1 // SPDX-License-Identifier: GPL-2.0-only 2 3 /* 4 * Local APIC virtualization 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2007 Novell 8 * Copyright (C) 2007 Intel 9 * Copyright 2009 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Dor Laor <dor.laor@qumranet.com> 13 * Gregory Haskins <ghaskins@novell.com> 14 * Yaozu (Eddie) Dong <eddie.dong@intel.com> 15 * 16 * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation. 17 */ 18 19 #include <linux/kvm_host.h> 20 #include <linux/kvm.h> 21 #include <linux/mm.h> 22 #include <linux/highmem.h> 23 #include <linux/smp.h> 24 #include <linux/hrtimer.h> 25 #include <linux/io.h> 26 #include <linux/export.h> 27 #include <linux/math64.h> 28 #include <linux/slab.h> 29 #include <asm/processor.h> 30 #include <asm/msr.h> 31 #include <asm/page.h> 32 #include <asm/current.h> 33 #include <asm/apicdef.h> 34 #include <asm/delay.h> 35 #include <linux/atomic.h> 36 #include <linux/jump_label.h> 37 #include "kvm_cache_regs.h" 38 #include "irq.h" 39 #include "trace.h" 40 #include "x86.h" 41 #include "cpuid.h" 42 #include "hyperv.h" 43 44 #ifndef CONFIG_X86_64 45 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y)) 46 #else 47 #define mod_64(x, y) ((x) % (y)) 48 #endif 49 50 #define PRId64 "d" 51 #define PRIx64 "llx" 52 #define PRIu64 "u" 53 #define PRIo64 "o" 54 55 /* 14 is the version for Xeon and Pentium 8.4.8*/ 56 #define APIC_VERSION (0x14UL | ((KVM_APIC_LVT_NUM - 1) << 16)) 57 #define LAPIC_MMIO_LENGTH (1 << 12) 58 /* followed define is not in apicdef.h */ 59 #define MAX_APIC_VECTOR 256 60 #define APIC_VECTORS_PER_REG 32 61 62 #define APIC_BROADCAST 0xFF 63 #define X2APIC_BROADCAST 0xFFFFFFFFul 64 65 static bool lapic_timer_advance_dynamic __read_mostly; 66 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN 100 /* clock cycles */ 67 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX 10000 /* clock cycles */ 68 #define LAPIC_TIMER_ADVANCE_NS_INIT 1000 69 #define LAPIC_TIMER_ADVANCE_NS_MAX 5000 70 /* step-by-step approximation to mitigate fluctuation */ 71 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8 72 73 static inline int apic_test_vector(int vec, void *bitmap) 74 { 75 return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 76 } 77 78 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector) 79 { 80 struct kvm_lapic *apic = vcpu->arch.apic; 81 82 return apic_test_vector(vector, apic->regs + APIC_ISR) || 83 apic_test_vector(vector, apic->regs + APIC_IRR); 84 } 85 86 static inline int __apic_test_and_set_vector(int vec, void *bitmap) 87 { 88 return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 89 } 90 91 static inline int __apic_test_and_clear_vector(int vec, void *bitmap) 92 { 93 return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 94 } 95 96 struct static_key_deferred apic_hw_disabled __read_mostly; 97 struct static_key_deferred apic_sw_disabled __read_mostly; 98 99 static inline int apic_enabled(struct kvm_lapic *apic) 100 { 101 return kvm_apic_sw_enabled(apic) && kvm_apic_hw_enabled(apic); 102 } 103 104 #define LVT_MASK \ 105 (APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK) 106 107 #define LINT_MASK \ 108 (LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \ 109 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER) 110 111 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic) 112 { 113 return apic->vcpu->vcpu_id; 114 } 115 116 bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu) 117 { 118 return pi_inject_timer && kvm_vcpu_apicv_active(vcpu); 119 } 120 EXPORT_SYMBOL_GPL(kvm_can_post_timer_interrupt); 121 122 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu) 123 { 124 return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE; 125 } 126 127 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map, 128 u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) { 129 switch (map->mode) { 130 case KVM_APIC_MODE_X2APIC: { 131 u32 offset = (dest_id >> 16) * 16; 132 u32 max_apic_id = map->max_apic_id; 133 134 if (offset <= max_apic_id) { 135 u8 cluster_size = min(max_apic_id - offset + 1, 16U); 136 137 offset = array_index_nospec(offset, map->max_apic_id + 1); 138 *cluster = &map->phys_map[offset]; 139 *mask = dest_id & (0xffff >> (16 - cluster_size)); 140 } else { 141 *mask = 0; 142 } 143 144 return true; 145 } 146 case KVM_APIC_MODE_XAPIC_FLAT: 147 *cluster = map->xapic_flat_map; 148 *mask = dest_id & 0xff; 149 return true; 150 case KVM_APIC_MODE_XAPIC_CLUSTER: 151 *cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf]; 152 *mask = dest_id & 0xf; 153 return true; 154 default: 155 /* Not optimized. */ 156 return false; 157 } 158 } 159 160 static void kvm_apic_map_free(struct rcu_head *rcu) 161 { 162 struct kvm_apic_map *map = container_of(rcu, struct kvm_apic_map, rcu); 163 164 kvfree(map); 165 } 166 167 static void recalculate_apic_map(struct kvm *kvm) 168 { 169 struct kvm_apic_map *new, *old = NULL; 170 struct kvm_vcpu *vcpu; 171 int i; 172 u32 max_id = 255; /* enough space for any xAPIC ID */ 173 174 mutex_lock(&kvm->arch.apic_map_lock); 175 176 kvm_for_each_vcpu(i, vcpu, kvm) 177 if (kvm_apic_present(vcpu)) 178 max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic)); 179 180 new = kvzalloc(sizeof(struct kvm_apic_map) + 181 sizeof(struct kvm_lapic *) * ((u64)max_id + 1), 182 GFP_KERNEL_ACCOUNT); 183 184 if (!new) 185 goto out; 186 187 new->max_apic_id = max_id; 188 189 kvm_for_each_vcpu(i, vcpu, kvm) { 190 struct kvm_lapic *apic = vcpu->arch.apic; 191 struct kvm_lapic **cluster; 192 u16 mask; 193 u32 ldr; 194 u8 xapic_id; 195 u32 x2apic_id; 196 197 if (!kvm_apic_present(vcpu)) 198 continue; 199 200 xapic_id = kvm_xapic_id(apic); 201 x2apic_id = kvm_x2apic_id(apic); 202 203 /* Hotplug hack: see kvm_apic_match_physical_addr(), ... */ 204 if ((apic_x2apic_mode(apic) || x2apic_id > 0xff) && 205 x2apic_id <= new->max_apic_id) 206 new->phys_map[x2apic_id] = apic; 207 /* 208 * ... xAPIC ID of VCPUs with APIC ID > 0xff will wrap-around, 209 * prevent them from masking VCPUs with APIC ID <= 0xff. 210 */ 211 if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id]) 212 new->phys_map[xapic_id] = apic; 213 214 if (!kvm_apic_sw_enabled(apic)) 215 continue; 216 217 ldr = kvm_lapic_get_reg(apic, APIC_LDR); 218 219 if (apic_x2apic_mode(apic)) { 220 new->mode |= KVM_APIC_MODE_X2APIC; 221 } else if (ldr) { 222 ldr = GET_APIC_LOGICAL_ID(ldr); 223 if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT) 224 new->mode |= KVM_APIC_MODE_XAPIC_FLAT; 225 else 226 new->mode |= KVM_APIC_MODE_XAPIC_CLUSTER; 227 } 228 229 if (!kvm_apic_map_get_logical_dest(new, ldr, &cluster, &mask)) 230 continue; 231 232 if (mask) 233 cluster[ffs(mask) - 1] = apic; 234 } 235 out: 236 old = rcu_dereference_protected(kvm->arch.apic_map, 237 lockdep_is_held(&kvm->arch.apic_map_lock)); 238 rcu_assign_pointer(kvm->arch.apic_map, new); 239 mutex_unlock(&kvm->arch.apic_map_lock); 240 241 if (old) 242 call_rcu(&old->rcu, kvm_apic_map_free); 243 244 kvm_make_scan_ioapic_request(kvm); 245 } 246 247 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val) 248 { 249 bool enabled = val & APIC_SPIV_APIC_ENABLED; 250 251 kvm_lapic_set_reg(apic, APIC_SPIV, val); 252 253 if (enabled != apic->sw_enabled) { 254 apic->sw_enabled = enabled; 255 if (enabled) 256 static_key_slow_dec_deferred(&apic_sw_disabled); 257 else 258 static_key_slow_inc(&apic_sw_disabled.key); 259 260 recalculate_apic_map(apic->vcpu->kvm); 261 } 262 } 263 264 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id) 265 { 266 kvm_lapic_set_reg(apic, APIC_ID, id << 24); 267 recalculate_apic_map(apic->vcpu->kvm); 268 } 269 270 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id) 271 { 272 kvm_lapic_set_reg(apic, APIC_LDR, id); 273 recalculate_apic_map(apic->vcpu->kvm); 274 } 275 276 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id) 277 { 278 return ((id >> 4) << 16) | (1 << (id & 0xf)); 279 } 280 281 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id) 282 { 283 u32 ldr = kvm_apic_calc_x2apic_ldr(id); 284 285 WARN_ON_ONCE(id != apic->vcpu->vcpu_id); 286 287 kvm_lapic_set_reg(apic, APIC_ID, id); 288 kvm_lapic_set_reg(apic, APIC_LDR, ldr); 289 recalculate_apic_map(apic->vcpu->kvm); 290 } 291 292 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type) 293 { 294 return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED); 295 } 296 297 static inline int apic_lvt_vector(struct kvm_lapic *apic, int lvt_type) 298 { 299 return kvm_lapic_get_reg(apic, lvt_type) & APIC_VECTOR_MASK; 300 } 301 302 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic) 303 { 304 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT; 305 } 306 307 static inline int apic_lvtt_period(struct kvm_lapic *apic) 308 { 309 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC; 310 } 311 312 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic) 313 { 314 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE; 315 } 316 317 static inline int apic_lvt_nmi_mode(u32 lvt_val) 318 { 319 return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI; 320 } 321 322 void kvm_apic_set_version(struct kvm_vcpu *vcpu) 323 { 324 struct kvm_lapic *apic = vcpu->arch.apic; 325 struct kvm_cpuid_entry2 *feat; 326 u32 v = APIC_VERSION; 327 328 if (!lapic_in_kernel(vcpu)) 329 return; 330 331 /* 332 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation) 333 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with 334 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC 335 * version first and level-triggered interrupts never get EOIed in 336 * IOAPIC. 