1 // SPDX-License-Identifier: GPL-2.0-only 2 /****************************************************************************** 3 * emulate.c 4 * 5 * Generic x86 (32-bit and 64-bit) instruction decoder and emulator. 6 * 7 * Copyright (c) 2005 Keir Fraser 8 * 9 * Linux coding style, mod r/m decoder, segment base fixes, real-mode 10 * privileged instructions: 11 * 12 * Copyright (C) 2006 Qumranet 13 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 14 * 15 * Avi Kivity <avi@qumranet.com> 16 * Yaniv Kamay <yaniv@qumranet.com> 17 * 18 * From: xen-unstable 10676:af9809f51f81a3c43f276f00c81a52ef558afda4 19 */ 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/kvm_host.h> 23 #include "kvm_cache_regs.h" 24 #include "kvm_emulate.h" 25 #include <linux/stringify.h> 26 #include <asm/debugreg.h> 27 #include <asm/nospec-branch.h> 28 #include <asm/ibt.h> 29 30 #include "x86.h" 31 #include "tss.h" 32 #include "mmu.h" 33 #include "pmu.h" 34 35 /* 36 * Operand types 37 */ 38 #define OpNone 0ull 39 #define OpImplicit 1ull /* No generic decode */ 40 #define OpReg 2ull /* Register */ 41 #define OpMem 3ull /* Memory */ 42 #define OpAcc 4ull /* Accumulator: AL/AX/EAX/RAX */ 43 #define OpDI 5ull /* ES:DI/EDI/RDI */ 44 #define OpMem64 6ull /* Memory, 64-bit */ 45 #define OpImmUByte 7ull /* Zero-extended 8-bit immediate */ 46 #define OpDX 8ull /* DX register */ 47 #define OpCL 9ull /* CL register (for shifts) */ 48 #define OpImmByte 10ull /* 8-bit sign extended immediate */ 49 #define OpOne 11ull /* Implied 1 */ 50 #define OpImm 12ull /* Sign extended up to 32-bit immediate */ 51 #define OpMem16 13ull /* Memory operand (16-bit). */ 52 #define OpMem32 14ull /* Memory operand (32-bit). */ 53 #define OpImmU 15ull /* Immediate operand, zero extended */ 54 #define OpSI 16ull /* SI/ESI/RSI */ 55 #define OpImmFAddr 17ull /* Immediate far address */ 56 #define OpMemFAddr 18ull /* Far address in memory */ 57 #define OpImmU16 19ull /* Immediate operand, 16 bits, zero extended */ 58 #define OpES 20ull /* ES */ 59 #define OpCS 21ull /* CS */ 60 #define OpSS 22ull /* SS */ 61 #define OpDS 23ull /* DS */ 62 #define OpFS 24ull /* FS */ 63 #define OpGS 25ull /* GS */ 64 #define OpMem8 26ull /* 8-bit zero extended memory operand */ 65 #define OpImm64 27ull /* Sign extended 16/32/64-bit immediate */ 66 #define OpXLat 28ull /* memory at BX/EBX/RBX + zero-extended AL */ 67 #define OpAccLo 29ull /* Low part of extended acc (AX/AX/EAX/RAX) */ 68 #define OpAccHi 30ull /* High part of extended acc (-/DX/EDX/RDX) */ 69 70 #define OpBits 5 /* Width of operand field */ 71 #define OpMask ((1ull << OpBits) - 1) 72 73 /* 74 * Opcode effective-address decode tables. 75 * Note that we only emulate instructions that have at least one memory 76 * operand (excluding implicit stack references). We assume that stack 77 * references and instruction fetches will never occur in special memory 78 * areas that require emulation. So, for example, 'mov <imm>,<reg>' need 79 * not be handled. 80 */ 81 82 /* Operand sizes: 8-bit operands or specified/overridden size. */ 83 #define ByteOp (1<<0) /* 8-bit operands. */ 84 /* Destination operand type. */ 85 #define DstShift 1 86 #define ImplicitOps (OpImplicit << DstShift) 87 #define DstReg (OpReg << DstShift) 88 #define DstMem (OpMem << DstShift) 89 #define DstAcc (OpAcc << DstShift) 90 #define DstDI (OpDI << DstShift) 91 #define DstMem64 (OpMem64 << DstShift) 92 #define DstMem16 (OpMem16 << DstShift) 93 #define DstImmUByte (OpImmUByte << DstShift) 94 #define DstDX (OpDX << DstShift) 95 #define DstAccLo (OpAccLo << DstShift) 96 #define DstMask (OpMask << DstShift) 97 /* Source operand type. */ 98 #define SrcShift 6 99 #define SrcNone (OpNone << SrcShift) 100 #define SrcReg (OpReg << SrcShift) 101 #define SrcMem (OpMem << SrcShift) 102 #define SrcMem16 (OpMem16 << SrcShift) 103 #define SrcMem32 (OpMem32 << SrcShift) 104 #define SrcImm (OpImm << SrcShift) 105 #define SrcImmByte (OpImmByte << SrcShift) 106 #define SrcOne (OpOne << SrcShift) 107 #define SrcImmUByte (OpImmUByte << SrcShift) 108 #define SrcImmU (OpImmU << SrcShift) 109 #define SrcSI (OpSI << SrcShift) 110 #define SrcXLat (OpXLat << SrcShift) 111 #define SrcImmFAddr (OpImmFAddr << SrcShift) 112 #define SrcMemFAddr (OpMemFAddr << SrcShift) 113 #define SrcAcc (OpAcc << SrcShift) 114 #define SrcImmU16 (OpImmU16 << SrcShift) 115 #define SrcImm64 (OpImm64 << SrcShift) 116 #define SrcDX (OpDX << SrcShift) 117 #define SrcMem8 (OpMem8 << SrcShift) 118 #define SrcAccHi (OpAccHi << SrcShift) 119 #define SrcMask (OpMask << SrcShift) 120 #define BitOp (1<<11) 121 #define MemAbs (1<<12) /* Memory operand is absolute displacement */ 122 #define String (1<<13) /* String instruction (rep capable) */ 123 #define Stack (1<<14) /* Stack instruction (push/pop) */ 124 #define GroupMask (7<<15) /* Opcode uses one of the group mechanisms */ 125 #define Group (1<<15) /* Bits 3:5 of modrm byte extend opcode */ 126 #define GroupDual (2<<15) /* Alternate decoding of mod == 3 */ 127 #define Prefix (3<<15) /* Instruction varies with 66/f2/f3 prefix */ 128 #define RMExt (4<<15) /* Opcode extension in ModRM r/m if mod == 3 */ 129 #define Escape (5<<15) /* Escape to coprocessor instruction */ 130 #define InstrDual (6<<15) /* Alternate instruction decoding of mod == 3 */ 131 #define ModeDual (7<<15) /* Different instruction for 32/64 bit */ 132 #define Sse (1<<18) /* SSE Vector instruction */ 133 /* Generic ModRM decode. */ 134 #define ModRM (1<<19) 135 /* Destination is only written; never read. */ 136 #define Mov (1<<20) 137 /* Misc flags */ 138 #define Prot (1<<21) /* instruction generates #UD if not in prot-mode */ 139 #define EmulateOnUD (1<<22) /* Emulate if unsupported by the host */ 140 #define NoAccess (1<<23) /* Don't access memory (lea/invlpg/verr etc) */ 141 #define Op3264 (1<<24) /* Operand is 64b in long mode, 32b otherwise */ 142 #define Undefined (1<<25) /* No Such Instruction */ 143 #define Lock (1<<26) /* lock prefix is allowed for the instruction */ 144 #define Priv (1<<27) /* instruction generates #GP if current CPL != 0 */ 145 #define No64 (1<<28) 146 #define PageTable (1 << 29) /* instruction used to write page table */ 147 #define NotImpl (1 << 30) /* instruction is not implemented */ 148 /* Source 2 operand type */ 149 #define Src2Shift (31) 150 #define Src2None (OpNone << Src2Shift) 151 #define Src2Mem (OpMem << Src2Shift) 152 #define Src2CL (OpCL << Src2Shift) 153 #define Src2ImmByte (OpImmByte << Src2Shift) 154 #define Src2One (OpOne << Src2Shift) 155 #define Src2Imm (OpImm << Src2Shift) 156 #define Src2ES (OpES << Src2Shift) 157 #define Src2CS (OpCS << Src2Shift) 158 #define Src2SS (OpSS << Src2Shift) 159 #define Src2DS (OpDS << Src2Shift) 160 #define Src2FS (OpFS << Src2Shift) 161 #define Src2GS (OpGS << Src2Shift) 162 #define Src2Mask (OpMask << Src2Shift) 163 #define Mmx ((u64)1 << 40) /* MMX Vector instruction */ 164 #define AlignMask ((u64)7 << 41) 165 #define Aligned ((u64)1 << 41) /* Explicitly aligned (e.g. MOVDQA) */ 166 #define Unaligned ((u64)2 << 41) /* Explicitly unaligned (e.g. MOVDQU) */ 167 #define Avx ((u64)3 << 41) /* Advanced Vector Extensions */ 168 #define Aligned16 ((u64)4 << 41) /* Aligned to 16 byte boundary (e.g. FXSAVE) */ 169 #define Fastop ((u64)1 << 44) /* Use opcode::u.fastop */ 170 #define NoWrite ((u64)1 << 45) /* No writeback */ 171 #define SrcWrite ((u64)1 << 46) /* Write back src operand */ 172 #define NoMod ((u64)1 << 47) /* Mod field is ignored */ 173 #define Intercept ((u64)1 << 48) /* Has valid intercept field */ 174 #define CheckPerm ((u64)1 << 49) /* Has valid check_perm field */ 175 #define PrivUD ((u64)1 << 51) /* #UD instead of #GP on CPL > 0 */ 176 #define NearBranch ((u64)1 << 52) /* Near branches */ 177 #define No16 ((u64)1 << 53) /* No 16 bit operand */ 178 #define IncSP ((u64)1 << 54) /* SP is incremented before ModRM calc */ 179 #define TwoMemOp ((u64)1 << 55) /* Instruction has two memory operand */ 180 #define IsBranch ((u64)1 << 56) /* Instruction is considered a branch. */ 181 182 #define DstXacc (DstAccLo | SrcAccHi | SrcWrite) 183 184 #define X2(x...) x, x 185 #define X3(x...) X2(x), x 186 #define X4(x...) X2(x), X2(x) 187 #define X5(x...) X4(x), x 188 #define X6(x...) X4(x), X2(x) 189 #define X7(x...) X4(x), X3(x) 190 #define X8(x...) X4(x), X4(x) 191 #define X16(x...) X8(x), X8(x) 192 193 struct opcode { 194 u64 flags; 195 u8 intercept; 196 u8 pad[7]; 197 union { 198 int (*execute)(struct x86_emulate_ctxt *ctxt); 199 const struct opcode *group; 200 const struct group_dual *gdual; 201 const struct gprefix *gprefix; 202 const struct escape *esc; 203 const struct instr_dual *idual; 204 const struct mode_dual *mdual; 205 void (*fastop)(struct fastop *fake); 206 } u; 207 int (*check_perm)(struct x86_emulate_ctxt *ctxt); 208 }; 209 210 struct group_dual { 211 struct opcode mod012[8]; 212 struct opcode mod3[8]; 213 }; 214 215 struct gprefix { 216 struct opcode pfx_no; 217 struct opcode pfx_66; 218 struct opcode pfx_f2; 219 struct opcode pfx_f3; 220 }; 221 222 struct escape { 223 struct opcode op[8]; 224 struct opcode high[64]; 225 }; 226 227 struct instr_dual { 228 struct opcode mod012; 229 struct opcode mod3; 230 }; 231 232 struct mode_dual { 233 struct opcode mode32; 234 struct opcode mode64; 235 }; 236 237 #define EFLG_RESERVED_ZEROS_MASK 0xffc0802a 238 239 enum x86_transfer_type { 240 X86_TRANSFER_NONE, 241 X86_TRANSFER_CALL_JMP, 242 X86_TRANSFER_RET, 243 X86_TRANSFER_TASK_SWITCH, 244 }; 245 246 static void writeback_registers(struct x86_emulate_ctxt *ctxt) 247 { 248 unsigned long dirty = ctxt->regs_dirty; 249 unsigned reg; 250 251 for_each_set_bit(reg, &dirty, NR_EMULATOR_GPRS) 252 ctxt->ops->write_gpr(ctxt, reg, ctxt->_regs[reg]); 253 } 254 255 static void invalidate_registers(struct x86_emulate_ctxt *ctxt) 256 { 257 ctxt->regs_dirty = 0; 258 ctxt->regs_valid = 0; 259 } 260 261 /* 262 * These EFLAGS bits are restored from saved value during emulation, and 263 * any changes are written back to the saved value after emulation. 264 */ 265 #define EFLAGS_MASK (X86_EFLAGS_OF|X86_EFLAGS_SF|X86_EFLAGS_ZF|X86_EFLAGS_AF|\ 266 X86_EFLAGS_PF|X86_EFLAGS_CF) 267 268 #ifdef CONFIG_X86_64 269 #define ON64(x) x 270 #else 271 #define ON64(x) 272 #endif 273 274 /* 275 * fastop functions have a special calling convention: 276 * 277 * dst: rax (in/out) 278 * src: rdx (in/out) 279 * src2: rcx (in) 280 * flags: rflags (in/out) 281 * ex: rsi (in:fastop pointer, out:zero if exception) 282 * 283 * Moreover, they are all exactly FASTOP_SIZE bytes long, so functions for 284 * different operand sizes can be reached by calculation, rather than a jump 285 * table (which would be bigger than the code). 286 * 287 * The 16 byte alignment, considering 5 bytes for the RET thunk, 3 for ENDBR 288 * and 1 for the straight line speculation INT3, leaves 7 bytes for the 289 * body of the function. Currently none is larger than 4. 290 */ 291 static int fastop(struct x86_emulate_ctxt *ctxt, fastop_t fop); 292 293 #define FASTOP_SIZE 16 294 295 #define __FOP_FUNC(name) \ 296 ".align " __stringify(FASTOP_SIZE) " \n\t" \ 297 ".type " name ", @function \n\t" \ 298 name ":\n\t" \ 299 ASM_ENDBR \ 300 IBT_NOSEAL(name) 301 302 #define FOP_FUNC(name) \ 303 __FOP_FUNC(#name) 304 305 #define __FOP_RET(name) \ 306 "11: " ASM_RET \ 307 ".size " name ", .-" name "\n\t" 308 309 #define FOP_RET(name) \ 310 __FOP_RET(#name) 311 312 #define __FOP_START(op, align) \ 313 extern void em_##op(struct fastop *fake); \ 314 asm(".pushsection .text, \"ax\" \n\t" \ 315 ".global em_" #op " \n\t" \ 316 ".align " __stringify(align) " \n\t" \ 317 "em_" #op ":\n\t" 318 319 #define FOP_START(op) __FOP_START(op, FASTOP_SIZE) 320 321 #define FOP_END \ 322 ".popsection") 323 324 #define __FOPNOP(name) \ 325 __FOP_FUNC(name) \ 326 __FOP_RET(name) 327 328 #define FOPNOP() \ 329 __FOPNOP(__stringify(__UNIQUE_ID(nop))) 330 331 #define FOP1E(op, dst) \ 332 __FOP_FUNC(#op "_" #dst) \ 333 "10: " #op " %" #dst " \n\t" \ 334 __FOP_RET(#op "_" #dst) 335 336 #define FOP1EEX(op, dst) \ 337 FOP1E(op, dst) _ASM_EXTABLE_TYPE_REG(10b, 11b, EX_TYPE_ZERO_REG, %%esi) 338 339 #define FASTOP1(op) \ 340 FOP_START(op) \ 341 FOP1E(op##b, al) \ 342 FOP1E(op##w, ax) \ 343 FOP1E(op##l, eax) \ 344 ON64(FOP1E(op##q, rax)) \ 345 FOP_END 346 347 /* 1-operand, using src2 (for MUL/DIV r/m) */ 348 #define FASTOP1SRC2(op, name) \ 349 FOP_START(name) \ 350 FOP1E(op, cl) \ 351 FOP1E(op, cx) \ 352 FOP1E(op, ecx) \ 353 ON64(FOP1E(op, rcx)) \ 354 FOP_END 355 356 /* 1-operand, using src2 (for MUL/DIV r/m), with exceptions */ 357 #define FASTOP1SRC2EX(op, name) \ 358 FOP_START(name) \ 359 FOP1EEX(op, cl) \ 360 FOP1EEX(op, cx) \ 361 FOP1EEX(op, ecx) \ 362 ON64(FOP1EEX(op, rcx)) \ 363 FOP_END 364 365 #define FOP2E(op, dst, src) \ 366 __FOP_FUNC(#op "_" #dst "_" #src) \ 367 #op " %" #src ", %" #dst " \n\t" \ 368 __FOP_RET(#op "_" #dst "_" #src) 369 370 #define FASTOP2(op) \ 371 FOP_START(op) \ 372 FOP2E(op##b, al, dl) \ 373 FOP2E(op##w, ax, dx) \ 374 FOP2E(op##l, eax, edx) \ 375 ON64(FOP2E(op##q, rax, rdx)) \ 376 FOP_END 377 378 /* 2 operand, word only */ 379 #define FASTOP2W(op) \ 380 FOP_START(op) \ 381 FOPNOP() \ 382 FOP2E(op##w, ax, dx) \ 383 FOP2E(op##l, eax, edx) \ 384 ON64(FOP2E(op##q, rax, rdx)) \ 385 FOP_END 386 387 /* 2 operand, src is CL */ 388 #define FASTOP2CL(op) \ 389 FOP_START(op) \ 390 FOP2E(op##b, al, cl) \ 391 FOP2E(op##w, ax, cl) \ 392 FOP2E(op##l, eax, cl) \ 393 ON64(FOP2E(op##q, rax, cl)) \ 394 FOP_END 395 396 /* 2 operand, src and dest are reversed */ 397 #define FASTOP2R(op, name) \ 398 FOP_START(name) \ 399 FOP2E(op##b, dl, al) \ 400 FOP2E(op##w, dx, ax) \ 401 FOP2E(op##l, edx, eax) \ 402 ON64(FOP2E(op##q, rdx, rax)) \ 403 FOP_END 404 405 #define FOP3E(op, dst, src, src2) \ 406 __FOP_FUNC(#op "_" #dst "_" #src "_" #src2) \ 407 #op " %" #src2 ", %" #src ", %" #dst " \n\t"\ 408 __FOP_RET(#op "_" #dst "_" #src "_" #src2) 409 410 /* 3-operand, word-only, src2=cl */ 411 #define FASTOP3WCL(op) \ 412 FOP_START(op) \ 413 FOPNOP() \ 414 FOP3E(op##w, ax, dx, cl) \ 415 FOP3E(op##l, eax, edx, cl) \ 416 ON64(FOP3E(op##q, rax, rdx, cl)) \ 417 FOP_END 418 419 /* Special case for SETcc - 1 instruction per cc */ 420 #define FOP_SETCC(op) \ 421 FOP_FUNC(op) \ 422 #op " %al \n\t" \ 423 FOP_RET(op) 424 425 FOP_START(setcc) 426 FOP_SETCC(seto) 427 FOP_SETCC(setno) 428 FOP_SETCC(setc) 429 FOP_SETCC(setnc) 430 FOP_SETCC(setz) 431 FOP_SETCC(setnz) 432 FOP_SETCC(setbe) 433 FOP_SETCC(setnbe) 434 FOP_SETCC(sets) 435 FOP_SETCC(setns) 436 FOP_SETCC(setp) 437 FOP_SETCC(setnp) 438 FOP_SETCC(setl) 439 FOP_SETCC(setnl) 440 FOP_SETCC(setle) 441 FOP_SETCC(setnle) 442 FOP_END; 443 444 FOP_START(salc) 445 FOP_FUNC(salc) 446 "pushf; sbb %al, %al; popf \n\t" 447 FOP_RET(salc) 448 FOP_END; 449 450 /* 451 * XXX: inoutclob user must know where the argument is being expanded. 452 * Using asm goto would allow us to remove _fault. 453 */ 454 #define asm_safe(insn, inoutclob...) \ 455 ({ \ 456 int _fault = 0; \ 457 \ 458 asm volatile("1:" insn "\n" \ 459 "2:\n" \ 460 _ASM_EXTABLE_TYPE_REG(1b, 2b, EX_TYPE_ONE_REG, %[_fault]) \ 461 : [_fault] "+r"(_fault) inoutclob ); \ 462 \ 463 _fault ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE; \ 464 }) 465 466 static int emulator_check_intercept(struct x86_emulate_ctxt *ctxt, 467 enum x86_intercept intercept, 468 enum x86_intercept_stage stage) 469 { 470 struct x86_instruction_info info = { 471 .intercept = intercept, 472 .rep_prefix = ctxt->rep_prefix, 473 .modrm_mod = ctxt->modrm_mod, 474 .modrm_reg = ctxt->modrm_reg, 475 .modrm_rm = ctxt->modrm_rm, 476 .src_val = ctxt->src.val64, 477 .dst_val = ctxt->dst.val64, 478 .src_bytes = ctxt->src.bytes, 479 .dst_bytes = ctxt->dst.bytes, 480 .ad_bytes = ctxt->ad_bytes, 481 .next_rip = ctxt->eip, 482 }; 483 484 return ctxt->ops->intercept(ctxt, &info, stage); 485 } 486 487 static void assign_masked(ulong *dest, ulong src, ulong mask) 488 { 489 *dest = (*dest & ~mask) | (src & mask); 490 } 491 492 static void assign_register(unsigned long *reg, u64 val, int bytes) 493 { 494 /* The 4-byte case *is* correct: in 64-bit mode we zero-extend. */ 495 switch (bytes) { 496 case 1: 497 *(u8 *)reg = (u8)val; 498 break; 499 case 2: 500 *(u16 *)reg = (u16)val; 501 break; 502 case 4: 503 *reg = (u32)val; 504 break; /* 64b: zero-extend */ 505 case 8: 506 *reg = val; 507 break; 508 } 509 } 510 511 static inline unsigned long ad_mask(struct x86_emulate_ctxt *ctxt) 512 { 513 return (1UL << (ctxt->ad_bytes << 3)) - 1; 514 } 515 516 static ulong stack_mask(struct x86_emulate_ctxt *ctxt) 517 { 518 u16 sel; 519 struct desc_struct ss; 520 521 if (ctxt->mode == X86EMUL_MODE_PROT64) 522 return ~0UL; 523 ctxt->ops->get_segment(ctxt, &sel, &ss, NULL, VCPU_SREG_SS); 524 return ~0U >> ((ss.d ^ 1) * 16); /* d=0: 0xffff; d=1: 0xffffffff */ 525 } 526 527 static int stack_size(struct x86_emulate_ctxt *ctxt) 528 { 529 return (__fls(stack_mask(ctxt)) + 1) >> 3; 530 } 531 532 /* Access/update address held in a register, based on addressing mode. */ 533 static inline unsigned long 534 address_mask(struct x86_emulate_ctxt *ctxt, unsigned long reg) 535 { 536 if (ctxt->ad_bytes == sizeof(unsigned long)) 537 return reg; 538 else 539 return reg & ad_mask(ctxt); 540 } 541 542 static inline unsigned long 543 register_address(struct x86_emulate_ctxt *ctxt, int reg) 544 { 545 return address_mask(ctxt, reg_read(ctxt, reg)); 546 } 547 548 static void masked_increment(ulong *reg, ulong mask, int inc) 549 { 550 assign_masked(reg, *reg + inc, mask); 551 } 552 553 static inline void 554 register_address_increment(struct x86_emulate_ctxt *ctxt, int reg, int inc) 555 { 556 ulong *preg = reg_rmw(ctxt, reg); 557 558 assign_register(preg, *preg + inc, ctxt->ad_bytes); 559 } 560 561 static void rsp_increment(struct x86_emulate_ctxt *ctxt, int inc) 562 { 563 masked_increment(reg_rmw(ctxt, VCPU_REGS_RSP), stack_mask(ctxt), inc); 564 } 565 566 static u32 desc_limit_scaled(struct desc_struct *desc) 567 { 568 u32 limit = get_desc_limit(desc); 569 570 return desc->g ? (limit << 12) | 0xfff : limit; 571 } 572 573 static unsigned long seg_base(struct x86_emulate_ctxt *ctxt, int seg) 574 { 575 if (ctxt->mode == X86EMUL_MODE_PROT64 && seg < VCPU_SREG_FS) 576 return 0; 577 578 return ctxt->ops->get_cached_segment_base(ctxt, seg); 579 } 580 581 static int emulate_exception(struct x86_emulate_ctxt *ctxt, int vec, 582 u32 error, bool valid) 583 { 584 if (KVM_EMULATOR_BUG_ON(vec > 0x1f, ctxt)) 585 return X86EMUL_UNHANDLEABLE; 586 587 ctxt->exception.vector = vec; 588 ctxt->exception.error_code = error; 589 ctxt->exception.error_code_valid = valid; 590 return X86EMUL_PROPAGATE_FAULT; 591 } 592 593 static int emulate_db(struct x86_emulate_ctxt *ctxt) 594 { 595 return emulate_exception(ctxt, DB_VECTOR, 0, false); 596 } 597 598 static int emulate_gp(struct x86_emulate_ctxt *ctxt, int err) 599 { 600 return emulate_exception(ctxt, GP_VECTOR, err, true); 601 } 602 603 static int emulate_ss(struct x86_emulate_ctxt *ctxt, int err) 604 { 605 return emulate_exception(ctxt, SS_VECTOR, err, true); 606 } 607 608 static int emulate_ud(struct x86_emulate_ctxt *ctxt) 609 { 610 return emulate_exception(ctxt, UD_VECTOR, 0, false); 611 } 612 613 static int emulate_ts(struct x86_emulate_ctxt *ctxt, int err) 614 { 615 return emulate_exception(ctxt, TS_VECTOR, err, true); 616 } 617 618 static int emulate_de(struct x86_emulate_ctxt *ctxt) 619 { 620 return emulate_exception(ctxt, DE_VECTOR, 0, false); 621 } 622 623 static int emulate_nm(struct x86_emulate_ctxt *ctxt) 624 { 625 return emulate_exception(ctxt, NM_VECTOR, 0, false); 626 } 627 628 static u16 get_segment_selector(struct x86_emulate_ctxt *ctxt, unsigned seg) 629 { 630 u16 selector; 631 struct desc_struct desc; 632 633 ctxt->ops->get_segment(ctxt, &selector, &desc, NULL, seg); 634 return selector; 635 } 636 637 static void set_segment_selector(struct x86_emulate_ctxt *ctxt, u16 selector, 638 unsigned seg) 639 { 640 u16 dummy; 641 u32 base3; 642 struct desc_struct desc; 643 644 ctxt->ops->get_segment(ctxt, &dummy, &desc, &base3, seg); 645 ctxt->ops->set_segment(ctxt, selector, &desc, base3, seg); 646 } 647 648 static inline u8 ctxt_virt_addr_bits(struct x86_emulate_ctxt *ctxt) 649 { 650 return (ctxt->ops->get_cr(ctxt, 4) & X86_CR4_LA57) ? 