1 // SPDX-License-Identifier: GPL-2.0-only
2
3 /*
4 * Local APIC virtualization
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2007 Novell
8 * Copyright (C) 2007 Intel
9 * Copyright 2009 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Dor Laor <dor.laor@qumranet.com>
13 * Gregory Haskins <ghaskins@novell.com>
14 * Yaozu (Eddie) Dong <eddie.dong@intel.com>
15 *
16 * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation.
17 */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/smp.h>
25 #include <linux/hrtimer.h>
26 #include <linux/io.h>
27 #include <linux/export.h>
28 #include <linux/math64.h>
29 #include <linux/slab.h>
30 #include <asm/apic.h>
31 #include <asm/processor.h>
32 #include <asm/mce.h>
33 #include <asm/msr.h>
34 #include <asm/page.h>
35 #include <asm/current.h>
36 #include <asm/apicdef.h>
37 #include <asm/delay.h>
38 #include <linux/atomic.h>
39 #include <linux/jump_label.h>
40 #include "kvm_cache_regs.h"
41 #include "irq.h"
42 #include "ioapic.h"
43 #include "trace.h"
44 #include "x86.h"
45 #include "xen.h"
46 #include "cpuid.h"
47 #include "hyperv.h"
48 #include "smm.h"
49
50 #ifndef CONFIG_X86_64
51 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
52 #else
53 #define mod_64(x, y) ((x) % (y))
54 #endif
55
56 /* 14 is the version for Xeon and Pentium 8.4.8*/
57 #define APIC_VERSION 0x14UL
58 #define LAPIC_MMIO_LENGTH (1 << 12)
59
60 /*
61 * Enable local APIC timer advancement (tscdeadline mode only) with adaptive
62 * tuning. When enabled, KVM programs the host timer event to fire early, i.e.
63 * before the deadline expires, to account for the delay between taking the
64 * VM-Exit (to inject the guest event) and the subsequent VM-Enter to resume
65 * the guest, i.e. so that the interrupt arrives in the guest with minimal
66 * latency relative to the deadline programmed by the guest.
67 */
68 static bool lapic_timer_advance __read_mostly = true;
69 module_param(lapic_timer_advance, bool, 0444);
70
71 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN 100 /* clock cycles */
72 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX 10000 /* clock cycles */
73 #define LAPIC_TIMER_ADVANCE_NS_INIT 1000
74 #define LAPIC_TIMER_ADVANCE_NS_MAX 5000
75 /* step-by-step approximation to mitigate fluctuation */
76 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8
77 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data);
78 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data);
79
kvm_lapic_set_reg(struct kvm_lapic * apic,int reg_off,u32 val)80 static inline void kvm_lapic_set_reg(struct kvm_lapic *apic, int reg_off, u32 val)
81 {
82 apic_set_reg(apic->regs, reg_off, val);
83 }
84
kvm_lapic_get_reg64(struct kvm_lapic * apic,int reg)85 static __always_inline u64 kvm_lapic_get_reg64(struct kvm_lapic *apic, int reg)
86 {
87 return apic_get_reg64(apic->regs, reg);
88 }
89
kvm_lapic_set_reg64(struct kvm_lapic * apic,int reg,u64 val)90 static __always_inline void kvm_lapic_set_reg64(struct kvm_lapic *apic,
91 int reg, u64 val)
92 {
93 apic_set_reg64(apic->regs, reg, val);
94 }
95
kvm_apic_pending_eoi(struct kvm_vcpu * vcpu,int vector)96 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector)
97 {
98 struct kvm_lapic *apic = vcpu->arch.apic;
99
100 return apic_test_vector(vector, apic->regs + APIC_ISR) ||
101 apic_test_vector(vector, apic->regs + APIC_IRR);
102 }
103
104 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
105 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
106
107 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_hw_disabled, HZ);
108 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_sw_disabled, HZ);
109
apic_enabled(struct kvm_lapic * apic)110 static inline int apic_enabled(struct kvm_lapic *apic)
111 {
112 return kvm_apic_sw_enabled(apic) && kvm_apic_hw_enabled(apic);
113 }
114
115 #define LVT_MASK \
116 (APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK)
117
118 #define LINT_MASK \
119 (LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \
120 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER)
121
kvm_x2apic_id(struct kvm_lapic * apic)122 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic)
123 {
124 return apic->vcpu->vcpu_id;
125 }
126
kvm_can_post_timer_interrupt(struct kvm_vcpu * vcpu)127 static bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu)
128 {
129 return pi_inject_timer && kvm_vcpu_apicv_active(vcpu) &&
130 (kvm_mwait_in_guest(vcpu->kvm) || kvm_hlt_in_guest(vcpu->kvm));
131 }
132
kvm_can_use_hv_timer(struct kvm_vcpu * vcpu)133 bool kvm_can_use_hv_timer(struct kvm_vcpu *vcpu)
134 {
135 return kvm_x86_ops.set_hv_timer
136 && !(kvm_mwait_in_guest(vcpu->kvm) ||
137 kvm_can_post_timer_interrupt(vcpu));
138 }
139
kvm_use_posted_timer_interrupt(struct kvm_vcpu * vcpu)140 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu)
141 {
142 return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE;
143 }
144
kvm_apic_calc_x2apic_ldr(u32 id)145 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id)
146 {
147 return ((id >> 4) << 16) | (1 << (id & 0xf));
148 }
149
kvm_apic_map_get_logical_dest(struct kvm_apic_map * map,u32 dest_id,struct kvm_lapic *** cluster,u16 * mask)150 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map,
151 u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) {
152 switch (map->logical_mode) {
153 case KVM_APIC_MODE_SW_DISABLED:
154 /* Arbitrarily use the flat map so that @cluster isn't NULL. */
155 *cluster = map->xapic_flat_map;
156 *mask = 0;
157 return true;
158 case KVM_APIC_MODE_X2APIC: {
159 u32 offset = (dest_id >> 16) * 16;
160 u32 max_apic_id = map->max_apic_id;
161
162 if (offset <= max_apic_id) {
163 u8 cluster_size = min(max_apic_id - offset + 1, 16U);
164
165 offset = array_index_nospec(offset, map->max_apic_id + 1);
166 *cluster = &map->phys_map[offset];
167 *mask = dest_id & (0xffff >> (16 - cluster_size));
168 } else {
169 *mask = 0;
170 }
171
172 return true;
173 }
174 case KVM_APIC_MODE_XAPIC_FLAT:
175 *cluster = map->xapic_flat_map;
176 *mask = dest_id & 0xff;
177 return true;
178 case KVM_APIC_MODE_XAPIC_CLUSTER:
179 *cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf];
180 *mask = dest_id & 0xf;
181 return true;
182 case KVM_APIC_MODE_MAP_DISABLED:
183 return false;
184 default:
185 WARN_ON_ONCE(1);
186 return false;
187 }
188 }
189
kvm_recalculate_phys_map(struct kvm_apic_map * new,struct kvm_vcpu * vcpu,bool * xapic_id_mismatch)190 static int kvm_recalculate_phys_map(struct kvm_apic_map *new,
191 struct kvm_vcpu *vcpu,
192 bool *xapic_id_mismatch)
193 {
194 struct kvm_lapic *apic = vcpu->arch.apic;
195 u32 x2apic_id = kvm_x2apic_id(apic);
196 u32 xapic_id = kvm_xapic_id(apic);
197 u32 physical_id;
198
199 /*
200 * For simplicity, KVM always allocates enough space for all possible
201 * xAPIC IDs. Yell, but don't kill the VM, as KVM can continue on
202 * without the optimized map.
203 */
204 if (WARN_ON_ONCE(xapic_id > new->max_apic_id))
205 return -EINVAL;
206
207 /*
208 * Bail if a vCPU was added and/or enabled its APIC between allocating
209 * the map and doing the actual calculations for the map. Note, KVM
210 * hardcodes the x2APIC ID to vcpu_id, i.e. there's no TOCTOU bug if
211 * the compiler decides to reload x2apic_id after this check.
212 */
213 if (x2apic_id > new->max_apic_id)
214 return -E2BIG;
215
216 /*
217 * Deliberately truncate the vCPU ID when detecting a mismatched APIC
218 * ID to avoid false positives if the vCPU ID, i.e. x2APIC ID, is a
219 * 32-bit value. Any unwanted aliasing due to truncation results will
220 * be detected below.
221 */
222 if (!apic_x2apic_mode(apic) && xapic_id != (u8)vcpu->vcpu_id)
223 *xapic_id_mismatch = true;
224
225 /*
226 * Apply KVM's hotplug hack if userspace has enable 32-bit APIC IDs.
227 * Allow sending events to vCPUs by their x2APIC ID even if the target
228 * vCPU is in legacy xAPIC mode, and silently ignore aliased xAPIC IDs
229 * (the x2APIC ID is truncated to 8 bits, causing IDs > 0xff to wrap
230 * and collide).
231 *
232 * Honor the architectural (and KVM's non-optimized) behavior if
233 * userspace has not enabled 32-bit x2APIC IDs. Each APIC is supposed
234 * to process messages independently. If multiple vCPUs have the same
235 * effective APIC ID, e.g. due to the x2APIC wrap or because the guest
236 * manually modified its xAPIC IDs, events targeting that ID are
237 * supposed to be recognized by all vCPUs with said ID.
238 */
239 if (vcpu->kvm->arch.x2apic_format) {
240 /* See also kvm_apic_match_physical_addr(). */
241 if (apic_x2apic_mode(apic) || x2apic_id > 0xff)
242 new->phys_map[x2apic_id] = apic;
243
244 if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id])
245 new->phys_map[xapic_id] = apic;
246 } else {
247 /*
248 * Disable the optimized map if the physical APIC ID is already
249 * mapped, i.e. is aliased to multiple vCPUs. The optimized
250 * map requires a strict 1:1 mapping between IDs and vCPUs.
251 */
252 if (apic_x2apic_mode(apic))
253 physical_id = x2apic_id;
254 else
255 physical_id = xapic_id;
256
257 if (new->phys_map[physical_id])
258 return -EINVAL;
259
260 new->phys_map[physical_id] = apic;
261 }
262
263 return 0;
264 }
265
kvm_recalculate_logical_map(struct kvm_apic_map * new,struct kvm_vcpu * vcpu)266 static void kvm_recalculate_logical_map(struct kvm_apic_map *new,
267 struct kvm_vcpu *vcpu)
268 {
269 struct kvm_lapic *apic = vcpu->arch.apic;
270 enum kvm_apic_logical_mode logical_mode;
271 struct kvm_lapic **cluster;
272 u16 mask;
273 u32 ldr;
274
275 if (new->logical_mode == KVM_APIC_MODE_MAP_DISABLED)
276 return;
277
278 if (!kvm_apic_sw_enabled(apic))
279 return;
280
281 ldr = kvm_lapic_get_reg(apic, APIC_LDR);
282 if (!ldr)
283 return;
284
285 if (apic_x2apic_mode(apic)) {
286 logical_mode = KVM_APIC_MODE_X2APIC;
287 } else {
288 ldr = GET_APIC_LOGICAL_ID(ldr);
289 if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT)
290 logical_mode = KVM_APIC_MODE_XAPIC_FLAT;
291 else
292 logical_mode = KVM_APIC_MODE_XAPIC_CLUSTER;
293 }
294
295 /*
296 * To optimize logical mode delivery, all software-enabled APICs must
297 * be configured for the same mode.
298 */
299 if (new->logical_mode == KVM_APIC_MODE_SW_DISABLED) {
300 new->logical_mode = logical_mode;
301 } else if (new->logical_mode != logical_mode) {
302 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED;
303 return;
304 }
305
306 /*
307 * In x2APIC mode, the LDR is read-only and derived directly from the
308 * x2APIC ID, thus is guaranteed to be addressable. KVM reuses
309 * kvm_apic_map.phys_map to optimize logical mode x2APIC interrupts by
310 * reversing the LDR calculation to get cluster of APICs, i.e. no
311 * additional work is required.
312 */
313 if (apic_x2apic_mode(apic))
314 return;
315
316 if (WARN_ON_ONCE(!kvm_apic_map_get_logical_dest(new, ldr,
317 &cluster, &mask))) {
318 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED;
319 return;
320 }
321
322 if (!mask)
323 return;
324
325 ldr = ffs(mask) - 1;
326 if (!is_power_of_2(mask) || cluster[ldr])
327 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED;
328 else
329 cluster[ldr] = apic;
330 }
331
332 /*
333 * CLEAN -> DIRTY and UPDATE_IN_PROGRESS -> DIRTY changes happen without a lock.
334 *
335 * DIRTY -> UPDATE_IN_PROGRESS and UPDATE_IN_PROGRESS -> CLEAN happen with
336 * apic_map_lock_held.
337 */
338 enum {
339 CLEAN,
340 UPDATE_IN_PROGRESS,
341 DIRTY
342 };
343
kvm_recalculate_apic_map(struct kvm * kvm)344 static void kvm_recalculate_apic_map(struct kvm *kvm)
345 {
346 struct kvm_apic_map *new, *old = NULL;
347 struct kvm_vcpu *vcpu;
348 unsigned long i;
349 u32 max_id = 255; /* enough space for any xAPIC ID */
350 bool xapic_id_mismatch;
351 int r;
352
353 /* Read kvm->arch.apic_map_dirty before kvm->arch.apic_map. */
354 if (atomic_read_acquire(&kvm->arch.apic_map_dirty) == CLEAN)
355 return;
356
357 WARN_ONCE(!irqchip_in_kernel(kvm),
358 "Dirty APIC map without an in-kernel local APIC");
359
360 mutex_lock(&kvm->arch.apic_map_lock);
361
362 retry:
363 /*
364 * Read kvm->arch.apic_map_dirty before kvm->arch.apic_map (if clean)
365 * or the APIC registers (if dirty). Note, on retry the map may have
366 * not yet been marked dirty by whatever task changed a vCPU's x2APIC
367 * ID, i.e. the map may still show up as in-progress. In that case
368 * this task still needs to retry and complete its calculation.
369 */
370 if (atomic_cmpxchg_acquire(&kvm->arch.apic_map_dirty,
371 DIRTY, UPDATE_IN_PROGRESS) == CLEAN) {
372 /* Someone else has updated the map. */
373 mutex_unlock(&kvm->arch.apic_map_lock);
374 return;
375 }
376
377 /*
378 * Reset the mismatch flag between attempts so that KVM does the right
379 * thing if a vCPU changes its xAPIC ID, but do NOT reset max_id, i.e.
380 * keep max_id strictly increasing. Disallowing max_id from shrinking
381 * ensures KVM won't get stuck in an infinite loop, e.g. if the vCPU
382 * with the highest x2APIC ID is toggling its APIC on and off.
383 */
384 xapic_id_mismatch = false;
385
386 kvm_for_each_vcpu(i, vcpu, kvm)
387 if (kvm_apic_present(vcpu))
388 max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic));
389
390 new = kvzalloc(sizeof(struct kvm_apic_map) +
391 sizeof(struct kvm_lapic *) * ((u64)max_id + 1),
392 GFP_KERNEL_ACCOUNT);
393
394 if (!new)
395 goto out;
396
397 new->max_apic_id = max_id;
398 new->logical_mode = KVM_APIC_MODE_SW_DISABLED;
399
400 kvm_for_each_vcpu(i, vcpu, kvm) {
401 if (!kvm_apic_present(vcpu))
402 continue;
403
404 r = kvm_recalculate_phys_map(new, vcpu, &xapic_id_mismatch);
405 if (r) {
406 kvfree(new);
407 new = NULL;
408 if (r == -E2BIG) {
409 cond_resched();
410 goto retry;
411 }
412
413 goto out;
414 }
415
416 kvm_recalculate_logical_map(new, vcpu);
417 }
418 out:
419 /*
420 * The optimized map is effectively KVM's internal version of APICv,
421 * and all unwanted aliasing that results in disabling the optimized
422 * map also applies to APICv.
