xref: /linux/arch/x86/kvm/i8254.c (revision 0dd9ac63ce26ec87b080ca9c3e6efed33c23ace6)
1 /*
2  * 8253/8254 interval timer emulation
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  * Copyright (c) 2006 Intel Corporation
6  * Copyright (c) 2007 Keir Fraser, XenSource Inc
7  * Copyright (c) 2008 Intel Corporation
8  *
9  * Permission is hereby granted, free of charge, to any person obtaining a copy
10  * of this software and associated documentation files (the "Software"), to deal
11  * in the Software without restriction, including without limitation the rights
12  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13  * copies of the Software, and to permit persons to whom the Software is
14  * furnished to do so, subject to the following conditions:
15  *
16  * The above copyright notice and this permission notice shall be included in
17  * all copies or substantial portions of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25  * THE SOFTWARE.
26  *
27  * Authors:
28  *   Sheng Yang <sheng.yang@intel.com>
29  *   Based on QEMU and Xen.
30  */
31 
32 #define pr_fmt(fmt) "pit: " fmt
33 
34 #include <linux/kvm_host.h>
35 #include <linux/slab.h>
36 
37 #include "irq.h"
38 #include "i8254.h"
39 
40 #ifndef CONFIG_X86_64
41 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
42 #else
43 #define mod_64(x, y) ((x) % (y))
44 #endif
45 
46 #define RW_STATE_LSB 1
47 #define RW_STATE_MSB 2
48 #define RW_STATE_WORD0 3
49 #define RW_STATE_WORD1 4
50 
51 /* Compute with 96 bit intermediate result: (a*b)/c */
52 static u64 muldiv64(u64 a, u32 b, u32 c)
53 {
54 	union {
55 		u64 ll;
56 		struct {
57 			u32 low, high;
58 		} l;
59 	} u, res;
60 	u64 rl, rh;
61 
62 	u.ll = a;
63 	rl = (u64)u.l.low * (u64)b;
64 	rh = (u64)u.l.high * (u64)b;
65 	rh += (rl >> 32);
66 	res.l.high = div64_u64(rh, c);
67 	res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
68 	return res.ll;
69 }
70 
71 static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
72 {
73 	struct kvm_kpit_channel_state *c =
74 		&kvm->arch.vpit->pit_state.channels[channel];
75 
76 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
77 
78 	switch (c->mode) {
79 	default:
80 	case 0:
81 	case 4:
82 		/* XXX: just disable/enable counting */
83 		break;
84 	case 1:
85 	case 2:
86 	case 3:
87 	case 5:
88 		/* Restart counting on rising edge. */
89 		if (c->gate < val)
90 			c->count_load_time = ktime_get();
91 		break;
92 	}
93 
94 	c->gate = val;
95 }
96 
97 static int pit_get_gate(struct kvm *kvm, int channel)
98 {
99 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
100 
101 	return kvm->arch.vpit->pit_state.channels[channel].gate;
102 }
103 
104 static s64 __kpit_elapsed(struct kvm *kvm)
105 {
106 	s64 elapsed;
107 	ktime_t remaining;
108 	struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
109 
110 	if (!ps->pit_timer.period)
111 		return 0;
112 
113 	/*
114 	 * The Counter does not stop when it reaches zero. In
115 	 * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
116 	 * the highest count, either FFFF hex for binary counting
117 	 * or 9999 for BCD counting, and continues counting.
118 	 * Modes 2 and 3 are periodic; the Counter reloads
119 	 * itself with the initial count and continues counting
120 	 * from there.
