xref: /linux/arch/x86/kvm/lapic.c (revision 257ca10c7317d4a424e48bb95d14ca53a1f1dd6f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 
3 /*
4  * Local APIC virtualization
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2007 Novell
8  * Copyright (C) 2007 Intel
9  * Copyright 2009 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Dor Laor <dor.laor@qumranet.com>
13  *   Gregory Haskins <ghaskins@novell.com>
14  *   Yaozu (Eddie) Dong <eddie.dong@intel.com>
15  *
16  * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation.
17  */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/smp.h>
25 #include <linux/hrtimer.h>
26 #include <linux/io.h>
27 #include <linux/export.h>
28 #include <linux/math64.h>
29 #include <linux/slab.h>
30 #include <asm/processor.h>
31 #include <asm/mce.h>
32 #include <asm/msr.h>
33 #include <asm/page.h>
34 #include <asm/current.h>
35 #include <asm/apicdef.h>
36 #include <asm/delay.h>
37 #include <linux/atomic.h>
38 #include <linux/jump_label.h>
39 #include "kvm_cache_regs.h"
40 #include "irq.h"
41 #include "ioapic.h"
42 #include "trace.h"
43 #include "x86.h"
44 #include "cpuid.h"
45 #include "hyperv.h"
46 #include "smm.h"
47 
48 #ifndef CONFIG_X86_64
49 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
50 #else
51 #define mod_64(x, y) ((x) % (y))
52 #endif
53 
54 /* 14 is the version for Xeon and Pentium 8.4.8*/
55 #define APIC_VERSION			0x14UL
56 #define LAPIC_MMIO_LENGTH		(1 << 12)
57 /* followed define is not in apicdef.h */
58 #define MAX_APIC_VECTOR			256
59 #define APIC_VECTORS_PER_REG		32
60 
61 static bool lapic_timer_advance_dynamic __read_mostly;
62 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN	100	/* clock cycles */
63 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX	10000	/* clock cycles */
64 #define LAPIC_TIMER_ADVANCE_NS_INIT	1000
65 #define LAPIC_TIMER_ADVANCE_NS_MAX     5000
66 /* step-by-step approximation to mitigate fluctuation */
67 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8
68 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data);
69 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data);
70 
71 static inline void __kvm_lapic_set_reg(char *regs, int reg_off, u32 val)
72 {
73 	*((u32 *) (regs + reg_off)) = val;
74 }
75 
76 static inline void kvm_lapic_set_reg(struct kvm_lapic *apic, int reg_off, u32 val)
77 {
78 	__kvm_lapic_set_reg(apic->regs, reg_off, val);
79 }
80 
81 static __always_inline u64 __kvm_lapic_get_reg64(char *regs, int reg)
82 {
83 	BUILD_BUG_ON(reg != APIC_ICR);
84 	return *((u64 *) (regs + reg));
85 }
86 
87 static __always_inline u64 kvm_lapic_get_reg64(struct kvm_lapic *apic, int reg)
88 {
89 	return __kvm_lapic_get_reg64(apic->regs, reg);
90 }
91 
92 static __always_inline void __kvm_lapic_set_reg64(char *regs, int reg, u64 val)
93 {
94 	BUILD_BUG_ON(reg != APIC_ICR);
95 	*((u64 *) (regs + reg)) = val;
96 }
97 
98 static __always_inline void kvm_lapic_set_reg64(struct kvm_lapic *apic,
99 						int reg, u64 val)
100 {
101 	__kvm_lapic_set_reg64(apic->regs, reg, val);
102 }
103 
104 static inline int apic_test_vector(int vec, void *bitmap)
105 {
106 	return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
107 }
108 
109 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector)
110 {
111 	struct kvm_lapic *apic = vcpu->arch.apic;
112 
113 	return apic_test_vector(vector, apic->regs + APIC_ISR) ||
114 		apic_test_vector(vector, apic->regs + APIC_IRR);
115 }
116 
117 static inline int __apic_test_and_set_vector(int vec, void *bitmap)
118 {
119 	return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
120 }
121 
122 static inline int __apic_test_and_clear_vector(int vec, void *bitmap)
123 {
124 	return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
125 }
126 
127 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_hw_disabled, HZ);
128 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_sw_disabled, HZ);
129 
130 static inline int apic_enabled(struct kvm_lapic *apic)
131 {
132 	return kvm_apic_sw_enabled(apic) &&	kvm_apic_hw_enabled(apic);
133 }
134 
135 #define LVT_MASK	\
136 	(APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK)
137 
138 #define LINT_MASK	\
139 	(LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \
140 	 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER)
141 
142 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic)
143 {
144 	return apic->vcpu->vcpu_id;
145 }
146 
147 static bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu)
148 {
149 	return pi_inject_timer && kvm_vcpu_apicv_active(vcpu) &&
150 		(kvm_mwait_in_guest(vcpu->kvm) || kvm_hlt_in_guest(vcpu->kvm));
151 }
152 
153 bool kvm_can_use_hv_timer(struct kvm_vcpu *vcpu)
154 {
155 	return kvm_x86_ops.set_hv_timer
156 	       && !(kvm_mwait_in_guest(vcpu->kvm) ||
157 		    kvm_can_post_timer_interrupt(vcpu));
158 }
159 
160 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu)
161 {
162 	return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE;
163 }
164 
165 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id)
166 {
167 	return ((id >> 4) << 16) | (1 << (id & 0xf));
168 }
169 
170 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map,
171 		u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) {
172 	switch (map->logical_mode) {
173 	case KVM_APIC_MODE_SW_DISABLED:
174 		/* Arbitrarily use the flat map so that @cluster isn't NULL. */
175 		*cluster = map->xapic_flat_map;
176 		*mask = 0;
177 		return true;
178 	case KVM_APIC_MODE_X2APIC: {
179 		u32 offset = (dest_id >> 16) * 16;
180 		u32 max_apic_id = map->max_apic_id;
181 
182 		if (offset <= max_apic_id) {
183 			u8 cluster_size = min(max_apic_id - offset + 1, 16U);
184 
185 			offset = array_index_nospec(offset, map->max_apic_id + 1);
186 			*cluster = &map->phys_map[offset];
187 			*mask = dest_id & (0xffff >> (16 - cluster_size));
188 		} else {
189 			*mask = 0;
190 		}
191 
192 		return true;
193 		}
194 	case KVM_APIC_MODE_XAPIC_FLAT:
195 		*cluster = map->xapic_flat_map;
196 		*mask = dest_id & 0xff;
197 		return true;
198 	case KVM_APIC_MODE_XAPIC_CLUSTER:
199 		*cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf];
200 		*mask = dest_id & 0xf;
201 		return true;
202 	case KVM_APIC_MODE_MAP_DISABLED:
203 		return false;
204 	default:
205 		WARN_ON_ONCE(1);
206 		return false;
207 	}
208 }
209 
210 static void kvm_apic_map_free(struct rcu_head *rcu)
211 {
212 	struct kvm_apic_map *map = container_of(rcu, struct kvm_apic_map, rcu);
213 
214 	kvfree(map);
215 }
216 
217 static int kvm_recalculate_phys_map(struct kvm_apic_map *new,
218 				    struct kvm_vcpu *vcpu,
219 				    bool *xapic_id_mismatch)
220 {
221 	struct kvm_lapic *apic = vcpu->arch.apic;
222 	u32 x2apic_id = kvm_x2apic_id(apic);
223 	u32 xapic_id = kvm_xapic_id(apic);
224 	u32 physical_id;
225 
226 	/*
227 	 * For simplicity, KVM always allocates enough space for all possible
228 	 * xAPIC IDs.  Yell, but don't kill the VM, as KVM can continue on
229 	 * without the optimized map.
230 	 */
231 	if (WARN_ON_ONCE(xapic_id > new->max_apic_id))
232 		return -EINVAL;
233 
234 	/*
235 	 * Bail if a vCPU was added and/or enabled its APIC between allocating
236 	 * the map and doing the actual calculations for the map.  Note, KVM
237 	 * hardcodes the x2APIC ID to vcpu_id, i.e. there's no TOCTOU bug if
238 	 * the compiler decides to reload x2apic_id after this check.
239 	 */
240 	if (x2apic_id > new->max_apic_id)
241 		return -E2BIG;
242 
243 	/*
244 	 * Deliberately truncate the vCPU ID when detecting a mismatched APIC
245 	 * ID to avoid false positives if the vCPU ID, i.e. x2APIC ID, is a
246 	 * 32-bit value.  Any unwanted aliasing due to truncation results will
247 	 * be detected below.
248 	 */
249 	if (!apic_x2apic_mode(apic) && xapic_id != (u8)vcpu->vcpu_id)
250 		*xapic_id_mismatch = true;
251 
252 	/*
253 	 * Apply KVM's hotplug hack if userspace has enable 32-bit APIC IDs.
254 	 * Allow sending events to vCPUs by their x2APIC ID even if the target
255 	 * vCPU is in legacy xAPIC mode, and silently ignore aliased xAPIC IDs
256 	 * (the x2APIC ID is truncated to 8 bits, causing IDs > 0xff to wrap
257 	 * and collide).
258 	 *
259 	 * Honor the architectural (and KVM's non-optimized) behavior if
260 	 * userspace has not enabled 32-bit x2APIC IDs.  Each APIC is supposed
261 	 * to process messages independently.  If multiple vCPUs have the same
262 	 * effective APIC ID, e.g. due to the x2APIC wrap or because the guest
263 	 * manually modified its xAPIC IDs, events targeting that ID are
264 	 * supposed to be recognized by all vCPUs with said ID.
265 	 */
266 	if (vcpu->kvm->arch.x2apic_format) {
267 		/* See also kvm_apic_match_physical_addr(). */
268 		if (apic_x2apic_mode(apic) || x2apic_id > 0xff)
269 			new->phys_map[x2apic_id] = apic;
270 
271 		if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id])
272 			new->phys_map[xapic_id] = apic;
273 	} else {
274 		/*
275 		 * Disable the optimized map if the physical APIC ID is already
276 		 * mapped, i.e. is aliased to multiple vCPUs.  The optimized
277 		 * map requires a strict 1:1 mapping between IDs and vCPUs.
278 		 */
279 		if (apic_x2apic_mode(apic))
280 			physical_id = x2apic_id;
281 		else
282 			physical_id = xapic_id;
283 
284 		if (new->phys_map[physical_id])
285 			return -EINVAL;
286 
287 		new->phys_map[physical_id] = apic;
288 	}
289 
290 	return 0;
291 }
292 
293 static void kvm_recalculate_logical_map(struct kvm_apic_map *new,
294 					struct kvm_vcpu *vcpu)
295 {
296 	struct kvm_lapic *apic = vcpu->arch.apic;
297 	enum kvm_apic_logical_mode logical_mode;
298 	struct kvm_lapic **cluster;
299 	u16 mask;
300 	u32 ldr;
301 
302 	if (new->logical_mode == KVM_APIC_MODE_MAP_DISABLED)
303 		return;
304 
305 	if (!kvm_apic_sw_enabled(apic))
306 		return;
307 
308 	ldr = kvm_lapic_get_reg(apic, APIC_LDR);
309 	if (!ldr)
310 		return;
311 
312 	if (apic_x2apic_mode(apic)) {
313 		logical_mode = KVM_APIC_MODE_X2APIC;
314 	} else {
315 		ldr = GET_APIC_LOGICAL_ID(ldr);
316 		if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT)
317 			logical_mode = KVM_APIC_MODE_XAPIC_FLAT;
318 		else
319 			logical_mode = KVM_APIC_MODE_XAPIC_CLUSTER;
320 	}
321 
322 	/*
323 	 * To optimize logical mode delivery, all software-enabled APICs must
324 	 * be configured for the same mode.
325 	 */
326 	if (new->logical_mode == KVM_APIC_MODE_SW_DISABLED) {
327 		new->logical_mode = logical_mode;
328 	} else if (new->logical_mode != logical_mode) {
329 		new->logical_mode = KVM_APIC_MODE_MAP_DISABLED;
330 		return;
331 	}
332 
333 	/*
334 	 * In x2APIC mode, the LDR is read-only and derived directly from the
335 	 * x2APIC ID, thus is guaranteed to be addressable.  KVM reuses
336 	 * kvm_apic_map.phys_map to optimize logical mode x2APIC interrupts by
337 	 * reversing the LDR calculation to get cluster of APICs, i.e. no
338 	 * additional work is required.
339 	 */
340 	if (apic_x2apic_mode(apic)) {
341 		WARN_ON_ONCE(ldr != kvm_apic_calc_x2apic_ldr(kvm_x2apic_id(apic)));
342 		return;
343 	}
344 
345 	if (WARN_ON_ONCE(!kvm_apic_map_get_logical_dest(new, ldr,
346 							&cluster, &mask))) {
347 		new->logical_mode = KVM_APIC_MODE_MAP_DISABLED;
348 		return;
349 	}
350 
351 	if (!mask)
352 		return;
353 
354 	ldr = ffs(mask) - 1;
355 	if (!is_power_of_2(mask) || cluster[ldr])
356 		new->logical_mode = KVM_APIC_MODE_MAP_DISABLED;
357 	else
358 		cluster[ldr] = apic;
359 }
360 
361 /*
362  * CLEAN -> DIRTY and UPDATE_IN_PROGRESS -> DIRTY changes happen without a lock.
363  *
364  * DIRTY -> UPDATE_IN_PROGRESS and UPDATE_IN_PROGRESS -> CLEAN happen with
365  * apic_map_lock_held.
366  */
367 enum {
368 	CLEAN,
369 	UPDATE_IN_PROGRESS,
370 	DIRTY
371 };
372 
373 void kvm_recalculate_apic_map(struct kvm *kvm)
374 {
375 	struct kvm_apic_map *new, *old = NULL;
376 	struct kvm_vcpu *vcpu;
377 	unsigned long i;
378 	u32 max_id = 255; /* enough space for any xAPIC ID */
379 	bool xapic_id_mismatch;
380 	int r;
381 
382 	/* Read kvm->arch.apic_map_dirty before kvm->arch.apic_map.  */
383 	if (atomic_read_acquire(&kvm->arch.apic_map_dirty) == CLEAN)
384 		return;
385 
386 	WARN_ONCE(!irqchip_in_kernel(kvm),
387 		  "Dirty APIC map without an in-kernel local APIC");
388 
389 	mutex_lock(&kvm->arch.apic_map_lock);
390 
391 retry:
392 	/*
393 	 * Read kvm->arch.apic_map_dirty before kvm->arch.apic_map (if clean)
394 	 * or the APIC registers (if dirty).  Note, on retry the map may have
395 	 * not yet been marked dirty by whatever task changed a vCPU's x2APIC
396 	 * ID, i.e. the map may still show up as in-progress.  In that case
397 	 * this task still needs to retry and complete its calculation.
