xref: /linux/arch/x86/kvm/kvm_cache_regs.h (revision cdd30ebb1b9f36159d66f088b61aee264e649d7a)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef ASM_KVM_CACHE_REGS_H
3 #define ASM_KVM_CACHE_REGS_H
4 
5 #include <linux/kvm_host.h>
6 
7 #define KVM_POSSIBLE_CR0_GUEST_BITS	(X86_CR0_TS | X86_CR0_WP)
8 #define KVM_POSSIBLE_CR4_GUEST_BITS				  \
9 	(X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR  \
10 	 | X86_CR4_OSXMMEXCPT | X86_CR4_PGE | X86_CR4_TSD | X86_CR4_FSGSBASE)
11 
12 #define X86_CR0_PDPTR_BITS    (X86_CR0_CD | X86_CR0_NW | X86_CR0_PG)
13 #define X86_CR4_TLBFLUSH_BITS (X86_CR4_PGE | X86_CR4_PCIDE | X86_CR4_PAE | X86_CR4_SMEP)
14 #define X86_CR4_PDPTR_BITS    (X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_SMEP)
15 
16 static_assert(!(KVM_POSSIBLE_CR0_GUEST_BITS & X86_CR0_PDPTR_BITS));
17 
18 #define BUILD_KVM_GPR_ACCESSORS(lname, uname)				      \
19 static __always_inline unsigned long kvm_##lname##_read(struct kvm_vcpu *vcpu)\
20 {									      \
21 	return vcpu->arch.regs[VCPU_REGS_##uname];			      \
22 }									      \
23 static __always_inline void kvm_##lname##_write(struct kvm_vcpu *vcpu,	      \
24 						unsigned long val)	      \
25 {									      \
26 	vcpu->arch.regs[VCPU_REGS_##uname] = val;			      \
27 }
28 BUILD_KVM_GPR_ACCESSORS(rax, RAX)
29 BUILD_KVM_GPR_ACCESSORS(rbx, RBX)
30 BUILD_KVM_GPR_ACCESSORS(rcx, RCX)
31 BUILD_KVM_GPR_ACCESSORS(rdx, RDX)
32 BUILD_KVM_GPR_ACCESSORS(rbp, RBP)
33 BUILD_KVM_GPR_ACCESSORS(rsi, RSI)
34 BUILD_KVM_GPR_ACCESSORS(rdi, RDI)
35 #ifdef CONFIG_X86_64
36 BUILD_KVM_GPR_ACCESSORS(r8,  R8)
37 BUILD_KVM_GPR_ACCESSORS(r9,  R9)
38 BUILD_KVM_GPR_ACCESSORS(r10, R10)
39 BUILD_KVM_GPR_ACCESSORS(r11, R11)
40 BUILD_KVM_GPR_ACCESSORS(r12, R12)
41 BUILD_KVM_GPR_ACCESSORS(r13, R13)
42 BUILD_KVM_GPR_ACCESSORS(r14, R14)
43 BUILD_KVM_GPR_ACCESSORS(r15, R15)
44 #endif
45 
46 /*
47  * Using the register cache from interrupt context is generally not allowed, as
48  * caching a register and marking it available/dirty can't be done atomically,
49  * i.e. accesses from interrupt context may clobber state or read stale data if
50  * the vCPU task is in the process of updating the cache.  The exception is if
51  * KVM is handling a PMI IRQ/NMI VM-Exit, as that bound code sequence doesn't
52  * touch the cache, it runs after the cache is reset (post VM-Exit), and PMIs
53  * need to access several registers that are cacheable.