57 : 48; 651 } 652 653 static inline bool emul_is_noncanonical_address(u64 la, 654 struct x86_emulate_ctxt *ctxt) 655 { 656 return !__is_canonical_address(la, ctxt_virt_addr_bits(ctxt)); 657 } 658 659 /* 660 * x86 defines three classes of vector instructions: explicitly 661 * aligned, explicitly unaligned, and the rest, which change behaviour 662 * depending on whether they're AVX encoded or not. 663 * 664 * Also included is CMPXCHG16B which is not a vector instruction, yet it is 665 * subject to the same check. FXSAVE and FXRSTOR are checked here too as their 666 * 512 bytes of data must be aligned to a 16 byte boundary. 667 */ 668 static unsigned insn_alignment(struct x86_emulate_ctxt *ctxt, unsigned size) 669 { 670 u64 alignment = ctxt->d & AlignMask; 671 672 if (likely(size < 16)) 673 return 1; 674 675 switch (alignment) { 676 case Unaligned: 677 case Avx: 678 return 1; 679 case Aligned16: 680 return 16; 681 case Aligned: 682 default: 683 return size; 684 } 685 } 686 687 static __always_inline int __linearize(struct x86_emulate_ctxt *ctxt, 688 struct segmented_address addr, 689 unsigned *max_size, unsigned size, 690 bool write, bool fetch, 691 enum x86emul_mode mode, ulong *linear) 692 { 693 struct desc_struct desc; 694 bool usable; 695 ulong la; 696 u32 lim; 697 u16 sel; 698 u8 va_bits; 699 700 la = seg_base(ctxt, addr.seg) + addr.ea; 701 *max_size = 0; 702 switch (mode) { 703 case X86EMUL_MODE_PROT64: 704 *linear = la; 705 va_bits = ctxt_virt_addr_bits(ctxt); 706 if (!__is_canonical_address(la, va_bits)) 707 goto bad; 708 709 *max_size = min_t(u64, ~0u, (1ull << va_bits) - la); 710 if (size > *max_size) 711 goto bad; 712 break; 713 default: 714 *linear = la = (u32)la; 715 usable = ctxt->ops->get_segment(ctxt, &sel, &desc, NULL, 716 addr.seg); 717 if (!usable) 718 goto bad; 719 /* code segment in protected mode or read-only data segment */ 720 if ((((ctxt->mode != X86EMUL_MODE_REAL) && (desc.type & 8)) 721 || !(desc.type & 2)) && write) 722 goto bad; 723 /* unreadable code segment */ 724 if (!fetch && (desc.type & 8) && !(desc.type & 2)) 725 goto bad; 726 lim = desc_limit_scaled(&desc); 727 if (!(desc.type & 8) && (desc.type & 4)) { 728 /* expand-down segment */ 729 if (addr.ea <= lim) 730 goto bad; 731 lim = desc.d ? 0xffffffff : 0xffff; 732 } 733 if (addr.ea > lim) 734 goto bad; 735 if (lim == 0xffffffff) 736 *max_size = ~0u; 737 else { 738 *max_size = (u64)lim + 1 - addr.ea; 739 if (size > *max_size) 740 goto bad; 741 } 742 break; 743 } 744 if (la & (insn_alignment(ctxt, size) - 1)) 745 return emulate_gp(ctxt, 0); 746 return X86EMUL_CONTINUE; 747 bad: 748 if (addr.seg == VCPU_SREG_SS) 749 return emulate_ss(ctxt, 0); 750 else 751 return emulate_gp(ctxt, 0); 752 } 753 754 static int linearize(struct x86_emulate_ctxt *ctxt, 755 struct segmented_address addr, 756 unsigned size, bool write, 757 ulong *linear) 758 { 759 unsigned max_size; 760 return __linearize(ctxt, addr, &max_size, size, write, false, 761 ctxt->mode, linear); 762 } 763 764 static inline int assign_eip(struct x86_emulate_ctxt *ctxt, ulong dst) 765 { 766 ulong linear; 767 int rc; 768 unsigned max_size; 769 struct segmented_address addr = { .seg = VCPU_SREG_CS, 770 .ea = dst }; 771 772 if (ctxt->op_bytes != sizeof(unsigned long)) 773 addr.ea = dst & ((1UL << (ctxt->op_bytes << 3)) - 1); 774 rc = __linearize(ctxt, addr, &max_size, 1, false, true, ctxt->mode, &linear); 775 if (rc == X86EMUL_CONTINUE) 776 ctxt->_eip = addr.ea; 777 return rc; 778 } 779 780 static inline int emulator_recalc_and_set_mode(struct x86_emulate_ctxt *ctxt) 781 { 782 u64 efer; 783 struct desc_struct cs; 784 u16 selector; 785 u32 base3; 786 787 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer); 788 789 if (!(ctxt->ops->get_cr(ctxt, 0) & X86_CR0_PE)) { 790 /* Real mode. cpu must not have long mode active */ 791 if (efer & EFER_LMA) 792 return X86EMUL_UNHANDLEABLE; 793 ctxt->mode = X86EMUL_MODE_REAL; 794 return X86EMUL_CONTINUE; 795 } 796 797 if (ctxt->eflags & X86_EFLAGS_VM) { 798 /* Protected/VM86 mode. cpu must not have long mode active */ 799 if (efer & EFER_LMA) 800 return X86EMUL_UNHANDLEABLE; 801 ctxt->mode = X86EMUL_MODE_VM86; 802 return X86EMUL_CONTINUE; 803 } 804 805 if (!ctxt->ops->get_segment(ctxt, &selector, &cs, &base3, VCPU_SREG_CS)) 806 return X86EMUL_UNHANDLEABLE; 807 808 if (efer & EFER_LMA) { 809 if (cs.l) { 810 /* Proper long mode */ 811 ctxt->mode = X86EMUL_MODE_PROT64; 812 } else if (cs.d) { 813 /* 32 bit compatibility mode*/ 814 ctxt->mode = X86EMUL_MODE_PROT32; 815 } else { 816 ctxt->mode = X86EMUL_MODE_PROT16; 817 } 818 } else { 819 /* Legacy 32 bit / 16 bit mode */ 820 ctxt->mode = cs.d ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16; 821 } 822 823 return X86EMUL_CONTINUE; 824 } 825 826 static inline int assign_eip_near(struct x86_emulate_ctxt *ctxt, ulong dst) 827 { 828 return assign_eip(ctxt, dst); 829 } 830 831 static int assign_eip_far(struct x86_emulate_ctxt *ctxt, ulong dst) 832 { 833 int rc = emulator_recalc_and_set_mode(ctxt); 834 835 if (rc != X86EMUL_CONTINUE) 836 return rc; 837 838 return assign_eip(ctxt, dst); 839 } 840 841 static inline int jmp_rel(struct x86_emulate_ctxt *ctxt, int rel) 842 { 843 return assign_eip_near(ctxt, ctxt->_eip + rel); 844 } 845 846 static int linear_read_system(struct x86_emulate_ctxt *ctxt, ulong linear, 847 void *data, unsigned size) 848 { 849 return ctxt->ops->read_std(ctxt, linear, data, size, &ctxt->exception, true); 850 } 851 852 static int linear_write_system(struct x86_emulate_ctxt *ctxt, 853 ulong linear, void *data, 854 unsigned int size) 855 { 856 return ctxt->ops->write_std(ctxt, linear, data, size, &ctxt->exception, true); 857 } 858 859 static int segmented_read_std(struct x86_emulate_ctxt *ctxt, 860 struct segmented_address addr, 861 void *data, 862 unsigned size) 863 { 864 int rc; 865 ulong linear; 866 867 rc = linearize(ctxt, addr, size, false, &linear); 868 if (rc != X86EMUL_CONTINUE) 869 return rc; 870 return ctxt->ops->read_std(ctxt, linear, data, size, &ctxt->exception, false); 871 } 872 873 static int segmented_write_std(struct x86_emulate_ctxt *ctxt, 874 struct segmented_address addr, 875 void *data, 876 unsigned int size) 877 { 878 int rc; 879 ulong linear; 880 881 rc = linearize(ctxt, addr, size, true, &linear); 882 if (rc != X86EMUL_CONTINUE) 883 return rc; 884 return ctxt->ops->write_std(ctxt, linear, data, size, &ctxt->exception, false); 885 } 886 887 /* 888 * Prefetch the remaining bytes of the instruction without crossing page 889 * boundary if they are not in fetch_cache yet. 890 */ 891 static int __do_insn_fetch_bytes(struct x86_emulate_ctxt *ctxt, int op_size) 892 { 893 int rc; 894 unsigned size, max_size; 895 unsigned long linear; 896 int cur_size = ctxt->fetch.end - ctxt->fetch.data; 897 struct segmented_address addr = { .seg = VCPU_SREG_CS, 898 .ea = ctxt->eip + cur_size }; 899 900 /* 901 * We do not know exactly how many bytes will be needed, and 902 * __linearize is expensive, so fetch as much as possible. We 903 * just have to avoid going beyond the 15 byte limit, the end 904 * of the segment, or the end of the page. 905 * 906 * __linearize is called with size 0 so that it does not do any 907 * boundary check itself. Instead, we use max_size to check 908 * against op_size. 909 */ 910 rc = __linearize(ctxt, addr, &max_size, 0, false, true, ctxt->mode, 911 &linear); 912 if (unlikely(rc != X86EMUL_CONTINUE)) 913 return rc; 914 915 size = min_t(unsigned, 15UL ^ cur_size, max_size); 916 size = min_t(unsigned, size, PAGE_SIZE - offset_in_page(linear)); 917 918 /* 919 * One instruction can only straddle two pages, 920 * and one has been loaded at the beginning of 921 * x86_decode_insn. So, if not enough bytes 922 * still, we must have hit the 15-byte boundary. 923 */ 924 if (unlikely(size < op_size)) 925 return emulate_gp(ctxt, 0); 926 927 rc = ctxt->ops->fetch(ctxt, linear, ctxt->fetch.end, 928 size, &ctxt->exception); 929 if (unlikely(rc != X86EMUL_CONTINUE)) 930 return rc; 931 ctxt->fetch.end += size; 932 return X86EMUL_CONTINUE; 933 } 934 935 static __always_inline int do_insn_fetch_bytes(struct x86_emulate_ctxt *ctxt, 936 unsigned size) 937 { 938 unsigned done_size = ctxt->fetch.end - ctxt->fetch.ptr; 939 940 if (unlikely(done_size < size)) 941 return __do_insn_fetch_bytes(ctxt, size - done_size); 942 else 943 return X86EMUL_CONTINUE; 944 } 945 946 /* Fetch next part of the instruction being emulated. */ 947 #define insn_fetch(_type, _ctxt) \ 948 ({ _type _x; \ 949 \ 950 rc = do_insn_fetch_bytes(_ctxt, sizeof(_type)); \ 951 if (rc != X86EMUL_CONTINUE) \ 952 goto done; \ 953 ctxt->_eip += sizeof(_type); \ 954 memcpy(&_x, ctxt->fetch.ptr, sizeof(_type)); \ 955 ctxt->fetch.ptr += sizeof(_type); \ 956 _x; \ 957 }) 958 959 #define insn_fetch_arr(_arr, _size, _ctxt) \ 960 ({ \ 961 rc = do_insn_fetch_bytes(_ctxt, _size); \ 962 if (rc != X86EMUL_CONTINUE) \ 963 goto done; \ 964 ctxt->_eip += (_size); \ 965 memcpy(_arr, ctxt->fetch.ptr, _size); \ 966 ctxt->fetch.ptr += (_size); \ 967 }) 968 969 /* 970 * Given the 'reg' portion of a ModRM byte, and a register block, return a 971 * pointer into the block that addresses the relevant register. 972 * @highbyte_regs specifies whether to decode AH,CH,DH,BH. 973 */ 974 static void *decode_register(struct x86_emulate_ctxt *ctxt, u8 modrm_reg, 975 int byteop) 976 { 977 void *p; 978 int highbyte_regs = (ctxt->rex_prefix == 0) && byteop; 979 980 if (highbyte_regs && modrm_reg >= 4 && modrm_reg < 8) 981 p = (unsigned char *)reg_rmw(ctxt, modrm_reg & 3) + 1; 982 else 983 p = reg_rmw(ctxt, modrm_reg); 984 return p; 985 } 986 987 static int read_descriptor(struct x86_emulate_ctxt *ctxt, 988 struct segmented_address addr, 989 u16 *size, unsigned long *address, int op_bytes) 990 { 991 int rc; 992 993 if (op_bytes == 2) 994 op_bytes = 3; 995 *address = 0; 996 rc = segmented_read_std(ctxt, addr, size, 2); 997 if (rc != X86EMUL_CONTINUE) 998 return rc; 999 addr.ea += 2; 1000 rc = segmented_read_std(ctxt, addr, address, op_bytes); 1001 return rc; 1002 } 1003 1004 FASTOP2(add); 1005 FASTOP2(or); 1006 FASTOP2(adc); 1007 FASTOP2(sbb); 1008 FASTOP2(and); 1009 FASTOP2(sub); 1010 FASTOP2(xor); 1011 FASTOP2(cmp); 1012 FASTOP2(test); 1013 1014 FASTOP1SRC2(mul, mul_ex); 1015 FASTOP1SRC2(imul, imul_ex); 1016 FASTOP1SRC2EX(div, div_ex); 1017 FASTOP1SRC2EX(idiv, idiv_ex); 1018 1019 FASTOP3WCL(shld); 1020 FASTOP3WCL(shrd); 1021 1022 FASTOP2W(imul); 1023 1024 FASTOP1(not); 1025 FASTOP1(neg); 1026 FASTOP1(inc); 1027 FASTOP1(dec); 1028 1029 FASTOP2CL(rol); 1030 FASTOP2CL(ror); 1031 FASTOP2CL(rcl); 1032 FASTOP2CL(rcr); 1033 FASTOP2CL(shl); 1034 FASTOP2CL(shr); 1035 FASTOP2CL(sar); 1036 1037 FASTOP2W(bsf); 1038 FASTOP2W(bsr); 1039 FASTOP2W(bt); 1040 FASTOP2W(bts); 1041 FASTOP2W(btr); 1042 FASTOP2W(btc); 1043 1044 FASTOP2(xadd); 1045 1046 FASTOP2R(cmp, cmp_r); 1047 1048 static int em_bsf_c(struct x86_emulate_ctxt *ctxt) 1049 { 1050 /* If src is zero, do not writeback, but update flags */ 1051 if (ctxt->src.val == 0) 1052 ctxt->dst.type = OP_NONE; 1053 return fastop(ctxt, em_bsf); 1054 } 1055 1056 static int em_bsr_c(struct x86_emulate_ctxt *ctxt) 1057 { 1058 /* If src is zero, do not writeback, but update flags */ 1059 if (ctxt->src.val == 0) 1060 ctxt->dst.type = OP_NONE; 1061 return fastop(ctxt, em_bsr); 1062 } 1063 1064 static __always_inline u8 test_cc(unsigned int condition, unsigned long flags) 1065 { 1066 u8 rc; 1067 void (*fop)(void) = (void *)em_setcc + FASTOP_SIZE * (condition & 0xf); 1068 1069 flags = (flags & EFLAGS_MASK) | X86_EFLAGS_IF; 1070 asm("push %[flags]; popf; " CALL_NOSPEC 1071 : "=a"(rc) : [thunk_target]"r"(fop), [flags]"r"(flags)); 1072 return rc; 1073 } 1074 1075 static void fetch_register_operand(struct operand *op) 1076 { 1077 switch (op->bytes) { 1078 case 1: 1079 op->val = *(u8 *)op->addr.reg; 1080 break; 1081 case 2: 1082 op->val = *(u16 *)op->addr.reg; 1083 break; 1084 case 4: 1085 op->val = *(u32 *)op->addr.reg; 1086 break; 1087 case 8: 1088 op->val = *(u64 *)op->addr.reg; 1089 break; 1090 } 1091 } 1092 1093 static int em_fninit(struct x86_emulate_ctxt *ctxt) 1094 { 1095 if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM)) 1096 return emulate_nm(ctxt); 1097 1098 kvm_fpu_get(); 1099 asm volatile("fninit"); 1100 kvm_fpu_put(); 1101 return X86EMUL_CONTINUE; 1102 } 1103 1104 static int em_fnstcw(struct x86_emulate_ctxt *ctxt) 1105 { 1106 u16 fcw; 1107 1108 if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM)) 1109 return emulate_nm(ctxt); 1110 1111 kvm_fpu_get(); 1112 asm volatile("fnstcw %0": "+m"(fcw)); 1113 kvm_fpu_put(); 1114 1115 ctxt->dst.val = fcw; 1116 1117 return X86EMUL_CONTINUE; 1118 } 1119 1120 static int em_fnstsw(struct x86_emulate_ctxt *ctxt) 1121 { 1122 u16 fsw; 1123 1124 if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM)) 1125 return emulate_nm(ctxt); 1126 1127 kvm_fpu_get(); 1128 asm volatile("fnstsw %0": "+m"(fsw)); 1129 kvm_fpu_put(); 1130 1131 ctxt->dst.val = fsw; 1132 1133 return X86EMUL_CONTINUE; 1134 } 1135 1136 static void decode_register_operand(struct x86_emulate_ctxt *ctxt, 1137 struct operand *op) 1138 { 1139 unsigned int reg; 1140 1141 if (ctxt->d & ModRM) 1142 reg = ctxt->modrm_reg; 1143 else 1144 reg = (ctxt->b & 7) | ((ctxt->rex_prefix & 1) << 3); 1145 1146 if (ctxt->d & Sse) { 1147 op->type = OP_XMM; 1148 op->bytes = 16; 1149 op->addr.xmm = reg; 1150 kvm_read_sse_reg(reg, &op->vec_val); 1151 return; 1152 } 1153 if (ctxt->d & Mmx) { 1154 reg &= 7; 1155 op->type = OP_MM; 1156 op->bytes = 8; 1157 op->addr.mm = reg; 1158 return; 1159 } 1160 1161 op->type = OP_REG; 1162 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes; 1163 op->addr.reg = decode_register(ctxt, reg, ctxt->d & ByteOp); 1164 1165 fetch_register_operand(op); 1166 op->orig_val = op->val; 1167 } 1168 1169 static void adjust_modrm_seg(struct x86_emulate_ctxt *ctxt, int base_reg) 1170 { 1171 if (base_reg == VCPU_REGS_RSP || base_reg == VCPU_REGS_RBP) 1172 ctxt->modrm_seg = VCPU_SREG_SS; 1173 } 1174 1175 static int decode_modrm(struct x86_emulate_ctxt *ctxt, 1176 struct operand *op) 1177 { 1178 u8 sib; 1179 int index_reg, base_reg, scale; 1180 int rc = X86EMUL_CONTINUE; 1181 ulong modrm_ea = 0; 1182 1183 ctxt->modrm_reg = ((ctxt->rex_prefix << 1) & 8); /* REX.R */ 1184 index_reg = (ctxt->rex_prefix << 2) & 8; /* REX.X */ 1185 base_reg = (ctxt->rex_prefix << 3) & 8; /* REX.B */ 1186 1187 ctxt->modrm_mod = (ctxt->modrm & 0xc0) >> 6; 1188 ctxt->modrm_reg |= (ctxt->modrm & 0x38) >> 3; 1189 ctxt->modrm_rm = base_reg | (ctxt->modrm & 0x07); 1190 ctxt->modrm_seg = VCPU_SREG_DS; 1191 1192 if (ctxt->modrm_mod == 3 || (ctxt->d & NoMod)) { 1193 op->type = OP_REG; 1194 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes; 1195 op->addr.reg = decode_register(ctxt, ctxt->modrm_rm, 1196 ctxt->d & ByteOp); 1197 if (ctxt->d & Sse) { 1198 op->type = OP_XMM; 1199 op->bytes = 16; 1200 op->addr.xmm = ctxt->modrm_rm; 1201 kvm_read_sse_reg(ctxt->modrm_rm, &op->vec_val); 1202 return rc; 1203 } 1204 if (ctxt->d & Mmx) { 1205 op->type = OP_MM; 1206 op->bytes = 8; 1207 op->addr.mm = ctxt->modrm_rm & 7; 1208 return rc; 1209 } 1210 fetch_register_operand(op); 1211 return rc; 1212 } 1213 1214 op->type = OP_MEM; 1215 1216 if (ctxt->ad_bytes == 2) { 1217 unsigned bx = reg_read(ctxt, VCPU_REGS_RBX); 1218 unsigned bp = reg_read(ctxt, VCPU_REGS_RBP); 1219 unsigned si = reg_read(ctxt, VCPU_REGS_RSI); 1220 unsigned di = reg_read(ctxt, VCPU_REGS_RDI); 1221 1222 /* 16-bit ModR/M decode. */ 1223 switch (ctxt->modrm_mod) { 1224 case 0: 1225 if (ctxt->modrm_rm == 6) 1226 modrm_ea += insn_fetch(u16, ctxt); 1227 break; 1228 case 1: 1229 modrm_ea += insn_fetch(s8, ctxt); 1230 break; 1231 case 2: 1232 modrm_ea += insn_fetch(u16, ctxt); 1233 break; 1234 } 1235 switch (ctxt->modrm_rm) { 1236 case 0: 1237 modrm_ea += bx + si; 1238 break; 1239 case 1: 1240 modrm_ea += bx + di; 1241 break; 1242 case 2: 1243 modrm_ea += bp + si; 1244 break; 1245 case 3: 1246 modrm_ea += bp + di; 1247 break; 1248 case 4: 1249 modrm_ea += si; 1250 break; 1251 case 5: 1252 modrm_ea += di; 1253 break; 1254 case 6: 1255 if (ctxt->modrm_mod != 0) 1256 modrm_ea += bp; 1257 break; 1258 case 7: 1259 modrm_ea += bx; 1260 break; 1261 } 1262 if (ctxt->modrm_rm == 2 || ctxt->modrm_rm == 3 || 1263 (ctxt->modrm_rm == 6 && ctxt->modrm_mod != 0)) 1264 ctxt->modrm_seg = VCPU_SREG_SS; 1265 modrm_ea = (u16)modrm_ea; 1266 } else { 1267 /* 32/64-bit ModR/M decode. */ 1268 if ((ctxt->modrm_rm & 7) == 4) { 1269 sib = insn_fetch(u8, ctxt); 1270 index_reg |= (sib >> 3) & 7; 1271 base_reg |= sib & 7; 1272 scale = sib >> 6; 1273 1274 if ((base_reg & 7) == 5 && ctxt->modrm_mod == 0) 1275 modrm_ea += insn_fetch(s32, ctxt); 1276 else { 1277 modrm_ea += reg_read(ctxt, base_reg); 1278 adjust_modrm_seg(ctxt, base_reg); 1279 /* Increment ESP on POP [ESP] */ 1280 if ((ctxt->d & IncSP) && 1281 base_reg == VCPU_REGS_RSP) 1282 modrm_ea += ctxt->op_bytes; 1283 } 1284 if (index_reg != 4) 1285 modrm_ea += reg_read(ctxt, index_reg) << scale; 1286 } else if ((ctxt->modrm_rm & 7) == 5 && ctxt->modrm_mod == 0) { 1287 modrm_ea += insn_fetch(s32, ctxt); 1288 if (ctxt->mode == X86EMUL_MODE_PROT64) 1289 ctxt->rip_relative = 1; 1290 } else { 1291 base_reg = ctxt->modrm_rm; 1292 modrm_ea += reg_read(ctxt, base_reg); 1293 adjust_modrm_seg(ctxt, base_reg); 1294 } 1295 switch (ctxt->modrm_mod) { 1296 case 1: 1297 modrm_ea += insn_fetch(s8, ctxt); 1298 break; 1299 case 2: 1300 modrm_ea += insn_fetch(s32, ctxt); 1301 break; 1302 } 1303 } 1304 op->addr.mem.ea = modrm_ea; 1305 if (ctxt->ad_bytes != 8) 1306 ctxt->memop.addr.mem.ea = (u32)ctxt->memop.addr.mem.ea; 1307 1308 done: 1309 return rc; 1310 } 1311 1312 static int decode_abs(struct x86_emulate_ctxt *ctxt, 1313 struct operand *op) 1314 { 1315 int rc = X86EMUL_CONTINUE; 1316 1317 op->type = OP_MEM; 1318 switch (ctxt->ad_bytes) { 1319 case 2: 1320 op->addr.mem.ea = insn_fetch(u16, ctxt); 1321 break; 1322 case 4: 1323 op->addr.mem.ea = insn_fetch(u32, ctxt); 1324 break; 1325 case 8: 1326 op->addr.mem.ea = insn_fetch(u64, ctxt); 1327 break; 1328 } 1329 done: 1330 return rc; 1331 } 1332 1333 static void fetch_bit_operand(struct x86_emulate_ctxt *ctxt) 1334 { 1335 long sv = 0, mask; 1336 1337 if (ctxt->dst.type == OP_MEM && ctxt->src.type == OP_REG) { 1338 mask = ~((long)ctxt->dst.bytes * 8 - 1); 1339 1340 if (ctxt->src.bytes == 2) 1341 sv = (s16)ctxt->src.val & (s16)mask; 1342 else if (ctxt->src.bytes == 4) 1343 sv = (s32)ctxt->src.val & (s32)mask; 1344 else 1345 sv = (s64)ctxt->src.val & (s64)mask; 1346 1347 ctxt->dst.addr.mem.ea = address_mask(ctxt, 1348 ctxt->dst.addr.mem.ea + (sv >> 3)); 1349 } 1350 1351 /* only subword offset */ 1352 ctxt->src.val &= (ctxt->dst.bytes << 3) - 1; 1353 } 1354 1355 static int read_emulated(struct x86_emulate_ctxt *ctxt, 1356 unsigned long addr, void *dest, unsigned size) 1357 { 1358 int rc; 1359 struct read_cache *mc = &ctxt->mem_read; 1360 1361 if (mc->pos < mc->end) 1362 goto read_cached; 1363 1364 if (KVM_EMULATOR_BUG_ON((mc->end + size) >= sizeof(mc->data), ctxt)) 1365 return X86EMUL_UNHANDLEABLE; 1366 1367 rc = ctxt->ops->read_emulated(ctxt, addr, mc->data + mc->end, size, 1368 &ctxt->exception); 1369 if (rc != X86EMUL_CONTINUE) 1370 return rc; 1371 1372 mc->end += size; 1373 1374 read_cached: 1375 memcpy(dest, mc->data + mc->pos, size); 1376 mc->pos += size; 1377 return X86EMUL_CONTINUE; 1378 } 1379 1380 static int segmented_read(struct x86_emulate_ctxt *ctxt, 1381 struct segmented_address addr, 1382 void *data, 1383 unsigned size) 1384 { 1385 int rc; 1386 ulong linear; 1387 1388 rc = linearize(ctxt, addr, size, false, &linear); 1389 if (rc != X86EMUL_CONTINUE) 1390 return rc; 1391 return read_emulated(ctxt, linear, data, size); 1392 } 1393 1394 static int segmented_write(struct x86_emulate_ctxt *ctxt, 1395 struct segmented_address addr, 1396 const void *data, 1397 unsigned size) 1398 { 1399 int rc; 1400 ulong linear; 1401 1402 rc = linearize(ctxt, addr, size, true, &linear); 1403 if (rc != X86EMUL_CONTINUE) 1404 return rc; 1405 return ctxt->ops->write_emulated(ctxt, linear, data, size, 1406 &ctxt->exception); 1407 } 1408 1409 static int segmented_cmpxchg(struct x86_emulate_ctxt *ctxt, 1410 struct segmented_address addr, 1411 const void *orig_data, const void *data, 1412 unsigned size) 1413 { 1414 int rc; 1415 ulong linear; 1416 1417 rc = linearize(ctxt, addr, size, true, &linear); 1418 if (rc != X86EMUL_CONTINUE) 1419 return rc; 1420 return ctxt->ops->cmpxchg_emulated(ctxt, linear, orig_data, data, 1421 size, &ctxt->exception); 1422 } 1423 1424 static int pio_in_emulated(struct x86_emulate_ctxt *ctxt, 1425 unsigned int size, unsigned short port, 1426 void *dest) 1427 { 1428 struct read_cache *rc = &ctxt->io_read; 1429 1430 if (rc->pos == rc->end) { /* refill pio read ahead */ 1431 unsigned int in_page, n; 1432 unsigned int count = ctxt->rep_prefix ? 