xref: /linux/arch/x86/kvm/emulate.c (revision 51d90a15fedf8366cb96ef68d0ea2d0bf15417d2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3  * emulate.c
4  *
5  * Generic x86 (32-bit and 64-bit) instruction decoder and emulator.
6  *
7  * Copyright (c) 2005 Keir Fraser
8  *
9  * Linux coding style, mod r/m decoder, segment base fixes, real-mode
10  * privileged instructions:
11  *
12  * Copyright (C) 2006 Qumranet
13  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
14  *
15  *   Avi Kivity <avi@qumranet.com>
16  *   Yaniv Kamay <yaniv@qumranet.com>
17  *
18  * From: xen-unstable 10676:af9809f51f81a3c43f276f00c81a52ef558afda4
19  */
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/kvm_host.h>
23 #include "kvm_cache_regs.h"
24 #include "kvm_emulate.h"
25 #include <linux/stringify.h>
26 #include <asm/debugreg.h>
27 #include <asm/nospec-branch.h>
28 #include <asm/ibt.h>
29 #include <asm/text-patching.h>
30 
31 #include "x86.h"
32 #include "tss.h"
33 #include "mmu.h"
34 #include "pmu.h"
35 
36 /*
37  * Operand types
38  */
39 #define OpNone             0ull
40 #define OpImplicit         1ull  /* No generic decode */
41 #define OpReg              2ull  /* Register */
42 #define OpMem              3ull  /* Memory */
43 #define OpAcc              4ull  /* Accumulator: AL/AX/EAX/RAX */
44 #define OpDI               5ull  /* ES:DI/EDI/RDI */
45 #define OpMem64            6ull  /* Memory, 64-bit */
46 #define OpImmUByte         7ull  /* Zero-extended 8-bit immediate */
47 #define OpDX               8ull  /* DX register */
48 #define OpCL               9ull  /* CL register (for shifts) */
49 #define OpImmByte         10ull  /* 8-bit sign extended immediate */
50 #define OpOne             11ull  /* Implied 1 */
51 #define OpImm             12ull  /* Sign extended up to 32-bit immediate */
52 #define OpMem16           13ull  /* Memory operand (16-bit). */
53 #define OpMem32           14ull  /* Memory operand (32-bit). */
54 #define OpImmU            15ull  /* Immediate operand, zero extended */
55 #define OpSI              16ull  /* SI/ESI/RSI */
56 #define OpImmFAddr        17ull  /* Immediate far address */
57 #define OpMemFAddr        18ull  /* Far address in memory */
58 #define OpImmU16          19ull  /* Immediate operand, 16 bits, zero extended */
59 #define OpES              20ull  /* ES */
60 #define OpCS              21ull  /* CS */
61 #define OpSS              22ull  /* SS */
62 #define OpDS              23ull  /* DS */
63 #define OpFS              24ull  /* FS */
64 #define OpGS              25ull  /* GS */
65 #define OpMem8            26ull  /* 8-bit zero extended memory operand */
66 #define OpImm64           27ull  /* Sign extended 16/32/64-bit immediate */
67 #define OpXLat            28ull  /* memory at BX/EBX/RBX + zero-extended AL */
68 #define OpAccLo           29ull  /* Low part of extended acc (AX/AX/EAX/RAX) */
69 #define OpAccHi           30ull  /* High part of extended acc (-/DX/EDX/RDX) */
70 
71 #define OpBits             5  /* Width of operand field */
72 #define OpMask             ((1ull << OpBits) - 1)
73 
74 /*
75  * Opcode effective-address decode tables.
76  * Note that we only emulate instructions that have at least one memory
77  * operand (excluding implicit stack references). We assume that stack
78  * references and instruction fetches will never occur in special memory
79  * areas that require emulation. So, for example, 'mov <imm>,<reg>' need
80  * not be handled.
81  */
82 
83 /* Operand sizes: 8-bit operands or specified/overridden size. */
84 #define ByteOp      (1<<0)      /* 8-bit operands. */
85 #define DstShift    1           /* Destination operand type at bits 1-5 */
86 #define ImplicitOps (OpImplicit << DstShift)
87 #define DstReg      (OpReg << DstShift)
88 #define DstMem      (OpMem << DstShift)
89 #define DstAcc      (OpAcc << DstShift)
90 #define DstDI       (OpDI << DstShift)
91 #define DstMem64    (OpMem64 << DstShift)
92 #define DstMem16    (OpMem16 << DstShift)
93 #define DstImmUByte (OpImmUByte << DstShift)
94 #define DstDX       (OpDX << DstShift)
95 #define DstAccLo    (OpAccLo << DstShift)
96 #define DstMask     (OpMask << DstShift)
97 #define SrcShift    6           /* Source operand type at bits 6-10 */
98 #define SrcNone     (OpNone << SrcShift)
99 #define SrcReg      (OpReg << SrcShift)
100 #define SrcMem      (OpMem << SrcShift)
101 #define SrcMem16    (OpMem16 << SrcShift)
102 #define SrcMem32    (OpMem32 << SrcShift)
103 #define SrcImm      (OpImm << SrcShift)
104 #define SrcImmByte  (OpImmByte << SrcShift)
105 #define SrcOne      (OpOne << SrcShift)
106 #define SrcImmUByte (OpImmUByte << SrcShift)
107 #define SrcImmU     (OpImmU << SrcShift)
108 #define SrcSI       (OpSI << SrcShift)
109 #define SrcXLat     (OpXLat << SrcShift)
110 #define SrcImmFAddr (OpImmFAddr << SrcShift)
111 #define SrcMemFAddr (OpMemFAddr << SrcShift)
112 #define SrcAcc      (OpAcc << SrcShift)
113 #define SrcImmU16   (OpImmU16 << SrcShift)
114 #define SrcImm64    (OpImm64 << SrcShift)
115 #define SrcDX       (OpDX << SrcShift)
116 #define SrcMem8     (OpMem8 << SrcShift)
117 #define SrcAccHi    (OpAccHi << SrcShift)
118 #define SrcMask     (OpMask << SrcShift)
119 #define BitOp       (1<<11)
120 #define MemAbs      (1<<12)     /* Memory operand is absolute displacement */
121 #define String      (1<<13)     /* String instruction (rep capable) */
122 #define Stack       (1<<14)     /* Stack instruction (push/pop) */
123 #define GroupMask   (7<<15)     /* Group mechanisms, at bits 15-17 */
124 #define Group       (1<<15)     /* Bits 3:5 of modrm byte extend opcode */
125 #define GroupDual   (2<<15)     /* Alternate decoding of mod == 3 */
126 #define Prefix      (3<<15)     /* Instruction varies with 66/f2/f3 prefix */
127 #define RMExt       (4<<15)     /* Opcode extension in ModRM r/m if mod == 3 */
128 #define Escape      (5<<15)     /* Escape to coprocessor instruction */
129 #define InstrDual   (6<<15)     /* Alternate instruction decoding of mod == 3 */
130 #define ModeDual    (7<<15)     /* Different instruction for 32/64 bit */
131 #define Sse         (1<<18)     /* SSE Vector instruction */
132 #define ModRM       (1<<19)     /* Generic ModRM decode. */
133 #define Mov         (1<<20)     /* Destination is only written; never read. */
134 #define Prot        (1<<21) /* instruction generates #UD if not in prot-mode */
135 #define EmulateOnUD (1<<22) /* Emulate if unsupported by the host */
136 #define NoAccess    (1<<23) /* Don't access memory (lea/invlpg/verr etc) */
137 #define Op3264      (1<<24) /* Operand is 64b in long mode, 32b otherwise */
138 #define Undefined   (1<<25) /* No Such Instruction */
139 #define Lock        (1<<26) /* lock prefix is allowed for the instruction */
140 #define Priv        (1<<27) /* instruction generates #GP if current CPL != 0 */
141 #define No64        (1<<28)     /* Instruction generates #UD in 64-bit mode */
142 #define PageTable   (1 << 29)   /* instruction used to write page table */
143 #define NotImpl     (1 << 30)   /* instruction is not implemented */
144 #define Avx         ((u64)1 << 31)   /* Instruction uses VEX prefix */
145 #define Src2Shift   (32)        /* Source 2 operand type at bits 32-36 */
146 #define Src2None    (OpNone << Src2Shift)
147 #define Src2Mem     (OpMem << Src2Shift)
148 #define Src2CL      (OpCL << Src2Shift)
149 #define Src2ImmByte (OpImmByte << Src2Shift)
150 #define Src2One     (OpOne << Src2Shift)
151 #define Src2Imm     (OpImm << Src2Shift)
152 #define Src2ES      (OpES << Src2Shift)
153 #define Src2CS      (OpCS << Src2Shift)
154 #define Src2SS      (OpSS << Src2Shift)
155 #define Src2DS      (OpDS << Src2Shift)
156 #define Src2FS      (OpFS << Src2Shift)
157 #define Src2GS      (OpGS << Src2Shift)
158 #define Src2Mask    (OpMask << Src2Shift)
159 /* free: 37-39 */
160 #define Mmx         ((u64)1 << 40)  /* MMX Vector instruction */
161 #define AlignMask   ((u64)3 << 41)  /* Memory alignment requirement at bits 41-42 */
162 #define Aligned     ((u64)1 << 41)  /* Explicitly aligned (e.g. MOVDQA) */
163 #define Unaligned   ((u64)2 << 41)  /* Explicitly unaligned (e.g. MOVDQU) */
164 #define Aligned16   ((u64)3 << 41)  /* Aligned to 16 byte boundary (e.g. FXSAVE) */
165 /* free: 43-44 */
166 #define NoWrite     ((u64)1 << 45)  /* No writeback */
167 #define SrcWrite    ((u64)1 << 46)  /* Write back src operand */
168 #define NoMod	    ((u64)1 << 47)  /* Mod field is ignored */
169 #define Intercept   ((u64)1 << 48)  /* Has valid intercept field */
170 #define CheckPerm   ((u64)1 << 49)  /* Has valid check_perm field */
171 #define PrivUD      ((u64)1 << 51)  /* #UD instead of #GP on CPL > 0 */
172 #define NearBranch  ((u64)1 << 52)  /* Near branches */
173 #define No16	    ((u64)1 << 53)  /* No 16 bit operand */
174 #define IncSP       ((u64)1 << 54)  /* SP is incremented before ModRM calc */
175 #define TwoMemOp    ((u64)1 << 55)  /* Instruction has two memory operand */
176 #define IsBranch    ((u64)1 << 56)  /* Instruction is considered a branch. */
177 #define ShadowStack ((u64)1 << 57)  /* Instruction affects Shadow Stacks. */
178 
179 #define DstXacc     (DstAccLo | SrcAccHi | SrcWrite)
180 
181 #define X2(x...) x, x
182 #define X3(x...) X2(x), x
183 #define X4(x...) X2(x), X2(x)
184 #define X5(x...) X4(x), x
185 #define X6(x...) X4(x), X2(x)
186 #define X7(x...) X4(x), X3(x)
187 #define X8(x...) X4(x), X4(x)
188 #define X16(x...) X8(x), X8(x)
189 
190 struct opcode {
191 	u64 flags;
192 	u8 intercept;
193 	u8 pad[7];
194 	union {
195 		int (*execute)(struct x86_emulate_ctxt *ctxt);
196 		const struct opcode *group;
197 		const struct group_dual *gdual;
198 		const struct gprefix *gprefix;
199 		const struct escape *esc;
200 		const struct instr_dual *idual;
201 		const struct mode_dual *mdual;
202 	} u;
203 	int (*check_perm)(struct x86_emulate_ctxt *ctxt);
204 };
205 
206 struct group_dual {
207 	struct opcode mod012[8];
208 	struct opcode mod3[8];
209 };
210 
211 struct gprefix {
212 	struct opcode pfx_no;
213 	struct opcode pfx_66;
214 	struct opcode pfx_f2;
215 	struct opcode pfx_f3;
216 };
217 
218 struct escape {
219 	struct opcode op[8];
220 	struct opcode high[64];
221 };
222 
223 struct instr_dual {
224 	struct opcode mod012;
225 	struct opcode mod3;
226 };
227 
228 struct mode_dual {
229 	struct opcode mode32;
230 	struct opcode mode64;
231 };
232 
233 #define EFLG_RESERVED_ZEROS_MASK 0xffc0802a
234 
235 enum x86_transfer_type {
236 	X86_TRANSFER_NONE,
237 	X86_TRANSFER_CALL_JMP,
238 	X86_TRANSFER_RET,
239 	X86_TRANSFER_TASK_SWITCH,
240 };
241 
242 enum rex_bits {
243 	REX_B = 1,
244 	REX_X = 2,
245 	REX_R = 4,
246 	REX_W = 8,
247 };
248 
writeback_registers(struct x86_emulate_ctxt * ctxt)249 static void writeback_registers(struct x86_emulate_ctxt *ctxt)
250 {
251 	unsigned long dirty = ctxt->regs_dirty;
252 	unsigned reg;
253 
254 	for_each_set_bit(reg, &dirty, NR_EMULATOR_GPRS)
255 		ctxt->ops->write_gpr(ctxt, reg, ctxt->_regs[reg]);
256 }
257 
invalidate_registers(struct x86_emulate_ctxt * ctxt)258 static void invalidate_registers(struct x86_emulate_ctxt *ctxt)
259 {
260 	ctxt->regs_dirty = 0;
261 	ctxt->regs_valid = 0;
262 }
263 
264 /*
265  * These EFLAGS bits are restored from saved value during emulation, and
266  * any changes are written back to the saved value after emulation.
267  */
268 #define EFLAGS_MASK (X86_EFLAGS_OF|X86_EFLAGS_SF|X86_EFLAGS_ZF|X86_EFLAGS_AF|\
269 		     X86_EFLAGS_PF|X86_EFLAGS_CF)
270 
271 #ifdef CONFIG_X86_64
272 #define ON64(x...) x
273 #else
274 #define ON64(x...)
275 #endif
276 
277 #define EM_ASM_START(op) \
278 static int em_##op(struct x86_emulate_ctxt *ctxt) \
279 { \
280 	unsigned long flags = (ctxt->eflags & EFLAGS_MASK) | X86_EFLAGS_IF; \
281 	int bytes = 1, ok = 1; \
282 	if (!(ctxt->d & ByteOp)) \
283 		bytes = ctxt->dst.bytes; \
284 	switch (bytes) {
285 
286 #define __EM_ASM(str) \
287 		asm("push %[flags]; popf \n\t" \
288 		    "10: " str \
289 		    "pushf; pop %[flags] \n\t" \
290 		    "11: \n\t" \
291 		    : "+a" (ctxt->dst.val), \
292 		      "+d" (ctxt->src.val), \
293 		      [flags] "+D" (flags), \
294 		      "+S" (ok) \
295 		    : "c" (ctxt->src2.val))
296 
297 #define __EM_ASM_1(op, dst) \
298 		__EM_ASM(#op " %%" #dst " \n\t")
299 
300 #define __EM_ASM_1_EX(op, dst) \
301 		__EM_ASM(#op " %%" #dst " \n\t" \
302 			 _ASM_EXTABLE_TYPE_REG(10b, 11f, EX_TYPE_ZERO_REG, %%esi))
303 
304 #define __EM_ASM_2(op, dst, src) \
305 		__EM_ASM(#op " %%" #src ", %%" #dst " \n\t")
306 
307 #define __EM_ASM_3(op, dst, src, src2) \
308 		__EM_ASM(#op " %%" #src2 ", %%" #src ", %%" #dst " \n\t")
309 
310 #define EM_ASM_END \
311 	} \
312 	ctxt->eflags = (ctxt->eflags & ~EFLAGS_MASK) | (flags & EFLAGS_MASK); \
313 	return !ok ? emulate_de(ctxt) : X86EMUL_CONTINUE; \
314 }
315 
316 /* 1-operand, using "a" (dst) */
317 #define EM_ASM_1(op) \
318 	EM_ASM_START(op) \
319 	case 1: __EM_ASM_1(op##b, al); break; \
320 	case 2: __EM_ASM_1(op##w, ax); break; \
321 	case 4: __EM_ASM_1(op##l, eax); break; \
322 	ON64(case 8: __EM_ASM_1(op##q, rax); break;) \
323 	EM_ASM_END
324 
325 /* 1-operand, using "c" (src2) */
326 #define EM_ASM_1SRC2(op, name) \
327 	EM_ASM_START(name) \
328 	case 1: __EM_ASM_1(op##b, cl); break; \
329 	case 2: __EM_ASM_1(op##w, cx); break; \
330 	case 4: __EM_ASM_1(op##l, ecx); break; \
331 	ON64(case 8: __EM_ASM_1(op##q, rcx); break;) \
332 	EM_ASM_END
333 
334 /* 1-operand, using "c" (src2) with exception */
335 #define EM_ASM_1SRC2EX(op, name) \
336 	EM_ASM_START(name) \
337 	case 1: __EM_ASM_1_EX(op##b, cl); break; \
338 	case 2: __EM_ASM_1_EX(op##w, cx); break; \
339 	case 4: __EM_ASM_1_EX(op##l, ecx); break; \
340 	ON64(case 8: __EM_ASM_1_EX(op##q, rcx); break;) \
341 	EM_ASM_END
342 
343 /* 2-operand, using "a" (dst), "d" (src) */
344 #define EM_ASM_2(op) \
345 	EM_ASM_START(op) \
346 	case 1: __EM_ASM_2(op##b, al, dl); break; \
347 	case 2: __EM_ASM_2(op##w, ax, dx); break; \
348 	case 4: __EM_ASM_2(op##l, eax, edx); break; \
349 	ON64(case 8: __EM_ASM_2(op##q, rax, rdx); break;) \
350 	EM_ASM_END
351 
352 /* 2-operand, reversed */
353 #define EM_ASM_2R(op, name) \
354 	EM_ASM_START(name) \
355 	case 1: __EM_ASM_2(op##b, dl, al); break; \
356 	case 2: __EM_ASM_2(op##w, dx, ax); break; \
357 	case 4: __EM_ASM_2(op##l, edx, eax); break; \
358 	ON64(case 8: __EM_ASM_2(op##q, rdx, rax); break;) \
359 	EM_ASM_END
360 
361 /* 2-operand, word only (no byte op) */
362 #define EM_ASM_2W(op) \
363 	EM_ASM_START(op) \
364 	case 1: break; \
365 	case 2: __EM_ASM_2(op##w, ax, dx); break; \
366 	case 4: __EM_ASM_2(op##l, eax, edx); break; \
367 	ON64(case 8: __EM_ASM_2(op##q, rax, rdx); break;) \
368 	EM_ASM_END
369 
370 /* 2-operand, using "a" (dst) and CL (src2) */
371 #define EM_ASM_2CL(op) \
372 	EM_ASM_START(op) \
373 	case 1: __EM_ASM_2(op##b, al, cl); break; \
374 	case 2: __EM_ASM_2(op##w, ax, cl); break; \
375 	case 4: __EM_ASM_2(op##l, eax, cl); break; \
376 	ON64(case 8: __EM_ASM_2(op##q, rax, cl); break;) \
377 	EM_ASM_END
378 
379 /* 3-operand, using "a" (dst), "d" (src) and CL (src2) */
380 #define EM_ASM_3WCL(op) \
381 	EM_ASM_START(op) \
382 	case 1: break; \
383 	case 2: __EM_ASM_3(op##w, ax, dx, cl); break; \
384 	case 4: __EM_ASM_3(op##l, eax, edx, cl); break; \
385 	ON64(case 8: __EM_ASM_3(op##q, rax, rdx, cl); break;) \
386 	EM_ASM_END
387 
em_salc(struct x86_emulate_ctxt * ctxt)388 static int em_salc(struct x86_emulate_ctxt *ctxt)
389 {
390 	/*
391 	 * Set AL 0xFF if CF is set, or 0x00 when clear.
392 	 */
393 	ctxt->dst.val = 0xFF * !!(ctxt->eflags & X86_EFLAGS_CF);
394 	return X86EMUL_CONTINUE;
395 }
396 
397 /*
398  * XXX: inoutclob user must know where the argument is being expanded.
399  *      Using asm goto would allow us to remove _fault.
400  */
401 #define asm_safe(insn, inoutclob...) \
402 ({ \
403 	int _fault = 0; \
404  \
405 	asm volatile("1:" insn "\n" \
406 	             "2:\n" \
407 		     _ASM_EXTABLE_TYPE_REG(1b, 2b, EX_TYPE_ONE_REG, %[_fault]) \
408 	             : [_fault] "+r"(_fault) inoutclob ); \
409  \
410 	_fault ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE; \
411 })
412 
emulator_check_intercept(struct x86_emulate_ctxt * ctxt,enum x86_intercept intercept,enum x86_intercept_stage stage)413 static int emulator_check_intercept(struct x86_emulate_ctxt *ctxt,
414 				    enum x86_intercept intercept,
415 				    enum x86_intercept_stage stage)
416 {
417 	struct x86_instruction_info info = {
418 		.intercept  = intercept,
419 		.rep_prefix = ctxt->rep_prefix,
420 		.modrm_mod  = ctxt->modrm_mod,
421 		.modrm_reg  = ctxt->modrm_reg,
422 		.modrm_rm   = ctxt->modrm_rm,
423 		.src_val    = ctxt->src.val64,
424 		.dst_val    = ctxt->dst.val64,
425 		.src_bytes  = ctxt->src.bytes,
426 		.dst_bytes  = ctxt->dst.bytes,
427 		.src_type   = ctxt->src.type,
428 		.dst_type   = ctxt->dst.type,
429 		.ad_bytes   = ctxt->ad_bytes,
430 		.rip	    = ctxt->eip,
431 		.next_rip   = ctxt->_eip,
432 	};
433 
434 	return ctxt->ops->intercept(ctxt, &info, stage);
435 }
436 
assign_masked(ulong * dest,ulong src,ulong mask)437 static void assign_masked(ulong *dest, ulong src, ulong mask)
438 {
439 	*dest = (*dest & ~mask) | (src & mask);
440 }
441 
assign_register(unsigned long * reg,u64 val,int bytes)442 static void assign_register(unsigned long *reg, u64 val, int bytes)
443 {
444 	/* The 4-byte case *is* correct: in 64-bit mode we zero-extend. */
445 	switch (bytes) {
446 	case 1:
447 		*(u8 *)reg = (u8)val;
448 		break;
449 	case 2:
450 		*(u16 *)reg = (u16)val;
451 		break;
452 	case 4:
453 		*reg = (u32)val;
454 		break;	/* 64b: zero-extend */
455 	case 8:
456 		*reg = val;
457 		break;
458 	}
459 }
460 
ad_mask(struct x86_emulate_ctxt * ctxt)461 static inline unsigned long ad_mask(struct x86_emulate_ctxt *ctxt)
462 {
463 	return (1UL << (ctxt->ad_bytes << 3)) - 1;
464 }
465 
stack_mask(struct x86_emulate_ctxt * ctxt)466 static ulong stack_mask(struct x86_emulate_ctxt *ctxt)
467 {
468 	u16 sel;
469 	struct desc_struct ss;
470 
471 	if (ctxt->mode == X86EMUL_MODE_PROT64)
472 		return ~0UL;
473 	ctxt->ops->get_segment(ctxt, &sel, &ss, NULL, VCPU_SREG_SS);
474 	return ~0U >> ((ss.d ^ 1) * 16);  /* d=0: 0xffff; d=1: 0xffffffff */
475 }
476 
stack_size(struct x86_emulate_ctxt * ctxt)477 static int stack_size(struct x86_emulate_ctxt *ctxt)
478 {
479 	return (__fls(stack_mask(ctxt)) + 1) >> 3;
480 }
481 
482 /* Access/update address held in a register, based on addressing mode. */
483 static inline unsigned long
address_mask(struct x86_emulate_ctxt * ctxt,unsigned long reg)484 address_mask(struct x86_emulate_ctxt *ctxt, unsigned long reg)
485 {
486 	if (ctxt->ad_bytes == sizeof(unsigned long))
487 		return reg;
488 	else
489 		return reg & ad_mask(ctxt);
490 }
491 
492 static inline unsigned long
register_address(struct x86_emulate_ctxt * ctxt,int reg)493 register_address(struct x86_emulate_ctxt *ctxt, int reg)
494 {
495 	return address_mask(ctxt, reg_read(ctxt, reg));
496 }
497 
masked_increment(ulong * reg,ulong mask,int inc)498 static void masked_increment(ulong *reg, ulong mask, int inc)
499 {
500 	assign_masked(reg, *reg + inc, mask);
501 }
502 
503 static inline void
register_address_increment(struct x86_emulate_ctxt * ctxt,int reg,int inc)504 register_address_increment(struct x86_emulate_ctxt *ctxt, int reg, int inc)
505 {
506 	ulong *preg = reg_rmw(ctxt, reg);
507 
508 	assign_register(preg, *preg + inc, ctxt->ad_bytes);
509 }
510 
rsp_increment(struct x86_emulate_ctxt * ctxt,int inc)511 static void rsp_increment(struct x86_emulate_ctxt *ctxt, int inc)
512 {
513 	masked_increment(reg_rmw(ctxt, VCPU_REGS_RSP), stack_mask(ctxt), inc);
514 }
515 
desc_limit_scaled(struct desc_struct * desc)516 static u32 desc_limit_scaled(struct desc_struct *desc)
517 {
518 	u32 limit = get_desc_limit(desc);
519 
520 	return desc->g ? (limit << 12) | 0xfff : limit;
521 }
522 
seg_base(struct x86_emulate_ctxt * ctxt,int seg)523 static unsigned long seg_base(struct x86_emulate_ctxt *ctxt, int seg)
524 {
525 	if (ctxt->mode == X86EMUL_MODE_PROT64 && seg < VCPU_SREG_FS)
526 		return 0;
527 
528 	return ctxt->ops->get_cached_segment_base(ctxt, seg);
529 }
530 
emulate_exception(struct x86_emulate_ctxt * ctxt,int vec,u32 error,bool valid)531 static int emulate_exception(struct x86_emulate_ctxt *ctxt, int vec,
532 			     u32 error, bool valid)
533 {
534 	if (KVM_EMULATOR_BUG_ON(vec > 0x1f, ctxt))
535 		return X86EMUL_UNHANDLEABLE;
536 
537 	ctxt->exception.vector = vec;
538 	ctxt->exception.error_code = error;
539 	ctxt->exception.error_code_valid = valid;
540 	return X86EMUL_PROPAGATE_FAULT;
541 }
542 
emulate_db(struct x86_emulate_ctxt * ctxt)543 static int emulate_db(struct x86_emulate_ctxt *ctxt)
544 {
545 	return emulate_exception(ctxt, DB_VECTOR, 0, false);
546 }
547 
emulate_gp(struct x86_emulate_ctxt * ctxt,int err)548 static int emulate_gp(struct x86_emulate_ctxt *ctxt, int err)
549 {
550 	return emulate_exception(ctxt, GP_VECTOR, err, true);
551 }
552 
emulate_ss(struct x86_emulate_ctxt * ctxt,int err)553 static int emulate_ss(struct x86_emulate_ctxt *ctxt, int err)
554 {
555 	return emulate_exception(ctxt, SS_VECTOR, err, true);
556 }
557 
emulate_ud(struct x86_emulate_ctxt * ctxt)558 static int emulate_ud(struct x86_emulate_ctxt *ctxt)
559 {
560 	return emulate_exception(ctxt, UD_VECTOR, 0, false);
561 }
562 
emulate_ts(struct x86_emulate_ctxt * ctxt,int err)563 static int emulate_ts(struct x86_emulate_ctxt *ctxt, int err)
564 {
565 	return emulate_exception(ctxt, TS_VECTOR, err, true);
566 }
567 
emulate_de(struct x86_emulate_ctxt * ctxt)568 static int emulate_de(struct x86_emulate_ctxt *ctxt)
569 {
570 	return emulate_exception(ctxt, DE_VECTOR, 0, false);
571 }
572 
emulate_nm(struct x86_emulate_ctxt * ctxt)573 static int emulate_nm(struct x86_emulate_ctxt *ctxt)
574 {
575 	return emulate_exception(ctxt, NM_VECTOR, 0, false);
576 }
577 
get_segment_selector(struct x86_emulate_ctxt * ctxt,unsigned seg)578 static u16 get_segment_selector(struct x86_emulate_ctxt *ctxt, unsigned seg)
579 {
580 	u16 selector;
581 	struct desc_struct desc;
582 
583 	ctxt->ops->get_segment(ctxt, &selector, &desc, NULL, seg);
584 	return selector;
585 }
586 
set_segment_selector(struct x86_emulate_ctxt * ctxt,u16 selector,unsigned seg)587 static void set_segment_selector(struct x86_emulate_ctxt *ctxt, u16 selector,
588 				 unsigned seg)
589 {
590 	u16 dummy;
591 	u32 base3;
592 	struct desc_struct desc;
593 
594 	ctxt->ops->get_segment(ctxt, &dummy, &desc, &base3, seg);
595 	ctxt->ops->set_segment(ctxt, selector, &desc, base3, seg);
596 }
597 
ctxt_virt_addr_bits(struct x86_emulate_ctxt * ctxt)598 static inline u8 ctxt_virt_addr_bits(struct x86_emulate_ctxt *ctxt)
599 {
600 	return (ctxt->ops->get_cr(ctxt, 4) & X86_CR4_LA57) ? 57 : 48;
601 }
602 
emul_is_noncanonical_address(u64 la,struct x86_emulate_ctxt * ctxt,unsigned int flags)603 static inline bool emul_is_noncanonical_address(u64 la,
604 						struct x86_emulate_ctxt *ctxt,
605 						unsigned int flags)
606 {
607 	return !ctxt->ops->is_canonical_addr(ctxt, la, flags);
608 }
609 
610 /*
611  * x86 defines three classes of vector instructions: explicitly
612  * aligned, explicitly unaligned, and the rest, which change behaviour
613  * depending on whether they're AVX encoded or not.
614  *
615  * Also included is CMPXCHG16B which is not a vector instruction, yet it is
616  * subject to the same check.  FXSAVE and FXRSTOR are checked here too as their
617  * 512 bytes of data must be aligned to a 16 byte boundary.