423 */
424 if (!new)
425 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED);
426 else
427 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED);
428
429 if (!new || new->logical_mode == KVM_APIC_MODE_MAP_DISABLED)
430 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED);
431 else
432 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED);
433
434 if (xapic_id_mismatch)
435 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED);
436 else
437 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED);
438
439 old = rcu_dereference_protected(kvm->arch.apic_map,
440 lockdep_is_held(&kvm->arch.apic_map_lock));
441 rcu_assign_pointer(kvm->arch.apic_map, new);
442 /*
443 * Write kvm->arch.apic_map before clearing apic->apic_map_dirty.
444 * If another update has come in, leave it DIRTY.
445 */
446 atomic_cmpxchg_release(&kvm->arch.apic_map_dirty,
447 UPDATE_IN_PROGRESS, CLEAN);
448 mutex_unlock(&kvm->arch.apic_map_lock);
449
450 if (old)
451 kvfree_rcu(old, rcu);
452
453 kvm_make_scan_ioapic_request(kvm);
454 }
455
apic_set_spiv(struct kvm_lapic * apic,u32 val)456 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val)
457 {
458 bool enabled = val & APIC_SPIV_APIC_ENABLED;
459
460 kvm_lapic_set_reg(apic, APIC_SPIV, val);
461
462 if (enabled != apic->sw_enabled) {
463 apic->sw_enabled = enabled;
464 if (enabled)
465 static_branch_slow_dec_deferred(&apic_sw_disabled);
466 else
467 static_branch_inc(&apic_sw_disabled.key);
468
469 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
470 }
471
472 /* Check if there are APF page ready requests pending */
473 if (enabled) {
474 kvm_make_request(KVM_REQ_APF_READY, apic->vcpu);
475 kvm_xen_sw_enable_lapic(apic->vcpu);
476 }
477 }
478
kvm_apic_set_xapic_id(struct kvm_lapic * apic,u8 id)479 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id)
480 {
481 kvm_lapic_set_reg(apic, APIC_ID, id << 24);
482 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
483 }
484
kvm_apic_set_ldr(struct kvm_lapic * apic,u32 id)485 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id)
486 {
487 kvm_lapic_set_reg(apic, APIC_LDR, id);
488 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
489 }
490
kvm_apic_set_dfr(struct kvm_lapic * apic,u32 val)491 static inline void kvm_apic_set_dfr(struct kvm_lapic *apic, u32 val)
492 {
493 kvm_lapic_set_reg(apic, APIC_DFR, val);
494 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
495 }
496
kvm_apic_set_x2apic_id(struct kvm_lapic * apic,u32 id)497 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id)
498 {
499 u32 ldr = kvm_apic_calc_x2apic_ldr(id);
500
501 WARN_ON_ONCE(id != apic->vcpu->vcpu_id);
502
503 kvm_lapic_set_reg(apic, APIC_ID, id);
504 kvm_lapic_set_reg(apic, APIC_LDR, ldr);
505 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
506 }
507
apic_lvt_enabled(struct kvm_lapic * apic,int lvt_type)508 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type)
509 {
510 return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED);
511 }
512
apic_lvtt_oneshot(struct kvm_lapic * apic)513 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic)
514 {
515 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT;
516 }
517
apic_lvtt_period(struct kvm_lapic * apic)518 static inline int apic_lvtt_period(struct kvm_lapic *apic)
519 {
520 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC;
521 }
522
apic_lvtt_tscdeadline(struct kvm_lapic * apic)523 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic)
524 {
525 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE;
526 }
527
apic_lvt_nmi_mode(u32 lvt_val)528 static inline int apic_lvt_nmi_mode(u32 lvt_val)
529 {
530 return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI;
531 }
532
kvm_lapic_lvt_supported(struct kvm_lapic * apic,int lvt_index)533 static inline bool kvm_lapic_lvt_supported(struct kvm_lapic *apic, int lvt_index)
534 {
535 return apic->nr_lvt_entries > lvt_index;
536 }
537
kvm_apic_calc_nr_lvt_entries(struct kvm_vcpu * vcpu)538 static inline int kvm_apic_calc_nr_lvt_entries(struct kvm_vcpu *vcpu)
539 {
540 return KVM_APIC_MAX_NR_LVT_ENTRIES - !(vcpu->arch.mcg_cap & MCG_CMCI_P);
541 }
542
kvm_apic_set_version(struct kvm_vcpu * vcpu)543 void kvm_apic_set_version(struct kvm_vcpu *vcpu)
544 {
545 struct kvm_lapic *apic = vcpu->arch.apic;
546 u32 v = 0;
547
548 if (!lapic_in_kernel(vcpu))
549 return;
550
551 v = APIC_VERSION | ((apic->nr_lvt_entries - 1) << 16);
552
553 /*
554 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation)
555 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with
556 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC
557 * version first and level-triggered interrupts never get EOIed in
558 * IOAPIC.
559 */
560 if (guest_cpu_cap_has(vcpu, X86_FEATURE_X2APIC) &&
561 !ioapic_in_kernel(vcpu->kvm))
562 v |= APIC_LVR_DIRECTED_EOI;
563 kvm_lapic_set_reg(apic, APIC_LVR, v);
564 }
565
kvm_apic_after_set_mcg_cap(struct kvm_vcpu * vcpu)566 void kvm_apic_after_set_mcg_cap(struct kvm_vcpu *vcpu)
567 {
568 int nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu);
569 struct kvm_lapic *apic = vcpu->arch.apic;
570 int i;
571
572 if (!lapic_in_kernel(vcpu) || nr_lvt_entries == apic->nr_lvt_entries)
573 return;
574
575 /* Initialize/mask any "new" LVT entries. */
576 for (i = apic->nr_lvt_entries; i < nr_lvt_entries; i++)
577 kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED);
578
579 apic->nr_lvt_entries = nr_lvt_entries;
580
581 /* The number of LVT entries is reflected in the version register. */
582 kvm_apic_set_version(vcpu);
583 }
584
585 static const unsigned int apic_lvt_mask[KVM_APIC_MAX_NR_LVT_ENTRIES] = {
586 [LVT_TIMER] = LVT_MASK, /* timer mode mask added at runtime */
587 [LVT_THERMAL_MONITOR] = LVT_MASK | APIC_MODE_MASK,
588 [LVT_PERFORMANCE_COUNTER] = LVT_MASK | APIC_MODE_MASK,
589 [LVT_LINT0] = LINT_MASK,
590 [LVT_LINT1] = LINT_MASK,
591 [LVT_ERROR] = LVT_MASK,
592 [LVT_CMCI] = LVT_MASK | APIC_MODE_MASK
593 };
594
count_vectors(void * bitmap)595 static u8 count_vectors(void *bitmap)
596 {
597 int vec;
598 u32 *reg;
599 u8 count = 0;
600
601 for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) {
602 reg = bitmap + APIC_VECTOR_TO_REG_OFFSET(vec);
603 count += hweight32(*reg);
604 }
605
606 return count;
607 }
608
__kvm_apic_update_irr(unsigned long * pir,void * regs,int * max_irr)609 bool __kvm_apic_update_irr(unsigned long *pir, void *regs, int *max_irr)
610 {
611 unsigned long pir_vals[NR_PIR_WORDS];
612 u32 *__pir = (void *)pir_vals;
613 u32 i, vec;
614 u32 irr_val, prev_irr_val;
615 int max_updated_irr;
616
617 max_updated_irr = -1;
618 *max_irr = -1;
619
620 if (!pi_harvest_pir(pir, pir_vals))
621 return false;
622
623 for (i = vec = 0; i <= 7; i++, vec += 32) {
624 u32 *p_irr = (u32 *)(regs + APIC_IRR + i * 0x10);
625
626 irr_val = READ_ONCE(*p_irr);
627
628 if (__pir[i]) {
629 prev_irr_val = irr_val;
630 do {
631 irr_val = prev_irr_val | __pir[i];
632 } while (prev_irr_val != irr_val &&
633 !try_cmpxchg(p_irr, &prev_irr_val, irr_val));
634
635 if (prev_irr_val != irr_val)
636 max_updated_irr = __fls(irr_val ^ prev_irr_val) + vec;
637 }
638 if (irr_val)
639 *max_irr = __fls(irr_val) + vec;
640 }
641
642 return ((max_updated_irr != -1) &&
643 (max_updated_irr == *max_irr));
644 }
645 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr);
646
kvm_apic_update_irr(struct kvm_vcpu * vcpu,unsigned long * pir,int * max_irr)647 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, unsigned long *pir, int *max_irr)
648 {
649 struct kvm_lapic *apic = vcpu->arch.apic;
650 bool irr_updated = __kvm_apic_update_irr(pir, apic->regs, max_irr);
651
652 if (unlikely(!apic->apicv_active && irr_updated))
653 apic->irr_pending = true;
654 return irr_updated;
655 }
656 EXPORT_SYMBOL_GPL(kvm_apic_update_irr);
657
apic_search_irr(struct kvm_lapic * apic)658 static inline int apic_search_irr(struct kvm_lapic *apic)
659 {
660 return apic_find_highest_vector(apic->regs + APIC_IRR);
661 }
662
apic_find_highest_irr(struct kvm_lapic * apic)663 static inline int apic_find_highest_irr(struct kvm_lapic *apic)
664 {
665 int result;
666
667 /*
668 * Note that irr_pending is just a hint. It will be always
669 * true with virtual interrupt delivery enabled.
670 */
671 if (!apic->irr_pending)
672 return -1;
673
674 result = apic_search_irr(apic);
675 ASSERT(result == -1 || result >= 16);
676
677 return result;
678 }
679
apic_clear_irr(int vec,struct kvm_lapic * apic)680 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic)
681 {
682 if (unlikely(apic->apicv_active)) {
683 apic_clear_vector(vec, apic->regs + APIC_IRR);
684 } else {
685 apic->irr_pending = false;
686 apic_clear_vector(vec, apic->regs + APIC_IRR);
687 if (apic_search_irr(apic) != -1)
688 apic->irr_pending = true;
689 }
690 }
691
kvm_apic_clear_irr(struct kvm_vcpu * vcpu,int vec)692 void kvm_apic_clear_irr(struct kvm_vcpu *vcpu, int vec)
693 {
694 apic_clear_irr(vec, vcpu->arch.apic);
695 }
696 EXPORT_SYMBOL_GPL(kvm_apic_clear_irr);
697
apic_vector_to_isr(int vec,struct kvm_lapic * apic)698 static void *apic_vector_to_isr(int vec, struct kvm_lapic *apic)
699 {
700 return apic->regs + APIC_ISR + APIC_VECTOR_TO_REG_OFFSET(vec);
701 }
702
apic_set_isr(int vec,struct kvm_lapic * apic)703 static inline void apic_set_isr(int vec, struct kvm_lapic *apic)
704 {
705 if (__test_and_set_bit(APIC_VECTOR_TO_BIT_NUMBER(vec),
706 apic_vector_to_isr(vec, apic)))
707 return;
708
709 /*
710 * With APIC virtualization enabled, all caching is disabled
711 * because the processor can modify ISR under the hood. Instead
712 * just set SVI.
713 */
714 if (unlikely(apic->apicv_active))
715 kvm_x86_call(hwapic_isr_update)(apic->vcpu, vec);
716 else {
717 ++apic->isr_count;
718 BUG_ON(apic->isr_count > MAX_APIC_VECTOR);
719 /*
720 * ISR (in service register) bit is set when injecting an interrupt.
721 * The highest vector is injected. Thus the latest bit set matches
722 * the highest bit in ISR.
723 */
724 apic->highest_isr_cache = vec;
725 }
726 }
727
apic_find_highest_isr(struct kvm_lapic * apic)728 static inline int apic_find_highest_isr(struct kvm_lapic *apic)
729 {
730 int result;
731
732 /*
733 * Note that isr_count is always 1, and highest_isr_cache
734 * is always -1, with APIC virtualization enabled.
735 */
736 if (!apic->isr_count)
737 return -1;
738 if (likely(apic->highest_isr_cache != -1))
739 return apic->highest_isr_cache;
740
741 result = apic_find_highest_vector(apic->regs + APIC_ISR);
742 ASSERT(result == -1 || result >= 16);
743
744 return result;
745 }
746
apic_clear_isr(int vec,struct kvm_lapic * apic)747 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic)
748 {
749 if (!__test_and_clear_bit(APIC_VECTOR_TO_BIT_NUMBER(vec),
750 apic_vector_to_isr(vec, apic)))
751 return;
752
753 /*
754 * We do get here for APIC virtualization enabled if the guest
755 * uses the Hyper-V APIC enlightenment. In this case we may need
756 * to trigger a new interrupt delivery by writing the SVI field;
757 * on the other hand isr_count and highest_isr_cache are unused
758 * and must be left alone.
759 */
760 if (unlikely(apic->apicv_active))
761 kvm_x86_call(hwapic_isr_update)(apic->vcpu, apic_find_highest_isr(apic));
762 else {
763 --apic->isr_count;
764 BUG_ON(apic->isr_count < 0);
765 apic->highest_isr_cache = -1;
766 }
767 }
768
kvm_apic_update_hwapic_isr(struct kvm_vcpu * vcpu)769 void kvm_apic_update_hwapic_isr(struct kvm_vcpu *vcpu)
770 {
771 struct kvm_lapic *apic = vcpu->arch.apic;
772
773 if (WARN_ON_ONCE(!lapic_in_kernel(vcpu)) || !apic->apicv_active)
774 return;
775
776 kvm_x86_call(hwapic_isr_update)(vcpu, apic_find_highest_isr(apic));
777 }
778 EXPORT_SYMBOL_GPL(kvm_apic_update_hwapic_isr);
779
kvm_lapic_find_highest_irr(struct kvm_vcpu * vcpu)780 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu)
781 {
782 /* This may race with setting of irr in __apic_accept_irq() and
783 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq
784 * will cause vmexit immediately and the value will be recalculated
785 * on the next vmentry.
786 */
787 return apic_find_highest_irr(vcpu->arch.apic);
788 }
789 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr);
790
791 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
792 int vector, int level, int trig_mode,
793 struct dest_map *dest_map);
794
kvm_apic_set_irq(struct kvm_vcpu * vcpu,struct kvm_lapic_irq * irq,struct dest_map * dest_map)795 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq,
796 struct dest_map *dest_map)
797 {
798 struct kvm_lapic *apic = vcpu->arch.apic;
799
800 return __apic_accept_irq(apic, irq->delivery_mode, irq->vector,
801 irq->level, irq->trig_mode, dest_map);
802 }
803
__pv_send_ipi(unsigned long * ipi_bitmap,struct kvm_apic_map * map,struct kvm_lapic_irq * irq,u32 min)804 static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map,
805 struct kvm_lapic_irq *irq, u32 min)
806 {
807 int i, count = 0;
808 struct kvm_vcpu *vcpu;
809
810 if (min > map->max_apic_id)
811 return 0;
812
813 min = array_index_nospec(min, map->max_apic_id + 1);
814
815 for_each_set_bit(i, ipi_bitmap,
816 min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) {
817 if (map->phys_map[min + i]) {
818 vcpu = map->phys_map[min + i]->vcpu;
819 count += kvm_apic_set_irq(vcpu, irq, NULL);
820 }
821 }
822
823 return count;
824 }
825
kvm_pv_send_ipi(struct kvm * kvm,unsigned long ipi_bitmap_low,unsigned long ipi_bitmap_high,u32 min,unsigned long icr,int op_64_bit)826 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
827 unsigned long ipi_bitmap_high, u32 min,
828 unsigned long icr, int op_64_bit)
829 {
830 struct kvm_apic_map *map;
831 struct kvm_lapic_irq irq = {0};
832 int cluster_size = op_64_bit ? 64 : 32;
833 int count;
834
835 if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK))
836 return -KVM_EINVAL;
837
838 irq.vector = icr & APIC_VECTOR_MASK;
839 irq.delivery_mode = icr & APIC_MODE_MASK;
840 irq.level = (icr & APIC_INT_ASSERT) != 0;
841 irq.trig_mode = icr & APIC_INT_LEVELTRIG;
842
843 rcu_read_lock();
844 map = rcu_dereference(kvm->arch.apic_map);
845
846 count = -EOPNOTSUPP;
847 if (likely(map)) {
848 count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min);
849 min += cluster_size;
850 count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min);
851 }
852
853 rcu_read_unlock();
854 return count;
855 }
856
pv_eoi_put_user(struct kvm_vcpu * vcpu,u8 val)857 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val)
858 {
859
860 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val,
861 sizeof(val));
862 }
863
pv_eoi_get_user(struct kvm_vcpu * vcpu,u8 * val)864 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val)
865 {
866
867 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val,
868 sizeof(*val));
869 }
870
pv_eoi_enabled(struct kvm_vcpu * vcpu)871 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu)
872 {
873 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
874 }
875
pv_eoi_set_pending(struct kvm_vcpu * vcpu)876 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu)
877 {
878 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0)
879 return;
880
881 __set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
882 }
883
pv_eoi_test_and_clr_pending(struct kvm_vcpu * vcpu)884 static bool pv_eoi_test_and_clr_pending(struct kvm_vcpu *vcpu)
885 {
886 u8 val;
887
888 if (pv_eoi_get_user(vcpu, &val) < 0)
889 return false;
890
891 val &= KVM_PV_EOI_ENABLED;
892
893 if (val && pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0)
894 return false;
895
896 /*
897 * Clear pending bit in any case: it will be set again on vmentry.
