xref: /linux/arch/x86/kvm/cpuid.c (revision f3a8b6645dc2e60d11f20c1c23afd964ff4e55ae)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  * cpuid support routines
4  *
5  * derived from arch/x86/kvm/x86.c
6  *
7  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
8  * Copyright IBM Corporation, 2008
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2.  See
11  * the COPYING file in the top-level directory.
12  *
13  */
14 
15 #include <linux/kvm_host.h>
16 #include <linux/export.h>
17 #include <linux/vmalloc.h>
18 #include <linux/uaccess.h>
19 #include <asm/fpu/internal.h> /* For use_eager_fpu.  Ugh! */
20 #include <asm/user.h>
21 #include <asm/fpu/xstate.h>
22 #include "cpuid.h"
23 #include "lapic.h"
24 #include "mmu.h"
25 #include "trace.h"
26 #include "pmu.h"
27 
28 static u32 xstate_required_size(u64 xstate_bv, bool compacted)
29 {
30 	int feature_bit = 0;
31 	u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
32 
33 	xstate_bv &= XFEATURE_MASK_EXTEND;
34 	while (xstate_bv) {
35 		if (xstate_bv & 0x1) {
36 		        u32 eax, ebx, ecx, edx, offset;
37 		        cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
38 			offset = compacted ? ret : ebx;
39 			ret = max(ret, offset + eax);
40 		}
41 
42 		xstate_bv >>= 1;
43 		feature_bit++;
44 	}
45 
46 	return ret;
47 }
48 
49 bool kvm_mpx_supported(void)
50 {
51 	return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
52 		 && kvm_x86_ops->mpx_supported());
53 }
54 EXPORT_SYMBOL_GPL(kvm_mpx_supported);
55 
56 u64 kvm_supported_xcr0(void)
57 {
58 	u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
59 
60 	if (!kvm_mpx_supported())
61 		xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
62 
63 	return xcr0;
64 }
65 
66 #define F(x) bit(X86_FEATURE_##x)
67 
68 int kvm_update_cpuid(struct kvm_vcpu *vcpu)
69 {
70 	struct kvm_cpuid_entry2 *best;
71 	struct kvm_lapic *apic = vcpu->arch.apic;
72 
73 	best = kvm_find_cpuid_entry(vcpu, 1, 0);
74 	if (!best)
75 		return 0;
76 
77 	/* Update OSXSAVE bit */
78 	if (boot_cpu_has(X86_FEATURE_XSAVE) && best->function == 0x1) {
79 		best->ecx &= ~F(OSXSAVE);
80 		if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
81 			best->ecx |= F(OSXSAVE);
82 	}
83 
84 	if (apic) {
85 		if (best->ecx & F(TSC_DEADLINE_TIMER))
86 			apic->lapic_timer.timer_mode_mask = 3 << 17;
87 		else
88 			apic->lapic_timer.timer_mode_mask = 1 << 17;
89 	}
90 
91 	best = kvm_find_cpuid_entry(vcpu, 7, 0);
92 	if (best) {
93 		/* Update OSPKE bit */
94 		if (boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) {
95 			best->ecx &= ~F(OSPKE);
96 			if (kvm_read_cr4_bits(vcpu, X86_CR4_PKE))
97 				best->ecx |= F(OSPKE);
98 		}
99 	}
100 
101 	best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
102 	if (!best) {
103 		vcpu->arch.guest_supported_xcr0 = 0;
104 		vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
105 	} else {
106 		vcpu->arch.guest_supported_xcr0 =
107 			(best->eax | ((u64)best->edx << 32)) &
108 			kvm_supported_xcr0();
109 		vcpu->arch.guest_xstate_size = best->ebx =
110 			xstate_required_size(vcpu->arch.xcr0, false);
111 	}
112 
113 	best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
114 	if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
115 		best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
116 
117 	if (use_eager_fpu())
118 		kvm_x86_ops->fpu_activate(vcpu);
119 
120 	/*
121 	 * The existing code assumes virtual address is 48-bit in the canonical
122 	 * address checks; exit if it is ever changed.
