xref: /linux/arch/x86/kvm/cpuid.c (revision 61cb9ac66b30374c7fd8a8b2a3c4f8f432c72e36)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  * cpuid support routines
5  *
6  * derived from arch/x86/kvm/x86.c
7  *
8  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9  * Copyright IBM Corporation, 2008
10  */
11 
12 #include <linux/kvm_host.h>
13 #include <linux/export.h>
14 #include <linux/vmalloc.h>
15 #include <linux/uaccess.h>
16 #include <linux/sched/stat.h>
17 
18 #include <asm/processor.h>
19 #include <asm/user.h>
20 #include <asm/fpu/xstate.h>
21 #include <asm/sgx.h>
22 #include "cpuid.h"
23 #include "lapic.h"
24 #include "mmu.h"
25 #include "trace.h"
26 #include "pmu.h"
27 
28 /*
29  * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
30  * aligned to sizeof(unsigned long) because it's not accessed via bitops.
31  */
32 u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
33 EXPORT_SYMBOL_GPL(kvm_cpu_caps);
34 
35 static u32 xstate_required_size(u64 xstate_bv, bool compacted)
36 {
37 	int feature_bit = 0;
38 	u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
39 
40 	xstate_bv &= XFEATURE_MASK_EXTEND;
41 	while (xstate_bv) {
42 		if (xstate_bv & 0x1) {
43 		        u32 eax, ebx, ecx, edx, offset;
44 		        cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
45 			offset = compacted ? ret : ebx;
46 			ret = max(ret, offset + eax);
47 		}
48 
49 		xstate_bv >>= 1;
50 		feature_bit++;
51 	}
52 
53 	return ret;
54 }
55 
56 #define F feature_bit
57 #define SF(name) (boot_cpu_has(X86_FEATURE_##name) ? F(name) : 0)
58 
59 static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
60 	struct kvm_cpuid_entry2 *entries, int nent, u32 function, u32 index)
61 {
62 	struct kvm_cpuid_entry2 *e;
63 	int i;
64 
65 	for (i = 0; i < nent; i++) {
66 		e = &entries[i];
67 
68 		if (e->function == function && (e->index == index ||
69 		    !(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX)))
70 			return e;
71 	}
72 
73 	return NULL;
74 }
75 
76 static int kvm_check_cpuid(struct kvm_cpuid_entry2 *entries, int nent)
77 {
78 	struct kvm_cpuid_entry2 *best;
79 
80 	/*
81 	 * The existing code assumes virtual address is 48-bit or 57-bit in the
82 	 * canonical address checks; exit if it is ever changed.
83 	 */
84 	best = cpuid_entry2_find(entries, nent, 0x80000008, 0);
85 	if (best) {
86 		int vaddr_bits = (best->eax & 0xff00) >> 8;
87 
88 		if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
89 			return -EINVAL;
90 	}
91 
92 	return 0;
93 }
94 
95 void kvm_update_pv_runtime(struct kvm_vcpu *vcpu)
96 {
97 	struct kvm_cpuid_entry2 *best;
98 
99 	best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
100 
101 	/*
102 	 * save the feature bitmap to avoid cpuid lookup for every PV
103 	 * operation
104 	 */
105 	if (best)
106 		vcpu->arch.pv_cpuid.features = best->eax;
107 }
108 
109 void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
110 {
111 	struct kvm_cpuid_entry2 *best;
112 
113 	best = kvm_find_cpuid_entry(vcpu, 1, 0);
114 	if (best) {
115 		/* Update OSXSAVE bit */
116 		if (boot_cpu_has(X86_FEATURE_XSAVE))
117 			cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
118 				   kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE));
119 
120 		cpuid_entry_change(best, X86_FEATURE_APIC,
121 			   vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
122 	}
123 
124 	best = kvm_find_cpuid_entry(vcpu, 7, 0);
125 	if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
126 		cpuid_entry_change(best, X86_FEATURE_OSPKE,
127 				   kvm_read_cr4_bits(vcpu, X86_CR4_PKE));
128 
129 	best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
130 	if (best)
131 		best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
132 
133 	best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
134 	if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
135 		     cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
136 		best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
137 
138 	best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
139 	if (kvm_hlt_in_guest(vcpu->kvm) && best &&
140 		(best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
141 		best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
142 
143 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
144 		best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
145 		if (best)
146 			cpuid_entry_change(best, X86_FEATURE_MWAIT,
147 					   vcpu->arch.ia32_misc_enable_msr &
148 					   MSR_IA32_MISC_ENABLE_MWAIT);
149 	}
150 }
151 EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime);
152 
153 static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
154 {
155 	struct kvm_lapic *apic = vcpu->arch.apic;
156 	struct kvm_cpuid_entry2 *best;
157 
158 	best = kvm_find_cpuid_entry(vcpu, 1, 0);
159 	if (best && apic) {
160 		if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
161 			apic->lapic_timer.timer_mode_mask = 3 << 17;
162 		else
163 			apic->lapic_timer.timer_mode_mask = 1 << 17;
164 
165 		kvm_apic_set_version(vcpu);
166 	}
167 
168 	best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
169 	if (!best)
170 		vcpu->arch.guest_supported_xcr0 = 0;
171 	else
172 		vcpu->arch.guest_supported_xcr0 =
173 			(best->eax | ((u64)best->edx << 32)) & supported_xcr0;
174 
175 	/*
176 	 * Bits 127:0 of the allowed SECS.ATTRIBUTES (CPUID.0x12.0x1) enumerate
177 	 * the supported XSAVE Feature Request Mask (XFRM), i.e. the enclave's
178 	 * requested XCR0 value.  The enclave's XFRM must be a subset of XCRO
179 	 * at the time of EENTER, thus adjust the allowed XFRM by the guest's
180 	 * supported XCR0.  Similar to XCR0 handling, FP and SSE are forced to
181 	 * '1' even on CPUs that don't support XSAVE.