1433 address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) : 1; 1434 in_page = (ctxt->eflags & X86_EFLAGS_DF) ? 1435 offset_in_page(reg_read(ctxt, VCPU_REGS_RDI)) : 1436 PAGE_SIZE - offset_in_page(reg_read(ctxt, VCPU_REGS_RDI)); 1437 n = min3(in_page, (unsigned int)sizeof(rc->data) / size, count); 1438 if (n == 0) 1439 n = 1; 1440 rc->pos = rc->end = 0; 1441 if (!ctxt->ops->pio_in_emulated(ctxt, size, port, rc->data, n)) 1442 return 0; 1443 rc->end = n * size; 1444 } 1445 1446 if (ctxt->rep_prefix && (ctxt->d & String) && 1447 !(ctxt->eflags & X86_EFLAGS_DF)) { 1448 ctxt->dst.data = rc->data + rc->pos; 1449 ctxt->dst.type = OP_MEM_STR; 1450 ctxt->dst.count = (rc->end - rc->pos) / size; 1451 rc->pos = rc->end; 1452 } else { 1453 memcpy(dest, rc->data + rc->pos, size); 1454 rc->pos += size; 1455 } 1456 return 1; 1457 } 1458 1459 static int read_interrupt_descriptor(struct x86_emulate_ctxt *ctxt, 1460 u16 index, struct desc_struct *desc) 1461 { 1462 struct desc_ptr dt; 1463 ulong addr; 1464 1465 ctxt->ops->get_idt(ctxt, &dt); 1466 1467 if (dt.size < index * 8 + 7) 1468 return emulate_gp(ctxt, index << 3 | 0x2); 1469 1470 addr = dt.address + index * 8; 1471 return linear_read_system(ctxt, addr, desc, sizeof(*desc)); 1472 } 1473 1474 static void get_descriptor_table_ptr(struct x86_emulate_ctxt *ctxt, 1475 u16 selector, struct desc_ptr *dt) 1476 { 1477 const struct x86_emulate_ops *ops = ctxt->ops; 1478 u32 base3 = 0; 1479 1480 if (selector & 1 << 2) { 1481 struct desc_struct desc; 1482 u16 sel; 1483 1484 memset(dt, 0, sizeof(*dt)); 1485 if (!ops->get_segment(ctxt, &sel, &desc, &base3, 1486 VCPU_SREG_LDTR)) 1487 return; 1488 1489 dt->size = desc_limit_scaled(&desc); /* what if limit > 65535? */ 1490 dt->address = get_desc_base(&desc) | ((u64)base3 << 32); 1491 } else 1492 ops->get_gdt(ctxt, dt); 1493 } 1494 1495 static int get_descriptor_ptr(struct x86_emulate_ctxt *ctxt, 1496 u16 selector, ulong *desc_addr_p) 1497 { 1498 struct desc_ptr dt; 1499 u16 index = selector >> 3; 1500 ulong addr; 1501 1502 get_descriptor_table_ptr(ctxt, selector, &dt); 1503 1504 if (dt.size < index * 8 + 7) 1505 return emulate_gp(ctxt, selector & 0xfffc); 1506 1507 addr = dt.address + index * 8; 1508 1509 #ifdef CONFIG_X86_64 1510 if (addr >> 32 != 0) { 1511 u64 efer = 0; 1512 1513 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer); 1514 if (!(efer & EFER_LMA)) 1515 addr &= (u32)-1; 1516 } 1517 #endif 1518 1519 *desc_addr_p = addr; 1520 return X86EMUL_CONTINUE; 1521 } 1522 1523 /* allowed just for 8 bytes segments */ 1524 static int read_segment_descriptor(struct x86_emulate_ctxt *ctxt, 1525 u16 selector, struct desc_struct *desc, 1526 ulong *desc_addr_p) 1527 { 1528 int rc; 1529 1530 rc = get_descriptor_ptr(ctxt, selector, desc_addr_p); 1531 if (rc != X86EMUL_CONTINUE) 1532 return rc; 1533 1534 return linear_read_system(ctxt, *desc_addr_p, desc, sizeof(*desc)); 1535 } 1536 1537 /* allowed just for 8 bytes segments */ 1538 static int write_segment_descriptor(struct x86_emulate_ctxt *ctxt, 1539 u16 selector, struct desc_struct *desc) 1540 { 1541 int rc; 1542 ulong addr; 1543 1544 rc = get_descriptor_ptr(ctxt, selector, &addr); 1545 if (rc != X86EMUL_CONTINUE) 1546 return rc; 1547 1548 return linear_write_system(ctxt, addr, desc, sizeof(*desc)); 1549 } 1550 1551 static int __load_segment_descriptor(struct x86_emulate_ctxt *ctxt, 1552 u16 selector, int seg, u8 cpl, 1553 enum x86_transfer_type transfer, 1554 struct desc_struct *desc) 1555 { 1556 struct desc_struct seg_desc, old_desc; 1557 u8 dpl, rpl; 1558 unsigned err_vec = GP_VECTOR; 1559 u32 err_code = 0; 1560 bool null_selector = !(selector & ~0x3); /* 0000-0003 are null */ 1561 ulong desc_addr; 1562 int ret; 1563 u16 dummy; 1564 u32 base3 = 0; 1565 1566 memset(&seg_desc, 0, sizeof(seg_desc)); 1567 1568 if (ctxt->mode == X86EMUL_MODE_REAL) { 1569 /* set real mode segment descriptor (keep limit etc. for 1570 * unreal mode) */ 1571 ctxt->ops->get_segment(ctxt, &dummy, &seg_desc, NULL, seg); 1572 set_desc_base(&seg_desc, selector << 4); 1573 goto load; 1574 } else if (seg <= VCPU_SREG_GS && ctxt->mode == X86EMUL_MODE_VM86) { 1575 /* VM86 needs a clean new segment descriptor */ 1576 set_desc_base(&seg_desc, selector << 4); 1577 set_desc_limit(&seg_desc, 0xffff); 1578 seg_desc.type = 3; 1579 seg_desc.p = 1; 1580 seg_desc.s = 1; 1581 seg_desc.dpl = 3; 1582 goto load; 1583 } 1584 1585 rpl = selector & 3; 1586 1587 /* TR should be in GDT only */ 1588 if (seg == VCPU_SREG_TR && (selector & (1 << 2))) 1589 goto exception; 1590 1591 /* NULL selector is not valid for TR, CS and (except for long mode) SS */ 1592 if (null_selector) { 1593 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_TR) 1594 goto exception; 1595 1596 if (seg == VCPU_SREG_SS) { 1597 if (ctxt->mode != X86EMUL_MODE_PROT64 || rpl != cpl) 1598 goto exception; 1599 1600 /* 1601 * ctxt->ops->set_segment expects the CPL to be in 1602 * SS.DPL, so fake an expand-up 32-bit data segment. 1603 */ 1604 seg_desc.type = 3; 1605 seg_desc.p = 1; 1606 seg_desc.s = 1; 1607 seg_desc.dpl = cpl; 1608 seg_desc.d = 1; 1609 seg_desc.g = 1; 1610 } 1611 1612 /* Skip all following checks */ 1613 goto load; 1614 } 1615 1616 ret = read_segment_descriptor(ctxt, selector, &seg_desc, &desc_addr); 1617 if (ret != X86EMUL_CONTINUE) 1618 return ret; 1619 1620 err_code = selector & 0xfffc; 1621 err_vec = (transfer == X86_TRANSFER_TASK_SWITCH) ? TS_VECTOR : 1622 GP_VECTOR; 1623 1624 /* can't load system descriptor into segment selector */ 1625 if (seg <= VCPU_SREG_GS && !seg_desc.s) { 1626 if (transfer == X86_TRANSFER_CALL_JMP) 1627 return X86EMUL_UNHANDLEABLE; 1628 goto exception; 1629 } 1630 1631 dpl = seg_desc.dpl; 1632 1633 switch (seg) { 1634 case VCPU_SREG_SS: 1635 /* 1636 * segment is not a writable data segment or segment 1637 * selector's RPL != CPL or DPL != CPL 1638 */ 1639 if (rpl != cpl || (seg_desc.type & 0xa) != 0x2 || dpl != cpl) 1640 goto exception; 1641 break; 1642 case VCPU_SREG_CS: 1643 /* 1644 * KVM uses "none" when loading CS as part of emulating Real 1645 * Mode exceptions and IRET (handled above). In all other 1646 * cases, loading CS without a control transfer is a KVM bug. 1647 */ 1648 if (WARN_ON_ONCE(transfer == X86_TRANSFER_NONE)) 1649 goto exception; 1650 1651 if (!(seg_desc.type & 8)) 1652 goto exception; 1653 1654 if (transfer == X86_TRANSFER_RET) { 1655 /* RET can never return to an inner privilege level. */ 1656 if (rpl < cpl) 1657 goto exception; 1658 /* Outer-privilege level return is not implemented */ 1659 if (rpl > cpl) 1660 return X86EMUL_UNHANDLEABLE; 1661 } 1662 if (transfer == X86_TRANSFER_RET || transfer == X86_TRANSFER_TASK_SWITCH) { 1663 if (seg_desc.type & 4) { 1664 /* conforming */ 1665 if (dpl > rpl) 1666 goto exception; 1667 } else { 1668 /* nonconforming */ 1669 if (dpl != rpl) 1670 goto exception; 1671 } 1672 } else { /* X86_TRANSFER_CALL_JMP */ 1673 if (seg_desc.type & 4) { 1674 /* conforming */ 1675 if (dpl > cpl) 1676 goto exception; 1677 } else { 1678 /* nonconforming */ 1679 if (rpl > cpl || dpl != cpl) 1680 goto exception; 1681 } 1682 } 1683 /* in long-mode d/b must be clear if l is set */ 1684 if (seg_desc.d && seg_desc.l) { 1685 u64 efer = 0; 1686 1687 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer); 1688 if (efer & EFER_LMA) 1689 goto exception; 1690 } 1691 1692 /* CS(RPL) <- CPL */ 1693 selector = (selector & 0xfffc) | cpl; 1694 break; 1695 case VCPU_SREG_TR: 1696 if (seg_desc.s || (seg_desc.type != 1 && seg_desc.type != 9)) 1697 goto exception; 1698 break; 1699 case VCPU_SREG_LDTR: 1700 if (seg_desc.s || seg_desc.type != 2) 1701 goto exception; 1702 break; 1703 default: /* DS, ES, FS, or GS */ 1704 /* 1705 * segment is not a data or readable code segment or 1706 * ((segment is a data or nonconforming code segment) 1707 * and ((RPL > DPL) or (CPL > DPL))) 1708 */ 1709 if ((seg_desc.type & 0xa) == 0x8 || 1710 (((seg_desc.type & 0xc) != 0xc) && 1711 (rpl > dpl || cpl > dpl))) 1712 goto exception; 1713 break; 1714 } 1715 1716 if (!seg_desc.p) { 1717 err_vec = (seg == VCPU_SREG_SS) ? SS_VECTOR : NP_VECTOR; 1718 goto exception; 1719 } 1720 1721 if (seg_desc.s) { 1722 /* mark segment as accessed */ 1723 if (!(seg_desc.type & 1)) { 1724 seg_desc.type |= 1; 1725 ret = write_segment_descriptor(ctxt, selector, 1726 &seg_desc); 1727 if (ret != X86EMUL_CONTINUE) 1728 return ret; 1729 } 1730 } else if (ctxt->mode == X86EMUL_MODE_PROT64) { 1731 ret = linear_read_system(ctxt, desc_addr+8, &base3, sizeof(base3)); 1732 if (ret != X86EMUL_CONTINUE) 1733 return ret; 1734 if (emul_is_noncanonical_address(get_desc_base(&seg_desc) | 1735 ((u64)base3 << 32), ctxt)) 1736 return emulate_gp(ctxt, err_code); 1737 } 1738 1739 if (seg == VCPU_SREG_TR) { 1740 old_desc = seg_desc; 1741 seg_desc.type |= 2; /* busy */ 1742 ret = ctxt->ops->cmpxchg_emulated(ctxt, desc_addr, &old_desc, &seg_desc, 1743 sizeof(seg_desc), &ctxt->exception); 1744 if (ret != X86EMUL_CONTINUE) 1745 return ret; 1746 } 1747 load: 1748 ctxt->ops->set_segment(ctxt, selector, &seg_desc, base3, seg); 1749 if (desc) 1750 *desc = seg_desc; 1751 return X86EMUL_CONTINUE; 1752 exception: 1753 return emulate_exception(ctxt, err_vec, err_code, true); 1754 } 1755 1756 static int load_segment_descriptor(struct x86_emulate_ctxt *ctxt, 1757 u16 selector, int seg) 1758 { 1759 u8 cpl = ctxt->ops->cpl(ctxt); 1760 1761 /* 1762 * None of MOV, POP and LSS can load a NULL selector in CPL=3, but 1763 * they can load it at CPL<3 (Intel's manual says only LSS can, 1764 * but it's wrong). 1765 * 1766 * However, the Intel manual says that putting IST=1/DPL=3 in 1767 * an interrupt gate will result in SS=3 (the AMD manual instead 1768 * says it doesn't), so allow SS=3 in __load_segment_descriptor 1769 * and only forbid it here. 1770 */ 1771 if (seg == VCPU_SREG_SS && selector == 3 && 1772 ctxt->mode == X86EMUL_MODE_PROT64) 1773 return emulate_exception(ctxt, GP_VECTOR, 0, true); 1774 1775 return __load_segment_descriptor(ctxt, selector, seg, cpl, 1776 X86_TRANSFER_NONE, NULL); 1777 } 1778 1779 static void write_register_operand(struct operand *op) 1780 { 1781 return assign_register(op->addr.reg, op->val, op->bytes); 1782 } 1783 1784 static int writeback(struct x86_emulate_ctxt *ctxt, struct operand *op) 1785 { 1786 switch (op->type) { 1787 case OP_REG: 1788 write_register_operand(op); 1789 break; 1790 case OP_MEM: 1791 if (ctxt->lock_prefix) 1792 return segmented_cmpxchg(ctxt, 1793 op->addr.mem, 1794 &op->orig_val, 1795 &op->val, 1796 op->bytes); 1797 else 1798 return segmented_write(ctxt, 1799 op->addr.mem, 1800 &op->val, 1801 op->bytes); 1802 case OP_MEM_STR: 1803 return segmented_write(ctxt, 1804 op->addr.mem, 1805 op->data, 1806 op->bytes * op->count); 1807 case OP_XMM: 1808 kvm_write_sse_reg(op->addr.xmm, &op->vec_val); 1809 break; 1810 case OP_MM: 1811 kvm_write_mmx_reg(op->addr.mm, &op->mm_val); 1812 break; 1813 case OP_NONE: 1814 /* no writeback */ 1815 break; 1816 default: 1817 break; 1818 } 1819 return X86EMUL_CONTINUE; 1820 } 1821 1822 static int push(struct x86_emulate_ctxt *ctxt, void *data, int bytes) 1823 { 1824 struct segmented_address addr; 1825 1826 rsp_increment(ctxt, -bytes); 1827 addr.ea = reg_read(ctxt, VCPU_REGS_RSP) & stack_mask(ctxt); 1828 addr.seg = VCPU_SREG_SS; 1829 1830 return segmented_write(ctxt, addr, data, bytes); 1831 } 1832 1833 static int em_push(struct x86_emulate_ctxt *ctxt) 1834 { 1835 /* Disable writeback. */ 1836 ctxt->dst.type = OP_NONE; 1837 return push(ctxt, &ctxt->src.val, ctxt->op_bytes); 1838 } 1839 1840 static int emulate_pop(struct x86_emulate_ctxt *ctxt, 1841 void *dest, int len) 1842 { 1843 int rc; 1844 struct segmented_address addr; 1845 1846 addr.ea = reg_read(ctxt, VCPU_REGS_RSP) & stack_mask(ctxt); 1847 addr.seg = VCPU_SREG_SS; 1848 rc = segmented_read(ctxt, addr, dest, len); 1849 if (rc != X86EMUL_CONTINUE) 1850 return rc; 1851 1852 rsp_increment(ctxt, len); 1853 return rc; 1854 } 1855 1856 static int em_pop(struct x86_emulate_ctxt *ctxt) 1857 { 1858 return emulate_pop(ctxt, &ctxt->dst.val, ctxt->op_bytes); 1859 } 1860 1861 static int emulate_popf(struct x86_emulate_ctxt *ctxt, 1862 void *dest, int len) 1863 { 1864 int rc; 1865 unsigned long val, change_mask; 1866 int iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> X86_EFLAGS_IOPL_BIT; 1867 int cpl = ctxt->ops->cpl(ctxt); 1868 1869 rc = emulate_pop(ctxt, &val, len); 1870 if (rc != X86EMUL_CONTINUE) 1871 return rc; 1872 1873 change_mask = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | 1874 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF | 1875 X86_EFLAGS_TF | X86_EFLAGS_DF | X86_EFLAGS_NT | 1876 X86_EFLAGS_AC | X86_EFLAGS_ID; 1877 1878 switch(ctxt->mode) { 1879 case X86EMUL_MODE_PROT64: 1880 case X86EMUL_MODE_PROT32: 1881 case X86EMUL_MODE_PROT16: 1882 if (cpl == 0) 1883 change_mask |= X86_EFLAGS_IOPL; 1884 if (cpl <= iopl) 1885 change_mask |= X86_EFLAGS_IF; 1886 break; 1887 case X86EMUL_MODE_VM86: 1888 if (iopl < 3) 1889 return emulate_gp(ctxt, 0); 1890 change_mask |= X86_EFLAGS_IF; 1891 break; 1892 default: /* real mode */ 1893 change_mask |= (X86_EFLAGS_IOPL | X86_EFLAGS_IF); 1894 break; 1895 } 1896 1897 *(unsigned long *)dest = 1898 (ctxt->eflags & ~change_mask) | (val & change_mask); 1899 1900 return rc; 1901 } 1902 1903 static int em_popf(struct x86_emulate_ctxt *ctxt) 1904 { 1905 ctxt->dst.type = OP_REG; 1906 ctxt->dst.addr.reg = &ctxt->eflags; 1907 ctxt->dst.bytes = ctxt->op_bytes; 1908 return emulate_popf(ctxt, &ctxt->dst.val, ctxt->op_bytes); 1909 } 1910 1911 static int em_enter(struct x86_emulate_ctxt *ctxt) 1912 { 1913 int rc; 1914 unsigned frame_size = ctxt->src.val; 1915 unsigned nesting_level = ctxt->src2.val & 31; 1916 ulong rbp; 1917 1918 if (nesting_level) 1919 return X86EMUL_UNHANDLEABLE; 1920 1921 rbp = reg_read(ctxt, VCPU_REGS_RBP); 1922 rc = push(ctxt, &rbp, stack_size(ctxt)); 1923 if (rc != X86EMUL_CONTINUE) 1924 return rc; 1925 assign_masked(reg_rmw(ctxt, VCPU_REGS_RBP), reg_read(ctxt, VCPU_REGS_RSP), 1926 stack_mask(ctxt)); 1927 assign_masked(reg_rmw(ctxt, VCPU_REGS_RSP), 1928 reg_read(ctxt, VCPU_REGS_RSP) - frame_size, 1929 stack_mask(ctxt)); 1930 return X86EMUL_CONTINUE; 1931 } 1932 1933 static int em_leave(struct x86_emulate_ctxt *ctxt) 1934 { 1935 assign_masked(reg_rmw(ctxt, VCPU_REGS_RSP), reg_read(ctxt, VCPU_REGS_RBP), 1936 stack_mask(ctxt)); 1937 return emulate_pop(ctxt, reg_rmw(ctxt, VCPU_REGS_RBP), ctxt->op_bytes); 1938 } 1939 1940 static int em_push_sreg(struct x86_emulate_ctxt *ctxt) 1941 { 1942 int seg = ctxt->src2.val; 1943 1944 ctxt->src.val = get_segment_selector(ctxt, seg); 1945 if (ctxt->op_bytes == 4) { 1946 rsp_increment(ctxt, -2); 1947 ctxt->op_bytes = 2; 1948 } 1949 1950 return em_push(ctxt); 1951 } 1952 1953 static int em_pop_sreg(struct x86_emulate_ctxt *ctxt) 1954 { 1955 int seg = ctxt->src2.val; 1956 unsigned long selector; 1957 int rc; 1958 1959 rc = emulate_pop(ctxt, &selector, 2); 1960 if (rc != X86EMUL_CONTINUE) 1961 return rc; 1962 1963 if (seg == VCPU_SREG_SS) 1964 ctxt->interruptibility = KVM_X86_SHADOW_INT_MOV_SS; 1965 if (ctxt->op_bytes > 2) 1966 rsp_increment(ctxt, ctxt->op_bytes - 2); 1967 1968 rc = load_segment_descriptor(ctxt, (u16)selector, seg); 1969 return rc; 1970 } 1971 1972 static int em_pusha(struct x86_emulate_ctxt *ctxt) 1973 { 1974 unsigned long old_esp = reg_read(ctxt, VCPU_REGS_RSP); 1975 int rc = X86EMUL_CONTINUE; 1976 int reg = VCPU_REGS_RAX; 1977 1978 while (reg <= VCPU_REGS_RDI) { 1979 (reg == VCPU_REGS_RSP) ? 1980 (ctxt->src.val = old_esp) : (ctxt->src.val = reg_read(ctxt, reg)); 1981 1982 rc = em_push(ctxt); 1983 if (rc != X86EMUL_CONTINUE) 1984 return rc; 1985 1986 ++reg; 1987 } 1988 1989 return rc; 1990 } 1991 1992 static int em_pushf(struct x86_emulate_ctxt *ctxt) 1993 { 1994 ctxt->src.val = (unsigned long)ctxt->eflags & ~X86_EFLAGS_VM; 1995 return em_push(ctxt); 1996 } 1997 1998 static int em_popa(struct x86_emulate_ctxt *ctxt) 1999 { 2000 int rc = X86EMUL_CONTINUE; 2001 int reg = VCPU_REGS_RDI; 2002 u32 val; 2003 2004 while (reg >= VCPU_REGS_RAX) { 2005 if (reg == VCPU_REGS_RSP) { 2006 rsp_increment(ctxt, ctxt->op_bytes); 2007 --reg; 2008 } 2009 2010 rc = emulate_pop(ctxt, &val, ctxt->op_bytes); 2011 if (rc != X86EMUL_CONTINUE) 2012 break; 2013 assign_register(reg_rmw(ctxt, reg), val, ctxt->op_bytes); 2014 --reg; 2015 } 2016 return rc; 2017 } 2018 2019 static int __emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq) 2020 { 2021 const struct x86_emulate_ops *ops = ctxt->ops; 2022 int rc; 2023 struct desc_ptr dt; 2024 gva_t cs_addr; 2025 gva_t eip_addr; 2026 u16 cs, eip; 2027 2028 /* TODO: Add limit checks */ 2029 ctxt->src.val = ctxt->eflags; 2030 rc = em_push(ctxt); 2031 if (rc != X86EMUL_CONTINUE) 2032 return rc; 2033 2034 ctxt->eflags &= ~(X86_EFLAGS_IF | X86_EFLAGS_TF | X86_EFLAGS_AC); 2035 2036 ctxt->src.val = get_segment_selector(ctxt, VCPU_SREG_CS); 2037 rc = em_push(ctxt); 2038 if (rc != X86EMUL_CONTINUE) 2039 return rc; 2040 2041 ctxt->src.val = ctxt->_eip; 2042 rc = em_push(ctxt); 2043 if (rc != X86EMUL_CONTINUE) 2044 return rc; 2045 2046 ops->get_idt(ctxt, &dt); 2047 2048 eip_addr = dt.address + (irq << 2); 2049 cs_addr = dt.address + (irq << 2) + 2; 2050 2051 rc = linear_read_system(ctxt, cs_addr, &cs, 2); 2052 if (rc != X86EMUL_CONTINUE) 2053 return rc; 2054 2055 rc = linear_read_system(ctxt, eip_addr, &eip, 2); 2056 if (rc != X86EMUL_CONTINUE) 2057 return rc; 2058 2059 rc = load_segment_descriptor(ctxt, cs, VCPU_SREG_CS); 2060 if (rc != X86EMUL_CONTINUE) 2061 return rc; 2062 2063 ctxt->_eip = eip; 2064 2065 return rc; 2066 } 2067 2068 int emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq) 2069 { 2070 int rc; 2071 2072 invalidate_registers(ctxt); 2073 rc = __emulate_int_real(ctxt, irq); 2074 if (rc == X86EMUL_CONTINUE) 2075 writeback_registers(ctxt); 2076 return rc; 2077 } 2078 2079 static int emulate_int(struct x86_emulate_ctxt *ctxt, int irq) 2080 { 2081 switch(ctxt->mode) { 2082 case X86EMUL_MODE_REAL: 2083 return __emulate_int_real(ctxt, irq); 2084 case X86EMUL_MODE_VM86: 2085 case X86EMUL_MODE_PROT16: 2086 case X86EMUL_MODE_PROT32: 2087 case X86EMUL_MODE_PROT64: 2088 default: 2089 /* Protected mode interrupts unimplemented yet */ 2090 return X86EMUL_UNHANDLEABLE; 2091 } 2092 } 2093 2094 static int emulate_iret_real(struct x86_emulate_ctxt *ctxt) 2095 { 2096 int rc = X86EMUL_CONTINUE; 2097 unsigned long temp_eip = 0; 2098 unsigned long temp_eflags = 0; 2099 unsigned long cs = 0; 2100 unsigned long mask = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | 2101 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_TF | 2102 X86_EFLAGS_IF | X86_EFLAGS_DF | X86_EFLAGS_OF | 2103 X86_EFLAGS_IOPL | X86_EFLAGS_NT | X86_EFLAGS_RF | 2104 X86_EFLAGS_AC | X86_EFLAGS_ID | 2105 X86_EFLAGS_FIXED; 2106 unsigned long vm86_mask = X86_EFLAGS_VM | X86_EFLAGS_VIF | 2107 X86_EFLAGS_VIP; 2108 2109 /* TODO: Add stack limit check */ 2110 2111 rc = emulate_pop(ctxt, &temp_eip, ctxt->op_bytes); 2112 2113 if (rc != X86EMUL_CONTINUE) 2114 return rc; 2115 2116 if (temp_eip & ~0xffff) 2117 return emulate_gp(ctxt, 0); 2118 2119 rc = emulate_pop(ctxt, &cs, ctxt->op_bytes); 2120 2121 if (rc != X86EMUL_CONTINUE) 2122 return rc; 2123 2124 rc = emulate_pop(ctxt, &temp_eflags, ctxt->op_bytes); 2125 2126 if (rc != X86EMUL_CONTINUE) 2127 return rc; 2128 2129 rc = load_segment_descriptor(ctxt, (u16)cs, VCPU_SREG_CS); 2130 2131 if (rc != X86EMUL_CONTINUE) 2132 return rc; 2133 2134 