123 	 */
124 	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
125 	if (best && ((best->eax & 0xff00) >> 8) != 48 &&
126 		((best->eax & 0xff00) >> 8) != 0)
127 		return -EINVAL;
128 
129 	/* Update physical-address width */
130 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
131 
132 	kvm_pmu_refresh(vcpu);
133 	return 0;
134 }
135 
136 static int is_efer_nx(void)
137 {
138 	unsigned long long efer = 0;
139 
140 	rdmsrl_safe(MSR_EFER, &efer);
141 	return efer & EFER_NX;
142 }
143 
144 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
145 {
146 	int i;
147 	struct kvm_cpuid_entry2 *e, *entry;
148 
149 	entry = NULL;
150 	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
151 		e = &vcpu->arch.cpuid_entries[i];
152 		if (e->function == 0x80000001) {
153 			entry = e;
154 			break;
155 		}
156 	}
157 	if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
158 		entry->edx &= ~F(NX);
159 		printk(KERN_INFO "kvm: guest NX capability removed\n");
160 	}
161 }
162 
163 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
164 {
165 	struct kvm_cpuid_entry2 *best;
166 
167 	best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
168 	if (!best || best->eax < 0x80000008)
169 		goto not_found;
170 	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
171 	if (best)
172 		return best->eax & 0xff;
173 not_found:
174 	return 36;
175 }
176 EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
177 
178 /* when an old userspace process fills a new kernel module */
179 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
180 			     struct kvm_cpuid *cpuid,
181 			     struct kvm_cpuid_entry __user *entries)
182 {
183 	int r, i;
184 	struct kvm_cpuid_entry *cpuid_entries = NULL;
185 
186 	r = -E2BIG;
187 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
188 		goto out;
189 	r = -ENOMEM;
190 	if (cpuid->nent) {
191 		cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) *
192 					cpuid->nent);
193 		if (!cpuid_entries)
194 			goto out;
195 		r = -EFAULT;
196 		if (copy_from_user(cpuid_entries, entries,
197 				   cpuid->nent * sizeof(struct kvm_cpuid_entry)))
198 			goto out;
199 	}
200 	for (i = 0; i < cpuid->nent; i++) {
201 		vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
202 		vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
203 		vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
204 		vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
205 		vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
206 		vcpu->arch.cpuid_entries[i].index = 0;
207 		vcpu->arch.cpuid_entries[i].flags = 0;
208 		vcpu->arch.cpuid_entries[i].padding[0] = 0;
209 		vcpu->arch.cpuid_entries[i].padding[1] = 0;
210 		vcpu->arch.cpuid_entries[i].padding[2] = 0;
211 	}
212 	vcpu->arch.cpuid_nent = cpuid->nent;
213 	cpuid_fix_nx_cap(vcpu);
214 	kvm_apic_set_version(vcpu);
215 	kvm_x86_ops->cpuid_update(vcpu);
216 	r = kvm_update_cpuid(vcpu);
217 
218 out:
219 	vfree(cpuid_entries);
220 	return r;
221 }
222 
223 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
224 			      struct kvm_cpuid2 *cpuid,
225 			      struct kvm_cpuid_entry2 __user *entries)
226 {
227 	int r;
228 
229 	r = -E2BIG;
230 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
231 		goto out;
232 	r = -EFAULT;
233 	if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
234 			   cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
235 		goto out;
236 	vcpu->arch.cpuid_nent = cpuid->nent;
237 	kvm_apic_set_version(vcpu);
238 	kvm_x86_ops->cpuid_update(vcpu);
239 	r = kvm_update_cpuid(vcpu);
240 out:
241 	return r;
242 }
243 
244 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
245 			      struct kvm_cpuid2 *cpuid,
246 			      struct kvm_cpuid_entry2 __user *entries)
247 {
248 	int r;
249 
250 	r = -E2BIG;
251 	if (cpuid->nent < vcpu->arch.cpuid_nent)