121 	 */
122 	remaining = hrtimer_get_remaining(&ps->pit_timer.timer);
123 	elapsed = ps->pit_timer.period - ktime_to_ns(remaining);
124 	elapsed = mod_64(elapsed, ps->pit_timer.period);
125 
126 	return elapsed;
127 }
128 
129 static s64 kpit_elapsed(struct kvm *kvm, struct kvm_kpit_channel_state *c,
130 			int channel)
131 {
132 	if (channel == 0)
133 		return __kpit_elapsed(kvm);
134 
135 	return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
136 }
137 
138 static int pit_get_count(struct kvm *kvm, int channel)
139 {
140 	struct kvm_kpit_channel_state *c =
141 		&kvm->arch.vpit->pit_state.channels[channel];
142 	s64 d, t;
143 	int counter;
144 
145 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
146 
147 	t = kpit_elapsed(kvm, c, channel);
148 	d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
149 
150 	switch (c->mode) {
151 	case 0:
152 	case 1:
153 	case 4:
154 	case 5:
155 		counter = (c->count - d) & 0xffff;
156 		break;
157 	case 3:
158 		/* XXX: may be incorrect for odd counts */
159 		counter = c->count - (mod_64((2 * d), c->count));
160 		break;
161 	default:
162 		counter = c->count - mod_64(d, c->count);
163 		break;
164 	}
165 	return counter;
166 }
167 
168 static int pit_get_out(struct kvm *kvm, int channel)
169 {
170 	struct kvm_kpit_channel_state *c =
171 		&kvm->arch.vpit->pit_state.channels[channel];
172 	s64 d, t;
173 	int out;
174 
175 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
176 
177 	t = kpit_elapsed(kvm, c, channel);
178 	d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
179 
180 	switch (c->mode) {
181 	default:
182 	case 0:
183 		out = (d >= c->count);
184 		break;
185 	case 1:
186 		out = (d < c->count);
187 		break;
188 	case 2:
189 		out = ((mod_64(d, c->count) == 0) && (d != 0));
190 		break;
191 	case 3:
192 		out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
193 		break;
194 	case 4:
195 	case 5:
196 		out = (d == c->count);
197 		break;
198 	}
199 
200 	return out;
201 }
202 
203 static void pit_latch_count(struct kvm *kvm, int channel)
204 {
205 	struct kvm_kpit_channel_state *c =
206 		&kvm->arch.vpit->pit_state.channels[channel];
207 
208 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
209 
210 	if (!c->count_latched) {
211 		c->latched_count = pit_get_count(kvm, channel);
212 		c->count_latched = c->rw_mode;
213 	}
214 }
215 
216 static void pit_latch_status(struct kvm *kvm, int channel)
217 {
218 	struct kvm_kpit_channel_state *c =
219 		&kvm->arch.vpit->pit_state.channels[channel];
220 
221 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
222 
223 	if (!c->status_latched) {
224 		/* TODO: Return NULL COUNT (bit 6). */
225 		c->status = ((pit_get_out(kvm, channel) << 7) |
226 				(c->rw_mode << 4) |
227 				(c->mode << 1) |
228 				c->bcd);
229 		c->status_latched = 1;
230 	}
231 }
232 
233 int pit_has_pending_timer(struct kvm_vcpu *vcpu)
234 {
235 	struct kvm_pit *pit = vcpu->kvm->arch.vpit;
236 
237 	if (pit && kvm_vcpu_is_bsp(vcpu) && pit->pit_state.irq_ack)
238 		return atomic_read(&pit->pit_state.pit_timer.pending);
239 	return 0;
240 }
241 
242 static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
243 {
244 	struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
245 						 irq_ack_notifier);
246 	raw_spin_lock(&ps->inject_lock);
247 	if (atomic_dec_return(&ps->pit_timer.pending) < 0)
248 		atomic_inc(&ps->pit_timer.pending);
249 	ps->irq_ack = 1;
250 	raw_spin_unlock(&ps->inject_lock);
251 }
252 