54  */
55 #define kvm_assert_register_caching_allowed(vcpu)		\
56 	lockdep_assert_once(in_task() || kvm_arch_pmi_in_guest(vcpu))
57 
58 /*
59  * avail  dirty
60  * 0	  0	  register in VMCS/VMCB
61  * 0	  1	  *INVALID*
62  * 1	  0	  register in vcpu->arch
63  * 1	  1	  register in vcpu->arch, needs to be stored back
64  */
65 static inline bool kvm_register_is_available(struct kvm_vcpu *vcpu,
66 					     enum kvm_reg reg)
67 {
68 	kvm_assert_register_caching_allowed(vcpu);
69 	return test_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
70 }
71 
72 static inline bool kvm_register_is_dirty(struct kvm_vcpu *vcpu,
73 					 enum kvm_reg reg)
74 {
75 	kvm_assert_register_caching_allowed(vcpu);
76 	return test_bit(reg, (unsigned long *)&vcpu->arch.regs_dirty);
77 }
78 
79 static inline void kvm_register_mark_available(struct kvm_vcpu *vcpu,
80 					       enum kvm_reg reg)
81 {
82 	kvm_assert_register_caching_allowed(vcpu);
83 	__set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
84 }
85 
86 static inline void kvm_register_mark_dirty(struct kvm_vcpu *vcpu,
87 					   enum kvm_reg reg)
88 {
89 	kvm_assert_register_caching_allowed(vcpu);
90 	__set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
91 	__set_bit(reg, (unsigned long *)&vcpu->arch.regs_dirty);
92 }
93 
94 /*
95  * kvm_register_test_and_mark_available() is a special snowflake that uses an
96  * arch bitop directly to avoid the explicit instrumentation that comes with
97  * the generic bitops.  This allows code that cannot be instrumented (noinstr
98  * functions), e.g. the low level VM-Enter/VM-Exit paths, to cache registers.
99  */
100 static __always_inline bool kvm_register_test_and_mark_available(struct kvm_vcpu *vcpu,
101 								 enum kvm_reg reg)
102 {
103 	kvm_assert_register_caching_allowed(vcpu);
104 	return arch___test_and_set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
105 }
106 
107 /*
108  * The "raw" register helpers are only for cases where the full 64 bits of a
109  * register are read/written irrespective of current vCPU mode.  In other words,
110  * odds are good you shouldn't be using the raw variants.
111  */
112 static inline unsigned long kvm_register_read_raw(struct kvm_vcpu *vcpu, int reg)
113 {
114 	if (WARN_ON_ONCE((unsigned int)reg >= NR_VCPU_REGS))
115 		return 0;
116 
117 	if (!kvm_register_is_available(vcpu, reg))
118 		kvm_x86_call(cache_reg)(vcpu, reg);
119 
120 	return vcpu->arch.regs[reg];
121 }
122 
123 static inline void kvm_register_write_raw(struct kvm_vcpu *vcpu, int reg,
124 					  unsigned long val)
125 {
126 	if (WARN_ON_ONCE((unsigned int)reg >= NR_VCPU_REGS))
127 		return;
128 
129 	vcpu->arch.regs[reg] = val;
130 	kvm_register_mark_dirty(vcpu, reg);
131 }
132 
133 static inline unsigned long kvm_rip_read(struct kvm_vcpu *vcpu)
134 {
135 	return kvm_register_read_raw(vcpu, VCPU_REGS_RIP);
136 }
137 
138 static inline void kvm_rip_write(struct kvm_vcpu *vcpu, unsigned long val)
139 {
140 	kvm_register_write_raw(vcpu, VCPU_REGS_RIP, val);
141 }
142 
143 static inline unsigned long kvm_rsp_read(struct kvm_vcpu *vcpu)
