1 // SPDX-License-Identifier: GPL-2.0-only 2 /****************************************************************************** 3 * emulate.c 4 * 5 * Generic x86 (32-bit and 64-bit) instruction decoder and emulator. 6 * 7 * Copyright (c) 2005 Keir Fraser 8 * 9 * Linux coding style, mod r/m decoder, segment base fixes, real-mode 10 * privileged instructions: 11 * 12 * Copyright (C) 2006 Qumranet 13 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 14 * 15 * Avi Kivity <avi@qumranet.com> 16 * Yaniv Kamay <yaniv@qumranet.com> 17 * 18 * From: xen-unstable 10676:af9809f51f81a3c43f276f00c81a52ef558afda4 19 */ 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/kvm_host.h> 23 #include "kvm_cache_regs.h" 24 #include "kvm_emulate.h" 25 #include <linux/stringify.h> 26 #include <asm/debugreg.h> 27 #include <asm/nospec-branch.h> 28 #include <asm/ibt.h> 29 #include <asm/text-patching.h> 30 31 #include "x86.h" 32 #include "tss.h" 33 #include "mmu.h" 34 #include "pmu.h" 35 36 /* 37 * Operand types 38 */ 39 #define OpNone 0ull 40 #define OpImplicit 1ull /* No generic decode */ 41 #define OpReg 2ull /* Register */ 42 #define OpMem 3ull /* Memory */ 43 #define OpAcc 4ull /* Accumulator: AL/AX/EAX/RAX */ 44 #define OpDI 5ull /* ES:DI/EDI/RDI */ 45 #define OpMem64 6ull /* Memory, 64-bit */ 46 #define OpImmUByte 7ull /* Zero-extended 8-bit immediate */ 47 #define OpDX 8ull /* DX register */ 48 #define OpCL 9ull /* CL register (for shifts) */ 49 #define OpImmByte 10ull /* 8-bit sign extended immediate */ 50 #define OpOne 11ull /* Implied 1 */ 51 #define OpImm 12ull /* Sign extended up to 32-bit immediate */ 52 #define OpMem16 13ull /* Memory operand (16-bit). */ 53 #define OpMem32 14ull /* Memory operand (32-bit). */ 54 #define OpImmU 15ull /* Immediate operand, zero extended */ 55 #define OpSI 16ull /* SI/ESI/RSI */ 56 #define OpImmFAddr 17ull /* Immediate far address */ 57 #define OpMemFAddr 18ull /* Far address in memory */ 58 #define OpImmU16 19ull /* Immediate operand, 16 bits, zero extended */ 59 #define OpES 20ull /* ES */ 60 #define OpCS 21ull /* CS */ 61 #define OpSS 22ull /* SS */ 62 #define OpDS 23ull /* DS */ 63 #define OpFS 24ull /* FS */ 64 #define OpGS 25ull /* GS */ 65 #define OpMem8 26ull /* 8-bit zero extended memory operand */ 66 #define OpImm64 27ull /* Sign extended 16/32/64-bit immediate */ 67 #define OpXLat 28ull /* memory at BX/EBX/RBX + zero-extended AL */ 68 #define OpAccLo 29ull /* Low part of extended acc (AX/AX/EAX/RAX) */ 69 #define OpAccHi 30ull /* High part of extended acc (-/DX/EDX/RDX) */ 70 71 #define OpBits 5 /* Width of operand field */ 72 #define OpMask ((1ull << OpBits) - 1) 73 74 /* 75 * Opcode effective-address decode tables. 76 * Note that we only emulate instructions that have at least one memory 77 * operand (excluding implicit stack references). We assume that stack 78 * references and instruction fetches will never occur in special memory 79 * areas that require emulation. So, for example, 'mov <imm>,<reg>' need 80 * not be handled. 81 */ 82 83 /* Operand sizes: 8-bit operands or specified/overridden size. */ 84 #define ByteOp (1<<0) /* 8-bit operands. */ 85 #define DstShift 1 /* Destination operand type at bits 1-5 */ 86 #define ImplicitOps (OpImplicit << DstShift) 87 #define DstReg (OpReg << DstShift) 88 #define DstMem (OpMem << DstShift) 89 #define DstAcc (OpAcc << DstShift) 90 #define DstDI (OpDI << DstShift) 91 #define DstMem64 (OpMem64 << DstShift) 92 #define DstMem16 (OpMem16 << DstShift) 93 #define DstImmUByte (OpImmUByte << DstShift) 94 #define DstDX (OpDX << DstShift) 95 #define DstAccLo (OpAccLo << DstShift) 96 #define DstMask (OpMask << DstShift) 97 #define SrcShift 6 /* Source operand type at bits 6-10 */ 98 #define SrcNone (OpNone << SrcShift) 99 #define SrcReg (OpReg << SrcShift) 100 #define SrcMem (OpMem << SrcShift) 101 #define SrcMem16 (OpMem16 << SrcShift) 102 #define SrcMem32 (OpMem32 << SrcShift) 103 #define SrcImm (OpImm << SrcShift) 104 #define SrcImmByte (OpImmByte << SrcShift) 105 #define SrcOne (OpOne << SrcShift) 106 #define SrcImmUByte (OpImmUByte << SrcShift) 107 #define SrcImmU (OpImmU << SrcShift) 108 #define SrcSI (OpSI << SrcShift) 109 #define SrcXLat (OpXLat << SrcShift) 110 #define SrcImmFAddr (OpImmFAddr << SrcShift) 111 #define SrcMemFAddr (OpMemFAddr << SrcShift) 112 #define SrcAcc (OpAcc << SrcShift) 113 #define SrcImmU16 (OpImmU16 << SrcShift) 114 #define SrcImm64 (OpImm64 << SrcShift) 115 #define SrcDX (OpDX << SrcShift) 116 #define SrcMem8 (OpMem8 << SrcShift) 117 #define SrcAccHi (OpAccHi << SrcShift) 118 #define SrcMask (OpMask << SrcShift) 119 #define BitOp (1<<11) 120 #define MemAbs (1<<12) /* Memory operand is absolute displacement */ 121 #define String (1<<13) /* String instruction (rep capable) */ 122 #define Stack (1<<14) /* Stack instruction (push/pop) */ 123 #define GroupMask (7<<15) /* Group mechanisms, at bits 15-17 */ 124 #define Group (1<<15) /* Bits 3:5 of modrm byte extend opcode */ 125 #define GroupDual (2<<15) /* Alternate decoding of mod == 3 */ 126 #define Prefix (3<<15) /* Instruction varies with 66/f2/f3 prefix */ 127 #define RMExt (4<<15) /* Opcode extension in ModRM r/m if mod == 3 */ 128 #define Escape (5<<15) /* Escape to coprocessor instruction */ 129 #define InstrDual (6<<15) /* Alternate instruction decoding of mod == 3 */ 130 #define ModeDual (7<<15) /* Different instruction for 32/64 bit */ 131 #define Sse (1<<18) /* SSE Vector instruction */ 132 #define ModRM (1<<19) /* Generic ModRM decode. */ 133 #define Mov (1<<20) /* Destination is only written; never read. */ 134 #define Prot (1<<21) /* instruction generates #UD if not in prot-mode */ 135 #define EmulateOnUD (1<<22) /* Emulate if unsupported by the host */ 136 #define NoAccess (1<<23) /* Don't access memory (lea/invlpg/verr etc) */ 137 #define Op3264 (1<<24) /* Operand is 64b in long mode, 32b otherwise */ 138 #define Undefined (1<<25) /* No Such Instruction */ 139 #define Lock (1<<26) /* lock prefix is allowed for the instruction */ 140 #define Priv (1<<27) /* instruction generates #GP if current CPL != 0 */ 141 #define No64 (1<<28) /* Instruction generates #UD in 64-bit mode */ 142 #define PageTable (1 << 29) /* instruction used to write page table */ 143 #define NotImpl (1 << 30) /* instruction is not implemented */ 144 #define Avx ((u64)1 << 31) /* Instruction uses VEX prefix */ 145 #define Src2Shift (32) /* Source 2 operand type at bits 32-36 */ 146 #define Src2None (OpNone << Src2Shift) 147 #define Src2Mem (OpMem << Src2Shift) 148 #define Src2CL (OpCL << Src2Shift) 149 #define Src2ImmByte (OpImmByte << Src2Shift) 150 #define Src2One (OpOne << Src2Shift) 151 #define Src2Imm (OpImm << Src2Shift) 152 #define Src2ES (OpES << Src2Shift) 153 #define Src2CS (OpCS << Src2Shift) 154 #define Src2SS (OpSS << Src2Shift) 155 #define Src2DS (OpDS << Src2Shift) 156 #define Src2FS (OpFS << Src2Shift) 157 #define Src2GS (OpGS << Src2Shift) 158 #define Src2Mask (OpMask << Src2Shift) 159 /* free: 37-39 */ 160 #define Mmx ((u64)1 << 40) /* MMX Vector instruction */ 161 #define AlignMask ((u64)3 << 41) /* Memory alignment requirement at bits 41-42 */ 162 #define Aligned ((u64)1 << 41) /* Explicitly aligned (e.g. MOVDQA) */ 163 #define Unaligned ((u64)2 << 41) /* Explicitly unaligned (e.g. MOVDQU) */ 164 #define Aligned16 ((u64)3 << 41) /* Aligned to 16 byte boundary (e.g. FXSAVE) */ 165 /* free: 43-44 */ 166 #define NoWrite ((u64)1 << 45) /* No writeback */ 167 #define SrcWrite ((u64)1 << 46) /* Write back src operand */ 168 #define NoMod ((u64)1 << 47) /* Mod field is ignored */ 169 #define Intercept ((u64)1 << 48) /* Has valid intercept field */ 170 #define CheckPerm ((u64)1 << 49) /* Has valid check_perm field */ 171 #define PrivUD ((u64)1 << 51) /* #UD instead of #GP on CPL > 0 */ 172 #define NearBranch ((u64)1 << 52) /* Near branches */ 173 #define No16 ((u64)1 << 53) /* No 16 bit operand */ 174 #define IncSP ((u64)1 << 54) /* SP is incremented before ModRM calc */ 175 #define TwoMemOp ((u64)1 << 55) /* Instruction has two memory operand */ 176 #define IsBranch ((u64)1 << 56) /* Instruction is considered a branch. */ 177 #define ShadowStack ((u64)1 << 57) /* Instruction affects Shadow Stacks. */ 178 179 #define DstXacc (DstAccLo | SrcAccHi | SrcWrite) 180 181 #define X2(x...) x, x 182 #define X3(x...) X2(x), x 183 #define X4(x...) X2(x), X2(x) 184 #define X5(x...) X4(x), x 185 #define X6(x...) X4(x), X2(x) 186 #define X7(x...) X4(x), X3(x) 187 #define X8(x...) X4(x), X4(x) 188 #define X16(x...) X8(x), X8(x) 189 190 struct opcode { 191 u64 flags; 192 u8 intercept; 193 u8 pad[7]; 194 union { 195 int (*execute)(struct x86_emulate_ctxt *ctxt); 196 const struct opcode *group; 197 const struct group_dual *gdual; 198 const struct gprefix *gprefix; 199 const struct escape *esc; 200 const struct instr_dual *idual; 201 const struct mode_dual *mdual; 202 } u; 203 int (*check_perm)(struct x86_emulate_ctxt *ctxt); 204 }; 205 206 struct group_dual { 207 struct opcode mod012[8]; 208 struct opcode mod3[8]; 209 }; 210 211 struct gprefix { 212 struct opcode pfx_no; 213 struct opcode pfx_66; 214 struct opcode pfx_f2; 215 struct opcode pfx_f3; 216 }; 217 218 struct escape { 219 struct opcode op[8]; 220 struct opcode high[64]; 221 }; 222 223 struct instr_dual { 224 struct opcode mod012; 225 struct opcode mod3; 226 }; 227 228 struct mode_dual { 229 struct opcode mode32; 230 struct opcode mode64; 231 }; 232 233 #define EFLG_RESERVED_ZEROS_MASK 0xffc0802a 234 235 enum x86_transfer_type { 236 X86_TRANSFER_NONE, 237 X86_TRANSFER_CALL_JMP, 238 X86_TRANSFER_RET, 239 X86_TRANSFER_TASK_SWITCH, 240 }; 241 242 enum rex_bits { 243 REX_B = 1, 244 REX_X = 2, 245 REX_R = 4, 246 REX_W = 8, 247 }; 248 249 static void writeback_registers(struct x86_emulate_ctxt *ctxt) 250 { 251 unsigned long dirty = ctxt->regs_dirty; 252 unsigned reg; 253 254 for_each_set_bit(reg, &dirty, NR_EMULATOR_GPRS) 255 ctxt->ops->write_gpr(ctxt, reg, ctxt->_regs[reg]); 256 } 257 258 static void invalidate_registers(struct x86_emulate_ctxt *ctxt) 259 { 260 ctxt->regs_dirty = 0; 261 ctxt->regs_valid = 0; 262 } 263 264 /* 265 * These EFLAGS bits are restored from saved value during emulation, and 266 * any changes are written back to the saved value after emulation. 267 */ 268 #define EFLAGS_MASK (X86_EFLAGS_OF|X86_EFLAGS_SF|X86_EFLAGS_ZF|X86_EFLAGS_AF|\ 269 X86_EFLAGS_PF|X86_EFLAGS_CF) 270 271 #ifdef CONFIG_X86_64 272 #define ON64(x...) x 273 #else 274 #define ON64(x...) 275 #endif 276 277 #define EM_ASM_START(op) \ 278 static int em_##op(struct x86_emulate_ctxt *ctxt) \ 279 { \ 280 unsigned long flags = (ctxt->eflags & EFLAGS_MASK) | X86_EFLAGS_IF; \ 281 int bytes = 1, ok = 1; \ 282 if (!(ctxt->d & ByteOp)) \ 283 bytes = ctxt->dst.bytes; \ 284 switch (bytes) { 285 286 #define __EM_ASM(str) \ 287 asm("push %[flags]; popf \n\t" \ 288 "10: " str \ 289 "pushf; pop %[flags] \n\t" \ 290 "11: \n\t" \ 291 : "+a" (ctxt->dst.val), \ 292 "+d" (ctxt->src.val), \ 293 [flags] "+D" (flags), \ 294 "+S" (ok) \ 295 : "c" (ctxt->src2.val)) 296 297 #define __EM_ASM_1(op, dst) \ 298 __EM_ASM(#op " %%" #dst " \n\t") 299 300 #define __EM_ASM_1_EX(op, dst) \ 301 __EM_ASM(#op " %%" #dst " \n\t" \ 302 _ASM_EXTABLE_TYPE_REG(10b, 11f, EX_TYPE_ZERO_REG, %%esi)) 303 304 #define __EM_ASM_2(op, dst, src) \ 305 __EM_ASM(#op " %%" #src ", %%" #dst " \n\t") 306 307 #define __EM_ASM_3(op, dst, src, src2) \ 308 __EM_ASM(#op " %%" #src2 ", %%" #src ", %%" #dst " \n\t") 309 310 #define EM_ASM_END \ 311 } \ 312 ctxt->eflags = (ctxt->eflags & ~EFLAGS_MASK) | (flags & EFLAGS_MASK); \ 313 return !ok ? emulate_de(ctxt) : X86EMUL_CONTINUE; \ 314 } 315 316 /* 1-operand, using "a" (dst) */ 317 #define EM_ASM_1(op) \ 318 EM_ASM_START(op) \ 319 case 1: __EM_ASM_1(op##b, al); break; \ 320 case 2: __EM_ASM_1(op##w, ax); break; \ 321 case 4: __EM_ASM_1(op##l, eax); break; \ 322 ON64(case 8: __EM_ASM_1(op##q, rax); break;) \ 323 EM_ASM_END 324 325 /* 1-operand, using "c" (src2) */ 326 #define EM_ASM_1SRC2(op, name) \ 327 EM_ASM_START(name) \ 328 case 1: __EM_ASM_1(op##b, cl); break; \ 329 case 2: __EM_ASM_1(op##w, cx); break; \ 330 case 4: __EM_ASM_1(op##l, ecx); break; \ 331 ON64(case 8: __EM_ASM_1(op##q, rcx); break;) \ 332 EM_ASM_END 333 334 /* 1-operand, using "c" (src2) with exception */ 335 #define EM_ASM_1SRC2EX(op, name) \ 336 EM_ASM_START(name) \ 337 case 1: __EM_ASM_1_EX(op##b, cl); break; \ 338 case 2: __EM_ASM_1_EX(op##w, cx); break; \ 339 case 4: __EM_ASM_1_EX(op##l, ecx); break; \ 340 ON64(case 8: __EM_ASM_1_EX(op##q, rcx); break;) \ 341 EM_ASM_END 342 343 /* 2-operand, using "a" (dst), "d" (src) */ 344 #define EM_ASM_2(op) \ 345 EM_ASM_START(op) \ 346 case 1: __EM_ASM_2(op##b, al, dl); break; \ 347 case 2: __EM_ASM_2(op##w, ax, dx); break; \ 348 case 4: __EM_ASM_2(op##l, eax, edx); break; \ 349 ON64(case 8: __EM_ASM_2(op##q, rax, rdx); break;) \ 350 EM_ASM_END 351 352 /* 2-operand, reversed */ 353 #define EM_ASM_2R(op, name) \ 354 EM_ASM_START(name) \ 355 case 1: __EM_ASM_2(op##b, dl, al); break; \ 356 case 2: __EM_ASM_2(op##w, dx, ax); break; \ 357 case 4: __EM_ASM_2(op##l, edx, eax); break; \ 358 ON64(case 8: __EM_ASM_2(op##q, rdx, rax); break;) \ 359 EM_ASM_END 360 361 /* 2-operand, word only (no byte op) */ 362 #define EM_ASM_2W(op) \ 363 EM_ASM_START(op) \ 364 case 1: break; \ 365 case 2: __EM_ASM_2(op##w, ax, dx); break; \ 366 case 4: __EM_ASM_2(op##l, eax, edx); break; \ 367 ON64(case 8: __EM_ASM_2(op##q, rax, rdx); break;) \ 368 EM_ASM_END 369 370 /* 2-operand, using "a" (dst) and CL (src2) */ 371 #define EM_ASM_2CL(op) \ 372 EM_ASM_START(op) \ 373 case 1: __EM_ASM_2(op##b, al, cl); break; \ 374 case 2: __EM_ASM_2(op##w, ax, cl); break; \ 375 case 4: __EM_ASM_2(op##l, eax, cl); break; \ 376 ON64(case 8: __EM_ASM_2(op##q, rax, cl); break;) \ 377 EM_ASM_END 378 379 /* 3-operand, using "a" (dst), "d" (src) and CL (src2) */ 380 #define EM_ASM_3WCL(op) \ 381 EM_ASM_START(op) \ 382 case 1: break; \ 383 case 2: __EM_ASM_3(op##w, ax, dx, cl); break; \ 384 case 4: __EM_ASM_3(op##l, eax, edx, cl); break; \ 385 ON64(case 8: __EM_ASM_3(op##q, rax, rdx, cl); break;) \ 386 EM_ASM_END 387 388 static int em_salc(struct x86_emulate_ctxt *ctxt) 389 { 390 /* 391 * Set AL 0xFF if CF is set, or 0x00 when clear. 392 */ 393 ctxt->dst.val = 0xFF * !!(ctxt->eflags & X86_EFLAGS_CF); 394 return X86EMUL_CONTINUE; 395 } 396 397 /* 398 * XXX: inoutclob user must know where the argument is being expanded. 399 * Using asm goto would allow us to remove _fault. 400 */ 401 #define asm_safe(insn, inoutclob...) \ 402 ({ \ 403 int _fault = 0; \ 404 \ 405 asm volatile("1:" insn "\n" \ 406 "2:\n" \ 407 _ASM_EXTABLE_TYPE_REG(1b, 2b, EX_TYPE_ONE_REG, %[_fault]) \ 408 : [_fault] "+r"(_fault) inoutclob ); \ 409 \ 410 _fault ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE; \ 411 }) 412 413 static int emulator_check_intercept(struct x86_emulate_ctxt *ctxt, 414 enum x86_intercept intercept, 415 enum x86_intercept_stage stage) 416 { 417 struct x86_instruction_info info = { 418 .intercept = intercept, 419 .rep_prefix = ctxt->rep_prefix, 420 .modrm_mod = ctxt->modrm_mod, 421 .modrm_reg = ctxt->modrm_reg, 422 .modrm_rm = ctxt->modrm_rm, 423 .src_val = ctxt->src.val64, 424 .dst_val = ctxt->dst.val64, 425 .src_bytes = ctxt->src.bytes, 426 .dst_bytes = ctxt->dst.bytes, 427 .src_type = ctxt->src.type, 428 .dst_type = ctxt->dst.type, 429 .ad_bytes = ctxt->ad_bytes, 430 .rip = ctxt->eip, 431 .next_rip = ctxt->_eip, 432 }; 433 434 return ctxt->ops->intercept(ctxt, &info, stage); 435 } 436 437 static void assign_masked(ulong *dest, ulong src, ulong mask) 438 { 439 *dest = (*dest & ~mask) | (src & mask); 440 } 441 442 static void assign_register(unsigned long *reg, u64 val, int bytes) 443 { 444 /* The 4-byte case *is* correct: in 64-bit mode we zero-extend. */ 445 switch (bytes) { 446 case 1: 447 *(u8 *)reg = (u8)val; 448 break; 449 case 2: 450 *(u16 *)reg = (u16)val; 451 break; 452 case 4: 453 *reg = (u32)val; 454 break; /* 64b: zero-extend */ 455 case 8: 456 *reg = val; 457 break; 458 } 459 } 460 461 static inline unsigned long ad_mask(struct x86_emulate_ctxt *ctxt) 462 { 463 return (1UL << (ctxt->ad_bytes << 3)) - 1; 464 } 465 466 static ulong stack_mask(struct x86_emulate_ctxt *ctxt) 467 { 468 u16 sel; 469 struct desc_struct ss; 470 471 if (ctxt->mode == X86EMUL_MODE_PROT64) 472 return ~0UL; 473 ctxt->ops->get_segment(ctxt, &sel, &ss, NULL, VCPU_SREG_SS); 474 return ~0U >> ((ss.d ^ 1) * 16); /* d=0: 0xffff; d=1: 0xffffffff */ 475 } 476 477 static int stack_size(struct x86_emulate_ctxt *ctxt) 478 { 479 return (__fls(stack_mask(ctxt)) + 1) >> 3; 480 } 481 482 /* Access/update address held in a register, based on addressing mode. */ 483 static inline unsigned long 484 address_mask(struct x86_emulate_ctxt *ctxt, unsigned long reg) 485 { 486 if (ctxt->ad_bytes == sizeof(unsigned long)) 487 return reg; 488 else 489 return reg & ad_mask(ctxt); 490 } 491 492 static inline unsigned long 493 register_address(struct x86_emulate_ctxt *ctxt, int reg) 494 { 495 return address_mask(ctxt, reg_read(ctxt, reg)); 496 } 497 498 static void masked_increment(ulong *reg, ulong mask, int inc) 499 { 500 assign_masked(reg, *reg + inc, mask); 501 } 502 503 static inline void 504 register_address_increment(struct x86_emulate_ctxt *ctxt, int reg, int inc) 505 { 506 ulong *preg = reg_rmw(ctxt, reg); 507 508 assign_register(preg, *preg + inc, ctxt->ad_bytes); 509 } 510 511 static void rsp_increment(struct x86_emulate_ctxt *ctxt, int inc) 512 { 513 masked_increment(reg_rmw(ctxt, VCPU_REGS_RSP), stack_mask(ctxt), inc); 514 } 515 516 static u32 desc_limit_scaled(struct desc_struct *desc) 517 { 518 u32 limit = get_desc_limit(desc); 519 520 return desc->g ? (limit << 12) | 0xfff : limit; 521 } 522 523 static unsigned long seg_base(struct x86_emulate_ctxt *ctxt, int seg) 524 { 525 if (ctxt->mode == X86EMUL_MODE_PROT64 && seg < VCPU_SREG_FS) 526 return 0; 527 528 return ctxt->ops->get_cached_segment_base(ctxt, seg); 529 } 530 531 static int emulate_exception(struct x86_emulate_ctxt *ctxt, int vec, 532 u32 error, bool valid) 533 { 534 if (KVM_EMULATOR_BUG_ON(vec > 0x1f, ctxt)) 535 return X86EMUL_UNHANDLEABLE; 536 537 ctxt->exception.vector = vec; 538 ctxt->exception.error_code = error; 539 ctxt->exception.error_code_valid = valid; 540 return X86EMUL_PROPAGATE_FAULT; 541 } 542 543 static int emulate_db(struct x86_emulate_ctxt *ctxt) 544 { 545 return emulate_exception(ctxt, DB_VECTOR, 0, false); 546 } 547 548 static int emulate_gp(struct x86_emulate_ctxt *ctxt, int err) 549 { 550 return emulate_exception(ctxt, GP_VECTOR, err, true); 551 } 552 553 static int emulate_ss(struct x86_emulate_ctxt *ctxt, int err) 554 { 555 return emulate_exception(ctxt, SS_VECTOR, err, true); 556 } 557 558 static int emulate_ud(struct x86_emulate_ctxt *ctxt) 559 { 560 return emulate_exception(ctxt, UD_VECTOR, 0, false); 561 } 562 563 static int emulate_ts(struct x86_emulate_ctxt *ctxt, int err) 564 { 565 return emulate_exception(ctxt, TS_VECTOR, err, true); 566 } 567 568 static int emulate_de(struct x86_emulate_ctxt *ctxt) 569 { 570 return emulate_exception(ctxt, DE_VECTOR, 0, false); 571 } 572 573 static int emulate_nm(struct x86_emulate_ctxt *ctxt) 574 { 575 return emulate_exception(ctxt, NM_VECTOR, 0, false); 576 } 577 578 static u16 get_segment_selector(struct x86_emulate_ctxt *ctxt, unsigned seg) 579 { 580 u16 selector; 581 struct desc_struct desc; 582 583 ctxt->ops->get_segment(ctxt, &selector, &desc, NULL, seg); 584 return selector; 585 } 586 587 static void set_segment_selector(struct x86_emulate_ctxt *ctxt, u16 selector, 588 unsigned seg) 589 { 590 u16 dummy; 591 u32 base3; 592 struct desc_struct desc; 593 594 ctxt->ops->get_segment(ctxt, &dummy, &desc, &base3, seg); 595 ctxt->ops->set_segment(ctxt, selector, &desc, base3, seg); 596 } 597 598 static inline u8 ctxt_virt_addr_bits(struct x86_emulate_ctxt *ctxt) 599 { 600 return (ctxt->ops->get_cr(ctxt, 4) & X86_CR4_LA57) ? 57 : 48; 601 } 602 603 static inline bool emul_is_noncanonical_address(u64 la, 604 struct x86_emulate_ctxt *ctxt, 605 unsigned int flags) 606 { 607 return !ctxt->ops->is_canonical_addr(ctxt, la, flags); 608 } 609 610 /* 611 * x86 defines three classes of vector instructions: explicitly 612 * aligned, explicitly unaligned, and the rest, which change behaviour 613 * depending on whether they're AVX encoded or not. 614 * 615 * Also included is CMPXCHG16B which is not a vector instruction, yet it is 616 * subject to the same check. FXSAVE and FXRSTOR are checked here too as their 617 * 512 bytes of data must be aligned to a 16 byte boundary. 