xref: /linux/arch/x86/kvm/cpuid.c (revision a36e9f5cfe9eb3a1dce8769c7058251c42705357)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  * cpuid support routines
5  *
6  * derived from arch/x86/kvm/x86.c
7  *
8  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9  * Copyright IBM Corporation, 2008
10  */
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/kvm_host.h>
14 #include "linux/lockdep.h"
15 #include <linux/export.h>
16 #include <linux/vmalloc.h>
17 #include <linux/uaccess.h>
18 #include <linux/sched/stat.h>
19 
20 #include <asm/processor.h>
21 #include <asm/user.h>
22 #include <asm/fpu/xstate.h>
23 #include <asm/sgx.h>
24 #include <asm/cpuid.h>
25 #include "cpuid.h"
26 #include "lapic.h"
27 #include "mmu.h"
28 #include "trace.h"
29 #include "pmu.h"
30 #include "xen.h"
31 
32 /*
33  * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
34  * aligned to sizeof(unsigned long) because it's not accessed via bitops.
35  */
36 u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
37 EXPORT_SYMBOL_GPL(kvm_cpu_caps);
38 
39 u32 xstate_required_size(u64 xstate_bv, bool compacted)
40 {
41 	int feature_bit = 0;
42 	u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
43 
44 	xstate_bv &= XFEATURE_MASK_EXTEND;
45 	while (xstate_bv) {
46 		if (xstate_bv & 0x1) {
47 		        u32 eax, ebx, ecx, edx, offset;
48 		        cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
49 			/* ECX[1]: 64B alignment in compacted form */
50 			if (compacted)
51 				offset = (ecx & 0x2) ? ALIGN(ret, 64) : ret;
52 			else
53 				offset = ebx;
54 			ret = max(ret, offset + eax);
55 		}
56 
57 		xstate_bv >>= 1;
58 		feature_bit++;
59 	}
60 
61 	return ret;
62 }
63 
64 #define F feature_bit
65 
66 /* Scattered Flag - For features that are scattered by cpufeatures.h. */
67 #define SF(name)						\
68 ({								\
69 	BUILD_BUG_ON(X86_FEATURE_##name >= MAX_CPU_FEATURES);	\
70 	(boot_cpu_has(X86_FEATURE_##name) ? F(name) : 0);	\
71 })
72 
73 /*
74  * Magic value used by KVM when querying userspace-provided CPUID entries and
75  * doesn't care about the CPIUD index because the index of the function in
76  * question is not significant.  Note, this magic value must have at least one
77  * bit set in bits[63:32] and must be consumed as a u64 by cpuid_entry2_find()
78  * to avoid false positives when processing guest CPUID input.
79  */
80 #define KVM_CPUID_INDEX_NOT_SIGNIFICANT -1ull
81 
82 static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
83 	struct kvm_cpuid_entry2 *entries, int nent, u32 function, u64 index)
84 {
85 	struct kvm_cpuid_entry2 *e;
86 	int i;
87 
88 	/*
89 	 * KVM has a semi-arbitrary rule that querying the guest's CPUID model
90 	 * with IRQs disabled is disallowed.  The CPUID model can legitimately
91 	 * have over one hundred entries, i.e. the lookup is slow, and IRQs are
92 	 * typically disabled in KVM only when KVM is in a performance critical
93 	 * path, e.g. the core VM-Enter/VM-Exit run loop.  Nothing will break
94 	 * if this rule is violated, this assertion is purely to flag potential
95 	 * performance issues.  If this fires, consider moving the lookup out
96 	 * of the hotpath, e.g. by caching information during CPUID updates.
97 	 */
98 	lockdep_assert_irqs_enabled();
99 
100 	for (i = 0; i < nent; i++) {
101 		e = &entries[i];
102 
103 		if (e->function != function)
104 			continue;
105 
106 		/*
107 		 * If the index isn't significant, use the first entry with a
108 		 * matching function.  It's userspace's responsibility to not
109 		 * provide "duplicate" entries in all cases.
110 		 */
111 		if (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index)
112 			return e;
113 
114 
115 		/*
116 		 * Similarly, use the first matching entry if KVM is doing a
117 		 * lookup (as opposed to emulating CPUID) for a function that's
118 		 * architecturally defined as not having a significant index.
119 		 */
120 		if (index == KVM_CPUID_INDEX_NOT_SIGNIFICANT) {
121 			/*
122 			 * Direct lookups from KVM should not diverge from what
123 			 * KVM defines internally (the architectural behavior).
124 			 */
125 			WARN_ON_ONCE(cpuid_function_is_indexed(function));
126 			return e;
127 		}
128 	}
129 
130 	return NULL;
131 }
132 
133 static int kvm_check_cpuid(struct kvm_vcpu *vcpu,
134 			   struct kvm_cpuid_entry2 *entries,
135 			   int nent)
136 {
137 	struct kvm_cpuid_entry2 *best;
138 	u64 xfeatures;
139 
140 	/*
141 	 * The existing code assumes virtual address is 48-bit or 57-bit in the
142 	 * canonical address checks; exit if it is ever changed.
143 	 */
144 	best = cpuid_entry2_find(entries, nent, 0x80000008,
145 				 KVM_CPUID_INDEX_NOT_SIGNIFICANT);
146 	if (best) {
147 		int vaddr_bits = (best->eax & 0xff00) >> 8;
148 
149 		if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
150 			return -EINVAL;
151 	}
152 
153 	/*
154 	 * Exposing dynamic xfeatures to the guest requires additional
155 	 * enabling in the FPU, e.g. to expand the guest XSAVE state size.
156 	 */
157 	best = cpuid_entry2_find(entries, nent, 0xd, 0);
158 	if (!best)
159 		return 0;
160 
161 	xfeatures = best->eax | ((u64)best->edx << 32);
162 	xfeatures &= XFEATURE_MASK_USER_DYNAMIC;
163 	if (!xfeatures)
164 		return 0;
165 
166 	return fpu_enable_guest_xfd_features(&vcpu->arch.guest_fpu, xfeatures);
167 }
168 
169 /* Check whether the supplied CPUID data is equal to what is already set for the vCPU. */
170 static int kvm_cpuid_check_equal(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
171 				 int nent)
172 {
173 	struct kvm_cpuid_entry2 *orig;
174 	int i;
175 
176 	if (nent != vcpu->arch.cpuid_nent)
177 		return -EINVAL;
178 
179 	for (i = 0; i < nent; i++) {
180 		orig = &vcpu->arch.cpuid_entries[i];
181 		if (e2[i].function != orig->function ||
182 		    e2[i].index != orig->index ||
183 		    e2[i].flags != orig->flags ||
184 		    e2[i].eax != orig->eax || e2[i].ebx != orig->ebx ||
185 		    e2[i].ecx != orig->ecx || e2[i].edx != orig->edx)
186 			return -EINVAL;
187 	}
188 
189 	return 0;
190 }
191 
192 static struct kvm_hypervisor_cpuid __kvm_get_hypervisor_cpuid(struct kvm_cpuid_entry2 *entries,
193 							      int nent, const char *sig)
194 {
195 	struct kvm_hypervisor_cpuid cpuid = {};
196 	struct kvm_cpuid_entry2 *entry;
197 	u32 base;
198 
199 	for_each_possible_hypervisor_cpuid_base(base) {
200 		entry = cpuid_entry2_find(entries, nent, base, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
201 
202 		if (entry) {
203 			u32 signature[3];
204 
205 			signature[0] = entry->ebx;
206 			signature[1] = entry->ecx;
207 			signature[2] = entry->edx;
208 
209 			if (!memcmp(signature, sig, sizeof(signature))) {
210 				cpuid.base = base;
211 				cpuid.limit = entry->eax;
212 				break;
213 			}
214 		}
215 	}
216 
217 	return cpuid;
218 }
219 
220 static struct kvm_hypervisor_cpuid kvm_get_hypervisor_cpuid(struct kvm_vcpu *vcpu,
221 							    const char *sig)
222 {
223 	return __kvm_get_hypervisor_cpuid(vcpu->arch.cpuid_entries,
224 					  vcpu->arch.cpuid_nent, sig);
225 }
226 
227 static struct kvm_cpuid_entry2 *__kvm_find_kvm_cpuid_features(struct kvm_cpuid_entry2 *entries,
228 							      int nent, u32 kvm_cpuid_base)
229 {
230 	return cpuid_entry2_find(entries, nent, kvm_cpuid_base | KVM_CPUID_FEATURES,
231 				 KVM_CPUID_INDEX_NOT_SIGNIFICANT);
232 }
233 
234 static struct kvm_cpuid_entry2 *kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu)
235 {
236 	u32 base = vcpu->arch.kvm_cpuid.base;
237 
238 	if (!base)
239 		return NULL;
240 
241 	return __kvm_find_kvm_cpuid_features(vcpu->arch.cpuid_entries,
242 					     vcpu->arch.cpuid_nent, base);
243 }
244 
245 void kvm_update_pv_runtime(struct kvm_vcpu *vcpu)
246 {
247 	struct kvm_cpuid_entry2 *best = kvm_find_kvm_cpuid_features(vcpu);
248 
249 	/*
250 	 * save the feature bitmap to avoid cpuid lookup for every PV
251 	 * operation
252 	 */
253 	if (best)
254 		vcpu->arch.pv_cpuid.features = best->eax;
255 }
256 
257 /*
258  * Calculate guest's supported XCR0 taking into account guest CPUID data and
259  * KVM's supported XCR0 (comprised of host's XCR0 and KVM_SUPPORTED_XCR0).
