1 // SPDX-License-Identifier: GPL-2.0-only 2 /****************************************************************************** 3 * emulate.c 4 * 5 * Generic x86 (32-bit and 64-bit) instruction decoder and emulator. 6 * 7 * Copyright (c) 2005 Keir Fraser 8 * 9 * Linux coding style, mod r/m decoder, segment base fixes, real-mode 10 * privileged instructions: 11 * 12 * Copyright (C) 2006 Qumranet 13 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 14 * 15 * Avi Kivity <avi@qumranet.com> 16 * Yaniv Kamay <yaniv@qumranet.com> 17 * 18 * From: xen-unstable 10676:af9809f51f81a3c43f276f00c81a52ef558afda4 19 */ 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/kvm_host.h> 23 #include "kvm_cache_regs.h" 24 #include "kvm_emulate.h" 25 #include <linux/stringify.h> 26 #include <asm/debugreg.h> 27 #include <asm/nospec-branch.h> 28 #include <asm/ibt.h> 29 30 #include "x86.h" 31 #include "tss.h" 32 #include "mmu.h" 33 #include "pmu.h" 34 35 /* 36 * Operand types 37 */ 38 #define OpNone 0ull 39 #define OpImplicit 1ull /* No generic decode */ 40 #define OpReg 2ull /* Register */ 41 #define OpMem 3ull /* Memory */ 42 #define OpAcc 4ull /* Accumulator: AL/AX/EAX/RAX */ 43 #define OpDI 5ull /* ES:DI/EDI/RDI */ 44 #define OpMem64 6ull /* Memory, 64-bit */ 45 #define OpImmUByte 7ull /* Zero-extended 8-bit immediate */ 46 #define OpDX 8ull /* DX register */ 47 #define OpCL 9ull /* CL register (for shifts) */ 48 #define OpImmByte 10ull /* 8-bit sign extended immediate */ 49 #define OpOne 11ull /* Implied 1 */ 50 #define OpImm 12ull /* Sign extended up to 32-bit immediate */ 51 #define OpMem16 13ull /* Memory operand (16-bit). */ 52 #define OpMem32 14ull /* Memory operand (32-bit). */ 53 #define OpImmU 15ull /* Immediate operand, zero extended */ 54 #define OpSI 16ull /* SI/ESI/RSI */ 55 #define OpImmFAddr 17ull /* Immediate far address */ 56 #define OpMemFAddr 18ull /* Far address in memory */ 57 #define OpImmU16 19ull /* Immediate operand, 16 bits, zero extended */ 58 #define OpES 20ull /* ES */ 59 #define OpCS 21ull /* CS */ 60 #define OpSS 22ull /* SS */ 61 #define OpDS 23ull /* DS */ 62 #define OpFS 24ull /* FS */ 63 #define OpGS 25ull /* GS */ 64 #define OpMem8 26ull /* 8-bit zero extended memory operand */ 65 #define OpImm64 27ull /* Sign extended 16/32/64-bit immediate */ 66 #define OpXLat 28ull /* memory at BX/EBX/RBX + zero-extended AL */ 67 #define OpAccLo 29ull /* Low part of extended acc (AX/AX/EAX/RAX) */ 68 #define OpAccHi 30ull /* High part of extended acc (-/DX/EDX/RDX) */ 69 70 #define OpBits 5 /* Width of operand field */ 71 #define OpMask ((1ull << OpBits) - 1) 72 73 /* 74 * Opcode effective-address decode tables. 75 * Note that we only emulate instructions that have at least one memory 76 * operand (excluding implicit stack references). We assume that stack 77 * references and instruction fetches will never occur in special memory 78 * areas that require emulation. So, for example, 'mov <imm>,<reg>' need 79 * not be handled. 80 */ 81 82 /* Operand sizes: 8-bit operands or specified/overridden size. */ 83 #define ByteOp (1<<0) /* 8-bit operands. */ 84 /* Destination operand type. */ 85 #define DstShift 1 86 #define ImplicitOps (OpImplicit << DstShift) 87 #define DstReg (OpReg << DstShift) 88 #define DstMem (OpMem << DstShift) 89 #define DstAcc (OpAcc << DstShift) 90 #define DstDI (OpDI << DstShift) 91 #define DstMem64 (OpMem64 << DstShift) 92 #define DstMem16 (OpMem16 << DstShift) 93 #define DstImmUByte (OpImmUByte << DstShift) 94 #define DstDX (OpDX << DstShift) 95 #define DstAccLo (OpAccLo << DstShift) 96 #define DstMask (OpMask << DstShift) 97 /* Source operand type. */ 98 #define SrcShift 6 99 #define SrcNone (OpNone << SrcShift) 100 #define SrcReg (OpReg << SrcShift) 101 #define SrcMem (OpMem << SrcShift) 102 #define SrcMem16 (OpMem16 << SrcShift) 103 #define SrcMem32 (OpMem32 << SrcShift) 104 #define SrcImm (OpImm << SrcShift) 105 #define SrcImmByte (OpImmByte << SrcShift) 106 #define SrcOne (OpOne << SrcShift) 107 #define SrcImmUByte (OpImmUByte << SrcShift) 108 #define SrcImmU (OpImmU << SrcShift) 109 #define SrcSI (OpSI << SrcShift) 110 #define SrcXLat (OpXLat << SrcShift) 111 #define SrcImmFAddr (OpImmFAddr << SrcShift) 112 #define SrcMemFAddr (OpMemFAddr << SrcShift) 113 #define SrcAcc (OpAcc << SrcShift) 114 #define SrcImmU16 (OpImmU16 << SrcShift) 115 #define SrcImm64 (OpImm64 << SrcShift) 116 #define SrcDX (OpDX << SrcShift) 117 #define SrcMem8 (OpMem8 << SrcShift) 118 #define SrcAccHi (OpAccHi << SrcShift) 119 #define SrcMask (OpMask << SrcShift) 120 #define BitOp (1<<11) 121 #define MemAbs (1<<12) /* Memory operand is absolute displacement */ 122 #define String (1<<13) /* String instruction (rep capable) */ 123 #define Stack (1<<14) /* Stack instruction (push/pop) */ 124 #define GroupMask (7<<15) /* Opcode uses one of the group mechanisms */ 125 #define Group (1<<15) /* Bits 3:5 of modrm byte extend opcode */ 126 #define GroupDual (2<<15) /* Alternate decoding of mod == 3 */ 127 #define Prefix (3<<15) /* Instruction varies with 66/f2/f3 prefix */ 128 #define RMExt (4<<15) /* Opcode extension in ModRM r/m if mod == 3 */ 129 #define Escape (5<<15) /* Escape to coprocessor instruction */ 130 #define InstrDual (6<<15) /* Alternate instruction decoding of mod == 3 */ 131 #define ModeDual (7<<15) /* Different instruction for 32/64 bit */ 132 #define Sse (1<<18) /* SSE Vector instruction */ 133 /* Generic ModRM decode. */ 134 #define ModRM (1<<19) 135 /* Destination is only written; never read. */ 136 #define Mov (1<<20) 137 /* Misc flags */ 138 #define Prot (1<<21) /* instruction generates #UD if not in prot-mode */ 139 #define EmulateOnUD (1<<22) /* Emulate if unsupported by the host */ 140 #define NoAccess (1<<23) /* Don't access memory (lea/invlpg/verr etc) */ 141 #define Op3264 (1<<24) /* Operand is 64b in long mode, 32b otherwise */ 142 #define Undefined (1<<25) /* No Such Instruction */ 143 #define Lock (1<<26) /* lock prefix is allowed for the instruction */ 144 #define Priv (1<<27) /* instruction generates #GP if current CPL != 0 */ 145 #define No64 (1<<28) 146 #define PageTable (1 << 29) /* instruction used to write page table */ 147 #define NotImpl (1 << 30) /* instruction is not implemented */ 148 /* Source 2 operand type */ 149 #define Src2Shift (31) 150 #define Src2None (OpNone << Src2Shift) 151 #define Src2Mem (OpMem << Src2Shift) 152 #define Src2CL (OpCL << Src2Shift) 153 #define Src2ImmByte (OpImmByte << Src2Shift) 154 #define Src2One (OpOne << Src2Shift) 155 #define Src2Imm (OpImm << Src2Shift) 156 #define Src2ES (OpES << Src2Shift) 157 #define Src2CS (OpCS << Src2Shift) 158 #define Src2SS (OpSS << Src2Shift) 159 #define Src2DS (OpDS << Src2Shift) 160 #define Src2FS (OpFS << Src2Shift) 161 #define Src2GS (OpGS << Src2Shift) 162 #define Src2Mask (OpMask << Src2Shift) 163 #define Mmx ((u64)1 << 40) /* MMX Vector instruction */ 164 #define AlignMask ((u64)7 << 41) 165 #define Aligned ((u64)1 << 41) /* Explicitly aligned (e.g. MOVDQA) */ 166 #define Unaligned ((u64)2 << 41) /* Explicitly unaligned (e.g. MOVDQU) */ 167 #define Avx ((u64)3 << 41) /* Advanced Vector Extensions */ 168 #define Aligned16 ((u64)4 << 41) /* Aligned to 16 byte boundary (e.g. FXSAVE) */ 169 #define Fastop ((u64)1 << 44) /* Use opcode::u.fastop */ 170 #define NoWrite ((u64)1 << 45) /* No writeback */ 171 #define SrcWrite ((u64)1 << 46) /* Write back src operand */ 172 #define NoMod ((u64)1 << 47) /* Mod field is ignored */ 173 #define Intercept ((u64)1 << 48) /* Has valid intercept field */ 174 #define CheckPerm ((u64)1 << 49) /* Has valid check_perm field */ 175 #define PrivUD ((u64)1 << 51) /* #UD instead of #GP on CPL > 0 */ 176 #define NearBranch ((u64)1 << 52) /* Near branches */ 177 #define No16 ((u64)1 << 53) /* No 16 bit operand */ 178 #define IncSP ((u64)1 << 54) /* SP is incremented before ModRM calc */ 179 #define TwoMemOp ((u64)1 << 55) /* Instruction has two memory operand */ 180 #define IsBranch ((u64)1 << 56) /* Instruction is considered a branch. */ 181 182 #define DstXacc (DstAccLo | SrcAccHi | SrcWrite) 183 184 #define X2(x...) x, x 185 #define X3(x...) X2(x), x 186 #define X4(x...) X2(x), X2(x) 187 #define X5(x...) X4(x), x 188 #define X6(x...) X4(x), X2(x) 189 #define X7(x...) X4(x), X3(x) 190 #define X8(x...) X4(x), X4(x) 191 #define X16(x...) X8(x), X8(x) 192 193 struct opcode { 194 u64 flags; 195 u8 intercept; 196 u8 pad[7]; 197 union { 198 int (*execute)(struct x86_emulate_ctxt *ctxt); 199 const struct opcode *group; 200 const struct group_dual *gdual; 201 const struct gprefix *gprefix; 202 const struct escape *esc; 203 const struct instr_dual *idual; 204 const struct mode_dual *mdual; 205 void (*fastop)(struct fastop *fake); 206 } u; 207 int (*check_perm)(struct x86_emulate_ctxt *ctxt); 208 }; 209 210 struct group_dual { 211 struct opcode mod012[8]; 212 struct opcode mod3[8]; 213 }; 214 215 struct gprefix { 216 struct opcode pfx_no; 217 struct opcode pfx_66; 218 struct opcode pfx_f2; 219 struct opcode pfx_f3; 220 }; 221 222 struct escape { 223 struct opcode op[8]; 224 struct opcode high[64]; 225 }; 226 227 struct instr_dual { 228 struct opcode mod012; 229 struct opcode mod3; 230 }; 231 232 struct mode_dual { 233 struct opcode mode32; 234 struct opcode mode64; 235 }; 236 237 #define EFLG_RESERVED_ZEROS_MASK 0xffc0802a 238 239 enum x86_transfer_type { 240 X86_TRANSFER_NONE, 241 X86_TRANSFER_CALL_JMP, 242 X86_TRANSFER_RET, 243 X86_TRANSFER_TASK_SWITCH, 244 }; 245 246 static void writeback_registers(struct x86_emulate_ctxt *ctxt) 247 { 248 unsigned long dirty = ctxt->regs_dirty; 249 unsigned reg; 250 251 for_each_set_bit(reg, &dirty, NR_EMULATOR_GPRS) 252 ctxt->ops->write_gpr(ctxt, reg, ctxt->_regs[reg]); 253 } 254 255 static void invalidate_registers(struct x86_emulate_ctxt *ctxt) 256 { 257 ctxt->regs_dirty = 0; 258 ctxt->regs_valid = 0; 259 } 260 261 /* 262 * These EFLAGS bits are restored from saved value during emulation, and 263 * any changes are written back to the saved value after emulation. 264 */ 265 #define EFLAGS_MASK (X86_EFLAGS_OF|X86_EFLAGS_SF|X86_EFLAGS_ZF|X86_EFLAGS_AF|\ 266 X86_EFLAGS_PF|X86_EFLAGS_CF) 267 268 #ifdef CONFIG_X86_64 269 #define ON64(x) x 270 #else 271 #define ON64(x) 272 #endif 273 274 /* 275 * fastop functions have a special calling convention: 276 * 277 * dst: rax (in/out) 278 * src: rdx (in/out) 279 * src2: rcx (in) 280 * flags: rflags (in/out) 281 * ex: rsi (in:fastop pointer, out:zero if exception) 282 * 283 * Moreover, they are all exactly FASTOP_SIZE bytes long, so functions for 284 * different operand sizes can be reached by calculation, rather than a jump 285 * table (which would be bigger than the code). 286 * 287 * The 16 byte alignment, considering 5 bytes for the RET thunk, 3 for ENDBR 288 * and 1 for the straight line speculation INT3, leaves 7 bytes for the 289 * body of the function. Currently none is larger than 4. 290 */ 291 static int fastop(struct x86_emulate_ctxt *ctxt, fastop_t fop); 292 293 #define FASTOP_SIZE 16 294 295 #define __FOP_FUNC(name) \ 296 ".align " __stringify(FASTOP_SIZE) " \n\t" \ 297 ".type " name ", @function \n\t" \ 298 name ":\n\t" \ 299 ASM_ENDBR \ 300 IBT_NOSEAL(name) 301 302 #define FOP_FUNC(name) \ 303 __FOP_FUNC(#name) 304 305 #define __FOP_RET(name) \ 306 "11: " ASM_RET \ 307 ".size " name ", .-" name "\n\t" 308 309 #define FOP_RET(name) \ 310 __FOP_RET(#name) 311 312 #define __FOP_START(op, align) \ 313 extern void em_##op(struct fastop *fake); \ 314 asm(".pushsection .text, \"ax\" \n\t" \ 315 ".global em_" #op " \n\t" \ 316 ".align " __stringify(align) " \n\t" \ 317 "em_" #op ":\n\t" 318 319 #define FOP_START(op) __FOP_START(op, FASTOP_SIZE) 320 321 #define FOP_END \ 322 ".popsection") 323 324 #define __FOPNOP(name) \ 325 __FOP_FUNC(name) \ 326 __FOP_RET(name) 327 328 #define FOPNOP() \ 329 __FOPNOP(__stringify(__UNIQUE_ID(nop))) 330 331 #define FOP1E(op, dst) \ 332 __FOP_FUNC(#op "_" #dst) \ 333 "10: " #op " %" #dst " \n\t" \ 334 __FOP_RET(#op "_" #dst) 335 336 #define FOP1EEX(op, dst) \ 337 FOP1E(op, dst) _ASM_EXTABLE_TYPE_REG(10b, 11b, EX_TYPE_ZERO_REG, %%esi) 338 339 #define FASTOP1(op) \ 340 FOP_START(op) \ 341 FOP1E(op##b, al) \ 342 FOP1E(op##w, ax) \ 343 FOP1E(op##l, eax) \ 344 ON64(FOP1E(op##q, rax)) \ 345 FOP_END 346 347 /* 1-operand, using src2 (for MUL/DIV r/m) */ 348 #define FASTOP1SRC2(op, name) \ 349 FOP_START(name) \ 350 FOP1E(op, cl) \ 351 FOP1E(op, cx) \ 352 FOP1E(op, ecx) \ 353 ON64(FOP1E(op, rcx)) \ 354 FOP_END 355 356 /* 1-operand, using src2 (for MUL/DIV r/m), with exceptions */ 357 #define FASTOP1SRC2EX(op, name) \ 358 FOP_START(name) \ 359 FOP1EEX(op, cl) \ 360 FOP1EEX(op, cx) \ 361 FOP1EEX(op, ecx) \ 362 ON64(FOP1EEX(op, rcx)) \ 363 FOP_END 364 365 #define FOP2E(op, dst, src) \ 366 __FOP_FUNC(#op "_" #dst "_" #src) \ 367 #op " %" #src ", %" #dst " \n\t" \ 368 __FOP_RET(#op "_" #dst "_" #src) 369 370 #define FASTOP2(op) \ 371 FOP_START(op) \ 372 FOP2E(op##b, al, dl) \ 373 FOP2E(op##w, ax, dx) \ 374 FOP2E(op##l, eax, edx) \ 375 ON64(FOP2E(op##q, rax, rdx)) \ 376 FOP_END 377 378 /* 2 operand, word only */ 379 #define FASTOP2W(op) \ 380 FOP_START(op) \ 381 FOPNOP() \ 382 FOP2E(op##w, ax, dx) \ 383 FOP2E(op##l, eax, edx) \ 384 ON64(FOP2E(op##q, rax, rdx)) \ 385 FOP_END 386 387 /* 2 operand, src is CL */ 388 #define FASTOP2CL(op) \ 389 FOP_START(op) \ 390 FOP2E(op##b, al, cl) \ 391 FOP2E(op##w, ax, cl) \ 392 FOP2E(op##l, eax, cl) \ 393 ON64(FOP2E(op##q, rax, cl)) \ 394 FOP_END 395 396 /* 2 operand, src and dest are reversed */ 397 #define FASTOP2R(op, name) \ 398 FOP_START(name) \ 399 FOP2E(op##b, dl, al) \ 400 FOP2E(op##w, dx, ax) \ 401 FOP2E(op##l, edx, eax) \ 402 ON64(FOP2E(op##q, rdx, rax)) \ 403 FOP_END 404 405 #define FOP3E(op, dst, src, src2) \ 406 __FOP_FUNC(#op "_" #dst "_" #src "_" #src2) \ 407 #op " %" #src2 ", %" #src ", %" #dst " \n\t"\ 408 __FOP_RET(#op "_" #dst "_" #src "_" #src2) 409 410 /* 3-operand, word-only, src2=cl */ 411 #define FASTOP3WCL(op) \ 412 FOP_START(op) \ 413 FOPNOP() \ 414 FOP3E(op##w, ax, dx, cl) \ 415 FOP3E(op##l, eax, edx, cl) \ 416 ON64(FOP3E(op##q, rax, rdx, cl)) \ 417 FOP_END 418 419 /* Special case for SETcc - 1 instruction per cc */ 420 #define FOP_SETCC(op) \ 421 FOP_FUNC(op) \ 422 #op " %al \n\t" \ 423 FOP_RET(op) 424 425 FOP_START(setcc) 426 FOP_SETCC(seto) 427 FOP_SETCC(setno) 428 FOP_SETCC(setc) 429 FOP_SETCC(setnc) 430 FOP_SETCC(setz) 431 FOP_SETCC(setnz) 432 FOP_SETCC(setbe) 433 FOP_SETCC(setnbe) 434 FOP_SETCC(sets) 435 FOP_SETCC(setns) 436 FOP_SETCC(setp) 437 FOP_SETCC(setnp) 438 FOP_SETCC(setl) 439 FOP_SETCC(setnl) 440 FOP_SETCC(setle) 441 FOP_SETCC(setnle) 442 FOP_END; 443 444 FOP_START(salc) 445 FOP_FUNC(salc) 446 "pushf; sbb %al, %al; popf \n\t" 447 FOP_RET(salc) 448 FOP_END; 449 450 /* 451 * XXX: inoutclob user must know where the argument is being expanded. 452 * Using asm goto would allow us to remove _fault. 453 */ 454 #define asm_safe(insn, inoutclob...) \ 455 ({ \ 456 int _fault = 0; \ 457 \ 458 asm volatile("1:" insn "\n" \ 459 "2:\n" \ 460 _ASM_EXTABLE_TYPE_REG(1b, 2b, EX_TYPE_ONE_REG, %[_fault]) \ 461 : [_fault] "+r"(_fault) inoutclob ); \ 462 \ 463 _fault ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE; \ 464 }) 465 466 static int emulator_check_intercept(struct x86_emulate_ctxt *ctxt, 467 enum x86_intercept intercept, 468 enum x86_intercept_stage stage) 469 { 470 struct x86_instruction_info info = { 471 .intercept = intercept, 472 .rep_prefix = ctxt->rep_prefix, 473 .modrm_mod = ctxt->modrm_mod, 474 .modrm_reg = ctxt->modrm_reg, 475 .modrm_rm = ctxt->modrm_rm, 476 .src_val = ctxt->src.val64, 477 .dst_val = ctxt->dst.val64, 478 .src_bytes = ctxt->src.bytes, 479 .dst_bytes = ctxt->dst.bytes, 480 .ad_bytes = ctxt->ad_bytes, 481 .next_rip = ctxt->eip, 482 }; 483 484 return ctxt->ops->intercept(ctxt, &info, stage); 485 } 486 487 static void assign_masked(ulong *dest, ulong src, ulong mask) 488 { 489 *dest = (*dest & ~mask) | (src & mask); 490 } 491 492 static void assign_register(unsigned long *reg, u64 val, int bytes) 493 { 494 /* The 4-byte case *is* correct: in 64-bit mode we zero-extend. */ 495 switch (bytes) { 496 case 1: 497 *(u8 *)reg = (u8)val; 498 break; 499 case 2: 500 *(u16 *)reg = (u16)val; 501 break; 502 case 4: 503 *reg = (u32)val; 504 break; /* 64b: zero-extend */ 505 case 8: 506 *reg = val; 507 break; 508 } 509 } 510 511 static inline unsigned long ad_mask(struct x86_emulate_ctxt *ctxt) 512 { 513 return (1UL << (ctxt->ad_bytes << 3)) - 1; 514 } 515 516 static ulong stack_mask(struct x86_emulate_ctxt *ctxt) 517 { 518 u16 sel; 519 struct desc_struct ss; 520 521 if (ctxt->mode == X86EMUL_MODE_PROT64) 522 return ~0UL; 523 ctxt->ops->get_segment(ctxt, &sel, &ss, NULL, VCPU_SREG_SS); 524 return ~0U >> ((ss.d ^ 1) * 16); /* d=0: 0xffff; d=1: 0xffffffff */ 525 } 526 527 static int stack_size(struct x86_emulate_ctxt *ctxt) 528 { 529 return (__fls(stack_mask(ctxt)) + 1) >> 3; 530 } 531 532 /* Access/update address held in a register, based on addressing mode. */ 533 static inline unsigned long 534 address_mask(struct x86_emulate_ctxt *ctxt, unsigned long reg) 535 { 536 if (ctxt->ad_bytes == sizeof(unsigned long)) 537 return reg; 538 else 539 return reg & ad_mask(ctxt); 540 } 541 542 static inline unsigned long 543 register_address(struct x86_emulate_ctxt *ctxt, int reg) 544 { 545 return address_mask(ctxt, reg_read(ctxt, reg)); 546 } 547 548 static void masked_increment(ulong *reg, ulong mask, int inc) 549 { 550 assign_masked(reg, *reg + inc, mask); 551 } 552 553 static inline void 554 register_address_increment(struct x86_emulate_ctxt *ctxt, int reg, int inc) 555 { 556 ulong *preg = reg_rmw(ctxt, reg); 557 558 assign_register(preg, *preg + inc, ctxt->ad_bytes); 559 } 560 561 static void rsp_increment(struct x86_emulate_ctxt *ctxt, int inc) 562 { 563 masked_increment(reg_rmw(ctxt, VCPU_REGS_RSP), stack_mask(ctxt), inc); 564 } 565 566 static u32 desc_limit_scaled(struct desc_struct *desc) 567 { 568 u32 limit = get_desc_limit(desc); 569 570 return desc->g ? (limit << 12) | 0xfff : limit; 571 } 572 573 static unsigned long seg_base(struct x86_emulate_ctxt *ctxt, int seg) 574 { 575 if (ctxt->mode == X86EMUL_MODE_PROT64 && seg < VCPU_SREG_FS) 576 return 0; 577 578 return ctxt->ops->get_cached_segment_base(ctxt, seg); 579 } 580 581 static int emulate_exception(struct x86_emulate_ctxt *ctxt, int vec, 582 u32 error, bool valid) 583 { 584 if (KVM_EMULATOR_BUG_ON(vec > 0x1f, ctxt)) 585 return X86EMUL_UNHANDLEABLE; 586 587 ctxt->exception.vector = vec; 588 ctxt->exception.error_code = error; 589 ctxt->exception.error_code_valid = valid; 590 return X86EMUL_PROPAGATE_FAULT; 591 } 592 593 static int emulate_db(struct x86_emulate_ctxt *ctxt) 594 { 595 return emulate_exception(ctxt, DB_VECTOR, 0, false); 596 } 597 598 static int emulate_gp(struct x86_emulate_ctxt *ctxt, int err) 599 { 600 return emulate_exception(ctxt, GP_VECTOR, err, true); 601 } 602 603 static int emulate_ss(struct x86_emulate_ctxt *ctxt, int err) 604 { 605 return emulate_exception(ctxt, SS_VECTOR, err, true); 606 } 607 608 static int emulate_ud(struct x86_emulate_ctxt *ctxt) 609 { 610 return emulate_exception(ctxt, UD_VECTOR, 0, false); 611 } 612 613 static int emulate_ts(struct x86_emulate_ctxt *ctxt, int err) 614 { 615 return emulate_exception(ctxt, TS_VECTOR, err, true); 616 } 617 618 static int emulate_de(struct x86_emulate_ctxt *ctxt) 619 { 620 return emulate_exception(ctxt, DE_VECTOR, 0, false); 621 } 622 623 static int emulate_nm(struct x86_emulate_ctxt *ctxt) 624 { 625 return emulate_exception(ctxt, NM_VECTOR, 0, false); 626 } 627 628 static u16 get_segment_selector(struct x86_emulate_ctxt *ctxt, unsigned seg) 629 { 630 u16 selector; 631 struct desc_struct desc; 632 633 ctxt->ops->get_segment(ctxt, &selector, &desc, NULL, seg); 634 return selector; 635 } 636 637 static void set_segment_selector(struct x86_emulate_ctxt *ctxt, u16 selector, 638 unsigned seg) 639 { 640 u16 dummy; 641 u32 base3; 642 struct desc_struct desc; 643 644 ctxt->ops->get_segment(ctxt, &dummy, &desc, &base3, seg); 645 ctxt->ops->set_segment(ctxt, selector, &desc, base3, seg); 646 } 647 648 static inline u8 ctxt_virt_addr_bits(struct x86_emulate_ctxt *ctxt) 649 { 650 return (ctxt->ops->get_cr(ctxt, 4) & X86_CR4_LA57) ? 