ctxt->_eip = temp_eip; 2135 2136 if (ctxt->op_bytes == 4) 2137 ctxt->eflags = ((temp_eflags & mask) | (ctxt->eflags & vm86_mask)); 2138 else if (ctxt->op_bytes == 2) { 2139 ctxt->eflags &= ~0xffff; 2140 ctxt->eflags |= temp_eflags; 2141 } 2142 2143 ctxt->eflags &= ~EFLG_RESERVED_ZEROS_MASK; /* Clear reserved zeros */ 2144 ctxt->eflags |= X86_EFLAGS_FIXED; 2145 ctxt->ops->set_nmi_mask(ctxt, false); 2146 2147 return rc; 2148 } 2149 2150 static int em_iret(struct x86_emulate_ctxt *ctxt) 2151 { 2152 switch(ctxt->mode) { 2153 case X86EMUL_MODE_REAL: 2154 return emulate_iret_real(ctxt); 2155 case X86EMUL_MODE_VM86: 2156 case X86EMUL_MODE_PROT16: 2157 case X86EMUL_MODE_PROT32: 2158 case X86EMUL_MODE_PROT64: 2159 default: 2160 /* iret from protected mode unimplemented yet */ 2161 return X86EMUL_UNHANDLEABLE; 2162 } 2163 } 2164 2165 static int em_jmp_far(struct x86_emulate_ctxt *ctxt) 2166 { 2167 int rc; 2168 unsigned short sel; 2169 struct desc_struct new_desc; 2170 u8 cpl = ctxt->ops->cpl(ctxt); 2171 2172 memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2); 2173 2174 rc = __load_segment_descriptor(ctxt, sel, VCPU_SREG_CS, cpl, 2175 X86_TRANSFER_CALL_JMP, 2176 &new_desc); 2177 if (rc != X86EMUL_CONTINUE) 2178 return rc; 2179 2180 rc = assign_eip_far(ctxt, ctxt->src.val); 2181 /* Error handling is not implemented. */ 2182 if (rc != X86EMUL_CONTINUE) 2183 return X86EMUL_UNHANDLEABLE; 2184 2185 return rc; 2186 } 2187 2188 static int em_jmp_abs(struct x86_emulate_ctxt *ctxt) 2189 { 2190 return assign_eip_near(ctxt, ctxt->src.val); 2191 } 2192 2193 static int em_call_near_abs(struct x86_emulate_ctxt *ctxt) 2194 { 2195 int rc; 2196 long int old_eip; 2197 2198 old_eip = ctxt->_eip; 2199 rc = assign_eip_near(ctxt, ctxt->src.val); 2200 if (rc != X86EMUL_CONTINUE) 2201 return rc; 2202 ctxt->src.val = old_eip; 2203 rc = em_push(ctxt); 2204 return rc; 2205 } 2206 2207 static int em_cmpxchg8b(struct x86_emulate_ctxt *ctxt) 2208 { 2209 u64 old = ctxt->dst.orig_val64; 2210 2211 if (ctxt->dst.bytes == 16) 2212 return X86EMUL_UNHANDLEABLE; 2213 2214 if (((u32) (old >> 0) != (u32) reg_read(ctxt, VCPU_REGS_RAX)) || 2215 ((u32) (old >> 32) != (u32) reg_read(ctxt, VCPU_REGS_RDX))) { 2216 *reg_write(ctxt, VCPU_REGS_RAX) = (u32) (old >> 0); 2217 *reg_write(ctxt, VCPU_REGS_RDX) = (u32) (old >> 32); 2218 ctxt->eflags &= ~X86_EFLAGS_ZF; 2219 } else { 2220 ctxt->dst.val64 = ((u64)reg_read(ctxt, VCPU_REGS_RCX) << 32) | 2221 (u32) reg_read(ctxt, VCPU_REGS_RBX); 2222 2223 ctxt->eflags |= X86_EFLAGS_ZF; 2224 } 2225 return X86EMUL_CONTINUE; 2226 } 2227 2228 static int em_ret(struct x86_emulate_ctxt *ctxt) 2229 { 2230 int rc; 2231 unsigned long eip; 2232 2233 rc = emulate_pop(ctxt, &eip, ctxt->op_bytes); 2234 if (rc != X86EMUL_CONTINUE) 2235 return rc; 2236 2237 return assign_eip_near(ctxt, eip); 2238 } 2239 2240 static int em_ret_far(struct x86_emulate_ctxt *ctxt) 2241 { 2242 int rc; 2243 unsigned long eip, cs; 2244 int cpl = ctxt->ops->cpl(ctxt); 2245 struct desc_struct new_desc; 2246 2247 rc = emulate_pop(ctxt, &eip, ctxt->op_bytes); 2248 if (rc != X86EMUL_CONTINUE) 2249 return rc; 2250 rc = emulate_pop(ctxt, &cs, ctxt->op_bytes); 2251 if (rc != X86EMUL_CONTINUE) 2252 return rc; 2253 rc = __load_segment_descriptor(ctxt, (u16)cs, VCPU_SREG_CS, cpl, 2254 X86_TRANSFER_RET, 2255 &new_desc); 2256 if (rc != X86EMUL_CONTINUE) 2257 return rc; 2258 rc = assign_eip_far(ctxt, eip); 2259 /* Error handling is not implemented. */ 2260 if (rc != X86EMUL_CONTINUE) 2261 return X86EMUL_UNHANDLEABLE; 2262 2263 return rc; 2264 } 2265 2266 static int em_ret_far_imm(struct x86_emulate_ctxt *ctxt) 2267 { 2268 int rc; 2269 2270 rc = em_ret_far(ctxt); 2271 if (rc != X86EMUL_CONTINUE) 2272 return rc; 2273 rsp_increment(ctxt, ctxt->src.val); 2274 return X86EMUL_CONTINUE; 2275 } 2276 2277 static int em_cmpxchg(struct x86_emulate_ctxt *ctxt) 2278 { 2279 /* Save real source value, then compare EAX against destination. */ 2280 ctxt->dst.orig_val = ctxt->dst.val; 2281 ctxt->dst.val = reg_read(ctxt, VCPU_REGS_RAX); 2282 ctxt->src.orig_val = ctxt->src.val; 2283 ctxt->src.val = ctxt->dst.orig_val; 2284 fastop(ctxt, em_cmp); 2285 2286 if (ctxt->eflags & X86_EFLAGS_ZF) { 2287 /* Success: write back to memory; no update of EAX */ 2288 ctxt->src.type = OP_NONE; 2289 ctxt->dst.val = ctxt->src.orig_val; 2290 } else { 2291 /* Failure: write the value we saw to EAX. */ 2292 ctxt->src.type = OP_REG; 2293 ctxt->src.addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX); 2294 ctxt->src.val = ctxt->dst.orig_val; 2295 /* Create write-cycle to dest by writing the same value */ 2296 ctxt->dst.val = ctxt->dst.orig_val; 2297 } 2298 return X86EMUL_CONTINUE; 2299 } 2300 2301 static int em_lseg(struct x86_emulate_ctxt *ctxt) 2302 { 2303 int seg = ctxt->src2.val; 2304 unsigned short sel; 2305 int rc; 2306 2307 memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2); 2308 2309 rc = load_segment_descriptor(ctxt, sel, seg); 2310 if (rc != X86EMUL_CONTINUE) 2311 return rc; 2312 2313 ctxt->dst.val = ctxt->src.val; 2314 return rc; 2315 } 2316 2317 static int em_rsm(struct x86_emulate_ctxt *ctxt) 2318 { 2319 if (!ctxt->ops->is_smm(ctxt)) 2320 return emulate_ud(ctxt); 2321 2322 if (ctxt->ops->leave_smm(ctxt)) 2323 ctxt->ops->triple_fault(ctxt); 2324 2325 return emulator_recalc_and_set_mode(ctxt); 2326 } 2327 2328 static void 2329 setup_syscalls_segments(struct desc_struct *cs, struct desc_struct *ss) 2330 { 2331 cs->l = 0; /* will be adjusted later */ 2332 set_desc_base(cs, 0); /* flat segment */ 2333 cs->g = 1; /* 4kb granularity */ 2334 set_desc_limit(cs, 0xfffff); /* 4GB limit */ 2335 cs->type = 0x0b; /* Read, Execute, Accessed */ 2336 cs->s = 1; 2337 cs->dpl = 0; /* will be adjusted later */ 2338 cs->p = 1; 2339 cs->d = 1; 2340 cs->avl = 0; 2341 2342 set_desc_base(ss, 0); /* flat segment */ 2343 set_desc_limit(ss, 0xfffff); /* 4GB limit */ 2344 ss->g = 1; /* 4kb granularity */ 2345 ss->s = 1; 2346 ss->type = 0x03; /* Read/Write, Accessed */ 2347 ss->d = 1; /* 32bit stack segment */ 2348 ss->dpl = 0; 2349 ss->p = 1; 2350 ss->l = 0; 2351 ss->avl = 0; 2352 } 2353 2354 static bool vendor_intel(struct x86_emulate_ctxt *ctxt) 2355 { 2356 u32 eax, ebx, ecx, edx; 2357 2358 eax = ecx = 0; 2359 ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx, true); 2360 return is_guest_vendor_intel(ebx, ecx, edx); 2361 } 2362 2363 static bool em_syscall_is_enabled(struct x86_emulate_ctxt *ctxt) 2364 { 2365 const struct x86_emulate_ops *ops = ctxt->ops; 2366 u32 eax, ebx, ecx, edx; 2367 2368 /* 2369 * syscall should always be enabled in longmode - so only become 2370 * vendor specific (cpuid) if other modes are active... 2371 */ 2372 if (ctxt->mode == X86EMUL_MODE_PROT64) 2373 return true; 2374 2375 eax = 0x00000000; 2376 ecx = 0x00000000; 2377 ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx, true); 2378 /* 2379 * remark: Intel CPUs only support "syscall" in 64bit longmode. Also a 2380 * 64bit guest with a 32bit compat-app running will #UD !! While this 2381 * behaviour can be fixed (by emulating) into AMD response - CPUs of 2382 * AMD can't behave like Intel. 2383 */ 2384 if (is_guest_vendor_intel(ebx, ecx, edx)) 2385 return false; 2386 2387 if (is_guest_vendor_amd(ebx, ecx, edx) || 2388 is_guest_vendor_hygon(ebx, ecx, edx)) 2389 return true; 2390 2391 /* 2392 * default: (not Intel, not AMD, not Hygon), apply Intel's 2393 * stricter rules... 2394 */ 2395 return false; 2396 } 2397 2398 static int em_syscall(struct x86_emulate_ctxt *ctxt) 2399 { 2400 const struct x86_emulate_ops *ops = ctxt->ops; 2401 struct desc_struct cs, ss; 2402 u64 msr_data; 2403 u16 cs_sel, ss_sel; 2404 u64 efer = 0; 2405 2406 /* syscall is not available in real mode */ 2407 if (ctxt->mode == X86EMUL_MODE_REAL || 2408 ctxt->mode == X86EMUL_MODE_VM86) 2409 return emulate_ud(ctxt); 2410 2411 if (!(em_syscall_is_enabled(ctxt))) 2412 return emulate_ud(ctxt); 2413 2414 ops->get_msr(ctxt, MSR_EFER, &efer); 2415 if (!(efer & EFER_SCE)) 2416 return emulate_ud(ctxt); 2417 2418 setup_syscalls_segments(&cs, &ss); 2419 ops->get_msr(ctxt, MSR_STAR, &msr_data); 2420 msr_data >>= 32; 2421 cs_sel = (u16)(msr_data & 0xfffc); 2422 ss_sel = (u16)(msr_data + 8); 2423 2424 if (efer & EFER_LMA) { 2425 cs.d = 0; 2426 cs.l = 1; 2427 } 2428 ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS); 2429 ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS); 2430 2431 *reg_write(ctxt, VCPU_REGS_RCX) = ctxt->_eip; 2432 if (efer & EFER_LMA) { 2433 #ifdef CONFIG_X86_64 2434 *reg_write(ctxt, VCPU_REGS_R11) = ctxt->eflags; 2435 2436 ops->get_msr(ctxt, 2437 ctxt->mode == X86EMUL_MODE_PROT64 ? 2438 MSR_LSTAR : MSR_CSTAR, &msr_data); 2439 ctxt->_eip = msr_data; 2440 2441 ops->get_msr(ctxt, MSR_SYSCALL_MASK, &msr_data); 2442 ctxt->eflags &= ~msr_data; 2443 ctxt->eflags |= X86_EFLAGS_FIXED; 2444 #endif 2445 } else { 2446 /* legacy mode */ 2447 ops->get_msr(ctxt, MSR_STAR, &msr_data); 2448 ctxt->_eip = (u32)msr_data; 2449 2450 ctxt->eflags &= ~(X86_EFLAGS_VM | X86_EFLAGS_IF); 2451 } 2452 2453 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 2454 return X86EMUL_CONTINUE; 2455 } 2456 2457 static int em_sysenter(struct x86_emulate_ctxt *ctxt) 2458 { 2459 const struct x86_emulate_ops *ops = ctxt->ops; 2460 struct desc_struct cs, ss; 2461 u64 msr_data; 2462 u16 cs_sel, ss_sel; 2463 u64 efer = 0; 2464 2465 ops->get_msr(ctxt, MSR_EFER, &efer); 2466 /* inject #GP if in real mode */ 2467 if (ctxt->mode == X86EMUL_MODE_REAL) 2468 return emulate_gp(ctxt, 0); 2469 2470 /* 2471 * Not recognized on AMD in compat mode (but is recognized in legacy 2472 * mode). 2473 */ 2474 if ((ctxt->mode != X86EMUL_MODE_PROT64) && (efer & EFER_LMA) 2475 && !vendor_intel(ctxt)) 2476 return emulate_ud(ctxt); 2477 2478 /* sysenter/sysexit have not been tested in 64bit mode. */ 2479 if (ctxt->mode == X86EMUL_MODE_PROT64) 2480 return X86EMUL_UNHANDLEABLE; 2481 2482 ops->get_msr(ctxt, MSR_IA32_SYSENTER_CS, &msr_data); 2483 if ((msr_data & 0xfffc) == 0x0) 2484 return emulate_gp(ctxt, 0); 2485 2486 setup_syscalls_segments(&cs, &ss); 2487 ctxt->eflags &= ~(X86_EFLAGS_VM | X86_EFLAGS_IF); 2488 cs_sel = (u16)msr_data & ~SEGMENT_RPL_MASK; 2489 ss_sel = cs_sel + 8; 2490 if (efer & EFER_LMA) { 2491 cs.d = 0; 2492 cs.l = 1; 2493 } 2494 2495 ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS); 2496 ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS); 2497 2498 ops->get_msr(ctxt, MSR_IA32_SYSENTER_EIP, &msr_data); 2499 ctxt->_eip = (efer & EFER_LMA) ? msr_data : (u32)msr_data; 2500 2501 ops->get_msr(ctxt, MSR_IA32_SYSENTER_ESP, &msr_data); 2502 *reg_write(ctxt, VCPU_REGS_RSP) = (efer & EFER_LMA) ? msr_data : 2503 (u32)msr_data; 2504 if (efer & EFER_LMA) 2505 ctxt->mode = X86EMUL_MODE_PROT64; 2506 2507 return X86EMUL_CONTINUE; 2508 } 2509 2510 static int em_sysexit(struct x86_emulate_ctxt *ctxt) 2511 { 2512 const struct x86_emulate_ops *ops = ctxt->ops; 2513 struct desc_struct cs, ss; 2514 u64 msr_data, rcx, rdx; 2515 int usermode; 2516 u16 cs_sel = 0, ss_sel = 0; 2517 2518 /* inject #GP if in real mode or Virtual 8086 mode */ 2519 if (ctxt->mode == X86EMUL_MODE_REAL || 2520 ctxt->mode == X86EMUL_MODE_VM86) 2521 return emulate_gp(ctxt, 0); 2522 2523 setup_syscalls_segments(&cs, &ss); 2524 2525 if ((ctxt->rex_prefix & 0x8) != 0x0) 2526 usermode = X86EMUL_MODE_PROT64; 2527 else 2528 usermode = X86EMUL_MODE_PROT32; 2529 2530 rcx = reg_read(ctxt, VCPU_REGS_RCX); 2531 rdx = reg_read(ctxt, VCPU_REGS_RDX); 2532 2533 cs.dpl = 3; 2534 ss.dpl = 3; 2535 ops->get_msr(ctxt, MSR_IA32_SYSENTER_CS, &msr_data); 2536 switch (usermode) { 2537 case X86EMUL_MODE_PROT32: 2538 cs_sel = (u16)(msr_data + 16); 2539 if ((msr_data & 0xfffc) == 0x0) 2540 return emulate_gp(ctxt, 0); 2541 ss_sel = (u16)(msr_data + 24); 2542 rcx = (u32)rcx; 2543 rdx = (u32)rdx; 2544 break; 2545 case X86EMUL_MODE_PROT64: 2546 cs_sel = (u16)(msr_data + 32); 2547 if (msr_data == 0x0) 2548 return emulate_gp(ctxt, 0); 2549 ss_sel = cs_sel + 8; 2550 cs.d = 0; 2551 cs.l = 1; 2552 if (emul_is_noncanonical_address(rcx, ctxt) || 2553 emul_is_noncanonical_address(rdx, ctxt)) 2554 return emulate_gp(ctxt, 0); 2555 break; 2556 } 2557 cs_sel |= SEGMENT_RPL_MASK; 2558 ss_sel |= SEGMENT_RPL_MASK; 2559 2560 ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS); 2561 ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS); 2562 2563 ctxt->_eip = rdx; 2564 ctxt->mode = usermode; 2565 *reg_write(ctxt, VCPU_REGS_RSP) = rcx; 2566 2567 return X86EMUL_CONTINUE; 2568 } 2569 2570 static bool emulator_bad_iopl(struct x86_emulate_ctxt *ctxt) 2571 { 2572 int iopl; 2573 if (ctxt->mode == X86EMUL_MODE_REAL) 2574 return false; 2575 if (ctxt->mode == X86EMUL_MODE_VM86) 2576 return true; 2577 iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> X86_EFLAGS_IOPL_BIT; 2578 return ctxt->ops->cpl(ctxt) > iopl; 2579 } 2580 2581 #define VMWARE_PORT_VMPORT (0x5658) 2582 #define VMWARE_PORT_VMRPC (0x5659) 2583 2584 static bool emulator_io_port_access_allowed(struct x86_emulate_ctxt *ctxt, 2585 u16 port, u16 len) 2586 { 2587 const struct x86_emulate_ops *ops = ctxt->ops; 2588 struct desc_struct tr_seg; 2589 u32 base3; 2590 int r; 2591 u16 tr, io_bitmap_ptr, perm, bit_idx = port & 0x7; 2592 unsigned mask = (1 << len) - 1; 2593 unsigned long base; 2594 2595 /* 2596 * VMware allows access to these ports even if denied 2597 * by TSS I/O permission bitmap. Mimic behavior. 2598 */ 2599 if (enable_vmware_backdoor && 2600 ((port == VMWARE_PORT_VMPORT) || (port == VMWARE_PORT_VMRPC))) 2601 return true; 2602 2603 ops->get_segment(ctxt, &tr, &tr_seg, &base3, VCPU_SREG_TR); 2604 if (!tr_seg.p) 2605 return false; 2606 if (desc_limit_scaled(&tr_seg) < 103) 2607 return false; 2608 base = get_desc_base(&tr_seg); 2609 #ifdef CONFIG_X86_64 2610 base |= ((u64)base3) << 32; 2611 #endif 2612 r = ops->read_std(ctxt, base + 102, &io_bitmap_ptr, 2, NULL, true); 2613 if (r != X86EMUL_CONTINUE) 2614 return false; 2615 if (io_bitmap_ptr + port/8 > desc_limit_scaled(&tr_seg)) 2616 return false; 2617 r = ops->read_std(ctxt, base + io_bitmap_ptr + port/8, &perm, 2, NULL, true); 2618 if (r != X86EMUL_CONTINUE) 2619 return false; 2620 if ((perm >> bit_idx) & mask) 2621 return false; 2622 return true; 2623 } 2624 2625 static bool emulator_io_permitted(struct x86_emulate_ctxt *ctxt, 2626 u16 port, u16 len) 2627 { 2628 if (ctxt->perm_ok) 2629 return true; 2630 2631 if (emulator_bad_iopl(ctxt)) 2632 if (!emulator_io_port_access_allowed(ctxt, port, len)) 2633 return false; 2634 2635 ctxt->perm_ok = true; 2636 2637 return true; 2638 } 2639 2640 static void string_registers_quirk(struct x86_emulate_ctxt *ctxt) 2641 { 2642 /* 2643 * Intel CPUs mask the counter and pointers in quite strange 2644 * manner when ECX is zero due to REP-string optimizations. 2645 */ 2646 #ifdef CONFIG_X86_64 2647 if (ctxt->ad_bytes != 4 || !vendor_intel(ctxt)) 2648 return; 2649 2650 *reg_write(ctxt, VCPU_REGS_RCX) = 0; 2651 2652 switch (ctxt->b) { 2653 case 0xa4: /* movsb */ 2654 case 0xa5: /* movsd/w */ 2655 *reg_rmw(ctxt, VCPU_REGS_RSI) &= (u32)-1; 2656 fallthrough; 2657 case 0xaa: /* stosb */ 2658 case 0xab: /* stosd/w */ 2659 *reg_rmw(ctxt, VCPU_REGS_RDI) &= (u32)-1; 2660 } 2661 #endif 2662 } 2663 2664 static void save_state_to_tss16(struct x86_emulate_ctxt *ctxt, 2665 struct tss_segment_16 *tss) 2666 { 2667 tss->ip = ctxt->_eip; 2668 tss->flag = ctxt->eflags; 2669 tss->ax = reg_read(ctxt, VCPU_REGS_RAX); 2670 tss->cx = reg_read(ctxt, VCPU_REGS_RCX); 2671 tss->dx = reg_read(ctxt, VCPU_REGS_RDX); 2672 tss->bx = reg_read(ctxt, VCPU_REGS_RBX); 2673 tss->sp = reg_read(ctxt, VCPU_REGS_RSP); 2674 tss->bp = reg_read(ctxt, VCPU_REGS_RBP); 2675 tss->si = reg_read(ctxt, VCPU_REGS_RSI); 2676 tss->di = reg_read(ctxt, VCPU_REGS_RDI); 2677 2678 tss->es = get_segment_selector(ctxt, VCPU_SREG_ES); 2679 tss->cs = get_segment_selector(ctxt, VCPU_SREG_CS); 2680 tss->ss = get_segment_selector(ctxt, VCPU_SREG_SS); 2681 tss->ds = get_segment_selector(ctxt, VCPU_SREG_DS); 2682 tss->ldt = get_segment_selector(ctxt, VCPU_SREG_LDTR); 2683 } 2684 2685 static int load_state_from_tss16(struct x86_emulate_ctxt *ctxt, 2686 struct tss_segment_16 *tss) 2687 { 2688 int ret; 2689 u8 cpl; 2690 2691 ctxt->_eip = tss->ip; 2692 ctxt->eflags = tss->flag | 2; 2693 *reg_write(ctxt, VCPU_REGS_RAX) = tss->ax; 2694 *reg_write(ctxt, VCPU_REGS_RCX) = tss->cx; 2695 *reg_write(ctxt, VCPU_REGS_RDX) = tss->dx; 2696 *reg_write(ctxt, VCPU_REGS_RBX) = tss->bx; 2697 *reg_write(ctxt, VCPU_REGS_RSP) = tss->sp; 2698 *reg_write(ctxt, VCPU_REGS_RBP) = tss->bp; 2699 *reg_write(ctxt, VCPU_REGS_RSI) = tss->si; 2700 *reg_write(ctxt, VCPU_REGS_RDI) = tss->di; 2701 2702 /* 2703 * SDM says that segment selectors are loaded before segment 2704 * descriptors 2705 */ 2706 set_segment_selector(ctxt, tss->ldt, VCPU_SREG_LDTR); 2707 set_segment_selector(ctxt, tss->es, VCPU_SREG_ES); 2708 set_segment_selector(ctxt, tss->cs, VCPU_SREG_CS); 2709 set_segment_selector(ctxt, tss->ss, VCPU_SREG_SS); 2710 set_segment_selector(ctxt, tss->ds, VCPU_SREG_DS); 2711 2712 cpl = tss->cs & 3; 2713 2714 /* 2715 * Now load segment descriptors. If fault happens at this stage 2716 * it is handled in a context of new task 2717 */ 2718 ret = __load_segment_descriptor(ctxt, tss->ldt, VCPU_SREG_LDTR, cpl, 2719 X86_TRANSFER_TASK_SWITCH, NULL); 2720 if (ret != X86EMUL_CONTINUE) 2721 return ret; 2722 ret = __load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES, cpl, 2723 X86_TRANSFER_TASK_SWITCH, NULL); 2724 if (ret != X86EMUL_CONTINUE) 2725 return ret; 2726 ret = __load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS, cpl, 2727 X86_TRANSFER_TASK_SWITCH, NULL); 2728 if (ret != X86EMUL_CONTINUE) 2729 return ret; 2730 ret = __load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS, cpl, 2731 X86_TRANSFER_TASK_SWITCH, NULL); 2732 if (ret != X86EMUL_CONTINUE) 2733 return ret; 2734 ret = __load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS, cpl, 2735 X86_TRANSFER_TASK_SWITCH, NULL); 2736 if (ret != X86EMUL_CONTINUE) 2737 return ret; 2738 2739 return X86EMUL_CONTINUE; 2740 } 2741 2742 static int task_switch_16(struct x86_emulate_ctxt *ctxt, u16 old_tss_sel, 2743 ulong old_tss_base, struct desc_struct *new_desc) 2744 { 2745 struct tss_segment_16 tss_seg; 2746 int ret; 2747 u32 new_tss_base = get_desc_base(new_desc); 2748 2749 ret = linear_read_system(ctxt, old_tss_base, &tss_seg, sizeof(tss_seg)); 2750 if (ret != X86EMUL_CONTINUE) 2751 return ret; 2752 2753 save_state_to_tss16(ctxt, &tss_seg); 2754 2755 ret = linear_write_system(ctxt, old_tss_base, &tss_seg, sizeof(tss_seg)); 2756 if (ret != X86EMUL_CONTINUE) 2757 return ret; 2758 2759 ret = linear_read_system(ctxt, new_tss_base, &tss_seg, sizeof(tss_seg)); 2760 if (ret != X86EMUL_CONTINUE) 2761 return ret; 2762 2763 if (old_tss_sel != 0xffff) { 2764 tss_seg.prev_task_link = old_tss_sel; 2765 2766 ret = linear_write_system(ctxt, new_tss_base, 2767 &tss_seg.prev_task_link, 2768 sizeof(tss_seg.prev_task_link)); 2769 if (ret != X86EMUL_CONTINUE) 2770 return ret; 2771 } 2772 2773 return load_state_from_tss16(ctxt, &tss_seg); 2774 } 2775 2776 static void save_state_to_tss32(struct x86_emulate_ctxt *ctxt, 2777 struct tss_segment_32 *tss) 2778 { 2779 /* CR3 and ldt selector are not saved intentionally */ 2780 tss->eip = ctxt->_eip; 2781 tss->eflags = ctxt->eflags; 2782 tss->eax = reg_read(ctxt, VCPU_REGS_RAX); 2783 tss->ecx = reg_read(ctxt, VCPU_REGS_RCX); 2784 tss->edx = reg_read(ctxt, VCPU_REGS_RDX); 2785 tss->ebx = reg_read(ctxt, VCPU_REGS_RBX); 2786 tss->esp = reg_read(ctxt, VCPU_REGS_RSP); 2787 tss->ebp = reg_read(ctxt, VCPU_REGS_RBP); 2788 tss->esi = reg_read(ctxt, VCPU_REGS_RSI); 2789 tss->edi = reg_read(ctxt, VCPU_REGS_RDI); 2790 2791 tss->es = get_segment_selector(ctxt, VCPU_SREG_ES); 2792 tss->cs = get_segment_selector(ctxt, VCPU_SREG_CS); 2793 tss->ss = get_segment_selector(ctxt, VCPU_SREG_SS); 2794 tss->ds = get_segment_selector(ctxt, VCPU_SREG_DS); 2795 tss->fs = get_segment_selector(ctxt, VCPU_SREG_FS); 2796 tss->gs = get_segment_selector(ctxt, VCPU_SREG_GS); 2797 } 2798 2799 static int load_state_from_tss32(struct x86_emulate_ctxt *ctxt, 2800 struct tss_segment_32 *tss) 2801 { 2802 int ret; 2803 u8 cpl; 2804 2805 if (ctxt->ops->set_cr(ctxt, 3, tss->cr3)) 2806 return emulate_gp(ctxt, 0); 2807 ctxt->_eip = tss->eip; 2808 ctxt->eflags = tss->eflags | 2; 2809 2810 /* General purpose registers */ 2811 *reg_write(ctxt, VCPU_REGS_RAX) = tss->eax; 2812 *reg_write(ctxt, VCPU_REGS_RCX) = tss->ecx; 2813 *reg_write(ctxt, VCPU_REGS_RDX) = tss->edx; 2814 *reg_write(ctxt, VCPU_REGS_RBX) = tss->ebx; 2815 *reg_write(ctxt, VCPU_REGS_RSP) = tss->esp; 2816 *reg_write(ctxt, VCPU_REGS_RBP) = tss->ebp; 2817 *reg_write(ctxt, VCPU_REGS_RSI) = tss->esi; 2818 *reg_write(ctxt, VCPU_REGS_RDI) = tss->edi; 2819 2820 /* 2821 * SDM says that segment selectors are loaded before segment 2822 * descriptors. This is important because CPL checks will 2823 * use CS.RPL. 2824 */ 2825 set_segment_selector(ctxt, tss->ldt_selector, VCPU_SREG_LDTR); 2826 set_segment_selector(ctxt, tss->es, VCPU_SREG_ES); 2827 set_segment_selector(ctxt, tss->cs, VCPU_SREG_CS); 2828 set_segment_selector(ctxt, tss->ss, VCPU_SREG_SS); 2829 set_segment_selector(ctxt, tss->ds, VCPU_SREG_DS); 2830 set_segment_selector(ctxt, tss->fs, VCPU_SREG_FS); 2831 set_segment_selector(ctxt, tss->gs, VCPU_SREG_GS); 2832 2833 /* 2834 * If we're switching between Protected Mode and VM86, we need to make 2835 * sure to update the mode before loading the segment descriptors so 2836 * that the selectors are interpreted correctly. 