182 	 */
183 	best = kvm_find_cpuid_entry(vcpu, 0x12, 0x1);
184 	if (best) {
185 		best->ecx &= vcpu->arch.guest_supported_xcr0 & 0xffffffff;
186 		best->edx &= vcpu->arch.guest_supported_xcr0 >> 32;
187 		best->ecx |= XFEATURE_MASK_FPSSE;
188 	}
189 
190 	kvm_update_pv_runtime(vcpu);
191 
192 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
193 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
194 
195 	kvm_pmu_refresh(vcpu);
196 	vcpu->arch.cr4_guest_rsvd_bits =
197 	    __cr4_reserved_bits(guest_cpuid_has, vcpu);
198 
199 	kvm_hv_set_cpuid(vcpu);
200 
201 	/* Invoke the vendor callback only after the above state is updated. */
202 	static_call(kvm_x86_vcpu_after_set_cpuid)(vcpu);
203 
204 	/*
205 	 * Except for the MMU, which needs to do its thing any vendor specific
206 	 * adjustments to the reserved GPA bits.
207 	 */
208 	kvm_mmu_after_set_cpuid(vcpu);
209 }
210 
211 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
212 {
213 	struct kvm_cpuid_entry2 *best;
214 
215 	best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
216 	if (!best || best->eax < 0x80000008)
217 		goto not_found;
218 	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
219 	if (best)
220 		return best->eax & 0xff;
221 not_found:
222 	return 36;
223 }
224 
225 /*
226  * This "raw" version returns the reserved GPA bits without any adjustments for
227  * encryption technologies that usurp bits.  The raw mask should be used if and
228  * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
229  */
230 u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
231 {
232 	return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
233 }
234 
235 /* when an old userspace process fills a new kernel module */
236 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
237 			     struct kvm_cpuid *cpuid,
238 			     struct kvm_cpuid_entry __user *entries)
239 {
240 	int r, i;
241 	struct kvm_cpuid_entry *e = NULL;
242 	struct kvm_cpuid_entry2 *e2 = NULL;
243 
244 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
245 		return -E2BIG;
246 
247 	if (cpuid->nent) {
248 		e = vmemdup_user(entries, array_size(sizeof(*e), cpuid->nent));
249 		if (IS_ERR(e))
250 			return PTR_ERR(e);
251 
252 		e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
253 		if (!e2) {
254 			r = -ENOMEM;
255 			goto out_free_cpuid;
256 		}
257 	}
258 	for (i = 0; i < cpuid->nent; i++) {
259 		e2[i].function = e[i].function;
260 		e2[i].eax = e[i].eax;
261 		e2[i].ebx = e[i].ebx;
262 		e2[i].ecx = e[i].ecx;
263 		e2[i].edx = e[i].edx;
264 		e2[i].index = 0;
265 		e2[i].flags = 0;
266 		e2[i].padding[0] = 0;
267 		e2[i].padding[1] = 0;
268 		e2[i].padding[2] = 0;
269 	}
270 
271 	r = kvm_check_cpuid(e2, cpuid->nent);
272 	if (r) {
273 		kvfree(e2);
274 		goto out_free_cpuid;
275 	}
276 
277 	kvfree(vcpu->arch.cpuid_entries);
278 	vcpu->arch.cpuid_entries = e2;
279 	vcpu->arch.cpuid_nent = cpuid->nent;
280 
281 	kvm_update_cpuid_runtime(vcpu);
282 	kvm_vcpu_after_set_cpuid(vcpu);
283 
284 out_free_cpuid:
285 	kvfree(e);
286 
287 	return r;
288 }
289 
290 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
291 			      struct kvm_cpuid2 *cpuid,
292 			      struct kvm_cpuid_entry2 __user *entries)
293 {
294 	struct kvm_cpuid_entry2 *e2 = NULL;
295 	int r;
296 
297 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
298 		return -E2BIG;
299 
300 	if (cpuid->nent) {
301 		e2 = vmemdup_user(entries, array_size(sizeof(*e2), cpuid->nent));
302 		if (IS_ERR(e2))
303 			return PTR_ERR(e2);
304 	}
305 
306 	r = kvm_check_cpuid(e2, cpuid->nent);
307 	if (r) {
308 		kvfree(e2);
309 		return r;
310 	}
311 
312 	kvfree(vcpu->arch.cpuid_entries);
313 	vcpu->arch.cpuid_entries = e2;
314 	vcpu->arch.cpuid_nent = cpuid->nent;
315 
316 	kvm_update_cpuid_runtime(vcpu);
317 	kvm_vcpu_after_set_cpuid(vcpu);
318 
319 	return 0;
320 }
321 
322 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
323 			      struct kvm_cpuid2 *cpuid,
324 			      struct kvm_cpuid_entry2 __user *entries)
325 {
326 	int r;
327 
328 	r = -E2BIG;
329 	if (cpuid->nent < vcpu->arch.cpuid_nent)
330 		goto out;
331 	r = -EFAULT;
332 	if (copy_to_user(entries, vcpu->arch.cpuid_entries,
333 			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
334 		goto out;
335 	return 0;
336 
337 out:
338 	cpuid->nent = vcpu->arch.cpuid_nent;
339 	return r;
340 }
341 
342 /* Mask kvm_cpu_caps for @leaf with the raw CPUID capabilities of this CPU. */
343 static __always_inline void __kvm_cpu_cap_mask(unsigned int leaf)
344 {
345 	const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