337 */ 338 feat = kvm_find_cpuid_entry(apic->vcpu, 0x1, 0); 339 if (feat && (feat->ecx & (1 << (X86_FEATURE_X2APIC & 31))) && 340 !ioapic_in_kernel(vcpu->kvm)) 341 v |= APIC_LVR_DIRECTED_EOI; 342 kvm_lapic_set_reg(apic, APIC_LVR, v); 343 } 344 345 static const unsigned int apic_lvt_mask[KVM_APIC_LVT_NUM] = { 346 LVT_MASK , /* part LVTT mask, timer mode mask added at runtime */ 347 LVT_MASK | APIC_MODE_MASK, /* LVTTHMR */ 348 LVT_MASK | APIC_MODE_MASK, /* LVTPC */ 349 LINT_MASK, LINT_MASK, /* LVT0-1 */ 350 LVT_MASK /* LVTERR */ 351 }; 352 353 static int find_highest_vector(void *bitmap) 354 { 355 int vec; 356 u32 *reg; 357 358 for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG; 359 vec >= 0; vec -= APIC_VECTORS_PER_REG) { 360 reg = bitmap + REG_POS(vec); 361 if (*reg) 362 return __fls(*reg) + vec; 363 } 364 365 return -1; 366 } 367 368 static u8 count_vectors(void *bitmap) 369 { 370 int vec; 371 u32 *reg; 372 u8 count = 0; 373 374 for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) { 375 reg = bitmap + REG_POS(vec); 376 count += hweight32(*reg); 377 } 378 379 return count; 380 } 381 382 bool __kvm_apic_update_irr(u32 *pir, void *regs, int *max_irr) 383 { 384 u32 i, vec; 385 u32 pir_val, irr_val, prev_irr_val; 386 int max_updated_irr; 387 388 max_updated_irr = -1; 389 *max_irr = -1; 390 391 for (i = vec = 0; i <= 7; i++, vec += 32) { 392 pir_val = READ_ONCE(pir[i]); 393 irr_val = *((u32 *)(regs + APIC_IRR + i * 0x10)); 394 if (pir_val) { 395 prev_irr_val = irr_val; 396 irr_val |= xchg(&pir[i], 0); 397 *((u32 *)(regs + APIC_IRR + i * 0x10)) = irr_val; 398 if (prev_irr_val != irr_val) { 399 max_updated_irr = 400 __fls(irr_val ^ prev_irr_val) + vec; 401 } 402 } 403 if (irr_val) 404 *max_irr = __fls(irr_val) + vec; 405 } 406 407 return ((max_updated_irr != -1) && 408 (max_updated_irr == *max_irr)); 409 } 410 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr); 411 412 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir, int *max_irr) 413 { 414 struct kvm_lapic *apic = vcpu->arch.apic; 415 416 return __kvm_apic_update_irr(pir, apic->regs, max_irr); 417 } 418 EXPORT_SYMBOL_GPL(kvm_apic_update_irr); 419 420 static inline int apic_search_irr(struct kvm_lapic *apic) 421 { 422 return find_highest_vector(apic->regs + APIC_IRR); 423 } 424 425 static inline int apic_find_highest_irr(struct kvm_lapic *apic) 426 { 427 int result; 428 429 /* 430 * Note that irr_pending is just a hint. It will be always 431 * true with virtual interrupt delivery enabled. 432 */ 433 if (!apic->irr_pending) 434 return -1; 435 436 result = apic_search_irr(apic); 437 ASSERT(result == -1 || result >= 16); 438 439 return result; 440 } 441 442 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic) 443 { 444 struct kvm_vcpu *vcpu; 445 446 vcpu = apic->vcpu; 447 448 if (unlikely(vcpu->arch.apicv_active)) { 449 /* need to update RVI */ 450 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR); 451 kvm_x86_ops->hwapic_irr_update(vcpu, 452 apic_find_highest_irr(apic)); 453 } else { 454 apic->irr_pending = false; 455 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR); 456 if (apic_search_irr(apic) != -1) 457 apic->irr_pending = true; 458 } 459 } 460 461 static inline void apic_set_isr(int vec, struct kvm_lapic *apic) 462 { 463 struct kvm_vcpu *vcpu; 464 465 if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR)) 466 return; 467 468 vcpu = apic->vcpu; 469 470 /* 471 * With APIC virtualization enabled, all caching is disabled 472 * because the processor can modify ISR under the hood. Instead 473 * just set SVI. 474 */ 475 if (unlikely(vcpu->arch.apicv_active)) 476 kvm_x86_ops->hwapic_isr_update(vcpu, vec); 477 else { 478 ++apic->isr_count; 479 BUG_ON(apic->isr_count > MAX_APIC_VECTOR); 480 /* 481 * ISR (in service register) bit is set when injecting an interrupt. 482 * The highest vector is injected. Thus the latest bit set matches 483 * the highest bit in ISR. 484 */ 485 apic->highest_isr_cache = vec; 486 } 487 } 488 489 static inline int apic_find_highest_isr(struct kvm_lapic *apic) 490 { 491 int result; 492 493 /* 494 * Note that isr_count is always 1, and highest_isr_cache 495 * is always -1, with APIC virtualization enabled. 496 */ 497 if (!apic->isr_count) 498 return -1; 499 if (likely(apic->highest_isr_cache != -1)) 500 return apic->highest_isr_cache; 501 502 result = find_highest_vector(apic->regs + APIC_ISR); 503 ASSERT(result == -1 || result >= 16); 504 505 return result; 506 } 507 508 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic) 509 { 510 struct kvm_vcpu *vcpu; 511 if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR)) 512 return; 513 514 vcpu = apic->vcpu; 515 516 /* 517 * We do get here for APIC virtualization enabled if the guest 518 * uses the Hyper-V APIC enlightenment. In this case we may need 519 * to trigger a new interrupt delivery by writing the SVI field; 520 * on the other hand isr_count and highest_isr_cache are unused 521 * and must be left alone. 522 */ 523 if (unlikely(vcpu->arch.apicv_active)) 524 kvm_x86_ops->hwapic_isr_update(vcpu, 525 apic_find_highest_isr(apic)); 526 else { 527 --apic->isr_count; 528 BUG_ON(apic->isr_count < 0); 529 apic->highest_isr_cache = -1; 530 } 531 } 532 533 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu) 534 { 535 /* This may race with setting of irr in __apic_accept_irq() and 536 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq 537 * will cause vmexit immediately and the value will be recalculated 538 * on the next vmentry. 539 */ 540 return apic_find_highest_irr(vcpu->arch.apic); 541 } 542 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr); 543 544 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 545 int vector, int level, int trig_mode, 546 struct dest_map *dest_map); 547 548 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq, 549 struct dest_map *dest_map) 550 { 551 struct kvm_lapic *apic = vcpu->arch.apic; 552 553 return __apic_accept_irq(apic, irq->delivery_mode, irq->vector, 554 irq->level, irq->trig_mode, dest_map); 555 } 556 557 static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map, 558 struct kvm_lapic_irq *irq, u32 min) 559 { 560 int i, count = 0; 561 struct kvm_vcpu *vcpu; 562 563 if (min > map->max_apic_id) 564 return 0; 565 566 for_each_set_bit(i, ipi_bitmap, 567 min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) { 568 if (map->phys_map[min + i]) { 569 vcpu = map->phys_map[min + i]->vcpu; 570 count += kvm_apic_set_irq(vcpu, irq, NULL); 571 } 572 } 573 574 return count; 575 } 576 577 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 578 unsigned long ipi_bitmap_high, u32 min, 579 unsigned long icr, int op_64_bit) 580 { 581 struct kvm_apic_map *map; 582 struct kvm_lapic_irq irq = {0}; 583 int cluster_size = op_64_bit ? 64 : 32; 584 int count; 585 586 if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK)) 587 return -KVM_EINVAL; 588 589 irq.vector = icr & APIC_VECTOR_MASK; 590 irq.delivery_mode = icr & APIC_MODE_MASK; 591 irq.level = (icr & APIC_INT_ASSERT) != 0; 592 irq.trig_mode = icr & APIC_INT_LEVELTRIG; 593 594 rcu_read_lock(); 595 map = rcu_dereference(kvm->arch.apic_map); 596 597 count = -EOPNOTSUPP; 598 if (likely(map)) { 599 count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min); 600 min += cluster_size; 601 count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min); 602 } 603 604 rcu_read_unlock(); 605 return count; 606 } 607 608 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val) 609 { 610 611 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val, 612 sizeof(val)); 613 } 614 615 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val) 616 { 617 618 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val, 619 sizeof(*val)); 620 } 621 622 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu) 623 { 624 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED; 625 } 626 627 static bool pv_eoi_get_pending(struct kvm_vcpu *vcpu) 628 { 629 u8 val; 630 if (pv_eoi_get_user(vcpu, &val) < 0) 631 printk(KERN_WARNING "Can't read EOI MSR value: 0x%llx\n", 632 (unsigned long long)vcpu->arch.pv_eoi.msr_val); 633 return val & 0x1; 634 } 635 636 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu) 637 { 638 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0) { 639 printk(KERN_WARNING "Can't set EOI MSR value: 0x%llx\n", 640 (unsigned long long)vcpu->arch.pv_eoi.msr_val); 641 return; 642 } 643 __set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 644 } 645 646 static void pv_eoi_clr_pending(struct kvm_vcpu *vcpu) 647 { 648 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0) { 649 printk(KERN_WARNING "Can't clear EOI MSR value: 0x%llx\n", 650 (unsigned long long)vcpu->arch.pv_eoi.msr_val); 651 return; 652 } 653 __clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 654 } 655 656 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr) 657 { 658 int highest_irr; 659 if (apic->vcpu->arch.apicv_active) 660 highest_irr = kvm_x86_ops->sync_pir_to_irr(apic->vcpu); 661 else 662 highest_irr = apic_find_highest_irr(apic); 663 if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr) 664 return -1; 665 return highest_irr; 666 } 667 668 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr) 669 { 670 u32 tpr, isrv, ppr, old_ppr; 671 int isr; 672 673 old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI); 674 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI); 675 isr = apic_find_highest_isr(apic); 676 isrv = (isr != -1) ? isr : 0; 677 678 if ((tpr & 0xf0) >= (isrv & 0xf0)) 679 ppr = tpr & 0xff; 680 else 681 ppr = isrv & 0xf0; 682 683 *new_ppr = ppr; 684 if (old_ppr != ppr) 685 kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr); 686 687 return ppr < old_ppr; 688 } 689 690 static void apic_update_ppr(struct kvm_lapic *apic) 691 { 692 u32 ppr; 693 694 if (__apic_update_ppr(apic, &ppr) && 695 apic_has_interrupt_for_ppr(apic, ppr) != -1) 696 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 697 } 698 699 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu) 700 { 701 apic_update_ppr(vcpu->arch.apic); 702 } 703 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr); 704 705 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr) 706 { 707 kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr); 708 apic_update_ppr(apic); 709 } 710 711 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda) 712 { 713 return mda == (apic_x2apic_mode(apic) ? 