1 /* 2 * 8253/8254 interval timer emulation 3 * 4 * Copyright (c) 2003-2004 Fabrice Bellard 5 * Copyright (c) 2006 Intel Corporation 6 * Copyright (c) 2007 Keir Fraser, XenSource Inc 7 * Copyright (c) 2008 Intel Corporation 8 * Copyright 2009 Red Hat, Inc. and/or its affiliates. 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 * 28 * Authors: 29 * Sheng Yang <sheng.yang@intel.com> 30 * Based on QEMU and Xen. 31 */ 32 33 #define pr_fmt(fmt) "pit: " fmt 34 35 #include <linux/kvm_host.h> 36 #include <linux/slab.h> 37 38 #include "ioapic.h" 39 #include "irq.h" 40 #include "i8254.h" 41 #include "x86.h" 42 43 #ifndef CONFIG_X86_64 44 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y)) 45 #else 46 #define mod_64(x, y) ((x) % (y)) 47 #endif 48 49 #define RW_STATE_LSB 1 50 #define RW_STATE_MSB 2 51 #define RW_STATE_WORD0 3 52 #define RW_STATE_WORD1 4 53 54 static void pit_set_gate(struct kvm_pit *pit, int channel, u32 val) 55 { 56 struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel]; 57 58 switch (c->mode) { 59 default: 60 case 0: 61 case 4: 62 /* XXX: just disable/enable counting */ 63 break; 64 case 1: 65 case 2: 66 case 3: 67 case 5: 68 /* Restart counting on rising edge. */ 69 if (c->gate < val) 70 c->count_load_time = ktime_get(); 71 break; 72 } 73 74 c->gate = val; 75 } 76 77 static int pit_get_gate(struct kvm_pit *pit, int channel) 78 { 79 return pit->pit_state.channels[channel].gate; 80 } 81 82 static s64 __kpit_elapsed(struct kvm_pit *pit) 83 { 84 s64 elapsed; 85 ktime_t remaining; 86 struct kvm_kpit_state *ps = &pit->pit_state; 87 88 if (!ps->period) 89 return 0; 90 91 /* 92 * The Counter does not stop when it reaches zero. In 93 * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to 94 * the highest count, either FFFF hex for binary counting 95 * or 9999 for BCD counting, and continues counting. 96 * Modes 2 and 3 are periodic; the Counter reloads 97 * itself with the initial count and continues counting 98 * from there. 99 */ 100 remaining = hrtimer_get_remaining(&ps->timer); 101 elapsed = ps->period - ktime_to_ns(remaining); 102 103 return elapsed; 104 } 105 106 static s64 kpit_elapsed(struct kvm_pit *pit, struct kvm_kpit_channel_state *c, 107 int channel) 108 { 109 if (channel == 0) 110 return __kpit_elapsed(pit); 111 112 return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time)); 113 } 114 115 static int pit_get_count(struct kvm_pit *pit, int channel) 116 { 117 struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel]; 118 s64 d, t; 119 int counter; 120 121 t = kpit_elapsed(pit, c, channel); 122 d = mul_u64_u32_div(t, KVM_PIT_FREQ, NSEC_PER_SEC); 123 124 switch (c->mode) { 125 case 0: 126 case 1: 127 case 4: 128 case 5: 129 counter = (c->count - d) & 0xffff; 130 break; 131 case 3: 132 /* XXX: may be incorrect for odd counts */ 133 counter = c->count - (mod_64((2 * d), c->count)); 134 break; 135 default: 136 counter = c->count - mod_64(d, c->count); 137 break; 138 } 139 return counter; 140 } 141 142 static int pit_get_out(struct kvm_pit *pit, int channel) 143 { 144 struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel]; 145 s64 d, t; 146 int out; 147 148 t = kpit_elapsed(pit, c, channel); 149 d = mul_u64_u32_div(t, KVM_PIT_FREQ, NSEC_PER_SEC); 150 151 switch (c->mode) { 152 default: 153 case 