618  */
insn_alignment(struct x86_emulate_ctxt * ctxt,unsigned size)619 static unsigned insn_alignment(struct x86_emulate_ctxt *ctxt, unsigned size)
620 {
621 	u64 alignment = ctxt->d & AlignMask;
622 
623 	if (likely(size < 16))
624 		return 1;
625 
626 	switch (alignment) {
627 	case Unaligned:
628 		return 1;
629 	case Aligned16:
630 		return 16;
631 	case Aligned:
632 	default:
633 		return size;
634 	}
635 }
636 
__linearize(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,unsigned * max_size,unsigned size,enum x86emul_mode mode,ulong * linear,unsigned int flags)637 static __always_inline int __linearize(struct x86_emulate_ctxt *ctxt,
638 				       struct segmented_address addr,
639 				       unsigned *max_size, unsigned size,
640 				       enum x86emul_mode mode, ulong *linear,
641 				       unsigned int flags)
642 {
643 	struct desc_struct desc;
644 	bool usable;
645 	ulong la;
646 	u32 lim;
647 	u16 sel;
648 	u8  va_bits;
649 
650 	la = seg_base(ctxt, addr.seg) + addr.ea;
651 	*max_size = 0;
652 	switch (mode) {
653 	case X86EMUL_MODE_PROT64:
654 		*linear = la = ctxt->ops->get_untagged_addr(ctxt, la, flags);
655 		va_bits = ctxt_virt_addr_bits(ctxt);
656 		if (!__is_canonical_address(la, va_bits))
657 			goto bad;
658 
659 		*max_size = min_t(u64, ~0u, (1ull << va_bits) - la);
660 		if (size > *max_size)
661 			goto bad;
662 		break;
663 	default:
664 		*linear = la = (u32)la;
665 		usable = ctxt->ops->get_segment(ctxt, &sel, &desc, NULL,
666 						addr.seg);
667 		if (!usable)
668 			goto bad;
669 		/* code segment in protected mode or read-only data segment */
670 		if ((((ctxt->mode != X86EMUL_MODE_REAL) && (desc.type & 8)) || !(desc.type & 2)) &&
671 		    (flags & X86EMUL_F_WRITE))
672 			goto bad;
673 		/* unreadable code segment */
674 		if (!(flags & X86EMUL_F_FETCH) && (desc.type & 8) && !(desc.type & 2))
675 			goto bad;
676 		lim = desc_limit_scaled(&desc);
677 		if (!(desc.type & 8) && (desc.type & 4)) {
678 			/* expand-down segment */
679 			if (addr.ea <= lim)
680 				goto bad;
681 			lim = desc.d ? 0xffffffff : 0xffff;
682 		}
683 		if (addr.ea > lim)
684 			goto bad;
685 		if (lim == 0xffffffff)
686 			*max_size = ~0u;
687 		else {
688 			*max_size = (u64)lim + 1 - addr.ea;
689 			if (size > *max_size)
690 				goto bad;
691 		}
692 		break;
693 	}
694 	if (la & (insn_alignment(ctxt, size) - 1))
695 		return emulate_gp(ctxt, 0);
696 	return X86EMUL_CONTINUE;
697 bad:
698 	if (addr.seg == VCPU_SREG_SS)
699 		return emulate_ss(ctxt, 0);
700 	else
701 		return emulate_gp(ctxt, 0);
702 }
703 
linearize(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,unsigned size,bool write,ulong * linear)704 static int linearize(struct x86_emulate_ctxt *ctxt,
705 		     struct segmented_address addr,
706 		     unsigned size, bool write,
707 		     ulong *linear)
708 {
709 	unsigned max_size;
710 	return __linearize(ctxt, addr, &max_size, size, ctxt->mode, linear,
711 			   write ? X86EMUL_F_WRITE : 0);
712 }
713 
assign_eip(struct x86_emulate_ctxt * ctxt,ulong dst)714 static inline int assign_eip(struct x86_emulate_ctxt *ctxt, ulong dst)
715 {
716 	ulong linear;
717 	int rc;
718 	unsigned max_size;
719 	struct segmented_address addr = { .seg = VCPU_SREG_CS,
720 					   .ea = dst };
721 
722 	if (ctxt->op_bytes != sizeof(unsigned long))
723 		addr.ea = dst & ((1UL << (ctxt->op_bytes << 3)) - 1);
724 	rc = __linearize(ctxt, addr, &max_size, 1, ctxt->mode, &linear,
725 			 X86EMUL_F_FETCH);
726 	if (rc == X86EMUL_CONTINUE)
727 		ctxt->_eip = addr.ea;
728 	return rc;
729 }
730 
emulator_recalc_and_set_mode(struct x86_emulate_ctxt * ctxt)731 static inline int emulator_recalc_and_set_mode(struct x86_emulate_ctxt *ctxt)
732 {
733 	u64 efer;
734 	struct desc_struct cs;
735 	u16 selector;
736 	u32 base3;
737 
738 	ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
739 
740 	if (!(ctxt->ops->get_cr(ctxt, 0) & X86_CR0_PE)) {
741 		/* Real mode. cpu must not have long mode active */
742 		if (efer & EFER_LMA)
743 			return X86EMUL_UNHANDLEABLE;
744 		ctxt->mode = X86EMUL_MODE_REAL;
745 		return X86EMUL_CONTINUE;
746 	}
747 
748 	if (ctxt->eflags & X86_EFLAGS_VM) {
749 		/* Protected/VM86 mode. cpu must not have long mode active */
750 		if (efer & EFER_LMA)
751 			return X86EMUL_UNHANDLEABLE;
752 		ctxt->mode = X86EMUL_MODE_VM86;
753 		return X86EMUL_CONTINUE;
754 	}
755 
756 	if (!ctxt->ops->get_segment(ctxt, &selector, &cs, &base3, VCPU_SREG_CS))
757 		return X86EMUL_UNHANDLEABLE;
758 
759 	if (efer & EFER_LMA) {
760 		if (cs.l) {
761 			/* Proper long mode */
762 			ctxt->mode = X86EMUL_MODE_PROT64;
763 		} else if (cs.d) {
764 			/* 32 bit compatibility mode*/
765 			ctxt->mode = X86EMUL_MODE_PROT32;
766 		} else {
767 			ctxt->mode = X86EMUL_MODE_PROT16;
768 		}
769 	} else {
770 		/* Legacy 32 bit / 16 bit mode */
771 		ctxt->mode = cs.d ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
772 	}
773 
774 	return X86EMUL_CONTINUE;
775 }
776 
assign_eip_near(struct x86_emulate_ctxt * ctxt,ulong dst)777 static inline int assign_eip_near(struct x86_emulate_ctxt *ctxt, ulong dst)
778 {
779 	return assign_eip(ctxt, dst);
780 }
781 
assign_eip_far(struct x86_emulate_ctxt * ctxt,ulong dst)782 static int assign_eip_far(struct x86_emulate_ctxt *ctxt, ulong dst)
783 {
784 	int rc = emulator_recalc_and_set_mode(ctxt);
785 
786 	if (rc != X86EMUL_CONTINUE)
787 		return rc;
788 
789 	return assign_eip(ctxt, dst);
790 }
791 
jmp_rel(struct x86_emulate_ctxt * ctxt,int rel)792 static inline int jmp_rel(struct x86_emulate_ctxt *ctxt, int rel)
793 {
794 	return assign_eip_near(ctxt, ctxt->_eip + rel);
795 }
796 
linear_read_system(struct x86_emulate_ctxt * ctxt,ulong linear,void * data,unsigned size)797 static int linear_read_system(struct x86_emulate_ctxt *ctxt, ulong linear,
798 			      void *data, unsigned size)
799 {
800 	return ctxt->ops->read_std(ctxt, linear, data, size, &ctxt->exception, true);
801 }
802 
linear_write_system(struct x86_emulate_ctxt * ctxt,ulong linear,void * data,unsigned int size)803 static int linear_write_system(struct x86_emulate_ctxt *ctxt,
804 			       ulong linear, void *data,
805 			       unsigned int size)
806 {
807 	return ctxt->ops->write_std(ctxt, linear, data, size, &ctxt->exception, true);
808 }
809 
segmented_read_std(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,void * data,unsigned size)810 static int segmented_read_std(struct x86_emulate_ctxt *ctxt,
811 			      struct segmented_address addr,
812 			      void *data,
813 			      unsigned size)
814 {
815 	int rc;
816 	ulong linear;
817 
818 	rc = linearize(ctxt, addr, size, false, &linear);
819 	if (rc != X86EMUL_CONTINUE)
820 		return rc;
821 	return ctxt->ops->read_std(ctxt, linear, data, size, &ctxt->exception, false);
822 }
823 
segmented_write_std(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,void * data,unsigned int size)824 static int segmented_write_std(struct x86_emulate_ctxt *ctxt,
825 			       struct segmented_address addr,
826 			       void *data,
827 			       unsigned int size)
828 {
829 	int rc;
830 	ulong linear;
831 
832 	rc = linearize(ctxt, addr, size, true, &linear);
833 	if (rc != X86EMUL_CONTINUE)
834 		return rc;
835 	return ctxt->ops->write_std(ctxt, linear, data, size, &ctxt->exception, false);
836 }
837 
838 /*
839  * Prefetch the remaining bytes of the instruction without crossing page
840  * boundary if they are not in fetch_cache yet.
841  */
__do_insn_fetch_bytes(struct x86_emulate_ctxt * ctxt,int op_size)842 static int __do_insn_fetch_bytes(struct x86_emulate_ctxt *ctxt, int op_size)
843 {
844 	int rc;
845 	unsigned size, max_size;
846 	unsigned long linear;
847 	int cur_size = ctxt->fetch.end - ctxt->fetch.data;
848 	struct segmented_address addr = { .seg = VCPU_SREG_CS,
849 					   .ea = ctxt->eip + cur_size };
850 
851 	/*
852 	 * We do not know exactly how many bytes will be needed, and
853 	 * __linearize is expensive, so fetch as much as possible.  We
854 	 * just have to avoid going beyond the 15 byte limit, the end
855 	 * of the segment, or the end of the page.
856 	 *
857 	 * __linearize is called with size 0 so that it does not do any
858 	 * boundary check itself.  Instead, we use max_size to check
859 	 * against op_size.
860 	 */
861 	rc = __linearize(ctxt, addr, &max_size, 0, ctxt->mode, &linear,
862 			 X86EMUL_F_FETCH);
863 	if (unlikely(rc != X86EMUL_CONTINUE))
864 		return rc;
865 
866 	size = min_t(unsigned, 15UL ^ cur_size, max_size);
867 	size = min_t(unsigned, size, PAGE_SIZE - offset_in_page(linear));
868 
869 	/*
870 	 * One instruction can only straddle two pages,
871 	 * and one has been loaded at the beginning of
872 	 * x86_decode_insn.  So, if not enough bytes
873 	 * still, we must have hit the 15-byte boundary.
874 	 */
875 	if (unlikely(size < op_size))
876 		return emulate_gp(ctxt, 0);
877 
878 	rc = ctxt->ops->fetch(ctxt, linear, ctxt->fetch.end,
879 			      size, &ctxt->exception);
880 	if (unlikely(rc != X86EMUL_CONTINUE))
881 		return rc;
882 	ctxt->fetch.end += size;
883 	return X86EMUL_CONTINUE;
884 }
885 
do_insn_fetch_bytes(struct x86_emulate_ctxt * ctxt,unsigned size)886 static __always_inline int do_insn_fetch_bytes(struct x86_emulate_ctxt *ctxt,
887 					       unsigned size)
888 {
889 	unsigned done_size = ctxt->fetch.end - ctxt->fetch.ptr;
890 
891 	if (unlikely(done_size < size))
892 		return __do_insn_fetch_bytes(ctxt, size - done_size);
893 	else
894 		return X86EMUL_CONTINUE;
895 }
896 
897 /* Fetch next part of the instruction being emulated. */
898 #define insn_fetch(_type, _ctxt)					\
899 ({	_type _x;							\
900 									\
901 	rc = do_insn_fetch_bytes(_ctxt, sizeof(_type));			\
902 	if (rc != X86EMUL_CONTINUE)					\
903 		goto done;						\
904 	ctxt->_eip += sizeof(_type);					\
905 	memcpy(&_x, ctxt->fetch.ptr, sizeof(_type));			\
906 	ctxt->fetch.ptr += sizeof(_type);				\
907 	_x;								\
908 })
909 
910 #define insn_fetch_arr(_arr, _size, _ctxt)				\
911 ({									\
912 	rc = do_insn_fetch_bytes(_ctxt, _size);				\
913 	if (rc != X86EMUL_CONTINUE)					\
914 		goto done;						\
915 	ctxt->_eip += (_size);						\
916 	memcpy(_arr, ctxt->fetch.ptr, _size);				\
917 	ctxt->fetch.ptr += (_size);					\
918 })
919 
920 /*
921  * Given the 'reg' portion of a ModRM byte, and a register block, return a
922  * pointer into the block that addresses the relevant register.
923  * @highbyte_regs specifies whether to decode AH,CH,DH,BH.
924  */
decode_register(struct x86_emulate_ctxt * ctxt,u8 modrm_reg,int byteop)925 static void *decode_register(struct x86_emulate_ctxt *ctxt, u8 modrm_reg,
926 			     int byteop)
927 {
928 	void *p;
929 	int highbyte_regs = (ctxt->rex_prefix == REX_NONE) && byteop;
930 
931 	if (highbyte_regs && modrm_reg >= 4 && modrm_reg < 8)
932 		p = (unsigned char *)reg_rmw(ctxt, modrm_reg & 3) + 1;
933 	else
934 		p = reg_rmw(ctxt, modrm_reg);
935 	return p;
936 }
937 
read_descriptor(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,u16 * size,unsigned long * address,int op_bytes)938 static int read_descriptor(struct x86_emulate_ctxt *ctxt,
939 			   struct segmented_address addr,
940 			   u16 *size, unsigned long *address, int op_bytes)
941 {
942 	int rc;
943 
944 	if (op_bytes == 2)
945 		op_bytes = 3;
946 	*address = 0;
947 	rc = segmented_read_std(ctxt, addr, size, 2);
948 	if (rc != X86EMUL_CONTINUE)
949 		return rc;
950 	addr.ea += 2;
951 	rc = segmented_read_std(ctxt, addr, address, op_bytes);
952 	return rc;
953 }
954 
955 EM_ASM_2(add);
956 EM_ASM_2(or);
957 EM_ASM_2(adc);
958 EM_ASM_2(sbb);
959 EM_ASM_2(and);
960 EM_ASM_2(sub);
961 EM_ASM_2(xor);
962 EM_ASM_2(cmp);
963 EM_ASM_2(test);
964 EM_ASM_2(xadd);
965 
966 EM_ASM_1SRC2(mul, mul_ex);
967 EM_ASM_1SRC2(imul, imul_ex);
968 EM_ASM_1SRC2EX(div, div_ex);
969 EM_ASM_1SRC2EX(idiv, idiv_ex);
970 
971 EM_ASM_3WCL(shld);
972 EM_ASM_3WCL(shrd);
973 
974 EM_ASM_2W(imul);
975 
976 EM_ASM_1(not);
977 EM_ASM_1(neg);
978 EM_ASM_1(inc);
979 EM_ASM_1(dec);
980 
981 EM_ASM_2CL(rol);
982 EM_ASM_2CL(ror);
983 EM_ASM_2CL(rcl);
984 EM_ASM_2CL(rcr);
985 EM_ASM_2CL(shl);
986 EM_ASM_2CL(shr);
987 EM_ASM_2CL(sar);
988 
989 EM_ASM_2W(bsf);
990 EM_ASM_2W(bsr);
991 EM_ASM_2W(bt);
992 EM_ASM_2W(bts);
993 EM_ASM_2W(btr);
994 EM_ASM_2W(btc);
995 
996 EM_ASM_2R(cmp, cmp_r);
997 
em_bsf_c(struct x86_emulate_ctxt * ctxt)998 static int em_bsf_c(struct x86_emulate_ctxt *ctxt)
999 {
1000 	/* If src is zero, do not writeback, but update flags */
1001 	if (ctxt->src.val == 0)
1002 		ctxt->dst.type = OP_NONE;
1003 	return em_bsf(ctxt);
1004 }
1005 
em_bsr_c(struct x86_emulate_ctxt * ctxt)1006 static int em_bsr_c(struct x86_emulate_ctxt *ctxt)
1007 {
1008 	/* If src is zero, do not writeback, but update flags */
1009 	if (ctxt->src.val == 0)
1010 		ctxt->dst.type = OP_NONE;
1011 	return em_bsr(ctxt);
1012 }
1013 
test_cc(unsigned int condition,unsigned long flags)1014 static __always_inline u8 test_cc(unsigned int condition, unsigned long flags)
1015 {
1016 	return __emulate_cc(flags, condition & 0xf);
1017 }
1018 
fetch_register_operand(struct operand * op)1019 static void fetch_register_operand(struct operand *op)
1020 {
1021 	switch (op->bytes) {
1022 	case 1:
1023 		op->val = *(u8 *)op->addr.reg;
1024 		break;
1025 	case 2:
1026 		op->val = *(u16 *)op->addr.reg;
1027 		break;
1028 	case 4:
1029 		op->val = *(u32 *)op->addr.reg;
1030 		break;
1031 	case 8:
1032 		op->val = *(u64 *)op->addr.reg;
1033 		break;
1034 	}
1035 	op->orig_val = op->val;
1036 }
1037 
em_fninit(struct x86_emulate_ctxt * ctxt)1038 static int em_fninit(struct x86_emulate_ctxt *ctxt)
1039 {
1040 	if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
1041 		return emulate_nm(ctxt);
1042 
1043 	kvm_fpu_get();
1044 	asm volatile("fninit");
1045 	kvm_fpu_put();
1046 	return X86EMUL_CONTINUE;
1047 }
1048 
em_fnstcw(struct x86_emulate_ctxt * ctxt)1049 static int em_fnstcw(struct x86_emulate_ctxt *ctxt)
1050 {
1051 	u16 fcw;
1052 
1053 	if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
1054 		return emulate_nm(ctxt);
1055 
1056 	kvm_fpu_get();
1057 	asm volatile("fnstcw %0": "+m"(fcw));
1058 	kvm_fpu_put();
1059 
1060 	ctxt->dst.val = fcw;
1061 
1062 	return X86EMUL_CONTINUE;
1063 }
1064 
em_fnstsw(struct x86_emulate_ctxt * ctxt)1065 static int em_fnstsw(struct x86_emulate_ctxt *ctxt)
1066 {
1067 	u16 fsw;
1068 
1069 	if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
1070 		return emulate_nm(ctxt);
1071 
1072 	kvm_fpu_get();
1073 	asm volatile("fnstsw %0": "+m"(fsw));
1074 	kvm_fpu_put();
1075 
1076 	ctxt->dst.val = fsw;
1077 
1078 	return X86EMUL_CONTINUE;
1079 }
1080 
__decode_register_operand(struct x86_emulate_ctxt * ctxt,struct operand * op,int reg)1081 static void __decode_register_operand(struct x86_emulate_ctxt *ctxt,
1082 				      struct operand *op, int reg)
1083 {
1084 	if ((ctxt->d & Avx) && ctxt->op_bytes == 32) {
1085 		op->type = OP_YMM;
1086 		op->bytes = 32;
1087 		op->addr.xmm = reg;
1088 		kvm_read_avx_reg(reg, &op->vec_val2);
1089 		return;
1090 	}
1091 	if (ctxt->d & (Avx|Sse)) {
1092 		op->type = OP_XMM;
1093 		op->bytes = 16;
1094 		op->addr.xmm = reg;
1095 		kvm_read_sse_reg(reg, &op->vec_val);
1096 		return;
1097 	}
1098 	if (ctxt->d & Mmx) {
1099 		reg &= 7;
1100 		op->type = OP_MM;
1101 		op->bytes = 8;
1102 		op->addr.mm = reg;
1103 		return;
1104 	}
1105 
1106 	op->type = OP_REG;
1107 	op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
1108 	op->addr.reg = decode_register(ctxt, reg, ctxt->d & ByteOp);
1109 	fetch_register_operand(op);
1110 }
1111 
decode_register_operand(struct x86_emulate_ctxt * ctxt,struct operand * op)1112 static void decode_register_operand(struct x86_emulate_ctxt *ctxt,
1113 				    struct operand *op)
1114 {
1115 	unsigned int reg;
1116 
1117 	if (ctxt->d & ModRM)
1118 		reg = ctxt->modrm_reg;
1119 	else
1120 		reg = (ctxt->b & 7) | (ctxt->rex_bits & REX_B ? 8 : 0);
1121 
1122 	__decode_register_operand(ctxt, op, reg);
1123 }
1124 
adjust_modrm_seg(struct x86_emulate_ctxt * ctxt,int base_reg)1125 static void adjust_modrm_seg(struct x86_emulate_ctxt *ctxt, int base_reg)
1126 {
1127 	if (base_reg == VCPU_REGS_RSP || base_reg == VCPU_REGS_RBP)
1128 		ctxt->modrm_seg = VCPU_SREG_SS;
1129 }
1130 
decode_modrm(struct x86_emulate_ctxt * ctxt,struct operand * op)1131 static int decode_modrm(struct x86_emulate_ctxt *ctxt,
1132 			struct operand *op)
1133 {
1134 	u8 sib;
1135 	int index_reg, base_reg, scale;
1136 	int rc = X86EMUL_CONTINUE;
1137 	ulong modrm_ea = 0;
1138 
1139 	ctxt->modrm_reg = (ctxt->rex_bits & REX_R ? 8 : 0);
1140 	index_reg = (ctxt->rex_bits & REX_X ? 8 : 0);
1141 	base_reg = (ctxt->rex_bits & REX_B ? 8 : 0);
1142 
1143 	ctxt->modrm_mod = (ctxt->modrm & 0xc0) >> 6;
1144 	ctxt->modrm_reg |= (ctxt->modrm & 0x38) >> 3;
1145 	ctxt->modrm_rm = base_reg | (ctxt->modrm & 0x07);
1146 	ctxt->modrm_seg = VCPU_SREG_DS;
1147 
1148 	if (ctxt->modrm_mod == 3 || (ctxt->d & NoMod)) {
1149 		__decode_register_operand(ctxt, op, ctxt->modrm_rm);
1150 		return rc;
1151 	}
1152 
1153 	op->type = OP_MEM;
1154 
1155 	if (ctxt->ad_bytes == 2) {
1156 		unsigned bx = reg_read(ctxt, VCPU_REGS_RBX);
1157 		unsigned bp = reg_read(ctxt, VCPU_REGS_RBP);
1158 		unsigned si = reg_read(ctxt, VCPU_REGS_RSI);
1159 		unsigned di = reg_read(ctxt, VCPU_REGS_RDI);
1160 
1161 		/* 16-bit ModR/M decode. */
1162 		switch (ctxt->modrm_mod) {
1163 		case 0:
1164 			if (ctxt->modrm_rm == 6)
1165 				modrm_ea += insn_fetch(u16, ctxt);
1166 			break;
1167 		case 1:
1168 			modrm_ea += insn_fetch(s8, ctxt);
1169 			break;
1170 		case 2:
1171 			modrm_ea += insn_fetch(u16, ctxt);
1172 			break;
1173 		}
1174 		switch (ctxt->modrm_rm) {
1175 		case 0:
1176 			modrm_ea += bx + si;
1177 			break;
1178 		case 1:
1179 			modrm_ea += bx + di;
1180 			break;
1181 		case 2:
1182 			modrm_ea += bp + si;
1183 			break;
1184 		case 3:
1185 			modrm_ea += bp + di;
1186 			break;
1187 		case 4:
1188 			modrm_ea += si;
1189 			break;
1190 		case 5:
1191 			modrm_ea += di;
1192 			break;
1193 		case 6:
1194 			if (ctxt->modrm_mod != 0)
1195 				modrm_ea += bp;
1196 			break;
1197 		case 7:
1198 			modrm_ea += bx;
1199 			break;
1200 		}
1201 		if (ctxt->modrm_rm == 2 || ctxt->modrm_rm == 3 ||
1202 		    (ctxt->modrm_rm == 6 && ctxt->modrm_mod != 0))
1203 			ctxt->modrm_seg = VCPU_SREG_SS;
1204 		modrm_ea = (u16)modrm_ea;
1205 	} else {
1206 		/* 32/64-bit ModR/M decode. */
1207 		if ((ctxt->modrm_rm & 7) == 4) {
1208 			sib = insn_fetch(u8, ctxt);
1209 			index_reg |= (sib >> 3) & 7;
1210 			base_reg |= sib & 7;
1211 			scale = sib >> 6;
1212 
1213 			if ((base_reg & 7) == 5 && ctxt->modrm_mod == 0)
1214 				modrm_ea += insn_fetch(s32, ctxt);
1215 			else {
1216 				modrm_ea += reg_read(ctxt, base_reg);
1217 				adjust_modrm_seg(ctxt, base_reg);
1218 				/* Increment ESP on POP [ESP] */
1219 				if ((ctxt->d & IncSP) &&
1220 				    base_reg == VCPU_REGS_RSP)
1221 					modrm_ea += ctxt->op_bytes;
1222 			}
1223 			if (index_reg != 4)
1224 				modrm_ea += reg_read(ctxt, index_reg) << scale;
1225 		} else if ((ctxt->modrm_rm & 7) == 5 && ctxt->modrm_mod == 0) {
1226 			modrm_ea += insn_fetch(s32, ctxt);
1227 			if (ctxt->mode == X86EMUL_MODE_PROT64)
1228 				ctxt->rip_relative = 1;
1229 		} else {
1230 			base_reg = ctxt->modrm_rm;
1231 			modrm_ea += reg_read(ctxt, base_reg);
1232 			adjust_modrm_seg(ctxt, base_reg);
1233 		}
1234 		switch (ctxt->modrm_mod) {
1235 		case 1:
1236 			modrm_ea += insn_fetch(s8, ctxt);
1237 			break;
1238 		case 2:
1239 			modrm_ea += insn_fetch(s32, ctxt);
1240 			break;
1241 		}
1242 	}
1243 	op->addr.mem.ea = modrm_ea;
1244 	if (ctxt->ad_bytes != 8)
1245 		ctxt->memop.addr.mem.ea = (u32)ctxt->memop.addr.mem.ea;
1246 
1247 done:
1248 	return rc;
1249 }
1250 
decode_abs(struct x86_emulate_ctxt * ctxt,struct operand * op)1251 static int decode_abs(struct x86_emulate_ctxt *ctxt,
1252 		      struct operand *op)
1253 {
1254 	int rc = X86EMUL_CONTINUE;
1255 
1256 	op->type = OP_MEM;
1257 	switch (ctxt->ad_bytes) {
1258 	case 2:
1259 		op->addr.mem.ea = insn_fetch(u16, ctxt);
1260 		break;
1261 	case 4:
1262 		op->addr.mem.ea = insn_fetch(u32, ctxt);
1263 		break;
1264 	case 8:
1265 		op->addr.mem.ea = insn_fetch(u64, ctxt);
1266 		break;
1267 	}
1268 done:
1269 	return rc;
1270 }
1271 
fetch_bit_operand(struct x86_emulate_ctxt * ctxt)1272 static void fetch_bit_operand(struct x86_emulate_ctxt *ctxt)
1273 {
1274 	long sv = 0, mask;
1275 
1276 	if (ctxt->dst.type == OP_MEM && ctxt->src.type == OP_REG) {
1277 		mask = ~((long)ctxt->dst.bytes * 8 - 1);
1278 
1279 		if (ctxt->src.bytes == 2)
1280 			sv = (s16)ctxt->src.val & (s16)mask;
1281 		else if (ctxt->src.bytes == 4)
1282 			sv = (s32)ctxt->src.val & (s32)mask;
1283 		else
1284 			sv = (s64)ctxt->src.val & (s64)mask;
1285 
1286 		ctxt->dst.addr.mem.ea = address_mask(ctxt,
1287 					   ctxt->dst.addr.mem.ea + (sv >> 3));
1288 	}
1289 
1290 	/* only subword offset */
1291 	ctxt->src.val &= (ctxt->dst.bytes << 3) - 1;
1292 }
1293 
read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * dest,unsigned size)1294 static int read_emulated(struct x86_emulate_ctxt *ctxt,
1295 			 unsigned long addr, void *dest, unsigned size)
1296 {
1297 	int rc;
1298 	struct read_cache *mc = &ctxt->mem_read;
1299 
1300 	if (mc->pos < mc->end)
1301 		goto read_cached;
1302 
1303 	if (KVM_EMULATOR_BUG_ON((mc->end + size) >= sizeof(mc->data), ctxt))
1304 		return X86EMUL_UNHANDLEABLE;
1305 
1306 	rc = ctxt->ops->read_emulated(ctxt, addr, mc->data + mc->end, size,
1307 				      &ctxt->exception);
1308 	if (rc != X86EMUL_CONTINUE)
1309 		return rc;
1310 
1311 	mc->end += size;
1312 
1313 read_cached:
1314 	memcpy(dest, mc->data + mc->pos, size);
1315 	mc->pos += size;
1316 	return X86EMUL_CONTINUE;
1317 }
1318 
segmented_read(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,void * data,unsigned size)1319 static int segmented_read(struct x86_emulate_ctxt *ctxt,
1320 			  struct segmented_address addr,
1321 			  void *data,
1322 			  unsigned size)
1323 {
1324 	int rc;
1325 	ulong linear;
1326 
1327 	rc = linearize(ctxt, addr, size, false, &linear);
1328 	if (rc != X86EMUL_CONTINUE)
1329 		return rc;
1330 	return read_emulated(ctxt, linear, data, size);
1331 }
1332 
segmented_write(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,const void * data,unsigned size)1333 static int segmented_write(struct x86_emulate_ctxt *ctxt,
1334 			   struct segmented_address addr,
1335 			   const void *data,
1336 			   unsigned size)
1337 {
1338 	int rc;
1339 	ulong linear;
1340 
1341 	rc = linearize(ctxt, addr, size, true, &linear);
1342 	if (rc != X86EMUL_CONTINUE)
1343 		return rc;
1344 	return ctxt->ops->write_emulated(ctxt, linear, data, size,
1345 					 &ctxt->exception);
1346 }
1347 
segmented_cmpxchg(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,const void * orig_data,const void * data,unsigned size)1348 static int segmented_cmpxchg(struct x86_emulate_ctxt *ctxt,
1349 			     struct segmented_address addr,
1350 			     const void *orig_data, const void *data,
1351 			     unsigned size)
1352 {
1353 	int rc;
1354 	ulong linear;
1355 
1356 	rc = linearize(ctxt, addr, size, true, &linear);
1357 	if (rc != X86EMUL_CONTINUE)
1358 		return rc;
1359 	return ctxt->ops->cmpxchg_emulated(ctxt, linear, orig_data, data,
1360 					   size, &ctxt->exception);
1361 }
1362 
pio_in_emulated(struct x86_emulate_ctxt * ctxt,unsigned int size,unsigned short port,void * dest)1363 static int pio_in_emulated(struct x86_emulate_ctxt *ctxt,
1364 			   unsigned int size, unsigned short port,
1365 			   void *dest)
1366 {
1367 	struct read_cache *rc = &ctxt->io_read;
1368 
1369 	if (rc->pos == rc->end) { /* refill pio read ahead */
1370 		unsigned int in_page, n;
1371 		unsigned int count = ctxt->rep_prefix ?
1372 			address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) : 1;
1373 		in_page = (ctxt->eflags & X86_EFLAGS_DF) ?
1374 			offset_in_page(reg_read(ctxt, VCPU_REGS_RDI)) :
1375 			PAGE_SIZE - offset_in_page(reg_read(ctxt, VCPU_REGS_RDI));
1376 		n = min3(in_page, (unsigned int)sizeof(rc->data) / size, count);
1377 		if (n == 0)
1378 			n = 1;
1379 		rc->pos = rc->end = 0;
1380 		if (!ctxt->ops->pio_in_emulated(ctxt, size, port, rc->data, n))
1381 			return 0;
1382 		rc->end = n * size;
1383 	}
1384 
1385 	if (ctxt->rep_prefix && (ctxt->d & String) &&
1386 	    !(ctxt->eflags & X86_EFLAGS_DF)) {
1387 		ctxt->dst.data = rc->data + rc->pos;
1388 		ctxt->dst.type = OP_MEM_STR;
1389 		ctxt->dst.count = (rc->end - rc->pos) / size;
1390 		rc->pos = rc->end;
1391 	} else {
1392 		memcpy(dest, rc->data + rc->pos, size);
1393 		rc->pos += size;
1394 	}
1395 	return 1;
1396 }
1397 
read_interrupt_descriptor(struct x86_emulate_ctxt * ctxt,u16 index,struct desc_struct * desc)1398 static int read_interrupt_descriptor(struct x86_emulate_ctxt *ctxt,
1399 				     u16 index, struct desc_struct *desc)
1400 {
1401 	struct desc_ptr dt;
1402 	ulong addr;
1403 
1404 	ctxt->ops->get_idt(ctxt, &dt);
1405 
1406 	if (dt.size < index * 8 + 7)
1407 		return emulate_gp(ctxt, index << 3 | 0x2);
1408 
1409 	addr = dt.address + index * 8;
1410 	return linear_read_system(ctxt, addr, desc, sizeof(*desc));
1411 }
1412 
get_descriptor_table_ptr(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_ptr * dt)1413 static void get_descriptor_table_ptr(struct x86_emulate_ctxt *ctxt,
1414 				     u16 selector, struct desc_ptr *dt)
1415 {
1416 	const struct x86_emulate_ops *ops = ctxt->ops;
1417 	u32 base3 = 0;
1418 
1419 	if (selector & 1 << 2) {
1420 		struct desc_struct desc;
1421 		u16 sel;
1422 
1423 		memset(dt, 0, sizeof(*dt));
1424 		if (!ops->get_segment(ctxt, &sel, &desc, &base3,
1425 				      VCPU_SREG_LDTR))
1426 			return;
1427 
1428 		dt->size = desc_limit_scaled(&desc); /* what if limit > 65535? */
1429 		dt->address = get_desc_base(&desc) | ((u64)base3 << 32);
1430 	} else
1431 		ops->get_gdt(ctxt, dt);
1432 }
1433 
get_descriptor_ptr(struct x86_emulate_ctxt * ctxt,u16 selector,ulong * desc_addr_p)1434 static int get_descriptor_ptr(struct x86_emulate_ctxt *ctxt,
1435 			      u16 selector, ulong *desc_addr_p)
1436 {
1437 	struct desc_ptr dt;
1438 	u16 index = selector >> 3;
1439 	ulong addr;
1440 
1441 	get_descriptor_table_ptr(ctxt, selector, &dt);
1442 
1443 	if (dt.size < index * 8 + 7)
1444 		return emulate_gp(ctxt, selector & 0xfffc);
1445 
1446 	addr = dt.address + index * 8;
1447 
1448 #ifdef CONFIG_X86_64
1449 	if (addr >> 32 != 0) {
1450 		u64 efer = 0;
1451 
1452 		ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
1453 		if (!(efer & EFER_LMA))
1454 			addr &= (u32)-1;
1455 	}
1456 #endif
1457 
1458 	*desc_addr_p = addr;
1459 	return X86EMUL_CONTINUE;
1460 }
1461 
1462 /* allowed just for 8 bytes segments */
read_segment_descriptor(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,ulong * desc_addr_p)1463 static int read_segment_descriptor(struct x86_emulate_ctxt *ctxt,
1464 				   u16 selector, struct desc_struct *desc,
1465 				   ulong *desc_addr_p)
1466 {
1467 	int rc;
1468 
1469 	rc = get_descriptor_ptr(ctxt, selector, desc_addr_p);
1470 	if (rc != X86EMUL_CONTINUE)
1471 		return rc;
1472 
1473 	return linear_read_system(ctxt, *desc_addr_p, desc, sizeof(*desc));
1474 }
1475 
1476 /* allowed just for 8 bytes segments */
write_segment_descriptor(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc)1477 static int write_segment_descriptor(struct x86_emulate_ctxt *ctxt,
1478 				    u16 selector, struct desc_struct *desc)
1479 {
1480 	int rc;
1481 	ulong addr;
1482 
1483 	rc = get_descriptor_ptr(ctxt, selector, &addr);
1484 	if (rc != X86EMUL_CONTINUE)
1485 		return rc;
1486 
1487 	return linear_write_system(ctxt, addr, desc, sizeof(*desc));
1488 }
1489 
emulator_is_ssp_invalid(struct x86_emulate_ctxt * ctxt,u8 cpl)1490 static bool emulator_is_ssp_invalid(struct x86_emulate_ctxt *ctxt, u8 cpl)
1491 {
1492 	const u32 MSR_IA32_X_CET = cpl == 3 ? MSR_IA32_U_CET : MSR_IA32_S_CET;
1493 	u64 efer = 0, cet = 0, ssp = 0;
1494 
1495 	if (!(ctxt->ops->get_cr(ctxt, 4) & X86_CR4_CET))
1496 		return false;
1497 
1498 	if (ctxt->ops->get_msr(ctxt, MSR_EFER, &efer))
1499 		return true;
1500 
1501 	/* SSP is guaranteed to be valid if the vCPU was already in 32-bit mode. */
1502 	if (!(efer & EFER_LMA))
1503 		return false;
1504 
1505 	if (ctxt->ops->get_msr(ctxt, MSR_IA32_X_CET, &cet))
1506 		return true;
1507 
1508 	if (!(cet & CET_SHSTK_EN))
1509 		return false;
1510 
1511 	if (ctxt->ops->get_msr(ctxt, MSR_KVM_INTERNAL_GUEST_SSP, &ssp))
1512 		return true;
1513 
1514 	/*
1515 	 * On transfer from 64-bit mode to compatibility mode, SSP[63:32] must
1516 	 * be 0, i.e. SSP must be a 32-bit value outside of 64-bit mode.