618 */ 619 static unsigned insn_alignment(struct x86_emulate_ctxt *ctxt, unsigned size) 620 { 621 u64 alignment = ctxt->d & AlignMask; 622 623 if (likely(size < 16)) 624 return 1; 625 626 switch (alignment) { 627 case Unaligned: 628 return 1; 629 case Aligned16: 630 return 16; 631 case Aligned: 632 default: 633 return size; 634 } 635 } 636 637 static __always_inline int __linearize(struct x86_emulate_ctxt *ctxt, 638 struct segmented_address addr, 639 unsigned *max_size, unsigned size, 640 enum x86emul_mode mode, ulong *linear, 641 unsigned int flags) 642 { 643 struct desc_struct desc; 644 bool usable; 645 ulong la; 646 u32 lim; 647 u16 sel; 648 u8 va_bits; 649 650 la = seg_base(ctxt, addr.seg) + addr.ea; 651 *max_size = 0; 652 switch (mode) { 653 case X86EMUL_MODE_PROT64: 654 *linear = la = ctxt->ops->get_untagged_addr(ctxt, la, flags); 655 va_bits = ctxt_virt_addr_bits(ctxt); 656 if (!__is_canonical_address(la, va_bits)) 657 goto bad; 658 659 *max_size = min_t(u64, ~0u, (1ull << va_bits) - la); 660 if (size > *max_size) 661 goto bad; 662 break; 663 default: 664 *linear = la = (u32)la; 665 usable = ctxt->ops->get_segment(ctxt, &sel, &desc, NULL, 666 addr.seg); 667 if (!usable) 668 goto bad; 669 /* code segment in protected mode or read-only data segment */ 670 if ((((ctxt->mode != X86EMUL_MODE_REAL) && (desc.type & 8)) || !(desc.type & 2)) && 671 (flags & X86EMUL_F_WRITE)) 672 goto bad; 673 /* unreadable code segment */ 674 if (!(flags & X86EMUL_F_FETCH) && (desc.type & 8) && !(desc.type & 2)) 675 goto bad; 676 lim = desc_limit_scaled(&desc); 677 if (!(desc.type & 8) && (desc.type & 4)) { 678 /* expand-down segment */ 679 if (addr.ea <= lim) 680 goto bad; 681 lim = desc.d ? 0xffffffff : 0xffff; 682 } 683 if (addr.ea > lim) 684 goto bad; 685 if (lim == 0xffffffff) 686 *max_size = ~0u; 687 else { 688 *max_size = (u64)lim + 1 - addr.ea; 689 if (size > *max_size) 690 goto bad; 691 } 692 break; 693 } 694 if (la & (insn_alignment(ctxt, size) - 1)) 695 return emulate_gp(ctxt, 0); 696 return X86EMUL_CONTINUE; 697 bad: 698 if (addr.seg == VCPU_SREG_SS) 699 return emulate_ss(ctxt, 0); 700 else 701 return emulate_gp(ctxt, 0); 702 } 703 704 static int linearize(struct x86_emulate_ctxt *ctxt, 705 struct segmented_address addr, 706 unsigned size, bool write, 707 ulong *linear) 708 { 709 unsigned max_size; 710 return __linearize(ctxt, addr, &max_size, size, ctxt->mode, linear, 711 write ? X86EMUL_F_WRITE : 0); 712 } 713 714 static inline int assign_eip(struct x86_emulate_ctxt *ctxt, ulong dst) 715 { 716 ulong linear; 717 int rc; 718 unsigned max_size; 719 struct segmented_address addr = { .seg = VCPU_SREG_CS, 720 .ea = dst }; 721 722 if (ctxt->op_bytes != sizeof(unsigned long)) 723 addr.ea = dst & ((1UL << (ctxt->op_bytes << 3)) - 1); 724 rc = __linearize(ctxt, addr, &max_size, 1, ctxt->mode, &linear, 725 X86EMUL_F_FETCH); 726 if (rc == X86EMUL_CONTINUE) 727 ctxt->_eip = addr.ea; 728 return rc; 729 } 730 731 static inline int emulator_recalc_and_set_mode(struct x86_emulate_ctxt *ctxt) 732 { 733 u64 efer; 734 struct desc_struct cs; 735 u16 selector; 736 u32 base3; 737 738 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer); 739 740 if (!(ctxt->ops->get_cr(ctxt, 0) & X86_CR0_PE)) { 741 /* Real mode. cpu must not have long mode active */ 742 if (efer & EFER_LMA) 743 return X86EMUL_UNHANDLEABLE; 744 ctxt->mode = X86EMUL_MODE_REAL; 745 return X86EMUL_CONTINUE; 746 } 747 748 if (ctxt->eflags & X86_EFLAGS_VM) { 749 /* Protected/VM86 mode. cpu must not have long mode active */ 750 if (efer & EFER_LMA) 751 return X86EMUL_UNHANDLEABLE; 752 ctxt->mode = X86EMUL_MODE_VM86; 753 return X86EMUL_CONTINUE; 754 } 755 756 if (!ctxt->ops->get_segment(ctxt, &selector, &cs, &base3, VCPU_SREG_CS)) 757 return X86EMUL_UNHANDLEABLE; 758 759 if (efer & EFER_LMA) { 760 if (cs.l) { 761 /* Proper long mode */ 762 ctxt->mode = X86EMUL_MODE_PROT64; 763 } else if (cs.d) { 764 /* 32 bit compatibility mode*/ 765 ctxt->mode = X86EMUL_MODE_PROT32; 766 } else { 767 ctxt->mode = X86EMUL_MODE_PROT16; 768 } 769 } else { 770 /* Legacy 32 bit / 16 bit mode */ 771 ctxt->mode = cs.d ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16; 772 } 773 774 return X86EMUL_CONTINUE; 775 } 776 777 static inline int assign_eip_near(struct x86_emulate_ctxt *ctxt, ulong dst) 778 { 779 return assign_eip(ctxt, dst); 780 } 781 782 static int assign_eip_far(struct x86_emulate_ctxt *ctxt, ulong dst) 783 { 784 int rc = emulator_recalc_and_set_mode(ctxt); 785 786 if (rc != X86EMUL_CONTINUE) 787 return rc; 788 789 return assign_eip(ctxt, dst); 790 } 791 792 static inline int jmp_rel(struct x86_emulate_ctxt *ctxt, int rel) 793 { 794 return assign_eip_near(ctxt, ctxt->_eip + rel); 795 } 796 797 static int linear_read_system(struct x86_emulate_ctxt *ctxt, ulong linear, 798 void *data, unsigned size) 799 { 800 return ctxt->ops->read_std(ctxt, linear, data, size, &ctxt->exception, true); 801 } 802 803 static int linear_write_system(struct x86_emulate_ctxt *ctxt, 804 ulong linear, void *data, 805 unsigned int size) 806 { 807 return ctxt->ops->write_std(ctxt, linear, data, size, &ctxt->exception, true); 808 } 809 810 static int segmented_read_std(struct x86_emulate_ctxt *ctxt, 811 struct segmented_address addr, 812 void *data, 813 unsigned size) 814 { 815 int rc; 816 ulong linear; 817 818 rc = linearize(ctxt, addr, size, false, &linear); 819 if (rc != X86EMUL_CONTINUE) 820 return rc; 821 return ctxt->ops->read_std(ctxt, linear, data, size, &ctxt->exception, false); 822 } 823 824 static int segmented_write_std(struct x86_emulate_ctxt *ctxt, 825 struct segmented_address addr, 826 void *data, 827 unsigned int size) 828 { 829 int rc; 830 ulong linear; 831 832 rc = linearize(ctxt, addr, size, true, &linear); 833 if (rc != X86EMUL_CONTINUE) 834 return rc; 835 return ctxt->ops->write_std(ctxt, linear, data, size, &ctxt->exception, false); 836 } 837 838 /* 839 * Prefetch the remaining bytes of the instruction without crossing page 840 * boundary if they are not in fetch_cache yet. 841 */ 842 static int __do_insn_fetch_bytes(struct x86_emulate_ctxt *ctxt, int op_size) 843 { 844 int rc; 845 unsigned size, max_size; 846 unsigned long linear; 847 int cur_size = ctxt->fetch.end - ctxt->fetch.data; 848 struct segmented_address addr = { .seg = VCPU_SREG_CS, 849 .ea = ctxt->eip + cur_size }; 850 851 /* 852 * We do not know exactly how many bytes will be needed, and 853 * __linearize is expensive, so fetch as much as possible. We 854 * just have to avoid going beyond the 15 byte limit, the end 855 * of the segment, or the end of the page. 856 * 857 * __linearize is called with size 0 so that it does not do any 858 * boundary check itself. Instead, we use max_size to check 859 * against op_size. 860 */ 861 rc = __linearize(ctxt, addr, &max_size, 0, ctxt->mode, &linear, 862 X86EMUL_F_FETCH); 863 if (unlikely(rc != X86EMUL_CONTINUE)) 864 return rc; 865 866 size = min_t(unsigned, 15UL ^ cur_size, max_size); 867 size = min_t(unsigned, size, PAGE_SIZE - offset_in_page(linear)); 868 869 /* 870 * One instruction can only straddle two pages, 871 * and one has been loaded at the beginning of 872 * x86_decode_insn. So, if not enough bytes 873 * still, we must have hit the 15-byte boundary. 874 */ 875 if (unlikely(size < op_size)) 876 return emulate_gp(ctxt, 0); 877 878 rc = ctxt->ops->fetch(ctxt, linear, ctxt->fetch.end, 879 size, &ctxt->exception); 880 if (unlikely(rc != X86EMUL_CONTINUE)) 881 return rc; 882 ctxt->fetch.end += size; 883 return X86EMUL_CONTINUE; 884 } 885 886 static __always_inline int do_insn_fetch_bytes(struct x86_emulate_ctxt *ctxt, 887 unsigned size) 888 { 889 unsigned done_size = ctxt->fetch.end - ctxt->fetch.ptr; 890 891 if (unlikely(done_size < size)) 892 return __do_insn_fetch_bytes(ctxt, size - done_size); 893 else 894 return X86EMUL_CONTINUE; 895 } 896 897 /* Fetch next part of the instruction being emulated. */ 898 #define insn_fetch(_type, _ctxt) \ 899 ({ _type _x; \ 900 \ 901 rc = do_insn_fetch_bytes(_ctxt, sizeof(_type)); \ 902 if (rc != X86EMUL_CONTINUE) \ 903 goto done; \ 904 ctxt->_eip += sizeof(_type); \ 905 memcpy(&_x, ctxt->fetch.ptr, sizeof(_type)); \ 906 ctxt->fetch.ptr += sizeof(_type); \ 907 _x; \ 908 }) 909 910 #define insn_fetch_arr(_arr, _size, _ctxt) \ 911 ({ \ 912 rc = do_insn_fetch_bytes(_ctxt, _size); \ 913 if (rc != X86EMUL_CONTINUE) \ 914 goto done; \ 915 ctxt->_eip += (_size); \ 916 memcpy(_arr, ctxt->fetch.ptr, _size); \ 917 ctxt->fetch.ptr += (_size); \ 918 }) 919 920 /* 921 * Given the 'reg' portion of a ModRM byte, and a register block, return a 922 * pointer into the block that addresses the relevant register. 923 * @highbyte_regs specifies whether to decode AH,CH,DH,BH. 924 */ 925 static void *decode_register(struct x86_emulate_ctxt *ctxt, u8 modrm_reg, 926 int byteop) 927 { 928 void *p; 929 int highbyte_regs = (ctxt->rex_prefix == REX_NONE) && byteop; 930 931 if (highbyte_regs && modrm_reg >= 4 && modrm_reg < 8) 932 p = (unsigned char *)reg_rmw(ctxt, modrm_reg & 3) + 1; 933 else 934 p = reg_rmw(ctxt, modrm_reg); 935 return p; 936 } 937 938 static int read_descriptor(struct x86_emulate_ctxt *ctxt, 939 struct segmented_address addr, 940 u16 *size, unsigned long *address, int op_bytes) 941 { 942 int rc; 943 944 if (op_bytes == 2) 945 op_bytes = 3; 946 *address = 0; 947 rc = segmented_read_std(ctxt, addr, size, 2); 948 if (rc != X86EMUL_CONTINUE) 949 return rc; 950 addr.ea += 2; 951 rc = segmented_read_std(ctxt, addr, address, op_bytes); 952 return rc; 953 } 954 955 EM_ASM_2(add); 956 EM_ASM_2(or); 957 EM_ASM_2(adc); 958 EM_ASM_2(sbb); 959 EM_ASM_2(and); 960 EM_ASM_2(sub); 961 EM_ASM_2(xor); 962 EM_ASM_2(cmp); 963 EM_ASM_2(test); 964 EM_ASM_2(xadd); 965 966 EM_ASM_1SRC2(mul, mul_ex); 967 EM_ASM_1SRC2(imul, imul_ex); 968 EM_ASM_1SRC2EX(div, div_ex); 969 EM_ASM_1SRC2EX(idiv, idiv_ex); 970 971 EM_ASM_3WCL(shld); 972 EM_ASM_3WCL(shrd); 973 974 EM_ASM_2W(imul); 975 976 EM_ASM_1(not); 977 EM_ASM_1(neg); 978 EM_ASM_1(inc); 979 EM_ASM_1(dec); 980 981 EM_ASM_2CL(rol); 982 EM_ASM_2CL(ror); 983 EM_ASM_2CL(rcl); 984 EM_ASM_2CL(rcr); 985 EM_ASM_2CL(shl); 986 EM_ASM_2CL(shr); 987 EM_ASM_2CL(sar); 988 989 EM_ASM_2W(bsf); 990 EM_ASM_2W(bsr); 991 EM_ASM_2W(bt); 992 EM_ASM_2W(bts); 993 EM_ASM_2W(btr); 994 EM_ASM_2W(btc); 995 996 EM_ASM_2R(cmp, cmp_r); 997 998 static int em_bsf_c(struct x86_emulate_ctxt *ctxt) 999 { 1000 /* If src is zero, do not writeback, but update flags */ 1001 if (ctxt->src.val == 0) 1002 ctxt->dst.type = OP_NONE; 1003 return em_bsf(ctxt); 1004 } 1005 1006 static int em_bsr_c(struct x86_emulate_ctxt *ctxt) 1007 { 1008 /* If src is zero, do not writeback, but update flags */ 1009 if (ctxt->src.val == 0) 1010 ctxt->dst.type = OP_NONE; 1011 return em_bsr(ctxt); 1012 } 1013 1014 static __always_inline u8 test_cc(unsigned int condition, unsigned long flags) 1015 { 1016 return __emulate_cc(flags, condition & 0xf); 1017 } 1018 1019 static void fetch_register_operand(struct operand *op) 1020 { 1021 switch (op->bytes) { 1022 case 1: 1023 op->val = *(u8 *)op->addr.reg; 1024 break; 1025 case 2: 1026 op->val = *(u16 *)op->addr.reg; 1027 break; 1028 case 4: 1029 op->val = *(u32 *)op->addr.reg; 1030 break; 1031 case 8: 1032 op->val = *(u64 *)op->addr.reg; 1033 break; 1034 } 1035 op->orig_val = op->val; 1036 } 1037 1038 static int em_fninit(struct x86_emulate_ctxt *ctxt) 1039 { 1040 if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM)) 1041 return emulate_nm(ctxt); 1042 1043 kvm_fpu_get(); 1044 asm volatile("fninit"); 1045 kvm_fpu_put(); 1046 return X86EMUL_CONTINUE; 1047 } 1048 1049 static int em_fnstcw(struct x86_emulate_ctxt *ctxt) 1050 { 1051 u16 fcw; 1052 1053 if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM)) 1054 return emulate_nm(ctxt); 1055 1056 kvm_fpu_get(); 1057 asm volatile("fnstcw %0": "+m"(fcw)); 1058 kvm_fpu_put(); 1059 1060 ctxt->dst.val = fcw; 1061 1062 return X86EMUL_CONTINUE; 1063 } 1064 1065 static int em_fnstsw(struct x86_emulate_ctxt *ctxt) 1066 { 1067 u16 fsw; 1068 1069 if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM)) 1070 return emulate_nm(ctxt); 1071 1072 kvm_fpu_get(); 1073 asm volatile("fnstsw %0": "+m"(fsw)); 1074 kvm_fpu_put(); 1075 1076 ctxt->dst.val = fsw; 1077 1078 return X86EMUL_CONTINUE; 1079 } 1080 1081 static void __decode_register_operand(struct x86_emulate_ctxt *ctxt, 1082 struct operand *op, int reg) 1083 { 1084 if ((ctxt->d & Avx) && ctxt->op_bytes == 32) { 1085 op->type = OP_YMM; 1086 op->bytes = 32; 1087 op->addr.xmm = reg; 1088 kvm_read_avx_reg(reg, &op->vec_val2); 1089 return; 1090 } 1091 if (ctxt->d & (Avx|Sse)) { 1092 op->type = OP_XMM; 1093 op->bytes = 16; 1094 op->addr.xmm = reg; 1095 kvm_read_sse_reg(reg, &op->vec_val); 1096 return; 1097 } 1098 if (ctxt->d & Mmx) { 1099 reg &= 7; 1100 op->type = OP_MM; 1101 op->bytes = 8; 1102 op->addr.mm = reg; 1103 return; 1104 } 1105 1106 op->type = OP_REG; 1107 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes; 1108 op->addr.reg = decode_register(ctxt, reg, ctxt->d & ByteOp); 1109 fetch_register_operand(op); 1110 } 1111 1112 static void decode_register_operand(struct x86_emulate_ctxt *ctxt, 1113 struct operand *op) 1114 { 1115 unsigned int reg; 1116 1117 if (ctxt->d & ModRM) 1118 reg = ctxt->modrm_reg; 1119 else 1120 reg = (ctxt->b & 7) | (ctxt->rex_bits & REX_B ? 8 : 0); 1121 1122 __decode_register_operand(ctxt, op, reg); 1123 } 1124 1125 static void adjust_modrm_seg(struct x86_emulate_ctxt *ctxt, int base_reg) 1126 { 1127 if (base_reg == VCPU_REGS_RSP || base_reg == VCPU_REGS_RBP) 1128 ctxt->modrm_seg = VCPU_SREG_SS; 1129 } 1130 1131 static int decode_modrm(struct x86_emulate_ctxt *ctxt, 1132 struct operand *op) 1133 { 1134 u8 sib; 1135 int index_reg, base_reg, scale; 1136 int rc = X86EMUL_CONTINUE; 1137 ulong modrm_ea = 0; 1138 1139 ctxt->modrm_reg = (ctxt->rex_bits & REX_R ? 8 : 0); 1140 index_reg = (ctxt->rex_bits & REX_X ? 8 : 0); 1141 base_reg = (ctxt->rex_bits & REX_B ? 8 : 0); 1142 1143 ctxt->modrm_mod = (ctxt->modrm & 0xc0) >> 6; 1144 ctxt->modrm_reg |= (ctxt->modrm & 0x38) >> 3; 1145 ctxt->modrm_rm = base_reg | (ctxt->modrm & 0x07); 1146 ctxt->modrm_seg = VCPU_SREG_DS; 1147 1148 if (ctxt->modrm_mod == 3 || (ctxt->d & NoMod)) { 1149 __decode_register_operand(ctxt, op, ctxt->modrm_rm); 1150 return rc; 1151 } 1152 1153 op->type = OP_MEM; 1154 1155 if (ctxt->ad_bytes == 2) { 1156 unsigned bx = reg_read(ctxt, VCPU_REGS_RBX); 1157 unsigned bp = reg_read(ctxt, VCPU_REGS_RBP); 1158 unsigned si = reg_read(ctxt, VCPU_REGS_RSI); 1159 unsigned di = reg_read(ctxt, VCPU_REGS_RDI); 1160 1161 /* 16-bit ModR/M decode. */ 1162 switch (ctxt->modrm_mod) { 1163 case 0: 1164 if (ctxt->modrm_rm == 6) 1165 modrm_ea += insn_fetch(u16, ctxt); 1166 break; 1167 case 1: 1168 modrm_ea += insn_fetch(s8, ctxt); 1169 break; 1170 case 2: 1171 modrm_ea += insn_fetch(u16, ctxt); 1172 break; 1173 } 1174 switch (ctxt->modrm_rm) { 1175 case 0: 1176 modrm_ea += bx + si; 1177 break; 1178 case 1: 1179 modrm_ea += bx + di; 1180 break; 1181 case 2: 1182 modrm_ea += bp + si; 1183 break; 1184 case 3: 1185 modrm_ea += bp + di; 1186 break; 1187 case 4: 1188 modrm_ea += si; 1189 break; 1190 case 5: 1191 modrm_ea += di; 1192 break; 1193 case 6: 1194 if (ctxt->modrm_mod != 0) 1195 modrm_ea += bp; 1196 break; 1197 case 7: 1198 modrm_ea += bx; 1199 break; 1200 } 1201 if (ctxt->modrm_rm == 2 || ctxt->modrm_rm == 3 || 1202 (ctxt->modrm_rm == 6 && ctxt->modrm_mod != 0)) 1203 ctxt->modrm_seg = VCPU_SREG_SS; 1204 modrm_ea = (u16)modrm_ea; 1205 } else { 1206 /* 32/64-bit ModR/M decode. */ 1207 if ((ctxt->modrm_rm & 7) == 4) { 1208 sib = insn_fetch(u8, ctxt); 1209 index_reg |= (sib >> 3) & 7; 1210 base_reg |= sib & 7; 1211 scale = sib >> 6; 1212 1213 if ((base_reg & 7) == 5 && ctxt->modrm_mod == 0) 1214 modrm_ea += insn_fetch(s32, ctxt); 1215 else { 1216 modrm_ea += reg_read(ctxt, base_reg); 1217 adjust_modrm_seg(ctxt, base_reg); 1218 /* Increment ESP on POP [ESP] */ 1219 if ((ctxt->d & IncSP) && 1220 base_reg == VCPU_REGS_RSP) 1221 modrm_ea += ctxt->op_bytes; 1222 } 1223 if (index_reg != 4) 1224 modrm_ea += reg_read(ctxt, index_reg) << scale; 1225 } else if ((ctxt->modrm_rm & 7) == 5 && ctxt->modrm_mod == 0) { 1226 modrm_ea += insn_fetch(s32, ctxt); 1227 if (ctxt->mode == X86EMUL_MODE_PROT64) 1228 ctxt->rip_relative = 1; 1229 } else { 1230 base_reg = ctxt->modrm_rm; 1231 modrm_ea += reg_read(ctxt, base_reg); 1232 adjust_modrm_seg(ctxt, base_reg); 1233 } 1234 switch (ctxt->modrm_mod) { 1235 case 1: 1236 modrm_ea += insn_fetch(s8, ctxt); 1237 break; 1238 case 2: 1239 modrm_ea += insn_fetch(s32, ctxt); 1240 break; 1241 } 1242 } 1243 op->addr.mem.ea = modrm_ea; 1244 if (ctxt->ad_bytes != 8) 1245 ctxt->memop.addr.mem.ea = (u32)ctxt->memop.addr.mem.ea; 1246 1247 done: 1248 return rc; 1249 } 1250 1251 static int decode_abs(struct x86_emulate_ctxt *ctxt, 1252 struct operand *op) 1253 { 1254 int rc = X86EMUL_CONTINUE; 1255 1256 op->type = OP_MEM; 1257 switch (ctxt->ad_bytes) { 1258 case 2: 1259 op->addr.mem.ea = insn_fetch(u16, ctxt); 1260 break; 1261 case 4: 1262 op->addr.mem.ea = insn_fetch(u32, ctxt); 1263 break; 1264 case 8: 1265 op->addr.mem.ea = insn_fetch(u64, ctxt); 1266 break; 1267 } 1268 done: 1269 return rc; 1270 } 1271 1272 static void fetch_bit_operand(struct x86_emulate_ctxt *ctxt) 1273 { 1274 long sv = 0, mask; 1275 1276 if (ctxt->dst.type == OP_MEM && ctxt->src.type == OP_REG) { 1277 mask = ~((long)ctxt->dst.bytes * 8 - 1); 1278 1279 if (ctxt->src.bytes == 2) 1280 sv = (s16)ctxt->src.val & (s16)mask; 1281 else if (ctxt->src.bytes == 4) 1282 sv = (s32)ctxt->src.val & (s32)mask; 1283 else 1284 sv = (s64)ctxt->src.val & (s64)mask; 1285 1286 ctxt->dst.addr.mem.ea = address_mask(ctxt, 1287 ctxt->dst.addr.mem.ea + (sv >> 3)); 1288 } 1289 1290 /* only subword offset */ 1291 ctxt->src.val &= (ctxt->dst.bytes << 3) - 1; 1292 } 1293 1294 static int read_emulated(struct x86_emulate_ctxt *ctxt, 1295 unsigned long addr, void *dest, unsigned size) 1296 { 1297 int rc; 1298 struct read_cache *mc = &ctxt->mem_read; 1299 1300 if (mc->pos < mc->end) 1301 goto read_cached; 1302 1303 if (KVM_EMULATOR_BUG_ON((mc->end + size) >= sizeof(mc->data), ctxt)) 1304 return X86EMUL_UNHANDLEABLE; 1305 1306 rc = ctxt->ops->read_emulated(ctxt, addr, mc->data + mc->end, size, 1307 &ctxt->exception); 1308 if (rc != X86EMUL_CONTINUE) 1309 return rc; 1310 1311 mc->end += size; 1312 1313 read_cached: 1314 memcpy(dest, mc->data + mc->pos, size); 1315 mc->pos += size; 1316 return X86EMUL_CONTINUE; 1317 } 1318 1319 static int segmented_read(struct x86_emulate_ctxt *ctxt, 1320 struct segmented_address addr, 1321 void *data, 1322 unsigned size) 1323 { 1324 int rc; 1325 ulong linear; 1326 1327 rc = linearize(ctxt, addr, size, false, &linear); 1328 if (rc != X86EMUL_CONTINUE) 1329 return rc; 1330 return read_emulated(ctxt, linear, data, size); 1331 } 1332 1333 static int segmented_write(struct x86_emulate_ctxt *ctxt, 1334 struct segmented_address addr, 1335 const void *data, 1336 unsigned size) 1337 { 1338 int rc; 1339 ulong linear; 1340 1341 rc = linearize(ctxt, addr, size, true, &linear); 1342 if (rc != X86EMUL_CONTINUE) 1343 return rc; 1344 return ctxt->ops->write_emulated(ctxt, linear, data, size, 1345 &ctxt->exception); 1346 } 1347 1348 static int segmented_cmpxchg(struct x86_emulate_ctxt *ctxt, 1349 struct segmented_address addr, 1350 const void *orig_data, const void *data, 1351 unsigned size) 1352 { 1353 int rc; 1354 ulong linear; 1355 1356 rc = linearize(ctxt, addr, size, true, &linear); 1357 if (rc != X86EMUL_CONTINUE) 1358 return rc; 1359 return ctxt->ops->cmpxchg_emulated(ctxt, linear, orig_data, data, 1360 size, &ctxt->exception); 1361 } 1362 1363 static int pio_in_emulated(struct x86_emulate_ctxt *ctxt, 1364 unsigned int size, unsigned short port, 1365 void *dest) 1366 { 1367 struct read_cache *rc = &ctxt->io_read; 1368 1369 if (rc->pos == rc->end) { /* refill pio read ahead */ 1370 unsigned int in_page, n; 1371 unsigned int count = ctxt->rep_prefix ? 1372 address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) : 1; 1373 in_page = (ctxt->eflags & X86_EFLAGS_DF) ? 1374 offset_in_page(reg_read(ctxt, VCPU_REGS_RDI)) : 1375 PAGE_SIZE - offset_in_page(reg_read(ctxt, VCPU_REGS_RDI)); 1376 n = min3(in_page, (unsigned int)sizeof(rc->data) / size, count); 1377 if (n == 0) 1378 n = 1; 1379 rc->pos = rc->end = 0; 1380 if (!ctxt->ops->pio_in_emulated(ctxt, size, port, rc->data, n)) 1381 return 0; 1382 rc->end = n * size; 1383 } 1384 1385 if (ctxt->rep_prefix && (ctxt->d & String) && 1386 !