2837 */ 2838 if (ctxt->eflags & X86_EFLAGS_VM) { 2839 ctxt->mode = X86EMUL_MODE_VM86; 2840 cpl = 3; 2841 } else { 2842 ctxt->mode = X86EMUL_MODE_PROT32; 2843 cpl = tss->cs & 3; 2844 } 2845 2846 /* 2847 * Now load segment descriptors. If fault happens at this stage 2848 * it is handled in a context of new task 2849 */ 2850 ret = __load_segment_descriptor(ctxt, tss->ldt_selector, VCPU_SREG_LDTR, 2851 cpl, X86_TRANSFER_TASK_SWITCH, NULL); 2852 if (ret != X86EMUL_CONTINUE) 2853 return ret; 2854 ret = __load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES, cpl, 2855 X86_TRANSFER_TASK_SWITCH, NULL); 2856 if (ret != X86EMUL_CONTINUE) 2857 return ret; 2858 ret = __load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS, cpl, 2859 X86_TRANSFER_TASK_SWITCH, NULL); 2860 if (ret != X86EMUL_CONTINUE) 2861 return ret; 2862 ret = __load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS, cpl, 2863 X86_TRANSFER_TASK_SWITCH, NULL); 2864 if (ret != X86EMUL_CONTINUE) 2865 return ret; 2866 ret = __load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS, cpl, 2867 X86_TRANSFER_TASK_SWITCH, NULL); 2868 if (ret != X86EMUL_CONTINUE) 2869 return ret; 2870 ret = __load_segment_descriptor(ctxt, tss->fs, VCPU_SREG_FS, cpl, 2871 X86_TRANSFER_TASK_SWITCH, NULL); 2872 if (ret != X86EMUL_CONTINUE) 2873 return ret; 2874 ret = __load_segment_descriptor(ctxt, tss->gs, VCPU_SREG_GS, cpl, 2875 X86_TRANSFER_TASK_SWITCH, NULL); 2876 2877 return ret; 2878 } 2879 2880 static int task_switch_32(struct x86_emulate_ctxt *ctxt, u16 old_tss_sel, 2881 ulong old_tss_base, struct desc_struct *new_desc) 2882 { 2883 struct tss_segment_32 tss_seg; 2884 int ret; 2885 u32 new_tss_base = get_desc_base(new_desc); 2886 u32 eip_offset = offsetof(struct tss_segment_32, eip); 2887 u32 ldt_sel_offset = offsetof(struct tss_segment_32, ldt_selector); 2888 2889 ret = linear_read_system(ctxt, old_tss_base, &tss_seg, sizeof(tss_seg)); 2890 if (ret != X86EMUL_CONTINUE) 2891 return ret; 2892 2893 save_state_to_tss32(ctxt, &tss_seg); 2894 2895 /* Only GP registers and segment selectors are saved */ 2896 ret = linear_write_system(ctxt, old_tss_base + eip_offset, &tss_seg.eip, 2897 ldt_sel_offset - eip_offset); 2898 if (ret != X86EMUL_CONTINUE) 2899 return ret; 2900 2901 ret = linear_read_system(ctxt, new_tss_base, &tss_seg, sizeof(tss_seg)); 2902 if (ret != X86EMUL_CONTINUE) 2903 return ret; 2904 2905 if (old_tss_sel != 0xffff) { 2906 tss_seg.prev_task_link = old_tss_sel; 2907 2908 ret = linear_write_system(ctxt, new_tss_base, 2909 &tss_seg.prev_task_link, 2910 sizeof(tss_seg.prev_task_link)); 2911 if (ret != X86EMUL_CONTINUE) 2912 return ret; 2913 } 2914 2915 return load_state_from_tss32(ctxt, &tss_seg); 2916 } 2917 2918 static int emulator_do_task_switch(struct x86_emulate_ctxt *ctxt, 2919 u16 tss_selector, int idt_index, int reason, 2920 bool has_error_code, u32 error_code) 2921 { 2922 const struct x86_emulate_ops *ops = ctxt->ops; 2923 struct desc_struct curr_tss_desc, next_tss_desc; 2924 int ret; 2925 u16 old_tss_sel = get_segment_selector(ctxt, VCPU_SREG_TR); 2926 ulong old_tss_base = 2927 ops->get_cached_segment_base(ctxt, VCPU_SREG_TR); 2928 u32 desc_limit; 2929 ulong desc_addr, dr7; 2930 2931 /* FIXME: old_tss_base == ~0 ? */ 2932 2933 ret = read_segment_descriptor(ctxt, tss_selector, &next_tss_desc, &desc_addr); 2934 if (ret != X86EMUL_CONTINUE) 2935 return ret; 2936 ret = read_segment_descriptor(ctxt, old_tss_sel, &curr_tss_desc, &desc_addr); 2937 if (ret != X86EMUL_CONTINUE) 2938 return ret; 2939 2940 /* FIXME: check that next_tss_desc is tss */ 2941 2942 /* 2943 * Check privileges. The three cases are task switch caused by... 2944 * 2945 * 1. jmp/call/int to task gate: Check against DPL of the task gate 2946 * 2. Exception/IRQ/iret: No check is performed 2947 * 3. jmp/call to TSS/task-gate: No check is performed since the 2948 * hardware checks it before exiting. 2949 */ 2950 if (reason == TASK_SWITCH_GATE) { 2951 if (idt_index != -1) { 2952 /* Software interrupts */ 2953 struct desc_struct task_gate_desc; 2954 int dpl; 2955 2956 ret = read_interrupt_descriptor(ctxt, idt_index, 2957 &task_gate_desc); 2958 if (ret != X86EMUL_CONTINUE) 2959 return ret; 2960 2961 dpl = task_gate_desc.dpl; 2962 if ((tss_selector & 3) > dpl || ops->cpl(ctxt) > dpl) 2963 return emulate_gp(ctxt, (idt_index << 3) | 0x2); 2964 } 2965 } 2966 2967 desc_limit = desc_limit_scaled(&next_tss_desc); 2968 if (!next_tss_desc.p || 2969 ((desc_limit < 0x67 && (next_tss_desc.type & 8)) || 2970 desc_limit < 0x2b)) { 2971 return emulate_ts(ctxt, tss_selector & 0xfffc); 2972 } 2973 2974 if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) { 2975 curr_tss_desc.type &= ~(1 << 1); /* clear busy flag */ 2976 write_segment_descriptor(ctxt, old_tss_sel, &curr_tss_desc); 2977 } 2978 2979 if (reason == TASK_SWITCH_IRET) 2980 ctxt->eflags = ctxt->eflags & ~X86_EFLAGS_NT; 2981 2982 /* set back link to prev task only if NT bit is set in eflags 2983 note that old_tss_sel is not used after this point */ 2984 if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE) 2985 old_tss_sel = 0xffff; 2986 2987 if (next_tss_desc.type & 8) 2988 ret = task_switch_32(ctxt, old_tss_sel, old_tss_base, &next_tss_desc); 2989 else 2990 ret = task_switch_16(ctxt, old_tss_sel, 2991 old_tss_base, &next_tss_desc); 2992 if (ret != X86EMUL_CONTINUE) 2993 return ret; 2994 2995 if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) 2996 ctxt->eflags = ctxt->eflags | X86_EFLAGS_NT; 2997 2998 if (reason != TASK_SWITCH_IRET) { 2999 next_tss_desc.type |= (1 << 1); /* set busy flag */ 3000 write_segment_descriptor(ctxt, tss_selector, &next_tss_desc); 3001 } 3002 3003 ops->set_cr(ctxt, 0, ops->get_cr(ctxt, 0) | X86_CR0_TS); 3004 ops->set_segment(ctxt, tss_selector, &next_tss_desc, 0, VCPU_SREG_TR); 3005 3006 if (has_error_code) { 3007 ctxt->op_bytes = ctxt->ad_bytes = (next_tss_desc.type & 8) ? 4 : 2; 3008 ctxt->lock_prefix = 0; 3009 ctxt->src.val = (unsigned long) error_code; 3010 ret = em_push(ctxt); 3011 } 3012 3013 ops->get_dr(ctxt, 7, &dr7); 3014 ops->set_dr(ctxt, 7, dr7 & ~(DR_LOCAL_ENABLE_MASK | DR_LOCAL_SLOWDOWN)); 3015 3016 return ret; 3017 } 3018 3019 int emulator_task_switch(struct x86_emulate_ctxt *ctxt, 3020 u16 tss_selector, int idt_index, int reason, 3021 bool has_error_code, u32 error_code) 3022 { 3023 int rc; 3024 3025 invalidate_registers(ctxt); 3026 ctxt->_eip = ctxt->eip; 3027 ctxt->dst.type = OP_NONE; 3028 3029 rc = emulator_do_task_switch(ctxt, tss_selector, idt_index, reason, 3030 has_error_code, error_code); 3031 3032 if (rc == X86EMUL_CONTINUE) { 3033 ctxt->eip = ctxt->_eip; 3034 writeback_registers(ctxt); 3035 } 3036 3037 return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK; 3038 } 3039 3040 static void string_addr_inc(struct x86_emulate_ctxt *ctxt, int reg, 3041 struct operand *op) 3042 { 3043 int df = (ctxt->eflags & X86_EFLAGS_DF) ? -op->count : op->count; 3044 3045 register_address_increment(ctxt, reg, df * op->bytes); 3046 op->addr.mem.ea = register_address(ctxt, reg); 3047 } 3048 3049 static int em_das(struct x86_emulate_ctxt *ctxt) 3050 { 3051 u8 al, old_al; 3052 bool af, cf, old_cf; 3053 3054 cf = ctxt->eflags & X86_EFLAGS_CF; 3055 al = ctxt->dst.val; 3056 3057 old_al = al; 3058 old_cf = cf; 3059 cf = false; 3060 af = ctxt->eflags & X86_EFLAGS_AF; 3061 if ((al & 0x0f) > 9 || af) { 3062 al -= 6; 3063 cf = old_cf | (al >= 250); 3064 af = true; 3065 } else { 3066 af = false; 3067 } 3068 if (old_al > 0x99 || old_cf) { 3069 al -= 0x60; 3070 cf = true; 3071 } 3072 3073 ctxt->dst.val = al; 3074 /* Set PF, ZF, SF */ 3075 ctxt->src.type = OP_IMM; 3076 ctxt->src.val = 0; 3077 ctxt->src.bytes = 1; 3078 fastop(ctxt, em_or); 3079 ctxt->eflags &= ~(X86_EFLAGS_AF | X86_EFLAGS_CF); 3080 if (cf) 3081 ctxt->eflags |= X86_EFLAGS_CF; 3082 if (af) 3083 ctxt->eflags |= X86_EFLAGS_AF; 3084 return X86EMUL_CONTINUE; 3085 } 3086 3087 static int em_aam(struct x86_emulate_ctxt *ctxt) 3088 { 3089 u8 al, ah; 3090 3091 if (ctxt->src.val == 0) 3092 return emulate_de(ctxt); 3093 3094 al = ctxt->dst.val & 0xff; 3095 ah = al / ctxt->src.val; 3096 al %= ctxt->src.val; 3097 3098 ctxt->dst.val = (ctxt->dst.val & 0xffff0000) | al | (ah << 8); 3099 3100 /* Set PF, ZF, SF */ 3101 ctxt->src.type = OP_IMM; 3102 ctxt->src.val = 0; 3103 ctxt->src.bytes = 1; 3104 fastop(ctxt, em_or); 3105 3106 return X86EMUL_CONTINUE; 3107 } 3108 3109 static int em_aad(struct x86_emulate_ctxt *ctxt) 3110 { 3111 u8 al = ctxt->dst.val & 0xff; 3112 u8 ah = (ctxt->dst.val >> 8) & 0xff; 3113 3114 al = (al + (ah * ctxt->src.val)) & 0xff; 3115 3116 ctxt->dst.val = (ctxt->dst.val & 0xffff0000) | al; 3117 3118 /* Set PF, ZF, SF */ 3119 ctxt->src.type = OP_IMM; 3120 ctxt->src.val = 0; 3121 ctxt->src.bytes = 1; 3122 fastop(ctxt, em_or); 3123 3124 return X86EMUL_CONTINUE; 3125 } 3126 3127 static int em_call(struct x86_emulate_ctxt *ctxt) 3128 { 3129 int rc; 3130 long rel = ctxt->src.val; 3131 3132 ctxt->src.val = (unsigned long)ctxt->_eip; 3133 rc = jmp_rel(ctxt, rel); 3134 if (rc != X86EMUL_CONTINUE) 3135 return rc; 3136 return em_push(ctxt); 3137 } 3138 3139 static int em_call_far(struct x86_emulate_ctxt *ctxt) 3140 { 3141 u16 sel, old_cs; 3142 ulong old_eip; 3143 int rc; 3144 struct desc_struct old_desc, new_desc; 3145 const struct x86_emulate_ops *ops = ctxt->ops; 3146 int cpl = ctxt->ops->cpl(ctxt); 3147 enum x86emul_mode prev_mode = ctxt->mode; 3148 3149 old_eip = ctxt->_eip; 3150 ops->get_segment(ctxt, &old_cs, &old_desc, NULL, VCPU_SREG_CS); 3151 3152 memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2); 3153 rc = __load_segment_descriptor(ctxt, sel, VCPU_SREG_CS, cpl, 3154 X86_TRANSFER_CALL_JMP, &new_desc); 3155 if (rc != X86EMUL_CONTINUE) 3156 return rc; 3157 3158 rc = assign_eip_far(ctxt, ctxt->src.val); 3159 if (rc != X86EMUL_CONTINUE) 3160 goto fail; 3161 3162 ctxt->src.val = old_cs; 3163 rc = em_push(ctxt); 3164 if (rc != X86EMUL_CONTINUE) 3165 goto fail; 3166 3167 ctxt->src.val = old_eip; 3168 rc = em_push(ctxt); 3169 /* If we failed, we tainted the memory, but the very least we should 3170 restore cs */ 3171 if (rc != X86EMUL_CONTINUE) { 3172 pr_warn_once("faulting far call emulation tainted memory\n"); 3173 goto fail; 3174 } 3175 return rc; 3176 fail: 3177 ops->set_segment(ctxt, old_cs, &old_desc, 0, VCPU_SREG_CS); 3178 ctxt->mode = prev_mode; 3179 return rc; 3180 3181 } 3182 3183 static int em_ret_near_imm(struct x86_emulate_ctxt *ctxt) 3184 { 3185 int rc; 3186 unsigned long eip; 3187 3188 rc = emulate_pop(ctxt, &eip, ctxt->op_bytes); 3189 if (rc != X86EMUL_CONTINUE) 3190 return rc; 3191 rc = assign_eip_near(ctxt, eip); 3192 if (rc != X86EMUL_CONTINUE) 3193 return rc; 3194 rsp_increment(ctxt, ctxt->src.val); 3195 return X86EMUL_CONTINUE; 3196 } 3197 3198 static int em_xchg(struct x86_emulate_ctxt *ctxt) 3199 { 3200 /* Write back the register source. */ 3201 ctxt->src.val = ctxt->dst.val; 3202 write_register_operand(&ctxt->src); 3203 3204 /* Write back the memory destination with implicit LOCK prefix. */ 3205 ctxt->dst.val = ctxt->src.orig_val; 3206 ctxt->lock_prefix = 1; 3207 return X86EMUL_CONTINUE; 3208 } 3209 3210 static int em_imul_3op(struct x86_emulate_ctxt *ctxt) 3211 { 3212 ctxt->dst.val = ctxt->src2.val; 3213 return fastop(ctxt, em_imul); 3214 } 3215 3216 static int em_cwd(struct x86_emulate_ctxt *ctxt) 3217 { 3218 ctxt->dst.type = OP_REG; 3219 ctxt->dst.bytes = ctxt->src.bytes; 3220 ctxt->dst.addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX); 3221 ctxt->dst.val = ~((ctxt->src.val >> (ctxt->src.bytes * 8 - 1)) - 1); 3222 3223 return X86EMUL_CONTINUE; 3224 } 3225 3226 static int em_rdpid(struct x86_emulate_ctxt *ctxt) 3227 { 3228 u64 tsc_aux = 0; 3229 3230 if (!ctxt->ops->guest_has_rdpid(ctxt)) 3231 return emulate_ud(ctxt); 3232 3233 ctxt->ops->get_msr(ctxt, MSR_TSC_AUX, &tsc_aux); 3234 ctxt->dst.val = tsc_aux; 3235 return X86EMUL_CONTINUE; 3236 } 3237 3238 static int em_rdtsc(struct x86_emulate_ctxt *ctxt) 3239 { 3240 u64 tsc = 0; 3241 3242 ctxt->ops->get_msr(ctxt, MSR_IA32_TSC, &tsc); 3243 *reg_write(ctxt, VCPU_REGS_RAX) = (u32)tsc; 3244 *reg_write(ctxt, VCPU_REGS_RDX) = tsc >> 32; 3245 return X86EMUL_CONTINUE; 3246 } 3247 3248 static int em_rdpmc(struct x86_emulate_ctxt *ctxt) 3249 { 3250 u64 pmc; 3251 3252 if (ctxt->ops->read_pmc(ctxt, reg_read(ctxt, VCPU_REGS_RCX), &pmc)) 3253 return emulate_gp(ctxt, 0); 3254 *reg_write(ctxt, VCPU_REGS_RAX) = (u32)pmc; 3255 *reg_write(ctxt, VCPU_REGS_RDX) = pmc >> 32; 3256 return X86EMUL_CONTINUE; 3257 } 3258 3259 static int em_mov(struct x86_emulate_ctxt *ctxt) 3260 { 3261 memcpy(ctxt->dst.valptr, ctxt->src.valptr, sizeof(ctxt->src.valptr)); 3262 return X86EMUL_CONTINUE; 3263 } 3264 3265 static int em_movbe(struct x86_emulate_ctxt *ctxt) 3266 { 3267 u16 tmp; 3268 3269 if (!ctxt->ops->guest_has_movbe(ctxt)) 3270 return emulate_ud(ctxt); 3271 3272 switch (ctxt->op_bytes) { 3273 case 2: 3274 /* 3275 * From MOVBE definition: "...When the operand size is 16 bits, 3276 * the upper word of the destination register remains unchanged 3277 * ..." 3278 * 3279 * Both casting ->valptr and ->val to u16 breaks strict aliasing 3280 * rules so we have to do the operation almost per hand. 3281 */ 3282 tmp = (u16)ctxt->src.val; 3283 ctxt->dst.val &= ~0xffffUL; 3284 ctxt->dst.val |= (unsigned long)swab16(tmp); 3285 break; 3286 case 4: 3287 ctxt->dst.val = swab32((u32)ctxt->src.val); 3288 break; 3289 case 8: 3290 ctxt->dst.val = swab64(ctxt->src.val); 3291 break; 3292 default: 3293 BUG(); 3294 } 3295 return X86EMUL_CONTINUE; 3296 } 3297 3298 static int em_cr_write(struct x86_emulate_ctxt *ctxt) 3299 { 3300 int cr_num = ctxt->modrm_reg; 3301 int r; 3302 3303 if (ctxt->ops->set_cr(ctxt, cr_num, ctxt->src.val)) 3304 return emulate_gp(ctxt, 0); 3305 3306 /* Disable writeback. */ 3307 ctxt->dst.type = OP_NONE; 3308 3309 if (cr_num == 0) { 3310 /* 3311 * CR0 write might have updated CR0.PE and/or CR0.PG 3312 * which can affect the cpu's execution mode. 3313 */ 3314 r = emulator_recalc_and_set_mode(ctxt); 3315 if (r != X86EMUL_CONTINUE) 3316 return r; 3317 } 3318 3319 return X86EMUL_CONTINUE; 3320 } 3321 3322 static int em_dr_write(struct x86_emulate_ctxt *ctxt) 3323 { 3324 unsigned long val; 3325 3326 if (ctxt->mode == X86EMUL_MODE_PROT64) 3327 val = ctxt->src.val & ~0ULL; 3328 else 3329 val = ctxt->src.val & ~0U; 3330 3331 /* #UD condition is already handled. */ 3332 if (ctxt->ops->set_dr(ctxt, ctxt->modrm_reg, val) < 0) 3333 return emulate_gp(ctxt, 0); 3334 3335 /* Disable writeback. */ 3336 ctxt->dst.type = OP_NONE; 3337 return X86EMUL_CONTINUE; 3338 } 3339 3340 static int em_wrmsr(struct x86_emulate_ctxt *ctxt) 3341 { 3342 u64 msr_index = reg_read(ctxt, VCPU_REGS_RCX); 3343 u64 msr_data; 3344 int r; 3345 3346 msr_data = (u32)reg_read(ctxt, VCPU_REGS_RAX) 3347 | ((u64)reg_read(ctxt, VCPU_REGS_RDX) << 32); 3348 r = ctxt->ops->set_msr_with_filter(ctxt, msr_index, msr_data); 3349 3350 if (r == X86EMUL_PROPAGATE_FAULT) 3351 return emulate_gp(ctxt, 0); 3352 3353 return r; 3354 } 3355 3356 static int em_rdmsr(struct x86_emulate_ctxt *ctxt) 3357 { 3358 u64 msr_index = reg_read(ctxt, VCPU_REGS_RCX); 3359 u64 msr_data; 3360 int r; 3361 3362 r = ctxt->ops->get_msr_with_filter(ctxt, msr_index, &msr_data); 3363 3364 if (r == X86EMUL_PROPAGATE_FAULT) 3365 return emulate_gp(ctxt, 0); 3366 3367 if (r == X86EMUL_CONTINUE) { 3368 *reg_write(ctxt, VCPU_REGS_RAX) = (u32)msr_data; 3369 *reg_write(ctxt, VCPU_REGS_RDX) = msr_data >> 32; 3370 } 3371 return r; 3372 } 3373 3374 static int em_store_sreg(struct x86_emulate_ctxt *ctxt, int segment) 3375 { 3376 if (segment > VCPU_SREG_GS && 3377 (ctxt->ops->get_cr(ctxt, 4) & X86_CR4_UMIP) && 3378 ctxt->ops->cpl(ctxt) > 0) 3379 return emulate_gp(ctxt, 0); 3380 3381 ctxt->dst.val = get_segment_selector(ctxt, segment); 3382 if (ctxt->dst.bytes == 4 && ctxt->dst.type == OP_MEM) 3383 ctxt->dst.bytes = 2; 3384 return X86EMUL_CONTINUE; 3385 } 3386 3387 static int em_mov_rm_sreg(struct x86_emulate_ctxt *ctxt) 3388 { 3389 if (ctxt->modrm_reg > VCPU_SREG_GS) 3390 return emulate_ud(ctxt); 3391 3392 return em_store_sreg(ctxt, ctxt->modrm_reg); 3393 } 3394 3395 static int em_mov_sreg_rm(struct x86_emulate_ctxt *ctxt) 3396 { 3397 u16 sel = ctxt->src.val; 3398 3399 if (ctxt->modrm_reg == VCPU_SREG_CS || ctxt->modrm_reg > VCPU_SREG_GS) 3400 return emulate_ud(ctxt); 3401 3402 if (ctxt->modrm_reg == VCPU_SREG_SS) 3403 ctxt->interruptibility = KVM_X86_SHADOW_INT_MOV_SS; 3404 3405 /* Disable writeback. */ 3406 ctxt->dst.type = OP_NONE; 3407 return load_segment_descriptor(ctxt, sel, ctxt->modrm_reg); 3408 } 3409 3410 static int em_sldt(struct x86_emulate_ctxt *ctxt) 3411 { 3412 return em_store_sreg(ctxt, VCPU_SREG_LDTR); 3413 } 3414 3415 static int em_lldt(struct x86_emulate_ctxt *ctxt) 3416 { 3417 u16 sel = ctxt->src.val; 3418 3419 /* Disable writeback. */ 3420 ctxt->dst.type = OP_NONE; 3421 return load_segment_descriptor(ctxt, sel, VCPU_SREG_LDTR); 3422 } 3423 3424 static int em_str(struct x86_emulate_ctxt *ctxt) 3425 { 3426 return em_store_sreg(ctxt, VCPU_SREG_TR); 3427 } 3428 3429 static int em_ltr(struct x86_emulate_ctxt *ctxt) 3430 { 3431 u16 sel = ctxt->src.val; 3432 3433 /* Disable writeback. */ 3434 ctxt->dst.type = OP_NONE; 3435 return load_segment_descriptor(ctxt, sel, VCPU_SREG_TR); 3436 } 3437 3438 static int em_invlpg(struct x86_emulate_ctxt *ctxt) 3439 { 3440 int rc; 3441 ulong linear; 3442 3443 rc = linearize(ctxt, ctxt->src.addr.mem, 1, false, &linear); 3444 if (rc == X86EMUL_CONTINUE) 3445 ctxt->ops->invlpg(ctxt, linear); 3446 /* Disable writeback. */ 3447 ctxt->dst.type = OP_NONE; 3448 return X86EMUL_CONTINUE; 3449 } 3450 3451 static int em_clts(struct x86_emulate_ctxt *ctxt) 3452 { 3453 ulong cr0; 3454 3455 cr0 = ctxt->ops->get_cr(ctxt, 0); 3456 cr0 &= ~X86_CR0_TS; 3457 ctxt->ops->set_cr(ctxt, 0, cr0); 3458 return X86EMUL_CONTINUE; 3459 } 3460 3461 static int em_hypercall(struct x86_emulate_ctxt *ctxt) 3462 { 3463 int rc = ctxt->ops->fix_hypercall(ctxt); 3464 3465 if (rc != X86EMUL_CONTINUE) 3466 return rc; 3467 3468 /* Let the processor re-execute the fixed hypercall */ 3469 ctxt->_eip = ctxt->eip; 3470 /* Disable writeback. */ 3471 ctxt->dst.type = OP_NONE; 3472 return X86EMUL_CONTINUE; 3473 } 3474 3475 static int emulate_store_desc_ptr(struct x86_emulate_ctxt *ctxt, 3476 void (*get)(struct x86_emulate_ctxt *ctxt, 3477 struct desc_ptr *ptr)) 3478 { 3479 struct desc_ptr desc_ptr; 3480 3481 if ((ctxt->ops->get_cr(ctxt, 4) & X86_CR4_UMIP) && 3482 ctxt->ops->cpl(ctxt) > 0) 3483 return emulate_gp(ctxt, 0); 3484 3485 if (ctxt->mode == X86EMUL_MODE_PROT64) 3486 ctxt->op_bytes = 8; 3487 get(ctxt, &desc_ptr); 3488 if (ctxt->op_bytes == 2) { 3489 ctxt->op_bytes = 4; 3490 desc_ptr.address &= 0x00ffffff; 3491 } 3492 /* Disable writeback. */ 3493 ctxt->dst.type = OP_NONE; 3494 return segmented_write_std(ctxt, ctxt->dst.addr.mem, 