398 	 */
399 	if (atomic_cmpxchg_acquire(&kvm->arch.apic_map_dirty,
400 				   DIRTY, UPDATE_IN_PROGRESS) == CLEAN) {
401 		/* Someone else has updated the map. */
402 		mutex_unlock(&kvm->arch.apic_map_lock);
403 		return;
404 	}
405 
406 	/*
407 	 * Reset the mismatch flag between attempts so that KVM does the right
408 	 * thing if a vCPU changes its xAPIC ID, but do NOT reset max_id, i.e.
409 	 * keep max_id strictly increasing.  Disallowing max_id from shrinking
410 	 * ensures KVM won't get stuck in an infinite loop, e.g. if the vCPU
411 	 * with the highest x2APIC ID is toggling its APIC on and off.
412 	 */
413 	xapic_id_mismatch = false;
414 
415 	kvm_for_each_vcpu(i, vcpu, kvm)
416 		if (kvm_apic_present(vcpu))
417 			max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic));
418 
419 	new = kvzalloc(sizeof(struct kvm_apic_map) +
420 	                   sizeof(struct kvm_lapic *) * ((u64)max_id + 1),
421 			   GFP_KERNEL_ACCOUNT);
422 
423 	if (!new)
424 		goto out;
425 
426 	new->max_apic_id = max_id;
427 	new->logical_mode = KVM_APIC_MODE_SW_DISABLED;
428 
429 	kvm_for_each_vcpu(i, vcpu, kvm) {
430 		if (!kvm_apic_present(vcpu))
431 			continue;
432 
433 		r = kvm_recalculate_phys_map(new, vcpu, &xapic_id_mismatch);
434 		if (r) {
435 			kvfree(new);
436 			new = NULL;
437 			if (r == -E2BIG) {
438 				cond_resched();
439 				goto retry;
440 			}
441 
442 			goto out;
443 		}
444 
445 		kvm_recalculate_logical_map(new, vcpu);
446 	}
447 out:
448 	/*
449 	 * The optimized map is effectively KVM's internal version of APICv,
450 	 * and all unwanted aliasing that results in disabling the optimized
451 	 * map also applies to APICv.
452 	 */
453 	if (!new)
454 		kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED);
455 	else
456 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED);
457 
458 	if (!new || new->logical_mode == KVM_APIC_MODE_MAP_DISABLED)
459 		kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED);
460 	else
461 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED);
462 
463 	if (xapic_id_mismatch)
464 		kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED);
465 	else
466 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED);
467 
468 	old = rcu_dereference_protected(kvm->arch.apic_map,
469 			lockdep_is_held(&kvm->arch.apic_map_lock));
470 	rcu_assign_pointer(kvm->arch.apic_map, new);
471 	/*
472 	 * Write kvm->arch.apic_map before clearing apic->apic_map_dirty.
473 	 * If another update has come in, leave it DIRTY.
474 	 */
475 	atomic_cmpxchg_release(&kvm->arch.apic_map_dirty,
476 			       UPDATE_IN_PROGRESS, CLEAN);
477 	mutex_unlock(&kvm->arch.apic_map_lock);
478 
479 	if (old)
480 		call_rcu(&old->rcu, kvm_apic_map_free);
481 
482 	kvm_make_scan_ioapic_request(kvm);
483 }
484 
485 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val)
486 {
487 	bool enabled = val & APIC_SPIV_APIC_ENABLED;
488 
489 	kvm_lapic_set_reg(apic, APIC_SPIV, val);
490 
491 	if (enabled != apic->sw_enabled) {
492 		apic->sw_enabled = enabled;
493 		if (enabled)
494 			static_branch_slow_dec_deferred(&apic_sw_disabled);
495 		else
496 			static_branch_inc(&apic_sw_disabled.key);
497 
498 		atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
499 	}
500 
501 	/* Check if there are APF page ready requests pending */
502 	if (enabled)
503 		kvm_make_request(KVM_REQ_APF_READY, apic->vcpu);
504 }
505 
506 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id)
507 {
508 	kvm_lapic_set_reg(apic, APIC_ID, id << 24);
509 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
510 }
511 
512 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id)
513 {
514 	kvm_lapic_set_reg(apic, APIC_LDR, id);
515 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
516 }
517 
518 static inline void kvm_apic_set_dfr(struct kvm_lapic *apic, u32 val)
519 {
520 	kvm_lapic_set_reg(apic, APIC_DFR, val);
521 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
522 }
523 
524 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id)
525 {
526 	u32 ldr = kvm_apic_calc_x2apic_ldr(id);
527 
528 	WARN_ON_ONCE(id != apic->vcpu->vcpu_id);
529 
530 	kvm_lapic_set_reg(apic, APIC_ID, id);
531 	kvm_lapic_set_reg(apic, APIC_LDR, ldr);
532 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
533 }
534 
535 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type)
536 {
537 	return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED);
538 }
539 
540 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic)
541 {
542 	return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT;
543 }
544 
545 static inline int apic_lvtt_period(struct kvm_lapic *apic)
546 {
547 	return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC;
548 }
549 
550 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic)
551 {
552 	return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE;
553 }
554 
555 static inline int apic_lvt_nmi_mode(u32 lvt_val)
556 {
557 	return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI;
558 }
559 
560 static inline bool kvm_lapic_lvt_supported(struct kvm_lapic *apic, int lvt_index)
561 {
562 	return apic->nr_lvt_entries > lvt_index;
563 }
564 
565 static inline int kvm_apic_calc_nr_lvt_entries(struct kvm_vcpu *vcpu)
566 {
567 	return KVM_APIC_MAX_NR_LVT_ENTRIES - !(vcpu->arch.mcg_cap & MCG_CMCI_P);
568 }
569 
570 void kvm_apic_set_version(struct kvm_vcpu *vcpu)
571 {
572 	struct kvm_lapic *apic = vcpu->arch.apic;
573 	u32 v = 0;
574 
575 	if (!lapic_in_kernel(vcpu))
576 		return;
577 
578 	v = APIC_VERSION | ((apic->nr_lvt_entries - 1) << 16);
579 
580 	/*
581 	 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation)
582 	 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with
583 	 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC
584 	 * version first and level-triggered interrupts never get EOIed in
585 	 * IOAPIC.
586 	 */
587 	if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) &&
588 	    !ioapic_in_kernel(vcpu->kvm))
589 		v |= APIC_LVR_DIRECTED_EOI;
590 	kvm_lapic_set_reg(apic, APIC_LVR, v);
591 }
592 
593 void kvm_apic_after_set_mcg_cap(struct kvm_vcpu *vcpu)
594 {
595 	int nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu);
596 	struct kvm_lapic *apic = vcpu->arch.apic;
597 	int i;
598 
599 	if (!lapic_in_kernel(vcpu) || nr_lvt_entries == apic->nr_lvt_entries)
600 		return;
601 
602 	/* Initialize/mask any "new" LVT entries. */
603 	for (i = apic->nr_lvt_entries; i < nr_lvt_entries; i++)
604 		kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED);
605 
606 	apic->nr_lvt_entries = nr_lvt_entries;
607 
608 	/* The number of LVT entries is reflected in the version register. */
609 	kvm_apic_set_version(vcpu);
610 }
611 
612 static const unsigned int apic_lvt_mask[KVM_APIC_MAX_NR_LVT_ENTRIES] = {
613 	[LVT_TIMER] = LVT_MASK,      /* timer mode mask added at runtime */
614 	[LVT_THERMAL_MONITOR] = LVT_MASK | APIC_MODE_MASK,
615 	[LVT_PERFORMANCE_COUNTER] = LVT_MASK | APIC_MODE_MASK,
616 	[LVT_LINT0] = LINT_MASK,
617 	[LVT_LINT1] = LINT_MASK,
618 	[LVT_ERROR] = LVT_MASK,
619 	[LVT_CMCI] = LVT_MASK | APIC_MODE_MASK
620 };
621 
622 static int find_highest_vector(void *bitmap)
623 {
624 	int vec;
625 	u32 *reg;
626 
627 	for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG;
628 	     vec >= 0; vec -= APIC_VECTORS_PER_REG) {
629 		reg = bitmap + REG_POS(vec);
630 		if (*reg)
631 			return __fls(*reg) + vec;
632 	}
633 
634 	return -1;
635 }
636 
637 static u8 count_vectors(void *bitmap)
638 {
639 	int vec;
640 	u32 *reg;
641 	u8 count = 0;
642 
643 	for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) {
644 		reg = bitmap + REG_POS(vec);
645 		count += hweight32(*reg);
646 	}
647 
648 	return count;
649 }
650 
651 bool __kvm_apic_update_irr(u32 *pir, void *regs, int *max_irr)
652 {
653 	u32 i, vec;
654 	u32 pir_val, irr_val, prev_irr_val;
655 	int max_updated_irr;
656 
657 	max_updated_irr = -1;
658 	*max_irr = -1;
659 
660 	for (i = vec = 0; i <= 7; i++, vec += 32) {
661 		u32 *p_irr = (u32 *)(regs + APIC_IRR + i * 0x10);
662 
663 		irr_val = *p_irr;
664 		pir_val = READ_ONCE(pir[i]);
665 
666 		if (pir_val) {
667 			pir_val = xchg(&pir[i], 0);
668 
669 			prev_irr_val = irr_val;
670 			do {
671 				irr_val = prev_irr_val | pir_val;
672 			} while (prev_irr_val != irr_val &&
673 				 !try_cmpxchg(p_irr, &prev_irr_val, irr_val));
674 
675 			if (prev_irr_val != irr_val)
676 				max_updated_irr = __fls(irr_val ^ prev_irr_val) + vec;
677 		}
678 		if (irr_val)
679 			*max_irr = __fls(irr_val) + vec;
680 	}
681 
682 	return ((max_updated_irr != -1) &&
683 		(max_updated_irr == *max_irr));
684 }
685 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr);
686 
687 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir, int *max_irr)
688 {
689 	struct kvm_lapic *apic = vcpu->arch.apic;
690 	bool irr_updated = __kvm_apic_update_irr(pir, apic->regs, max_irr);
691 
692 	if (unlikely(!apic->apicv_active && irr_updated))
693 		apic->irr_pending = true;
694 	return irr_updated;
695 }
696 EXPORT_SYMBOL_GPL(kvm_apic_update_irr);
697 
698 static inline int apic_search_irr(struct kvm_lapic *apic)
699 {
700 	return find_highest_vector(apic->regs + APIC_IRR);
701 }
702 
703 static inline int apic_find_highest_irr(struct kvm_lapic *apic)
704 {
705 	int result;
706 
707 	/*
708 	 * Note that irr_pending is just a hint. It will be always
709 	 * true with virtual interrupt delivery enabled.
710 	 */
711 	if (!apic->irr_pending)
712 		return -1;
713 
714 	result = apic_search_irr(apic);
715 	ASSERT(result == -1 || result >= 16);
716 
717 	return result;
718 }
719 
720 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic)
721 {
722 	if (unlikely(apic->apicv_active)) {
723 		/* need to update RVI */
724 		kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR);
725 		static_call_cond(kvm_x86_hwapic_irr_update)(apic->vcpu,
726 							    apic_find_highest_irr(apic));
727 	} else {
728 		apic->irr_pending = false;
729 		kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR);
730 		if (apic_search_irr(apic) != -1)
731 			apic->irr_pending = true;
732 	}
733 }
734 
735 void kvm_apic_clear_irr(struct kvm_vcpu *vcpu, int vec)
736 {
737 	apic_clear_irr(vec, vcpu->arch.apic);
738 }
739 EXPORT_SYMBOL_GPL(kvm_apic_clear_irr);
740 
741 static inline void apic_set_isr(int vec, struct kvm_lapic *apic)
742 {
743 	if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR))
744 		return;
745 
746 	/*
747 	 * With APIC virtualization enabled, all caching is disabled
748 	 * because the processor can modify ISR under the hood.  Instead
749 	 * just set SVI.
750 	 */
751 	if (unlikely(apic->apicv_active))
752 		static_call_cond(kvm_x86_hwapic_isr_update)(vec);
753 	else {
754 		++apic->isr_count;
755 		BUG_ON(apic->isr_count > MAX_APIC_VECTOR);
756 		/*
757 		 * ISR (in service register) bit is set when injecting an interrupt.
758 		 * The highest vector is injected. Thus the latest bit set matches
759 		 * the highest bit in ISR.
760 		 */
761 		apic->highest_isr_cache = vec;
762 	}
763 }
764 
765 static inline int apic_find_highest_isr(struct kvm_lapic *apic)
766 {
767 	int result;
768 
769 	/*
770 	 * Note that isr_count is always 1, and highest_isr_cache
771 	 * is always -1, with APIC virtualization enabled.
772 	 */
773 	if (!apic->isr_count)
774 		return -1;
775 	if (likely(apic->highest_isr_cache != -1))
776 		return apic->highest_isr_cache;
777 
778 	result = find_highest_vector(apic->regs + APIC_ISR);
779 	ASSERT(result == -1 || result >= 16);
780 
781 	return result;
782 }
783 
784 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic)
785 {
786 	if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR))
787 		return;
788 
789 	/*
790 	 * We do get here for APIC virtualization enabled if the guest
791 	 * uses the Hyper-V APIC enlightenment.  In this case we may need
792 	 * to trigger a new interrupt delivery by writing the SVI field;
793 	 * on the other hand isr_count and highest_isr_cache are unused
794 	 * and must be left alone.
795 	 */
796 	if (unlikely(apic->apicv_active))
797 		static_call_cond(kvm_x86_hwapic_isr_update)(apic_find_highest_isr(apic));
798 	else {
799 		--apic->isr_count;
800 		BUG_ON(apic->isr_count < 0);
801 		apic->highest_isr_cache = -1;
802 	}
803 }
804 
805 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu)
806 {
807 	/* This may race with setting of irr in __apic_accept_irq() and
808 	 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq
809 	 * will cause vmexit immediately and the value will be recalculated
810 	 * on the next vmentry.