898 * While this might not be ideal from performance point of view,
899 * this makes sure pv eoi is only enabled when we know it's safe.
900 */
901 __clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
902
903 return val;
904 }
905
apic_has_interrupt_for_ppr(struct kvm_lapic * apic,u32 ppr)906 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr)
907 {
908 int highest_irr;
909 if (kvm_x86_ops.sync_pir_to_irr)
910 highest_irr = kvm_x86_call(sync_pir_to_irr)(apic->vcpu);
911 else
912 highest_irr = apic_find_highest_irr(apic);
913 if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr)
914 return -1;
915 return highest_irr;
916 }
917
__apic_update_ppr(struct kvm_lapic * apic,u32 * new_ppr)918 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr)
919 {
920 u32 tpr, isrv, ppr, old_ppr;
921 int isr;
922
923 old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI);
924 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI);
925 isr = apic_find_highest_isr(apic);
926 isrv = (isr != -1) ? isr : 0;
927
928 if ((tpr & 0xf0) >= (isrv & 0xf0))
929 ppr = tpr & 0xff;
930 else
931 ppr = isrv & 0xf0;
932
933 *new_ppr = ppr;
934 if (old_ppr != ppr)
935 kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr);
936
937 return ppr < old_ppr;
938 }
939
apic_update_ppr(struct kvm_lapic * apic)940 static void apic_update_ppr(struct kvm_lapic *apic)
941 {
942 u32 ppr;
943
944 if (__apic_update_ppr(apic, &ppr) &&
945 apic_has_interrupt_for_ppr(apic, ppr) != -1)
946 kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
947 }
948
kvm_apic_update_ppr(struct kvm_vcpu * vcpu)949 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu)
950 {
951 apic_update_ppr(vcpu->arch.apic);
952 }
953 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr);
954
apic_set_tpr(struct kvm_lapic * apic,u32 tpr)955 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr)
956 {
957 kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr);
958 apic_update_ppr(apic);
959 }
960
kvm_apic_broadcast(struct kvm_lapic * apic,u32 mda)961 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda)
962 {
963 return mda == (apic_x2apic_mode(apic) ?
964 X2APIC_BROADCAST : APIC_BROADCAST);
965 }
966
kvm_apic_match_physical_addr(struct kvm_lapic * apic,u32 mda)967 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda)
968 {
969 if (kvm_apic_broadcast(apic, mda))
970 return true;
971
972 /*
973 * Hotplug hack: Accept interrupts for vCPUs in xAPIC mode as if they
974 * were in x2APIC mode if the target APIC ID can't be encoded as an
975 * xAPIC ID. This allows unique addressing of hotplugged vCPUs (which
976 * start in xAPIC mode) with an APIC ID that is unaddressable in xAPIC
977 * mode. Match the x2APIC ID if and only if the target APIC ID can't
978 * be encoded in xAPIC to avoid spurious matches against a vCPU that
979 * changed its (addressable) xAPIC ID (which is writable).
980 */
981 if (apic_x2apic_mode(apic) || mda > 0xff)
982 return mda == kvm_x2apic_id(apic);
983
984 return mda == kvm_xapic_id(apic);
985 }
986
kvm_apic_match_logical_addr(struct kvm_lapic * apic,u32 mda)987 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda)
988 {
989 u32 logical_id;
990
991 if (kvm_apic_broadcast(apic, mda))
992 return true;
993
994 logical_id = kvm_lapic_get_reg(apic, APIC_LDR);
995
996 if (apic_x2apic_mode(apic))
997 return ((logical_id >> 16) == (mda >> 16))
998 && (logical_id & mda & 0xffff) != 0;
999
1000 logical_id = GET_APIC_LOGICAL_ID(logical_id);
1001
1002 switch (kvm_lapic_get_reg(apic, APIC_DFR)) {
1003 case APIC_DFR_FLAT:
1004 return (logical_id & mda) != 0;
1005 case APIC_DFR_CLUSTER:
1006 return ((logical_id >> 4) == (mda >> 4))
1007 && (logical_id & mda & 0xf) != 0;
1008 default:
1009 return false;
1010 }
1011 }
1012
1013 /* The KVM local APIC implementation has two quirks:
1014 *
1015 * - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs
1016 * in xAPIC mode if the "destination & 0xff" matches its xAPIC ID.
1017 * KVM doesn't do that aliasing.
1018 *
1019 * - in-kernel IOAPIC messages have to be delivered directly to
1020 * x2APIC, because the kernel does not support interrupt remapping.
1021 * In order to support broadcast without interrupt remapping, x2APIC
1022 * rewrites the destination of non-IPI messages from APIC_BROADCAST
1023 * to X2APIC_BROADCAST.
1024 *
1025 * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API. This is
1026 * important when userspace wants to use x2APIC-format MSIs, because
1027 * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7".
1028 */
kvm_apic_mda(struct kvm_vcpu * vcpu,unsigned int dest_id,struct kvm_lapic * source,struct kvm_lapic * target)1029 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id,
1030 struct kvm_lapic *source, struct kvm_lapic *target)
1031 {
1032 bool ipi = source != NULL;
1033
1034 if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled &&
1035 !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target))
1036 return X2APIC_BROADCAST;
1037
1038 return dest_id;
1039 }
1040
kvm_apic_match_dest(struct kvm_vcpu * vcpu,struct kvm_lapic * source,int shorthand,unsigned int dest,int dest_mode)1041 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
1042 int shorthand, unsigned int dest, int dest_mode)
1043 {
1044 struct kvm_lapic *target = vcpu->arch.apic;
1045 u32 mda = kvm_apic_mda(vcpu, dest, source, target);
1046
1047 ASSERT(target);
1048 switch (shorthand) {
1049 case APIC_DEST_NOSHORT:
1050 if (dest_mode == APIC_DEST_PHYSICAL)
1051 return kvm_apic_match_physical_addr(target, mda);
1052 else
1053 return kvm_apic_match_logical_addr(target, mda);
1054 case APIC_DEST_SELF:
1055 return target == source;
1056 case APIC_DEST_ALLINC:
1057 return true;
1058 case APIC_DEST_ALLBUT:
1059 return target != source;
1060 default:
1061 return false;
1062 }
1063 }
1064 EXPORT_SYMBOL_GPL(kvm_apic_match_dest);
1065
kvm_vector_to_index(u32 vector,u32 dest_vcpus,const unsigned long * bitmap,u32 bitmap_size)1066 int kvm_vector_to_index(u32 vector, u32 dest_vcpus,
1067 const unsigned long *bitmap, u32 bitmap_size)
1068 {
1069 u32 mod;
1070 int i, idx = -1;
1071
1072 mod = vector % dest_vcpus;
1073
1074 for (i = 0; i <= mod; i++) {
1075 idx = find_next_bit(bitmap, bitmap_size, idx + 1);
1076 BUG_ON(idx == bitmap_size);
1077 }
1078
1079 return idx;
1080 }
1081
kvm_apic_disabled_lapic_found(struct kvm * kvm)1082 static void kvm_apic_disabled_lapic_found(struct kvm *kvm)
1083 {
1084 if (!kvm->arch.disabled_lapic_found) {
1085 kvm->arch.disabled_lapic_found = true;
1086 pr_info("Disabled LAPIC found during irq injection\n");
1087 }
1088 }
1089
kvm_apic_is_broadcast_dest(struct kvm * kvm,struct kvm_lapic ** src,struct kvm_lapic_irq * irq,struct kvm_apic_map * map)1090 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src,
1091 struct kvm_lapic_irq *irq, struct kvm_apic_map *map)
1092 {
1093 if (kvm->arch.x2apic_broadcast_quirk_disabled) {
1094 if ((irq->dest_id == APIC_BROADCAST &&
1095 map->logical_mode != KVM_APIC_MODE_X2APIC))
1096 return true;
1097 if (irq->dest_id == X2APIC_BROADCAST)
1098 return true;
1099 } else {
1100 bool x2apic_ipi = src && *src && apic_x2apic_mode(*src);
1101 if (irq->dest_id == (x2apic_ipi ?
1102 X2APIC_BROADCAST : APIC_BROADCAST))
1103 return true;
1104 }
1105
1106 return false;
1107 }
1108
1109 /* Return true if the interrupt can be handled by using *bitmap as index mask
1110 * for valid destinations in *dst array.
1111 * Return false if kvm_apic_map_get_dest_lapic did nothing useful.
1112 * Note: we may have zero kvm_lapic destinations when we return true, which
1113 * means that the interrupt should be dropped. In this case, *bitmap would be
1114 * zero and *dst undefined.
1115 */
kvm_apic_map_get_dest_lapic(struct kvm * kvm,struct kvm_lapic ** src,struct kvm_lapic_irq * irq,struct kvm_apic_map * map,struct kvm_lapic *** dst,unsigned long * bitmap)1116 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm,
1117 struct kvm_lapic **src, struct kvm_lapic_irq *irq,
1118 struct kvm_apic_map *map, struct kvm_lapic ***dst,
1119 unsigned long *bitmap)
1120 {
1121 int i, lowest;
1122
1123 if (irq->shorthand == APIC_DEST_SELF && src) {
1124 *dst = src;
1125 *bitmap = 1;
1126 return true;
1127 } else if (irq->shorthand)
1128 return false;
1129
1130 if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map))
1131 return false;
1132
1133 if (irq->dest_mode == APIC_DEST_PHYSICAL) {
1134 if (irq->dest_id > map->max_apic_id) {
1135 *bitmap = 0;
1136 } else {
1137 u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1);
1138 *dst = &map->phys_map[dest_id];
1139 *bitmap = 1;
1140 }
1141 return true;
1142 }
1143
1144 *bitmap = 0;
1145 if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst,
1146 (u16 *)bitmap))
1147 return false;
1148
1149 if (!kvm_lowest_prio_delivery(irq))
1150 return true;
1151
1152 if (!kvm_vector_hashing_enabled()) {
1153 lowest = -1;
1154 for_each_set_bit(i, bitmap, 16) {
1155 if (!(*dst)[i])
1156 continue;
1157 if (lowest < 0)
1158 lowest = i;
1159 else if (kvm_apic_compare_prio((*dst)[i]->vcpu,
1160 (*dst)[lowest]->vcpu) < 0)
1161 lowest = i;
1162 }
1163 } else {
1164 if (!*bitmap)
1165 return true;
1166
1167 lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap),
1168 bitmap, 16);
1169
1170 if (!(*dst)[lowest]) {
1171 kvm_apic_disabled_lapic_found(kvm);
1172 *bitmap = 0;
1173 return true;
1174 }
1175 }
1176
1177 *bitmap = (lowest >= 0) ? 1 << lowest : 0;
1178
1179 return true;
1180 }
1181
kvm_irq_delivery_to_apic_fast(struct kvm * kvm,struct kvm_lapic * src,struct kvm_lapic_irq * irq,int * r,struct dest_map * dest_map)1182 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src,
1183 struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map)
1184 {
1185 struct kvm_apic_map *map;
1186 unsigned long bitmap;
1187 struct kvm_lapic **dst = NULL;
1188 int i;
1189 bool ret;
1190
1191 *r = -1;
1192
1193 if (irq->shorthand == APIC_DEST_SELF) {
1194 if (KVM_BUG_ON(!src, kvm)) {
1195 *r = 0;
1196 return true;
1197 }
1198 *r = kvm_apic_set_irq(src->vcpu, irq, dest_map);
1199 return true;
1200 }
1201
1202 rcu_read_lock();
1203 map = rcu_dereference(kvm->arch.apic_map);
1204
1205 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap);
1206 if (ret) {
1207 *r = 0;
1208 for_each_set_bit(i, &bitmap, 16) {
1209 if (!dst[i])
1210 continue;
1211 *r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map);
1212 }
1213 }
1214
1215 rcu_read_unlock();
1216 return ret;
1217 }
1218
1219 /*
1220 * This routine tries to handle interrupts in posted mode, here is how
1221 * it deals with different cases:
1222 * - For single-destination interrupts, handle it in posted mode
1223 * - Else if vector hashing is enabled and it is a lowest-priority
1224 * interrupt, handle it in posted mode and use the following mechanism
1225 * to find the destination vCPU.
1226 * 1. For lowest-priority interrupts, store all the possible
1227 * destination vCPUs in an array.
1228 * 2. Use "guest vector % max number of destination vCPUs" to find
1229 * the right destination vCPU in the array for the lowest-priority
1230 * interrupt.
1231 * - Otherwise, use remapped mode to inject the interrupt.
1232 */
kvm_intr_is_single_vcpu_fast(struct kvm * kvm,struct kvm_lapic_irq * irq,struct kvm_vcpu ** dest_vcpu)1233 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq,
1234 struct kvm_vcpu **dest_vcpu)
1235 {
1236 struct kvm_apic_map *map;
1237 unsigned long bitmap;
1238 struct kvm_lapic **dst = NULL;
1239 bool ret = false;
1240
1241 if (irq->shorthand)
1242 return false;
1243
1244 rcu_read_lock();
1245 map = rcu_dereference(kvm->arch.apic_map);
1246
1247 if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) &&
1248 hweight16(bitmap) == 1) {
1249 unsigned long i = find_first_bit(&bitmap, 16);
1250
1251 if (dst[i]) {
1252 *dest_vcpu = dst[i]->vcpu;
1253 ret = true;
1254 }
1255 }
1256
1257 rcu_read_unlock();
1258 return ret;
1259 }
1260
1261 /*
1262 * Add a pending IRQ into lapic.
1263 * Return 1 if successfully added and 0 if discarded.
