078 /* set SPIV separately to get count of SW disabled APICs right */ 3079 apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV))); 3080 3081 r = kvm_apic_state_fixup(vcpu, s, true); 3082 if (r) { 3083 kvm_recalculate_apic_map(vcpu->kvm); 3084 return r; 3085 } 3086 memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s)); 3087 3088 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 3089 kvm_recalculate_apic_map(vcpu->kvm); 3090 kvm_apic_set_version(vcpu); 3091 3092 apic_update_ppr(apic); 3093 cancel_apic_timer(apic); 3094 apic->lapic_timer.expired_tscdeadline = 0; 3095 apic_update_lvtt(apic); 3096 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 3097 update_divide_count(apic); 3098 __start_apic_timer(apic, APIC_TMCCT); 3099 kvm_lapic_set_reg(apic, APIC_TMCCT, 0); 3100 kvm_apic_update_apicv(vcpu); 3101 if (apic->apicv_active) { 3102 kvm_x86_call(apicv_post_state_restore)(vcpu); 3103 kvm_x86_call(hwapic_isr_update)(vcpu, apic_find_highest_isr(apic)); 3104 } 3105 kvm_make_request(KVM_REQ_EVENT, vcpu); 3106 3107 #ifdef CONFIG_KVM_IOAPIC 3108 if (ioapic_in_kernel(vcpu->kvm)) 3109 kvm_rtc_eoi_tracking_restore_one(vcpu); 3110 #endif 3111 3112 vcpu->arch.apic_arb_prio = 0; 3113 3114 return 0; 3115 } 3116 3117 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu) 3118 { 3119 struct hrtimer *timer; 3120 3121 if (!lapic_in_kernel(vcpu) || 3122 kvm_can_post_timer_interrupt(vcpu)) 3123 return; 3124 3125 timer = &vcpu->arch.apic->lapic_timer.timer; 3126 if (hrtimer_cancel(timer)) 3127 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD); 3128 } 3129 3130 /* 3131 * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt 3132 * 3133 * Detect whether guest triggered PV EOI since the 3134 * last entry. If yes, set EOI on guests's behalf. 3135 * Clear PV EOI in guest memory in any case. 3136 */ 3137 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu, 3138 struct kvm_lapic *apic) 3139 { 3140 int vector; 3141 /* 3142 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host 3143 * and KVM_PV_EOI_ENABLED in guest memory as follows: 3144 * 3145 * KVM_APIC_PV_EOI_PENDING is unset: 3146 * -> host disabled PV EOI. 3147 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set: 3148 * -> host enabled PV EOI, guest did not execute EOI yet. 3149 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset: 3150 * -> host enabled PV EOI, guest executed EOI. 3151 */ 3152 BUG_ON(!pv_eoi_enabled(vcpu)); 3153 3154 if (pv_eoi_test_and_clr_pending(vcpu)) 3155 return; 3156 vector = apic_set_eoi(apic); 3157 trace_kvm_pv_eoi(apic, vector); 3158 } 3159 3160 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu) 3161 { 3162 u32 data; 3163 3164 if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention)) 3165 apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic); 3166 3167 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 3168 return; 3169 3170 if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 3171 sizeof(u32))) 3172 return; 3173 3174 apic_set_tpr(vcpu->arch.apic, data & 0xff); 3175 } 3176 3177 /* 3178 * apic_sync_pv_eoi_to_guest - called before vmentry 3179 * 3180 * Detect whether it's safe to enable PV EOI and 3181 * if yes do so. 3182 */ 3183 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu, 3184 struct kvm_lapic *apic) 3185 { 3186 if (!pv_eoi_enabled(vcpu) || 3187 /* IRR set or many bits in ISR: could be nested. */ 3188 apic->irr_pending || 3189 /* Cache not set: could be safe but we don't bother. */ 3190 apic->highest_isr_cache == -1 || 3191 /* Need EOI to update ioapic. */ 3192 kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) { 3193 /* 3194 * PV EOI was disabled by apic_sync_pv_eoi_from_guest 3195 * so we need not do anything here. 3196 */ 3197 return; 3198 } 3199 3200 pv_eoi_set_pending(apic->vcpu); 3201 } 3202 3203 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu) 3204 { 3205 u32 data, tpr; 3206 int max_irr, max_isr; 3207 struct kvm_lapic *apic = vcpu->arch.apic; 3208 3209 apic_sync_pv_eoi_to_guest(vcpu, apic); 3210 3211 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 3212 return; 3213 3214 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff; 3215 max_irr = apic_find_highest_irr(apic); 3216 if (max_irr < 0) 3217 max_irr = 0; 3218 max_isr = apic_find_highest_isr(apic); 3219 if (max_isr < 0) 3220 max_isr = 0; 3221 data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24); 3222 3223 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 3224 sizeof(u32)); 3225 } 3226 3227 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr) 3228 { 3229 if (vapic_addr) { 3230 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, 3231 &vcpu->arch.apic->vapic_cache, 3232 vapic_addr, sizeof(u32))) 3233 return -EINVAL; 3234 __set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 3235 } else { 3236 __clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 3237 } 3238 3239 vcpu->arch.apic->vapic_addr = vapic_addr; 3240 return 0; 3241 } 3242 3243 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data) 3244 { 3245 u32 low; 3246 3247 if (reg == APIC_ICR) { 3248 *data = kvm_x2apic_icr_read(apic); 3249 return 0; 3250 } 3251 3252 if (kvm_lapic_reg_read(apic, reg, 4, &low)) 3253 return 1; 3254 3255 *data = low; 3256 3257 return 0; 3258 } 3259 3260 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data) 3261 { 3262 /* 3263 * ICR is a 64-bit register in x2APIC mode (and Hyper-V PV vAPIC) and 3264 * can be written as such, all other registers remain accessible only 3265 * through 32-bit reads/writes. 3266 */ 3267 if (reg == APIC_ICR) 3268 return kvm_x2apic_icr_write(apic, data); 3269 3270 /* Bits 63:32 are reserved in all other registers. */ 3271 if (data >> 32) 3272 return 1; 3273 3274 return kvm_lapic_reg_write(apic, reg, (u32)data); 3275 } 3276 3277 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data) 3278 { 3279 struct kvm_lapic *apic = vcpu->arch.apic; 3280 u32 reg = (msr - APIC_BASE_MSR) << 4; 3281 3282 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 3283 return 1; 3284 3285 return kvm_lapic_msr_write(apic, reg, data); 3286 } 3287 3288 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data) 3289 { 3290 struct kvm_lapic *apic = vcpu->arch.apic; 3291 u32 reg = (msr - APIC_BASE_MSR) << 4; 3292 3293 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 3294 return 1; 3295 3296 return kvm_lapic_msr_read(apic, reg, data); 3297 } 3298 3299 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data) 3300 { 3301 if (!lapic_in_kernel(vcpu)) 3302 return 1; 3303 3304 return kvm_lapic_msr_write(vcpu->arch.apic, reg, data); 3305 } 3306 3307 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data) 3308 { 3309 if (!lapic_in_kernel(vcpu)) 3310 return 1; 3311 3312 return kvm_lapic_msr_read(vcpu->arch.apic, reg, data); 3313 } 3314 3315 int kvm_lapic_set_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len) 3316 { 3317 u64 addr = data & ~KVM_MSR_ENABLED; 3318 struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data; 3319 unsigned long new_len; 3320 int ret; 3321 3322 if (!IS_ALIGNED(addr, 4)) 3323 return 1; 3324 3325 if (data & KVM_MSR_ENABLED) { 3326 if (addr == ghc->gpa && len <= ghc->len) 3327 new_len = ghc->len; 3328 else 3329 new_len = len; 3330 3331 ret = kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len); 3332 if (ret) 3333 return ret; 3334 } 3335 3336 vcpu->arch.pv_eoi.msr_val = data; 3337 3338 return 0; 3339 } 3340 3341 int kvm_apic_accept_events(struct kvm_vcpu *vcpu) 3342 { 3343 struct kvm_lapic *apic = vcpu->arch.apic; 3344 u8 sipi_vector; 3345 int r; 3346 3347 if (!kvm_apic_has_pending_init_or_sipi(vcpu)) 3348 return 0; 3349 3350 if (is_guest_mode(vcpu)) { 3351 r = kvm_check_nested_events(vcpu); 3352 if (r < 0) 3353 return r == -EBUSY ? 0 : r; 3354 /* 3355 * Continue processing INIT/SIPI even if a nested VM-Exit 3356 * occurred, e.g. pending SIPIs should be dropped if INIT+SIPI 3357 * are blocked as a result of transitioning to VMX root mode. 3358 */ 3359 } 3360 3361 /* 3362 * INITs are blocked while CPU is in specific states (SMM, VMX root 3363 * mode, SVM with GIF=0), while SIPIs are dropped if the CPU isn't in 3364 * wait-for-SIPI (WFS). 3365 */ 3366 if (!kvm_apic_init_sipi_allowed(vcpu)) { 3367 WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED); 3368 clear_bit(KVM_APIC_SIPI, &apic->pending_events); 3369 return 0; 3370 } 3371 3372 if (test_and_clear_bit(KVM_APIC_INIT, &apic->pending_events)) { 3373 kvm_vcpu_reset(vcpu, true); 3374 if (kvm_vcpu_is_bsp(apic->vcpu)) 3375 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); 3376 else 3377 kvm_set_mp_state(vcpu, KVM_MP_STATE_INIT_RECEIVED); 3378 } 3379 if (test_and_clear_bit(KVM_APIC_SIPI, &apic->pending_events)) { 3380 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 3381 /* evaluate pending_events before reading the vector */ 3382 smp_rmb(); 3383 sipi_vector = apic->sipi_vector; 3384 kvm_x86_call(vcpu_deliver_sipi_vector)(vcpu, 3385 sipi_vector); 3386 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); 3387 } 3388 } 3389 return 0; 3390 } 3391 3392 void kvm_lapic_exit(void) 3393 { 3394 static_key_deferred_flush(&apic_hw_disabled); 3395 WARN_ON(static_branch_unlikely(&apic_hw_disabled.key)); 3396 static_key_deferred_flush(&apic_sw_disabled); 3397 WARN_ON(static_branch_unlikely(&apic_sw_disabled.key)); 3398 } 3399