3495 &desc_ptr, 2 + ctxt->op_bytes); 3496 } 3497 3498 static int em_sgdt(struct x86_emulate_ctxt *ctxt) 3499 { 3500 return emulate_store_desc_ptr(ctxt, ctxt->ops->get_gdt); 3501 } 3502 3503 static int em_sidt(struct x86_emulate_ctxt *ctxt) 3504 { 3505 return emulate_store_desc_ptr(ctxt, ctxt->ops->get_idt); 3506 } 3507 3508 static int em_lgdt_lidt(struct x86_emulate_ctxt *ctxt, bool lgdt) 3509 { 3510 struct desc_ptr desc_ptr; 3511 int rc; 3512 3513 if (ctxt->mode == X86EMUL_MODE_PROT64) 3514 ctxt->op_bytes = 8; 3515 rc = read_descriptor(ctxt, ctxt->src.addr.mem, 3516 &desc_ptr.size, &desc_ptr.address, 3517 ctxt->op_bytes); 3518 if (rc != X86EMUL_CONTINUE) 3519 return rc; 3520 if (ctxt->mode == X86EMUL_MODE_PROT64 && 3521 emul_is_noncanonical_address(desc_ptr.address, ctxt)) 3522 return emulate_gp(ctxt, 0); 3523 if (lgdt) 3524 ctxt->ops->set_gdt(ctxt, &desc_ptr); 3525 else 3526 ctxt->ops->set_idt(ctxt, &desc_ptr); 3527 /* Disable writeback. */ 3528 ctxt->dst.type = OP_NONE; 3529 return X86EMUL_CONTINUE; 3530 } 3531 3532 static int em_lgdt(struct x86_emulate_ctxt *ctxt) 3533 { 3534 return em_lgdt_lidt(ctxt, true); 3535 } 3536 3537 static int em_lidt(struct x86_emulate_ctxt *ctxt) 3538 { 3539 return em_lgdt_lidt(ctxt, false); 3540 } 3541 3542 static int em_smsw(struct x86_emulate_ctxt *ctxt) 3543 { 3544 if ((ctxt->ops->get_cr(ctxt, 4) & X86_CR4_UMIP) && 3545 ctxt->ops->cpl(ctxt) > 0) 3546 return emulate_gp(ctxt, 0); 3547 3548 if (ctxt->dst.type == OP_MEM) 3549 ctxt->dst.bytes = 2; 3550 ctxt->dst.val = ctxt->ops->get_cr(ctxt, 0); 3551 return X86EMUL_CONTINUE; 3552 } 3553 3554 static int em_lmsw(struct x86_emulate_ctxt *ctxt) 3555 { 3556 ctxt->ops->set_cr(ctxt, 0, (ctxt->ops->get_cr(ctxt, 0) & ~0x0eul) 3557 | (ctxt->src.val & 0x0f)); 3558 ctxt->dst.type = OP_NONE; 3559 return X86EMUL_CONTINUE; 3560 } 3561 3562 static int em_loop(struct x86_emulate_ctxt *ctxt) 3563 { 3564 int rc = X86EMUL_CONTINUE; 3565 3566 register_address_increment(ctxt, VCPU_REGS_RCX, -1); 3567 if ((address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) != 0) && 3568 (ctxt->b == 0xe2 || test_cc(ctxt->b ^ 0x5, ctxt->eflags))) 3569 rc = jmp_rel(ctxt, ctxt->src.val); 3570 3571 return rc; 3572 } 3573 3574 static int em_jcxz(struct x86_emulate_ctxt *ctxt) 3575 { 3576 int rc = X86EMUL_CONTINUE; 3577 3578 if (address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) == 0) 3579 rc = jmp_rel(ctxt, ctxt->src.val); 3580 3581 return rc; 3582 } 3583 3584 static int em_in(struct x86_emulate_ctxt *ctxt) 3585 { 3586 if (!pio_in_emulated(ctxt, ctxt->dst.bytes, ctxt->src.val, 3587 &ctxt->dst.val)) 3588 return X86EMUL_IO_NEEDED; 3589 3590 return X86EMUL_CONTINUE; 3591 } 3592 3593 static int em_out(struct x86_emulate_ctxt *ctxt) 3594 { 3595 ctxt->ops->pio_out_emulated(ctxt, ctxt->src.bytes, ctxt->dst.val, 3596 &ctxt->src.val, 1); 3597 /* Disable writeback. */ 3598 ctxt->dst.type = OP_NONE; 3599 return X86EMUL_CONTINUE; 3600 } 3601 3602 static int em_cli(struct x86_emulate_ctxt *ctxt) 3603 { 3604 if (emulator_bad_iopl(ctxt)) 3605 return emulate_gp(ctxt, 0); 3606 3607 ctxt->eflags &= ~X86_EFLAGS_IF; 3608 return X86EMUL_CONTINUE; 3609 } 3610 3611 static int em_sti(struct x86_emulate_ctxt *ctxt) 3612 { 3613 if (emulator_bad_iopl(ctxt)) 3614 return emulate_gp(ctxt, 0); 3615 3616 ctxt->interruptibility = KVM_X86_SHADOW_INT_STI; 3617 ctxt->eflags |= X86_EFLAGS_IF; 3618 return X86EMUL_CONTINUE; 3619 } 3620 3621 static int em_cpuid(struct x86_emulate_ctxt *ctxt) 3622 { 3623 u32 eax, ebx, ecx, edx; 3624 u64 msr = 0; 3625 3626 ctxt->ops->get_msr(ctxt, MSR_MISC_FEATURES_ENABLES, &msr); 3627 if (msr & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 3628 ctxt->ops->cpl(ctxt)) { 3629 return emulate_gp(ctxt, 0); 3630 } 3631 3632 eax = reg_read(ctxt, VCPU_REGS_RAX); 3633 ecx = reg_read(ctxt, VCPU_REGS_RCX); 3634 ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx, false); 3635 *reg_write(ctxt, VCPU_REGS_RAX) = eax; 3636 *reg_write(ctxt, VCPU_REGS_RBX) = ebx; 3637 *reg_write(ctxt, VCPU_REGS_RCX) = ecx; 3638 *reg_write(ctxt, VCPU_REGS_RDX) = edx; 3639 return X86EMUL_CONTINUE; 3640 } 3641 3642 static int em_sahf(struct x86_emulate_ctxt *ctxt) 3643 { 3644 u32 flags; 3645 3646 flags = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF | 3647 X86_EFLAGS_SF; 3648 flags &= *reg_rmw(ctxt, VCPU_REGS_RAX) >> 8; 3649 3650 ctxt->eflags &= ~0xffUL; 3651 ctxt->eflags |= flags | X86_EFLAGS_FIXED; 3652 return X86EMUL_CONTINUE; 3653 } 3654 3655 static int em_lahf(struct x86_emulate_ctxt *ctxt) 3656 { 3657 *reg_rmw(ctxt, VCPU_REGS_RAX) &= ~0xff00UL; 3658 *reg_rmw(ctxt, VCPU_REGS_RAX) |= (ctxt->eflags & 0xff) << 8; 3659 return X86EMUL_CONTINUE; 3660 } 3661 3662 static int em_bswap(struct x86_emulate_ctxt *ctxt) 3663 { 3664 switch (ctxt->op_bytes) { 3665 #ifdef CONFIG_X86_64 3666 case 8: 3667 asm("bswap %0" : "+r"(ctxt->dst.val)); 3668 break; 3669 #endif 3670 default: 3671 asm("bswap %0" : "+r"(*(u32 *)&ctxt->dst.val)); 3672 break; 3673 } 3674 return X86EMUL_CONTINUE; 3675 } 3676 3677 static int em_clflush(struct x86_emulate_ctxt *ctxt) 3678 { 3679 /* emulating clflush regardless of cpuid */ 3680 return X86EMUL_CONTINUE; 3681 } 3682 3683 static int em_clflushopt(struct x86_emulate_ctxt *ctxt) 3684 { 3685 /* emulating clflushopt regardless of cpuid */ 3686 return X86EMUL_CONTINUE; 3687 } 3688 3689 static int em_movsxd(struct x86_emulate_ctxt *ctxt) 3690 { 3691 ctxt->dst.val = (s32) ctxt->src.val; 3692 return X86EMUL_CONTINUE; 3693 } 3694 3695 static int check_fxsr(struct x86_emulate_ctxt *ctxt) 3696 { 3697 if (!ctxt->ops->guest_has_fxsr(ctxt)) 3698 return emulate_ud(ctxt); 3699 3700 if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM)) 3701 return emulate_nm(ctxt); 3702 3703 /* 3704 * Don't emulate a case that should never be hit, instead of working 3705 * around a lack of fxsave64/fxrstor64 on old compilers. 3706 */ 3707 if (ctxt->mode >= X86EMUL_MODE_PROT64) 3708 return X86EMUL_UNHANDLEABLE; 3709 3710 return X86EMUL_CONTINUE; 3711 } 3712 3713 /* 3714 * Hardware doesn't save and restore XMM 0-7 without CR4.OSFXSR, but does save 3715 * and restore MXCSR. 3716 */ 3717 static size_t __fxstate_size(int nregs) 3718 { 3719 return offsetof(struct fxregs_state, xmm_space[0]) + nregs * 16; 3720 } 3721 3722 static inline size_t fxstate_size(struct x86_emulate_ctxt *ctxt) 3723 { 3724 bool cr4_osfxsr; 3725 if (ctxt->mode == X86EMUL_MODE_PROT64) 3726 return __fxstate_size(16); 3727 3728 cr4_osfxsr = ctxt->ops->get_cr(ctxt, 4) & X86_CR4_OSFXSR; 3729 return __fxstate_size(cr4_osfxsr ? 8 : 0); 3730 } 3731 3732 /* 3733 * FXSAVE and FXRSTOR have 4 different formats depending on execution mode, 3734 * 1) 16 bit mode 3735 * 2) 32 bit mode 3736 * - like (1), but FIP and FDP (foo) are only 16 bit. At least Intel CPUs 3737 * preserve whole 32 bit values, though, so (1) and (2) are the same wrt. 3738 * save and restore 3739 * 3) 64-bit mode with REX.W prefix 3740 * - like (2), but XMM 8-15 are being saved and restored 3741 * 4) 64-bit mode without REX.W prefix 3742 * - like (3), but FIP and FDP are 64 bit 3743 * 3744 * Emulation uses (3) for (1) and (2) and preserves XMM 8-15 to reach the 3745 * desired result. (4) is not emulated. 3746 * 3747 * Note: Guest and host CPUID.(EAX=07H,ECX=0H):EBX[bit 13] (deprecate FPU CS 3748 * and FPU DS) should match. 3749 */ 3750 static int em_fxsave(struct x86_emulate_ctxt *ctxt) 3751 { 3752 struct fxregs_state fx_state; 3753 int rc; 3754 3755 rc = check_fxsr(ctxt); 3756 if (rc != X86EMUL_CONTINUE) 3757 return rc; 3758 3759 kvm_fpu_get(); 3760 3761 rc = asm_safe("fxsave %[fx]", , [fx] "+m"(fx_state)); 3762 3763 kvm_fpu_put(); 3764 3765 if (rc != X86EMUL_CONTINUE) 3766 return rc; 3767 3768 return segmented_write_std(ctxt, ctxt->memop.addr.mem, &fx_state, 3769 fxstate_size(ctxt)); 3770 } 3771 3772 /* 3773 * FXRSTOR might restore XMM registers not provided by the guest. Fill 3774 * in the host registers (via FXSAVE) instead, so they won't be modified. 3775 * (preemption has to stay disabled until FXRSTOR). 3776 * 3777 * Use noinline to keep the stack for other functions called by callers small. 3778 */ 3779 static noinline int fxregs_fixup(struct fxregs_state *fx_state, 3780 const size_t used_size) 3781 { 3782 struct fxregs_state fx_tmp; 3783 int rc; 3784 3785 rc = asm_safe("fxsave %[fx]", , [fx] "+m"(fx_tmp)); 3786 memcpy((void *)fx_state + used_size, (void *)&fx_tmp + used_size, 3787 __fxstate_size(16) - used_size); 3788 3789 return rc; 3790 } 3791 3792 static int em_fxrstor(struct x86_emulate_ctxt *ctxt) 3793 { 3794 struct fxregs_state fx_state; 3795 int rc; 3796 size_t size; 3797 3798 rc = check_fxsr(ctxt); 3799 if (rc != X86EMUL_CONTINUE) 3800 return rc; 3801 3802 size = fxstate_size(ctxt); 3803 rc = segmented_read_std(ctxt, ctxt->memop.addr.mem, &fx_state, size); 3804 if (rc != X86EMUL_CONTINUE) 3805 return rc; 3806 3807 kvm_fpu_get(); 3808 3809 if (size < __fxstate_size(16)) { 3810 rc = fxregs_fixup(&fx_state, size); 3811 if (rc != X86EMUL_CONTINUE) 3812 goto out; 3813 } 3814 3815 if (fx_state.mxcsr >> 16) { 3816 rc = emulate_gp(ctxt, 0); 3817 goto out; 3818 } 3819 3820 if (rc == X86EMUL_CONTINUE) 3821 rc = asm_safe("fxrstor %[fx]", : [fx] "m"(fx_state)); 3822 3823 out: 3824 kvm_fpu_put(); 3825 3826 return rc; 3827 } 3828 3829 static int em_xsetbv(struct x86_emulate_ctxt *ctxt) 3830 { 3831 u32 eax, ecx, edx; 3832 3833 if (!(ctxt->ops->get_cr(ctxt, 4) & X86_CR4_OSXSAVE)) 3834 return emulate_ud(ctxt); 3835 3836 eax = reg_read(ctxt, VCPU_REGS_RAX); 3837 edx = reg_read(ctxt, VCPU_REGS_RDX); 3838 ecx = reg_read(ctxt, VCPU_REGS_RCX); 3839 3840 if (ctxt->ops->set_xcr(ctxt, ecx, ((u64)edx << 32) | eax)) 3841 return emulate_gp(ctxt, 0); 3842 3843 return X86EMUL_CONTINUE; 3844 } 3845 3846 static bool valid_cr(int nr) 3847 { 3848 switch (nr) { 3849 case 0: 3850 case 2 ... 4: 3851 case 8: 3852 return true; 3853 default: 3854 return false; 3855 } 3856 } 3857 3858 static int check_cr_access(struct x86_emulate_ctxt *ctxt) 3859 { 3860 if (!valid_cr(ctxt->modrm_reg)) 3861 return emulate_ud(ctxt); 3862 3863 return X86EMUL_CONTINUE; 3864 } 3865 3866 static int check_dr7_gd(struct x86_emulate_ctxt *ctxt) 3867 { 3868 unsigned long dr7; 3869 3870 ctxt->ops->get_dr(ctxt, 7, &dr7); 3871 3872 return dr7 & DR7_GD; 3873 } 3874 3875 static int check_dr_read(struct x86_emulate_ctxt *ctxt) 3876 { 3877 int dr = ctxt->modrm_reg; 3878 u64 cr4; 3879 3880 if (dr > 7) 3881 return emulate_ud(ctxt); 3882 3883 cr4 = ctxt->ops->get_cr(ctxt, 4); 3884 if ((cr4 & X86_CR4_DE) && (dr == 4 || dr == 5)) 3885 return emulate_ud(ctxt); 3886 3887 if (check_dr7_gd(ctxt)) { 3888 ulong dr6; 3889 3890 ctxt->ops->get_dr(ctxt, 6, &dr6); 3891 dr6 &= ~DR_TRAP_BITS; 3892 dr6 |= DR6_BD | DR6_ACTIVE_LOW; 3893 ctxt->ops->set_dr(ctxt, 6, dr6); 3894 return emulate_db(ctxt); 3895 } 3896 3897 return X86EMUL_CONTINUE; 3898 } 3899 3900 static int check_dr_write(struct x86_emulate_ctxt *ctxt) 3901 { 3902 u64 new_val = ctxt->src.val64; 3903 int dr = ctxt->modrm_reg; 3904 3905 if ((dr == 6 || dr == 7) && (new_val & 0xffffffff00000000ULL)) 3906 return emulate_gp(ctxt, 0); 3907 3908 return check_dr_read(ctxt); 3909 } 3910 3911 static int check_svme(struct x86_emulate_ctxt *ctxt) 3912 { 3913 u64 efer = 0; 3914 3915 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer); 3916 3917 if (!(efer & EFER_SVME)) 3918 return emulate_ud(ctxt); 3919 3920 return X86EMUL_CONTINUE; 3921 } 3922 3923 static int check_svme_pa(struct x86_emulate_ctxt *ctxt) 3924 { 3925 u64 rax = reg_read(ctxt, VCPU_REGS_RAX); 3926 3927 /* Valid physical address? */ 3928 if (rax & 0xffff000000000000ULL) 3929 return emulate_gp(ctxt, 0); 3930 3931 return check_svme(ctxt); 3932 } 3933 3934 static int check_rdtsc(struct x86_emulate_ctxt *ctxt) 3935 { 3936 u64 cr4 = ctxt->ops->get_cr(ctxt, 4); 3937 3938 if (cr4 & X86_CR4_TSD && ctxt->ops->cpl(ctxt)) 3939 return emulate_gp(ctxt, 0); 3940 3941 return X86EMUL_CONTINUE; 3942 } 3943 3944 static int check_rdpmc(struct x86_emulate_ctxt *ctxt) 3945 { 3946 u64 cr4 = ctxt->ops->get_cr(ctxt, 4); 3947 u64 rcx = reg_read(ctxt, VCPU_REGS_RCX); 3948 3949 /* 3950 * VMware allows access to these Pseduo-PMCs even when read via RDPMC 3951 * in Ring3 when CR4.PCE=0. 3952 */ 3953 if (enable_vmware_backdoor && is_vmware_backdoor_pmc(rcx)) 3954 return X86EMUL_CONTINUE; 3955 3956 /* 3957 * If CR4.PCE is set, the SDM requires CPL=0 or CR0.PE=0. The CR0.PE 3958 * check however is unnecessary because CPL is always 0 outside 3959 * protected mode. 3960 */ 3961 if ((!(cr4 & X86_CR4_PCE) && ctxt->ops->cpl(ctxt)) || 3962 ctxt->ops->check_pmc(ctxt, rcx)) 3963 return emulate_gp(ctxt, 0); 3964 3965 return X86EMUL_CONTINUE; 3966 } 3967 3968 static int check_perm_in(struct x86_emulate_ctxt *ctxt) 3969 { 3970 ctxt->dst.bytes = min(ctxt->dst.bytes, 4u); 3971 if (!emulator_io_permitted(ctxt, ctxt->src.val, ctxt->dst.bytes)) 3972 return emulate_gp(ctxt, 0); 3973 3974 return X86EMUL_CONTINUE; 3975 } 3976 3977 static int check_perm_out(struct x86_emulate_ctxt *ctxt) 3978 { 3979 ctxt->src.bytes = min(ctxt->src.bytes, 4u); 3980 if (!emulator_io_permitted(ctxt, ctxt->dst.val, ctxt->src.bytes)) 3981 return emulate_gp(ctxt, 0); 3982 3983 return X86EMUL_CONTINUE; 3984 } 3985 3986 #define D(_y) { .flags = (_y) } 3987 #define DI(_y, _i) { .flags = (_y)|Intercept, .intercept = x86_intercept_##_i } 3988 #define DIP(_y, _i, _p) { .flags = (_y)|Intercept|CheckPerm, \ 3989 .intercept = x86_intercept_##_i, .check_perm = (_p) } 3990 #define N D(NotImpl) 3991 #define EXT(_f, _e) { .flags = ((_f) | RMExt), .u.group = (_e) } 3992 #define G(_f, _g) { .flags = ((_f) | Group | ModRM), .u.group = (_g) } 3993 #define GD(_f, _g) { .flags = ((_f) | GroupDual | ModRM), .u.gdual = (_g) } 3994 #define ID(_f, _i) { .flags = ((_f) | InstrDual | ModRM), .u.idual = (_i) } 3995 #define MD(_f, _m) { .flags = ((_f) | ModeDual), .u.mdual = (_m) } 3996 #define E(_f, _e) { .flags = ((_f) | Escape | ModRM), .u.esc = (_e) } 3997 #define I(_f, _e) { .flags = (_f), .u.execute = (_e) } 3998 #define F(_f, _e) { .flags = (_f) | Fastop, .u.fastop = (_e) } 3999 #define II(_f, _e, _i) \ 4000 { .flags = (_f)|Intercept, .u.execute = (_e), .intercept = x86_intercept_##_i } 4001 #define IIP(_f, _e, _i, _p) \ 4002 { .flags = (_f)|Intercept|CheckPerm, .u.execute = (_e), \ 4003 .intercept = x86_intercept_##_i, .check_perm = (_p) } 4004 #define GP(_f, _g) { .flags = ((_f) | Prefix), .u.gprefix = (_g) } 4005 4006 #define D2bv(_f) D((_f) | ByteOp), D(_f) 4007 #define D2bvIP(_f, _i, _p) DIP((_f) | ByteOp, _i, _p), DIP(_f, _i, _p) 4008 #define I2bv(_f, _e) I((_f) | ByteOp, _e), I(_f, _e) 4009 #define F2bv(_f, _e) F((_f) | ByteOp, _e), F(_f, _e) 4010 #define I2bvIP(_f, _e, _i, _p) \ 4011 IIP((_f) | ByteOp, _e, _i, _p), IIP(_f, _e, _i, _p) 4012 4013 #define F6ALU(_f, _e) F2bv((_f) | DstMem | SrcReg | ModRM, _e), \ 4014 F2bv(((_f) | DstReg | SrcMem | ModRM) & ~Lock, _e), \ 4015 F2bv(((_f) & ~Lock) | DstAcc | SrcImm, _e) 4016 4017 static const struct opcode group7_rm0[] = { 4018 N, 4019 I(SrcNone | Priv | EmulateOnUD, em_hypercall), 4020 N, N, N, N, N, N, 4021 }; 4022 4023 static const struct opcode group7_rm1[] = { 4024 DI(SrcNone | Priv, monitor), 4025 DI(SrcNone | Priv, mwait), 4026 N, N, N, N, N, N, 4027 }; 4028 4029 static const struct opcode group7_rm2[] = { 4030 N, 4031 II(ImplicitOps | Priv, em_xsetbv, xsetbv), 4032 N, N, N, N, N, N, 4033 }; 4034 4035 static const struct opcode group7_rm3[] = { 4036 DIP(SrcNone | Prot | Priv, vmrun, check_svme_pa), 4037 II(SrcNone | Prot | EmulateOnUD, em_hypercall, vmmcall), 4038 DIP(SrcNone | Prot | Priv, vmload, check_svme_pa), 4039 DIP(SrcNone | Prot | Priv, vmsave, check_svme_pa), 4040 DIP(SrcNone | Prot | Priv, stgi, check_svme), 4041 DIP(SrcNone | Prot | Priv, clgi, check_svme), 4042 DIP(SrcNone | Prot | Priv, skinit, check_svme), 4043 DIP(SrcNone | Prot | Priv, invlpga, check_svme), 4044 }; 4045 4046 static const struct opcode group7_rm7[] = { 4047 N, 4048 DIP(SrcNone, rdtscp, check_rdtsc), 4049 N, N, N, N, N, N, 4050 }; 4051 4052 static const struct opcode group1[] = { 4053 F(Lock, em_add), 4054 F(Lock | PageTable, em_or), 4055 F(Lock, em_adc), 4056 F(Lock, em_sbb), 4057 F(Lock | PageTable, em_and), 4058 F(Lock, em_sub), 4059 F(Lock, em_xor), 4060 F(NoWrite, em_cmp), 4061 }; 4062 4063 static const struct opcode group1A[] = { 4064 I(DstMem | SrcNone | Mov | Stack | IncSP | TwoMemOp, em_pop), N, N, N, N, N, N, N, 4065 }; 4066 4067 static const struct opcode group2[] = { 4068 F(DstMem | ModRM, em_rol), 4069 F(DstMem | ModRM, em_ror), 4070 F(DstMem | ModRM, em_rcl), 4071 F(DstMem | ModRM, em_rcr), 4072 F(DstMem | ModRM, em_shl), 4073 F(DstMem | ModRM, em_shr), 4074 F(DstMem | ModRM, em_shl), 4075 F(DstMem | ModRM, em_sar), 4076 }; 4077 4078 static const struct opcode group3[] = { 4079 F(DstMem | SrcImm | NoWrite, em_test), 4080 F(DstMem | SrcImm | NoWrite, em_test), 4081 F(DstMem | SrcNone | Lock, em_not), 4082 F(DstMem | SrcNone | Lock, em_neg), 4083 F(DstXacc | Src2Mem, em_mul_ex), 4084 F(DstXacc | Src2Mem, em_imul_ex), 4085 F(DstXacc | Src2Mem, em_div_ex), 4086 F(DstXacc | Src2Mem, em_idiv_ex), 4087 }; 4088 4089 static const struct opcode group4[] = { 4090 F(ByteOp | DstMem | SrcNone | Lock, em_inc), 4091 F(ByteOp | DstMem | SrcNone | Lock, em_dec), 4092 N, N, N, N, N, N, 4093 }; 4094 4095 static const struct opcode group5[] = { 4096 F(DstMem | SrcNone | Lock, em_inc), 4097 F(DstMem | SrcNone | Lock, em_dec), 4098 I(SrcMem | NearBranch | IsBranch, em_call_near_abs), 4099 I(SrcMemFAddr | ImplicitOps | IsBranch, em_call_far), 4100 I(SrcMem | NearBranch | IsBranch, em_jmp_abs), 4101 I(SrcMemFAddr | ImplicitOps | IsBranch, em_jmp_far), 4102 I(SrcMem | Stack | TwoMemOp, em_push), D(Undefined), 4103 }; 4104 4105 static const struct opcode group6[] = { 4106 II(Prot | DstMem, em_sldt, sldt), 4107 II(Prot | DstMem, em_str, str), 4108 II(Prot | Priv | SrcMem16, em_lldt, lldt), 4109 II(Prot | Priv | SrcMem16, em_ltr, ltr), 4110 N, N, N, N, 4111 }; 4112 4113 static const struct group_dual group7 = { { 4114 II(Mov | DstMem, em_sgdt, sgdt), 4115 II(Mov | DstMem, em_sidt, sidt), 4116 II(SrcMem | Priv, em_lgdt, lgdt), 4117 II(SrcMem | Priv, em_lidt, lidt), 4118 II(SrcNone | DstMem | Mov, em_smsw, smsw), N, 4119 II(SrcMem16 | Mov | Priv, em_lmsw, lmsw), 4120 II(SrcMem | ByteOp | Priv | NoAccess, em_invlpg, invlpg), 4121 }, { 4122 EXT(0, group7_rm0), 4123 EXT(0, group7_rm1), 4124 EXT(0, group7_rm2), 4125 EXT(0, group7_rm3), 4126 II(SrcNone | DstMem | Mov, em_smsw, smsw), N, 4127 II(SrcMem16 | Mov | Priv, em_lmsw, lmsw), 4128 EXT(0, group7_rm7), 4129 } }; 4130 4131 static const struct opcode group8[] = { 4132 N, N, N, N, 4133 F(DstMem | SrcImmByte | NoWrite, em_bt), 4134 F(DstMem | SrcImmByte | Lock | PageTable, em_bts), 4135 F(DstMem | SrcImmByte | Lock, em_btr), 4136 F(DstMem | SrcImmByte | Lock | PageTable, em_btc), 4137 }; 4138 4139 /* 4140 * The "memory" destination is actually always a register, since we come 4141 * from the register case of group9. 