1264 */
__apic_accept_irq(struct kvm_lapic * apic,int delivery_mode,int vector,int level,int trig_mode,struct dest_map * dest_map)1265 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
1266 int vector, int level, int trig_mode,
1267 struct dest_map *dest_map)
1268 {
1269 int result = 0;
1270 struct kvm_vcpu *vcpu = apic->vcpu;
1271
1272 trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode,
1273 trig_mode, vector);
1274 switch (delivery_mode) {
1275 case APIC_DM_LOWEST:
1276 vcpu->arch.apic_arb_prio++;
1277 fallthrough;
1278 case APIC_DM_FIXED:
1279 if (unlikely(trig_mode && !level))
1280 break;
1281
1282 /* FIXME add logic for vcpu on reset */
1283 if (unlikely(!apic_enabled(apic)))
1284 break;
1285
1286 result = 1;
1287
1288 if (dest_map) {
1289 __set_bit(vcpu->vcpu_id, dest_map->map);
1290 dest_map->vectors[vcpu->vcpu_id] = vector;
1291 }
1292
1293 if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) {
1294 if (trig_mode)
1295 apic_set_vector(vector, apic->regs + APIC_TMR);
1296 else
1297 apic_clear_vector(vector, apic->regs + APIC_TMR);
1298 }
1299
1300 kvm_x86_call(deliver_interrupt)(apic, delivery_mode,
1301 trig_mode, vector);
1302 break;
1303
1304 case APIC_DM_REMRD:
1305 result = 1;
1306 vcpu->arch.pv.pv_unhalted = 1;
1307 kvm_make_request(KVM_REQ_EVENT, vcpu);
1308 kvm_vcpu_kick(vcpu);
1309 break;
1310
1311 case APIC_DM_SMI:
1312 if (!kvm_inject_smi(vcpu)) {
1313 kvm_vcpu_kick(vcpu);
1314 result = 1;
1315 }
1316 break;
1317
1318 case APIC_DM_NMI:
1319 result = 1;
1320 kvm_inject_nmi(vcpu);
1321 kvm_vcpu_kick(vcpu);
1322 break;
1323
1324 case APIC_DM_INIT:
1325 if (!trig_mode || level) {
1326 result = 1;
1327 /* assumes that there are only KVM_APIC_INIT/SIPI */
1328 apic->pending_events = (1UL << KVM_APIC_INIT);
1329 kvm_make_request(KVM_REQ_EVENT, vcpu);
1330 kvm_vcpu_kick(vcpu);
1331 }
1332 break;
1333
1334 case APIC_DM_STARTUP:
1335 result = 1;
1336 apic->sipi_vector = vector;
1337 /* make sure sipi_vector is visible for the receiver */
1338 smp_wmb();
1339 set_bit(KVM_APIC_SIPI, &apic->pending_events);
1340 kvm_make_request(KVM_REQ_EVENT, vcpu);
1341 kvm_vcpu_kick(vcpu);
1342 break;
1343
1344 case APIC_DM_EXTINT:
1345 /*
1346 * Should only be called by kvm_apic_local_deliver() with LVT0,
1347 * before NMI watchdog was enabled. Already handled by
1348 * kvm_apic_accept_pic_intr().
1349 */
1350 break;
1351
1352 default:
1353 printk(KERN_ERR "TODO: unsupported delivery mode %x\n",
1354 delivery_mode);
1355 break;
1356 }
1357 return result;
1358 }
1359
1360 /*
1361 * This routine identifies the destination vcpus mask meant to receive the
1362 * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find
1363 * out the destination vcpus array and set the bitmap or it traverses to
1364 * each available vcpu to identify the same.
1365 */
kvm_bitmap_or_dest_vcpus(struct kvm * kvm,struct kvm_lapic_irq * irq,unsigned long * vcpu_bitmap)1366 void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq,
1367 unsigned long *vcpu_bitmap)
1368 {
1369 struct kvm_lapic **dest_vcpu = NULL;
1370 struct kvm_lapic *src = NULL;
1371 struct kvm_apic_map *map;
1372 struct kvm_vcpu *vcpu;
1373 unsigned long bitmap, i;
1374 int vcpu_idx;
1375 bool ret;
1376
1377 rcu_read_lock();
1378 map = rcu_dereference(kvm->arch.apic_map);
1379
1380 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu,
1381 &bitmap);
1382 if (ret) {
1383 for_each_set_bit(i, &bitmap, 16) {
1384 if (!dest_vcpu[i])
1385 continue;
1386 vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx;
1387 __set_bit(vcpu_idx, vcpu_bitmap);
1388 }
1389 } else {
1390 kvm_for_each_vcpu(i, vcpu, kvm) {
1391 if (!kvm_apic_present(vcpu))
1392 continue;
1393 if (!kvm_apic_match_dest(vcpu, NULL,
1394 irq->shorthand,
1395 irq->dest_id,
1396 irq->dest_mode))
1397 continue;
1398 __set_bit(i, vcpu_bitmap);
1399 }
1400 }
1401 rcu_read_unlock();
1402 }
1403
kvm_apic_compare_prio(struct kvm_vcpu * vcpu1,struct kvm_vcpu * vcpu2)1404 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
1405 {
1406 return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio;
1407 }
1408
kvm_ioapic_handles_vector(struct kvm_lapic * apic,int vector)1409 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector)
1410 {
1411 return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors);
1412 }
1413
kvm_ioapic_send_eoi(struct kvm_lapic * apic,int vector)1414 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector)
1415 {
1416 int __maybe_unused trigger_mode;
1417
1418 /* Eoi the ioapic only if the ioapic doesn't own the vector. */
1419 if (!kvm_ioapic_handles_vector(apic, vector))
1420 return;
1421
1422 /*
1423 * If the intercepted EOI is for an IRQ that was pending from previous
1424 * routing, then re-scan the I/O APIC routes as EOIs for the IRQ likely
1425 * no longer need to be intercepted.
1426 */
1427 if (apic->vcpu->arch.highest_stale_pending_ioapic_eoi == vector)
1428 kvm_make_request(KVM_REQ_SCAN_IOAPIC, apic->vcpu);
1429
1430 /* Request a KVM exit to inform the userspace IOAPIC. */
1431 if (irqchip_split(apic->vcpu->kvm)) {
1432 apic->vcpu->arch.pending_ioapic_eoi = vector;
1433 kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu);
1434 return;
1435 }
1436
1437 #ifdef CONFIG_KVM_IOAPIC
1438 if (apic_test_vector(vector, apic->regs + APIC_TMR))
1439 trigger_mode = IOAPIC_LEVEL_TRIG;
1440 else
1441 trigger_mode = IOAPIC_EDGE_TRIG;
1442
1443 kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode);
1444 #endif
1445 }
1446
apic_set_eoi(struct kvm_lapic * apic)1447 static int apic_set_eoi(struct kvm_lapic *apic)
1448 {
1449 int vector = apic_find_highest_isr(apic);
1450
1451 trace_kvm_eoi(apic, vector);
1452
1453 /*
1454 * Not every write EOI will has corresponding ISR,
1455 * one example is when Kernel check timer on setup_IO_APIC
1456 */
1457 if (vector == -1)
1458 return vector;
1459
1460 apic_clear_isr(vector, apic);
1461 apic_update_ppr(apic);
1462
1463 if (kvm_hv_synic_has_vector(apic->vcpu, vector))
1464 kvm_hv_synic_send_eoi(apic->vcpu, vector);
1465
1466 kvm_ioapic_send_eoi(apic, vector);
1467 kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1468 return vector;
1469 }
1470
1471 /*
1472 * this interface assumes a trap-like exit, which has already finished
1473 * desired side effect including vISR and vPPR update.
1474 */
kvm_apic_set_eoi_accelerated(struct kvm_vcpu * vcpu,int vector)1475 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector)
1476 {
1477 struct kvm_lapic *apic = vcpu->arch.apic;
1478
1479 trace_kvm_eoi(apic, vector);
1480
1481 kvm_ioapic_send_eoi(apic, vector);
1482 kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1483 }
1484 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated);
1485
kvm_apic_send_ipi(struct kvm_lapic * apic,u32 icr_low,u32 icr_high)1486 void kvm_apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high)
1487 {
1488 struct kvm_lapic_irq irq;
1489
1490 /* KVM has no delay and should always clear the BUSY/PENDING flag. */
1491 WARN_ON_ONCE(icr_low & APIC_ICR_BUSY);
1492
1493 irq.vector = icr_low & APIC_VECTOR_MASK;
1494 irq.delivery_mode = icr_low & APIC_MODE_MASK;
1495 irq.dest_mode = icr_low & APIC_DEST_MASK;
1496 irq.level = (icr_low & APIC_INT_ASSERT) != 0;
1497 irq.trig_mode = icr_low & APIC_INT_LEVELTRIG;
1498 irq.shorthand = icr_low & APIC_SHORT_MASK;
1499 irq.msi_redir_hint = false;
1500 if (apic_x2apic_mode(apic))
1501 irq.dest_id = icr_high;
1502 else
1503 irq.dest_id = GET_XAPIC_DEST_FIELD(icr_high);
1504
1505 trace_kvm_apic_ipi(icr_low, irq.dest_id);
1506
1507 kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL);
1508 }
1509 EXPORT_SYMBOL_GPL(kvm_apic_send_ipi);
1510
apic_get_tmcct(struct kvm_lapic * apic)1511 static u32 apic_get_tmcct(struct kvm_lapic *apic)
1512 {
1513 ktime_t remaining, now;
1514 s64 ns;
1515
1516 ASSERT(apic != NULL);
1517
1518 /* if initial count is 0, current count should also be 0 */
1519 if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 ||
1520 apic->lapic_timer.period == 0)
1521 return 0;
1522
1523 now = ktime_get();
1524 remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1525 if (ktime_to_ns(remaining) < 0)
1526 remaining = 0;
1527
1528 ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period);
1529 return div64_u64(ns, (apic->vcpu->kvm->arch.apic_bus_cycle_ns *
1530 apic->divide_count));
1531 }
1532
__report_tpr_access(struct kvm_lapic * apic,bool write)1533 static void __report_tpr_access(struct kvm_lapic *apic, bool write)
1534 {
1535 struct kvm_vcpu *vcpu = apic->vcpu;
1536 struct kvm_run *run = vcpu->run;
1537
1538 kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu);
1539 run->tpr_access.rip = kvm_rip_read(vcpu);
1540 run->tpr_access.is_write = write;
1541 }
1542
report_tpr_access(struct kvm_lapic * apic,bool write)1543 static inline void report_tpr_access(struct kvm_lapic *apic, bool write)
1544 {
1545 if (apic->vcpu->arch.tpr_access_reporting)
1546 __report_tpr_access(apic, write);
1547 }
1548
__apic_read(struct kvm_lapic * apic,unsigned int offset)1549 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset)
1550 {
1551 u32 val = 0;
1552
1553 if (offset >= LAPIC_MMIO_LENGTH)
1554 return 0;
1555
1556 switch (offset) {
1557 case APIC_ARBPRI:
1558 break;
1559
1560 case APIC_TMCCT: /* Timer CCR */
1561 if (apic_lvtt_tscdeadline(apic))
1562 return 0;
1563
1564 val = apic_get_tmcct(apic);
1565 break;
1566 case APIC_PROCPRI:
1567 apic_update_ppr(apic);
1568 val = kvm_lapic_get_reg(apic, offset);
1569 break;
1570 case APIC_TASKPRI:
1571 report_tpr_access(apic, false);
1572 fallthrough;
1573 default:
1574 val = kvm_lapic_get_reg(apic, offset);
1575 break;
1576 }
1577
1578 return val;
1579 }
1580
to_lapic(struct kvm_io_device * dev)1581 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev)
1582 {
1583 return container_of(dev, struct kvm_lapic, dev);
1584 }
1585
1586 #define APIC_REG_MASK(reg) (1ull << ((reg) >> 4))
1587 #define APIC_REGS_MASK(first, count) \
1588 (APIC_REG_MASK(first) * ((1ull << (count)) - 1))
1589
kvm_lapic_readable_reg_mask(struct kvm_lapic * apic)1590 u64 kvm_lapic_readable_reg_mask(struct kvm_lapic *apic)
1591 {
1592 /* Leave bits '0' for reserved and write-only registers. */
1593 u64 valid_reg_mask =
1594 APIC_REG_MASK(APIC_ID) |
1595 APIC_REG_MASK(APIC_LVR) |
1596 APIC_REG_MASK(APIC_TASKPRI) |
1597 APIC_REG_MASK(APIC_PROCPRI) |
1598 APIC_REG_MASK(APIC_LDR) |
1599 APIC_REG_MASK(APIC_SPIV) |
1600 APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) |
1601 APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) |
1602 APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) |
1603 APIC_REG_MASK(APIC_ESR) |
1604 APIC_REG_MASK(APIC_ICR) |
1605 APIC_REG_MASK(APIC_LVTT) |
1606 APIC_REG_MASK(APIC_LVTTHMR) |
1607 APIC_REG_MASK(APIC_LVTPC) |
1608 APIC_REG_MASK(APIC_LVT0) |
1609 APIC_REG_MASK(APIC_LVT1) |
1610 APIC_REG_MASK(APIC_LVTERR) |
1611 APIC_REG_MASK(APIC_TMICT) |
1612 APIC_REG_MASK(APIC_TMCCT) |
1613 APIC_REG_MASK(APIC_TDCR);
1614
1615 if (kvm_lapic_lvt_supported(apic, LVT_CMCI))
1616 valid_reg_mask |= APIC_REG_MASK(APIC_LVTCMCI);
1617
1618 /* ARBPRI, DFR, and ICR2 are not valid in x2APIC mode. */
1619 if (!apic_x2apic_mode(apic))
1620 valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI) |
1621 APIC_REG_MASK(APIC_DFR) |
1622 APIC_REG_MASK(APIC_ICR2);
1623
1624 return valid_reg_mask;
1625 }
1626 EXPORT_SYMBOL_GPL(kvm_lapic_readable_reg_mask);
1627
kvm_lapic_reg_read(struct kvm_lapic * apic,u32 offset,int len,void * data)1628 static int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len,
1629 void *data)
1630 {
1631 unsigned char alignment = offset & 0xf;
1632 u32 result;
1633
1634 /*
1635 * WARN if KVM reads ICR in x2APIC mode, as it's an 8-byte register in
1636 * x2APIC and needs to be manually handled by the caller.
1637 */
1638 WARN_ON_ONCE(apic_x2apic_mode(apic) && offset == APIC_ICR);
1639
1640 if (alignment + len > 4)
1641 return 1;
1642
1643 if (offset > 0x3f0 ||
1644 !(kvm_lapic_readable_reg_mask(apic) & APIC_REG_MASK(offset)))
1645 return 1;
1646
1647 result = __apic_read(apic, offset & ~0xf);
1648
1649 trace_kvm_apic_read(offset, result);
1650
1651 switch (len) {
1652 case 1:
1653 case 2:
1654 case 4:
1655 memcpy(data, (char *)&result + alignment, len);
1656 break;
1657 default:
1658 printk(KERN_ERR "Local APIC read with len = %x, "
1659 "should be 1,2, or 4 instead\n", len);
1660 break;
1661 }
1662 return 0;
1663 }
1664
apic_mmio_in_range(struct kvm_lapic * apic,gpa_t addr)1665 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr)
1666 {
1667 return addr >= apic->base_address &&
1668 addr < apic->base_address + LAPIC_MMIO_LENGTH;
1669 }
1670
apic_mmio_read(struct kvm_vcpu * vcpu,struct kvm_io_device * this,gpa_t address,int len,void * data)1671 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
1672 gpa_t address, int len, void *data)
1673 {
1674 struct kvm_lapic *apic = to_lapic(this);
1675 u32 offset = address - apic->base_address;
1676
1677 if (!apic_mmio_in_range(apic, address))
1678 return -EOPNOTSUPP;
1679
1680 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
1681 if (!kvm_check_has_quirk(vcpu->kvm,
1682 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
1683 return -EOPNOTSUPP;
1684
1685 memset(data, 0xff, len);
1686 return 0;
1687 }
1688
1689 kvm_lapic_reg_read(apic, offset, len, data);
1690
1691 return 0;
1692 }
1693
update_divide_count(struct kvm_lapic * apic)1694 static void update_divide_count(struct kvm_lapic *apic)
1695 {
1696 u32 tmp1, tmp2, tdcr;
1697
1698 tdcr = kvm_lapic_get_reg(apic, APIC_TDCR);
1699 tmp1 = tdcr & 0xf;
1700 tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1;
1701 apic->divide_count = 0x1 << (tmp2 & 0x7);
1702 }
1703
limit_periodic_timer_frequency(struct kvm_lapic * apic)1704 static void limit_periodic_timer_frequency(struct kvm_lapic *apic)
1705 {
1706 /*
1707 * Do not allow the guest to program periodic timers with small
1708 * interval, since the hrtimers are not throttled by the host
1709 * scheduler.