(ctxt->eflags & X86_EFLAGS_DF)) { 1387 ctxt->dst.data = rc->data + rc->pos; 1388 ctxt->dst.type = OP_MEM_STR; 1389 ctxt->dst.count = (rc->end - rc->pos) / size; 1390 rc->pos = rc->end; 1391 } else { 1392 memcpy(dest, rc->data + rc->pos, size); 1393 rc->pos += size; 1394 } 1395 return 1; 1396 } 1397 1398 static int read_interrupt_descriptor(struct x86_emulate_ctxt *ctxt, 1399 u16 index, struct desc_struct *desc) 1400 { 1401 struct desc_ptr dt; 1402 ulong addr; 1403 1404 ctxt->ops->get_idt(ctxt, &dt); 1405 1406 if (dt.size < index * 8 + 7) 1407 return emulate_gp(ctxt, index << 3 | 0x2); 1408 1409 addr = dt.address + index * 8; 1410 return linear_read_system(ctxt, addr, desc, sizeof(*desc)); 1411 } 1412 1413 static void get_descriptor_table_ptr(struct x86_emulate_ctxt *ctxt, 1414 u16 selector, struct desc_ptr *dt) 1415 { 1416 const struct x86_emulate_ops *ops = ctxt->ops; 1417 u32 base3 = 0; 1418 1419 if (selector & 1 << 2) { 1420 struct desc_struct desc; 1421 u16 sel; 1422 1423 memset(dt, 0, sizeof(*dt)); 1424 if (!ops->get_segment(ctxt, &sel, &desc, &base3, 1425 VCPU_SREG_LDTR)) 1426 return; 1427 1428 dt->size = desc_limit_scaled(&desc); /* what if limit > 65535? */ 1429 dt->address = get_desc_base(&desc) | ((u64)base3 << 32); 1430 } else 1431 ops->get_gdt(ctxt, dt); 1432 } 1433 1434 static int get_descriptor_ptr(struct x86_emulate_ctxt *ctxt, 1435 u16 selector, ulong *desc_addr_p) 1436 { 1437 struct desc_ptr dt; 1438 u16 index = selector >> 3; 1439 ulong addr; 1440 1441 get_descriptor_table_ptr(ctxt, selector, &dt); 1442 1443 if (dt.size < index * 8 + 7) 1444 return emulate_gp(ctxt, selector & 0xfffc); 1445 1446 addr = dt.address + index * 8; 1447 1448 #ifdef CONFIG_X86_64 1449 if (addr >> 32 != 0) { 1450 u64 efer = 0; 1451 1452 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer); 1453 if (!(efer & EFER_LMA)) 1454 addr &= (u32)-1; 1455 } 1456 #endif 1457 1458 *desc_addr_p = addr; 1459 return X86EMUL_CONTINUE; 1460 } 1461 1462 /* allowed just for 8 bytes segments */ 1463 static int read_segment_descriptor(struct x86_emulate_ctxt *ctxt, 1464 u16 selector, struct desc_struct *desc, 1465 ulong *desc_addr_p) 1466 { 1467 int rc; 1468 1469 rc = get_descriptor_ptr(ctxt, selector, desc_addr_p); 1470 if (rc != X86EMUL_CONTINUE) 1471 return rc; 1472 1473 return linear_read_system(ctxt, *desc_addr_p, desc, sizeof(*desc)); 1474 } 1475 1476 /* allowed just for 8 bytes segments */ 1477 static int write_segment_descriptor(struct x86_emulate_ctxt *ctxt, 1478 u16 selector, struct desc_struct *desc) 1479 { 1480 int rc; 1481 ulong addr; 1482 1483 rc = get_descriptor_ptr(ctxt, selector, &addr); 1484 if (rc != X86EMUL_CONTINUE) 1485 return rc; 1486 1487 return linear_write_system(ctxt, addr, desc, sizeof(*desc)); 1488 } 1489 1490 static bool emulator_is_ssp_invalid(struct x86_emulate_ctxt *ctxt, u8 cpl) 1491 { 1492 const u32 MSR_IA32_X_CET = cpl == 3 ? MSR_IA32_U_CET : MSR_IA32_S_CET; 1493 u64 efer = 0, cet = 0, ssp = 0; 1494 1495 if (!(ctxt->ops->get_cr(ctxt, 4) & X86_CR4_CET)) 1496 return false; 1497 1498 if (ctxt->ops->get_msr(ctxt, MSR_EFER, &efer)) 1499 return true; 1500 1501 /* SSP is guaranteed to be valid if the vCPU was already in 32-bit mode. */ 1502 if (!(efer & EFER_LMA)) 1503 return false; 1504 1505 if (ctxt->ops->get_msr(ctxt, MSR_IA32_X_CET, &cet)) 1506 return true; 1507 1508 if (!(cet & CET_SHSTK_EN)) 1509 return false; 1510 1511 if (ctxt->ops->get_msr(ctxt, MSR_KVM_INTERNAL_GUEST_SSP, &ssp)) 1512 return true; 1513 1514 /* 1515 * On transfer from 64-bit mode to compatibility mode, SSP[63:32] must 1516 * be 0, i.e. SSP must be a 32-bit value outside of 64-bit mode. 1517 */ 1518 return ssp >> 32; 1519 } 1520 1521 static int __load_segment_descriptor(struct x86_emulate_ctxt *ctxt, 1522 u16 selector, int seg, u8 cpl, 1523 enum x86_transfer_type transfer, 1524 struct desc_struct *desc) 1525 { 1526 struct desc_struct seg_desc, old_desc; 1527 u8 dpl, rpl; 1528 unsigned err_vec = GP_VECTOR; 1529 u32 err_code = 0; 1530 bool null_selector = !(selector & ~0x3); /* 0000-0003 are null */ 1531 ulong desc_addr; 1532 int ret; 1533 u16 dummy; 1534 u32 base3 = 0; 1535 1536 memset(&seg_desc, 0, sizeof(seg_desc)); 1537 1538 if (ctxt->mode == X86EMUL_MODE_REAL) { 1539 /* set real mode segment descriptor (keep limit etc. for 1540 * unreal mode) */ 1541 ctxt->ops->get_segment(ctxt, &dummy, &seg_desc, NULL, seg); 1542 set_desc_base(&seg_desc, selector << 4); 1543 goto load; 1544 } else if (seg <= VCPU_SREG_GS && ctxt->mode == X86EMUL_MODE_VM86) { 1545 /* VM86 needs a clean new segment descriptor */ 1546 set_desc_base(&seg_desc, selector << 4); 1547 set_desc_limit(&seg_desc, 0xffff); 1548 seg_desc.type = 3; 1549 seg_desc.p = 1; 1550 seg_desc.s = 1; 1551 seg_desc.dpl = 3; 1552 goto load; 1553 } 1554 1555 rpl = selector & 3; 1556 1557 /* TR should be in GDT only */ 1558 if (seg == VCPU_SREG_TR && (selector & (1 << 2))) 1559 goto exception; 1560 1561 /* NULL selector is not valid for TR, CS and (except for long mode) SS */ 1562 if (null_selector) { 1563 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_TR) 1564 goto exception; 1565 1566 if (seg == VCPU_SREG_SS) { 1567 if (ctxt->mode != X86EMUL_MODE_PROT64 || rpl != cpl) 1568 goto exception; 1569 1570 /* 1571 * ctxt->ops->set_segment expects the CPL to be in 1572 * SS.DPL, so fake an expand-up 32-bit data segment. 1573 */ 1574 seg_desc.type = 3; 1575 seg_desc.p = 1; 1576 seg_desc.s = 1; 1577 seg_desc.dpl = cpl; 1578 seg_desc.d = 1; 1579 seg_desc.g = 1; 1580 } 1581 1582 /* Skip all following checks */ 1583 goto load; 1584 } 1585 1586 ret = read_segment_descriptor(ctxt, selector, &seg_desc, &desc_addr); 1587 if (ret != X86EMUL_CONTINUE) 1588 return ret; 1589 1590 err_code = selector & 0xfffc; 1591 err_vec = (transfer == X86_TRANSFER_TASK_SWITCH) ? TS_VECTOR : 1592 GP_VECTOR; 1593 1594 /* can't load system descriptor into segment selector */ 1595 if (seg <= VCPU_SREG_GS && !seg_desc.s) { 1596 if (transfer == X86_TRANSFER_CALL_JMP) 1597 return X86EMUL_UNHANDLEABLE; 1598 goto exception; 1599 } 1600 1601 dpl = seg_desc.dpl; 1602 1603 switch (seg) { 1604 case VCPU_SREG_SS: 1605 /* 1606 * segment is not a writable data segment or segment 1607 * selector's RPL != CPL or DPL != CPL 1608 */ 1609 if (rpl != cpl || (seg_desc.type & 0xa) != 0x2 || dpl != cpl) 1610 goto exception; 1611 break; 1612 case VCPU_SREG_CS: 1613 /* 1614 * KVM uses "none" when loading CS as part of emulating Real 1615 * Mode exceptions and IRET (handled above). In all other 1616 * cases, loading CS without a control transfer is a KVM bug. 1617 */ 1618 if (WARN_ON_ONCE(transfer == X86_TRANSFER_NONE)) 1619 goto exception; 1620 1621 if (!(seg_desc.type & 8)) 1622 goto exception; 1623 1624 if (transfer == X86_TRANSFER_RET) { 1625 /* RET can never return to an inner privilege level. */ 1626 if (rpl < cpl) 1627 goto exception; 1628 /* Outer-privilege level return is not implemented */ 1629 if (rpl > cpl) 1630 return X86EMUL_UNHANDLEABLE; 1631 } 1632 if (transfer == X86_TRANSFER_RET || transfer == X86_TRANSFER_TASK_SWITCH) { 1633 if (seg_desc.type & 4) { 1634 /* conforming */ 1635 if (dpl > rpl) 1636 goto exception; 1637 } else { 1638 /* nonconforming */ 1639 if (dpl != rpl) 1640 goto exception; 1641 } 1642 } else { /* X86_TRANSFER_CALL_JMP */ 1643 if (seg_desc.type & 4) { 1644 /* conforming */ 1645 if (dpl > cpl) 1646 goto exception; 1647 } else { 1648 /* nonconforming */ 1649 if (rpl > cpl || dpl != cpl) 1650 goto exception; 1651 } 1652 } 1653 /* in long-mode d/b must be clear if l is set */ 1654 if (seg_desc.d && seg_desc.l) { 1655 u64 efer = 0; 1656 1657 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer); 1658 if (efer & EFER_LMA) 1659 goto exception; 1660 } 1661 if (!seg_desc.l && emulator_is_ssp_invalid(ctxt, cpl)) { 1662 err_code = 0; 1663 goto exception; 1664 } 1665 1666 /* CS(RPL) <- CPL */ 1667 selector = (selector & 0xfffc) | cpl; 1668 break; 1669 case VCPU_SREG_TR: 1670 if (seg_desc.s || (seg_desc.type != 1 && seg_desc.type != 9)) 1671 goto exception; 1672 break; 1673 case VCPU_SREG_LDTR: 1674 if (seg_desc.s || seg_desc.type != 2) 1675 goto exception; 1676 break; 1677 default: /* DS, ES, FS, or GS */ 1678 /* 1679 * segment is not a data or readable code segment or 1680 * ((segment is a data or nonconforming code segment) 1681 * and ((RPL > DPL) or (CPL > DPL))) 1682 */ 1683 if ((seg_desc.type & 0xa) == 0x8 || 1684 (((seg_desc.type & 0xc) != 0xc) && 1685 (rpl > dpl || cpl > dpl))) 1686 goto exception; 1687 break; 1688 } 1689 1690 if (!seg_desc.p) { 1691 err_vec = (seg == VCPU_SREG_SS) ? SS_VECTOR : NP_VECTOR; 1692 goto exception; 1693 } 1694 1695 if (seg_desc.s) { 1696 /* mark segment as accessed */ 1697 if (!(seg_desc.type & 1)) { 1698 seg_desc.type |= 1; 1699 ret = write_segment_descriptor(ctxt, selector, 1700 &seg_desc); 1701 if (ret != X86EMUL_CONTINUE) 1702 return ret; 1703 } 1704 } else if (ctxt->mode == X86EMUL_MODE_PROT64) { 1705 ret = linear_read_system(ctxt, desc_addr+8, &base3, sizeof(base3)); 1706 if (ret != X86EMUL_CONTINUE) 1707 return ret; 1708 if (emul_is_noncanonical_address(get_desc_base(&seg_desc) | 1709 ((u64)base3 << 32), ctxt, 1710 X86EMUL_F_DT_LOAD)) 1711 return emulate_gp(ctxt, err_code); 1712 } 1713 1714 if (seg == VCPU_SREG_TR) { 1715 old_desc = seg_desc; 1716 seg_desc.type |= 2; /* busy */ 1717 ret = ctxt->ops->cmpxchg_emulated(ctxt, desc_addr, &old_desc, &seg_desc, 1718 sizeof(seg_desc), &ctxt->exception); 1719 if (ret != X86EMUL_CONTINUE) 1720 return ret; 1721 } 1722 load: 1723 ctxt->ops->set_segment(ctxt, selector, &seg_desc, base3, seg); 1724 if (desc) 1725 *desc = seg_desc; 1726 return X86EMUL_CONTINUE; 1727 exception: 1728 return emulate_exception(ctxt, err_vec, err_code, true); 1729 } 1730 1731 static int load_segment_descriptor(struct x86_emulate_ctxt *ctxt, 1732 u16 selector, int seg) 1733 { 1734 u8 cpl = ctxt->ops->cpl(ctxt); 1735 1736 /* 1737 * None of MOV, POP and LSS can load a NULL selector in CPL=3, but 1738 * they can load it at CPL<3 (Intel's manual says only LSS can, 1739 * but it's wrong). 1740 * 1741 * However, the Intel manual says that putting IST=1/DPL=3 in 1742 * an interrupt gate will result in SS=3 (the AMD manual instead 1743 * says it doesn't), so allow SS=3 in __load_segment_descriptor 1744 * and only forbid it here. 1745 */ 1746 if (seg == VCPU_SREG_SS && selector == 3 && 1747 ctxt->mode == X86EMUL_MODE_PROT64) 1748 return emulate_exception(ctxt, GP_VECTOR, 0, true); 1749 1750 return __load_segment_descriptor(ctxt, selector, seg, cpl, 1751 X86_TRANSFER_NONE, NULL); 1752 } 1753 1754 static void write_register_operand(struct operand *op) 1755 { 1756 return assign_register(op->addr.reg, op->val, op->bytes); 1757 } 1758 1759 static int writeback(struct x86_emulate_ctxt *ctxt, struct operand *op) 1760 { 1761 switch (op->type) { 1762 case OP_REG: 1763 write_register_operand(op); 1764 break; 1765 case OP_MEM: 1766 if (ctxt->lock_prefix) 1767 return segmented_cmpxchg(ctxt, 1768 op->addr.mem, 1769 &op->orig_val, 1770 &op->val, 1771 op->bytes); 1772 else 1773 return segmented_write(ctxt, 1774 op->addr.mem, 1775 &op->val, 1776 op->bytes); 1777 case OP_MEM_STR: 1778 return segmented_write(ctxt, 1779 op->addr.mem, 1780 op->data, 1781 op->bytes * op->count); 1782 case OP_XMM: 1783 if (!(ctxt->d & Avx)) { 1784 kvm_write_sse_reg(op->addr.xmm, &op->vec_val); 1785 break; 1786 } 1787 /* full YMM write but with high bytes cleared */ 1788 memset(op->valptr + 16, 0, 16); 1789 fallthrough; 1790 case OP_YMM: 1791 kvm_write_avx_reg(op->addr.xmm, &op->vec_val2); 1792 break; 1793 case OP_MM: 1794 kvm_write_mmx_reg(op->addr.mm, &op->mm_val); 1795 break; 1796 case OP_NONE: 1797 /* no writeback */ 1798 break; 1799 default: 1800 break; 1801 } 1802 return X86EMUL_CONTINUE; 1803 } 1804 1805 static int emulate_push(struct x86_emulate_ctxt *ctxt, const void *data, int len) 1806 { 1807 struct segmented_address addr; 1808 1809 rsp_increment(ctxt, -len); 1810 addr.ea = reg_read(ctxt, VCPU_REGS_RSP) & stack_mask(ctxt); 1811 addr.seg = VCPU_SREG_SS; 1812 1813 return segmented_write(ctxt, addr, data, len); 1814 } 1815 1816 static int em_push(struct x86_emulate_ctxt *ctxt) 1817 { 1818 /* Disable writeback. */ 1819 ctxt->dst.type = OP_NONE; 1820 return emulate_push(ctxt, &ctxt->src.val, ctxt->op_bytes); 1821 } 1822 1823 static int emulate_pop(struct x86_emulate_ctxt *ctxt, 1824 void *dest, int len) 1825 { 1826 int rc; 1827 struct segmented_address addr; 1828 1829 addr.ea = reg_read(ctxt, VCPU_REGS_RSP) & stack_mask(ctxt); 1830 addr.seg = VCPU_SREG_SS; 1831 rc = segmented_read(ctxt, addr, dest, len); 1832 if (rc != X86EMUL_CONTINUE) 1833 return rc; 1834 1835 rsp_increment(ctxt, len); 1836 return rc; 1837 } 1838 1839 static int em_pop(struct x86_emulate_ctxt *ctxt) 1840 { 1841 return emulate_pop(ctxt, &ctxt->dst.val, ctxt->op_bytes); 1842 } 1843 1844 static int emulate_popf(struct x86_emulate_ctxt *ctxt, 1845 void *dest, int len) 1846 { 1847 int rc; 1848 unsigned long val = 0; 1849 unsigned long change_mask; 1850 int iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> X86_EFLAGS_IOPL_BIT; 1851 int cpl = ctxt->ops->cpl(ctxt); 1852 1853 rc = emulate_pop(ctxt, &val, len); 1854 if (rc != X86EMUL_CONTINUE) 1855 return rc; 1856 1857 change_mask = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | 1858 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF | 1859 X86_EFLAGS_TF | X86_EFLAGS_DF | X86_EFLAGS_NT | 1860 X86_EFLAGS_AC | X86_EFLAGS_ID; 1861 1862 switch(ctxt->mode) { 1863 case X86EMUL_MODE_PROT64: 1864 case X86EMUL_MODE_PROT32: 1865 case X86EMUL_MODE_PROT16: 1866 if (cpl == 0) 1867 change_mask |= X86_EFLAGS_IOPL; 1868 if (cpl <= iopl) 1869 change_mask |= X86_EFLAGS_IF; 1870 break; 1871 case X86EMUL_MODE_VM86: 1872 if (iopl < 3) 1873 return emulate_gp(ctxt, 0); 1874 change_mask |= X86_EFLAGS_IF; 1875 break; 1876 default: /* real mode */ 1877 change_mask |= (X86_EFLAGS_IOPL | X86_EFLAGS_IF); 1878 break; 1879 } 1880 1881 *(unsigned long *)dest = 1882 (ctxt->eflags & ~change_mask) | (val & change_mask); 1883 1884 return rc; 1885 } 1886 1887 static int em_popf(struct x86_emulate_ctxt *ctxt) 1888 { 1889 ctxt->dst.type = OP_REG; 1890 ctxt->dst.addr.reg = &ctxt->eflags; 1891 ctxt->dst.bytes = ctxt->op_bytes; 1892 return emulate_popf(ctxt, &ctxt->dst.val, ctxt->op_bytes); 1893 } 1894 1895 static int em_enter(struct x86_emulate_ctxt *ctxt) 1896 { 1897 int rc; 1898 unsigned frame_size = ctxt->src.val; 1899 unsigned nesting_level = ctxt->src2.val & 31; 1900 ulong rbp; 1901 1902 if (nesting_level) 1903 return X86EMUL_UNHANDLEABLE; 1904 1905 rbp = reg_read(ctxt, VCPU_REGS_RBP); 1906 rc = emulate_push(ctxt, &rbp, stack_size(ctxt)); 1907 if (rc != X86EMUL_CONTINUE) 1908 return rc; 1909 assign_masked(reg_rmw(ctxt, VCPU_REGS_RBP), reg_read(ctxt, VCPU_REGS_RSP), 1910 stack_mask(ctxt)); 1911 assign_masked(reg_rmw(ctxt, VCPU_REGS_RSP), 1912 reg_read(ctxt, VCPU_REGS_RSP) - frame_size, 1913 stack_mask(ctxt)); 1914 return X86EMUL_CONTINUE; 1915 } 1916 1917 static int em_leave(struct x86_emulate_ctxt *ctxt) 1918 { 1919 assign_masked(reg_rmw(ctxt, VCPU_REGS_RSP), reg_read(ctxt, VCPU_REGS_RBP), 1920 stack_mask(ctxt)); 1921 return emulate_pop(ctxt, reg_rmw(ctxt, VCPU_REGS_RBP), ctxt->op_bytes); 1922 } 1923 1924 static int em_push_sreg(struct x86_emulate_ctxt *ctxt) 1925 { 1926 int seg = ctxt->src2.val; 1927 1928 ctxt->src.val = get_segment_selector(ctxt, seg); 1929 if (ctxt->op_bytes == 4) { 1930 rsp_increment(ctxt, -2); 1931 ctxt->op_bytes = 2; 1932 } 1933 1934 return em_push(ctxt); 1935 } 1936 1937 static int em_pop_sreg(struct x86_emulate_ctxt *ctxt) 1938 { 1939 int seg = ctxt->src2.val; 1940 unsigned long selector = 0; 1941 int rc; 1942 1943 rc = emulate_pop(ctxt, &selector, 2); 1944 if (rc != X86EMUL_CONTINUE) 1945 return rc; 1946 1947 if (seg == VCPU_SREG_SS) 1948 ctxt->interruptibility = KVM_X86_SHADOW_INT_MOV_SS; 1949 if (ctxt->op_bytes > 2) 1950 rsp_increment(ctxt, ctxt->op_bytes - 2); 1951 1952 rc = load_segment_descriptor(ctxt, (u16)selector, seg); 1953 return rc; 1954 } 1955 1956 static int em_pusha(struct x86_emulate_ctxt *ctxt) 1957 { 1958 unsigned long old_esp = reg_read(ctxt, VCPU_REGS_RSP); 1959 int rc = X86EMUL_CONTINUE; 1960 int reg = VCPU_REGS_RAX; 1961 1962 while (reg <= VCPU_REGS_RDI) { 1963 (reg == VCPU_REGS_RSP) ? 1964 (ctxt->src.val = old_esp) : (ctxt->src.val = reg_read(ctxt, reg)); 1965 1966 rc = em_push(ctxt); 1967 if (rc != X86EMUL_CONTINUE) 1968 return rc; 1969 1970 ++reg; 1971 } 1972 1973 return rc; 1974 } 1975 1976 static int em_pushf(struct x86_emulate_ctxt *ctxt) 1977 { 1978 ctxt->src.val = (unsigned long)ctxt->eflags & ~X86_EFLAGS_VM; 1979 return em_push(ctxt); 1980 } 1981 1982 static int em_popa(struct x86_emulate_ctxt *ctxt) 1983 { 1984 int rc = X86EMUL_CONTINUE; 1985 int reg = VCPU_REGS_RDI; 1986 u32 val = 0; 1987 1988 while (reg >= VCPU_REGS_RAX) { 1989 if (reg == VCPU_REGS_RSP) { 1990 rsp_increment(ctxt, ctxt->op_bytes); 1991 --reg; 1992 } 1993 1994 rc = emulate_pop(ctxt, &val, ctxt->op_bytes); 1995 if (rc != X86EMUL_CONTINUE) 1996 break; 1997 assign_register(reg_rmw(ctxt, reg), val, ctxt->op_bytes); 1998 --reg; 1999 } 2000 return rc; 2001 } 2002 2003 static int __emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq) 2004 { 2005 const struct x86_emulate_ops *ops = ctxt->ops; 2006 int rc; 2007 struct desc_ptr dt; 2008 gva_t cs_addr; 2009 gva_t eip_addr; 2010 u16 cs, eip; 2011 2012 /* TODO: Add limit checks */ 2013 ctxt->src.val = ctxt->eflags; 2014 rc = em_push(ctxt); 2015 if (rc != X86EMUL_CONTINUE) 2016 return rc; 2017 2018 ctxt->eflags &= ~(X86_EFLAGS_IF | X86_EFLAGS_TF | X86_EFLAGS_AC); 2019 2020 ctxt->src.val = get_segment_selector(ctxt, VCPU_SREG_CS); 2021 rc = em_push(ctxt); 2022 if (rc != X86EMUL_CONTINUE) 2023 return rc; 2024 2025 ctxt->src.val = ctxt->_eip; 2026 rc = em_push(ctxt); 2027 if (rc != X86EMUL_CONTINUE) 2028 return rc; 2029 2030 ops->get_idt(ctxt, &dt); 2031 2032 eip_addr = dt.address + (irq << 2); 2033 cs_addr = dt.address + (irq << 2) + 2; 2034 2035 rc = linear_read_system(ctxt, cs_addr, &cs, 2); 2036 if (rc != X86EMUL_CONTINUE) 2037 return rc; 2038 2039 rc = linear_read_system(ctxt, eip_addr, &eip, 2); 2040 if (rc != X86EMUL_CONTINUE) 2041 return rc; 2042 2043 rc = load_segment_descriptor(ctxt, cs, VCPU_SREG_CS); 2044 if (rc != X86EMUL_CONTINUE) 2045 return rc; 2046 2047 ctxt->_eip = eip; 2048 2049 return rc; 2050 } 2051 2052 int emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq) 2053 { 2054 int rc; 2055 2056 invalidate_registers(ctxt); 2057 rc = __emulate_int_real(ctxt, irq); 2058 if (rc == X86EMUL_CONTINUE) 2059 writeback_registers(ctxt); 2060 return rc; 2061 } 2062 2063 static int emulate_int(struct x86_emulate_ctxt *ctxt, int irq) 2064 { 2065 switch(ctxt->mode) { 2066 case X86EMUL_MODE_REAL: 2067 return __emulate_int_real(ctxt, irq); 2068 case X86EMUL_MODE_VM86: 2069 case X86EMUL_MODE_PROT16: 2070 case X86EMUL_MODE_PROT32: 2071 case X86EMUL_MODE_PROT64: 2072 default: 2073 /* Protected mode interrupts unimplemented yet */ 2074 return X86EMUL_UNHANDLEABLE; 2075 } 2076 } 2077 2078 static int emulate_iret_real(struct x86_emulate_ctxt *ctxt) 2079 { 2080 int rc = X86EMUL_CONTINUE; 2081 unsigned long temp_eip = 0; 2082 unsigned long temp_eflags = 0; 2083 unsigned long cs = 0; 2084 unsigned long mask = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | 2085 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_TF | 2086 X86_EFLAGS_IF | X86_EFLAGS_DF | X86_EFLAGS_OF | 2087 X86_EFLAGS_IOPL | X86_EFLAGS_NT | X86_EFLAGS_RF | 2088 X86_EFLAGS_AC | X86_EFLAGS_ID | 2089 X86_EFLAGS_FIXED; 2090 unsigned long vm86_mask = X86_EFLAGS_VM | X86_EFLAGS_VIF | 2091 X86_EFLAGS_VIP; 2092 2093 /* TODO: Add stack limit check */ 2094 2095 rc = emulate_pop(ctxt, &temp_eip, ctxt->op_bytes); 2096 2097 if (rc != X86EMUL_CONTINUE) 2098 return rc; 2099 2100 if (temp_eip & ~0xffff) 2101 return emulate_gp(ctxt, 0); 2102 2103 rc = emulate_pop(ctxt, &cs, ctxt->op_bytes); 2104 2105 if (rc != X86EMUL_CONTINUE) 2106 return rc; 2107 2108 rc = emulate_pop(ctxt, &temp_eflags, ctxt->op_bytes); 2109 2110 if (rc != X86EMUL_CONTINUE) 2111 return rc; 2112 2113 rc = load_segment_descriptor(ctxt, (u16)cs, VCPU_SREG_CS); 2114 2115 if (rc != X86EMUL_CONTINUE) 2116 return rc; 2117 2118 ctxt->_eip = temp_eip; 2119 2120 if (ctxt->op_bytes == 4) 2121 ctxt->eflags = ((temp_eflags & mask) | (ctxt->eflags & vm86_mask)); 2122 else if (ctxt->op_bytes == 2) { 2123 ctxt->eflags &= ~0xffff; 2124 ctxt->eflags |= temp_eflags; 2125 } 2126 2127 ctxt->eflags &= ~EFLG_RESERVED_ZEROS_MASK; /* Clear reserved zeros */ 2128 ctxt->eflags |= X86_EFLAGS_FIXED; 2129 ctxt->ops->set_nmi_mask(ctxt, false); 2130 2131 return rc; 2132 } 2133 2134 static int em_iret(struct x86_emulate_ctxt *ctxt) 2135 { 2136 switch(ctxt->mode) { 2137 case X86EMUL_MODE_REAL: 2138 return emulate_iret_real(ctxt); 2139 case X86EMUL_MODE_VM86: 2140 case X86EMUL_MODE_PROT16: 2141 case X86EMUL_MODE_PROT32: 2142 case X86EMUL_MODE_PROT64: 2143 default: 2144 /* iret from protected mode unimplemented yet */ 2145 return X86EMUL_UNHANDLEABLE; 2146 } 2147 } 2148 2149 static int em_jmp_far(struct x86_emulate_ctxt *ctxt) 2150 { 2151 int rc; 2152 unsigned short sel; 2153 struct desc_struct new_desc; 2154 u8 cpl = ctxt->ops->cpl(ctxt); 2155 2156 memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2); 2157 2158 rc = __load_segment_descriptor(ctxt, sel, VCPU_SREG_CS, cpl, 2159 X86_TRANSFER_CALL_JMP, 2160 &new_desc); 2161 if (rc != X86EMUL_CONTINUE) 2162 return rc; 2163 2164 rc = assign_eip_far(ctxt, ctxt->src.val); 2165 /* Error handling is not implemented. */ 2166 if (rc != X86EMUL_CONTINUE) 