714 X2APIC_BROADCAST : APIC_BROADCAST); 715 } 716 717 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda) 718 { 719 if (kvm_apic_broadcast(apic, mda)) 720 return true; 721 722 if (apic_x2apic_mode(apic)) 723 return mda == kvm_x2apic_id(apic); 724 725 /* 726 * Hotplug hack: Make LAPIC in xAPIC mode also accept interrupts as if 727 * it were in x2APIC mode. Hotplugged VCPUs start in xAPIC mode and 728 * this allows unique addressing of VCPUs with APIC ID over 0xff. 729 * The 0xff condition is needed because writeable xAPIC ID. 730 */ 731 if (kvm_x2apic_id(apic) > 0xff && mda == kvm_x2apic_id(apic)) 732 return true; 733 734 return mda == kvm_xapic_id(apic); 735 } 736 737 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda) 738 { 739 u32 logical_id; 740 741 if (kvm_apic_broadcast(apic, mda)) 742 return true; 743 744 logical_id = kvm_lapic_get_reg(apic, APIC_LDR); 745 746 if (apic_x2apic_mode(apic)) 747 return ((logical_id >> 16) == (mda >> 16)) 748 && (logical_id & mda & 0xffff) != 0; 749 750 logical_id = GET_APIC_LOGICAL_ID(logical_id); 751 752 switch (kvm_lapic_get_reg(apic, APIC_DFR)) { 753 case APIC_DFR_FLAT: 754 return (logical_id & mda) != 0; 755 case APIC_DFR_CLUSTER: 756 return ((logical_id >> 4) == (mda >> 4)) 757 && (logical_id & mda & 0xf) != 0; 758 default: 759 return false; 760 } 761 } 762 763 /* The KVM local APIC implementation has two quirks: 764 * 765 * - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs 766 * in xAPIC mode if the "destination & 0xff" matches its xAPIC ID. 767 * KVM doesn't do that aliasing. 768 * 769 * - in-kernel IOAPIC messages have to be delivered directly to 770 * x2APIC, because the kernel does not support interrupt remapping. 771 * In order to support broadcast without interrupt remapping, x2APIC 772 * rewrites the destination of non-IPI messages from APIC_BROADCAST 773 * to X2APIC_BROADCAST. 774 * 775 * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API. This is 776 * important when userspace wants to use x2APIC-format MSIs, because 777 * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7". 778 */ 779 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id, 780 struct kvm_lapic *source, struct kvm_lapic *target) 781 { 782 bool ipi = source != NULL; 783 784 if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled && 785 !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target)) 786 return X2APIC_BROADCAST; 787 788 return dest_id; 789 } 790 791 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source, 792 int shorthand, unsigned int dest, int dest_mode) 793 { 794 struct kvm_lapic *target = vcpu->arch.apic; 795 u32 mda = kvm_apic_mda(vcpu, dest, source, target); 796 797 ASSERT(target); 798 switch (shorthand) { 799 case APIC_DEST_NOSHORT: 800 if (dest_mode == APIC_DEST_PHYSICAL) 801 return kvm_apic_match_physical_addr(target, mda); 802 else 803 return kvm_apic_match_logical_addr(target, mda); 804 case APIC_DEST_SELF: 805 return target == source; 806 case APIC_DEST_ALLINC: 807 return true; 808 case APIC_DEST_ALLBUT: 809 return target != source; 810 default: 811 return false; 812 } 813 } 814 EXPORT_SYMBOL_GPL(kvm_apic_match_dest); 815 816 int kvm_vector_to_index(u32 vector, u32 dest_vcpus, 817 const unsigned long *bitmap, u32 bitmap_size) 818 { 819 u32 mod; 820 int i, idx = -1; 821 822 mod = vector % dest_vcpus; 823 824 for (i = 0; i <= mod; i++) { 825 idx = find_next_bit(bitmap, bitmap_size, idx + 1); 826 BUG_ON(idx == bitmap_size); 827 } 828 829 return idx; 830 } 831 832 static void kvm_apic_disabled_lapic_found(struct kvm *kvm) 833 { 834 if (!kvm->arch.disabled_lapic_found) { 835 kvm->arch.disabled_lapic_found = true; 836 printk(KERN_INFO 837 "Disabled LAPIC found during irq injection\n"); 838 } 839 } 840 841 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src, 842 struct kvm_lapic_irq *irq, struct kvm_apic_map *map) 843 { 844 if (kvm->arch.x2apic_broadcast_quirk_disabled) { 845 if ((irq->dest_id == APIC_BROADCAST && 846 map->mode != KVM_APIC_MODE_X2APIC)) 847 return true; 848 if (irq->dest_id == X2APIC_BROADCAST) 849 return true; 850 } else { 851 bool x2apic_ipi = src && *src && apic_x2apic_mode(*src); 852 if (irq->dest_id == (x2apic_ipi ? 853 X2APIC_BROADCAST : APIC_BROADCAST)) 854 return true; 855 } 856 857 return false; 858 } 859 860 /* Return true if the interrupt can be handled by using *bitmap as index mask 861 * for valid destinations in *dst array. 862 * Return false if kvm_apic_map_get_dest_lapic did nothing useful. 863 * Note: we may have zero kvm_lapic destinations when we return true, which 864 * means that the interrupt should be dropped. In this case, *bitmap would be 865 * zero and *dst undefined. 866 */ 867 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm, 868 struct kvm_lapic **src, struct kvm_lapic_irq *irq, 869 struct kvm_apic_map *map, struct kvm_lapic ***dst, 870 unsigned long *bitmap) 871 { 872 int i, lowest; 873 874 if (irq->shorthand == APIC_DEST_SELF && src) { 875 *dst = src; 876 *bitmap = 1; 877 return true; 878 } else if (irq->shorthand) 879 return false; 880 881 if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map)) 882 return false; 883 884 if (irq->dest_mode == APIC_DEST_PHYSICAL) { 885 if (irq->dest_id > map->max_apic_id) { 886 *bitmap = 0; 887 } else { 888 u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1); 889 *dst = &map->phys_map[dest_id]; 890 *bitmap = 1; 891 } 892 return true; 893 } 894 895 *bitmap = 0; 896 if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst, 897 (u16 *)bitmap)) 898 return false; 899 900 if (!kvm_lowest_prio_delivery(irq)) 901 return true; 902 903 if (!kvm_vector_hashing_enabled()) { 904 lowest = -1; 905 for_each_set_bit(i, bitmap, 16) { 906 if (!(*dst)[i]) 907 continue; 908 if (lowest < 0) 909 lowest = i; 910 else if (kvm_apic_compare_prio((*dst)[i]->vcpu, 911 (*dst)[lowest]->vcpu) < 0) 912 lowest = i; 913 } 914 } else { 915 if (!*bitmap) 916 return true; 917 918 lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap), 919 bitmap, 16); 920 921 if (!(*dst)[lowest]) { 922 kvm_apic_disabled_lapic_found(kvm); 923 *bitmap = 0; 924 return true; 925 } 926 } 927 928 *bitmap = (lowest >= 0) ? 1 << lowest : 0; 929 930 return true; 931 } 932 933 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src, 934 struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map) 935 { 936 struct kvm_apic_map *map; 937 unsigned long bitmap; 938 struct kvm_lapic **dst = NULL; 939 int i; 940 bool ret; 941 942 *r = -1; 943 944 if (irq->shorthand == APIC_DEST_SELF) { 945 *r = kvm_apic_set_irq(src->vcpu, irq, dest_map); 946 return true; 947 } 948 949 rcu_read_lock(); 950 map = rcu_dereference(kvm->arch.apic_map); 951 952 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap); 953 if (ret) { 954 *r = 0; 955 for_each_set_bit(i, &bitmap, 16) { 956 if (!dst[i]) 957 continue; 958 *r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map); 959 } 960 } 961 962 rcu_read_unlock(); 963 return ret; 964 } 965 966 /* 967 * This routine tries to handle interrupts in posted mode, here is how 968 * it deals with different cases: 969 * - For single-destination interrupts, handle it in posted mode 970 * - Else if vector hashing is enabled and it is a lowest-priority 971 * interrupt, handle it in posted mode and use the following mechanism 972 * to find the destination vCPU. 973 * 1. For lowest-priority interrupts, store all the possible 974 * destination vCPUs in an array. 975 * 2. Use "guest vector % max number of destination vCPUs" to find 976 * the right destination vCPU in the array for the lowest-priority 977 * interrupt. 978 * - Otherwise, use remapped mode to inject the interrupt. 979 */ 980 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq, 981 struct kvm_vcpu **dest_vcpu) 982 { 983 struct kvm_apic_map *map; 984 unsigned long bitmap; 985 struct kvm_lapic **dst = NULL; 986 bool ret = false; 987 988 if (irq->shorthand) 989 return false; 990 991 rcu_read_lock(); 992 map = rcu_dereference(kvm->arch.apic_map); 993 994 if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) && 995 hweight16(bitmap) == 1) { 996 unsigned long i = find_first_bit(&bitmap, 16); 997 998 if (dst[i]) { 999 *dest_vcpu = dst[i]->vcpu; 1000 ret = true; 1001 } 1002 } 1003 1004 rcu_read_unlock(); 1005 return ret; 1006 } 1007 1008 /* 1009 * Add a pending IRQ into lapic. 1010 * Return 1 if successfully added and 0 if discarded. 1011 */ 1012 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 1013 int vector, int level, int trig_mode, 1014 struct dest_map *dest_map) 1015 { 1016 int result = 0; 1017 struct kvm_vcpu *vcpu = apic->vcpu; 1018 1019 trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode, 1020 trig_mode, vector); 1021 switch (delivery_mode) { 1022 case APIC_DM_LOWEST: 1023 vcpu->arch.apic_arb_prio++; 1024 /* fall through */ 1025 case APIC_DM_FIXED: 1026 if (unlikely(trig_mode && !level)) 1027 break; 1028 1029 /* FIXME add logic for vcpu on reset */ 1030 if (unlikely(!apic_enabled(apic))) 1031 break; 1032 1033 result = 1; 1034 1035 if (dest_map) { 1036 __set_bit(vcpu->vcpu_id, dest_map->map); 1037 dest_map->vectors[vcpu->vcpu_id] = vector; 1038 } 1039 1040 if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) { 1041 if (trig_mode) 1042 kvm_lapic_set_vector(vector, 1043 apic->regs + APIC_TMR); 1044 else 1045 kvm_lapic_clear_vector(vector, 1046 apic->regs + APIC_TMR); 1047 } 1048 1049 if (vcpu->arch.apicv_active) 1050 kvm_x86_ops->deliver_posted_interrupt(vcpu, vector); 1051 else { 1052 kvm_lapic_set_irr(vector, apic); 1053 1054 kvm_make_request(KVM_REQ_EVENT, vcpu); 1055 kvm_vcpu_kick(vcpu); 1056 } 1057 break; 1058 1059 case APIC_DM_REMRD: 1060 result = 1; 1061 vcpu->arch.pv.pv_unhalted = 1; 1062 kvm_make_request(KVM_REQ_EVENT, vcpu); 1063 kvm_vcpu_kick(vcpu); 1064 break; 1065 1066 case APIC_DM_SMI: 1067 result = 1; 1068 kvm_make_request(KVM_REQ_SMI, vcpu); 1069 kvm_vcpu_kick(vcpu); 1070 break; 1071 1072 case APIC_DM_NMI: 1073 result = 1; 1074 kvm_inject_nmi(vcpu); 1075 kvm_vcpu_kick(vcpu); 1076 break; 1077 1078 case APIC_DM_INIT: 1079 if (!trig_mode || level) { 1080 result = 1; 1081 /* assumes that there are only KVM_APIC_INIT/SIPI */ 1082 apic->pending_events = (1UL << KVM_APIC_INIT); 1083 kvm_make_request(KVM_REQ_EVENT, vcpu); 1084 kvm_vcpu_kick(vcpu); 1085 } 1086 break; 1087 1088 case APIC_DM_STARTUP: 1089 result = 1; 1090 apic->sipi_vector = vector; 1091 /* make sure sipi_vector is visible for the receiver */ 1092 smp_wmb(); 1093 set_bit(KVM_APIC_SIPI, &apic->pending_events); 1094 kvm_make_request(KVM_REQ_EVENT, vcpu); 1095 kvm_vcpu_kick(vcpu); 1096 break; 1097 1098 case APIC_DM_EXTINT: 1099 /* 1100 * Should only be called by kvm_apic_local_deliver() with LVT0, 1101 * before NMI watchdog was enabled. Already handled by 1102 * kvm_apic_accept_pic_intr(). 