1710 */
1711 if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
1712 s64 min_period = min_timer_period_us * 1000LL;
1713
1714 if (apic->lapic_timer.period < min_period) {
1715 pr_info_once(
1716 "vcpu %i: requested %lld ns "
1717 "lapic timer period limited to %lld ns\n",
1718 apic->vcpu->vcpu_id,
1719 apic->lapic_timer.period, min_period);
1720 apic->lapic_timer.period = min_period;
1721 }
1722 }
1723 }
1724
1725 static void cancel_hv_timer(struct kvm_lapic *apic);
1726
cancel_apic_timer(struct kvm_lapic * apic)1727 static void cancel_apic_timer(struct kvm_lapic *apic)
1728 {
1729 hrtimer_cancel(&apic->lapic_timer.timer);
1730 preempt_disable();
1731 if (apic->lapic_timer.hv_timer_in_use)
1732 cancel_hv_timer(apic);
1733 preempt_enable();
1734 atomic_set(&apic->lapic_timer.pending, 0);
1735 }
1736
apic_update_lvtt(struct kvm_lapic * apic)1737 static void apic_update_lvtt(struct kvm_lapic *apic)
1738 {
1739 u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) &
1740 apic->lapic_timer.timer_mode_mask;
1741
1742 if (apic->lapic_timer.timer_mode != timer_mode) {
1743 if (apic_lvtt_tscdeadline(apic) != (timer_mode ==
1744 APIC_LVT_TIMER_TSCDEADLINE)) {
1745 cancel_apic_timer(apic);
1746 kvm_lapic_set_reg(apic, APIC_TMICT, 0);
1747 apic->lapic_timer.period = 0;
1748 apic->lapic_timer.tscdeadline = 0;
1749 }
1750 apic->lapic_timer.timer_mode = timer_mode;
1751 limit_periodic_timer_frequency(apic);
1752 }
1753 }
1754
1755 /*
1756 * On APICv, this test will cause a busy wait
1757 * during a higher-priority task.
1758 */
1759
lapic_timer_int_injected(struct kvm_vcpu * vcpu)1760 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu)
1761 {
1762 struct kvm_lapic *apic = vcpu->arch.apic;
1763 u32 reg;
1764
1765 /*
1766 * Assume a timer IRQ was "injected" if the APIC is protected. KVM's
1767 * copy of the vIRR is bogus, it's the responsibility of the caller to
1768 * precisely check whether or not a timer IRQ is pending.
1769 */
1770 if (apic->guest_apic_protected)
1771 return true;
1772
1773 reg = kvm_lapic_get_reg(apic, APIC_LVTT);
1774 if (kvm_apic_hw_enabled(apic)) {
1775 int vec = reg & APIC_VECTOR_MASK;
1776 void *bitmap = apic->regs + APIC_ISR;
1777
1778 if (apic->apicv_active)
1779 bitmap = apic->regs + APIC_IRR;
1780
1781 if (apic_test_vector(vec, bitmap))
1782 return true;
1783 }
1784 return false;
1785 }
1786
__wait_lapic_expire(struct kvm_vcpu * vcpu,u64 guest_cycles)1787 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles)
1788 {
1789 u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns;
1790
1791 /*
1792 * If the guest TSC is running at a different ratio than the host, then
1793 * convert the delay to nanoseconds to achieve an accurate delay. Note
1794 * that __delay() uses delay_tsc whenever the hardware has TSC, thus
1795 * always for VMX enabled hardware.
1796 */
1797 if (vcpu->arch.tsc_scaling_ratio == kvm_caps.default_tsc_scaling_ratio) {
1798 __delay(min(guest_cycles,
1799 nsec_to_cycles(vcpu, timer_advance_ns)));
1800 } else {
1801 u64 delay_ns = guest_cycles * 1000000ULL;
1802 do_div(delay_ns, vcpu->arch.virtual_tsc_khz);
1803 ndelay(min_t(u32, delay_ns, timer_advance_ns));
1804 }
1805 }
1806
adjust_lapic_timer_advance(struct kvm_vcpu * vcpu,s64 advance_expire_delta)1807 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu,
1808 s64 advance_expire_delta)
1809 {
1810 struct kvm_lapic *apic = vcpu->arch.apic;
1811 u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns;
1812 u64 ns;
1813
1814 /* Do not adjust for tiny fluctuations or large random spikes. */
1815 if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX ||
1816 abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN)
1817 return;
1818
1819 /* too early */
1820 if (advance_expire_delta < 0) {
1821 ns = -advance_expire_delta * 1000000ULL;
1822 do_div(ns, vcpu->arch.virtual_tsc_khz);
1823 timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
1824 } else {
1825 /* too late */
1826 ns = advance_expire_delta * 1000000ULL;
1827 do_div(ns, vcpu->arch.virtual_tsc_khz);
1828 timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
1829 }
1830
1831 if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX))
1832 timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
1833 apic->lapic_timer.timer_advance_ns = timer_advance_ns;
1834 }
1835
__kvm_wait_lapic_expire(struct kvm_vcpu * vcpu)1836 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1837 {
1838 struct kvm_lapic *apic = vcpu->arch.apic;
1839 u64 guest_tsc, tsc_deadline;
1840
1841 tsc_deadline = apic->lapic_timer.expired_tscdeadline;
1842 apic->lapic_timer.expired_tscdeadline = 0;
1843 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1844 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, guest_tsc - tsc_deadline);
1845
1846 adjust_lapic_timer_advance(vcpu, guest_tsc - tsc_deadline);
1847
1848 /*
1849 * If the timer fired early, reread the TSC to account for the overhead
1850 * of the above adjustment to avoid waiting longer than is necessary.
1851 */
1852 if (guest_tsc < tsc_deadline)
1853 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1854
1855 if (guest_tsc < tsc_deadline)
1856 __wait_lapic_expire(vcpu, tsc_deadline - guest_tsc);
1857 }
1858
kvm_wait_lapic_expire(struct kvm_vcpu * vcpu)1859 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1860 {
1861 if (lapic_in_kernel(vcpu) &&
1862 vcpu->arch.apic->lapic_timer.expired_tscdeadline &&
1863 vcpu->arch.apic->lapic_timer.timer_advance_ns &&
1864 lapic_timer_int_injected(vcpu))
1865 __kvm_wait_lapic_expire(vcpu);
1866 }
1867 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire);
1868
kvm_apic_inject_pending_timer_irqs(struct kvm_lapic * apic)1869 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic)
1870 {
1871 struct kvm_timer *ktimer = &apic->lapic_timer;
1872
1873 kvm_apic_local_deliver(apic, APIC_LVTT);
1874 if (apic_lvtt_tscdeadline(apic)) {
1875 ktimer->tscdeadline = 0;
1876 } else if (apic_lvtt_oneshot(apic)) {
1877 ktimer->tscdeadline = 0;
1878 ktimer->target_expiration = 0;
1879 }
1880 }
1881
apic_timer_expired(struct kvm_lapic * apic,bool from_timer_fn)1882 static void apic_timer_expired(struct kvm_lapic *apic, bool from_timer_fn)
1883 {
1884 struct kvm_vcpu *vcpu = apic->vcpu;
1885 struct kvm_timer *ktimer = &apic->lapic_timer;
1886
1887 if (atomic_read(&apic->lapic_timer.pending))
1888 return;
1889
1890 if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use)
1891 ktimer->expired_tscdeadline = ktimer->tscdeadline;
1892
1893 if (!from_timer_fn && apic->apicv_active) {
1894 WARN_ON(kvm_get_running_vcpu() != vcpu);
1895 kvm_apic_inject_pending_timer_irqs(apic);
1896 return;
1897 }
1898
1899 if (kvm_use_posted_timer_interrupt(apic->vcpu)) {
1900 /*
1901 * Ensure the guest's timer has truly expired before posting an
1902 * interrupt. Open code the relevant checks to avoid querying
1903 * lapic_timer_int_injected(), which will be false since the
1904 * interrupt isn't yet injected. Waiting until after injecting
1905 * is not an option since that won't help a posted interrupt.
1906 */
1907 if (vcpu->arch.apic->lapic_timer.expired_tscdeadline &&
1908 vcpu->arch.apic->lapic_timer.timer_advance_ns)
1909 __kvm_wait_lapic_expire(vcpu);
1910 kvm_apic_inject_pending_timer_irqs(apic);
1911 return;
1912 }
1913
1914 atomic_inc(&apic->lapic_timer.pending);
1915 kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1916 if (from_timer_fn)
1917 kvm_vcpu_kick(vcpu);
1918 }
1919
start_sw_tscdeadline(struct kvm_lapic * apic)1920 static void start_sw_tscdeadline(struct kvm_lapic *apic)
1921 {
1922 struct kvm_timer *ktimer = &apic->lapic_timer;
1923 u64 guest_tsc, tscdeadline = ktimer->tscdeadline;
1924 u64 ns = 0;
1925 ktime_t expire;
1926 struct kvm_vcpu *vcpu = apic->vcpu;
1927 u32 this_tsc_khz = vcpu->arch.virtual_tsc_khz;
1928 unsigned long flags;
1929 ktime_t now;
1930
1931 if (unlikely(!tscdeadline || !this_tsc_khz))
1932 return;
1933
1934 local_irq_save(flags);
1935
1936 now = ktime_get();
1937 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1938
1939 ns = (tscdeadline - guest_tsc) * 1000000ULL;
1940 do_div(ns, this_tsc_khz);
1941
1942 if (likely(tscdeadline > guest_tsc) &&
1943 likely(ns > apic->lapic_timer.timer_advance_ns)) {
1944 expire = ktime_add_ns(now, ns);
1945 expire = ktime_sub_ns(expire, ktimer->timer_advance_ns);
1946 hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD);
1947 } else
1948 apic_timer_expired(apic, false);
1949
1950 local_irq_restore(flags);
1951 }
1952
tmict_to_ns(struct kvm_lapic * apic,u32 tmict)1953 static inline u64 tmict_to_ns(struct kvm_lapic *apic, u32 tmict)
1954 {
1955 return (u64)tmict * apic->vcpu->kvm->arch.apic_bus_cycle_ns *
1956 (u64)apic->divide_count;
1957 }
1958
update_target_expiration(struct kvm_lapic * apic,uint32_t old_divisor)1959 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor)
1960 {
1961 ktime_t now, remaining;
1962 u64 ns_remaining_old, ns_remaining_new;
1963
1964 apic->lapic_timer.period =
1965 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT));
1966 limit_periodic_timer_frequency(apic);
1967
1968 now = ktime_get();
1969 remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1970 if (ktime_to_ns(remaining) < 0)
1971 remaining = 0;
1972
1973 ns_remaining_old = ktime_to_ns(remaining);
1974 ns_remaining_new = mul_u64_u32_div(ns_remaining_old,
1975 apic->divide_count, old_divisor);
1976
1977 apic->lapic_timer.tscdeadline +=
1978 nsec_to_cycles(apic->vcpu, ns_remaining_new) -
1979 nsec_to_cycles(apic->vcpu, ns_remaining_old);
1980 apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new);
1981 }
1982
set_target_expiration(struct kvm_lapic * apic,u32 count_reg)1983 static bool set_target_expiration(struct kvm_lapic *apic, u32 count_reg)
1984 {
1985 ktime_t now;
1986 u64 tscl = rdtsc();
1987 s64 deadline;
1988
1989 now = ktime_get();
1990 apic->lapic_timer.period =
1991 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT));
1992
1993 if (!apic->lapic_timer.period) {
1994 apic->lapic_timer.tscdeadline = 0;
1995 return false;
1996 }
1997
1998 limit_periodic_timer_frequency(apic);
1999 deadline = apic->lapic_timer.period;
2000
2001 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) {
2002 if (unlikely(count_reg != APIC_TMICT)) {
2003 deadline = tmict_to_ns(apic,
2004 kvm_lapic_get_reg(apic, count_reg));
2005 if (unlikely(deadline <= 0)) {
2006 if (apic_lvtt_period(apic))
2007 deadline = apic->lapic_timer.period;
2008 else
2009 deadline = 0;
2010 }
2011 else if (unlikely(deadline > apic->lapic_timer.period)) {
2012 pr_info_ratelimited(
2013 "vcpu %i: requested lapic timer restore with "
2014 "starting count register %#x=%u (%lld ns) > initial count (%lld ns). "
2015 "Using initial count to start timer.\n",
2016 apic->vcpu->vcpu_id,
2017 count_reg,
2018 kvm_lapic_get_reg(apic, count_reg),
2019 deadline, apic->lapic_timer.period);
2020 kvm_lapic_set_reg(apic, count_reg, 0);
2021 deadline = apic->lapic_timer.period;
2022 }
2023 }
2024 }
2025
2026 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
2027 nsec_to_cycles(apic->vcpu, deadline);
2028 apic->lapic_timer.target_expiration = ktime_add_ns(now, deadline);
2029
2030 return true;
2031 }
2032
advance_periodic_target_expiration(struct kvm_lapic * apic)2033 static void advance_periodic_target_expiration(struct kvm_lapic *apic)
2034 {
2035 ktime_t now = ktime_get();
2036 u64 tscl = rdtsc();
2037 ktime_t delta;
2038
2039 /*
2040 * Synchronize both deadlines to the same time source or
2041 * differences in the periods (caused by differences in the
2042 * underlying clocks or numerical approximation errors) will
2043 * cause the two to drift apart over time as the errors
2044 * accumulate.
2045 */
2046 apic->lapic_timer.target_expiration =
2047 ktime_add_ns(apic->lapic_timer.target_expiration,
2048 apic->lapic_timer.period);
2049 delta = ktime_sub(apic->lapic_timer.target_expiration, now);
2050 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
2051 nsec_to_cycles(apic->vcpu, delta);
2052 }
2053
start_sw_period(struct kvm_lapic * apic)2054 static void start_sw_period(struct kvm_lapic *apic)
2055 {
2056 if (!apic->lapic_timer.period)
2057 return;
2058
2059 if (ktime_after(ktime_get(),
2060 apic->lapic_timer.target_expiration)) {
2061 apic_timer_expired(apic, false);
2062
2063 if (apic_lvtt_oneshot(apic))
2064 return;
2065
2066 advance_periodic_target_expiration(apic);
2067 }
2068
2069 hrtimer_start(&apic->lapic_timer.timer,
2070 apic->lapic_timer.target_expiration,
2071 HRTIMER_MODE_ABS_HARD);
2072 }
2073
kvm_lapic_hv_timer_in_use(struct kvm_vcpu * vcpu)2074 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu)
2075 {
2076 if (!lapic_in_kernel(vcpu))
2077 return false;
2078
2079 return vcpu->arch.apic->lapic_timer.hv_timer_in_use;
2080 }
2081
cancel_hv_timer(struct kvm_lapic * apic)2082 static void cancel_hv_timer(struct kvm_lapic *apic)
2083 {
2084 WARN_ON(preemptible());
2085 WARN_ON(!apic->lapic_timer.hv_timer_in_use);
2086 kvm_x86_call(cancel_hv_timer)(apic->vcpu);
2087 apic->lapic_timer.hv_timer_in_use = false;
2088 }
2089
start_hv_timer(struct kvm_lapic * apic)2090 static bool start_hv_timer(struct kvm_lapic *apic)
2091 {
2092 struct kvm_timer *ktimer = &apic->lapic_timer;
2093 struct kvm_vcpu *vcpu = apic->vcpu;
2094 bool expired;
2095
2096 WARN_ON(preemptible());
2097 if (!kvm_can_use_hv_timer(vcpu))
2098 return false;
2099
2100 if (!ktimer->tscdeadline)
2101 return false;
2102
2103 if (kvm_x86_call(set_hv_timer)(vcpu, ktimer->tscdeadline, &expired))
2104 return false;
2105
2106 ktimer->hv_timer_in_use = true;
2107 hrtimer_cancel(&ktimer->timer);
2108
2109 /*
2110 * To simplify handling the periodic timer, leave the hv timer running
2111 * even if the deadline timer has expired, i.e. rely on the resulting
2112 * VM-Exit to recompute the periodic timer's target expiration.