4142 */ 4143 static const struct gprefix pfx_0f_c7_7 = { 4144 N, N, N, II(DstMem | ModRM | Op3264 | EmulateOnUD, em_rdpid, rdpid), 4145 }; 4146 4147 4148 static const struct group_dual group9 = { { 4149 N, I(DstMem64 | Lock | PageTable, em_cmpxchg8b), N, N, N, N, N, N, 4150 }, { 4151 N, N, N, N, N, N, N, 4152 GP(0, &pfx_0f_c7_7), 4153 } }; 4154 4155 static const struct opcode group11[] = { 4156 I(DstMem | SrcImm | Mov | PageTable, em_mov), 4157 X7(D(Undefined)), 4158 }; 4159 4160 static const struct gprefix pfx_0f_ae_7 = { 4161 I(SrcMem | ByteOp, em_clflush), I(SrcMem | ByteOp, em_clflushopt), N, N, 4162 }; 4163 4164 static const struct group_dual group15 = { { 4165 I(ModRM | Aligned16, em_fxsave), 4166 I(ModRM | Aligned16, em_fxrstor), 4167 N, N, N, N, N, GP(0, &pfx_0f_ae_7), 4168 }, { 4169 N, N, N, N, N, N, N, N, 4170 } }; 4171 4172 static const struct gprefix pfx_0f_6f_0f_7f = { 4173 I(Mmx, em_mov), I(Sse | Aligned, em_mov), N, I(Sse | Unaligned, em_mov), 4174 }; 4175 4176 static const struct instr_dual instr_dual_0f_2b = { 4177 I(0, em_mov), N 4178 }; 4179 4180 static const struct gprefix pfx_0f_2b = { 4181 ID(0, &instr_dual_0f_2b), ID(0, &instr_dual_0f_2b), N, N, 4182 }; 4183 4184 static const struct gprefix pfx_0f_10_0f_11 = { 4185 I(Unaligned, em_mov), I(Unaligned, em_mov), N, N, 4186 }; 4187 4188 static const struct gprefix pfx_0f_28_0f_29 = { 4189 I(Aligned, em_mov), I(Aligned, em_mov), N, N, 4190 }; 4191 4192 static const struct gprefix pfx_0f_e7 = { 4193 N, I(Sse, em_mov), N, N, 4194 }; 4195 4196 static const struct escape escape_d9 = { { 4197 N, N, N, N, N, N, N, I(DstMem16 | Mov, em_fnstcw), 4198 }, { 4199 /* 0xC0 - 0xC7 */ 4200 N, N, N, N, N, N, N, N, 4201 /* 0xC8 - 0xCF */ 4202 N, N, N, N, N, N, N, N, 4203 /* 0xD0 - 0xC7 */ 4204 N, N, N, N, N, N, N, N, 4205 /* 0xD8 - 0xDF */ 4206 N, N, N, N, N, N, N, N, 4207 /* 0xE0 - 0xE7 */ 4208 N, N, N, N, N, N, N, N, 4209 /* 0xE8 - 0xEF */ 4210 N, N, N, N, N, N, N, N, 4211 /* 0xF0 - 0xF7 */ 4212 N, N, N, N, N, N, N, N, 4213 /* 0xF8 - 0xFF */ 4214 N, N, N, N, N, N, N, N, 4215 } }; 4216 4217 static const struct escape escape_db = { { 4218 N, N, N, N, N, N, N, N, 4219 }, { 4220 /* 0xC0 - 0xC7 */ 4221 N, N, N, N, N, N, N, N, 4222 /* 0xC8 - 0xCF */ 4223 N, N, N, N, N, N, N, N, 4224 /* 0xD0 - 0xC7 */ 4225 N, N, N, N, N, N, N, N, 4226 /* 0xD8 - 0xDF */ 4227 N, N, N, N, N, N, N, N, 4228 /* 0xE0 - 0xE7 */ 4229 N, N, N, I(ImplicitOps, em_fninit), N, N, N, N, 4230 /* 0xE8 - 0xEF */ 4231 N, N, N, N, N, N, N, N, 4232 /* 0xF0 - 0xF7 */ 4233 N, N, N, N, N, N, N, N, 4234 /* 0xF8 - 0xFF */ 4235 N, N, N, N, N, N, N, N, 4236 } }; 4237 4238 static const struct escape escape_dd = { { 4239 N, N, N, N, N, N, N, I(DstMem16 | Mov, em_fnstsw), 4240 }, { 4241 /* 0xC0 - 0xC7 */ 4242 N, N, N, N, N, N, N, N, 4243 /* 0xC8 - 0xCF */ 4244 N, N, N, N, N, N, N, N, 4245 /* 0xD0 - 0xC7 */ 4246 N, N, N, N, N, N, N, N, 4247 /* 0xD8 - 0xDF */ 4248 N, N, N, N, N, N, N, N, 4249 /* 0xE0 - 0xE7 */ 4250 N, N, N, N, N, N, N, N, 4251 /* 0xE8 - 0xEF */ 4252 N, N, N, N, N, N, N, N, 4253 /* 0xF0 - 0xF7 */ 4254 N, N, N, N, N, N, N, N, 4255 /* 0xF8 - 0xFF */ 4256 N, N, N, N, N, N, N, N, 4257 } }; 4258 4259 static const struct instr_dual instr_dual_0f_c3 = { 4260 I(DstMem | SrcReg | ModRM | No16 | Mov, em_mov), N 4261 }; 4262 4263 static const struct mode_dual mode_dual_63 = { 4264 N, I(DstReg | SrcMem32 | ModRM | Mov, em_movsxd) 4265 }; 4266 4267 static const struct instr_dual instr_dual_8d = { 4268 D(DstReg | SrcMem | ModRM | NoAccess), N 4269 }; 4270 4271 static const struct opcode opcode_table[256] = { 4272 /* 0x00 - 0x07 */ 4273 F6ALU(Lock, em_add), 4274 I(ImplicitOps | Stack | No64 | Src2ES, em_push_sreg), 4275 I(ImplicitOps | Stack | No64 | Src2ES, em_pop_sreg), 4276 /* 0x08 - 0x0F */ 4277 F6ALU(Lock | PageTable, em_or), 4278 I(ImplicitOps | Stack | No64 | Src2CS, em_push_sreg), 4279 N, 4280 /* 0x10 - 0x17 */ 4281 F6ALU(Lock, em_adc), 4282 I(ImplicitOps | Stack | No64 | Src2SS, em_push_sreg), 4283 I(ImplicitOps | Stack | No64 | Src2SS, em_pop_sreg), 4284 /* 0x18 - 0x1F */ 4285 F6ALU(Lock, em_sbb), 4286 I(ImplicitOps | Stack | No64 | Src2DS, em_push_sreg), 4287 I(ImplicitOps | Stack | No64 | Src2DS, em_pop_sreg), 4288 /* 0x20 - 0x27 */ 4289 F6ALU(Lock | PageTable, em_and), N, N, 4290 /* 0x28 - 0x2F */ 4291 F6ALU(Lock, em_sub), N, I(ByteOp | DstAcc | No64, em_das), 4292 /* 0x30 - 0x37 */ 4293 F6ALU(Lock, em_xor), N, N, 4294 /* 0x38 - 0x3F */ 4295 F6ALU(NoWrite, em_cmp), N, N, 4296 /* 0x40 - 0x4F */ 4297 X8(F(DstReg, em_inc)), X8(F(DstReg, em_dec)), 4298 /* 0x50 - 0x57 */ 4299 X8(I(SrcReg | Stack, em_push)), 4300 /* 0x58 - 0x5F */ 4301 X8(I(DstReg | Stack, em_pop)), 4302 /* 0x60 - 0x67 */ 4303 I(ImplicitOps | Stack | No64, em_pusha), 4304 I(ImplicitOps | Stack | No64, em_popa), 4305 N, MD(ModRM, &mode_dual_63), 4306 N, N, N, N, 4307 /* 0x68 - 0x6F */ 4308 I(SrcImm | Mov | Stack, em_push), 4309 I(DstReg | SrcMem | ModRM | Src2Imm, em_imul_3op), 4310 I(SrcImmByte | Mov | Stack, em_push), 4311 I(DstReg | SrcMem | ModRM | Src2ImmByte, em_imul_3op), 4312 I2bvIP(DstDI | SrcDX | Mov | String | Unaligned, em_in, ins, check_perm_in), /* insb, insw/insd */ 4313 I2bvIP(SrcSI | DstDX | String, em_out, outs, check_perm_out), /* outsb, outsw/outsd */ 4314 /* 0x70 - 0x7F */ 4315 X16(D(SrcImmByte | NearBranch | IsBranch)), 4316 /* 0x80 - 0x87 */ 4317 G(ByteOp | DstMem | SrcImm, group1), 4318 G(DstMem | SrcImm, group1), 4319 G(ByteOp | DstMem | SrcImm | No64, group1), 4320 G(DstMem | SrcImmByte, group1), 4321 F2bv(DstMem | SrcReg | ModRM | NoWrite, em_test), 4322 I2bv(DstMem | SrcReg | ModRM | Lock | PageTable, em_xchg), 4323 /* 0x88 - 0x8F */ 4324 I2bv(DstMem | SrcReg | ModRM | Mov | PageTable, em_mov), 4325 I2bv(DstReg | SrcMem | ModRM | Mov, em_mov), 4326 I(DstMem | SrcNone | ModRM | Mov | PageTable, em_mov_rm_sreg), 4327 ID(0, &instr_dual_8d), 4328 I(ImplicitOps | SrcMem16 | ModRM, em_mov_sreg_rm), 4329 G(0, group1A), 4330 /* 0x90 - 0x97 */ 4331 DI(SrcAcc | DstReg, pause), X7(D(SrcAcc | DstReg)), 4332 /* 0x98 - 0x9F */ 4333 D(DstAcc | SrcNone), I(ImplicitOps | SrcAcc, em_cwd), 4334 I(SrcImmFAddr | No64 | IsBranch, em_call_far), N, 4335 II(ImplicitOps | Stack, em_pushf, pushf), 4336 II(ImplicitOps | Stack, em_popf, popf), 4337 I(ImplicitOps, em_sahf), I(ImplicitOps, em_lahf), 4338 /* 0xA0 - 0xA7 */ 4339 I2bv(DstAcc | SrcMem | Mov | MemAbs, em_mov), 4340 I2bv(DstMem | SrcAcc | Mov | MemAbs | PageTable, em_mov), 4341 I2bv(SrcSI | DstDI | Mov | String | TwoMemOp, em_mov), 4342 F2bv(SrcSI | DstDI | String | NoWrite | TwoMemOp, em_cmp_r), 4343 /* 0xA8 - 0xAF */ 4344 F2bv(DstAcc | SrcImm | NoWrite, em_test), 4345 I2bv(SrcAcc | DstDI | Mov | String, em_mov), 4346 I2bv(SrcSI | DstAcc | Mov | String, em_mov), 4347 F2bv(SrcAcc | DstDI | String | NoWrite, em_cmp_r), 4348 /* 0xB0 - 0xB7 */ 4349 X8(I(ByteOp | DstReg | SrcImm | Mov, em_mov)), 4350 /* 0xB8 - 0xBF */ 4351 X8(I(DstReg | SrcImm64 | Mov, em_mov)), 4352 /* 0xC0 - 0xC7 */ 4353 G(ByteOp | Src2ImmByte, group2), G(Src2ImmByte, group2), 4354 I(ImplicitOps | NearBranch | SrcImmU16 | IsBranch, em_ret_near_imm), 4355 I(ImplicitOps | NearBranch | IsBranch, em_ret), 4356 I(DstReg | SrcMemFAddr | ModRM | No64 | Src2ES, em_lseg), 4357 I(DstReg | SrcMemFAddr | ModRM | No64 | Src2DS, em_lseg), 4358 G(ByteOp, group11), G(0, group11), 4359 /* 0xC8 - 0xCF */ 4360 I(Stack | SrcImmU16 | Src2ImmByte | IsBranch, em_enter), 4361 I(Stack | IsBranch, em_leave), 4362 I(ImplicitOps | SrcImmU16 | IsBranch, em_ret_far_imm), 4363 I(ImplicitOps | IsBranch, em_ret_far), 4364 D(ImplicitOps | IsBranch), DI(SrcImmByte | IsBranch, intn), 4365 D(ImplicitOps | No64 | IsBranch), 4366 II(ImplicitOps | IsBranch, em_iret, iret), 4367 /* 0xD0 - 0xD7 */ 4368 G(Src2One | ByteOp, group2), G(Src2One, group2), 4369 G(Src2CL | ByteOp, group2), G(Src2CL, group2), 4370 I(DstAcc | SrcImmUByte | No64, em_aam), 4371 I(DstAcc | SrcImmUByte | No64, em_aad), 4372 F(DstAcc | ByteOp | No64, em_salc), 4373 I(DstAcc | SrcXLat | ByteOp, em_mov), 4374 /* 0xD8 - 0xDF */ 4375 N, E(0, &escape_d9), N, E(0, &escape_db), N, E(0, &escape_dd), N, N, 4376 /* 0xE0 - 0xE7 */ 4377 X3(I(SrcImmByte | NearBranch | IsBranch, em_loop)), 4378 I(SrcImmByte | NearBranch | IsBranch, em_jcxz), 4379 I2bvIP(SrcImmUByte | DstAcc, em_in, in, check_perm_in), 4380 I2bvIP(SrcAcc | DstImmUByte, em_out, out, check_perm_out), 4381 /* 0xE8 - 0xEF */ 4382 I(SrcImm | NearBranch | IsBranch, em_call), 4383 D(SrcImm | ImplicitOps | NearBranch | IsBranch), 4384 I(SrcImmFAddr | No64 | IsBranch, em_jmp_far), 4385 D(SrcImmByte | ImplicitOps | NearBranch | IsBranch), 4386 I2bvIP(SrcDX | DstAcc, em_in, in, check_perm_in), 4387 I2bvIP(SrcAcc | DstDX, em_out, out, check_perm_out), 4388 /* 0xF0 - 0xF7 */ 4389 N, DI(ImplicitOps, icebp), N, N, 4390 DI(ImplicitOps | Priv, hlt), D(ImplicitOps), 4391 G(ByteOp, group3), G(0, group3), 4392 /* 0xF8 - 0xFF */ 4393 D(ImplicitOps), D(ImplicitOps), 4394 I(ImplicitOps, em_cli), I(ImplicitOps, em_sti), 4395 D(ImplicitOps), D(ImplicitOps), G(0, group4), G(0, group5), 4396 }; 4397 4398 static const struct opcode twobyte_table[256] = { 4399 /* 0x00 - 0x0F */ 4400 G(0, group6), GD(0, &group7), N, N, 4401 N, I(ImplicitOps | EmulateOnUD | IsBranch, em_syscall), 4402 II(ImplicitOps | Priv, em_clts, clts), N, 4403 DI(ImplicitOps | Priv, invd), DI(ImplicitOps | Priv, wbinvd), N, N, 4404 N, D(ImplicitOps | ModRM | SrcMem | NoAccess), N, N, 4405 /* 0x10 - 0x1F */ 4406 GP(ModRM | DstReg | SrcMem | Mov | Sse, &pfx_0f_10_0f_11), 4407 GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_10_0f_11), 4408 N, N, N, N, N, N, 4409 D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 4 * prefetch + 4 * reserved NOP */ 4410 D(ImplicitOps | ModRM | SrcMem | NoAccess), N, N, 4411 D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 8 * reserved NOP */ 4412 D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 8 * reserved NOP */ 4413 D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 8 * reserved NOP */ 4414 D(ImplicitOps | ModRM | SrcMem | NoAccess), /* NOP + 7 * reserved NOP */ 4415 /* 0x20 - 0x2F */ 4416 DIP(ModRM | DstMem | Priv | Op3264 | NoMod, cr_read, check_cr_access), 4417 DIP(ModRM | DstMem | Priv | Op3264 | NoMod, dr_read, check_dr_read), 4418 IIP(ModRM | SrcMem | Priv | Op3264 | NoMod, em_cr_write, cr_write, 4419 check_cr_access), 4420 IIP(ModRM | SrcMem | Priv | Op3264 | NoMod, em_dr_write, dr_write, 4421 check_dr_write), 4422 N, N, N, N, 4423 GP(ModRM | DstReg | SrcMem | Mov | Sse, &pfx_0f_28_0f_29), 4424 GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_28_0f_29), 4425 N, GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_2b), 4426 N, N, N, N, 4427 /* 0x30 - 0x3F */ 4428 II(ImplicitOps | Priv, em_wrmsr, wrmsr), 4429 IIP(ImplicitOps, em_rdtsc, rdtsc, check_rdtsc), 4430 II(ImplicitOps | Priv, em_rdmsr, rdmsr), 4431 IIP(ImplicitOps, em_rdpmc, rdpmc, check_rdpmc), 4432 I(ImplicitOps | EmulateOnUD | IsBranch, em_sysenter), 4433 I(ImplicitOps | Priv | EmulateOnUD | IsBranch, em_sysexit), 4434 N, N, 4435 N, N, N, N, N, N, N, N, 4436 /* 0x40 - 0x4F */ 4437 X16(D(DstReg | SrcMem | ModRM)), 4438 /* 0x50 - 0x5F */ 4439 N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, 4440 /* 0x60 - 0x6F */ 4441 N, N, N, N, 4442 N, N, N, N, 4443 N, N, N, N, 4444 N, N, N, GP(SrcMem | DstReg | ModRM | Mov, &pfx_0f_6f_0f_7f), 4445 /* 0x70 - 0x7F */ 4446 N, N, N, N, 4447 N, N, N, N, 4448 N, N, N, N, 4449 N, N, N, GP(SrcReg | DstMem | ModRM | Mov, &pfx_0f_6f_0f_7f), 4450 /* 0x80 - 0x8F */ 4451 X16(D(SrcImm | NearBranch | IsBranch)), 4452 /* 0x90 - 0x9F */ 4453 X16(D(ByteOp | DstMem | SrcNone | ModRM| Mov)), 4454 /* 0xA0 - 0xA7 */ 4455 I(Stack | Src2FS, em_push_sreg), I(Stack | Src2FS, em_pop_sreg), 4456 II(ImplicitOps, em_cpuid, cpuid), 4457 F(DstMem | SrcReg | ModRM | BitOp | NoWrite, em_bt), 4458 F(DstMem | SrcReg | Src2ImmByte | ModRM, em_shld), 4459 F(DstMem | SrcReg | Src2CL | ModRM, em_shld), N, N, 4460 /* 0xA8 - 0xAF */ 4461 I(Stack | Src2GS, em_push_sreg), I(Stack | Src2GS, em_pop_sreg), 4462 II(EmulateOnUD | ImplicitOps, em_rsm, rsm), 4463 F(DstMem | SrcReg | ModRM | BitOp | Lock | PageTable, em_bts), 4464 F(DstMem | SrcReg | Src2ImmByte | ModRM, em_shrd), 4465 F(DstMem | SrcReg | Src2CL | ModRM, em_shrd), 4466 GD(0, &group15), F(DstReg | SrcMem | ModRM, em_imul), 4467 /* 0xB0 - 0xB7 */ 4468 I2bv(DstMem | SrcReg | ModRM | Lock | PageTable | SrcWrite, em_cmpxchg), 4469 I(DstReg | SrcMemFAddr | ModRM | Src2SS, em_lseg), 4470 F(DstMem | SrcReg | ModRM | BitOp | Lock, em_btr), 4471 I(DstReg | SrcMemFAddr | ModRM | Src2FS, em_lseg), 4472 I(DstReg | SrcMemFAddr | ModRM | Src2GS, em_lseg), 4473 D(DstReg | SrcMem8 | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov), 4474 /* 0xB8 - 0xBF */ 4475 N, N, 4476 G(BitOp, group8), 4477 F(DstMem | SrcReg | ModRM | BitOp | Lock | PageTable, em_btc), 4478 I(DstReg | SrcMem | ModRM, em_bsf_c), 4479 I(DstReg | SrcMem | ModRM, em_bsr_c), 4480 D(DstReg | SrcMem8 | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov), 4481 /* 0xC0 - 0xC7 */ 4482 F2bv(DstMem | SrcReg | ModRM | SrcWrite | Lock, em_xadd), 4483 N, ID(0, &instr_dual_0f_c3), 4484 N, N, N, GD(0, &group9), 4485 /* 0xC8 - 0xCF */ 4486 X8(I(DstReg, em_bswap)), 4487 /* 0xD0 - 0xDF */ 4488 N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, 4489 /* 0xE0 - 0xEF */ 4490 N, N, N, N, N, N, N, GP(SrcReg | DstMem | ModRM | Mov, &pfx_0f_e7), 4491 N, N, N, N, N, N, N, N, 4492 /* 0xF0 - 0xFF */ 4493 N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N 4494 }; 4495 4496 static const struct instr_dual instr_dual_0f_38_f0 = { 4497 I(DstReg | SrcMem | Mov, em_movbe), N 4498 }; 4499 4500 static const struct instr_dual instr_dual_0f_38_f1 = { 4501 I(DstMem | SrcReg | Mov, em_movbe), N 4502 }; 4503 4504 static const struct gprefix three_byte_0f_38_f0 = { 4505 ID(0, &instr_dual_0f_38_f0), N, N, N 4506 }; 4507 4508 static const struct gprefix three_byte_0f_38_f1 = { 4509 ID(0, &instr_dual_0f_38_f1), N, N, N 4510 }; 4511 4512 /* 4513 * Insns below are selected by the prefix which indexed by the third opcode 4514 * byte. 4515 */ 4516 static const struct opcode opcode_map_0f_38[256] = { 4517 /* 0x00 - 0x7f */ 4518 X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), 4519 /* 0x80 - 0xef */ 4520 X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), 4521 /* 0xf0 - 0xf1 */ 4522 GP(EmulateOnUD | ModRM, &three_byte_0f_38_f0), 4523 GP(EmulateOnUD | ModRM, &three_byte_0f_38_f1), 4524 /* 0xf2 - 0xff */ 4525 N, N, X4(N), X8(N) 4526 }; 4527 4528 #undef D 4529 #undef N 4530 #undef G 4531 #undef GD 4532 #undef I 4533 #undef GP 4534 #undef EXT 4535 #undef MD 4536 #undef ID 4537 4538 #undef D2bv 4539 #undef D2bvIP 4540 #undef I2bv 4541 #undef I2bvIP 4542 #undef I6ALU 4543 4544 static unsigned imm_size(struct x86_emulate_ctxt *ctxt) 4545 { 4546 unsigned size; 4547 4548 size = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes; 4549 if (size == 8) 4550 size = 4; 4551 return size; 4552 } 4553 4554 static int decode_imm(struct x86_emulate_ctxt *ctxt, struct operand *op, 4555 unsigned size, bool sign_extension) 4556 { 4557 int rc = X86EMUL_CONTINUE; 4558 4559 op->type = OP_IMM; 4560 op->bytes = size; 4561 op->addr.mem.ea = ctxt->_eip; 4562 /* NB. Immediates are sign-extended as necessary. */ 4563 switch (op->bytes) { 4564 case 1: 4565 op->val = insn_fetch(s8, ctxt); 4566 break; 4567 case 2: 4568 op->val = insn_fetch(s16, ctxt); 4569 break; 4570 case 4: 4571 op->val = insn_fetch(s32, ctxt); 4572 break; 4573 case 8: 4574 op->val = insn_fetch(s64, ctxt); 4575 break; 4576 } 4577 if (!sign_extension) { 4578 switch (op->bytes) { 4579 case 1: 4580 op->val &= 0xff; 4581 break; 4582 case 2: 4583 op->val &= 0xffff; 4584 break; 4585 case 4: 4586 op->val &= 0xffffffff; 4587 break; 4588 } 4589 } 4590 done: 4591 return rc; 4592 } 4593 4594 static int decode_operand(struct x86_emulate_ctxt *ctxt, struct operand *op, 4595 unsigned d) 4596 { 4597 int rc = X86EMUL_CONTINUE; 4598 4599 switch (d) { 4600 case OpReg: 4601 decode_register_operand(ctxt, op); 4602 break; 4603 case OpImmUByte: 4604 rc = decode_imm(ctxt, op, 1, false); 4605 break; 4606 case OpMem: 4607 ctxt->memop.bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes; 4608 mem_common: 4609 *op = ctxt->memop; 4610 ctxt->memopp = op; 4611 if (ctxt->d & BitOp) 4612 fetch_bit_operand(ctxt); 4613 op->orig_val = op->val; 4614 break; 4615 case OpMem64: 4616 ctxt->memop.bytes = (ctxt->op_bytes == 8) ? 16 : 8; 4617 goto mem_common; 4618 case OpAcc: 4619 op->type = OP_REG; 4620 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes; 4621 op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX); 4622 fetch_register_operand(op); 4623 op->orig_val = op->val; 4624 break; 4625 case OpAccLo: 4626 op->type = OP_REG; 4627 op->bytes = (ctxt->d & ByteOp) ? 2 : ctxt->op_bytes; 4628 op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX); 4629 fetch_register_operand(op); 4630 op->orig_val = op->val; 4631 break; 4632 case OpAccHi: 4633 if (ctxt->d & ByteOp) { 4634 op->type = OP_NONE; 4635 break; 4636 } 4637 op->type = OP_REG; 4638 op->bytes = ctxt->op_bytes; 4639 op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX); 4640 fetch_register_operand(op); 4641 op->orig_val = op->val; 4642 break; 4643 case OpDI: 4644 op->type = OP_MEM; 4645 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes; 4646 op->addr.mem.ea = 4647 register_address(ctxt, VCPU_REGS_RDI); 4648 op->addr.mem.seg = VCPU_SREG_ES; 4649 op->val = 0; 4650 op->count = 1; 4651 break; 4652 case OpDX: 4653 op->type = OP_REG; 4654 op->bytes = 2; 4655 op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX); 4656 fetch_register_operand(op); 4657 break; 4658 case OpCL: 4659 op->type = OP_IMM; 4660 op->bytes = 1; 4661 op->val = reg_read(ctxt, VCPU_REGS_RCX) & 0xff; 4662 break; 4663 case OpImmByte: 4664 rc = decode_imm(ctxt, op, 1, true); 4665 break; 4666 case OpOne: 4667 op->type = OP_IMM; 4668 op->bytes = 1; 4669 op->val = 1; 4670 break; 4671 case OpImm: 4672 rc = decode_imm(ctxt, op, imm_size(ctxt), true); 4673 break; 4674 case OpImm64: 4675 rc = decode_imm(ctxt, op, ctxt->op_bytes, true); 4676 break; 4677 case OpMem8: 4678 ctxt->memop.bytes = 1; 4679 if (ctxt->memop.type == OP_REG) { 4680 ctxt->memop.addr.reg = decode_register(ctxt, 4681 ctxt->modrm_rm, true); 4682 fetch_register_operand(&ctxt->memop); 4683 } 4684 goto mem_common; 4685 case OpMem16: 4686 ctxt->memop.bytes = 2; 4687 goto mem_common; 4688 case OpMem32: 4689 ctxt->memop.bytes = 4; 4690 goto mem_common; 4691 case OpImmU16: 4692 rc = decode_imm(ctxt, op, 2, false); 4693 break; 4694 case OpImmU: 4695 rc = decode_imm(ctxt, op, imm_size(ctxt), false); 4696 break; 4697 case OpSI: 4698 op->type = OP_MEM; 4699 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes; 4700 op->addr.mem.ea = 4701 register_address(ctxt, VCPU_REGS_RSI); 4702 op->addr.mem.seg = ctxt->seg_override; 4703 op->val = 0; 4704 op->count = 1; 4705 break; 4706 case OpXLat: 4707 op->type = OP_MEM; 4708 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes; 4709 op->addr.mem.ea = 4710 address_mask(ctxt, 4711 reg_read(ctxt, VCPU_REGS_RBX) + 4712 (reg_read(ctxt, VCPU_REGS_RAX) & 0xff)); 4713 op->addr.mem.seg = ctxt->seg_override; 4714 op->val = 0; 4715 break; 4716 case OpImmFAddr: 4717 op->type = OP_IMM; 4718 op->addr.mem.ea = ctxt->_eip; 4719 op->bytes = ctxt->op_bytes + 2; 4720 insn_fetch_arr(op->valptr, op->bytes, ctxt); 4721 break; 4722 case OpMemFAddr: 4723 ctxt->memop.bytes = ctxt->op_bytes + 2; 4724 goto mem_common; 4725 case OpES: 4726 op->type = OP_IMM; 4727 op->val = VCPU_SREG_ES; 4728 break; 4729 case OpCS: 4730 op->type = OP_IMM; 4731 op->val = VCPU_SREG_CS; 4732 break; 4733 case OpSS: 4734 op->type = OP_IMM; 4735 op->val = VCPU_SREG_SS; 4736 break; 4737 case OpDS: 4738 op->type = OP_IMM; 4739 op->val = VCPU_SREG_DS; 4740 break; 4741 case OpFS: 4742 op->type = OP_IMM; 4743 op->val = VCPU_SREG_FS; 4744 break; 4745 case OpGS: 4746 op->type = OP_IMM; 4747 op->val = VCPU_SREG_GS; 4748 break; 4749 case OpImplicit: 4750 /* Special instructions do their own operand decoding. */ 4751 default: 4752 op->type = OP_NONE; /* Disable writeback. */ 4753 break; 4754 } 4755 4756 done: 4757 return rc; 4758 } 4759 4760 int x86_decode_insn(struct x86_emulate_ctxt *ctxt, void *insn, int insn_len, int emulation_type) 4761 { 4762 int rc = X86EMUL_CONTINUE; 4763 int mode = ctxt->mode; 4764 int def_op_bytes, def_ad_bytes, goffset, simd_prefix; 4765 bool op_prefix = false; 4766 bool has_seg_override = false; 4767 struct opcode opcode; 4768 u16 dummy; 4769 struct desc_struct desc; 4770 4771 ctxt->memop.type = OP_NONE; 4772 ctxt->memopp = NULL; 4773 ctxt->_eip = ctxt->eip; 4774 ctxt->fetch.ptr = ctxt->fetch.data; 4775 ctxt->fetch.end = ctxt->fetch.data + insn_len; 4776 ctxt->opcode_len = 1; 4777 ctxt->intercept = x86_intercept_none; 4778 if (insn_len > 0) 4779 memcpy(ctxt->fetch.data, insn, insn_len); 4780 else { 4781 rc = __do_insn_fetch_bytes(ctxt, 1); 4782 if (rc != X86EMUL_CONTINUE) 4783 goto done; 4784 } 4785 4786 switch (mode) { 4787 case X86EMUL_MODE_REAL: 4788 case X86EMUL_MODE_VM86: 4789 def_op_bytes = def_ad_bytes = 2; 4790 ctxt->ops->get_segment(ctxt, &dummy, &desc, NULL, VCPU_SREG_CS); 4791 if (desc.d) 4792 def_op_bytes = def_ad_bytes = 4; 4793 break; 4794 case X86EMUL_MODE_PROT16: 4795 def_op_bytes = def_ad_bytes = 2; 4796 break; 4797 case X86EMUL_MODE_PROT32: 4798 def_op_bytes = def_ad_bytes = 4; 4799 break; 4800 #ifdef CONFIG_X86_64 4801 case X86EMUL_MODE_PROT64: 4802 def_op_bytes = 4; 4803 def_ad_bytes = 8; 4804 break; 4805 #endif 4806 default: 4807 return EMULATION_FAILED; 4808 } 4809 4810 ctxt->op_bytes = def_op_bytes; 4811 ctxt->ad_bytes = def_ad_bytes; 4812 4813 /* Legacy prefixes. */ 4814 for (;;) { 4815 switch (ctxt->b = insn_fetch(u8, ctxt)) { 4816 case 0x66: /* operand-size override */ 4817 op_prefix = true; 4818 /* switch between 2/4 bytes */ 4819 ctxt->op_bytes = def_op_bytes ^ 6; 4820 break; 4821 case 0x67: /* address-size override */ 4822 if (mode == X86EMUL_MODE_PROT64) 4823 /* switch between 4/8 bytes */ 4824 ctxt->ad_bytes = def_ad_bytes ^ 12; 4825 else 4826 /* switch between 2/4 bytes */ 4827 ctxt->ad_bytes = def_ad_bytes ^ 6; 4828 break; 4829 case 0x26: /* ES override */ 4830 has_seg_override = true; 4831 ctxt->seg_override = VCPU_SREG_ES; 4832 break; 4833 case 0x2e: /* CS override */ 4834 has_seg_override = true; 4835 ctxt->seg_override = VCPU_SREG_CS; 4836 break; 4837 case 0x36: /* SS override */ 4838 has_seg_override = true; 4839 ctxt->seg_override = VCPU_SREG_SS; 4840 break; 4841 case 0x3e: /* DS override */ 4842 has_seg_override = true; 4843 ctxt->seg_override = VCPU_SREG_DS; 4844 break; 4845 case 0x64: /* FS override */ 4846 has_seg_override = true; 4847 ctxt->seg_override = VCPU_SREG_FS; 4848 break; 4849 case 0x65: /* GS override */ 4850 has_seg_override = true; 4851 ctxt->seg_override = VCPU_SREG_GS; 4852 break; 4853 case 0x40 ... 