1103 */ 1104 break; 1105 1106 default: 1107 printk(KERN_ERR "TODO: unsupported delivery mode %x\n", 1108 delivery_mode); 1109 break; 1110 } 1111 return result; 1112 } 1113 1114 /* 1115 * This routine identifies the destination vcpus mask meant to receive the 1116 * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find 1117 * out the destination vcpus array and set the bitmap or it traverses to 1118 * each available vcpu to identify the same. 1119 */ 1120 void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq, 1121 unsigned long *vcpu_bitmap) 1122 { 1123 struct kvm_lapic **dest_vcpu = NULL; 1124 struct kvm_lapic *src = NULL; 1125 struct kvm_apic_map *map; 1126 struct kvm_vcpu *vcpu; 1127 unsigned long bitmap; 1128 int i, vcpu_idx; 1129 bool ret; 1130 1131 rcu_read_lock(); 1132 map = rcu_dereference(kvm->arch.apic_map); 1133 1134 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu, 1135 &bitmap); 1136 if (ret) { 1137 for_each_set_bit(i, &bitmap, 16) { 1138 if (!dest_vcpu[i]) 1139 continue; 1140 vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx; 1141 __set_bit(vcpu_idx, vcpu_bitmap); 1142 } 1143 } else { 1144 kvm_for_each_vcpu(i, vcpu, kvm) { 1145 if (!kvm_apic_present(vcpu)) 1146 continue; 1147 if (!kvm_apic_match_dest(vcpu, NULL, 1148 irq->shorthand, 1149 irq->dest_id, 1150 irq->dest_mode)) 1151 continue; 1152 __set_bit(i, vcpu_bitmap); 1153 } 1154 } 1155 rcu_read_unlock(); 1156 } 1157 1158 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2) 1159 { 1160 return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio; 1161 } 1162 1163 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector) 1164 { 1165 return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors); 1166 } 1167 1168 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector) 1169 { 1170 int trigger_mode; 1171 1172 /* Eoi the ioapic only if the ioapic doesn't own the vector. */ 1173 if (!kvm_ioapic_handles_vector(apic, vector)) 1174 return; 1175 1176 /* Request a KVM exit to inform the userspace IOAPIC. */ 1177 if (irqchip_split(apic->vcpu->kvm)) { 1178 apic->vcpu->arch.pending_ioapic_eoi = vector; 1179 kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu); 1180 return; 1181 } 1182 1183 if (apic_test_vector(vector, apic->regs + APIC_TMR)) 1184 trigger_mode = IOAPIC_LEVEL_TRIG; 1185 else 1186 trigger_mode = IOAPIC_EDGE_TRIG; 1187 1188 kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode); 1189 } 1190 1191 static int apic_set_eoi(struct kvm_lapic *apic) 1192 { 1193 int vector = apic_find_highest_isr(apic); 1194 1195 trace_kvm_eoi(apic, vector); 1196 1197 /* 1198 * Not every write EOI will has corresponding ISR, 1199 * one example is when Kernel check timer on setup_IO_APIC 1200 */ 1201 if (vector == -1) 1202 return vector; 1203 1204 apic_clear_isr(vector, apic); 1205 apic_update_ppr(apic); 1206 1207 if (test_bit(vector, vcpu_to_synic(apic->vcpu)->vec_bitmap)) 1208 kvm_hv_synic_send_eoi(apic->vcpu, vector); 1209 1210 kvm_ioapic_send_eoi(apic, vector); 1211 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1212 return vector; 1213 } 1214 1215 /* 1216 * this interface assumes a trap-like exit, which has already finished 1217 * desired side effect including vISR and vPPR update. 1218 */ 1219 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector) 1220 { 1221 struct kvm_lapic *apic = vcpu->arch.apic; 1222 1223 trace_kvm_eoi(apic, vector); 1224 1225 kvm_ioapic_send_eoi(apic, vector); 1226 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1227 } 1228 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated); 1229 1230 static void apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high) 1231 { 1232 struct kvm_lapic_irq irq; 1233 1234 irq.vector = icr_low & APIC_VECTOR_MASK; 1235 irq.delivery_mode = icr_low & APIC_MODE_MASK; 1236 irq.dest_mode = icr_low & APIC_DEST_MASK; 1237 irq.level = (icr_low & APIC_INT_ASSERT) != 0; 1238 irq.trig_mode = icr_low & APIC_INT_LEVELTRIG; 1239 irq.shorthand = icr_low & APIC_SHORT_MASK; 1240 irq.msi_redir_hint = false; 1241 if (apic_x2apic_mode(apic)) 1242 irq.dest_id = icr_high; 1243 else 1244 irq.dest_id = GET_APIC_DEST_FIELD(icr_high); 1245 1246 trace_kvm_apic_ipi(icr_low, irq.dest_id); 1247 1248 kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL); 1249 } 1250 1251 static u32 apic_get_tmcct(struct kvm_lapic *apic) 1252 { 1253 ktime_t remaining, now; 1254 s64 ns; 1255 u32 tmcct; 1256 1257 ASSERT(apic != NULL); 1258 1259 /* if initial count is 0, current count should also be 0 */ 1260 if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 || 1261 apic->lapic_timer.period == 0) 1262 return 0; 1263 1264 now = ktime_get(); 1265 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 1266 if (ktime_to_ns(remaining) < 0) 1267 remaining = 0; 1268 1269 ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period); 1270 tmcct = div64_u64(ns, 1271 (APIC_BUS_CYCLE_NS * apic->divide_count)); 1272 1273 return tmcct; 1274 } 1275 1276 static void __report_tpr_access(struct kvm_lapic *apic, bool write) 1277 { 1278 struct kvm_vcpu *vcpu = apic->vcpu; 1279 struct kvm_run *run = vcpu->run; 1280 1281 kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu); 1282 run->tpr_access.rip = kvm_rip_read(vcpu); 1283 run->tpr_access.is_write = write; 1284 } 1285 1286 static inline void report_tpr_access(struct kvm_lapic *apic, bool write) 1287 { 1288 if (apic->vcpu->arch.tpr_access_reporting) 1289 __report_tpr_access(apic, write); 1290 } 1291 1292 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset) 1293 { 1294 u32 val = 0; 1295 1296 if (offset >= LAPIC_MMIO_LENGTH) 1297 return 0; 1298 1299 switch (offset) { 1300 case APIC_ARBPRI: 1301 break; 1302 1303 case APIC_TMCCT: /* Timer CCR */ 1304 if (apic_lvtt_tscdeadline(apic)) 1305 return 0; 1306 1307 val = apic_get_tmcct(apic); 1308 break; 1309 case APIC_PROCPRI: 1310 apic_update_ppr(apic); 1311 val = kvm_lapic_get_reg(apic, offset); 1312 break; 1313 case APIC_TASKPRI: 1314 report_tpr_access(apic, false); 1315 /* fall thru */ 1316 default: 1317 val = kvm_lapic_get_reg(apic, offset); 1318 break; 1319 } 1320 1321 return val; 1322 } 1323 1324 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev) 1325 { 1326 return container_of(dev, struct kvm_lapic, dev); 1327 } 1328 1329 #define APIC_REG_MASK(reg) (1ull << ((reg) >> 4)) 1330 #define APIC_REGS_MASK(first, count) \ 1331 (APIC_REG_MASK(first) * ((1ull << (count)) - 1)) 1332 1333 int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len, 1334 void *data) 1335 { 1336 unsigned char alignment = offset & 0xf; 1337 u32 result; 1338 /* this bitmask has a bit cleared for each reserved register */ 1339 u64 valid_reg_mask = 1340 APIC_REG_MASK(APIC_ID) | 1341 APIC_REG_MASK(APIC_LVR) | 1342 APIC_REG_MASK(APIC_TASKPRI) | 1343 APIC_REG_MASK(APIC_PROCPRI) | 1344 APIC_REG_MASK(APIC_LDR) | 1345 APIC_REG_MASK(APIC_DFR) | 1346 APIC_REG_MASK(APIC_SPIV) | 1347 APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) | 1348 APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) | 1349 APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) | 1350 APIC_REG_MASK(APIC_ESR) | 1351 APIC_REG_MASK(APIC_ICR) | 1352 APIC_REG_MASK(APIC_ICR2) | 1353 APIC_REG_MASK(APIC_LVTT) | 1354 APIC_REG_MASK(APIC_LVTTHMR) | 1355 APIC_REG_MASK(APIC_LVTPC) | 1356 APIC_REG_MASK(APIC_LVT0) | 1357 APIC_REG_MASK(APIC_LVT1) | 1358 APIC_REG_MASK(APIC_LVTERR) | 1359 APIC_REG_MASK(APIC_TMICT) | 1360 APIC_REG_MASK(APIC_TMCCT) | 1361 APIC_REG_MASK(APIC_TDCR); 1362 1363 /* ARBPRI is not valid on x2APIC */ 1364 if (!apic_x2apic_mode(apic)) 1365 valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI); 1366 1367 if (offset > 0x3f0 || !(valid_reg_mask & APIC_REG_MASK(offset))) 1368 return 1; 1369 1370 result = __apic_read(apic, offset & ~0xf); 1371 1372 trace_kvm_apic_read(offset, result); 1373 1374 switch (len) { 1375 case 1: 1376 case 2: 1377 case 4: 1378 memcpy(data, (char *)&result + alignment, len); 1379 break; 1380 default: 1381 printk(KERN_ERR "Local APIC read with len = %x, " 1382 "should be 1,2, or 4 instead\n", len); 1383 break; 1384 } 1385 return 0; 1386 } 1387 EXPORT_SYMBOL_GPL(kvm_lapic_reg_read); 1388 1389 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr) 1390 { 1391 return addr >= apic->base_address && 1392 addr < apic->base_address + LAPIC_MMIO_LENGTH; 1393 } 1394 1395 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 1396 gpa_t address, int len, void *data) 1397 { 1398 struct kvm_lapic *apic = to_lapic(this); 1399 u32 offset = address - apic->base_address; 1400 1401 if (!apic_mmio_in_range(apic, address)) 1402 return -EOPNOTSUPP; 1403 1404 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 1405 if (!kvm_check_has_quirk(vcpu->kvm, 1406 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 1407 return -EOPNOTSUPP; 1408 1409 memset(data, 0xff, len); 1410 return 0; 1411 } 1412 1413 kvm_lapic_reg_read(apic, offset, len, data); 1414 1415 return 0; 1416 } 1417 1418 static void update_divide_count(struct kvm_lapic *apic) 1419 { 1420 u32 tmp1, tmp2, tdcr; 1421 1422 tdcr = kvm_lapic_get_reg(apic, APIC_TDCR); 1423 tmp1 = tdcr & 0xf; 1424 tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1; 1425 apic->divide_count = 0x1 << (tmp2 & 0x7); 1426 } 1427 1428 static void limit_periodic_timer_frequency(struct kvm_lapic *apic) 1429 { 1430 /* 1431 * Do not allow the guest to program periodic timers with small 1432 * interval, since the hrtimers are not throttled by the host 1433 * scheduler. 