144 {
145 	return kvm_register_read_raw(vcpu, VCPU_REGS_RSP);
146 }
147 
148 static inline void kvm_rsp_write(struct kvm_vcpu *vcpu, unsigned long val)
149 {
150 	kvm_register_write_raw(vcpu, VCPU_REGS_RSP, val);
151 }
152 
153 static inline u64 kvm_pdptr_read(struct kvm_vcpu *vcpu, int index)
154 {
155 	might_sleep();  /* on svm */
156 
157 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
158 		kvm_x86_call(cache_reg)(vcpu, VCPU_EXREG_PDPTR);
159 
160 	return vcpu->arch.walk_mmu->pdptrs[index];
161 }
162 
163 static inline void kvm_pdptr_write(struct kvm_vcpu *vcpu, int index, u64 value)
164 {
165 	vcpu->arch.walk_mmu->pdptrs[index] = value;
166 }
167 
168 static inline ulong kvm_read_cr0_bits(struct kvm_vcpu *vcpu, ulong mask)
169 {
170 	ulong tmask = mask & KVM_POSSIBLE_CR0_GUEST_BITS;
171 	if ((tmask & vcpu->arch.cr0_guest_owned_bits) &&
172 	    !kvm_register_is_available(vcpu, VCPU_EXREG_CR0))
173 		kvm_x86_call(cache_reg)(vcpu, VCPU_EXREG_CR0);
174 	return vcpu->arch.cr0 & mask;
175 }
176 
177 static __always_inline bool kvm_is_cr0_bit_set(struct kvm_vcpu *vcpu,
178 					       unsigned long cr0_bit)
179 {
180 	BUILD_BUG_ON(!is_power_of_2(cr0_bit));
181 
182 	return !!kvm_read_cr0_bits(vcpu, cr0_bit);
183 }
184 
185 static inline ulong kvm_read_cr0(struct kvm_vcpu *vcpu)
186 {
187 	return kvm_read_cr0_bits(vcpu, ~0UL);
188 }
189 
190 static inline ulong kvm_read_cr4_bits(struct kvm_vcpu *vcpu, ulong mask)
191 {
192 	ulong tmask = mask & KVM_POSSIBLE_CR4_GUEST_BITS;
193 	if ((tmask & vcpu->arch.cr4_guest_owned_bits) &&
194 	    !kvm_register_is_available(vcpu, VCPU_EXREG_CR4))
195 		kvm_x86_call(cache_reg)(vcpu, VCPU_EXREG_CR4);
196 	return vcpu->arch.cr4 & mask;
197 }
198 
199 static __always_inline bool kvm_is_cr4_bit_set(struct kvm_vcpu *vcpu,
200 					       unsigned long cr4_bit)
201 {
202 	BUILD_BUG_ON(!is_power_of_2(cr4_bit));
203 
204 	return !!kvm_read_cr4_bits(vcpu, cr4_bit);
205 }
206 
207 static inline ulong kvm_read_cr3(struct kvm_vcpu *vcpu)
208 {
209 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
210 		kvm_x86_call(cache_reg)(vcpu, VCPU_EXREG_CR3);
211 	return vcpu->arch.cr3;
212 }
213 
214 static inline ulong kvm_read_cr4(struct kvm_vcpu *vcpu)
215 {
216 	return kvm_read_cr4_bits(vcpu, ~0UL);
217 }
218 
219 static inline u64 kvm_read_edx_eax(struct kvm_vcpu *vcpu)
220 {
221 	return (kvm_rax_read(vcpu) & -1u)
222 		| ((u64)(kvm_rdx_read(vcpu) & -1u) << 32);
223 }
224 
225 static inline void enter_guest_mode(struct kvm_vcpu *vcpu)
226 {
227 	vcpu->arch.hflags |= HF_GUEST_MASK;
228 	vcpu->stat.guest_mode = 1;
229 }
230 
231 static inline void leave_guest_mode(struct kvm_vcpu *vcpu)
232 {
233 	vcpu->arch.hflags &= ~HF_GUEST_MASK;
234 
235 	if (vcpu->arch.load_eoi_exitmap_pending) {
236 		vcpu->arch.load_eoi_exitmap_pending = false;
237 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
238 	}
239 
240 	vcpu->stat.guest_mode = 0;
241 }
242 
243 static inline bool is_guest_mode(struct kvm_vcpu *vcpu)
244 {
245 	return vcpu->arch.hflags & HF_GUEST_MASK;
246 }
247 
248 #endif
249