346 	struct kvm_cpuid_entry2 entry;
347 
348 	reverse_cpuid_check(leaf);
349 
350 	cpuid_count(cpuid.function, cpuid.index,
351 		    &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
352 
353 	kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
354 }
355 
356 static __always_inline
357 void kvm_cpu_cap_init_scattered(enum kvm_only_cpuid_leafs leaf, u32 mask)
358 {
359 	/* Use kvm_cpu_cap_mask for non-scattered leafs. */
360 	BUILD_BUG_ON(leaf < NCAPINTS);
361 
362 	kvm_cpu_caps[leaf] = mask;
363 
364 	__kvm_cpu_cap_mask(leaf);
365 }
366 
367 static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
368 {
369 	/* Use kvm_cpu_cap_init_scattered for scattered leafs. */
370 	BUILD_BUG_ON(leaf >= NCAPINTS);
371 
372 	kvm_cpu_caps[leaf] &= mask;
373 
374 	__kvm_cpu_cap_mask(leaf);
375 }
376 
377 void kvm_set_cpu_caps(void)
378 {
379 #ifdef CONFIG_X86_64
380 	unsigned int f_gbpages = F(GBPAGES);
381 	unsigned int f_lm = F(LM);
382 #else
383 	unsigned int f_gbpages = 0;
384 	unsigned int f_lm = 0;
385 #endif
386 	memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));
387 
388 	BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
389 		     sizeof(boot_cpu_data.x86_capability));
390 
391 	memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
392 	       sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)));
393 
394 	kvm_cpu_cap_mask(CPUID_1_ECX,
395 		/*
396 		 * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
397 		 * advertised to guests via CPUID!
398 		 */
399 		F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
400 		0 /* DS-CPL, VMX, SMX, EST */ |
401 		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
402 		F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
403 		F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
404 		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
405 		0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
406 		F(F16C) | F(RDRAND)
407 	);
408 	/* KVM emulates x2apic in software irrespective of host support. */
409 	kvm_cpu_cap_set(X86_FEATURE_X2APIC);
410 
411 	kvm_cpu_cap_mask(CPUID_1_EDX,
412 		F(FPU) | F(VME) | F(DE) | F(PSE) |
413 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
414 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
415 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
416 		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
417 		0 /* Reserved, DS, ACPI */ | F(MMX) |
418 		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
419 		0 /* HTT, TM, Reserved, PBE */
420 	);
421 
422 	kvm_cpu_cap_mask(CPUID_7_0_EBX,
423 		F(FSGSBASE) | F(SGX) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
424 		F(BMI2) | F(ERMS) | F(INVPCID) | F(RTM) | 0 /*MPX*/ | F(RDSEED) |
425 		F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
426 		F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
427 		F(SHA_NI) | F(AVX512BW) | F(AVX512VL) | 0 /*INTEL_PT*/
428 	);
429 
430 	kvm_cpu_cap_mask(CPUID_7_ECX,
431 		F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
432 		F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
433 		F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
434 		F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/ |
435 		F(SGX_LC) | F(BUS_LOCK_DETECT)
436 	);
437 	/* Set LA57 based on hardware capability. */
438 	if (cpuid_ecx(7) & F(LA57))
439 		kvm_cpu_cap_set(X86_FEATURE_LA57);
440 
441 	/*
442 	 * PKU not yet implemented for shadow paging and requires OSPKE
443 	 * to be set on the host. Clear it if that is not the case
444 	 */
445 	if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
446 		kvm_cpu_cap_clear(X86_FEATURE_PKU);
447 
448 	kvm_cpu_cap_mask(CPUID_7_EDX,
449 		F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
450 		F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
451 		F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
452 		F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16)
453 	);
454 
455 	/* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
456 	kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
457 	kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
458 
459 	if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
460 		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
461 	if (boot_cpu_has(X86_FEATURE_STIBP))
462 		kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
463 	if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
464 		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
465 
466 	kvm_cpu_cap_mask(CPUID_7_1_EAX,
467 		F(AVX_VNNI) | F(AVX512_BF16)
468 	);
469 