2113 */
2114 if (!apic_lvtt_period(apic)) {
2115 /*
2116 * Cancel the hv timer if the sw timer fired while the hv timer
2117 * was being programmed, or if the hv timer itself expired.
2118 */
2119 if (atomic_read(&ktimer->pending)) {
2120 cancel_hv_timer(apic);
2121 } else if (expired) {
2122 apic_timer_expired(apic, false);
2123 cancel_hv_timer(apic);
2124 }
2125 }
2126
2127 trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use);
2128
2129 return true;
2130 }
2131
start_sw_timer(struct kvm_lapic * apic)2132 static void start_sw_timer(struct kvm_lapic *apic)
2133 {
2134 struct kvm_timer *ktimer = &apic->lapic_timer;
2135
2136 WARN_ON(preemptible());
2137 if (apic->lapic_timer.hv_timer_in_use)
2138 cancel_hv_timer(apic);
2139 if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending))
2140 return;
2141
2142 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
2143 start_sw_period(apic);
2144 else if (apic_lvtt_tscdeadline(apic))
2145 start_sw_tscdeadline(apic);
2146 trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false);
2147 }
2148
restart_apic_timer(struct kvm_lapic * apic)2149 static void restart_apic_timer(struct kvm_lapic *apic)
2150 {
2151 preempt_disable();
2152
2153 if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending))
2154 goto out;
2155
2156 if (!start_hv_timer(apic))
2157 start_sw_timer(apic);
2158 out:
2159 preempt_enable();
2160 }
2161
kvm_lapic_expired_hv_timer(struct kvm_vcpu * vcpu)2162 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu)
2163 {
2164 struct kvm_lapic *apic = vcpu->arch.apic;
2165
2166 preempt_disable();
2167 /* If the preempt notifier has already run, it also called apic_timer_expired */
2168 if (!apic->lapic_timer.hv_timer_in_use)
2169 goto out;
2170 WARN_ON(kvm_vcpu_is_blocking(vcpu));
2171 apic_timer_expired(apic, false);
2172 cancel_hv_timer(apic);
2173
2174 if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
2175 advance_periodic_target_expiration(apic);
2176 restart_apic_timer(apic);
2177 }
2178 out:
2179 preempt_enable();
2180 }
2181 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer);
2182
kvm_lapic_switch_to_hv_timer(struct kvm_vcpu * vcpu)2183 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu)
2184 {
2185 restart_apic_timer(vcpu->arch.apic);
2186 }
2187
kvm_lapic_switch_to_sw_timer(struct kvm_vcpu * vcpu)2188 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu)
2189 {
2190 struct kvm_lapic *apic = vcpu->arch.apic;
2191
2192 preempt_disable();
2193 /* Possibly the TSC deadline timer is not enabled yet */
2194 if (apic->lapic_timer.hv_timer_in_use)
2195 start_sw_timer(apic);
2196 preempt_enable();
2197 }
2198
kvm_lapic_restart_hv_timer(struct kvm_vcpu * vcpu)2199 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu)
2200 {
2201 struct kvm_lapic *apic = vcpu->arch.apic;
2202
2203 WARN_ON(!apic->lapic_timer.hv_timer_in_use);
2204 restart_apic_timer(apic);
2205 }
2206
__start_apic_timer(struct kvm_lapic * apic,u32 count_reg)2207 static void __start_apic_timer(struct kvm_lapic *apic, u32 count_reg)
2208 {
2209 atomic_set(&apic->lapic_timer.pending, 0);
2210
2211 if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
2212 && !set_target_expiration(apic, count_reg))
2213 return;
2214
2215 restart_apic_timer(apic);
2216 }
2217
start_apic_timer(struct kvm_lapic * apic)2218 static void start_apic_timer(struct kvm_lapic *apic)
2219 {
2220 __start_apic_timer(apic, APIC_TMICT);
2221 }
2222
apic_manage_nmi_watchdog(struct kvm_lapic * apic,u32 lvt0_val)2223 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val)
2224 {
2225 bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val);
2226
2227 if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) {
2228 apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode;
2229 if (lvt0_in_nmi_mode) {
2230 atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
2231 } else
2232 atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
2233 }
2234 }
2235
get_lvt_index(u32 reg)2236 static int get_lvt_index(u32 reg)
2237 {
2238 if (reg == APIC_LVTCMCI)
2239 return LVT_CMCI;
2240 if (reg < APIC_LVTT || reg > APIC_LVTERR)
2241 return -1;
2242 return array_index_nospec(
2243 (reg - APIC_LVTT) >> 4, KVM_APIC_MAX_NR_LVT_ENTRIES);
2244 }
2245
kvm_lapic_reg_write(struct kvm_lapic * apic,u32 reg,u32 val)2246 static int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val)
2247 {
2248 int ret = 0;
2249
2250 trace_kvm_apic_write(reg, val);
2251
2252 switch (reg) {
2253 case APIC_ID: /* Local APIC ID */
2254 if (!apic_x2apic_mode(apic)) {
2255 kvm_apic_set_xapic_id(apic, val >> 24);
2256 } else {
2257 ret = 1;
2258 }
2259 break;
2260
2261 case APIC_TASKPRI:
2262 report_tpr_access(apic, true);
2263 apic_set_tpr(apic, val & 0xff);
2264 break;
2265
2266 case APIC_EOI:
2267 apic_set_eoi(apic);
2268 break;
2269
2270 case APIC_LDR:
2271 if (!apic_x2apic_mode(apic))
2272 kvm_apic_set_ldr(apic, val & APIC_LDR_MASK);
2273 else
2274 ret = 1;
2275 break;
2276
2277 case APIC_DFR:
2278 if (!apic_x2apic_mode(apic))
2279 kvm_apic_set_dfr(apic, val | 0x0FFFFFFF);
2280 else
2281 ret = 1;
2282 break;
2283
2284 case APIC_SPIV: {
2285 u32 mask = 0x3ff;
2286 if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI)
2287 mask |= APIC_SPIV_DIRECTED_EOI;
2288 apic_set_spiv(apic, val & mask);
2289 if (!(val & APIC_SPIV_APIC_ENABLED)) {
2290 int i;
2291
2292 for (i = 0; i < apic->nr_lvt_entries; i++) {
2293 kvm_lapic_set_reg(apic, APIC_LVTx(i),
2294 kvm_lapic_get_reg(apic, APIC_LVTx(i)) | APIC_LVT_MASKED);
2295 }
2296 apic_update_lvtt(apic);
2297 atomic_set(&apic->lapic_timer.pending, 0);
2298
2299 }
2300 break;
2301 }
2302 case APIC_ICR:
2303 WARN_ON_ONCE(apic_x2apic_mode(apic));
2304
2305 /* No delay here, so we always clear the pending bit */
2306 val &= ~APIC_ICR_BUSY;
2307 kvm_apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2));
2308 kvm_lapic_set_reg(apic, APIC_ICR, val);
2309 break;
2310 case APIC_ICR2:
2311 if (apic_x2apic_mode(apic))
2312 ret = 1;
2313 else
2314 kvm_lapic_set_reg(apic, APIC_ICR2, val & 0xff000000);
2315 break;
2316
2317 case APIC_LVT0:
2318 apic_manage_nmi_watchdog(apic, val);
2319 fallthrough;
2320 case APIC_LVTTHMR:
2321 case APIC_LVTPC:
2322 case APIC_LVT1:
2323 case APIC_LVTERR:
2324 case APIC_LVTCMCI: {
2325 u32 index = get_lvt_index(reg);
2326 if (!kvm_lapic_lvt_supported(apic, index)) {
2327 ret = 1;
2328 break;
2329 }
2330 if (!kvm_apic_sw_enabled(apic))
2331 val |= APIC_LVT_MASKED;
2332 val &= apic_lvt_mask[index];
2333 kvm_lapic_set_reg(apic, reg, val);
2334 break;
2335 }
2336
2337 case APIC_LVTT:
2338 if (!kvm_apic_sw_enabled(apic))
2339 val |= APIC_LVT_MASKED;
2340 val &= (apic_lvt_mask[LVT_TIMER] | apic->lapic_timer.timer_mode_mask);
2341 kvm_lapic_set_reg(apic, APIC_LVTT, val);
2342 apic_update_lvtt(apic);
2343 break;
2344
2345 case APIC_TMICT:
2346 if (apic_lvtt_tscdeadline(apic))
2347 break;
2348
2349 cancel_apic_timer(apic);
2350 kvm_lapic_set_reg(apic, APIC_TMICT, val);
2351 start_apic_timer(apic);
2352 break;
2353
2354 case APIC_TDCR: {
2355 uint32_t old_divisor = apic->divide_count;
2356
2357 kvm_lapic_set_reg(apic, APIC_TDCR, val & 0xb);
2358 update_divide_count(apic);
2359 if (apic->divide_count != old_divisor &&
2360 apic->lapic_timer.period) {
2361 hrtimer_cancel(&apic->lapic_timer.timer);
2362 update_target_expiration(apic, old_divisor);
2363 restart_apic_timer(apic);
2364 }
2365 break;
2366 }
2367 case APIC_ESR:
2368 if (apic_x2apic_mode(apic) && val != 0)
2369 ret = 1;
2370 break;
2371
2372 case APIC_SELF_IPI:
2373 /*
2374 * Self-IPI exists only when x2APIC is enabled. Bits 7:0 hold
2375 * the vector, everything else is reserved.
2376 */
2377 if (!apic_x2apic_mode(apic) || (val & ~APIC_VECTOR_MASK))
2378 ret = 1;
2379 else
2380 kvm_apic_send_ipi(apic, APIC_DEST_SELF | val, 0);
2381 break;
2382 default:
2383 ret = 1;
2384 break;
2385 }
2386
2387 /*
2388 * Recalculate APIC maps if necessary, e.g. if the software enable bit
2389 * was toggled, the APIC ID changed, etc... The maps are marked dirty
2390 * on relevant changes, i.e. this is a nop for most writes.
2391 */
2392 kvm_recalculate_apic_map(apic->vcpu->kvm);
2393
2394 return ret;
2395 }
2396
apic_mmio_write(struct kvm_vcpu * vcpu,struct kvm_io_device * this,gpa_t address,int len,const void * data)2397 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
2398 gpa_t address, int len, const void *data)
2399 {
2400 struct kvm_lapic *apic = to_lapic(this);
2401 unsigned int offset = address - apic->base_address;
2402 u32 val;
2403
2404 if (!apic_mmio_in_range(apic, address))
2405 return -EOPNOTSUPP;
2406
2407 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
2408 if (!kvm_check_has_quirk(vcpu->kvm,
2409 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
2410 return -EOPNOTSUPP;
2411
2412 return 0;
2413 }
2414
2415 /*
2416 * APIC register must be aligned on 128-bits boundary.
2417 * 32/64/128 bits registers must be accessed thru 32 bits.
2418 * Refer SDM 8.4.1
2419 */
2420 if (len != 4 || (offset & 0xf))
2421 return 0;
2422
2423 val = *(u32*)data;
2424
2425 kvm_lapic_reg_write(apic, offset & 0xff0, val);
2426
2427 return 0;
2428 }
2429
kvm_lapic_set_eoi(struct kvm_vcpu * vcpu)2430 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu)
2431 {
2432 kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0);
2433 }
2434 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi);
2435
2436 #define X2APIC_ICR_RESERVED_BITS (GENMASK_ULL(31, 20) | GENMASK_ULL(17, 16) | BIT(13))
2437
kvm_x2apic_icr_write(struct kvm_lapic * apic,u64 data)2438 int kvm_x2apic_icr_write(struct kvm_lapic *apic, u64 data)
2439 {
2440 if (data & X2APIC_ICR_RESERVED_BITS)
2441 return 1;
2442
2443 /*
2444 * The BUSY bit is reserved on both Intel and AMD in x2APIC mode, but
2445 * only AMD requires it to be zero, Intel essentially just ignores the
2446 * bit. And if IPI virtualization (Intel) or x2AVIC (AMD) is enabled,
2447 * the CPU performs the reserved bits checks, i.e. the underlying CPU
2448 * behavior will "win". Arbitrarily clear the BUSY bit, as there is no
2449 * sane way to provide consistent behavior with respect to hardware.
2450 */
2451 data &= ~APIC_ICR_BUSY;
2452
2453 kvm_apic_send_ipi(apic, (u32)data, (u32)(data >> 32));
2454 if (kvm_x86_ops.x2apic_icr_is_split) {
2455 kvm_lapic_set_reg(apic, APIC_ICR, data);
2456 kvm_lapic_set_reg(apic, APIC_ICR2, data >> 32);
2457 } else {
2458 kvm_lapic_set_reg64(apic, APIC_ICR, data);
2459 }
2460 trace_kvm_apic_write(APIC_ICR, data);
2461 return 0;
2462 }
2463
kvm_x2apic_icr_read(struct kvm_lapic * apic)2464 static u64 kvm_x2apic_icr_read(struct kvm_lapic *apic)
2465 {
2466 if (kvm_x86_ops.x2apic_icr_is_split)
2467 return (u64)kvm_lapic_get_reg(apic, APIC_ICR) |
2468 (u64)kvm_lapic_get_reg(apic, APIC_ICR2) << 32;
2469
2470 return kvm_lapic_get_reg64(apic, APIC_ICR);
2471 }
2472
2473 /* emulate APIC access in a trap manner */
kvm_apic_write_nodecode(struct kvm_vcpu * vcpu,u32 offset)2474 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset)
2475 {
2476 struct kvm_lapic *apic = vcpu->arch.apic;
2477
2478 /*
2479 * ICR is a single 64-bit register when x2APIC is enabled, all others
2480 * registers hold 32-bit values. For legacy xAPIC, ICR writes need to
2481 * go down the common path to get the upper half from ICR2.
2482 *
2483 * Note, using the write helpers may incur an unnecessary write to the
2484 * virtual APIC state, but KVM needs to conditionally modify the value
2485 * in certain cases, e.g. to clear the ICR busy bit. The cost of extra
2486 * conditional branches is likely a wash relative to the cost of the
2487 * maybe-unecessary write, and both are in the noise anyways.