2167 return X86EMUL_UNHANDLEABLE; 2168 2169 return rc; 2170 } 2171 2172 static int em_jmp_abs(struct x86_emulate_ctxt *ctxt) 2173 { 2174 return assign_eip_near(ctxt, ctxt->src.val); 2175 } 2176 2177 static int em_call_near_abs(struct x86_emulate_ctxt *ctxt) 2178 { 2179 int rc; 2180 long int old_eip; 2181 2182 old_eip = ctxt->_eip; 2183 rc = assign_eip_near(ctxt, ctxt->src.val); 2184 if (rc != X86EMUL_CONTINUE) 2185 return rc; 2186 ctxt->src.val = old_eip; 2187 rc = em_push(ctxt); 2188 return rc; 2189 } 2190 2191 static int em_cmpxchg8b(struct x86_emulate_ctxt *ctxt) 2192 { 2193 u64 old = ctxt->dst.orig_val64; 2194 2195 if (ctxt->dst.bytes == 16) 2196 return X86EMUL_UNHANDLEABLE; 2197 2198 if (((u32) (old >> 0) != (u32) reg_read(ctxt, VCPU_REGS_RAX)) || 2199 ((u32) (old >> 32) != (u32) reg_read(ctxt, VCPU_REGS_RDX))) { 2200 *reg_write(ctxt, VCPU_REGS_RAX) = (u32) (old >> 0); 2201 *reg_write(ctxt, VCPU_REGS_RDX) = (u32) (old >> 32); 2202 ctxt->eflags &= ~X86_EFLAGS_ZF; 2203 } else { 2204 ctxt->dst.val64 = ((u64)reg_read(ctxt, VCPU_REGS_RCX) << 32) | 2205 (u32) reg_read(ctxt, VCPU_REGS_RBX); 2206 2207 ctxt->eflags |= X86_EFLAGS_ZF; 2208 } 2209 return X86EMUL_CONTINUE; 2210 } 2211 2212 static int em_ret(struct x86_emulate_ctxt *ctxt) 2213 { 2214 int rc; 2215 unsigned long eip = 0; 2216 2217 rc = emulate_pop(ctxt, &eip, ctxt->op_bytes); 2218 if (rc != X86EMUL_CONTINUE) 2219 return rc; 2220 2221 return assign_eip_near(ctxt, eip); 2222 } 2223 2224 static int em_ret_far(struct x86_emulate_ctxt *ctxt) 2225 { 2226 int rc; 2227 unsigned long eip = 0; 2228 unsigned long cs = 0; 2229 int cpl = ctxt->ops->cpl(ctxt); 2230 struct desc_struct new_desc; 2231 2232 rc = emulate_pop(ctxt, &eip, ctxt->op_bytes); 2233 if (rc != X86EMUL_CONTINUE) 2234 return rc; 2235 rc = emulate_pop(ctxt, &cs, ctxt->op_bytes); 2236 if (rc != X86EMUL_CONTINUE) 2237 return rc; 2238 rc = __load_segment_descriptor(ctxt, (u16)cs, VCPU_SREG_CS, cpl, 2239 X86_TRANSFER_RET, 2240 &new_desc); 2241 if (rc != X86EMUL_CONTINUE) 2242 return rc; 2243 rc = assign_eip_far(ctxt, eip); 2244 /* Error handling is not implemented. */ 2245 if (rc != X86EMUL_CONTINUE) 2246 return X86EMUL_UNHANDLEABLE; 2247 2248 return rc; 2249 } 2250 2251 static int em_ret_far_imm(struct x86_emulate_ctxt *ctxt) 2252 { 2253 int rc; 2254 2255 rc = em_ret_far(ctxt); 2256 if (rc != X86EMUL_CONTINUE) 2257 return rc; 2258 rsp_increment(ctxt, ctxt->src.val); 2259 return X86EMUL_CONTINUE; 2260 } 2261 2262 static int em_cmpxchg(struct x86_emulate_ctxt *ctxt) 2263 { 2264 /* Save real source value, then compare EAX against destination. */ 2265 ctxt->dst.orig_val = ctxt->dst.val; 2266 ctxt->dst.val = reg_read(ctxt, VCPU_REGS_RAX); 2267 ctxt->src.orig_val = ctxt->src.val; 2268 ctxt->src.val = ctxt->dst.orig_val; 2269 em_cmp(ctxt); 2270 2271 if (ctxt->eflags & X86_EFLAGS_ZF) { 2272 /* Success: write back to memory; no update of EAX */ 2273 ctxt->src.type = OP_NONE; 2274 ctxt->dst.val = ctxt->src.orig_val; 2275 } else { 2276 /* Failure: write the value we saw to EAX. */ 2277 ctxt->src.type = OP_REG; 2278 ctxt->src.addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX); 2279 ctxt->src.val = ctxt->dst.orig_val; 2280 /* Create write-cycle to dest by writing the same value */ 2281 ctxt->dst.val = ctxt->dst.orig_val; 2282 } 2283 return X86EMUL_CONTINUE; 2284 } 2285 2286 static int em_lseg(struct x86_emulate_ctxt *ctxt) 2287 { 2288 int seg = ctxt->src2.val; 2289 unsigned short sel; 2290 int rc; 2291 2292 memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2); 2293 2294 rc = load_segment_descriptor(ctxt, sel, seg); 2295 if (rc != X86EMUL_CONTINUE) 2296 return rc; 2297 2298 ctxt->dst.val = ctxt->src.val; 2299 return rc; 2300 } 2301 2302 static int em_rsm(struct x86_emulate_ctxt *ctxt) 2303 { 2304 if (!ctxt->ops->is_smm(ctxt)) 2305 return emulate_ud(ctxt); 2306 2307 if (ctxt->ops->leave_smm(ctxt)) 2308 ctxt->ops->triple_fault(ctxt); 2309 2310 return emulator_recalc_and_set_mode(ctxt); 2311 } 2312 2313 static void 2314 setup_syscalls_segments(struct desc_struct *cs, struct desc_struct *ss) 2315 { 2316 cs->l = 0; /* will be adjusted later */ 2317 set_desc_base(cs, 0); /* flat segment */ 2318 cs->g = 1; /* 4kb granularity */ 2319 set_desc_limit(cs, 0xfffff); /* 4GB limit */ 2320 cs->type = 0x0b; /* Read, Execute, Accessed */ 2321 cs->s = 1; 2322 cs->dpl = 0; /* will be adjusted later */ 2323 cs->p = 1; 2324 cs->d = 1; 2325 cs->avl = 0; 2326 2327 set_desc_base(ss, 0); /* flat segment */ 2328 set_desc_limit(ss, 0xfffff); /* 4GB limit */ 2329 ss->g = 1; /* 4kb granularity */ 2330 ss->s = 1; 2331 ss->type = 0x03; /* Read/Write, Accessed */ 2332 ss->d = 1; /* 32bit stack segment */ 2333 ss->dpl = 0; 2334 ss->p = 1; 2335 ss->l = 0; 2336 ss->avl = 0; 2337 } 2338 2339 static int em_syscall(struct x86_emulate_ctxt *ctxt) 2340 { 2341 const struct x86_emulate_ops *ops = ctxt->ops; 2342 struct desc_struct cs, ss; 2343 u64 msr_data; 2344 u16 cs_sel, ss_sel; 2345 u64 efer = 0; 2346 2347 /* syscall is not available in real mode */ 2348 if (ctxt->mode == X86EMUL_MODE_REAL || 2349 ctxt->mode == X86EMUL_MODE_VM86) 2350 return emulate_ud(ctxt); 2351 2352 /* 2353 * Intel compatible CPUs only support SYSCALL in 64-bit mode, whereas 2354 * AMD allows SYSCALL in any flavor of protected mode. Note, it's 2355 * infeasible to emulate Intel behavior when running on AMD hardware, 2356 * as SYSCALL won't fault in the "wrong" mode, i.e. there is no #UD 2357 * for KVM to trap-and-emulate, unlike emulating AMD on Intel. 2358 */ 2359 if (ctxt->mode != X86EMUL_MODE_PROT64 && 2360 ctxt->ops->guest_cpuid_is_intel_compatible(ctxt)) 2361 return emulate_ud(ctxt); 2362 2363 ops->get_msr(ctxt, MSR_EFER, &efer); 2364 if (!(efer & EFER_SCE)) 2365 return emulate_ud(ctxt); 2366 2367 setup_syscalls_segments(&cs, &ss); 2368 ops->get_msr(ctxt, MSR_STAR, &msr_data); 2369 msr_data >>= 32; 2370 cs_sel = (u16)(msr_data & 0xfffc); 2371 ss_sel = (u16)(msr_data + 8); 2372 2373 if (efer & EFER_LMA) { 2374 cs.d = 0; 2375 cs.l = 1; 2376 } 2377 ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS); 2378 ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS); 2379 2380 *reg_write(ctxt, VCPU_REGS_RCX) = ctxt->_eip; 2381 if (efer & EFER_LMA) { 2382 #ifdef CONFIG_X86_64 2383 *reg_write(ctxt, VCPU_REGS_R11) = ctxt->eflags; 2384 2385 ops->get_msr(ctxt, 2386 ctxt->mode == X86EMUL_MODE_PROT64 ? 2387 MSR_LSTAR : MSR_CSTAR, &msr_data); 2388 ctxt->_eip = msr_data; 2389 2390 ops->get_msr(ctxt, MSR_SYSCALL_MASK, &msr_data); 2391 ctxt->eflags &= ~msr_data; 2392 ctxt->eflags |= X86_EFLAGS_FIXED; 2393 #endif 2394 } else { 2395 /* legacy mode */ 2396 ops->get_msr(ctxt, MSR_STAR, &msr_data); 2397 ctxt->_eip = (u32)msr_data; 2398 2399 ctxt->eflags &= ~(X86_EFLAGS_VM | X86_EFLAGS_IF); 2400 } 2401 2402 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 2403 return X86EMUL_CONTINUE; 2404 } 2405 2406 static int em_sysenter(struct x86_emulate_ctxt *ctxt) 2407 { 2408 const struct x86_emulate_ops *ops = ctxt->ops; 2409 struct desc_struct cs, ss; 2410 u64 msr_data; 2411 u16 cs_sel, ss_sel; 2412 u64 efer = 0; 2413 2414 ops->get_msr(ctxt, MSR_EFER, &efer); 2415 /* inject #GP if in real mode */ 2416 if (ctxt->mode == X86EMUL_MODE_REAL) 2417 return emulate_gp(ctxt, 0); 2418 2419 /* 2420 * Intel's architecture allows SYSENTER in compatibility mode, but AMD 2421 * does not. Note, AMD does allow SYSENTER in legacy protected mode. 2422 */ 2423 if ((ctxt->mode != X86EMUL_MODE_PROT64) && (efer & EFER_LMA) && 2424 !ctxt->ops->guest_cpuid_is_intel_compatible(ctxt)) 2425 return emulate_ud(ctxt); 2426 2427 /* sysenter/sysexit have not been tested in 64bit mode. */ 2428 if (ctxt->mode == X86EMUL_MODE_PROT64) 2429 return X86EMUL_UNHANDLEABLE; 2430 2431 ops->get_msr(ctxt, MSR_IA32_SYSENTER_CS, &msr_data); 2432 if ((msr_data & 0xfffc) == 0x0) 2433 return emulate_gp(ctxt, 0); 2434 2435 setup_syscalls_segments(&cs, &ss); 2436 ctxt->eflags &= ~(X86_EFLAGS_VM | X86_EFLAGS_IF); 2437 cs_sel = (u16)msr_data & ~SEGMENT_RPL_MASK; 2438 ss_sel = cs_sel + 8; 2439 if (efer & EFER_LMA) { 2440 cs.d = 0; 2441 cs.l = 1; 2442 } 2443 2444 ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS); 2445 ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS); 2446 2447 ops->get_msr(ctxt, MSR_IA32_SYSENTER_EIP, &msr_data); 2448 ctxt->_eip = (efer & EFER_LMA) ? msr_data : (u32)msr_data; 2449 2450 ops->get_msr(ctxt, MSR_IA32_SYSENTER_ESP, &msr_data); 2451 *reg_write(ctxt, VCPU_REGS_RSP) = (efer & EFER_LMA) ? msr_data : 2452 (u32)msr_data; 2453 if (efer & EFER_LMA) 2454 ctxt->mode = X86EMUL_MODE_PROT64; 2455 2456 return X86EMUL_CONTINUE; 2457 } 2458 2459 static int em_sysexit(struct x86_emulate_ctxt *ctxt) 2460 { 2461 const struct x86_emulate_ops *ops = ctxt->ops; 2462 struct desc_struct cs, ss; 2463 u64 msr_data, rcx, rdx; 2464 int usermode; 2465 u16 cs_sel = 0, ss_sel = 0; 2466 2467 /* inject #GP if in real mode or Virtual 8086 mode */ 2468 if (ctxt->mode == X86EMUL_MODE_REAL || 2469 ctxt->mode == X86EMUL_MODE_VM86) 2470 return emulate_gp(ctxt, 0); 2471 2472 setup_syscalls_segments(&cs, &ss); 2473 2474 if (ctxt->rex_bits & REX_W) 2475 usermode = X86EMUL_MODE_PROT64; 2476 else 2477 usermode = X86EMUL_MODE_PROT32; 2478 2479 rcx = reg_read(ctxt, VCPU_REGS_RCX); 2480 rdx = reg_read(ctxt, VCPU_REGS_RDX); 2481 2482 cs.dpl = 3; 2483 ss.dpl = 3; 2484 ops->get_msr(ctxt, MSR_IA32_SYSENTER_CS, &msr_data); 2485 switch (usermode) { 2486 case X86EMUL_MODE_PROT32: 2487 cs_sel = (u16)(msr_data + 16); 2488 if ((msr_data & 0xfffc) == 0x0) 2489 return emulate_gp(ctxt, 0); 2490 ss_sel = (u16)(msr_data + 24); 2491 rcx = (u32)rcx; 2492 rdx = (u32)rdx; 2493 break; 2494 case X86EMUL_MODE_PROT64: 2495 cs_sel = (u16)(msr_data + 32); 2496 if (msr_data == 0x0) 2497 return emulate_gp(ctxt, 0); 2498 ss_sel = cs_sel + 8; 2499 cs.d = 0; 2500 cs.l = 1; 2501 if (emul_is_noncanonical_address(rcx, ctxt, 0) || 2502 emul_is_noncanonical_address(rdx, ctxt, 0)) 2503 return emulate_gp(ctxt, 0); 2504 break; 2505 } 2506 cs_sel |= SEGMENT_RPL_MASK; 2507 ss_sel |= SEGMENT_RPL_MASK; 2508 2509 ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS); 2510 ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS); 2511 2512 ctxt->_eip = rdx; 2513 ctxt->mode = usermode; 2514 *reg_write(ctxt, VCPU_REGS_RSP) = rcx; 2515 2516 return X86EMUL_CONTINUE; 2517 } 2518 2519 static bool emulator_bad_iopl(struct x86_emulate_ctxt *ctxt) 2520 { 2521 int iopl; 2522 if (ctxt->mode == X86EMUL_MODE_REAL) 2523 return false; 2524 if (ctxt->mode == X86EMUL_MODE_VM86) 2525 return true; 2526 iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> X86_EFLAGS_IOPL_BIT; 2527 return ctxt->ops->cpl(ctxt) > iopl; 2528 } 2529 2530 #define VMWARE_PORT_VMPORT (0x5658) 2531 #define VMWARE_PORT_VMRPC (0x5659) 2532 2533 static bool emulator_io_port_access_allowed(struct x86_emulate_ctxt *ctxt, 2534 u16 port, u16 len) 2535 { 2536 const struct x86_emulate_ops *ops = ctxt->ops; 2537 struct desc_struct tr_seg; 2538 u32 base3; 2539 int r; 2540 u16 tr, io_bitmap_ptr, perm, bit_idx = port & 0x7; 2541 unsigned mask = (1 << len) - 1; 2542 unsigned long base; 2543 2544 /* 2545 * VMware allows access to these ports even if denied 2546 * by TSS I/O permission bitmap. Mimic behavior. 2547 */ 2548 if (enable_vmware_backdoor && 2549 ((port == VMWARE_PORT_VMPORT) || (port == VMWARE_PORT_VMRPC))) 2550 return true; 2551 2552 ops->get_segment(ctxt, &tr, &tr_seg, &base3, VCPU_SREG_TR); 2553 if (!tr_seg.p) 2554 return false; 2555 if (desc_limit_scaled(&tr_seg) < 103) 2556 return false; 2557 base = get_desc_base(&tr_seg); 2558 #ifdef CONFIG_X86_64 2559 base |= ((u64)base3) << 32; 2560 #endif 2561 r = ops->read_std(ctxt, base + 102, &io_bitmap_ptr, 2, NULL, true); 2562 if (r != X86EMUL_CONTINUE) 2563 return false; 2564 if (io_bitmap_ptr + port/8 > desc_limit_scaled(&tr_seg)) 2565 return false; 2566 r = ops->read_std(ctxt, base + io_bitmap_ptr + port/8, &perm, 2, NULL, true); 2567 if (r != X86EMUL_CONTINUE) 2568 return false; 2569 if ((perm >> bit_idx) & mask) 2570 return false; 2571 return true; 2572 } 2573 2574 static bool emulator_io_permitted(struct x86_emulate_ctxt *ctxt, 2575 u16 port, u16 len) 2576 { 2577 if (ctxt->perm_ok) 2578 return true; 2579 2580 if (emulator_bad_iopl(ctxt)) 2581 if (!emulator_io_port_access_allowed(ctxt, port, len)) 2582 return false; 2583 2584 ctxt->perm_ok = true; 2585 2586 return true; 2587 } 2588 2589 static void string_registers_quirk(struct x86_emulate_ctxt *ctxt) 2590 { 2591 /* 2592 * Intel CPUs mask the counter and pointers in quite strange 2593 * manner when ECX is zero due to REP-string optimizations. 2594 */ 2595 #ifdef CONFIG_X86_64 2596 u32 eax, ebx, ecx, edx; 2597 2598 if (ctxt->ad_bytes != 4) 2599 return; 2600 2601 eax = ecx = 0; 2602 ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx, true); 2603 if (!is_guest_vendor_intel(ebx, ecx, edx)) 2604 return; 2605 2606 *reg_write(ctxt, VCPU_REGS_RCX) = 0; 2607 2608 switch (ctxt->b) { 2609 case 0xa4: /* movsb */ 2610 case 0xa5: /* movsd/w */ 2611 *reg_rmw(ctxt, VCPU_REGS_RSI) &= (u32)-1; 2612 fallthrough; 2613 case 0xaa: /* stosb */ 2614 case 0xab: /* stosd/w */ 2615 *reg_rmw(ctxt, VCPU_REGS_RDI) &= (u32)-1; 2616 } 2617 #endif 2618 } 2619 2620 static void save_state_to_tss16(struct x86_emulate_ctxt *ctxt, 2621 struct tss_segment_16 *tss) 2622 { 2623 tss->ip = ctxt->_eip; 2624 tss->flag = ctxt->eflags; 2625 tss->ax = reg_read(ctxt, VCPU_REGS_RAX); 2626 tss->cx = reg_read(ctxt, VCPU_REGS_RCX); 2627 tss->dx = reg_read(ctxt, VCPU_REGS_RDX); 2628 tss->bx = reg_read(ctxt, VCPU_REGS_RBX); 2629 tss->sp = reg_read(ctxt, VCPU_REGS_RSP); 2630 tss->bp = reg_read(ctxt, VCPU_REGS_RBP); 2631 tss->si = reg_read(ctxt, VCPU_REGS_RSI); 2632 tss->di = reg_read(ctxt, VCPU_REGS_RDI); 2633 2634 tss->es = get_segment_selector(ctxt, VCPU_SREG_ES); 2635 tss->cs = get_segment_selector(ctxt, VCPU_SREG_CS); 2636 tss->ss = get_segment_selector(ctxt, VCPU_SREG_SS); 2637 tss->ds = get_segment_selector(ctxt, VCPU_SREG_DS); 2638 tss->ldt = get_segment_selector(ctxt, VCPU_SREG_LDTR); 2639 } 2640 2641 static int load_state_from_tss16(struct x86_emulate_ctxt *ctxt, 2642 struct tss_segment_16 *tss) 2643 { 2644 int ret; 2645 u8 cpl; 2646 2647 ctxt->_eip = tss->ip; 2648 ctxt->eflags = tss->flag | 2; 2649 *reg_write(ctxt, VCPU_REGS_RAX) = tss->ax; 2650 *reg_write(ctxt, VCPU_REGS_RCX) = tss->cx; 2651 *reg_write(ctxt, VCPU_REGS_RDX) = tss->dx; 2652 *reg_write(ctxt, VCPU_REGS_RBX) = tss->bx; 2653 *reg_write(ctxt, VCPU_REGS_RSP) = tss->sp; 2654 *reg_write(ctxt, VCPU_REGS_RBP) = tss->bp; 2655 *reg_write(ctxt, VCPU_REGS_RSI) = tss->si; 2656 *reg_write(ctxt, VCPU_REGS_RDI) = tss->di; 2657 2658 /* 2659 * SDM says that segment selectors are loaded before segment 2660 * descriptors 2661 */ 2662 set_segment_selector(ctxt, tss->ldt, VCPU_SREG_LDTR); 2663 set_segment_selector(ctxt, tss->es, VCPU_SREG_ES); 2664 set_segment_selector(ctxt, tss->cs, VCPU_SREG_CS); 2665 set_segment_selector(ctxt, tss->ss, VCPU_SREG_SS); 2666 set_segment_selector(ctxt, tss->ds, VCPU_SREG_DS); 2667 2668 cpl = tss->cs & 3; 2669 2670 /* 2671 * Now load segment descriptors. If fault happens at this stage 2672 * it is handled in a context of new task 2673 */ 2674 ret = __load_segment_descriptor(ctxt, tss->ldt, VCPU_SREG_LDTR, cpl, 2675 X86_TRANSFER_TASK_SWITCH, NULL); 2676 if (ret != X86EMUL_CONTINUE) 2677 return ret; 2678 ret = __load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES, cpl, 2679 X86_TRANSFER_TASK_SWITCH, NULL); 2680 if (ret != X86EMUL_CONTINUE) 2681 return ret; 2682 ret = __load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS, cpl, 2683 X86_TRANSFER_TASK_SWITCH, NULL); 2684 if (ret != X86EMUL_CONTINUE) 2685 return ret; 2686 ret = __load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS, cpl, 2687 X86_TRANSFER_TASK_SWITCH, NULL); 2688 if (ret != X86EMUL_CONTINUE) 2689 return ret; 2690 ret = __load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS, cpl, 2691 X86_TRANSFER_TASK_SWITCH, NULL); 2692 if (ret != X86EMUL_CONTINUE) 2693 return ret; 2694 2695 return X86EMUL_CONTINUE; 2696 } 2697 2698 static int task_switch_16(struct x86_emulate_ctxt *ctxt, u16 old_tss_sel, 2699 ulong old_tss_base, struct desc_struct *new_desc) 2700 { 2701 struct tss_segment_16 tss_seg; 2702 int ret; 2703 u32 new_tss_base = get_desc_base(new_desc); 2704 2705 ret = linear_read_system(ctxt, old_tss_base, &tss_seg, sizeof(tss_seg)); 2706 if (ret != X86EMUL_CONTINUE) 2707 return ret; 2708 2709 save_state_to_tss16(ctxt, &tss_seg); 2710 2711 ret = linear_write_system(ctxt, old_tss_base, &tss_seg, sizeof(tss_seg)); 2712 if (ret != X86EMUL_CONTINUE) 2713 return ret; 2714 2715 ret = linear_read_system(ctxt, new_tss_base, &tss_seg, sizeof(tss_seg)); 2716 if (ret != X86EMUL_CONTINUE) 2717 return ret; 2718 2719 if (old_tss_sel != 0xffff) { 2720 tss_seg.prev_task_link = old_tss_sel; 2721 2722 ret = linear_write_system(ctxt, new_tss_base, 2723 &tss_seg.prev_task_link, 2724 sizeof(tss_seg.prev_task_link)); 2725 if (ret != X86EMUL_CONTINUE) 2726 return ret; 2727 } 2728 2729 return load_state_from_tss16(ctxt, &tss_seg); 2730 } 2731 2732 static void save_state_to_tss32(struct x86_emulate_ctxt *ctxt, 2733 struct tss_segment_32 *tss) 2734 { 2735 /* CR3 and ldt selector are not saved intentionally */ 2736 tss->eip = ctxt->_eip; 2737 tss->eflags = ctxt->eflags; 2738 tss->eax = reg_read(ctxt, VCPU_REGS_RAX); 2739 tss->ecx = reg_read(ctxt, VCPU_REGS_RCX); 2740 tss->edx = reg_read(ctxt, VCPU_REGS_RDX); 2741 tss->ebx = reg_read(ctxt, VCPU_REGS_RBX); 2742 tss->esp = reg_read(ctxt, VCPU_REGS_RSP); 2743 tss->ebp = reg_read(ctxt, VCPU_REGS_RBP); 2744 tss->esi = reg_read(ctxt, VCPU_REGS_RSI); 2745 tss->edi = reg_read(ctxt, VCPU_REGS_RDI); 2746 2747 tss->es = get_segment_selector(ctxt, VCPU_SREG_ES); 2748 tss->cs = get_segment_selector(ctxt, VCPU_SREG_CS); 2749 tss->ss = get_segment_selector(ctxt, VCPU_SREG_SS); 2750 tss->ds = get_segment_selector(ctxt, VCPU_SREG_DS); 2751 tss->fs = get_segment_selector(ctxt, VCPU_SREG_FS); 2752 tss->gs = get_segment_selector(ctxt, VCPU_SREG_GS); 2753 } 2754 2755 static int load_state_from_tss32(struct x86_emulate_ctxt *ctxt, 2756 struct tss_segment_32 *tss) 2757 { 2758 int ret; 2759 u8 cpl; 2760 2761 if (ctxt->ops->set_cr(ctxt, 3, tss->cr3)) 2762 return emulate_gp(ctxt, 0); 2763 ctxt->_eip = tss->eip; 2764 ctxt->eflags = tss->eflags | 2; 2765 2766 /* General purpose registers */ 2767 *reg_write(ctxt, VCPU_REGS_RAX) = tss->eax; 2768 *reg_write(ctxt, VCPU_REGS_RCX) = tss->ecx; 2769 *reg_write(ctxt, VCPU_REGS_RDX) = tss->edx; 2770 *reg_write(ctxt, VCPU_REGS_RBX) = tss->ebx; 2771 *reg_write(ctxt, VCPU_REGS_RSP) = tss->esp; 2772 *reg_write(ctxt, VCPU_REGS_RBP) = tss->ebp; 2773 *reg_write(ctxt, VCPU_REGS_RSI) = tss->esi; 2774 *reg_write(ctxt, VCPU_REGS_RDI) = tss->edi; 2775 2776 /* 2777 * SDM says that segment selectors are loaded before segment 2778 * descriptors. This is important because CPL checks will 2779 * use CS.RPL. 2780 */ 2781 set_segment_selector(ctxt, tss->ldt_selector, VCPU_SREG_LDTR); 2782 set_segment_selector(ctxt, tss->es, VCPU_SREG_ES); 2783 set_segment_selector(ctxt, tss->cs, VCPU_SREG_CS); 2784 set_segment_selector(ctxt, tss->ss, VCPU_SREG_SS); 2785 set_segment_selector(ctxt, tss->ds, VCPU_SREG_DS); 2786 set_segment_selector(ctxt, tss->fs, VCPU_SREG_FS); 2787 set_segment_selector(ctxt, tss->gs, VCPU_SREG_GS); 2788 2789 /* 2790 * If we're switching between Protected Mode and VM86, we need to make 2791 * sure to update the mode before loading the segment descriptors so 2792 * that the selectors are interpreted correctly. 