252 		goto out;
253 	r = -EFAULT;
254 	if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
255 			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
256 		goto out;
257 	return 0;
258 
259 out:
260 	cpuid->nent = vcpu->arch.cpuid_nent;
261 	return r;
262 }
263 
264 static void cpuid_mask(u32 *word, int wordnum)
265 {
266 	*word &= boot_cpu_data.x86_capability[wordnum];
267 }
268 
269 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
270 			   u32 index)
271 {
272 	entry->function = function;
273 	entry->index = index;
274 	cpuid_count(entry->function, entry->index,
275 		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
276 	entry->flags = 0;
277 }
278 
279 static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2 *entry,
280 				   u32 func, u32 index, int *nent, int maxnent)
281 {
282 	switch (func) {
283 	case 0:
284 		entry->eax = 1;		/* only one leaf currently */
285 		++*nent;
286 		break;
287 	case 1:
288 		entry->ecx = F(MOVBE);
289 		++*nent;
290 		break;
291 	default:
292 		break;
293 	}
294 
295 	entry->function = func;
296 	entry->index = index;
297 
298 	return 0;
299 }
300 
301 static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
302 				 u32 index, int *nent, int maxnent)
303 {
304 	int r;
305 	unsigned f_nx = is_efer_nx() ? F(NX) : 0;
306 #ifdef CONFIG_X86_64
307 	unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
308 				? F(GBPAGES) : 0;
309 	unsigned f_lm = F(LM);
310 #else
311 	unsigned f_gbpages = 0;
312 	unsigned f_lm = 0;
313 #endif
314 	unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
315 	unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
316 	unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0;
317 	unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
318 
319 	/* cpuid 1.edx */
320 	const u32 kvm_cpuid_1_edx_x86_features =
321 		F(FPU) | F(VME) | F(DE) | F(PSE) |
322 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
323 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
324 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
325 		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
326 		0 /* Reserved, DS, ACPI */ | F(MMX) |
327 		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
328 		0 /* HTT, TM, Reserved, PBE */;
329 	/* cpuid 0x80000001.edx */
330 	const u32 kvm_cpuid_8000_0001_edx_x86_features =
331 		F(FPU) | F(VME) | F(DE) | F(PSE) |
332 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
333 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
334 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
335 		F(PAT) | F(PSE36) | 0 /* Reserved */ |
336 		f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
337 		F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
338 		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
339 	/* cpuid 1.ecx */
340 	const u32 kvm_cpuid_1_ecx_x86_features =
341 		/* NOTE: MONITOR (and MWAIT) are emulated as NOP,
342 		 * but *not* advertised to guests via CPUID ! */
343 		F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
344 		0 /* DS-CPL, VMX, SMX, EST */ |
345 		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
346 		F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
347 		F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
348 		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
349 		0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
350 		F(F16C) | F(RDRAND);
351 	/* cpuid 0x80000001.ecx */
352 	const u32 kvm_cpuid_8000_0001_ecx_x86_features =
353 		F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
354 		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
355 		F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
356 		0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
357 
358 	/* cpuid 0xC0000001.edx */
359 	const u32 kvm_cpuid_C000_0001_edx_x86_features =