811 	 */
812 	return apic_find_highest_irr(vcpu->arch.apic);
813 }
814 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr);
815 
816 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
817 			     int vector, int level, int trig_mode,
818 			     struct dest_map *dest_map);
819 
820 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq,
821 		     struct dest_map *dest_map)
822 {
823 	struct kvm_lapic *apic = vcpu->arch.apic;
824 
825 	return __apic_accept_irq(apic, irq->delivery_mode, irq->vector,
826 			irq->level, irq->trig_mode, dest_map);
827 }
828 
829 static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map,
830 			 struct kvm_lapic_irq *irq, u32 min)
831 {
832 	int i, count = 0;
833 	struct kvm_vcpu *vcpu;
834 
835 	if (min > map->max_apic_id)
836 		return 0;
837 
838 	for_each_set_bit(i, ipi_bitmap,
839 		min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) {
840 		if (map->phys_map[min + i]) {
841 			vcpu = map->phys_map[min + i]->vcpu;
842 			count += kvm_apic_set_irq(vcpu, irq, NULL);
843 		}
844 	}
845 
846 	return count;
847 }
848 
849 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
850 		    unsigned long ipi_bitmap_high, u32 min,
851 		    unsigned long icr, int op_64_bit)
852 {
853 	struct kvm_apic_map *map;
854 	struct kvm_lapic_irq irq = {0};
855 	int cluster_size = op_64_bit ? 64 : 32;
856 	int count;
857 
858 	if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK))
859 		return -KVM_EINVAL;
860 
861 	irq.vector = icr & APIC_VECTOR_MASK;
862 	irq.delivery_mode = icr & APIC_MODE_MASK;
863 	irq.level = (icr & APIC_INT_ASSERT) != 0;
864 	irq.trig_mode = icr & APIC_INT_LEVELTRIG;
865 
866 	rcu_read_lock();
867 	map = rcu_dereference(kvm->arch.apic_map);
868 
869 	count = -EOPNOTSUPP;
870 	if (likely(map)) {
871 		count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min);
872 		min += cluster_size;
873 		count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min);
874 	}
875 
876 	rcu_read_unlock();
877 	return count;
878 }
879 
880 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val)
881 {
882 
883 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val,
884 				      sizeof(val));
885 }
886 
887 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val)
888 {
889 
890 	return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val,
891 				      sizeof(*val));
892 }
893 
894 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu)
895 {
896 	return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
897 }
898 
899 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu)
900 {
901 	if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0)
902 		return;
903 
904 	__set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
905 }
906 
907 static bool pv_eoi_test_and_clr_pending(struct kvm_vcpu *vcpu)
908 {
909 	u8 val;
910 
911 	if (pv_eoi_get_user(vcpu, &val) < 0)
912 		return false;
913 
914 	val &= KVM_PV_EOI_ENABLED;
915 
916 	if (val && pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0)
917 		return false;
918 
919 	/*
920 	 * Clear pending bit in any case: it will be set again on vmentry.
921 	 * While this might not be ideal from performance point of view,
922 	 * this makes sure pv eoi is only enabled when we know it's safe.
923 	 */
924 	__clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
925 
926 	return val;
927 }
928 
929 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr)
930 {
931 	int highest_irr;
932 	if (kvm_x86_ops.sync_pir_to_irr)
933 		highest_irr = static_call(kvm_x86_sync_pir_to_irr)(apic->vcpu);
934 	else
935 		highest_irr = apic_find_highest_irr(apic);
936 	if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr)
937 		return -1;
938 	return highest_irr;
939 }
940 
941 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr)
942 {
943 	u32 tpr, isrv, ppr, old_ppr;
944 	int isr;
945 
946 	old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI);
947 	tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI);
948 	isr = apic_find_highest_isr(apic);
949 	isrv = (isr != -1) ? isr : 0;
950 
951 	if ((tpr & 0xf0) >= (isrv & 0xf0))
952 		ppr = tpr & 0xff;
953 	else
954 		ppr = isrv & 0xf0;
955 
956 	*new_ppr = ppr;
957 	if (old_ppr != ppr)
958 		kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr);
959 
960 	return ppr < old_ppr;
961 }
962 
963 static void apic_update_ppr(struct kvm_lapic *apic)
964 {
965 	u32 ppr;
966 
967 	if (__apic_update_ppr(apic, &ppr) &&
968 	    apic_has_interrupt_for_ppr(apic, ppr) != -1)
969 		kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
970 }
971 
972 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu)
973 {
974 	apic_update_ppr(vcpu->arch.apic);
975 }
976 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr);
977 
978 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr)
979 {
980 	kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr);
981 	apic_update_ppr(apic);
982 }
983 
984 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda)
985 {
986 	return mda == (apic_x2apic_mode(apic) ?
987 			X2APIC_BROADCAST : APIC_BROADCAST);
988 }
989 
990 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda)
991 {
992 	if (kvm_apic_broadcast(apic, mda))
993 		return true;
994 
995 	/*
996 	 * Hotplug hack: Accept interrupts for vCPUs in xAPIC mode as if they
997 	 * were in x2APIC mode if the target APIC ID can't be encoded as an
998 	 * xAPIC ID.  This allows unique addressing of hotplugged vCPUs (which
999 	 * start in xAPIC mode) with an APIC ID that is unaddressable in xAPIC
1000 	 * mode.  Match the x2APIC ID if and only if the target APIC ID can't
1001 	 * be encoded in xAPIC to avoid spurious matches against a vCPU that
1002 	 * changed its (addressable) xAPIC ID (which is writable).
1003 	 */
1004 	if (apic_x2apic_mode(apic) || mda > 0xff)
1005 		return mda == kvm_x2apic_id(apic);
1006 
1007 	return mda == kvm_xapic_id(apic);
1008 }
1009 
1010 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda)
1011 {
1012 	u32 logical_id;
1013 
1014 	if (kvm_apic_broadcast(apic, mda))
1015 		return true;
1016 
1017 	logical_id = kvm_lapic_get_reg(apic, APIC_LDR);
1018 
1019 	if (apic_x2apic_mode(apic))
1020 		return ((logical_id >> 16) == (mda >> 16))
1021 		       && (logical_id & mda & 0xffff) != 0;
1022 
1023 	logical_id = GET_APIC_LOGICAL_ID(logical_id);
1024 
1025 	switch (kvm_lapic_get_reg(apic, APIC_DFR)) {
1026 	case APIC_DFR_FLAT:
1027 		return (logical_id & mda) != 0;
1028 	case APIC_DFR_CLUSTER:
1029 		return ((logical_id >> 4) == (mda >> 4))
1030 		       && (logical_id & mda & 0xf) != 0;
1031 	default:
1032 		return false;
1033 	}
1034 }
1035 
1036 /* The KVM local APIC implementation has two quirks:
1037  *
1038  *  - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs
1039  *    in xAPIC mode if the "destination & 0xff" matches its xAPIC ID.
1040  *    KVM doesn't do that aliasing.
1041  *
1042  *  - in-kernel IOAPIC messages have to be delivered directly to
1043  *    x2APIC, because the kernel does not support interrupt remapping.
1044  *    In order to support broadcast without interrupt remapping, x2APIC
1045  *    rewrites the destination of non-IPI messages from APIC_BROADCAST
1046  *    to X2APIC_BROADCAST.
1047  *
1048  * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API.  This is
1049  * important when userspace wants to use x2APIC-format MSIs, because
1050  * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7".
1051  */
1052 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id,
1053 		struct kvm_lapic *source, struct kvm_lapic *target)
1054 {
1055 	bool ipi = source != NULL;
1056 
1057 	if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled &&
1058 	    !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target))
1059 		return X2APIC_BROADCAST;
1060 
1061 	return dest_id;
1062 }
1063 
1064 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
1065 			   int shorthand, unsigned int dest, int dest_mode)
1066 {
1067 	struct kvm_lapic *target = vcpu->arch.apic;
1068 	u32 mda = kvm_apic_mda(vcpu, dest, source, target);
1069 
1070 	ASSERT(target);
1071 	switch (shorthand) {
1072 	case APIC_DEST_NOSHORT:
1073 		if (dest_mode == APIC_DEST_PHYSICAL)
1074 			return kvm_apic_match_physical_addr(target, mda);
1075 		else
1076 			return kvm_apic_match_logical_addr(target, mda);
1077 	case APIC_DEST_SELF:
1078 		return target == source;
1079 	case APIC_DEST_ALLINC:
1080 		return true;
1081 	case APIC_DEST_ALLBUT:
1082 		return target != source;
1083 	default:
1084 		return false;
1085 	}
1086 }
1087 EXPORT_SYMBOL_GPL(kvm_apic_match_dest);
1088 
1089 int kvm_vector_to_index(u32 vector, u32 dest_vcpus,
1090 		       const unsigned long *bitmap, u32 bitmap_size)
1091 {
1092 	u32 mod;
1093 	int i, idx = -1;
1094 
1095 	mod = vector % dest_vcpus;
1096 
1097 	for (i = 0; i <= mod; i++) {
1098 		idx = find_next_bit(bitmap, bitmap_size, idx + 1);
1099 		BUG_ON(idx == bitmap_size);
1100 	}
1101 
1102 	return idx;
1103 }
1104 
1105 static void kvm_apic_disabled_lapic_found(struct kvm *kvm)
1106 {
1107 	if (!kvm->arch.disabled_lapic_found) {
1108 		kvm->arch.disabled_lapic_found = true;
1109 		pr_info("Disabled LAPIC found during irq injection\n");
1110 	}
1111 }
1112 
1113 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src,
1114 		struct kvm_lapic_irq *irq, struct kvm_apic_map *map)
1115 {
1116 	if (kvm->arch.x2apic_broadcast_quirk_disabled) {
1117 		if ((irq->dest_id == APIC_BROADCAST &&
1118 		     map->logical_mode != KVM_APIC_MODE_X2APIC))
1119 			return true;
1120 		if (irq->dest_id == X2APIC_BROADCAST)
1121 			return true;
1122 	} else {
1123 		bool x2apic_ipi = src && *src && apic_x2apic_mode(*src);
1124 		if (irq->dest_id == (x2apic_ipi ?
1125 		                     X2APIC_BROADCAST : APIC_BROADCAST))
1126 			return true;
1127 	}
1128 
1129 	return false;
1130 }
1131 
1132 /* Return true if the interrupt can be handled by using *bitmap as index mask
1133  * for valid destinations in *dst array.
1134  * Return false if kvm_apic_map_get_dest_lapic did nothing useful.
1135  * Note: we may have zero kvm_lapic destinations when we return true, which
1136  * means that the interrupt should be dropped.  In this case, *bitmap would be
1137  * zero and *dst undefined.
1138  */
1139 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm,
1140 		struct kvm_lapic **src, struct kvm_lapic_irq *irq,
1141 		struct kvm_apic_map *map, struct kvm_lapic ***dst,
1142 		unsigned long *bitmap)
1143 {
1144 	int i, lowest;
1145 
1146 	if (irq->shorthand == APIC_DEST_SELF && src) {
1147 		*dst = src;
1148 		*bitmap = 1;
1149 		return true;
1150 	} else if (irq->shorthand)
1151 		return false;
1152 
1153 	if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map))
1154 		return false;
1155 
1156 	if (irq->dest_mode == APIC_DEST_PHYSICAL) {
1157 		if (irq->dest_id > map->max_apic_id) {
1158 			*bitmap = 0;
1159 		} else {
1160 			u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1);
1161 			*dst = &map->phys_map[dest_id];
1162 			*bitmap = 1;
1163 		}
1164 		return true;
1165 	}
1166 
1167 	*bitmap = 0;
1168 	if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst,
1169 				(u16 *)bitmap))
1170 		return false;
1171 
1172 	if (!kvm_lowest_prio_delivery(irq))
1173 		return true;
1174 
1175 	if (!kvm_vector_hashing_enabled()) {
1176 		lowest = -1;
1177 		for_each_set_bit(i, bitmap, 16) {
1178 			if (!(*dst)[i])
1179 				continue;
1180 			if (lowest < 0)
1181 				lowest = i;
1182 			else if (kvm_apic_compare_prio((*dst)[i]->vcpu,
1183 						(*dst)[lowest]->vcpu) < 0)
1184 				lowest = i;
1185 		}
1186 	} else {
1187 		if (!*bitmap)
1188 			return true;
1189 
1190 		lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap),
1191 				bitmap, 16);
1192 
1193 		if (!(*dst)[lowest]) {
1194 			kvm_apic_disabled_lapic_found(kvm);
1195 			*bitmap = 0;
1196 			return true;
1197 		}
1198 	}
1199 
1200 	*bitmap = (lowest >= 0) ? 1 << lowest : 0;
1201 
1202 	return true;
1203 }
1204 
1205 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src,
1206 		struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map)
1207 {
1208 	struct kvm_apic_map *map;
1209 	unsigned long bitmap;
1210 	struct kvm_lapic **dst = NULL;
1211 	int i;
1212 	bool ret;
1213 
1214 	*r = -1;
1215 
1216 	if (irq->shorthand == APIC_DEST_SELF) {
1217 		if (KVM_BUG_ON(!src, kvm)) {
1218 			*r = 0;
1219 			return true;
1220 		}
1221 		*r = kvm_apic_set_irq(src->vcpu, irq, dest_map);
1222 		return true;
1223 	}
1224 
1225 	rcu_read_lock();
1226 	map = rcu_dereference(kvm->arch.apic_map);
1227 
1228 	ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap);
1229 	if (ret) {
1230 		*r = 0;
1231 		for_each_set_bit(i, &bitmap, 16) {
1232 			if (!dst[i])
1233 				continue;
1234 			*r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map);
1235 		}
1236 	}
1237 
1238 	rcu_read_unlock();
1239 	return ret;
1240 }
1241 
1242 /*
1243  * This routine tries to handle interrupts in posted mode, here is how
1244  * it deals with different cases:
1245  * - For single-destination interrupts, handle it in posted mode
1246  * - Else if vector hashing is enabled and it is a lowest-priority
1247  *   interrupt, handle it in posted mode and use the following mechanism
1248  *   to find the destination vCPU.
1249  *	1. For lowest-priority interrupts, store all the possible
1250  *	   destination vCPUs in an array.
1251  *	2. Use "guest vector % max number of destination vCPUs" to find
1252  *	   the right destination vCPU in the array for the lowest-priority
1253  *	   interrupt.
1254  * - Otherwise, use remapped mode to inject the interrupt.
1255  */
1256 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq,
1257 			struct kvm_vcpu **dest_vcpu)
1258 {
1259 	struct kvm_apic_map *map;
1260 	unsigned long bitmap;
1261 	struct kvm_lapic **dst = NULL;
1262 	bool ret = false;
1263 
1264 	if (irq->shorthand)
1265 		return false;
1266 
1267 	rcu_read_lock();
1268 	map = rcu_dereference(kvm->arch.apic_map);
1269 
1270 	if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) &&
1271 			hweight16(bitmap) == 1) {
1272 		unsigned long i = find_first_bit(&bitmap, 16);
1273 
1274 		if (dst[i]) {
1275 			*dest_vcpu = dst[i]->vcpu;
1276 			ret = true;
1277 		}
1278 	}
1279 
1280 	rcu_read_unlock();
1281 	return ret;
1282 }
1283 
1284 /*
1285  * Add a pending IRQ into lapic.
1286  * Return 1 if successfully added and 0 if discarded.