57 : 48; 651 } 652 653 static inline bool emul_is_noncanonical_address(u64 la, 654 struct x86_emulate_ctxt *ctxt) 655 { 656 return !__is_canonical_address(la, ctxt_virt_addr_bits(ctxt)); 657 } 658 659 /* 660 * x86 defines three classes of vector instructions: explicitly 661 * aligned, explicitly unaligned, and the rest, which change behaviour 662 * depending on whether they're AVX encoded or not. 663 * 664 * Also included is CMPXCHG16B which is not a vector instruction, yet it is 665 * subject to the same check. FXSAVE and FXRSTOR are checked here too as their 666 * 512 bytes of data must be aligned to a 16 byte boundary. 667 */ 668 static unsigned insn_alignment(struct x86_emulate_ctxt *ctxt, unsigned size) 669 { 670 u64 alignment = ctxt->d & AlignMask; 671 672 if (likely(size < 16)) 673 return 1; 674 675 switch (alignment) { 676 case Unaligned: 677 case Avx: 678 return 1; 679 case Aligned16: 680 return 16; 681 case Aligned: 682 default: 683 return size; 684 } 685 } 686 687 static __always_inline int __linearize(struct x86_emulate_ctxt *ctxt, 688 struct segmented_address addr, 689 unsigned *max_size, unsigned size, 690 enum x86emul_mode mode, ulong *linear, 691 unsigned int flags) 692 { 693 struct desc_struct desc; 694 bool usable; 695 ulong la; 696 u32 lim; 697 u16 sel; 698 u8 va_bits; 699 700 la = seg_base(ctxt, addr.seg) + addr.ea; 701 *max_size = 0; 702 switch (mode) { 703 case X86EMUL_MODE_PROT64: 704 *linear = la = ctxt->ops->get_untagged_addr(ctxt, la, flags); 705 va_bits = ctxt_virt_addr_bits(ctxt); 706 if (!__is_canonical_address(la, va_bits)) 707 goto bad; 708 709 *max_size = min_t(u64, ~0u, (1ull << va_bits) - la); 710 if (size > *max_size) 711 goto bad; 712 break; 713 default: 714 *linear = la = (u32)la; 715 usable = ctxt->ops->get_segment(ctxt, &sel, &desc, NULL, 716 addr.seg); 717 if (!usable) 718 goto bad; 719 /* code segment in protected mode or read-only data segment */ 720 if ((((ctxt->mode != X86EMUL_MODE_REAL) && (desc.type & 8)) || !(desc.type & 2)) && 721 (flags & X86EMUL_F_WRITE)) 722 goto bad; 723 /* unreadable code segment */ 724 if (!(flags & X86EMUL_F_FETCH) && (desc.type & 8) && !(desc.type & 2)) 725 goto bad; 726 lim = desc_limit_scaled(&desc); 727 if (!(desc.type & 8) && (desc.type & 4)) { 728 /* expand-down segment */ 729 if (addr.ea <= lim) 730 goto bad; 731 lim = desc.d ? 0xffffffff : 0xffff; 732 } 733 if (addr.ea > lim) 734 goto bad; 735 if (lim == 0xffffffff) 736 *max_size = ~0u; 737 else { 738 *max_size = (u64)lim + 1 - addr.ea; 739 if (size > *max_size) 740 goto bad; 741 } 742 break; 743 } 744 if (la & (insn_alignment(ctxt, size) - 1)) 745 return emulate_gp(ctxt, 0); 746 return X86EMUL_CONTINUE; 747 bad: 748 if (addr.seg == VCPU_SREG_SS) 749 return emulate_ss(ctxt, 0); 750 else 751 return emulate_gp(ctxt, 0); 752 } 753 754 static int linearize(struct x86_emulate_ctxt *ctxt, 755 struct segmented_address addr, 756 unsigned size, bool write, 757 ulong *linear) 758 { 759 unsigned max_size; 760 return __linearize(ctxt, addr, &max_size, size, ctxt->mode, linear, 761 write ? X86EMUL_F_WRITE : 0); 762 } 763 764 static inline int assign_eip(struct x86_emulate_ctxt *ctxt, ulong dst) 765 { 766 ulong linear; 767 int rc; 768 unsigned max_size; 769 struct segmented_address addr = { .seg = VCPU_SREG_CS, 770 .ea = dst }; 771 772 if (ctxt->op_bytes != sizeof(unsigned long)) 773 addr.ea = dst & ((1UL << (ctxt->op_bytes << 3)) - 1); 774 rc = __linearize(ctxt, addr, &max_size, 1, ctxt->mode, &linear, 775 X86EMUL_F_FETCH); 776 if (rc == X86EMUL_CONTINUE) 777 ctxt->_eip = addr.ea; 778 return rc; 779 } 780 781 static inline int emulator_recalc_and_set_mode(struct x86_emulate_ctxt *ctxt) 782 { 783 u64 efer; 784 struct desc_struct cs; 785 u16 selector; 786 u32 base3; 787 788 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer); 789 790 if (!(ctxt->ops->get_cr(ctxt, 0) & X86_CR0_PE)) { 791 /* Real mode. cpu must not have long mode active */ 792 if (efer & EFER_LMA) 793 return X86EMUL_UNHANDLEABLE; 794 ctxt->mode = X86EMUL_MODE_REAL; 795 return X86EMUL_CONTINUE; 796 } 797 798 if (ctxt->eflags & X86_EFLAGS_VM) { 799 /* Protected/VM86 mode. cpu must not have long mode active */ 800 if (efer & EFER_LMA) 801 return X86EMUL_UNHANDLEABLE; 802 ctxt->mode = X86EMUL_MODE_VM86; 803 return X86EMUL_CONTINUE; 804 } 805 806 if (!ctxt->ops->get_segment(ctxt, &selector, &cs, &base3, VCPU_SREG_CS)) 807 return X86EMUL_UNHANDLEABLE; 808 809 if (efer & EFER_LMA) { 810 if (cs.l) { 811 /* Proper long mode */ 812 ctxt->mode = X86EMUL_MODE_PROT64; 813 } else if (cs.d) { 814 /* 32 bit compatibility mode*/ 815 ctxt->mode = X86EMUL_MODE_PROT32; 816 } else { 817 ctxt->mode = X86EMUL_MODE_PROT16; 818 } 819 } else { 820 /* Legacy 32 bit / 16 bit mode */ 821 ctxt->mode = cs.d ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16; 822 } 823 824 return X86EMUL_CONTINUE; 825 } 826 827 static inline int assign_eip_near(struct x86_emulate_ctxt *ctxt, ulong dst) 828 { 829 return assign_eip(ctxt, dst); 830 } 831 832 static int assign_eip_far(struct x86_emulate_ctxt *ctxt, ulong dst) 833 { 834 int rc = emulator_recalc_and_set_mode(ctxt); 835 836 if (rc != X86EMUL_CONTINUE) 837 return rc; 838 839 return assign_eip(ctxt, dst); 840 } 841 842 static inline int jmp_rel(struct x86_emulate_ctxt *ctxt, int rel) 843 { 844 return assign_eip_near(ctxt, ctxt->_eip + rel); 845 } 846 847 static int linear_read_system(struct x86_emulate_ctxt *ctxt, ulong linear, 848 void *data, unsigned size) 849 { 850 return ctxt->ops->read_std(ctxt, linear, data, size, &ctxt->exception, true); 851 } 852 853 static int linear_write_system(struct x86_emulate_ctxt *ctxt, 854 ulong linear, void *data, 855 unsigned int size) 856 { 857 return ctxt->ops->write_std(ctxt, linear, data, size, &ctxt->exception, true); 858 } 859 860 static int segmented_read_std(struct x86_emulate_ctxt *ctxt, 861 struct segmented_address addr, 862 void *data, 863 unsigned size) 864 { 865 int rc; 866 ulong linear; 867 868 rc = linearize(ctxt, addr, size, false, &linear); 869 if (rc != X86EMUL_CONTINUE) 870 return rc; 871 return ctxt->ops->read_std(ctxt, linear, data, size, &ctxt->exception, false); 872 } 873 874 static int segmented_write_std(struct x86_emulate_ctxt *ctxt, 875 struct segmented_address addr, 876 void *data, 877 unsigned int size) 878 { 879 int rc; 880 ulong linear; 881 882 rc = linearize(ctxt, addr, size, true, &linear); 883 if (rc != X86EMUL_CONTINUE) 884 return rc; 885 return ctxt->ops->write_std(ctxt, linear, data, size, &ctxt->exception, false); 886 } 887 888 /* 889 * Prefetch the remaining bytes of the instruction without crossing page 890 * boundary if they are not in fetch_cache yet. 891 */ 892 static int __do_insn_fetch_bytes(struct x86_emulate_ctxt *ctxt, int op_size) 893 { 894 int rc; 895 unsigned size, max_size; 896 unsigned long linear; 897 int cur_size = ctxt->fetch.end - ctxt->fetch.data; 898 struct segmented_address addr = { .seg = VCPU_SREG_CS, 899 .ea = ctxt->eip + cur_size }; 900 901 /* 902 * We do not know exactly how many bytes will be needed, and 903 * __linearize is expensive, so fetch as much as possible. We 904 * just have to avoid going beyond the 15 byte limit, the end 905 * of the segment, or the end of the page. 906 * 907 * __linearize is called with size 0 so that it does not do any 908 * boundary check itself. Instead, we use max_size to check 909 * against op_size. 910 */ 911 rc = __linearize(ctxt, addr, &max_size, 0, ctxt->mode, &linear, 912 X86EMUL_F_FETCH); 913 if (unlikely(rc != X86EMUL_CONTINUE)) 914 return rc; 915 916 size = min_t(unsigned, 15UL ^ cur_size, max_size); 917 size = min_t(unsigned, size, PAGE_SIZE - offset_in_page(linear)); 918 919 /* 920 * One instruction can only straddle two pages, 921 * and one has been loaded at the beginning of 922 * x86_decode_insn. So, if not enough bytes 923 * still, we must have hit the 15-byte boundary. 924 */ 925 if (unlikely(size < op_size)) 926 return emulate_gp(ctxt, 0); 927 928 rc = ctxt->ops->fetch(ctxt, linear, ctxt->fetch.end, 929 size, &ctxt->exception); 930 if (unlikely(rc != X86EMUL_CONTINUE)) 931 return rc; 932 ctxt->fetch.end += size; 933 return X86EMUL_CONTINUE; 934 } 935 936 static __always_inline int do_insn_fetch_bytes(struct x86_emulate_ctxt *ctxt, 937 unsigned size) 938 { 939 unsigned done_size = ctxt->fetch.end - ctxt->fetch.ptr; 940 941 if (unlikely(done_size < size)) 942 return __do_insn_fetch_bytes(ctxt, size - done_size); 943 else 944 return X86EMUL_CONTINUE; 945 } 946 947 /* Fetch next part of the instruction being emulated. */ 948 #define insn_fetch(_type, _ctxt) \ 949 ({ _type _x; \ 950 \ 951 rc = do_insn_fetch_bytes(_ctxt, sizeof(_type)); \ 952 if (rc != X86EMUL_CONTINUE) \ 953 goto done; \ 954 ctxt->_eip += sizeof(_type); \ 955 memcpy(&_x, ctxt->fetch.ptr, sizeof(_type)); \ 956 ctxt->fetch.ptr += sizeof(_type); \ 957 _x; \ 958 }) 959 960 #define insn_fetch_arr(_arr, _size, _ctxt) \ 961 ({ \ 962 rc = do_insn_fetch_bytes(_ctxt, _size); \ 963 if (rc != X86EMUL_CONTINUE) \ 964 goto done; \ 965 ctxt->_eip += (_size); \ 966 memcpy(_arr, ctxt->fetch.ptr, _size); \ 967 ctxt->fetch.ptr += (_size); \ 968 }) 969 970 /* 971 * Given the 'reg' portion of a ModRM byte, and a register block, return a 972 * pointer into the block that addresses the relevant register. 973 * @highbyte_regs specifies whether to decode AH,CH,DH,BH. 974 */ 975 static void *decode_register(struct x86_emulate_ctxt *ctxt, u8 modrm_reg, 976 int byteop) 977 { 978 void *p; 979 int highbyte_regs = (ctxt->rex_prefix == 0) && byteop; 980 981 if (highbyte_regs && modrm_reg >= 4 && modrm_reg < 8) 982 p = (unsigned char *)reg_rmw(ctxt, modrm_reg & 3) + 1; 983 else 984 p = reg_rmw(ctxt, modrm_reg); 985 return p; 986 } 987 988 static int read_descriptor(struct x86_emulate_ctxt *ctxt, 989 struct segmented_address addr, 990 u16 *size, unsigned long *address, int op_bytes) 991 { 992 int rc; 993 994 if (op_bytes == 2) 995 op_bytes = 3; 996 *address = 0; 997 rc = segmented_read_std(ctxt, addr, size, 2); 998 if (rc != X86EMUL_CONTINUE) 999 return rc; 1000 addr.ea += 2; 1001 rc = segmented_read_std(ctxt, addr, address, op_bytes); 1002 return rc; 1003 } 1004 1005 FASTOP2(add); 1006 FASTOP2(or); 1007 FASTOP2(adc); 1008 FASTOP2(sbb); 1009 FASTOP2(and); 1010 FASTOP2(sub); 1011 FASTOP2(xor); 1012 FASTOP2(cmp); 1013 FASTOP2(test); 1014 1015 FASTOP1SRC2(mul, mul_ex); 1016 FASTOP1SRC2(imul, imul_ex); 1017 FASTOP1SRC2EX(div, div_ex); 1018 FASTOP1SRC2EX(idiv, idiv_ex); 1019 1020 FASTOP3WCL(shld); 1021 FASTOP3WCL(shrd); 1022 1023 FASTOP2W(imul); 1024 1025 FASTOP1(not); 1026 FASTOP1(neg); 1027 FASTOP1(inc); 1028 FASTOP1(dec); 1029 1030 FASTOP2CL(rol); 1031 FASTOP2CL(ror); 1032 FASTOP2CL(rcl); 1033 FASTOP2CL(rcr); 1034 FASTOP2CL(shl); 1035 FASTOP2CL(shr); 1036 FASTOP2CL(sar); 1037 1038 FASTOP2W(bsf); 1039 FASTOP2W(bsr); 1040 FASTOP2W(bt); 1041 FASTOP2W(bts); 1042 FASTOP2W(btr); 1043 FASTOP2W(btc); 1044 1045 FASTOP2(xadd); 1046 1047 FASTOP2R(cmp, cmp_r); 1048 1049 static int em_bsf_c(struct x86_emulate_ctxt *ctxt) 1050 { 1051 /* If src is zero, do not writeback, but update flags */ 1052 if (ctxt->src.val == 0) 1053 ctxt->dst.type = OP_NONE; 1054 return fastop(ctxt, em_bsf); 1055 } 1056 1057 static int em_bsr_c(struct x86_emulate_ctxt *ctxt) 1058 { 1059 /* If src is zero, do not writeback, but update flags */ 1060 if (ctxt->src.val == 0) 1061 ctxt->dst.type = OP_NONE; 1062 return fastop(ctxt, em_bsr); 1063 } 1064 1065 static __always_inline u8 test_cc(unsigned int condition, unsigned long flags) 1066 { 1067 u8 rc; 1068 void (*fop)(void) = (void *)em_setcc + FASTOP_SIZE * (condition & 0xf); 1069 1070 flags = (flags & EFLAGS_MASK) | X86_EFLAGS_IF; 1071 asm("push %[flags]; popf; " CALL_NOSPEC 1072 : "=a"(rc) : [thunk_target]"r"(fop), [flags]"r"(flags)); 1073 return rc; 1074 } 1075 1076 static void fetch_register_operand(struct operand *op) 1077 { 1078 switch (op->bytes) { 1079 case 1: 1080 op->val = *(u8 *)op->addr.reg; 1081 break; 1082 case 2: 1083 op->val = *(u16 *)op->addr.reg; 1084 break; 1085 case 4: 1086 op->val = *(u32 *)op->addr.reg; 1087 break; 1088 case 8: 1089 op->val = *(u64 *)op->addr.reg; 1090 break; 1091 } 1092 } 1093 1094 static int em_fninit(struct x86_emulate_ctxt *ctxt) 1095 { 1096 if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM)) 1097 return emulate_nm(ctxt); 1098 1099 kvm_fpu_get(); 1100 asm volatile("fninit"); 1101 kvm_fpu_put(); 1102 return X86EMUL_CONTINUE; 1103 } 1104 1105 static int em_fnstcw(struct x86_emulate_ctxt *ctxt) 1106 { 1107 u16 fcw; 1108 1109 if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM)) 1110 return emulate_nm(ctxt); 1111 1112 kvm_fpu_get(); 1113 asm volatile("fnstcw %0": "+m"(fcw)); 1114 kvm_fpu_put(); 1115 1116 ctxt->dst.val = fcw; 1117 1118 return X86EMUL_CONTINUE; 1119 } 1120 1121 static int em_fnstsw(struct x86_emulate_ctxt *ctxt) 1122 { 1123 u16 fsw; 1124 1125 if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM)) 1126 return emulate_nm(ctxt); 1127 1128 kvm_fpu_get(); 1129 asm volatile("fnstsw %0": "+m"(fsw)); 1130 kvm_fpu_put(); 1131 1132 ctxt->dst.val = fsw; 1133 1134 return X86EMUL_CONTINUE; 1135 } 1136 1137 static void decode_register_operand(struct x86_emulate_ctxt *ctxt, 1138 struct operand *op) 1139 { 1140 unsigned int reg; 1141 1142 if (ctxt->d & ModRM) 1143 reg = ctxt->modrm_reg; 1144 else 1145 reg = (ctxt->b & 7) | ((ctxt->rex_prefix & 1) << 3); 1146 1147 if (ctxt->d & Sse) { 1148 op->type = OP_XMM; 1149 op->bytes = 16; 1150 op->addr.xmm = reg; 1151 kvm_read_sse_reg(reg, &op->vec_val); 1152 return; 1153 } 1154 if (ctxt->d & Mmx) { 1155 reg &= 7; 1156 op->type = OP_MM; 1157 op->bytes = 8; 1158 op->addr.mm = reg; 1159 return; 1160 } 1161 1162 op->type = OP_REG; 1163 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes; 1164 op->addr.reg = decode_register(ctxt, reg, ctxt->d & ByteOp); 1165 1166 fetch_register_operand(op); 1167 op->orig_val = op->val; 1168 } 1169 1170 static void adjust_modrm_seg(struct x86_emulate_ctxt *ctxt, int base_reg) 1171 { 1172 if (base_reg == VCPU_REGS_RSP || base_reg == VCPU_REGS_RBP) 1173 ctxt->modrm_seg = VCPU_SREG_SS; 1174 } 1175 1176 static int decode_modrm(struct x86_emulate_ctxt *ctxt, 1177 struct operand *op) 1178 { 1179 u8 sib; 1180 int index_reg, base_reg, scale; 1181 int rc = X86EMUL_CONTINUE; 1182 ulong modrm_ea = 0; 1183 1184 ctxt->modrm_reg = ((ctxt->rex_prefix << 1) & 8); /* REX.R */ 1185 index_reg = (ctxt->rex_prefix << 2) & 8; /* REX.X */ 1186 base_reg = (ctxt->rex_prefix << 3) & 8; /* REX.B */ 1187 1188 ctxt->modrm_mod = (ctxt->modrm & 0xc0) >> 6; 1189 ctxt->modrm_reg |= (ctxt->modrm & 0x38) >> 3; 1190 ctxt->modrm_rm = base_reg | (ctxt->modrm & 0x07); 1191 ctxt->modrm_seg = VCPU_SREG_DS; 1192 1193 if (ctxt->modrm_mod == 3 || (ctxt->d & NoMod)) { 1194 op->type = OP_REG; 1195 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes; 1196 op->addr.reg = decode_register(ctxt, ctxt->modrm_rm, 1197 ctxt->d & ByteOp); 1198 if (ctxt->d & Sse) { 1199 op->type = OP_XMM; 1200 op->bytes = 16; 1201 op->addr.xmm = ctxt->modrm_rm; 1202 kvm_read_sse_reg(ctxt->modrm_rm, &op->vec_val); 1203 return rc; 1204 } 1205 if (ctxt->d & Mmx) { 1206 op->type = OP_MM; 1207 op->bytes = 8; 1208 op->addr.mm = ctxt->modrm_rm & 7; 1209 return rc; 1210 } 1211 fetch_register_operand(op); 1212 return rc; 1213 } 1214 1215 op->type = OP_MEM; 1216 1217 if (ctxt->ad_bytes == 2) { 1218 unsigned bx = reg_read(ctxt, VCPU_REGS_RBX); 1219 unsigned bp = reg_read(ctxt, VCPU_REGS_RBP); 1220 unsigned si = reg_read(ctxt, VCPU_REGS_RSI); 1221 unsigned di = reg_read(ctxt, VCPU_REGS_RDI); 1222 1223 /* 16-bit ModR/M decode. */ 1224 switch (ctxt->modrm_mod) { 1225 case 0: 1226 if (ctxt->modrm_rm == 6) 1227 modrm_ea += insn_fetch(u16, ctxt); 1228 break; 1229 case 1: 1230 modrm_ea += insn_fetch(s8, ctxt); 1231 break; 1232 case 2: 1233 modrm_ea += insn_fetch(u16, ctxt); 1234 break; 1235 } 1236 switch (ctxt->modrm_rm) { 1237 case 0: 1238 modrm_ea += bx + si; 1239 break; 1240 case 1: 1241 modrm_ea += bx + di; 1242 break; 1243 case 2: 1244 modrm_ea += bp + si; 1245 break; 1246 case 3: 1247 modrm_ea += bp + di; 1248 break; 1249 case 4: 1250 modrm_ea += si; 1251 break; 1252 case 5: 1253 modrm_ea += di; 1254 break; 1255 case 6: 1256 if (ctxt->modrm_mod != 0) 1257 modrm_ea += bp; 1258 break; 1259 case 7: 1260 modrm_ea += bx; 1261 break; 1262 } 1263 if (ctxt->modrm_rm == 2 || ctxt->modrm_rm == 3 || 1264 (ctxt->modrm_rm == 6 && ctxt->modrm_mod != 0)) 1265 ctxt->modrm_seg = VCPU_SREG_SS; 1266 modrm_ea = (u16)modrm_ea; 1267 } else { 1268 /* 32/64-bit ModR/M decode. */ 1269 if ((ctxt->modrm_rm & 7) == 4) { 1270 sib = insn_fetch(u8, ctxt); 1271 index_reg |= (sib >> 3) & 7; 1272 base_reg |= sib & 7; 1273 scale = sib >> 6; 1274 1275 if ((base_reg & 7) == 5 && ctxt->modrm_mod == 0) 1276 modrm_ea += insn_fetch(s32, ctxt); 1277 else { 1278 modrm_ea += reg_read(ctxt, base_reg); 1279 adjust_modrm_seg(ctxt, base_reg); 1280 /* Increment ESP on POP [ESP] */ 1281 if ((ctxt->d & IncSP) && 1282 base_reg == VCPU_REGS_RSP) 1283 modrm_ea += ctxt->op_bytes; 1284 } 1285 if (index_reg != 4) 1286 modrm_ea += reg_read(ctxt, index_reg) << scale; 1287 } else if ((ctxt->modrm_rm & 7) == 5 && ctxt->modrm_mod == 0) { 1288 modrm_ea += insn_fetch(s32, ctxt); 1289 if (ctxt->mode == X86EMUL_MODE_PROT64) 1290 ctxt->rip_relative = 1; 1291 } else { 1292 base_reg = ctxt->modrm_rm; 1293 modrm_ea += reg_read(ctxt, base_reg); 1294 adjust_modrm_seg(ctxt, base_reg); 1295 } 1296 switch (ctxt->modrm_mod) { 1297 case 1: 1298 modrm_ea += insn_fetch(s8, ctxt); 1299 break; 1300 case 2: 1301 modrm_ea += insn_fetch(s32, ctxt); 1302 break; 1303 } 1304 } 1305 op->addr.mem.ea = modrm_ea; 1306 if (ctxt->ad_bytes != 8) 1307 ctxt->memop.addr.mem.ea = (u32)ctxt->memop.addr.mem.ea; 1308 1309 done: 1310 return rc; 1311 } 1312 1313 static int decode_abs(struct x86_emulate_ctxt *ctxt, 1314 struct operand *op) 1315 { 1316 int rc = X86EMUL_CONTINUE; 1317 1318 op->type = OP_MEM; 1319 switch (ctxt->ad_bytes) { 1320 case 2: 1321 op->addr.mem.ea = insn_fetch(u16, ctxt); 1322 break; 1323 case 4: 1324 op->addr.mem.ea = insn_fetch(u32, ctxt); 1325 break; 1326 case 8: 1327 op->addr.mem.ea = insn_fetch(u64, ctxt); 1328 break; 1329 } 1330 done: 1331 return rc; 1332 } 1333 1334 static void fetch_bit_operand(struct x86_emulate_ctxt *ctxt) 1335 { 1336 long sv = 0, mask; 1337 1338 if (ctxt->dst.type == OP_MEM && ctxt->src.type == OP_REG) { 1339 mask = ~((long)ctxt->dst.bytes * 8 - 1); 1340 1341 if (ctxt->src.bytes == 2) 1342 sv = (s16)ctxt->src.val & (s16)mask; 1343 else if (ctxt->src.bytes == 4) 1344 sv = (s32)ctxt->src.val & (s32)mask; 1345 else 1346 sv = (s64)ctxt->src.val & (s64)mask; 1347 1348 ctxt->dst.addr.mem.ea = address_mask(ctxt, 1349 ctxt->dst.addr.mem.ea + (sv >> 3)); 1350 } 1351 1352 /* only subword offset */ 1353 ctxt->src.val &= (ctxt->dst.bytes << 3) - 1; 1354 } 1355 1356 static int read_emulated(struct x86_emulate_ctxt *ctxt, 1357 unsigned long addr, void *dest, unsigned size) 1358 { 1359 int rc; 1360 struct read_cache *mc = &ctxt->mem_read; 1361 1362 if (mc->pos < mc->end) 1363 goto read_cached; 1364 1365 if (KVM_EMULATOR_BUG_ON((mc->end + size) >= sizeof(mc->data), ctxt)) 1366 return X86EMUL_UNHANDLEABLE; 1367 1368 rc = ctxt->ops->read_emulated(ctxt, addr, mc->data + mc->end, size, 1369 &ctxt->exception); 1370 if (rc != X86EMUL_CONTINUE) 1371 return rc; 1372 1373 mc->end += size; 1374 1375 read_cached: 1376 memcpy(dest, mc->data + mc->pos, size); 1377 mc->pos += size; 1378 return X86EMUL_CONTINUE; 1379 } 1380 1381 static int segmented_read(struct x86_emulate_ctxt *ctxt, 1382 struct segmented_address addr, 1383 void *data, 1384 unsigned size) 1385 { 1386 int rc; 1387 ulong linear; 1388 1389 rc = linearize(ctxt, addr, size, false, &linear); 1390 if (rc != X86EMUL_CONTINUE) 1391 return rc; 1392 return read_emulated(ctxt, linear, data, size); 1393 } 1394 1395 static int segmented_write(struct x86_emulate_ctxt *ctxt, 1396 struct segmented_address addr, 1397 const void *data, 1398 unsigned size) 1399 { 1400 int rc; 1401 ulong linear; 1402 1403 rc = linearize(ctxt, addr, size, true, &linear); 1404 if (rc != X86EMUL_CONTINUE) 1405 return rc; 1406 return ctxt->ops->write_emulated(ctxt, linear, data, size, 1407 &ctxt->exception); 1408 } 1409 1410 static int segmented_cmpxchg(struct x86_emulate_ctxt *ctxt, 1411 struct segmented_address addr, 1412 const void *orig_data, const void *data, 1413 unsigned size) 1414 { 1415 int rc; 1416 ulong linear; 1417 1418 rc = linearize(ctxt, addr, size, true, &linear); 1419 if (rc != X86EMUL_CONTINUE) 1420 return rc; 1421 return ctxt->ops->cmpxchg_emulated(ctxt, linear, orig_data, data, 1422 size, &ctxt->exception); 1423 } 1424 1425 static int pio_in_emulated(struct x86_emulate_ctxt *ctxt, 1426 unsigned int size, unsigned short port, 1427 void *dest) 1428 { 1429 struct read_cache *rc = &ctxt->io_read; 1430 1431 if (rc->pos == rc->end) { /* refill pio read ahead */ 1432 unsigned int in_page, n; 1433 unsigned int count = ctxt->rep_prefix ? 