1517 	 */
1518 	return ssp >> 32;
1519 }
1520 
__load_segment_descriptor(struct x86_emulate_ctxt * ctxt,u16 selector,int seg,u8 cpl,enum x86_transfer_type transfer,struct desc_struct * desc)1521 static int __load_segment_descriptor(struct x86_emulate_ctxt *ctxt,
1522 				     u16 selector, int seg, u8 cpl,
1523 				     enum x86_transfer_type transfer,
1524 				     struct desc_struct *desc)
1525 {
1526 	struct desc_struct seg_desc, old_desc;
1527 	u8 dpl, rpl;
1528 	unsigned err_vec = GP_VECTOR;
1529 	u32 err_code = 0;
1530 	bool null_selector = !(selector & ~0x3); /* 0000-0003 are null */
1531 	ulong desc_addr;
1532 	int ret;
1533 	u16 dummy;
1534 	u32 base3 = 0;
1535 
1536 	memset(&seg_desc, 0, sizeof(seg_desc));
1537 
1538 	if (ctxt->mode == X86EMUL_MODE_REAL) {
1539 		/* set real mode segment descriptor (keep limit etc. for
1540 		 * unreal mode) */
1541 		ctxt->ops->get_segment(ctxt, &dummy, &seg_desc, NULL, seg);
1542 		set_desc_base(&seg_desc, selector << 4);
1543 		goto load;
1544 	} else if (seg <= VCPU_SREG_GS && ctxt->mode == X86EMUL_MODE_VM86) {
1545 		/* VM86 needs a clean new segment descriptor */
1546 		set_desc_base(&seg_desc, selector << 4);
1547 		set_desc_limit(&seg_desc, 0xffff);
1548 		seg_desc.type = 3;
1549 		seg_desc.p = 1;
1550 		seg_desc.s = 1;
1551 		seg_desc.dpl = 3;
1552 		goto load;
1553 	}
1554 
1555 	rpl = selector & 3;
1556 
1557 	/* TR should be in GDT only */
1558 	if (seg == VCPU_SREG_TR && (selector & (1 << 2)))
1559 		goto exception;
1560 
1561 	/* NULL selector is not valid for TR, CS and (except for long mode) SS */
1562 	if (null_selector) {
1563 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_TR)
1564 			goto exception;
1565 
1566 		if (seg == VCPU_SREG_SS) {
1567 			if (ctxt->mode != X86EMUL_MODE_PROT64 || rpl != cpl)
1568 				goto exception;
1569 
1570 			/*
1571 			 * ctxt->ops->set_segment expects the CPL to be in
1572 			 * SS.DPL, so fake an expand-up 32-bit data segment.
1573 			 */
1574 			seg_desc.type = 3;
1575 			seg_desc.p = 1;
1576 			seg_desc.s = 1;
1577 			seg_desc.dpl = cpl;
1578 			seg_desc.d = 1;
1579 			seg_desc.g = 1;
1580 		}
1581 
1582 		/* Skip all following checks */
1583 		goto load;
1584 	}
1585 
1586 	ret = read_segment_descriptor(ctxt, selector, &seg_desc, &desc_addr);
1587 	if (ret != X86EMUL_CONTINUE)
1588 		return ret;
1589 
1590 	err_code = selector & 0xfffc;
1591 	err_vec = (transfer == X86_TRANSFER_TASK_SWITCH) ? TS_VECTOR :
1592 							   GP_VECTOR;
1593 
1594 	/* can't load system descriptor into segment selector */
1595 	if (seg <= VCPU_SREG_GS && !seg_desc.s) {
1596 		if (transfer == X86_TRANSFER_CALL_JMP)
1597 			return X86EMUL_UNHANDLEABLE;
1598 		goto exception;
1599 	}
1600 
1601 	dpl = seg_desc.dpl;
1602 
1603 	switch (seg) {
1604 	case VCPU_SREG_SS:
1605 		/*
1606 		 * segment is not a writable data segment or segment
1607 		 * selector's RPL != CPL or DPL != CPL
1608 		 */
1609 		if (rpl != cpl || (seg_desc.type & 0xa) != 0x2 || dpl != cpl)
1610 			goto exception;
1611 		break;
1612 	case VCPU_SREG_CS:
1613 		/*
1614 		 * KVM uses "none" when loading CS as part of emulating Real
1615 		 * Mode exceptions and IRET (handled above).  In all other
1616 		 * cases, loading CS without a control transfer is a KVM bug.
1617 		 */
1618 		if (WARN_ON_ONCE(transfer == X86_TRANSFER_NONE))
1619 			goto exception;
1620 
1621 		if (!(seg_desc.type & 8))
1622 			goto exception;
1623 
1624 		if (transfer == X86_TRANSFER_RET) {
1625 			/* RET can never return to an inner privilege level. */
1626 			if (rpl < cpl)
1627 				goto exception;
1628 			/* Outer-privilege level return is not implemented */
1629 			if (rpl > cpl)
1630 				return X86EMUL_UNHANDLEABLE;
1631 		}
1632 		if (transfer == X86_TRANSFER_RET || transfer == X86_TRANSFER_TASK_SWITCH) {
1633 			if (seg_desc.type & 4) {
1634 				/* conforming */
1635 				if (dpl > rpl)
1636 					goto exception;
1637 			} else {
1638 				/* nonconforming */
1639 				if (dpl != rpl)
1640 					goto exception;
1641 			}
1642 		} else { /* X86_TRANSFER_CALL_JMP */
1643 			if (seg_desc.type & 4) {
1644 				/* conforming */
1645 				if (dpl > cpl)
1646 					goto exception;
1647 			} else {
1648 				/* nonconforming */
1649 				if (rpl > cpl || dpl != cpl)
1650 					goto exception;
1651 			}
1652 		}
1653 		/* in long-mode d/b must be clear if l is set */
1654 		if (seg_desc.d && seg_desc.l) {
1655 			u64 efer = 0;
1656 
1657 			ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
1658 			if (efer & EFER_LMA)
1659 				goto exception;
1660 		}
1661 		if (!seg_desc.l && emulator_is_ssp_invalid(ctxt, cpl)) {
1662 			err_code = 0;
1663 			goto exception;
1664 		}
1665 
1666 		/* CS(RPL) <- CPL */
1667 		selector = (selector & 0xfffc) | cpl;
1668 		break;
1669 	case VCPU_SREG_TR:
1670 		if (seg_desc.s || (seg_desc.type != 1 && seg_desc.type != 9))
1671 			goto exception;
1672 		break;
1673 	case VCPU_SREG_LDTR:
1674 		if (seg_desc.s || seg_desc.type != 2)
1675 			goto exception;
1676 		break;
1677 	default: /*  DS, ES, FS, or GS */
1678 		/*
1679 		 * segment is not a data or readable code segment or
1680 		 * ((segment is a data or nonconforming code segment)
1681 		 * and ((RPL > DPL) or (CPL > DPL)))
1682 		 */
1683 		if ((seg_desc.type & 0xa) == 0x8 ||
1684 		    (((seg_desc.type & 0xc) != 0xc) &&
1685 		     (rpl > dpl || cpl > dpl)))
1686 			goto exception;
1687 		break;
1688 	}
1689 
1690 	if (!seg_desc.p) {
1691 		err_vec = (seg == VCPU_SREG_SS) ? SS_VECTOR : NP_VECTOR;
1692 		goto exception;
1693 	}
1694 
1695 	if (seg_desc.s) {
1696 		/* mark segment as accessed */
1697 		if (!(seg_desc.type & 1)) {
1698 			seg_desc.type |= 1;
1699 			ret = write_segment_descriptor(ctxt, selector,
1700 						       &seg_desc);
1701 			if (ret != X86EMUL_CONTINUE)
1702 				return ret;
1703 		}
1704 	} else if (ctxt->mode == X86EMUL_MODE_PROT64) {
1705 		ret = linear_read_system(ctxt, desc_addr+8, &base3, sizeof(base3));
1706 		if (ret != X86EMUL_CONTINUE)
1707 			return ret;
1708 		if (emul_is_noncanonical_address(get_desc_base(&seg_desc) |
1709 						 ((u64)base3 << 32), ctxt,
1710 						 X86EMUL_F_DT_LOAD))
1711 			return emulate_gp(ctxt, err_code);
1712 	}
1713 
1714 	if (seg == VCPU_SREG_TR) {
1715 		old_desc = seg_desc;
1716 		seg_desc.type |= 2; /* busy */
1717 		ret = ctxt->ops->cmpxchg_emulated(ctxt, desc_addr, &old_desc, &seg_desc,
1718 						  sizeof(seg_desc), &ctxt->exception);
1719 		if (ret != X86EMUL_CONTINUE)
1720 			return ret;
1721 	}
1722 load:
1723 	ctxt->ops->set_segment(ctxt, selector, &seg_desc, base3, seg);
1724 	if (desc)
1725 		*desc = seg_desc;
1726 	return X86EMUL_CONTINUE;
1727 exception:
1728 	return emulate_exception(ctxt, err_vec, err_code, true);
1729 }
1730 
load_segment_descriptor(struct x86_emulate_ctxt * ctxt,u16 selector,int seg)1731 static int load_segment_descriptor(struct x86_emulate_ctxt *ctxt,
1732 				   u16 selector, int seg)
1733 {
1734 	u8 cpl = ctxt->ops->cpl(ctxt);
1735 
1736 	/*
1737 	 * None of MOV, POP and LSS can load a NULL selector in CPL=3, but
1738 	 * they can load it at CPL<3 (Intel's manual says only LSS can,
1739 	 * but it's wrong).
1740 	 *
1741 	 * However, the Intel manual says that putting IST=1/DPL=3 in
1742 	 * an interrupt gate will result in SS=3 (the AMD manual instead
1743 	 * says it doesn't), so allow SS=3 in __load_segment_descriptor
1744 	 * and only forbid it here.
1745 	 */
1746 	if (seg == VCPU_SREG_SS && selector == 3 &&
1747 	    ctxt->mode == X86EMUL_MODE_PROT64)
1748 		return emulate_exception(ctxt, GP_VECTOR, 0, true);
1749 
1750 	return __load_segment_descriptor(ctxt, selector, seg, cpl,
1751 					 X86_TRANSFER_NONE, NULL);
1752 }
1753 
write_register_operand(struct operand * op)1754 static void write_register_operand(struct operand *op)
1755 {
1756 	return assign_register(op->addr.reg, op->val, op->bytes);
1757 }
1758 
writeback(struct x86_emulate_ctxt * ctxt,struct operand * op)1759 static int writeback(struct x86_emulate_ctxt *ctxt, struct operand *op)
1760 {
1761 	switch (op->type) {
1762 	case OP_REG:
1763 		write_register_operand(op);
1764 		break;
1765 	case OP_MEM:
1766 		if (ctxt->lock_prefix)
1767 			return segmented_cmpxchg(ctxt,
1768 						 op->addr.mem,
1769 						 &op->orig_val,
1770 						 &op->val,
1771 						 op->bytes);
1772 		else
1773 			return segmented_write(ctxt,
1774 					       op->addr.mem,
1775 					       &op->val,
1776 					       op->bytes);
1777 	case OP_MEM_STR:
1778 		return segmented_write(ctxt,
1779 				       op->addr.mem,
1780 				       op->data,
1781 				       op->bytes * op->count);
1782 	case OP_XMM:
1783 		if (!(ctxt->d & Avx)) {
1784 			kvm_write_sse_reg(op->addr.xmm, &op->vec_val);
1785 			break;
1786 		}
1787 		/* full YMM write but with high bytes cleared */
1788 		memset(op->valptr + 16, 0, 16);
1789 		fallthrough;
1790 	case OP_YMM:
1791 		kvm_write_avx_reg(op->addr.xmm, &op->vec_val2);
1792 		break;
1793 	case OP_MM:
1794 		kvm_write_mmx_reg(op->addr.mm, &op->mm_val);
1795 		break;
1796 	case OP_NONE:
1797 		/* no writeback */
1798 		break;
1799 	default:
1800 		break;
1801 	}
1802 	return X86EMUL_CONTINUE;
1803 }
1804 
emulate_push(struct x86_emulate_ctxt * ctxt,const void * data,int len)1805 static int emulate_push(struct x86_emulate_ctxt *ctxt, const void *data, int len)
1806 {
1807 	struct segmented_address addr;
1808 
1809 	rsp_increment(ctxt, -len);
1810 	addr.ea = reg_read(ctxt, VCPU_REGS_RSP) & stack_mask(ctxt);
1811 	addr.seg = VCPU_SREG_SS;
1812 
1813 	return segmented_write(ctxt, addr, data, len);
1814 }
1815 
em_push(struct x86_emulate_ctxt * ctxt)1816 static int em_push(struct x86_emulate_ctxt *ctxt)
1817 {
1818 	/* Disable writeback. */
1819 	ctxt->dst.type = OP_NONE;
1820 	return emulate_push(ctxt, &ctxt->src.val, ctxt->op_bytes);
1821 }
1822 
emulate_pop(struct x86_emulate_ctxt * ctxt,void * dest,int len)1823 static int emulate_pop(struct x86_emulate_ctxt *ctxt,
1824 		       void *dest, int len)
1825 {
1826 	int rc;
1827 	struct segmented_address addr;
1828 
1829 	addr.ea = reg_read(ctxt, VCPU_REGS_RSP) & stack_mask(ctxt);
1830 	addr.seg = VCPU_SREG_SS;
1831 	rc = segmented_read(ctxt, addr, dest, len);
1832 	if (rc != X86EMUL_CONTINUE)
1833 		return rc;
1834 
1835 	rsp_increment(ctxt, len);
1836 	return rc;
1837 }
1838 
em_pop(struct x86_emulate_ctxt * ctxt)1839 static int em_pop(struct x86_emulate_ctxt *ctxt)
1840 {
1841 	return emulate_pop(ctxt, &ctxt->dst.val, ctxt->op_bytes);
1842 }
1843 
emulate_popf(struct x86_emulate_ctxt * ctxt,void * dest,int len)1844 static int emulate_popf(struct x86_emulate_ctxt *ctxt,
1845 			void *dest, int len)
1846 {
1847 	int rc;
1848 	unsigned long val = 0;
1849 	unsigned long change_mask;
1850 	int iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> X86_EFLAGS_IOPL_BIT;
1851 	int cpl = ctxt->ops->cpl(ctxt);
1852 
1853 	rc = emulate_pop(ctxt, &val, len);
1854 	if (rc != X86EMUL_CONTINUE)
1855 		return rc;
1856 
1857 	change_mask = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
1858 		      X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF |
1859 		      X86_EFLAGS_TF | X86_EFLAGS_DF | X86_EFLAGS_NT |
1860 		      X86_EFLAGS_AC | X86_EFLAGS_ID;
1861 
1862 	switch(ctxt->mode) {
1863 	case X86EMUL_MODE_PROT64:
1864 	case X86EMUL_MODE_PROT32:
1865 	case X86EMUL_MODE_PROT16:
1866 		if (cpl == 0)
1867 			change_mask |= X86_EFLAGS_IOPL;
1868 		if (cpl <= iopl)
1869 			change_mask |= X86_EFLAGS_IF;
1870 		break;
1871 	case X86EMUL_MODE_VM86:
1872 		if (iopl < 3)
1873 			return emulate_gp(ctxt, 0);
1874 		change_mask |= X86_EFLAGS_IF;
1875 		break;
1876 	default: /* real mode */
1877 		change_mask |= (X86_EFLAGS_IOPL | X86_EFLAGS_IF);
1878 		break;
1879 	}
1880 
1881 	*(unsigned long *)dest =
1882 		(ctxt->eflags & ~change_mask) | (val & change_mask);
1883 
1884 	return rc;
1885 }
1886 
em_popf(struct x86_emulate_ctxt * ctxt)1887 static int em_popf(struct x86_emulate_ctxt *ctxt)
1888 {
1889 	ctxt->dst.type = OP_REG;
1890 	ctxt->dst.addr.reg = &ctxt->eflags;
1891 	ctxt->dst.bytes = ctxt->op_bytes;
1892 	return emulate_popf(ctxt, &ctxt->dst.val, ctxt->op_bytes);
1893 }
1894 
em_enter(struct x86_emulate_ctxt * ctxt)1895 static int em_enter(struct x86_emulate_ctxt *ctxt)
1896 {
1897 	int rc;
1898 	unsigned frame_size = ctxt->src.val;
1899 	unsigned nesting_level = ctxt->src2.val & 31;
1900 	ulong rbp;
1901 
1902 	if (nesting_level)
1903 		return X86EMUL_UNHANDLEABLE;
1904 
1905 	rbp = reg_read(ctxt, VCPU_REGS_RBP);
1906 	rc = emulate_push(ctxt, &rbp, stack_size(ctxt));
1907 	if (rc != X86EMUL_CONTINUE)
1908 		return rc;
1909 	assign_masked(reg_rmw(ctxt, VCPU_REGS_RBP), reg_read(ctxt, VCPU_REGS_RSP),
1910 		      stack_mask(ctxt));
1911 	assign_masked(reg_rmw(ctxt, VCPU_REGS_RSP),
1912 		      reg_read(ctxt, VCPU_REGS_RSP) - frame_size,
1913 		      stack_mask(ctxt));
1914 	return X86EMUL_CONTINUE;
1915 }
1916 
em_leave(struct x86_emulate_ctxt * ctxt)1917 static int em_leave(struct x86_emulate_ctxt *ctxt)
1918 {
1919 	assign_masked(reg_rmw(ctxt, VCPU_REGS_RSP), reg_read(ctxt, VCPU_REGS_RBP),
1920 		      stack_mask(ctxt));
1921 	return emulate_pop(ctxt, reg_rmw(ctxt, VCPU_REGS_RBP), ctxt->op_bytes);
1922 }
1923 
em_push_sreg(struct x86_emulate_ctxt * ctxt)1924 static int em_push_sreg(struct x86_emulate_ctxt *ctxt)
1925 {
1926 	int seg = ctxt->src2.val;
1927 
1928 	ctxt->src.val = get_segment_selector(ctxt, seg);
1929 	if (ctxt->op_bytes == 4) {
1930 		rsp_increment(ctxt, -2);
1931 		ctxt->op_bytes = 2;
1932 	}
1933 
1934 	return em_push(ctxt);
1935 }
1936 
em_pop_sreg(struct x86_emulate_ctxt * ctxt)1937 static int em_pop_sreg(struct x86_emulate_ctxt *ctxt)
1938 {
1939 	int seg = ctxt->src2.val;
1940 	unsigned long selector = 0;
1941 	int rc;
1942 
1943 	rc = emulate_pop(ctxt, &selector, 2);
1944 	if (rc != X86EMUL_CONTINUE)
1945 		return rc;
1946 
1947 	if (seg == VCPU_SREG_SS)
1948 		ctxt->interruptibility = KVM_X86_SHADOW_INT_MOV_SS;
1949 	if (ctxt->op_bytes > 2)
1950 		rsp_increment(ctxt, ctxt->op_bytes - 2);
1951 
1952 	rc = load_segment_descriptor(ctxt, (u16)selector, seg);
1953 	return rc;
1954 }
1955 
em_pusha(struct x86_emulate_ctxt * ctxt)1956 static int em_pusha(struct x86_emulate_ctxt *ctxt)
1957 {
1958 	unsigned long old_esp = reg_read(ctxt, VCPU_REGS_RSP);
1959 	int rc = X86EMUL_CONTINUE;
1960 	int reg = VCPU_REGS_RAX;
1961 
1962 	while (reg <= VCPU_REGS_RDI) {
1963 		(reg == VCPU_REGS_RSP) ?
1964 		(ctxt->src.val = old_esp) : (ctxt->src.val = reg_read(ctxt, reg));
1965 
1966 		rc = em_push(ctxt);
1967 		if (rc != X86EMUL_CONTINUE)
1968 			return rc;
1969 
1970 		++reg;
1971 	}
1972 
1973 	return rc;
1974 }
1975 
em_pushf(struct x86_emulate_ctxt * ctxt)1976 static int em_pushf(struct x86_emulate_ctxt *ctxt)
1977 {
1978 	ctxt->src.val = (unsigned long)ctxt->eflags & ~X86_EFLAGS_VM;
1979 	return em_push(ctxt);
1980 }
1981 
em_popa(struct x86_emulate_ctxt * ctxt)1982 static int em_popa(struct x86_emulate_ctxt *ctxt)
1983 {
1984 	int rc = X86EMUL_CONTINUE;
1985 	int reg = VCPU_REGS_RDI;
1986 	u32 val = 0;
1987 
1988 	while (reg >= VCPU_REGS_RAX) {
1989 		if (reg == VCPU_REGS_RSP) {
1990 			rsp_increment(ctxt, ctxt->op_bytes);
1991 			--reg;
1992 		}
1993 
1994 		rc = emulate_pop(ctxt, &val, ctxt->op_bytes);
1995 		if (rc != X86EMUL_CONTINUE)
1996 			break;
1997 		assign_register(reg_rmw(ctxt, reg), val, ctxt->op_bytes);
1998 		--reg;
1999 	}
2000 	return rc;
2001 }
2002 
__emulate_int_real(struct x86_emulate_ctxt * ctxt,int irq)2003 static int __emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq)
2004 {
2005 	const struct x86_emulate_ops *ops = ctxt->ops;
2006 	int rc;
2007 	struct desc_ptr dt;
2008 	gva_t cs_addr;
2009 	gva_t eip_addr;
2010 	u16 cs, eip;
2011 
2012 	/* TODO: Add limit checks */
2013 	ctxt->src.val = ctxt->eflags;
2014 	rc = em_push(ctxt);
2015 	if (rc != X86EMUL_CONTINUE)
2016 		return rc;
2017 
2018 	ctxt->eflags &= ~(X86_EFLAGS_IF | X86_EFLAGS_TF | X86_EFLAGS_AC);
2019 
2020 	ctxt->src.val = get_segment_selector(ctxt, VCPU_SREG_CS);
2021 	rc = em_push(ctxt);
2022 	if (rc != X86EMUL_CONTINUE)
2023 		return rc;
2024 
2025 	ctxt->src.val = ctxt->_eip;
2026 	rc = em_push(ctxt);
2027 	if (rc != X86EMUL_CONTINUE)
2028 		return rc;
2029 
2030 	ops->get_idt(ctxt, &dt);
2031 
2032 	eip_addr = dt.address + (irq << 2);
2033 	cs_addr = dt.address + (irq << 2) + 2;
2034 
2035 	rc = linear_read_system(ctxt, cs_addr, &cs, 2);
2036 	if (rc != X86EMUL_CONTINUE)
2037 		return rc;
2038 
2039 	rc = linear_read_system(ctxt, eip_addr, &eip, 2);
2040 	if (rc != X86EMUL_CONTINUE)
2041 		return rc;
2042 
2043 	rc = load_segment_descriptor(ctxt, cs, VCPU_SREG_CS);
2044 	if (rc != X86EMUL_CONTINUE)
2045 		return rc;
2046 
2047 	ctxt->_eip = eip;
2048 
2049 	return rc;
2050 }
2051 
emulate_int_real(struct x86_emulate_ctxt * ctxt,int irq)2052 int emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq)
2053 {
2054 	int rc;
2055 
2056 	invalidate_registers(ctxt);
2057 	rc = __emulate_int_real(ctxt, irq);
2058 	if (rc == X86EMUL_CONTINUE)
2059 		writeback_registers(ctxt);
2060 	return rc;
2061 }
2062 
emulate_int(struct x86_emulate_ctxt * ctxt,int irq)2063 static int emulate_int(struct x86_emulate_ctxt *ctxt, int irq)
2064 {
2065 	switch(ctxt->mode) {
2066 	case X86EMUL_MODE_REAL:
2067 		return __emulate_int_real(ctxt, irq);
2068 	case X86EMUL_MODE_VM86:
2069 	case X86EMUL_MODE_PROT16:
2070 	case X86EMUL_MODE_PROT32:
2071 	case X86EMUL_MODE_PROT64:
2072 	default:
2073 		/* Protected mode interrupts unimplemented yet */
2074 		return X86EMUL_UNHANDLEABLE;
2075 	}
2076 }
2077 
emulate_iret_real(struct x86_emulate_ctxt * ctxt)2078 static int emulate_iret_real(struct x86_emulate_ctxt *ctxt)
2079 {
2080 	int rc = X86EMUL_CONTINUE;
2081 	unsigned long temp_eip = 0;
2082 	unsigned long temp_eflags = 0;
2083 	unsigned long cs = 0;
2084 	unsigned long mask = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
2085 			     X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_TF |
2086 			     X86_EFLAGS_IF | X86_EFLAGS_DF | X86_EFLAGS_OF |
2087 			     X86_EFLAGS_IOPL | X86_EFLAGS_NT | X86_EFLAGS_RF |
2088 			     X86_EFLAGS_AC | X86_EFLAGS_ID |
2089 			     X86_EFLAGS_FIXED;
2090 	unsigned long vm86_mask = X86_EFLAGS_VM | X86_EFLAGS_VIF |
2091 				  X86_EFLAGS_VIP;
2092 
2093 	/* TODO: Add stack limit check */
2094 
2095 	rc = emulate_pop(ctxt, &temp_eip, ctxt->op_bytes);
2096 
2097 	if (rc != X86EMUL_CONTINUE)
2098 		return rc;
2099 
2100 	if (temp_eip & ~0xffff)
2101 		return emulate_gp(ctxt, 0);
2102 
2103 	rc = emulate_pop(ctxt, &cs, ctxt->op_bytes);
2104 
2105 	if (rc != X86EMUL_CONTINUE)
2106 		return rc;
2107 
2108 	rc = emulate_pop(ctxt, &temp_eflags, ctxt->op_bytes);
2109 
2110 	if (rc != X86EMUL_CONTINUE)
2111 		return rc;
2112 
2113 	rc = load_segment_descriptor(ctxt, (u16)cs, VCPU_SREG_CS);
2114 
2115 	if (rc != X86EMUL_CONTINUE)
2116 		return rc;
2117 
2118 	ctxt->_eip = temp_eip;
2119 
2120 	if (ctxt->op_bytes == 4)
2121 		ctxt->eflags = ((temp_eflags & mask) | (ctxt->eflags & vm86_mask));
2122 	else if (ctxt->op_bytes == 2) {
2123 		ctxt->eflags &= ~0xffff;
2124 		ctxt->eflags |= temp_eflags;
2125 	}
2126 
2127 	ctxt->eflags &= ~EFLG_RESERVED_ZEROS_MASK; /* Clear reserved zeros */
2128 	ctxt->eflags |= X86_EFLAGS_FIXED;
2129 	ctxt->ops->set_nmi_mask(ctxt, false);
2130 
2131 	return rc;
2132 }
2133 
em_iret(struct x86_emulate_ctxt * ctxt)2134 static int em_iret(struct x86_emulate_ctxt *ctxt)
2135 {
2136 	switch(ctxt->mode) {
2137 	case X86EMUL_MODE_REAL:
2138 		return emulate_iret_real(ctxt);
2139 	case X86EMUL_MODE_VM86:
2140 	case X86EMUL_MODE_PROT16:
2141 	case X86EMUL_MODE_PROT32:
2142 	case X86EMUL_MODE_PROT64:
2143 	default:
2144 		/* iret from protected mode unimplemented yet */
2145 		return X86EMUL_UNHANDLEABLE;
2146 	}
2147 }
2148 
em_jmp_far(struct x86_emulate_ctxt * ctxt)2149 static int em_jmp_far(struct x86_emulate_ctxt *ctxt)
2150 {
2151 	int rc;
2152 	unsigned short sel;
2153 	struct desc_struct new_desc;
2154 	u8 cpl = ctxt->ops->cpl(ctxt);
2155 
2156 	memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
2157 
2158 	rc = __load_segment_descriptor(ctxt, sel, VCPU_SREG_CS, cpl,
2159 				       X86_TRANSFER_CALL_JMP,
2160 				       &new_desc);
2161 	if (rc != X86EMUL_CONTINUE)
2162 		return rc;
2163 
2164 	rc = assign_eip_far(ctxt, ctxt->src.val);
2165 	/* Error handling is not implemented. */
2166 	if (rc != X86EMUL_CONTINUE)
2167 		return X86EMUL_UNHANDLEABLE;
2168 
2169 	return rc;
2170 }
2171 
em_jmp_abs(struct x86_emulate_ctxt * ctxt)2172 static int em_jmp_abs(struct x86_emulate_ctxt *ctxt)
2173 {
2174 	return assign_eip_near(ctxt, ctxt->src.val);
2175 }
2176 
em_call_near_abs(struct x86_emulate_ctxt * ctxt)2177 static int em_call_near_abs(struct x86_emulate_ctxt *ctxt)
2178 {
2179 	int rc;
2180 	long int old_eip;
2181 
2182 	old_eip = ctxt->_eip;
2183 	rc = assign_eip_near(ctxt, ctxt->src.val);
2184 	if (rc != X86EMUL_CONTINUE)
2185 		return rc;
2186 	ctxt->src.val = old_eip;
2187 	rc = em_push(ctxt);
2188 	return rc;
2189 }
2190 
em_cmpxchg8b(struct x86_emulate_ctxt * ctxt)2191 static int em_cmpxchg8b(struct x86_emulate_ctxt *ctxt)
2192 {
2193 	u64 old = ctxt->dst.orig_val64;
2194 
2195 	if (ctxt->dst.bytes == 16)
2196 		return X86EMUL_UNHANDLEABLE;
2197 
2198 	if (((u32) (old >> 0) != (u32) reg_read(ctxt, VCPU_REGS_RAX)) ||
2199 	    ((u32) (old >> 32) != (u32) reg_read(ctxt, VCPU_REGS_RDX))) {
2200 		*reg_write(ctxt, VCPU_REGS_RAX) = (u32) (old >> 0);
2201 		*reg_write(ctxt, VCPU_REGS_RDX) = (u32) (old >> 32);
2202 		ctxt->eflags &= ~X86_EFLAGS_ZF;
2203 	} else {
2204 		ctxt->dst.val64 = ((u64)reg_read(ctxt, VCPU_REGS_RCX) << 32) |
2205 			(u32) reg_read(ctxt, VCPU_REGS_RBX);
2206 
2207 		ctxt->eflags |= X86_EFLAGS_ZF;
2208 	}
2209 	return X86EMUL_CONTINUE;
2210 }
2211 
em_ret(struct x86_emulate_ctxt * ctxt)2212 static int em_ret(struct x86_emulate_ctxt *ctxt)
2213 {
2214 	int rc;
2215 	unsigned long eip = 0;
2216 
2217 	rc = emulate_pop(ctxt, &eip, ctxt->op_bytes);
2218 	if (rc != X86EMUL_CONTINUE)
2219 		return rc;
2220 
2221 	return assign_eip_near(ctxt, eip);
2222 }
2223 
em_ret_far(struct x86_emulate_ctxt * ctxt)2224 static int em_ret_far(struct x86_emulate_ctxt *ctxt)
2225 {
2226 	int rc;
2227 	unsigned long eip = 0;
2228 	unsigned long cs = 0;
2229 	int cpl = ctxt->ops->cpl(ctxt);
2230 	struct desc_struct new_desc;
2231 
2232 	rc = emulate_pop(ctxt, &eip, ctxt->op_bytes);
2233 	if (rc != X86EMUL_CONTINUE)
2234 		return rc;
2235 	rc = emulate_pop(ctxt, &cs, ctxt->op_bytes);
2236 	if (rc != X86EMUL_CONTINUE)
2237 		return rc;
2238 	rc = __load_segment_descriptor(ctxt, (u16)cs, VCPU_SREG_CS, cpl,
2239 				       X86_TRANSFER_RET,
2240 				       &new_desc);
2241 	if (rc != X86EMUL_CONTINUE)
2242 		return rc;
2243 	rc = assign_eip_far(ctxt, eip);
2244 	/* Error handling is not implemented. */
2245 	if (rc != X86EMUL_CONTINUE)
2246 		return X86EMUL_UNHANDLEABLE;
2247 
2248 	return rc;
2249 }
2250 
em_ret_far_imm(struct x86_emulate_ctxt * ctxt)2251 static int em_ret_far_imm(struct x86_emulate_ctxt *ctxt)
2252 {
2253         int rc;
2254 
2255         rc = em_ret_far(ctxt);
2256         if (rc != X86EMUL_CONTINUE)
2257                 return rc;
2258         rsp_increment(ctxt, ctxt->src.val);
2259         return X86EMUL_CONTINUE;
2260 }
2261 
em_cmpxchg(struct x86_emulate_ctxt * ctxt)2262 static int em_cmpxchg(struct x86_emulate_ctxt *ctxt)
2263 {
2264 	/* Save real source value, then compare EAX against destination. */
2265 	ctxt->dst.orig_val = ctxt->dst.val;
2266 	ctxt->dst.val = reg_read(ctxt, VCPU_REGS_RAX);
2267 	ctxt->src.orig_val = ctxt->src.val;
2268 	ctxt->src.val = ctxt->dst.orig_val;
2269 	em_cmp(ctxt);
2270 
2271 	if (ctxt->eflags & X86_EFLAGS_ZF) {
2272 		/* Success: write back to memory; no update of EAX */
2273 		ctxt->src.type = OP_NONE;
2274 		ctxt->dst.val = ctxt->src.orig_val;
2275 	} else {
2276 		/* Failure: write the value we saw to EAX. */
2277 		ctxt->src.type = OP_REG;
2278 		ctxt->src.addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
2279 		ctxt->src.val = ctxt->dst.orig_val;
2280 		/* Create write-cycle to dest by writing the same value */
2281 		ctxt->dst.val = ctxt->dst.orig_val;
2282 	}
2283 	return X86EMUL_CONTINUE;
2284 }
2285 
em_lseg(struct x86_emulate_ctxt * ctxt)2286 static int em_lseg(struct x86_emulate_ctxt *ctxt)
2287 {
2288 	int seg = ctxt->src2.val;
2289 	unsigned short sel;
2290 	int rc;
2291 
2292 	memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
2293 
2294 	rc = load_segment_descriptor(ctxt, sel, seg);
2295 	if (rc != X86EMUL_CONTINUE)
2296 		return rc;
2297 
2298 	ctxt->dst.val = ctxt->src.val;
2299 	return rc;
2300 }
2301 
em_rsm(struct x86_emulate_ctxt * ctxt)2302 static int em_rsm(struct x86_emulate_ctxt *ctxt)
2303 {
2304 	if (!ctxt->ops->is_smm(ctxt))
2305 		return emulate_ud(ctxt);
2306 
2307 	if (ctxt->ops->leave_smm(ctxt))
2308 		ctxt->ops->triple_fault(ctxt);
2309 
2310 	return emulator_recalc_and_set_mode(ctxt);
2311 }
2312 
2313 static void
setup_syscalls_segments(struct desc_struct * cs,struct desc_struct * ss)2314 setup_syscalls_segments(struct desc_struct *cs, struct desc_struct *ss)
2315 {
2316 	cs->l = 0;		/* will be adjusted later */
2317 	set_desc_base(cs, 0);	/* flat segment */
2318 	cs->g = 1;		/* 4kb granularity */
2319 	set_desc_limit(cs, 0xfffff);	/* 4GB limit */
2320 	cs->type = 0x0b;	/* Read, Execute, Accessed */
2321 	cs->s = 1;
2322 	cs->dpl = 0;		/* will be adjusted later */
2323 	cs->p = 1;
2324 	cs->d = 1;
2325 	cs->avl = 0;
2326 
2327 	set_desc_base(ss, 0);	/* flat segment */
2328 	set_desc_limit(ss, 0xfffff);	/* 4GB limit */
2329 	ss->g = 1;		/* 4kb granularity */
2330 	ss->s = 1;
2331 	ss->type = 0x03;	/* Read/Write, Accessed */
2332 	ss->d = 1;		/* 32bit stack segment */
2333 	ss->dpl = 0;
2334 	ss->p = 1;
2335 	ss->l = 0;
2336 	ss->avl = 0;
2337 }
2338 
em_syscall(struct x86_emulate_ctxt * ctxt)2339 static int em_syscall(struct x86_emulate_ctxt *ctxt)
2340 {
2341 	const struct x86_emulate_ops *ops = ctxt->ops;
2342 	struct desc_struct cs, ss;
2343 	u64 msr_data;
2344 	u16 cs_sel, ss_sel;
2345 	u64 efer = 0;
2346 
2347 	/* syscall is not available in real mode */
2348 	if (ctxt->mode == X86EMUL_MODE_REAL ||
2349 	    ctxt->mode == X86EMUL_MODE_VM86)
2350 		return emulate_ud(ctxt);
2351 
2352 	/*
2353 	 * Intel compatible CPUs only support SYSCALL in 64-bit mode, whereas
2354 	 * AMD allows SYSCALL in any flavor of protected mode.  Note, it's
2355 	 * infeasible to emulate Intel behavior when running on AMD hardware,
2356 	 * as SYSCALL won't fault in the "wrong" mode, i.e. there is no #UD
2357 	 * for KVM to trap-and-emulate, unlike emulating AMD on Intel.