1287  */
1288 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
1289 			     int vector, int level, int trig_mode,
1290 			     struct dest_map *dest_map)
1291 {
1292 	int result = 0;
1293 	struct kvm_vcpu *vcpu = apic->vcpu;
1294 
1295 	trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode,
1296 				  trig_mode, vector);
1297 	switch (delivery_mode) {
1298 	case APIC_DM_LOWEST:
1299 		vcpu->arch.apic_arb_prio++;
1300 		fallthrough;
1301 	case APIC_DM_FIXED:
1302 		if (unlikely(trig_mode && !level))
1303 			break;
1304 
1305 		/* FIXME add logic for vcpu on reset */
1306 		if (unlikely(!apic_enabled(apic)))
1307 			break;
1308 
1309 		result = 1;
1310 
1311 		if (dest_map) {
1312 			__set_bit(vcpu->vcpu_id, dest_map->map);
1313 			dest_map->vectors[vcpu->vcpu_id] = vector;
1314 		}
1315 
1316 		if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) {
1317 			if (trig_mode)
1318 				kvm_lapic_set_vector(vector,
1319 						     apic->regs + APIC_TMR);
1320 			else
1321 				kvm_lapic_clear_vector(vector,
1322 						       apic->regs + APIC_TMR);
1323 		}
1324 
1325 		static_call(kvm_x86_deliver_interrupt)(apic, delivery_mode,
1326 						       trig_mode, vector);
1327 		break;
1328 
1329 	case APIC_DM_REMRD:
1330 		result = 1;
1331 		vcpu->arch.pv.pv_unhalted = 1;
1332 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1333 		kvm_vcpu_kick(vcpu);
1334 		break;
1335 
1336 	case APIC_DM_SMI:
1337 		if (!kvm_inject_smi(vcpu)) {
1338 			kvm_vcpu_kick(vcpu);
1339 			result = 1;
1340 		}
1341 		break;
1342 
1343 	case APIC_DM_NMI:
1344 		result = 1;
1345 		kvm_inject_nmi(vcpu);
1346 		kvm_vcpu_kick(vcpu);
1347 		break;
1348 
1349 	case APIC_DM_INIT:
1350 		if (!trig_mode || level) {
1351 			result = 1;
1352 			/* assumes that there are only KVM_APIC_INIT/SIPI */
1353 			apic->pending_events = (1UL << KVM_APIC_INIT);
1354 			kvm_make_request(KVM_REQ_EVENT, vcpu);
1355 			kvm_vcpu_kick(vcpu);
1356 		}
1357 		break;
1358 
1359 	case APIC_DM_STARTUP:
1360 		result = 1;
1361 		apic->sipi_vector = vector;
1362 		/* make sure sipi_vector is visible for the receiver */
1363 		smp_wmb();
1364 		set_bit(KVM_APIC_SIPI, &apic->pending_events);
1365 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1366 		kvm_vcpu_kick(vcpu);
1367 		break;
1368 
1369 	case APIC_DM_EXTINT:
1370 		/*
1371 		 * Should only be called by kvm_apic_local_deliver() with LVT0,
1372 		 * before NMI watchdog was enabled. Already handled by
1373 		 * kvm_apic_accept_pic_intr().
1374 		 */
1375 		break;
1376 
1377 	default:
1378 		printk(KERN_ERR "TODO: unsupported delivery mode %x\n",
1379 		       delivery_mode);
1380 		break;
1381 	}
1382 	return result;
1383 }
1384 
1385 /*
1386  * This routine identifies the destination vcpus mask meant to receive the
1387  * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find
1388  * out the destination vcpus array and set the bitmap or it traverses to
1389  * each available vcpu to identify the same.
1390  */
1391 void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq,
1392 			      unsigned long *vcpu_bitmap)
1393 {
1394 	struct kvm_lapic **dest_vcpu = NULL;
1395 	struct kvm_lapic *src = NULL;
1396 	struct kvm_apic_map *map;
1397 	struct kvm_vcpu *vcpu;
1398 	unsigned long bitmap, i;
1399 	int vcpu_idx;
1400 	bool ret;
1401 
1402 	rcu_read_lock();
1403 	map = rcu_dereference(kvm->arch.apic_map);
1404 
1405 	ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu,
1406 					  &bitmap);
1407 	if (ret) {
1408 		for_each_set_bit(i, &bitmap, 16) {
1409 			if (!dest_vcpu[i])
1410 				continue;
1411 			vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx;
1412 			__set_bit(vcpu_idx, vcpu_bitmap);
1413 		}
1414 	} else {
1415 		kvm_for_each_vcpu(i, vcpu, kvm) {
1416 			if (!kvm_apic_present(vcpu))
1417 				continue;
1418 			if (!kvm_apic_match_dest(vcpu, NULL,
1419 						 irq->shorthand,
1420 						 irq->dest_id,
1421 						 irq->dest_mode))
1422 				continue;
1423 			__set_bit(i, vcpu_bitmap);
1424 		}
1425 	}
1426 	rcu_read_unlock();
1427 }
1428 
1429 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
1430 {
1431 	return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio;
1432 }
1433 
1434 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector)
1435 {
1436 	return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors);
1437 }
1438 
1439 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector)
1440 {
1441 	int trigger_mode;
1442 
1443 	/* Eoi the ioapic only if the ioapic doesn't own the vector. */
1444 	if (!kvm_ioapic_handles_vector(apic, vector))
1445 		return;
1446 
1447 	/* Request a KVM exit to inform the userspace IOAPIC. */
1448 	if (irqchip_split(apic->vcpu->kvm)) {
1449 		apic->vcpu->arch.pending_ioapic_eoi = vector;
1450 		kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu);
1451 		return;
1452 	}
1453 
1454 	if (apic_test_vector(vector, apic->regs + APIC_TMR))
1455 		trigger_mode = IOAPIC_LEVEL_TRIG;
1456 	else
1457 		trigger_mode = IOAPIC_EDGE_TRIG;
1458 
1459 	kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode);
1460 }
1461 
1462 static int apic_set_eoi(struct kvm_lapic *apic)
1463 {
1464 	int vector = apic_find_highest_isr(apic);
1465 
1466 	trace_kvm_eoi(apic, vector);
1467 
1468 	/*
1469 	 * Not every write EOI will has corresponding ISR,
1470 	 * one example is when Kernel check timer on setup_IO_APIC
1471 	 */
1472 	if (vector == -1)
1473 		return vector;
1474 
1475 	apic_clear_isr(vector, apic);
1476 	apic_update_ppr(apic);
1477 
1478 	if (kvm_hv_synic_has_vector(apic->vcpu, vector))
1479 		kvm_hv_synic_send_eoi(apic->vcpu, vector);
1480 
1481 	kvm_ioapic_send_eoi(apic, vector);
1482 	kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1483 	return vector;
1484 }
1485 
1486 /*
1487  * this interface assumes a trap-like exit, which has already finished
1488  * desired side effect including vISR and vPPR update.
1489  */
1490 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector)
1491 {
1492 	struct kvm_lapic *apic = vcpu->arch.apic;
1493 
1494 	trace_kvm_eoi(apic, vector);
1495 
1496 	kvm_ioapic_send_eoi(apic, vector);
1497 	kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1498 }
1499 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated);
1500 
1501 void kvm_apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high)
1502 {
1503 	struct kvm_lapic_irq irq;
1504 
1505 	/* KVM has no delay and should always clear the BUSY/PENDING flag. */
1506 	WARN_ON_ONCE(icr_low & APIC_ICR_BUSY);
1507 
1508 	irq.vector = icr_low & APIC_VECTOR_MASK;
1509 	irq.delivery_mode = icr_low & APIC_MODE_MASK;
1510 	irq.dest_mode = icr_low & APIC_DEST_MASK;
1511 	irq.level = (icr_low & APIC_INT_ASSERT) != 0;
1512 	irq.trig_mode = icr_low & APIC_INT_LEVELTRIG;
1513 	irq.shorthand = icr_low & APIC_SHORT_MASK;
1514 	irq.msi_redir_hint = false;
1515 	if (apic_x2apic_mode(apic))
1516 		irq.dest_id = icr_high;
1517 	else
1518 		irq.dest_id = GET_XAPIC_DEST_FIELD(icr_high);
1519 
1520 	trace_kvm_apic_ipi(icr_low, irq.dest_id);
1521 
1522 	kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL);
1523 }
1524 EXPORT_SYMBOL_GPL(kvm_apic_send_ipi);
1525 
1526 static u32 apic_get_tmcct(struct kvm_lapic *apic)
1527 {
1528 	ktime_t remaining, now;
1529 	s64 ns;
1530 
1531 	ASSERT(apic != NULL);
1532 
1533 	/* if initial count is 0, current count should also be 0 */
1534 	if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 ||
1535 		apic->lapic_timer.period == 0)
1536 		return 0;
1537 
1538 	now = ktime_get();
1539 	remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1540 	if (ktime_to_ns(remaining) < 0)
1541 		remaining = 0;
1542 
1543 	ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period);
1544 	return div64_u64(ns, (APIC_BUS_CYCLE_NS * apic->divide_count));
1545 }
1546 
1547 static void __report_tpr_access(struct kvm_lapic *apic, bool write)
1548 {
1549 	struct kvm_vcpu *vcpu = apic->vcpu;
1550 	struct kvm_run *run = vcpu->run;
1551 
1552 	kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu);
1553 	run->tpr_access.rip = kvm_rip_read(vcpu);
1554 	run->tpr_access.is_write = write;
1555 }
1556 
1557 static inline void report_tpr_access(struct kvm_lapic *apic, bool write)
1558 {
1559 	if (apic->vcpu->arch.tpr_access_reporting)
1560 		__report_tpr_access(apic, write);
1561 }
1562 
1563 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset)
1564 {
1565 	u32 val = 0;
1566 
1567 	if (offset >= LAPIC_MMIO_LENGTH)
1568 		return 0;
1569 
1570 	switch (offset) {
1571 	case APIC_ARBPRI:
1572 		break;
1573 
1574 	case APIC_TMCCT:	/* Timer CCR */
1575 		if (apic_lvtt_tscdeadline(apic))
1576 			return 0;
1577 
1578 		val = apic_get_tmcct(apic);
1579 		break;
1580 	case APIC_PROCPRI:
1581 		apic_update_ppr(apic);
1582 		val = kvm_lapic_get_reg(apic, offset);
1583 		break;
1584 	case APIC_TASKPRI:
1585 		report_tpr_access(apic, false);
1586 		fallthrough;
1587 	default:
1588 		val = kvm_lapic_get_reg(apic, offset);
1589 		break;
1590 	}
1591 
1592 	return val;
1593 }
1594 
1595 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev)
1596 {
1597 	return container_of(dev, struct kvm_lapic, dev);
1598 }
1599 
1600 #define APIC_REG_MASK(reg)	(1ull << ((reg) >> 4))
1601 #define APIC_REGS_MASK(first, count) \
1602 	(APIC_REG_MASK(first) * ((1ull << (count)) - 1))
1603 
1604 u64 kvm_lapic_readable_reg_mask(struct kvm_lapic *apic)
1605 {
1606 	/* Leave bits '0' for reserved and write-only registers. */
1607 	u64 valid_reg_mask =
1608 		APIC_REG_MASK(APIC_ID) |
1609 		APIC_REG_MASK(APIC_LVR) |
1610 		APIC_REG_MASK(APIC_TASKPRI) |
1611 		APIC_REG_MASK(APIC_PROCPRI) |
1612 		APIC_REG_MASK(APIC_LDR) |
1613 		APIC_REG_MASK(APIC_SPIV) |
1614 		APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) |
1615 		APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) |
1616 		APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) |
1617 		APIC_REG_MASK(APIC_ESR) |
1618 		APIC_REG_MASK(APIC_ICR) |
1619 		APIC_REG_MASK(APIC_LVTT) |
1620 		APIC_REG_MASK(APIC_LVTTHMR) |
1621 		APIC_REG_MASK(APIC_LVTPC) |
1622 		APIC_REG_MASK(APIC_LVT0) |
1623 		APIC_REG_MASK(APIC_LVT1) |
1624 		APIC_REG_MASK(APIC_LVTERR) |
1625 		APIC_REG_MASK(APIC_TMICT) |
1626 		APIC_REG_MASK(APIC_TMCCT) |
1627 		APIC_REG_MASK(APIC_TDCR);
1628 
1629 	if (kvm_lapic_lvt_supported(apic, LVT_CMCI))
1630 		valid_reg_mask |= APIC_REG_MASK(APIC_LVTCMCI);
1631 
1632 	/* ARBPRI, DFR, and ICR2 are not valid in x2APIC mode. */
1633 	if (!apic_x2apic_mode(apic))
1634 		valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI) |
1635 				  APIC_REG_MASK(APIC_DFR) |
1636 				  APIC_REG_MASK(APIC_ICR2);
1637 
1638 	return valid_reg_mask;
1639 }
1640 EXPORT_SYMBOL_GPL(kvm_lapic_readable_reg_mask);
1641 
1642 static int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len,
1643 			      void *data)
1644 {
1645 	unsigned char alignment = offset & 0xf;
1646 	u32 result;
1647 
1648 	/*
1649 	 * WARN if KVM reads ICR in x2APIC mode, as it's an 8-byte register in
1650 	 * x2APIC and needs to be manually handled by the caller.
1651 	 */
1652 	WARN_ON_ONCE(apic_x2apic_mode(apic) && offset == APIC_ICR);
1653 
1654 	if (alignment + len > 4)
1655 		return 1;
1656 
1657 	if (offset > 0x3f0 ||
1658 	    !(kvm_lapic_readable_reg_mask(apic) & APIC_REG_MASK(offset)))
1659 		return 1;
1660 
1661 	result = __apic_read(apic, offset & ~0xf);
1662 
1663 	trace_kvm_apic_read(offset, result);
1664 
1665 	switch (len) {
1666 	case 1:
1667 	case 2:
1668 	case 4:
1669 		memcpy(data, (char *)&result + alignment, len);
1670 		break;
1671 	default:
1672 		printk(KERN_ERR "Local APIC read with len = %x, "
1673 		       "should be 1,2, or 4 instead\n", len);
1674 		break;
1675 	}
1676 	return 0;
1677 }
1678 
1679 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr)
1680 {
1681 	return addr >= apic->base_address &&
1682 		addr < apic->base_address + LAPIC_MMIO_LENGTH;
1683 }
1684 
1685 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
1686 			   gpa_t address, int len, void *data)
1687 {
1688 	struct kvm_lapic *apic = to_lapic(this);
1689 	u32 offset = address - apic->base_address;
1690 
1691 	if (!apic_mmio_in_range(apic, address))
1692 		return -EOPNOTSUPP;
1693 
1694 	if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
1695 		if (!kvm_check_has_quirk(vcpu->kvm,
1696 					 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
1697 			return -EOPNOTSUPP;
1698 
1699 		memset(data, 0xff, len);
1700 		return 0;
1701 	}
1702 
1703 	kvm_lapic_reg_read(apic, offset, len, data);
1704 
1705 	return 0;
1706 }
1707 
1708 static void update_divide_count(struct kvm_lapic *apic)
1709 {
1710 	u32 tmp1, tmp2, tdcr;
1711 
1712 	tdcr = kvm_lapic_get_reg(apic, APIC_TDCR);
1713 	tmp1 = tdcr & 0xf;
1714 	tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1;
1715 	apic->divide_count = 0x1 << (tmp2 & 0x7);
1716 }
1717 
1718 static void limit_periodic_timer_frequency(struct kvm_lapic *apic)
1719 {
1720 	/*
1721 	 * Do not allow the guest to program periodic timers with small
1722 	 * interval, since the hrtimers are not throttled by the host
1723 	 * scheduler.