1434 address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) : 1; 1435 in_page = (ctxt->eflags & X86_EFLAGS_DF) ? 1436 offset_in_page(reg_read(ctxt, VCPU_REGS_RDI)) : 1437 PAGE_SIZE - offset_in_page(reg_read(ctxt, VCPU_REGS_RDI)); 1438 n = min3(in_page, (unsigned int)sizeof(rc->data) / size, count); 1439 if (n == 0) 1440 n = 1; 1441 rc->pos = rc->end = 0; 1442 if (!ctxt->ops->pio_in_emulated(ctxt, size, port, rc->data, n)) 1443 return 0; 1444 rc->end = n * size; 1445 } 1446 1447 if (ctxt->rep_prefix && (ctxt->d & String) && 1448 !(ctxt->eflags & X86_EFLAGS_DF)) { 1449 ctxt->dst.data = rc->data + rc->pos; 1450 ctxt->dst.type = OP_MEM_STR; 1451 ctxt->dst.count = (rc->end - rc->pos) / size; 1452 rc->pos = rc->end; 1453 } else { 1454 memcpy(dest, rc->data + rc->pos, size); 1455 rc->pos += size; 1456 } 1457 return 1; 1458 } 1459 1460 static int read_interrupt_descriptor(struct x86_emulate_ctxt *ctxt, 1461 u16 index, struct desc_struct *desc) 1462 { 1463 struct desc_ptr dt; 1464 ulong addr; 1465 1466 ctxt->ops->get_idt(ctxt, &dt); 1467 1468 if (dt.size < index * 8 + 7) 1469 return emulate_gp(ctxt, index << 3 | 0x2); 1470 1471 addr = dt.address + index * 8; 1472 return linear_read_system(ctxt, addr, desc, sizeof(*desc)); 1473 } 1474 1475 static void get_descriptor_table_ptr(struct x86_emulate_ctxt *ctxt, 1476 u16 selector, struct desc_ptr *dt) 1477 { 1478 const struct x86_emulate_ops *ops = ctxt->ops; 1479 u32 base3 = 0; 1480 1481 if (selector & 1 << 2) { 1482 struct desc_struct desc; 1483 u16 sel; 1484 1485 memset(dt, 0, sizeof(*dt)); 1486 if (!ops->get_segment(ctxt, &sel, &desc, &base3, 1487 VCPU_SREG_LDTR)) 1488 return; 1489 1490 dt->size = desc_limit_scaled(&desc); /* what if limit > 65535? */ 1491 dt->address = get_desc_base(&desc) | ((u64)base3 << 32); 1492 } else 1493 ops->get_gdt(ctxt, dt); 1494 } 1495 1496 static int get_descriptor_ptr(struct x86_emulate_ctxt *ctxt, 1497 u16 selector, ulong *desc_addr_p) 1498 { 1499 struct desc_ptr dt; 1500 u16 index = selector >> 3; 1501 ulong addr; 1502 1503 get_descriptor_table_ptr(ctxt, selector, &dt); 1504 1505 if (dt.size < index * 8 + 7) 1506 return emulate_gp(ctxt, selector & 0xfffc); 1507 1508 addr = dt.address + index * 8; 1509 1510 #ifdef CONFIG_X86_64 1511 if (addr >> 32 != 0) { 1512 u64 efer = 0; 1513 1514 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer); 1515 if (!(efer & EFER_LMA)) 1516 addr &= (u32)-1; 1517 } 1518 #endif 1519 1520 *desc_addr_p = addr; 1521 return X86EMUL_CONTINUE; 1522 } 1523 1524 /* allowed just for 8 bytes segments */ 1525 static int read_segment_descriptor(struct x86_emulate_ctxt *ctxt, 1526 u16 selector, struct desc_struct *desc, 1527 ulong *desc_addr_p) 1528 { 1529 int rc; 1530 1531 rc = get_descriptor_ptr(ctxt, selector, desc_addr_p); 1532 if (rc != X86EMUL_CONTINUE) 1533 return rc; 1534 1535 return linear_read_system(ctxt, *desc_addr_p, desc, sizeof(*desc)); 1536 } 1537 1538 /* allowed just for 8 bytes segments */ 1539 static int write_segment_descriptor(struct x86_emulate_ctxt *ctxt, 1540 u16 selector, struct desc_struct *desc) 1541 { 1542 int rc; 1543 ulong addr; 1544 1545 rc = get_descriptor_ptr(ctxt, selector, &addr); 1546 if (rc != X86EMUL_CONTINUE) 1547 return rc; 1548 1549 return linear_write_system(ctxt, addr, desc, sizeof(*desc)); 1550 } 1551 1552 static int __load_segment_descriptor(struct x86_emulate_ctxt *ctxt, 1553 u16 selector, int seg, u8 cpl, 1554 enum x86_transfer_type transfer, 1555 struct desc_struct *desc) 1556 { 1557 struct desc_struct seg_desc, old_desc; 1558 u8 dpl, rpl; 1559 unsigned err_vec = GP_VECTOR; 1560 u32 err_code = 0; 1561 bool null_selector = !(selector & ~0x3); /* 0000-0003 are null */ 1562 ulong desc_addr; 1563 int ret; 1564 u16 dummy; 1565 u32 base3 = 0; 1566 1567 memset(&seg_desc, 0, sizeof(seg_desc)); 1568 1569 if (ctxt->mode == X86EMUL_MODE_REAL) { 1570 /* set real mode segment descriptor (keep limit etc. for 1571 * unreal mode) */ 1572 ctxt->ops->get_segment(ctxt, &dummy, &seg_desc, NULL, seg); 1573 set_desc_base(&seg_desc, selector << 4); 1574 goto load; 1575 } else if (seg <= VCPU_SREG_GS && ctxt->mode == X86EMUL_MODE_VM86) { 1576 /* VM86 needs a clean new segment descriptor */ 1577 set_desc_base(&seg_desc, selector << 4); 1578 set_desc_limit(&seg_desc, 0xffff); 1579 seg_desc.type = 3; 1580 seg_desc.p = 1; 1581 seg_desc.s = 1; 1582 seg_desc.dpl = 3; 1583 goto load; 1584 } 1585 1586 rpl = selector & 3; 1587 1588 /* TR should be in GDT only */ 1589 if (seg == VCPU_SREG_TR && (selector & (1 << 2))) 1590 goto exception; 1591 1592 /* NULL selector is not valid for TR, CS and (except for long mode) SS */ 1593 if (null_selector) { 1594 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_TR) 1595 goto exception; 1596 1597 if (seg == VCPU_SREG_SS) { 1598 if (ctxt->mode != X86EMUL_MODE_PROT64 || rpl != cpl) 1599 goto exception; 1600 1601 /* 1602 * ctxt->ops->set_segment expects the CPL to be in 1603 * SS.DPL, so fake an expand-up 32-bit data segment. 1604 */ 1605 seg_desc.type = 3; 1606 seg_desc.p = 1; 1607 seg_desc.s = 1; 1608 seg_desc.dpl = cpl; 1609 seg_desc.d = 1; 1610 seg_desc.g = 1; 1611 } 1612 1613 /* Skip all following checks */ 1614 goto load; 1615 } 1616 1617 ret = read_segment_descriptor(ctxt, selector, &seg_desc, &desc_addr); 1618 if (ret != X86EMUL_CONTINUE) 1619 return ret; 1620 1621 err_code = selector & 0xfffc; 1622 err_vec = (transfer == X86_TRANSFER_TASK_SWITCH) ? TS_VECTOR : 1623 GP_VECTOR; 1624 1625 /* can't load system descriptor into segment selector */ 1626 if (seg <= VCPU_SREG_GS && !seg_desc.s) { 1627 if (transfer == X86_TRANSFER_CALL_JMP) 1628 return X86EMUL_UNHANDLEABLE; 1629 goto exception; 1630 } 1631 1632 dpl = seg_desc.dpl; 1633 1634 switch (seg) { 1635 case VCPU_SREG_SS: 1636 /* 1637 * segment is not a writable data segment or segment 1638 * selector's RPL != CPL or DPL != CPL 1639 */ 1640 if (rpl != cpl || (seg_desc.type & 0xa) != 0x2 || dpl != cpl) 1641 goto exception; 1642 break; 1643 case VCPU_SREG_CS: 1644 /* 1645 * KVM uses "none" when loading CS as part of emulating Real 1646 * Mode exceptions and IRET (handled above). In all other 1647 * cases, loading CS without a control transfer is a KVM bug. 1648 */ 1649 if (WARN_ON_ONCE(transfer == X86_TRANSFER_NONE)) 1650 goto exception; 1651 1652 if (!(seg_desc.type & 8)) 1653 goto exception; 1654 1655 if (transfer == X86_TRANSFER_RET) { 1656 /* RET can never return to an inner privilege level. */ 1657 if (rpl < cpl) 1658 goto exception; 1659 /* Outer-privilege level return is not implemented */ 1660 if (rpl > cpl) 1661 return X86EMUL_UNHANDLEABLE; 1662 } 1663 if (transfer == X86_TRANSFER_RET || transfer == X86_TRANSFER_TASK_SWITCH) { 1664 if (seg_desc.type & 4) { 1665 /* conforming */ 1666 if (dpl > rpl) 1667 goto exception; 1668 } else { 1669 /* nonconforming */ 1670 if (dpl != rpl) 1671 goto exception; 1672 } 1673 } else { /* X86_TRANSFER_CALL_JMP */ 1674 if (seg_desc.type & 4) { 1675 /* conforming */ 1676 if (dpl > cpl) 1677 goto exception; 1678 } else { 1679 /* nonconforming */ 1680 if (rpl > cpl || dpl != cpl) 1681 goto exception; 1682 } 1683 } 1684 /* in long-mode d/b must be clear if l is set */ 1685 if (seg_desc.d && seg_desc.l) { 1686 u64 efer = 0; 1687 1688 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer); 1689 if (efer & EFER_LMA) 1690 goto exception; 1691 } 1692 1693 /* CS(RPL) <- CPL */ 1694 selector = (selector & 0xfffc) | cpl; 1695 break; 1696 case VCPU_SREG_TR: 1697 if (seg_desc.s || (seg_desc.type != 1 && seg_desc.type != 9)) 1698 goto exception; 1699 break; 1700 case VCPU_SREG_LDTR: 1701 if (seg_desc.s || seg_desc.type != 2) 1702 goto exception; 1703 break; 1704 default: /* DS, ES, FS, or GS */ 1705 /* 1706 * segment is not a data or readable code segment or 1707 * ((segment is a data or nonconforming code segment) 1708 * and ((RPL > DPL) or (CPL > DPL))) 1709 */ 1710 if ((seg_desc.type & 0xa) == 0x8 || 1711 (((seg_desc.type & 0xc) != 0xc) && 1712 (rpl > dpl || cpl > dpl))) 1713 goto exception; 1714 break; 1715 } 1716 1717 if (!seg_desc.p) { 1718 err_vec = (seg == VCPU_SREG_SS) ? SS_VECTOR : NP_VECTOR; 1719 goto exception; 1720 } 1721 1722 if (seg_desc.s) { 1723 /* mark segment as accessed */ 1724 if (!(seg_desc.type & 1)) { 1725 seg_desc.type |= 1; 1726 ret = write_segment_descriptor(ctxt, selector, 1727 &seg_desc); 1728 if (ret != X86EMUL_CONTINUE) 1729 return ret; 1730 } 1731 } else if (ctxt->mode == X86EMUL_MODE_PROT64) { 1732 ret = linear_read_system(ctxt, desc_addr+8, &base3, sizeof(base3)); 1733 if (ret != X86EMUL_CONTINUE) 1734 return ret; 1735 if (emul_is_noncanonical_address(get_desc_base(&seg_desc) | 1736 ((u64)base3 << 32), ctxt)) 1737 return emulate_gp(ctxt, err_code); 1738 } 1739 1740 if (seg == VCPU_SREG_TR) { 1741 old_desc = seg_desc; 1742 seg_desc.type |= 2; /* busy */ 1743 ret = ctxt->ops->cmpxchg_emulated(ctxt, desc_addr, &old_desc, &seg_desc, 1744 sizeof(seg_desc), &ctxt->exception); 1745 if (ret != X86EMUL_CONTINUE) 1746 return ret; 1747 } 1748 load: 1749 ctxt->ops->set_segment(ctxt, selector, &seg_desc, base3, seg); 1750 if (desc) 1751 *desc = seg_desc; 1752 return X86EMUL_CONTINUE; 1753 exception: 1754 return emulate_exception(ctxt, err_vec, err_code, true); 1755 } 1756 1757 static int load_segment_descriptor(struct x86_emulate_ctxt *ctxt, 1758 u16 selector, int seg) 1759 { 1760 u8 cpl = ctxt->ops->cpl(ctxt); 1761 1762 /* 1763 * None of MOV, POP and LSS can load a NULL selector in CPL=3, but 1764 * they can load it at CPL<3 (Intel's manual says only LSS can, 1765 * but it's wrong). 1766 * 1767 * However, the Intel manual says that putting IST=1/DPL=3 in 1768 * an interrupt gate will result in SS=3 (the AMD manual instead 1769 * says it doesn't), so allow SS=3 in __load_segment_descriptor 1770 * and only forbid it here. 1771 */ 1772 if (seg == VCPU_SREG_SS && selector == 3 && 1773 ctxt->mode == X86EMUL_MODE_PROT64) 1774 return emulate_exception(ctxt, GP_VECTOR, 0, true); 1775 1776 return __load_segment_descriptor(ctxt, selector, seg, cpl, 1777 X86_TRANSFER_NONE, NULL); 1778 } 1779 1780 static void write_register_operand(struct operand *op) 1781 { 1782 return assign_register(op->addr.reg, op->val, op->bytes); 1783 } 1784 1785 static int writeback(struct x86_emulate_ctxt *ctxt, struct operand *op) 1786 { 1787 switch (op->type) { 1788 case OP_REG: 1789 write_register_operand(op); 1790 break; 1791 case OP_MEM: 1792 if (ctxt->lock_prefix) 1793 return segmented_cmpxchg(ctxt, 1794 op->addr.mem, 1795 &op->orig_val, 1796 &op->val, 1797 op->bytes); 1798 else 1799 return segmented_write(ctxt, 1800 op->addr.mem, 1801 &op->val, 1802 op->bytes); 1803 case OP_MEM_STR: 1804 return segmented_write(ctxt, 1805 op->addr.mem, 1806 op->data, 1807 op->bytes * op->count); 1808 case OP_XMM: 1809 kvm_write_sse_reg(op->addr.xmm, &op->vec_val); 1810 break; 1811 case OP_MM: 1812 kvm_write_mmx_reg(op->addr.mm, &op->mm_val); 1813 break; 1814 case OP_NONE: 1815 /* no writeback */ 1816 break; 1817 default: 1818 break; 1819 } 1820 return X86EMUL_CONTINUE; 1821 } 1822 1823 static int push(struct x86_emulate_ctxt *ctxt, void *data, int bytes) 1824 { 1825 struct segmented_address addr; 1826 1827 rsp_increment(ctxt, -bytes); 1828 addr.ea = reg_read(ctxt, VCPU_REGS_RSP) & stack_mask(ctxt); 1829 addr.seg = VCPU_SREG_SS; 1830 1831 return segmented_write(ctxt, addr, data, bytes); 1832 } 1833 1834 static int em_push(struct x86_emulate_ctxt *ctxt) 1835 { 1836 /* Disable writeback. */ 1837 ctxt->dst.type = OP_NONE; 1838 return push(ctxt, &ctxt->src.val, ctxt->op_bytes); 1839 } 1840 1841 static int emulate_pop(struct x86_emulate_ctxt *ctxt, 1842 void *dest, int len) 1843 { 1844 int rc; 1845 struct segmented_address addr; 1846 1847 addr.ea = reg_read(ctxt, VCPU_REGS_RSP) & stack_mask(ctxt); 1848 addr.seg = VCPU_SREG_SS; 1849 rc = segmented_read(ctxt, addr, dest, len); 1850 if (rc != X86EMUL_CONTINUE) 1851 return rc; 1852 1853 rsp_increment(ctxt, len); 1854 return rc; 1855 } 1856 1857 static int em_pop(struct x86_emulate_ctxt *ctxt) 1858 { 1859 return emulate_pop(ctxt, &ctxt->dst.val, ctxt->op_bytes); 1860 } 1861 1862 static int emulate_popf(struct x86_emulate_ctxt *ctxt, 1863 void *dest, int len) 1864 { 1865 int rc; 1866 unsigned long val, change_mask; 1867 int iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> X86_EFLAGS_IOPL_BIT; 1868 int cpl = ctxt->ops->cpl(ctxt); 1869 1870 rc = emulate_pop(ctxt, &val, len); 1871 if (rc != X86EMUL_CONTINUE) 1872 return rc; 1873 1874 change_mask = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | 1875 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF | 1876 X86_EFLAGS_TF | X86_EFLAGS_DF | X86_EFLAGS_NT | 1877 X86_EFLAGS_AC | X86_EFLAGS_ID; 1878 1879 switch(ctxt->mode) { 1880 case X86EMUL_MODE_PROT64: 1881 case X86EMUL_MODE_PROT32: 1882 case X86EMUL_MODE_PROT16: 1883 if (cpl == 0) 1884 change_mask |= X86_EFLAGS_IOPL; 1885 if (cpl <= iopl) 1886 change_mask |= X86_EFLAGS_IF; 1887 break; 1888 case X86EMUL_MODE_VM86: 1889 if (iopl < 3) 1890 return emulate_gp(ctxt, 0); 1891 change_mask |= X86_EFLAGS_IF; 1892 break; 1893 default: /* real mode */ 1894 change_mask |= (X86_EFLAGS_IOPL | X86_EFLAGS_IF); 1895 break; 1896 } 1897 1898 *(unsigned long *)dest = 1899 (ctxt->eflags & ~change_mask) | (val & change_mask); 1900 1901 return rc; 1902 } 1903 1904 static int em_popf(struct x86_emulate_ctxt *ctxt) 1905 { 1906 ctxt->dst.type = OP_REG; 1907 ctxt->dst.addr.reg = &ctxt->eflags; 1908 ctxt->dst.bytes = ctxt->op_bytes; 1909 return emulate_popf(ctxt, &ctxt->dst.val, ctxt->op_bytes); 1910 } 1911 1912 static int em_enter(struct x86_emulate_ctxt *ctxt) 1913 { 1914 int rc; 1915 unsigned frame_size = ctxt->src.val; 1916 unsigned nesting_level = ctxt->src2.val & 31; 1917 ulong rbp; 1918 1919 if (nesting_level) 1920 return X86EMUL_UNHANDLEABLE; 1921 1922 rbp = reg_read(ctxt, VCPU_REGS_RBP); 1923 rc = push(ctxt, &rbp, stack_size(ctxt)); 1924 if (rc != X86EMUL_CONTINUE) 1925 return rc; 1926 assign_masked(reg_rmw(ctxt, VCPU_REGS_RBP), reg_read(ctxt, VCPU_REGS_RSP), 1927 stack_mask(ctxt)); 1928 assign_masked(reg_rmw(ctxt, VCPU_REGS_RSP), 1929 reg_read(ctxt, VCPU_REGS_RSP) - frame_size, 1930 stack_mask(ctxt)); 1931 return X86EMUL_CONTINUE; 1932 } 1933 1934 static int em_leave(struct x86_emulate_ctxt *ctxt) 1935 { 1936 assign_masked(reg_rmw(ctxt, VCPU_REGS_RSP), reg_read(ctxt, VCPU_REGS_RBP), 1937 stack_mask(ctxt)); 1938 return emulate_pop(ctxt, reg_rmw(ctxt, VCPU_REGS_RBP), ctxt->op_bytes); 1939 } 1940 1941 static int em_push_sreg(struct x86_emulate_ctxt *ctxt) 1942 { 1943 int seg = ctxt->src2.val; 1944 1945 ctxt->src.val = get_segment_selector(ctxt, seg); 1946 if (ctxt->op_bytes == 4) { 1947 rsp_increment(ctxt, -2); 1948 ctxt->op_bytes = 2; 1949 } 1950 1951 return em_push(ctxt); 1952 } 1953 1954 static int em_pop_sreg(struct x86_emulate_ctxt *ctxt) 1955 { 1956 int seg = ctxt->src2.val; 1957 unsigned long selector; 1958 int rc; 1959 1960 rc = emulate_pop(ctxt, &selector, 2); 1961 if (rc != X86EMUL_CONTINUE) 1962 return rc; 1963 1964 if (seg == VCPU_SREG_SS) 1965 ctxt->interruptibility = KVM_X86_SHADOW_INT_MOV_SS; 1966 if (ctxt->op_bytes > 2) 1967 rsp_increment(ctxt, ctxt->op_bytes - 2); 1968 1969 rc = load_segment_descriptor(ctxt, (u16)selector, seg); 1970 return rc; 1971 } 1972 1973 static int em_pusha(struct x86_emulate_ctxt *ctxt) 1974 { 1975 unsigned long old_esp = reg_read(ctxt, VCPU_REGS_RSP); 1976 int rc = X86EMUL_CONTINUE; 1977 int reg = VCPU_REGS_RAX; 1978 1979 while (reg <= VCPU_REGS_RDI) { 1980 (reg == VCPU_REGS_RSP) ? 1981 (ctxt->src.val = old_esp) : (ctxt->src.val = reg_read(ctxt, reg)); 1982 1983 rc = em_push(ctxt); 1984 if (rc != X86EMUL_CONTINUE) 1985 return rc; 1986 1987 ++reg; 1988 } 1989 1990 return rc; 1991 } 1992 1993 static int em_pushf(struct x86_emulate_ctxt *ctxt) 1994 { 1995 ctxt->src.val = (unsigned long)ctxt->eflags & ~X86_EFLAGS_VM; 1996 return em_push(ctxt); 1997 } 1998 1999 static int em_popa(struct x86_emulate_ctxt *ctxt) 2000 { 2001 int rc = X86EMUL_CONTINUE; 2002 int reg = VCPU_REGS_RDI; 2003 u32 val; 2004 2005 while (reg >= VCPU_REGS_RAX) { 2006 if (reg == VCPU_REGS_RSP) { 2007 rsp_increment(ctxt, ctxt->op_bytes); 2008 --reg; 2009 } 2010 2011 rc = emulate_pop(ctxt, &val, ctxt->op_bytes); 2012 if (rc != X86EMUL_CONTINUE) 2013 break; 2014 assign_register(reg_rmw(ctxt, reg), val, ctxt->op_bytes); 2015 --reg; 2016 } 2017 return rc; 2018 } 2019 2020 static int __emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq) 2021 { 2022 const struct x86_emulate_ops *ops = ctxt->ops; 2023 int rc; 2024 struct desc_ptr dt; 2025 gva_t cs_addr; 2026 gva_t eip_addr; 2027 u16 cs, eip; 2028 2029 /* TODO: Add limit checks */ 2030 ctxt->src.val = ctxt->eflags; 2031 rc = em_push(ctxt); 2032 if (rc != X86EMUL_CONTINUE) 2033 return rc; 2034 2035 ctxt->eflags &= ~(X86_EFLAGS_IF | X86_EFLAGS_TF | X86_EFLAGS_AC); 2036 2037 ctxt->src.val = get_segment_selector(ctxt, VCPU_SREG_CS); 2038 rc = em_push(ctxt); 2039 if (rc != X86EMUL_CONTINUE) 2040 return rc; 2041 2042 ctxt->src.val = ctxt->_eip; 2043 rc = em_push(ctxt); 2044 if (rc != X86EMUL_CONTINUE) 2045 return rc; 2046 2047 ops->get_idt(ctxt, &dt); 2048 2049 eip_addr = dt.address + (irq << 2); 2050 cs_addr = dt.address + (irq << 2) + 2; 2051 2052 rc = linear_read_system(ctxt, cs_addr, &cs, 2); 2053 if (rc != X86EMUL_CONTINUE) 2054 return rc; 2055 2056 rc = linear_read_system(ctxt, eip_addr, &eip, 2); 2057 if (rc != X86EMUL_CONTINUE) 2058 return rc; 2059 2060 rc = load_segment_descriptor(ctxt, cs, VCPU_SREG_CS); 2061 if (rc != X86EMUL_CONTINUE) 2062 return rc; 2063 2064 ctxt->_eip = eip; 2065 2066 return rc; 2067 } 2068 2069 int emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq) 2070 { 2071 int rc; 2072 2073 invalidate_registers(ctxt); 2074 rc = __emulate_int_real(ctxt, irq); 2075 if (rc == X86EMUL_CONTINUE) 2076 writeback_registers(ctxt); 2077 return rc; 2078 } 2079 2080 static int emulate_int(struct x86_emulate_ctxt *ctxt, int irq) 2081 { 2082 switch(ctxt->mode) { 2083 case X86EMUL_MODE_REAL: 2084 return __emulate_int_real(ctxt, irq); 2085 case X86EMUL_MODE_VM86: 2086 case X86EMUL_MODE_PROT16: 2087 case X86EMUL_MODE_PROT32: 2088 case X86EMUL_MODE_PROT64: 2089 default: 2090 /* Protected mode interrupts unimplemented yet */ 2091 return X86EMUL_UNHANDLEABLE; 2092 } 2093 } 2094 2095 static int emulate_iret_real(struct x86_emulate_ctxt *ctxt) 2096 { 2097 int rc = X86EMUL_CONTINUE; 2098 unsigned long temp_eip = 0; 2099 unsigned long temp_eflags = 0; 2100 unsigned long cs = 0; 2101 unsigned long mask = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | 2102 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_TF | 2103 X86_EFLAGS_IF | X86_EFLAGS_DF | X86_EFLAGS_OF | 2104 X86_EFLAGS_IOPL | X86_EFLAGS_NT | X86_EFLAGS_RF | 2105 X86_EFLAGS_AC | X86_EFLAGS_ID | 2106 X86_EFLAGS_FIXED; 2107 unsigned long vm86_mask = X86_EFLAGS_VM | X86_EFLAGS_VIF | 2108 X86_EFLAGS_VIP; 2109 2110 /* TODO: Add stack limit check */ 2111 2112 rc = emulate_pop(ctxt, &temp_eip, ctxt->op_bytes); 2113 2114 if (rc != X86EMUL_CONTINUE) 2115 return rc; 2116 2117 if (temp_eip & ~0xffff) 2118 return emulate_gp(ctxt, 0); 2119 2120 rc = emulate_pop(ctxt, &cs, ctxt->op_bytes); 2121 2122 if (rc != X86EMUL_CONTINUE) 2123 return rc; 2124 2125 rc = emulate_pop(ctxt, &temp_eflags, ctxt->op_bytes); 2126 2127 if (rc != X86EMUL_CONTINUE) 2128 return rc; 2129 2130 rc = load_segment_descriptor(ctxt, (u16)cs, VCPU_SREG_CS); 2131 2132 if (rc != X86EMUL_CONTINUE) 2133 return rc; 2134 2135 ctxt->_eip = temp_eip; 2136 2137 if (ctxt->op_bytes == 4) 2138 ctxt->eflags = ((temp_eflags & mask) | (ctxt->eflags & vm86_mask)); 2139 else if (ctxt->op_bytes == 2) { 2140 ctxt->eflags &= ~0xffff; 2141 ctxt->eflags |= temp_eflags; 2142 } 2143 2144 ctxt->eflags &= ~EFLG_RESERVED_ZEROS_MASK; /* Clear reserved zeros */ 2145 ctxt->eflags |= X86_EFLAGS_FIXED; 2146 ctxt->ops->set_nmi_mask(ctxt, false); 2147 2148 return rc; 2149 } 2150 2151 static int em_iret(struct x86_emulate_ctxt *ctxt) 2152 { 2153 switch(ctxt->mode) { 2154 case X86EMUL_MODE_REAL: 2155 return emulate_iret_real(ctxt); 2156 case X86EMUL_MODE_VM86: 2157 case X86EMUL_MODE_PROT16: 2158 case X86EMUL_MODE_PROT32: 2159 case X86EMUL_MODE_PROT64: 2160 default: 2161 /* iret from protected mode unimplemented yet */ 2162 return X86EMUL_UNHANDLEABLE; 2163 } 2164 } 2165 2166 static int em_jmp_far(struct x86_emulate_ctxt *ctxt) 2167 { 2168 int rc; 2169 unsigned short sel; 2170 struct desc_struct new_desc; 2171 u8 cpl = ctxt->ops->cpl(ctxt); 2172 2173 memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2); 2174 2175 rc = __load_segment_descriptor(ctxt, sel, VCPU_SREG_CS, cpl, 2176 X86_TRANSFER_CALL_JMP, 2177 &new_desc); 2178 if (rc != X86EMUL_CONTINUE) 2179 return rc; 2180 2181 rc = assign_eip_far(ctxt, ctxt->src.val); 2182 /* Error handling is not implemented. */ 2183 if (rc != X86EMUL_CONTINUE) 2184 return X86EMUL_UNHANDLEABLE; 2185 2186 return rc; 2187 } 2188 2189 static int em_jmp_abs(struct x86_emulate_ctxt *ctxt) 2190 { 2191 return assign_eip_near(ctxt, ctxt->src.val); 2192 } 2193 2194 static int em_call_near_abs(struct x86_emulate_ctxt *ctxt) 2195 { 2196 int rc; 2197 long int old_eip; 2198 2199 old_eip = ctxt->_eip; 2200 rc = assign_eip_near(ctxt, ctxt->src.val); 2201 if (rc != X86EMUL_CONTINUE) 2202 return rc; 2203 ctxt->src.val = old_eip; 2204 rc = em_push(ctxt); 2205 return rc; 2206 } 2207 2208 static int em_cmpxchg8b(struct x86_emulate_ctxt *ctxt) 2209 { 2210 u64 old = ctxt->dst.orig_val64; 2211 2212 if (ctxt->dst.bytes == 16) 2213 return X86EMUL_UNHANDLEABLE; 2214 2215 if (((u32) (old >> 0) != (u32) reg_read(ctxt, VCPU_REGS_RAX)) || 2216 ((u32) (old >> 32) != (u32) reg_read(ctxt, VCPU_REGS_RDX))) { 2217 *reg_write(ctxt, VCPU_REGS_RAX) = (u32) (old >> 0); 2218 *reg_write(ctxt, VCPU_REGS_RDX) = (u32) (old >> 32); 2219 ctxt->eflags &= ~X86_EFLAGS_ZF; 2220 } else { 2221 ctxt->dst.val64 = ((u64)reg_read(ctxt, VCPU_REGS_RCX) << 32) | 2222 (u32) reg_read(ctxt, VCPU_REGS_RBX); 2223 2224 ctxt->eflags |= X86_EFLAGS_ZF; 2225 } 2226 return X86EMUL_CONTINUE; 2227 } 2228 2229 static int em_ret(struct x86_emulate_ctxt *ctxt) 2230 { 2231 int rc; 2232 unsigned long eip; 2233 2234 rc = emulate_pop(ctxt, &eip, ctxt->op_bytes); 2235 if (rc != X86EMUL_CONTINUE) 2236 return rc; 2237 2238 return assign_eip_near(ctxt, eip); 2239 } 2240 2241 static int em_ret_far(struct x86_emulate_ctxt *ctxt) 2242 { 2243 int rc; 2244 unsigned long eip, cs; 2245 int cpl = ctxt->ops->cpl(ctxt); 2246 struct desc_struct new_desc; 2247 2248 rc = emulate_pop(ctxt, &eip, ctxt->op_bytes); 2249 if (rc != X86EMUL_CONTINUE) 2250 return rc; 2251 rc = emulate_pop(ctxt, &cs, ctxt->op_bytes); 2252 if (rc != X86EMUL_CONTINUE) 2253 return rc; 2254 rc = __load_segment_descriptor(ctxt, (u16)cs, VCPU_SREG_CS, cpl, 2255 X86_TRANSFER_RET, 2256 &new_desc); 2257 if (rc != X86EMUL_CONTINUE) 2258 return rc; 2259 rc = assign_eip_far(ctxt, eip); 2260 /* Error handling is not implemented. */ 2261 if (rc != X86EMUL_CONTINUE) 2262 return X86EMUL_UNHANDLEABLE; 2263 2264 return rc; 2265 } 2266 2267 static int em_ret_far_imm(struct x86_emulate_ctxt *ctxt) 2268 { 2269 int rc; 2270 2271 rc = em_ret_far(ctxt); 2272 if (rc != X86EMUL_CONTINUE) 2273 return rc; 2274 rsp_increment(ctxt, ctxt->src.val); 2275 return X86EMUL_CONTINUE; 2276 } 2277 2278 static int em_cmpxchg(struct x86_emulate_ctxt *ctxt) 2279 { 2280 /* Save real source value, then compare EAX against destination. */ 2281 ctxt->dst.orig_val = ctxt->dst.val; 2282 ctxt->dst.val = reg_read(ctxt, VCPU_REGS_RAX); 2283 ctxt->src.orig_val = ctxt->src.val; 2284 ctxt->src.val = ctxt->dst.orig_val; 2285 fastop(ctxt, em_cmp); 2286 2287 if (ctxt->eflags & X86_EFLAGS_ZF) { 2288 /* Success: write back to memory; no update of EAX */ 2289 ctxt->src.type = OP_NONE; 2290 ctxt->dst.val = ctxt->src.orig_val; 2291 } else { 2292 /* Failure: write the value we saw to EAX. */ 2293 ctxt->src.type = OP_REG; 2294 ctxt->src.addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX); 2295 ctxt->src.val = ctxt->dst.orig_val; 2296 /* Create write-cycle to dest by writing the same value */ 2297 ctxt->dst.val = ctxt->dst.orig_val; 2298 } 2299 return X86EMUL_CONTINUE; 2300 } 2301 2302 static int em_lseg(struct x86_emulate_ctxt *ctxt) 2303 { 2304 int seg = ctxt->src2.val; 2305 unsigned short sel; 2306 int rc; 2307 2308 memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2); 2309 2310 rc = load_segment_descriptor(ctxt, sel, seg); 2311 if (rc != X86EMUL_CONTINUE) 2312 return rc; 2313 2314 ctxt->dst.val = ctxt->src.val; 2315 return rc; 2316 } 2317 2318 static int em_rsm(struct x86_emulate_ctxt *ctxt) 2319 { 2320 if (!ctxt->ops->is_smm(ctxt)) 2321 return emulate_ud(ctxt); 2322 2323 if (ctxt->ops->leave_smm(ctxt)) 2324 ctxt->ops->triple_fault(ctxt); 2325 2326 return emulator_recalc_and_set_mode(ctxt); 2327 } 2328 2329 static void 2330 setup_syscalls_segments(struct desc_struct *cs, struct desc_struct *ss) 2331 { 2332 cs->l = 0; /* will be adjusted later */ 2333 set_desc_base(cs, 0); /* flat segment */ 2334 cs->g = 1; /* 4kb granularity */ 2335 set_desc_limit(cs, 0xfffff); /* 4GB limit */ 2336 cs->type = 0x0b; /* Read, Execute, Accessed */ 2337 cs->s = 1; 2338 cs->dpl = 0; /* will be adjusted later */ 2339 cs->p = 1; 2340 cs->d = 1; 2341 cs->avl = 0; 2342 2343 set_desc_base(ss, 0); /* flat segment */ 2344 set_desc_limit(ss, 0xfffff); /* 4GB limit */ 2345 ss->g = 1; /* 4kb granularity */ 2346 ss->s = 1; 2347 ss->type = 0x03; /* Read/Write, Accessed */ 2348 ss->d = 1; /* 32bit stack segment */ 2349 ss->dpl = 0; 2350 ss->p = 1; 2351 ss->l = 0; 2352 ss->avl = 0; 2353 } 2354 2355 static bool vendor_intel(struct x86_emulate_ctxt *ctxt) 2356 { 2357 u32 eax, ebx, ecx, edx; 2358 2359 eax = ecx = 0; 2360 ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx, true); 2361 return is_guest_vendor_intel(ebx, ecx, edx); 2362 } 2363 2364 static bool em_syscall_is_enabled(struct x86_emulate_ctxt *ctxt) 2365 { 2366 const struct x86_emulate_ops *ops = ctxt->ops; 2367 u32 eax, ebx, ecx, edx; 2368 2369 /* 2370 * syscall should always be enabled in longmode - so only become 2371 * vendor specific (cpuid) if other modes are active... 2372 */ 2373 if (ctxt->mode == X86EMUL_MODE_PROT64) 2374 return true; 2375 2376 eax = 0x00000000; 2377 ecx = 0x00000000; 2378 ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx, true); 2379 /* 2380 * remark: Intel CPUs only support "syscall" in 64bit longmode. Also a 2381 * 64bit guest with a 32bit compat-app running will #UD !! While this 2382 * behaviour can be fixed (by emulating) into AMD response - CPUs of 2383 * AMD can't behave like Intel. 2384 */ 2385 if (is_guest_vendor_intel(ebx, ecx, edx)) 2386 return false; 2387 2388 if (is_guest_vendor_amd(ebx, ecx, edx) || 2389 is_guest_vendor_hygon(ebx, ecx, edx)) 2390 return true; 2391 2392 /* 2393 * default: (not Intel, not AMD, not Hygon), apply Intel's 2394 * stricter rules... 2395 */ 2396 return false; 2397 } 2398 2399 static int em_syscall(struct x86_emulate_ctxt *ctxt) 2400 { 2401 const struct x86_emulate_ops *ops = ctxt->ops; 2402 struct desc_struct cs, ss; 2403 u64 msr_data; 2404 u16 cs_sel, ss_sel; 2405 u64 efer = 0; 2406 2407 /* syscall is not available in real mode */ 2408 if (ctxt->mode == X86EMUL_MODE_REAL || 2409 ctxt->mode == X86EMUL_MODE_VM86) 2410 return emulate_ud(ctxt); 2411 2412 if (!(em_syscall_is_enabled(ctxt))) 2413 return emulate_ud(ctxt); 2414 2415 ops->get_msr(ctxt, MSR_EFER, &efer); 2416 if (!(efer & EFER_SCE)) 2417 return emulate_ud(ctxt); 2418 2419 setup_syscalls_segments(&cs, &ss); 2420 ops->get_msr(ctxt, MSR_STAR, &msr_data); 2421 msr_data >>= 32; 2422 cs_sel = (u16)(msr_data & 0xfffc); 2423 ss_sel = (u16)(msr_data + 8); 2424 2425 if (efer & EFER_LMA) { 2426 cs.d = 0; 2427 cs.l = 1; 2428 } 2429 ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS); 2430 ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS); 2431 2432 *reg_write(ctxt, VCPU_REGS_RCX) = ctxt->_eip; 2433 if (efer & EFER_LMA) { 2434 #ifdef CONFIG_X86_64 2435 *reg_write(ctxt, VCPU_REGS_R11) = ctxt->eflags; 2436 2437 ops->get_msr(ctxt, 2438 ctxt->mode == X86EMUL_MODE_PROT64 ? 2439 MSR_LSTAR : MSR_CSTAR, &msr_data); 2440 ctxt->_eip = msr_data; 2441 2442 ops->get_msr(ctxt, MSR_SYSCALL_MASK, &msr_data); 2443 ctxt->eflags &= ~msr_data; 2444 ctxt->eflags |= X86_EFLAGS_FIXED; 2445 #endif 2446 } else { 2447 /* legacy mode */ 2448 ops->get_msr(ctxt, MSR_STAR, &msr_data); 2449 ctxt->_eip = (u32)msr_data; 2450 2451 ctxt->eflags &= ~(X86_EFLAGS_VM | X86_EFLAGS_IF); 2452 } 2453 2454 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 2455 return X86EMUL_CONTINUE; 2456 } 2457 2458 static int em_sysenter(struct x86_emulate_ctxt *ctxt) 2459 { 2460 const struct x86_emulate_ops *ops = ctxt->ops; 2461 struct desc_struct cs, ss; 2462 u64 msr_data; 2463 u16 cs_sel, ss_sel; 2464 u64 efer = 0; 2465 2466 ops->get_msr(ctxt, MSR_EFER, &efer); 2467 /* inject #GP if in real mode */ 2468 if (ctxt->mode == X86EMUL_MODE_REAL) 2469 return emulate_gp(ctxt, 0); 2470 2471 /* 2472 * Not recognized on AMD in compat mode (but is recognized in legacy 2473 * mode). 2474 */ 2475 if ((ctxt->mode != X86EMUL_MODE_PROT64) && (efer & EFER_LMA) 2476 && !vendor_intel(ctxt)) 2477 return emulate_ud(ctxt); 2478 2479 /* sysenter/sysexit have not been tested in 64bit mode. */ 2480 if (ctxt->mode == X86EMUL_MODE_PROT64) 2481 return X86EMUL_UNHANDLEABLE; 2482 2483 ops->get_msr(ctxt, MSR_IA32_SYSENTER_CS, &msr_data); 2484 if ((msr_data & 0xfffc) == 0x0) 2485 return emulate_gp(ctxt, 0); 2486 2487 setup_syscalls_segments(&cs, &ss); 2488 ctxt->eflags &= ~(X86_EFLAGS_VM | X86_EFLAGS_IF); 2489 cs_sel = (u16)msr_data & ~SEGMENT_RPL_MASK; 2490 ss_sel = cs_sel + 8; 2491 if (efer & EFER_LMA) { 2492 cs.d = 0; 2493 cs.l = 1; 2494 } 2495 2496 ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS); 2497 ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS); 2498 2499 ops->get_msr(ctxt, MSR_IA32_SYSENTER_EIP, &msr_data); 2500 ctxt->_eip = (efer & EFER_LMA) ? msr_data : (u32)msr_data; 2501 2502 ops->get_msr(ctxt, MSR_IA32_SYSENTER_ESP, &msr_data); 2503 *reg_write(ctxt, VCPU_REGS_RSP) = (efer & EFER_LMA) ? msr_data : 2504 (u32)msr_data; 2505 if (efer & EFER_LMA) 2506 ctxt->mode = X86EMUL_MODE_PROT64; 2507 2508 return X86EMUL_CONTINUE; 2509 } 2510 2511 static int em_sysexit(struct x86_emulate_ctxt *ctxt) 2512 { 2513 const struct x86_emulate_ops *ops = ctxt->ops; 2514 struct desc_struct cs, ss; 2515 u64 msr_data, rcx, rdx; 2516 int usermode; 2517 u16 cs_sel = 0, ss_sel = 0; 2518 2519 /* inject #GP if in real mode or Virtual 8086 mode */ 2520 if (ctxt->mode == X86EMUL_MODE_REAL || 2521 ctxt->mode == X86EMUL_MODE_VM86) 2522 return emulate_gp(ctxt, 0); 2523 2524 setup_syscalls_segments(&cs, &ss); 2525 2526 if ((ctxt->rex_prefix & 0x8) != 0x0) 2527 usermode = X86EMUL_MODE_PROT64; 2528 else 2529 usermode = X86EMUL_MODE_PROT32; 2530 2531 rcx = reg_read(ctxt, VCPU_REGS_RCX); 2532 rdx = reg_read(ctxt, VCPU_REGS_RDX); 2533 2534 cs.dpl = 3; 2535 ss.dpl = 3; 2536 ops->get_msr(ctxt, MSR_IA32_SYSENTER_CS, &msr_data); 2537 switch (usermode) { 2538 case X86EMUL_MODE_PROT32: 2539 cs_sel = (u16)(msr_data + 16); 2540 if ((msr_data & 0xfffc) == 0x0) 2541 return emulate_gp(ctxt, 0); 2542 ss_sel = (u16)(msr_data + 24); 2543 rcx = (u32)rcx; 2544 rdx = (u32)rdx; 2545 break; 2546 case X86EMUL_MODE_PROT64: 2547 cs_sel = (u16)(msr_data + 32); 2548 if (msr_data == 0x0) 2549 return emulate_gp(ctxt, 0); 2550 ss_sel = cs_sel + 8; 2551 cs.d = 0; 2552 cs.l = 1; 2553 if (emul_is_noncanonical_address(rcx, ctxt) || 2554 emul_is_noncanonical_address(rdx, ctxt)) 2555 return emulate_gp(ctxt, 0); 2556 break; 2557 } 2558 cs_sel |= SEGMENT_RPL_MASK; 2559 ss_sel |= SEGMENT_RPL_MASK; 2560 2561 ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS); 2562 ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS); 2563 2564 ctxt->_eip = rdx; 2565 ctxt->mode = usermode; 2566 *reg_write(ctxt, VCPU_REGS_RSP) = rcx; 2567 2568 return X86EMUL_CONTINUE; 2569 } 2570 2571 static bool emulator_bad_iopl(struct x86_emulate_ctxt *ctxt) 2572 { 2573 int iopl; 2574 if (ctxt->mode == X86EMUL_MODE_REAL) 2575 return false; 2576 if (ctxt->mode == X86EMUL_MODE_VM86) 2577 return true; 2578 iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> X86_EFLAGS_IOPL_BIT; 2579 return ctxt->ops->cpl(ctxt) > iopl; 2580 } 2581 2582 #define VMWARE_PORT_VMPORT (0x5658) 2583 #define VMWARE_PORT_VMRPC (0x5659) 2584 2585 static bool emulator_io_port_access_allowed(struct x86_emulate_ctxt *ctxt, 2586 u16 port, u16 len) 2587 { 2588 const struct x86_emulate_ops *ops = ctxt->ops; 2589 struct desc_struct tr_seg; 2590 u32 base3; 2591 int r; 2592 u16 tr, io_bitmap_ptr, perm, bit_idx = port & 0x7; 2593 unsigned mask = (1 << len) - 1; 2594 unsigned long base; 2595 2596 /* 2597 * VMware allows access to these ports even if denied 2598 * by TSS I/O permission bitmap. Mimic behavior. 2599 */ 2600 if (enable_vmware_backdoor && 2601 ((port == VMWARE_PORT_VMPORT) || (port == VMWARE_PORT_VMRPC))) 2602 return true; 2603 2604 ops->get_segment(ctxt, &tr, &tr_seg, &base3, VCPU_SREG_TR); 2605 if (!tr_seg.p) 2606 return false; 2607 if (desc_limit_scaled(&tr_seg) < 103) 2608 return false; 2609 base = get_desc_base(&tr_seg); 2610 #ifdef CONFIG_X86_64 2611 base |= ((u64)base3) << 32; 2612 #endif 2613 r = ops->read_std(ctxt, base + 102, &io_bitmap_ptr, 2, NULL, true); 2614 if (r != X86EMUL_CONTINUE) 2615 return false; 2616 if (io_bitmap_ptr + port/8 > desc_limit_scaled(&tr_seg)) 2617 return false; 2618 r = ops->read_std(ctxt, base + io_bitmap_ptr + port/8, &perm, 2, NULL, true); 2619 if (r != X86EMUL_CONTINUE) 2620 return false; 2621 if ((perm >> bit_idx) & mask) 2622 return false; 2623 return true; 2624 } 2625 2626 static bool emulator_io_permitted(struct x86_emulate_ctxt *ctxt, 2627 u16 port, u16 len) 2628 { 2629 if (ctxt->perm_ok) 2630 return true; 2631 2632 if (emulator_bad_iopl(ctxt)) 2633 if (!emulator_io_port_access_allowed(ctxt, port, len)) 2634 return false; 2635 2636 ctxt->perm_ok = true; 2637 2638 return true; 2639 } 2640 2641 static void string_registers_quirk(struct x86_emulate_ctxt *ctxt) 2642 { 2643 /* 2644 * Intel CPUs mask the counter and pointers in quite strange 2645 * manner when ECX is zero due to REP-string optimizations. 2646 */ 2647 #ifdef CONFIG_X86_64 2648 if (ctxt->ad_bytes != 4 || !vendor_intel(ctxt)) 2649 return; 2650 2651 *reg_write(ctxt, VCPU_REGS_RCX) = 0; 2652 2653 switch (ctxt->b) { 2654 case 0xa4: /* movsb */ 2655 case 0xa5: /* movsd/w */ 2656 *reg_rmw(ctxt, VCPU_REGS_RSI) &= (u32)-1; 2657 fallthrough; 2658 case 0xaa: /* stosb */ 2659 case 0xab: /* stosd/w */ 2660 *reg_rmw(ctxt, VCPU_REGS_RDI) &= (u32)-1; 2661 } 2662 #endif 2663 } 2664 2665 static void save_state_to_tss16(struct x86_emulate_ctxt *ctxt, 2666 struct tss_segment_16 *tss) 2667 { 2668 tss->ip = ctxt->_eip; 2669 tss->flag = ctxt->eflags; 2670 tss->ax = reg_read(ctxt, VCPU_REGS_RAX); 2671 tss->cx = reg_read(ctxt, VCPU_REGS_RCX); 2672 tss->dx = reg_read(ctxt, VCPU_REGS_RDX); 2673 tss->bx = reg_read(ctxt, VCPU_REGS_RBX); 2674 tss->sp = reg_read(ctxt, VCPU_REGS_RSP); 2675 tss->bp = reg_read(ctxt, VCPU_REGS_RBP); 2676 tss->si = reg_read(ctxt, VCPU_REGS_RSI); 2677 tss->di = reg_read(ctxt, VCPU_REGS_RDI); 2678 2679 tss->es = get_segment_selector(ctxt, VCPU_SREG_ES); 2680 tss->cs = get_segment_selector(ctxt, VCPU_SREG_CS); 2681 tss->ss = get_segment_selector(ctxt, VCPU_SREG_SS); 2682 tss->ds = get_segment_selector(ctxt, VCPU_SREG_DS); 2683 tss->ldt = get_segment_selector(ctxt, VCPU_SREG_LDTR); 2684 } 2685 2686 static int load_state_from_tss16(struct x86_emulate_ctxt *ctxt, 2687 struct tss_segment_16 *tss) 2688 { 2689 int ret; 2690 u8 cpl; 2691 2692 ctxt->_eip = tss->ip; 2693 ctxt->eflags = tss->flag | 2; 2694 *reg_write(ctxt, VCPU_REGS_RAX) = tss->ax; 2695 *reg_write(ctxt, VCPU_REGS_RCX) = tss->cx; 2696 *reg_write(ctxt, VCPU_REGS_RDX) = tss->dx; 2697 *reg_write(ctxt, VCPU_REGS_RBX) = tss->bx; 2698 *reg_write(ctxt, VCPU_REGS_RSP) = tss->sp; 2699 *reg_write(ctxt, VCPU_REGS_RBP) = tss->bp; 2700 *reg_write(ctxt, VCPU_REGS_RSI) = tss->si; 2701 *reg_write(ctxt, VCPU_REGS_RDI) = tss->di; 2702 2703 /* 2704 * SDM says that segment selectors are loaded before segment 2705 * descriptors 2706 */ 2707 set_segment_selector(ctxt, tss->ldt, VCPU_SREG_LDTR); 2708 set_segment_selector(ctxt, tss->es, VCPU_SREG_ES); 2709 set_segment_selector(ctxt, tss->cs, VCPU_SREG_CS); 2710 set_segment_selector(ctxt, tss->ss, VCPU_SREG_SS); 2711 set_segment_selector(ctxt, tss->ds, VCPU_SREG_DS); 2712 2713 cpl = tss->cs & 3; 2714 2715 /* 2716 * Now load segment descriptors. If fault happens at this stage 2717 * it is handled in a context of new task 2718 */ 2719 ret = __load_segment_descriptor(ctxt, tss->ldt, VCPU_SREG_LDTR, cpl, 2720 X86_TRANSFER_TASK_SWITCH, NULL); 2721 if (ret != X86EMUL_CONTINUE) 2722 return ret; 2723 ret = __load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES, cpl, 2724 X86_TRANSFER_TASK_SWITCH, NULL); 2725 if (ret != X86EMUL_CONTINUE) 2726 return ret; 2727 ret = __load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS, cpl, 2728 X86_TRANSFER_TASK_SWITCH, NULL); 2729 if (ret != X86EMUL_CONTINUE) 2730 return ret; 2731 ret = __load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS, cpl, 2732 X86_TRANSFER_TASK_SWITCH, NULL); 2733 if (ret != X86EMUL_CONTINUE) 2734 return ret; 2735 ret = __load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS, cpl, 2736 X86_TRANSFER_TASK_SWITCH, NULL); 2737 if (ret != X86EMUL_CONTINUE) 2738 return ret; 2739 2740 return X86EMUL_CONTINUE; 2741 } 2742 2743 static int task_switch_16(struct x86_emulate_ctxt *ctxt, u16 old_tss_sel, 2744 ulong old_tss_base, struct desc_struct *new_desc) 2745 { 2746 struct tss_segment_16 tss_seg; 2747 int ret; 2748 u32 new_tss_base = get_desc_base(new_desc); 2749 2750 ret = linear_read_system(ctxt, old_tss_base, &tss_seg, sizeof(tss_seg)); 2751 if (ret != X86EMUL_CONTINUE) 2752 return ret; 2753 2754 save_state_to_tss16(ctxt, &tss_seg); 2755 2756 ret = linear_write_system(ctxt, old_tss_base, &tss_seg, sizeof(tss_seg)); 2757 if (ret != X86EMUL_CONTINUE) 2758 return ret; 2759 2760 ret = linear_read_system(ctxt, new_tss_base, &tss_seg, sizeof(tss_seg)); 2761 if (ret != X86EMUL_CONTINUE) 2762 return ret; 2763 2764 if (old_tss_sel != 0xffff) { 2765 tss_seg.prev_task_link = old_tss_sel; 2766 2767 ret = linear_write_system(ctxt, new_tss_base, 2768 &tss_seg.prev_task_link, 2769 sizeof(tss_seg.prev_task_link)); 2770 if (ret != X86EMUL_CONTINUE) 2771 return ret; 2772 } 2773 2774 return load_state_from_tss16(ctxt, &tss_seg); 2775 } 2776 2777 static void save_state_to_tss32(struct x86_emulate_ctxt *ctxt, 2778 struct tss_segment_32 *tss) 2779 { 2780 /* CR3 and ldt selector are not saved intentionally */ 2781 tss->eip = ctxt->_eip; 2782 tss->eflags = ctxt->eflags; 2783 tss->eax = reg_read(ctxt, VCPU_REGS_RAX); 2784 tss->ecx = reg_read(ctxt, VCPU_REGS_RCX); 2785 tss->edx = reg_read(ctxt, VCPU_REGS_RDX); 2786 tss->ebx = reg_read(ctxt, VCPU_REGS_RBX); 2787 tss->esp = reg_read(ctxt, VCPU_REGS_RSP); 2788 tss->ebp = reg_read(ctxt, VCPU_REGS_RBP); 2789 tss->esi = reg_read(ctxt, VCPU_REGS_RSI); 2790 tss->edi = reg_read(ctxt, VCPU_REGS_RDI); 2791 2792 tss->es = get_segment_selector(ctxt, VCPU_SREG_ES); 2793 tss->cs = get_segment_selector(ctxt, VCPU_SREG_CS); 2794 tss->ss = get_segment_selector(ctxt, VCPU_SREG_SS); 2795 tss->ds = get_segment_selector(ctxt, VCPU_SREG_DS); 2796 tss->fs = get_segment_selector(ctxt, VCPU_SREG_FS); 2797 tss->gs = get_segment_selector(ctxt, VCPU_SREG_GS); 2798 } 2799 2800 static int load_state_from_tss32(struct x86_emulate_ctxt *ctxt, 2801 struct tss_segment_32 *tss) 2802 { 2803 int ret; 2804 u8 cpl; 2805 2806 if (ctxt->ops->set_cr(ctxt, 3, tss->cr3)) 2807 return emulate_gp(ctxt, 0); 2808 ctxt->_eip = tss->eip; 2809 ctxt->eflags = tss->eflags | 2; 2810 2811 /* General purpose registers */ 2812 *reg_write(ctxt, VCPU_REGS_RAX) = tss->eax; 2813 *reg_write(ctxt, VCPU_REGS_RCX) = tss->ecx; 2814 *reg_write(ctxt, VCPU_REGS_RDX) = tss->edx; 2815 *reg_write(ctxt, VCPU_REGS_RBX) = tss->ebx; 2816 *reg_write(ctxt, VCPU_REGS_RSP) = tss->esp; 2817 *reg_write(ctxt, VCPU_REGS_RBP) = tss->ebp; 2818 *reg_write(ctxt, VCPU_REGS_RSI) = tss->esi; 2819 *reg_write(ctxt, VCPU_REGS_RDI) = tss->edi; 2820 2821 /* 2822 * SDM says that segment selectors are loaded before segment 2823 * descriptors. This is important because CPL checks will 2824 * use CS.RPL. 2825 */ 2826 set_segment_selector(ctxt, tss->ldt_selector, VCPU_SREG_LDTR); 2827 set_segment_selector(ctxt, tss->es, VCPU_SREG_ES); 2828 set_segment_selector(ctxt, tss->cs, VCPU_SREG_CS); 2829 set_segment_selector(ctxt, tss->ss, VCPU_SREG_SS); 2830 set_segment_selector(ctxt, tss->ds, VCPU_SREG_DS); 2831 set_segment_selector(ctxt, tss->fs, VCPU_SREG_FS); 2832 set_segment_selector(ctxt, tss->gs, VCPU_SREG_GS); 2833 2834 /* 2835 * If we're switching between Protected Mode and VM86, we need to make 2836 * sure to update the mode before loading the segment descriptors so 2837 * that the selectors are interpreted correctly. 