260  */
261 static u64 cpuid_get_supported_xcr0(struct kvm_cpuid_entry2 *entries, int nent)
262 {
263 	struct kvm_cpuid_entry2 *best;
264 
265 	best = cpuid_entry2_find(entries, nent, 0xd, 0);
266 	if (!best)
267 		return 0;
268 
269 	return (best->eax | ((u64)best->edx << 32)) & kvm_caps.supported_xcr0;
270 }
271 
272 static void __kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *entries,
273 				       int nent)
274 {
275 	struct kvm_cpuid_entry2 *best;
276 	struct kvm_hypervisor_cpuid kvm_cpuid;
277 
278 	best = cpuid_entry2_find(entries, nent, 1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
279 	if (best) {
280 		/* Update OSXSAVE bit */
281 		if (boot_cpu_has(X86_FEATURE_XSAVE))
282 			cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
283 					   kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE));
284 
285 		cpuid_entry_change(best, X86_FEATURE_APIC,
286 			   vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
287 	}
288 
289 	best = cpuid_entry2_find(entries, nent, 7, 0);
290 	if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
291 		cpuid_entry_change(best, X86_FEATURE_OSPKE,
292 				   kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE));
293 
294 	best = cpuid_entry2_find(entries, nent, 0xD, 0);
295 	if (best)
296 		best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
297 
298 	best = cpuid_entry2_find(entries, nent, 0xD, 1);
299 	if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
300 		     cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
301 		best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
302 
303 	kvm_cpuid = __kvm_get_hypervisor_cpuid(entries, nent, KVM_SIGNATURE);
304 	if (kvm_cpuid.base) {
305 		best = __kvm_find_kvm_cpuid_features(entries, nent, kvm_cpuid.base);
306 		if (kvm_hlt_in_guest(vcpu->kvm) && best)
307 			best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
308 	}
309 
310 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
311 		best = cpuid_entry2_find(entries, nent, 0x1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
312 		if (best)
313 			cpuid_entry_change(best, X86_FEATURE_MWAIT,
314 					   vcpu->arch.ia32_misc_enable_msr &
315 					   MSR_IA32_MISC_ENABLE_MWAIT);
316 	}
317 }
318 
319 void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
320 {
321 	__kvm_update_cpuid_runtime(vcpu, vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
322 }
323 EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime);
324 
325 static bool kvm_cpuid_has_hyperv(struct kvm_cpuid_entry2 *entries, int nent)
326 {
327 #ifdef CONFIG_KVM_HYPERV
328 	struct kvm_cpuid_entry2 *entry;
329 
330 	entry = cpuid_entry2_find(entries, nent, HYPERV_CPUID_INTERFACE,
331 				  KVM_CPUID_INDEX_NOT_SIGNIFICANT);
332 	return entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX;
333 #else
334 	return false;
335 #endif
336 }
337 
338 static bool guest_cpuid_is_amd_or_hygon(struct kvm_vcpu *vcpu)
339 {
340 	struct kvm_cpuid_entry2 *entry;
341 
342 	entry = kvm_find_cpuid_entry(vcpu, 0);
343 	if (!entry)
344 		return false;
345 
346 	return is_guest_vendor_amd(entry->ebx, entry->ecx, entry->edx) ||
347 	       is_guest_vendor_hygon(entry->ebx, entry->ecx, entry->edx);
348 }
349 
350 static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
351 {
352 	struct kvm_lapic *apic = vcpu->arch.apic;
353 	struct kvm_cpuid_entry2 *best;
354 	bool allow_gbpages;
355 
356 	BUILD_BUG_ON(KVM_NR_GOVERNED_FEATURES > KVM_MAX_NR_GOVERNED_FEATURES);
357 	bitmap_zero(vcpu->arch.governed_features.enabled,
358 		    KVM_MAX_NR_GOVERNED_FEATURES);
359 
360 	/*
361 	 * If TDP is enabled, let the guest use GBPAGES if they're supported in
362 	 * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
363 	 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
364 	 * walk for performance and complexity reasons.  Not to mention KVM
365 	 * _can't_ solve the problem because GVA->GPA walks aren't visible to
366 	 * KVM once a TDP translation is installed.  Mimic hardware behavior so
367 	 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
368 	 * If TDP is disabled, honor *only* guest CPUID as KVM has full control
369 	 * and can install smaller shadow pages if the host lacks 1GiB support.
370 	 */
371 	allow_gbpages = tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
372 				      guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
373 	if (allow_gbpages)
374 		kvm_governed_feature_set(vcpu, X86_FEATURE_GBPAGES);
375 
376 	best = kvm_find_cpuid_entry(vcpu, 1);
377 	if (best && apic) {
378 		if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
379 			apic->lapic_timer.timer_mode_mask = 3 << 17;
380 		else
381 			apic->lapic_timer.timer_mode_mask = 1 << 17;
382 
383 		kvm_apic_set_version(vcpu);
384 	}
385 
386 	vcpu->arch.guest_supported_xcr0 =
387 		cpuid_get_supported_xcr0(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
388 
389 	kvm_update_pv_runtime(vcpu);
390 
391 	vcpu->arch.is_amd_compatible = guest_cpuid_is_amd_or_hygon(vcpu);
392 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
393 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
394 
395 	kvm_pmu_refresh(vcpu);
396 	vcpu->arch.cr4_guest_rsvd_bits =
397 	    __cr4_reserved_bits(guest_cpuid_has, vcpu);
398 
399 	kvm_hv_set_cpuid(vcpu, kvm_cpuid_has_hyperv(vcpu->arch.cpuid_entries,
400 						    vcpu->arch.cpuid_nent));
401 
402 	/* Invoke the vendor callback only after the above state is updated. */
403 	kvm_x86_call(vcpu_after_set_cpuid)(vcpu);
404 
405 	/*
406 	 * Except for the MMU, which needs to do its thing any vendor specific
407 	 * adjustments to the reserved GPA bits.