1434 */ 1435 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 1436 s64 min_period = min_timer_period_us * 1000LL; 1437 1438 if (apic->lapic_timer.period < min_period) { 1439 pr_info_ratelimited( 1440 "kvm: vcpu %i: requested %lld ns " 1441 "lapic timer period limited to %lld ns\n", 1442 apic->vcpu->vcpu_id, 1443 apic->lapic_timer.period, min_period); 1444 apic->lapic_timer.period = min_period; 1445 } 1446 } 1447 } 1448 1449 static void apic_update_lvtt(struct kvm_lapic *apic) 1450 { 1451 u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) & 1452 apic->lapic_timer.timer_mode_mask; 1453 1454 if (apic->lapic_timer.timer_mode != timer_mode) { 1455 if (apic_lvtt_tscdeadline(apic) != (timer_mode == 1456 APIC_LVT_TIMER_TSCDEADLINE)) { 1457 hrtimer_cancel(&apic->lapic_timer.timer); 1458 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 1459 apic->lapic_timer.period = 0; 1460 apic->lapic_timer.tscdeadline = 0; 1461 } 1462 apic->lapic_timer.timer_mode = timer_mode; 1463 limit_periodic_timer_frequency(apic); 1464 } 1465 } 1466 1467 /* 1468 * On APICv, this test will cause a busy wait 1469 * during a higher-priority task. 1470 */ 1471 1472 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu) 1473 { 1474 struct kvm_lapic *apic = vcpu->arch.apic; 1475 u32 reg = kvm_lapic_get_reg(apic, APIC_LVTT); 1476 1477 if (kvm_apic_hw_enabled(apic)) { 1478 int vec = reg & APIC_VECTOR_MASK; 1479 void *bitmap = apic->regs + APIC_ISR; 1480 1481 if (vcpu->arch.apicv_active) 1482 bitmap = apic->regs + APIC_IRR; 1483 1484 if (apic_test_vector(vec, bitmap)) 1485 return true; 1486 } 1487 return false; 1488 } 1489 1490 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles) 1491 { 1492 u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns; 1493 1494 /* 1495 * If the guest TSC is running at a different ratio than the host, then 1496 * convert the delay to nanoseconds to achieve an accurate delay. Note 1497 * that __delay() uses delay_tsc whenever the hardware has TSC, thus 1498 * always for VMX enabled hardware. 1499 */ 1500 if (vcpu->arch.tsc_scaling_ratio == kvm_default_tsc_scaling_ratio) { 1501 __delay(min(guest_cycles, 1502 nsec_to_cycles(vcpu, timer_advance_ns))); 1503 } else { 1504 u64 delay_ns = guest_cycles * 1000000ULL; 1505 do_div(delay_ns, vcpu->arch.virtual_tsc_khz); 1506 ndelay(min_t(u32, delay_ns, timer_advance_ns)); 1507 } 1508 } 1509 1510 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu, 1511 s64 advance_expire_delta) 1512 { 1513 struct kvm_lapic *apic = vcpu->arch.apic; 1514 u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns; 1515 u64 ns; 1516 1517 /* Do not adjust for tiny fluctuations or large random spikes. */ 1518 if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX || 1519 abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN) 1520 return; 1521 1522 /* too early */ 1523 if (advance_expire_delta < 0) { 1524 ns = -advance_expire_delta * 1000000ULL; 1525 do_div(ns, vcpu->arch.virtual_tsc_khz); 1526 timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; 1527 } else { 1528 /* too late */ 1529 ns = advance_expire_delta * 1000000ULL; 1530 do_div(ns, vcpu->arch.virtual_tsc_khz); 1531 timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; 1532 } 1533 1534 if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX)) 1535 timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; 1536 apic->lapic_timer.timer_advance_ns = timer_advance_ns; 1537 } 1538 1539 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1540 { 1541 struct kvm_lapic *apic = vcpu->arch.apic; 1542 u64 guest_tsc, tsc_deadline; 1543 1544 if (apic->lapic_timer.expired_tscdeadline == 0) 1545 return; 1546 1547 tsc_deadline = apic->lapic_timer.expired_tscdeadline; 1548 apic->lapic_timer.expired_tscdeadline = 0; 1549 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1550 apic->lapic_timer.advance_expire_delta = guest_tsc - tsc_deadline; 1551 1552 if (guest_tsc < tsc_deadline) 1553 __wait_lapic_expire(vcpu, tsc_deadline - guest_tsc); 1554 1555 if (lapic_timer_advance_dynamic) 1556 adjust_lapic_timer_advance(vcpu, apic->lapic_timer.advance_expire_delta); 1557 } 1558 1559 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1560 { 1561 if (lapic_timer_int_injected(vcpu)) 1562 __kvm_wait_lapic_expire(vcpu); 1563 } 1564 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire); 1565 1566 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic) 1567 { 1568 struct kvm_timer *ktimer = &apic->lapic_timer; 1569 1570 kvm_apic_local_deliver(apic, APIC_LVTT); 1571 if (apic_lvtt_tscdeadline(apic)) { 1572 ktimer->tscdeadline = 0; 1573 } else if (apic_lvtt_oneshot(apic)) { 1574 ktimer->tscdeadline = 0; 1575 ktimer->target_expiration = 0; 1576 } 1577 } 1578 1579 static void apic_timer_expired(struct kvm_lapic *apic) 1580 { 1581 struct kvm_vcpu *vcpu = apic->vcpu; 1582 struct kvm_timer *ktimer = &apic->lapic_timer; 1583 1584 if (atomic_read(&apic->lapic_timer.pending)) 1585 return; 1586 1587 if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use) 1588 ktimer->expired_tscdeadline = ktimer->tscdeadline; 1589 1590 if (kvm_use_posted_timer_interrupt(apic->vcpu)) { 1591 if (apic->lapic_timer.timer_advance_ns) 1592 __kvm_wait_lapic_expire(vcpu); 1593 kvm_apic_inject_pending_timer_irqs(apic); 1594 return; 1595 } 1596 1597 atomic_inc(&apic->lapic_timer.pending); 1598 kvm_set_pending_timer(vcpu); 1599 } 1600 1601 static void start_sw_tscdeadline(struct kvm_lapic *apic) 1602 { 1603 struct kvm_timer *ktimer = &apic->lapic_timer; 1604 u64 guest_tsc, tscdeadline = ktimer->tscdeadline; 1605 u64 ns = 0; 1606 ktime_t expire; 1607 struct kvm_vcpu *vcpu = apic->vcpu; 1608 unsigned long this_tsc_khz = vcpu->arch.virtual_tsc_khz; 1609 unsigned long flags; 1610 ktime_t now; 1611 1612 if (unlikely(!tscdeadline || !this_tsc_khz)) 1613 return; 1614 1615 local_irq_save(flags); 1616 1617 now = ktime_get(); 1618 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1619 1620 ns = (tscdeadline - guest_tsc) * 1000000ULL; 1621 do_div(ns, this_tsc_khz); 1622 1623 if (likely(tscdeadline > guest_tsc) && 1624 likely(ns > apic->lapic_timer.timer_advance_ns)) { 1625 expire = ktime_add_ns(now, ns); 1626 expire = ktime_sub_ns(expire, ktimer->timer_advance_ns); 1627 hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD); 1628 } else 1629 apic_timer_expired(apic); 1630 1631 local_irq_restore(flags); 1632 } 1633 1634 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor) 1635 { 1636 ktime_t now, remaining; 1637 u64 ns_remaining_old, ns_remaining_new; 1638 1639 apic->lapic_timer.period = (u64)kvm_lapic_get_reg(apic, APIC_TMICT) 1640 * APIC_BUS_CYCLE_NS * apic->divide_count; 1641 limit_periodic_timer_frequency(apic); 1642 1643 now = ktime_get(); 1644 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 1645 if (ktime_to_ns(remaining) < 0) 1646 remaining = 0; 1647 1648 ns_remaining_old = ktime_to_ns(remaining); 1649 ns_remaining_new = mul_u64_u32_div(ns_remaining_old, 1650 apic->divide_count, old_divisor); 1651 1652 apic->lapic_timer.tscdeadline += 1653 nsec_to_cycles(apic->vcpu, ns_remaining_new) - 1654 nsec_to_cycles(apic->vcpu, ns_remaining_old); 1655 apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new); 1656 } 1657 1658 static bool set_target_expiration(struct kvm_lapic *apic) 1659 { 1660 ktime_t now; 1661 u64 tscl = rdtsc(); 1662 1663 now = ktime_get(); 1664 apic->lapic_timer.period = (u64)kvm_lapic_get_reg(apic, APIC_TMICT) 1665 * APIC_BUS_CYCLE_NS * apic->divide_count; 1666 1667 if (!apic->lapic_timer.period) { 1668 apic->lapic_timer.tscdeadline = 0; 1669 return false; 1670 } 1671 1672 limit_periodic_timer_frequency(apic); 1673 1674 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 1675 nsec_to_cycles(apic->vcpu, apic->lapic_timer.period); 1676 apic->lapic_timer.target_expiration = ktime_add_ns(now, apic->lapic_timer.period); 1677 1678 return true; 1679 } 1680 1681 static void advance_periodic_target_expiration(struct kvm_lapic *apic) 1682 { 1683 ktime_t now = ktime_get(); 1684 u64 tscl = rdtsc(); 1685 ktime_t delta; 1686 1687 /* 1688 * Synchronize both deadlines to the same time source or 1689 * differences in the periods (caused by differences in the 1690 * underlying clocks or numerical approximation errors) will 1691 * cause the two to drift apart over time as the errors 1692 * accumulate. 1693 */ 1694 apic->lapic_timer.target_expiration = 1695 ktime_add_ns(apic->lapic_timer.target_expiration, 1696 apic->lapic_timer.period); 1697 delta = ktime_sub(apic->lapic_timer.target_expiration, now); 1698 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 1699 nsec_to_cycles(apic->vcpu, delta); 1700 } 1701 1702 static void start_sw_period(struct kvm_lapic *apic) 1703 { 1704 if (!apic->lapic_timer.period) 1705 return; 1706 1707 if (ktime_after(ktime_get(), 1708 apic->lapic_timer.target_expiration)) { 1709 apic_timer_expired(apic); 1710 1711 if (apic_lvtt_oneshot(apic)) 1712 return; 1713 1714 advance_periodic_target_expiration(apic); 1715 } 1716 1717 hrtimer_start(&apic->lapic_timer.timer, 1718 apic->lapic_timer.target_expiration, 1719 HRTIMER_MODE_ABS); 1720 } 1721 1722 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu) 1723 { 1724 if (!lapic_in_kernel(vcpu)) 1725 return false; 1726 1727 return vcpu->arch.apic->lapic_timer.hv_timer_in_use; 1728 } 1729 EXPORT_SYMBOL_GPL(kvm_lapic_hv_timer_in_use); 1730 1731 static void cancel_hv_timer(struct kvm_lapic *apic) 1732 { 1733 WARN_ON(preemptible()); 1734 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 1735 kvm_x86_ops->cancel_hv_timer(apic->vcpu); 1736 apic->lapic_timer.hv_timer_in_use = false; 1737 } 1738 1739 static bool start_hv_timer(struct kvm_lapic *apic) 1740 { 1741 struct kvm_timer *ktimer = &apic->lapic_timer; 1742 struct kvm_vcpu *vcpu = apic->vcpu; 1743 bool expired; 1744 1745 WARN_ON(preemptible()); 1746 if (!kvm_x86_ops->set_hv_timer) 1747 return false; 1748 1749 if (!ktimer->tscdeadline) 1750 return false; 1751 1752 if (kvm_x86_ops->set_hv_timer(vcpu, ktimer->tscdeadline, &expired)) 1753 return false; 1754 1755 ktimer->hv_timer_in_use = true; 1756 hrtimer_cancel(&ktimer->timer); 1757 1758 /* 1759 * To simplify handling the periodic timer, leave the hv timer running 1760 * even if the deadline timer has expired, i.e. rely on the resulting 1761 * VM-Exit to recompute the periodic timer's target expiration. 