2838 */ 2839 if (ctxt->eflags & X86_EFLAGS_VM) { 2840 ctxt->mode = X86EMUL_MODE_VM86; 2841 cpl = 3; 2842 } else { 2843 ctxt->mode = X86EMUL_MODE_PROT32; 2844 cpl = tss->cs & 3; 2845 } 2846 2847 /* 2848 * Now load segment descriptors. If fault happens at this stage 2849 * it is handled in a context of new task 2850 */ 2851 ret = __load_segment_descriptor(ctxt, tss->ldt_selector, VCPU_SREG_LDTR, 2852 cpl, X86_TRANSFER_TASK_SWITCH, NULL); 2853 if (ret != X86EMUL_CONTINUE) 2854 return ret; 2855 ret = __load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES, cpl, 2856 X86_TRANSFER_TASK_SWITCH, NULL); 2857 if (ret != X86EMUL_CONTINUE) 2858 return ret; 2859 ret = __load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS, cpl, 2860 X86_TRANSFER_TASK_SWITCH, NULL); 2861 if (ret != X86EMUL_CONTINUE) 2862 return ret; 2863 ret = __load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS, cpl, 2864 X86_TRANSFER_TASK_SWITCH, NULL); 2865 if (ret != X86EMUL_CONTINUE) 2866 return ret; 2867 ret = __load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS, cpl, 2868 X86_TRANSFER_TASK_SWITCH, NULL); 2869 if (ret != X86EMUL_CONTINUE) 2870 return ret; 2871 ret = __load_segment_descriptor(ctxt, tss->fs, VCPU_SREG_FS, cpl, 2872 X86_TRANSFER_TASK_SWITCH, NULL); 2873 if (ret != X86EMUL_CONTINUE) 2874 return ret; 2875 ret = __load_segment_descriptor(ctxt, tss->gs, VCPU_SREG_GS, cpl, 2876 X86_TRANSFER_TASK_SWITCH, NULL); 2877 2878 return ret; 2879 } 2880 2881 static int task_switch_32(struct x86_emulate_ctxt *ctxt, u16 old_tss_sel, 2882 ulong old_tss_base, struct desc_struct *new_desc) 2883 { 2884 struct tss_segment_32 tss_seg; 2885 int ret; 2886 u32 new_tss_base = get_desc_base(new_desc); 2887 u32 eip_offset = offsetof(struct tss_segment_32, eip); 2888 u32 ldt_sel_offset = offsetof(struct tss_segment_32, ldt_selector); 2889 2890 ret = linear_read_system(ctxt, old_tss_base, &tss_seg, sizeof(tss_seg)); 2891 if (ret != X86EMUL_CONTINUE) 2892 return ret; 2893 2894 save_state_to_tss32(ctxt, &tss_seg); 2895 2896 /* Only GP registers and segment selectors are saved */ 2897 ret = linear_write_system(ctxt, old_tss_base + eip_offset, &tss_seg.eip, 2898 ldt_sel_offset - eip_offset); 2899 if (ret != X86EMUL_CONTINUE) 2900 return ret; 2901 2902 ret = linear_read_system(ctxt, new_tss_base, &tss_seg, sizeof(tss_seg)); 2903 if (ret != X86EMUL_CONTINUE) 2904 return ret; 2905 2906 if (old_tss_sel != 0xffff) { 2907 tss_seg.prev_task_link = old_tss_sel; 2908 2909 ret = linear_write_system(ctxt, new_tss_base, 2910 &tss_seg.prev_task_link, 2911 sizeof(tss_seg.prev_task_link)); 2912 if (ret != X86EMUL_CONTINUE) 2913 return ret; 2914 } 2915 2916 return load_state_from_tss32(ctxt, &tss_seg); 2917 } 2918 2919 static int emulator_do_task_switch(struct x86_emulate_ctxt *ctxt, 2920 u16 tss_selector, int idt_index, int reason, 2921 bool has_error_code, u32 error_code) 2922 { 2923 const struct x86_emulate_ops *ops = ctxt->ops; 2924 struct desc_struct curr_tss_desc, next_tss_desc; 2925 int ret; 2926 u16 old_tss_sel = get_segment_selector(ctxt, VCPU_SREG_TR); 2927 ulong old_tss_base = 2928 ops->get_cached_segment_base(ctxt, VCPU_SREG_TR); 2929 u32 desc_limit; 2930 ulong desc_addr, dr7; 2931 2932 /* FIXME: old_tss_base == ~0 ? */ 2933 2934 ret = read_segment_descriptor(ctxt, tss_selector, &next_tss_desc, &desc_addr); 2935 if (ret != X86EMUL_CONTINUE) 2936 return ret; 2937 ret = read_segment_descriptor(ctxt, old_tss_sel, &curr_tss_desc, &desc_addr); 2938 if (ret != X86EMUL_CONTINUE) 2939 return ret; 2940 2941 /* FIXME: check that next_tss_desc is tss */ 2942 2943 /* 2944 * Check privileges. The three cases are task switch caused by... 2945 * 2946 * 1. jmp/call/int to task gate: Check against DPL of the task gate 2947 * 2. Exception/IRQ/iret: No check is performed 2948 * 3. jmp/call to TSS/task-gate: No check is performed since the 2949 * hardware checks it before exiting. 2950 */ 2951 if (reason == TASK_SWITCH_GATE) { 2952 if (idt_index != -1) { 2953 /* Software interrupts */ 2954 struct desc_struct task_gate_desc; 2955 int dpl; 2956 2957 ret = read_interrupt_descriptor(ctxt, idt_index, 2958 &task_gate_desc); 2959 if (ret != X86EMUL_CONTINUE) 2960 return ret; 2961 2962 dpl = task_gate_desc.dpl; 2963 if ((tss_selector & 3) > dpl || ops->cpl(ctxt) > dpl) 2964 return emulate_gp(ctxt, (idt_index << 3) | 0x2); 2965 } 2966 } 2967 2968 desc_limit = desc_limit_scaled(&next_tss_desc); 2969 if (!next_tss_desc.p || 2970 ((desc_limit < 0x67 && (next_tss_desc.type & 8)) || 2971 desc_limit < 0x2b)) { 2972 return emulate_ts(ctxt, tss_selector & 0xfffc); 2973 } 2974 2975 if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) { 2976 curr_tss_desc.type &= ~(1 << 1); /* clear busy flag */ 2977 write_segment_descriptor(ctxt, old_tss_sel, &curr_tss_desc); 2978 } 2979 2980 if (reason == TASK_SWITCH_IRET) 2981 ctxt->eflags = ctxt->eflags & ~X86_EFLAGS_NT; 2982 2983 /* set back link to prev task only if NT bit is set in eflags 2984 note that old_tss_sel is not used after this point */ 2985 if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE) 2986 old_tss_sel = 0xffff; 2987 2988 if (next_tss_desc.type & 8) 2989 ret = task_switch_32(ctxt, old_tss_sel, old_tss_base, &next_tss_desc); 2990 else 2991 ret = task_switch_16(ctxt, old_tss_sel, 2992 old_tss_base, &next_tss_desc); 2993 if (ret != X86EMUL_CONTINUE) 2994 return ret; 2995 2996 if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) 2997 ctxt->eflags = ctxt->eflags | X86_EFLAGS_NT; 2998 2999 if (reason != TASK_SWITCH_IRET) { 3000 next_tss_desc.type |= (1 << 1); /* set busy flag */ 3001 write_segment_descriptor(ctxt, tss_selector, &next_tss_desc); 3002 } 3003 3004 ops->set_cr(ctxt, 0, ops->get_cr(ctxt, 0) | X86_CR0_TS); 3005 ops->set_segment(ctxt, tss_selector, &next_tss_desc, 0, VCPU_SREG_TR); 3006 3007 if (has_error_code) { 3008 ctxt->op_bytes = ctxt->ad_bytes = (next_tss_desc.type & 8) ? 4 : 2; 3009 ctxt->lock_prefix = 0; 3010 ctxt->src.val = (unsigned long) error_code; 3011 ret = em_push(ctxt); 3012 } 3013 3014 ops->get_dr(ctxt, 7, &dr7); 3015 ops->set_dr(ctxt, 7, dr7 & ~(DR_LOCAL_ENABLE_MASK | DR_LOCAL_SLOWDOWN)); 3016 3017 return ret; 3018 } 3019 3020 int emulator_task_switch(struct x86_emulate_ctxt *ctxt, 3021 u16 tss_selector, int idt_index, int reason, 3022 bool has_error_code, u32 error_code) 3023 { 3024 int rc; 3025 3026 invalidate_registers(ctxt); 3027 ctxt->_eip = ctxt->eip; 3028 ctxt->dst.type = OP_NONE; 3029 3030 rc = emulator_do_task_switch(ctxt, tss_selector, idt_index, reason, 3031 has_error_code, error_code); 3032 3033 if (rc == X86EMUL_CONTINUE) { 3034 ctxt->eip = ctxt->_eip; 3035 writeback_registers(ctxt); 3036 } 3037 3038 return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK; 3039 } 3040 3041 static void string_addr_inc(struct x86_emulate_ctxt *ctxt, int reg, 3042 struct operand *op) 3043 { 3044 int df = (ctxt->eflags & X86_EFLAGS_DF) ? -op->count : op->count; 3045 3046 register_address_increment(ctxt, reg, df * op->bytes); 3047 op->addr.mem.ea = register_address(ctxt, reg); 3048 } 3049 3050 static int em_das(struct x86_emulate_ctxt *ctxt) 3051 { 3052 u8 al, old_al; 3053 bool af, cf, old_cf; 3054 3055 cf = ctxt->eflags & X86_EFLAGS_CF; 3056 al = ctxt->dst.val; 3057 3058 old_al = al; 3059 old_cf = cf; 3060 cf = false; 3061 af = ctxt->eflags & X86_EFLAGS_AF; 3062 if ((al & 0x0f) > 9 || af) { 3063 al -= 6; 3064 cf = old_cf | (al >= 250); 3065 af = true; 3066 } else { 3067 af = false; 3068 } 3069 if (old_al > 0x99 || old_cf) { 3070 al -= 0x60; 3071 cf = true; 3072 } 3073 3074 ctxt->dst.val = al; 3075 /* Set PF, ZF, SF */ 3076 ctxt->src.type = OP_IMM; 3077 ctxt->src.val = 0; 3078 ctxt->src.bytes = 1; 3079 fastop(ctxt, em_or); 3080 ctxt->eflags &= ~(X86_EFLAGS_AF | X86_EFLAGS_CF); 3081 if (cf) 3082 ctxt->eflags |= X86_EFLAGS_CF; 3083 if (af) 3084 ctxt->eflags |= X86_EFLAGS_AF; 3085 return X86EMUL_CONTINUE; 3086 } 3087 3088 static int em_aam(struct x86_emulate_ctxt *ctxt) 3089 { 3090 u8 al, ah; 3091 3092 if (ctxt->src.val == 0) 3093 return emulate_de(ctxt); 3094 3095 al = ctxt->dst.val & 0xff; 3096 ah = al / ctxt->src.val; 3097 al %= ctxt->src.val; 3098 3099 ctxt->dst.val = (ctxt->dst.val & 0xffff0000) | al | (ah << 8); 3100 3101 /* Set PF, ZF, SF */ 3102 ctxt->src.type = OP_IMM; 3103 ctxt->src.val = 0; 3104 ctxt->src.bytes = 1; 3105 fastop(ctxt, em_or); 3106 3107 return X86EMUL_CONTINUE; 3108 } 3109 3110 static int em_aad(struct x86_emulate_ctxt *ctxt) 3111 { 3112 u8 al = ctxt->dst.val & 0xff; 3113 u8 ah = (ctxt->dst.val >> 8) & 0xff; 3114 3115 al = (al + (ah * ctxt->src.val)) & 0xff; 3116 3117 ctxt->dst.val = (ctxt->dst.val & 0xffff0000) | al; 3118 3119 /* Set PF, ZF, SF */ 3120 ctxt->src.type = OP_IMM; 3121 ctxt->src.val = 0; 3122 ctxt->src.bytes = 1; 3123 fastop(ctxt, em_or); 3124 3125 return X86EMUL_CONTINUE; 3126 } 3127 3128 static int em_call(struct x86_emulate_ctxt *ctxt) 3129 { 3130 int rc; 3131 long rel = ctxt->src.val; 3132 3133 ctxt->src.val = (unsigned long)ctxt->_eip; 3134 rc = jmp_rel(ctxt, rel); 3135 if (rc != X86EMUL_CONTINUE) 3136 return rc; 3137 return em_push(ctxt); 3138 } 3139 3140 static int em_call_far(struct x86_emulate_ctxt *ctxt) 3141 { 3142 u16 sel, old_cs; 3143 ulong old_eip; 3144 int rc; 3145 struct desc_struct old_desc, new_desc; 3146 const struct x86_emulate_ops *ops = ctxt->ops; 3147 int cpl = ctxt->ops->cpl(ctxt); 3148 enum x86emul_mode prev_mode = ctxt->mode; 3149 3150 old_eip = ctxt->_eip; 3151 ops->get_segment(ctxt, &old_cs, &old_desc, NULL, VCPU_SREG_CS); 3152 3153 memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2); 3154 rc = __load_segment_descriptor(ctxt, sel, VCPU_SREG_CS, cpl, 3155 X86_TRANSFER_CALL_JMP, &new_desc); 3156 if (rc != X86EMUL_CONTINUE) 3157 return rc; 3158 3159 rc = assign_eip_far(ctxt, ctxt->src.val); 3160 if (rc != X86EMUL_CONTINUE) 3161 goto fail; 3162 3163 ctxt->src.val = old_cs; 3164 rc = em_push(ctxt); 3165 if (rc != X86EMUL_CONTINUE) 3166 goto fail; 3167 3168 ctxt->src.val = old_eip; 3169 rc = em_push(ctxt); 3170 /* If we failed, we tainted the memory, but the very least we should 3171 restore cs */ 3172 if (rc != X86EMUL_CONTINUE) { 3173 pr_warn_once("faulting far call emulation tainted memory\n"); 3174 goto fail; 3175 } 3176 return rc; 3177 fail: 3178 ops->set_segment(ctxt, old_cs, &old_desc, 0, VCPU_SREG_CS); 3179 ctxt->mode = prev_mode; 3180 return rc; 3181 3182 } 3183 3184 static int em_ret_near_imm(struct x86_emulate_ctxt *ctxt) 3185 { 3186 int rc; 3187 unsigned long eip; 3188 3189 rc = emulate_pop(ctxt, &eip, ctxt->op_bytes); 3190 if (rc != X86EMUL_CONTINUE) 3191 return rc; 3192 rc = assign_eip_near(ctxt, eip); 3193 if (rc != X86EMUL_CONTINUE) 3194 return rc; 3195 rsp_increment(ctxt, ctxt->src.val); 3196 return X86EMUL_CONTINUE; 3197 } 3198 3199 static int em_xchg(struct x86_emulate_ctxt *ctxt) 3200 { 3201 /* Write back the register source. */ 3202 ctxt->src.val = ctxt->dst.val; 3203 write_register_operand(&ctxt->src); 3204 3205 /* Write back the memory destination with implicit LOCK prefix. */ 3206 ctxt->dst.val = ctxt->src.orig_val; 3207 ctxt->lock_prefix = 1; 3208 return X86EMUL_CONTINUE; 3209 } 3210 3211 static int em_imul_3op(struct x86_emulate_ctxt *ctxt) 3212 { 3213 ctxt->dst.val = ctxt->src2.val; 3214 return fastop(ctxt, em_imul); 3215 } 3216 3217 static int em_cwd(struct x86_emulate_ctxt *ctxt) 3218 { 3219 ctxt->dst.type = OP_REG; 3220 ctxt->dst.bytes = ctxt->src.bytes; 3221 ctxt->dst.addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX); 3222 ctxt->dst.val = ~((ctxt->src.val >> (ctxt->src.bytes * 8 - 1)) - 1); 3223 3224 return X86EMUL_CONTINUE; 3225 } 3226 3227 static int em_rdpid(struct x86_emulate_ctxt *ctxt) 3228 { 3229 u64 tsc_aux = 0; 3230 3231 if (!ctxt->ops->guest_has_rdpid(ctxt)) 3232 return emulate_ud(ctxt); 3233 3234 ctxt->ops->get_msr(ctxt, MSR_TSC_AUX, &tsc_aux); 3235 ctxt->dst.val = tsc_aux; 3236 return X86EMUL_CONTINUE; 3237 } 3238 3239 static int em_rdtsc(struct x86_emulate_ctxt *ctxt) 3240 { 3241 u64 tsc = 0; 3242 3243 ctxt->ops->get_msr(ctxt, MSR_IA32_TSC, &tsc); 3244 *reg_write(ctxt, VCPU_REGS_RAX) = (u32)tsc; 3245 *reg_write(ctxt, VCPU_REGS_RDX) = tsc >> 32; 3246 return X86EMUL_CONTINUE; 3247 } 3248 3249 static int em_rdpmc(struct x86_emulate_ctxt *ctxt) 3250 { 3251 u64 pmc; 3252 3253 if (ctxt->ops->read_pmc(ctxt, reg_read(ctxt, VCPU_REGS_RCX), &pmc)) 3254 return emulate_gp(ctxt, 0); 3255 *reg_write(ctxt, VCPU_REGS_RAX) = (u32)pmc; 3256 *reg_write(ctxt, VCPU_REGS_RDX) = pmc >> 32; 3257 return X86EMUL_CONTINUE; 3258 } 3259 3260 static int em_mov(struct x86_emulate_ctxt *ctxt) 3261 { 3262 memcpy(ctxt->dst.valptr, ctxt->src.valptr, sizeof(ctxt->src.valptr)); 3263 return X86EMUL_CONTINUE; 3264 } 3265 3266 static int em_movbe(struct x86_emulate_ctxt *ctxt) 3267 { 3268 u16 tmp; 3269 3270 if (!ctxt->ops->guest_has_movbe(ctxt)) 3271 return emulate_ud(ctxt); 3272 3273 switch (ctxt->op_bytes) { 3274 case 2: 3275 /* 3276 * From MOVBE definition: "...When the operand size is 16 bits, 3277 * the upper word of the destination register remains unchanged 3278 * ..." 3279 * 3280 * Both casting ->valptr and ->val to u16 breaks strict aliasing 3281 * rules so we have to do the operation almost per hand. 3282 */ 3283 tmp = (u16)ctxt->src.val; 3284 ctxt->dst.val &= ~0xffffUL; 3285 ctxt->dst.val |= (unsigned long)swab16(tmp); 3286 break; 3287 case 4: 3288 ctxt->dst.val = swab32((u32)ctxt->src.val); 3289 break; 3290 case 8: 3291 ctxt->dst.val = swab64(ctxt->src.val); 3292 break; 3293 default: 3294 BUG(); 3295 } 3296 return X86EMUL_CONTINUE; 3297 } 3298 3299 static int em_cr_write(struct x86_emulate_ctxt *ctxt) 3300 { 3301 int cr_num = ctxt->modrm_reg; 3302 int r; 3303 3304 if (ctxt->ops->set_cr(ctxt, cr_num, ctxt->src.val)) 3305 return emulate_gp(ctxt, 0); 3306 3307 /* Disable writeback. */ 3308 ctxt->dst.type = OP_NONE; 3309 3310 if (cr_num == 0) { 3311 /* 3312 * CR0 write might have updated CR0.PE and/or CR0.PG 3313 * which can affect the cpu's execution mode. 3314 */ 3315 r = emulator_recalc_and_set_mode(ctxt); 3316 if (r != X86EMUL_CONTINUE) 3317 return r; 3318 } 3319 3320 return X86EMUL_CONTINUE; 3321 } 3322 3323 static int em_dr_write(struct x86_emulate_ctxt *ctxt) 3324 { 3325 unsigned long val; 3326 3327 if (ctxt->mode == X86EMUL_MODE_PROT64) 3328 val = ctxt->src.val & ~0ULL; 3329 else 3330 val = ctxt->src.val & ~0U; 3331 3332 /* #UD condition is already handled. */ 3333 if (ctxt->ops->set_dr(ctxt, ctxt->modrm_reg, val) < 0) 3334 return emulate_gp(ctxt, 0); 3335 3336 /* Disable writeback. */ 3337 ctxt->dst.type = OP_NONE; 3338 return X86EMUL_CONTINUE; 3339 } 3340 3341 static int em_wrmsr(struct x86_emulate_ctxt *ctxt) 3342 { 3343 u64 msr_index = reg_read(ctxt, VCPU_REGS_RCX); 3344 u64 msr_data; 3345 int r; 3346 3347 msr_data = (u32)reg_read(ctxt, VCPU_REGS_RAX) 3348 | ((u64)reg_read(ctxt, VCPU_REGS_RDX) << 32); 3349 r = ctxt->ops->set_msr_with_filter(ctxt, msr_index, msr_data); 3350 3351 if (r == X86EMUL_PROPAGATE_FAULT) 3352 return emulate_gp(ctxt, 0); 3353 3354 return r; 3355 } 3356 3357 static int em_rdmsr(struct x86_emulate_ctxt *ctxt) 3358 { 3359 u64 msr_index = reg_read(ctxt, VCPU_REGS_RCX); 3360 u64 msr_data; 3361 int r; 3362 3363 r = ctxt->ops->get_msr_with_filter(ctxt, msr_index, &msr_data); 3364 3365 if (r == X86EMUL_PROPAGATE_FAULT) 3366 return emulate_gp(ctxt, 0); 3367 3368 if (r == X86EMUL_CONTINUE) { 3369 *reg_write(ctxt, VCPU_REGS_RAX) = (u32)msr_data; 3370 *reg_write(ctxt, VCPU_REGS_RDX) = msr_data >> 32; 3371 } 3372 return r; 3373 } 3374 3375 static int em_store_sreg(struct x86_emulate_ctxt *ctxt, int segment) 3376 { 3377 if (segment > VCPU_SREG_GS && 3378 (ctxt->ops->get_cr(ctxt, 4) & X86_CR4_UMIP) && 3379 ctxt->ops->cpl(ctxt) > 0) 3380 return emulate_gp(ctxt, 0); 3381 3382 ctxt->dst.val = get_segment_selector(ctxt, segment); 3383 if (ctxt->dst.bytes == 4 && ctxt->dst.type == OP_MEM) 3384 ctxt->dst.bytes = 2; 3385 return X86EMUL_CONTINUE; 3386 } 3387 3388 static int em_mov_rm_sreg(struct x86_emulate_ctxt *ctxt) 3389 { 3390 if (ctxt->modrm_reg > VCPU_SREG_GS) 3391 return emulate_ud(ctxt); 3392 3393 return em_store_sreg(ctxt, ctxt->modrm_reg); 3394 } 3395 3396 static int em_mov_sreg_rm(struct x86_emulate_ctxt *ctxt) 3397 { 3398 u16 sel = ctxt->src.val; 3399 3400 if (ctxt->modrm_reg == VCPU_SREG_CS || ctxt->modrm_reg > VCPU_SREG_GS) 3401 return emulate_ud(ctxt); 3402 3403 if (ctxt->modrm_reg == VCPU_SREG_SS) 3404 ctxt->interruptibility = KVM_X86_SHADOW_INT_MOV_SS; 3405 3406 /* Disable writeback. */ 3407 ctxt->dst.type = OP_NONE; 3408 return load_segment_descriptor(ctxt, sel, ctxt->modrm_reg); 3409 } 3410 3411 static int em_sldt(struct x86_emulate_ctxt *ctxt) 3412 { 3413 return em_store_sreg(ctxt, VCPU_SREG_LDTR); 3414 } 3415 3416 static int em_lldt(struct x86_emulate_ctxt *ctxt) 3417 { 3418 u16 sel = ctxt->src.val; 3419 3420 /* Disable writeback. */ 3421 ctxt->dst.type = OP_NONE; 3422 return load_segment_descriptor(ctxt, sel, VCPU_SREG_LDTR); 3423 } 3424 3425 static int em_str(struct x86_emulate_ctxt *ctxt) 3426 { 3427 return em_store_sreg(ctxt, VCPU_SREG_TR); 3428 } 3429 3430 static int em_ltr(struct x86_emulate_ctxt *ctxt) 3431 { 3432 u16 sel = ctxt->src.val; 3433 3434 /* Disable writeback. */ 3435 ctxt->dst.type = OP_NONE; 3436 return load_segment_descriptor(ctxt, sel, VCPU_SREG_TR); 3437 } 3438 3439 static int em_invlpg(struct x86_emulate_ctxt *ctxt) 3440 { 3441 int rc; 3442 ulong linear; 3443 unsigned int max_size; 3444 3445 rc = __linearize(ctxt, ctxt->src.addr.mem, &max_size, 1, ctxt->mode, 3446 &linear, X86EMUL_F_INVLPG); 3447 if (rc == X86EMUL_CONTINUE) 3448 ctxt->ops->invlpg(ctxt, linear); 3449 /* Disable writeback. */ 3450 ctxt->dst.type = OP_NONE; 3451 return X86EMUL_CONTINUE; 3452 } 3453 3454 static int em_clts(struct x86_emulate_ctxt *ctxt) 3455 { 3456 ulong cr0; 3457 3458 cr0 = ctxt->ops->get_cr(ctxt, 0); 3459 cr0 &= ~X86_CR0_TS; 3460 ctxt->ops->set_cr(ctxt, 0, cr0); 3461 return X86EMUL_CONTINUE; 3462 } 3463 3464 static int em_hypercall(struct x86_emulate_ctxt *ctxt) 3465 { 3466 int rc = ctxt->ops->fix_hypercall(ctxt); 3467 3468 if (rc != X86EMUL_CONTINUE) 3469 return rc; 3470 3471 /* Let the processor re-execute the fixed hypercall */ 3472 ctxt->_eip = ctxt->eip; 3473 /* Disable writeback. */ 3474 ctxt->dst.type = OP_NONE; 3475 return X86EMUL_CONTINUE; 3476 } 3477 3478 static int emulate_store_desc_ptr(struct x86_emulate_ctxt *ctxt, 3479 void (*get)(struct x86_emulate_ctxt *ctxt, 3480 struct desc_ptr *ptr)) 3481 { 3482 struct desc_ptr desc_ptr; 3483 3484 if ((ctxt->ops->get_cr(ctxt, 4) & X86_CR4_UMIP) && 3485 ctxt->ops->cpl(ctxt) > 0) 3486 return emulate_gp(ctxt, 0); 3487 3488 if (ctxt->mode == X86EMUL_MODE_PROT64) 3489 ctxt->op_bytes = 8; 3490 get(ctxt, &desc_ptr); 3491 if (ctxt->op_bytes == 2) { 3492 ctxt->op_bytes = 4; 3493 desc_ptr.address &= 0x00ffffff; 3494 } 3495 /* Disable writeback. */ 3496 