0: 154 out = (d >= c->count); 155 break; 156 case 1: 157 out = (d < c->count); 158 break; 159 case 2: 160 out = ((mod_64(d, c->count) == 0) && (d != 0)); 161 break; 162 case 3: 163 out = (mod_64(d, c->count) < ((c->count + 1) >> 1)); 164 break; 165 case 4: 166 case 5: 167 out = (d == c->count); 168 break; 169 } 170 171 return out; 172 } 173 174 static void pit_latch_count(struct kvm_pit *pit, int channel) 175 { 176 struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel]; 177 178 if (!c->count_latched) { 179 c->latched_count = pit_get_count(pit, channel); 180 c->count_latched = c->rw_mode; 181 } 182 } 183 184 static void pit_latch_status(struct kvm_pit *pit, int channel) 185 { 186 struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel]; 187 188 if (!c->status_latched) { 189 /* TODO: Return NULL COUNT (bit 6). */ 190 c->status = ((pit_get_out(pit, channel) << 7) | 191 (c->rw_mode << 4) | 192 (c->mode << 1) | 193 c->bcd); 194 c->status_latched = 1; 195 } 196 } 197 198 static inline struct kvm_pit *pit_state_to_pit(struct kvm_kpit_state *ps) 199 { 200 return container_of(ps, struct kvm_pit, pit_state); 201 } 202 203 static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian) 204 { 205 struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state, 206 irq_ack_notifier); 207 struct kvm_pit *pit = pit_state_to_pit(ps); 208 209 atomic_set(&ps->irq_ack, 1); 210 /* irq_ack should be set before pending is read. Order accesses with 211 * inc(pending) in pit_timer_fn and xchg(irq_ack, 0) in pit_do_work. 212 */ 213 smp_mb(); 214 if (atomic_dec_if_positive(&ps->pending) > 0) 215 kthread_queue_work(pit->worker, &pit->expired); 216 } 217 218 void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu) 219 { 220 struct kvm_pit *pit = vcpu->kvm->arch.vpit; 221 struct hrtimer *timer; 222 223 /* Somewhat arbitrarily make vcpu0 the owner of the PIT. */ 224 if (vcpu->vcpu_id || !pit) 225 return; 226 227 timer = &pit->pit_state.timer; 228 mutex_lock(&pit->pit_state.lock); 229 if (hrtimer_cancel(timer)) 230 hrtimer_start_expires(timer, HRTIMER_MODE_ABS); 231 mutex_unlock(&pit->pit_state.lock); 232 } 233 234 static void destroy_pit_timer(struct kvm_pit *pit) 235 { 236 hrtimer_cancel(&pit->pit_state.timer); 237 kthread_flush_work(&pit->expired); 238 } 239 240 static void pit_do_work(struct kthread_work *work) 241 { 242 struct kvm_pit *pit = container_of(work, struct kvm_pit, expired); 243 struct kvm *kvm = pit->kvm; 244 struct kvm_vcpu *vcpu; 245 unsigned long i; 246 struct kvm_kpit_state *ps = &pit->pit_state; 247 248 if (atomic_read(&ps->reinject) && !atomic_xchg(&ps->irq_ack, 0)) 249 return; 250 251 kvm_set_irq(kvm, pit->irq_source_id, 0, 1, false); 252 kvm_set_irq(kvm, pit->irq_source_id, 0, 0, false); 253 254 /* 255 * Provides NMI watchdog support via Virtual Wire mode. 256 * The route is: PIT -> LVT0 in NMI mode. 257 * 258 * Note: Our Virtual Wire implementation does not follow 259 * the MP specification. We propagate a PIT interrupt to all 260 * VCPUs and only when LVT0 is in NMI mode. The interrupt can 261 * also be simultaneously delivered through PIC and IOAPIC. 