408 	 */
409 	kvm_mmu_after_set_cpuid(vcpu);
410 }
411 
412 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
413 {
414 	struct kvm_cpuid_entry2 *best;
415 
416 	best = kvm_find_cpuid_entry(vcpu, 0x80000000);
417 	if (!best || best->eax < 0x80000008)
418 		goto not_found;
419 	best = kvm_find_cpuid_entry(vcpu, 0x80000008);
420 	if (best)
421 		return best->eax & 0xff;
422 not_found:
423 	return 36;
424 }
425 
426 /*
427  * This "raw" version returns the reserved GPA bits without any adjustments for
428  * encryption technologies that usurp bits.  The raw mask should be used if and
429  * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
430  */
431 u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
432 {
433 	return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
434 }
435 
436 static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
437                         int nent)
438 {
439 	int r;
440 
441 	__kvm_update_cpuid_runtime(vcpu, e2, nent);
442 
443 	/*
444 	 * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
445 	 * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
446 	 * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
447 	 * faults due to reusing SPs/SPTEs. In practice no sane VMM mucks with
448 	 * the core vCPU model on the fly. It would've been better to forbid any
449 	 * KVM_SET_CPUID{,2} calls after KVM_RUN altogether but unfortunately
450 	 * some VMMs (e.g. QEMU) reuse vCPU fds for CPU hotplug/unplug and do
451 	 * KVM_SET_CPUID{,2} again. To support this legacy behavior, check
452 	 * whether the supplied CPUID data is equal to what's already set.
453 	 */
454 	if (kvm_vcpu_has_run(vcpu)) {
455 		r = kvm_cpuid_check_equal(vcpu, e2, nent);
456 		if (r)
457 			return r;
458 
459 		kvfree(e2);
460 		return 0;
461 	}
462 
463 #ifdef CONFIG_KVM_HYPERV
464 	if (kvm_cpuid_has_hyperv(e2, nent)) {
465 		r = kvm_hv_vcpu_init(vcpu);
466 		if (r)
467 			return r;
468 	}
469 #endif
470 
471 	r = kvm_check_cpuid(vcpu, e2, nent);
472 	if (r)
473 		return r;
474 
475 	kvfree(vcpu->arch.cpuid_entries);
476 	vcpu->arch.cpuid_entries = e2;
477 	vcpu->arch.cpuid_nent = nent;
478 
479 	vcpu->arch.kvm_cpuid = kvm_get_hypervisor_cpuid(vcpu, KVM_SIGNATURE);
480 #ifdef CONFIG_KVM_XEN
481 	vcpu->arch.xen.cpuid = kvm_get_hypervisor_cpuid(vcpu, XEN_SIGNATURE);
482 #endif
483 	kvm_vcpu_after_set_cpuid(vcpu);
484 
485 	return 0;
486 }
487 
488 /* when an old userspace process fills a new kernel module */
489 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
490 			     struct kvm_cpuid *cpuid,
491 			     struct kvm_cpuid_entry __user *entries)
492 {
493 	int r, i;
494 	struct kvm_cpuid_entry *e = NULL;
495 	struct kvm_cpuid_entry2 *e2 = NULL;
496 
497 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
498 		return -E2BIG;
499 
500 	if (cpuid->nent) {
501 		e = vmemdup_array_user(entries, cpuid->nent, sizeof(*e));
502 		if (IS_ERR(e))
503 			return PTR_ERR(e);
504 
505 		e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
506 		if (!e2) {
507 			r = -ENOMEM;
508 			goto out_free_cpuid;
509 		}
510 	}
511 	for (i = 0; i < cpuid->nent; i++) {
512 		e2[i].function = e[i].function;
513 		e2[i].eax = e[i].eax;
514 		e2[i].ebx = e[i].ebx;
515 		e2[i].ecx = e[i].ecx;
516 		e2[i].edx = e[i].edx;
517 		e2[i].index = 0;
518 		e2[i].flags = 0;
519 		e2[i].padding[0] = 0;
520 		e2[i].padding[1] = 0;
521 		e2[i].padding[2] = 0;
522 	}
523 
524 	r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
525 	if (r)
526 		kvfree(e2);
527 
528 out_free_cpuid:
529 	kvfree(e);
530 
531 	return r;
532 }
533 
534 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
535 			      struct kvm_cpuid2 *cpuid,
536 			      struct kvm_cpuid_entry2 __user *entries)
537 {
538 	struct kvm_cpuid_entry2 *e2 = NULL;
539 	int r;
540 
541 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
542 		return -E2BIG;
543 
544 	if (cpuid->nent) {
545 		e2 = vmemdup_array_user(entries, cpuid->nent, sizeof(*e2));
546 		if (IS_ERR(e2))
547 			return PTR_ERR(e2);
548 	}
549 
550 	r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
551 	if (r)
552 		kvfree(e2);
553 
554 	return r;
555 }
556 
557 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
558 			      struct kvm_cpuid2 *cpuid,
559 			      struct kvm_cpuid_entry2 __user *entries)
560 {
561 	if (cpuid->nent < vcpu->arch.cpuid_nent)
562 		return -E2BIG;
563 
564 	if (copy_to_user(entries, vcpu->arch.cpuid_entries,
565 			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
566 		return -EFAULT;
567 
568 	cpuid->nent = vcpu->arch.cpuid_nent;
569 	return 0;
570 }
571 
572 /* Mask kvm_cpu_caps for @leaf with the raw CPUID capabilities of this CPU. */
573 static __always_inline void __kvm_cpu_cap_mask(unsigned int leaf)
574 {
575 	const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
576 	struct kvm_cpuid_entry2 entry;
577 
578 	reverse_cpuid_check(leaf);
579 
580 	cpuid_count(cpuid.function, cpuid.index,
581 		    &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
582 
583 	kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
584 }
585 
586 static __always_inline
587 void kvm_cpu_cap_init_kvm_defined(enum kvm_only_cpuid_leafs leaf, u32 mask)
588 {
589 	/* Use kvm_cpu_cap_mask for leafs that aren't KVM-only. */
590 	BUILD_BUG_ON(leaf < NCAPINTS);
591 
592 	kvm_cpu_caps[leaf] = mask;
593 
594 	__kvm_cpu_cap_mask(leaf);
595 }
596 
597 static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
598 {
599 	/* Use kvm_cpu_cap_init_kvm_defined for KVM-only leafs. */
600 	BUILD_BUG_ON(leaf >= NCAPINTS);
601 
602 	kvm_cpu_caps[leaf] &= mask;
603 
604 	__kvm_cpu_cap_mask(leaf);
605 }
606 
607 void kvm_set_cpu_caps(void)
608 {
609 #ifdef CONFIG_X86_64
610 	unsigned int f_gbpages = F(GBPAGES);
611 	unsigned int f_lm = F(LM);
612 	unsigned int f_xfd = F(XFD);
613 #else
614 	unsigned int f_gbpages = 0;
615 	unsigned int f_lm = 0;
616 	unsigned int f_xfd = 0;
617 #endif
618 	memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));
619 
620 	BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
621 		     sizeof(boot_cpu_data.x86_capability));
622 
623 	memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
624 	       sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)));
625 
626 	kvm_cpu_cap_mask(CPUID_1_ECX,
627 		/*
628 		 * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
629 		 * advertised to guests via CPUID!