2793 */ 2794 if (ctxt->eflags & X86_EFLAGS_VM) { 2795 ctxt->mode = X86EMUL_MODE_VM86; 2796 cpl = 3; 2797 } else { 2798 ctxt->mode = X86EMUL_MODE_PROT32; 2799 cpl = tss->cs & 3; 2800 } 2801 2802 /* 2803 * Now load segment descriptors. If fault happens at this stage 2804 * it is handled in a context of new task 2805 */ 2806 ret = __load_segment_descriptor(ctxt, tss->ldt_selector, VCPU_SREG_LDTR, 2807 cpl, X86_TRANSFER_TASK_SWITCH, NULL); 2808 if (ret != X86EMUL_CONTINUE) 2809 return ret; 2810 ret = __load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES, cpl, 2811 X86_TRANSFER_TASK_SWITCH, NULL); 2812 if (ret != X86EMUL_CONTINUE) 2813 return ret; 2814 ret = __load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS, cpl, 2815 X86_TRANSFER_TASK_SWITCH, NULL); 2816 if (ret != X86EMUL_CONTINUE) 2817 return ret; 2818 ret = __load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS, cpl, 2819 X86_TRANSFER_TASK_SWITCH, NULL); 2820 if (ret != X86EMUL_CONTINUE) 2821 return ret; 2822 ret = __load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS, cpl, 2823 X86_TRANSFER_TASK_SWITCH, NULL); 2824 if (ret != X86EMUL_CONTINUE) 2825 return ret; 2826 ret = __load_segment_descriptor(ctxt, tss->fs, VCPU_SREG_FS, cpl, 2827 X86_TRANSFER_TASK_SWITCH, NULL); 2828 if (ret != X86EMUL_CONTINUE) 2829 return ret; 2830 ret = __load_segment_descriptor(ctxt, tss->gs, VCPU_SREG_GS, cpl, 2831 X86_TRANSFER_TASK_SWITCH, NULL); 2832 2833 return ret; 2834 } 2835 2836 static int task_switch_32(struct x86_emulate_ctxt *ctxt, u16 old_tss_sel, 2837 ulong old_tss_base, struct desc_struct *new_desc) 2838 { 2839 struct tss_segment_32 tss_seg; 2840 int ret; 2841 u32 new_tss_base = get_desc_base(new_desc); 2842 u32 eip_offset = offsetof(struct tss_segment_32, eip); 2843 u32 ldt_sel_offset = offsetof(struct tss_segment_32, ldt_selector); 2844 2845 ret = linear_read_system(ctxt, old_tss_base, &tss_seg, sizeof(tss_seg)); 2846 if (ret != X86EMUL_CONTINUE) 2847 return ret; 2848 2849 save_state_to_tss32(ctxt, &tss_seg); 2850 2851 /* Only GP registers and segment selectors are saved */ 2852 ret = linear_write_system(ctxt, old_tss_base + eip_offset, &tss_seg.eip, 2853 ldt_sel_offset - eip_offset); 2854 if (ret != X86EMUL_CONTINUE) 2855 return ret; 2856 2857 ret = linear_read_system(ctxt, new_tss_base, &tss_seg, sizeof(tss_seg)); 2858 if (ret != X86EMUL_CONTINUE) 2859 return ret; 2860 2861 if (old_tss_sel != 0xffff) { 2862 tss_seg.prev_task_link = old_tss_sel; 2863 2864 ret = linear_write_system(ctxt, new_tss_base, 2865 &tss_seg.prev_task_link, 2866 sizeof(tss_seg.prev_task_link)); 2867 if (ret != X86EMUL_CONTINUE) 2868 return ret; 2869 } 2870 2871 return load_state_from_tss32(ctxt, &tss_seg); 2872 } 2873 2874 static int emulator_do_task_switch(struct x86_emulate_ctxt *ctxt, 2875 u16 tss_selector, int idt_index, int reason, 2876 bool has_error_code, u32 error_code) 2877 { 2878 const struct x86_emulate_ops *ops = ctxt->ops; 2879 struct desc_struct curr_tss_desc, next_tss_desc; 2880 int ret; 2881 u16 old_tss_sel = get_segment_selector(ctxt, VCPU_SREG_TR); 2882 ulong old_tss_base = 2883 ops->get_cached_segment_base(ctxt, VCPU_SREG_TR); 2884 u32 desc_limit; 2885 ulong desc_addr, dr7; 2886 2887 /* FIXME: old_tss_base == ~0 ? */ 2888 2889 ret = read_segment_descriptor(ctxt, tss_selector, &next_tss_desc, &desc_addr); 2890 if (ret != X86EMUL_CONTINUE) 2891 return ret; 2892 ret = read_segment_descriptor(ctxt, old_tss_sel, &curr_tss_desc, &desc_addr); 2893 if (ret != X86EMUL_CONTINUE) 2894 return ret; 2895 2896 /* FIXME: check that next_tss_desc is tss */ 2897 2898 /* 2899 * Check privileges. The three cases are task switch caused by... 2900 * 2901 * 1. jmp/call/int to task gate: Check against DPL of the task gate 2902 * 2. Exception/IRQ/iret: No check is performed 2903 * 3. jmp/call to TSS/task-gate: No check is performed since the 2904 * hardware checks it before exiting. 2905 */ 2906 if (reason == TASK_SWITCH_GATE) { 2907 if (idt_index != -1) { 2908 /* Software interrupts */ 2909 struct desc_struct task_gate_desc; 2910 int dpl; 2911 2912 ret = read_interrupt_descriptor(ctxt, idt_index, 2913 &task_gate_desc); 2914 if (ret != X86EMUL_CONTINUE) 2915 return ret; 2916 2917 dpl = task_gate_desc.dpl; 2918 if ((tss_selector & 3) > dpl || ops->cpl(ctxt) > dpl) 2919 return emulate_gp(ctxt, (idt_index << 3) | 0x2); 2920 } 2921 } 2922 2923 desc_limit = desc_limit_scaled(&next_tss_desc); 2924 if (!next_tss_desc.p || 2925 ((desc_limit < 0x67 && (next_tss_desc.type & 8)) || 2926 desc_limit < 0x2b)) { 2927 return emulate_ts(ctxt, tss_selector & 0xfffc); 2928 } 2929 2930 if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) { 2931 curr_tss_desc.type &= ~(1 << 1); /* clear busy flag */ 2932 write_segment_descriptor(ctxt, old_tss_sel, &curr_tss_desc); 2933 } 2934 2935 if (reason == TASK_SWITCH_IRET) 2936 ctxt->eflags = ctxt->eflags & ~X86_EFLAGS_NT; 2937 2938 /* set back link to prev task only if NT bit is set in eflags 2939 note that old_tss_sel is not used after this point */ 2940 if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE) 2941 old_tss_sel = 0xffff; 2942 2943 if (next_tss_desc.type & 8) 2944 ret = task_switch_32(ctxt, old_tss_sel, old_tss_base, &next_tss_desc); 2945 else 2946 ret = task_switch_16(ctxt, old_tss_sel, 2947 old_tss_base, &next_tss_desc); 2948 if (ret != X86EMUL_CONTINUE) 2949 return ret; 2950 2951 if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) 2952 ctxt->eflags = ctxt->eflags | X86_EFLAGS_NT; 2953 2954 if (reason != TASK_SWITCH_IRET) { 2955 next_tss_desc.type |= (1 << 1); /* set busy flag */ 2956 write_segment_descriptor(ctxt, tss_selector, &next_tss_desc); 2957 } 2958 2959 ops->set_cr(ctxt, 0, ops->get_cr(ctxt, 0) | X86_CR0_TS); 2960 ops->set_segment(ctxt, tss_selector, &next_tss_desc, 0, VCPU_SREG_TR); 2961 2962 if (has_error_code) { 2963 ctxt->op_bytes = ctxt->ad_bytes = (next_tss_desc.type & 8) ? 4 : 2; 2964 ctxt->lock_prefix = 0; 2965 ctxt->src.val = (unsigned long) error_code; 2966 ret = em_push(ctxt); 2967 } 2968 2969 dr7 = ops->get_dr(ctxt, 7); 2970 ops->set_dr(ctxt, 7, dr7 & ~(DR_LOCAL_ENABLE_MASK | DR_LOCAL_SLOWDOWN)); 2971 2972 return ret; 2973 } 2974 2975 int emulator_task_switch(struct x86_emulate_ctxt *ctxt, 2976 u16 tss_selector, int idt_index, int reason, 2977 bool has_error_code, u32 error_code) 2978 { 2979 int rc; 2980 2981 invalidate_registers(ctxt); 2982 ctxt->_eip = ctxt->eip; 2983 ctxt->dst.type = OP_NONE; 2984 2985 rc = emulator_do_task_switch(ctxt, tss_selector, idt_index, reason, 2986 has_error_code, error_code); 2987 2988 if (rc == X86EMUL_CONTINUE) { 2989 ctxt->eip = ctxt->_eip; 2990 writeback_registers(ctxt); 2991 } 2992 2993 return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK; 2994 } 2995 2996 static void string_addr_inc(struct x86_emulate_ctxt *ctxt, int reg, 2997 struct operand *op) 2998 { 2999 int df = (ctxt->eflags & X86_EFLAGS_DF) ? -op->count : op->count; 3000 3001 register_address_increment(ctxt, reg, df * op->bytes); 3002 op->addr.mem.ea = register_address(ctxt, reg); 3003 } 3004 3005 static int em_das(struct x86_emulate_ctxt *ctxt) 3006 { 3007 u8 al, old_al; 3008 bool af, cf, old_cf; 3009 3010 cf = ctxt->eflags & X86_EFLAGS_CF; 3011 al = ctxt->dst.val; 3012 3013 old_al = al; 3014 old_cf = cf; 3015 cf = false; 3016 af = ctxt->eflags & X86_EFLAGS_AF; 3017 if ((al & 0x0f) > 9 || af) { 3018 al -= 6; 3019 cf = old_cf | (al >= 250); 3020 af = true; 3021 } else { 3022 af = false; 3023 } 3024 if (old_al > 0x99 || old_cf) { 3025 al -= 0x60; 3026 cf = true; 3027 } 3028 3029 ctxt->dst.val = al; 3030 /* Set PF, ZF, SF */ 3031 ctxt->src.type = OP_IMM; 3032 ctxt->src.val = 0; 3033 ctxt->src.bytes = 1; 3034 em_or(ctxt); 3035 ctxt->eflags &= ~(X86_EFLAGS_AF | X86_EFLAGS_CF); 3036 if (cf) 3037 ctxt->eflags |= X86_EFLAGS_CF; 3038 if (af) 3039 ctxt->eflags |= X86_EFLAGS_AF; 3040 return X86EMUL_CONTINUE; 3041 } 3042 3043 static int em_aam(struct x86_emulate_ctxt *ctxt) 3044 { 3045 u8 al, ah; 3046 3047 if (ctxt->src.val == 0) 3048 return emulate_de(ctxt); 3049 3050 al = ctxt->dst.val & 0xff; 3051 ah = al / ctxt->src.val; 3052 al %= ctxt->src.val; 3053 3054 ctxt->dst.val = (ctxt->dst.val & 0xffff0000) | al | (ah << 8); 3055 3056 /* Set PF, ZF, SF */ 3057 ctxt->src.type = OP_IMM; 3058 ctxt->src.val = 0; 3059 ctxt->src.bytes = 1; 3060 em_or(ctxt); 3061 3062 return X86EMUL_CONTINUE; 3063 } 3064 3065 static int em_aad(struct x86_emulate_ctxt *ctxt) 3066 { 3067 u8 al = ctxt->dst.val & 0xff; 3068 u8 ah = (ctxt->dst.val >> 8) & 0xff; 3069 3070 al = (al + (ah * ctxt->src.val)) & 0xff; 3071 3072 ctxt->dst.val = (ctxt->dst.val & 0xffff0000) | al; 3073 3074 /* Set PF, ZF, SF */ 3075 ctxt->src.type = OP_IMM; 3076 ctxt->src.val = 0; 3077 ctxt->src.bytes = 1; 3078 em_or(ctxt); 3079 3080 return X86EMUL_CONTINUE; 3081 } 3082 3083 static int em_call(struct x86_emulate_ctxt *ctxt) 3084 { 3085 int rc; 3086 long rel = ctxt->src.val; 3087 3088 ctxt->src.val = (unsigned long)ctxt->_eip; 3089 rc = jmp_rel(ctxt, rel); 3090 if (rc != X86EMUL_CONTINUE) 3091 return rc; 3092 return em_push(ctxt); 3093 } 3094 3095 static int em_call_far(struct x86_emulate_ctxt *ctxt) 3096 { 3097 u16 sel, old_cs; 3098 ulong old_eip; 3099 int rc; 3100 struct desc_struct old_desc, new_desc; 3101 const struct x86_emulate_ops *ops = ctxt->ops; 3102 int cpl = ctxt->ops->cpl(ctxt); 3103 enum x86emul_mode prev_mode = ctxt->mode; 3104 3105 old_eip = ctxt->_eip; 3106 ops->get_segment(ctxt, &old_cs, &old_desc, NULL, VCPU_SREG_CS); 3107 3108 memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2); 3109 rc = __load_segment_descriptor(ctxt, sel, VCPU_SREG_CS, cpl, 3110 X86_TRANSFER_CALL_JMP, &new_desc); 3111 if (rc != X86EMUL_CONTINUE) 3112 return rc; 3113 3114 rc = assign_eip_far(ctxt, ctxt->src.val); 3115 if (rc != X86EMUL_CONTINUE) 3116 goto fail; 3117 3118 ctxt->src.val = old_cs; 3119 rc = em_push(ctxt); 3120 if (rc != X86EMUL_CONTINUE) 3121 goto fail; 3122 3123 ctxt->src.val = old_eip; 3124 rc = em_push(ctxt); 3125 /* If we failed, we tainted the memory, but the very least we should 3126 restore cs */ 3127 if (rc != X86EMUL_CONTINUE) { 3128 pr_warn_once("faulting far call emulation tainted memory\n"); 3129 goto fail; 3130 } 3131 return rc; 3132 fail: 3133 ops->set_segment(ctxt, old_cs, &old_desc, 0, VCPU_SREG_CS); 3134 ctxt->mode = prev_mode; 3135 return rc; 3136 3137 } 3138 3139 static int em_ret_near_imm(struct x86_emulate_ctxt *ctxt) 3140 { 3141 int rc; 3142 unsigned long eip = 0; 3143 3144 rc = emulate_pop(ctxt, &eip, ctxt->op_bytes); 3145 if (rc != X86EMUL_CONTINUE) 3146 return rc; 3147 rc = assign_eip_near(ctxt, eip); 3148 if (rc != X86EMUL_CONTINUE) 3149 return rc; 3150 rsp_increment(ctxt, ctxt->src.val); 3151 return X86EMUL_CONTINUE; 3152 } 3153 3154 static int em_xchg(struct x86_emulate_ctxt *ctxt) 3155 { 3156 /* Write back the register source. */ 3157 ctxt->src.val = ctxt->dst.val; 3158 write_register_operand(&ctxt->src); 3159 3160 /* Write back the memory destination with implicit LOCK prefix. */ 3161 ctxt->dst.val = ctxt->src.orig_val; 3162 ctxt->lock_prefix = 1; 3163 return X86EMUL_CONTINUE; 3164 } 3165 3166 static int em_imul_3op(struct x86_emulate_ctxt *ctxt) 3167 { 3168 ctxt->dst.val = ctxt->src2.val; 3169 return em_imul(ctxt); 3170 } 3171 3172 static int em_cwd(struct x86_emulate_ctxt *ctxt) 3173 { 3174 ctxt->dst.type = OP_REG; 3175 ctxt->dst.bytes = ctxt->src.bytes; 3176 ctxt->dst.addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX); 3177 ctxt->dst.val = ~((ctxt->src.val >> (ctxt->src.bytes * 8 - 1)) - 1); 3178 3179 return X86EMUL_CONTINUE; 3180 } 3181 3182 static int em_rdpid(struct x86_emulate_ctxt *ctxt) 3183 { 3184 u64 tsc_aux = 0; 3185 3186 if (!ctxt->ops->guest_has_rdpid(ctxt)) 3187 return emulate_ud(ctxt); 3188 3189 ctxt->ops->get_msr(ctxt, MSR_TSC_AUX, &tsc_aux); 3190 ctxt->dst.val = tsc_aux; 3191 return X86EMUL_CONTINUE; 3192 } 3193 3194 static int em_rdtsc(struct x86_emulate_ctxt *ctxt) 3195 { 3196 u64 tsc = 0; 3197 3198 ctxt->ops->get_msr(ctxt, MSR_IA32_TSC, &tsc); 3199 *reg_write(ctxt, VCPU_REGS_RAX) = (u32)tsc; 3200 *reg_write(ctxt, VCPU_REGS_RDX) = tsc >> 32; 3201 return X86EMUL_CONTINUE; 3202 } 3203 3204 static int em_rdpmc(struct x86_emulate_ctxt *ctxt) 3205 { 3206 u64 pmc; 3207 3208 if (ctxt->ops->read_pmc(ctxt, reg_read(ctxt, VCPU_REGS_RCX), &pmc)) 3209 return emulate_gp(ctxt, 0); 3210 *reg_write(ctxt, VCPU_REGS_RAX) = (u32)pmc; 3211 *reg_write(ctxt, VCPU_REGS_RDX) = pmc >> 32; 3212 return X86EMUL_CONTINUE; 3213 } 3214 3215 static int em_mov(struct x86_emulate_ctxt *ctxt) 3216 { 3217 memcpy(ctxt->dst.valptr, ctxt->src.valptr, sizeof(ctxt->src.valptr)); 3218 return X86EMUL_CONTINUE; 3219 } 3220 3221 static int em_movbe(struct x86_emulate_ctxt *ctxt) 3222 { 3223 u16 tmp; 3224 3225 if (!ctxt->ops->guest_has_movbe(ctxt)) 3226 return emulate_ud(ctxt); 3227 3228 switch (ctxt->op_bytes) { 3229 case 2: 3230 /* 3231 * From MOVBE definition: "...When the operand size is 16 bits, 3232 * the upper word of the destination register remains unchanged 3233 * ..." 3234 * 3235 * Both casting ->valptr and ->val to u16 breaks strict aliasing 3236 * rules so we have to do the operation almost per hand. 3237 */ 3238 tmp = (u16)ctxt->src.val; 3239 ctxt->dst.val &= ~0xffffUL; 3240 ctxt->dst.val |= (unsigned long)swab16(tmp); 3241 break; 3242 case 4: 3243 ctxt->dst.val = swab32((u32)ctxt->src.val); 3244 break; 3245 case 8: 3246 ctxt->dst.val = swab64(ctxt->src.val); 3247 break; 3248 default: 3249 BUG(); 3250 } 3251 return X86EMUL_CONTINUE; 3252 } 3253 3254 static int em_cr_write(struct x86_emulate_ctxt *ctxt) 3255 { 3256 int cr_num = ctxt->modrm_reg; 3257 int r; 3258 3259 if (ctxt->ops->set_cr(ctxt, cr_num, ctxt->src.val)) 3260 return emulate_gp(ctxt, 0); 3261 3262 /* Disable writeback. */ 3263 ctxt->dst.type = OP_NONE; 3264 3265 if (cr_num == 0) { 3266 /* 3267 * CR0 write might have updated CR0.PE and/or CR0.PG 3268 * which can affect the cpu's execution mode. 3269 */ 3270 r = emulator_recalc_and_set_mode(ctxt); 3271 if (r != X86EMUL_CONTINUE) 3272 return r; 3273 } 3274 3275 return X86EMUL_CONTINUE; 3276 } 3277 3278 static int em_dr_write(struct x86_emulate_ctxt *ctxt) 3279 { 3280 unsigned long val; 3281 3282 if (ctxt->mode == X86EMUL_MODE_PROT64) 3283 val = ctxt->src.val & ~0ULL; 3284 else 3285 val = ctxt->src.val & ~0U; 3286 3287 /* #UD condition is already handled. */ 3288 if (ctxt->ops->set_dr(ctxt, ctxt->modrm_reg, val) < 0) 3289 return emulate_gp(ctxt, 0); 3290 3291 /* Disable writeback. */ 3292 ctxt->dst.type = OP_NONE; 3293 return X86EMUL_CONTINUE; 3294 } 3295 3296 static int em_wrmsr(struct x86_emulate_ctxt *ctxt) 3297 { 3298 u64 msr_index = reg_read(ctxt, VCPU_REGS_RCX); 3299 u64 msr_data; 3300 int r; 3301 3302 msr_data = (u32)reg_read(ctxt, VCPU_REGS_RAX) 3303 | ((u64)reg_read(ctxt, VCPU_REGS_RDX) << 32); 3304 r = ctxt->ops->set_msr_with_filter(ctxt, msr_index, msr_data); 3305 3306 if (r == X86EMUL_PROPAGATE_FAULT) 3307 return emulate_gp(ctxt, 0); 3308 3309 return r; 3310 } 3311 3312 static int em_rdmsr(struct x86_emulate_ctxt *ctxt) 3313 { 3314 u64 msr_index = reg_read(ctxt, VCPU_REGS_RCX); 3315 u64 msr_data; 3316 int r; 3317 3318 r = ctxt->ops->get_msr_with_filter(ctxt, msr_index, &msr_data); 3319 3320 if (r == X86EMUL_PROPAGATE_FAULT) 3321 return emulate_gp(ctxt, 0); 3322 3323 if (r == X86EMUL_CONTINUE) { 3324 *reg_write(ctxt, VCPU_REGS_RAX) = (u32)msr_data; 3325 *reg_write(ctxt, VCPU_REGS_RDX) = msr_data >> 32; 3326 } 3327 return r; 3328 } 3329 3330 static int em_store_sreg(struct x86_emulate_ctxt *ctxt, int segment) 3331 { 3332 if (segment > VCPU_SREG_GS && 3333 (ctxt->ops->get_cr(ctxt, 4) & X86_CR4_UMIP) && 3334 ctxt->ops->cpl(ctxt) > 0) 3335 return emulate_gp(ctxt, 0); 3336 3337 ctxt->dst.val = get_segment_selector(ctxt, segment); 3338 if (ctxt->dst.bytes == 4 && ctxt->dst.type == OP_MEM) 3339 ctxt->dst.bytes = 2; 3340 return X86EMUL_CONTINUE; 3341 } 3342 3343 static int em_mov_rm_sreg(struct x86_emulate_ctxt *ctxt) 3344 { 3345 if (ctxt->modrm_reg > VCPU_SREG_GS) 3346 return emulate_ud(ctxt); 3347 3348 return em_store_sreg(ctxt, ctxt->modrm_reg); 3349 } 3350 3351 static int em_mov_sreg_rm(struct x86_emulate_ctxt *ctxt) 3352 { 3353 u16 sel = ctxt->src.val; 3354 3355 if (ctxt->modrm_reg == VCPU_SREG_CS || ctxt->modrm_reg > VCPU_SREG_GS) 3356 return emulate_ud(ctxt); 3357 3358 if (ctxt->modrm_reg == VCPU_SREG_SS) 3359 ctxt->interruptibility = KVM_X86_SHADOW_INT_MOV_SS; 3360 3361 /* Disable writeback. */ 3362 ctxt->dst.type = OP_NONE; 3363 return load_segment_descriptor(ctxt, sel, ctxt->modrm_reg); 3364 } 3365 3366 static int em_sldt(struct x86_emulate_ctxt *ctxt) 3367 { 3368 return em_store_sreg(ctxt, VCPU_SREG_LDTR); 3369 } 3370 3371 static int em_lldt(struct x86_emulate_ctxt *ctxt) 3372 { 3373 u16 sel = ctxt->src.val; 3374 3375 /* Disable writeback. */ 3376 ctxt->dst.type = OP_NONE; 3377 return load_segment_descriptor(ctxt, sel, VCPU_SREG_LDTR); 3378 } 3379 3380 static int em_str(struct x86_emulate_ctxt *ctxt) 3381 { 3382 return em_store_sreg(ctxt, VCPU_SREG_TR); 3383 } 3384 3385 static int em_ltr(struct x86_emulate_ctxt *ctxt) 3386 { 3387 u16 sel = ctxt->src.val; 3388 3389 /* Disable writeback. */ 3390 ctxt->dst.type = OP_NONE; 3391 return load_segment_descriptor(ctxt, sel, VCPU_SREG_TR); 3392 } 3393 3394 static int em_invlpg(struct x86_emulate_ctxt *ctxt) 3395 { 3396 int rc; 3397 ulong linear; 3398 unsigned int max_size; 3399 3400 rc = __linearize(ctxt, ctxt->src.addr.mem, &max_size, 1, ctxt->mode, 3401 &linear, X86EMUL_F_INVLPG); 3402 if (rc == X86EMUL_CONTINUE) 3403 ctxt->ops->invlpg(ctxt, linear); 3404 /* Disable writeback. */ 3405 ctxt->dst.type = OP_NONE; 3406 return X86EMUL_CONTINUE; 3407 } 3408 3409 static int em_clts(struct x86_emulate_ctxt *ctxt) 3410 { 3411 ulong cr0; 3412 3413 cr0 = ctxt->ops->get_cr(ctxt, 0); 3414 cr0 &= ~X86_CR0_TS; 3415 ctxt->ops->set_cr(ctxt, 0, cr0); 3416 return X86EMUL_CONTINUE; 3417 } 3418 3419 static int em_hypercall(struct x86_emulate_ctxt *ctxt) 3420 { 3421 int rc = ctxt->ops->fix_hypercall(ctxt); 3422 3423 if (rc != X86EMUL_CONTINUE) 3424 return rc; 3425 3426 /* Let the processor re-execute the fixed hypercall */ 3427 ctxt->_eip = ctxt->eip; 3428 /* Disable writeback. */ 3429 ctxt->dst.type = OP_NONE; 3430 return X86EMUL_CONTINUE; 3431 } 3432 3433 static int emulate_store_desc_ptr(struct x86_emulate_ctxt *ctxt, 3434 void (*get)(struct x86_emulate_ctxt *ctxt, 3435 struct desc_ptr *ptr)) 3436 { 3437 struct desc_ptr desc_ptr; 3438 3439 if ((ctxt->ops->get_cr(ctxt, 4) & X86_CR4_UMIP) && 3440 ctxt->ops->cpl(ctxt) > 0) 3441 return emulate_gp(ctxt, 0); 3442 3443 if (ctxt->mode == X86EMUL_MODE_PROT64) 3444 ctxt->op_bytes = 8; 3445 get(ctxt, &desc_ptr); 3446 if (ctxt->op_bytes == 2) { 3447 ctxt->op_bytes = 4; 3448 desc_ptr.address &= 0x00ffffff; 3449 } 3450 /* Disable writeback. */ 3451 ctxt->dst.type = OP_NONE; 3452 return segmented_write_std(ctxt, ctxt->dst.addr.mem, 3453 &desc_ptr, 2 + ctxt->op_bytes); 3454 } 3455 3456 static int em_sgdt(struct x86_emulate_ctxt *ctxt) 3457 { 3458 return emulate_store_desc_ptr(ctxt, ctxt->ops->get_gdt); 3459 } 3460 3461 static int em_sidt(struct x86_emulate_ctxt *ctxt) 3462 { 3463 return emulate_store_desc_ptr(ctxt, ctxt->ops->get_idt); 3464 } 3465 3466 static int em_lgdt_lidt(struct x86_emulate_ctxt *ctxt, bool lgdt) 3467 { 3468 struct desc_ptr desc_ptr; 3469 int rc; 3470 3471 if (ctxt->mode == X86EMUL_MODE_PROT64) 3472 ctxt->op_bytes = 8; 3473 rc = read_descriptor(ctxt, ctxt->src.addr.mem, 3474 &desc_ptr.size, &desc_ptr.address, 3475 ctxt->op_bytes); 3476 if (rc != X86EMUL_CONTINUE) 3477 return rc; 3478 if (ctxt->mode == X86EMUL_MODE_PROT64 && 3479 emul_is_noncanonical_address(desc_ptr.address, ctxt, 3480 X86EMUL_F_DT_LOAD)) 3481 return emulate_gp(ctxt, 0); 3482 if (lgdt) 3483 ctxt->ops->set_gdt(ctxt, &desc_ptr); 3484 else 3485 ctxt->ops->set_idt(ctxt, &desc_ptr); 3486 /* Disable writeback. */ 3487 ctxt->dst.type = OP_NONE; 3488 return X86EMUL_CONTINUE; 3489 } 3490 3491 static int em_lgdt(struct x86_emulate_ctxt *ctxt) 3492 { 3493 return em_lgdt_lidt(ctxt, true); 3494 } 3495 3496 static int em_lidt(struct x86_emulate_ctxt *ctxt) 3497 { 3498 return em_lgdt_lidt(ctxt, false); 3499 } 3500 3501 static int em_smsw(struct x86_emulate_ctxt *ctxt) 3502 { 3503 if ((ctxt->ops->get_cr(ctxt, 4) & X86_CR4_UMIP) && 3504 ctxt->ops->cpl(ctxt) > 0) 3505 return emulate_gp(ctxt, 0); 3506 3507 if (ctxt->dst.type == OP_MEM) 3508 ctxt->dst.bytes = 2; 3509 ctxt->dst.val = ctxt->ops->get_cr(ctxt, 0); 3510 return X86EMUL_CONTINUE; 3511 } 3512 3513 static int em_lmsw(struct x86_emulate_ctxt *ctxt) 3514 { 3515 ctxt->ops->set_cr(ctxt, 0, (ctxt->ops->get_cr(ctxt, 0) & ~0x0eul) 3516 | (ctxt->src.val & 0x0f)); 3517 ctxt->dst.type = OP_NONE; 3518 return X86EMUL_CONTINUE; 3519 } 3520 3521 static int em_loop(struct x86_emulate_ctxt *ctxt) 3522 { 3523 int rc = X86EMUL_CONTINUE; 3524 3525 register_address_increment(ctxt, VCPU_REGS_RCX, -1); 3526 if ((address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) != 0) && 3527 (ctxt->b == 0xe2 || test_cc(ctxt->b ^ 0x5, ctxt->eflags))) 3528 rc = jmp_rel(ctxt, ctxt->src.val); 3529 3530 return rc; 3531 } 3532 3533 static int em_jcxz(struct x86_emulate_ctxt *ctxt) 3534 { 3535 int rc = X86EMUL_CONTINUE; 3536 3537 if (address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) == 0) 3538 rc = jmp_rel(ctxt, ctxt->src.val); 3539 3540 return rc; 3541 } 3542 3543 static int em_in(struct x86_emulate_ctxt *ctxt) 3544 { 3545 if (!pio_in_emulated(ctxt, ctxt->dst.bytes, ctxt->src.val, 3546 &ctxt->dst.val)) 3547 return X86EMUL_IO_NEEDED; 3548 3549 return X86EMUL_CONTINUE; 3550 } 3551 3552 static int em_out(struct x86_emulate_ctxt *ctxt) 3553 { 3554 ctxt->ops->pio_out_emulated(ctxt, ctxt->src.bytes, ctxt->dst.val, 3555 &ctxt->src.val, 1); 3556 /* Disable writeback. */ 3557 ctxt->dst.type = OP_NONE; 3558 return X86EMUL_CONTINUE; 3559 } 3560 3561 static int em_cli(struct x86_emulate_ctxt *ctxt) 3562 { 3563 if (emulator_bad_iopl(ctxt)) 3564 return emulate_gp(ctxt, 0); 3565 3566 ctxt->eflags &= ~X86_EFLAGS_IF; 3567 return X86EMUL_CONTINUE; 3568 } 3569 3570 static int em_sti(struct x86_emulate_ctxt *ctxt) 3571 { 3572 if (emulator_bad_iopl(ctxt)) 3573 return emulate_gp(ctxt, 0); 3574 3575 ctxt->interruptibility = KVM_X86_SHADOW_INT_STI; 3576 ctxt->eflags |= X86_EFLAGS_IF; 3577 return X86EMUL_CONTINUE; 3578 } 3579 3580 static int em_cpuid(struct x86_emulate_ctxt *ctxt) 3581 { 3582 u32 eax, ebx, ecx, edx; 3583 u64 msr = 0; 3584 3585 ctxt->ops->get_msr(ctxt, MSR_MISC_FEATURES_ENABLES, &msr); 3586 if (msr & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 3587 ctxt->ops->cpl(ctxt)) { 3588 return emulate_gp(ctxt, 0); 3589 } 3590 3591 eax = reg_read(ctxt, VCPU_REGS_RAX); 3592 ecx = reg_read(ctxt, VCPU_REGS_RCX); 3593 ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx, false); 3594 *reg_write(ctxt, VCPU_REGS_RAX) = eax; 3595 *reg_write(ctxt, VCPU_REGS_RBX) = ebx; 3596 *reg_write(ctxt, VCPU_REGS_RCX) = ecx; 3597 *reg_write(ctxt, VCPU_REGS_RDX) = edx; 3598 return X86EMUL_CONTINUE; 3599 } 3600 3601 static int em_sahf(struct x86_emulate_ctxt *ctxt) 3602 { 3603 u32 flags; 3604 3605 flags = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF | 3606 X86_EFLAGS_SF; 3607 flags &= *reg_rmw(ctxt, VCPU_REGS_RAX) >> 8; 3608 3609 ctxt->eflags &= ~0xffUL; 3610 ctxt->eflags |= flags | X86_EFLAGS_FIXED; 3611 return X86EMUL_CONTINUE; 3612 } 3613 3614 static int em_lahf(struct x86_emulate_ctxt *ctxt) 3615 { 3616 *reg_rmw(ctxt, VCPU_REGS_RAX) &= ~0xff00UL; 3617 *reg_rmw(ctxt, VCPU_REGS_RAX) |= (ctxt->eflags & 0xff) << 8; 3618 return X86EMUL_CONTINUE; 3619 } 3620 3621 static int em_bswap(struct x86_emulate_ctxt *ctxt) 3622 { 3623 switch (ctxt->op_bytes) { 3624 #ifdef CONFIG_X86_64 3625 case 8: 3626 asm("bswap %0" : "+r"(ctxt->dst.val)); 3627 break; 3628 #endif 3629 default: 3630 asm("bswap %0" : "+r"(*(u32 *)&ctxt->dst.val)); 3631 break; 3632 } 3633 return X86EMUL_CONTINUE; 3634 } 3635 3636 static int em_clflush(struct x86_emulate_ctxt *ctxt) 3637 { 3638 /* emulating clflush regardless of cpuid */ 3639 return X86EMUL_CONTINUE; 3640 } 3641 3642 static int em_clflushopt(struct x86_emulate_ctxt *ctxt) 3643 { 3644 /* emulating clflushopt regardless of cpuid */ 3645 return X86EMUL_CONTINUE; 3646 } 3647 3648 static int em_movsxd(struct x86_emulate_ctxt *ctxt) 3649 { 3650 ctxt->dst.val = (s32) ctxt->src.val; 3651 return X86EMUL_CONTINUE; 3652 } 3653 3654 static int check_fxsr(struct x86_emulate_ctxt *ctxt) 3655 { 3656 if (!ctxt->ops->guest_has_fxsr(ctxt)) 3657 return emulate_ud(ctxt); 3658 3659 if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM)) 3660 return emulate_nm(ctxt); 3661 3662 /* 3663 * Don't emulate a case that should never be hit, instead of working 3664 * around a lack of fxsave64/fxrstor64 on old compilers. 