360 		F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
361 		F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
362 		F(PMM) | F(PMM_EN);
363 
364 	/* cpuid 7.0.ebx */
365 	const u32 kvm_cpuid_7_0_ebx_x86_features =
366 		F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
367 		F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
368 		F(ADX) | F(SMAP) | F(AVX512F) | F(AVX512PF) | F(AVX512ER) |
369 		F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
370 		F(AVX512BW) | F(AVX512VL);
371 
372 	/* cpuid 0xD.1.eax */
373 	const u32 kvm_cpuid_D_1_eax_x86_features =
374 		F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
375 
376 	/* cpuid 7.0.ecx*/
377 	const u32 kvm_cpuid_7_0_ecx_x86_features = F(PKU) | 0 /*OSPKE*/;
378 
379 	/* all calls to cpuid_count() should be made on the same cpu */
380 	get_cpu();
381 
382 	r = -E2BIG;
383 
384 	if (*nent >= maxnent)
385 		goto out;
386 
387 	do_cpuid_1_ent(entry, function, index);
388 	++*nent;
389 
390 	switch (function) {
391 	case 0:
392 		entry->eax = min(entry->eax, (u32)0xd);
393 		break;
394 	case 1:
395 		entry->edx &= kvm_cpuid_1_edx_x86_features;
396 		cpuid_mask(&entry->edx, CPUID_1_EDX);
397 		entry->ecx &= kvm_cpuid_1_ecx_x86_features;
398 		cpuid_mask(&entry->ecx, CPUID_1_ECX);
399 		/* we support x2apic emulation even if host does not support
400 		 * it since we emulate x2apic in software */
401 		entry->ecx |= F(X2APIC);
402 		break;
403 	/* function 2 entries are STATEFUL. That is, repeated cpuid commands
404 	 * may return different values. This forces us to get_cpu() before
405 	 * issuing the first command, and also to emulate this annoying behavior
406 	 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
407 	case 2: {
408 		int t, times = entry->eax & 0xff;
409 
410 		entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
411 		entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
412 		for (t = 1; t < times; ++t) {
413 			if (*nent >= maxnent)
414 				goto out;
415 
416 			do_cpuid_1_ent(&entry[t], function, 0);
417 			entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
418 			++*nent;
419 		}
420 		break;
421 	}
422 	/* function 4 has additional index. */
423 	case 4: {
424 		int i, cache_type;
425 
426 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
427 		/* read more entries until cache_type is zero */
428 		for (i = 1; ; ++i) {
429 			if (*nent >= maxnent)
430 				goto out;
431 
432 			cache_type = entry[i - 1].eax & 0x1f;
433 			if (!cache_type)
434 				break;
435 			do_cpuid_1_ent(&entry[i], function, i);
436 			entry[i].flags |=
437 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
438 			++*nent;
439 		}
440 		break;
441 	}
442 	case 6: /* Thermal management */
443 		entry->eax = 0x4; /* allow ARAT */
444 		entry->ebx = 0;
445 		entry->ecx = 0;
446 		entry->edx = 0;
447 		break;
448 	case 7: {
449 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
450 		/* Mask ebx against host capability word 9 */
451 		if (index == 0) {
452 			entry->ebx &= kvm_cpuid_7_0_ebx_x86_features;
453 			cpuid_mask(&entry->ebx, CPUID_7_0_EBX);
454 			// TSC_ADJUST is emulated
455 			entry->ebx |= F(TSC_ADJUST);
456 			entry->ecx &= kvm_cpuid_7_0_ecx_x86_features;
457 			cpuid_mask(&entry->ecx, CPUID_7_ECX);
458 			/* PKU is not yet implemented for shadow paging. */
459 			if (!tdp_enabled)
460 				entry->ecx &= ~F(PKU);
461 		} else {
462 			entry->ebx = 0;
463 			entry->ecx = 0;
464 		}
465 		entry->eax = 0;
466 		entry->edx = 0;
467 		break;
468 	}
469 	case 9:
470 		break;
471 	case 0xa: { /* Architectural Performance Monitoring */
472 		struct x86_pmu_capability cap;
473 		union cpuid10_eax eax;
474 		union cpuid10_edx edx;
475 
476 		perf_get_x86_pmu_capability(&cap);
477 
478 		/*
479 		 * Only support guest architectural pmu on a host
480 		 * with architectural pmu.