630 		 */
631 		F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
632 		0 /* DS-CPL, VMX, SMX, EST */ |
633 		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
634 		F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
635 		F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
636 		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
637 		0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
638 		F(F16C) | F(RDRAND)
639 	);
640 	/* KVM emulates x2apic in software irrespective of host support. */
641 	kvm_cpu_cap_set(X86_FEATURE_X2APIC);
642 
643 	kvm_cpu_cap_mask(CPUID_1_EDX,
644 		F(FPU) | F(VME) | F(DE) | F(PSE) |
645 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
646 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
647 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
648 		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
649 		0 /* Reserved, DS, ACPI */ | F(MMX) |
650 		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
651 		0 /* HTT, TM, Reserved, PBE */
652 	);
653 
654 	kvm_cpu_cap_mask(CPUID_7_0_EBX,
655 		F(FSGSBASE) | F(SGX) | F(BMI1) | F(HLE) | F(AVX2) |
656 		F(FDP_EXCPTN_ONLY) | F(SMEP) | F(BMI2) | F(ERMS) | F(INVPCID) |
657 		F(RTM) | F(ZERO_FCS_FDS) | 0 /*MPX*/ | F(AVX512F) |
658 		F(AVX512DQ) | F(RDSEED) | F(ADX) | F(SMAP) | F(AVX512IFMA) |
659 		F(CLFLUSHOPT) | F(CLWB) | 0 /*INTEL_PT*/ | F(AVX512PF) |
660 		F(AVX512ER) | F(AVX512CD) | F(SHA_NI) | F(AVX512BW) |
661 		F(AVX512VL));
662 
663 	kvm_cpu_cap_mask(CPUID_7_ECX,
664 		F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
665 		F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
666 		F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
667 		F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/ |
668 		F(SGX_LC) | F(BUS_LOCK_DETECT)
669 	);
670 	/* Set LA57 based on hardware capability. */
671 	if (cpuid_ecx(7) & F(LA57))
672 		kvm_cpu_cap_set(X86_FEATURE_LA57);
673 
674 	/*
675 	 * PKU not yet implemented for shadow paging and requires OSPKE
676 	 * to be set on the host. Clear it if that is not the case
677 	 */
678 	if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
679 		kvm_cpu_cap_clear(X86_FEATURE_PKU);
680 
681 	kvm_cpu_cap_mask(CPUID_7_EDX,
682 		F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
683 		F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
684 		F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
685 		F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16) |
686 		F(AMX_TILE) | F(AMX_INT8) | F(AMX_BF16) | F(FLUSH_L1D)
687 	);
688 
689 	/* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
690 	kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
691 	kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
692 
693 	if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
694 		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
695 	if (boot_cpu_has(X86_FEATURE_STIBP))
696 		kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
697 	if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
698 		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
699 
700 	kvm_cpu_cap_mask(CPUID_7_1_EAX,
701 		F(AVX_VNNI) | F(AVX512_BF16) | F(CMPCCXADD) |
702 		F(FZRM) | F(FSRS) | F(FSRC) |
703 		F(AMX_FP16) | F(AVX_IFMA) | F(LAM)
704 	);
705 
706 	kvm_cpu_cap_init_kvm_defined(CPUID_7_1_EDX,
707 		F(AVX_VNNI_INT8) | F(AVX_NE_CONVERT) | F(PREFETCHITI) |
708 		F(AMX_COMPLEX)
709 	);
710 
711 	kvm_cpu_cap_init_kvm_defined(CPUID_7_2_EDX,
712 		F(INTEL_PSFD) | F(IPRED_CTRL) | F(RRSBA_CTRL) | F(DDPD_U) |
713 		F(BHI_CTRL) | F(MCDT_NO)
714 	);
715 
716 	kvm_cpu_cap_mask(CPUID_D_1_EAX,
717 		F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES) | f_xfd
718 	);
719 
720 	kvm_cpu_cap_init_kvm_defined(CPUID_12_EAX,
721 		SF(SGX1) | SF(SGX2) | SF(SGX_EDECCSSA)
722 	);
723 
724 	kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
725 		F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
726 		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
727 		F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
728 		0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
729 		F(TOPOEXT) | 0 /* PERFCTR_CORE */
730 	);
731 
732 	kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
733 		F(FPU) | F(VME) | F(DE) | F(PSE) |
734 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
735 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
736 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
737 		F(PAT) | F(PSE36) | 0 /* Reserved */ |
738 		F(NX) | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
739 		F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
740 		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
741 	);
742 
743 	if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
744 		kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
745 
746 	kvm_cpu_cap_init_kvm_defined(CPUID_8000_0007_EDX,
747 		SF(CONSTANT_TSC)
748 	);
749 
750 	kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
751 		F(CLZERO) | F(XSAVEERPTR) |
752 		F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
753 		F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON) |
754 		F(AMD_PSFD)
755 	);
756 
757 	/*
758 	 * AMD has separate bits for each SPEC_CTRL bit.
759 	 * arch/x86/kernel/cpu/bugs.c is kind enough to
760 	 * record that in cpufeatures so use them.
761 	 */
762 	if (boot_cpu_has(X86_FEATURE_IBPB))
763 		kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
764 	if (boot_cpu_has(X86_FEATURE_IBRS))
765 		kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
766 	if (boot_cpu_has(X86_FEATURE_STIBP))
767 		kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
768 	if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
769 		kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
770 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
771 		kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
772 	/*
773 	 * The preference is to use SPEC CTRL MSR instead of the
774 	 * VIRT_SPEC MSR.
775 	 */
776 	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
777 	    !boot_cpu_has(X86_FEATURE_AMD_SSBD))
778 		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
779 
780 	/*
781 	 * Hide all SVM features by default, SVM will set the cap bits for
782 	 * features it emulates and/or exposes for L1.
783 	 */
784 	kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
785 
786 	kvm_cpu_cap_mask(CPUID_8000_001F_EAX,
787 		0 /* SME */ | 0 /* SEV */ | 0 /* VM_PAGE_FLUSH */ | 0 /* SEV_ES */ |
788 		F(SME_COHERENT));
789 
790 	kvm_cpu_cap_mask(CPUID_8000_0021_EAX,
791 		F(NO_NESTED_DATA_BP) | F(LFENCE_RDTSC) | 0 /* SmmPgCfgLock */ |
792 		F(NULL_SEL_CLR_BASE) | F(AUTOIBRS) | 0 /* PrefetchCtlMsr */ |
793 		F(WRMSR_XX_BASE_NS)
794 	);
795 
796 	kvm_cpu_cap_check_and_set(X86_FEATURE_SBPB);
797 	kvm_cpu_cap_check_and_set(X86_FEATURE_IBPB_BRTYPE);
798 	kvm_cpu_cap_check_and_set(X86_FEATURE_SRSO_NO);
799 
800 	kvm_cpu_cap_init_kvm_defined(CPUID_8000_0022_EAX,
801 		F(PERFMON_V2)
802 	);
803 
804 	/*
805 	 * Synthesize "LFENCE is serializing" into the AMD-defined entry in
806 	 * KVM's supported CPUID if the feature is reported as supported by the
807 	 * kernel.  LFENCE_RDTSC was a Linux-defined synthetic feature long
808 	 * before AMD joined the bandwagon, e.g. LFENCE is serializing on most
809 	 * CPUs that support SSE2.  On CPUs that don't support AMD's leaf,
810 	 * kvm_cpu_cap_mask() will unfortunately drop the flag due to ANDing
811 	 * the mask with the raw host CPUID, and reporting support in AMD's
812 	 * leaf can make it easier for userspace to detect the feature.