253 void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
254 {
255 	struct kvm_pit *pit = vcpu->kvm->arch.vpit;
256 	struct hrtimer *timer;
257 
258 	if (!kvm_vcpu_is_bsp(vcpu) || !pit)
259 		return;
260 
261 	timer = &pit->pit_state.pit_timer.timer;
262 	if (hrtimer_cancel(timer))
263 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
264 }
265 
266 static void destroy_pit_timer(struct kvm_timer *pt)
267 {
268 	pr_debug("execute del timer!\n");
269 	hrtimer_cancel(&pt->timer);
270 }
271 
272 static bool kpit_is_periodic(struct kvm_timer *ktimer)
273 {
274 	struct kvm_kpit_state *ps = container_of(ktimer, struct kvm_kpit_state,
275 						 pit_timer);
276 	return ps->is_periodic;
277 }
278 
279 static struct kvm_timer_ops kpit_ops = {
280 	.is_periodic = kpit_is_periodic,
281 };
282 
283 static void create_pit_timer(struct kvm_kpit_state *ps, u32 val, int is_period)
284 {
285 	struct kvm_timer *pt = &ps->pit_timer;
286 	s64 interval;
287 
288 	interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
289 
290 	pr_debug("create pit timer, interval is %llu nsec\n", interval);
291 
292 	/* TODO The new value only affected after the retriggered */
293 	hrtimer_cancel(&pt->timer);
294 	pt->period = interval;
295 	ps->is_periodic = is_period;
296 
297 	pt->timer.function = kvm_timer_fn;
298 	pt->t_ops = &kpit_ops;
299 	pt->kvm = ps->pit->kvm;
300 	pt->vcpu = pt->kvm->bsp_vcpu;
301 
302 	atomic_set(&pt->pending, 0);
303 	ps->irq_ack = 1;
304 
305 	hrtimer_start(&pt->timer, ktime_add_ns(ktime_get(), interval),
306 		      HRTIMER_MODE_ABS);
307 }
308 
309 static void pit_load_count(struct kvm *kvm, int channel, u32 val)
310 {
311 	struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
312 
313 	WARN_ON(!mutex_is_locked(&ps->lock));
314 
315 	pr_debug("load_count val is %d, channel is %d\n", val, channel);
316 
317 	/*
318 	 * The largest possible initial count is 0; this is equivalent
319 	 * to 216 for binary counting and 104 for BCD counting.
320 	 */
321 	if (val == 0)
322 		val = 0x10000;
323 
324 	ps->channels[channel].count = val;
325 
326 	if (channel != 0) {
327 		ps->channels[channel].count_load_time = ktime_get();
328 		return;
329 	}
330 
331 	/* Two types of timer
332 	 * mode 1 is one shot, mode 2 is period, otherwise del timer */
333 	switch (ps->channels[0].mode) {
334 	case 0:
335 	case 1:
336         /* FIXME: enhance mode 4 precision */
337 	case 4:
338 		if (!(ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)) {
339 			create_pit_timer(ps, val, 0);
340 		}
341 		break;
342 	case 2:
343 	case 3:
344 		if (!(ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)){
345 			create_pit_timer(ps, val, 1);
346 		}
347 		break;
348 	default:
349 		destroy_pit_timer(&ps->pit_timer);
350 	}
351 }
352 
353 void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val, int hpet_legacy_start)
354 {
355 	u8 saved_mode;
356 	if (hpet_legacy_start) {
357 		/* save existing mode for later reenablement */
358 		saved_mode = kvm->arch.vpit->pit_state.channels[0].mode;
359 		kvm->arch.vpit->pit_state.channels[0].mode = 0xff; /* disable timer */
360 		pit_load_count(kvm, channel, val);
361 		kvm->arch.vpit->pit_state.channels[0].mode = saved_mode;
362 	} else {
363 		pit_load_count(kvm, channel, val);
364 	}
365 }
366 
367 static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev)
368 {
369 	return container_of(dev, struct kvm_pit, dev);
370 }
371 
372 static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev)
373 {