ctxt->dst.type = OP_NONE; 3497 return segmented_write_std(ctxt, ctxt->dst.addr.mem, 3498 &desc_ptr, 2 + ctxt->op_bytes); 3499 } 3500 3501 static int em_sgdt(struct x86_emulate_ctxt *ctxt) 3502 { 3503 return emulate_store_desc_ptr(ctxt, ctxt->ops->get_gdt); 3504 } 3505 3506 static int em_sidt(struct x86_emulate_ctxt *ctxt) 3507 { 3508 return emulate_store_desc_ptr(ctxt, ctxt->ops->get_idt); 3509 } 3510 3511 static int em_lgdt_lidt(struct x86_emulate_ctxt *ctxt, bool lgdt) 3512 { 3513 struct desc_ptr desc_ptr; 3514 int rc; 3515 3516 if (ctxt->mode == X86EMUL_MODE_PROT64) 3517 ctxt->op_bytes = 8; 3518 rc = read_descriptor(ctxt, ctxt->src.addr.mem, 3519 &desc_ptr.size, &desc_ptr.address, 3520 ctxt->op_bytes); 3521 if (rc != X86EMUL_CONTINUE) 3522 return rc; 3523 if (ctxt->mode == X86EMUL_MODE_PROT64 && 3524 emul_is_noncanonical_address(desc_ptr.address, ctxt)) 3525 return emulate_gp(ctxt, 0); 3526 if (lgdt) 3527 ctxt->ops->set_gdt(ctxt, &desc_ptr); 3528 else 3529 ctxt->ops->set_idt(ctxt, &desc_ptr); 3530 /* Disable writeback. */ 3531 ctxt->dst.type = OP_NONE; 3532 return X86EMUL_CONTINUE; 3533 } 3534 3535 static int em_lgdt(struct x86_emulate_ctxt *ctxt) 3536 { 3537 return em_lgdt_lidt(ctxt, true); 3538 } 3539 3540 static int em_lidt(struct x86_emulate_ctxt *ctxt) 3541 { 3542 return em_lgdt_lidt(ctxt, false); 3543 } 3544 3545 static int em_smsw(struct x86_emulate_ctxt *ctxt) 3546 { 3547 if ((ctxt->ops->get_cr(ctxt, 4) & X86_CR4_UMIP) && 3548 ctxt->ops->cpl(ctxt) > 0) 3549 return emulate_gp(ctxt, 0); 3550 3551 if (ctxt->dst.type == OP_MEM) 3552 ctxt->dst.bytes = 2; 3553 ctxt->dst.val = ctxt->ops->get_cr(ctxt, 0); 3554 return X86EMUL_CONTINUE; 3555 } 3556 3557 static int em_lmsw(struct x86_emulate_ctxt *ctxt) 3558 { 3559 ctxt->ops->set_cr(ctxt, 0, (ctxt->ops->get_cr(ctxt, 0) & ~0x0eul) 3560 | (ctxt->src.val & 0x0f)); 3561 ctxt->dst.type = OP_NONE; 3562 return X86EMUL_CONTINUE; 3563 } 3564 3565 static int em_loop(struct x86_emulate_ctxt *ctxt) 3566 { 3567 int rc = X86EMUL_CONTINUE; 3568 3569 register_address_increment(ctxt, VCPU_REGS_RCX, -1); 3570 if ((address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) != 0) && 3571 (ctxt->b == 0xe2 || test_cc(ctxt->b ^ 0x5, ctxt->eflags))) 3572 rc = jmp_rel(ctxt, ctxt->src.val); 3573 3574 return rc; 3575 } 3576 3577 static int em_jcxz(struct x86_emulate_ctxt *ctxt) 3578 { 3579 int rc = X86EMUL_CONTINUE; 3580 3581 if (address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) == 0) 3582 rc = jmp_rel(ctxt, ctxt->src.val); 3583 3584 return rc; 3585 } 3586 3587 static int em_in(struct x86_emulate_ctxt *ctxt) 3588 { 3589 if (!pio_in_emulated(ctxt, ctxt->dst.bytes, ctxt->src.val, 3590 &ctxt->dst.val)) 3591 return X86EMUL_IO_NEEDED; 3592 3593 return X86EMUL_CONTINUE; 3594 } 3595 3596 static int em_out(struct x86_emulate_ctxt *ctxt) 3597 { 3598 ctxt->ops->pio_out_emulated(ctxt, ctxt->src.bytes, ctxt->dst.val, 3599 &ctxt->src.val, 1); 3600 /* Disable writeback. */ 3601 ctxt->dst.type = OP_NONE; 3602 return X86EMUL_CONTINUE; 3603 } 3604 3605 static int em_cli(struct x86_emulate_ctxt *ctxt) 3606 { 3607 if (emulator_bad_iopl(ctxt)) 3608 return emulate_gp(ctxt, 0); 3609 3610 ctxt->eflags &= ~X86_EFLAGS_IF; 3611 return X86EMUL_CONTINUE; 3612 } 3613 3614 static int em_sti(struct x86_emulate_ctxt *ctxt) 3615 { 3616 if (emulator_bad_iopl(ctxt)) 3617 return emulate_gp(ctxt, 0); 3618 3619 ctxt->interruptibility = KVM_X86_SHADOW_INT_STI; 3620 ctxt->eflags |= X86_EFLAGS_IF; 3621 return X86EMUL_CONTINUE; 3622 } 3623 3624 static int em_cpuid(struct x86_emulate_ctxt *ctxt) 3625 { 3626 u32 eax, ebx, ecx, edx; 3627 u64 msr = 0; 3628 3629 ctxt->ops->get_msr(ctxt, MSR_MISC_FEATURES_ENABLES, &msr); 3630 if (msr & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 3631 ctxt->ops->cpl(ctxt)) { 3632 return emulate_gp(ctxt, 0); 3633 } 3634 3635 eax = reg_read(ctxt, VCPU_REGS_RAX); 3636 ecx = reg_read(ctxt, VCPU_REGS_RCX); 3637 ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx, false); 3638 *reg_write(ctxt, VCPU_REGS_RAX) = eax; 3639 *reg_write(ctxt, VCPU_REGS_RBX) = ebx; 3640 *reg_write(ctxt, VCPU_REGS_RCX) = ecx; 3641 *reg_write(ctxt, VCPU_REGS_RDX) = edx; 3642 return X86EMUL_CONTINUE; 3643 } 3644 3645 static int em_sahf(struct x86_emulate_ctxt *ctxt) 3646 { 3647 u32 flags; 3648 3649 flags = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF | 3650 X86_EFLAGS_SF; 3651 flags &= *reg_rmw(ctxt, VCPU_REGS_RAX) >> 8; 3652 3653 ctxt->eflags &= ~0xffUL; 3654 ctxt->eflags |= flags | X86_EFLAGS_FIXED; 3655 return X86EMUL_CONTINUE; 3656 } 3657 3658 static int em_lahf(struct x86_emulate_ctxt *ctxt) 3659 { 3660 *reg_rmw(ctxt, VCPU_REGS_RAX) &= ~0xff00UL; 3661 *reg_rmw(ctxt, VCPU_REGS_RAX) |= (ctxt->eflags & 0xff) << 8; 3662 return X86EMUL_CONTINUE; 3663 } 3664 3665 static int em_bswap(struct x86_emulate_ctxt *ctxt) 3666 { 3667 switch (ctxt->op_bytes) { 3668 #ifdef CONFIG_X86_64 3669 case 8: 3670 asm("bswap %0" : "+r"(ctxt->dst.val)); 3671 break; 3672 #endif 3673 default: 3674 asm("bswap %0" : "+r"(*(u32 *)&ctxt->dst.val)); 3675 break; 3676 } 3677 return X86EMUL_CONTINUE; 3678 } 3679 3680 static int em_clflush(struct x86_emulate_ctxt *ctxt) 3681 { 3682 /* emulating clflush regardless of cpuid */ 3683 return X86EMUL_CONTINUE; 3684 } 3685 3686 static int em_clflushopt(struct x86_emulate_ctxt *ctxt) 3687 { 3688 /* emulating clflushopt regardless of cpuid */ 3689 return X86EMUL_CONTINUE; 3690 } 3691 3692 static int em_movsxd(struct x86_emulate_ctxt *ctxt) 3693 { 3694 ctxt->dst.val = (s32) ctxt->src.val; 3695 return X86EMUL_CONTINUE; 3696 } 3697 3698 static int check_fxsr(struct x86_emulate_ctxt *ctxt) 3699 { 3700 if (!ctxt->ops->guest_has_fxsr(ctxt)) 3701 return emulate_ud(ctxt); 3702 3703 if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM)) 3704 return emulate_nm(ctxt); 3705 3706 /* 3707 * Don't emulate a case that should never be hit, instead of working 3708 * around a lack of fxsave64/fxrstor64 on old compilers. 3709 */ 3710 if (ctxt->mode >= X86EMUL_MODE_PROT64) 3711 return X86EMUL_UNHANDLEABLE; 3712 3713 return X86EMUL_CONTINUE; 3714 } 3715 3716 /* 3717 * Hardware doesn't save and restore XMM 0-7 without CR4.OSFXSR, but does save 3718 * and restore MXCSR. 3719 */ 3720 static size_t __fxstate_size(int nregs) 3721 { 3722 return offsetof(struct fxregs_state, xmm_space[0]) + nregs * 16; 3723 } 3724 3725 static inline size_t fxstate_size(struct x86_emulate_ctxt *ctxt) 3726 { 3727 bool cr4_osfxsr; 3728 if (ctxt->mode == X86EMUL_MODE_PROT64) 3729 return __fxstate_size(16); 3730 3731 cr4_osfxsr = ctxt->ops->get_cr(ctxt, 4) & X86_CR4_OSFXSR; 3732 return __fxstate_size(cr4_osfxsr ? 8 : 0); 3733 } 3734 3735 /* 3736 * FXSAVE and FXRSTOR have 4 different formats depending on execution mode, 3737 * 1) 16 bit mode 3738 * 2) 32 bit mode 3739 * - like (1), but FIP and FDP (foo) are only 16 bit. At least Intel CPUs 3740 * preserve whole 32 bit values, though, so (1) and (2) are the same wrt. 3741 * save and restore 3742 * 3) 64-bit mode with REX.W prefix 3743 * - like (2), but XMM 8-15 are being saved and restored 3744 * 4) 64-bit mode without REX.W prefix 3745 * - like (3), but FIP and FDP are 64 bit 3746 * 3747 * Emulation uses (3) for (1) and (2) and preserves XMM 8-15 to reach the 3748 * desired result. (4) is not emulated. 3749 * 3750 * Note: Guest and host CPUID.(EAX=07H,ECX=0H):EBX[bit 13] (deprecate FPU CS 3751 * and FPU DS) should match. 3752 */ 3753 static int em_fxsave(struct x86_emulate_ctxt *ctxt) 3754 { 3755 struct fxregs_state fx_state; 3756 int rc; 3757 3758 rc = check_fxsr(ctxt); 3759 if (rc != X86EMUL_CONTINUE) 3760 return rc; 3761 3762 kvm_fpu_get(); 3763 3764 rc = asm_safe("fxsave %[fx]", , [fx] "+m"(fx_state)); 3765 3766 kvm_fpu_put(); 3767 3768 if (rc != X86EMUL_CONTINUE) 3769 return rc; 3770 3771 return segmented_write_std(ctxt, ctxt->memop.addr.mem, &fx_state, 3772 fxstate_size(ctxt)); 3773 } 3774 3775 /* 3776 * FXRSTOR might restore XMM registers not provided by the guest. Fill 3777 * in the host registers (via FXSAVE) instead, so they won't be modified. 3778 * (preemption has to stay disabled until FXRSTOR). 3779 * 3780 * Use noinline to keep the stack for other functions called by callers small. 3781 */ 3782 static noinline int fxregs_fixup(struct fxregs_state *fx_state, 3783 const size_t used_size) 3784 { 3785 struct fxregs_state fx_tmp; 3786 int rc; 3787 3788 rc = asm_safe("fxsave %[fx]", , [fx] "+m"(fx_tmp)); 3789 memcpy((void *)fx_state + used_size, (void *)&fx_tmp + used_size, 3790 __fxstate_size(16) - used_size); 3791 3792 return rc; 3793 } 3794 3795 static int em_fxrstor(struct x86_emulate_ctxt *ctxt) 3796 { 3797 struct fxregs_state fx_state; 3798 int rc; 3799 size_t size; 3800 3801 rc = check_fxsr(ctxt); 3802 if (rc != X86EMUL_CONTINUE) 3803 return rc; 3804 3805 size = fxstate_size(ctxt); 3806 rc = segmented_read_std(ctxt, ctxt->memop.addr.mem, &fx_state, size); 3807 if (rc != X86EMUL_CONTINUE) 3808 return rc; 3809 3810 kvm_fpu_get(); 3811 3812 if (size < __fxstate_size(16)) { 3813 rc = fxregs_fixup(&fx_state, size); 3814 if (rc != X86EMUL_CONTINUE) 3815 goto out; 3816 } 3817 3818 if (fx_state.mxcsr >> 16) { 3819 rc = emulate_gp(ctxt, 0); 3820 goto out; 3821 } 3822 3823 if (rc == X86EMUL_CONTINUE) 3824 rc = asm_safe("fxrstor %[fx]", : [fx] "m"(fx_state)); 3825 3826 out: 3827 kvm_fpu_put(); 3828 3829 return rc; 3830 } 3831 3832 static int em_xsetbv(struct x86_emulate_ctxt *ctxt) 3833 { 3834 u32 eax, ecx, edx; 3835 3836 if (!(ctxt->ops->get_cr(ctxt, 4) & X86_CR4_OSXSAVE)) 3837 return emulate_ud(ctxt); 3838 3839 eax = reg_read(ctxt, VCPU_REGS_RAX); 3840 edx = reg_read(ctxt, VCPU_REGS_RDX); 3841 ecx = reg_read(ctxt, VCPU_REGS_RCX); 3842 3843 if (ctxt->ops->set_xcr(ctxt, ecx, ((u64)edx << 32) | eax)) 3844 return emulate_gp(ctxt, 0); 3845 3846 return X86EMUL_CONTINUE; 3847 } 3848 3849 static bool valid_cr(int nr) 3850 { 3851 switch (nr) { 3852 case 0: 3853 case 2 ... 4: 3854 case 8: 3855 return true; 3856 default: 3857 return false; 3858 } 3859 } 3860 3861 static int check_cr_access(struct x86_emulate_ctxt *ctxt) 3862 { 3863 if (!valid_cr(ctxt->modrm_reg)) 3864 return emulate_ud(ctxt); 3865 3866 return X86EMUL_CONTINUE; 3867 } 3868 3869 static int check_dr7_gd(struct x86_emulate_ctxt *ctxt) 3870 { 3871 unsigned long dr7; 3872 3873 ctxt->ops->get_dr(ctxt, 7, &dr7); 3874 3875 return dr7 & DR7_GD; 3876 } 3877 3878 static int check_dr_read(struct x86_emulate_ctxt *ctxt) 3879 { 3880 int dr = ctxt->modrm_reg; 3881 u64 cr4; 3882 3883 if (dr > 7) 3884 return emulate_ud(ctxt); 3885 3886 cr4 = ctxt->ops->get_cr(ctxt, 4); 3887 if ((cr4 & X86_CR4_DE) && (dr == 4 || dr == 5)) 3888 return emulate_ud(ctxt); 3889 3890 if (check_dr7_gd(ctxt)) { 3891 ulong dr6; 3892 3893 ctxt->ops->get_dr(ctxt, 6, &dr6); 3894 dr6 &= ~DR_TRAP_BITS; 3895 dr6 |= DR6_BD | DR6_ACTIVE_LOW; 3896 ctxt->ops->set_dr(ctxt, 6, dr6); 3897 return emulate_db(ctxt); 3898 } 3899 3900 return X86EMUL_CONTINUE; 3901 } 3902 3903 static int check_dr_write(struct x86_emulate_ctxt *ctxt) 3904 { 3905 u64 new_val = ctxt->src.val64; 3906 int dr = ctxt->modrm_reg; 3907 3908 if ((dr == 6 || dr == 7) && (new_val & 0xffffffff00000000ULL)) 3909 return emulate_gp(ctxt, 0); 3910 3911 return check_dr_read(ctxt); 3912 } 3913 3914 static int check_svme(struct x86_emulate_ctxt *ctxt) 3915 { 3916 u64 efer = 0; 3917 3918 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer); 3919 3920 if (!(efer & EFER_SVME)) 3921 return emulate_ud(ctxt); 3922 3923 return X86EMUL_CONTINUE; 3924 } 3925 3926 static int check_svme_pa(struct x86_emulate_ctxt *ctxt) 3927 { 3928 u64 rax = reg_read(ctxt, VCPU_REGS_RAX); 3929 3930 /* Valid physical address? */ 3931 if (rax & 0xffff000000000000ULL) 3932 return emulate_gp(ctxt, 0); 3933 3934 return check_svme(ctxt); 3935 } 3936 3937 static int check_rdtsc(struct x86_emulate_ctxt *ctxt) 3938 { 3939 u64 cr4 = ctxt->ops->get_cr(ctxt, 4); 3940 3941 if (cr4 & X86_CR4_TSD && ctxt->ops->cpl(ctxt)) 3942 return emulate_gp(ctxt, 0); 3943 3944 return X86EMUL_CONTINUE; 3945 } 3946 3947 static int check_rdpmc(struct x86_emulate_ctxt *ctxt) 3948 { 3949 u64 cr4 = ctxt->ops->get_cr(ctxt, 4); 3950 u64 rcx = reg_read(ctxt, VCPU_REGS_RCX); 3951 3952 /* 3953 * VMware allows access to these Pseduo-PMCs even when read via RDPMC 3954 * in Ring3 when CR4.PCE=0. 3955 */ 3956 if (enable_vmware_backdoor && is_vmware_backdoor_pmc(rcx)) 3957 return X86EMUL_CONTINUE; 3958 3959 /* 3960 * If CR4.PCE is set, the SDM requires CPL=0 or CR0.PE=0. The CR0.PE 3961 * check however is unnecessary because CPL is always 0 outside 3962 * protected mode. 3963 */ 3964 if ((!(cr4 & X86_CR4_PCE) && ctxt->ops->cpl(ctxt)) || 3965 ctxt->ops->check_pmc(ctxt, rcx)) 3966 return emulate_gp(ctxt, 0); 3967 3968 return X86EMUL_CONTINUE; 3969 } 3970 3971 static int check_perm_in(struct x86_emulate_ctxt *ctxt) 3972 { 3973 ctxt->dst.bytes = min(ctxt->dst.bytes, 4u); 3974 if (!emulator_io_permitted(ctxt, ctxt->src.val, ctxt->dst.bytes)) 3975 return emulate_gp(ctxt, 0); 3976 3977 return X86EMUL_CONTINUE; 3978 } 3979 3980 static int check_perm_out(struct x86_emulate_ctxt *ctxt) 3981 { 3982 ctxt->src.bytes = min(ctxt->src.bytes, 4u); 3983 if (!emulator_io_permitted(ctxt, ctxt->dst.val, ctxt->src.bytes)) 3984 return emulate_gp(ctxt, 0); 3985 3986 return X86EMUL_CONTINUE; 3987 } 3988 3989 #define D(_y) { .flags = (_y) } 3990 #define DI(_y, _i) { .flags = (_y)|Intercept, .intercept = x86_intercept_##_i } 3991 #define DIP(_y, _i, _p) { .flags = (_y)|Intercept|CheckPerm, \ 3992 .intercept = x86_intercept_##_i, .check_perm = (_p) } 3993 #define N D(NotImpl) 3994 #define EXT(_f, _e) { .flags = ((_f) | RMExt), .u.group = (_e) } 3995 #define G(_f, _g) { .flags = ((_f) | Group | ModRM), .u.group = (_g) } 3996 #define GD(_f, _g) { .flags = ((_f) | GroupDual | ModRM), .u.gdual = (_g) } 3997 #define ID(_f, _i) { .flags = ((_f) | InstrDual | ModRM), .u.idual = (_i) } 3998 #define MD(_f, _m) { .flags = ((_f) | ModeDual), .u.mdual = (_m) } 3999 #define E(_f, _e) { .flags = ((_f) | Escape | ModRM), .u.esc = (_e) } 4000 #define I(_f, _e) { .flags = (_f), .u.execute = (_e) } 4001 #define F(_f, _e) { .flags = (_f) | Fastop, .u.fastop = (_e) } 4002 #define II(_f, _e, _i) \ 4003 { .flags = (_f)|Intercept, .u.execute = (_e), .intercept = x86_intercept_##_i } 4004 #define IIP(_f, _e, _i, _p) \ 4005 { .flags = (_f)|Intercept|CheckPerm, .u.execute = (_e), \ 4006 .intercept = x86_intercept_##_i, .check_perm = (_p) } 4007 #define GP(_f, _g) { .flags = ((_f) | Prefix), .u.gprefix = (_g) } 4008 4009 #define D2bv(_f) D((_f) | ByteOp), D(_f) 4010 #define D2bvIP(_f, _i, _p) DIP((_f) | ByteOp, _i, _p), DIP(_f, _i, _p) 4011 #define I2bv(_f, _e) I((_f) | ByteOp, _e), I(_f, _e) 4012 #define F2bv(_f, _e) F((_f) | ByteOp, _e), F(_f, _e) 4013 #define I2bvIP(_f, _e, _i, _p) \ 4014 IIP((_f) | ByteOp, _e, _i, _p), IIP(_f, _e, _i, _p) 4015 4016 #define F6ALU(_f, _e) F2bv((_f) | DstMem | SrcReg | ModRM, _e), \ 4017 F2bv(((_f) | DstReg | SrcMem | ModRM) & ~Lock, _e), \ 4018 F2bv(((_f) & ~Lock) | DstAcc | SrcImm, _e) 4019 4020 static const struct opcode group7_rm0[] = { 4021 N, 4022 I(SrcNone | Priv | EmulateOnUD, em_hypercall), 4023 N, N, N, N, N, N, 4024 }; 4025 4026 static const struct opcode group7_rm1[] = { 4027 DI(SrcNone | Priv, monitor), 4028 DI(SrcNone | Priv, mwait), 4029 N, N, N, N, N, N, 4030 }; 4031 4032 static const struct opcode group7_rm2[] = { 4033 N, 4034 II(ImplicitOps | Priv, em_xsetbv, xsetbv), 4035 N, N, N, N, N, N, 4036 }; 4037 4038 static const struct opcode group7_rm3[] = { 4039 DIP(SrcNone | Prot | Priv, vmrun, check_svme_pa), 4040 II(SrcNone | Prot | EmulateOnUD, em_hypercall, vmmcall), 4041 DIP(SrcNone | Prot | Priv, vmload, check_svme_pa), 4042 DIP(SrcNone | Prot | Priv, vmsave, check_svme_pa), 4043 DIP(SrcNone | Prot | Priv, stgi, check_svme), 4044 DIP(SrcNone | Prot | Priv, clgi, check_svme), 4045 DIP(SrcNone | Prot | Priv, skinit, check_svme), 4046 DIP(SrcNone | Prot | Priv, invlpga, check_svme), 4047 }; 4048 4049 static const struct opcode group7_rm7[] = { 4050 N, 4051 DIP(SrcNone, rdtscp, check_rdtsc), 4052 N, N, N, N, N, N, 4053 }; 4054 4055 static const struct opcode group1[] = { 4056 F(Lock, em_add), 4057 F(Lock | PageTable, em_or), 4058 F(Lock, em_adc), 4059 F(Lock, em_sbb), 4060 F(Lock | PageTable, em_and), 4061 F(Lock, em_sub), 4062 F(Lock, em_xor), 4063 F(NoWrite, em_cmp), 4064 }; 4065 4066 static const struct opcode group1A[] = { 4067 I(DstMem | SrcNone | Mov | Stack | IncSP | TwoMemOp, em_pop), N, N, N, N, N, N, N, 4068 }; 4069 4070 static const struct opcode group2[] = { 4071 F(DstMem | ModRM, em_rol), 4072 F(DstMem | ModRM, em_ror), 4073 F(DstMem | ModRM, em_rcl), 4074 F(DstMem | ModRM, em_rcr), 4075 F(DstMem | ModRM, em_shl), 4076 F(DstMem | ModRM, em_shr), 4077 F(DstMem | ModRM, em_shl), 4078 F(DstMem | ModRM, em_sar), 4079 }; 4080 4081 static const struct opcode group3[] = { 4082 F(DstMem | SrcImm | NoWrite, em_test), 4083 F(DstMem | SrcImm | NoWrite, em_test), 4084 F(DstMem | SrcNone | Lock, em_not), 4085 F(DstMem | SrcNone | Lock, em_neg), 4086 F(DstXacc | Src2Mem, em_mul_ex), 4087 F(DstXacc | Src2Mem, em_imul_ex), 4088 F(DstXacc | Src2Mem, em_div_ex), 4089 F(DstXacc | Src2Mem, em_idiv_ex), 4090 }; 4091 4092 static const struct opcode group4[] = { 4093 F(ByteOp | DstMem | SrcNone | Lock, em_inc), 4094 F(ByteOp | DstMem | SrcNone | Lock, em_dec), 4095 N, N, N, N, N, N, 4096 }; 4097 4098 static const struct opcode group5[] = { 4099 F(DstMem | SrcNone | Lock, em_inc), 4100 F(DstMem | SrcNone | Lock, em_dec), 4101 I(SrcMem | NearBranch | IsBranch, em_call_near_abs), 4102 I(SrcMemFAddr | ImplicitOps | IsBranch, em_call_far), 4103 I(SrcMem | NearBranch | IsBranch, em_jmp_abs), 4104 I(SrcMemFAddr | ImplicitOps | IsBranch, em_jmp_far), 4105 I(SrcMem | Stack | TwoMemOp, em_push), D(Undefined), 4106 }; 4107 4108 static const struct opcode group6[] = { 4109 II(Prot | DstMem, em_sldt, sldt), 4110 II(Prot | DstMem, em_str, str), 4111 II(Prot | Priv | SrcMem16, em_lldt, lldt), 4112 II(Prot | Priv | SrcMem16, em_ltr, ltr), 4113 N, N, N, N, 4114 }; 4115 4116 static const struct group_dual group7 = { { 4117 II(Mov | DstMem, em_sgdt, sgdt), 4118 II(Mov | DstMem, em_sidt, sidt), 4119 II(SrcMem | Priv, em_lgdt, lgdt), 4120 II(SrcMem | Priv, em_lidt, lidt), 4121 II(SrcNone | DstMem | Mov, em_smsw, smsw), N, 4122 II(SrcMem16 | Mov | Priv, em_lmsw, lmsw), 4123 II(SrcMem | ByteOp | Priv | NoAccess, em_invlpg, invlpg), 4124 }, { 4125 EXT(0, group7_rm0), 4126 EXT(0, group7_rm1), 4127 EXT(0, group7_rm2), 4128 EXT(0, group7_rm3), 4129 II(SrcNone | DstMem | Mov, em_smsw, smsw), N, 4130 II(SrcMem16 | Mov | Priv, em_lmsw, lmsw), 4131 EXT(0, group7_rm7), 4132 } }; 4133 4134 static const struct opcode group8[] = { 4135 N, N, N, N, 4136 F(DstMem | SrcImmByte | NoWrite, em_bt), 4137 F(DstMem | SrcImmByte | Lock | PageTable, em_bts), 4138 F(DstMem | SrcImmByte | Lock, em_btr), 4139 F(DstMem | SrcImmByte | Lock | PageTable, em_btc), 4140 }; 4141 4142 /* 4143 * The "memory" destination is actually always a register, since we come 4144 * from the register case of group9. 