470 	kvm_cpu_cap_mask(CPUID_D_1_EAX,
471 		F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES)
472 	);
473 
474 	kvm_cpu_cap_init_scattered(CPUID_12_EAX,
475 		SF(SGX1) | SF(SGX2)
476 	);
477 
478 	kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
479 		F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
480 		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
481 		F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
482 		0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
483 		F(TOPOEXT) | F(PERFCTR_CORE)
484 	);
485 
486 	kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
487 		F(FPU) | F(VME) | F(DE) | F(PSE) |
488 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
489 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
490 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
491 		F(PAT) | F(PSE36) | 0 /* Reserved */ |
492 		F(NX) | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
493 		F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
494 		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
495 	);
496 
497 	if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
498 		kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
499 
500 	kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
501 		F(CLZERO) | F(XSAVEERPTR) |
502 		F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
503 		F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON)
504 	);
505 
506 	/*
507 	 * AMD has separate bits for each SPEC_CTRL bit.
508 	 * arch/x86/kernel/cpu/bugs.c is kind enough to
509 	 * record that in cpufeatures so use them.
510 	 */
511 	if (boot_cpu_has(X86_FEATURE_IBPB))
512 		kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
513 	if (boot_cpu_has(X86_FEATURE_IBRS))
514 		kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
515 	if (boot_cpu_has(X86_FEATURE_STIBP))
516 		kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
517 	if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
518 		kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
519 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
520 		kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
521 	/*
522 	 * The preference is to use SPEC CTRL MSR instead of the
523 	 * VIRT_SPEC MSR.
524 	 */
525 	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
526 	    !boot_cpu_has(X86_FEATURE_AMD_SSBD))
527 		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
528 
529 	/*
530 	 * Hide all SVM features by default, SVM will set the cap bits for
531 	 * features it emulates and/or exposes for L1.
532 	 */
533 	kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
534 
535 	kvm_cpu_cap_mask(CPUID_8000_001F_EAX,
536 		0 /* SME */ | F(SEV) | 0 /* VM_PAGE_FLUSH */ | F(SEV_ES) |
537 		F(SME_COHERENT));
538 
539 	kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
540 		F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
541 		F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
542 		F(PMM) | F(PMM_EN)
543 	);
544 
545 	/*
546 	 * Hide RDTSCP and RDPID if either feature is reported as supported but
547 	 * probing MSR_TSC_AUX failed.  This is purely a sanity check and
548 	 * should never happen, but the guest will likely crash if RDTSCP or
549 	 * RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in
550 	 * the past.  For example, the sanity check may fire if this instance of
551 	 * KVM is running as L1 on top of an older, broken KVM.
552 	 */
553 	if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) ||
554 		     kvm_cpu_cap_has(X86_FEATURE_RDPID)) &&
555 		     !kvm_is_supported_user_return_msr(MSR_TSC_AUX))) {
556 		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
557 		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
558 	}
559 }
560 EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
561 
562 struct kvm_cpuid_array {
563 	struct kvm_cpuid_entry2 *entries;
564 	int maxnent;
565 	int nent;
566 };
567 
568 static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
569 					      u32 function, u32 index)
570 {
571 	struct kvm_cpuid_entry2 *entry;
572 
573 	if (array->nent >= array->maxnent)
574 		return NULL;
575 
576 	entry = &array->entries[array->nent++];
577 
578 	entry->function = function;
579 	entry->index = index;
580 	entry->flags = 0;
581 
582 	cpuid_count(entry->function, entry->index,
583 		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
584 
585 	switch (function) {
586 	case 4:
587 	case 7:
588 	case 0xb:
589 	case 0xd:
590 	case 0xf:
591 	case 0x10:
592 	case 0x12:
593 	case 0x14:
594 	case 0x17:
595 	case 0x18:
596 	case 0x1f:
597 	case 0x8000001d:
598 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
599 		break;
600 	}
601 
602 	return entry;
603 }
604 
605 static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
606 {
607 	struct kvm_cpuid_entry2 *entry;
608 
609 	if (array->nent >= array->maxnent)
610 		return -E2BIG;
611 
612 	entry = &array->entries[array->nent];
613 	entry->function = func;
614 	entry->index = 0;
615 	entry->flags = 0;
616 
617 	switch (func) {
618 	case 0:
619 		entry->eax = 7;
620 		++array->nent;
621 		break;
622 	case 1:
623 		entry->ecx = F(MOVBE);
624 		++array->nent;
625 		break;
626 	case 7:
627 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
628 		entry->eax = 0;
629 		if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
630 			entry->ecx = F(RDPID);
631 		++array->nent;
632 		break;
633 	default:
634 		break;
635 	}
636 
637 	return 0;
638 }
639 
640 static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
641 {
642 	struct kvm_cpuid_entry2 *entry;
643 	int r, i, max_idx;
644 
645 	/* all calls to cpuid_count() should be made on the same cpu */
646 	get_cpu();
647 
648 	r = -E2BIG;
649 
650 	entry = do_host_cpuid(array, function, 0);
651 	if (!entry)
652 		goto out;
653 
654 	switch (function) {
655 	case 0:
656 		/* Limited to the highest leaf implemented in KVM. */
657 		entry->eax = min(entry->eax, 0x1fU);
658 		break;
659 	case 1:
660 		cpuid_entry_override(entry, CPUID_1_EDX);
661 		cpuid_entry_override(entry, CPUID_1_ECX);
662 		break;
663 	case 2:
664 		/*
665 		 * On ancient CPUs, function 2 entries are STATEFUL.  That is,
666 		 * CPUID(function=2, index=0) may return different results each
667 		 * time, with the least-significant byte in EAX enumerating the
668 		 * number of times software should do CPUID(2, 0).
669 		 *
670 		 * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
671 		 * idiotic.  Intel's SDM states that EAX & 0xff "will always
672 		 * return 01H. Software should ignore this value and not
673 		 * interpret it as an informational descriptor", while AMD's
674 		 * APM states that CPUID(2) is reserved.
675 		 *
676 		 * WARN if a frankenstein CPU that supports virtualization and
677 		 * a stateful CPUID.0x2 is encountered.
678 		 */
679 		WARN_ON_ONCE((entry->eax & 0xff) > 1);
680 		break;
681 	/* functions 4 and 0x8000001d have additional index. */
682 	case 4:
683 	case 0x8000001d:
684 		/*
685 		 * Read entries until the cache type in the previous entry is
686 		 * zero, i.e. indicates an invalid entry.
687 		 */
688 		for (i = 1; entry->eax & 0x1f; ++i) {
689 			entry = do_host_cpuid(array, function, i);
690 			if (!entry)
691 				goto out;
692 		}
693 		break;
694 	case 6: /* Thermal management */
695 		entry->eax = 0x4; /* allow ARAT */
696 		entry->ebx = 0;
697 		entry->ecx = 0;
698 		entry->edx = 0;
699 		break;
700 	/* function 7 has additional index. */
701 	case 7:
702 		entry->eax = min(entry->eax, 1u);
703 		cpuid_entry_override(entry, CPUID_7_0_EBX);
704 		cpuid_entry_override(entry, CPUID_7_ECX);
705 		cpuid_entry_override(entry, CPUID_7_EDX);
706 
707 		/* KVM only supports 0x7.0 and 0x7.1, capped above via min(). */
708 		if (entry->eax == 1) {
709 			entry = do_host_cpuid(array, function, 1);
710 			if (!entry)
711 				goto out;
712 
713 			cpuid_entry_override(entry, CPUID_7_1_EAX);
714 			entry->ebx = 0;
715 			entry->ecx = 0;
716 			entry->edx = 0;
717 		}
718 		break;
719 	case 9:
720 		break;
721 	case 0xa: { /* Architectural Performance Monitoring */
722 		struct x86_pmu_capability cap;
723 		union cpuid10_eax eax;
724 		union cpuid10_edx edx;
725 
726 		perf_get_x86_pmu_capability(&cap);
727 
728 		/*
729 		 * Only support guest architectural pmu on a host
730 		 * with architectural pmu.
731 		 */
732 		if (!cap.version)
733 			memset(&cap, 0, sizeof(cap));
734 
735 		eax.split.version_id = min(cap.version, 2);
736 		eax.split.num_counters = cap.num_counters_gp;
737 		eax.split.bit_width = cap.bit_width_gp;
738 		eax.split.mask_length = cap.events_mask_len;
739 
740 		edx.split.num_counters_fixed = min(cap.num_counters_fixed, MAX_FIXED_COUNTERS);
741 		edx.split.bit_width_fixed = cap.bit_width_fixed;
742 		if (cap.version)
743 			edx.split.anythread_deprecated = 1;
744 		edx.split.reserved1 = 0;
745 		edx.split.reserved2 = 0;
746 
747 		entry->eax = eax.full;
748 		entry->ebx = cap.events_mask;
749 		entry->ecx = 0;
750 		entry->edx = edx.full;
751 		break;
752 	}
753 	/*
754 	 * Per Intel's SDM, the 0x1f is a superset of 0xb,
755 	 * thus they can be handled by common code.