374 	return container_of(dev, struct kvm_pit, speaker_dev);
375 }
376 
377 static inline int pit_in_range(gpa_t addr)
378 {
379 	return ((addr >= KVM_PIT_BASE_ADDRESS) &&
380 		(addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
381 }
382 
383 static int pit_ioport_write(struct kvm_io_device *this,
384 			    gpa_t addr, int len, const void *data)
385 {
386 	struct kvm_pit *pit = dev_to_pit(this);
387 	struct kvm_kpit_state *pit_state = &pit->pit_state;
388 	struct kvm *kvm = pit->kvm;
389 	int channel, access;
390 	struct kvm_kpit_channel_state *s;
391 	u32 val = *(u32 *) data;
392 	if (!pit_in_range(addr))
393 		return -EOPNOTSUPP;
394 
395 	val  &= 0xff;
396 	addr &= KVM_PIT_CHANNEL_MASK;
397 
398 	mutex_lock(&pit_state->lock);
399 
400 	if (val != 0)
401 		pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n",
402 			 (unsigned int)addr, len, val);
403 
404 	if (addr == 3) {
405 		channel = val >> 6;
406 		if (channel == 3) {
407 			/* Read-Back Command. */
408 			for (channel = 0; channel < 3; channel++) {
409 				s = &pit_state->channels[channel];
410 				if (val & (2 << channel)) {
411 					if (!(val & 0x20))
412 						pit_latch_count(kvm, channel);
413 					if (!(val & 0x10))
414 						pit_latch_status(kvm, channel);
415 				}
416 			}
417 		} else {
418 			/* Select Counter <channel>. */
419 			s = &pit_state->channels[channel];
420 			access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
421 			if (access == 0) {
422 				pit_latch_count(kvm, channel);
423 			} else {
424 				s->rw_mode = access;
425 				s->read_state = access;
426 				s->write_state = access;
427 				s->mode = (val >> 1) & 7;
428 				if (s->mode > 5)
429 					s->mode -= 4;
430 				s->bcd = val & 1;
431 			}
432 		}
433 	} else {
434 		/* Write Count. */
435 		s = &pit_state->channels[addr];
436 		switch (s->write_state) {
437 		default:
438 		case RW_STATE_LSB:
439 			pit_load_count(kvm, addr, val);
440 			break;
441 		case RW_STATE_MSB:
442 			pit_load_count(kvm, addr, val << 8);
443 			break;
444 		case RW_STATE_WORD0:
445 			s->write_latch = val;
446 			s->write_state = RW_STATE_WORD1;
447 			break;
448 		case RW_STATE_WORD1:
449 			pit_load_count(kvm, addr, s->write_latch | (val << 8));
450 			s->write_state = RW_STATE_WORD0;
451 			break;
452 		}
453 	}
454 
455 	mutex_unlock(&pit_state->lock);
456 	return 0;
457 }
458 
459 static int pit_ioport_read(struct kvm_io_device *this,
460 			   gpa_t addr, int len, void *data)
461 {
462 	struct kvm_pit *pit = dev_to_pit(this);
463 	struct kvm_kpit_state *pit_state = &pit->pit_state;
464 	struct kvm *kvm = pit->kvm;
465 	int ret, count;
466 	struct kvm_kpit_channel_state *s;
467 	if (!pit_in_range(addr))
468 		return -EOPNOTSUPP;
469 
470 	addr &= KVM_PIT_CHANNEL_MASK;
471 	if (addr == 3)
472 		return 0;
473 
474 	s = &pit_state->channels[addr];
475 
476 	mutex_lock(&pit_state->lock);
477 
478 	if (s->status_latched) {
479 		s->status_latched = 0;
480 		ret = s->status;
481 	} else if (s->count_latched) {
482 		switch (s->count_latched) {
483 		default:
484 		case RW_STATE_LSB:
485 			ret = s->latched_count & 0xff;
486 			s->count_latched = 0;
487 			break;
488 		case RW_STATE_MSB:
489 			ret = s->latched_count >> 8;
490 			s->count_latched = 0;
491 			break;
492 		case RW_STATE_WORD0:
493 			ret = s->latched_count & 0xff;
494 			s->count_latched = RW_STATE_MSB;
495 			break;
496 		}
497 	} else {
498 		switch (s->read_state) {
499 		default:
500 		case RW_STATE_LSB:
501 			count = pit_get_count(kvm, addr);