3665 */ 3666 if (ctxt->mode >= X86EMUL_MODE_PROT64) 3667 return X86EMUL_UNHANDLEABLE; 3668 3669 return X86EMUL_CONTINUE; 3670 } 3671 3672 /* 3673 * Hardware doesn't save and restore XMM 0-7 without CR4.OSFXSR, but does save 3674 * and restore MXCSR. 3675 */ 3676 static size_t __fxstate_size(int nregs) 3677 { 3678 return offsetof(struct fxregs_state, xmm_space[0]) + nregs * 16; 3679 } 3680 3681 static inline size_t fxstate_size(struct x86_emulate_ctxt *ctxt) 3682 { 3683 bool cr4_osfxsr; 3684 if (ctxt->mode == X86EMUL_MODE_PROT64) 3685 return __fxstate_size(16); 3686 3687 cr4_osfxsr = ctxt->ops->get_cr(ctxt, 4) & X86_CR4_OSFXSR; 3688 return __fxstate_size(cr4_osfxsr ? 8 : 0); 3689 } 3690 3691 /* 3692 * FXSAVE and FXRSTOR have 4 different formats depending on execution mode, 3693 * 1) 16 bit mode 3694 * 2) 32 bit mode 3695 * - like (1), but FIP and FDP (foo) are only 16 bit. At least Intel CPUs 3696 * preserve whole 32 bit values, though, so (1) and (2) are the same wrt. 3697 * save and restore 3698 * 3) 64-bit mode with REX.W prefix 3699 * - like (2), but XMM 8-15 are being saved and restored 3700 * 4) 64-bit mode without REX.W prefix 3701 * - like (3), but FIP and FDP are 64 bit 3702 * 3703 * Emulation uses (3) for (1) and (2) and preserves XMM 8-15 to reach the 3704 * desired result. (4) is not emulated. 3705 * 3706 * Note: Guest and host CPUID.(EAX=07H,ECX=0H):EBX[bit 13] (deprecate FPU CS 3707 * and FPU DS) should match. 3708 */ 3709 static int em_fxsave(struct x86_emulate_ctxt *ctxt) 3710 { 3711 struct fxregs_state fx_state; 3712 int rc; 3713 3714 rc = check_fxsr(ctxt); 3715 if (rc != X86EMUL_CONTINUE) 3716 return rc; 3717 3718 kvm_fpu_get(); 3719 3720 rc = asm_safe("fxsave %[fx]", , [fx] "+m"(fx_state)); 3721 3722 kvm_fpu_put(); 3723 3724 if (rc != X86EMUL_CONTINUE) 3725 return rc; 3726 3727 return segmented_write_std(ctxt, ctxt->memop.addr.mem, &fx_state, 3728 fxstate_size(ctxt)); 3729 } 3730 3731 /* 3732 * FXRSTOR might restore XMM registers not provided by the guest. Fill 3733 * in the host registers (via FXSAVE) instead, so they won't be modified. 3734 * (preemption has to stay disabled until FXRSTOR). 3735 * 3736 * Use noinline to keep the stack for other functions called by callers small. 3737 */ 3738 static noinline int fxregs_fixup(struct fxregs_state *fx_state, 3739 const size_t used_size) 3740 { 3741 struct fxregs_state fx_tmp; 3742 int rc; 3743 3744 rc = asm_safe("fxsave %[fx]", , [fx] "+m"(fx_tmp)); 3745 memcpy((void *)fx_state + used_size, (void *)&fx_tmp + used_size, 3746 __fxstate_size(16) - used_size); 3747 3748 return rc; 3749 } 3750 3751 static int em_fxrstor(struct x86_emulate_ctxt *ctxt) 3752 { 3753 struct fxregs_state fx_state; 3754 int rc; 3755 size_t size; 3756 3757 rc = check_fxsr(ctxt); 3758 if (rc != X86EMUL_CONTINUE) 3759 return rc; 3760 3761 size = fxstate_size(ctxt); 3762 rc = segmented_read_std(ctxt, ctxt->memop.addr.mem, &fx_state, size); 3763 if (rc != X86EMUL_CONTINUE) 3764 return rc; 3765 3766 kvm_fpu_get(); 3767 3768 if (size < __fxstate_size(16)) { 3769 rc = fxregs_fixup(&fx_state, size); 3770 if (rc != X86EMUL_CONTINUE) 3771 goto out; 3772 } 3773 3774 if (fx_state.mxcsr >> 16) { 3775 rc = emulate_gp(ctxt, 0); 3776 goto out; 3777 } 3778 3779 if (rc == X86EMUL_CONTINUE) 3780 rc = asm_safe("fxrstor %[fx]", : [fx] "m"(fx_state)); 3781 3782 out: 3783 kvm_fpu_put(); 3784 3785 return rc; 3786 } 3787 3788 static int em_xsetbv(struct x86_emulate_ctxt *ctxt) 3789 { 3790 u32 eax, ecx, edx; 3791 3792 if (!(ctxt->ops->get_cr(ctxt, 4) & X86_CR4_OSXSAVE)) 3793 return emulate_ud(ctxt); 3794 3795 eax = reg_read(ctxt, VCPU_REGS_RAX); 3796 edx = reg_read(ctxt, VCPU_REGS_RDX); 3797 ecx = reg_read(ctxt, VCPU_REGS_RCX); 3798 3799 if (ctxt->ops->set_xcr(ctxt, ecx, ((u64)edx << 32) | eax)) 3800 return emulate_gp(ctxt, 0); 3801 3802 return X86EMUL_CONTINUE; 3803 } 3804 3805 static bool valid_cr(int nr) 3806 { 3807 switch (nr) { 3808 case 0: 3809 case 2 ... 4: 3810 case 8: 3811 return true; 3812 default: 3813 return false; 3814 } 3815 } 3816 3817 static int check_cr_access(struct x86_emulate_ctxt *ctxt) 3818 { 3819 if (!valid_cr(ctxt->modrm_reg)) 3820 return emulate_ud(ctxt); 3821 3822 return X86EMUL_CONTINUE; 3823 } 3824 3825 static int check_dr_read(struct x86_emulate_ctxt *ctxt) 3826 { 3827 int dr = ctxt->modrm_reg; 3828 u64 cr4; 3829 3830 if (dr > 7) 3831 return emulate_ud(ctxt); 3832 3833 cr4 = ctxt->ops->get_cr(ctxt, 4); 3834 if ((cr4 & X86_CR4_DE) && (dr == 4 || dr == 5)) 3835 return emulate_ud(ctxt); 3836 3837 if (ctxt->ops->get_dr(ctxt, 7) & DR7_GD) { 3838 ulong dr6; 3839 3840 dr6 = ctxt->ops->get_dr(ctxt, 6); 3841 dr6 &= ~DR_TRAP_BITS; 3842 dr6 |= DR6_BD | DR6_ACTIVE_LOW; 3843 ctxt->ops->set_dr(ctxt, 6, dr6); 3844 return emulate_db(ctxt); 3845 } 3846 3847 return X86EMUL_CONTINUE; 3848 } 3849 3850 static int check_dr_write(struct x86_emulate_ctxt *ctxt) 3851 { 3852 u64 new_val = ctxt->src.val64; 3853 int dr = ctxt->modrm_reg; 3854 3855 if ((dr == 6 || dr == 7) && (new_val & 0xffffffff00000000ULL)) 3856 return emulate_gp(ctxt, 0); 3857 3858 return check_dr_read(ctxt); 3859 } 3860 3861 static int check_svme(struct x86_emulate_ctxt *ctxt) 3862 { 3863 u64 efer = 0; 3864 3865 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer); 3866 3867 if (!(efer & EFER_SVME)) 3868 return emulate_ud(ctxt); 3869 3870 return X86EMUL_CONTINUE; 3871 } 3872 3873 static int check_svme_pa(struct x86_emulate_ctxt *ctxt) 3874 { 3875 u64 rax = reg_read(ctxt, VCPU_REGS_RAX); 3876 3877 /* Valid physical address? */ 3878 if (rax & 0xffff000000000000ULL) 3879 return emulate_gp(ctxt, 0); 3880 3881 return check_svme(ctxt); 3882 } 3883 3884 static int check_rdtsc(struct x86_emulate_ctxt *ctxt) 3885 { 3886 u64 cr4 = ctxt->ops->get_cr(ctxt, 4); 3887 3888 if (cr4 & X86_CR4_TSD && ctxt->ops->cpl(ctxt)) 3889 return emulate_gp(ctxt, 0); 3890 3891 return X86EMUL_CONTINUE; 3892 } 3893 3894 static int check_rdpmc(struct x86_emulate_ctxt *ctxt) 3895 { 3896 u64 cr4 = ctxt->ops->get_cr(ctxt, 4); 3897 u64 rcx = reg_read(ctxt, VCPU_REGS_RCX); 3898 3899 /* 3900 * VMware allows access to these Pseduo-PMCs even when read via RDPMC 3901 * in Ring3 when CR4.PCE=0. 3902 */ 3903 if (enable_vmware_backdoor && is_vmware_backdoor_pmc(rcx)) 3904 return X86EMUL_CONTINUE; 3905 3906 /* 3907 * If CR4.PCE is set, the SDM requires CPL=0 or CR0.PE=0. The CR0.PE 3908 * check however is unnecessary because CPL is always 0 outside 3909 * protected mode. 3910 */ 3911 if ((!(cr4 & X86_CR4_PCE) && ctxt->ops->cpl(ctxt)) || 3912 ctxt->ops->check_rdpmc_early(ctxt, rcx)) 3913 return emulate_gp(ctxt, 0); 3914 3915 return X86EMUL_CONTINUE; 3916 } 3917 3918 static int check_perm_in(struct x86_emulate_ctxt *ctxt) 3919 { 3920 ctxt->dst.bytes = min(ctxt->dst.bytes, 4u); 3921 if (!emulator_io_permitted(ctxt, ctxt->src.val, ctxt->dst.bytes)) 3922 return emulate_gp(ctxt, 0); 3923 3924 return X86EMUL_CONTINUE; 3925 } 3926 3927 static int check_perm_out(struct x86_emulate_ctxt *ctxt) 3928 { 3929 ctxt->src.bytes = min(ctxt->src.bytes, 4u); 3930 if (!emulator_io_permitted(ctxt, ctxt->dst.val, ctxt->src.bytes)) 3931 return emulate_gp(ctxt, 0); 3932 3933 return X86EMUL_CONTINUE; 3934 } 3935 3936 #define D(_y) { .flags = (_y) } 3937 #define DI(_y, _i) { .flags = (_y)|Intercept, .intercept = x86_intercept_##_i } 3938 #define DIP(_y, _i, _p) { .flags = (_y)|Intercept|CheckPerm, \ 3939 .intercept = x86_intercept_##_i, .check_perm = (_p) } 3940 #define N D(NotImpl) 3941 #define EXT(_f, _e) { .flags = ((_f) | RMExt), .u.group = (_e) } 3942 #define G(_f, _g) { .flags = ((_f) | Group | ModRM), .u.group = (_g) } 3943 #define GD(_f, _g) { .flags = ((_f) | GroupDual | ModRM), .u.gdual = (_g) } 3944 #define ID(_f, _i) { .flags = ((_f) | InstrDual | ModRM), .u.idual = (_i) } 3945 #define MD(_f, _m) { .flags = ((_f) | ModeDual), .u.mdual = (_m) } 3946 #define E(_f, _e) { .flags = ((_f) | Escape | ModRM), .u.esc = (_e) } 3947 #define I(_f, _e) { .flags = (_f), .u.execute = (_e) } 3948 #define II(_f, _e, _i) \ 3949 { .flags = (_f)|Intercept, .u.execute = (_e), .intercept = x86_intercept_##_i } 3950 #define IIP(_f, _e, _i, _p) \ 3951 { .flags = (_f)|Intercept|CheckPerm, .u.execute = (_e), \ 3952 .intercept = x86_intercept_##_i, .check_perm = (_p) } 3953 #define GP(_f, _g) { .flags = ((_f) | Prefix), .u.gprefix = (_g) } 3954 3955 #define D2bv(_f) D((_f) | ByteOp), D(_f) 3956 #define D2bvIP(_f, _i, _p) DIP((_f) | ByteOp, _i, _p), DIP(_f, _i, _p) 3957 #define I2bv(_f, _e) I((_f) | ByteOp, _e), I(_f, _e) 3958 #define F2bv(_f, _e) F((_f) | ByteOp, _e), F(_f, _e) 3959 #define I2bvIP(_f, _e, _i, _p) \ 3960 IIP((_f) | ByteOp, _e, _i, _p), IIP(_f, _e, _i, _p) 3961 3962 #define I6ALU(_f, _e) I2bv((_f) | DstMem | SrcReg | ModRM, _e), \ 3963 I2bv(((_f) | DstReg | SrcMem | ModRM) & ~Lock, _e), \ 3964 I2bv(((_f) & ~Lock) | DstAcc | SrcImm, _e) 3965 3966 static const struct opcode ud = I(SrcNone, emulate_ud); 3967 3968 static const struct opcode group7_rm0[] = { 3969 N, 3970 I(SrcNone | Priv | EmulateOnUD, em_hypercall), 3971 N, N, N, N, N, N, 3972 }; 3973 3974 static const struct opcode group7_rm1[] = { 3975 DI(SrcNone | Priv, monitor), 3976 DI(SrcNone | Priv, mwait), 3977 N, N, N, N, N, N, 3978 }; 3979 3980 static const struct opcode group7_rm2[] = { 3981 N, 3982 II(ImplicitOps | Priv, em_xsetbv, xsetbv), 3983 N, N, N, N, N, N, 3984 }; 3985 3986 static const struct opcode group7_rm3[] = { 3987 DIP(SrcNone | Prot | Priv, vmrun, check_svme_pa), 3988 II(SrcNone | Prot | EmulateOnUD, em_hypercall, vmmcall), 3989 DIP(SrcNone | Prot | Priv, vmload, check_svme_pa), 3990 DIP(SrcNone | Prot | Priv, vmsave, check_svme_pa), 3991 DIP(SrcNone | Prot | Priv, stgi, check_svme), 3992 DIP(SrcNone | Prot | Priv, clgi, check_svme), 3993 DIP(SrcNone | Prot | Priv, skinit, check_svme), 3994 DIP(SrcNone | Prot | Priv, invlpga, check_svme), 3995 }; 3996 3997 static const struct opcode group7_rm7[] = { 3998 N, 3999 DIP(SrcNone, rdtscp, check_rdtsc), 4000 N, N, N, N, N, N, 4001 }; 4002 4003 static const struct opcode group1[] = { 4004 I(Lock, em_add), 4005 I(Lock | PageTable, em_or), 4006 I(Lock, em_adc), 4007 I(Lock, em_sbb), 4008 I(Lock | PageTable, em_and), 4009 I(Lock, em_sub), 4010 I(Lock, em_xor), 4011 I(NoWrite, em_cmp), 4012 }; 4013 4014 static const struct opcode group1A[] = { 4015 I(DstMem | SrcNone | Mov | Stack | IncSP | TwoMemOp, em_pop), N, N, N, N, N, N, N, 4016 }; 4017 4018 static const struct opcode group2[] = { 4019 I(DstMem | ModRM, em_rol), 4020 I(DstMem | ModRM, em_ror), 4021 I(DstMem | ModRM, em_rcl), 4022 I(DstMem | ModRM, em_rcr), 4023 I(DstMem | ModRM, em_shl), 4024 I(DstMem | ModRM, em_shr), 4025 I(DstMem | ModRM, em_shl), 4026 I(DstMem | ModRM, em_sar), 4027 }; 4028 4029 static const struct opcode group3[] = { 4030 I(DstMem | SrcImm | NoWrite, em_test), 4031 I(DstMem | SrcImm | NoWrite, em_test), 4032 I(DstMem | SrcNone | Lock, em_not), 4033 I(DstMem | SrcNone | Lock, em_neg), 4034 I(DstXacc | Src2Mem, em_mul_ex), 4035 I(DstXacc | Src2Mem, em_imul_ex), 4036 I(DstXacc | Src2Mem, em_div_ex), 4037 I(DstXacc | Src2Mem, em_idiv_ex), 4038 }; 4039 4040 static const struct opcode group4[] = { 4041 I(ByteOp | DstMem | SrcNone | Lock, em_inc), 4042 I(ByteOp | DstMem | SrcNone | Lock, em_dec), 4043 N, N, N, N, N, N, 4044 }; 4045 4046 static const struct opcode group5[] = { 4047 I(DstMem | SrcNone | Lock, em_inc), 4048 I(DstMem | SrcNone | Lock, em_dec), 4049 I(SrcMem | NearBranch | IsBranch | ShadowStack, em_call_near_abs), 4050 I(SrcMemFAddr | ImplicitOps | IsBranch | ShadowStack, em_call_far), 4051 I(SrcMem | NearBranch | IsBranch, em_jmp_abs), 4052 I(SrcMemFAddr | ImplicitOps | IsBranch, em_jmp_far), 4053 I(SrcMem | Stack | TwoMemOp, em_push), D(Undefined), 4054 }; 4055 4056 static const struct opcode group6[] = { 4057 II(Prot | DstMem, em_sldt, sldt), 4058 II(Prot | DstMem, em_str, str), 4059 II(Prot | Priv | SrcMem16, em_lldt, lldt), 4060 II(Prot | Priv | SrcMem16, em_ltr, ltr), 4061 N, N, N, N, 4062 }; 4063 4064 static const struct group_dual group7 = { { 4065 II(Mov | DstMem, em_sgdt, sgdt), 4066 II(Mov | DstMem, em_sidt, sidt), 4067 II(SrcMem | Priv, em_lgdt, lgdt), 4068 II(SrcMem | Priv, em_lidt, lidt), 4069 II(SrcNone | DstMem | Mov, em_smsw, smsw), N, 4070 II(SrcMem16 | Mov | Priv, em_lmsw, lmsw), 4071 II(SrcMem | ByteOp | Priv | NoAccess, em_invlpg, invlpg), 4072 }, { 4073 EXT(0, group7_rm0), 4074 EXT(0, group7_rm1), 4075 EXT(0, group7_rm2), 4076 EXT(0, group7_rm3), 4077 II(SrcNone | DstMem | Mov, em_smsw, smsw), N, 4078 II(SrcMem16 | Mov | Priv, em_lmsw, lmsw), 4079 EXT(0, group7_rm7), 4080 } }; 4081 4082 static const struct opcode group8[] = { 4083 N, N, N, N, 4084 I(DstMem | SrcImmByte | NoWrite, em_bt), 4085 I(DstMem | SrcImmByte | Lock | PageTable, em_bts), 4086 I(DstMem | SrcImmByte | Lock, em_btr), 4087 I(DstMem | SrcImmByte | Lock | PageTable, em_btc), 4088 }; 4089 4090 /* 4091 * The "memory" destination is actually always a register, since we come 4092 * from the register case of group9. 4093 */ 4094 static const struct gprefix pfx_0f_c7_7 = { 4095 N, N, N, II(DstMem | ModRM | Op3264 | EmulateOnUD, em_rdpid, rdpid), 4096 }; 4097 4098 4099 static const struct group_dual group9 = { { 4100 N, I(DstMem64 | Lock | PageTable, em_cmpxchg8b), N, N, N, N, N, N, 4101 }, { 4102 N, N, N, N, N, N, N, 4103 GP(0, &pfx_0f_c7_7), 4104 } }; 4105 4106 static const struct opcode group11[] = { 4107 I(DstMem | SrcImm | Mov | PageTable, em_mov), 4108 X7(D(Undefined)), 4109 }; 4110 4111 static const struct gprefix pfx_0f_ae_7 = { 4112 I(SrcMem | ByteOp, em_clflush), I(SrcMem | ByteOp, em_clflushopt), N, N, 4113 }; 4114 4115 static const struct group_dual group15 = { { 4116 I(ModRM | Aligned16, em_fxsave), 4117 I(ModRM | Aligned16, em_fxrstor), 4118 N, N, N, N, N, GP(0, &pfx_0f_ae_7), 4119 }, { 4120 N, N, N, N, N, N, N, N, 4121 } }; 4122 4123 static const struct gprefix pfx_0f_6f_0f_7f = { 4124 I(Mmx, em_mov), I(Sse | Avx | Aligned, em_mov), N, I(Sse | Avx | Unaligned, em_mov), 4125 }; 4126 4127 static const struct instr_dual instr_dual_0f_2b = { 4128 I(0, em_mov), N 4129 }; 4130 4131 static const struct gprefix pfx_0f_2b = { 4132 ID(0, &instr_dual_0f_2b), ID(0, &instr_dual_0f_2b), N, N, 4133 }; 4134 4135 static const struct gprefix pfx_0f_10_0f_11 = { 4136 I(Unaligned, em_mov), I(Unaligned, em_mov), N, N, 4137 }; 4138 4139 static const struct gprefix pfx_0f_28_0f_29 = { 4140 I(Aligned, em_mov), I(Aligned, em_mov), N, N, 4141 }; 4142 4143 static const struct gprefix pfx_0f_e7_0f_38_2a = { 4144 N, I(Sse | Avx, em_mov), N, N, 4145 }; 4146 4147 static const struct escape escape_d9 = { { 4148 N, N, N, N, N, N, N, I(DstMem16 | Mov, em_fnstcw), 4149 }, { 4150 /* 0xC0 - 0xC7 */ 4151 N, N, N, N, N, N, N, N, 4152 /* 0xC8 - 0xCF */ 4153 N, N, N, N, N, N, N, N, 4154 /* 0xD0 - 0xC7 */ 4155 N, N, N, N, N, N, N, N, 4156 /* 0xD8 - 0xDF */ 4157 N, N, N, N, N, N, N, N, 4158 /* 0xE0 - 0xE7 */ 4159 N, N, N, N, N, N, N, N, 4160 /* 0xE8 - 0xEF */ 4161 N, N, N, N, N, N, N, N, 4162 /* 0xF0 - 0xF7 */ 4163 N, N, N, N, N, N, N, N, 4164 /* 0xF8 - 0xFF */ 4165 N, N, N, N, N, N, N, N, 4166 } }; 4167 4168 static const struct escape escape_db = { { 4169 N, N, N, N, N, N, N, N, 4170 }, { 4171 /* 0xC0 - 0xC7 */ 4172 N, N, N, N, N, N, N, N, 4173 /* 0xC8 - 0xCF */ 4174 N, N, N, N, N, N, N, N, 4175 /* 0xD0 - 0xC7 */ 4176 N, N, N, N, N, N, N, N, 4177 /* 0xD8 - 0xDF */ 4178 N, N, N, N, N, N, N, N, 4179 /* 0xE0 - 0xE7 */ 4180 N, N, N, I(ImplicitOps, em_fninit), N, N, N, N, 4181 /* 0xE8 - 0xEF */ 4182 N, N, N, N, N, N, N, N, 4183 /* 0xF0 - 0xF7 */ 4184 N, N, N, N, N, N, N, N, 4185 /* 0xF8 - 0xFF */ 4186 N, N, N, N, N, N, N, N, 4187 } }; 4188 4189 static const struct escape escape_dd = { { 4190 N, N, N, N, N, N, N, I(DstMem16 | Mov, em_fnstsw), 4191 }, { 4192 /* 0xC0 - 0xC7 */ 4193 N, N, N, N, N, N, N, N, 4194 /* 0xC8 - 0xCF */ 4195 N, N, N, N, N, N, N, N, 4196 /* 0xD0 - 0xC7 */ 4197 N, N, N, N, N, N, N, N, 4198 /* 0xD8 - 0xDF */ 4199 N, N, N, N, N, N, N, N, 4200 /* 0xE0 - 0xE7 */ 4201 N, N, N, N, N, N, N, N, 4202 /* 0xE8 - 0xEF */ 4203 N, N, N, N, N, N, N, N, 4204 /* 0xF0 - 0xF7 */ 4205 N, N, N, N, N, N, N, N, 4206 /* 0xF8 - 0xFF */ 4207 N, N, N, N, N, N, N, N, 4208 } }; 4209 4210 static const struct instr_dual instr_dual_0f_c3 = { 4211 I(DstMem | SrcReg | ModRM | No16 | Mov, em_mov), N 4212 }; 4213 4214 static const struct mode_dual mode_dual_63 = { 4215 N, I(DstReg | SrcMem32 | ModRM | Mov, em_movsxd) 4216 }; 4217 4218 static const struct instr_dual instr_dual_8d = { 4219 D(DstReg | SrcMem | ModRM | NoAccess), N 4220 }; 4221 4222 static const struct opcode opcode_table[256] = { 4223 /* 0x00 - 0x07 */ 4224 I6ALU(Lock, em_add), 4225 I(ImplicitOps | Stack | No64 | Src2ES, em_push_sreg), 4226 I(ImplicitOps | Stack | No64 | Src2ES, em_pop_sreg), 4227 /* 0x08 - 0x0F */ 4228 I6ALU(Lock | PageTable, em_or), 4229 I(ImplicitOps | Stack | No64 | Src2CS, em_push_sreg), 4230 N, 4231 /* 0x10 - 0x17 */ 4232 I6ALU(Lock, em_adc), 4233 I(ImplicitOps | Stack | No64 | Src2SS, em_push_sreg), 4234 I(ImplicitOps | Stack | No64 | Src2SS, em_pop_sreg), 4235 /* 0x18 - 0x1F */ 4236 I6ALU(Lock, em_sbb), 4237 I(ImplicitOps | Stack | No64 | Src2DS, em_push_sreg), 4238 I(ImplicitOps | Stack | No64 | Src2DS, em_pop_sreg), 4239 /* 0x20 - 0x27 */ 4240 I6ALU(Lock | PageTable, em_and), N, N, 4241 /* 0x28 - 0x2F */ 4242 I6ALU(Lock, em_sub), N, I(ByteOp | DstAcc | No64, em_das), 4243 /* 0x30 - 0x37 */ 4244 I6ALU(Lock, em_xor), N, N, 4245 /* 0x38 - 0x3F */ 4246 I6ALU(NoWrite, em_cmp), N, N, 4247 /* 0x40 - 0x4F */ 4248 X8(I(DstReg, em_inc)), X8(I(DstReg, em_dec)), 4249 /* 0x50 - 0x57 */ 4250 X8(I(SrcReg | Stack, em_push)), 4251 /* 0x58 - 0x5F */ 4252 X8(I(DstReg | Stack, em_pop)), 4253 /* 0x60 - 0x67 */ 4254 I(ImplicitOps | Stack | No64, em_pusha), 4255 I(ImplicitOps | Stack | No64, em_popa), 4256 N, MD(ModRM, &mode_dual_63), 4257 N, N, N, N, 4258 /* 0x68 - 0x6F */ 4259 I(SrcImm | Mov | Stack, em_push), 4260 I(DstReg | SrcMem | ModRM | Src2Imm, em_imul_3op), 4261 I(SrcImmByte | Mov | Stack, em_push), 4262 I(DstReg | SrcMem | ModRM | Src2ImmByte, em_imul_3op), 4263 I2bvIP(DstDI | SrcDX | Mov | String | Unaligned, em_in, ins, check_perm_in), /* insb, insw/insd */ 4264 I2bvIP(SrcSI | DstDX | String, em_out, outs, check_perm_out), /* outsb, outsw/outsd */ 4265 /* 0x70 - 0x7F */ 4266 X16(D(SrcImmByte | NearBranch | IsBranch)), 4267 /* 0x80 - 0x87 */ 4268 G(ByteOp | DstMem | SrcImm, group1), 4269 G(DstMem | SrcImm, group1), 4270 G(ByteOp | DstMem | SrcImm | No64, group1), 4271 G(DstMem | SrcImmByte, group1), 4272 I2bv(DstMem | SrcReg | ModRM | NoWrite, em_test), 4273 I2bv(DstMem | SrcReg | ModRM | Lock | PageTable, em_xchg), 4274 /* 0x88 - 0x8F */ 4275 I2bv(DstMem | SrcReg | ModRM | Mov | PageTable, em_mov), 4276 I2bv(DstReg | SrcMem | ModRM | Mov, em_mov), 4277 I(DstMem | SrcNone | ModRM | Mov | PageTable, em_mov_rm_sreg), 4278 ID(0, &instr_dual_8d), 4279 I(ImplicitOps | SrcMem16 | ModRM, em_mov_sreg_rm), 4280 G(0, group1A), 4281 /* 0x90 - 0x97 */ 4282 DI(SrcAcc | DstReg, pause), X7(D(SrcAcc | DstReg)), 4283 /* 0x98 - 0x9F */ 4284 D(DstAcc | SrcNone), I(ImplicitOps | SrcAcc, em_cwd), 4285 I(SrcImmFAddr | No64 | IsBranch | ShadowStack, em_call_far), N, 4286 II(ImplicitOps | Stack, em_pushf, pushf), 4287 II(ImplicitOps | Stack, em_popf, popf), 4288 I(ImplicitOps, em_sahf), I(ImplicitOps, em_lahf), 4289 /* 0xA0 - 0xA7 */ 4290 I2bv(DstAcc | SrcMem | Mov | MemAbs, em_mov), 4291 I2bv(DstMem | SrcAcc | Mov | MemAbs | PageTable, em_mov), 4292 I2bv(SrcSI | DstDI | Mov | String | TwoMemOp, em_mov), 4293 I2bv(SrcSI | DstDI | String | NoWrite | TwoMemOp, em_cmp_r), 4294 /* 0xA8 - 0xAF */ 4295 I2bv(DstAcc | SrcImm | NoWrite, em_test), 4296 I2bv(SrcAcc | DstDI | Mov | String, em_mov), 4297 I2bv(SrcSI | DstAcc | Mov | String, em_mov), 4298 I2bv(SrcAcc | DstDI | String | NoWrite, em_cmp_r), 4299 /* 0xB0 - 0xB7 */ 4300 X8(I(ByteOp | DstReg | SrcImm | Mov, em_mov)), 4301 /* 0xB8 - 0xBF */ 4302 X8(I(DstReg | SrcImm64 | Mov, em_mov)), 4303 /* 0xC0 - 0xC7 */ 4304 G(ByteOp | Src2ImmByte, group2), G(Src2ImmByte, group2), 4305 I(ImplicitOps | NearBranch | SrcImmU16 | IsBranch | ShadowStack, em_ret_near_imm), 4306 I(ImplicitOps | NearBranch | IsBranch | ShadowStack, em_ret), 4307 I(DstReg | SrcMemFAddr | ModRM | No64 | Src2ES, em_lseg), 4308 I(DstReg | SrcMemFAddr | ModRM | No64 | Src2DS, em_lseg), 4309 G(ByteOp, group11), G(0, group11), 4310 /* 0xC8 - 0xCF */ 4311 I(Stack | SrcImmU16 | Src2ImmByte, em_enter), 4312 I(Stack, em_leave), 4313 I(ImplicitOps | SrcImmU16 | IsBranch | ShadowStack, em_ret_far_imm), 4314 I(ImplicitOps | IsBranch | ShadowStack, em_ret_far), 4315 D(ImplicitOps | IsBranch), DI(SrcImmByte | IsBranch | ShadowStack, intn), 4316 D(ImplicitOps | No64 | IsBranch), 4317 II(ImplicitOps | IsBranch | ShadowStack, em_iret, iret), 4318 /* 0xD0 - 0xD7 */ 4319 G(Src2One | ByteOp, group2), G(Src2One, group2), 4320 G(Src2CL | ByteOp, group2), G(Src2CL, group2), 4321 I(DstAcc | SrcImmUByte | No64, em_aam), 4322 I(DstAcc | SrcImmUByte | No64, em_aad), 4323 I(DstAcc | ByteOp | No64, em_salc), 4324 I(DstAcc | SrcXLat | ByteOp, em_mov), 4325 /* 0xD8 - 0xDF */ 4326 N, E(0, &escape_d9), N, E(0, &escape_db), N, E(0, &escape_dd), N, N, 4327 /* 0xE0 - 0xE7 */ 4328 X3(I(SrcImmByte | NearBranch | IsBranch, em_loop)), 4329 I(SrcImmByte | NearBranch | IsBranch, em_jcxz), 4330 I2bvIP(SrcImmUByte | DstAcc, em_in, in, check_perm_in), 4331 I2bvIP(SrcAcc | DstImmUByte, em_out, out, check_perm_out), 4332 /* 0xE8 - 0xEF */ 4333 I(SrcImm | NearBranch | IsBranch | ShadowStack, em_call), 4334 D(SrcImm | ImplicitOps | NearBranch | IsBranch), 4335 I(SrcImmFAddr | No64 | IsBranch, em_jmp_far), 4336 D(SrcImmByte | ImplicitOps | NearBranch | IsBranch), 4337 I2bvIP(SrcDX | DstAcc, em_in, in, check_perm_in), 4338 I2bvIP(SrcAcc | DstDX, em_out, out, check_perm_out), 4339 /* 0xF0 - 0xF7 */ 4340 N, DI(ImplicitOps, icebp), N, N, 4341 DI(ImplicitOps | Priv, hlt), D(ImplicitOps), 4342 G(ByteOp, group3), G(0, group3), 4343 /* 0xF8 - 0xFF */ 4344 D(ImplicitOps), D(ImplicitOps), 4345 I(ImplicitOps, em_cli), I(ImplicitOps, em_sti), 4346 D(ImplicitOps), D(ImplicitOps), G(0, group4), G(0, group5), 4347 }; 4348 4349 static const struct opcode twobyte_table[256] = { 4350 /* 0x00 - 0x0F */ 4351 G(0, group6), GD(0, &group7), N, N, 4352 N, I(ImplicitOps | EmulateOnUD | IsBranch | ShadowStack, em_syscall), 4353 II(ImplicitOps | Priv, em_clts, clts), N, 4354 DI(ImplicitOps | Priv, invd), DI(ImplicitOps | Priv, wbinvd), N, N, 4355 N, D(ImplicitOps | ModRM | SrcMem | NoAccess), N, N, 4356 /* 0x10 - 0x1F */ 4357 GP(ModRM | DstReg | SrcMem | Mov | Sse | Avx, &pfx_0f_10_0f_11), 4358 GP(ModRM | DstMem | SrcReg | Mov | Sse | Avx, &pfx_0f_10_0f_11), 4359 N, N, N, N, N, N, 4360 D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 4 * prefetch + 4 * reserved NOP */ 4361 D(ImplicitOps | ModRM | SrcMem | NoAccess), N, N, 4362 D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 8 * reserved NOP */ 4363 D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 8 * reserved NOP */ 4364 D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 8 * reserved NOP */ 4365 D(ImplicitOps | ModRM | SrcMem | NoAccess), /* NOP + 7 * reserved NOP */ 4366 /* 0x20 - 0x2F */ 4367 DIP(ModRM | DstMem | Priv | Op3264 | NoMod, cr_read, check_cr_access), 4368 DIP(ModRM | DstMem | Priv | Op3264 | NoMod, dr_read, check_dr_read), 4369 IIP(ModRM | SrcMem | Priv | Op3264 | NoMod, em_cr_write, cr_write, 4370 check_cr_access), 4371 IIP(ModRM | SrcMem | Priv | Op3264 | NoMod, em_dr_write, dr_write, 4372 check_dr_write), 4373 N, N, N, N, 4374 GP(ModRM | DstReg | SrcMem | Mov | Sse | Avx, &pfx_0f_28_0f_29), 4375 GP(ModRM | DstMem | SrcReg | Mov | Sse | Avx, &pfx_0f_28_0f_29), 4376 N, GP(ModRM | DstMem | SrcReg | Mov | Sse | Avx, &pfx_0f_2b), 4377 N, N, N, N, 4378 /* 0x30 - 0x3F */ 4379 II(ImplicitOps | Priv, em_wrmsr, wrmsr), 4380 IIP(ImplicitOps, em_rdtsc, rdtsc, check_rdtsc), 4381 II(ImplicitOps | Priv, em_rdmsr, rdmsr), 4382 IIP(ImplicitOps, em_rdpmc, rdpmc, check_rdpmc), 4383 I(ImplicitOps | EmulateOnUD | IsBranch | ShadowStack, em_sysenter), 4384 I(ImplicitOps | Priv | EmulateOnUD | IsBranch | ShadowStack, em_sysexit), 4385 N, N, 4386 N, N, N, N, N, N, N, N, 4387 /* 0x40 - 0x4F */ 4388 X16(D(DstReg | SrcMem | ModRM)), 4389 /* 0x50 - 0x5F */ 4390 N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, 4391 /* 0x60 - 0x6F */ 4392 N, N, N, N, 4393 N, N, N, N, 4394 N, N, N, N, 4395 N, N, N, GP(SrcMem | DstReg | ModRM | Mov, &pfx_0f_6f_0f_7f), 4396 /* 0x70 - 0x7F */ 4397 N, N, N, N, 4398 N, N, N, N, 4399 N, N, N, N, 4400 N, N, N, GP(SrcReg | DstMem | ModRM | Mov, &pfx_0f_6f_0f_7f), 4401 /* 0x80 - 0x8F */ 4402 X16(D(SrcImm | NearBranch | IsBranch)), 4403 /* 0x90 - 0x9F */ 4404 X16(D(ByteOp | DstMem | SrcNone | ModRM| Mov)), 4405 /* 0xA0 - 0xA7 */ 4406 I(Stack | Src2FS, em_push_sreg), I(Stack | Src2FS, em_pop_sreg), 4407 II(ImplicitOps, em_cpuid, cpuid), 4408 I(DstMem | SrcReg | ModRM | BitOp | NoWrite, em_bt), 4409 I(DstMem | SrcReg | Src2ImmByte | ModRM, em_shld), 4410 I(DstMem | SrcReg | Src2CL | ModRM, em_shld), N, N, 4411 /* 0xA8 - 0xAF */ 4412 I(Stack | Src2GS, em_push_sreg), I(Stack | Src2GS, em_pop_sreg), 4413 II(EmulateOnUD | ImplicitOps, em_rsm, rsm), 4414 I(DstMem | SrcReg | ModRM | BitOp | Lock | PageTable, em_bts), 4415 I(DstMem | SrcReg | Src2ImmByte | ModRM, em_shrd), 4416 I(DstMem | SrcReg | Src2CL | ModRM, em_shrd), 4417 GD(0, &group15), I(DstReg | SrcMem | ModRM, em_imul), 4418 /* 0xB0 - 0xB7 */ 4419 I2bv(DstMem | SrcReg | ModRM | Lock | PageTable | SrcWrite, em_cmpxchg), 4420 I(DstReg | SrcMemFAddr | ModRM | Src2SS, em_lseg), 4421 I(DstMem | SrcReg | ModRM | BitOp | Lock, em_btr), 4422 I(DstReg | SrcMemFAddr | ModRM | Src2FS, em_lseg), 4423 I(DstReg | SrcMemFAddr | ModRM | Src2GS, em_lseg), 4424 D(DstReg | SrcMem8 | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov), 4425 /* 0xB8 - 0xBF */ 4426 N, N, 4427 G(BitOp, group8), 4428 I(DstMem | SrcReg | ModRM | BitOp | Lock | PageTable, em_btc), 4429 I(DstReg | SrcMem | ModRM, em_bsf_c), 4430 I(DstReg | SrcMem | ModRM, em_bsr_c), 4431 D(DstReg | SrcMem8 | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov), 4432 /* 0xC0 - 0xC7 */ 4433 I2bv(DstMem | SrcReg | ModRM | SrcWrite | Lock, em_xadd), 4434 N, ID(0, &instr_dual_0f_c3), 4435 N, N, N, GD(0, &group9), 4436 /* 0xC8 - 0xCF */ 4437 X8(I(DstReg, em_bswap)), 4438 /* 0xD0 - 0xDF */ 4439 N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, 4440 /* 0xE0 - 0xEF */ 4441 N, N, N, N, N, N, N, GP(SrcReg | DstMem | ModRM | Mov, &pfx_0f_e7_0f_38_2a), 4442 N, N, N, N, N, N, N, N, 4443 /* 0xF0 - 0xFF */ 4444 N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N 4445 }; 4446 4447 static const struct instr_dual instr_dual_0f_38_f0 = { 4448 I(DstReg | SrcMem | Mov, em_movbe), N 4449 }; 4450 4451 static const struct instr_dual instr_dual_0f_38_f1 = { 4452 I(DstMem | SrcReg | Mov, em_movbe), N 4453 }; 4454 4455 static const struct gprefix three_byte_0f_38_f0 = { 4456 ID(0, &instr_dual_0f_38_f0), ID(0, &instr_dual_0f_38_f0), N, N 4457 }; 4458 4459 static const struct gprefix three_byte_0f_38_f1 = { 4460 ID(0, &instr_dual_0f_38_f1), ID(0, &instr_dual_0f_38_f1), N, N 4461 }; 4462 4463 /* 4464 * Insns below are selected by the prefix which indexed by the third opcode 4465 * byte. 4466 */ 4467 static const struct opcode opcode_map_0f_38[256] = { 4468 /* 0x00 - 0x1f */ 4469 X16(N), X16(N), 4470 /* 0x20 - 0x2f */ 4471 X8(N), 4472 X2(N), GP(SrcReg | DstMem | ModRM | Mov | Aligned, &pfx_0f_e7_0f_38_2a), N, N, N, N, N, 4473 /* 0x30 - 0x7f */ 4474 X16(N), X16(N), X16(N), X16(N), X16(N), 4475 /* 0x80 - 0xef */ 4476 X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), 4477 /* 0xf0 - 0xf1 */ 4478 GP(EmulateOnUD | ModRM, &three_byte_0f_38_f0), 4479 GP(EmulateOnUD | ModRM, &three_byte_0f_38_f1), 4480 /* 0xf2 - 0xff */ 4481 N, N, X4(N), X8(N) 4482 }; 4483 4484 #undef D 4485 #undef N 4486 #undef G 4487 #undef GD 4488 #undef I 4489 #undef GP 4490 #undef EXT 4491 #undef MD 4492 #undef ID 4493 4494 #undef D2bv 4495 #undef D2bvIP 4496 #undef I2bv 4497 #undef I2bvIP 4498 #undef I6ALU 4499 4500 static bool is_shstk_instruction(struct x86_emulate_ctxt *ctxt) 4501 { 4502 return ctxt->d & ShadowStack; 4503 } 4504 4505 static bool is_ibt_instruction(struct x86_emulate_ctxt *ctxt) 4506 { 4507 u64 flags = ctxt->d; 4508 4509 if (!(flags & IsBranch)) 4510 return false; 4511 4512 /* 4513 * All far JMPs and CALLs (including SYSCALL, SYSENTER, and INTn) are 4514 * indirect and thus affect IBT state. All far RETs (including SYSEXIT 4515 * and IRET) are protected via Shadow Stacks and thus don't affect IBT 4516 * state. IRET #GPs when returning to virtual-8086 and IBT or SHSTK is 4517 * enabled, but that should be handled by IRET emulation (in the very 4518 * unlikely scenario that KVM adds support for fully emulating IRET). 4519 */ 4520 if (!(flags & NearBranch)) 4521 return ctxt->execute != em_iret && 4522 ctxt->execute != em_ret_far && 4523 ctxt->execute != em_ret_far_imm && 4524 ctxt->execute != em_sysexit; 4525 4526 switch (flags & SrcMask) { 4527 case SrcReg: 4528 case SrcMem: 4529 case SrcMem16: 4530 case SrcMem32: 4531 return true; 4532 case SrcMemFAddr: 4533 case SrcImmFAddr: 4534 /* Far branches should be handled above. */ 4535 WARN_ON_ONCE(1); 4536 return true; 4537 case SrcNone: 4538 case SrcImm: 4539 case SrcImmByte: 4540 /* 4541 * Note, ImmU16 is used only for the stack adjustment operand on ENTER 4542 * and RET instructions. ENTER isn't a branch and RET FAR is handled 4543 * by the NearBranch check above. RET itself isn't an indirect branch. 4544 */ 4545 case SrcImmU16: 4546 return false; 4547 default: 4548 WARN_ONCE(1, "Unexpected Src operand '%llx' on branch", 4549 flags & SrcMask); 4550 return false; 4551 } 4552 } 4553 4554 static unsigned imm_size(struct x86_emulate_ctxt *ctxt) 4555 { 4556 unsigned size; 4557 4558 size = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes; 4559 if (size == 8) 4560 size = 4; 4561 return size; 4562 } 4563 4564 static int decode_imm(struct x86_emulate_ctxt *ctxt, struct operand *op, 4565 unsigned size, bool sign_extension) 4566 { 4567 int rc = X86EMUL_CONTINUE; 4568 4569 op->type = OP_IMM; 4570 op->bytes = size; 4571 op->addr.mem.ea = ctxt->_eip; 4572 /* NB. Immediates are sign-extended as necessary. */ 4573 switch (op->bytes) { 4574 case 1: 4575 op->val = insn_fetch(s8, ctxt); 4576 break; 4577 case 2: 4578 op->val = insn_fetch(s16, ctxt); 4579 break; 4580 case 4: 4581 op->val = insn_fetch(s32, ctxt); 4582 break; 4583 case 8: 4584 op->val = insn_fetch(s64, ctxt); 4585 break; 4586 } 4587 if (!sign_extension) { 4588 switch (op->bytes) { 4589 case 1: 4590 op->val &= 0xff; 4591 break; 4592 case 2: 4593 op->val &= 0xffff; 4594 break; 4595 case 4: 4596 op->val &= 0xffffffff; 4597 break; 4598 } 4599 } 4600 done: 4601 return rc; 4602 } 4603 4604 static int decode_operand(struct x86_emulate_ctxt *ctxt, struct operand *op, 4605 unsigned d) 4606 { 4607 int rc = X86EMUL_CONTINUE; 4608 4609 switch (d) { 4610 case OpReg: 4611 decode_register_operand(ctxt, op); 4612 break; 4613 case OpImmUByte: 4614 rc = decode_imm(ctxt, op, 1, false); 4615 break; 4616 case OpMem: 4617 ctxt->memop.bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes; 4618 mem_common: 4619 *op = ctxt->memop; 4620 ctxt->memopp = op; 4621 if (ctxt->d & BitOp) 4622 fetch_bit_operand(ctxt); 4623 op->orig_val = op->val; 4624 break; 4625 case OpMem64: 4626 ctxt->memop.bytes = (ctxt->op_bytes == 8) ? 16 : 8; 4627 goto mem_common; 4628 case OpAcc: 4629 op->type = OP_REG; 4630 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes; 4631 op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX); 4632 fetch_register_operand(op); 4633 break; 4634 case OpAccLo: 4635 op->type = OP_REG; 4636 op->bytes = (ctxt->d & ByteOp) ? 2 : ctxt->op_bytes; 4637 op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX); 4638 fetch_register_operand(op); 4639 break; 4640 case OpAccHi: 4641 if (ctxt->d & ByteOp) { 4642 op->type = OP_NONE; 4643 break; 4644 } 4645 op->type = OP_REG; 4646 op->bytes = ctxt->op_bytes; 4647 op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX); 4648 fetch_register_operand(op); 4649 break; 4650 case OpDI: 4651 op->type = OP_MEM; 4652 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes; 4653 op->addr.mem.ea = 4654 register_address(ctxt, VCPU_REGS_RDI); 4655 op->addr.mem.seg = VCPU_SREG_ES; 4656 op->val = 0; 4657 op->count = 1; 4658 break; 4659 case OpDX: 4660 op->type = OP_REG; 4661 op->bytes = 2; 4662 op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX); 4663 fetch_register_operand(op); 4664 break; 4665 case OpCL: 4666 op->type = OP_IMM; 4667 op->bytes = 1; 4668 op->val = reg_read(ctxt, VCPU_REGS_RCX) & 0xff; 4669 break; 4670 case OpImmByte: 4671 rc = decode_imm(ctxt, op, 1, true); 4672 break; 4673 case OpOne: 4674 op->type = OP_IMM; 4675 op->bytes = 1; 4676 op->val = 1; 4677 break; 4678 case OpImm: 4679 rc = decode_imm(ctxt, op, imm_size(ctxt), true); 4680 break; 4681 case OpImm64: 4682 rc = decode_imm(ctxt, op, ctxt->op_bytes, true); 4683 break; 4684 case OpMem8: 4685 ctxt->memop.bytes = 1; 4686 if (ctxt->memop.type == OP_REG) { 4687 ctxt->memop.addr.reg = decode_register(ctxt, 4688 ctxt->modrm_rm, true); 4689 fetch_register_operand(&ctxt->memop); 4690 } 4691 goto mem_common; 4692 case OpMem16: 4693 ctxt->memop.bytes = 2; 4694 goto mem_common; 4695 case OpMem32: 4696 ctxt->memop.bytes = 4; 4697 goto mem_common; 4698 case OpImmU16: 4699 rc = decode_imm(ctxt, op, 2, false); 4700 break; 4701 case OpImmU: 4702 rc = decode_imm(ctxt, op, imm_size(ctxt), false); 4703 break; 4704 case OpSI: 4705 op->type = OP_MEM; 4706 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes; 4707 op->addr.mem.ea = 4708 register_address(ctxt, VCPU_REGS_RSI); 4709 op->addr.mem.seg = ctxt->seg_override; 4710 op->val = 0; 4711 op->count = 1; 4712 break; 4713 case OpXLat: 4714 op->type = OP_MEM; 4715 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes; 4716 op->addr.mem.ea = 4717 address_mask(ctxt, 4718 reg_read(ctxt, VCPU_REGS_RBX) + 4719 (reg_read(ctxt, VCPU_REGS_RAX) & 0xff)); 4720 op->addr.mem.seg = ctxt->seg_override; 4721 op->val = 0; 4722 break; 4723 case OpImmFAddr: 4724 op->type = OP_IMM; 4725 op->addr.mem.ea = ctxt->_eip; 4726 op->bytes = ctxt->op_bytes + 2; 4727 insn_fetch_arr(op->valptr, op->bytes, ctxt); 4728 break; 4729 case OpMemFAddr: 4730 ctxt->memop.bytes = ctxt->op_bytes + 2; 4731 goto mem_common; 4732 case OpES: 4733 op->type = OP_IMM; 4734 op->val = VCPU_SREG_ES; 4735 break; 4736 case OpCS: 4737 op->type = OP_IMM; 4738 op->val = VCPU_SREG_CS; 4739 break; 4740 case OpSS: 4741 op->type = OP_IMM; 4742 op->val = VCPU_SREG_SS; 4743 break; 4744 case OpDS: 4745 op->type = OP_IMM; 4746 op->val = VCPU_SREG_DS; 4747 break; 4748 case OpFS: 4749 op->type = OP_IMM; 4750 op->val = VCPU_SREG_FS; 4751 break; 4752 case OpGS: 4753 op->type = OP_IMM; 4754 op->val = VCPU_SREG_GS; 4755 break; 4756 case OpImplicit: 4757 /* Special instructions do their own operand decoding. */ 4758 default: 4759 op->type = OP_NONE; /* Disable writeback. */ 4760 break; 4761 } 4762 4763 done: 4764 return rc; 4765 } 4766 4767 static int x86_decode_avx(struct x86_emulate_ctxt *ctxt, 4768 u8 vex_1st, u8 vex_2nd, struct opcode *opcode) 4769 { 4770 u8 vex_3rd, map, pp, l, v; 4771 int rc = X86EMUL_CONTINUE; 4772 4773 if (ctxt->rep_prefix || ctxt->op_prefix || ctxt->rex_prefix) 4774 goto ud; 4775 4776 if (vex_1st == 0xc5) { 4777 /* Expand RVVVVlpp to VEX3 format */ 4778 vex_3rd = vex_2nd & ~0x80; /* VVVVlpp from VEX2, w=0 */ 4779 vex_2nd = (vex_2nd & 0x80) | 0x61; /* R from VEX2, X=1 B=1 mmmmm=00001 */ 4780 } else { 4781 vex_3rd = insn_fetch(u8, ctxt); 4782 } 4783 4784 /* vex_2nd = RXBmmmmm, vex_3rd = wVVVVlpp. Fix polarity */ 4785 vex_2nd ^= 0xE0; /* binary 11100000 */ 4786 vex_3rd ^= 0x78; /* binary 01111000 */ 4787 4788 ctxt->rex_prefix = REX_PREFIX; 4789 ctxt->rex_bits = (vex_2nd & 0xE0) >> 5; /* RXB */ 4790 ctxt->rex_bits |= (vex_3rd & 0x80) >> 4; /* w */ 4791 if (ctxt->rex_bits && ctxt->mode != X86EMUL_MODE_PROT64) 4792 goto ud; 4793 4794 map = vex_2nd & 0x1f; 4795 v = (vex_3rd >> 3) & 0xf; 4796 l = vex_3rd & 0x4; 4797 pp = vex_3rd & 0x3; 4798 4799 ctxt->b = insn_fetch(u8, ctxt); 4800 switch (map) { 4801 case 1: 4802 ctxt->opcode_len = 2; 4803 *opcode = twobyte_table[ctxt->b]; 4804 break; 4805 case 2: 4806 ctxt->opcode_len = 3; 4807 *opcode = opcode_map_0f_38[ctxt->b]; 4808 break; 4809 case 3: 4810 /* no 0f 3a instructions are supported yet */ 4811 return X86EMUL_UNHANDLEABLE; 4812 default: 4813 goto ud; 4814 } 4815 4816 /* 4817 * No three operand instructions are supported yet; those that 4818 * *are* marked with the Avx flag reserve the VVVV flag. 4819 */ 4820 if (v) 4821 goto ud; 4822 4823 if (l) 4824 ctxt->op_bytes = 32; 4825 else 4826 ctxt->op_bytes = 16; 4827 4828 switch (pp) { 4829 case 0: break; 4830 case 1: ctxt->op_prefix = true; break; 4831 case 2: ctxt->rep_prefix = 0xf3; break; 4832 case 3: ctxt->rep_prefix = 0xf2; break; 4833 } 4834 4835 done: 4836 return rc; 4837 ud: 4838 *opcode = ud; 4839 return rc; 4840 } 4841 4842 int x86_decode_insn(struct x86_emulate_ctxt *ctxt, void *insn, int insn_len, int emulation_type) 4843 { 4844 int rc = X86EMUL_CONTINUE; 4845 int mode = ctxt->mode; 4846 int def_op_bytes, def_ad_bytes, goffset, simd_prefix; 4847 bool vex_prefix = false; 4848 bool has_seg_override = false; 4849 struct opcode opcode; 4850 u16 dummy; 4851 struct desc_struct desc; 4852 4853 ctxt->memop.type = OP_NONE; 4854 ctxt->memopp = NULL; 4855 ctxt->_eip = ctxt->eip; 4856 ctxt->fetch.ptr = ctxt->fetch.data; 4857 ctxt->fetch.end = ctxt->fetch.data + insn_len; 4858 ctxt->opcode_len = 1; 4859 ctxt->intercept = x86_intercept_none; 4860 if (insn_len > 0) 4861 memcpy(ctxt->fetch.data, insn, insn_len); 4862 else { 4863 rc = __do_insn_fetch_bytes(ctxt, 1); 4864 if (rc != X86EMUL_CONTINUE) 4865 goto done; 4866 } 4867 4868 switch (mode) { 4869 case X86EMUL_MODE_REAL: 4870 case X86EMUL_MODE_VM86: 4871 def_op_bytes = def_ad_bytes = 2; 4872 ctxt->ops->get_segment(ctxt, &dummy, &desc, NULL, VCPU_SREG_CS); 4873 if (desc.d) 4874 def_op_bytes = def_ad_bytes = 4; 4875 break; 4876 case X86EMUL_MODE_PROT16: 4877 def_op_bytes = def_ad_bytes = 2; 4878 break; 4879 case X86EMUL_MODE_PROT32: 4880 def_op_bytes = def_ad_bytes = 4; 4881 break; 4882 #ifdef CONFIG_X86_64 4883 case X86EMUL_MODE_PROT64: 4884 def_op_bytes = 4; 4885 def_ad_bytes = 8; 4886 break; 4887 #endif 4888 default: 4889 return EMULATION_FAILED; 4890 } 4891 4892 ctxt->op_bytes = def_op_bytes; 4893 ctxt->ad_bytes = def_ad_bytes; 4894 4895 /* Legacy prefixes. */ 4896 for (;;) { 4897 switch (ctxt->b = insn_fetch(u8, ctxt)) { 4898 case 0x66: /* operand-size override */ 4899 ctxt->op_prefix = true; 4900 /* switch between 2/4 bytes */ 4901 ctxt->op_bytes = def_op_bytes ^ 6; 4902 break; 4903 case 0x67: /* address-size override */ 4904 if (mode == X86EMUL_MODE_PROT64) 4905 /* switch between 4/8 bytes */ 4906 ctxt->ad_bytes = def_ad_bytes ^ 12; 4907 else 4908 /* switch between 2/4 bytes */ 4909 ctxt->ad_bytes = def_ad_bytes ^ 6; 4910 break; 4911 case 0x26: /* ES override */ 4912 has_seg_override = true; 4913 ctxt->seg_override = VCPU_SREG_ES; 4914 break; 4915 case 0x2e: /* CS override */ 4916 has_seg_override = true; 4917 ctxt->seg_override = VCPU_SREG_CS; 4918 break; 4919 case 0x36: /* SS override */ 4920 has_seg_override = true; 4921 ctxt->seg_override = VCPU_SREG_SS; 4922 break; 4923 case 0x3e: /* DS override */ 4924 has_seg_override = true; 4925 ctxt->seg_override = VCPU_SREG_DS; 4926 break; 4927 case 0x64: /* FS override */ 4928 has_seg_override = true; 4929 ctxt->seg_override = VCPU_SREG_FS; 4930 break; 4931 case 0x65: /* GS override */ 4932 has_seg_override = true; 4933 ctxt->seg_override = VCPU_SREG_GS; 4934 break; 4935 case 0x40 ... 