2488 */
2489 if (apic_x2apic_mode(apic) && offset == APIC_ICR)
2490 WARN_ON_ONCE(kvm_x2apic_icr_write(apic, kvm_x2apic_icr_read(apic)));
2491 else
2492 kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
2493 }
2494 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode);
2495
kvm_free_lapic(struct kvm_vcpu * vcpu)2496 void kvm_free_lapic(struct kvm_vcpu *vcpu)
2497 {
2498 struct kvm_lapic *apic = vcpu->arch.apic;
2499
2500 if (!vcpu->arch.apic) {
2501 static_branch_dec(&kvm_has_noapic_vcpu);
2502 return;
2503 }
2504
2505 hrtimer_cancel(&apic->lapic_timer.timer);
2506
2507 if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE))
2508 static_branch_slow_dec_deferred(&apic_hw_disabled);
2509
2510 if (!apic->sw_enabled)
2511 static_branch_slow_dec_deferred(&apic_sw_disabled);
2512
2513 if (apic->regs)
2514 free_page((unsigned long)apic->regs);
2515
2516 kfree(apic);
2517 }
2518
2519 /*
2520 *----------------------------------------------------------------------
2521 * LAPIC interface
2522 *----------------------------------------------------------------------
2523 */
kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu * vcpu)2524 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu)
2525 {
2526 struct kvm_lapic *apic = vcpu->arch.apic;
2527
2528 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic))
2529 return 0;
2530
2531 return apic->lapic_timer.tscdeadline;
2532 }
2533
kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu * vcpu,u64 data)2534 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data)
2535 {
2536 struct kvm_lapic *apic = vcpu->arch.apic;
2537
2538 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic))
2539 return;
2540
2541 hrtimer_cancel(&apic->lapic_timer.timer);
2542 apic->lapic_timer.tscdeadline = data;
2543 start_apic_timer(apic);
2544 }
2545
kvm_lapic_set_tpr(struct kvm_vcpu * vcpu,unsigned long cr8)2546 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8)
2547 {
2548 apic_set_tpr(vcpu->arch.apic, (cr8 & 0x0f) << 4);
2549 }
2550
kvm_lapic_get_cr8(struct kvm_vcpu * vcpu)2551 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu)
2552 {
2553 u64 tpr;
2554
2555 tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI);
2556
2557 return (tpr & 0xf0) >> 4;
2558 }
2559
__kvm_apic_set_base(struct kvm_vcpu * vcpu,u64 value)2560 static void __kvm_apic_set_base(struct kvm_vcpu *vcpu, u64 value)
2561 {
2562 u64 old_value = vcpu->arch.apic_base;
2563 struct kvm_lapic *apic = vcpu->arch.apic;
2564
2565 vcpu->arch.apic_base = value;
2566
2567 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE)
2568 vcpu->arch.cpuid_dynamic_bits_dirty = true;
2569
2570 if (!apic)
2571 return;
2572
2573 /* update jump label if enable bit changes */
2574 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) {
2575 if (value & MSR_IA32_APICBASE_ENABLE) {
2576 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2577 static_branch_slow_dec_deferred(&apic_hw_disabled);
2578 /* Check if there are APF page ready requests pending */
2579 kvm_make_request(KVM_REQ_APF_READY, vcpu);
2580 } else {
2581 static_branch_inc(&apic_hw_disabled.key);
2582 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
2583 }
2584 }
2585
2586 if ((old_value ^ value) & X2APIC_ENABLE) {
2587 if (value & X2APIC_ENABLE)
2588 kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id);
2589 else if (value & MSR_IA32_APICBASE_ENABLE)
2590 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2591 }
2592
2593 if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) {
2594 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
2595 kvm_x86_call(set_virtual_apic_mode)(vcpu);
2596 }
2597
2598 apic->base_address = apic->vcpu->arch.apic_base &
2599 MSR_IA32_APICBASE_BASE;
2600
2601 if ((value & MSR_IA32_APICBASE_ENABLE) &&
2602 apic->base_address != APIC_DEFAULT_PHYS_BASE) {
2603 kvm_set_apicv_inhibit(apic->vcpu->kvm,
2604 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED);
2605 }
2606 }
2607
kvm_apic_set_base(struct kvm_vcpu * vcpu,u64 value,bool host_initiated)2608 int kvm_apic_set_base(struct kvm_vcpu *vcpu, u64 value, bool host_initiated)
2609 {
2610 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
2611 enum lapic_mode new_mode = kvm_apic_mode(value);
2612
2613 if (vcpu->arch.apic_base == value)
2614 return 0;
2615
2616 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
2617 (guest_cpu_cap_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
2618
2619 if ((value & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
2620 return 1;
2621 if (!host_initiated) {
2622 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
2623 return 1;
2624 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
2625 return 1;
2626 }
2627
2628 __kvm_apic_set_base(vcpu, value);
2629 kvm_recalculate_apic_map(vcpu->kvm);
2630 return 0;
2631 }
2632 EXPORT_SYMBOL_GPL(kvm_apic_set_base);
2633
kvm_apic_update_apicv(struct kvm_vcpu * vcpu)2634 void kvm_apic_update_apicv(struct kvm_vcpu *vcpu)
2635 {
2636 struct kvm_lapic *apic = vcpu->arch.apic;
2637
2638 /*
2639 * When APICv is enabled, KVM must always search the IRR for a pending
2640 * IRQ, as other vCPUs and devices can set IRR bits even if the vCPU
2641 * isn't running. If APICv is disabled, KVM _should_ search the IRR
2642 * for a pending IRQ. But KVM currently doesn't ensure *all* hardware,
2643 * e.g. CPUs and IOMMUs, has seen the change in state, i.e. searching
2644 * the IRR at this time could race with IRQ delivery from hardware that
2645 * still sees APICv as being enabled.
2646 *
2647 * FIXME: Ensure other vCPUs and devices observe the change in APICv
2648 * state prior to updating KVM's metadata caches, so that KVM
2649 * can safely search the IRR and set irr_pending accordingly.
2650 */
2651 apic->irr_pending = true;
2652
2653 if (apic->apicv_active)
2654 apic->isr_count = 1;
2655 else
2656 apic->isr_count = count_vectors(apic->regs + APIC_ISR);
2657
2658 apic->highest_isr_cache = -1;
2659 }
2660
kvm_alloc_apic_access_page(struct kvm * kvm)2661 int kvm_alloc_apic_access_page(struct kvm *kvm)
2662 {
2663 void __user *hva;
2664 int ret = 0;
2665
2666 mutex_lock(&kvm->slots_lock);
2667 if (kvm->arch.apic_access_memslot_enabled ||
2668 kvm->arch.apic_access_memslot_inhibited)
2669 goto out;
2670
2671 hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
2672 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
2673 if (IS_ERR(hva)) {
2674 ret = PTR_ERR(hva);
2675 goto out;
2676 }
2677
2678 kvm->arch.apic_access_memslot_enabled = true;
2679 out:
2680 mutex_unlock(&kvm->slots_lock);
2681 return ret;
2682 }
2683 EXPORT_SYMBOL_GPL(kvm_alloc_apic_access_page);
2684
kvm_inhibit_apic_access_page(struct kvm_vcpu * vcpu)2685 void kvm_inhibit_apic_access_page(struct kvm_vcpu *vcpu)
2686 {
2687 struct kvm *kvm = vcpu->kvm;
2688
2689 if (!kvm->arch.apic_access_memslot_enabled)
2690 return;
2691
2692 kvm_vcpu_srcu_read_unlock(vcpu);
2693
2694 mutex_lock(&kvm->slots_lock);
2695
2696 if (kvm->arch.apic_access_memslot_enabled) {
2697 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
2698 /*
2699 * Clear "enabled" after the memslot is deleted so that a
2700 * different vCPU doesn't get a false negative when checking
2701 * the flag out of slots_lock. No additional memory barrier is
2702 * needed as modifying memslots requires waiting other vCPUs to
2703 * drop SRCU (see above), and false positives are ok as the
2704 * flag is rechecked after acquiring slots_lock.
2705 */
2706 kvm->arch.apic_access_memslot_enabled = false;
2707
2708 /*
2709 * Mark the memslot as inhibited to prevent reallocating the
2710 * memslot during vCPU creation, e.g. if a vCPU is hotplugged.
2711 */
2712 kvm->arch.apic_access_memslot_inhibited = true;
2713 }
2714
2715 mutex_unlock(&kvm->slots_lock);
2716
2717 kvm_vcpu_srcu_read_lock(vcpu);
2718 }
2719
kvm_lapic_reset(struct kvm_vcpu * vcpu,bool init_event)2720 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event)
2721 {
2722 struct kvm_lapic *apic = vcpu->arch.apic;
2723 u64 msr_val;
2724 int i;
2725
2726 kvm_x86_call(apicv_pre_state_restore)(vcpu);
2727
2728 if (!init_event) {
2729 msr_val = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE;
2730 if (kvm_vcpu_is_reset_bsp(vcpu))
2731 msr_val |= MSR_IA32_APICBASE_BSP;
2732
2733 /*
2734 * Use the inner helper to avoid an extra recalcuation of the
2735 * optimized APIC map if some other task has dirtied the map.
2736 * The recalculation needed for this vCPU will be done after
2737 * all APIC state has been initialized (see below).
2738 */
2739 __kvm_apic_set_base(vcpu, msr_val);
2740 }
2741
2742 if (!apic)
2743 return;
2744
2745 /* Stop the timer in case it's a reset to an active apic */
2746 hrtimer_cancel(&apic->lapic_timer.timer);
2747
2748 /* The xAPIC ID is set at RESET even if the APIC was already enabled. */
2749 if (!init_event)
2750 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2751 kvm_apic_set_version(apic->vcpu);
2752
2753 for (i = 0; i < apic->nr_lvt_entries; i++)
2754 kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED);
2755 apic_update_lvtt(apic);
2756 if (kvm_vcpu_is_reset_bsp(vcpu) &&
2757 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED))
2758 kvm_lapic_set_reg(apic, APIC_LVT0,
2759 SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT));
2760 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
2761
2762 kvm_apic_set_dfr(apic, 0xffffffffU);
2763 apic_set_spiv(apic, 0xff);
2764 kvm_lapic_set_reg(apic, APIC_TASKPRI, 0);
2765 if (!apic_x2apic_mode(apic))
2766 kvm_apic_set_ldr(apic, 0);
2767 kvm_lapic_set_reg(apic, APIC_ESR, 0);
2768 if (!apic_x2apic_mode(apic)) {
2769 kvm_lapic_set_reg(apic, APIC_ICR, 0);
2770 kvm_lapic_set_reg(apic, APIC_ICR2, 0);
2771 } else {
2772 kvm_lapic_set_reg64(apic, APIC_ICR, 0);
2773 }
2774 kvm_lapic_set_reg(apic, APIC_TDCR, 0);
2775 kvm_lapic_set_reg(apic, APIC_TMICT, 0);
2776 for (i = 0; i < 8; i++) {
2777 kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0);
2778 kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0);
2779 kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0);
2780 }
2781 kvm_apic_update_apicv(vcpu);
2782 update_divide_count(apic);
2783 atomic_set(&apic->lapic_timer.pending, 0);
2784
2785 vcpu->arch.pv_eoi.msr_val = 0;
2786 apic_update_ppr(apic);
2787 if (apic->apicv_active) {
2788 kvm_x86_call(apicv_post_state_restore)(vcpu);
2789 kvm_x86_call(hwapic_isr_update)(vcpu, -1);
2790 }
2791
2792 vcpu->arch.apic_arb_prio = 0;
2793 vcpu->arch.apic_attention = 0;
2794
2795 kvm_recalculate_apic_map(vcpu->kvm);
2796 }
2797
2798 /*
2799 *----------------------------------------------------------------------
2800 * timer interface
2801 *----------------------------------------------------------------------
2802 */
2803
lapic_is_periodic(struct kvm_lapic * apic)2804 static bool lapic_is_periodic(struct kvm_lapic *apic)
2805 {
2806 return apic_lvtt_period(apic);
2807 }
2808
apic_has_pending_timer(struct kvm_vcpu * vcpu)2809 int apic_has_pending_timer(struct kvm_vcpu *vcpu)
2810 {
2811 struct kvm_lapic *apic = vcpu->arch.apic;
2812
2813 if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT))
2814 return atomic_read(&apic->lapic_timer.pending);
2815
2816 return 0;
2817 }
2818
kvm_apic_local_deliver(struct kvm_lapic * apic,int lvt_type)2819 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type)
2820 {
2821 u32 reg = kvm_lapic_get_reg(apic, lvt_type);
2822 int vector, mode, trig_mode;
2823 int r;
2824
2825 if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) {
2826 vector = reg & APIC_VECTOR_MASK;
2827 mode = reg & APIC_MODE_MASK;
2828 trig_mode = reg & APIC_LVT_LEVEL_TRIGGER;
2829
2830 r = __apic_accept_irq(apic, mode, vector, 1, trig_mode, NULL);
2831 if (r && lvt_type == APIC_LVTPC &&
2832 guest_cpuid_is_intel_compatible(apic->vcpu))
2833 kvm_lapic_set_reg(apic, APIC_LVTPC, reg | APIC_LVT_MASKED);
2834 return r;
2835 }
2836 return 0;
2837 }
2838
kvm_apic_nmi_wd_deliver(struct kvm_vcpu * vcpu)2839 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu)
2840 {
2841 struct kvm_lapic *apic = vcpu->arch.apic;
2842
2843 if (apic)
2844 kvm_apic_local_deliver(apic, APIC_LVT0);
2845 }
2846
2847 static const struct kvm_io_device_ops apic_mmio_ops = {
2848 .read = apic_mmio_read,
2849 .write = apic_mmio_write,
2850 };
2851
apic_timer_fn(struct hrtimer * data)2852 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data)
2853 {
2854 struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer);
2855 struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer);
2856
2857 apic_timer_expired(apic, true);
2858
2859 if (lapic_is_periodic(apic)) {
2860 advance_periodic_target_expiration(apic);
2861 hrtimer_add_expires_ns(&ktimer->timer, ktimer->period);
2862 return HRTIMER_RESTART;
2863 } else
2864 return HRTIMER_NORESTART;
2865 }
2866
kvm_create_lapic(struct kvm_vcpu * vcpu)2867 int kvm_create_lapic(struct kvm_vcpu *vcpu)
2868 {
2869 struct kvm_lapic *apic;
2870
2871 ASSERT(vcpu != NULL);
2872
2873 if (!irqchip_in_kernel(vcpu->kvm)) {
2874 static_branch_inc(&kvm_has_noapic_vcpu);
2875 return 0;
2876 }
2877
2878 apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT);
2879 if (!apic)
2880 goto nomem;
2881
2882 vcpu->arch.apic = apic;
2883
2884 if (kvm_x86_ops.alloc_apic_backing_page)
2885 apic->regs = kvm_x86_call(alloc_apic_backing_page)(vcpu);
2886 else
2887 apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
2888 if (!apic->regs) {
2889 printk(KERN_ERR "malloc apic regs error for vcpu %x\n",
2890 vcpu->vcpu_id);
2891 goto nomem_free_apic;
2892 }
2893 apic->vcpu = vcpu;
2894
2895 apic->nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu);
2896
2897 hrtimer_setup(&apic->lapic_timer.timer, apic_timer_fn, CLOCK_MONOTONIC,
2898 HRTIMER_MODE_ABS_HARD);
2899 if (lapic_timer_advance)
2900 apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
2901
2902 /*
2903 * Stuff the APIC ENABLE bit in lieu of temporarily incrementing
2904 * apic_hw_disabled; the full RESET value is set by kvm_lapic_reset().
2905 */
2906 vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE;
2907 static_branch_inc(&apic_sw_disabled.key); /* sw disabled at reset */
2908 kvm_iodevice_init(&apic->dev, &apic_mmio_ops);
2909
2910 /*
2911 * Defer evaluating inhibits until the vCPU is first run, as this vCPU
2912 * will not get notified of any changes until this vCPU is visible to
2913 * other vCPUs (marked online and added to the set of vCPUs).
2914 *
2915 * Opportunistically mark APICv active as VMX in particularly is highly
2916 * unlikely to have inhibits. Ignore the current per-VM APICv state so
2917 * that vCPU creation is guaranteed to run with a deterministic value,
2918 * the request will ensure the vCPU gets the correct state before VM-Entry.
2919 */
2920 if (enable_apicv) {
2921 apic->apicv_active = true;
2922 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
2923 }
2924
2925 return 0;
2926 nomem_free_apic:
2927 kfree(apic);
2928 vcpu->arch.apic = NULL;
2929 nomem:
2930 return -ENOMEM;
2931 }
2932
kvm_apic_has_interrupt(struct kvm_vcpu * vcpu)2933 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu)
2934 {
2935 struct kvm_lapic *apic = vcpu->arch.apic;
2936 u32 ppr;
2937
2938 if (!kvm_apic_present(vcpu))
2939 return -1;
2940
2941 if (apic->guest_apic_protected)
2942 return -1;
2943
2944 __apic_update_ppr(apic, &ppr);
2945 return apic_has_interrupt_for_ppr(apic, ppr);
2946 }
2947 EXPORT_SYMBOL_GPL(kvm_apic_has_interrupt);
2948
kvm_apic_accept_pic_intr(struct kvm_vcpu * vcpu)2949 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu)
2950 {
2951 u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0);
2952
2953 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
2954 return 1;
2955 if ((lvt0 & APIC_LVT_MASKED) == 0 &&
2956 GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT)
2957 return 1;
2958 return 0;
2959 }
2960
kvm_inject_apic_timer_irqs(struct kvm_vcpu * vcpu)2961 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu)
2962 {
2963 struct kvm_lapic *apic = vcpu->arch.apic;
2964
2965 if (atomic_read(&apic->lapic_timer.pending) > 0) {
2966 kvm_apic_inject_pending_timer_irqs(apic);
2967 atomic_set(&apic->lapic_timer.pending, 0);
2968 }
2969 }
2970
kvm_apic_ack_interrupt(struct kvm_vcpu * vcpu,int vector)2971 void kvm_apic_ack_interrupt(struct kvm_vcpu *vcpu, int vector)
2972 {
2973 struct kvm_lapic *apic = vcpu->arch.apic;
2974 u32 ppr;
2975
2976 if (WARN_ON_ONCE(vector < 0 || !apic))
2977 return;
2978
2979 /*
2980 * We get here even with APIC virtualization enabled, if doing
2981 * nested virtualization and L1 runs with the "acknowledge interrupt
2982 * on exit" mode. Then we cannot inject the interrupt via RVI,
2983 * because the process would deliver it through the IDT.