262 */ 263 if (atomic_read(&kvm->arch.vapics_in_nmi_mode) > 0) 264 kvm_for_each_vcpu(i, vcpu, kvm) 265 kvm_apic_nmi_wd_deliver(vcpu); 266 } 267 268 static enum hrtimer_restart pit_timer_fn(struct hrtimer *data) 269 { 270 struct kvm_kpit_state *ps = container_of(data, struct kvm_kpit_state, timer); 271 struct kvm_pit *pt = pit_state_to_pit(ps); 272 273 if (atomic_read(&ps->reinject)) 274 atomic_inc(&ps->pending); 275 276 kthread_queue_work(pt->worker, &pt->expired); 277 278 if (ps->is_periodic) { 279 hrtimer_add_expires_ns(&ps->timer, ps->period); 280 return HRTIMER_RESTART; 281 } else 282 return HRTIMER_NORESTART; 283 } 284 285 static inline void kvm_pit_reset_reinject(struct kvm_pit *pit) 286 { 287 atomic_set(&pit->pit_state.pending, 0); 288 atomic_set(&pit->pit_state.irq_ack, 1); 289 } 290 291 void kvm_pit_set_reinject(struct kvm_pit *pit, bool reinject) 292 { 293 struct kvm_kpit_state *ps = &pit->pit_state; 294 struct kvm *kvm = pit->kvm; 295 296 if (atomic_read(&ps->reinject) == reinject) 297 return; 298 299 /* 300 * AMD SVM AVIC accelerates EOI write and does not trap. 301 * This cause in-kernel PIT re-inject mode to fail 302 * since it checks ps->irq_ack before kvm_set_irq() 303 * and relies on the ack notifier to timely queue 304 * the pt->worker work iterm and reinject the missed tick. 305 * So, deactivate APICv when PIT is in reinject mode. 306 */ 307 if (reinject) { 308 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PIT_REINJ); 309 /* The initial state is preserved while ps->reinject == 0. */ 310 kvm_pit_reset_reinject(pit); 311 kvm_register_irq_ack_notifier(kvm, &ps->irq_ack_notifier); 312 kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier); 313 } else { 314 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PIT_REINJ); 315 kvm_unregister_irq_ack_notifier(kvm, &ps->irq_ack_notifier); 316 kvm_unregister_irq_mask_notifier(kvm, 0, &pit->mask_notifier); 317 } 318 319 atomic_set(&ps->reinject, reinject); 320 } 321 322 static void create_pit_timer(struct kvm_pit *pit, u32 val, int is_period) 323 { 324 struct kvm_kpit_state *ps = &pit->pit_state; 325 struct kvm *kvm = pit->kvm; 326 s64 interval; 327 328 if (!ioapic_in_kernel(kvm) || 329 ps->flags & KVM_PIT_FLAGS_HPET_LEGACY) 330 return; 331 332 interval = mul_u64_u32_div(val, NSEC_PER_SEC, KVM_PIT_FREQ); 333 334 pr_debug("create pit timer, interval is %llu nsec\n", interval); 335 336 /* TODO The new value only affected after the retriggered */ 337 hrtimer_cancel(&ps->timer); 338 kthread_flush_work(&pit->expired); 339 ps->period = interval; 340 ps->is_periodic = is_period; 341 342 kvm_pit_reset_reinject(pit); 343 344 /* 345 * Do not allow the guest to program periodic timers with small 346 * interval, since the hrtimers are not throttled by the host 347 * scheduler. 348 */ 349 if (ps->is_periodic) { 350 s64 min_period = min_timer_period_us * 1000LL; 351 352 if (ps->period < min_period) { 353 pr_info_ratelimited( 354 "kvm: requested %lld ns " 355 "i8254 timer period limited to %lld ns\n", 356 ps->period, min_period); 357 ps->period = min_period; 358 } 359 } 360 361 hrtimer_start(&ps->timer, ktime_add_ns(ktime_get(), interval), 362 HRTIMER_MODE_ABS); 363 } 364 365 static void pit_load_count(struct kvm_pit *pit, int channel, u32 val) 366 { 367 struct kvm_kpit_state *ps = &pit->pit_state; 368 369 pr_debug("load_count val is %u, channel is %d\n", val, channel); 370 371 /* 372 * The largest possible initial count is 0; this is equivalent 373 * to 216 for binary counting and 104 for BCD counting. 