2358 	 */
2359 	if (ctxt->mode != X86EMUL_MODE_PROT64 &&
2360 	    ctxt->ops->guest_cpuid_is_intel_compatible(ctxt))
2361 		return emulate_ud(ctxt);
2362 
2363 	ops->get_msr(ctxt, MSR_EFER, &efer);
2364 	if (!(efer & EFER_SCE))
2365 		return emulate_ud(ctxt);
2366 
2367 	setup_syscalls_segments(&cs, &ss);
2368 	ops->get_msr(ctxt, MSR_STAR, &msr_data);
2369 	msr_data >>= 32;
2370 	cs_sel = (u16)(msr_data & 0xfffc);
2371 	ss_sel = (u16)(msr_data + 8);
2372 
2373 	if (efer & EFER_LMA) {
2374 		cs.d = 0;
2375 		cs.l = 1;
2376 	}
2377 	ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
2378 	ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
2379 
2380 	*reg_write(ctxt, VCPU_REGS_RCX) = ctxt->_eip;
2381 	if (efer & EFER_LMA) {
2382 #ifdef CONFIG_X86_64
2383 		*reg_write(ctxt, VCPU_REGS_R11) = ctxt->eflags;
2384 
2385 		ops->get_msr(ctxt,
2386 			     ctxt->mode == X86EMUL_MODE_PROT64 ?
2387 			     MSR_LSTAR : MSR_CSTAR, &msr_data);
2388 		ctxt->_eip = msr_data;
2389 
2390 		ops->get_msr(ctxt, MSR_SYSCALL_MASK, &msr_data);
2391 		ctxt->eflags &= ~msr_data;
2392 		ctxt->eflags |= X86_EFLAGS_FIXED;
2393 #endif
2394 	} else {
2395 		/* legacy mode */
2396 		ops->get_msr(ctxt, MSR_STAR, &msr_data);
2397 		ctxt->_eip = (u32)msr_data;
2398 
2399 		ctxt->eflags &= ~(X86_EFLAGS_VM | X86_EFLAGS_IF);
2400 	}
2401 
2402 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
2403 	return X86EMUL_CONTINUE;
2404 }
2405 
em_sysenter(struct x86_emulate_ctxt * ctxt)2406 static int em_sysenter(struct x86_emulate_ctxt *ctxt)
2407 {
2408 	const struct x86_emulate_ops *ops = ctxt->ops;
2409 	struct desc_struct cs, ss;
2410 	u64 msr_data;
2411 	u16 cs_sel, ss_sel;
2412 	u64 efer = 0;
2413 
2414 	ops->get_msr(ctxt, MSR_EFER, &efer);
2415 	/* inject #GP if in real mode */
2416 	if (ctxt->mode == X86EMUL_MODE_REAL)
2417 		return emulate_gp(ctxt, 0);
2418 
2419 	/*
2420 	 * Intel's architecture allows SYSENTER in compatibility mode, but AMD
2421 	 * does not.  Note, AMD does allow SYSENTER in legacy protected mode.
2422 	 */
2423 	if ((ctxt->mode != X86EMUL_MODE_PROT64) && (efer & EFER_LMA) &&
2424 	    !ctxt->ops->guest_cpuid_is_intel_compatible(ctxt))
2425 		return emulate_ud(ctxt);
2426 
2427 	/* sysenter/sysexit have not been tested in 64bit mode. */
2428 	if (ctxt->mode == X86EMUL_MODE_PROT64)
2429 		return X86EMUL_UNHANDLEABLE;
2430 
2431 	ops->get_msr(ctxt, MSR_IA32_SYSENTER_CS, &msr_data);
2432 	if ((msr_data & 0xfffc) == 0x0)
2433 		return emulate_gp(ctxt, 0);
2434 
2435 	setup_syscalls_segments(&cs, &ss);
2436 	ctxt->eflags &= ~(X86_EFLAGS_VM | X86_EFLAGS_IF);
2437 	cs_sel = (u16)msr_data & ~SEGMENT_RPL_MASK;
2438 	ss_sel = cs_sel + 8;
2439 	if (efer & EFER_LMA) {
2440 		cs.d = 0;
2441 		cs.l = 1;
2442 	}
2443 
2444 	ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
2445 	ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
2446 
2447 	ops->get_msr(ctxt, MSR_IA32_SYSENTER_EIP, &msr_data);
2448 	ctxt->_eip = (efer & EFER_LMA) ? msr_data : (u32)msr_data;
2449 
2450 	ops->get_msr(ctxt, MSR_IA32_SYSENTER_ESP, &msr_data);
2451 	*reg_write(ctxt, VCPU_REGS_RSP) = (efer & EFER_LMA) ? msr_data :
2452 							      (u32)msr_data;
2453 	if (efer & EFER_LMA)
2454 		ctxt->mode = X86EMUL_MODE_PROT64;
2455 
2456 	return X86EMUL_CONTINUE;
2457 }
2458 
em_sysexit(struct x86_emulate_ctxt * ctxt)2459 static int em_sysexit(struct x86_emulate_ctxt *ctxt)
2460 {
2461 	const struct x86_emulate_ops *ops = ctxt->ops;
2462 	struct desc_struct cs, ss;
2463 	u64 msr_data, rcx, rdx;
2464 	int usermode;
2465 	u16 cs_sel = 0, ss_sel = 0;
2466 
2467 	/* inject #GP if in real mode or Virtual 8086 mode */
2468 	if (ctxt->mode == X86EMUL_MODE_REAL ||
2469 	    ctxt->mode == X86EMUL_MODE_VM86)
2470 		return emulate_gp(ctxt, 0);
2471 
2472 	setup_syscalls_segments(&cs, &ss);
2473 
2474 	if (ctxt->rex_bits & REX_W)
2475 		usermode = X86EMUL_MODE_PROT64;
2476 	else
2477 		usermode = X86EMUL_MODE_PROT32;
2478 
2479 	rcx = reg_read(ctxt, VCPU_REGS_RCX);
2480 	rdx = reg_read(ctxt, VCPU_REGS_RDX);
2481 
2482 	cs.dpl = 3;
2483 	ss.dpl = 3;
2484 	ops->get_msr(ctxt, MSR_IA32_SYSENTER_CS, &msr_data);
2485 	switch (usermode) {
2486 	case X86EMUL_MODE_PROT32:
2487 		cs_sel = (u16)(msr_data + 16);
2488 		if ((msr_data & 0xfffc) == 0x0)
2489 			return emulate_gp(ctxt, 0);
2490 		ss_sel = (u16)(msr_data + 24);
2491 		rcx = (u32)rcx;
2492 		rdx = (u32)rdx;
2493 		break;
2494 	case X86EMUL_MODE_PROT64:
2495 		cs_sel = (u16)(msr_data + 32);
2496 		if (msr_data == 0x0)
2497 			return emulate_gp(ctxt, 0);
2498 		ss_sel = cs_sel + 8;
2499 		cs.d = 0;
2500 		cs.l = 1;
2501 		if (emul_is_noncanonical_address(rcx, ctxt, 0) ||
2502 		    emul_is_noncanonical_address(rdx, ctxt, 0))
2503 			return emulate_gp(ctxt, 0);
2504 		break;
2505 	}
2506 	cs_sel |= SEGMENT_RPL_MASK;
2507 	ss_sel |= SEGMENT_RPL_MASK;
2508 
2509 	ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
2510 	ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
2511 
2512 	ctxt->_eip = rdx;
2513 	ctxt->mode = usermode;
2514 	*reg_write(ctxt, VCPU_REGS_RSP) = rcx;
2515 
2516 	return X86EMUL_CONTINUE;
2517 }
2518 
emulator_bad_iopl(struct x86_emulate_ctxt * ctxt)2519 static bool emulator_bad_iopl(struct x86_emulate_ctxt *ctxt)
2520 {
2521 	int iopl;
2522 	if (ctxt->mode == X86EMUL_MODE_REAL)
2523 		return false;
2524 	if (ctxt->mode == X86EMUL_MODE_VM86)
2525 		return true;
2526 	iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> X86_EFLAGS_IOPL_BIT;
2527 	return ctxt->ops->cpl(ctxt) > iopl;
2528 }
2529 
2530 #define VMWARE_PORT_VMPORT	(0x5658)
2531 #define VMWARE_PORT_VMRPC	(0x5659)
2532 
emulator_io_port_access_allowed(struct x86_emulate_ctxt * ctxt,u16 port,u16 len)2533 static bool emulator_io_port_access_allowed(struct x86_emulate_ctxt *ctxt,
2534 					    u16 port, u16 len)
2535 {
2536 	const struct x86_emulate_ops *ops = ctxt->ops;
2537 	struct desc_struct tr_seg;
2538 	u32 base3;
2539 	int r;
2540 	u16 tr, io_bitmap_ptr, perm, bit_idx = port & 0x7;
2541 	unsigned mask = (1 << len) - 1;
2542 	unsigned long base;
2543 
2544 	/*
2545 	 * VMware allows access to these ports even if denied
2546 	 * by TSS I/O permission bitmap. Mimic behavior.
2547 	 */
2548 	if (enable_vmware_backdoor &&
2549 	    ((port == VMWARE_PORT_VMPORT) || (port == VMWARE_PORT_VMRPC)))
2550 		return true;
2551 
2552 	ops->get_segment(ctxt, &tr, &tr_seg, &base3, VCPU_SREG_TR);
2553 	if (!tr_seg.p)
2554 		return false;
2555 	if (desc_limit_scaled(&tr_seg) < 103)
2556 		return false;
2557 	base = get_desc_base(&tr_seg);
2558 #ifdef CONFIG_X86_64
2559 	base |= ((u64)base3) << 32;
2560 #endif
2561 	r = ops->read_std(ctxt, base + 102, &io_bitmap_ptr, 2, NULL, true);
2562 	if (r != X86EMUL_CONTINUE)
2563 		return false;
2564 	if (io_bitmap_ptr + port/8 > desc_limit_scaled(&tr_seg))
2565 		return false;
2566 	r = ops->read_std(ctxt, base + io_bitmap_ptr + port/8, &perm, 2, NULL, true);
2567 	if (r != X86EMUL_CONTINUE)
2568 		return false;
2569 	if ((perm >> bit_idx) & mask)
2570 		return false;
2571 	return true;
2572 }
2573 
emulator_io_permitted(struct x86_emulate_ctxt * ctxt,u16 port,u16 len)2574 static bool emulator_io_permitted(struct x86_emulate_ctxt *ctxt,
2575 				  u16 port, u16 len)
2576 {
2577 	if (ctxt->perm_ok)
2578 		return true;
2579 
2580 	if (emulator_bad_iopl(ctxt))
2581 		if (!emulator_io_port_access_allowed(ctxt, port, len))
2582 			return false;
2583 
2584 	ctxt->perm_ok = true;
2585 
2586 	return true;
2587 }
2588 
string_registers_quirk(struct x86_emulate_ctxt * ctxt)2589 static void string_registers_quirk(struct x86_emulate_ctxt *ctxt)
2590 {
2591 	/*
2592 	 * Intel CPUs mask the counter and pointers in quite strange
2593 	 * manner when ECX is zero due to REP-string optimizations.
2594 	 */
2595 #ifdef CONFIG_X86_64
2596 	u32 eax, ebx, ecx, edx;
2597 
2598 	if (ctxt->ad_bytes != 4)
2599 		return;
2600 
2601 	eax = ecx = 0;
2602 	ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx, true);
2603 	if (!is_guest_vendor_intel(ebx, ecx, edx))
2604 		return;
2605 
2606 	*reg_write(ctxt, VCPU_REGS_RCX) = 0;
2607 
2608 	switch (ctxt->b) {
2609 	case 0xa4:	/* movsb */
2610 	case 0xa5:	/* movsd/w */
2611 		*reg_rmw(ctxt, VCPU_REGS_RSI) &= (u32)-1;
2612 		fallthrough;
2613 	case 0xaa:	/* stosb */
2614 	case 0xab:	/* stosd/w */
2615 		*reg_rmw(ctxt, VCPU_REGS_RDI) &= (u32)-1;
2616 	}
2617 #endif
2618 }
2619 
save_state_to_tss16(struct x86_emulate_ctxt * ctxt,struct tss_segment_16 * tss)2620 static void save_state_to_tss16(struct x86_emulate_ctxt *ctxt,
2621 				struct tss_segment_16 *tss)
2622 {
2623 	tss->ip = ctxt->_eip;
2624 	tss->flag = ctxt->eflags;
2625 	tss->ax = reg_read(ctxt, VCPU_REGS_RAX);
2626 	tss->cx = reg_read(ctxt, VCPU_REGS_RCX);
2627 	tss->dx = reg_read(ctxt, VCPU_REGS_RDX);
2628 	tss->bx = reg_read(ctxt, VCPU_REGS_RBX);
2629 	tss->sp = reg_read(ctxt, VCPU_REGS_RSP);
2630 	tss->bp = reg_read(ctxt, VCPU_REGS_RBP);
2631 	tss->si = reg_read(ctxt, VCPU_REGS_RSI);
2632 	tss->di = reg_read(ctxt, VCPU_REGS_RDI);
2633 
2634 	tss->es = get_segment_selector(ctxt, VCPU_SREG_ES);
2635 	tss->cs = get_segment_selector(ctxt, VCPU_SREG_CS);
2636 	tss->ss = get_segment_selector(ctxt, VCPU_SREG_SS);
2637 	tss->ds = get_segment_selector(ctxt, VCPU_SREG_DS);
2638 	tss->ldt = get_segment_selector(ctxt, VCPU_SREG_LDTR);
2639 }
2640 
load_state_from_tss16(struct x86_emulate_ctxt * ctxt,struct tss_segment_16 * tss)2641 static int load_state_from_tss16(struct x86_emulate_ctxt *ctxt,
2642 				 struct tss_segment_16 *tss)
2643 {
2644 	int ret;
2645 	u8 cpl;
2646 
2647 	ctxt->_eip = tss->ip;
2648 	ctxt->eflags = tss->flag | 2;
2649 	*reg_write(ctxt, VCPU_REGS_RAX) = tss->ax;
2650 	*reg_write(ctxt, VCPU_REGS_RCX) = tss->cx;
2651 	*reg_write(ctxt, VCPU_REGS_RDX) = tss->dx;
2652 	*reg_write(ctxt, VCPU_REGS_RBX) = tss->bx;
2653 	*reg_write(ctxt, VCPU_REGS_RSP) = tss->sp;
2654 	*reg_write(ctxt, VCPU_REGS_RBP) = tss->bp;
2655 	*reg_write(ctxt, VCPU_REGS_RSI) = tss->si;
2656 	*reg_write(ctxt, VCPU_REGS_RDI) = tss->di;
2657 
2658 	/*
2659 	 * SDM says that segment selectors are loaded before segment
2660 	 * descriptors
2661 	 */
2662 	set_segment_selector(ctxt, tss->ldt, VCPU_SREG_LDTR);
2663 	set_segment_selector(ctxt, tss->es, VCPU_SREG_ES);
2664 	set_segment_selector(ctxt, tss->cs, VCPU_SREG_CS);
2665 	set_segment_selector(ctxt, tss->ss, VCPU_SREG_SS);
2666 	set_segment_selector(ctxt, tss->ds, VCPU_SREG_DS);
2667 
2668 	cpl = tss->cs & 3;
2669 
2670 	/*
2671 	 * Now load segment descriptors. If fault happens at this stage
2672 	 * it is handled in a context of new task
2673 	 */
2674 	ret = __load_segment_descriptor(ctxt, tss->ldt, VCPU_SREG_LDTR, cpl,
2675 					X86_TRANSFER_TASK_SWITCH, NULL);
2676 	if (ret != X86EMUL_CONTINUE)
2677 		return ret;
2678 	ret = __load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES, cpl,
2679 					X86_TRANSFER_TASK_SWITCH, NULL);
2680 	if (ret != X86EMUL_CONTINUE)
2681 		return ret;
2682 	ret = __load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS, cpl,
2683 					X86_TRANSFER_TASK_SWITCH, NULL);
2684 	if (ret != X86EMUL_CONTINUE)
2685 		return ret;
2686 	ret = __load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS, cpl,
2687 					X86_TRANSFER_TASK_SWITCH, NULL);
2688 	if (ret != X86EMUL_CONTINUE)
2689 		return ret;
2690 	ret = __load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS, cpl,
2691 					X86_TRANSFER_TASK_SWITCH, NULL);
2692 	if (ret != X86EMUL_CONTINUE)
2693 		return ret;
2694 
2695 	return X86EMUL_CONTINUE;
2696 }
2697 
task_switch_16(struct x86_emulate_ctxt * ctxt,u16 old_tss_sel,ulong old_tss_base,struct desc_struct * new_desc)2698 static int task_switch_16(struct x86_emulate_ctxt *ctxt, u16 old_tss_sel,
2699 			  ulong old_tss_base, struct desc_struct *new_desc)
2700 {
2701 	struct tss_segment_16 tss_seg;
2702 	int ret;
2703 	u32 new_tss_base = get_desc_base(new_desc);
2704 
2705 	ret = linear_read_system(ctxt, old_tss_base, &tss_seg, sizeof(tss_seg));
2706 	if (ret != X86EMUL_CONTINUE)
2707 		return ret;
2708 
2709 	save_state_to_tss16(ctxt, &tss_seg);
2710 
2711 	ret = linear_write_system(ctxt, old_tss_base, &tss_seg, sizeof(tss_seg));
2712 	if (ret != X86EMUL_CONTINUE)
2713 		return ret;
2714 
2715 	ret = linear_read_system(ctxt, new_tss_base, &tss_seg, sizeof(tss_seg));
2716 	if (ret != X86EMUL_CONTINUE)
2717 		return ret;
2718 
2719 	if (old_tss_sel != 0xffff) {
2720 		tss_seg.prev_task_link = old_tss_sel;
2721 
2722 		ret = linear_write_system(ctxt, new_tss_base,
2723 					  &tss_seg.prev_task_link,
2724 					  sizeof(tss_seg.prev_task_link));
2725 		if (ret != X86EMUL_CONTINUE)
2726 			return ret;
2727 	}
2728 
2729 	return load_state_from_tss16(ctxt, &tss_seg);
2730 }
2731 
save_state_to_tss32(struct x86_emulate_ctxt * ctxt,struct tss_segment_32 * tss)2732 static void save_state_to_tss32(struct x86_emulate_ctxt *ctxt,
2733 				struct tss_segment_32 *tss)
2734 {
2735 	/* CR3 and ldt selector are not saved intentionally */
2736 	tss->eip = ctxt->_eip;
2737 	tss->eflags = ctxt->eflags;
2738 	tss->eax = reg_read(ctxt, VCPU_REGS_RAX);
2739 	tss->ecx = reg_read(ctxt, VCPU_REGS_RCX);
2740 	tss->edx = reg_read(ctxt, VCPU_REGS_RDX);
2741 	tss->ebx = reg_read(ctxt, VCPU_REGS_RBX);
2742 	tss->esp = reg_read(ctxt, VCPU_REGS_RSP);
2743 	tss->ebp = reg_read(ctxt, VCPU_REGS_RBP);
2744 	tss->esi = reg_read(ctxt, VCPU_REGS_RSI);
2745 	tss->edi = reg_read(ctxt, VCPU_REGS_RDI);
2746 
2747 	tss->es = get_segment_selector(ctxt, VCPU_SREG_ES);
2748 	tss->cs = get_segment_selector(ctxt, VCPU_SREG_CS);
2749 	tss->ss = get_segment_selector(ctxt, VCPU_SREG_SS);
2750 	tss->ds = get_segment_selector(ctxt, VCPU_SREG_DS);
2751 	tss->fs = get_segment_selector(ctxt, VCPU_SREG_FS);
2752 	tss->gs = get_segment_selector(ctxt, VCPU_SREG_GS);
2753 }
2754 
load_state_from_tss32(struct x86_emulate_ctxt * ctxt,struct tss_segment_32 * tss)2755 static int load_state_from_tss32(struct x86_emulate_ctxt *ctxt,
2756 				 struct tss_segment_32 *tss)
2757 {
2758 	int ret;
2759 	u8 cpl;
2760 
2761 	if (ctxt->ops->set_cr(ctxt, 3, tss->cr3))
2762 		return emulate_gp(ctxt, 0);
2763 	ctxt->_eip = tss->eip;
2764 	ctxt->eflags = tss->eflags | 2;
2765 
2766 	/* General purpose registers */
2767 	*reg_write(ctxt, VCPU_REGS_RAX) = tss->eax;
2768 	*reg_write(ctxt, VCPU_REGS_RCX) = tss->ecx;
2769 	*reg_write(ctxt, VCPU_REGS_RDX) = tss->edx;
2770 	*reg_write(ctxt, VCPU_REGS_RBX) = tss->ebx;
2771 	*reg_write(ctxt, VCPU_REGS_RSP) = tss->esp;
2772 	*reg_write(ctxt, VCPU_REGS_RBP) = tss->ebp;
2773 	*reg_write(ctxt, VCPU_REGS_RSI) = tss->esi;
2774 	*reg_write(ctxt, VCPU_REGS_RDI) = tss->edi;
2775 
2776 	/*
2777 	 * SDM says that segment selectors are loaded before segment
2778 	 * descriptors.  This is important because CPL checks will
2779 	 * use CS.RPL.
2780 	 */
2781 	set_segment_selector(ctxt, tss->ldt_selector, VCPU_SREG_LDTR);
2782 	set_segment_selector(ctxt, tss->es, VCPU_SREG_ES);
2783 	set_segment_selector(ctxt, tss->cs, VCPU_SREG_CS);
2784 	set_segment_selector(ctxt, tss->ss, VCPU_SREG_SS);
2785 	set_segment_selector(ctxt, tss->ds, VCPU_SREG_DS);
2786 	set_segment_selector(ctxt, tss->fs, VCPU_SREG_FS);
2787 	set_segment_selector(ctxt, tss->gs, VCPU_SREG_GS);
2788 
2789 	/*
2790 	 * If we're switching between Protected Mode and VM86, we need to make
2791 	 * sure to update the mode before loading the segment descriptors so
2792 	 * that the selectors are interpreted correctly.
2793 	 */
2794 	if (ctxt->eflags & X86_EFLAGS_VM) {
2795 		ctxt->mode = X86EMUL_MODE_VM86;
2796 		cpl = 3;
2797 	} else {
2798 		ctxt->mode = X86EMUL_MODE_PROT32;
2799 		cpl = tss->cs & 3;
2800 	}
2801 
2802 	/*
2803 	 * Now load segment descriptors. If fault happens at this stage
2804 	 * it is handled in a context of new task
2805 	 */
2806 	ret = __load_segment_descriptor(ctxt, tss->ldt_selector, VCPU_SREG_LDTR,
2807 					cpl, X86_TRANSFER_TASK_SWITCH, NULL);
2808 	if (ret != X86EMUL_CONTINUE)
2809 		return ret;
2810 	ret = __load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES, cpl,
2811 					X86_TRANSFER_TASK_SWITCH, NULL);
2812 	if (ret != X86EMUL_CONTINUE)
2813 		return ret;
2814 	ret = __load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS, cpl,
2815 					X86_TRANSFER_TASK_SWITCH, NULL);
2816 	if (ret != X86EMUL_CONTINUE)
2817 		return ret;
2818 	ret = __load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS, cpl,
2819 					X86_TRANSFER_TASK_SWITCH, NULL);
2820 	if (ret != X86EMUL_CONTINUE)
2821 		return ret;
2822 	ret = __load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS, cpl,
2823 					X86_TRANSFER_TASK_SWITCH, NULL);
2824 	if (ret != X86EMUL_CONTINUE)
2825 		return ret;
2826 	ret = __load_segment_descriptor(ctxt, tss->fs, VCPU_SREG_FS, cpl,
2827 					X86_TRANSFER_TASK_SWITCH, NULL);
2828 	if (ret != X86EMUL_CONTINUE)
2829 		return ret;
2830 	ret = __load_segment_descriptor(ctxt, tss->gs, VCPU_SREG_GS, cpl,
2831 					X86_TRANSFER_TASK_SWITCH, NULL);
2832 
2833 	return ret;
2834 }
2835 
task_switch_32(struct x86_emulate_ctxt * ctxt,u16 old_tss_sel,ulong old_tss_base,struct desc_struct * new_desc)2836 static int task_switch_32(struct x86_emulate_ctxt *ctxt, u16 old_tss_sel,
2837 			  ulong old_tss_base, struct desc_struct *new_desc)
2838 {
2839 	struct tss_segment_32 tss_seg;
2840 	int ret;
2841 	u32 new_tss_base = get_desc_base(new_desc);
2842 	u32 eip_offset = offsetof(struct tss_segment_32, eip);
2843 	u32 ldt_sel_offset = offsetof(struct tss_segment_32, ldt_selector);
2844 
2845 	ret = linear_read_system(ctxt, old_tss_base, &tss_seg, sizeof(tss_seg));
2846 	if (ret != X86EMUL_CONTINUE)
2847 		return ret;
2848 
2849 	save_state_to_tss32(ctxt, &tss_seg);
2850 
2851 	/* Only GP registers and segment selectors are saved */
2852 	ret = linear_write_system(ctxt, old_tss_base + eip_offset, &tss_seg.eip,
2853 				  ldt_sel_offset - eip_offset);
2854 	if (ret != X86EMUL_CONTINUE)
2855 		return ret;
2856 
2857 	ret = linear_read_system(ctxt, new_tss_base, &tss_seg, sizeof(tss_seg));
2858 	if (ret != X86EMUL_CONTINUE)
2859 		return ret;
2860 
2861 	if (old_tss_sel != 0xffff) {
2862 		tss_seg.prev_task_link = old_tss_sel;
2863 
2864 		ret = linear_write_system(ctxt, new_tss_base,
2865 					  &tss_seg.prev_task_link,
2866 					  sizeof(tss_seg.prev_task_link));
2867 		if (ret != X86EMUL_CONTINUE)
2868 			return ret;
2869 	}
2870 
2871 	return load_state_from_tss32(ctxt, &tss_seg);
2872 }
2873 
emulator_do_task_switch(struct x86_emulate_ctxt * ctxt,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)2874 static int emulator_do_task_switch(struct x86_emulate_ctxt *ctxt,
2875 				   u16 tss_selector, int idt_index, int reason,
2876 				   bool has_error_code, u32 error_code)
2877 {
2878 	const struct x86_emulate_ops *ops = ctxt->ops;
2879 	struct desc_struct curr_tss_desc, next_tss_desc;
2880 	int ret;
2881 	u16 old_tss_sel = get_segment_selector(ctxt, VCPU_SREG_TR);
2882 	ulong old_tss_base =
2883 		ops->get_cached_segment_base(ctxt, VCPU_SREG_TR);
2884 	u32 desc_limit;
2885 	ulong desc_addr, dr7;
2886 
2887 	/* FIXME: old_tss_base == ~0 ? */
2888 
2889 	ret = read_segment_descriptor(ctxt, tss_selector, &next_tss_desc, &desc_addr);
2890 	if (ret != X86EMUL_CONTINUE)
2891 		return ret;
2892 	ret = read_segment_descriptor(ctxt, old_tss_sel, &curr_tss_desc, &desc_addr);
2893 	if (ret != X86EMUL_CONTINUE)
2894 		return ret;
2895 
2896 	/* FIXME: check that next_tss_desc is tss */
2897 
2898 	/*
2899 	 * Check privileges. The three cases are task switch caused by...