4145 */ 4146 static const struct gprefix pfx_0f_c7_7 = { 4147 N, N, N, II(DstMem | ModRM | Op3264 | EmulateOnUD, em_rdpid, rdpid), 4148 }; 4149 4150 4151 static const struct group_dual group9 = { { 4152 N, I(DstMem64 | Lock | PageTable, em_cmpxchg8b), N, N, N, N, N, N, 4153 }, { 4154 N, N, N, N, N, N, N, 4155 GP(0, &pfx_0f_c7_7), 4156 } }; 4157 4158 static const struct opcode group11[] = { 4159 I(DstMem | SrcImm | Mov | PageTable, em_mov), 4160 X7(D(Undefined)), 4161 }; 4162 4163 static const struct gprefix pfx_0f_ae_7 = { 4164 I(SrcMem | ByteOp, em_clflush), I(SrcMem | ByteOp, em_clflushopt), N, N, 4165 }; 4166 4167 static const struct group_dual group15 = { { 4168 I(ModRM | Aligned16, em_fxsave), 4169 I(ModRM | Aligned16, em_fxrstor), 4170 N, N, N, N, N, GP(0, &pfx_0f_ae_7), 4171 }, { 4172 N, N, N, N, N, N, N, N, 4173 } }; 4174 4175 static const struct gprefix pfx_0f_6f_0f_7f = { 4176 I(Mmx, em_mov), I(Sse | Aligned, em_mov), N, I(Sse | Unaligned, em_mov), 4177 }; 4178 4179 static const struct instr_dual instr_dual_0f_2b = { 4180 I(0, em_mov), N 4181 }; 4182 4183 static const struct gprefix pfx_0f_2b = { 4184 ID(0, &instr_dual_0f_2b), ID(0, &instr_dual_0f_2b), N, N, 4185 }; 4186 4187 static const struct gprefix pfx_0f_10_0f_11 = { 4188 I(Unaligned, em_mov), I(Unaligned, em_mov), N, N, 4189 }; 4190 4191 static const struct gprefix pfx_0f_28_0f_29 = { 4192 I(Aligned, em_mov), I(Aligned, em_mov), N, N, 4193 }; 4194 4195 static const struct gprefix pfx_0f_e7 = { 4196 N, I(Sse, em_mov), N, N, 4197 }; 4198 4199 static const struct escape escape_d9 = { { 4200 N, N, N, N, N, N, N, I(DstMem16 | Mov, em_fnstcw), 4201 }, { 4202 /* 0xC0 - 0xC7 */ 4203 N, N, N, N, N, N, N, N, 4204 /* 0xC8 - 0xCF */ 4205 N, N, N, N, N, N, N, N, 4206 /* 0xD0 - 0xC7 */ 4207 N, N, N, N, N, N, N, N, 4208 /* 0xD8 - 0xDF */ 4209 N, N, N, N, N, N, N, N, 4210 /* 0xE0 - 0xE7 */ 4211 N, N, N, N, N, N, N, N, 4212 /* 0xE8 - 0xEF */ 4213 N, N, N, N, N, N, N, N, 4214 /* 0xF0 - 0xF7 */ 4215 N, N, N, N, N, N, N, N, 4216 /* 0xF8 - 0xFF */ 4217 N, N, N, N, N, N, N, N, 4218 } }; 4219 4220 static const struct escape escape_db = { { 4221 N, N, N, N, N, N, N, N, 4222 }, { 4223 /* 0xC0 - 0xC7 */ 4224 N, N, N, N, N, N, N, N, 4225 /* 0xC8 - 0xCF */ 4226 N, N, N, N, N, N, N, N, 4227 /* 0xD0 - 0xC7 */ 4228 N, N, N, N, N, N, N, N, 4229 /* 0xD8 - 0xDF */ 4230 N, N, N, N, N, N, N, N, 4231 /* 0xE0 - 0xE7 */ 4232 N, N, N, I(ImplicitOps, em_fninit), N, N, N, N, 4233 /* 0xE8 - 0xEF */ 4234 N, N, N, N, N, N, N, N, 4235 /* 0xF0 - 0xF7 */ 4236 N, N, N, N, N, N, N, N, 4237 /* 0xF8 - 0xFF */ 4238 N, N, N, N, N, N, N, N, 4239 } }; 4240 4241 static const struct escape escape_dd = { { 4242 N, N, N, N, N, N, N, I(DstMem16 | Mov, em_fnstsw), 4243 }, { 4244 /* 0xC0 - 0xC7 */ 4245 N, N, N, N, N, N, N, N, 4246 /* 0xC8 - 0xCF */ 4247 N, N, N, N, N, N, N, N, 4248 /* 0xD0 - 0xC7 */ 4249 N, N, N, N, N, N, N, N, 4250 /* 0xD8 - 0xDF */ 4251 N, N, N, N, N, N, N, N, 4252 /* 0xE0 - 0xE7 */ 4253 N, N, N, N, N, N, N, N, 4254 /* 0xE8 - 0xEF */ 4255 N, N, N, N, N, N, N, N, 4256 /* 0xF0 - 0xF7 */ 4257 N, N, N, N, N, N, N, N, 4258 /* 0xF8 - 0xFF */ 4259 N, N, N, N, N, N, N, N, 4260 } }; 4261 4262 static const struct instr_dual instr_dual_0f_c3 = { 4263 I(DstMem | SrcReg | ModRM | No16 | Mov, em_mov), N 4264 }; 4265 4266 static const struct mode_dual mode_dual_63 = { 4267 N, I(DstReg | SrcMem32 | ModRM | Mov, em_movsxd) 4268 }; 4269 4270 static const struct instr_dual instr_dual_8d = { 4271 D(DstReg | SrcMem | ModRM | NoAccess), N 4272 }; 4273 4274 static const struct opcode opcode_table[256] = { 4275 /* 0x00 - 0x07 */ 4276 F6ALU(Lock, em_add), 4277 I(ImplicitOps | Stack | No64 | Src2ES, em_push_sreg), 4278 I(ImplicitOps | Stack | No64 | Src2ES, em_pop_sreg), 4279 /* 0x08 - 0x0F */ 4280 F6ALU(Lock | PageTable, em_or), 4281 I(ImplicitOps | Stack | No64 | Src2CS, em_push_sreg), 4282 N, 4283 /* 0x10 - 0x17 */ 4284 F6ALU(Lock, em_adc), 4285 I(ImplicitOps | Stack | No64 | Src2SS, em_push_sreg), 4286 I(ImplicitOps | Stack | No64 | Src2SS, em_pop_sreg), 4287 /* 0x18 - 0x1F */ 4288 F6ALU(Lock, em_sbb), 4289 I(ImplicitOps | Stack | No64 | Src2DS, em_push_sreg), 4290 I(ImplicitOps | Stack | No64 | Src2DS, em_pop_sreg), 4291 /* 0x20 - 0x27 */ 4292 F6ALU(Lock | PageTable, em_and), N, N, 4293 /* 0x28 - 0x2F */ 4294 F6ALU(Lock, em_sub), N, I(ByteOp | DstAcc | No64, em_das), 4295 /* 0x30 - 0x37 */ 4296 F6ALU(Lock, em_xor), N, N, 4297 /* 0x38 - 0x3F */ 4298 F6ALU(NoWrite, em_cmp), N, N, 4299 /* 0x40 - 0x4F */ 4300 X8(F(DstReg, em_inc)), X8(F(DstReg, em_dec)), 4301 /* 0x50 - 0x57 */ 4302 X8(I(SrcReg | Stack, em_push)), 4303 /* 0x58 - 0x5F */ 4304 X8(I(DstReg | Stack, em_pop)), 4305 /* 0x60 - 0x67 */ 4306 I(ImplicitOps | Stack | No64, em_pusha), 4307 I(ImplicitOps | Stack | No64, em_popa), 4308 N, MD(ModRM, &mode_dual_63), 4309 N, N, N, N, 4310 /* 0x68 - 0x6F */ 4311 I(SrcImm | Mov | Stack, em_push), 4312 I(DstReg | SrcMem | ModRM | Src2Imm, em_imul_3op), 4313 I(SrcImmByte | Mov | Stack, em_push), 4314 I(DstReg | SrcMem | ModRM | Src2ImmByte, em_imul_3op), 4315 I2bvIP(DstDI | SrcDX | Mov | String | Unaligned, em_in, ins, check_perm_in), /* insb, insw/insd */ 4316 I2bvIP(SrcSI | DstDX | String, em_out, outs, check_perm_out), /* outsb, outsw/outsd */ 4317 /* 0x70 - 0x7F */ 4318 X16(D(SrcImmByte | NearBranch | IsBranch)), 4319 /* 0x80 - 0x87 */ 4320 G(ByteOp | DstMem | SrcImm, group1), 4321 G(DstMem | SrcImm, group1), 4322 G(ByteOp | DstMem | SrcImm | No64, group1), 4323 G(DstMem | SrcImmByte, group1), 4324 F2bv(DstMem | SrcReg | ModRM | NoWrite, em_test), 4325 I2bv(DstMem | SrcReg | ModRM | Lock | PageTable, em_xchg), 4326 /* 0x88 - 0x8F */ 4327 I2bv(DstMem | SrcReg | ModRM | Mov | PageTable, em_mov), 4328 I2bv(DstReg | SrcMem | ModRM | Mov, em_mov), 4329 I(DstMem | SrcNone | ModRM | Mov | PageTable, em_mov_rm_sreg), 4330 ID(0, &instr_dual_8d), 4331 I(ImplicitOps | SrcMem16 | ModRM, em_mov_sreg_rm), 4332 G(0, group1A), 4333 /* 0x90 - 0x97 */ 4334 DI(SrcAcc | DstReg, pause), X7(D(SrcAcc | DstReg)), 4335 /* 0x98 - 0x9F */ 4336 D(DstAcc | SrcNone), I(ImplicitOps | SrcAcc, em_cwd), 4337 I(SrcImmFAddr | No64 | IsBranch, em_call_far), N, 4338 II(ImplicitOps | Stack, em_pushf, pushf), 4339 II(ImplicitOps | Stack, em_popf, popf), 4340 I(ImplicitOps, em_sahf), I(ImplicitOps, em_lahf), 4341 /* 0xA0 - 0xA7 */ 4342 I2bv(DstAcc | SrcMem | Mov | MemAbs, em_mov), 4343 I2bv(DstMem | SrcAcc | Mov | MemAbs | PageTable, em_mov), 4344 I2bv(SrcSI | DstDI | Mov | String | TwoMemOp, em_mov), 4345 F2bv(SrcSI | DstDI | String | NoWrite | TwoMemOp, em_cmp_r), 4346 /* 0xA8 - 0xAF */ 4347 F2bv(DstAcc | SrcImm | NoWrite, em_test), 4348 I2bv(SrcAcc | DstDI | Mov | String, em_mov), 4349 I2bv(SrcSI | DstAcc | Mov | String, em_mov), 4350 F2bv(SrcAcc | DstDI | String | NoWrite, em_cmp_r), 4351 /* 0xB0 - 0xB7 */ 4352 X8(I(ByteOp | DstReg | SrcImm | Mov, em_mov)), 4353 /* 0xB8 - 0xBF */ 4354 X8(I(DstReg | SrcImm64 | Mov, em_mov)), 4355 /* 0xC0 - 0xC7 */ 4356 G(ByteOp | Src2ImmByte, group2), G(Src2ImmByte, group2), 4357 I(ImplicitOps | NearBranch | SrcImmU16 | IsBranch, em_ret_near_imm), 4358 I(ImplicitOps | NearBranch | IsBranch, em_ret), 4359 I(DstReg | SrcMemFAddr | ModRM | No64 | Src2ES, em_lseg), 4360 I(DstReg | SrcMemFAddr | ModRM | No64 | Src2DS, em_lseg), 4361 G(ByteOp, group11), G(0, group11), 4362 /* 0xC8 - 0xCF */ 4363 I(Stack | SrcImmU16 | Src2ImmByte | IsBranch, em_enter), 4364 I(Stack | IsBranch, em_leave), 4365 I(ImplicitOps | SrcImmU16 | IsBranch, em_ret_far_imm), 4366 I(ImplicitOps | IsBranch, em_ret_far), 4367 D(ImplicitOps | IsBranch), DI(SrcImmByte | IsBranch, intn), 4368 D(ImplicitOps | No64 | IsBranch), 4369 II(ImplicitOps | IsBranch, em_iret, iret), 4370 /* 0xD0 - 0xD7 */ 4371 G(Src2One | ByteOp, group2), G(Src2One, group2), 4372 G(Src2CL | ByteOp, group2), G(Src2CL, group2), 4373 I(DstAcc | SrcImmUByte | No64, em_aam), 4374 I(DstAcc | SrcImmUByte | No64, em_aad), 4375 F(DstAcc | ByteOp | No64, em_salc), 4376 I(DstAcc | SrcXLat | ByteOp, em_mov), 4377 /* 0xD8 - 0xDF */ 4378 N, E(0, &escape_d9), N, E(0, &escape_db), N, E(0, &escape_dd), N, N, 4379 /* 0xE0 - 0xE7 */ 4380 X3(I(SrcImmByte | NearBranch | IsBranch, em_loop)), 4381 I(SrcImmByte | NearBranch | IsBranch, em_jcxz), 4382 I2bvIP(SrcImmUByte | DstAcc, em_in, in, check_perm_in), 4383 I2bvIP(SrcAcc | DstImmUByte, em_out, out, check_perm_out), 4384 /* 0xE8 - 0xEF */ 4385 I(SrcImm | NearBranch | IsBranch, em_call), 4386 D(SrcImm | ImplicitOps | NearBranch | IsBranch), 4387 I(SrcImmFAddr | No64 | IsBranch, em_jmp_far), 4388 D(SrcImmByte | ImplicitOps | NearBranch | IsBranch), 4389 I2bvIP(SrcDX | DstAcc, em_in, in, check_perm_in), 4390 I2bvIP(SrcAcc | DstDX, em_out, out, check_perm_out), 4391 /* 0xF0 - 0xF7 */ 4392 N, DI(ImplicitOps, icebp), N, N, 4393 DI(ImplicitOps | Priv, hlt), D(ImplicitOps), 4394 G(ByteOp, group3), G(0, group3), 4395 /* 0xF8 - 0xFF */ 4396 D(ImplicitOps), D(ImplicitOps), 4397 I(ImplicitOps, em_cli), I(ImplicitOps, em_sti), 4398 D(ImplicitOps), D(ImplicitOps), G(0, group4), G(0, group5), 4399 }; 4400 4401 static const struct opcode twobyte_table[256] = { 4402 /* 0x00 - 0x0F */ 4403 G(0, group6), GD(0, &group7), N, N, 4404 N, I(ImplicitOps | EmulateOnUD | IsBranch, em_syscall), 4405 II(ImplicitOps | Priv, em_clts, clts), N, 4406 DI(ImplicitOps | Priv, invd), DI(ImplicitOps | Priv, wbinvd), N, N, 4407 N, D(ImplicitOps | ModRM | SrcMem | NoAccess), N, N, 4408 /* 0x10 - 0x1F */ 4409 GP(ModRM | DstReg | SrcMem | Mov | Sse, &pfx_0f_10_0f_11), 4410 GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_10_0f_11), 4411 N, N, N, N, N, N, 4412 D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 4 * prefetch + 4 * reserved NOP */ 4413 D(ImplicitOps | ModRM | SrcMem | NoAccess), N, N, 4414 D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 8 * reserved NOP */ 4415 D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 8 * reserved NOP */ 4416 D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 8 * reserved NOP */ 4417 D(ImplicitOps | ModRM | SrcMem | NoAccess), /* NOP + 7 * reserved NOP */ 4418 /* 0x20 - 0x2F */ 4419 DIP(ModRM | DstMem | Priv | Op3264 | NoMod, cr_read, check_cr_access), 4420 DIP(ModRM | DstMem | Priv | Op3264 | NoMod, dr_read, check_dr_read), 4421 IIP(ModRM | SrcMem | Priv | Op3264 | NoMod, em_cr_write, cr_write, 4422 check_cr_access), 4423 IIP(ModRM | SrcMem | Priv | Op3264 | NoMod, em_dr_write, dr_write, 4424 check_dr_write), 4425 N, N, N, N, 4426 GP(ModRM | DstReg | SrcMem | Mov | Sse, &pfx_0f_28_0f_29), 4427 GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_28_0f_29), 4428 N, GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_2b), 4429 N, N, N, N, 4430 /* 0x30 - 0x3F */ 4431 II(ImplicitOps | Priv, em_wrmsr, wrmsr), 4432 IIP(ImplicitOps, em_rdtsc, rdtsc, check_rdtsc), 4433 II(ImplicitOps | Priv, em_rdmsr, rdmsr), 4434 IIP(ImplicitOps, em_rdpmc, rdpmc, check_rdpmc), 4435 I(ImplicitOps | EmulateOnUD | IsBranch, em_sysenter), 4436 I(ImplicitOps | Priv | EmulateOnUD | IsBranch, em_sysexit), 4437 N, N, 4438 N, N, N, N, N, N, N, N, 4439 /* 0x40 - 0x4F */ 4440 X16(D(DstReg | SrcMem | ModRM)), 4441 /* 0x50 - 0x5F */ 4442 N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, 4443 /* 0x60 - 0x6F */ 4444 N, N, N, N, 4445 N, N, N, N, 4446 N, N, N, N, 4447 N, N, N, GP(SrcMem | DstReg | ModRM | Mov, &pfx_0f_6f_0f_7f), 4448 /* 0x70 - 0x7F */ 4449 N, N, N, N, 4450 N, N, N, N, 4451 N, N, N, N, 4452 N, N, N, GP(SrcReg | DstMem | ModRM | Mov, &pfx_0f_6f_0f_7f), 4453 /* 0x80 - 0x8F */ 4454 X16(D(SrcImm | NearBranch | IsBranch)), 4455 /* 0x90 - 0x9F */ 4456 X16(D(ByteOp | DstMem | SrcNone | ModRM| Mov)), 4457 /* 0xA0 - 0xA7 */ 4458 I(Stack | Src2FS, em_push_sreg), I(Stack | Src2FS, em_pop_sreg), 4459 II(ImplicitOps, em_cpuid, cpuid), 4460 F(DstMem | SrcReg | ModRM | BitOp | NoWrite, em_bt), 4461 F(DstMem | SrcReg | Src2ImmByte | ModRM, em_shld), 4462 F(DstMem | SrcReg | Src2CL | ModRM, em_shld), N, N, 4463 /* 0xA8 - 0xAF */ 4464 I(Stack | Src2GS, em_push_sreg), I(Stack | Src2GS, em_pop_sreg), 4465 II(EmulateOnUD | ImplicitOps, em_rsm, rsm), 4466 F(DstMem | SrcReg | ModRM | BitOp | Lock | PageTable, em_bts), 4467 F(DstMem | SrcReg | Src2ImmByte | ModRM, em_shrd), 4468 F(DstMem | SrcReg | Src2CL | ModRM, em_shrd), 4469 GD(0, &group15), F(DstReg | SrcMem | ModRM, em_imul), 4470 /* 0xB0 - 0xB7 */ 4471 I2bv(DstMem | SrcReg | ModRM | Lock | PageTable | SrcWrite, em_cmpxchg), 4472 I(DstReg | SrcMemFAddr | ModRM | Src2SS, em_lseg), 4473 F(DstMem | SrcReg | ModRM | BitOp | Lock, em_btr), 4474 I(DstReg | SrcMemFAddr | ModRM | Src2FS, em_lseg), 4475 I(DstReg | SrcMemFAddr | ModRM | Src2GS, em_lseg), 4476 D(DstReg | SrcMem8 | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov), 4477 /* 0xB8 - 0xBF */ 4478 N, N, 4479 G(BitOp, group8), 4480 F(DstMem | SrcReg | ModRM | BitOp | Lock | PageTable, em_btc), 4481 I(DstReg | SrcMem | ModRM, em_bsf_c), 4482 I(DstReg | SrcMem | ModRM, em_bsr_c), 4483 D(DstReg | SrcMem8 | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov), 4484 /* 0xC0 - 0xC7 */ 4485 F2bv(DstMem | SrcReg | ModRM | SrcWrite | Lock, em_xadd), 4486 N, ID(0, &instr_dual_0f_c3), 4487 N, N, N, GD(0, &group9), 4488 /* 0xC8 - 0xCF */ 4489 X8(I(DstReg, em_bswap)), 4490 /* 0xD0 - 0xDF */ 4491 N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, 4492 /* 0xE0 - 0xEF */ 4493 N, N, N, N, N, N, N, GP(SrcReg | DstMem | ModRM | Mov, &pfx_0f_e7), 4494 N, N, N, N, N, N, N, N, 4495 /* 0xF0 - 0xFF */ 4496 N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N 4497 }; 4498 4499 static const struct instr_dual instr_dual_0f_38_f0 = { 4500 I(DstReg | SrcMem | Mov, em_movbe), N 4501 }; 4502 4503 static const struct instr_dual instr_dual_0f_38_f1 = { 4504 I(DstMem | SrcReg | Mov, em_movbe), N 4505 }; 4506 4507 static const struct gprefix three_byte_0f_38_f0 = { 4508 ID(0, &instr_dual_0f_38_f0), N, N, N 4509 }; 4510 4511 static const struct gprefix three_byte_0f_38_f1 = { 4512 ID(0, &instr_dual_0f_38_f1), N, N, N 4513 }; 4514 4515 /* 4516 * Insns below are selected by the prefix which indexed by the third opcode 4517 * byte. 4518 */ 4519 static const struct opcode opcode_map_0f_38[256] = { 4520 /* 0x00 - 0x7f */ 4521 X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), 4522 /* 0x80 - 0xef */ 4523 X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), 4524 /* 0xf0 - 0xf1 */ 4525 GP(EmulateOnUD | ModRM, &three_byte_0f_38_f0), 4526 GP(EmulateOnUD | ModRM, &three_byte_0f_38_f1), 4527 /* 0xf2 - 0xff */ 4528 N, N, X4(N), X8(N) 4529 }; 4530 4531 #undef D 4532 #undef N 4533 #undef G 4534 #undef GD 4535 #undef I 4536 #undef GP 4537 #undef EXT 4538 #undef MD 4539 #undef ID 4540 4541 #undef D2bv 4542 #undef D2bvIP 4543 #undef I2bv 4544 #undef I2bvIP 4545 #undef I6ALU 4546 4547 static unsigned imm_size(struct x86_emulate_ctxt *ctxt) 4548 { 4549 unsigned size; 4550 4551 size = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes; 4552 if (size == 8) 4553 size = 4; 4554 return size; 4555 } 4556 4557 static int decode_imm(struct x86_emulate_ctxt *ctxt, struct operand *op, 4558 unsigned size, bool sign_extension) 4559 { 4560 int rc = X86EMUL_CONTINUE; 4561 4562 op->type = OP_IMM; 4563 op->bytes = size; 4564 op->addr.mem.ea = ctxt->_eip; 4565 /* NB. Immediates are sign-extended as necessary. */ 4566 switch (op->bytes) { 4567 case 1: 4568 op->val = insn_fetch(s8, ctxt); 4569 break; 4570 case 2: 4571 op->val = insn_fetch(s16, ctxt); 4572 break; 4573 case 4: 4574 op->val = insn_fetch(s32, ctxt); 4575 break; 4576 case 8: 4577 op->val = insn_fetch(s64, ctxt); 4578 break; 4579 } 4580 if (!sign_extension) { 4581 switch (op->bytes) { 4582 case 1: 4583 op->val &= 0xff; 4584 break; 4585 case 2: 4586 op->val &= 0xffff; 4587 break; 4588 case 4: 4589 op->val &= 0xffffffff; 4590 break; 4591 } 4592 } 4593 done: 4594 return rc; 4595 } 4596 4597 static int decode_operand(struct x86_emulate_ctxt *ctxt, struct operand *op, 4598 unsigned d) 4599 { 4600 int rc = X86EMUL_CONTINUE; 4601 4602 switch (d) { 4603 case OpReg: 4604 decode_register_operand(ctxt, op); 4605 break; 4606 case OpImmUByte: 4607 rc = decode_imm(ctxt, op, 1, false); 4608 break; 4609 case OpMem: 4610 ctxt->memop.bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes; 4611 mem_common: 4612 *op = ctxt->memop; 4613 ctxt->memopp = op; 4614 if (ctxt->d & BitOp) 4615 fetch_bit_operand(ctxt); 4616 op->orig_val = op->val; 4617 break; 4618 case OpMem64: 4619 ctxt->memop.bytes = (ctxt->op_bytes == 8) ? 16 : 8; 4620 goto mem_common; 4621 case OpAcc: 4622 op->type = OP_REG; 4623 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes; 4624 op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX); 4625 fetch_register_operand(op); 4626 op->orig_val = op->val; 4627 break; 4628 case OpAccLo: 4629 op->type = OP_REG; 4630 op->bytes = (ctxt->d & ByteOp) ? 2 : ctxt->op_bytes; 4631 op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX); 4632 fetch_register_operand(op); 4633 op->orig_val = op->val; 4634 break; 4635 case OpAccHi: 4636 if (ctxt->d & ByteOp) { 4637 op->type = OP_NONE; 4638 break; 4639 } 4640 op->type = OP_REG; 4641 op->bytes = ctxt->op_bytes; 4642 op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX); 4643 fetch_register_operand(op); 4644 op->orig_val = op->val; 4645 break; 4646 case OpDI: 4647 op->type = OP_MEM; 4648 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes; 4649 op->addr.mem.ea = 4650 register_address(ctxt, VCPU_REGS_RDI); 4651 op->addr.mem.seg = VCPU_SREG_ES; 4652 op->val = 0; 4653 op->count = 1; 4654 break; 4655 case OpDX: 4656 op->type = OP_REG; 4657 op->bytes = 2; 4658 op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX); 4659 fetch_register_operand(op); 4660 break; 4661 case OpCL: 4662 op->type = OP_IMM; 4663 op->bytes = 1; 4664 op->val = reg_read(ctxt, VCPU_REGS_RCX) & 0xff; 4665 break; 4666 case OpImmByte: 4667 rc = decode_imm(ctxt, op, 1, true); 4668 break; 4669 case OpOne: 4670 op->type = OP_IMM; 4671 op->bytes = 1; 4672 op->val = 1; 4673 break; 4674 case OpImm: 4675 rc = decode_imm(ctxt, op, imm_size(ctxt), true); 4676 break; 4677 case OpImm64: 4678 rc = decode_imm(ctxt, op, ctxt->op_bytes, true); 4679 break; 4680 case OpMem8: 4681 ctxt->memop.bytes = 1; 4682 if (ctxt->memop.type == OP_REG) { 4683 ctxt->memop.addr.reg = decode_register(ctxt, 4684 ctxt->modrm_rm, true); 4685 fetch_register_operand(&ctxt->memop); 4686 } 4687 goto mem_common; 4688 case OpMem16: 4689 ctxt->memop.bytes = 2; 4690 goto mem_common; 4691 case OpMem32: 4692 ctxt->memop.bytes = 4; 4693 goto mem_common; 4694 case OpImmU16: 4695 rc = decode_imm(ctxt, op, 2, false); 4696 break; 4697 case OpImmU: 4698 rc = decode_imm(ctxt, op, imm_size(ctxt), false); 4699 break; 4700 case OpSI: 4701 op->type = OP_MEM; 4702 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes; 4703 op->addr.mem.ea = 4704 register_address(ctxt, VCPU_REGS_RSI); 4705 op->addr.mem.seg = ctxt->seg_override; 4706 op->val = 0; 4707 op->count = 1; 4708 break; 4709 case OpXLat: 4710 op->type = OP_MEM; 4711 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes; 4712 op->addr.mem.ea = 4713 address_mask(ctxt, 4714 reg_read(ctxt, VCPU_REGS_RBX) + 4715 (reg_read(ctxt, VCPU_REGS_RAX) & 0xff)); 4716 op->addr.mem.seg = ctxt->seg_override; 4717 op->val = 0; 4718 break; 4719 case OpImmFAddr: 4720 op->type = OP_IMM; 4721 op->addr.mem.ea = ctxt->_eip; 4722 op->bytes = ctxt->op_bytes + 2; 4723 insn_fetch_arr(op->valptr, op->bytes, ctxt); 4724 break; 4725 case OpMemFAddr: 4726 ctxt->memop.bytes = ctxt->op_bytes + 2; 4727 goto mem_common; 4728 case OpES: 4729 op->type = OP_IMM; 4730 op->val = VCPU_SREG_ES; 4731 break; 4732 case OpCS: 4733 op->type = OP_IMM; 4734 op->val = VCPU_SREG_CS; 4735 break; 4736 case OpSS: 4737 op->type = OP_IMM; 4738 op->val = VCPU_SREG_SS; 4739 break; 4740 case OpDS: 4741 op->type = OP_IMM; 4742 op->val = VCPU_SREG_DS; 4743 break; 4744 case OpFS: 4745 op->type = OP_IMM; 4746 op->val = VCPU_SREG_FS; 4747 break; 4748 case OpGS: 4749 op->type = OP_IMM; 4750 op->val = VCPU_SREG_GS; 4751 break; 4752 case OpImplicit: 4753 /* Special instructions do their own operand decoding. */ 4754 default: 4755 op->type = OP_NONE; /* Disable writeback. */ 4756 break; 4757 } 4758 4759 done: 4760 return rc; 4761 } 4762 4763 int x86_decode_insn(struct x86_emulate_ctxt *ctxt, void *insn, int insn_len, int emulation_type) 4764 { 4765 int rc = X86EMUL_CONTINUE; 4766 int mode = ctxt->mode; 4767 int def_op_bytes, def_ad_bytes, goffset, simd_prefix; 4768 bool op_prefix = false; 4769 bool has_seg_override = false; 4770 struct opcode opcode; 4771 u16 dummy; 4772 struct desc_struct desc; 4773 4774 ctxt->memop.type = OP_NONE; 4775 ctxt->memopp = NULL; 4776 ctxt->_eip = ctxt->eip; 4777 ctxt->fetch.ptr = ctxt->fetch.data; 4778 ctxt->fetch.end = ctxt->fetch.data + insn_len; 4779 ctxt->opcode_len = 1; 4780 ctxt->intercept = x86_intercept_none; 4781 if (insn_len > 0) 4782 memcpy(ctxt->fetch.data, insn, insn_len); 4783 else { 4784 rc = __do_insn_fetch_bytes(ctxt, 1); 4785 if (rc != X86EMUL_CONTINUE) 4786 goto done; 4787 } 4788 4789 switch (mode) { 4790 case X86EMUL_MODE_REAL: 4791 case X86EMUL_MODE_VM86: 4792 def_op_bytes = def_ad_bytes = 2; 4793 ctxt->ops->get_segment(ctxt, &dummy, &desc, NULL, VCPU_SREG_CS); 4794 if (desc.d) 4795 def_op_bytes = def_ad_bytes = 4; 4796 break; 4797 case X86EMUL_MODE_PROT16: 4798 def_op_bytes = def_ad_bytes = 2; 4799 break; 4800 case X86EMUL_MODE_PROT32: 4801 def_op_bytes = def_ad_bytes = 4; 4802 break; 4803 #ifdef CONFIG_X86_64 4804 case X86EMUL_MODE_PROT64: 4805 def_op_bytes = 4; 4806 def_ad_bytes = 8; 4807 break; 4808 #endif 4809 default: 4810 return EMULATION_FAILED; 4811 } 4812 4813 ctxt->op_bytes = def_op_bytes; 4814 ctxt->ad_bytes = def_ad_bytes; 4815 4816 /* Legacy prefixes. */ 4817 for (;;) { 4818 switch (ctxt->b = insn_fetch(u8, ctxt)) { 4819 case 0x66: /* operand-size override */ 4820 op_prefix = true; 4821 /* switch between 2/4 bytes */ 4822 ctxt->op_bytes = def_op_bytes ^ 6; 4823 break; 4824 case 0x67: /* address-size override */ 4825 if (mode == X86EMUL_MODE_PROT64) 4826 /* switch between 4/8 bytes */ 4827 ctxt->ad_bytes = def_ad_bytes ^ 12; 4828 else 4829 /* switch between 2/4 bytes */ 4830 ctxt->ad_bytes = def_ad_bytes ^ 6; 4831 break; 4832 case 0x26: /* ES override */ 4833 has_seg_override = true; 4834 ctxt->seg_override = VCPU_SREG_ES; 4835 break; 4836 case 0x2e: /* CS override */ 4837 has_seg_override = true; 4838 ctxt->seg_override = VCPU_SREG_CS; 4839 break; 4840 case 0x36: /* SS override */ 4841 has_seg_override = true; 4842 ctxt->seg_override = VCPU_SREG_SS; 4843 break; 4844 case 0x3e: /* DS override */ 4845 has_seg_override = true; 4846 ctxt->seg_override = VCPU_SREG_DS; 4847 break; 4848 case 0x64: /* FS override */ 4849 has_seg_override = true; 4850 ctxt->seg_override = VCPU_SREG_FS; 4851 break; 4852 case 0x65: /* GS override */ 4853 has_seg_override = true; 4854 ctxt->seg_override = VCPU_SREG_GS; 4855 break; 4856 case 0x40 ... 