1724 	 */
1725 	if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
1726 		s64 min_period = min_timer_period_us * 1000LL;
1727 
1728 		if (apic->lapic_timer.period < min_period) {
1729 			pr_info_ratelimited(
1730 			    "vcpu %i: requested %lld ns "
1731 			    "lapic timer period limited to %lld ns\n",
1732 			    apic->vcpu->vcpu_id,
1733 			    apic->lapic_timer.period, min_period);
1734 			apic->lapic_timer.period = min_period;
1735 		}
1736 	}
1737 }
1738 
1739 static void cancel_hv_timer(struct kvm_lapic *apic);
1740 
1741 static void cancel_apic_timer(struct kvm_lapic *apic)
1742 {
1743 	hrtimer_cancel(&apic->lapic_timer.timer);
1744 	preempt_disable();
1745 	if (apic->lapic_timer.hv_timer_in_use)
1746 		cancel_hv_timer(apic);
1747 	preempt_enable();
1748 	atomic_set(&apic->lapic_timer.pending, 0);
1749 }
1750 
1751 static void apic_update_lvtt(struct kvm_lapic *apic)
1752 {
1753 	u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) &
1754 			apic->lapic_timer.timer_mode_mask;
1755 
1756 	if (apic->lapic_timer.timer_mode != timer_mode) {
1757 		if (apic_lvtt_tscdeadline(apic) != (timer_mode ==
1758 				APIC_LVT_TIMER_TSCDEADLINE)) {
1759 			cancel_apic_timer(apic);
1760 			kvm_lapic_set_reg(apic, APIC_TMICT, 0);
1761 			apic->lapic_timer.period = 0;
1762 			apic->lapic_timer.tscdeadline = 0;
1763 		}
1764 		apic->lapic_timer.timer_mode = timer_mode;
1765 		limit_periodic_timer_frequency(apic);
1766 	}
1767 }
1768 
1769 /*
1770  * On APICv, this test will cause a busy wait
1771  * during a higher-priority task.
1772  */
1773 
1774 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu)
1775 {
1776 	struct kvm_lapic *apic = vcpu->arch.apic;
1777 	u32 reg = kvm_lapic_get_reg(apic, APIC_LVTT);
1778 
1779 	if (kvm_apic_hw_enabled(apic)) {
1780 		int vec = reg & APIC_VECTOR_MASK;
1781 		void *bitmap = apic->regs + APIC_ISR;
1782 
1783 		if (apic->apicv_active)
1784 			bitmap = apic->regs + APIC_IRR;
1785 
1786 		if (apic_test_vector(vec, bitmap))
1787 			return true;
1788 	}
1789 	return false;
1790 }
1791 
1792 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles)
1793 {
1794 	u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns;
1795 
1796 	/*
1797 	 * If the guest TSC is running at a different ratio than the host, then
1798 	 * convert the delay to nanoseconds to achieve an accurate delay.  Note
1799 	 * that __delay() uses delay_tsc whenever the hardware has TSC, thus
1800 	 * always for VMX enabled hardware.
1801 	 */
1802 	if (vcpu->arch.tsc_scaling_ratio == kvm_caps.default_tsc_scaling_ratio) {
1803 		__delay(min(guest_cycles,
1804 			nsec_to_cycles(vcpu, timer_advance_ns)));
1805 	} else {
1806 		u64 delay_ns = guest_cycles * 1000000ULL;
1807 		do_div(delay_ns, vcpu->arch.virtual_tsc_khz);
1808 		ndelay(min_t(u32, delay_ns, timer_advance_ns));
1809 	}
1810 }
1811 
1812 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu,
1813 					      s64 advance_expire_delta)
1814 {
1815 	struct kvm_lapic *apic = vcpu->arch.apic;
1816 	u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns;
1817 	u64 ns;
1818 
1819 	/* Do not adjust for tiny fluctuations or large random spikes. */
1820 	if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX ||
1821 	    abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN)
1822 		return;
1823 
1824 	/* too early */
1825 	if (advance_expire_delta < 0) {
1826 		ns = -advance_expire_delta * 1000000ULL;
1827 		do_div(ns, vcpu->arch.virtual_tsc_khz);
1828 		timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
1829 	} else {
1830 	/* too late */
1831 		ns = advance_expire_delta * 1000000ULL;
1832 		do_div(ns, vcpu->arch.virtual_tsc_khz);
1833 		timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
1834 	}
1835 
1836 	if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX))
1837 		timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
1838 	apic->lapic_timer.timer_advance_ns = timer_advance_ns;
1839 }
1840 
1841 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1842 {
1843 	struct kvm_lapic *apic = vcpu->arch.apic;
1844 	u64 guest_tsc, tsc_deadline;
1845 
1846 	tsc_deadline = apic->lapic_timer.expired_tscdeadline;
1847 	apic->lapic_timer.expired_tscdeadline = 0;
1848 	guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1849 	trace_kvm_wait_lapic_expire(vcpu->vcpu_id, guest_tsc - tsc_deadline);
1850 
1851 	if (lapic_timer_advance_dynamic) {
1852 		adjust_lapic_timer_advance(vcpu, guest_tsc - tsc_deadline);
1853 		/*
1854 		 * If the timer fired early, reread the TSC to account for the
1855 		 * overhead of the above adjustment to avoid waiting longer
1856 		 * than is necessary.
1857 		 */
1858 		if (guest_tsc < tsc_deadline)
1859 			guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1860 	}
1861 
1862 	if (guest_tsc < tsc_deadline)
1863 		__wait_lapic_expire(vcpu, tsc_deadline - guest_tsc);
1864 }
1865 
1866 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1867 {
1868 	if (lapic_in_kernel(vcpu) &&
1869 	    vcpu->arch.apic->lapic_timer.expired_tscdeadline &&
1870 	    vcpu->arch.apic->lapic_timer.timer_advance_ns &&
1871 	    lapic_timer_int_injected(vcpu))
1872 		__kvm_wait_lapic_expire(vcpu);
1873 }
1874 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire);
1875 
1876 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic)
1877 {
1878 	struct kvm_timer *ktimer = &apic->lapic_timer;
1879 
1880 	kvm_apic_local_deliver(apic, APIC_LVTT);
1881 	if (apic_lvtt_tscdeadline(apic)) {
1882 		ktimer->tscdeadline = 0;
1883 	} else if (apic_lvtt_oneshot(apic)) {
1884 		ktimer->tscdeadline = 0;
1885 		ktimer->target_expiration = 0;
1886 	}
1887 }
1888 
1889 static void apic_timer_expired(struct kvm_lapic *apic, bool from_timer_fn)
1890 {
1891 	struct kvm_vcpu *vcpu = apic->vcpu;
1892 	struct kvm_timer *ktimer = &apic->lapic_timer;
1893 
1894 	if (atomic_read(&apic->lapic_timer.pending))
1895 		return;
1896 
1897 	if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use)
1898 		ktimer->expired_tscdeadline = ktimer->tscdeadline;
1899 
1900 	if (!from_timer_fn && apic->apicv_active) {
1901 		WARN_ON(kvm_get_running_vcpu() != vcpu);
1902 		kvm_apic_inject_pending_timer_irqs(apic);
1903 		return;
1904 	}
1905 
1906 	if (kvm_use_posted_timer_interrupt(apic->vcpu)) {
1907 		/*
1908 		 * Ensure the guest's timer has truly expired before posting an
1909 		 * interrupt.  Open code the relevant checks to avoid querying
1910 		 * lapic_timer_int_injected(), which will be false since the
1911 		 * interrupt isn't yet injected.  Waiting until after injecting
1912 		 * is not an option since that won't help a posted interrupt.
1913 		 */
1914 		if (vcpu->arch.apic->lapic_timer.expired_tscdeadline &&
1915 		    vcpu->arch.apic->lapic_timer.timer_advance_ns)
1916 			__kvm_wait_lapic_expire(vcpu);
1917 		kvm_apic_inject_pending_timer_irqs(apic);
1918 		return;
1919 	}
1920 
1921 	atomic_inc(&apic->lapic_timer.pending);
1922 	kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1923 	if (from_timer_fn)
1924 		kvm_vcpu_kick(vcpu);
1925 }
1926 
1927 static void start_sw_tscdeadline(struct kvm_lapic *apic)
1928 {
1929 	struct kvm_timer *ktimer = &apic->lapic_timer;
1930 	u64 guest_tsc, tscdeadline = ktimer->tscdeadline;
1931 	u64 ns = 0;
1932 	ktime_t expire;
1933 	struct kvm_vcpu *vcpu = apic->vcpu;
1934 	unsigned long this_tsc_khz = vcpu->arch.virtual_tsc_khz;
1935 	unsigned long flags;
1936 	ktime_t now;
1937 
1938 	if (unlikely(!tscdeadline || !this_tsc_khz))
1939 		return;
1940 
1941 	local_irq_save(flags);
1942 
1943 	now = ktime_get();
1944 	guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1945 
1946 	ns = (tscdeadline - guest_tsc) * 1000000ULL;
1947 	do_div(ns, this_tsc_khz);
1948 
1949 	if (likely(tscdeadline > guest_tsc) &&
1950 	    likely(ns > apic->lapic_timer.timer_advance_ns)) {
1951 		expire = ktime_add_ns(now, ns);
1952 		expire = ktime_sub_ns(expire, ktimer->timer_advance_ns);
1953 		hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD);
1954 	} else
1955 		apic_timer_expired(apic, false);
1956 
1957 	local_irq_restore(flags);
1958 }
1959 
1960 static inline u64 tmict_to_ns(struct kvm_lapic *apic, u32 tmict)
1961 {
1962 	return (u64)tmict * APIC_BUS_CYCLE_NS * (u64)apic->divide_count;
1963 }
1964 
1965 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor)
1966 {
1967 	ktime_t now, remaining;
1968 	u64 ns_remaining_old, ns_remaining_new;
1969 
1970 	apic->lapic_timer.period =
1971 			tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT));
1972 	limit_periodic_timer_frequency(apic);
1973 
1974 	now = ktime_get();
1975 	remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1976 	if (ktime_to_ns(remaining) < 0)
1977 		remaining = 0;
1978 
1979 	ns_remaining_old = ktime_to_ns(remaining);
1980 	ns_remaining_new = mul_u64_u32_div(ns_remaining_old,
1981 	                                   apic->divide_count, old_divisor);
1982 
1983 	apic->lapic_timer.tscdeadline +=
1984 		nsec_to_cycles(apic->vcpu, ns_remaining_new) -
1985 		nsec_to_cycles(apic->vcpu, ns_remaining_old);
1986 	apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new);
1987 }
1988 
1989 static bool set_target_expiration(struct kvm_lapic *apic, u32 count_reg)
1990 {
1991 	ktime_t now;
1992 	u64 tscl = rdtsc();
1993 	s64 deadline;
1994 
1995 	now = ktime_get();
1996 	apic->lapic_timer.period =
1997 			tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT));
1998 
1999 	if (!apic->lapic_timer.period) {
2000 		apic->lapic_timer.tscdeadline = 0;
2001 		return false;
2002 	}
2003 
2004 	limit_periodic_timer_frequency(apic);
2005 	deadline = apic->lapic_timer.period;
2006 
2007 	if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) {
2008 		if (unlikely(count_reg != APIC_TMICT)) {
2009 			deadline = tmict_to_ns(apic,
2010 				     kvm_lapic_get_reg(apic, count_reg));
2011 			if (unlikely(deadline <= 0)) {
2012 				if (apic_lvtt_period(apic))
2013 					deadline = apic->lapic_timer.period;
2014 				else
2015 					deadline = 0;
2016 			}
2017 			else if (unlikely(deadline > apic->lapic_timer.period)) {
2018 				pr_info_ratelimited(
2019 				    "vcpu %i: requested lapic timer restore with "
2020 				    "starting count register %#x=%u (%lld ns) > initial count (%lld ns). "
2021 				    "Using initial count to start timer.\n",
2022 				    apic->vcpu->vcpu_id,
2023 				    count_reg,
2024 				    kvm_lapic_get_reg(apic, count_reg),
2025 				    deadline, apic->lapic_timer.period);
2026 				kvm_lapic_set_reg(apic, count_reg, 0);
2027 				deadline = apic->lapic_timer.period;
2028 			}
2029 		}
2030 	}
2031 
2032 	apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
2033 		nsec_to_cycles(apic->vcpu, deadline);
2034 	apic->lapic_timer.target_expiration = ktime_add_ns(now, deadline);
2035 
2036 	return true;
2037 }
2038 
2039 static void advance_periodic_target_expiration(struct kvm_lapic *apic)
2040 {
2041 	ktime_t now = ktime_get();
2042 	u64 tscl = rdtsc();
2043 	ktime_t delta;
2044 
2045 	/*
2046 	 * Synchronize both deadlines to the same time source or
2047 	 * differences in the periods (caused by differences in the
2048 	 * underlying clocks or numerical approximation errors) will
2049 	 * cause the two to drift apart over time as the errors
2050 	 * accumulate.