2900 	 *
2901 	 * 1. jmp/call/int to task gate: Check against DPL of the task gate
2902 	 * 2. Exception/IRQ/iret: No check is performed
2903 	 * 3. jmp/call to TSS/task-gate: No check is performed since the
2904 	 *    hardware checks it before exiting.
2905 	 */
2906 	if (reason == TASK_SWITCH_GATE) {
2907 		if (idt_index != -1) {
2908 			/* Software interrupts */
2909 			struct desc_struct task_gate_desc;
2910 			int dpl;
2911 
2912 			ret = read_interrupt_descriptor(ctxt, idt_index,
2913 							&task_gate_desc);
2914 			if (ret != X86EMUL_CONTINUE)
2915 				return ret;
2916 
2917 			dpl = task_gate_desc.dpl;
2918 			if ((tss_selector & 3) > dpl || ops->cpl(ctxt) > dpl)
2919 				return emulate_gp(ctxt, (idt_index << 3) | 0x2);
2920 		}
2921 	}
2922 
2923 	desc_limit = desc_limit_scaled(&next_tss_desc);
2924 	if (!next_tss_desc.p ||
2925 	    ((desc_limit < 0x67 && (next_tss_desc.type & 8)) ||
2926 	     desc_limit < 0x2b)) {
2927 		return emulate_ts(ctxt, tss_selector & 0xfffc);
2928 	}
2929 
2930 	if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
2931 		curr_tss_desc.type &= ~(1 << 1); /* clear busy flag */
2932 		write_segment_descriptor(ctxt, old_tss_sel, &curr_tss_desc);
2933 	}
2934 
2935 	if (reason == TASK_SWITCH_IRET)
2936 		ctxt->eflags = ctxt->eflags & ~X86_EFLAGS_NT;
2937 
2938 	/* set back link to prev task only if NT bit is set in eflags
2939 	   note that old_tss_sel is not used after this point */
2940 	if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
2941 		old_tss_sel = 0xffff;
2942 
2943 	if (next_tss_desc.type & 8)
2944 		ret = task_switch_32(ctxt, old_tss_sel, old_tss_base, &next_tss_desc);
2945 	else
2946 		ret = task_switch_16(ctxt, old_tss_sel,
2947 				     old_tss_base, &next_tss_desc);
2948 	if (ret != X86EMUL_CONTINUE)
2949 		return ret;
2950 
2951 	if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE)
2952 		ctxt->eflags = ctxt->eflags | X86_EFLAGS_NT;
2953 
2954 	if (reason != TASK_SWITCH_IRET) {
2955 		next_tss_desc.type |= (1 << 1); /* set busy flag */
2956 		write_segment_descriptor(ctxt, tss_selector, &next_tss_desc);
2957 	}
2958 
2959 	ops->set_cr(ctxt, 0,  ops->get_cr(ctxt, 0) | X86_CR0_TS);
2960 	ops->set_segment(ctxt, tss_selector, &next_tss_desc, 0, VCPU_SREG_TR);
2961 
2962 	if (has_error_code) {
2963 		ctxt->op_bytes = ctxt->ad_bytes = (next_tss_desc.type & 8) ? 4 : 2;
2964 		ctxt->lock_prefix = 0;
2965 		ctxt->src.val = (unsigned long) error_code;
2966 		ret = em_push(ctxt);
2967 	}
2968 
2969 	dr7 = ops->get_dr(ctxt, 7);
2970 	ops->set_dr(ctxt, 7, dr7 & ~(DR_LOCAL_ENABLE_MASK | DR_LOCAL_SLOWDOWN));
2971 
2972 	return ret;
2973 }
2974 
emulator_task_switch(struct x86_emulate_ctxt * ctxt,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)2975 int emulator_task_switch(struct x86_emulate_ctxt *ctxt,
2976 			 u16 tss_selector, int idt_index, int reason,
2977 			 bool has_error_code, u32 error_code)
2978 {
2979 	int rc;
2980 
2981 	invalidate_registers(ctxt);
2982 	ctxt->_eip = ctxt->eip;
2983 	ctxt->dst.type = OP_NONE;
2984 
2985 	rc = emulator_do_task_switch(ctxt, tss_selector, idt_index, reason,
2986 				     has_error_code, error_code);
2987 
2988 	if (rc == X86EMUL_CONTINUE) {
2989 		ctxt->eip = ctxt->_eip;
2990 		writeback_registers(ctxt);
2991 	}
2992 
2993 	return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK;
2994 }
2995 
string_addr_inc(struct x86_emulate_ctxt * ctxt,int reg,struct operand * op)2996 static void string_addr_inc(struct x86_emulate_ctxt *ctxt, int reg,
2997 		struct operand *op)
2998 {
2999 	int df = (ctxt->eflags & X86_EFLAGS_DF) ? -op->count : op->count;
3000 
3001 	register_address_increment(ctxt, reg, df * op->bytes);
3002 	op->addr.mem.ea = register_address(ctxt, reg);
3003 }
3004 
em_das(struct x86_emulate_ctxt * ctxt)3005 static int em_das(struct x86_emulate_ctxt *ctxt)
3006 {
3007 	u8 al, old_al;
3008 	bool af, cf, old_cf;
3009 
3010 	cf = ctxt->eflags & X86_EFLAGS_CF;
3011 	al = ctxt->dst.val;
3012 
3013 	old_al = al;
3014 	old_cf = cf;
3015 	cf = false;
3016 	af = ctxt->eflags & X86_EFLAGS_AF;
3017 	if ((al & 0x0f) > 9 || af) {
3018 		al -= 6;
3019 		cf = old_cf | (al >= 250);
3020 		af = true;
3021 	} else {
3022 		af = false;
3023 	}
3024 	if (old_al > 0x99 || old_cf) {
3025 		al -= 0x60;
3026 		cf = true;
3027 	}
3028 
3029 	ctxt->dst.val = al;
3030 	/* Set PF, ZF, SF */
3031 	ctxt->src.type = OP_IMM;
3032 	ctxt->src.val = 0;
3033 	ctxt->src.bytes = 1;
3034 	em_or(ctxt);
3035 	ctxt->eflags &= ~(X86_EFLAGS_AF | X86_EFLAGS_CF);
3036 	if (cf)
3037 		ctxt->eflags |= X86_EFLAGS_CF;
3038 	if (af)
3039 		ctxt->eflags |= X86_EFLAGS_AF;
3040 	return X86EMUL_CONTINUE;
3041 }
3042 
em_aam(struct x86_emulate_ctxt * ctxt)3043 static int em_aam(struct x86_emulate_ctxt *ctxt)
3044 {
3045 	u8 al, ah;
3046 
3047 	if (ctxt->src.val == 0)
3048 		return emulate_de(ctxt);
3049 
3050 	al = ctxt->dst.val & 0xff;
3051 	ah = al / ctxt->src.val;
3052 	al %= ctxt->src.val;
3053 
3054 	ctxt->dst.val = (ctxt->dst.val & 0xffff0000) | al | (ah << 8);
3055 
3056 	/* Set PF, ZF, SF */
3057 	ctxt->src.type = OP_IMM;
3058 	ctxt->src.val = 0;
3059 	ctxt->src.bytes = 1;
3060 	em_or(ctxt);
3061 
3062 	return X86EMUL_CONTINUE;
3063 }
3064 
em_aad(struct x86_emulate_ctxt * ctxt)3065 static int em_aad(struct x86_emulate_ctxt *ctxt)
3066 {
3067 	u8 al = ctxt->dst.val & 0xff;
3068 	u8 ah = (ctxt->dst.val >> 8) & 0xff;
3069 
3070 	al = (al + (ah * ctxt->src.val)) & 0xff;
3071 
3072 	ctxt->dst.val = (ctxt->dst.val & 0xffff0000) | al;
3073 
3074 	/* Set PF, ZF, SF */
3075 	ctxt->src.type = OP_IMM;
3076 	ctxt->src.val = 0;
3077 	ctxt->src.bytes = 1;
3078 	em_or(ctxt);
3079 
3080 	return X86EMUL_CONTINUE;
3081 }
3082 
em_call(struct x86_emulate_ctxt * ctxt)3083 static int em_call(struct x86_emulate_ctxt *ctxt)
3084 {
3085 	int rc;
3086 	long rel = ctxt->src.val;
3087 
3088 	ctxt->src.val = (unsigned long)ctxt->_eip;
3089 	rc = jmp_rel(ctxt, rel);
3090 	if (rc != X86EMUL_CONTINUE)
3091 		return rc;
3092 	return em_push(ctxt);
3093 }
3094 
em_call_far(struct x86_emulate_ctxt * ctxt)3095 static int em_call_far(struct x86_emulate_ctxt *ctxt)
3096 {
3097 	u16 sel, old_cs;
3098 	ulong old_eip;
3099 	int rc;
3100 	struct desc_struct old_desc, new_desc;
3101 	const struct x86_emulate_ops *ops = ctxt->ops;
3102 	int cpl = ctxt->ops->cpl(ctxt);
3103 	enum x86emul_mode prev_mode = ctxt->mode;
3104 
3105 	old_eip = ctxt->_eip;
3106 	ops->get_segment(ctxt, &old_cs, &old_desc, NULL, VCPU_SREG_CS);
3107 
3108 	memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
3109 	rc = __load_segment_descriptor(ctxt, sel, VCPU_SREG_CS, cpl,
3110 				       X86_TRANSFER_CALL_JMP, &new_desc);
3111 	if (rc != X86EMUL_CONTINUE)
3112 		return rc;
3113 
3114 	rc = assign_eip_far(ctxt, ctxt->src.val);
3115 	if (rc != X86EMUL_CONTINUE)
3116 		goto fail;
3117 
3118 	ctxt->src.val = old_cs;
3119 	rc = em_push(ctxt);
3120 	if (rc != X86EMUL_CONTINUE)
3121 		goto fail;
3122 
3123 	ctxt->src.val = old_eip;
3124 	rc = em_push(ctxt);
3125 	/* If we failed, we tainted the memory, but the very least we should
3126 	   restore cs */
3127 	if (rc != X86EMUL_CONTINUE) {
3128 		pr_warn_once("faulting far call emulation tainted memory\n");
3129 		goto fail;
3130 	}
3131 	return rc;
3132 fail:
3133 	ops->set_segment(ctxt, old_cs, &old_desc, 0, VCPU_SREG_CS);
3134 	ctxt->mode = prev_mode;
3135 	return rc;
3136 
3137 }
3138 
em_ret_near_imm(struct x86_emulate_ctxt * ctxt)3139 static int em_ret_near_imm(struct x86_emulate_ctxt *ctxt)
3140 {
3141 	int rc;
3142 	unsigned long eip = 0;
3143 
3144 	rc = emulate_pop(ctxt, &eip, ctxt->op_bytes);
3145 	if (rc != X86EMUL_CONTINUE)
3146 		return rc;
3147 	rc = assign_eip_near(ctxt, eip);
3148 	if (rc != X86EMUL_CONTINUE)
3149 		return rc;
3150 	rsp_increment(ctxt, ctxt->src.val);
3151 	return X86EMUL_CONTINUE;
3152 }
3153 
em_xchg(struct x86_emulate_ctxt * ctxt)3154 static int em_xchg(struct x86_emulate_ctxt *ctxt)
3155 {
3156 	/* Write back the register source. */
3157 	ctxt->src.val = ctxt->dst.val;
3158 	write_register_operand(&ctxt->src);
3159 
3160 	/* Write back the memory destination with implicit LOCK prefix. */
3161 	ctxt->dst.val = ctxt->src.orig_val;
3162 	ctxt->lock_prefix = 1;
3163 	return X86EMUL_CONTINUE;
3164 }
3165 
em_imul_3op(struct x86_emulate_ctxt * ctxt)3166 static int em_imul_3op(struct x86_emulate_ctxt *ctxt)
3167 {
3168 	ctxt->dst.val = ctxt->src2.val;
3169 	return em_imul(ctxt);
3170 }
3171 
em_cwd(struct x86_emulate_ctxt * ctxt)3172 static int em_cwd(struct x86_emulate_ctxt *ctxt)
3173 {
3174 	ctxt->dst.type = OP_REG;
3175 	ctxt->dst.bytes = ctxt->src.bytes;
3176 	ctxt->dst.addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
3177 	ctxt->dst.val = ~((ctxt->src.val >> (ctxt->src.bytes * 8 - 1)) - 1);
3178 
3179 	return X86EMUL_CONTINUE;
3180 }
3181 
em_rdpid(struct x86_emulate_ctxt * ctxt)3182 static int em_rdpid(struct x86_emulate_ctxt *ctxt)
3183 {
3184 	u64 tsc_aux = 0;
3185 
3186 	if (!ctxt->ops->guest_has_rdpid(ctxt))
3187 		return emulate_ud(ctxt);
3188 
3189 	ctxt->ops->get_msr(ctxt, MSR_TSC_AUX, &tsc_aux);
3190 	ctxt->dst.val = tsc_aux;
3191 	return X86EMUL_CONTINUE;
3192 }
3193 
em_rdtsc(struct x86_emulate_ctxt * ctxt)3194 static int em_rdtsc(struct x86_emulate_ctxt *ctxt)
3195 {
3196 	u64 tsc = 0;
3197 
3198 	ctxt->ops->get_msr(ctxt, MSR_IA32_TSC, &tsc);
3199 	*reg_write(ctxt, VCPU_REGS_RAX) = (u32)tsc;
3200 	*reg_write(ctxt, VCPU_REGS_RDX) = tsc >> 32;
3201 	return X86EMUL_CONTINUE;
3202 }
3203 
em_rdpmc(struct x86_emulate_ctxt * ctxt)3204 static int em_rdpmc(struct x86_emulate_ctxt *ctxt)
3205 {
3206 	u64 pmc;
3207 
3208 	if (ctxt->ops->read_pmc(ctxt, reg_read(ctxt, VCPU_REGS_RCX), &pmc))
3209 		return emulate_gp(ctxt, 0);
3210 	*reg_write(ctxt, VCPU_REGS_RAX) = (u32)pmc;
3211 	*reg_write(ctxt, VCPU_REGS_RDX) = pmc >> 32;
3212 	return X86EMUL_CONTINUE;
3213 }
3214 
em_mov(struct x86_emulate_ctxt * ctxt)3215 static int em_mov(struct x86_emulate_ctxt *ctxt)
3216 {
3217 	memcpy(ctxt->dst.valptr, ctxt->src.valptr, sizeof(ctxt->src.valptr));
3218 	return X86EMUL_CONTINUE;
3219 }
3220 
em_movbe(struct x86_emulate_ctxt * ctxt)3221 static int em_movbe(struct x86_emulate_ctxt *ctxt)
3222 {
3223 	u16 tmp;
3224 
3225 	if (!ctxt->ops->guest_has_movbe(ctxt))
3226 		return emulate_ud(ctxt);
3227 
3228 	switch (ctxt->op_bytes) {
3229 	case 2:
3230 		/*
3231 		 * From MOVBE definition: "...When the operand size is 16 bits,
3232 		 * the upper word of the destination register remains unchanged
3233 		 * ..."
3234 		 *
3235 		 * Both casting ->valptr and ->val to u16 breaks strict aliasing
3236 		 * rules so we have to do the operation almost per hand.
3237 		 */
3238 		tmp = (u16)ctxt->src.val;
3239 		ctxt->dst.val &= ~0xffffUL;
3240 		ctxt->dst.val |= (unsigned long)swab16(tmp);
3241 		break;
3242 	case 4:
3243 		ctxt->dst.val = swab32((u32)ctxt->src.val);
3244 		break;
3245 	case 8:
3246 		ctxt->dst.val = swab64(ctxt->src.val);
3247 		break;
3248 	default:
3249 		BUG();
3250 	}
3251 	return X86EMUL_CONTINUE;
3252 }
3253 
em_cr_write(struct x86_emulate_ctxt * ctxt)3254 static int em_cr_write(struct x86_emulate_ctxt *ctxt)
3255 {
3256 	int cr_num = ctxt->modrm_reg;
3257 	int r;
3258 
3259 	if (ctxt->ops->set_cr(ctxt, cr_num, ctxt->src.val))
3260 		return emulate_gp(ctxt, 0);
3261 
3262 	/* Disable writeback. */
3263 	ctxt->dst.type = OP_NONE;
3264 
3265 	if (cr_num == 0) {
3266 		/*
3267 		 * CR0 write might have updated CR0.PE and/or CR0.PG
3268 		 * which can affect the cpu's execution mode.
3269 		 */
3270 		r = emulator_recalc_and_set_mode(ctxt);
3271 		if (r != X86EMUL_CONTINUE)
3272 			return r;
3273 	}
3274 
3275 	return X86EMUL_CONTINUE;
3276 }
3277 
em_dr_write(struct x86_emulate_ctxt * ctxt)3278 static int em_dr_write(struct x86_emulate_ctxt *ctxt)
3279 {
3280 	unsigned long val;
3281 
3282 	if (ctxt->mode == X86EMUL_MODE_PROT64)
3283 		val = ctxt->src.val & ~0ULL;
3284 	else
3285 		val = ctxt->src.val & ~0U;
3286 
3287 	/* #UD condition is already handled. */
3288 	if (ctxt->ops->set_dr(ctxt, ctxt->modrm_reg, val) < 0)
3289 		return emulate_gp(ctxt, 0);
3290 
3291 	/* Disable writeback. */
3292 	ctxt->dst.type = OP_NONE;
3293 	return X86EMUL_CONTINUE;
3294 }
3295 
em_wrmsr(struct x86_emulate_ctxt * ctxt)3296 static int em_wrmsr(struct x86_emulate_ctxt *ctxt)
3297 {
3298 	u64 msr_index = reg_read(ctxt, VCPU_REGS_RCX);
3299 	u64 msr_data;
3300 	int r;
3301 
3302 	msr_data = (u32)reg_read(ctxt, VCPU_REGS_RAX)
3303 		| ((u64)reg_read(ctxt, VCPU_REGS_RDX) << 32);
3304 	r = ctxt->ops->set_msr_with_filter(ctxt, msr_index, msr_data);
3305 
3306 	if (r == X86EMUL_PROPAGATE_FAULT)
3307 		return emulate_gp(ctxt, 0);
3308 
3309 	return r;
3310 }
3311 
em_rdmsr(struct x86_emulate_ctxt * ctxt)3312 static int em_rdmsr(struct x86_emulate_ctxt *ctxt)
3313 {
3314 	u64 msr_index = reg_read(ctxt, VCPU_REGS_RCX);
3315 	u64 msr_data;
3316 	int r;
3317 
3318 	r = ctxt->ops->get_msr_with_filter(ctxt, msr_index, &msr_data);
3319 
3320 	if (r == X86EMUL_PROPAGATE_FAULT)
3321 		return emulate_gp(ctxt, 0);
3322 
3323 	if (r == X86EMUL_CONTINUE) {
3324 		*reg_write(ctxt, VCPU_REGS_RAX) = (u32)msr_data;
3325 		*reg_write(ctxt, VCPU_REGS_RDX) = msr_data >> 32;
3326 	}
3327 	return r;
3328 }
3329 
em_store_sreg(struct x86_emulate_ctxt * ctxt,int segment)3330 static int em_store_sreg(struct x86_emulate_ctxt *ctxt, int segment)
3331 {
3332 	if (segment > VCPU_SREG_GS &&
3333 	    (ctxt->ops->get_cr(ctxt, 4) & X86_CR4_UMIP) &&
3334 	    ctxt->ops->cpl(ctxt) > 0)
3335 		return emulate_gp(ctxt, 0);
3336 
3337 	ctxt->dst.val = get_segment_selector(ctxt, segment);
3338 	if (ctxt->dst.bytes == 4 && ctxt->dst.type == OP_MEM)
3339 		ctxt->dst.bytes = 2;
3340 	return X86EMUL_CONTINUE;
3341 }
3342 
em_mov_rm_sreg(struct x86_emulate_ctxt * ctxt)3343 static int em_mov_rm_sreg(struct x86_emulate_ctxt *ctxt)
3344 {
3345 	if (ctxt->modrm_reg > VCPU_SREG_GS)
3346 		return emulate_ud(ctxt);
3347 
3348 	return em_store_sreg(ctxt, ctxt->modrm_reg);
3349 }
3350 
em_mov_sreg_rm(struct x86_emulate_ctxt * ctxt)3351 static int em_mov_sreg_rm(struct x86_emulate_ctxt *ctxt)
3352 {
3353 	u16 sel = ctxt->src.val;
3354 
3355 	if (ctxt->modrm_reg == VCPU_SREG_CS || ctxt->modrm_reg > VCPU_SREG_GS)
3356 		return emulate_ud(ctxt);
3357 
3358 	if (ctxt->modrm_reg == VCPU_SREG_SS)
3359 		ctxt->interruptibility = KVM_X86_SHADOW_INT_MOV_SS;
3360 
3361 	/* Disable writeback. */
3362 	ctxt->dst.type = OP_NONE;
3363 	return load_segment_descriptor(ctxt, sel, ctxt->modrm_reg);
3364 }
3365 
em_sldt(struct x86_emulate_ctxt * ctxt)3366 static int em_sldt(struct x86_emulate_ctxt *ctxt)
3367 {
3368 	return em_store_sreg(ctxt, VCPU_SREG_LDTR);
3369 }
3370 
em_lldt(struct x86_emulate_ctxt * ctxt)3371 static int em_lldt(struct x86_emulate_ctxt *ctxt)
3372 {
3373 	u16 sel = ctxt->src.val;
3374 
3375 	/* Disable writeback. */
3376 	ctxt->dst.type = OP_NONE;
3377 	return load_segment_descriptor(ctxt, sel, VCPU_SREG_LDTR);
3378 }
3379 
em_str(struct x86_emulate_ctxt * ctxt)3380 static int em_str(struct x86_emulate_ctxt *ctxt)
3381 {
3382 	return em_store_sreg(ctxt, VCPU_SREG_TR);
3383 }
3384 
em_ltr(struct x86_emulate_ctxt * ctxt)3385 static int em_ltr(struct x86_emulate_ctxt *ctxt)
3386 {
3387 	u16 sel = ctxt->src.val;
3388 
3389 	/* Disable writeback. */
3390 	ctxt->dst.type = OP_NONE;
3391 	return load_segment_descriptor(ctxt, sel, VCPU_SREG_TR);
3392 }
3393 
em_invlpg(struct x86_emulate_ctxt * ctxt)3394 static int em_invlpg(struct x86_emulate_ctxt *ctxt)
3395 {
3396 	int rc;
3397 	ulong linear;
3398 	unsigned int max_size;
3399 
3400 	rc = __linearize(ctxt, ctxt->src.addr.mem, &max_size, 1, ctxt->mode,
3401 			 &linear, X86EMUL_F_INVLPG);
3402 	if (rc == X86EMUL_CONTINUE)
3403 		ctxt->ops->invlpg(ctxt, linear);
3404 	/* Disable writeback. */
3405 	ctxt->dst.type = OP_NONE;
3406 	return X86EMUL_CONTINUE;
3407 }
3408 
em_clts(struct x86_emulate_ctxt * ctxt)3409 static int em_clts(struct x86_emulate_ctxt *ctxt)
3410 {
3411 	ulong cr0;
3412 
3413 	cr0 = ctxt->ops->get_cr(ctxt, 0);
3414 	cr0 &= ~X86_CR0_TS;
3415 	ctxt->ops->set_cr(ctxt, 0, cr0);
3416 	return X86EMUL_CONTINUE;
3417 }
3418 
em_hypercall(struct x86_emulate_ctxt * ctxt)3419 static int em_hypercall(struct x86_emulate_ctxt *ctxt)
3420 {
3421 	int rc = ctxt->ops->fix_hypercall(ctxt);
3422 
3423 	if (rc != X86EMUL_CONTINUE)
3424 		return rc;
3425 
3426 	/* Let the processor re-execute the fixed hypercall */
3427 	ctxt->_eip = ctxt->eip;
3428 	/* Disable writeback. */
3429 	ctxt->dst.type = OP_NONE;
3430 	return X86EMUL_CONTINUE;
3431 }
3432 
emulate_store_desc_ptr(struct x86_emulate_ctxt * ctxt,void (* get)(struct x86_emulate_ctxt * ctxt,struct desc_ptr * ptr))3433 static int emulate_store_desc_ptr(struct x86_emulate_ctxt *ctxt,
3434 				  void (*get)(struct x86_emulate_ctxt *ctxt,
3435 					      struct desc_ptr *ptr))
3436 {
3437 	struct desc_ptr desc_ptr;
3438 
3439 	if ((ctxt->ops->get_cr(ctxt, 4) & X86_CR4_UMIP) &&
3440 	    ctxt->ops->cpl(ctxt) > 0)
3441 		return emulate_gp(ctxt, 0);
3442 
3443 	if (ctxt->mode == X86EMUL_MODE_PROT64)
3444 		ctxt->op_bytes = 8;
3445 	get(ctxt, &desc_ptr);
3446 	if (ctxt->op_bytes == 2) {
3447 		ctxt->op_bytes = 4;
3448 		desc_ptr.address &= 0x00ffffff;
3449 	}
3450 	/* Disable writeback. */
3451 	ctxt->dst.type = OP_NONE;
3452 	return segmented_write_std(ctxt, ctxt->dst.addr.mem,
3453 				   &desc_ptr, 2 + ctxt->op_bytes);
3454 }
3455 
em_sgdt(struct x86_emulate_ctxt * ctxt)3456 static int em_sgdt(struct x86_emulate_ctxt *ctxt)
3457 {
3458 	return emulate_store_desc_ptr(ctxt, ctxt->ops->get_gdt);
3459 }
3460 
em_sidt(struct x86_emulate_ctxt * ctxt)3461 static int em_sidt(struct x86_emulate_ctxt *ctxt)
3462 {
3463 	return emulate_store_desc_ptr(ctxt, ctxt->ops->get_idt);
3464 }
3465 
em_lgdt_lidt(struct x86_emulate_ctxt * ctxt,bool lgdt)3466 static int em_lgdt_lidt(struct x86_emulate_ctxt *ctxt, bool lgdt)
3467 {
3468 	struct desc_ptr desc_ptr;
3469 	int rc;
3470 
3471 	if (ctxt->mode == X86EMUL_MODE_PROT64)
3472 		ctxt->op_bytes = 8;
3473 	rc = read_descriptor(ctxt, ctxt->src.addr.mem,
3474 			     &desc_ptr.size, &desc_ptr.address,
3475 			     ctxt->op_bytes);
3476 	if (rc != X86EMUL_CONTINUE)
3477 		return rc;
3478 	if (ctxt->mode == X86EMUL_MODE_PROT64 &&
3479 	    emul_is_noncanonical_address(desc_ptr.address, ctxt,
3480 					 X86EMUL_F_DT_LOAD))
3481 		return emulate_gp(ctxt, 0);
3482 	if (lgdt)
3483 		ctxt->ops->set_gdt(ctxt, &desc_ptr);
3484 	else
3485 		ctxt->ops->set_idt(ctxt, &desc_ptr);
3486 	/* Disable writeback. */
3487 	ctxt->dst.type = OP_NONE;
3488 	return X86EMUL_CONTINUE;
3489 }
3490 
em_lgdt(struct x86_emulate_ctxt * ctxt)3491 static int em_lgdt(struct x86_emulate_ctxt *ctxt)
3492 {
3493 	return em_lgdt_lidt(ctxt, true);
3494 }
3495 
em_lidt(struct x86_emulate_ctxt * ctxt)3496 static int em_lidt(struct x86_emulate_ctxt *ctxt)
3497 {
3498 	return em_lgdt_lidt(ctxt, false);
3499 }
3500 
em_smsw(struct x86_emulate_ctxt * ctxt)3501 static int em_smsw(struct x86_emulate_ctxt *ctxt)
3502 {
3503 	if ((ctxt->ops->get_cr(ctxt, 4) & X86_CR4_UMIP) &&
3504 	    ctxt->ops->cpl(ctxt) > 0)
3505 		return emulate_gp(ctxt, 0);
3506 
3507 	if (ctxt->dst.type == OP_MEM)
3508 		ctxt->dst.bytes = 2;
3509 	ctxt->dst.val = ctxt->ops->get_cr(ctxt, 0);
3510 	return X86EMUL_CONTINUE;
3511 }
3512 
em_lmsw(struct x86_emulate_ctxt * ctxt)3513 static int em_lmsw(struct x86_emulate_ctxt *ctxt)
3514 {
3515 	ctxt->ops->set_cr(ctxt, 0, (ctxt->ops->get_cr(ctxt, 0) & ~0x0eul)
3516 			  | (ctxt->src.val & 0x0f));
3517 	ctxt->dst.type = OP_NONE;
3518 	return X86EMUL_CONTINUE;
3519 }
3520 
em_loop(struct x86_emulate_ctxt * ctxt)3521 static int em_loop(struct x86_emulate_ctxt *ctxt)
3522 {
3523 	int rc = X86EMUL_CONTINUE;
3524 
3525 	register_address_increment(ctxt, VCPU_REGS_RCX, -1);
3526 	if ((address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) != 0) &&
3527 	    (ctxt->b == 0xe2 || test_cc(ctxt->b ^ 0x5, ctxt->eflags)))
3528 		rc = jmp_rel(ctxt, ctxt->src.val);
3529 
3530 	return rc;
3531 }
3532 
em_jcxz(struct x86_emulate_ctxt * ctxt)3533 static int em_jcxz(struct x86_emulate_ctxt *ctxt)
3534 {
3535 	int rc = X86EMUL_CONTINUE;
3536 
3537 	if (address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) == 0)
3538 		rc = jmp_rel(ctxt, ctxt->src.val);
3539 
3540 	return rc;
3541 }
3542 
em_in(struct x86_emulate_ctxt * ctxt)3543 static int em_in(struct x86_emulate_ctxt *ctxt)
3544 {
3545 	if (!pio_in_emulated(ctxt, ctxt->dst.bytes, ctxt->src.val,
3546 			     &ctxt->dst.val))
3547 		return X86EMUL_IO_NEEDED;
3548 
3549 	return X86EMUL_CONTINUE;
3550 }
3551 
em_out(struct x86_emulate_ctxt * ctxt)3552 static int em_out(struct x86_emulate_ctxt *ctxt)
3553 {
3554 	ctxt->ops->pio_out_emulated(ctxt, ctxt->src.bytes, ctxt->dst.val,
3555 				    &ctxt->src.val, 1);
3556 	/* Disable writeback. */
3557 	ctxt->dst.type = OP_NONE;
3558 	return X86EMUL_CONTINUE;
3559 }
3560 
em_cli(struct x86_emulate_ctxt * ctxt)3561 static int em_cli(struct x86_emulate_ctxt *ctxt)
3562 {
3563 	if (emulator_bad_iopl(ctxt))
3564 		return emulate_gp(ctxt, 0);
3565 
3566 	ctxt->eflags &= ~X86_EFLAGS_IF;
3567 	return X86EMUL_CONTINUE;
3568 }
3569 
em_sti(struct x86_emulate_ctxt * ctxt)3570 static int em_sti(struct x86_emulate_ctxt *ctxt)
3571 {
3572 	if (emulator_bad_iopl(ctxt))
3573 		return emulate_gp(ctxt, 0);
3574 
3575 	ctxt->interruptibility = KVM_X86_SHADOW_INT_STI;
3576 	ctxt->eflags |= X86_EFLAGS_IF;
3577 	return X86EMUL_CONTINUE;
3578 }
3579 
em_cpuid(struct x86_emulate_ctxt * ctxt)3580 static int em_cpuid(struct x86_emulate_ctxt *ctxt)
3581 {
3582 	u32 eax, ebx, ecx, edx;
3583 	u64 msr = 0;
3584 
3585 	ctxt->ops->get_msr(ctxt, MSR_MISC_FEATURES_ENABLES, &msr);
3586 	if (msr & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3587 	    ctxt->ops->cpl(ctxt)) {
3588 		return emulate_gp(ctxt, 0);
3589 	}
3590 
3591 	eax = reg_read(ctxt, VCPU_REGS_RAX);
3592 	ecx = reg_read(ctxt, VCPU_REGS_RCX);
3593 	ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx, false);
3594 	*reg_write(ctxt, VCPU_REGS_RAX) = eax;
3595 	*reg_write(ctxt, VCPU_REGS_RBX) = ebx;
3596 	*reg_write(ctxt, VCPU_REGS_RCX) = ecx;
3597 	*reg_write(ctxt, VCPU_REGS_RDX) = edx;
3598 	return X86EMUL_CONTINUE;
3599 }
3600 
em_sahf(struct x86_emulate_ctxt * ctxt)3601 static int em_sahf(struct x86_emulate_ctxt *ctxt)
3602 {
3603 	u32 flags;
3604 
3605 	flags = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
3606 		X86_EFLAGS_SF;
3607 	flags &= *reg_rmw(ctxt, VCPU_REGS_RAX) >> 8;
3608 
3609 	ctxt->eflags &= ~0xffUL;
3610 	ctxt->eflags |= flags | X86_EFLAGS_FIXED;
3611 	return X86EMUL_CONTINUE;
3612 }
3613 
em_lahf(struct x86_emulate_ctxt * ctxt)3614 static int em_lahf(struct x86_emulate_ctxt *ctxt)
3615 {
3616 	*reg_rmw(ctxt, VCPU_REGS_RAX) &= ~0xff00UL;
3617 	*reg_rmw(ctxt, VCPU_REGS_RAX) |= (ctxt->eflags & 0xff) << 8;
3618 	return X86EMUL_CONTINUE;
3619 }
3620 
em_bswap(struct x86_emulate_ctxt * ctxt)3621 static int em_bswap(struct x86_emulate_ctxt *ctxt)
3622 {
3623 	switch (ctxt->op_bytes) {
3624 #ifdef CONFIG_X86_64
3625 	case 8:
3626 		asm("bswap %0" : "+r"(ctxt->dst.val));
3627 		break;
3628 #endif
3629 	default:
3630 		asm("bswap %0" : "+r"(*(u32 *)&ctxt->dst.val));
3631 		break;
3632 	}
3633 	return X86EMUL_CONTINUE;
3634 }
3635 
em_clflush(struct x86_emulate_ctxt * ctxt)3636 static int em_clflush(struct x86_emulate_ctxt *ctxt)
3637 {
3638 	/* emulating clflush regardless of cpuid */
3639 	return X86EMUL_CONTINUE;
3640 }
3641 
em_clflushopt(struct x86_emulate_ctxt * ctxt)3642 static int em_clflushopt(struct x86_emulate_ctxt *ctxt)
3643 {
3644 	/* emulating clflushopt regardless of cpuid */
3645 	return X86EMUL_CONTINUE;
3646 }
3647 
em_movsxd(struct x86_emulate_ctxt * ctxt)3648 static int em_movsxd(struct x86_emulate_ctxt *ctxt)
3649 {
3650 	ctxt->dst.val = (s32) ctxt->src.val;
3651 	return X86EMUL_CONTINUE;
3652 }
3653 
check_fxsr(struct x86_emulate_ctxt * ctxt)3654 static int check_fxsr(struct x86_emulate_ctxt *ctxt)
3655 {
3656 	if (!ctxt->ops->guest_has_fxsr(ctxt))
3657 		return emulate_ud(ctxt);
3658 
3659 	if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
3660 		return emulate_nm(ctxt);
3661 
3662 	/*
3663 	 * Don't emulate a case that should never be hit, instead of working
3664 	 * around a lack of fxsave64/fxrstor64 on old compilers.