481 		 */
482 		if (!cap.version)
483 			memset(&cap, 0, sizeof(cap));
484 
485 		eax.split.version_id = min(cap.version, 2);
486 		eax.split.num_counters = cap.num_counters_gp;
487 		eax.split.bit_width = cap.bit_width_gp;
488 		eax.split.mask_length = cap.events_mask_len;
489 
490 		edx.split.num_counters_fixed = cap.num_counters_fixed;
491 		edx.split.bit_width_fixed = cap.bit_width_fixed;
492 		edx.split.reserved = 0;
493 
494 		entry->eax = eax.full;
495 		entry->ebx = cap.events_mask;
496 		entry->ecx = 0;
497 		entry->edx = edx.full;
498 		break;
499 	}
500 	/* function 0xb has additional index. */
501 	case 0xb: {
502 		int i, level_type;
503 
504 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
505 		/* read more entries until level_type is zero */
506 		for (i = 1; ; ++i) {
507 			if (*nent >= maxnent)
508 				goto out;
509 
510 			level_type = entry[i - 1].ecx & 0xff00;
511 			if (!level_type)
512 				break;
513 			do_cpuid_1_ent(&entry[i], function, i);
514 			entry[i].flags |=
515 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
516 			++*nent;
517 		}
518 		break;
519 	}
520 	case 0xd: {
521 		int idx, i;
522 		u64 supported = kvm_supported_xcr0();
523 
524 		entry->eax &= supported;
525 		entry->ebx = xstate_required_size(supported, false);
526 		entry->ecx = entry->ebx;
527 		entry->edx &= supported >> 32;
528 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
529 		if (!supported)
530 			break;
531 
532 		for (idx = 1, i = 1; idx < 64; ++idx) {
533 			u64 mask = ((u64)1 << idx);
534 			if (*nent >= maxnent)
535 				goto out;
536 
537 			do_cpuid_1_ent(&entry[i], function, idx);
538 			if (idx == 1) {
539 				entry[i].eax &= kvm_cpuid_D_1_eax_x86_features;
540 				cpuid_mask(&entry[i].eax, CPUID_D_1_EAX);
541 				entry[i].ebx = 0;
542 				if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
543 					entry[i].ebx =
544 						xstate_required_size(supported,
545 								     true);
546 			} else {
547 				if (entry[i].eax == 0 || !(supported & mask))
548 					continue;
549 				if (WARN_ON_ONCE(entry[i].ecx & 1))
550 					continue;
551 			}
552 			entry[i].ecx = 0;
553 			entry[i].edx = 0;
554 			entry[i].flags |=
555 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
556 			++*nent;
557 			++i;
558 		}
559 		break;
560 	}
561 	case KVM_CPUID_SIGNATURE: {
562 		static const char signature[12] = "KVMKVMKVM\0\0";
563 		const u32 *sigptr = (const u32 *)signature;
564 		entry->eax = KVM_CPUID_FEATURES;
565 		entry->ebx = sigptr[0];
566 		entry->ecx = sigptr[1];
567 		entry->edx = sigptr[2];
568 		break;
569 	}
570 	case KVM_CPUID_FEATURES:
571 		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
572 			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
573 			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
574 			     (1 << KVM_FEATURE_ASYNC_PF) |
575 			     (1 << KVM_FEATURE_PV_EOI) |
576 			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
577 			     (1 << KVM_FEATURE_PV_UNHALT);
578 
579 		if (sched_info_on())
580 			entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
581 
582 		entry->ebx = 0;
583 		entry->ecx = 0;
584 		entry->edx = 0;
585 		break;
586 	case 0x80000000:
587 		entry->eax = min(entry->eax, 0x8000001a);
588 		break;
589 	case 0x80000001:
590 		entry->edx &= kvm_cpuid_8000_0001_edx_x86_features;
591 		cpuid_mask(&entry->edx, CPUID_8000_0001_EDX);
592 		entry->ecx &= kvm_cpuid_8000_0001_ecx_x86_features;
593 		cpuid_mask(&entry->ecx, CPUID_8000_0001_ECX);
594 		break;
595 	case 0x80000007: /* Advanced power management */
596 		/* invariant TSC is CPUID.80000007H:EDX[8] */
597 		entry->edx &= (1 << 8);
598 		/* mask against host */
599 		entry->edx &= boot_cpu_data.x86_power;
600 		entry->eax = entry->ebx = entry->ecx = 0;
601 		break;
602 	case 0x80000008: {
603 		unsigned g_phys_as = (entry->eax >> 16) & 0xff;
604 		unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
605 		unsigned phys_as = entry->eax & 0xff;
606 
607 		if (!g_phys_as)
608 			g_phys_as = phys_as;