0x4f: /* REX */ 4857 if (mode != X86EMUL_MODE_PROT64) 4858 goto done_prefixes; 4859 ctxt->rex_prefix = ctxt->b; 4860 continue; 4861 case 0xf0: /* LOCK */ 4862 ctxt->lock_prefix = 1; 4863 break; 4864 case 0xf2: /* REPNE/REPNZ */ 4865 case 0xf3: /* REP/REPE/REPZ */ 4866 ctxt->rep_prefix = ctxt->b; 4867 break; 4868 default: 4869 goto done_prefixes; 4870 } 4871 4872 /* Any legacy prefix after a REX prefix nullifies its effect. */ 4873 4874 ctxt->rex_prefix = 0; 4875 } 4876 4877 done_prefixes: 4878 4879 /* REX prefix. */ 4880 if (ctxt->rex_prefix & 8) 4881 ctxt->op_bytes = 8; /* REX.W */ 4882 4883 /* Opcode byte(s). */ 4884 opcode = opcode_table[ctxt->b]; 4885 /* Two-byte opcode? */ 4886 if (ctxt->b == 0x0f) { 4887 ctxt->opcode_len = 2; 4888 ctxt->b = insn_fetch(u8, ctxt); 4889 opcode = twobyte_table[ctxt->b]; 4890 4891 /* 0F_38 opcode map */ 4892 if (ctxt->b == 0x38) { 4893 ctxt->opcode_len = 3; 4894 ctxt->b = insn_fetch(u8, ctxt); 4895 opcode = opcode_map_0f_38[ctxt->b]; 4896 } 4897 } 4898 ctxt->d = opcode.flags; 4899 4900 if (ctxt->d & ModRM) 4901 ctxt->modrm = insn_fetch(u8, ctxt); 4902 4903 /* vex-prefix instructions are not implemented */ 4904 if (ctxt->opcode_len == 1 && (ctxt->b == 0xc5 || ctxt->b == 0xc4) && 4905 (mode == X86EMUL_MODE_PROT64 || (ctxt->modrm & 0xc0) == 0xc0)) { 4906 ctxt->d = NotImpl; 4907 } 4908 4909 while (ctxt->d & GroupMask) { 4910 switch (ctxt->d & GroupMask) { 4911 case Group: 4912 goffset = (ctxt->modrm >> 3) & 7; 4913 opcode = opcode.u.group[goffset]; 4914 break; 4915 case GroupDual: 4916 goffset = (ctxt->modrm >> 3) & 7; 4917 if ((ctxt->modrm >> 6) == 3) 4918 opcode = opcode.u.gdual->mod3[goffset]; 4919 else 4920 opcode = opcode.u.gdual->mod012[goffset]; 4921 break; 4922 case RMExt: 4923 goffset = ctxt->modrm & 7; 4924 opcode = opcode.u.group[goffset]; 4925 break; 4926 case Prefix: 4927 if (ctxt->rep_prefix && op_prefix) 4928 return EMULATION_FAILED; 4929 simd_prefix = op_prefix ? 0x66 : ctxt->rep_prefix; 4930 switch (simd_prefix) { 4931 case 0x00: opcode = opcode.u.gprefix->pfx_no; break; 4932 case 0x66: opcode = opcode.u.gprefix->pfx_66; break; 4933 case 0xf2: opcode = opcode.u.gprefix->pfx_f2; break; 4934 case 0xf3: opcode = opcode.u.gprefix->pfx_f3; break; 4935 } 4936 break; 4937 case Escape: 4938 if (ctxt->modrm > 0xbf) { 4939 size_t size = ARRAY_SIZE(opcode.u.esc->high); 4940 u32 index = array_index_nospec( 4941 ctxt->modrm - 0xc0, size); 4942 4943 opcode = opcode.u.esc->high[index]; 4944 } else { 4945 opcode = opcode.u.esc->op[(ctxt->modrm >> 3) & 7]; 4946 } 4947 break; 4948 case InstrDual: 4949 if ((ctxt->modrm >> 6) == 3) 4950 opcode = opcode.u.idual->mod3; 4951 else 4952 opcode = opcode.u.idual->mod012; 4953 break; 4954 case ModeDual: 4955 if (ctxt->mode == X86EMUL_MODE_PROT64) 4956 opcode = opcode.u.mdual->mode64; 4957 else 4958 opcode = opcode.u.mdual->mode32; 4959 break; 4960 default: 4961 return EMULATION_FAILED; 4962 } 4963 4964 ctxt->d &= ~(u64)GroupMask; 4965 ctxt->d |= opcode.flags; 4966 } 4967 4968 ctxt->is_branch = opcode.flags & IsBranch; 4969 4970 /* Unrecognised? */ 4971 if (ctxt->d == 0) 4972 return EMULATION_FAILED; 4973 4974 ctxt->execute = opcode.u.execute; 4975 4976 if (unlikely(emulation_type & EMULTYPE_TRAP_UD) && 4977 likely(!(ctxt->d & EmulateOnUD))) 4978 return EMULATION_FAILED; 4979 4980 if (unlikely(ctxt->d & 4981 (NotImpl|Stack|Op3264|Sse|Mmx|Intercept|CheckPerm|NearBranch| 4982 No16))) { 4983 /* 4984 * These are copied unconditionally here, and checked unconditionally 4985 * in x86_emulate_insn. 4986 */ 4987 ctxt->check_perm = opcode.check_perm; 4988 ctxt->intercept = opcode.intercept; 4989 4990 if (ctxt->d & NotImpl) 4991 return EMULATION_FAILED; 4992 4993 if (mode == X86EMUL_MODE_PROT64) { 4994 if (ctxt->op_bytes == 4 && (ctxt->d & Stack)) 4995 ctxt->op_bytes = 8; 4996 else if (ctxt->d & NearBranch) 4997 ctxt->op_bytes = 8; 4998 } 4999 5000 if (ctxt->d & Op3264) { 5001 if (mode == X86EMUL_MODE_PROT64) 5002 ctxt->op_bytes = 8; 5003 else 5004 ctxt->op_bytes = 4; 5005 } 5006 5007 if ((ctxt->d & No16) && ctxt->op_bytes == 2) 5008 ctxt->op_bytes = 4; 5009 5010 if (ctxt->d & Sse) 5011 ctxt->op_bytes = 16; 5012 else if (ctxt->d & Mmx) 5013 ctxt->op_bytes = 8; 5014 } 5015 5016 /* ModRM and SIB bytes. */ 5017 if (ctxt->d & ModRM) { 5018 rc = decode_modrm(ctxt, &ctxt->memop); 5019 if (!has_seg_override) { 5020 has_seg_override = true; 5021 ctxt->seg_override = ctxt->modrm_seg; 5022 } 5023 } else if (ctxt->d & MemAbs) 5024 rc = decode_abs(ctxt, &ctxt->memop); 5025 if (rc != X86EMUL_CONTINUE) 5026 goto done; 5027 5028 if (!has_seg_override) 5029 ctxt->seg_override = VCPU_SREG_DS; 5030 5031 ctxt->memop.addr.mem.seg = ctxt->seg_override; 5032 5033 /* 5034 * Decode and fetch the source operand: register, memory 5035 * or immediate. 5036 */ 5037 rc = decode_operand(ctxt, &ctxt->src, (ctxt->d >> SrcShift) & OpMask); 5038 if (rc != X86EMUL_CONTINUE) 5039 goto done; 5040 5041 /* 5042 * Decode and fetch the second source operand: register, memory 5043 * or immediate. 5044 */ 5045 rc = decode_operand(ctxt, &ctxt->src2, (ctxt->d >> Src2Shift) & OpMask); 5046 if (rc != X86EMUL_CONTINUE) 5047 goto done; 5048 5049 /* Decode and fetch the destination operand: register or memory. */ 5050 rc = decode_operand(ctxt, &ctxt->dst, (ctxt->d >> DstShift) & OpMask); 5051 5052 if (ctxt->rip_relative && likely(ctxt->memopp)) 5053 ctxt->memopp->addr.mem.ea = address_mask(ctxt, 5054 ctxt->memopp->addr.mem.ea + ctxt->_eip); 5055 5056 done: 5057 if (rc == X86EMUL_PROPAGATE_FAULT) 5058 ctxt->have_exception = true; 5059 return (rc != X86EMUL_CONTINUE) ? EMULATION_FAILED : EMULATION_OK; 5060 } 5061 5062 bool x86_page_table_writing_insn(struct x86_emulate_ctxt *ctxt) 5063 { 5064 return ctxt->d & PageTable; 5065 } 5066 5067 static bool string_insn_completed(struct x86_emulate_ctxt *ctxt) 5068 { 5069 /* The second termination condition only applies for REPE 5070 * and REPNE. Test if the repeat string operation prefix is 5071 * REPE/REPZ or REPNE/REPNZ and if it's the case it tests the 5072 * corresponding termination condition according to: 5073 * - if REPE/REPZ and ZF = 0 then done 5074 * - if REPNE/REPNZ and ZF = 1 then done 5075 */ 5076 if (((ctxt->b == 0xa6) || (ctxt->b == 0xa7) || 5077 (ctxt->b == 0xae) || (ctxt->b == 0xaf)) 5078 && (((ctxt->rep_prefix == REPE_PREFIX) && 5079 ((ctxt->eflags & X86_EFLAGS_ZF) == 0)) 5080 || ((ctxt->rep_prefix == REPNE_PREFIX) && 5081 ((ctxt->eflags & X86_EFLAGS_ZF) == X86_EFLAGS_ZF)))) 5082 return true; 5083 5084 return false; 5085 } 5086 5087 static int flush_pending_x87_faults(struct x86_emulate_ctxt *ctxt) 5088 { 5089 int rc; 5090 5091 kvm_fpu_get(); 5092 rc = asm_safe("fwait"); 5093 kvm_fpu_put(); 5094 5095 if (unlikely(rc != X86EMUL_CONTINUE)) 5096 return emulate_exception(ctxt, MF_VECTOR, 0, false); 5097 5098 return X86EMUL_CONTINUE; 5099 } 5100 5101 static void fetch_possible_mmx_operand(struct operand *op) 5102 { 5103 if (op->type == OP_MM) 5104 kvm_read_mmx_reg(op->addr.mm, &op->mm_val); 5105 } 5106 5107 static int fastop(struct x86_emulate_ctxt *ctxt, fastop_t fop) 5108 { 5109 ulong flags = (ctxt->eflags & EFLAGS_MASK) | X86_EFLAGS_IF; 5110 5111 if (!(ctxt->d & ByteOp)) 5112 fop += __ffs(ctxt->dst.bytes) * FASTOP_SIZE; 5113 5114 asm("push %[flags]; popf; " CALL_NOSPEC " ; pushf; pop %[flags]\n" 5115 : "+a"(ctxt->dst.val), "+d"(ctxt->src.val), [flags]"+D"(flags), 5116 [thunk_target]"+S"(fop), ASM_CALL_CONSTRAINT 5117 : "c"(ctxt->src2.val)); 5118 5119 ctxt->eflags = (ctxt->eflags & ~EFLAGS_MASK) | (flags & EFLAGS_MASK); 5120 if (!fop) /* exception is returned in fop variable */ 5121 return emulate_de(ctxt); 5122 return X86EMUL_CONTINUE; 5123 } 5124 5125 void init_decode_cache(struct x86_emulate_ctxt *ctxt) 5126 { 5127 /* Clear fields that are set conditionally but read without a guard. */ 5128 ctxt->rip_relative = false; 5129 ctxt->rex_prefix = 0; 5130 ctxt->lock_prefix = 0; 5131 ctxt->rep_prefix = 0; 5132 ctxt->regs_valid = 0; 5133 ctxt->regs_dirty = 0; 5134 5135 ctxt->io_read.pos = 0; 5136 ctxt->io_read.end = 0; 5137 ctxt->mem_read.end = 0; 5138 } 5139 5140 int x86_emulate_insn(struct x86_emulate_ctxt *ctxt) 5141 { 5142 const struct x86_emulate_ops *ops = ctxt->ops; 5143 int rc = X86EMUL_CONTINUE; 5144 int saved_dst_type = ctxt->dst.type; 5145 bool is_guest_mode = ctxt->ops->is_guest_mode(ctxt); 5146 5147 ctxt->mem_read.pos = 0; 5148 5149 /* LOCK prefix is allowed only with some instructions */ 5150 if (ctxt->lock_prefix && (!(ctxt->d & Lock) || ctxt->dst.type != OP_MEM)) { 5151 rc = emulate_ud(ctxt); 5152 goto done; 5153 } 5154 5155 if ((ctxt->d & SrcMask) == SrcMemFAddr && ctxt->src.type != OP_MEM) { 5156 rc = emulate_ud(ctxt); 5157 goto done; 5158 } 5159 5160 if (unlikely(ctxt->d & 5161 (No64|Undefined|Sse|Mmx|Intercept|CheckPerm|Priv|Prot|String))) { 5162 if ((ctxt->mode == X86EMUL_MODE_PROT64 && (ctxt->d & No64)) || 5163 (ctxt->d & Undefined)) { 5164 rc = emulate_ud(ctxt); 5165 goto done; 5166 } 5167 5168 if (((ctxt->d & (Sse|Mmx)) && ((ops->get_cr(ctxt, 0) & X86_CR0_EM))) 5169 || ((ctxt->d & Sse) && !(ops->get_cr(ctxt, 4) & X86_CR4_OSFXSR))) { 5170 rc = emulate_ud(ctxt); 5171 goto done; 5172 } 5173 5174 if ((ctxt->d & (Sse|Mmx)) && (ops->get_cr(ctxt, 0) & X86_CR0_TS)) { 5175 rc = emulate_nm(ctxt); 5176 goto done; 5177 } 5178 5179 if (ctxt->d & Mmx) { 5180 rc = flush_pending_x87_faults(ctxt); 5181 if (rc != X86EMUL_CONTINUE) 5182 goto done; 5183 /* 5184 * Now that we know the fpu is exception safe, we can fetch 5185 * operands from it. 5186 */ 5187 fetch_possible_mmx_operand(&ctxt->src); 5188 fetch_possible_mmx_operand(&ctxt->src2); 5189 if (!(ctxt->d & Mov)) 5190 fetch_possible_mmx_operand(&ctxt->dst); 5191 } 5192 5193 if (unlikely(is_guest_mode) && ctxt->intercept) { 5194 rc = emulator_check_intercept(ctxt, ctxt->intercept, 5195 X86_ICPT_PRE_EXCEPT); 5196 if (rc != X86EMUL_CONTINUE) 5197 goto done; 5198 } 5199 5200 /* Instruction can only be executed in protected mode */ 5201 if ((ctxt->d & Prot) && ctxt->mode < X86EMUL_MODE_PROT16) { 5202 rc = emulate_ud(ctxt); 5203 goto done; 5204 } 5205 5206 /* Privileged instruction can be executed only in CPL=0 */ 5207 if ((ctxt->d & Priv) && ops->cpl(ctxt)) { 5208 if (ctxt->d & PrivUD) 5209 rc = emulate_ud(ctxt); 5210 else 5211 rc = emulate_gp(ctxt, 0); 5212 goto done; 5213 } 5214 5215 /* Do instruction specific permission checks */ 5216 if (ctxt->d & CheckPerm) { 5217 rc = ctxt->check_perm(ctxt); 5218 if (rc != X86EMUL_CONTINUE) 5219 goto done; 5220 } 5221 5222 if (unlikely(is_guest_mode) && (ctxt->d & Intercept)) { 5223 rc = emulator_check_intercept(ctxt, ctxt->intercept, 5224 X86_ICPT_POST_EXCEPT); 5225 if (rc != X86EMUL_CONTINUE) 5226 goto done; 5227 } 5228 5229 if (ctxt->rep_prefix && (ctxt->d & String)) { 5230 /* All REP prefixes have the same first termination condition */ 5231 if (address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) == 0) { 5232 string_registers_quirk(ctxt); 5233 ctxt->eip = ctxt->_eip; 5234 ctxt->eflags &= ~X86_EFLAGS_RF; 5235 goto done; 5236 } 5237 } 5238 } 5239 5240 if ((ctxt->src.type == OP_MEM) && !(ctxt->d & NoAccess)) { 5241 rc = segmented_read(ctxt, ctxt->src.addr.mem, 5242 ctxt->src.valptr, ctxt->src.bytes); 5243 if (rc != X86EMUL_CONTINUE) 5244 goto done; 5245 ctxt->src.orig_val64 = ctxt->src.val64; 5246 } 5247 5248 if (ctxt->src2.type == OP_MEM) { 5249 rc = segmented_read(ctxt, ctxt->src2.addr.mem, 5250 &ctxt->src2.val, ctxt->src2.bytes); 5251 if (rc != X86EMUL_CONTINUE) 5252 goto done; 5253 } 5254 5255 if ((ctxt->d & DstMask) == ImplicitOps) 5256 goto special_insn; 5257 5258 5259 if ((ctxt->dst.type == OP_MEM) && !(ctxt->d & Mov)) { 5260 /* optimisation - avoid slow emulated read if Mov */ 5261 rc = segmented_read(ctxt, ctxt->dst.addr.mem, 5262 &ctxt->dst.val, ctxt->dst.bytes); 5263 if (rc != X86EMUL_CONTINUE) { 5264 if (!(ctxt->d & NoWrite) && 5265 rc == X86EMUL_PROPAGATE_FAULT && 5266 ctxt->exception.vector == PF_VECTOR) 5267 ctxt->exception.error_code |= PFERR_WRITE_MASK; 5268 goto done; 5269 } 5270 } 5271 /* Copy full 64-bit value for CMPXCHG8B. */ 5272 ctxt->dst.orig_val64 = ctxt->dst.val64; 5273 5274 special_insn: 5275 5276 if (unlikely(is_guest_mode) && (ctxt->d & Intercept)) { 5277 rc = emulator_check_intercept(ctxt, ctxt->intercept, 5278 X86_ICPT_POST_MEMACCESS); 5279 if (rc != X86EMUL_CONTINUE) 5280 goto done; 5281 } 5282 5283 if (ctxt->rep_prefix && (ctxt->d & String)) 5284 ctxt->eflags |= X86_EFLAGS_RF; 5285 else 5286 ctxt->eflags &= ~X86_EFLAGS_RF; 5287 5288 if (ctxt->execute) { 5289 if (ctxt->d & Fastop) 5290 rc = fastop(ctxt, ctxt->fop); 5291 else 5292 rc = ctxt->execute(ctxt); 5293 if (rc != X86EMUL_CONTINUE) 5294 goto done; 5295 goto writeback; 5296 } 5297 5298 if (ctxt->opcode_len == 2) 5299 goto twobyte_insn; 5300 else if (ctxt->opcode_len == 3) 5301 goto threebyte_insn; 5302 5303 switch (ctxt->b) { 5304 case 0x70 ... 0x7f: /* jcc (short) */ 5305 if (test_cc(ctxt->b, ctxt->eflags)) 5306 rc = jmp_rel(ctxt, ctxt->src.val); 5307 break; 5308 case 0x8d: /* lea r16/r32, m */ 5309 ctxt->dst.val = ctxt->src.addr.mem.ea; 5310 break; 5311 case 0x90 ... 0x97: /* nop / xchg reg, rax */ 5312 if (ctxt->dst.addr.reg == reg_rmw(ctxt, VCPU_REGS_RAX)) 5313 ctxt->dst.type = OP_NONE; 5314 else 5315 rc = em_xchg(ctxt); 5316 break; 5317 case 0x98: /* cbw/cwde/cdqe */ 5318 switch (ctxt->op_bytes) { 5319 case 2: ctxt->dst.val = (s8)ctxt->dst.val; break; 5320 case 4: ctxt->dst.val = (s16)ctxt->dst.val; break; 5321 case 8: ctxt->dst.val = (s32)ctxt->dst.val; break; 5322 } 5323 break; 5324 case 0xcc: /* int3 */ 5325 rc = emulate_int(ctxt, 3); 5326 break; 5327 case 0xcd: /* int n */ 5328 rc = emulate_int(ctxt, ctxt->src.val); 5329 break; 5330 case 0xce: /* into */ 5331 if (ctxt->eflags & X86_EFLAGS_OF) 5332 rc = emulate_int(ctxt, 4); 5333 break; 5334 case 0xe9: /* jmp rel */ 5335 case 0xeb: /* jmp rel short */ 5336 rc = jmp_rel(ctxt, ctxt->src.val); 5337 ctxt->dst.type = OP_NONE; /* Disable writeback. */ 5338 break; 5339 case 0xf4: /* hlt */ 5340 ctxt->ops->halt(ctxt); 5341 break; 5342 case 0xf5: /* cmc */ 5343 /* complement carry flag from eflags reg */ 5344 ctxt->eflags ^= X86_EFLAGS_CF; 5345 break; 5346 case 0xf8: /* clc */ 5347 ctxt->eflags &= ~X86_EFLAGS_CF; 5348 break; 5349 case 0xf9: /* stc */ 5350 ctxt->eflags |= X86_EFLAGS_CF; 5351 break; 5352 case 0xfc: /* cld */ 5353 ctxt->eflags &= ~X86_EFLAGS_DF; 5354 break; 5355 case 0xfd: /* std */ 5356 ctxt->eflags |= X86_EFLAGS_DF; 5357 break; 5358 default: 5359 goto cannot_emulate; 5360 } 5361 5362 if (rc != X86EMUL_CONTINUE) 5363 goto done; 5364 5365 writeback: 5366 if (ctxt->d & SrcWrite) { 5367 BUG_ON(ctxt->src.type == OP_MEM || ctxt->src.type == OP_MEM_STR); 5368 rc = writeback(ctxt, &ctxt->src); 5369 if (rc != X86EMUL_CONTINUE) 5370 goto done; 5371 } 5372 if (!(ctxt->d & NoWrite)) { 5373 rc = writeback(ctxt, &ctxt->dst); 5374 if (rc != X86EMUL_CONTINUE) 5375 goto done; 5376 } 5377 5378 /* 5379 * restore dst type in case the decoding will be reused 5380 * (happens for string instruction ) 5381 */ 5382 ctxt->dst.type = saved_dst_type; 5383 5384 if ((ctxt->d & SrcMask) == SrcSI) 5385 string_addr_inc(ctxt, VCPU_REGS_RSI, &ctxt->src); 5386 5387 if ((ctxt->d & DstMask) == DstDI) 5388 string_addr_inc(ctxt, VCPU_REGS_RDI, &ctxt->dst); 5389 5390 if (ctxt->rep_prefix && (ctxt->d & String)) { 5391 unsigned int count; 5392 struct read_cache *r = &ctxt->io_read; 5393 if ((ctxt->d & SrcMask) == SrcSI) 5394 count = ctxt->src.count; 5395 else 5396 count = ctxt->dst.count; 5397 register_address_increment(ctxt, VCPU_REGS_RCX, -count); 5398 5399 if (!string_insn_completed(ctxt)) { 5400 /* 5401 * Re-enter guest when pio read ahead buffer is empty 5402 * or, if it is not used, after each 1024 iteration. 5403 */ 5404 if ((r->end != 0 || reg_read(ctxt, VCPU_REGS_RCX) & 0x3ff) && 5405 (r->end == 0 || r->end != r->pos)) { 5406 /* 5407 * Reset read cache. Usually happens before 5408 * decode, but since instruction is restarted 5409 * we have to do it here. 5410 */ 5411 ctxt->mem_read.end = 0; 5412 writeback_registers(ctxt); 5413 return EMULATION_RESTART; 5414 } 5415 goto done; /* skip rip writeback */ 5416 } 5417 ctxt->eflags &= ~X86_EFLAGS_RF; 5418 } 5419 5420 ctxt->eip = ctxt->_eip; 5421 if (ctxt->mode != X86EMUL_MODE_PROT64) 5422 ctxt->eip = (u32)ctxt->_eip; 5423 5424 done: 5425 if (rc == X86EMUL_PROPAGATE_FAULT) { 5426 if (KVM_EMULATOR_BUG_ON(ctxt->exception.vector > 0x1f, ctxt)) 5427 return EMULATION_FAILED; 5428 ctxt->have_exception = true; 5429 } 5430 if (rc == X86EMUL_INTERCEPTED) 5431 return EMULATION_INTERCEPTED; 5432 5433 if (rc == X86EMUL_CONTINUE) 5434 writeback_registers(ctxt); 5435 5436 return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK; 5437 5438 twobyte_insn: 5439 switch (ctxt->b) { 5440 case 0x09: /* wbinvd */ 5441 (ctxt->ops->wbinvd)(ctxt); 5442 break; 5443 case 0x08: /* invd */ 5444 case 0x0d: /* GrpP (prefetch) */ 5445 case 0x18: /* Grp16 (prefetch/nop) */ 5446 case 0x1f: /* nop */ 5447 break; 5448 case 0x20: /* mov cr, reg */ 5449 ctxt->dst.val = ops->get_cr(ctxt, ctxt->modrm_reg); 5450 break; 5451 case 0x21: /* mov from dr to reg */ 5452 ops->get_dr(ctxt, ctxt->modrm_reg, &ctxt->dst.val); 5453 break; 5454 case 0x40 ... 0x4f: /* cmov */ 5455 if (test_cc(ctxt->b, ctxt->eflags)) 5456 ctxt->dst.val = ctxt->src.val; 5457 else if (ctxt->op_bytes != 4) 5458 ctxt->dst.type = OP_NONE; /* no writeback */ 5459 break; 5460 case 0x80 ... 0x8f: /* jnz rel, etc*/ 5461 if (test_cc(ctxt->b, ctxt->eflags)) 5462 rc = jmp_rel(ctxt, ctxt->src.val); 5463 break; 5464 case 0x90 ... 0x9f: /* setcc r/m8 */ 5465 ctxt->dst.val = test_cc(ctxt->b, ctxt->eflags); 5466 break; 5467 case 0xb6 ... 0xb7: /* movzx */ 5468 ctxt->dst.bytes = ctxt->op_bytes; 5469 ctxt->dst.val = (ctxt->src.bytes == 1) ? (u8) ctxt->src.val 5470 : (u16) ctxt->src.val; 5471 break; 5472 case 0xbe ... 0xbf: /* movsx */ 5473 ctxt->dst.bytes = ctxt->op_bytes; 5474 ctxt->dst.val = (ctxt->src.bytes == 1) ? (s8) ctxt->src.val : 5475 (s16) ctxt->src.val; 5476 break; 5477 default: 5478 goto cannot_emulate; 5479 } 5480 5481 threebyte_insn: 5482 5483 if (rc != X86EMUL_CONTINUE) 5484 goto done; 5485 5486 goto writeback; 5487 5488 cannot_emulate: 5489 return EMULATION_FAILED; 5490 } 5491 5492 void emulator_invalidate_register_cache(struct x86_emulate_ctxt *ctxt) 5493 { 5494 invalidate_registers(ctxt); 5495 } 5496 5497 void emulator_writeback_register_cache(struct x86_emulate_ctxt *ctxt) 5498 { 5499 writeback_registers(ctxt); 5500 } 5501 5502 bool emulator_can_use_gpa(struct x86_emulate_ctxt *ctxt) 5503 { 5504 if (ctxt->rep_prefix && (ctxt->d & String)) 5505 return false; 5506 5507 if (ctxt->d & TwoMemOp) 5508 return false; 5509 5510 return true; 5511 } 5512