756 	 */
757 	case 0x1f:
758 	case 0xb:
759 		/*
760 		 * Populate entries until the level type (ECX[15:8]) of the
761 		 * previous entry is zero.  Note, CPUID EAX.{0x1f,0xb}.0 is
762 		 * the starting entry, filled by the primary do_host_cpuid().
763 		 */
764 		for (i = 1; entry->ecx & 0xff00; ++i) {
765 			entry = do_host_cpuid(array, function, i);
766 			if (!entry)
767 				goto out;
768 		}
769 		break;
770 	case 0xd:
771 		entry->eax &= supported_xcr0;
772 		entry->ebx = xstate_required_size(supported_xcr0, false);
773 		entry->ecx = entry->ebx;
774 		entry->edx &= supported_xcr0 >> 32;
775 		if (!supported_xcr0)
776 			break;
777 
778 		entry = do_host_cpuid(array, function, 1);
779 		if (!entry)
780 			goto out;
781 
782 		cpuid_entry_override(entry, CPUID_D_1_EAX);
783 		if (entry->eax & (F(XSAVES)|F(XSAVEC)))
784 			entry->ebx = xstate_required_size(supported_xcr0 | supported_xss,
785 							  true);
786 		else {
787 			WARN_ON_ONCE(supported_xss != 0);
788 			entry->ebx = 0;
789 		}
790 		entry->ecx &= supported_xss;
791 		entry->edx &= supported_xss >> 32;
792 
793 		for (i = 2; i < 64; ++i) {
794 			bool s_state;
795 			if (supported_xcr0 & BIT_ULL(i))
796 				s_state = false;
797 			else if (supported_xss & BIT_ULL(i))
798 				s_state = true;
799 			else
800 				continue;
801 
802 			entry = do_host_cpuid(array, function, i);
803 			if (!entry)
804 				goto out;
805 
806 			/*
807 			 * The supported check above should have filtered out
808 			 * invalid sub-leafs.  Only valid sub-leafs should
809 			 * reach this point, and they should have a non-zero
810 			 * save state size.  Furthermore, check whether the
811 			 * processor agrees with supported_xcr0/supported_xss
812 			 * on whether this is an XCR0- or IA32_XSS-managed area.
813 			 */
814 			if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
815 				--array->nent;
816 				continue;
817 			}
818 			entry->edx = 0;
819 		}
820 		break;
821 	case 0x12:
822 		/* Intel SGX */
823 		if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
824 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
825 			break;
826 		}
827 
828 		/*
829 		 * Index 0: Sub-features, MISCSELECT (a.k.a extended features)
830 		 * and max enclave sizes.   The SGX sub-features and MISCSELECT
831 		 * are restricted by kernel and KVM capabilities (like most
832 		 * feature flags), while enclave size is unrestricted.
833 		 */
834 		cpuid_entry_override(entry, CPUID_12_EAX);
835 		entry->ebx &= SGX_MISC_EXINFO;
836 
837 		entry = do_host_cpuid(array, function, 1);
838 		if (!entry)
839 			goto out;
840 
841 		/*
842 		 * Index 1: SECS.ATTRIBUTES.  ATTRIBUTES are restricted a la
843 		 * feature flags.  Advertise all supported flags, including
844 		 * privileged attributes that require explicit opt-in from
845 		 * userspace.  ATTRIBUTES.XFRM is not adjusted as userspace is
846 		 * expected to derive it from supported XCR0.