1762 */ 1763 if (!apic_lvtt_period(apic)) { 1764 /* 1765 * Cancel the hv timer if the sw timer fired while the hv timer 1766 * was being programmed, or if the hv timer itself expired. 1767 */ 1768 if (atomic_read(&ktimer->pending)) { 1769 cancel_hv_timer(apic); 1770 } else if (expired) { 1771 apic_timer_expired(apic); 1772 cancel_hv_timer(apic); 1773 } 1774 } 1775 1776 trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use); 1777 1778 return true; 1779 } 1780 1781 static void start_sw_timer(struct kvm_lapic *apic) 1782 { 1783 struct kvm_timer *ktimer = &apic->lapic_timer; 1784 1785 WARN_ON(preemptible()); 1786 if (apic->lapic_timer.hv_timer_in_use) 1787 cancel_hv_timer(apic); 1788 if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending)) 1789 return; 1790 1791 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 1792 start_sw_period(apic); 1793 else if (apic_lvtt_tscdeadline(apic)) 1794 start_sw_tscdeadline(apic); 1795 trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false); 1796 } 1797 1798 static void restart_apic_timer(struct kvm_lapic *apic) 1799 { 1800 preempt_disable(); 1801 1802 if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending)) 1803 goto out; 1804 1805 if (!start_hv_timer(apic)) 1806 start_sw_timer(apic); 1807 out: 1808 preempt_enable(); 1809 } 1810 1811 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu) 1812 { 1813 struct kvm_lapic *apic = vcpu->arch.apic; 1814 1815 preempt_disable(); 1816 /* If the preempt notifier has already run, it also called apic_timer_expired */ 1817 if (!apic->lapic_timer.hv_timer_in_use) 1818 goto out; 1819 WARN_ON(swait_active(&vcpu->wq)); 1820 cancel_hv_timer(apic); 1821 apic_timer_expired(apic); 1822 1823 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 1824 advance_periodic_target_expiration(apic); 1825 restart_apic_timer(apic); 1826 } 1827 out: 1828 preempt_enable(); 1829 } 1830 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer); 1831 1832 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu) 1833 { 1834 restart_apic_timer(vcpu->arch.apic); 1835 } 1836 EXPORT_SYMBOL_GPL(kvm_lapic_switch_to_hv_timer); 1837 1838 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu) 1839 { 1840 struct kvm_lapic *apic = vcpu->arch.apic; 1841 1842 preempt_disable(); 1843 /* Possibly the TSC deadline timer is not enabled yet */ 1844 if (apic->lapic_timer.hv_timer_in_use) 1845 start_sw_timer(apic); 1846 preempt_enable(); 1847 } 1848 EXPORT_SYMBOL_GPL(kvm_lapic_switch_to_sw_timer); 1849 1850 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu) 1851 { 1852 struct kvm_lapic *apic = vcpu->arch.apic; 1853 1854 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 1855 restart_apic_timer(apic); 1856 } 1857 1858 static void start_apic_timer(struct kvm_lapic *apic) 1859 { 1860 atomic_set(&apic->lapic_timer.pending, 0); 1861 1862 if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 1863 && !set_target_expiration(apic)) 1864 return; 1865 1866 restart_apic_timer(apic); 1867 } 1868 1869 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val) 1870 { 1871 bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val); 1872 1873 if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) { 1874 apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode; 1875 if (lvt0_in_nmi_mode) { 1876 atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 1877 } else 1878 atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 1879 } 1880 } 1881 1882 int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val) 1883 { 1884 int ret = 0; 1885 1886 trace_kvm_apic_write(reg, val); 1887 1888 switch (reg) { 1889 case APIC_ID: /* Local APIC ID */ 1890 if (!apic_x2apic_mode(apic)) 1891 kvm_apic_set_xapic_id(apic, val >> 24); 1892 else 1893 ret = 1; 1894 break; 1895 1896 case APIC_TASKPRI: 1897 report_tpr_access(apic, true); 1898 apic_set_tpr(apic, val & 0xff); 1899 break; 1900 1901 case APIC_EOI: 1902 apic_set_eoi(apic); 1903 break; 1904 1905 case APIC_LDR: 1906 if (!apic_x2apic_mode(apic)) 1907 kvm_apic_set_ldr(apic, val & APIC_LDR_MASK); 1908 else 1909 ret = 1; 1910 break; 1911 1912 case APIC_DFR: 1913 if (!apic_x2apic_mode(apic)) { 1914 kvm_lapic_set_reg(apic, APIC_DFR, val | 0x0FFFFFFF); 1915 recalculate_apic_map(apic->vcpu->kvm); 1916 } else 1917 ret = 1; 1918 break; 1919 1920 case APIC_SPIV: { 1921 u32 mask = 0x3ff; 1922 if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI) 1923 mask |= APIC_SPIV_DIRECTED_EOI; 1924 apic_set_spiv(apic, val & mask); 1925 if (!(val & APIC_SPIV_APIC_ENABLED)) { 1926 int i; 1927 u32 lvt_val; 1928 1929 for (i = 0; i < KVM_APIC_LVT_NUM; i++) { 1930 lvt_val = kvm_lapic_get_reg(apic, 1931 APIC_LVTT + 0x10 * i); 1932 kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i, 1933 lvt_val | APIC_LVT_MASKED); 1934 } 1935 apic_update_lvtt(apic); 1936 atomic_set(&apic->lapic_timer.pending, 0); 1937 1938 } 1939 break; 1940 } 1941 case APIC_ICR: 1942 /* No delay here, so we always clear the pending bit */ 1943 val &= ~(1 << 12); 1944 apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2)); 1945 kvm_lapic_set_reg(apic, APIC_ICR, val); 1946 break; 1947 1948 case APIC_ICR2: 1949 if (!apic_x2apic_mode(apic)) 1950 val &= 0xff000000; 1951 kvm_lapic_set_reg(apic, APIC_ICR2, val); 1952 break; 1953 1954 case APIC_LVT0: 1955 apic_manage_nmi_watchdog(apic, val); 1956 /* fall through */ 1957 case APIC_LVTTHMR: 1958 case APIC_LVTPC: 1959 case APIC_LVT1: 1960 case APIC_LVTERR: { 1961 /* TODO: Check vector */ 1962 size_t size; 1963 u32 index; 1964 1965 if (!kvm_apic_sw_enabled(apic)) 1966 val |= APIC_LVT_MASKED; 1967 size = ARRAY_SIZE(apic_lvt_mask); 1968 index = array_index_nospec( 1969 (reg - APIC_LVTT) >> 4, size); 1970 val &= apic_lvt_mask[index]; 1971 kvm_lapic_set_reg(apic, reg, val); 1972 break; 1973 } 1974 1975 case APIC_LVTT: 1976 if (!kvm_apic_sw_enabled(apic)) 1977 val |= APIC_LVT_MASKED; 1978 val &= (apic_lvt_mask[0] | apic->lapic_timer.timer_mode_mask); 1979 kvm_lapic_set_reg(apic, APIC_LVTT, val); 1980 apic_update_lvtt(apic); 1981 break; 1982 1983 case APIC_TMICT: 1984 if (apic_lvtt_tscdeadline(apic)) 1985 break; 1986 1987 hrtimer_cancel(&apic->lapic_timer.timer); 1988 kvm_lapic_set_reg(apic, APIC_TMICT, val); 1989 start_apic_timer(apic); 1990 break; 1991 1992 case APIC_TDCR: { 1993 uint32_t old_divisor = apic->divide_count; 1994 1995 kvm_lapic_set_reg(apic, APIC_TDCR, val); 1996 update_divide_count(apic); 1997 if (apic->divide_count != old_divisor && 1998 apic->lapic_timer.period) { 1999 hrtimer_cancel(&apic->lapic_timer.timer); 2000 update_target_expiration(apic, old_divisor); 2001 restart_apic_timer(apic); 2002 } 2003 break; 2004 } 2005 case APIC_ESR: 2006 if (apic_x2apic_mode(apic) && val != 0) 2007 ret = 1; 2008 break; 2009 2010 case APIC_SELF_IPI: 2011 if (apic_x2apic_mode(apic)) { 2012 kvm_lapic_reg_write(apic, APIC_ICR, 0x40000 | (val & 0xff)); 2013 } else 2014 ret = 1; 2015 break; 2016 default: 2017 ret = 1; 2018 break; 2019 } 2020 2021 return ret; 2022 } 2023 EXPORT_SYMBOL_GPL(kvm_lapic_reg_write); 2024 2025 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 2026 gpa_t address, int len, const void *data) 2027 { 2028 struct kvm_lapic *apic = to_lapic(this); 2029 unsigned int offset = address - apic->base_address; 2030 u32 val; 2031 2032 if (!apic_mmio_in_range(apic, address)) 2033 return -EOPNOTSUPP; 2034 2035 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 2036 if (!kvm_check_has_quirk(vcpu->kvm, 2037 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 2038 return -EOPNOTSUPP; 2039 2040 return 0; 2041 } 2042 2043 /* 2044 * APIC register must be aligned on 128-bits boundary. 2045 * 32/64/128 bits registers must be accessed thru 32 bits. 2046 * Refer SDM 8.4.1 2047 */ 2048 if (len != 4 || (offset & 0xf)) 2049 return 0; 2050 2051 val = *(u32*)data; 2052 2053 kvm_lapic_reg_write(apic, offset & 0xff0, val); 2054 2055 return 0; 2056 } 2057 2058 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu) 2059 { 2060 kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0); 2061 } 2062 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi); 2063 2064 /* emulate APIC access in a trap manner */ 2065 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset) 2066 { 2067 u32 val = 0; 2068 2069 /* hw has done the conditional check and inst decode */ 2070 offset &= 0xff0; 2071 2072 kvm_lapic_reg_read(vcpu->arch.apic, offset, 4, &val); 2073 2074 /* TODO: optimize to just emulate side effect w/o one more write */ 2075 kvm_lapic_reg_write(vcpu->arch.apic, offset, val); 2076 } 2077 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode); 2078 2079 void kvm_free_lapic(struct kvm_vcpu *vcpu) 2080 { 2081 struct kvm_lapic *apic = vcpu->arch.apic; 2082 2083 if (!vcpu->arch.apic) 2084 return; 2085 2086 hrtimer_cancel(&apic->lapic_timer.timer); 2087 2088 if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)) 2089 static_key_slow_dec_deferred(&apic_hw_disabled); 2090 2091 if (!apic->sw_enabled) 2092 static_key_slow_dec_deferred(&apic_sw_disabled); 2093 2094 if (apic->regs) 2095 free_page((unsigned long)apic->regs); 2096 2097 kfree(apic); 2098 } 2099 2100 /* 2101 *---------------------------------------------------------------------- 2102 * LAPIC interface 2103 *---------------------------------------------------------------------- 2104 */ 2105 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu) 2106 { 2107 struct kvm_lapic *apic = vcpu->arch.apic; 2108 2109 if (!lapic_in_kernel(vcpu) || 2110 !apic_lvtt_tscdeadline(apic)) 2111 return 0; 2112 2113 return apic->lapic_timer.tscdeadline; 2114 } 2115 2116 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data) 2117 { 2118 struct kvm_lapic *apic = vcpu->arch.apic; 2119 2120 if (!lapic_in_kernel(vcpu) || apic_lvtt_oneshot(apic) || 2121 apic_lvtt_period(apic)) 2122 return; 2123 2124 hrtimer_cancel(&apic->lapic_timer.timer); 2125 