3665 	 */
3666 	if (ctxt->mode >= X86EMUL_MODE_PROT64)
3667 		return X86EMUL_UNHANDLEABLE;
3668 
3669 	return X86EMUL_CONTINUE;
3670 }
3671 
3672 /*
3673  * Hardware doesn't save and restore XMM 0-7 without CR4.OSFXSR, but does save
3674  * and restore MXCSR.
3675  */
__fxstate_size(int nregs)3676 static size_t __fxstate_size(int nregs)
3677 {
3678 	return offsetof(struct fxregs_state, xmm_space[0]) + nregs * 16;
3679 }
3680 
fxstate_size(struct x86_emulate_ctxt * ctxt)3681 static inline size_t fxstate_size(struct x86_emulate_ctxt *ctxt)
3682 {
3683 	bool cr4_osfxsr;
3684 	if (ctxt->mode == X86EMUL_MODE_PROT64)
3685 		return __fxstate_size(16);
3686 
3687 	cr4_osfxsr = ctxt->ops->get_cr(ctxt, 4) & X86_CR4_OSFXSR;
3688 	return __fxstate_size(cr4_osfxsr ? 8 : 0);
3689 }
3690 
3691 /*
3692  * FXSAVE and FXRSTOR have 4 different formats depending on execution mode,
3693  *  1) 16 bit mode
3694  *  2) 32 bit mode
3695  *     - like (1), but FIP and FDP (foo) are only 16 bit.  At least Intel CPUs
3696  *       preserve whole 32 bit values, though, so (1) and (2) are the same wrt.
3697  *       save and restore
3698  *  3) 64-bit mode with REX.W prefix
3699  *     - like (2), but XMM 8-15 are being saved and restored
3700  *  4) 64-bit mode without REX.W prefix
3701  *     - like (3), but FIP and FDP are 64 bit
3702  *
3703  * Emulation uses (3) for (1) and (2) and preserves XMM 8-15 to reach the
3704  * desired result.  (4) is not emulated.
3705  *
3706  * Note: Guest and host CPUID.(EAX=07H,ECX=0H):EBX[bit 13] (deprecate FPU CS
3707  * and FPU DS) should match.
3708  */
em_fxsave(struct x86_emulate_ctxt * ctxt)3709 static int em_fxsave(struct x86_emulate_ctxt *ctxt)
3710 {
3711 	struct fxregs_state fx_state;
3712 	int rc;
3713 
3714 	rc = check_fxsr(ctxt);
3715 	if (rc != X86EMUL_CONTINUE)
3716 		return rc;
3717 
3718 	kvm_fpu_get();
3719 
3720 	rc = asm_safe("fxsave %[fx]", , [fx] "+m"(fx_state));
3721 
3722 	kvm_fpu_put();
3723 
3724 	if (rc != X86EMUL_CONTINUE)
3725 		return rc;
3726 
3727 	return segmented_write_std(ctxt, ctxt->memop.addr.mem, &fx_state,
3728 		                   fxstate_size(ctxt));
3729 }
3730 
3731 /*
3732  * FXRSTOR might restore XMM registers not provided by the guest. Fill
3733  * in the host registers (via FXSAVE) instead, so they won't be modified.
3734  * (preemption has to stay disabled until FXRSTOR).
3735  *
3736  * Use noinline to keep the stack for other functions called by callers small.
3737  */
fxregs_fixup(struct fxregs_state * fx_state,const size_t used_size)3738 static noinline int fxregs_fixup(struct fxregs_state *fx_state,
3739 				 const size_t used_size)
3740 {
3741 	struct fxregs_state fx_tmp;
3742 	int rc;
3743 
3744 	rc = asm_safe("fxsave %[fx]", , [fx] "+m"(fx_tmp));
3745 	memcpy((void *)fx_state + used_size, (void *)&fx_tmp + used_size,
3746 	       __fxstate_size(16) - used_size);
3747 
3748 	return rc;
3749 }
3750 
em_fxrstor(struct x86_emulate_ctxt * ctxt)3751 static int em_fxrstor(struct x86_emulate_ctxt *ctxt)
3752 {
3753 	struct fxregs_state fx_state;
3754 	int rc;
3755 	size_t size;
3756 
3757 	rc = check_fxsr(ctxt);
3758 	if (rc != X86EMUL_CONTINUE)
3759 		return rc;
3760 
3761 	size = fxstate_size(ctxt);
3762 	rc = segmented_read_std(ctxt, ctxt->memop.addr.mem, &fx_state, size);
3763 	if (rc != X86EMUL_CONTINUE)
3764 		return rc;
3765 
3766 	kvm_fpu_get();
3767 
3768 	if (size < __fxstate_size(16)) {
3769 		rc = fxregs_fixup(&fx_state, size);
3770 		if (rc != X86EMUL_CONTINUE)
3771 			goto out;
3772 	}
3773 
3774 	if (fx_state.mxcsr >> 16) {
3775 		rc = emulate_gp(ctxt, 0);
3776 		goto out;
3777 	}
3778 
3779 	if (rc == X86EMUL_CONTINUE)
3780 		rc = asm_safe("fxrstor %[fx]", : [fx] "m"(fx_state));
3781 
3782 out:
3783 	kvm_fpu_put();
3784 
3785 	return rc;
3786 }
3787 
em_xsetbv(struct x86_emulate_ctxt * ctxt)3788 static int em_xsetbv(struct x86_emulate_ctxt *ctxt)
3789 {
3790 	u32 eax, ecx, edx;
3791 
3792 	if (!(ctxt->ops->get_cr(ctxt, 4) & X86_CR4_OSXSAVE))
3793 		return emulate_ud(ctxt);
3794 
3795 	eax = reg_read(ctxt, VCPU_REGS_RAX);
3796 	edx = reg_read(ctxt, VCPU_REGS_RDX);
3797 	ecx = reg_read(ctxt, VCPU_REGS_RCX);
3798 
3799 	if (ctxt->ops->set_xcr(ctxt, ecx, ((u64)edx << 32) | eax))
3800 		return emulate_gp(ctxt, 0);
3801 
3802 	return X86EMUL_CONTINUE;
3803 }
3804 
valid_cr(int nr)3805 static bool valid_cr(int nr)
3806 {
3807 	switch (nr) {
3808 	case 0:
3809 	case 2 ... 4:
3810 	case 8:
3811 		return true;
3812 	default:
3813 		return false;
3814 	}
3815 }
3816 
check_cr_access(struct x86_emulate_ctxt * ctxt)3817 static int check_cr_access(struct x86_emulate_ctxt *ctxt)
3818 {
3819 	if (!valid_cr(ctxt->modrm_reg))
3820 		return emulate_ud(ctxt);
3821 
3822 	return X86EMUL_CONTINUE;
3823 }
3824 
check_dr_read(struct x86_emulate_ctxt * ctxt)3825 static int check_dr_read(struct x86_emulate_ctxt *ctxt)
3826 {
3827 	int dr = ctxt->modrm_reg;
3828 	u64 cr4;
3829 
3830 	if (dr > 7)
3831 		return emulate_ud(ctxt);
3832 
3833 	cr4 = ctxt->ops->get_cr(ctxt, 4);
3834 	if ((cr4 & X86_CR4_DE) && (dr == 4 || dr == 5))
3835 		return emulate_ud(ctxt);
3836 
3837 	if (ctxt->ops->get_dr(ctxt, 7) & DR7_GD) {
3838 		ulong dr6;
3839 
3840 		dr6 = ctxt->ops->get_dr(ctxt, 6);
3841 		dr6 &= ~DR_TRAP_BITS;
3842 		dr6 |= DR6_BD | DR6_ACTIVE_LOW;
3843 		ctxt->ops->set_dr(ctxt, 6, dr6);
3844 		return emulate_db(ctxt);
3845 	}
3846 
3847 	return X86EMUL_CONTINUE;
3848 }
3849 
check_dr_write(struct x86_emulate_ctxt * ctxt)3850 static int check_dr_write(struct x86_emulate_ctxt *ctxt)
3851 {
3852 	u64 new_val = ctxt->src.val64;
3853 	int dr = ctxt->modrm_reg;
3854 
3855 	if ((dr == 6 || dr == 7) && (new_val & 0xffffffff00000000ULL))
3856 		return emulate_gp(ctxt, 0);
3857 
3858 	return check_dr_read(ctxt);
3859 }
3860 
check_svme(struct x86_emulate_ctxt * ctxt)3861 static int check_svme(struct x86_emulate_ctxt *ctxt)
3862 {
3863 	u64 efer = 0;
3864 
3865 	ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
3866 
3867 	if (!(efer & EFER_SVME))
3868 		return emulate_ud(ctxt);
3869 
3870 	return X86EMUL_CONTINUE;
3871 }
3872 
check_svme_pa(struct x86_emulate_ctxt * ctxt)3873 static int check_svme_pa(struct x86_emulate_ctxt *ctxt)
3874 {
3875 	u64 rax = reg_read(ctxt, VCPU_REGS_RAX);
3876 
3877 	/* Valid physical address? */
3878 	if (rax & 0xffff000000000000ULL)
3879 		return emulate_gp(ctxt, 0);
3880 
3881 	return check_svme(ctxt);
3882 }
3883 
check_rdtsc(struct x86_emulate_ctxt * ctxt)3884 static int check_rdtsc(struct x86_emulate_ctxt *ctxt)
3885 {
3886 	u64 cr4 = ctxt->ops->get_cr(ctxt, 4);
3887 
3888 	if (cr4 & X86_CR4_TSD && ctxt->ops->cpl(ctxt))
3889 		return emulate_gp(ctxt, 0);
3890 
3891 	return X86EMUL_CONTINUE;
3892 }
3893 
check_rdpmc(struct x86_emulate_ctxt * ctxt)3894 static int check_rdpmc(struct x86_emulate_ctxt *ctxt)
3895 {
3896 	u64 cr4 = ctxt->ops->get_cr(ctxt, 4);
3897 	u64 rcx = reg_read(ctxt, VCPU_REGS_RCX);
3898 
3899 	/*
3900 	 * VMware allows access to these Pseduo-PMCs even when read via RDPMC
3901 	 * in Ring3 when CR4.PCE=0.
3902 	 */
3903 	if (enable_vmware_backdoor && is_vmware_backdoor_pmc(rcx))
3904 		return X86EMUL_CONTINUE;
3905 
3906 	/*
3907 	 * If CR4.PCE is set, the SDM requires CPL=0 or CR0.PE=0.  The CR0.PE
3908 	 * check however is unnecessary because CPL is always 0 outside
3909 	 * protected mode.
3910 	 */
3911 	if ((!(cr4 & X86_CR4_PCE) && ctxt->ops->cpl(ctxt)) ||
3912 	    ctxt->ops->check_rdpmc_early(ctxt, rcx))
3913 		return emulate_gp(ctxt, 0);
3914 
3915 	return X86EMUL_CONTINUE;
3916 }
3917 
check_perm_in(struct x86_emulate_ctxt * ctxt)3918 static int check_perm_in(struct x86_emulate_ctxt *ctxt)
3919 {
3920 	ctxt->dst.bytes = min(ctxt->dst.bytes, 4u);
3921 	if (!emulator_io_permitted(ctxt, ctxt->src.val, ctxt->dst.bytes))
3922 		return emulate_gp(ctxt, 0);
3923 
3924 	return X86EMUL_CONTINUE;
3925 }
3926 
check_perm_out(struct x86_emulate_ctxt * ctxt)3927 static int check_perm_out(struct x86_emulate_ctxt *ctxt)
3928 {
3929 	ctxt->src.bytes = min(ctxt->src.bytes, 4u);
3930 	if (!emulator_io_permitted(ctxt, ctxt->dst.val, ctxt->src.bytes))
3931 		return emulate_gp(ctxt, 0);
3932 
3933 	return X86EMUL_CONTINUE;
3934 }
3935 
3936 #define D(_y) { .flags = (_y) }
3937 #define DI(_y, _i) { .flags = (_y)|Intercept, .intercept = x86_intercept_##_i }
3938 #define DIP(_y, _i, _p) { .flags = (_y)|Intercept|CheckPerm, \
3939 		      .intercept = x86_intercept_##_i, .check_perm = (_p) }
3940 #define N    D(NotImpl)
3941 #define EXT(_f, _e) { .flags = ((_f) | RMExt), .u.group = (_e) }
3942 #define G(_f, _g) { .flags = ((_f) | Group | ModRM), .u.group = (_g) }
3943 #define GD(_f, _g) { .flags = ((_f) | GroupDual | ModRM), .u.gdual = (_g) }
3944 #define ID(_f, _i) { .flags = ((_f) | InstrDual | ModRM), .u.idual = (_i) }
3945 #define MD(_f, _m) { .flags = ((_f) | ModeDual), .u.mdual = (_m) }
3946 #define E(_f, _e) { .flags = ((_f) | Escape | ModRM), .u.esc = (_e) }
3947 #define I(_f, _e) { .flags = (_f), .u.execute = (_e) }
3948 #define II(_f, _e, _i) \
3949 	{ .flags = (_f)|Intercept, .u.execute = (_e), .intercept = x86_intercept_##_i }
3950 #define IIP(_f, _e, _i, _p) \
3951 	{ .flags = (_f)|Intercept|CheckPerm, .u.execute = (_e), \
3952 	  .intercept = x86_intercept_##_i, .check_perm = (_p) }
3953 #define GP(_f, _g) { .flags = ((_f) | Prefix), .u.gprefix = (_g) }
3954 
3955 #define D2bv(_f)      D((_f) | ByteOp), D(_f)
3956 #define D2bvIP(_f, _i, _p) DIP((_f) | ByteOp, _i, _p), DIP(_f, _i, _p)
3957 #define I2bv(_f, _e)  I((_f) | ByteOp, _e), I(_f, _e)
3958 #define F2bv(_f, _e)  F((_f) | ByteOp, _e), F(_f, _e)
3959 #define I2bvIP(_f, _e, _i, _p) \
3960 	IIP((_f) | ByteOp, _e, _i, _p), IIP(_f, _e, _i, _p)
3961 
3962 #define I6ALU(_f, _e) I2bv((_f) | DstMem | SrcReg | ModRM, _e),		\
3963 		I2bv(((_f) | DstReg | SrcMem | ModRM) & ~Lock, _e),	\
3964 		I2bv(((_f) & ~Lock) | DstAcc | SrcImm, _e)
3965 
3966 static const struct opcode ud = I(SrcNone, emulate_ud);
3967 
3968 static const struct opcode group7_rm0[] = {
3969 	N,
3970 	I(SrcNone | Priv | EmulateOnUD,	em_hypercall),
3971 	N, N, N, N, N, N,
3972 };
3973 
3974 static const struct opcode group7_rm1[] = {
3975 	DI(SrcNone | Priv, monitor),
3976 	DI(SrcNone | Priv, mwait),
3977 	N, N, N, N, N, N,
3978 };
3979 
3980 static const struct opcode group7_rm2[] = {
3981 	N,
3982 	II(ImplicitOps | Priv,			em_xsetbv,	xsetbv),
3983 	N, N, N, N, N, N,
3984 };
3985 
3986 static const struct opcode group7_rm3[] = {
3987 	DIP(SrcNone | Prot | Priv,		vmrun,		check_svme_pa),
3988 	II(SrcNone  | Prot | EmulateOnUD,	em_hypercall,	vmmcall),
3989 	DIP(SrcNone | Prot | Priv,		vmload,		check_svme_pa),
3990 	DIP(SrcNone | Prot | Priv,		vmsave,		check_svme_pa),
3991 	DIP(SrcNone | Prot | Priv,		stgi,		check_svme),
3992 	DIP(SrcNone | Prot | Priv,		clgi,		check_svme),
3993 	DIP(SrcNone | Prot | Priv,		skinit,		check_svme),
3994 	DIP(SrcNone | Prot | Priv,		invlpga,	check_svme),
3995 };
3996 
3997 static const struct opcode group7_rm7[] = {
3998 	N,
3999 	DIP(SrcNone, rdtscp, check_rdtsc),
4000 	N, N, N, N, N, N,
4001 };
4002 
4003 static const struct opcode group1[] = {
4004 	I(Lock, em_add),
4005 	I(Lock | PageTable, em_or),
4006 	I(Lock, em_adc),
4007 	I(Lock, em_sbb),
4008 	I(Lock | PageTable, em_and),
4009 	I(Lock, em_sub),
4010 	I(Lock, em_xor),
4011 	I(NoWrite, em_cmp),
4012 };
4013 
4014 static const struct opcode group1A[] = {
4015 	I(DstMem | SrcNone | Mov | Stack | IncSP | TwoMemOp, em_pop), N, N, N, N, N, N, N,
4016 };
4017 
4018 static const struct opcode group2[] = {
4019 	I(DstMem | ModRM, em_rol),
4020 	I(DstMem | ModRM, em_ror),
4021 	I(DstMem | ModRM, em_rcl),
4022 	I(DstMem | ModRM, em_rcr),
4023 	I(DstMem | ModRM, em_shl),
4024 	I(DstMem | ModRM, em_shr),
4025 	I(DstMem | ModRM, em_shl),
4026 	I(DstMem | ModRM, em_sar),
4027 };
4028 
4029 static const struct opcode group3[] = {
4030 	I(DstMem | SrcImm | NoWrite, em_test),
4031 	I(DstMem | SrcImm | NoWrite, em_test),
4032 	I(DstMem | SrcNone | Lock, em_not),
4033 	I(DstMem | SrcNone | Lock, em_neg),
4034 	I(DstXacc | Src2Mem, em_mul_ex),
4035 	I(DstXacc | Src2Mem, em_imul_ex),
4036 	I(DstXacc | Src2Mem, em_div_ex),
4037 	I(DstXacc | Src2Mem, em_idiv_ex),
4038 };
4039 
4040 static const struct opcode group4[] = {
4041 	I(ByteOp | DstMem | SrcNone | Lock, em_inc),
4042 	I(ByteOp | DstMem | SrcNone | Lock, em_dec),
4043 	N, N, N, N, N, N,
4044 };
4045 
4046 static const struct opcode group5[] = {
4047 	I(DstMem | SrcNone | Lock,		em_inc),
4048 	I(DstMem | SrcNone | Lock,		em_dec),
4049 	I(SrcMem | NearBranch | IsBranch | ShadowStack, em_call_near_abs),
4050 	I(SrcMemFAddr | ImplicitOps | IsBranch | ShadowStack, em_call_far),
4051 	I(SrcMem | NearBranch | IsBranch,       em_jmp_abs),
4052 	I(SrcMemFAddr | ImplicitOps | IsBranch, em_jmp_far),
4053 	I(SrcMem | Stack | TwoMemOp,		em_push), D(Undefined),
4054 };
4055 
4056 static const struct opcode group6[] = {
4057 	II(Prot | DstMem,	   em_sldt, sldt),
4058 	II(Prot | DstMem,	   em_str, str),
4059 	II(Prot | Priv | SrcMem16, em_lldt, lldt),
4060 	II(Prot | Priv | SrcMem16, em_ltr, ltr),
4061 	N, N, N, N,
4062 };
4063 
4064 static const struct group_dual group7 = { {
4065 	II(Mov | DstMem,			em_sgdt, sgdt),
4066 	II(Mov | DstMem,			em_sidt, sidt),
4067 	II(SrcMem | Priv,			em_lgdt, lgdt),
4068 	II(SrcMem | Priv,			em_lidt, lidt),
4069 	II(SrcNone | DstMem | Mov,		em_smsw, smsw), N,
4070 	II(SrcMem16 | Mov | Priv,		em_lmsw, lmsw),
4071 	II(SrcMem | ByteOp | Priv | NoAccess,	em_invlpg, invlpg),
4072 }, {
4073 	EXT(0, group7_rm0),
4074 	EXT(0, group7_rm1),
4075 	EXT(0, group7_rm2),
4076 	EXT(0, group7_rm3),
4077 	II(SrcNone | DstMem | Mov,		em_smsw, smsw), N,
4078 	II(SrcMem16 | Mov | Priv,		em_lmsw, lmsw),
4079 	EXT(0, group7_rm7),
4080 } };
4081 
4082 static const struct opcode group8[] = {
4083 	N, N, N, N,
4084 	I(DstMem | SrcImmByte | NoWrite,		em_bt),
4085 	I(DstMem | SrcImmByte | Lock | PageTable,	em_bts),
4086 	I(DstMem | SrcImmByte | Lock,			em_btr),
4087 	I(DstMem | SrcImmByte | Lock | PageTable,	em_btc),
4088 };
4089 
4090 /*
4091  * The "memory" destination is actually always a register, since we come
4092  * from the register case of group9.