2051 	 */
2052 	apic->lapic_timer.target_expiration =
2053 		ktime_add_ns(apic->lapic_timer.target_expiration,
2054 				apic->lapic_timer.period);
2055 	delta = ktime_sub(apic->lapic_timer.target_expiration, now);
2056 	apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
2057 		nsec_to_cycles(apic->vcpu, delta);
2058 }
2059 
2060 static void start_sw_period(struct kvm_lapic *apic)
2061 {
2062 	if (!apic->lapic_timer.period)
2063 		return;
2064 
2065 	if (ktime_after(ktime_get(),
2066 			apic->lapic_timer.target_expiration)) {
2067 		apic_timer_expired(apic, false);
2068 
2069 		if (apic_lvtt_oneshot(apic))
2070 			return;
2071 
2072 		advance_periodic_target_expiration(apic);
2073 	}
2074 
2075 	hrtimer_start(&apic->lapic_timer.timer,
2076 		apic->lapic_timer.target_expiration,
2077 		HRTIMER_MODE_ABS_HARD);
2078 }
2079 
2080 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu)
2081 {
2082 	if (!lapic_in_kernel(vcpu))
2083 		return false;
2084 
2085 	return vcpu->arch.apic->lapic_timer.hv_timer_in_use;
2086 }
2087 
2088 static void cancel_hv_timer(struct kvm_lapic *apic)
2089 {
2090 	WARN_ON(preemptible());
2091 	WARN_ON(!apic->lapic_timer.hv_timer_in_use);
2092 	static_call(kvm_x86_cancel_hv_timer)(apic->vcpu);
2093 	apic->lapic_timer.hv_timer_in_use = false;
2094 }
2095 
2096 static bool start_hv_timer(struct kvm_lapic *apic)
2097 {
2098 	struct kvm_timer *ktimer = &apic->lapic_timer;
2099 	struct kvm_vcpu *vcpu = apic->vcpu;
2100 	bool expired;
2101 
2102 	WARN_ON(preemptible());
2103 	if (!kvm_can_use_hv_timer(vcpu))
2104 		return false;
2105 
2106 	if (!ktimer->tscdeadline)
2107 		return false;
2108 
2109 	if (static_call(kvm_x86_set_hv_timer)(vcpu, ktimer->tscdeadline, &expired))
2110 		return false;
2111 
2112 	ktimer->hv_timer_in_use = true;
2113 	hrtimer_cancel(&ktimer->timer);
2114 
2115 	/*
2116 	 * To simplify handling the periodic timer, leave the hv timer running
2117 	 * even if the deadline timer has expired, i.e. rely on the resulting
2118 	 * VM-Exit to recompute the periodic timer's target expiration.
2119 	 */
2120 	if (!apic_lvtt_period(apic)) {
2121 		/*
2122 		 * Cancel the hv timer if the sw timer fired while the hv timer
2123 		 * was being programmed, or if the hv timer itself expired.
2124 		 */
2125 		if (atomic_read(&ktimer->pending)) {
2126 			cancel_hv_timer(apic);
2127 		} else if (expired) {
2128 			apic_timer_expired(apic, false);
2129 			cancel_hv_timer(apic);
2130 		}
2131 	}
2132 
2133 	trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use);
2134 
2135 	return true;
2136 }
2137 
2138 static void start_sw_timer(struct kvm_lapic *apic)
2139 {
2140 	struct kvm_timer *ktimer = &apic->lapic_timer;
2141 
2142 	WARN_ON(preemptible());
2143 	if (apic->lapic_timer.hv_timer_in_use)
2144 		cancel_hv_timer(apic);
2145 	if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending))
2146 		return;
2147 
2148 	if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
2149 		start_sw_period(apic);
2150 	else if (apic_lvtt_tscdeadline(apic))
2151 		start_sw_tscdeadline(apic);
2152 	trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false);
2153 }
2154 
2155 static void restart_apic_timer(struct kvm_lapic *apic)
2156 {
2157 	preempt_disable();
2158 
2159 	if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending))
2160 		goto out;
2161 
2162 	if (!start_hv_timer(apic))
2163 		start_sw_timer(apic);
2164 out:
2165 	preempt_enable();
2166 }
2167 
2168 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu)
2169 {
2170 	struct kvm_lapic *apic = vcpu->arch.apic;
2171 
2172 	preempt_disable();
2173 	/* If the preempt notifier has already run, it also called apic_timer_expired */
2174 	if (!apic->lapic_timer.hv_timer_in_use)
2175 		goto out;
2176 	WARN_ON(kvm_vcpu_is_blocking(vcpu));
2177 	apic_timer_expired(apic, false);
2178 	cancel_hv_timer(apic);
2179 
2180 	if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
2181 		advance_periodic_target_expiration(apic);
2182 		restart_apic_timer(apic);
2183 	}
2184 out:
2185 	preempt_enable();
2186 }
2187 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer);
2188 
2189 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu)
2190 {
2191 	restart_apic_timer(vcpu->arch.apic);
2192 }
2193 
2194 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu)
2195 {
2196 	struct kvm_lapic *apic = vcpu->arch.apic;
2197 
2198 	preempt_disable();
2199 	/* Possibly the TSC deadline timer is not enabled yet */
2200 	if (apic->lapic_timer.hv_timer_in_use)
2201 		start_sw_timer(apic);
2202 	preempt_enable();
2203 }
2204 
2205 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu)
2206 {
2207 	struct kvm_lapic *apic = vcpu->arch.apic;
2208 
2209 	WARN_ON(!apic->lapic_timer.hv_timer_in_use);
2210 	restart_apic_timer(apic);
2211 }
2212 
2213 static void __start_apic_timer(struct kvm_lapic *apic, u32 count_reg)
2214 {
2215 	atomic_set(&apic->lapic_timer.pending, 0);
2216 
2217 	if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
2218 	    && !set_target_expiration(apic, count_reg))
2219 		return;
2220 
2221 	restart_apic_timer(apic);
2222 }
2223 
2224 static void start_apic_timer(struct kvm_lapic *apic)
2225 {
2226 	__start_apic_timer(apic, APIC_TMICT);
2227 }
2228 
2229 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val)
2230 {
2231 	bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val);
2232 
2233 	if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) {
2234 		apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode;
2235 		if (lvt0_in_nmi_mode) {
2236 			atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
2237 		} else
2238 			atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
2239 	}
2240 }
2241 
2242 static int get_lvt_index(u32 reg)
2243 {
2244 	if (reg == APIC_LVTCMCI)
2245 		return LVT_CMCI;
2246 	if (reg < APIC_LVTT || reg > APIC_LVTERR)
2247 		return -1;
2248 	return array_index_nospec(
2249 			(reg - APIC_LVTT) >> 4, KVM_APIC_MAX_NR_LVT_ENTRIES);
2250 }
2251 
2252 static int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val)
2253 {
2254 	int ret = 0;
2255 
2256 	trace_kvm_apic_write(reg, val);
2257 
2258 	switch (reg) {
2259 	case APIC_ID:		/* Local APIC ID */
2260 		if (!apic_x2apic_mode(apic)) {
2261 			kvm_apic_set_xapic_id(apic, val >> 24);
2262 		} else {
2263 			ret = 1;
2264 		}
2265 		break;
2266 
2267 	case APIC_TASKPRI:
2268 		report_tpr_access(apic, true);
2269 		apic_set_tpr(apic, val & 0xff);
2270 		break;
2271 
2272 	case APIC_EOI:
2273 		apic_set_eoi(apic);
2274 		break;
2275 
2276 	case APIC_LDR:
2277 		if (!apic_x2apic_mode(apic))
2278 			kvm_apic_set_ldr(apic, val & APIC_LDR_MASK);
2279 		else
2280 			ret = 1;
2281 		break;
2282 
2283 	case APIC_DFR:
2284 		if (!apic_x2apic_mode(apic))
2285 			kvm_apic_set_dfr(apic, val | 0x0FFFFFFF);
2286 		else
2287 			ret = 1;
2288 		break;
2289 
2290 	case APIC_SPIV: {
2291 		u32 mask = 0x3ff;
2292 		if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI)
2293 			mask |= APIC_SPIV_DIRECTED_EOI;
2294 		apic_set_spiv(apic, val & mask);
2295 		if (!(val & APIC_SPIV_APIC_ENABLED)) {
2296 			int i;
2297 
2298 			for (i = 0; i < apic->nr_lvt_entries; i++) {
2299 				kvm_lapic_set_reg(apic, APIC_LVTx(i),
2300 					kvm_lapic_get_reg(apic, APIC_LVTx(i)) | APIC_LVT_MASKED);
2301 			}
2302 			apic_update_lvtt(apic);
2303 			atomic_set(&apic->lapic_timer.pending, 0);
2304 
2305 		}
2306 		break;
2307 	}
2308 	case APIC_ICR:
2309 		WARN_ON_ONCE(apic_x2apic_mode(apic));
2310 
2311 		/* No delay here, so we always clear the pending bit */
2312 		val &= ~APIC_ICR_BUSY;
2313 		kvm_apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2));
2314 		kvm_lapic_set_reg(apic, APIC_ICR, val);
2315 		break;
2316 	case APIC_ICR2:
2317 		if (apic_x2apic_mode(apic))
2318 			ret = 1;
2319 		else
2320 			kvm_lapic_set_reg(apic, APIC_ICR2, val & 0xff000000);
2321 		break;
2322 
2323 	case APIC_LVT0:
2324 		apic_manage_nmi_watchdog(apic, val);
2325 		fallthrough;
2326 	case APIC_LVTTHMR:
2327 	case APIC_LVTPC:
2328 	case APIC_LVT1:
2329 	case APIC_LVTERR:
2330 	case APIC_LVTCMCI: {
2331 		u32 index = get_lvt_index(reg);
2332 		if (!kvm_lapic_lvt_supported(apic, index)) {
2333 			ret = 1;
2334 			break;
2335 		}
2336 		if (!kvm_apic_sw_enabled(apic))
2337 			val |= APIC_LVT_MASKED;
2338 		val &= apic_lvt_mask[index];
2339 		kvm_lapic_set_reg(apic, reg, val);
2340 		break;
2341 	}
2342 
2343 	case APIC_LVTT:
2344 		if (!kvm_apic_sw_enabled(apic))
2345 			val |= APIC_LVT_MASKED;
2346 		val &= (apic_lvt_mask[0] | apic->lapic_timer.timer_mode_mask);
2347 		kvm_lapic_set_reg(apic, APIC_LVTT, val);
2348 		apic_update_lvtt(apic);
2349 		break;
2350 
2351 	case APIC_TMICT:
2352 		if (apic_lvtt_tscdeadline(apic))
2353 			break;
2354 
2355 		cancel_apic_timer(apic);
2356 		kvm_lapic_set_reg(apic, APIC_TMICT, val);
2357 		start_apic_timer(apic);
2358 		break;
2359 
2360 	case APIC_TDCR: {
2361 		uint32_t old_divisor = apic->divide_count;
2362 
2363 		kvm_lapic_set_reg(apic, APIC_TDCR, val & 0xb);
2364 		update_divide_count(apic);
2365 		if (apic->divide_count != old_divisor &&
2366 				apic->lapic_timer.period) {
2367 			hrtimer_cancel(&apic->lapic_timer.timer);
2368 			update_target_expiration(apic, old_divisor);
2369 			restart_apic_timer(apic);
2370 		}
2371 		break;
2372 	}
2373 	case APIC_ESR:
2374 		if (apic_x2apic_mode(apic) && val != 0)
2375 			ret = 1;
2376 		break;
2377 
2378 	case APIC_SELF_IPI:
2379 		/*
2380 		 * Self-IPI exists only when x2APIC is enabled.  Bits 7:0 hold
2381 		 * the vector, everything else is reserved.
2382 		 */
2383 		if (!apic_x2apic_mode(apic) || (val & ~APIC_VECTOR_MASK))
2384 			ret = 1;
2385 		else
2386 			kvm_apic_send_ipi(apic, APIC_DEST_SELF | val, 0);
2387 		break;
2388 	default:
2389 		ret = 1;
2390 		break;
2391 	}
2392 
2393 	/*
2394 	 * Recalculate APIC maps if necessary, e.g. if the software enable bit
2395 	 * was toggled, the APIC ID changed, etc...   The maps are marked dirty
2396 	 * on relevant changes, i.e. this is a nop for most writes.
2397 	 */
2398 	kvm_recalculate_apic_map(apic->vcpu->kvm);
2399 
2400 	return ret;
2401 }
2402 
2403 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
2404 			    gpa_t address, int len, const void *data)
2405 {
2406 	struct kvm_lapic *apic = to_lapic(this);
2407 	unsigned int offset = address - apic->base_address;
2408 	u32 val;
2409 
2410 	if (!apic_mmio_in_range(apic, address))
2411 		return -EOPNOTSUPP;
2412 
2413 	if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
2414 		if (!kvm_check_has_quirk(vcpu->kvm,
2415 					 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
2416 			return -EOPNOTSUPP;
2417 
2418 		return 0;
2419 	}
2420 
2421 	/*
2422 	 * APIC register must be aligned on 128-bits boundary.
2423 	 * 32/64/128 bits registers must be accessed thru 32 bits.
2424 	 * Refer SDM 8.4.1
2425 	 */
2426 	if (len != 4 || (offset & 0xf))
2427 		return 0;
2428 
2429 	val = *(u32*)data;
2430 
2431 	kvm_lapic_reg_write(apic, offset & 0xff0, val);
2432 
2433 	return 0;
2434 }
2435 
2436 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu)
2437 {
2438 	kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0);
2439 }
2440 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi);
2441 
2442 /* emulate APIC access in a trap manner */
2443 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset)
2444 {
2445 	struct kvm_lapic *apic = vcpu->arch.apic;
2446 
2447 	/*
2448 	 * ICR is a single 64-bit register when x2APIC is enabled, all others
2449 	 * registers hold 32-bit values.  For legacy xAPIC, ICR writes need to
2450 	 * go down the common path to get the upper half from ICR2.
2451 	 *
2452 	 * Note, using the write helpers may incur an unnecessary write to the
2453 	 * virtual APIC state, but KVM needs to conditionally modify the value
2454 	 * in certain cases, e.g. to clear the ICR busy bit.  The cost of extra
2455 	 * conditional branches is likely a wash relative to the cost of the
2456 	 * maybe-unecessary write, and both are in the noise anyways.