2984 */
2985
2986 apic_clear_irr(vector, apic);
2987 if (kvm_hv_synic_auto_eoi_set(vcpu, vector)) {
2988 /*
2989 * For auto-EOI interrupts, there might be another pending
2990 * interrupt above PPR, so check whether to raise another
2991 * KVM_REQ_EVENT.
2992 */
2993 apic_update_ppr(apic);
2994 } else {
2995 /*
2996 * For normal interrupts, PPR has been raised and there cannot
2997 * be a higher-priority pending interrupt---except if there was
2998 * a concurrent interrupt injection, but that would have
2999 * triggered KVM_REQ_EVENT already.
3000 */
3001 apic_set_isr(vector, apic);
3002 __apic_update_ppr(apic, &ppr);
3003 }
3004
3005 }
3006 EXPORT_SYMBOL_GPL(kvm_apic_ack_interrupt);
3007
kvm_apic_state_fixup(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s,bool set)3008 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu,
3009 struct kvm_lapic_state *s, bool set)
3010 {
3011 if (apic_x2apic_mode(vcpu->arch.apic)) {
3012 u32 x2apic_id = kvm_x2apic_id(vcpu->arch.apic);
3013 u32 *id = (u32 *)(s->regs + APIC_ID);
3014 u32 *ldr = (u32 *)(s->regs + APIC_LDR);
3015 u64 icr;
3016
3017 if (vcpu->kvm->arch.x2apic_format) {
3018 if (*id != x2apic_id)
3019 return -EINVAL;
3020 } else {
3021 /*
3022 * Ignore the userspace value when setting APIC state.
3023 * KVM's model is that the x2APIC ID is readonly, e.g.
3024 * KVM only supports delivering interrupts to KVM's
3025 * version of the x2APIC ID. However, for backwards
3026 * compatibility, don't reject attempts to set a
3027 * mismatched ID for userspace that hasn't opted into
3028 * x2apic_format.
3029 */
3030 if (set)
3031 *id = x2apic_id;
3032 else
3033 *id = x2apic_id << 24;
3034 }
3035
3036 /*
3037 * In x2APIC mode, the LDR is fixed and based on the id. And
3038 * if the ICR is _not_ split, ICR is internally a single 64-bit
3039 * register, but needs to be split to ICR+ICR2 in userspace for
3040 * backwards compatibility.
3041 */
3042 if (set)
3043 *ldr = kvm_apic_calc_x2apic_ldr(x2apic_id);
3044
3045 if (!kvm_x86_ops.x2apic_icr_is_split) {
3046 if (set) {
3047 icr = apic_get_reg(s->regs, APIC_ICR) |
3048 (u64)apic_get_reg(s->regs, APIC_ICR2) << 32;
3049 apic_set_reg64(s->regs, APIC_ICR, icr);
3050 } else {
3051 icr = apic_get_reg64(s->regs, APIC_ICR);
3052 apic_set_reg(s->regs, APIC_ICR2, icr >> 32);
3053 }
3054 }
3055 }
3056
3057 return 0;
3058 }
3059
kvm_apic_get_state(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)3060 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
3061 {
3062 memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s));
3063
3064 /*
3065 * Get calculated timer current count for remaining timer period (if
3066 * any) and store it in the returned register set.
3067 */
3068 apic_set_reg(s->regs, APIC_TMCCT, __apic_read(vcpu->arch.apic, APIC_TMCCT));
3069
3070 return kvm_apic_state_fixup(vcpu, s, false);
3071 }
3072
kvm_apic_set_state(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)3073 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
3074 {
3075 struct kvm_lapic *apic = vcpu->arch.apic;
3076 int r;
3077
3078 kvm_x86_call(apicv_pre_state_restore)(vcpu);
3079
3080 /* set SPIV separately to get count of SW disabled APICs right */
3081 apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV)));
3082
3083 r = kvm_apic_state_fixup(vcpu, s, true);
3084 if (r) {
3085 kvm_recalculate_apic_map(vcpu->kvm);
3086 return r;
3087 }
3088 memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s));
3089
3090 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
3091 kvm_recalculate_apic_map(vcpu->kvm);
3092 kvm_apic_set_version(vcpu);
3093
3094 apic_update_ppr(apic);
3095 cancel_apic_timer(apic);
3096 apic->lapic_timer.expired_tscdeadline = 0;
3097 apic_update_lvtt(apic);
3098 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
3099 update_divide_count(apic);
3100 __start_apic_timer(apic, APIC_TMCCT);
3101 kvm_lapic_set_reg(apic, APIC_TMCCT, 0);
3102 kvm_apic_update_apicv(vcpu);
3103 if (apic->apicv_active) {
3104 kvm_x86_call(apicv_post_state_restore)(vcpu);
3105 kvm_x86_call(hwapic_isr_update)(vcpu, apic_find_highest_isr(apic));
3106 }
3107 kvm_make_request(KVM_REQ_EVENT, vcpu);
3108
3109 #ifdef CONFIG_KVM_IOAPIC
3110 if (ioapic_in_kernel(vcpu->kvm))
3111 kvm_rtc_eoi_tracking_restore_one(vcpu);
3112 #endif
3113
3114 vcpu->arch.apic_arb_prio = 0;
3115
3116 return 0;
3117 }
3118
__kvm_migrate_apic_timer(struct kvm_vcpu * vcpu)3119 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu)
3120 {
3121 struct hrtimer *timer;
3122
3123 if (!lapic_in_kernel(vcpu) ||
3124 kvm_can_post_timer_interrupt(vcpu))
3125 return;
3126
3127 timer = &vcpu->arch.apic->lapic_timer.timer;
3128 if (hrtimer_cancel(timer))
3129 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD);
3130 }
3131
3132 /*
3133 * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt
3134 *
3135 * Detect whether guest triggered PV EOI since the
3136 * last entry. If yes, set EOI on guests's behalf.
3137 * Clear PV EOI in guest memory in any case.
3138 */
apic_sync_pv_eoi_from_guest(struct kvm_vcpu * vcpu,struct kvm_lapic * apic)3139 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu,
3140 struct kvm_lapic *apic)
3141 {
3142 int vector;
3143 /*
3144 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host
3145 * and KVM_PV_EOI_ENABLED in guest memory as follows:
3146 *
3147 * KVM_APIC_PV_EOI_PENDING is unset:
3148 * -> host disabled PV EOI.
3149 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set:
3150 * -> host enabled PV EOI, guest did not execute EOI yet.
3151 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset:
3152 * -> host enabled PV EOI, guest executed EOI.
3153 */
3154 BUG_ON(!pv_eoi_enabled(vcpu));
3155
3156 if (pv_eoi_test_and_clr_pending(vcpu))
3157 return;
3158 vector = apic_set_eoi(apic);
3159 trace_kvm_pv_eoi(apic, vector);
3160 }
3161
kvm_lapic_sync_from_vapic(struct kvm_vcpu * vcpu)3162 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu)
3163 {
3164 u32 data;
3165
3166 if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention))
3167 apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic);
3168
3169 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
3170 return;
3171
3172 if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
3173 sizeof(u32)))
3174 return;
3175
3176 apic_set_tpr(vcpu->arch.apic, data & 0xff);
3177 }
3178
3179 /*
3180 * apic_sync_pv_eoi_to_guest - called before vmentry
3181 *
3182 * Detect whether it's safe to enable PV EOI and
3183 * if yes do so.
3184 */
apic_sync_pv_eoi_to_guest(struct kvm_vcpu * vcpu,struct kvm_lapic * apic)3185 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu,
3186 struct kvm_lapic *apic)
3187 {
3188 if (!pv_eoi_enabled(vcpu) ||
3189 /* IRR set or many bits in ISR: could be nested. */
3190 apic->irr_pending ||
3191 /* Cache not set: could be safe but we don't bother. */
3192 apic->highest_isr_cache == -1 ||
3193 /* Need EOI to update ioapic. */
3194 kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) {
3195 /*
3196 * PV EOI was disabled by apic_sync_pv_eoi_from_guest
3197 * so we need not do anything here.
3198 */
3199 return;
3200 }
3201
3202 pv_eoi_set_pending(apic->vcpu);
3203 }
3204
kvm_lapic_sync_to_vapic(struct kvm_vcpu * vcpu)3205 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu)
3206 {
3207 u32 data, tpr;
3208 int max_irr, max_isr;
3209 struct kvm_lapic *apic = vcpu->arch.apic;
3210
3211 apic_sync_pv_eoi_to_guest(vcpu, apic);
3212
3213 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
3214 return;
3215
3216 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff;
3217 max_irr = apic_find_highest_irr(apic);
3218 if (max_irr < 0)
3219 max_irr = 0;
3220 max_isr = apic_find_highest_isr(apic);
3221 if (max_isr < 0)
3222 max_isr = 0;
3223 data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24);
3224
3225 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
3226 sizeof(u32));
3227 }
3228
kvm_lapic_set_vapic_addr(struct kvm_vcpu * vcpu,gpa_t vapic_addr)3229 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr)
3230 {
3231 if (vapic_addr) {
3232 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
3233 &vcpu->arch.apic->vapic_cache,
3234 vapic_addr, sizeof(u32)))
3235 return -EINVAL;
3236 __set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
3237 } else {
3238 __clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
3239 }
3240
3241 vcpu->arch.apic->vapic_addr = vapic_addr;
3242 return 0;
3243 }
3244
kvm_lapic_msr_read(struct kvm_lapic * apic,u32 reg,u64 * data)3245 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data)
3246 {
3247 u32 low;
3248
3249 if (reg == APIC_ICR) {
3250 *data = kvm_x2apic_icr_read(apic);
3251 return 0;
3252 }
3253
3254 if (kvm_lapic_reg_read(apic, reg, 4, &low))
3255 return 1;
3256
3257 *data = low;
3258
3259 return 0;
3260 }
3261
kvm_lapic_msr_write(struct kvm_lapic * apic,u32 reg,u64 data)3262 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data)
3263 {
3264 /*
3265 * ICR is a 64-bit register in x2APIC mode (and Hyper-V PV vAPIC) and
3266 * can be written as such, all other registers remain accessible only
3267 * through 32-bit reads/writes.
3268 */
3269 if (reg == APIC_ICR)
3270 return kvm_x2apic_icr_write(apic, data);
3271
3272 /* Bits 63:32 are reserved in all other registers. */
3273 if (data >> 32)
3274 return 1;
3275
3276 return kvm_lapic_reg_write(apic, reg, (u32)data);
3277 }
3278
kvm_x2apic_msr_write(struct kvm_vcpu * vcpu,u32 msr,u64 data)3279 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data)
3280 {
3281 struct kvm_lapic *apic = vcpu->arch.apic;
3282 u32 reg = (msr - APIC_BASE_MSR) << 4;
3283
3284 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
3285 return 1;
3286
3287 return kvm_lapic_msr_write(apic, reg, data);
3288 }
3289
kvm_x2apic_msr_read(struct kvm_vcpu * vcpu,u32 msr,u64 * data)3290 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data)
3291 {
3292 struct kvm_lapic *apic = vcpu->arch.apic;
3293 u32 reg = (msr - APIC_BASE_MSR) << 4;
3294
3295 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
3296 return 1;
3297
3298 return kvm_lapic_msr_read(apic, reg, data);
3299 }
3300
kvm_hv_vapic_msr_write(struct kvm_vcpu * vcpu,u32 reg,u64 data)3301 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data)
3302 {
3303 if (!lapic_in_kernel(vcpu))
3304 return 1;
3305
3306 return kvm_lapic_msr_write(vcpu->arch.apic, reg, data);
3307 }
3308
kvm_hv_vapic_msr_read(struct kvm_vcpu * vcpu,u32 reg,u64 * data)3309 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data)
3310 {
3311 if (!lapic_in_kernel(vcpu))
3312 return 1;
3313
3314 return kvm_lapic_msr_read(vcpu->arch.apic, reg, data);
3315 }
3316
kvm_lapic_set_pv_eoi(struct kvm_vcpu * vcpu,u64 data,unsigned long len)3317 int kvm_lapic_set_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len)
3318 {
3319 u64 addr = data & ~KVM_MSR_ENABLED;
3320 struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data;
3321 unsigned long new_len;
3322 int ret;
3323
3324 if (!IS_ALIGNED(addr, 4))
3325 return 1;
3326
3327 if (data & KVM_MSR_ENABLED) {
3328 if (addr == ghc->gpa && len <= ghc->len)
3329 new_len = ghc->len;
3330 else
3331 new_len = len;
3332
3333 ret = kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len);
3334 if (ret)
3335 return ret;
3336 }
3337
3338 vcpu->arch.pv_eoi.msr_val = data;
3339
3340 return 0;
3341 }
3342
kvm_apic_accept_events(struct kvm_vcpu * vcpu)3343 int kvm_apic_accept_events(struct kvm_vcpu *vcpu)
3344 {
3345 struct kvm_lapic *apic = vcpu->arch.apic;
3346 u8 sipi_vector;
3347 int r;
3348
3349 if (!kvm_apic_has_pending_init_or_sipi(vcpu))
3350 return 0;
3351
3352 if (is_guest_mode(vcpu)) {
3353 r = kvm_check_nested_events(vcpu);
3354 if (r < 0)
3355 return r == -EBUSY ? 0 : r;
3356 /*
3357 * Continue processing INIT/SIPI even if a nested VM-Exit
3358 * occurred, e.g. pending SIPIs should be dropped if INIT+SIPI
3359 * are blocked as a result of transitioning to VMX root mode.
3360 */
3361 }
3362
3363 /*
3364 * INITs are blocked while CPU is in specific states (SMM, VMX root
3365 * mode, SVM with GIF=0), while SIPIs are dropped if the CPU isn't in
3366 * wait-for-SIPI (WFS).
3367 */
3368 if (!kvm_apic_init_sipi_allowed(vcpu)) {
3369 WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED);
3370 clear_bit(KVM_APIC_SIPI, &apic->pending_events);
3371 return 0;
3372 }
3373
3374 if (test_and_clear_bit(KVM_APIC_INIT, &apic->pending_events)) {
3375 kvm_vcpu_reset(vcpu, true);
3376 if (kvm_vcpu_is_bsp(apic->vcpu))
3377 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
3378 else
3379 kvm_set_mp_state(vcpu, KVM_MP_STATE_INIT_RECEIVED);
3380 }
3381 if (test_and_clear_bit(KVM_APIC_SIPI, &apic->pending_events)) {
3382 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
3383 /* evaluate pending_events before reading the vector */
3384 smp_rmb();
3385 sipi_vector = apic->sipi_vector;
3386 kvm_x86_call(vcpu_deliver_sipi_vector)(vcpu,
3387 sipi_vector);
3388 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
3389 }
3390 }
3391 return 0;
3392 }
3393
kvm_lapic_exit(void)3394 void kvm_lapic_exit(void)
3395 {
3396 static_key_deferred_flush(&apic_hw_disabled);
3397 WARN_ON(static_branch_unlikely(&apic_hw_disabled.key));
3398 static_key_deferred_flush(&apic_sw_disabled);
3399 WARN_ON(static_branch_unlikely(&apic_sw_disabled.key));
3400 }
3401