4093  */
4094 static const struct gprefix pfx_0f_c7_7 = {
4095 	N, N, N, II(DstMem | ModRM | Op3264 | EmulateOnUD, em_rdpid, rdpid),
4096 };
4097 
4098 
4099 static const struct group_dual group9 = { {
4100 	N, I(DstMem64 | Lock | PageTable, em_cmpxchg8b), N, N, N, N, N, N,
4101 }, {
4102 	N, N, N, N, N, N, N,
4103 	GP(0, &pfx_0f_c7_7),
4104 } };
4105 
4106 static const struct opcode group11[] = {
4107 	I(DstMem | SrcImm | Mov | PageTable, em_mov),
4108 	X7(D(Undefined)),
4109 };
4110 
4111 static const struct gprefix pfx_0f_ae_7 = {
4112 	I(SrcMem | ByteOp, em_clflush), I(SrcMem | ByteOp, em_clflushopt), N, N,
4113 };
4114 
4115 static const struct group_dual group15 = { {
4116 	I(ModRM | Aligned16, em_fxsave),
4117 	I(ModRM | Aligned16, em_fxrstor),
4118 	N, N, N, N, N, GP(0, &pfx_0f_ae_7),
4119 }, {
4120 	N, N, N, N, N, N, N, N,
4121 } };
4122 
4123 static const struct gprefix pfx_0f_6f_0f_7f = {
4124 	I(Mmx, em_mov), I(Sse | Avx | Aligned, em_mov), N, I(Sse | Avx | Unaligned, em_mov),
4125 };
4126 
4127 static const struct instr_dual instr_dual_0f_2b = {
4128 	I(0, em_mov), N
4129 };
4130 
4131 static const struct gprefix pfx_0f_2b = {
4132 	ID(0, &instr_dual_0f_2b), ID(0, &instr_dual_0f_2b), N, N,
4133 };
4134 
4135 static const struct gprefix pfx_0f_10_0f_11 = {
4136 	I(Unaligned, em_mov), I(Unaligned, em_mov), N, N,
4137 };
4138 
4139 static const struct gprefix pfx_0f_28_0f_29 = {
4140 	I(Aligned, em_mov), I(Aligned, em_mov), N, N,
4141 };
4142 
4143 static const struct gprefix pfx_0f_e7_0f_38_2a = {
4144 	N, I(Sse | Avx, em_mov), N, N,
4145 };
4146 
4147 static const struct escape escape_d9 = { {
4148 	N, N, N, N, N, N, N, I(DstMem16 | Mov, em_fnstcw),
4149 }, {
4150 	/* 0xC0 - 0xC7 */
4151 	N, N, N, N, N, N, N, N,
4152 	/* 0xC8 - 0xCF */
4153 	N, N, N, N, N, N, N, N,
4154 	/* 0xD0 - 0xC7 */
4155 	N, N, N, N, N, N, N, N,
4156 	/* 0xD8 - 0xDF */
4157 	N, N, N, N, N, N, N, N,
4158 	/* 0xE0 - 0xE7 */
4159 	N, N, N, N, N, N, N, N,
4160 	/* 0xE8 - 0xEF */
4161 	N, N, N, N, N, N, N, N,
4162 	/* 0xF0 - 0xF7 */
4163 	N, N, N, N, N, N, N, N,
4164 	/* 0xF8 - 0xFF */
4165 	N, N, N, N, N, N, N, N,
4166 } };
4167 
4168 static const struct escape escape_db = { {
4169 	N, N, N, N, N, N, N, N,
4170 }, {
4171 	/* 0xC0 - 0xC7 */
4172 	N, N, N, N, N, N, N, N,
4173 	/* 0xC8 - 0xCF */
4174 	N, N, N, N, N, N, N, N,
4175 	/* 0xD0 - 0xC7 */
4176 	N, N, N, N, N, N, N, N,
4177 	/* 0xD8 - 0xDF */
4178 	N, N, N, N, N, N, N, N,
4179 	/* 0xE0 - 0xE7 */
4180 	N, N, N, I(ImplicitOps, em_fninit), N, N, N, N,
4181 	/* 0xE8 - 0xEF */
4182 	N, N, N, N, N, N, N, N,
4183 	/* 0xF0 - 0xF7 */
4184 	N, N, N, N, N, N, N, N,
4185 	/* 0xF8 - 0xFF */
4186 	N, N, N, N, N, N, N, N,
4187 } };
4188 
4189 static const struct escape escape_dd = { {
4190 	N, N, N, N, N, N, N, I(DstMem16 | Mov, em_fnstsw),
4191 }, {
4192 	/* 0xC0 - 0xC7 */
4193 	N, N, N, N, N, N, N, N,
4194 	/* 0xC8 - 0xCF */
4195 	N, N, N, N, N, N, N, N,
4196 	/* 0xD0 - 0xC7 */
4197 	N, N, N, N, N, N, N, N,
4198 	/* 0xD8 - 0xDF */
4199 	N, N, N, N, N, N, N, N,
4200 	/* 0xE0 - 0xE7 */
4201 	N, N, N, N, N, N, N, N,
4202 	/* 0xE8 - 0xEF */
4203 	N, N, N, N, N, N, N, N,
4204 	/* 0xF0 - 0xF7 */
4205 	N, N, N, N, N, N, N, N,
4206 	/* 0xF8 - 0xFF */
4207 	N, N, N, N, N, N, N, N,
4208 } };
4209 
4210 static const struct instr_dual instr_dual_0f_c3 = {
4211 	I(DstMem | SrcReg | ModRM | No16 | Mov, em_mov), N
4212 };
4213 
4214 static const struct mode_dual mode_dual_63 = {
4215 	N, I(DstReg | SrcMem32 | ModRM | Mov, em_movsxd)
4216 };
4217 
4218 static const struct instr_dual instr_dual_8d = {
4219 	D(DstReg | SrcMem | ModRM | NoAccess), N
4220 };
4221 
4222 static const struct opcode opcode_table[256] = {
4223 	/* 0x00 - 0x07 */
4224 	I6ALU(Lock, em_add),
4225 	I(ImplicitOps | Stack | No64 | Src2ES, em_push_sreg),
4226 	I(ImplicitOps | Stack | No64 | Src2ES, em_pop_sreg),
4227 	/* 0x08 - 0x0F */
4228 	I6ALU(Lock | PageTable, em_or),
4229 	I(ImplicitOps | Stack | No64 | Src2CS, em_push_sreg),
4230 	N,
4231 	/* 0x10 - 0x17 */
4232 	I6ALU(Lock, em_adc),
4233 	I(ImplicitOps | Stack | No64 | Src2SS, em_push_sreg),
4234 	I(ImplicitOps | Stack | No64 | Src2SS, em_pop_sreg),
4235 	/* 0x18 - 0x1F */
4236 	I6ALU(Lock, em_sbb),
4237 	I(ImplicitOps | Stack | No64 | Src2DS, em_push_sreg),
4238 	I(ImplicitOps | Stack | No64 | Src2DS, em_pop_sreg),
4239 	/* 0x20 - 0x27 */
4240 	I6ALU(Lock | PageTable, em_and), N, N,
4241 	/* 0x28 - 0x2F */
4242 	I6ALU(Lock, em_sub), N, I(ByteOp | DstAcc | No64, em_das),
4243 	/* 0x30 - 0x37 */
4244 	I6ALU(Lock, em_xor), N, N,
4245 	/* 0x38 - 0x3F */
4246 	I6ALU(NoWrite, em_cmp), N, N,
4247 	/* 0x40 - 0x4F */
4248 	X8(I(DstReg, em_inc)), X8(I(DstReg, em_dec)),
4249 	/* 0x50 - 0x57 */
4250 	X8(I(SrcReg | Stack, em_push)),
4251 	/* 0x58 - 0x5F */
4252 	X8(I(DstReg | Stack, em_pop)),
4253 	/* 0x60 - 0x67 */
4254 	I(ImplicitOps | Stack | No64, em_pusha),
4255 	I(ImplicitOps | Stack | No64, em_popa),
4256 	N, MD(ModRM, &mode_dual_63),
4257 	N, N, N, N,
4258 	/* 0x68 - 0x6F */
4259 	I(SrcImm | Mov | Stack, em_push),
4260 	I(DstReg | SrcMem | ModRM | Src2Imm, em_imul_3op),
4261 	I(SrcImmByte | Mov | Stack, em_push),
4262 	I(DstReg | SrcMem | ModRM | Src2ImmByte, em_imul_3op),
4263 	I2bvIP(DstDI | SrcDX | Mov | String | Unaligned, em_in, ins, check_perm_in), /* insb, insw/insd */
4264 	I2bvIP(SrcSI | DstDX | String, em_out, outs, check_perm_out), /* outsb, outsw/outsd */
4265 	/* 0x70 - 0x7F */
4266 	X16(D(SrcImmByte | NearBranch | IsBranch)),
4267 	/* 0x80 - 0x87 */
4268 	G(ByteOp | DstMem | SrcImm, group1),
4269 	G(DstMem | SrcImm, group1),
4270 	G(ByteOp | DstMem | SrcImm | No64, group1),
4271 	G(DstMem | SrcImmByte, group1),
4272 	I2bv(DstMem | SrcReg | ModRM | NoWrite, em_test),
4273 	I2bv(DstMem | SrcReg | ModRM | Lock | PageTable, em_xchg),
4274 	/* 0x88 - 0x8F */
4275 	I2bv(DstMem | SrcReg | ModRM | Mov | PageTable, em_mov),
4276 	I2bv(DstReg | SrcMem | ModRM | Mov, em_mov),
4277 	I(DstMem | SrcNone | ModRM | Mov | PageTable, em_mov_rm_sreg),
4278 	ID(0, &instr_dual_8d),
4279 	I(ImplicitOps | SrcMem16 | ModRM, em_mov_sreg_rm),
4280 	G(0, group1A),
4281 	/* 0x90 - 0x97 */
4282 	DI(SrcAcc | DstReg, pause), X7(D(SrcAcc | DstReg)),
4283 	/* 0x98 - 0x9F */
4284 	D(DstAcc | SrcNone), I(ImplicitOps | SrcAcc, em_cwd),
4285 	I(SrcImmFAddr | No64 | IsBranch | ShadowStack, em_call_far), N,
4286 	II(ImplicitOps | Stack, em_pushf, pushf),
4287 	II(ImplicitOps | Stack, em_popf, popf),
4288 	I(ImplicitOps, em_sahf), I(ImplicitOps, em_lahf),
4289 	/* 0xA0 - 0xA7 */
4290 	I2bv(DstAcc | SrcMem | Mov | MemAbs, em_mov),
4291 	I2bv(DstMem | SrcAcc | Mov | MemAbs | PageTable, em_mov),
4292 	I2bv(SrcSI | DstDI | Mov | String | TwoMemOp, em_mov),
4293 	I2bv(SrcSI | DstDI | String | NoWrite | TwoMemOp, em_cmp_r),
4294 	/* 0xA8 - 0xAF */
4295 	I2bv(DstAcc | SrcImm | NoWrite, em_test),
4296 	I2bv(SrcAcc | DstDI | Mov | String, em_mov),
4297 	I2bv(SrcSI | DstAcc | Mov | String, em_mov),
4298 	I2bv(SrcAcc | DstDI | String | NoWrite, em_cmp_r),
4299 	/* 0xB0 - 0xB7 */
4300 	X8(I(ByteOp | DstReg | SrcImm | Mov, em_mov)),
4301 	/* 0xB8 - 0xBF */
4302 	X8(I(DstReg | SrcImm64 | Mov, em_mov)),
4303 	/* 0xC0 - 0xC7 */
4304 	G(ByteOp | Src2ImmByte, group2), G(Src2ImmByte, group2),
4305 	I(ImplicitOps | NearBranch | SrcImmU16 | IsBranch | ShadowStack, em_ret_near_imm),
4306 	I(ImplicitOps | NearBranch | IsBranch | ShadowStack, em_ret),
4307 	I(DstReg | SrcMemFAddr | ModRM | No64 | Src2ES, em_lseg),
4308 	I(DstReg | SrcMemFAddr | ModRM | No64 | Src2DS, em_lseg),
4309 	G(ByteOp, group11), G(0, group11),
4310 	/* 0xC8 - 0xCF */
4311 	I(Stack | SrcImmU16 | Src2ImmByte, em_enter),
4312 	I(Stack, em_leave),
4313 	I(ImplicitOps | SrcImmU16 | IsBranch | ShadowStack, em_ret_far_imm),
4314 	I(ImplicitOps | IsBranch | ShadowStack, em_ret_far),
4315 	D(ImplicitOps | IsBranch), DI(SrcImmByte | IsBranch | ShadowStack, intn),
4316 	D(ImplicitOps | No64 | IsBranch),
4317 	II(ImplicitOps | IsBranch | ShadowStack, em_iret, iret),
4318 	/* 0xD0 - 0xD7 */
4319 	G(Src2One | ByteOp, group2), G(Src2One, group2),
4320 	G(Src2CL | ByteOp, group2), G(Src2CL, group2),
4321 	I(DstAcc | SrcImmUByte | No64, em_aam),
4322 	I(DstAcc | SrcImmUByte | No64, em_aad),
4323 	I(DstAcc | ByteOp | No64, em_salc),
4324 	I(DstAcc | SrcXLat | ByteOp, em_mov),
4325 	/* 0xD8 - 0xDF */
4326 	N, E(0, &escape_d9), N, E(0, &escape_db), N, E(0, &escape_dd), N, N,
4327 	/* 0xE0 - 0xE7 */
4328 	X3(I(SrcImmByte | NearBranch | IsBranch, em_loop)),
4329 	I(SrcImmByte | NearBranch | IsBranch, em_jcxz),
4330 	I2bvIP(SrcImmUByte | DstAcc, em_in,  in,  check_perm_in),
4331 	I2bvIP(SrcAcc | DstImmUByte, em_out, out, check_perm_out),
4332 	/* 0xE8 - 0xEF */
4333 	I(SrcImm | NearBranch | IsBranch | ShadowStack, em_call),
4334 	D(SrcImm | ImplicitOps | NearBranch | IsBranch),
4335 	I(SrcImmFAddr | No64 | IsBranch, em_jmp_far),
4336 	D(SrcImmByte | ImplicitOps | NearBranch | IsBranch),
4337 	I2bvIP(SrcDX | DstAcc, em_in,  in,  check_perm_in),
4338 	I2bvIP(SrcAcc | DstDX, em_out, out, check_perm_out),
4339 	/* 0xF0 - 0xF7 */
4340 	N, DI(ImplicitOps, icebp), N, N,
4341 	DI(ImplicitOps | Priv, hlt), D(ImplicitOps),
4342 	G(ByteOp, group3), G(0, group3),
4343 	/* 0xF8 - 0xFF */
4344 	D(ImplicitOps), D(ImplicitOps),
4345 	I(ImplicitOps, em_cli), I(ImplicitOps, em_sti),
4346 	D(ImplicitOps), D(ImplicitOps), G(0, group4), G(0, group5),
4347 };
4348 
4349 static const struct opcode twobyte_table[256] = {
4350 	/* 0x00 - 0x0F */
4351 	G(0, group6), GD(0, &group7), N, N,
4352 	N, I(ImplicitOps | EmulateOnUD | IsBranch | ShadowStack, em_syscall),
4353 	II(ImplicitOps | Priv, em_clts, clts), N,
4354 	DI(ImplicitOps | Priv, invd), DI(ImplicitOps | Priv, wbinvd), N, N,
4355 	N, D(ImplicitOps | ModRM | SrcMem | NoAccess), N, N,
4356 	/* 0x10 - 0x1F */
4357 	GP(ModRM | DstReg | SrcMem | Mov | Sse | Avx, &pfx_0f_10_0f_11),
4358 	GP(ModRM | DstMem | SrcReg | Mov | Sse | Avx, &pfx_0f_10_0f_11),
4359 	N, N, N, N, N, N,
4360 	D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 4 * prefetch + 4 * reserved NOP */
4361 	D(ImplicitOps | ModRM | SrcMem | NoAccess), N, N,
4362 	D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 8 * reserved NOP */
4363 	D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 8 * reserved NOP */
4364 	D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 8 * reserved NOP */
4365 	D(ImplicitOps | ModRM | SrcMem | NoAccess), /* NOP + 7 * reserved NOP */
4366 	/* 0x20 - 0x2F */
4367 	DIP(ModRM | DstMem | Priv | Op3264 | NoMod, cr_read, check_cr_access),
4368 	DIP(ModRM | DstMem | Priv | Op3264 | NoMod, dr_read, check_dr_read),
4369 	IIP(ModRM | SrcMem | Priv | Op3264 | NoMod, em_cr_write, cr_write,
4370 						check_cr_access),
4371 	IIP(ModRM | SrcMem | Priv | Op3264 | NoMod, em_dr_write, dr_write,
4372 						check_dr_write),
4373 	N, N, N, N,
4374 	GP(ModRM | DstReg | SrcMem | Mov | Sse | Avx, &pfx_0f_28_0f_29),
4375 	GP(ModRM | DstMem | SrcReg | Mov | Sse | Avx, &pfx_0f_28_0f_29),
4376 	N, GP(ModRM | DstMem | SrcReg | Mov | Sse | Avx, &pfx_0f_2b),
4377 	N, N, N, N,
4378 	/* 0x30 - 0x3F */
4379 	II(ImplicitOps | Priv, em_wrmsr, wrmsr),
4380 	IIP(ImplicitOps, em_rdtsc, rdtsc, check_rdtsc),
4381 	II(ImplicitOps | Priv, em_rdmsr, rdmsr),
4382 	IIP(ImplicitOps, em_rdpmc, rdpmc, check_rdpmc),
4383 	I(ImplicitOps | EmulateOnUD | IsBranch | ShadowStack, em_sysenter),
4384 	I(ImplicitOps | Priv | EmulateOnUD | IsBranch | ShadowStack, em_sysexit),
4385 	N, N,
4386 	N, N, N, N, N, N, N, N,
4387 	/* 0x40 - 0x4F */
4388 	X16(D(DstReg | SrcMem | ModRM)),
4389 	/* 0x50 - 0x5F */
4390 	N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N,
4391 	/* 0x60 - 0x6F */
4392 	N, N, N, N,
4393 	N, N, N, N,
4394 	N, N, N, N,
4395 	N, N, N, GP(SrcMem | DstReg | ModRM | Mov, &pfx_0f_6f_0f_7f),
4396 	/* 0x70 - 0x7F */
4397 	N, N, N, N,
4398 	N, N, N, N,
4399 	N, N, N, N,
4400 	N, N, N, GP(SrcReg | DstMem | ModRM | Mov, &pfx_0f_6f_0f_7f),
4401 	/* 0x80 - 0x8F */
4402 	X16(D(SrcImm | NearBranch | IsBranch)),
4403 	/* 0x90 - 0x9F */
4404 	X16(D(ByteOp | DstMem | SrcNone | ModRM| Mov)),
4405 	/* 0xA0 - 0xA7 */
4406 	I(Stack | Src2FS, em_push_sreg), I(Stack | Src2FS, em_pop_sreg),
4407 	II(ImplicitOps, em_cpuid, cpuid),
4408 	I(DstMem | SrcReg | ModRM | BitOp | NoWrite, em_bt),
4409 	I(DstMem | SrcReg | Src2ImmByte | ModRM, em_shld),
4410 	I(DstMem | SrcReg | Src2CL | ModRM, em_shld), N, N,
4411 	/* 0xA8 - 0xAF */
4412 	I(Stack | Src2GS, em_push_sreg), I(Stack | Src2GS, em_pop_sreg),
4413 	II(EmulateOnUD | ImplicitOps, em_rsm, rsm),
4414 	I(DstMem | SrcReg | ModRM | BitOp | Lock | PageTable, em_bts),
4415 	I(DstMem | SrcReg | Src2ImmByte | ModRM, em_shrd),
4416 	I(DstMem | SrcReg | Src2CL | ModRM, em_shrd),
4417 	GD(0, &group15), I(DstReg | SrcMem | ModRM, em_imul),
4418 	/* 0xB0 - 0xB7 */
4419 	I2bv(DstMem | SrcReg | ModRM | Lock | PageTable | SrcWrite, em_cmpxchg),
4420 	I(DstReg | SrcMemFAddr | ModRM | Src2SS, em_lseg),
4421 	I(DstMem | SrcReg | ModRM | BitOp | Lock, em_btr),
4422 	I(DstReg | SrcMemFAddr | ModRM | Src2FS, em_lseg),
4423 	I(DstReg | SrcMemFAddr | ModRM | Src2GS, em_lseg),
4424 	D(DstReg | SrcMem8 | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov),
4425 	/* 0xB8 - 0xBF */
4426 	N, N,
4427 	G(BitOp, group8),
4428 	I(DstMem | SrcReg | ModRM | BitOp | Lock | PageTable, em_btc),
4429 	I(DstReg | SrcMem | ModRM, em_bsf_c),
4430 	I(DstReg | SrcMem | ModRM, em_bsr_c),
4431 	D(DstReg | SrcMem8 | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov),
4432 	/* 0xC0 - 0xC7 */
4433 	I2bv(DstMem | SrcReg | ModRM | SrcWrite | Lock, em_xadd),
4434 	N, ID(0, &instr_dual_0f_c3),
4435 	N, N, N, GD(0, &group9),
4436 	/* 0xC8 - 0xCF */
4437 	X8(I(DstReg, em_bswap)),
4438 	/* 0xD0 - 0xDF */
4439 	N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N,
4440 	/* 0xE0 - 0xEF */
4441 	N, N, N, N, N, N, N, GP(SrcReg | DstMem | ModRM | Mov, &pfx_0f_e7_0f_38_2a),
4442 	N, N, N, N, N, N, N, N,
4443 	/* 0xF0 - 0xFF */
4444 	N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N
4445 };
4446 
4447 static const struct instr_dual instr_dual_0f_38_f0 = {
4448 	I(DstReg | SrcMem | Mov, em_movbe), N
4449 };
4450 
4451 static const struct instr_dual instr_dual_0f_38_f1 = {
4452 	I(DstMem | SrcReg | Mov, em_movbe), N
4453 };
4454 
4455 static const struct gprefix three_byte_0f_38_f0 = {
4456 	ID(0, &instr_dual_0f_38_f0), ID(0, &instr_dual_0f_38_f0), N, N
4457 };
4458 
4459 static const struct gprefix three_byte_0f_38_f1 = {
4460 	ID(0, &instr_dual_0f_38_f1), ID(0, &instr_dual_0f_38_f1), N, N
4461 };
4462 
4463 /*
4464  * Insns below are selected by the prefix which indexed by the third opcode
4465  * byte.
4466  */
4467 static const struct opcode opcode_map_0f_38[256] = {
4468 	/* 0x00 - 0x1f */
4469 	X16(N), X16(N),
4470 	/* 0x20 - 0x2f */
4471 	X8(N),
4472 	X2(N), GP(SrcReg | DstMem | ModRM | Mov | Aligned, &pfx_0f_e7_0f_38_2a), N, N, N, N, N,
4473 	/* 0x30 - 0x7f */
4474 	X16(N), X16(N), X16(N), X16(N), X16(N),
4475 	/* 0x80 - 0xef */
4476 	X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N),
4477 	/* 0xf0 - 0xf1 */
4478 	GP(EmulateOnUD | ModRM, &three_byte_0f_38_f0),
4479 	GP(EmulateOnUD | ModRM, &three_byte_0f_38_f1),
4480 	/* 0xf2 - 0xff */
4481 	N, N, X4(N), X8(N)
4482 };
4483 
4484 #undef D
4485 #undef N
4486 #undef G
4487 #undef GD
4488 #undef I
4489 #undef GP
4490 #undef EXT
4491 #undef MD
4492 #undef ID
4493 
4494 #undef D2bv
4495 #undef D2bvIP
4496 #undef I2bv
4497 #undef I2bvIP
4498 #undef I6ALU
4499 
is_shstk_instruction(struct x86_emulate_ctxt * ctxt)4500 static bool is_shstk_instruction(struct x86_emulate_ctxt *ctxt)
4501 {
4502 	return ctxt->d & ShadowStack;
4503 }
4504 
is_ibt_instruction(struct x86_emulate_ctxt * ctxt)4505 static bool is_ibt_instruction(struct x86_emulate_ctxt *ctxt)
4506 {
4507 	u64 flags = ctxt->d;
4508 
4509 	if (!(flags & IsBranch))
4510 		return false;
4511 
4512 	/*
4513 	 * All far JMPs and CALLs (including SYSCALL, SYSENTER, and INTn) are
4514 	 * indirect and thus affect IBT state.  All far RETs (including SYSEXIT
4515 	 * and IRET) are protected via Shadow Stacks and thus don't affect IBT
4516 	 * state.  IRET #GPs when returning to virtual-8086 and IBT or SHSTK is
4517 	 * enabled, but that should be handled by IRET emulation (in the very
4518 	 * unlikely scenario that KVM adds support for fully emulating IRET).
4519 	 */
4520 	if (!(flags & NearBranch))
4521 		return ctxt->execute != em_iret &&
4522 		       ctxt->execute != em_ret_far &&
4523 		       ctxt->execute != em_ret_far_imm &&
4524 		       ctxt->execute != em_sysexit;
4525 
4526 	switch (flags & SrcMask) {
4527 	case SrcReg:
4528 	case SrcMem:
4529 	case SrcMem16:
4530 	case SrcMem32:
4531 		return true;
4532 	case SrcMemFAddr:
4533 	case SrcImmFAddr:
4534 		/* Far branches should be handled above. */
4535 		WARN_ON_ONCE(1);
4536 		return true;
4537 	case SrcNone:
4538 	case SrcImm:
4539 	case SrcImmByte:
4540 	/*
4541 	 * Note, ImmU16 is used only for the stack adjustment operand on ENTER
4542 	 * and RET instructions.  ENTER isn't a branch and RET FAR is handled
4543 	 * by the NearBranch check above.  RET itself isn't an indirect branch.
4544 	 */
4545 	case SrcImmU16:
4546 		return false;
4547 	default:
4548 		WARN_ONCE(1, "Unexpected Src operand '%llx' on branch",
4549 			  flags & SrcMask);
4550 		return false;
4551 	}
4552 }
4553 
imm_size(struct x86_emulate_ctxt * ctxt)4554 static unsigned imm_size(struct x86_emulate_ctxt *ctxt)
4555 {
4556 	unsigned size;
4557 
4558 	size = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4559 	if (size == 8)
4560 		size = 4;
4561 	return size;
4562 }
4563 
decode_imm(struct x86_emulate_ctxt * ctxt,struct operand * op,unsigned size,bool sign_extension)4564 static int decode_imm(struct x86_emulate_ctxt *ctxt, struct operand *op,
4565 		      unsigned size, bool sign_extension)
4566 {
4567 	int rc = X86EMUL_CONTINUE;
4568 
4569 	op->type = OP_IMM;
4570 	op->bytes = size;
4571 	op->addr.mem.ea = ctxt->_eip;
4572 	/* NB. Immediates are sign-extended as necessary. */
4573 	switch (op->bytes) {
4574 	case 1:
4575 		op->val = insn_fetch(s8, ctxt);
4576 		break;
4577 	case 2:
4578 		op->val = insn_fetch(s16, ctxt);
4579 		break;
4580 	case 4:
4581 		op->val = insn_fetch(s32, ctxt);
4582 		break;
4583 	case 8:
4584 		op->val = insn_fetch(s64, ctxt);
4585 		break;
4586 	}
4587 	if (!sign_extension) {
4588 		switch (op->bytes) {
4589 		case 1:
4590 			op->val &= 0xff;
4591 			break;
4592 		case 2:
4593 			op->val &= 0xffff;
4594 			break;
4595 		case 4:
4596 			op->val &= 0xffffffff;
4597 			break;
4598 		}
4599 	}
4600 done:
4601 	return rc;
4602 }
4603 
decode_operand(struct x86_emulate_ctxt * ctxt,struct operand * op,unsigned d)4604 static int decode_operand(struct x86_emulate_ctxt *ctxt, struct operand *op,
4605 			  unsigned d)
4606 {
4607 	int rc = X86EMUL_CONTINUE;
4608 
4609 	switch (d) {
4610 	case OpReg:
4611 		decode_register_operand(ctxt, op);
4612 		break;
4613 	case OpImmUByte:
4614 		rc = decode_imm(ctxt, op, 1, false);
4615 		break;
4616 	case OpMem:
4617 		ctxt->memop.bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4618 	mem_common:
4619 		*op = ctxt->memop;
4620 		ctxt->memopp = op;
4621 		if (ctxt->d & BitOp)
4622 			fetch_bit_operand(ctxt);
4623 		op->orig_val = op->val;
4624 		break;
4625 	case OpMem64:
4626 		ctxt->memop.bytes = (ctxt->op_bytes == 8) ? 16 : 8;
4627 		goto mem_common;
4628 	case OpAcc:
4629 		op->type = OP_REG;
4630 		op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4631 		op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
4632 		fetch_register_operand(op);
4633 		break;
4634 	case OpAccLo:
4635 		op->type = OP_REG;
4636 		op->bytes = (ctxt->d & ByteOp) ? 2 : ctxt->op_bytes;
4637 		op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
4638 		fetch_register_operand(op);
4639 		break;
4640 	case OpAccHi:
4641 		if (ctxt->d & ByteOp) {
4642 			op->type = OP_NONE;
4643 			break;
4644 		}
4645 		op->type = OP_REG;
4646 		op->bytes = ctxt->op_bytes;
4647 		op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
4648 		fetch_register_operand(op);
4649 		break;
4650 	case OpDI:
4651 		op->type = OP_MEM;
4652 		op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4653 		op->addr.mem.ea =
4654 			register_address(ctxt, VCPU_REGS_RDI);
4655 		op->addr.mem.seg = VCPU_SREG_ES;
4656 		op->val = 0;
4657 		op->count = 1;
4658 		break;
4659 	case OpDX:
4660 		op->type = OP_REG;
4661 		op->bytes = 2;
4662 		op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
4663 		fetch_register_operand(op);
4664 		break;
4665 	case OpCL:
4666 		op->type = OP_IMM;
4667 		op->bytes = 1;
4668 		op->val = reg_read(ctxt, VCPU_REGS_RCX) & 0xff;
4669 		break;
4670 	case OpImmByte:
4671 		rc = decode_imm(ctxt, op, 1, true);
4672 		break;
4673 	case OpOne:
4674 		op->type = OP_IMM;
4675 		op->bytes = 1;
4676 		op->val = 1;
4677 		break;
4678 	case OpImm:
4679 		rc = decode_imm(ctxt, op, imm_size(ctxt), true);
4680 		break;
4681 	case OpImm64:
4682 		rc = decode_imm(ctxt, op, ctxt->op_bytes, true);
4683 		break;
4684 	case OpMem8:
4685 		ctxt->memop.bytes = 1;
4686 		if (ctxt->memop.type == OP_REG) {
4687 			ctxt->memop.addr.reg = decode_register(ctxt,
4688 					ctxt->modrm_rm, true);
4689 			fetch_register_operand(&ctxt->memop);
4690 		}
4691 		goto mem_common;
4692 	case OpMem16:
4693 		ctxt->memop.bytes = 2;
4694 		goto mem_common;
4695 	case OpMem32:
4696 		ctxt->memop.bytes = 4;
4697 		goto mem_common;
4698 	case OpImmU16:
4699 		rc = decode_imm(ctxt, op, 2, false);
4700 		break;
4701 	case OpImmU:
4702 		rc = decode_imm(ctxt, op, imm_size(ctxt), false);
4703 		break;
4704 	case OpSI:
4705 		op->type = OP_MEM;
4706 		op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4707 		op->addr.mem.ea =
4708 			register_address(ctxt, VCPU_REGS_RSI);
4709 		op->addr.mem.seg = ctxt->seg_override;
4710 		op->val = 0;
4711 		op->count = 1;
4712 		break;
4713 	case OpXLat:
4714 		op->type = OP_MEM;
4715 		op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4716 		op->addr.mem.ea =
4717 			address_mask(ctxt,
4718 				reg_read(ctxt, VCPU_REGS_RBX) +
4719 				(reg_read(ctxt, VCPU_REGS_RAX) & 0xff));
4720 		op->addr.mem.seg = ctxt->seg_override;
4721 		op->val = 0;
4722 		break;
4723 	case OpImmFAddr:
4724 		op->type = OP_IMM;
4725 		op->addr.mem.ea = ctxt->_eip;
4726 		op->bytes = ctxt->op_bytes + 2;
4727 		insn_fetch_arr(op->valptr, op->bytes, ctxt);
4728 		break;
4729 	case OpMemFAddr:
4730 		ctxt->memop.bytes = ctxt->op_bytes + 2;
4731 		goto mem_common;
4732 	case OpES:
4733 		op->type = OP_IMM;
4734 		op->val = VCPU_SREG_ES;
4735 		break;
4736 	case OpCS:
4737 		op->type = OP_IMM;
4738 		op->val = VCPU_SREG_CS;
4739 		break;
4740 	case OpSS:
4741 		op->type = OP_IMM;
4742 		op->val = VCPU_SREG_SS;
4743 		break;
4744 	case OpDS:
4745 		op->type = OP_IMM;
4746 		op->val = VCPU_SREG_DS;
4747 		break;
4748 	case OpFS:
4749 		op->type = OP_IMM;
4750 		op->val = VCPU_SREG_FS;
4751 		break;
4752 	case OpGS:
4753 		op->type = OP_IMM;
4754 		op->val = VCPU_SREG_GS;
4755 		break;
4756 	case OpImplicit:
4757 		/* Special instructions do their own operand decoding. */
4758 	default:
4759 		op->type = OP_NONE; /* Disable writeback. */
4760 		break;
4761 	}
4762 
4763 done:
4764 	return rc;
4765 }
4766 
x86_decode_avx(struct x86_emulate_ctxt * ctxt,u8 vex_1st,u8 vex_2nd,struct opcode * opcode)4767 static int x86_decode_avx(struct x86_emulate_ctxt *ctxt,
4768 			  u8 vex_1st, u8 vex_2nd, struct opcode *opcode)
4769 {
4770 	u8 vex_3rd, map, pp, l, v;
4771 	int rc = X86EMUL_CONTINUE;
4772 
4773 	if (ctxt->rep_prefix || ctxt->op_prefix || ctxt->rex_prefix)
4774 		goto ud;
4775 
4776 	if (vex_1st == 0xc5) {
4777 		/* Expand RVVVVlpp to VEX3 format */
4778 		vex_3rd = vex_2nd & ~0x80;         /* VVVVlpp from VEX2, w=0 */
4779 		vex_2nd = (vex_2nd & 0x80) | 0x61; /* R from VEX2, X=1 B=1 mmmmm=00001 */
4780 	} else {
4781 		vex_3rd = insn_fetch(u8, ctxt);
4782 	}
4783 
4784 	/* vex_2nd = RXBmmmmm, vex_3rd = wVVVVlpp.  Fix polarity */
4785 	vex_2nd ^= 0xE0; /* binary 11100000 */
4786 	vex_3rd ^= 0x78; /* binary 01111000 */
4787 
4788 	ctxt->rex_prefix = REX_PREFIX;
4789 	ctxt->rex_bits = (vex_2nd & 0xE0) >> 5; /* RXB */
4790 	ctxt->rex_bits |= (vex_3rd & 0x80) >> 4; /* w */
4791 	if (ctxt->rex_bits && ctxt->mode != X86EMUL_MODE_PROT64)
4792 		goto ud;
4793 
4794 	map = vex_2nd & 0x1f;
4795 	v = (vex_3rd >> 3) & 0xf;
4796 	l = vex_3rd & 0x4;
4797 	pp = vex_3rd & 0x3;
4798 
4799 	ctxt->b = insn_fetch(u8, ctxt);
4800 	switch (map) {
4801 	case 1:
4802 		ctxt->opcode_len = 2;
4803 		*opcode = twobyte_table[ctxt->b];
4804 		break;
4805 	case 2:
4806 		ctxt->opcode_len = 3;
4807 		*opcode = opcode_map_0f_38[ctxt->b];
4808 		break;
4809 	case 3:
4810 		/* no 0f 3a instructions are supported yet */
4811 		return X86EMUL_UNHANDLEABLE;
4812 	default:
4813 		goto ud;
4814 	}
4815 
4816 	/*
4817 	 * No three operand instructions are supported yet; those that
4818 	 * *are* marked with the Avx flag reserve the VVVV flag.