813 	 */
814 	if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
815 		kvm_cpu_cap_set(X86_FEATURE_LFENCE_RDTSC);
816 	if (!static_cpu_has_bug(X86_BUG_NULL_SEG))
817 		kvm_cpu_cap_set(X86_FEATURE_NULL_SEL_CLR_BASE);
818 	kvm_cpu_cap_set(X86_FEATURE_NO_SMM_CTL_MSR);
819 
820 	kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
821 		F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
822 		F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
823 		F(PMM) | F(PMM_EN)
824 	);
825 
826 	/*
827 	 * Hide RDTSCP and RDPID if either feature is reported as supported but
828 	 * probing MSR_TSC_AUX failed.  This is purely a sanity check and
829 	 * should never happen, but the guest will likely crash if RDTSCP or
830 	 * RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in
831 	 * the past.  For example, the sanity check may fire if this instance of
832 	 * KVM is running as L1 on top of an older, broken KVM.
833 	 */
834 	if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) ||
835 		     kvm_cpu_cap_has(X86_FEATURE_RDPID)) &&
836 		     !kvm_is_supported_user_return_msr(MSR_TSC_AUX))) {
837 		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
838 		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
839 	}
840 }
841 EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
842 
843 struct kvm_cpuid_array {
844 	struct kvm_cpuid_entry2 *entries;
845 	int maxnent;
846 	int nent;
847 };
848 
849 static struct kvm_cpuid_entry2 *get_next_cpuid(struct kvm_cpuid_array *array)
850 {
851 	if (array->nent >= array->maxnent)
852 		return NULL;
853 
854 	return &array->entries[array->nent++];
855 }
856 
857 static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
858 					      u32 function, u32 index)
859 {
860 	struct kvm_cpuid_entry2 *entry = get_next_cpuid(array);
861 
862 	if (!entry)
863 		return NULL;
864 
865 	memset(entry, 0, sizeof(*entry));
866 	entry->function = function;
867 	entry->index = index;
868 	switch (function & 0xC0000000) {
869 	case 0x40000000:
870 		/* Hypervisor leaves are always synthesized by __do_cpuid_func.  */
871 		return entry;
872 
873 	case 0x80000000:
874 		/*
875 		 * 0x80000021 is sometimes synthesized by __do_cpuid_func, which
876 		 * would result in out-of-bounds calls to do_host_cpuid.
877 		 */
878 		{
879 			static int max_cpuid_80000000;
880 			if (!READ_ONCE(max_cpuid_80000000))
881 				WRITE_ONCE(max_cpuid_80000000, cpuid_eax(0x80000000));
882 			if (function > READ_ONCE(max_cpuid_80000000))
883 				return entry;
884 		}
885 		break;
886 
887 	default:
888 		break;
889 	}
890 
891 	cpuid_count(entry->function, entry->index,
892 		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
893 
894 	if (cpuid_function_is_indexed(function))
895 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
896 
897 	return entry;
898 }
899 
900 static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
901 {
902 	struct kvm_cpuid_entry2 *entry;
903 
904 	if (array->nent >= array->maxnent)
905 		return -E2BIG;
906 
907 	entry = &array->entries[array->nent];
908 	entry->function = func;
909 	entry->index = 0;
910 	entry->flags = 0;
911 
912 	switch (func) {
913 	case 0:
914 		entry->eax = 7;
915 		++array->nent;
916 		break;
917 	case 1:
918 		entry->ecx = F(MOVBE);
919 		++array->nent;
920 		break;
921 	case 7:
922 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
923 		entry->eax = 0;
924 		if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
925 			entry->ecx = F(RDPID);
926 		++array->nent;
927 		break;
928 	default:
929 		break;
930 	}
931 
932 	return 0;
933 }
934 
935 static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
936 {
937 	struct kvm_cpuid_entry2 *entry;
938 	int r, i, max_idx;
939 
940 	/* all calls to cpuid_count() should be made on the same cpu */
941 	get_cpu();
942 
943 	r = -E2BIG;
944 
945 	entry = do_host_cpuid(array, function, 0);
946 	if (!entry)
947 		goto out;
948 
949 	switch (function) {
950 	case 0:
951 		/* Limited to the highest leaf implemented in KVM. */
952 		entry->eax = min(entry->eax, 0x1fU);
953 		break;
954 	case 1:
955 		cpuid_entry_override(entry, CPUID_1_EDX);
956 		cpuid_entry_override(entry, CPUID_1_ECX);
957 		break;
958 	case 2:
959 		/*
960 		 * On ancient CPUs, function 2 entries are STATEFUL.  That is,
961 		 * CPUID(function=2, index=0) may return different results each
962 		 * time, with the least-significant byte in EAX enumerating the
963 		 * number of times software should do CPUID(2, 0).
964 		 *
965 		 * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
966 		 * idiotic.  Intel's SDM states that EAX & 0xff "will always
967 		 * return 01H. Software should ignore this value and not
968 		 * interpret it as an informational descriptor", while AMD's
969 		 * APM states that CPUID(2) is reserved.
970 		 *
971 		 * WARN if a frankenstein CPU that supports virtualization and
972 		 * a stateful CPUID.0x2 is encountered.
973 		 */
974 		WARN_ON_ONCE((entry->eax & 0xff) > 1);
975 		break;
976 	/* functions 4 and 0x8000001d have additional index. */
977 	case 4:
978 	case 0x8000001d:
979 		/*
980 		 * Read entries until the cache type in the previous entry is
981 		 * zero, i.e. indicates an invalid entry.
982 		 */
983 		for (i = 1; entry->eax & 0x1f; ++i) {
984 			entry = do_host_cpuid(array, function, i);
985 			if (!entry)
986 				goto out;
987 		}
988 		break;
989 	case 6: /* Thermal management */
990 		entry->eax = 0x4; /* allow ARAT */
991 		entry->ebx = 0;
992 		entry->ecx = 0;
993 		entry->edx = 0;
994 		break;
995 	/* function 7 has additional index. */
996 	case 7:
997 		max_idx = entry->eax = min(entry->eax, 2u);
998 		cpuid_entry_override(entry, CPUID_7_0_EBX);
999 		cpuid_entry_override(entry, CPUID_7_ECX);
1000 		cpuid_entry_override(entry, CPUID_7_EDX);
1001 
1002 		/* KVM only supports up to 0x7.2, capped above via min(). */
1003 		if (max_idx >= 1) {
1004 			entry = do_host_cpuid(array, function, 1);
1005 			if (!entry)
1006 				goto out;
1007 
1008 			cpuid_entry_override(entry, CPUID_7_1_EAX);
1009 			cpuid_entry_override(entry, CPUID_7_1_EDX);
1010 			entry->ebx = 0;
1011 			entry->ecx = 0;
1012 		}
1013 		if (max_idx >= 2) {
1014 			entry = do_host_cpuid(array, function, 2);
1015 			if (!entry)
1016 				goto out;
1017 
1018 			cpuid_entry_override(entry, CPUID_7_2_EDX);
1019 			entry->ecx = 0;
1020 			entry->ebx = 0;
1021 			entry->eax = 0;
1022 		}
1023 		break;
1024 	case 0xa: { /* Architectural Performance Monitoring */
1025 		union cpuid10_eax eax;
1026 		union cpuid10_edx edx;
1027 
1028 		if (!enable_pmu || !static_cpu_has(X86_FEATURE_ARCH_PERFMON)) {
1029 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1030 			break;
1031 		}
1032 
1033 		eax.split.version_id = kvm_pmu_cap.version;
1034 		eax.split.num_counters = kvm_pmu_cap.num_counters_gp;
1035 		eax.split.bit_width = kvm_pmu_cap.bit_width_gp;
1036 		eax.split.mask_length = kvm_pmu_cap.events_mask_len;
1037 		edx.split.num_counters_fixed = kvm_pmu_cap.num_counters_fixed;
1038 		edx.split.bit_width_fixed = kvm_pmu_cap.bit_width_fixed;
1039 
1040 		if (kvm_pmu_cap.version)
1041 			edx.split.anythread_deprecated = 1;
1042 		edx.split.reserved1 = 0;
1043 		edx.split.reserved2 = 0;
1044 
1045 		entry->eax = eax.full;
1046 		entry->ebx = kvm_pmu_cap.events_mask;
1047 		entry->ecx = 0;
1048 		entry->edx = edx.full;
1049 		break;
1050 	}
1051 	case 0x1f:
1052 	case 0xb:
1053 		/*
1054 		 * No topology; a valid topology is indicated by the presence
1055 		 * of subleaf 1.