847 		 */
848 		entry->eax &= SGX_ATTR_DEBUG | SGX_ATTR_MODE64BIT |
849 			      SGX_ATTR_PROVISIONKEY | SGX_ATTR_EINITTOKENKEY |
850 			      SGX_ATTR_KSS;
851 		entry->ebx &= 0;
852 		break;
853 	/* Intel PT */
854 	case 0x14:
855 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
856 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
857 			break;
858 		}
859 
860 		for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
861 			if (!do_host_cpuid(array, function, i))
862 				goto out;
863 		}
864 		break;
865 	case KVM_CPUID_SIGNATURE: {
866 		static const char signature[12] = "KVMKVMKVM\0\0";
867 		const u32 *sigptr = (const u32 *)signature;
868 		entry->eax = KVM_CPUID_FEATURES;
869 		entry->ebx = sigptr[0];
870 		entry->ecx = sigptr[1];
871 		entry->edx = sigptr[2];
872 		break;
873 	}
874 	case KVM_CPUID_FEATURES:
875 		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
876 			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
877 			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
878 			     (1 << KVM_FEATURE_ASYNC_PF) |
879 			     (1 << KVM_FEATURE_PV_EOI) |
880 			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
881 			     (1 << KVM_FEATURE_PV_UNHALT) |
882 			     (1 << KVM_FEATURE_PV_TLB_FLUSH) |
883 			     (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
884 			     (1 << KVM_FEATURE_PV_SEND_IPI) |
885 			     (1 << KVM_FEATURE_POLL_CONTROL) |
886 			     (1 << KVM_FEATURE_PV_SCHED_YIELD) |
887 			     (1 << KVM_FEATURE_ASYNC_PF_INT);
888 
889 		if (sched_info_on())
890 			entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
891 
892 		entry->ebx = 0;
893 		entry->ecx = 0;
894 		entry->edx = 0;
895 		break;
896 	case 0x80000000:
897 		entry->eax = min(entry->eax, 0x8000001f);
898 		break;
899 	case 0x80000001:
900 		cpuid_entry_override(entry, CPUID_8000_0001_EDX);
901 		cpuid_entry_override(entry, CPUID_8000_0001_ECX);
902 		break;
903 	case 0x80000006:
904 		/* L2 cache and TLB: pass through host info. */
905 		break;
906 	case 0x80000007: /* Advanced power management */
907 		/* invariant TSC is CPUID.80000007H:EDX[8] */
908 		entry->edx &= (1 << 8);
909 		/* mask against host */
910 		entry->edx &= boot_cpu_data.x86_power;
911 		entry->eax = entry->ebx = entry->ecx = 0;
912 		break;
913 	case 0x80000008: {
914 		unsigned g_phys_as = (entry->eax >> 16) & 0xff;
915 		unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
916 		unsigned phys_as = entry->eax & 0xff;
917 
918 		/*
919 		 * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
920 		 * the guest operates in the same PA space as the host, i.e.
921 		 * reductions in MAXPHYADDR for memory encryption affect shadow
922 		 * paging, too.
923 		 *
924 		 * If TDP is enabled but an explicit guest MAXPHYADDR is not
925 		 * provided, use the raw bare metal MAXPHYADDR as reductions to
926 		 * the HPAs do not affect GPAs.
927 		 */
928 		if (!tdp_enabled)
929 			g_phys_as = boot_cpu_data.x86_phys_bits;
930 		else if (!g_phys_as)
931 			g_phys_as = phys_as;
932 
933 		entry->eax = g_phys_as | (virt_as << 8);
934 		entry->edx = 0;
935 		cpuid_entry_override(entry, CPUID_8000_0008_EBX);
936 		break;
937 	}
938 	case 0x8000000A:
939 		if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
940 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
941 			break;
942 		}
943 		entry->eax = 1; /* SVM revision 1 */
944 		entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
945 				   ASID emulation to nested SVM */
946 		entry->ecx = 0; /* Reserved */
947 		cpuid_entry_override(entry, CPUID_8000_000A_EDX);
948 		break;
949 	case 0x80000019:
950 		entry->ecx = entry->edx = 0;
951 		break;
952 	case 0x8000001a:
953 	case 0x8000001e:
954 		break;
955 	case 0x8000001F:
956 		if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
957 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
958 		} else {
959 			cpuid_entry_override(entry, CPUID_8000_001F_EAX);
960 
961 			/*
962 			 * Enumerate '0' for "PA bits reduction", the adjusted
963 			 * MAXPHYADDR is enumerated directly (see 0x80000008).
964 			 */
965 			entry->ebx &= ~GENMASK(11, 6);
966 		}
967 		break;
968 	/*Add support for Centaur's CPUID instruction*/
969 	case 0xC0000000:
970 		/*Just support up to 0xC0000004 now*/
971 		entry->eax = min(entry->eax, 0xC0000004);
972 		break;
973 	case 0xC0000001:
974 		cpuid_entry_override(entry, CPUID_C000_0001_EDX);
975 		break;
976 	case 3: /* Processor serial number */
977 	case 5: /* MONITOR/MWAIT */
978 	case 0xC0000002:
979 	case 0xC0000003:
980 	case 0xC0000004:
981 	default:
982 		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
983 		break;
984 	}
985 
986 	r = 0;
987 
988 out:
989 	put_cpu();
990 
991 	return r;
992 }
993 
994 static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
995 			 unsigned int type)
996 {
997 	if (type == KVM_GET_EMULATED_CPUID)
998 		return __do_cpuid_func_emulated(array, func);
999 
1000 	return __do_cpuid_func(array, func);
1001 }
1002 
1003 #define CENTAUR_CPUID_SIGNATURE 0xC0000000
1004 
1005 static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1006 			  unsigned int type)
1007 {
1008 	u32 limit;
1009 	int r;
1010 
1011 	if (func == CENTAUR_CPUID_SIGNATURE &&
1012 	    boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
1013 		return 0;
1014 
1015 	r = do_cpuid_func(array, func, type);
1016 	if (r)
1017 		return r;
1018 
1019 	limit = array->entries[array->nent - 1].eax;
1020 	for (func = func + 1; func <= limit; ++func) {
1021 		r = do_cpuid_func(array, func, type);
1022 		if (r)
1023 			break;
1024 	}
1025 
1026 	return r;
1027 }
1028 
1029 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
1030 				 __u32 num_entries, unsigned int ioctl_type)
1031 {
1032 	int i;
1033 	__u32 pad[3];
1034 
1035 	if (ioctl_type != KVM_GET_EMULATED_CPUID)
1036 		return false;
1037 
1038 	/*
1039 	 * We want to make sure that ->padding is being passed clean from
1040 	 * userspace in case we want to use it for something in the future.