502 			ret = count & 0xff;
503 			break;
504 		case RW_STATE_MSB:
505 			count = pit_get_count(kvm, addr);
506 			ret = (count >> 8) & 0xff;
507 			break;
508 		case RW_STATE_WORD0:
509 			count = pit_get_count(kvm, addr);
510 			ret = count & 0xff;
511 			s->read_state = RW_STATE_WORD1;
512 			break;
513 		case RW_STATE_WORD1:
514 			count = pit_get_count(kvm, addr);
515 			ret = (count >> 8) & 0xff;
516 			s->read_state = RW_STATE_WORD0;
517 			break;
518 		}
519 	}
520 
521 	if (len > sizeof(ret))
522 		len = sizeof(ret);
523 	memcpy(data, (char *)&ret, len);
524 
525 	mutex_unlock(&pit_state->lock);
526 	return 0;
527 }
528 
529 static int speaker_ioport_write(struct kvm_io_device *this,
530 				gpa_t addr, int len, const void *data)
531 {
532 	struct kvm_pit *pit = speaker_to_pit(this);
533 	struct kvm_kpit_state *pit_state = &pit->pit_state;
534 	struct kvm *kvm = pit->kvm;
535 	u32 val = *(u32 *) data;
536 	if (addr != KVM_SPEAKER_BASE_ADDRESS)
537 		return -EOPNOTSUPP;
538 
539 	mutex_lock(&pit_state->lock);
540 	pit_state->speaker_data_on = (val >> 1) & 1;
541 	pit_set_gate(kvm, 2, val & 1);
542 	mutex_unlock(&pit_state->lock);
543 	return 0;
544 }
545 
546 static int speaker_ioport_read(struct kvm_io_device *this,
547 			       gpa_t addr, int len, void *data)
548 {
549 	struct kvm_pit *pit = speaker_to_pit(this);
550 	struct kvm_kpit_state *pit_state = &pit->pit_state;
551 	struct kvm *kvm = pit->kvm;
552 	unsigned int refresh_clock;
553 	int ret;
554 	if (addr != KVM_SPEAKER_BASE_ADDRESS)
555 		return -EOPNOTSUPP;
556 
557 	/* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
558 	refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
559 
560 	mutex_lock(&pit_state->lock);
561 	ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
562 		(pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
563 	if (len > sizeof(ret))
564 		len = sizeof(ret);
565 	memcpy(data, (char *)&ret, len);
566 	mutex_unlock(&pit_state->lock);
567 	return 0;
568 }
569 
570 void kvm_pit_reset(struct kvm_pit *pit)
571 {
572 	int i;
573 	struct kvm_kpit_channel_state *c;
574 
575 	mutex_lock(&pit->pit_state.lock);
576 	pit->pit_state.flags = 0;
577 	for (i = 0; i < 3; i++) {
578 		c = &pit->pit_state.channels[i];
579 		c->mode = 0xff;
580 		c->gate = (i != 2);
581 		pit_load_count(pit->kvm, i, 0);
582 	}
583 	mutex_unlock(&pit->pit_state.lock);
584 
585 	atomic_set(&pit->pit_state.pit_timer.pending, 0);
586 	pit->pit_state.irq_ack = 1;
587 }
588 
589 static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
590 {
591 	struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
592 
593 	if (!mask) {
594 		atomic_set(&pit->pit_state.pit_timer.pending, 0);
595 		pit->pit_state.irq_ack = 1;
596 	}
597 }
598 
599 static const struct kvm_io_device_ops pit_dev_ops = {
600 	.read     = pit_ioport_read,
601 	.write    = pit_ioport_write,
602 };
603 
604 static const struct kvm_io_device_ops speaker_dev_ops = {
605 	.read     = speaker_ioport_read,
606 	.write    = speaker_ioport_write,
607 };
608 
609 /* Caller must hold slots_lock */
610 struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags)
611 {
612 	struct kvm_pit *pit;
613 	struct kvm_kpit_state *pit_state;
614 	int ret;
615 
616 	pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
617 	if (!pit)
618 		return NULL;
619 
620 	pit->irq_source_id = kvm_request_irq_source_id(kvm);
621 	if (pit->irq_source_id < 0) {
622 		kfree(pit);
623 		return NULL;
624 	}
625 
626 	mutex_init(&pit->pit_state.lock);