apic->lapic_timer.tscdeadline = data; 2126 start_apic_timer(apic); 2127 } 2128 2129 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8) 2130 { 2131 struct kvm_lapic *apic = vcpu->arch.apic; 2132 2133 apic_set_tpr(apic, ((cr8 & 0x0f) << 4) 2134 | (kvm_lapic_get_reg(apic, APIC_TASKPRI) & 4)); 2135 } 2136 2137 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu) 2138 { 2139 u64 tpr; 2140 2141 tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI); 2142 2143 return (tpr & 0xf0) >> 4; 2144 } 2145 2146 void kvm_lapic_set_base(struct kvm_vcpu *vcpu, u64 value) 2147 { 2148 u64 old_value = vcpu->arch.apic_base; 2149 struct kvm_lapic *apic = vcpu->arch.apic; 2150 2151 if (!apic) 2152 value |= MSR_IA32_APICBASE_BSP; 2153 2154 vcpu->arch.apic_base = value; 2155 2156 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) 2157 kvm_update_cpuid(vcpu); 2158 2159 if (!apic) 2160 return; 2161 2162 /* update jump label if enable bit changes */ 2163 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) { 2164 if (value & MSR_IA32_APICBASE_ENABLE) { 2165 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2166 static_key_slow_dec_deferred(&apic_hw_disabled); 2167 } else { 2168 static_key_slow_inc(&apic_hw_disabled.key); 2169 recalculate_apic_map(vcpu->kvm); 2170 } 2171 } 2172 2173 if (((old_value ^ value) & X2APIC_ENABLE) && (value & X2APIC_ENABLE)) 2174 kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id); 2175 2176 if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) 2177 kvm_x86_ops->set_virtual_apic_mode(vcpu); 2178 2179 apic->base_address = apic->vcpu->arch.apic_base & 2180 MSR_IA32_APICBASE_BASE; 2181 2182 if ((value & MSR_IA32_APICBASE_ENABLE) && 2183 apic->base_address != APIC_DEFAULT_PHYS_BASE) 2184 pr_warn_once("APIC base relocation is unsupported by KVM"); 2185 } 2186 2187 void kvm_apic_update_apicv(struct kvm_vcpu *vcpu) 2188 { 2189 struct kvm_lapic *apic = vcpu->arch.apic; 2190 2191 if (vcpu->arch.apicv_active) { 2192 /* irr_pending is always true when apicv is activated. */ 2193 apic->irr_pending = true; 2194 apic->isr_count = 1; 2195 } else { 2196 apic->irr_pending = (apic_search_irr(apic) != -1); 2197 apic->isr_count = count_vectors(apic->regs + APIC_ISR); 2198 } 2199 } 2200 EXPORT_SYMBOL_GPL(kvm_apic_update_apicv); 2201 2202 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event) 2203 { 2204 struct kvm_lapic *apic = vcpu->arch.apic; 2205 int i; 2206 2207 if (!apic) 2208 return; 2209 2210 /* Stop the timer in case it's a reset to an active apic */ 2211 hrtimer_cancel(&apic->lapic_timer.timer); 2212 2213 if (!init_event) { 2214 kvm_lapic_set_base(vcpu, APIC_DEFAULT_PHYS_BASE | 2215 MSR_IA32_APICBASE_ENABLE); 2216 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2217 } 2218 kvm_apic_set_version(apic->vcpu); 2219 2220 for (i = 0; i < KVM_APIC_LVT_NUM; i++) 2221 kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i, APIC_LVT_MASKED); 2222 apic_update_lvtt(apic); 2223 if (kvm_vcpu_is_reset_bsp(vcpu) && 2224 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED)) 2225 kvm_lapic_set_reg(apic, APIC_LVT0, 2226 SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT)); 2227 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 2228 2229 kvm_lapic_set_reg(apic, APIC_DFR, 0xffffffffU); 2230 apic_set_spiv(apic, 0xff); 2231 kvm_lapic_set_reg(apic, APIC_TASKPRI, 0); 2232 if (!apic_x2apic_mode(apic)) 2233 kvm_apic_set_ldr(apic, 0); 2234 kvm_lapic_set_reg(apic, APIC_ESR, 0); 2235 kvm_lapic_set_reg(apic, APIC_ICR, 0); 2236 kvm_lapic_set_reg(apic, APIC_ICR2, 0); 2237 kvm_lapic_set_reg(apic, APIC_TDCR, 0); 2238 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 2239 for (i = 0; i < 8; i++) { 2240 kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0); 2241 kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0); 2242 kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0); 2243 } 2244 kvm_apic_update_apicv(vcpu); 2245 apic->highest_isr_cache = -1; 2246 update_divide_count(apic); 2247 atomic_set(&apic->lapic_timer.pending, 0); 2248 if (kvm_vcpu_is_bsp(vcpu)) 2249 kvm_lapic_set_base(vcpu, 2250 vcpu->arch.apic_base | MSR_IA32_APICBASE_BSP); 2251 vcpu->arch.pv_eoi.msr_val = 0; 2252 apic_update_ppr(apic); 2253 if (vcpu->arch.apicv_active) { 2254 kvm_x86_ops->apicv_post_state_restore(vcpu); 2255 kvm_x86_ops->hwapic_irr_update(vcpu, -1); 2256 kvm_x86_ops->hwapic_isr_update(vcpu, -1); 2257 } 2258 2259 vcpu->arch.apic_arb_prio = 0; 2260 vcpu->arch.apic_attention = 0; 2261 } 2262 2263 /* 2264 *---------------------------------------------------------------------- 2265 * timer interface 2266 *---------------------------------------------------------------------- 2267 */ 2268 2269 static bool lapic_is_periodic(struct kvm_lapic *apic) 2270 { 2271 return apic_lvtt_period(apic); 2272 } 2273 2274 int apic_has_pending_timer(struct kvm_vcpu *vcpu) 2275 { 2276 struct kvm_lapic *apic = vcpu->arch.apic; 2277 2278 if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT)) 2279 return atomic_read(&apic->lapic_timer.pending); 2280 2281 return 0; 2282 } 2283 2284 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type) 2285 { 2286 u32 reg = kvm_lapic_get_reg(apic, lvt_type); 2287 int vector, mode, trig_mode; 2288 2289 if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) { 2290 vector = reg & APIC_VECTOR_MASK; 2291 mode = reg & APIC_MODE_MASK; 2292 trig_mode = reg & APIC_LVT_LEVEL_TRIGGER; 2293 return __apic_accept_irq(apic, mode, vector, 1, trig_mode, 2294 NULL); 2295 } 2296 return 0; 2297 } 2298 2299 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu) 2300 { 2301 struct kvm_lapic *apic = vcpu->arch.apic; 2302 2303 if (apic) 2304 kvm_apic_local_deliver(apic, APIC_LVT0); 2305 } 2306 2307 static const struct kvm_io_device_ops apic_mmio_ops = { 2308 .read = apic_mmio_read, 2309 .write = apic_mmio_write, 2310 }; 2311 2312 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data) 2313 { 2314 struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer); 2315 struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer); 2316 2317 apic_timer_expired(apic); 2318 2319 if (lapic_is_periodic(apic)) { 2320 advance_periodic_target_expiration(apic); 2321 hrtimer_add_expires_ns(&ktimer->timer, ktimer->period); 2322 return HRTIMER_RESTART; 2323 } else 2324 return HRTIMER_NORESTART; 2325 } 2326 2327 int kvm_create_lapic(struct kvm_vcpu *vcpu, int timer_advance_ns) 2328 { 2329 struct kvm_lapic *apic; 2330 2331 ASSERT(vcpu != NULL); 2332 2333 apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT); 2334 if (!apic) 2335 goto nomem; 2336 2337 vcpu->arch.apic = apic; 2338 2339 apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 2340 if (!apic->regs) { 2341 printk(KERN_ERR "malloc apic regs error for vcpu %x\n", 2342 vcpu->vcpu_id); 2343 goto nomem_free_apic; 2344 } 2345 apic->vcpu = vcpu; 2346 2347 hrtimer_init(&apic->lapic_timer.timer, CLOCK_MONOTONIC, 2348 HRTIMER_MODE_ABS_HARD); 2349 apic->lapic_timer.timer.function = apic_timer_fn; 2350 if (timer_advance_ns == -1) { 2351 apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; 2352 lapic_timer_advance_dynamic = true; 2353 } else { 2354 apic->lapic_timer.timer_advance_ns = timer_advance_ns; 2355 lapic_timer_advance_dynamic = false; 2356 } 2357 2358 /* 2359 * APIC is created enabled. This will prevent kvm_lapic_set_base from 2360 * thinking that APIC state has changed. 2361 */ 2362 vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE; 2363 static_key_slow_inc(&apic_sw_disabled.key); /* sw disabled at reset */ 2364 kvm_iodevice_init(&apic->dev, &apic_mmio_ops); 2365 2366 return 0; 2367 nomem_free_apic: 2368 kfree(apic); 2369 vcpu->arch.apic = NULL; 2370 nomem: 2371 return -ENOMEM; 2372 } 2373 2374 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu) 2375 { 2376 struct kvm_lapic *apic = vcpu->arch.apic; 2377 u32 ppr; 2378 2379 if (!kvm_apic_hw_enabled(apic)) 2380 return -1; 2381 2382 __apic_update_ppr(apic, &ppr); 2383 return apic_has_interrupt_for_ppr(apic, ppr); 2384 } 2385 2386 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu) 2387 { 2388 u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0); 2389 2390 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 2391 return 1; 2392 if ((lvt0 & APIC_LVT_MASKED) == 0 && 2393 GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT) 2394 return 1; 2395 return 0; 2396 } 2397 2398 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu) 2399 { 2400 struct kvm_lapic *apic = vcpu->arch.apic; 2401 2402 if (atomic_read(&apic->lapic_timer.pending) > 0) { 2403 kvm_apic_inject_pending_timer_irqs(apic); 2404 atomic_set(&apic->lapic_timer.pending, 0); 2405 } 2406 } 2407 2408 int kvm_get_apic_interrupt(struct kvm_vcpu *vcpu) 2409 { 2410 int vector = kvm_apic_has_interrupt(vcpu); 2411 struct kvm_lapic *apic = vcpu->arch.apic; 2412 u32 ppr; 2413 2414 if (vector == -1) 2415 return -1; 2416 2417 /* 2418 * We get here even with APIC virtualization enabled, if doing 2419 * nested virtualization and L1 runs with the "acknowledge interrupt 2420 * on exit" mode. Then we cannot inject the interrupt via RVI, 2421 * because the process would deliver it through the IDT. 2422 */ 2423 2424 apic_clear_irr(vector, apic); 2425 if (test_bit(vector, vcpu_to_synic(vcpu)->auto_eoi_bitmap)) { 2426 /* 2427 * For auto-EOI interrupts, there might be another pending 2428 * interrupt above PPR, so check whether to raise another 2429 * KVM_REQ_EVENT. 2430 */ 2431 apic_update_ppr(apic); 2432 } else { 2433 /* 2434 * For normal interrupts, PPR has been raised and there cannot 2435 * be a higher-priority pending interrupt---except if there was 2436 * a concurrent interrupt injection, but that would have 2437 * triggered KVM_REQ_EVENT already. 