1056 		 */
1057 		entry->eax = entry->ebx = entry->ecx = 0;
1058 		break;
1059 	case 0xd: {
1060 		u64 permitted_xcr0 = kvm_get_filtered_xcr0();
1061 		u64 permitted_xss = kvm_caps.supported_xss;
1062 
1063 		entry->eax &= permitted_xcr0;
1064 		entry->ebx = xstate_required_size(permitted_xcr0, false);
1065 		entry->ecx = entry->ebx;
1066 		entry->edx &= permitted_xcr0 >> 32;
1067 		if (!permitted_xcr0)
1068 			break;
1069 
1070 		entry = do_host_cpuid(array, function, 1);
1071 		if (!entry)
1072 			goto out;
1073 
1074 		cpuid_entry_override(entry, CPUID_D_1_EAX);
1075 		if (entry->eax & (F(XSAVES)|F(XSAVEC)))
1076 			entry->ebx = xstate_required_size(permitted_xcr0 | permitted_xss,
1077 							  true);
1078 		else {
1079 			WARN_ON_ONCE(permitted_xss != 0);
1080 			entry->ebx = 0;
1081 		}
1082 		entry->ecx &= permitted_xss;
1083 		entry->edx &= permitted_xss >> 32;
1084 
1085 		for (i = 2; i < 64; ++i) {
1086 			bool s_state;
1087 			if (permitted_xcr0 & BIT_ULL(i))
1088 				s_state = false;
1089 			else if (permitted_xss & BIT_ULL(i))
1090 				s_state = true;
1091 			else
1092 				continue;
1093 
1094 			entry = do_host_cpuid(array, function, i);
1095 			if (!entry)
1096 				goto out;
1097 
1098 			/*
1099 			 * The supported check above should have filtered out
1100 			 * invalid sub-leafs.  Only valid sub-leafs should
1101 			 * reach this point, and they should have a non-zero
1102 			 * save state size.  Furthermore, check whether the
1103 			 * processor agrees with permitted_xcr0/permitted_xss
1104 			 * on whether this is an XCR0- or IA32_XSS-managed area.
1105 			 */
1106 			if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
1107 				--array->nent;
1108 				continue;
1109 			}
1110 
1111 			if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
1112 				entry->ecx &= ~BIT_ULL(2);
1113 			entry->edx = 0;
1114 		}
1115 		break;
1116 	}
1117 	case 0x12:
1118 		/* Intel SGX */
1119 		if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
1120 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1121 			break;
1122 		}
1123 
1124 		/*
1125 		 * Index 0: Sub-features, MISCSELECT (a.k.a extended features)
1126 		 * and max enclave sizes.   The SGX sub-features and MISCSELECT
1127 		 * are restricted by kernel and KVM capabilities (like most
1128 		 * feature flags), while enclave size is unrestricted.
1129 		 */
1130 		cpuid_entry_override(entry, CPUID_12_EAX);
1131 		entry->ebx &= SGX_MISC_EXINFO;
1132 
1133 		entry = do_host_cpuid(array, function, 1);
1134 		if (!entry)
1135 			goto out;
1136 
1137 		/*
1138 		 * Index 1: SECS.ATTRIBUTES.  ATTRIBUTES are restricted a la
1139 		 * feature flags.  Advertise all supported flags, including
1140 		 * privileged attributes that require explicit opt-in from
1141 		 * userspace.  ATTRIBUTES.XFRM is not adjusted as userspace is
1142 		 * expected to derive it from supported XCR0.
1143 		 */
1144 		entry->eax &= SGX_ATTR_PRIV_MASK | SGX_ATTR_UNPRIV_MASK;
1145 		entry->ebx &= 0;
1146 		break;
1147 	/* Intel PT */
1148 	case 0x14:
1149 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
1150 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1151 			break;
1152 		}
1153 
1154 		for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1155 			if (!do_host_cpuid(array, function, i))
1156 				goto out;
1157 		}
1158 		break;
1159 	/* Intel AMX TILE */
1160 	case 0x1d:
1161 		if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1162 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1163 			break;
1164 		}
1165 
1166 		for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1167 			if (!do_host_cpuid(array, function, i))
1168 				goto out;
1169 		}
1170 		break;
1171 	case 0x1e: /* TMUL information */
1172 		if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1173 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1174 			break;
1175 		}
1176 		break;
1177 	case KVM_CPUID_SIGNATURE: {
1178 		const u32 *sigptr = (const u32 *)KVM_SIGNATURE;
1179 		entry->eax = KVM_CPUID_FEATURES;
1180 		entry->ebx = sigptr[0];
1181 		entry->ecx = sigptr[1];
1182 		entry->edx = sigptr[2];
1183 		break;
1184 	}
1185 	case KVM_CPUID_FEATURES:
1186 		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
1187 			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
1188 			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
1189 			     (1 << KVM_FEATURE_ASYNC_PF) |
1190 			     (1 << KVM_FEATURE_PV_EOI) |
1191 			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
1192 			     (1 << KVM_FEATURE_PV_UNHALT) |
1193 			     (1 << KVM_FEATURE_PV_TLB_FLUSH) |
1194 			     (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
1195 			     (1 << KVM_FEATURE_PV_SEND_IPI) |
1196 			     (1 << KVM_FEATURE_POLL_CONTROL) |
1197 			     (1 << KVM_FEATURE_PV_SCHED_YIELD) |
1198 			     (1 << KVM_FEATURE_ASYNC_PF_INT);
1199 
1200 		if (sched_info_on())
1201 			entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
1202 
1203 		entry->ebx = 0;
1204 		entry->ecx = 0;
1205 		entry->edx = 0;
1206 		break;
1207 	case 0x80000000:
1208 		entry->eax = min(entry->eax, 0x80000022);
1209 		/*
1210 		 * Serializing LFENCE is reported in a multitude of ways, and
1211 		 * NullSegClearsBase is not reported in CPUID on Zen2; help
1212 		 * userspace by providing the CPUID leaf ourselves.
1213 		 *
1214 		 * However, only do it if the host has CPUID leaf 0x8000001d.
1215 		 * QEMU thinks that it can query the host blindly for that
1216 		 * CPUID leaf if KVM reports that it supports 0x8000001d or
1217 		 * above.  The processor merrily returns values from the
1218 		 * highest Intel leaf which QEMU tries to use as the guest's
1219 		 * 0x8000001d.  Even worse, this can result in an infinite
1220 		 * loop if said highest leaf has no subleaves indexed by ECX.