0x4f: /* REX */ 4936 if (mode != X86EMUL_MODE_PROT64) 4937 goto done_prefixes; 4938 ctxt->rex_prefix = REX_PREFIX; 4939 ctxt->rex_bits = ctxt->b & 0xf; 4940 continue; 4941 case 0xf0: /* LOCK */ 4942 ctxt->lock_prefix = 1; 4943 break; 4944 case 0xf2: /* REPNE/REPNZ */ 4945 case 0xf3: /* REP/REPE/REPZ */ 4946 ctxt->rep_prefix = ctxt->b; 4947 break; 4948 default: 4949 goto done_prefixes; 4950 } 4951 4952 /* Any legacy prefix after a REX prefix nullifies its effect. */ 4953 ctxt->rex_prefix = REX_NONE; 4954 ctxt->rex_bits = 0; 4955 } 4956 4957 done_prefixes: 4958 4959 /* REX prefix. */ 4960 if (ctxt->rex_bits & REX_W) 4961 ctxt->op_bytes = 8; 4962 4963 /* Opcode byte(s). */ 4964 if (ctxt->b == 0xc4 || ctxt->b == 0xc5) { 4965 /* VEX or LDS/LES */ 4966 u8 vex_2nd = insn_fetch(u8, ctxt); 4967 if (mode != X86EMUL_MODE_PROT64 && (vex_2nd & 0xc0) != 0xc0) { 4968 opcode = opcode_table[ctxt->b]; 4969 ctxt->modrm = vex_2nd; 4970 /* the Mod/RM byte has been fetched already! */ 4971 goto done_modrm; 4972 } 4973 4974 vex_prefix = true; 4975 rc = x86_decode_avx(ctxt, ctxt->b, vex_2nd, &opcode); 4976 if (rc != X86EMUL_CONTINUE) 4977 goto done; 4978 } else if (ctxt->b == 0x0f) { 4979 /* Two- or three-byte opcode */ 4980 ctxt->opcode_len = 2; 4981 ctxt->b = insn_fetch(u8, ctxt); 4982 opcode = twobyte_table[ctxt->b]; 4983 4984 /* 0F_38 opcode map */ 4985 if (ctxt->b == 0x38) { 4986 ctxt->opcode_len = 3; 4987 ctxt->b = insn_fetch(u8, ctxt); 4988 opcode = opcode_map_0f_38[ctxt->b]; 4989 } 4990 } else { 4991 /* Opcode byte(s). */ 4992 opcode = opcode_table[ctxt->b]; 4993 } 4994 4995 if (opcode.flags & ModRM) 4996 ctxt->modrm = insn_fetch(u8, ctxt); 4997 4998 done_modrm: 4999 ctxt->d = opcode.flags; 5000 while (ctxt->d & GroupMask) { 5001 switch (ctxt->d & GroupMask) { 5002 case Group: 5003 goffset = (ctxt->modrm >> 3) & 7; 5004 opcode = opcode.u.group[goffset]; 5005 break; 5006 case GroupDual: 5007 goffset = (ctxt->modrm >> 3) & 7; 5008 if ((ctxt->modrm >> 6) == 3) 5009 opcode = opcode.u.gdual->mod3[goffset]; 5010 else 5011 opcode = opcode.u.gdual->mod012[goffset]; 5012 break; 5013 case RMExt: 5014 goffset = ctxt->modrm & 7; 5015 opcode = opcode.u.group[goffset]; 5016 break; 5017 case Prefix: 5018 if (ctxt->rep_prefix && ctxt->op_prefix) 5019 return EMULATION_FAILED; 5020 simd_prefix = ctxt->op_prefix ? 0x66 : ctxt->rep_prefix; 5021 switch (simd_prefix) { 5022 case 0x00: opcode = opcode.u.gprefix->pfx_no; break; 5023 case 0x66: opcode = opcode.u.gprefix->pfx_66; break; 5024 case 0xf2: opcode = opcode.u.gprefix->pfx_f2; break; 5025 case 0xf3: opcode = opcode.u.gprefix->pfx_f3; break; 5026 } 5027 break; 5028 case Escape: 5029 if (ctxt->modrm > 0xbf) { 5030 size_t size = ARRAY_SIZE(opcode.u.esc->high); 5031 u32 index = array_index_nospec( 5032 ctxt->modrm - 0xc0, size); 5033 5034 opcode = opcode.u.esc->high[index]; 5035 } else { 5036 opcode = opcode.u.esc->op[(ctxt->modrm >> 3) & 7]; 5037 } 5038 break; 5039 case InstrDual: 5040 if ((ctxt->modrm >> 6) == 3) 5041 opcode = opcode.u.idual->mod3; 5042 else 5043 opcode = opcode.u.idual->mod012; 5044 break; 5045 case ModeDual: 5046 if (ctxt->mode == X86EMUL_MODE_PROT64) 5047 opcode = opcode.u.mdual->mode64; 5048 else 5049 opcode = opcode.u.mdual->mode32; 5050 break; 5051 default: 5052 return EMULATION_FAILED; 5053 } 5054 5055 ctxt->d &= ~(u64)GroupMask; 5056 ctxt->d |= opcode.flags; 5057 } 5058 5059 ctxt->is_branch = opcode.flags & IsBranch; 5060 5061 /* Unrecognised? */ 5062 if (ctxt->d == 0) 5063 return EMULATION_FAILED; 5064 5065 if (unlikely(vex_prefix)) { 5066 /* 5067 * Only specifically marked instructions support VEX. Since many 5068 * instructions support it but are not annotated, return not implemented 5069 * rather than #UD. 5070 */ 5071 if (!(ctxt->d & Avx)) 5072 return EMULATION_FAILED; 5073 5074 if (!(ctxt->d & AlignMask)) 5075 ctxt->d |= Unaligned; 5076 } 5077 5078 ctxt->execute = opcode.u.execute; 5079 5080 /* 5081 * Reject emulation if KVM might need to emulate shadow stack updates 5082 * and/or indirect branch tracking enforcement, which the emulator 5083 * doesn't support. 5084 */ 5085 if ((is_ibt_instruction(ctxt) || is_shstk_instruction(ctxt)) && 5086 ctxt->ops->get_cr(ctxt, 4) & X86_CR4_CET) { 5087 u64 u_cet = 0, s_cet = 0; 5088 5089 /* 5090 * Check both User and Supervisor on far transfers as inter- 5091 * privilege level transfers are impacted by CET at the target 5092 * privilege level, and that is not known at this time. The 5093 * expectation is that the guest will not require emulation of 5094 * any CET-affected instructions at any privilege level. 5095 */ 5096 if (!(ctxt->d & NearBranch)) 5097 u_cet = s_cet = CET_SHSTK_EN | CET_ENDBR_EN; 5098 else if (ctxt->ops->cpl(ctxt) == 3) 5099 u_cet = CET_SHSTK_EN | CET_ENDBR_EN; 5100 else 5101 s_cet = CET_SHSTK_EN | CET_ENDBR_EN; 5102 5103 if ((u_cet && ctxt->ops->get_msr(ctxt, MSR_IA32_U_CET, &u_cet)) || 5104 (s_cet && ctxt->ops->get_msr(ctxt, MSR_IA32_S_CET, &s_cet))) 5105 return EMULATION_FAILED; 5106 5107 if ((u_cet | s_cet) & CET_SHSTK_EN && is_shstk_instruction(ctxt)) 5108 return EMULATION_FAILED; 5109 5110 if ((u_cet | s_cet) & CET_ENDBR_EN && is_ibt_instruction(ctxt)) 5111 return EMULATION_FAILED; 5112 } 5113 5114 if (unlikely(emulation_type & EMULTYPE_TRAP_UD) && 5115 likely(!(ctxt->d & EmulateOnUD))) 5116 return EMULATION_FAILED; 5117 5118 if (unlikely(ctxt->d & 5119 (NotImpl|Stack|Op3264|Sse|Mmx|Intercept|CheckPerm|NearBranch| 5120 No16))) { 5121 /* 5122 * These are copied unconditionally here, and checked unconditionally 5123 * in x86_emulate_insn. 5124 */ 5125 ctxt->check_perm = opcode.check_perm; 5126 ctxt->intercept = opcode.intercept; 5127 5128 if (ctxt->d & NotImpl) 5129 return EMULATION_FAILED; 5130 5131 if (mode == X86EMUL_MODE_PROT64) { 5132 if (ctxt->op_bytes == 4 && (ctxt->d & Stack)) 5133 ctxt->op_bytes = 8; 5134 else if (ctxt->d & NearBranch) 5135 ctxt->op_bytes = 8; 5136 } 5137 5138 if (ctxt->d & Op3264) { 5139 if (mode == X86EMUL_MODE_PROT64) 5140 ctxt->op_bytes = 8; 5141 else 5142 ctxt->op_bytes = 4; 5143 } 5144 5145 if ((ctxt->d & No16) && ctxt->op_bytes == 2) 5146 ctxt->op_bytes = 4; 5147 5148 if (vex_prefix) 5149 ; 5150 else if (ctxt->d & Sse) 5151 ctxt->op_bytes = 16, ctxt->d &= ~Avx; 5152 else if (ctxt->d & Mmx) 5153 ctxt->op_bytes = 8; 5154 } 5155 5156 /* ModRM and SIB bytes. */ 5157 if (ctxt->d & ModRM) { 5158 rc = decode_modrm(ctxt, &ctxt->memop); 5159 if (!has_seg_override) { 5160 has_seg_override = true; 5161 ctxt->seg_override = ctxt->modrm_seg; 5162 } 5163 } else if (ctxt->d & MemAbs) 5164 rc = decode_abs(ctxt, &ctxt->memop); 5165 if (rc != X86EMUL_CONTINUE) 5166 goto done; 5167 5168 if (!has_seg_override) 5169 ctxt->seg_override = VCPU_SREG_DS; 5170 5171 ctxt->memop.addr.mem.seg = ctxt->seg_override; 5172 5173 /* 5174 * Decode and fetch the source operand: register, memory 5175 * or immediate. 5176 */ 5177 rc = decode_operand(ctxt, &ctxt->src, (ctxt->d >> SrcShift) & OpMask); 5178 if (rc != X86EMUL_CONTINUE) 5179 goto done; 5180 5181 /* 5182 * Decode and fetch the second source operand: register, memory 5183 * or immediate. 5184 */ 5185 rc = decode_operand(ctxt, &ctxt->src2, (ctxt->d >> Src2Shift) & OpMask); 5186 if (rc != X86EMUL_CONTINUE) 5187 goto done; 5188 5189 /* Decode and fetch the destination operand: register or memory. */ 5190 rc = decode_operand(ctxt, &ctxt->dst, (ctxt->d >> DstShift) & OpMask); 5191 5192 if (ctxt->rip_relative && likely(ctxt->memopp)) 5193 ctxt->memopp->addr.mem.ea = address_mask(ctxt, 5194 ctxt->memopp->addr.mem.ea + ctxt->_eip); 5195 5196 done: 5197 if (rc == X86EMUL_PROPAGATE_FAULT) 5198 ctxt->have_exception = true; 5199 return (rc != X86EMUL_CONTINUE) ? EMULATION_FAILED : EMULATION_OK; 5200 } 5201 5202 bool x86_page_table_writing_insn(struct x86_emulate_ctxt *ctxt) 5203 { 5204 return ctxt->d & PageTable; 5205 } 5206 5207 static bool string_insn_completed(struct x86_emulate_ctxt *ctxt) 5208 { 5209 /* The second termination condition only applies for REPE 5210 * and REPNE. Test if the repeat string operation prefix is 5211 * REPE/REPZ or REPNE/REPNZ and if it's the case it tests the 5212 * corresponding termination condition according to: 5213 * - if REPE/REPZ and ZF = 0 then done 5214 * - if REPNE/REPNZ and ZF = 1 then done 5215 */ 5216 if (((ctxt->b == 0xa6) || (ctxt->b == 0xa7) || 5217 (ctxt->b == 0xae) || (ctxt->b == 0xaf)) 5218 && (((ctxt->rep_prefix == REPE_PREFIX) && 5219 ((ctxt->eflags & X86_EFLAGS_ZF) == 0)) 5220 || ((ctxt->rep_prefix == REPNE_PREFIX) && 5221 ((ctxt->eflags & X86_EFLAGS_ZF) == X86_EFLAGS_ZF)))) 5222 return true; 5223 5224 return false; 5225 } 5226 5227 static int flush_pending_x87_faults(struct x86_emulate_ctxt *ctxt) 5228 { 5229 int rc; 5230 5231 kvm_fpu_get(); 5232 rc = asm_safe("fwait"); 5233 kvm_fpu_put(); 5234 5235 if (unlikely(rc != X86EMUL_CONTINUE)) 5236 return emulate_exception(ctxt, MF_VECTOR, 0, false); 5237 5238 return X86EMUL_CONTINUE; 5239 } 5240 5241 static void fetch_possible_mmx_operand(struct operand *op) 5242 { 5243 if (op->type == OP_MM) 5244 kvm_read_mmx_reg(op->addr.mm, &op->mm_val); 5245 } 5246 5247 void init_decode_cache(struct x86_emulate_ctxt *ctxt) 5248 { 5249 /* Clear fields that are set conditionally but read without a guard. */ 5250 ctxt->rip_relative = false; 5251 ctxt->rex_prefix = REX_NONE; 5252 ctxt->rex_bits = 0; 5253 ctxt->lock_prefix = 0; 5254 ctxt->op_prefix = false; 5255 ctxt->rep_prefix = 0; 5256 ctxt->regs_valid = 0; 5257 ctxt->regs_dirty = 0; 5258 5259 ctxt->io_read.pos = 0; 5260 ctxt->io_read.end = 0; 5261 ctxt->mem_read.end = 0; 5262 } 5263 5264 int x86_emulate_insn(struct x86_emulate_ctxt *ctxt, bool check_intercepts) 5265 { 5266 const struct x86_emulate_ops *ops = ctxt->ops; 5267 int rc = X86EMUL_CONTINUE; 5268 int saved_dst_type = ctxt->dst.type; 5269 5270 ctxt->mem_read.pos = 0; 5271 5272 /* LOCK prefix is allowed only with some instructions */ 5273 if (ctxt->lock_prefix && (!(ctxt->d & Lock) || ctxt->dst.type != OP_MEM)) { 5274 rc = emulate_ud(ctxt); 5275 goto done; 5276 } 5277 5278 if ((ctxt->d & SrcMask) == SrcMemFAddr && ctxt->src.type != OP_MEM) { 5279 rc = emulate_ud(ctxt); 5280 goto done; 5281 } 5282 5283 if (unlikely(ctxt->d & 5284 (No64|Undefined|Avx|Sse|Mmx|Intercept|CheckPerm|Priv|Prot|String))) { 5285 if ((ctxt->mode == X86EMUL_MODE_PROT64 && (ctxt->d & No64)) || 5286 (ctxt->d & Undefined)) { 5287 rc = emulate_ud(ctxt); 5288 goto done; 5289 } 5290 5291 if ((ctxt->d & (Avx|Sse|Mmx)) && ((ops->get_cr(ctxt, 0) & X86_CR0_EM))) { 5292 rc = emulate_ud(ctxt); 5293 goto done; 5294 } 5295 5296 if (ctxt->d & Avx) { 5297 u64 xcr = 0; 5298 if (!(ops->get_cr(ctxt, 4) & X86_CR4_OSXSAVE) 5299 || ops->get_xcr(ctxt, 0, &xcr) 5300 || !(xcr & XFEATURE_MASK_YMM)) { 5301 rc = emulate_ud(ctxt); 5302 goto done; 5303 } 5304 } else if (ctxt->d & Sse) { 5305 if (!(ops->get_cr(ctxt, 4) & X86_CR4_OSFXSR)) { 5306 rc = emulate_ud(ctxt); 5307 goto done; 5308 } 5309 } 5310 5311 if ((ctxt->d & (Avx|Sse|Mmx)) && (ops->get_cr(ctxt, 0) & X86_CR0_TS)) { 5312 rc = emulate_nm(ctxt); 5313 goto done; 5314 } 5315 5316 if (ctxt->d & Mmx) { 5317 rc = flush_pending_x87_faults(ctxt); 5318 if (rc != X86EMUL_CONTINUE) 5319 goto done; 5320 /* 5321 * Now that we know the fpu is exception safe, we can fetch 5322 * operands from it. 5323 */ 5324 fetch_possible_mmx_operand(&ctxt->src); 5325 fetch_possible_mmx_operand(&ctxt->src2); 5326 if (!(ctxt->d & Mov)) 5327 fetch_possible_mmx_operand(&ctxt->dst); 5328 } 5329 5330 if (unlikely(check_intercepts) && ctxt->intercept) { 5331 rc = emulator_check_intercept(ctxt, ctxt->intercept, 5332 X86_ICPT_PRE_EXCEPT); 5333 if (rc != X86EMUL_CONTINUE) 5334 goto done; 5335 } 5336 5337 /* Instruction can only be executed in protected mode */ 5338 if ((ctxt->d & Prot) && ctxt->mode < X86EMUL_MODE_PROT16) { 5339 rc = emulate_ud(ctxt); 5340 goto done; 5341 } 5342 5343 /* Privileged instruction can be executed only in CPL=0 */ 5344 if ((ctxt->d & Priv) && ops->cpl(ctxt)) { 5345 if (ctxt->d & PrivUD) 5346 rc = emulate_ud(ctxt); 5347 else 5348 rc = emulate_gp(ctxt, 0); 5349 goto done; 5350 } 5351 5352 /* Do instruction specific permission checks */ 5353 if (ctxt->d & CheckPerm) { 5354 rc = ctxt->check_perm(ctxt); 5355 if (rc != X86EMUL_CONTINUE) 5356 goto done; 5357 } 5358 5359 if (unlikely(check_intercepts) && (ctxt->d & Intercept)) { 5360 rc = emulator_check_intercept(ctxt, ctxt->intercept, 5361 X86_ICPT_POST_EXCEPT); 5362 if (rc != X86EMUL_CONTINUE) 5363 goto done; 5364 } 5365 5366 if (ctxt->rep_prefix && (ctxt->d & String)) { 5367 /* All REP prefixes have the same first termination condition */ 5368 if (address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) == 0) { 5369 string_registers_quirk(ctxt); 5370 ctxt->eip = ctxt->_eip; 5371 ctxt->eflags &= ~X86_EFLAGS_RF; 5372 goto done; 5373 } 5374 } 5375 } 5376 5377 if ((ctxt->src.type == OP_MEM) && !(ctxt->d & NoAccess)) { 5378 rc = segmented_read(ctxt, ctxt->src.addr.mem, 5379 ctxt->src.valptr, ctxt->src.bytes); 5380 if (rc != X86EMUL_CONTINUE) 5381 goto done; 5382 ctxt->src.orig_val64 = ctxt->src.val64; 5383 } 5384 5385 if (ctxt->src2.type == OP_MEM) { 5386 rc = segmented_read(ctxt, ctxt->src2.addr.mem, 5387 &ctxt->src2.val, ctxt->src2.bytes); 5388 if (rc != X86EMUL_CONTINUE) 5389 goto done; 5390 } 5391 5392 if ((ctxt->d & DstMask) == ImplicitOps) 5393 goto special_insn; 5394 5395 5396 if ((ctxt->dst.type == OP_MEM) && !(ctxt->d & Mov)) { 5397 /* optimisation - avoid slow emulated read if Mov */ 5398 rc = segmented_read(ctxt, ctxt->dst.addr.mem, 5399 &ctxt->dst.val, ctxt->dst.bytes); 5400 if (rc != X86EMUL_CONTINUE) { 5401 if (!(ctxt->d & NoWrite) && 5402 rc == X86EMUL_PROPAGATE_FAULT && 5403 ctxt->exception.vector == PF_VECTOR) 5404 ctxt->exception.error_code |= PFERR_WRITE_MASK; 5405 goto done; 5406 } 5407 } 5408 /* Copy full 64-bit value for CMPXCHG8B. */ 5409 ctxt->dst.orig_val64 = ctxt->dst.val64; 5410 5411 special_insn: 5412 5413 if (unlikely(check_intercepts) && (ctxt->d & Intercept)) { 5414 rc = emulator_check_intercept(ctxt, ctxt->intercept, 5415 X86_ICPT_POST_MEMACCESS); 5416 if (rc != X86EMUL_CONTINUE) 5417 goto done; 5418 } 5419 5420 if (ctxt->rep_prefix && (ctxt->d & String)) 5421 ctxt->eflags |= X86_EFLAGS_RF; 5422 else 5423 ctxt->eflags &= ~X86_EFLAGS_RF; 5424 5425 if (ctxt->execute) { 5426 rc = ctxt->execute(ctxt); 5427 if (rc != X86EMUL_CONTINUE) 5428 goto done; 5429 goto writeback; 5430 } 5431 5432 if (ctxt->opcode_len == 2) 5433 goto twobyte_insn; 5434 else if (ctxt->opcode_len == 3) 5435 goto threebyte_insn; 5436 5437 switch (ctxt->b) { 5438 case 0x70 ... 0x7f: /* jcc (short) */ 5439 if (test_cc(ctxt->b, ctxt->eflags)) 5440 rc = jmp_rel(ctxt, ctxt->src.val); 5441 break; 5442 case 0x8d: /* lea r16/r32, m */ 5443 ctxt->dst.val = ctxt->src.addr.mem.ea; 5444 break; 5445 case 0x90 ... 0x97: /* nop / xchg reg, rax */ 5446 if (ctxt->dst.addr.reg == reg_rmw(ctxt, VCPU_REGS_RAX)) 5447 ctxt->dst.type = OP_NONE; 5448 else 5449 rc = em_xchg(ctxt); 5450 break; 5451 case 0x98: /* cbw/cwde/cdqe */ 5452 switch (ctxt->op_bytes) { 5453 case 2: ctxt->dst.val = (s8)ctxt->dst.val; break; 5454 case 4: ctxt->dst.val = (s16)ctxt->dst.val; break; 5455 case 8: ctxt->dst.val = (s32)ctxt->dst.val; break; 5456 } 5457 break; 5458 case 0xcc: /* int3 */ 5459 rc = emulate_int(ctxt, 3); 5460 break; 5461 case 0xcd: /* int n */ 5462 rc = emulate_int(ctxt, ctxt->src.val); 5463 break; 5464 case 0xce: /* into */ 5465 if (ctxt->eflags & X86_EFLAGS_OF) 5466 rc = emulate_int(ctxt, 4); 5467 break; 5468 case 0xe9: /* jmp rel */ 5469 case 0xeb: /* jmp rel short */ 5470 rc = jmp_rel(ctxt, ctxt->src.val); 5471 ctxt->dst.type = OP_NONE; /* Disable writeback. */ 5472 break; 5473 case 0xf4: /* hlt */ 5474 ctxt->ops->halt(ctxt); 5475 break; 5476 case 0xf5: /* cmc */ 5477 /* complement carry flag from eflags reg */ 5478 ctxt->eflags ^= X86_EFLAGS_CF; 5479 break; 5480 case 0xf8: /* clc */ 5481 ctxt->eflags &= ~X86_EFLAGS_CF; 5482 break; 5483 case 0xf9: /* stc */ 5484 ctxt->eflags |= X86_EFLAGS_CF; 5485 break; 5486 case 0xfc: /* cld */ 5487 ctxt->eflags &= ~X86_EFLAGS_DF; 5488 break; 5489 case 0xfd: /* std */ 5490 ctxt->eflags |= X86_EFLAGS_DF; 5491 break; 5492 default: 5493 goto cannot_emulate; 5494 } 5495 5496 if (rc != X86EMUL_CONTINUE) 5497 goto done; 5498 5499 writeback: 5500 if (ctxt->d & SrcWrite) { 5501 BUG_ON(ctxt->src.type == OP_MEM || ctxt->src.type == OP_MEM_STR); 5502 rc = writeback(ctxt, &ctxt->src); 5503 if (rc != X86EMUL_CONTINUE) 5504 goto done; 5505 } 5506 if (!(ctxt->d & NoWrite)) { 5507 rc = writeback(ctxt, &ctxt->dst); 5508 if (rc != X86EMUL_CONTINUE) 5509 goto done; 5510 } 5511 5512 /* 5513 * restore dst type in case the decoding will be reused 5514 * (happens for string instruction ) 5515 */ 5516 ctxt->dst.type = saved_dst_type; 5517 5518 if ((ctxt->d & SrcMask) == SrcSI) 5519 string_addr_inc(ctxt, VCPU_REGS_RSI, &ctxt->src); 5520 5521 if ((ctxt->d & DstMask) == DstDI) 5522 string_addr_inc(ctxt, VCPU_REGS_RDI, &ctxt->dst); 5523 5524 if (ctxt->rep_prefix && (ctxt->d & String)) { 5525 unsigned int count; 5526 struct read_cache *r = &ctxt->io_read; 5527 if ((ctxt->d & SrcMask) == SrcSI) 5528 count = ctxt->src.count; 5529 else 5530 count = ctxt->dst.count; 5531 register_address_increment(ctxt, VCPU_REGS_RCX, -count); 5532 5533 if (!string_insn_completed(ctxt)) { 5534 /* 5535 * Re-enter guest when pio read ahead buffer is empty 5536 * or, if it is not used, after each 1024 iteration. 5537 */ 5538 if ((r->end != 0 || reg_read(ctxt, VCPU_REGS_RCX) & 0x3ff) && 5539 (r->end == 0 || r->end != r->pos)) { 5540 /* 5541 * Reset read cache. Usually happens before 5542 * decode, but since instruction is restarted 5543 * we have to do it here. 5544 */ 5545 ctxt->mem_read.end = 0; 5546 writeback_registers(ctxt); 5547 return EMULATION_RESTART; 5548 } 5549 goto done; /* skip rip writeback */ 5550 } 5551 ctxt->eflags &= ~X86_EFLAGS_RF; 5552 } 5553 5554 ctxt->eip = ctxt->_eip; 5555 if (ctxt->mode != X86EMUL_MODE_PROT64) 5556 ctxt->eip = (u32)ctxt->_eip; 5557 5558 done: 5559 if (rc == X86EMUL_PROPAGATE_FAULT) { 5560 if (KVM_EMULATOR_BUG_ON(ctxt->exception.vector > 0x1f, ctxt)) 5561 return EMULATION_FAILED; 5562 ctxt->have_exception = true; 5563 } 5564 if (rc == X86EMUL_INTERCEPTED) 5565 return EMULATION_INTERCEPTED; 5566 5567 if (rc == X86EMUL_CONTINUE) 5568 writeback_registers(ctxt); 5569 5570 return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK; 5571 5572 twobyte_insn: 5573 switch (ctxt->b) { 5574 case 0x09: /* wbinvd */ 5575 (ctxt->ops->wbinvd)(ctxt); 5576 break; 5577 case 0x08: /* invd */ 5578 case 0x0d: /* GrpP (prefetch) */ 5579 case 0x18: /* Grp16 (prefetch/nop) */ 5580 case 0x1f: /* nop */ 5581 break; 5582 case 0x20: /* mov cr, reg */ 5583 ctxt->dst.val = ops->get_cr(ctxt, ctxt->modrm_reg); 5584 break; 5585 case 0x21: /* mov from dr to reg */ 5586 ctxt->dst.val = ops->get_dr(ctxt, ctxt->modrm_reg); 5587 break; 5588 case 0x40 ... 0x4f: /* cmov */ 5589 if (test_cc(ctxt->b, ctxt->eflags)) 5590 ctxt->dst.val = ctxt->src.val; 5591 else if (ctxt->op_bytes != 4) 5592 ctxt->dst.type = OP_NONE; /* no writeback */ 5593 break; 5594 case 0x80 ... 0x8f: /* jnz rel, etc*/ 5595 if (test_cc(ctxt->b, ctxt->eflags)) 5596 rc = jmp_rel(ctxt, ctxt->src.val); 5597 break; 5598 case 0x90 ... 0x9f: /* setcc r/m8 */ 5599 ctxt->dst.val = test_cc(ctxt->b, ctxt->eflags); 5600 break; 5601 case 0xb6 ... 0xb7: /* movzx */ 5602 ctxt->dst.bytes = ctxt->op_bytes; 5603 ctxt->dst.val = (ctxt->src.bytes == 1) ? (u8) ctxt->src.val 5604 : (u16) ctxt->src.val; 5605 break; 5606 case 0xbe ... 0xbf: /* movsx */ 5607 ctxt->dst.bytes = ctxt->op_bytes; 5608 ctxt->dst.val = (ctxt->src.bytes == 1) ? (s8) ctxt->src.val : 5609 (s16) ctxt->src.val; 5610 break; 5611 default: 5612 goto cannot_emulate; 5613 } 5614 5615 threebyte_insn: 5616 5617 if (rc != X86EMUL_CONTINUE) 5618 goto done; 5619 5620 goto writeback; 5621 5622 cannot_emulate: 5623 return EMULATION_FAILED; 5624 } 5625 5626 void emulator_invalidate_register_cache(struct x86_emulate_ctxt *ctxt) 5627 { 5628 invalidate_registers(ctxt); 5629 } 5630 5631 void emulator_writeback_register_cache(struct x86_emulate_ctxt *ctxt) 5632 { 5633 writeback_registers(ctxt); 5634 } 5635 5636 bool emulator_can_use_gpa(struct x86_emulate_ctxt *ctxt) 5637 { 5638 if (ctxt->rep_prefix && (ctxt->d & String)) 5639 return false; 5640 5641 if (ctxt->d & TwoMemOp) 5642 return false; 5643 5644 return true; 5645 } 5646