609 		entry->eax = g_phys_as | (virt_as << 8);
610 		entry->ebx = entry->edx = 0;
611 		break;
612 	}
613 	case 0x80000019:
614 		entry->ecx = entry->edx = 0;
615 		break;
616 	case 0x8000001a:
617 		break;
618 	case 0x8000001d:
619 		break;
620 	/*Add support for Centaur's CPUID instruction*/
621 	case 0xC0000000:
622 		/*Just support up to 0xC0000004 now*/
623 		entry->eax = min(entry->eax, 0xC0000004);
624 		break;
625 	case 0xC0000001:
626 		entry->edx &= kvm_cpuid_C000_0001_edx_x86_features;
627 		cpuid_mask(&entry->edx, CPUID_C000_0001_EDX);
628 		break;
629 	case 3: /* Processor serial number */
630 	case 5: /* MONITOR/MWAIT */
631 	case 0xC0000002:
632 	case 0xC0000003:
633 	case 0xC0000004:
634 	default:
635 		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
636 		break;
637 	}
638 
639 	kvm_x86_ops->set_supported_cpuid(function, entry);
640 
641 	r = 0;
642 
643 out:
644 	put_cpu();
645 
646 	return r;
647 }
648 
649 static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 func,
650 			u32 idx, int *nent, int maxnent, unsigned int type)
651 {
652 	if (type == KVM_GET_EMULATED_CPUID)
653 		return __do_cpuid_ent_emulated(entry, func, idx, nent, maxnent);
654 
655 	return __do_cpuid_ent(entry, func, idx, nent, maxnent);
656 }
657 
658 #undef F
659 
660 struct kvm_cpuid_param {
661 	u32 func;
662 	u32 idx;
663 	bool has_leaf_count;
664 	bool (*qualifier)(const struct kvm_cpuid_param *param);
665 };
666 
667 static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
668 {
669 	return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
670 }
671 
672 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
673 				 __u32 num_entries, unsigned int ioctl_type)
674 {
675 	int i;
676 	__u32 pad[3];
677 
678 	if (ioctl_type != KVM_GET_EMULATED_CPUID)
679 		return false;
680 
681 	/*
682 	 * We want to make sure that ->padding is being passed clean from
683 	 * userspace in case we want to use it for something in the future.
684 	 *
685 	 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
686 	 * have to give ourselves satisfied only with the emulated side. /me
687 	 * sheds a tear.
688 	 */
689 	for (i = 0; i < num_entries; i++) {
690 		if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
691 			return true;
692 
693 		if (pad[0] || pad[1] || pad[2])
694 			return true;
695 	}
696 	return false;
697 }
698 
699 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
700 			    struct kvm_cpuid_entry2 __user *entries,
701 			    unsigned int type)
702 {
703 	struct kvm_cpuid_entry2 *cpuid_entries;
704 	int limit, nent = 0, r = -E2BIG, i;
705 	u32 func;
706 	static const struct kvm_cpuid_param param[] = {
707 		{ .func = 0, .has_leaf_count = true },
708 		{ .func = 0x80000000, .has_leaf_count = true },
709 		{ .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
710 		{ .func = KVM_CPUID_SIGNATURE },
711 		{ .func = KVM_CPUID_FEATURES },
712 	};
713 
714 	if (cpuid->nent < 1)
715 		goto out;
716 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
717 		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
718 
719 	if (sanity_check_entries(entries, cpuid->nent, type))
720 		return -EINVAL;
721 
722 	r = -ENOMEM;
723 	cpuid_entries = vzalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
724 	if (!cpuid_entries)
725 		goto out;
726 
727 	r = 0;
728 	for (i = 0; i < ARRAY_SIZE(param); i++) {
729 		const struct kvm_cpuid_param *ent = &param[i];
730 
731 		if (ent->qualifier && !ent->qualifier(ent))
732 			continue;
733 
734 		r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
735 				&nent, cpuid->nent, type);
736 
737 		if (r)
738 			goto out_free;
739 
740 		if (!ent->has_leaf_count)
741 			continue;
742 
743 		limit = cpuid_entries[nent - 1].eax;
744 		for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
745 			r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
746 				     &nent, cpuid->nent, type);
747 
748 		if (r)
749 			goto out_free;
750 	}
751 
752 	r = -EFAULT;
753 	if (copy_to_user(entries, cpuid_entries,