1221 		 */
1222 		if (entry->eax >= 0x8000001d &&
1223 		    (static_cpu_has(X86_FEATURE_LFENCE_RDTSC)
1224 		     || !static_cpu_has_bug(X86_BUG_NULL_SEG)))
1225 			entry->eax = max(entry->eax, 0x80000021);
1226 		break;
1227 	case 0x80000001:
1228 		entry->ebx &= ~GENMASK(27, 16);
1229 		cpuid_entry_override(entry, CPUID_8000_0001_EDX);
1230 		cpuid_entry_override(entry, CPUID_8000_0001_ECX);
1231 		break;
1232 	case 0x80000005:
1233 		/*  Pass host L1 cache and TLB info. */
1234 		break;
1235 	case 0x80000006:
1236 		/* Drop reserved bits, pass host L2 cache and TLB info. */
1237 		entry->edx &= ~GENMASK(17, 16);
1238 		break;
1239 	case 0x80000007: /* Advanced power management */
1240 		cpuid_entry_override(entry, CPUID_8000_0007_EDX);
1241 
1242 		/* mask against host */
1243 		entry->edx &= boot_cpu_data.x86_power;
1244 		entry->eax = entry->ebx = entry->ecx = 0;
1245 		break;
1246 	case 0x80000008: {
1247 		/*
1248 		 * GuestPhysAddrSize (EAX[23:16]) is intended for software
1249 		 * use.
1250 		 *
1251 		 * KVM's ABI is to report the effective MAXPHYADDR for the
1252 		 * guest in PhysAddrSize (phys_as), and the maximum
1253 		 * *addressable* GPA in GuestPhysAddrSize (g_phys_as).
1254 		 *
1255 		 * GuestPhysAddrSize is valid if and only if TDP is enabled,
1256 		 * in which case the max GPA that can be addressed by KVM may
1257 		 * be less than the max GPA that can be legally generated by
1258 		 * the guest, e.g. if MAXPHYADDR>48 but the CPU doesn't
1259 		 * support 5-level TDP.
1260 		 */
1261 		unsigned int virt_as = max((entry->eax >> 8) & 0xff, 48U);
1262 		unsigned int phys_as, g_phys_as;
1263 
1264 		/*
1265 		 * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
1266 		 * the guest operates in the same PA space as the host, i.e.
1267 		 * reductions in MAXPHYADDR for memory encryption affect shadow
1268 		 * paging, too.
1269 		 *
1270 		 * If TDP is enabled, use the raw bare metal MAXPHYADDR as
1271 		 * reductions to the HPAs do not affect GPAs.  The max
1272 		 * addressable GPA is the same as the max effective GPA, except
1273 		 * that it's capped at 48 bits if 5-level TDP isn't supported
1274 		 * (hardware processes bits 51:48 only when walking the fifth
1275 		 * level page table).
1276 		 */
1277 		if (!tdp_enabled) {
1278 			phys_as = boot_cpu_data.x86_phys_bits;
1279 			g_phys_as = 0;
1280 		} else {
1281 			phys_as = entry->eax & 0xff;
1282 			g_phys_as = phys_as;
1283 			if (kvm_mmu_get_max_tdp_level() < 5)
1284 				g_phys_as = min(g_phys_as, 48);
1285 		}
1286 
1287 		entry->eax = phys_as | (virt_as << 8) | (g_phys_as << 16);
1288 		entry->ecx &= ~(GENMASK(31, 16) | GENMASK(11, 8));
1289 		entry->edx = 0;
1290 		cpuid_entry_override(entry, CPUID_8000_0008_EBX);
1291 		break;
1292 	}
1293 	case 0x8000000A:
1294 		if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
1295 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1296 			break;
1297 		}
1298 		entry->eax = 1; /* SVM revision 1 */
1299 		entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
1300 				   ASID emulation to nested SVM */
1301 		entry->ecx = 0; /* Reserved */
1302 		cpuid_entry_override(entry, CPUID_8000_000A_EDX);
1303 		break;
1304 	case 0x80000019:
1305 		entry->ecx = entry->edx = 0;
1306 		break;
1307 	case 0x8000001a:
1308 		entry->eax &= GENMASK(2, 0);
1309 		entry->ebx = entry->ecx = entry->edx = 0;
1310 		break;
1311 	case 0x8000001e:
1312 		/* Do not return host topology information.  */
1313 		entry->eax = entry->ebx = entry->ecx = 0;
1314 		entry->edx = 0; /* reserved */
1315 		break;
1316 	case 0x8000001F:
1317 		if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
1318 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1319 		} else {
1320 			cpuid_entry_override(entry, CPUID_8000_001F_EAX);
1321 			/* Clear NumVMPL since KVM does not support VMPL.  */
1322 			entry->ebx &= ~GENMASK(31, 12);
1323 			/*
1324 			 * Enumerate '0' for "PA bits reduction", the adjusted
1325 			 * MAXPHYADDR is enumerated directly (see 0x80000008).
1326 			 */
1327 			entry->ebx &= ~GENMASK(11, 6);
1328 		}
1329 		break;
1330 	case 0x80000020:
1331 		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1332 		break;
1333 	case 0x80000021:
1334 		entry->ebx = entry->ecx = entry->edx = 0;
1335 		cpuid_entry_override(entry, CPUID_8000_0021_EAX);
1336 		break;
1337 	/* AMD Extended Performance Monitoring and Debug */
1338 	case 0x80000022: {
1339 		union cpuid_0x80000022_ebx ebx;
1340 
1341 		entry->ecx = entry->edx = 0;
1342 		if (!enable_pmu || !kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) {
1343 			entry->eax = entry->ebx;
1344 			break;
1345 		}
1346 
1347 		cpuid_entry_override(entry, CPUID_8000_0022_EAX);
1348 
1349 		if (kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
1350 			ebx.split.num_core_pmc = kvm_pmu_cap.num_counters_gp;
1351 		else if (kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
1352 			ebx.split.num_core_pmc = AMD64_NUM_COUNTERS_CORE;
1353 		else
1354 			ebx.split.num_core_pmc = AMD64_NUM_COUNTERS;
1355 
1356 		entry->ebx = ebx.full;
1357 		break;
1358 	}
1359 	/*Add support for Centaur's CPUID instruction*/
1360 	case 0xC0000000:
1361 		/*Just support up to 0xC0000004 now*/
1362 		entry->eax = min(entry->eax, 0xC0000004);
1363 		break;
1364 	case 0xC0000001:
1365 		cpuid_entry_override(entry, CPUID_C000_0001_EDX);
1366 		break;
1367 	case 3: /* Processor serial number */
1368 	case 5: /* MONITOR/MWAIT */
1369 	case 0xC0000002:
1370 	case 0xC0000003:
1371 	case 0xC0000004:
1372 	default:
1373 		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1374 		break;
1375 	}
1376 
1377 	r = 0;
1378 
1379 out:
1380 	put_cpu();
1381 
1382 	return r;
1383 }
1384 
1385 static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1386 			 unsigned int type)
1387 {
1388 	if (type == KVM_GET_EMULATED_CPUID)
1389 		return __do_cpuid_func_emulated(array, func);
1390 
1391 	return __do_cpuid_func(array, func);
1392 }
1393 
1394 #define CENTAUR_CPUID_SIGNATURE 0xC0000000
1395 
1396 static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1397 			  unsigned int type)
1398 {
1399 	u32 limit;
1400 	int r;
1401 
1402 	if (func == CENTAUR_CPUID_SIGNATURE &&
1403 	    boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
1404 		return 0;
1405 
1406 	r = do_cpuid_func(array, func, type);
1407 	if (r)
1408 		return r;
1409 
1410 	limit = array->entries[array->nent - 1].eax;
1411 	for (func = func + 1; func <= limit; ++func) {
1412 		r = do_cpuid_func(array, func, type);
1413 		if (r)
1414 			break;
1415 	}
1416 
1417 	return r;
1418 }
1419 
1420 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
1421 				 __u32 num_entries, unsigned int ioctl_type)
1422 {
1423 	int i;
1424 	__u32 pad[3];
1425 
1426 	if (ioctl_type != KVM_GET_EMULATED_CPUID)
1427 		return false;
1428 
1429 	/*
1430 	 * We want to make sure that ->padding is being passed clean from
1431 	 * userspace in case we want to use it for something in the future.