627 	mutex_lock(&pit->pit_state.lock);
628 	raw_spin_lock_init(&pit->pit_state.inject_lock);
629 
630 	kvm->arch.vpit = pit;
631 	pit->kvm = kvm;
632 
633 	pit_state = &pit->pit_state;
634 	pit_state->pit = pit;
635 	hrtimer_init(&pit_state->pit_timer.timer,
636 		     CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
637 	pit_state->irq_ack_notifier.gsi = 0;
638 	pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
639 	kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
640 	pit_state->pit_timer.reinject = true;
641 	mutex_unlock(&pit->pit_state.lock);
642 
643 	kvm_pit_reset(pit);
644 
645 	pit->mask_notifier.func = pit_mask_notifer;
646 	kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
647 
648 	kvm_iodevice_init(&pit->dev, &pit_dev_ops);
649 	ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, &pit->dev);
650 	if (ret < 0)
651 		goto fail;
652 
653 	if (flags & KVM_PIT_SPEAKER_DUMMY) {
654 		kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops);
655 		ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS,
656 						&pit->speaker_dev);
657 		if (ret < 0)
658 			goto fail_unregister;
659 	}
660 
661 	return pit;
662 
663 fail_unregister:
664 	kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
665 
666 fail:
667 	kvm_unregister_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
668 	kvm_unregister_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
669 	kvm_free_irq_source_id(kvm, pit->irq_source_id);
670 
671 	kfree(pit);
672 	return NULL;
673 }
674 
675 void kvm_free_pit(struct kvm *kvm)
676 {
677 	struct hrtimer *timer;
678 
679 	if (kvm->arch.vpit) {
680 		kvm_unregister_irq_mask_notifier(kvm, 0,
681 					       &kvm->arch.vpit->mask_notifier);
682 		kvm_unregister_irq_ack_notifier(kvm,
683 				&kvm->arch.vpit->pit_state.irq_ack_notifier);
684 		mutex_lock(&kvm->arch.vpit->pit_state.lock);
685 		timer = &kvm->arch.vpit->pit_state.pit_timer.timer;
686 		hrtimer_cancel(timer);
687 		kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id);
688 		mutex_unlock(&kvm->arch.vpit->pit_state.lock);
689 		kfree(kvm->arch.vpit);
690 	}
691 }
692 
693 static void __inject_pit_timer_intr(struct kvm *kvm)
694 {
695 	struct kvm_vcpu *vcpu;
696 	int i;
697 
698 	kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1);
699 	kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0);
700 
701 	/*
702 	 * Provides NMI watchdog support via Virtual Wire mode.
703 	 * The route is: PIT -> PIC -> LVT0 in NMI mode.
704 	 *
705 	 * Note: Our Virtual Wire implementation is simplified, only
706 	 * propagating PIT interrupts to all VCPUs when they have set
707 	 * LVT0 to NMI delivery. Other PIC interrupts are just sent to
708 	 * VCPU0, and only if its LVT0 is in EXTINT mode.
709 	 */
710 	if (kvm->arch.vapics_in_nmi_mode > 0)
711 		kvm_for_each_vcpu(i, vcpu, kvm)
712 			kvm_apic_nmi_wd_deliver(vcpu);
713 }
714 
715 void kvm_inject_pit_timer_irqs(struct kvm_vcpu *vcpu)
716 {
717 	struct kvm_pit *pit = vcpu->kvm->arch.vpit;
718 	struct kvm *kvm = vcpu->kvm;
719 	struct kvm_kpit_state *ps;
720 
721 	if (pit) {
722 		int inject = 0;
723 		ps = &pit->pit_state;
724 
725 		/* Try to inject pending interrupts when
726 		 * last one has been acked.
727 		 */
728 		raw_spin_lock(&ps->inject_lock);
729 		if (atomic_read(&ps->pit_timer.pending) && ps->irq_ack) {
730 			ps->irq_ack = 0;
731 			inject = 1;
732 		}
733 		raw_spin_unlock(&ps->inject_lock);
734 		if (inject)
735 			__inject_pit_timer_intr(kvm);
736 	}
737 }
738