2457 	 */
2458 	if (apic_x2apic_mode(apic) && offset == APIC_ICR)
2459 		kvm_x2apic_icr_write(apic, kvm_lapic_get_reg64(apic, APIC_ICR));
2460 	else
2461 		kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
2462 }
2463 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode);
2464 
2465 void kvm_free_lapic(struct kvm_vcpu *vcpu)
2466 {
2467 	struct kvm_lapic *apic = vcpu->arch.apic;
2468 
2469 	if (!vcpu->arch.apic)
2470 		return;
2471 
2472 	hrtimer_cancel(&apic->lapic_timer.timer);
2473 
2474 	if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE))
2475 		static_branch_slow_dec_deferred(&apic_hw_disabled);
2476 
2477 	if (!apic->sw_enabled)
2478 		static_branch_slow_dec_deferred(&apic_sw_disabled);
2479 
2480 	if (apic->regs)
2481 		free_page((unsigned long)apic->regs);
2482 
2483 	kfree(apic);
2484 }
2485 
2486 /*
2487  *----------------------------------------------------------------------
2488  * LAPIC interface
2489  *----------------------------------------------------------------------
2490  */
2491 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu)
2492 {
2493 	struct kvm_lapic *apic = vcpu->arch.apic;
2494 
2495 	if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic))
2496 		return 0;
2497 
2498 	return apic->lapic_timer.tscdeadline;
2499 }
2500 
2501 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data)
2502 {
2503 	struct kvm_lapic *apic = vcpu->arch.apic;
2504 
2505 	if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic))
2506 		return;
2507 
2508 	hrtimer_cancel(&apic->lapic_timer.timer);
2509 	apic->lapic_timer.tscdeadline = data;
2510 	start_apic_timer(apic);
2511 }
2512 
2513 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8)
2514 {
2515 	apic_set_tpr(vcpu->arch.apic, (cr8 & 0x0f) << 4);
2516 }
2517 
2518 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu)
2519 {
2520 	u64 tpr;
2521 
2522 	tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI);
2523 
2524 	return (tpr & 0xf0) >> 4;
2525 }
2526 
2527 void kvm_lapic_set_base(struct kvm_vcpu *vcpu, u64 value)
2528 {
2529 	u64 old_value = vcpu->arch.apic_base;
2530 	struct kvm_lapic *apic = vcpu->arch.apic;
2531 
2532 	vcpu->arch.apic_base = value;
2533 
2534 	if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE)
2535 		kvm_update_cpuid_runtime(vcpu);
2536 
2537 	if (!apic)
2538 		return;
2539 
2540 	/* update jump label if enable bit changes */
2541 	if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) {
2542 		if (value & MSR_IA32_APICBASE_ENABLE) {
2543 			kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2544 			static_branch_slow_dec_deferred(&apic_hw_disabled);
2545 			/* Check if there are APF page ready requests pending */
2546 			kvm_make_request(KVM_REQ_APF_READY, vcpu);
2547 		} else {
2548 			static_branch_inc(&apic_hw_disabled.key);
2549 			atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
2550 		}
2551 	}
2552 
2553 	if ((old_value ^ value) & X2APIC_ENABLE) {
2554 		if (value & X2APIC_ENABLE)
2555 			kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id);
2556 		else if (value & MSR_IA32_APICBASE_ENABLE)
2557 			kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2558 	}
2559 
2560 	if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) {
2561 		kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
2562 		static_call_cond(kvm_x86_set_virtual_apic_mode)(vcpu);
2563 	}
2564 
2565 	apic->base_address = apic->vcpu->arch.apic_base &
2566 			     MSR_IA32_APICBASE_BASE;
2567 
2568 	if ((value & MSR_IA32_APICBASE_ENABLE) &&
2569 	     apic->base_address != APIC_DEFAULT_PHYS_BASE) {
2570 		kvm_set_apicv_inhibit(apic->vcpu->kvm,
2571 				      APICV_INHIBIT_REASON_APIC_BASE_MODIFIED);
2572 	}
2573 }
2574 
2575 void kvm_apic_update_apicv(struct kvm_vcpu *vcpu)
2576 {
2577 	struct kvm_lapic *apic = vcpu->arch.apic;
2578 
2579 	if (apic->apicv_active) {
2580 		/* irr_pending is always true when apicv is activated. */
2581 		apic->irr_pending = true;
2582 		apic->isr_count = 1;
2583 	} else {
2584 		/*
2585 		 * Don't clear irr_pending, searching the IRR can race with
2586 		 * updates from the CPU as APICv is still active from hardware's
2587 		 * perspective.  The flag will be cleared as appropriate when
2588 		 * KVM injects the interrupt.
2589 		 */
2590 		apic->isr_count = count_vectors(apic->regs + APIC_ISR);
2591 	}
2592 	apic->highest_isr_cache = -1;
2593 }
2594 
2595 int kvm_alloc_apic_access_page(struct kvm *kvm)
2596 {
2597 	struct page *page;
2598 	void __user *hva;
2599 	int ret = 0;
2600 
2601 	mutex_lock(&kvm->slots_lock);
2602 	if (kvm->arch.apic_access_memslot_enabled ||
2603 	    kvm->arch.apic_access_memslot_inhibited)
2604 		goto out;
2605 
2606 	hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
2607 				      APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
2608 	if (IS_ERR(hva)) {
2609 		ret = PTR_ERR(hva);
2610 		goto out;
2611 	}
2612 
2613 	page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
2614 	if (is_error_page(page)) {
2615 		ret = -EFAULT;
2616 		goto out;
2617 	}
2618 
2619 	/*
2620 	 * Do not pin the page in memory, so that memory hot-unplug
2621 	 * is able to migrate it.
2622 	 */
2623 	put_page(page);
2624 	kvm->arch.apic_access_memslot_enabled = true;
2625 out:
2626 	mutex_unlock(&kvm->slots_lock);
2627 	return ret;
2628 }
2629 EXPORT_SYMBOL_GPL(kvm_alloc_apic_access_page);
2630 
2631 void kvm_inhibit_apic_access_page(struct kvm_vcpu *vcpu)
2632 {
2633 	struct kvm *kvm = vcpu->kvm;
2634 
2635 	if (!kvm->arch.apic_access_memslot_enabled)
2636 		return;
2637 
2638 	kvm_vcpu_srcu_read_unlock(vcpu);
2639 
2640 	mutex_lock(&kvm->slots_lock);
2641 
2642 	if (kvm->arch.apic_access_memslot_enabled) {
2643 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
2644 		/*
2645 		 * Clear "enabled" after the memslot is deleted so that a
2646 		 * different vCPU doesn't get a false negative when checking
2647 		 * the flag out of slots_lock.  No additional memory barrier is
2648 		 * needed as modifying memslots requires waiting other vCPUs to
2649 		 * drop SRCU (see above), and false positives are ok as the
2650 		 * flag is rechecked after acquiring slots_lock.
2651 		 */
2652 		kvm->arch.apic_access_memslot_enabled = false;
2653 
2654 		/*
2655 		 * Mark the memslot as inhibited to prevent reallocating the
2656 		 * memslot during vCPU creation, e.g. if a vCPU is hotplugged.
2657 		 */
2658 		kvm->arch.apic_access_memslot_inhibited = true;
2659 	}
2660 
2661 	mutex_unlock(&kvm->slots_lock);
2662 
2663 	kvm_vcpu_srcu_read_lock(vcpu);
2664 }
2665 
2666 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event)
2667 {
2668 	struct kvm_lapic *apic = vcpu->arch.apic;
2669 	u64 msr_val;
2670 	int i;
2671 
2672 	static_call_cond(kvm_x86_apicv_pre_state_restore)(vcpu);
2673 
2674 	if (!init_event) {
2675 		msr_val = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE;
2676 		if (kvm_vcpu_is_reset_bsp(vcpu))
2677 			msr_val |= MSR_IA32_APICBASE_BSP;
2678 		kvm_lapic_set_base(vcpu, msr_val);
2679 	}
2680 
2681 	if (!apic)
2682 		return;
2683 
2684 	/* Stop the timer in case it's a reset to an active apic */
2685 	hrtimer_cancel(&apic->lapic_timer.timer);
2686 
2687 	/* The xAPIC ID is set at RESET even if the APIC was already enabled. */
2688 	if (!init_event)
2689 		kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2690 	kvm_apic_set_version(apic->vcpu);
2691 
2692 	for (i = 0; i < apic->nr_lvt_entries; i++)
2693 		kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED);
2694 	apic_update_lvtt(apic);
2695 	if (kvm_vcpu_is_reset_bsp(vcpu) &&
2696 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED))
2697 		kvm_lapic_set_reg(apic, APIC_LVT0,
2698 			     SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT));
2699 	apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
2700 
2701 	kvm_apic_set_dfr(apic, 0xffffffffU);
2702 	apic_set_spiv(apic, 0xff);
2703 	kvm_lapic_set_reg(apic, APIC_TASKPRI, 0);
2704 	if (!apic_x2apic_mode(apic))
2705 		kvm_apic_set_ldr(apic, 0);
2706 	kvm_lapic_set_reg(apic, APIC_ESR, 0);
2707 	if (!apic_x2apic_mode(apic)) {
2708 		kvm_lapic_set_reg(apic, APIC_ICR, 0);
2709 		kvm_lapic_set_reg(apic, APIC_ICR2, 0);
2710 	} else {
2711 		kvm_lapic_set_reg64(apic, APIC_ICR, 0);
2712 	}
2713 	kvm_lapic_set_reg(apic, APIC_TDCR, 0);
2714 	kvm_lapic_set_reg(apic, APIC_TMICT, 0);
2715 	for (i = 0; i < 8; i++) {
2716 		kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0);
2717 		kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0);
2718 		kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0);
2719 	}
2720 	kvm_apic_update_apicv(vcpu);
2721 	update_divide_count(apic);
2722 	atomic_set(&apic->lapic_timer.pending, 0);
2723 
2724 	vcpu->arch.pv_eoi.msr_val = 0;
2725 	apic_update_ppr(apic);
2726 	if (apic->apicv_active) {
2727 		static_call_cond(kvm_x86_apicv_post_state_restore)(vcpu);
2728 		static_call_cond(kvm_x86_hwapic_irr_update)(vcpu, -1);
2729 		static_call_cond(kvm_x86_hwapic_isr_update)(-1);
2730 	}
2731 
2732 	vcpu->arch.apic_arb_prio = 0;
2733 	vcpu->arch.apic_attention = 0;
2734 
2735 	kvm_recalculate_apic_map(vcpu->kvm);
2736 }
2737 
2738 /*
2739  *----------------------------------------------------------------------
2740  * timer interface
2741  *----------------------------------------------------------------------
2742  */
2743 
2744 static bool lapic_is_periodic(struct kvm_lapic *apic)
2745 {
2746 	return apic_lvtt_period(apic);
2747 }
2748 
2749 int apic_has_pending_timer(struct kvm_vcpu *vcpu)
2750 {
2751 	struct kvm_lapic *apic = vcpu->arch.apic;
2752 
2753 	if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT))
2754 		return atomic_read(&apic->lapic_timer.pending);
2755 
2756 	return 0;
2757 }
2758 
2759 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type)
2760 {
2761 	u32 reg = kvm_lapic_get_reg(apic, lvt_type);
2762 	int vector, mode, trig_mode;
2763 	int r;
2764 
2765 	if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) {
2766 		vector = reg & APIC_VECTOR_MASK;
2767 		mode = reg & APIC_MODE_MASK;
2768 		trig_mode = reg & APIC_LVT_LEVEL_TRIGGER;
2769 
2770 		r = __apic_accept_irq(apic, mode, vector, 1, trig_mode, NULL);
2771 		if (r && lvt_type == APIC_LVTPC)
2772 			kvm_lapic_set_reg(apic, APIC_LVTPC, reg | APIC_LVT_MASKED);
2773 		return r;
2774 	}
2775 	return 0;
2776 }
2777 
2778 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu)
2779 {
2780 	struct kvm_lapic *apic = vcpu->arch.apic;
2781 
2782 	if (apic)
2783 		kvm_apic_local_deliver(apic, APIC_LVT0);
2784 }
2785 
2786 static const struct kvm_io_device_ops apic_mmio_ops = {
2787 	.read     = apic_mmio_read,
2788 	.write    = apic_mmio_write,
2789 };
2790 
2791 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data)
2792 {
2793 	struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer);
2794 	struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer);
2795 
2796 	apic_timer_expired(apic, true);
2797 
2798 	if (lapic_is_periodic(apic)) {
2799 		advance_periodic_target_expiration(apic);
2800 		hrtimer_add_expires_ns(&ktimer->timer, ktimer->period);
2801 		return HRTIMER_RESTART;
2802 	} else
2803 		return HRTIMER_NORESTART;
2804 }
2805 
2806 int kvm_create_lapic(struct kvm_vcpu *vcpu, int timer_advance_ns)
2807 {
2808 	struct kvm_lapic *apic;
2809 
2810 	ASSERT(vcpu != NULL);
2811 
2812 	apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT);
2813 	if (!apic)
2814 		goto nomem;
2815 
2816 	vcpu->arch.apic = apic;
2817 
2818 	apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
2819 	if (!apic->regs) {
2820 		printk(KERN_ERR "malloc apic regs error for vcpu %x\n",
2821 		       vcpu->vcpu_id);
2822 		goto nomem_free_apic;
2823 	}
2824 	apic->vcpu = vcpu;
2825 
2826 	apic->nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu);
2827 
2828 	hrtimer_init(&apic->lapic_timer.timer, CLOCK_MONOTONIC,
2829 		     HRTIMER_MODE_ABS_HARD);
2830 	apic->lapic_timer.timer.function = apic_timer_fn;
2831 	if (timer_advance_ns == -1) {
2832 		apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
2833 		lapic_timer_advance_dynamic = true;
2834 	} else {
2835 		apic->lapic_timer.timer_advance_ns = timer_advance_ns;
2836 		lapic_timer_advance_dynamic = false;
2837 	}
2838 
2839 	/*
2840 	 * Stuff the APIC ENABLE bit in lieu of temporarily incrementing
2841 	 * apic_hw_disabled; the full RESET value is set by kvm_lapic_reset().
2842 	 */
2843 	vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE;
2844 	static_branch_inc(&apic_sw_disabled.key); /* sw disabled at reset */
2845 	kvm_iodevice_init(&apic->dev, &apic_mmio_ops);
2846 
2847 	return 0;
2848 nomem_free_apic:
2849 	kfree(apic);
2850 	vcpu->arch.apic = NULL;
2851 nomem:
2852 	return -ENOMEM;
2853 }
2854 
2855 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu)
2856 {
2857 	struct kvm_lapic *apic = vcpu->arch.apic;
2858 	u32 ppr;
2859 
2860 	if (!kvm_apic_present(vcpu))
2861 		return -1;
2862 
2863 	__apic_update_ppr(apic, &ppr);
2864 	return apic_has_interrupt_for_ppr(apic, ppr);
2865 }
2866 EXPORT_SYMBOL_GPL(kvm_apic_has_interrupt);
2867 
2868 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu)
2869 {
2870 	u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0);
2871 
2872 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
2873 		return 1;
2874 	if ((lvt0 & APIC_LVT_MASKED) == 0 &&
2875 	    GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT)
2876 		return 1;
2877 	return 0;
2878 }
2879 
2880 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu)
2881 {
2882 	struct kvm_lapic *apic = vcpu->arch.apic;
2883 
2884 	if (atomic_read(&apic->lapic_timer.pending) > 0) {
2885 		kvm_apic_inject_pending_timer_irqs(apic);
2886 		atomic_set(&apic->lapic_timer.pending, 0);
2887 	}
2888 }
2889 
2890 int kvm_get_apic_interrupt(struct kvm_vcpu *vcpu)
2891 {
2892 	int vector = kvm_apic_has_interrupt(vcpu);
2893 	struct kvm_lapic *apic = vcpu->arch.apic;
2894 	u32 ppr;
2895 
2896 	if (vector == -1)
2897 		return -1;
2898 
2899 	/*
2900 	 * We get here even with APIC virtualization enabled, if doing
2901 	 * nested virtualization and L1 runs with the "acknowledge interrupt
2902 	 * on exit" mode.  Then we cannot inject the interrupt via RVI,
2903 	 * because the process would deliver it through the IDT.