754 			 nent * sizeof(struct kvm_cpuid_entry2)))
755 		goto out_free;
756 	cpuid->nent = nent;
757 	r = 0;
758 
759 out_free:
760 	vfree(cpuid_entries);
761 out:
762 	return r;
763 }
764 
765 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
766 {
767 	struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
768 	int j, nent = vcpu->arch.cpuid_nent;
769 
770 	e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
771 	/* when no next entry is found, the current entry[i] is reselected */
772 	for (j = i + 1; ; j = (j + 1) % nent) {
773 		struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
774 		if (ej->function == e->function) {
775 			ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
776 			return j;
777 		}
778 	}
779 	return 0; /* silence gcc, even though control never reaches here */
780 }
781 
782 /* find an entry with matching function, matching index (if needed), and that
783  * should be read next (if it's stateful) */
784 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
785 	u32 function, u32 index)
786 {
787 	if (e->function != function)
788 		return 0;
789 	if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
790 		return 0;
791 	if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
792 	    !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
793 		return 0;
794 	return 1;
795 }
796 
797 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
798 					      u32 function, u32 index)
799 {
800 	int i;
801 	struct kvm_cpuid_entry2 *best = NULL;
802 
803 	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
804 		struct kvm_cpuid_entry2 *e;
805 
806 		e = &vcpu->arch.cpuid_entries[i];
807 		if (is_matching_cpuid_entry(e, function, index)) {
808 			if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
809 				move_to_next_stateful_cpuid_entry(vcpu, i);
810 			best = e;
811 			break;
812 		}
813 	}
814 	return best;
815 }
816 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
817 
818 /*
819  * If no match is found, check whether we exceed the vCPU's limit
820  * and return the content of the highest valid _standard_ leaf instead.
821  * This is to satisfy the CPUID specification.
822  */
823 static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
824                                                   u32 function, u32 index)
825 {
826 	struct kvm_cpuid_entry2 *maxlevel;
827 
828 	maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
829 	if (!maxlevel || maxlevel->eax >= function)
830 		return NULL;
831 	if (function & 0x80000000) {
832 		maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
833 		if (!maxlevel)
834 			return NULL;
835 	}
836 	return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
837 }
838 
839 void kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
840 {
841 	u32 function = *eax, index = *ecx;
842 	struct kvm_cpuid_entry2 *best;
843 
844 	best = kvm_find_cpuid_entry(vcpu, function, index);
845 
846 	if (!best)
847 		best = check_cpuid_limit(vcpu, function, index);
848 
849 	/*
850 	 * Perfmon not yet supported for L2 guest.
851 	 */
852 	if (is_guest_mode(vcpu) && function == 0xa)
853 		best = NULL;
854 
855 	if (best) {
856 		*eax = best->eax;
857 		*ebx = best->ebx;
858 		*ecx = best->ecx;
859 		*edx = best->edx;
860 	} else
861 		*eax = *ebx = *ecx = *edx = 0;
862 	trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx);
863 }
864 EXPORT_SYMBOL_GPL(kvm_cpuid);
865 
866 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
867 {
868 	u32 function, eax, ebx, ecx, edx;
869 
870 	function = eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
871 	ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
872 	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx);
873 	kvm_register_write(vcpu, VCPU_REGS_RAX, eax);
874 	kvm_register_write(vcpu, VCPU_REGS_RBX, ebx);
875 	kvm_register_write(vcpu, VCPU_REGS_RCX, ecx);
876 	kvm_register_write(vcpu, VCPU_REGS_RDX, edx);
877 	kvm_x86_ops->skip_emulated_instruction(vcpu);
878 }
879 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
880