374 */ 375 if (val == 0) 376 val = 0x10000; 377 378 ps->channels[channel].count = val; 379 380 if (channel != 0) { 381 ps->channels[channel].count_load_time = ktime_get(); 382 return; 383 } 384 385 /* Two types of timer 386 * mode 1 is one shot, mode 2 is period, otherwise del timer */ 387 switch (ps->channels[0].mode) { 388 case 0: 389 case 1: 390 /* FIXME: enhance mode 4 precision */ 391 case 4: 392 create_pit_timer(pit, val, 0); 393 break; 394 case 2: 395 case 3: 396 create_pit_timer(pit, val, 1); 397 break; 398 default: 399 destroy_pit_timer(pit); 400 } 401 } 402 403 void kvm_pit_load_count(struct kvm_pit *pit, int channel, u32 val, 404 int hpet_legacy_start) 405 { 406 u8 saved_mode; 407 408 WARN_ON_ONCE(!mutex_is_locked(&pit->pit_state.lock)); 409 410 if (hpet_legacy_start) { 411 /* save existing mode for later reenablement */ 412 WARN_ON(channel != 0); 413 saved_mode = pit->pit_state.channels[0].mode; 414 pit->pit_state.channels[0].mode = 0xff; /* disable timer */ 415 pit_load_count(pit, channel, val); 416 pit->pit_state.channels[0].mode = saved_mode; 417 } else { 418 pit_load_count(pit, channel, val); 419 } 420 } 421 422 static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev) 423 { 424 return container_of(dev, struct kvm_pit, dev); 425 } 426 427 static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev) 428 { 429 return container_of(dev, struct kvm_pit, speaker_dev); 430 } 431 432 static inline int pit_in_range(gpa_t addr) 433 { 434 return ((addr >= KVM_PIT_BASE_ADDRESS) && 435 (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH)); 436 } 437 438 static int pit_ioport_write(struct kvm_vcpu *vcpu, 439 struct kvm_io_device *this, 440 gpa_t addr, int len, const void *data) 441 { 442 struct kvm_pit *pit = dev_to_pit(this); 443 struct kvm_kpit_state *pit_state = &pit->pit_state; 444 int channel, access; 445 struct kvm_kpit_channel_state *s; 446 u32 val = *(u32 *) data; 447 if (!pit_in_range(addr)) 448 return -EOPNOTSUPP; 449 450 val &= 0xff; 451 addr &= KVM_PIT_CHANNEL_MASK; 452 453 mutex_lock(&pit_state->lock); 454 455 if (val != 0) 456 pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n", 457 (unsigned int)addr, len, val); 458 459 if (addr == 3) { 460 channel = val >> 6; 461 if (channel == 3) { 462 /* Read-Back Command. */ 463 for (channel = 0; channel < 3; channel++) { 464 if (val & (2 << channel)) { 465 if (!(val & 0x20)) 466 pit_latch_count(pit, channel); 467 if (!(val & 0x10)) 468 pit_latch_status(pit, channel); 469 } 470 } 471 } else { 472 /* Select Counter <channel>. */ 473 s = &pit_state->channels[channel]; 474 access = (val >> 4) & KVM_PIT_CHANNEL_MASK; 475 if (access == 0) { 476 pit_latch_count(pit, channel); 477 } else { 478 s->rw_mode = access; 479 s->read_state = access; 480 s->write_state = access; 481 s->mode = (val >> 1) & 7; 482 if (s->mode > 5) 483 s->mode -= 4; 484 s->bcd = val & 1; 485 } 486 } 487 } else { 488 /* Write Count. */ 489 s = &pit_state->channels[addr]; 490 switch (s->write_state) { 491 default: 492 case RW_STATE_LSB: 493 pit_load_count(pit, addr, val); 494 break; 495 case RW_STATE_MSB: 496 pit_load_count(pit, addr, val << 8); 497 break; 498 case RW_STATE_WORD0: 499 s->write_latch = val; 500 s->write_state = RW_STATE_WORD1; 