1432 	 *
1433 	 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
1434 	 * have to give ourselves satisfied only with the emulated side. /me
1435 	 * sheds a tear.
1436 	 */
1437 	for (i = 0; i < num_entries; i++) {
1438 		if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
1439 			return true;
1440 
1441 		if (pad[0] || pad[1] || pad[2])
1442 			return true;
1443 	}
1444 	return false;
1445 }
1446 
1447 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
1448 			    struct kvm_cpuid_entry2 __user *entries,
1449 			    unsigned int type)
1450 {
1451 	static const u32 funcs[] = {
1452 		0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
1453 	};
1454 
1455 	struct kvm_cpuid_array array = {
1456 		.nent = 0,
1457 	};
1458 	int r, i;
1459 
1460 	if (cpuid->nent < 1)
1461 		return -E2BIG;
1462 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1463 		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1464 
1465 	if (sanity_check_entries(entries, cpuid->nent, type))
1466 		return -EINVAL;
1467 
1468 	array.entries = kvcalloc(cpuid->nent, sizeof(struct kvm_cpuid_entry2), GFP_KERNEL);
1469 	if (!array.entries)
1470 		return -ENOMEM;
1471 
1472 	array.maxnent = cpuid->nent;
1473 
1474 	for (i = 0; i < ARRAY_SIZE(funcs); i++) {
1475 		r = get_cpuid_func(&array, funcs[i], type);
1476 		if (r)
1477 			goto out_free;
1478 	}
1479 	cpuid->nent = array.nent;
1480 
1481 	if (copy_to_user(entries, array.entries,
1482 			 array.nent * sizeof(struct kvm_cpuid_entry2)))
1483 		r = -EFAULT;
1484 
1485 out_free:
1486 	kvfree(array.entries);
1487 	return r;
1488 }
1489 
1490 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry_index(struct kvm_vcpu *vcpu,
1491 						    u32 function, u32 index)
1492 {
1493 	return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1494 				 function, index);
1495 }
1496 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry_index);
1497 
1498 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
1499 					      u32 function)
1500 {
1501 	return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1502 				 function, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
1503 }
1504 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
1505 
1506 /*
1507  * Intel CPUID semantics treats any query for an out-of-range leaf as if the
1508  * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
1509  * returns all zeroes for any undefined leaf, whether or not the leaf is in
1510  * range.  Centaur/VIA follows Intel semantics.
1511  *
1512  * A leaf is considered out-of-range if its function is higher than the maximum
1513  * supported leaf of its associated class or if its associated class does not
1514  * exist.
1515  *
1516  * There are three primary classes to be considered, with their respective
1517  * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
1518  * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
1519  * class, CPUID.<base>.EAX contains the max supported leaf for the class.
1520  *
1521  *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
1522  *  - Hypervisor: 0x40000000 - 0x4fffffff
1523  *  - Extended:   0x80000000 - 0xbfffffff
1524  *  - Centaur:    0xc0000000 - 0xcfffffff
1525  *
1526  * The Hypervisor class is further subdivided into sub-classes that each act as
1527  * their own independent class associated with a 0x100 byte range.  E.g. if Qemu
1528  * is advertising support for both HyperV and KVM, the resulting Hypervisor
1529  * CPUID sub-classes are:
1530  *
1531  *  - HyperV:     0x40000000 - 0x400000ff
1532  *  - KVM:        0x40000100 - 0x400001ff
1533  */
1534 static struct kvm_cpuid_entry2 *
1535 get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
1536 {
1537 	struct kvm_cpuid_entry2 *basic, *class;
1538 	u32 function = *fn_ptr;
1539 
1540 	basic = kvm_find_cpuid_entry(vcpu, 0);
1541 	if (!basic)
1542 		return NULL;
1543 
1544 	if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
1545 	    is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
1546 		return NULL;
1547 
1548 	if (function >= 0x40000000 && function <= 0x4fffffff)
1549 		class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00);
1550 	else if (function >= 0xc0000000)
1551 		class = kvm_find_cpuid_entry(vcpu, 0xc0000000);
1552 	else
1553 		class = kvm_find_cpuid_entry(vcpu, function & 0x80000000);
1554 
1555 	if (class && function <= class->eax)
1556 		return NULL;
1557 
1558 	/*
1559 	 * Leaf specific adjustments are also applied when redirecting to the
1560 	 * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1561 	 * entry for CPUID.0xb.index (see below), then the output value for EDX
1562 	 * needs to be pulled from CPUID.0xb.1.
1563 	 */
1564 	*fn_ptr = basic->eax;
1565 
1566 	/*
1567 	 * The class does not exist or the requested function is out of range;
1568 	 * the effective CPUID entry is the max basic leaf.  Note, the index of
1569 	 * the original requested leaf is observed!
1570 	 */
1571 	return kvm_find_cpuid_entry_index(vcpu, basic->eax, index);
1572 }
1573 
1574 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1575 	       u32 *ecx, u32 *edx, bool exact_only)
1576 {
1577 	u32 orig_function = *eax, function = *eax, index = *ecx;
1578 	struct kvm_cpuid_entry2 *entry;
1579 	bool exact, used_max_basic = false;
1580 
1581 	entry = kvm_find_cpuid_entry_index(vcpu, function, index);
1582 	exact = !!entry;
1583 
1584 	if (!entry && !exact_only) {
1585 		entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1586 		used_max_basic = !!entry;
1587 	}
1588 
1589 	if (entry) {
1590 		*eax = entry->eax;
1591 		*ebx = entry->ebx;
1592 		*ecx = entry->ecx;
1593 		*edx = entry->edx;
1594 		if (function == 7 && index == 0) {
1595 			u64 data;
1596 		        if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1597 			    (data & TSX_CTRL_CPUID_CLEAR))
1598 				*ebx &= ~(F(RTM) | F(HLE));
1599 		} else if (function == 0x80000007) {
1600 			if (kvm_hv_invtsc_suppressed(vcpu))
1601 				*edx &= ~SF(CONSTANT_TSC);
1602 		}
1603 	} else {
1604 		*eax = *ebx = *ecx = *edx = 0;
1605 		/*
1606 		 * When leaf 0BH or 1FH is defined, CL is pass-through
1607 		 * and EDX is always the x2APIC ID, even for undefined
1608 		 * subleaves. Index 1 will exist iff the leaf is
1609 		 * implemented, so we pass through CL iff leaf 1
1610 		 * exists. EDX can be copied from any existing index.
1611 		 */
1612 		if (function == 0xb || function == 0x1f) {
1613 			entry = kvm_find_cpuid_entry_index(vcpu, function, 1);
1614 			if (entry) {
1615 				*ecx = index & 0xff;
1616 				*edx = entry->edx;
1617 			}
1618 		}
1619 	}
1620 	trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1621 			used_max_basic);
1622 	return exact;
1623 }
1624 EXPORT_SYMBOL_GPL(kvm_cpuid);
1625 
1626 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1627 {
1628 	u32 eax, ebx, ecx, edx;
1629 
1630 	if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1631 		return 1;
1632 
1633 	eax = kvm_rax_read(vcpu);
1634 	ecx = kvm_rcx_read(vcpu);
1635 	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1636 	kvm_rax_write(vcpu, eax);
1637 	kvm_rbx_write(vcpu, ebx);
1638 	kvm_rcx_write(vcpu, ecx);
1639 	kvm_rdx_write(vcpu, edx);
1640 	return kvm_skip_emulated_instruction(vcpu);
1641 }
1642 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1643