0x4f: /* REX */ 4854 if (mode != X86EMUL_MODE_PROT64) 4855 goto done_prefixes; 4856 ctxt->rex_prefix = ctxt->b; 4857 continue; 4858 case 0xf0: /* LOCK */ 4859 ctxt->lock_prefix = 1; 4860 break; 4861 case 0xf2: /* REPNE/REPNZ */ 4862 case 0xf3: /* REP/REPE/REPZ */ 4863 ctxt->rep_prefix = ctxt->b; 4864 break; 4865 default: 4866 goto done_prefixes; 4867 } 4868 4869 /* Any legacy prefix after a REX prefix nullifies its effect. */ 4870 4871 ctxt->rex_prefix = 0; 4872 } 4873 4874 done_prefixes: 4875 4876 /* REX prefix. */ 4877 if (ctxt->rex_prefix & 8) 4878 ctxt->op_bytes = 8; /* REX.W */ 4879 4880 /* Opcode byte(s). */ 4881 opcode = opcode_table[ctxt->b]; 4882 /* Two-byte opcode? */ 4883 if (ctxt->b == 0x0f) { 4884 ctxt->opcode_len = 2; 4885 ctxt->b = insn_fetch(u8, ctxt); 4886 opcode = twobyte_table[ctxt->b]; 4887 4888 /* 0F_38 opcode map */ 4889 if (ctxt->b == 0x38) { 4890 ctxt->opcode_len = 3; 4891 ctxt->b = insn_fetch(u8, ctxt); 4892 opcode = opcode_map_0f_38[ctxt->b]; 4893 } 4894 } 4895 ctxt->d = opcode.flags; 4896 4897 if (ctxt->d & ModRM) 4898 ctxt->modrm = insn_fetch(u8, ctxt); 4899 4900 /* vex-prefix instructions are not implemented */ 4901 if (ctxt->opcode_len == 1 && (ctxt->b == 0xc5 || ctxt->b == 0xc4) && 4902 (mode == X86EMUL_MODE_PROT64 || (ctxt->modrm & 0xc0) == 0xc0)) { 4903 ctxt->d = NotImpl; 4904 } 4905 4906 while (ctxt->d & GroupMask) { 4907 switch (ctxt->d & GroupMask) { 4908 case Group: 4909 goffset = (ctxt->modrm >> 3) & 7; 4910 opcode = opcode.u.group[goffset]; 4911 break; 4912 case GroupDual: 4913 goffset = (ctxt->modrm >> 3) & 7; 4914 if ((ctxt->modrm >> 6) == 3) 4915 opcode = opcode.u.gdual->mod3[goffset]; 4916 else 4917 opcode = opcode.u.gdual->mod012[goffset]; 4918 break; 4919 case RMExt: 4920 goffset = ctxt->modrm & 7; 4921 opcode = opcode.u.group[goffset]; 4922 break; 4923 case Prefix: 4924 if (ctxt->rep_prefix && op_prefix) 4925 return EMULATION_FAILED; 4926 simd_prefix = op_prefix ? 0x66 : ctxt->rep_prefix; 4927 switch (simd_prefix) { 4928 case 0x00: opcode = opcode.u.gprefix->pfx_no; break; 4929 case 0x66: opcode = opcode.u.gprefix->pfx_66; break; 4930 case 0xf2: opcode = opcode.u.gprefix->pfx_f2; break; 4931 case 0xf3: opcode = opcode.u.gprefix->pfx_f3; break; 4932 } 4933 break; 4934 case Escape: 4935 if (ctxt->modrm > 0xbf) { 4936 size_t size = ARRAY_SIZE(opcode.u.esc->high); 4937 u32 index = array_index_nospec( 4938 ctxt->modrm - 0xc0, size); 4939 4940 opcode = opcode.u.esc->high[index]; 4941 } else { 4942 opcode = opcode.u.esc->op[(ctxt->modrm >> 3) & 7]; 4943 } 4944 break; 4945 case InstrDual: 4946 if ((ctxt->modrm >> 6) == 3) 4947 opcode = opcode.u.idual->mod3; 4948 else 4949 opcode = opcode.u.idual->mod012; 4950 break; 4951 case ModeDual: 4952 if (ctxt->mode == X86EMUL_MODE_PROT64) 4953 opcode = opcode.u.mdual->mode64; 4954 else 4955 opcode = opcode.u.mdual->mode32; 4956 break; 4957 default: 4958 return EMULATION_FAILED; 4959 } 4960 4961 ctxt->d &= ~(u64)GroupMask; 4962 ctxt->d |= opcode.flags; 4963 } 4964 4965 ctxt->is_branch = opcode.flags & IsBranch; 4966 4967 /* Unrecognised? */ 4968 if (ctxt->d == 0) 4969 return EMULATION_FAILED; 4970 4971 ctxt->execute = opcode.u.execute; 4972 4973 if (unlikely(emulation_type & EMULTYPE_TRAP_UD) && 4974 likely(!(ctxt->d & EmulateOnUD))) 4975 return EMULATION_FAILED; 4976 4977 if (unlikely(ctxt->d & 4978 (NotImpl|Stack|Op3264|Sse|Mmx|Intercept|CheckPerm|NearBranch| 4979 No16))) { 4980 /* 4981 * These are copied unconditionally here, and checked unconditionally 4982 * in x86_emulate_insn. 4983 */ 4984 ctxt->check_perm = opcode.check_perm; 4985 ctxt->intercept = opcode.intercept; 4986 4987 if (ctxt->d & NotImpl) 4988 return EMULATION_FAILED; 4989 4990 if (mode == X86EMUL_MODE_PROT64) { 4991 if (ctxt->op_bytes == 4 && (ctxt->d & Stack)) 4992 ctxt->op_bytes = 8; 4993 else if (ctxt->d & NearBranch) 4994 ctxt->op_bytes = 8; 4995 } 4996 4997 if (ctxt->d & Op3264) { 4998 if (mode == X86EMUL_MODE_PROT64) 4999 ctxt->op_bytes = 8; 5000 else 5001 ctxt->op_bytes = 4; 5002 } 5003 5004 if ((ctxt->d & No16) && ctxt->op_bytes == 2) 5005 ctxt->op_bytes = 4; 5006 5007 if (ctxt->d & Sse) 5008 ctxt->op_bytes = 16; 5009 else if (ctxt->d & Mmx) 5010 ctxt->op_bytes = 8; 5011 } 5012 5013 /* ModRM and SIB bytes. */ 5014 if (ctxt->d & ModRM) { 5015 rc = decode_modrm(ctxt, &ctxt->memop); 5016 if (!has_seg_override) { 5017 has_seg_override = true; 5018 ctxt->seg_override = ctxt->modrm_seg; 5019 } 5020 } else if (ctxt->d & MemAbs) 5021 rc = decode_abs(ctxt, &ctxt->memop); 5022 if (rc != X86EMUL_CONTINUE) 5023 goto done; 5024 5025 if (!has_seg_override) 5026 ctxt->seg_override = VCPU_SREG_DS; 5027 5028 ctxt->memop.addr.mem.seg = ctxt->seg_override; 5029 5030 /* 5031 * Decode and fetch the source operand: register, memory 5032 * or immediate. 5033 */ 5034 rc = decode_operand(ctxt, &ctxt->src, (ctxt->d >> SrcShift) & OpMask); 5035 if (rc != X86EMUL_CONTINUE) 5036 goto done; 5037 5038 /* 5039 * Decode and fetch the second source operand: register, memory 5040 * or immediate. 5041 */ 5042 rc = decode_operand(ctxt, &ctxt->src2, (ctxt->d >> Src2Shift) & OpMask); 5043 if (rc != X86EMUL_CONTINUE) 5044 goto done; 5045 5046 /* Decode and fetch the destination operand: register or memory. */ 5047 rc = decode_operand(ctxt, &ctxt->dst, (ctxt->d >> DstShift) & OpMask); 5048 5049 if (ctxt->rip_relative && likely(ctxt->memopp)) 5050 ctxt->memopp->addr.mem.ea = address_mask(ctxt, 5051 ctxt->memopp->addr.mem.ea + ctxt->_eip); 5052 5053 done: 5054 if (rc == X86EMUL_PROPAGATE_FAULT) 5055 ctxt->have_exception = true; 5056 return (rc != X86EMUL_CONTINUE) ? EMULATION_FAILED : EMULATION_OK; 5057 } 5058 5059 bool x86_page_table_writing_insn(struct x86_emulate_ctxt *ctxt) 5060 { 5061 return ctxt->d & PageTable; 5062 } 5063 5064 static bool string_insn_completed(struct x86_emulate_ctxt *ctxt) 5065 { 5066 /* The second termination condition only applies for REPE 5067 * and REPNE. Test if the repeat string operation prefix is 5068 * REPE/REPZ or REPNE/REPNZ and if it's the case it tests the 5069 * corresponding termination condition according to: 5070 * - if REPE/REPZ and ZF = 0 then done 5071 * - if REPNE/REPNZ and ZF = 1 then done 5072 */ 5073 if (((ctxt->b == 0xa6) || (ctxt->b == 0xa7) || 5074 (ctxt->b == 0xae) || (ctxt->b == 0xaf)) 5075 && (((ctxt->rep_prefix == REPE_PREFIX) && 5076 ((ctxt->eflags & X86_EFLAGS_ZF) == 0)) 5077 || ((ctxt->rep_prefix == REPNE_PREFIX) && 5078 ((ctxt->eflags & X86_EFLAGS_ZF) == X86_EFLAGS_ZF)))) 5079 return true; 5080 5081 return false; 5082 } 5083 5084 static int flush_pending_x87_faults(struct x86_emulate_ctxt *ctxt) 5085 { 5086 int rc; 5087 5088 kvm_fpu_get(); 5089 rc = asm_safe("fwait"); 5090 kvm_fpu_put(); 5091 5092 if (unlikely(rc != X86EMUL_CONTINUE)) 5093 return emulate_exception(ctxt, MF_VECTOR, 0, false); 5094 5095 return X86EMUL_CONTINUE; 5096 } 5097 5098 static void fetch_possible_mmx_operand(struct operand *op) 5099 { 5100 if (op->type == OP_MM) 5101 kvm_read_mmx_reg(op->addr.mm, &op->mm_val); 5102 } 5103 5104 static int fastop(struct x86_emulate_ctxt *ctxt, fastop_t fop) 5105 { 5106 ulong flags = (ctxt->eflags & EFLAGS_MASK) | X86_EFLAGS_IF; 5107 5108 if (!(ctxt->d & ByteOp)) 5109 fop += __ffs(ctxt->dst.bytes) * FASTOP_SIZE; 5110 5111 asm("push %[flags]; popf; " CALL_NOSPEC " ; pushf; pop %[flags]\n" 5112 : "+a"(ctxt->dst.val), "+d"(ctxt->src.val), [flags]"+D"(flags), 5113 [thunk_target]"+S"(fop), ASM_CALL_CONSTRAINT 5114 : "c"(ctxt->src2.val)); 5115 5116 ctxt->eflags = (ctxt->eflags & ~EFLAGS_MASK) | (flags & EFLAGS_MASK); 5117 if (!fop) /* exception is returned in fop variable */ 5118 return emulate_de(ctxt); 5119 return X86EMUL_CONTINUE; 5120 } 5121 5122 void init_decode_cache(struct x86_emulate_ctxt *ctxt) 5123 { 5124 /* Clear fields that are set conditionally but read without a guard. */ 5125 ctxt->rip_relative = false; 5126 ctxt->rex_prefix = 0; 5127 ctxt->lock_prefix = 0; 5128 ctxt->rep_prefix = 0; 5129 ctxt->regs_valid = 0; 5130 ctxt->regs_dirty = 0; 5131 5132 ctxt->io_read.pos = 0; 5133 ctxt->io_read.end = 0; 5134 ctxt->mem_read.end = 0; 5135 } 5136 5137 int x86_emulate_insn(struct x86_emulate_ctxt *ctxt) 5138 { 5139 const struct x86_emulate_ops *ops = ctxt->ops; 5140 int rc = X86EMUL_CONTINUE; 5141 int saved_dst_type = ctxt->dst.type; 5142 bool is_guest_mode = ctxt->ops->is_guest_mode(ctxt); 5143 5144 ctxt->mem_read.pos = 0; 5145 5146 /* LOCK prefix is allowed only with some instructions */ 5147 if (ctxt->lock_prefix && (!(ctxt->d & Lock) || ctxt->dst.type != OP_MEM)) { 5148 rc = emulate_ud(ctxt); 5149 goto done; 5150 } 5151 5152 if ((ctxt->d & SrcMask) == SrcMemFAddr && ctxt->src.type != OP_MEM) { 5153 rc = emulate_ud(ctxt); 5154 goto done; 5155 } 5156 5157 if (unlikely(ctxt->d & 5158 (No64|Undefined|Sse|Mmx|Intercept|CheckPerm|Priv|Prot|String))) { 5159 if ((ctxt->mode == X86EMUL_MODE_PROT64 && (ctxt->d & No64)) || 5160 (ctxt->d & Undefined)) { 5161 rc = emulate_ud(ctxt); 5162 goto done; 5163 } 5164 5165 if (((ctxt->d & (Sse|Mmx)) && ((ops->get_cr(ctxt, 0) & X86_CR0_EM))) 5166 || ((ctxt->d & Sse) && !(ops->get_cr(ctxt, 4) & X86_CR4_OSFXSR))) { 5167 rc = emulate_ud(ctxt); 5168 goto done; 5169 } 5170 5171 if ((ctxt->d & (Sse|Mmx)) && (ops->get_cr(ctxt, 0) & X86_CR0_TS)) { 5172 rc = emulate_nm(ctxt); 5173 goto done; 5174 } 5175 5176 if (ctxt->d & Mmx) { 5177 rc = flush_pending_x87_faults(ctxt); 5178 if (rc != X86EMUL_CONTINUE) 5179 goto done; 5180 /* 5181 * Now that we know the fpu is exception safe, we can fetch 5182 * operands from it. 5183 */ 5184 fetch_possible_mmx_operand(&ctxt->src); 5185 fetch_possible_mmx_operand(&ctxt->src2); 5186 if (!(ctxt->d & Mov)) 5187 fetch_possible_mmx_operand(&ctxt->dst); 5188 } 5189 5190 if (unlikely(is_guest_mode) && ctxt->intercept) { 5191 rc = emulator_check_intercept(ctxt, ctxt->intercept, 5192 X86_ICPT_PRE_EXCEPT); 5193 if (rc != X86EMUL_CONTINUE) 5194 goto done; 5195 } 5196 5197 /* Instruction can only be executed in protected mode */ 5198 if ((ctxt->d & Prot) && ctxt->mode < X86EMUL_MODE_PROT16) { 5199 rc = emulate_ud(ctxt); 5200 goto done; 5201 } 5202 5203 /* Privileged instruction can be executed only in CPL=0 */ 5204 if ((ctxt->d & Priv) && ops->cpl(ctxt)) { 5205 if (ctxt->d & PrivUD) 5206 rc = emulate_ud(ctxt); 5207 else 5208 rc = emulate_gp(ctxt, 0); 5209 goto done; 5210 } 5211 5212 /* Do instruction specific permission checks */ 5213 if (ctxt->d & CheckPerm) { 5214 rc = ctxt->check_perm(ctxt); 5215 if (rc != X86EMUL_CONTINUE) 5216 goto done; 5217 } 5218 5219 if (unlikely(is_guest_mode) && (ctxt->d & Intercept)) { 5220 rc = emulator_check_intercept(ctxt, ctxt->intercept, 5221 X86_ICPT_POST_EXCEPT); 5222 if (rc != X86EMUL_CONTINUE) 5223 goto done; 5224 } 5225 5226 if (ctxt->rep_prefix && (ctxt->d & String)) { 5227 /* All REP prefixes have the same first termination condition */ 5228 if (address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) == 0) { 5229 string_registers_quirk(ctxt); 5230 ctxt->eip = ctxt->_eip; 5231 ctxt->eflags &= ~X86_EFLAGS_RF; 5232 goto done; 5233 } 5234 } 5235 } 5236 5237 if ((ctxt->src.type == OP_MEM) && !(ctxt->d & NoAccess)) { 5238 rc = segmented_read(ctxt, ctxt->src.addr.mem, 5239 ctxt->src.valptr, ctxt->src.bytes); 5240 if (rc != X86EMUL_CONTINUE) 5241 goto done; 5242 ctxt->src.orig_val64 = ctxt->src.val64; 5243 } 5244 5245 if (ctxt->src2.type == OP_MEM) { 5246 rc = segmented_read(ctxt, ctxt->src2.addr.mem, 5247 &ctxt->src2.val, ctxt->src2.bytes); 5248 if (rc != X86EMUL_CONTINUE) 5249 goto done; 5250 } 5251 5252 if ((ctxt->d & DstMask) == ImplicitOps) 5253 goto special_insn; 5254 5255 5256 if ((ctxt->dst.type == OP_MEM) && !(ctxt->d & Mov)) { 5257 /* optimisation - avoid slow emulated read if Mov */ 5258 rc = segmented_read(ctxt, ctxt->dst.addr.mem, 5259 &ctxt->dst.val, ctxt->dst.bytes); 5260 if (rc != X86EMUL_CONTINUE) { 5261 if (!(ctxt->d & NoWrite) && 5262 rc == X86EMUL_PROPAGATE_FAULT && 5263 ctxt->exception.vector == PF_VECTOR) 5264 ctxt->exception.error_code |= PFERR_WRITE_MASK; 5265 goto done; 5266 } 5267 } 5268 /* Copy full 64-bit value for CMPXCHG8B. */ 5269 ctxt->dst.orig_val64 = ctxt->dst.val64; 5270 5271 special_insn: 5272 5273 if (unlikely(is_guest_mode) && (ctxt->d & Intercept)) { 5274 rc = emulator_check_intercept(ctxt, ctxt->intercept, 5275 X86_ICPT_POST_MEMACCESS); 5276 if (rc != X86EMUL_CONTINUE) 5277 goto done; 5278 } 5279 5280 if (ctxt->rep_prefix && (ctxt->d & String)) 5281 ctxt->eflags |= X86_EFLAGS_RF; 5282 else 5283 ctxt->eflags &= ~X86_EFLAGS_RF; 5284 5285 if (ctxt->execute) { 5286 if (ctxt->d & Fastop) 5287 rc = fastop(ctxt, ctxt->fop); 5288 else 5289 rc = ctxt->execute(ctxt); 5290 if (rc != X86EMUL_CONTINUE) 5291 goto done; 5292 goto writeback; 5293 } 5294 5295 if (ctxt->opcode_len == 2) 5296 goto twobyte_insn; 5297 else if (ctxt->opcode_len == 3) 5298 goto threebyte_insn; 5299 5300 switch (ctxt->b) { 5301 case 0x70 ... 0x7f: /* jcc (short) */ 5302 if (test_cc(ctxt->b, ctxt->eflags)) 5303 rc = jmp_rel(ctxt, ctxt->src.val); 5304 break; 5305 case 0x8d: /* lea r16/r32, m */ 5306 ctxt->dst.val = ctxt->src.addr.mem.ea; 5307 break; 5308 case 0x90 ... 0x97: /* nop / xchg reg, rax */ 5309 if (ctxt->dst.addr.reg == reg_rmw(ctxt, VCPU_REGS_RAX)) 5310 ctxt->dst.type = OP_NONE; 5311 else 5312 rc = em_xchg(ctxt); 5313 break; 5314 case 0x98: /* cbw/cwde/cdqe */ 5315 switch (ctxt->op_bytes) { 5316 case 2: ctxt->dst.val = (s8)ctxt->dst.val; break; 5317 case 4: ctxt->dst.val = (s16)ctxt->dst.val; break; 5318 case 8: ctxt->dst.val = (s32)ctxt->dst.val; break; 5319 } 5320 break; 5321 case 0xcc: /* int3 */ 5322 rc = emulate_int(ctxt, 3); 5323 break; 5324 case 0xcd: /* int n */ 5325 rc = emulate_int(ctxt, ctxt->src.val); 5326 break; 5327 case 0xce: /* into */ 5328 if (ctxt->eflags & X86_EFLAGS_OF) 5329 rc = emulate_int(ctxt, 4); 5330 break; 5331 case 0xe9: /* jmp rel */ 5332 case 0xeb: /* jmp rel short */ 5333 rc = jmp_rel(ctxt, ctxt->src.val); 5334 ctxt->dst.type = OP_NONE; /* Disable writeback. */ 5335 break; 5336 case 0xf4: /* hlt */ 5337 ctxt->ops->halt(ctxt); 5338 break; 5339 case 0xf5: /* cmc */ 5340 /* complement carry flag from eflags reg */ 5341 ctxt->eflags ^= X86_EFLAGS_CF; 5342 break; 5343 case 0xf8: /* clc */ 5344 ctxt->eflags &= ~X86_EFLAGS_CF; 5345 break; 5346 case 0xf9: /* stc */ 5347 ctxt->eflags |= X86_EFLAGS_CF; 5348 break; 5349 case 0xfc: /* cld */ 5350 ctxt->eflags &= ~X86_EFLAGS_DF; 5351 break; 5352 case 0xfd: /* std */ 5353 ctxt->eflags |= X86_EFLAGS_DF; 5354 break; 5355 default: 5356 goto cannot_emulate; 5357 } 5358 5359 if (rc != X86EMUL_CONTINUE) 5360 goto done; 5361 5362 writeback: 5363 if (ctxt->d & SrcWrite) { 5364 BUG_ON(ctxt->src.type == OP_MEM || ctxt->src.type == OP_MEM_STR); 5365 rc = writeback(ctxt, &ctxt->src); 5366 if (rc != X86EMUL_CONTINUE) 5367 goto done; 5368 } 5369 if (!(ctxt->d & NoWrite)) { 5370 rc = writeback(ctxt, &ctxt->dst); 5371 if (rc != X86EMUL_CONTINUE) 5372 goto done; 5373 } 5374 5375 /* 5376 * restore dst type in case the decoding will be reused 5377 * (happens for string instruction ) 5378 */ 5379 ctxt->dst.type = saved_dst_type; 5380 5381 if ((ctxt->d & SrcMask) == SrcSI) 5382 string_addr_inc(ctxt, VCPU_REGS_RSI, &ctxt->src); 5383 5384 if ((ctxt->d & DstMask) == DstDI) 5385 string_addr_inc(ctxt, VCPU_REGS_RDI, &ctxt->dst); 5386 5387 if (ctxt->rep_prefix && (ctxt->d & String)) { 5388 unsigned int count; 5389 struct read_cache *r = &ctxt->io_read; 5390 if ((ctxt->d & SrcMask) == SrcSI) 5391 count = ctxt->src.count; 5392 else 5393 count = ctxt->dst.count; 5394 register_address_increment(ctxt, VCPU_REGS_RCX, -count); 5395 5396 if (!string_insn_completed(ctxt)) { 5397 /* 5398 * Re-enter guest when pio read ahead buffer is empty 5399 * or, if it is not used, after each 1024 iteration. 5400 */ 5401 if ((r->end != 0 || reg_read(ctxt, VCPU_REGS_RCX) & 0x3ff) && 5402 (r->end == 0 || r->end != r->pos)) { 5403 /* 5404 * Reset read cache. Usually happens before 5405 * decode, but since instruction is restarted 5406 * we have to do it here. 5407 */ 5408 ctxt->mem_read.end = 0; 5409 writeback_registers(ctxt); 5410 return EMULATION_RESTART; 5411 } 5412 goto done; /* skip rip writeback */ 5413 } 5414 ctxt->eflags &= ~X86_EFLAGS_RF; 5415 } 5416 5417 ctxt->eip = ctxt->_eip; 5418 if (ctxt->mode != X86EMUL_MODE_PROT64) 5419 ctxt->eip = (u32)ctxt->_eip; 5420 5421 done: 5422 if (rc == X86EMUL_PROPAGATE_FAULT) { 5423 if (KVM_EMULATOR_BUG_ON(ctxt->exception.vector > 0x1f, ctxt)) 5424 return EMULATION_FAILED; 5425 ctxt->have_exception = true; 5426 } 5427 if (rc == X86EMUL_INTERCEPTED) 5428 return EMULATION_INTERCEPTED; 5429 5430 if (rc == X86EMUL_CONTINUE) 5431 writeback_registers(ctxt); 5432 5433 return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK; 5434 5435 twobyte_insn: 5436 switch (ctxt->b) { 5437 case 0x09: /* wbinvd */ 5438 (ctxt->ops->wbinvd)(ctxt); 5439 break; 5440 case 0x08: /* invd */ 5441 case 0x0d: /* GrpP (prefetch) */ 5442 case 0x18: /* Grp16 (prefetch/nop) */ 5443 case 0x1f: /* nop */ 5444 break; 5445 case 0x20: /* mov cr, reg */ 5446 ctxt->dst.val = ops->get_cr(ctxt, ctxt->modrm_reg); 5447 break; 5448 case 0x21: /* mov from dr to reg */ 5449 ops->get_dr(ctxt, ctxt->modrm_reg, &ctxt->dst.val); 5450 break; 5451 case 0x40 ... 0x4f: /* cmov */ 5452 if (test_cc(ctxt->b, ctxt->eflags)) 5453 ctxt->dst.val = ctxt->src.val; 5454 else if (ctxt->op_bytes != 4) 5455 ctxt->dst.type = OP_NONE; /* no writeback */ 5456 break; 5457 case 0x80 ... 0x8f: /* jnz rel, etc*/ 5458 if (test_cc(ctxt->b, ctxt->eflags)) 5459 rc = jmp_rel(ctxt, ctxt->src.val); 5460 break; 5461 case 0x90 ... 0x9f: /* setcc r/m8 */ 5462 ctxt->dst.val = test_cc(ctxt->b, ctxt->eflags); 5463 break; 5464 case 0xb6 ... 0xb7: /* movzx */ 5465 ctxt->dst.bytes = ctxt->op_bytes; 5466 ctxt->dst.val = (ctxt->src.bytes == 1) ? (u8) ctxt->src.val 5467 : (u16) ctxt->src.val; 5468 break; 5469 case 0xbe ... 0xbf: /* movsx */ 5470 ctxt->dst.bytes = ctxt->op_bytes; 5471 ctxt->dst.val = (ctxt->src.bytes == 1) ? (s8) ctxt->src.val : 5472 (s16) ctxt->src.val; 5473 break; 5474 default: 5475 goto cannot_emulate; 5476 } 5477 5478 threebyte_insn: 5479 5480 if (rc != X86EMUL_CONTINUE) 5481 goto done; 5482 5483 goto writeback; 5484 5485 cannot_emulate: 5486 return EMULATION_FAILED; 5487 } 5488 5489 void emulator_invalidate_register_cache(struct x86_emulate_ctxt *ctxt) 5490 { 5491 invalidate_registers(ctxt); 5492 } 5493 5494 void emulator_writeback_register_cache(struct x86_emulate_ctxt *ctxt) 5495 { 5496 writeback_registers(ctxt); 5497 } 5498 5499 bool emulator_can_use_gpa(struct x86_emulate_ctxt *ctxt) 5500 { 5501 if (ctxt->rep_prefix && (ctxt->d & String)) 5502 return false; 5503 5504 if (ctxt->d & TwoMemOp) 5505 return false; 5506 5507 return true; 5508 } 5509