501 break; 502 case RW_STATE_WORD1: 503 pit_load_count(pit, addr, s->write_latch | (val << 8)); 504 s->write_state = RW_STATE_WORD0; 505 break; 506 } 507 } 508 509 mutex_unlock(&pit_state->lock); 510 return 0; 511 } 512 513 static int pit_ioport_read(struct kvm_vcpu *vcpu, 514 struct kvm_io_device *this, 515 gpa_t addr, int len, void *data) 516 { 517 struct kvm_pit *pit = dev_to_pit(this); 518 struct kvm_kpit_state *pit_state = &pit->pit_state; 519 int ret, count; 520 struct kvm_kpit_channel_state *s; 521 if (!pit_in_range(addr)) 522 return -EOPNOTSUPP; 523 524 addr &= KVM_PIT_CHANNEL_MASK; 525 if (addr == 3) 526 return 0; 527 528 s = &pit_state->channels[addr]; 529 530 mutex_lock(&pit_state->lock); 531 532 if (s->status_latched) { 533 s->status_latched = 0; 534 ret = s->status; 535 } else if (s->count_latched) { 536 switch (s->count_latched) { 537 default: 538 case RW_STATE_LSB: 539 ret = s->latched_count & 0xff; 540 s->count_latched = 0; 541 break; 542 case RW_STATE_MSB: 543 ret = s->latched_count >> 8; 544 s->count_latched = 0; 545 break; 546 case RW_STATE_WORD0: 547 ret = s->latched_count & 0xff; 548 s->count_latched = RW_STATE_MSB; 549 break; 550 } 551 } else { 552 switch (s->read_state) { 553 default: 554 case RW_STATE_LSB: 555 count = pit_get_count(pit, addr); 556 ret = count & 0xff; 557 break; 558 case RW_STATE_MSB: 559 count = pit_get_count(pit, addr); 560 ret = (count >> 8) & 0xff; 561 break; 562 case RW_STATE_WORD0: 563 count = pit_get_count(pit, addr); 564 ret = count & 0xff; 565 s->read_state = RW_STATE_WORD1; 566 break; 567 case RW_STATE_WORD1: 568 count = pit_get_count(pit, addr); 569 ret = (count >> 8) & 0xff; 570 s->read_state = RW_STATE_WORD0; 571 break; 572 } 573 } 574 575 if (len > sizeof(ret)) 576 len = sizeof(ret); 577 memcpy(data, (char *)&ret, len); 578 579 mutex_unlock(&pit_state->lock); 580 return 0; 581 } 582 583 static int speaker_ioport_write(struct kvm_vcpu *vcpu, 584 struct kvm_io_device *this, 585 gpa_t addr, int len, const void *data) 586 { 587 struct kvm_pit *pit = speaker_to_pit(this); 588 struct kvm_kpit_state *pit_state = &pit->pit_state; 589 u32 val = *(u32 *) data; 590 if (addr != KVM_SPEAKER_BASE_ADDRESS) 591 return -EOPNOTSUPP; 592 593 mutex_lock(&pit_state->lock); 594 pit_state->speaker_data_on = (val >> 1) & 1; 595 pit_set_gate(pit, 2, val & 1); 596 mutex_unlock(&pit_state->lock); 597 return 0; 598 } 599 600 static int speaker_ioport_read(struct kvm_vcpu *vcpu, 601 struct kvm_io_device *this, 602 gpa_t addr, int len, void *data) 603 { 604 struct kvm_pit *pit = speaker_to_pit(this); 605 struct kvm_kpit_state *pit_state = &pit->pit_state; 606 unsigned int refresh_clock; 607 int ret; 608 if (addr != KVM_SPEAKER_BASE_ADDRESS) 609 return -EOPNOTSUPP; 610 611 /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */ 612 refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1; 613 614 mutex_lock(&pit_state->lock); 615 ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(pit, 2) | 616 (pit_get_out(pit, 2) << 5) | (refresh_clock << 4)); 617 if (len > sizeof(ret)) 618 len = sizeof(ret); 619 memcpy(data, (char *)&ret, len); 620 mutex_unlock(&pit_state->lock); 621 return 0; 622 } 623 624 static void kvm_pit_reset(struct kvm_pit *pit) 625 { 626 int i; 627 struct kvm_kpit_channel_state *c; 628 