4819 	 */
4820 	if (v)
4821 		goto ud;
4822 
4823 	if (l)
4824 		ctxt->op_bytes = 32;
4825 	else
4826 		ctxt->op_bytes = 16;
4827 
4828 	switch (pp) {
4829 	case 0: break;
4830 	case 1: ctxt->op_prefix = true; break;
4831 	case 2: ctxt->rep_prefix = 0xf3; break;
4832 	case 3: ctxt->rep_prefix = 0xf2; break;
4833 	}
4834 
4835 done:
4836 	return rc;
4837 ud:
4838 	*opcode = ud;
4839 	return rc;
4840 }
4841 
x86_decode_insn(struct x86_emulate_ctxt * ctxt,void * insn,int insn_len,int emulation_type)4842 int x86_decode_insn(struct x86_emulate_ctxt *ctxt, void *insn, int insn_len, int emulation_type)
4843 {
4844 	int rc = X86EMUL_CONTINUE;
4845 	int mode = ctxt->mode;
4846 	int def_op_bytes, def_ad_bytes, goffset, simd_prefix;
4847 	bool vex_prefix = false;
4848 	bool has_seg_override = false;
4849 	struct opcode opcode;
4850 	u16 dummy;
4851 	struct desc_struct desc;
4852 
4853 	ctxt->memop.type = OP_NONE;
4854 	ctxt->memopp = NULL;
4855 	ctxt->_eip = ctxt->eip;
4856 	ctxt->fetch.ptr = ctxt->fetch.data;
4857 	ctxt->fetch.end = ctxt->fetch.data + insn_len;
4858 	ctxt->opcode_len = 1;
4859 	ctxt->intercept = x86_intercept_none;
4860 	if (insn_len > 0)
4861 		memcpy(ctxt->fetch.data, insn, insn_len);
4862 	else {
4863 		rc = __do_insn_fetch_bytes(ctxt, 1);
4864 		if (rc != X86EMUL_CONTINUE)
4865 			goto done;
4866 	}
4867 
4868 	switch (mode) {
4869 	case X86EMUL_MODE_REAL:
4870 	case X86EMUL_MODE_VM86:
4871 		def_op_bytes = def_ad_bytes = 2;
4872 		ctxt->ops->get_segment(ctxt, &dummy, &desc, NULL, VCPU_SREG_CS);
4873 		if (desc.d)
4874 			def_op_bytes = def_ad_bytes = 4;
4875 		break;
4876 	case X86EMUL_MODE_PROT16:
4877 		def_op_bytes = def_ad_bytes = 2;
4878 		break;
4879 	case X86EMUL_MODE_PROT32:
4880 		def_op_bytes = def_ad_bytes = 4;
4881 		break;
4882 #ifdef CONFIG_X86_64
4883 	case X86EMUL_MODE_PROT64:
4884 		def_op_bytes = 4;
4885 		def_ad_bytes = 8;
4886 		break;
4887 #endif
4888 	default:
4889 		return EMULATION_FAILED;
4890 	}
4891 
4892 	ctxt->op_bytes = def_op_bytes;
4893 	ctxt->ad_bytes = def_ad_bytes;
4894 
4895 	/* Legacy prefixes. */
4896 	for (;;) {
4897 		switch (ctxt->b = insn_fetch(u8, ctxt)) {
4898 		case 0x66:	/* operand-size override */
4899 			ctxt->op_prefix = true;
4900 			/* switch between 2/4 bytes */
4901 			ctxt->op_bytes = def_op_bytes ^ 6;
4902 			break;
4903 		case 0x67:	/* address-size override */
4904 			if (mode == X86EMUL_MODE_PROT64)
4905 				/* switch between 4/8 bytes */
4906 				ctxt->ad_bytes = def_ad_bytes ^ 12;
4907 			else
4908 				/* switch between 2/4 bytes */
4909 				ctxt->ad_bytes = def_ad_bytes ^ 6;
4910 			break;
4911 		case 0x26:	/* ES override */
4912 			has_seg_override = true;
4913 			ctxt->seg_override = VCPU_SREG_ES;
4914 			break;
4915 		case 0x2e:	/* CS override */
4916 			has_seg_override = true;
4917 			ctxt->seg_override = VCPU_SREG_CS;
4918 			break;
4919 		case 0x36:	/* SS override */
4920 			has_seg_override = true;
4921 			ctxt->seg_override = VCPU_SREG_SS;
4922 			break;
4923 		case 0x3e:	/* DS override */
4924 			has_seg_override = true;
4925 			ctxt->seg_override = VCPU_SREG_DS;
4926 			break;
4927 		case 0x64:	/* FS override */
4928 			has_seg_override = true;
4929 			ctxt->seg_override = VCPU_SREG_FS;
4930 			break;
4931 		case 0x65:	/* GS override */
4932 			has_seg_override = true;
4933 			ctxt->seg_override = VCPU_SREG_GS;
4934 			break;
4935 		case 0x40 ... 0x4f: /* REX */
4936 			if (mode != X86EMUL_MODE_PROT64)
4937 				goto done_prefixes;
4938 			ctxt->rex_prefix = REX_PREFIX;
4939 			ctxt->rex_bits   = ctxt->b & 0xf;
4940 			continue;
4941 		case 0xf0:	/* LOCK */
4942 			ctxt->lock_prefix = 1;
4943 			break;
4944 		case 0xf2:	/* REPNE/REPNZ */
4945 		case 0xf3:	/* REP/REPE/REPZ */
4946 			ctxt->rep_prefix = ctxt->b;
4947 			break;
4948 		default:
4949 			goto done_prefixes;
4950 		}
4951 
4952 		/* Any legacy prefix after a REX prefix nullifies its effect. */
4953 		ctxt->rex_prefix = REX_NONE;
4954 		ctxt->rex_bits = 0;
4955 	}
4956 
4957 done_prefixes:
4958 
4959 	/* REX prefix. */
4960 	if (ctxt->rex_bits & REX_W)
4961 		ctxt->op_bytes = 8;
4962 
4963 	/* Opcode byte(s). */
4964 	if (ctxt->b == 0xc4 || ctxt->b == 0xc5) {
4965 		/* VEX or LDS/LES */
4966 		u8 vex_2nd = insn_fetch(u8, ctxt);
4967 		if (mode != X86EMUL_MODE_PROT64 && (vex_2nd & 0xc0) != 0xc0) {
4968 			opcode = opcode_table[ctxt->b];
4969 			ctxt->modrm = vex_2nd;
4970 			/* the Mod/RM byte has been fetched already!  */
4971 			goto done_modrm;
4972 		}
4973 
4974 		vex_prefix = true;
4975 		rc = x86_decode_avx(ctxt, ctxt->b, vex_2nd, &opcode);
4976 		if (rc != X86EMUL_CONTINUE)
4977 			goto done;
4978 	} else if (ctxt->b == 0x0f) {
4979 		/* Two- or three-byte opcode */
4980 		ctxt->opcode_len = 2;
4981 		ctxt->b = insn_fetch(u8, ctxt);
4982 		opcode = twobyte_table[ctxt->b];
4983 
4984 		/* 0F_38 opcode map */
4985 		if (ctxt->b == 0x38) {
4986 			ctxt->opcode_len = 3;
4987 			ctxt->b = insn_fetch(u8, ctxt);
4988 			opcode = opcode_map_0f_38[ctxt->b];
4989 		}
4990 	} else {
4991 		/* Opcode byte(s). */
4992 		opcode = opcode_table[ctxt->b];
4993 	}
4994 
4995 	if (opcode.flags & ModRM)
4996 		ctxt->modrm = insn_fetch(u8, ctxt);
4997 
4998 done_modrm:
4999 	ctxt->d = opcode.flags;
5000 	while (ctxt->d & GroupMask) {
5001 		switch (ctxt->d & GroupMask) {
5002 		case Group:
5003 			goffset = (ctxt->modrm >> 3) & 7;
5004 			opcode = opcode.u.group[goffset];
5005 			break;
5006 		case GroupDual:
5007 			goffset = (ctxt->modrm >> 3) & 7;
5008 			if ((ctxt->modrm >> 6) == 3)
5009 				opcode = opcode.u.gdual->mod3[goffset];
5010 			else
5011 				opcode = opcode.u.gdual->mod012[goffset];
5012 			break;
5013 		case RMExt:
5014 			goffset = ctxt->modrm & 7;
5015 			opcode = opcode.u.group[goffset];
5016 			break;
5017 		case Prefix:
5018 			if (ctxt->rep_prefix && ctxt->op_prefix)
5019 				return EMULATION_FAILED;
5020 			simd_prefix = ctxt->op_prefix ? 0x66 : ctxt->rep_prefix;
5021 			switch (simd_prefix) {
5022 			case 0x00: opcode = opcode.u.gprefix->pfx_no; break;
5023 			case 0x66: opcode = opcode.u.gprefix->pfx_66; break;
5024 			case 0xf2: opcode = opcode.u.gprefix->pfx_f2; break;
5025 			case 0xf3: opcode = opcode.u.gprefix->pfx_f3; break;
5026 			}
5027 			break;
5028 		case Escape:
5029 			if (ctxt->modrm > 0xbf) {
5030 				size_t size = ARRAY_SIZE(opcode.u.esc->high);
5031 				u32 index = array_index_nospec(
5032 					ctxt->modrm - 0xc0, size);
5033 
5034 				opcode = opcode.u.esc->high[index];
5035 			} else {
5036 				opcode = opcode.u.esc->op[(ctxt->modrm >> 3) & 7];
5037 			}
5038 			break;
5039 		case InstrDual:
5040 			if ((ctxt->modrm >> 6) == 3)
5041 				opcode = opcode.u.idual->mod3;
5042 			else
5043 				opcode = opcode.u.idual->mod012;
5044 			break;
5045 		case ModeDual:
5046 			if (ctxt->mode == X86EMUL_MODE_PROT64)
5047 				opcode = opcode.u.mdual->mode64;
5048 			else
5049 				opcode = opcode.u.mdual->mode32;
5050 			break;
5051 		default:
5052 			return EMULATION_FAILED;
5053 		}
5054 
5055 		ctxt->d &= ~(u64)GroupMask;
5056 		ctxt->d |= opcode.flags;
5057 	}
5058 
5059 	ctxt->is_branch = opcode.flags & IsBranch;
5060 
5061 	/* Unrecognised? */
5062 	if (ctxt->d == 0)
5063 		return EMULATION_FAILED;
5064 
5065 	if (unlikely(vex_prefix)) {
5066 		/*
5067 		 * Only specifically marked instructions support VEX.  Since many
5068 		 * instructions support it but are not annotated, return not implemented
5069 		 * rather than #UD.
5070 		 */
5071 		if (!(ctxt->d & Avx))
5072 			return EMULATION_FAILED;
5073 
5074 		if (!(ctxt->d & AlignMask))
5075 			ctxt->d |= Unaligned;
5076 	}
5077 
5078 	ctxt->execute = opcode.u.execute;
5079 
5080 	/*
5081 	 * Reject emulation if KVM might need to emulate shadow stack updates
5082 	 * and/or indirect branch tracking enforcement, which the emulator
5083 	 * doesn't support.
5084 	 */
5085 	if ((is_ibt_instruction(ctxt) || is_shstk_instruction(ctxt)) &&
5086 	    ctxt->ops->get_cr(ctxt, 4) & X86_CR4_CET) {
5087 		u64 u_cet = 0, s_cet = 0;
5088 
5089 		/*
5090 		 * Check both User and Supervisor on far transfers as inter-
5091 		 * privilege level transfers are impacted by CET at the target
5092 		 * privilege level, and that is not known at this time.  The
5093 		 * expectation is that the guest will not require emulation of
5094 		 * any CET-affected instructions at any privilege level.
5095 		 */
5096 		if (!(ctxt->d & NearBranch))
5097 			u_cet = s_cet = CET_SHSTK_EN | CET_ENDBR_EN;
5098 		else if (ctxt->ops->cpl(ctxt) == 3)
5099 			u_cet = CET_SHSTK_EN | CET_ENDBR_EN;
5100 		else
5101 			s_cet = CET_SHSTK_EN | CET_ENDBR_EN;
5102 
5103 		if ((u_cet && ctxt->ops->get_msr(ctxt, MSR_IA32_U_CET, &u_cet)) ||
5104 		    (s_cet && ctxt->ops->get_msr(ctxt, MSR_IA32_S_CET, &s_cet)))
5105 			return EMULATION_FAILED;
5106 
5107 		if ((u_cet | s_cet) & CET_SHSTK_EN && is_shstk_instruction(ctxt))
5108 			return EMULATION_FAILED;
5109 
5110 		if ((u_cet | s_cet) & CET_ENDBR_EN && is_ibt_instruction(ctxt))
5111 			return EMULATION_FAILED;
5112 	}
5113 
5114 	if (unlikely(emulation_type & EMULTYPE_TRAP_UD) &&
5115 	    likely(!(ctxt->d & EmulateOnUD)))
5116 		return EMULATION_FAILED;
5117 
5118 	if (unlikely(ctxt->d &
5119 	    (NotImpl|Stack|Op3264|Sse|Mmx|Intercept|CheckPerm|NearBranch|
5120 	     No16))) {
5121 		/*
5122 		 * These are copied unconditionally here, and checked unconditionally
5123 		 * in x86_emulate_insn.
5124 		 */
5125 		ctxt->check_perm = opcode.check_perm;
5126 		ctxt->intercept = opcode.intercept;
5127 
5128 		if (ctxt->d & NotImpl)
5129 			return EMULATION_FAILED;
5130 
5131 		if (mode == X86EMUL_MODE_PROT64) {
5132 			if (ctxt->op_bytes == 4 && (ctxt->d & Stack))
5133 				ctxt->op_bytes = 8;
5134 			else if (ctxt->d & NearBranch)
5135 				ctxt->op_bytes = 8;
5136 		}
5137 
5138 		if (ctxt->d & Op3264) {
5139 			if (mode == X86EMUL_MODE_PROT64)
5140 				ctxt->op_bytes = 8;
5141 			else
5142 				ctxt->op_bytes = 4;
5143 		}
5144 
5145 		if ((ctxt->d & No16) && ctxt->op_bytes == 2)
5146 			ctxt->op_bytes = 4;
5147 
5148 		if (vex_prefix)
5149 			;
5150 		else if (ctxt->d & Sse)
5151 			ctxt->op_bytes = 16, ctxt->d &= ~Avx;
5152 		else if (ctxt->d & Mmx)
5153 			ctxt->op_bytes = 8;
5154 	}
5155 
5156 	/* ModRM and SIB bytes. */
5157 	if (ctxt->d & ModRM) {
5158 		rc = decode_modrm(ctxt, &ctxt->memop);
5159 		if (!has_seg_override) {
5160 			has_seg_override = true;
5161 			ctxt->seg_override = ctxt->modrm_seg;
5162 		}
5163 	} else if (ctxt->d & MemAbs)
5164 		rc = decode_abs(ctxt, &ctxt->memop);
5165 	if (rc != X86EMUL_CONTINUE)
5166 		goto done;
5167 
5168 	if (!has_seg_override)
5169 		ctxt->seg_override = VCPU_SREG_DS;
5170 
5171 	ctxt->memop.addr.mem.seg = ctxt->seg_override;
5172 
5173 	/*
5174 	 * Decode and fetch the source operand: register, memory
5175 	 * or immediate.
5176 	 */
5177 	rc = decode_operand(ctxt, &ctxt->src, (ctxt->d >> SrcShift) & OpMask);
5178 	if (rc != X86EMUL_CONTINUE)
5179 		goto done;
5180 
5181 	/*
5182 	 * Decode and fetch the second source operand: register, memory
5183 	 * or immediate.
5184 	 */
5185 	rc = decode_operand(ctxt, &ctxt->src2, (ctxt->d >> Src2Shift) & OpMask);
5186 	if (rc != X86EMUL_CONTINUE)
5187 		goto done;
5188 
5189 	/* Decode and fetch the destination operand: register or memory. */
5190 	rc = decode_operand(ctxt, &ctxt->dst, (ctxt->d >> DstShift) & OpMask);
5191 
5192 	if (ctxt->rip_relative && likely(ctxt->memopp))
5193 		ctxt->memopp->addr.mem.ea = address_mask(ctxt,
5194 					ctxt->memopp->addr.mem.ea + ctxt->_eip);
5195 
5196 done:
5197 	if (rc == X86EMUL_PROPAGATE_FAULT)
5198 		ctxt->have_exception = true;
5199 	return (rc != X86EMUL_CONTINUE) ? EMULATION_FAILED : EMULATION_OK;
5200 }
5201 
x86_page_table_writing_insn(struct x86_emulate_ctxt * ctxt)5202 bool x86_page_table_writing_insn(struct x86_emulate_ctxt *ctxt)
5203 {
5204 	return ctxt->d & PageTable;
5205 }
5206 
string_insn_completed(struct x86_emulate_ctxt * ctxt)5207 static bool string_insn_completed(struct x86_emulate_ctxt *ctxt)
5208 {
5209 	/* The second termination condition only applies for REPE
5210 	 * and REPNE. Test if the repeat string operation prefix is
5211 	 * REPE/REPZ or REPNE/REPNZ and if it's the case it tests the
5212 	 * corresponding termination condition according to:
5213 	 * 	- if REPE/REPZ and ZF = 0 then done
5214 	 * 	- if REPNE/REPNZ and ZF = 1 then done
5215 	 */
5216 	if (((ctxt->b == 0xa6) || (ctxt->b == 0xa7) ||
5217 	     (ctxt->b == 0xae) || (ctxt->b == 0xaf))
5218 	    && (((ctxt->rep_prefix == REPE_PREFIX) &&
5219 		 ((ctxt->eflags & X86_EFLAGS_ZF) == 0))
5220 		|| ((ctxt->rep_prefix == REPNE_PREFIX) &&
5221 		    ((ctxt->eflags & X86_EFLAGS_ZF) == X86_EFLAGS_ZF))))
5222 		return true;
5223 
5224 	return false;
5225 }
5226 
flush_pending_x87_faults(struct x86_emulate_ctxt * ctxt)5227 static int flush_pending_x87_faults(struct x86_emulate_ctxt *ctxt)
5228 {
5229 	int rc;
5230 
5231 	kvm_fpu_get();
5232 	rc = asm_safe("fwait");
5233 	kvm_fpu_put();
5234 
5235 	if (unlikely(rc != X86EMUL_CONTINUE))
5236 		return emulate_exception(ctxt, MF_VECTOR, 0, false);
5237 
5238 	return X86EMUL_CONTINUE;
5239 }
5240 
fetch_possible_mmx_operand(struct operand * op)5241 static void fetch_possible_mmx_operand(struct operand *op)
5242 {
5243 	if (op->type == OP_MM)
5244 		kvm_read_mmx_reg(op->addr.mm, &op->mm_val);
5245 }
5246 
init_decode_cache(struct x86_emulate_ctxt * ctxt)5247 void init_decode_cache(struct x86_emulate_ctxt *ctxt)
5248 {
5249 	/* Clear fields that are set conditionally but read without a guard. */
5250 	ctxt->rip_relative = false;
5251 	ctxt->rex_prefix = REX_NONE;
5252 	ctxt->rex_bits = 0;
5253 	ctxt->lock_prefix = 0;
5254 	ctxt->op_prefix = false;
5255 	ctxt->rep_prefix = 0;
5256 	ctxt->regs_valid = 0;
5257 	ctxt->regs_dirty = 0;
5258 
5259 	ctxt->io_read.pos = 0;
5260 	ctxt->io_read.end = 0;
5261 	ctxt->mem_read.end = 0;
5262 }
5263 
x86_emulate_insn(struct x86_emulate_ctxt * ctxt,bool check_intercepts)5264 int x86_emulate_insn(struct x86_emulate_ctxt *ctxt, bool check_intercepts)
5265 {
5266 	const struct x86_emulate_ops *ops = ctxt->ops;
5267 	int rc = X86EMUL_CONTINUE;
5268 	int saved_dst_type = ctxt->dst.type;
5269 
5270 	ctxt->mem_read.pos = 0;
5271 
5272 	/* LOCK prefix is allowed only with some instructions */
5273 	if (ctxt->lock_prefix && (!(ctxt->d & Lock) || ctxt->dst.type != OP_MEM)) {
5274 		rc = emulate_ud(ctxt);
5275 		goto done;
5276 	}
5277 
5278 	if ((ctxt->d & SrcMask) == SrcMemFAddr && ctxt->src.type != OP_MEM) {
5279 		rc = emulate_ud(ctxt);
5280 		goto done;
5281 	}
5282 
5283 	if (unlikely(ctxt->d &
5284 		     (No64|Undefined|Avx|Sse|Mmx|Intercept|CheckPerm|Priv|Prot|String))) {
5285 		if ((ctxt->mode == X86EMUL_MODE_PROT64 && (ctxt->d & No64)) ||
5286 				(ctxt->d & Undefined)) {
5287 			rc = emulate_ud(ctxt);
5288 			goto done;
5289 		}
5290 
5291 		if ((ctxt->d & (Avx|Sse|Mmx)) && ((ops->get_cr(ctxt, 0) & X86_CR0_EM))) {
5292 			rc = emulate_ud(ctxt);
5293 			goto done;
5294 		}
5295 
5296 		if (ctxt->d & Avx) {
5297 			u64 xcr = 0;
5298 			if (!(ops->get_cr(ctxt, 4) & X86_CR4_OSXSAVE)
5299 			    || ops->get_xcr(ctxt, 0, &xcr)
5300 			    || !(xcr & XFEATURE_MASK_YMM)) {
5301 				rc = emulate_ud(ctxt);
5302 				goto done;
5303 			}
5304 		} else if (ctxt->d & Sse) {
5305 			if (!(ops->get_cr(ctxt, 4) & X86_CR4_OSFXSR)) {
5306 				rc = emulate_ud(ctxt);
5307 				goto done;
5308 			}
5309 		}
5310 
5311 		if ((ctxt->d & (Avx|Sse|Mmx)) && (ops->get_cr(ctxt, 0) & X86_CR0_TS)) {
5312 			rc = emulate_nm(ctxt);
5313 			goto done;
5314 		}
5315 
5316 		if (ctxt->d & Mmx) {
5317 			rc = flush_pending_x87_faults(ctxt);
5318 			if (rc != X86EMUL_CONTINUE)
5319 				goto done;
5320 			/*
5321 			 * Now that we know the fpu is exception safe, we can fetch
5322 			 * operands from it.
5323 			 */
5324 			fetch_possible_mmx_operand(&ctxt->src);
5325 			fetch_possible_mmx_operand(&ctxt->src2);
5326 			if (!(ctxt->d & Mov))
5327 				fetch_possible_mmx_operand(&ctxt->dst);
5328 		}
5329 
5330 		if (unlikely(check_intercepts) && ctxt->intercept) {
5331 			rc = emulator_check_intercept(ctxt, ctxt->intercept,
5332 						      X86_ICPT_PRE_EXCEPT);
5333 			if (rc != X86EMUL_CONTINUE)
5334 				goto done;
5335 		}
5336 
5337 		/* Instruction can only be executed in protected mode */
5338 		if ((ctxt->d & Prot) && ctxt->mode < X86EMUL_MODE_PROT16) {
5339 			rc = emulate_ud(ctxt);
5340 			goto done;
5341 		}
5342 
5343 		/* Privileged instruction can be executed only in CPL=0 */
5344 		if ((ctxt->d & Priv) && ops->cpl(ctxt)) {
5345 			if (ctxt->d & PrivUD)
5346 				rc = emulate_ud(ctxt);
5347 			else
5348 				rc = emulate_gp(ctxt, 0);
5349 			goto done;
5350 		}
5351 
5352 		/* Do instruction specific permission checks */
5353 		if (ctxt->d & CheckPerm) {
5354 			rc = ctxt->check_perm(ctxt);
5355 			if (rc != X86EMUL_CONTINUE)
5356 				goto done;
5357 		}
5358 
5359 		if (unlikely(check_intercepts) && (ctxt->d & Intercept)) {
5360 			rc = emulator_check_intercept(ctxt, ctxt->intercept,
5361 						      X86_ICPT_POST_EXCEPT);
5362 			if (rc != X86EMUL_CONTINUE)
5363 				goto done;
5364 		}
5365 
5366 		if (ctxt->rep_prefix && (ctxt->d & String)) {
5367 			/* All REP prefixes have the same first termination condition */
5368 			if (address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) == 0) {
5369 				string_registers_quirk(ctxt);
5370 				ctxt->eip = ctxt->_eip;
5371 				ctxt->eflags &= ~X86_EFLAGS_RF;
5372 				goto done;
5373 			}
5374 		}
5375 	}
5376 
5377 	if ((ctxt->src.type == OP_MEM) && !(ctxt->d & NoAccess)) {
5378 		rc = segmented_read(ctxt, ctxt->src.addr.mem,
5379 				    ctxt->src.valptr, ctxt->src.bytes);
5380 		if (rc != X86EMUL_CONTINUE)
5381 			goto done;
5382 		ctxt->src.orig_val64 = ctxt->src.val64;
5383 	}
5384 
5385 	if (ctxt->src2.type == OP_MEM) {
5386 		rc = segmented_read(ctxt, ctxt->src2.addr.mem,
5387 				    &ctxt->src2.val, ctxt->src2.bytes);
5388 		if (rc != X86EMUL_CONTINUE)
5389 			goto done;
5390 	}
5391 
5392 	if ((ctxt->d & DstMask) == ImplicitOps)
5393 		goto special_insn;
5394 
5395 
5396 	if ((ctxt->dst.type == OP_MEM) && !(ctxt->d & Mov)) {
5397 		/* optimisation - avoid slow emulated read if Mov */
5398 		rc = segmented_read(ctxt, ctxt->dst.addr.mem,
5399 				   &ctxt->dst.val, ctxt->dst.bytes);
5400 		if (rc != X86EMUL_CONTINUE) {
5401 			if (!(ctxt->d & NoWrite) &&
5402 			    rc == X86EMUL_PROPAGATE_FAULT &&
5403 			    ctxt->exception.vector == PF_VECTOR)
5404 				ctxt->exception.error_code |= PFERR_WRITE_MASK;
5405 			goto done;
5406 		}
5407 	}
5408 	/* Copy full 64-bit value for CMPXCHG8B.  */
5409 	ctxt->dst.orig_val64 = ctxt->dst.val64;
5410 
5411 special_insn:
5412 
5413 	if (unlikely(check_intercepts) && (ctxt->d & Intercept)) {
5414 		rc = emulator_check_intercept(ctxt, ctxt->intercept,
5415 					      X86_ICPT_POST_MEMACCESS);
5416 		if (rc != X86EMUL_CONTINUE)
5417 			goto done;
5418 	}
5419 
5420 	if (ctxt->rep_prefix && (ctxt->d & String))
5421 		ctxt->eflags |= X86_EFLAGS_RF;
5422 	else
5423 		ctxt->eflags &= ~X86_EFLAGS_RF;
5424 
5425 	if (ctxt->execute) {
5426 		rc = ctxt->execute(ctxt);
5427 		if (rc != X86EMUL_CONTINUE)
5428 			goto done;
5429 		goto writeback;
5430 	}
5431 
5432 	if (ctxt->opcode_len == 2)
5433 		goto twobyte_insn;
5434 	else if (ctxt->opcode_len == 3)
5435 		goto threebyte_insn;
5436 
5437 	switch (ctxt->b) {
5438 	case 0x70 ... 0x7f: /* jcc (short) */
5439 		if (test_cc(ctxt->b, ctxt->eflags))
5440 			rc = jmp_rel(ctxt, ctxt->src.val);
5441 		break;
5442 	case 0x8d: /* lea r16/r32, m */
5443 		ctxt->dst.val = ctxt->src.addr.mem.ea;
5444 		break;
5445 	case 0x90 ... 0x97: /* nop / xchg reg, rax */
5446 		if (ctxt->dst.addr.reg == reg_rmw(ctxt, VCPU_REGS_RAX))
5447 			ctxt->dst.type = OP_NONE;
5448 		else
5449 			rc = em_xchg(ctxt);
5450 		break;
5451 	case 0x98: /* cbw/cwde/cdqe */
5452 		switch (ctxt->op_bytes) {
5453 		case 2: ctxt->dst.val = (s8)ctxt->dst.val; break;
5454 		case 4: ctxt->dst.val = (s16)ctxt->dst.val; break;
5455 		case 8: ctxt->dst.val = (s32)ctxt->dst.val; break;
5456 		}
5457 		break;
5458 	case 0xcc:		/* int3 */
5459 		rc = emulate_int(ctxt, 3);
5460 		break;
5461 	case 0xcd:		/* int n */
5462 		rc = emulate_int(ctxt, ctxt->src.val);
5463 		break;
5464 	case 0xce:		/* into */
5465 		if (ctxt->eflags & X86_EFLAGS_OF)
5466 			rc = emulate_int(ctxt, 4);
5467 		break;
5468 	case 0xe9: /* jmp rel */
5469 	case 0xeb: /* jmp rel short */
5470 		rc = jmp_rel(ctxt, ctxt->src.val);
5471 		ctxt->dst.type = OP_NONE; /* Disable writeback. */
5472 		break;
5473 	case 0xf4:              /* hlt */
5474 		ctxt->ops->halt(ctxt);
5475 		break;
5476 	case 0xf5:	/* cmc */
5477 		/* complement carry flag from eflags reg */
5478 		ctxt->eflags ^= X86_EFLAGS_CF;
5479 		break;
5480 	case 0xf8: /* clc */
5481 		ctxt->eflags &= ~X86_EFLAGS_CF;
5482 		break;
5483 	case 0xf9: /* stc */
5484 		ctxt->eflags |= X86_EFLAGS_CF;
5485 		break;
5486 	case 0xfc: /* cld */
5487 		ctxt->eflags &= ~X86_EFLAGS_DF;
5488 		break;
5489 	case 0xfd: /* std */
5490 		ctxt->eflags |= X86_EFLAGS_DF;
5491 		break;
5492 	default:
5493 		goto cannot_emulate;
5494 	}
5495 
5496 	if (rc != X86EMUL_CONTINUE)
5497 		goto done;
5498 
5499 writeback:
5500 	if (ctxt->d & SrcWrite) {
5501 		BUG_ON(ctxt->src.type == OP_MEM || ctxt->src.type == OP_MEM_STR);
5502 		rc = writeback(ctxt, &ctxt->src);
5503 		if (rc != X86EMUL_CONTINUE)
5504 			goto done;
5505 	}
5506 	if (!(ctxt->d & NoWrite)) {
5507 		rc = writeback(ctxt, &ctxt->dst);
5508 		if (rc != X86EMUL_CONTINUE)
5509 			goto done;
5510 	}
5511 
5512 	/*
5513 	 * restore dst type in case the decoding will be reused
5514 	 * (happens for string instruction )
5515 	 */
5516 	ctxt->dst.type = saved_dst_type;
5517 
5518 	if ((ctxt->d & SrcMask) == SrcSI)
5519 		string_addr_inc(ctxt, VCPU_REGS_RSI, &ctxt->src);
5520 
5521 	if ((ctxt->d & DstMask) == DstDI)
5522 		string_addr_inc(ctxt, VCPU_REGS_RDI, &ctxt->dst);
5523 
5524 	if (ctxt->rep_prefix && (ctxt->d & String)) {
5525 		unsigned int count;
5526 		struct read_cache *r = &ctxt->io_read;
5527 		if ((ctxt->d & SrcMask) == SrcSI)
5528 			count = ctxt->src.count;
5529 		else
5530 			count = ctxt->dst.count;
5531 		register_address_increment(ctxt, VCPU_REGS_RCX, -count);
5532 
5533 		if (!string_insn_completed(ctxt)) {
5534 			/*
5535 			 * Re-enter guest when pio read ahead buffer is empty
5536 			 * or, if it is not used, after each 1024 iteration.
5537 			 */
5538 			if ((r->end != 0 || reg_read(ctxt, VCPU_REGS_RCX) & 0x3ff) &&
5539 			    (r->end == 0 || r->end != r->pos)) {
5540 				/*
5541 				 * Reset read cache. Usually happens before
5542 				 * decode, but since instruction is restarted
5543 				 * we have to do it here.
5544 				 */
5545 				ctxt->mem_read.end = 0;
5546 				writeback_registers(ctxt);
5547 				return EMULATION_RESTART;
5548 			}
5549 			goto done; /* skip rip writeback */
5550 		}
5551 		ctxt->eflags &= ~X86_EFLAGS_RF;
5552 	}
5553 
5554 	ctxt->eip = ctxt->_eip;
5555 	if (ctxt->mode != X86EMUL_MODE_PROT64)
5556 		ctxt->eip = (u32)ctxt->_eip;
5557 
5558 done:
5559 	if (rc == X86EMUL_PROPAGATE_FAULT) {
5560 		if (KVM_EMULATOR_BUG_ON(ctxt->exception.vector > 0x1f, ctxt))
5561 			return EMULATION_FAILED;
5562 		ctxt->have_exception = true;
5563 	}
5564 	if (rc == X86EMUL_INTERCEPTED)
5565 		return EMULATION_INTERCEPTED;
5566 
5567 	if (rc == X86EMUL_CONTINUE)
5568 		writeback_registers(ctxt);
5569 
5570 	return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK;
5571 
5572 twobyte_insn:
5573 	switch (ctxt->b) {
5574 	case 0x09:		/* wbinvd */
5575 		(ctxt->ops->wbinvd)(ctxt);
5576 		break;
5577 	case 0x08:		/* invd */
5578 	case 0x0d:		/* GrpP (prefetch) */
5579 	case 0x18:		/* Grp16 (prefetch/nop) */
5580 	case 0x1f:		/* nop */
5581 		break;
5582 	case 0x20: /* mov cr, reg */
5583 		ctxt->dst.val = ops->get_cr(ctxt, ctxt->modrm_reg);
5584 		break;
5585 	case 0x21: /* mov from dr to reg */
5586 		ctxt->dst.val = ops->get_dr(ctxt, ctxt->modrm_reg);
5587 		break;
5588 	case 0x40 ... 0x4f:	/* cmov */
5589 		if (test_cc(ctxt->b, ctxt->eflags))
5590 			ctxt->dst.val = ctxt->src.val;
5591 		else if (ctxt->op_bytes != 4)
5592 			ctxt->dst.type = OP_NONE; /* no writeback */
5593 		break;
5594 	case 0x80 ... 0x8f: /* jnz rel, etc*/
5595 		if (test_cc(ctxt->b, ctxt->eflags))
5596 			rc = jmp_rel(ctxt, ctxt->src.val);
5597 		break;
5598 	case 0x90 ... 0x9f:     /* setcc r/m8 */
5599 		ctxt->dst.val = test_cc(ctxt->b, ctxt->eflags);
5600 		break;
5601 	case 0xb6 ... 0xb7:	/* movzx */
5602 		ctxt->dst.bytes = ctxt->op_bytes;
5603 		ctxt->dst.val = (ctxt->src.bytes == 1) ? (u8) ctxt->src.val
5604 						       : (u16) ctxt->src.val;
5605 		break;
5606 	case 0xbe ... 0xbf:	/* movsx */
5607 		ctxt->dst.bytes = ctxt->op_bytes;
5608 		ctxt->dst.val = (ctxt->src.bytes == 1) ? (s8) ctxt->src.val :
5609 							(s16) ctxt->src.val;
5610 		break;
5611 	default:
5612 		goto cannot_emulate;
5613 	}
5614 
5615 threebyte_insn:
5616 
5617 	if (rc != X86EMUL_CONTINUE)
5618 		goto done;
5619 
5620 	goto writeback;
5621 
5622 cannot_emulate:
5623 	return EMULATION_FAILED;
5624 }
5625 
emulator_invalidate_register_cache(struct x86_emulate_ctxt * ctxt)5626 void emulator_invalidate_register_cache(struct x86_emulate_ctxt *ctxt)
5627 {
5628 	invalidate_registers(ctxt);
5629 }
5630 
emulator_writeback_register_cache(struct x86_emulate_ctxt * ctxt)5631 void emulator_writeback_register_cache(struct x86_emulate_ctxt *ctxt)
5632 {
5633 	writeback_registers(ctxt);
5634 }
5635 
emulator_can_use_gpa(struct x86_emulate_ctxt * ctxt)5636 bool emulator_can_use_gpa(struct x86_emulate_ctxt *ctxt)
5637 {
5638 	if (ctxt->rep_prefix && (ctxt->d & String))
5639 		return false;
5640 
5641 	if (ctxt->d & TwoMemOp)
5642 		return false;
5643 
5644 	return true;
5645 }
5646