2904 	 */
2905 
2906 	apic_clear_irr(vector, apic);
2907 	if (kvm_hv_synic_auto_eoi_set(vcpu, vector)) {
2908 		/*
2909 		 * For auto-EOI interrupts, there might be another pending
2910 		 * interrupt above PPR, so check whether to raise another
2911 		 * KVM_REQ_EVENT.
2912 		 */
2913 		apic_update_ppr(apic);
2914 	} else {
2915 		/*
2916 		 * For normal interrupts, PPR has been raised and there cannot
2917 		 * be a higher-priority pending interrupt---except if there was
2918 		 * a concurrent interrupt injection, but that would have
2919 		 * triggered KVM_REQ_EVENT already.
2920 		 */
2921 		apic_set_isr(vector, apic);
2922 		__apic_update_ppr(apic, &ppr);
2923 	}
2924 
2925 	return vector;
2926 }
2927 
2928 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu,
2929 		struct kvm_lapic_state *s, bool set)
2930 {
2931 	if (apic_x2apic_mode(vcpu->arch.apic)) {
2932 		u32 *id = (u32 *)(s->regs + APIC_ID);
2933 		u32 *ldr = (u32 *)(s->regs + APIC_LDR);
2934 		u64 icr;
2935 
2936 		if (vcpu->kvm->arch.x2apic_format) {
2937 			if (*id != vcpu->vcpu_id)
2938 				return -EINVAL;
2939 		} else {
2940 			if (set)
2941 				*id >>= 24;
2942 			else
2943 				*id <<= 24;
2944 		}
2945 
2946 		/*
2947 		 * In x2APIC mode, the LDR is fixed and based on the id.  And
2948 		 * ICR is internally a single 64-bit register, but needs to be
2949 		 * split to ICR+ICR2 in userspace for backwards compatibility.
2950 		 */
2951 		if (set) {
2952 			*ldr = kvm_apic_calc_x2apic_ldr(*id);
2953 
2954 			icr = __kvm_lapic_get_reg(s->regs, APIC_ICR) |
2955 			      (u64)__kvm_lapic_get_reg(s->regs, APIC_ICR2) << 32;
2956 			__kvm_lapic_set_reg64(s->regs, APIC_ICR, icr);
2957 		} else {
2958 			icr = __kvm_lapic_get_reg64(s->regs, APIC_ICR);
2959 			__kvm_lapic_set_reg(s->regs, APIC_ICR2, icr >> 32);
2960 		}
2961 	}
2962 
2963 	return 0;
2964 }
2965 
2966 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
2967 {
2968 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s));
2969 
2970 	/*
2971 	 * Get calculated timer current count for remaining timer period (if
2972 	 * any) and store it in the returned register set.
2973 	 */
2974 	__kvm_lapic_set_reg(s->regs, APIC_TMCCT,
2975 			    __apic_read(vcpu->arch.apic, APIC_TMCCT));
2976 
2977 	return kvm_apic_state_fixup(vcpu, s, false);
2978 }
2979 
2980 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
2981 {
2982 	struct kvm_lapic *apic = vcpu->arch.apic;
2983 	int r;
2984 
2985 	static_call_cond(kvm_x86_apicv_pre_state_restore)(vcpu);
2986 
2987 	kvm_lapic_set_base(vcpu, vcpu->arch.apic_base);
2988 	/* set SPIV separately to get count of SW disabled APICs right */
2989 	apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV)));
2990 
2991 	r = kvm_apic_state_fixup(vcpu, s, true);
2992 	if (r) {
2993 		kvm_recalculate_apic_map(vcpu->kvm);
2994 		return r;
2995 	}
2996 	memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s));
2997 
2998 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
2999 	kvm_recalculate_apic_map(vcpu->kvm);
3000 	kvm_apic_set_version(vcpu);
3001 
3002 	apic_update_ppr(apic);
3003 	cancel_apic_timer(apic);
3004 	apic->lapic_timer.expired_tscdeadline = 0;
3005 	apic_update_lvtt(apic);
3006 	apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
3007 	update_divide_count(apic);
3008 	__start_apic_timer(apic, APIC_TMCCT);
3009 	kvm_lapic_set_reg(apic, APIC_TMCCT, 0);
3010 	kvm_apic_update_apicv(vcpu);
3011 	if (apic->apicv_active) {
3012 		static_call_cond(kvm_x86_apicv_post_state_restore)(vcpu);
3013 		static_call_cond(kvm_x86_hwapic_irr_update)(vcpu, apic_find_highest_irr(apic));
3014 		static_call_cond(kvm_x86_hwapic_isr_update)(apic_find_highest_isr(apic));
3015 	}
3016 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3017 	if (ioapic_in_kernel(vcpu->kvm))
3018 		kvm_rtc_eoi_tracking_restore_one(vcpu);
3019 
3020 	vcpu->arch.apic_arb_prio = 0;
3021 
3022 	return 0;
3023 }
3024 
3025 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu)
3026 {
3027 	struct hrtimer *timer;
3028 
3029 	if (!lapic_in_kernel(vcpu) ||
3030 		kvm_can_post_timer_interrupt(vcpu))
3031 		return;
3032 
3033 	timer = &vcpu->arch.apic->lapic_timer.timer;
3034 	if (hrtimer_cancel(timer))
3035 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD);
3036 }
3037 
3038 /*
3039  * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt
3040  *
3041  * Detect whether guest triggered PV EOI since the
3042  * last entry. If yes, set EOI on guests's behalf.
3043  * Clear PV EOI in guest memory in any case.
3044  */
3045 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu,
3046 					struct kvm_lapic *apic)
3047 {
3048 	int vector;
3049 	/*
3050 	 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host
3051 	 * and KVM_PV_EOI_ENABLED in guest memory as follows:
3052 	 *
3053 	 * KVM_APIC_PV_EOI_PENDING is unset:
3054 	 * 	-> host disabled PV EOI.
3055 	 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set:
3056 	 * 	-> host enabled PV EOI, guest did not execute EOI yet.
3057 	 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset:
3058 	 * 	-> host enabled PV EOI, guest executed EOI.
3059 	 */
3060 	BUG_ON(!pv_eoi_enabled(vcpu));
3061 
3062 	if (pv_eoi_test_and_clr_pending(vcpu))
3063 		return;
3064 	vector = apic_set_eoi(apic);
3065 	trace_kvm_pv_eoi(apic, vector);
3066 }
3067 
3068 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu)
3069 {
3070 	u32 data;
3071 
3072 	if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention))
3073 		apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic);
3074 
3075 	if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
3076 		return;
3077 
3078 	if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
3079 				  sizeof(u32)))
3080 		return;
3081 
3082 	apic_set_tpr(vcpu->arch.apic, data & 0xff);
3083 }
3084 
3085 /*
3086  * apic_sync_pv_eoi_to_guest - called before vmentry
3087  *
3088  * Detect whether it's safe to enable PV EOI and
3089  * if yes do so.
3090  */
3091 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu,
3092 					struct kvm_lapic *apic)
3093 {
3094 	if (!pv_eoi_enabled(vcpu) ||
3095 	    /* IRR set or many bits in ISR: could be nested. */
3096 	    apic->irr_pending ||
3097 	    /* Cache not set: could be safe but we don't bother. */
3098 	    apic->highest_isr_cache == -1 ||
3099 	    /* Need EOI to update ioapic. */
3100 	    kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) {
3101 		/*
3102 		 * PV EOI was disabled by apic_sync_pv_eoi_from_guest
3103 		 * so we need not do anything here.
3104 		 */
3105 		return;
3106 	}
3107 
3108 	pv_eoi_set_pending(apic->vcpu);
3109 }
3110 
3111 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu)
3112 {
3113 	u32 data, tpr;
3114 	int max_irr, max_isr;
3115 	struct kvm_lapic *apic = vcpu->arch.apic;
3116 
3117 	apic_sync_pv_eoi_to_guest(vcpu, apic);
3118 
3119 	if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
3120 		return;
3121 
3122 	tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff;
3123 	max_irr = apic_find_highest_irr(apic);
3124 	if (max_irr < 0)
3125 		max_irr = 0;
3126 	max_isr = apic_find_highest_isr(apic);
3127 	if (max_isr < 0)
3128 		max_isr = 0;
3129 	data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24);
3130 
3131 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
3132 				sizeof(u32));
3133 }
3134 
3135 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr)
3136 {
3137 	if (vapic_addr) {
3138 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
3139 					&vcpu->arch.apic->vapic_cache,
3140 					vapic_addr, sizeof(u32)))
3141 			return -EINVAL;
3142 		__set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
3143 	} else {
3144 		__clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
3145 	}
3146 
3147 	vcpu->arch.apic->vapic_addr = vapic_addr;
3148 	return 0;
3149 }
3150 
3151 int kvm_x2apic_icr_write(struct kvm_lapic *apic, u64 data)
3152 {
3153 	data &= ~APIC_ICR_BUSY;
3154 
3155 	kvm_apic_send_ipi(apic, (u32)data, (u32)(data >> 32));
3156 	kvm_lapic_set_reg64(apic, APIC_ICR, data);
3157 	trace_kvm_apic_write(APIC_ICR, data);
3158 	return 0;
3159 }
3160 
3161 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data)
3162 {
3163 	u32 low;
3164 
3165 	if (reg == APIC_ICR) {
3166 		*data = kvm_lapic_get_reg64(apic, APIC_ICR);
3167 		return 0;
3168 	}
3169 
3170 	if (kvm_lapic_reg_read(apic, reg, 4, &low))
3171 		return 1;
3172 
3173 	*data = low;
3174 
3175 	return 0;
3176 }
3177 
3178 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data)
3179 {
3180 	/*
3181 	 * ICR is a 64-bit register in x2APIC mode (and Hyper-V PV vAPIC) and
3182 	 * can be written as such, all other registers remain accessible only
3183 	 * through 32-bit reads/writes.
3184 	 */
3185 	if (reg == APIC_ICR)
3186 		return kvm_x2apic_icr_write(apic, data);
3187 
3188 	/* Bits 63:32 are reserved in all other registers. */
3189 	if (data >> 32)
3190 		return 1;
3191 
3192 	return kvm_lapic_reg_write(apic, reg, (u32)data);
3193 }
3194 
3195 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data)
3196 {
3197 	struct kvm_lapic *apic = vcpu->arch.apic;
3198 	u32 reg = (msr - APIC_BASE_MSR) << 4;
3199 
3200 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
3201 		return 1;
3202 
3203 	return kvm_lapic_msr_write(apic, reg, data);
3204 }
3205 
3206 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data)
3207 {
3208 	struct kvm_lapic *apic = vcpu->arch.apic;
3209 	u32 reg = (msr - APIC_BASE_MSR) << 4;
3210 
3211 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
3212 		return 1;
3213 
3214 	return kvm_lapic_msr_read(apic, reg, data);
3215 }
3216 
3217 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data)
3218 {
3219 	if (!lapic_in_kernel(vcpu))
3220 		return 1;
3221 
3222 	return kvm_lapic_msr_write(vcpu->arch.apic, reg, data);
3223 }
3224 
3225 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data)
3226 {
3227 	if (!lapic_in_kernel(vcpu))
3228 		return 1;
3229 
3230 	return kvm_lapic_msr_read(vcpu->arch.apic, reg, data);
3231 }
3232 
3233 int kvm_lapic_set_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len)
3234 {
3235 	u64 addr = data & ~KVM_MSR_ENABLED;
3236 	struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data;
3237 	unsigned long new_len;
3238 	int ret;
3239 
3240 	if (!IS_ALIGNED(addr, 4))
3241 		return 1;
3242 
3243 	if (data & KVM_MSR_ENABLED) {
3244 		if (addr == ghc->gpa && len <= ghc->len)
3245 			new_len = ghc->len;
3246 		else
3247 			new_len = len;
3248 
3249 		ret = kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len);
3250 		if (ret)
3251 			return ret;
3252 	}
3253 
3254 	vcpu->arch.pv_eoi.msr_val = data;
3255 
3256 	return 0;
3257 }
3258 
3259 int kvm_apic_accept_events(struct kvm_vcpu *vcpu)
3260 {
3261 	struct kvm_lapic *apic = vcpu->arch.apic;
3262 	u8 sipi_vector;
3263 	int r;
3264 
3265 	if (!kvm_apic_has_pending_init_or_sipi(vcpu))
3266 		return 0;
3267 
3268 	if (is_guest_mode(vcpu)) {
3269 		r = kvm_check_nested_events(vcpu);
3270 		if (r < 0)
3271 			return r == -EBUSY ? 0 : r;
3272 		/*
3273 		 * Continue processing INIT/SIPI even if a nested VM-Exit
3274 		 * occurred, e.g. pending SIPIs should be dropped if INIT+SIPI
3275 		 * are blocked as a result of transitioning to VMX root mode.
3276 		 */
3277 	}
3278 
3279 	/*
3280 	 * INITs are blocked while CPU is in specific states (SMM, VMX root
3281 	 * mode, SVM with GIF=0), while SIPIs are dropped if the CPU isn't in
3282 	 * wait-for-SIPI (WFS).
3283 	 */
3284 	if (!kvm_apic_init_sipi_allowed(vcpu)) {
3285 		WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED);
3286 		clear_bit(KVM_APIC_SIPI, &apic->pending_events);
3287 		return 0;
3288 	}
3289 
3290 	if (test_and_clear_bit(KVM_APIC_INIT, &apic->pending_events)) {
3291 		kvm_vcpu_reset(vcpu, true);
3292 		if (kvm_vcpu_is_bsp(apic->vcpu))
3293 			vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3294 		else
3295 			vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
3296 	}
3297 	if (test_and_clear_bit(KVM_APIC_SIPI, &apic->pending_events)) {
3298 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
3299 			/* evaluate pending_events before reading the vector */
3300 			smp_rmb();
3301 			sipi_vector = apic->sipi_vector;
3302 			static_call(kvm_x86_vcpu_deliver_sipi_vector)(vcpu, sipi_vector);
3303 			vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3304 		}
3305 	}
3306 	return 0;
3307 }
3308 
3309 void kvm_lapic_exit(void)
3310 {
3311 	static_key_deferred_flush(&apic_hw_disabled);
3312 	WARN_ON(static_branch_unlikely(&apic_hw_disabled.key));
3313 	static_key_deferred_flush(&apic_sw_disabled);
3314 	WARN_ON(static_branch_unlikely(&apic_sw_disabled.key));
3315 }
3316