629 pit->pit_state.flags = 0; 630 for (i = 0; i < 3; i++) { 631 c = &pit->pit_state.channels[i]; 632 c->mode = 0xff; 633 c->gate = (i != 2); 634 pit_load_count(pit, i, 0); 635 } 636 637 kvm_pit_reset_reinject(pit); 638 } 639 640 static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask) 641 { 642 struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier); 643 644 if (!mask) 645 kvm_pit_reset_reinject(pit); 646 } 647 648 static const struct kvm_io_device_ops pit_dev_ops = { 649 .read = pit_ioport_read, 650 .write = pit_ioport_write, 651 }; 652 653 static const struct kvm_io_device_ops speaker_dev_ops = { 654 .read = speaker_ioport_read, 655 .write = speaker_ioport_write, 656 }; 657 658 struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags) 659 { 660 struct kvm_pit *pit; 661 struct kvm_kpit_state *pit_state; 662 struct pid *pid; 663 pid_t pid_nr; 664 int ret; 665 666 pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL_ACCOUNT); 667 if (!pit) 668 return NULL; 669 670 pit->irq_source_id = kvm_request_irq_source_id(kvm); 671 if (pit->irq_source_id < 0) 672 goto fail_request; 673 674 mutex_init(&pit->pit_state.lock); 675 676 pid = get_pid(task_tgid(current)); 677 pid_nr = pid_vnr(pid); 678 put_pid(pid); 679 680 pit->worker = kthread_create_worker(0, "kvm-pit/%d", pid_nr); 681 if (IS_ERR(pit->worker)) 682 goto fail_kthread; 683 684 kthread_init_work(&pit->expired, pit_do_work); 685 686 pit->kvm = kvm; 687 688 pit_state = &pit->pit_state; 689 hrtimer_init(&pit_state->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 690 pit_state->timer.function = pit_timer_fn; 691 692 pit_state->irq_ack_notifier.gsi = 0; 693 pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq; 694 pit->mask_notifier.func = pit_mask_notifer; 695 696 kvm_pit_reset(pit); 697 698 kvm_pit_set_reinject(pit, true); 699 700 mutex_lock(&kvm->slots_lock); 701 kvm_iodevice_init(&pit->dev, &pit_dev_ops); 702 ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, KVM_PIT_BASE_ADDRESS, 703 KVM_PIT_MEM_LENGTH, &pit->dev); 704 if (ret < 0) 705 goto fail_register_pit; 706 707 if (flags & KVM_PIT_SPEAKER_DUMMY) { 708 kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops); 709 ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, 710 KVM_SPEAKER_BASE_ADDRESS, 4, 711 &pit->speaker_dev); 712 if (ret < 0) 713 goto fail_register_speaker; 714 } 715 mutex_unlock(&kvm->slots_lock); 716 717 return pit; 718 719 fail_register_speaker: 720 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev); 721 fail_register_pit: 722 mutex_unlock(&kvm->slots_lock); 723 kvm_pit_set_reinject(pit, false); 724 kthread_destroy_worker(pit->worker); 725 fail_kthread: 726 kvm_free_irq_source_id(kvm, pit->irq_source_id); 727 fail_request: 728 kfree(pit); 729 return NULL; 730 } 731 732 void kvm_free_pit(struct kvm *kvm) 733 { 734 struct kvm_pit *pit = kvm->arch.vpit; 735 736 if (pit) { 737 mutex_lock(&kvm->slots_lock); 738 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev); 739 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->speaker_dev); 740 mutex_unlock(&kvm->slots_lock); 741 kvm_pit_set_reinject(pit, false); 742 hrtimer_cancel(&pit->pit_state.timer); 743 kthread_destroy_worker(pit->worker); 744 kvm_free_irq_source_id(kvm, pit->irq_source_id); 745 kfree(pit); 746 } 747 } 748