2438 */ 2439 apic_set_isr(vector, apic); 2440 __apic_update_ppr(apic, &ppr); 2441 } 2442 2443 return vector; 2444 } 2445 2446 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu, 2447 struct kvm_lapic_state *s, bool set) 2448 { 2449 if (apic_x2apic_mode(vcpu->arch.apic)) { 2450 u32 *id = (u32 *)(s->regs + APIC_ID); 2451 u32 *ldr = (u32 *)(s->regs + APIC_LDR); 2452 2453 if (vcpu->kvm->arch.x2apic_format) { 2454 if (*id != vcpu->vcpu_id) 2455 return -EINVAL; 2456 } else { 2457 if (set) 2458 *id >>= 24; 2459 else 2460 *id <<= 24; 2461 } 2462 2463 /* In x2APIC mode, the LDR is fixed and based on the id */ 2464 if (set) 2465 *ldr = kvm_apic_calc_x2apic_ldr(*id); 2466 } 2467 2468 return 0; 2469 } 2470 2471 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 2472 { 2473 memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s)); 2474 return kvm_apic_state_fixup(vcpu, s, false); 2475 } 2476 2477 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 2478 { 2479 struct kvm_lapic *apic = vcpu->arch.apic; 2480 int r; 2481 2482 2483 kvm_lapic_set_base(vcpu, vcpu->arch.apic_base); 2484 /* set SPIV separately to get count of SW disabled APICs right */ 2485 apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV))); 2486 2487 r = kvm_apic_state_fixup(vcpu, s, true); 2488 if (r) 2489 return r; 2490 memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s)); 2491 2492 recalculate_apic_map(vcpu->kvm); 2493 kvm_apic_set_version(vcpu); 2494 2495 apic_update_ppr(apic); 2496 hrtimer_cancel(&apic->lapic_timer.timer); 2497 apic_update_lvtt(apic); 2498 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 2499 update_divide_count(apic); 2500 start_apic_timer(apic); 2501 kvm_apic_update_apicv(vcpu); 2502 apic->highest_isr_cache = -1; 2503 if (vcpu->arch.apicv_active) { 2504 kvm_x86_ops->apicv_post_state_restore(vcpu); 2505 kvm_x86_ops->hwapic_irr_update(vcpu, 2506 apic_find_highest_irr(apic)); 2507 kvm_x86_ops->hwapic_isr_update(vcpu, 2508 apic_find_highest_isr(apic)); 2509 } 2510 kvm_make_request(KVM_REQ_EVENT, vcpu); 2511 if (ioapic_in_kernel(vcpu->kvm)) 2512 kvm_rtc_eoi_tracking_restore_one(vcpu); 2513 2514 vcpu->arch.apic_arb_prio = 0; 2515 2516 return 0; 2517 } 2518 2519 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu) 2520 { 2521 struct hrtimer *timer; 2522 2523 if (!lapic_in_kernel(vcpu) || 2524 kvm_can_post_timer_interrupt(vcpu)) 2525 return; 2526 2527 timer = &vcpu->arch.apic->lapic_timer.timer; 2528 if (hrtimer_cancel(timer)) 2529 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD); 2530 } 2531 2532 /* 2533 * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt 2534 * 2535 * Detect whether guest triggered PV EOI since the 2536 * last entry. If yes, set EOI on guests's behalf. 2537 * Clear PV EOI in guest memory in any case. 2538 */ 2539 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu, 2540 struct kvm_lapic *apic) 2541 { 2542 bool pending; 2543 int vector; 2544 /* 2545 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host 2546 * and KVM_PV_EOI_ENABLED in guest memory as follows: 2547 * 2548 * KVM_APIC_PV_EOI_PENDING is unset: 2549 * -> host disabled PV EOI. 2550 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set: 2551 * -> host enabled PV EOI, guest did not execute EOI yet. 2552 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset: 2553 * -> host enabled PV EOI, guest executed EOI. 2554 */ 2555 BUG_ON(!pv_eoi_enabled(vcpu)); 2556 pending = pv_eoi_get_pending(vcpu); 2557 /* 2558 * Clear pending bit in any case: it will be set again on vmentry. 2559 * While this might not be ideal from performance point of view, 2560 * this makes sure pv eoi is only enabled when we know it's safe. 2561 */ 2562 pv_eoi_clr_pending(vcpu); 2563 if (pending) 2564 return; 2565 vector = apic_set_eoi(apic); 2566 trace_kvm_pv_eoi(apic, vector); 2567 } 2568 2569 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu) 2570 { 2571 u32 data; 2572 2573 if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention)) 2574 apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic); 2575 2576 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 2577 return; 2578 2579 if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 2580 sizeof(u32))) 2581 return; 2582 2583 apic_set_tpr(vcpu->arch.apic, data & 0xff); 2584 } 2585 2586 /* 2587 * apic_sync_pv_eoi_to_guest - called before vmentry 2588 * 2589 * Detect whether it's safe to enable PV EOI and 2590 * if yes do so. 2591 */ 2592 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu, 2593 struct kvm_lapic *apic) 2594 { 2595 if (!pv_eoi_enabled(vcpu) || 2596 /* IRR set or many bits in ISR: could be nested. */ 2597 apic->irr_pending || 2598 /* Cache not set: could be safe but we don't bother. */ 2599 apic->highest_isr_cache == -1 || 2600 /* Need EOI to update ioapic. */ 2601 kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) { 2602 /* 2603 * PV EOI was disabled by apic_sync_pv_eoi_from_guest 2604 * so we need not do anything here. 2605 */ 2606 return; 2607 } 2608 2609 pv_eoi_set_pending(apic->vcpu); 2610 } 2611 2612 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu) 2613 { 2614 u32 data, tpr; 2615 int max_irr, max_isr; 2616 struct kvm_lapic *apic = vcpu->arch.apic; 2617 2618 apic_sync_pv_eoi_to_guest(vcpu, apic); 2619 2620 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 2621 return; 2622 2623 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff; 2624 max_irr = apic_find_highest_irr(apic); 2625 if (max_irr < 0) 2626 max_irr = 0; 2627 max_isr = apic_find_highest_isr(apic); 2628 if (max_isr < 0) 2629 max_isr = 0; 2630 data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24); 2631 2632 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 2633 sizeof(u32)); 2634 } 2635 2636 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr) 2637 { 2638 if (vapic_addr) { 2639 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, 2640 &vcpu->arch.apic->vapic_cache, 2641 vapic_addr, sizeof(u32))) 2642 return -EINVAL; 2643 __set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 2644 } else { 2645 __clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 2646 } 2647 2648 vcpu->arch.apic->vapic_addr = vapic_addr; 2649 return 0; 2650 } 2651 2652 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data) 2653 { 2654 struct kvm_lapic *apic = vcpu->arch.apic; 2655 u32 reg = (msr - APIC_BASE_MSR) << 4; 2656 2657 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 2658 return 1; 2659 2660 if (reg == APIC_ICR2) 2661 return 1; 2662 2663 /* if this is ICR write vector before command */ 2664 if (reg == APIC_ICR) 2665 kvm_lapic_reg_write(apic, APIC_ICR2, (u32)(data >> 32)); 2666 return kvm_lapic_reg_write(apic, reg, (u32)data); 2667 } 2668 2669 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data) 2670 { 2671 struct kvm_lapic *apic = vcpu->arch.apic; 2672 u32 reg = (msr - APIC_BASE_MSR) << 4, low, high = 0; 2673 2674 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 2675 return 1; 2676 2677 if (reg == APIC_DFR || reg == APIC_ICR2) 2678 return 1; 2679 2680 if (kvm_lapic_reg_read(apic, reg, 4, &low)) 2681 return 1; 2682 if (reg == APIC_ICR) 2683 kvm_lapic_reg_read(apic, APIC_ICR2, 4, &high); 2684 2685 *data = (((u64)high) << 32) | low; 2686 2687 return 0; 2688 } 2689 2690 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data) 2691 { 2692 struct kvm_lapic *apic = vcpu->arch.apic; 2693 2694 if (!lapic_in_kernel(vcpu)) 2695 return 1; 2696 2697 /* if this is ICR write vector before command */ 2698 if (reg == APIC_ICR) 2699 kvm_lapic_reg_write(apic, APIC_ICR2, (u32)(data >> 32)); 2700 return kvm_lapic_reg_write(apic, reg, (u32)data); 2701 } 2702 2703 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data) 2704 { 2705 struct kvm_lapic *apic = vcpu->arch.apic; 2706 u32 low, high = 0; 2707 2708 if (!lapic_in_kernel(vcpu)) 2709 return 1; 2710 2711 if (kvm_lapic_reg_read(apic, reg, 4, &low)) 2712 return 1; 2713 if (reg == APIC_ICR) 2714 kvm_lapic_reg_read(apic, APIC_ICR2, 4, &high); 2715 2716 *data = (((u64)high) << 32) | low; 2717 2718 return 0; 2719 } 2720 2721 int kvm_lapic_enable_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len) 2722 { 2723 u64 addr = data & ~KVM_MSR_ENABLED; 2724 struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data; 2725 unsigned long new_len; 2726 2727 if (!IS_ALIGNED(addr, 4)) 2728 return 1; 2729 2730 vcpu->arch.pv_eoi.msr_val = data; 2731 if (!pv_eoi_enabled(vcpu)) 2732 return 0; 2733 2734 if (addr == ghc->gpa && len <= ghc->len) 2735 new_len = ghc->len; 2736 else 2737 new_len = len; 2738 2739 return kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len); 2740 } 2741 2742 void kvm_apic_accept_events(struct kvm_vcpu *vcpu) 2743 { 2744 struct kvm_lapic *apic = vcpu->arch.apic; 2745 u8 sipi_vector; 2746 unsigned long pe; 2747 2748 if (!lapic_in_kernel(vcpu) || !apic->pending_events) 2749 return; 2750 2751 /* 2752 * INITs are latched while CPU is in specific states 2753 * (SMM, VMX non-root mode, SVM with GIF=0). 2754 * Because a CPU cannot be in these states immediately 2755 * after it has processed an INIT signal (and thus in 2756 * KVM_MP_STATE_INIT_RECEIVED state), just eat SIPIs 2757 * and leave the INIT pending. 2758 */ 2759 if (kvm_vcpu_latch_init(vcpu)) { 2760 WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED); 2761 if (test_bit(KVM_APIC_SIPI, &apic->pending_events)) 2762 clear_bit(KVM_APIC_SIPI, &apic->pending_events); 2763 return; 2764 } 2765 2766 pe = xchg(&apic->pending_events, 0); 2767 if (test_bit(KVM_APIC_INIT, &pe)) { 2768 kvm_vcpu_reset(vcpu, true); 2769 if (kvm_vcpu_is_bsp(apic->vcpu)) 2770 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 2771 else 2772 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 2773 } 2774 if (test_bit(KVM_APIC_SIPI, &pe) && 2775 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 2776 /* evaluate pending_events before reading the vector */ 2777 smp_rmb(); 2778 sipi_vector = apic->sipi_vector; 2779 kvm_vcpu_deliver_sipi_vector(vcpu, sipi_vector); 2780 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 2781 } 2782 } 2783 2784 void kvm_lapic_init(void) 2785 { 2786 /* do not patch jump label more than once per second */ 2787 jump_label_rate_limit(&apic_hw_disabled, HZ); 2788 jump_label_rate_limit(&apic_sw_disabled, HZ); 2789 } 2790 2791 void kvm_lapic_exit(void) 2792 { 2793 static_key_deferred_flush(&apic_hw_disabled); 2794 static_key_deferred_flush(&apic_sw_disabled); 2795 } 2796