1041 	 *
1042 	 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
1043 	 * have to give ourselves satisfied only with the emulated side. /me
1044 	 * sheds a tear.
1045 	 */
1046 	for (i = 0; i < num_entries; i++) {
1047 		if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
1048 			return true;
1049 
1050 		if (pad[0] || pad[1] || pad[2])
1051 			return true;
1052 	}
1053 	return false;
1054 }
1055 
1056 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
1057 			    struct kvm_cpuid_entry2 __user *entries,
1058 			    unsigned int type)
1059 {
1060 	static const u32 funcs[] = {
1061 		0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
1062 	};
1063 
1064 	struct kvm_cpuid_array array = {
1065 		.nent = 0,
1066 	};
1067 	int r, i;
1068 
1069 	if (cpuid->nent < 1)
1070 		return -E2BIG;
1071 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1072 		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1073 
1074 	if (sanity_check_entries(entries, cpuid->nent, type))
1075 		return -EINVAL;
1076 
1077 	array.entries = vzalloc(array_size(sizeof(struct kvm_cpuid_entry2),
1078 					   cpuid->nent));
1079 	if (!array.entries)
1080 		return -ENOMEM;
1081 
1082 	array.maxnent = cpuid->nent;
1083 
1084 	for (i = 0; i < ARRAY_SIZE(funcs); i++) {
1085 		r = get_cpuid_func(&array, funcs[i], type);
1086 		if (r)
1087 			goto out_free;
1088 	}
1089 	cpuid->nent = array.nent;
1090 
1091 	if (copy_to_user(entries, array.entries,
1092 			 array.nent * sizeof(struct kvm_cpuid_entry2)))
1093 		r = -EFAULT;
1094 
1095 out_free:
1096 	vfree(array.entries);
1097 	return r;
1098 }
1099 
1100 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
1101 					      u32 function, u32 index)
1102 {
1103 	return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1104 				 function, index);
1105 }
1106 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
1107 
1108 /*
1109  * Intel CPUID semantics treats any query for an out-of-range leaf as if the
1110  * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
1111  * returns all zeroes for any undefined leaf, whether or not the leaf is in
1112  * range.  Centaur/VIA follows Intel semantics.
1113  *
1114  * A leaf is considered out-of-range if its function is higher than the maximum
1115  * supported leaf of its associated class or if its associated class does not
1116  * exist.
1117  *
1118  * There are three primary classes to be considered, with their respective
1119  * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
1120  * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
1121  * class, CPUID.<base>.EAX contains the max supported leaf for the class.
1122  *
1123  *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
1124  *  - Hypervisor: 0x40000000 - 0x4fffffff
1125  *  - Extended:   0x80000000 - 0xbfffffff
1126  *  - Centaur:    0xc0000000 - 0xcfffffff
1127  *
1128  * The Hypervisor class is further subdivided into sub-classes that each act as
1129  * their own independent class associated with a 0x100 byte range.  E.g. if Qemu
1130  * is advertising support for both HyperV and KVM, the resulting Hypervisor
1131  * CPUID sub-classes are:
1132  *
1133  *  - HyperV:     0x40000000 - 0x400000ff
1134  *  - KVM:        0x40000100 - 0x400001ff
1135  */
1136 static struct kvm_cpuid_entry2 *
1137 get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
1138 {
1139 	struct kvm_cpuid_entry2 *basic, *class;
1140 	u32 function = *fn_ptr;
1141 
1142 	basic = kvm_find_cpuid_entry(vcpu, 0, 0);
1143 	if (!basic)
1144 		return NULL;
1145 
1146 	if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
1147 	    is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
1148 		return NULL;
1149 
1150 	if (function >= 0x40000000 && function <= 0x4fffffff)
1151 		class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00, 0);
1152 	else if (function >= 0xc0000000)
1153 		class = kvm_find_cpuid_entry(vcpu, 0xc0000000, 0);
1154 	else
1155 		class = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
1156 
1157 	if (class && function <= class->eax)
1158 		return NULL;
1159 
1160 	/*
1161 	 * Leaf specific adjustments are also applied when redirecting to the
1162 	 * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1163 	 * entry for CPUID.0xb.index (see below), then the output value for EDX
1164 	 * needs to be pulled from CPUID.0xb.1.
1165 	 */
1166 	*fn_ptr = basic->eax;
1167 
1168 	/*
1169 	 * The class does not exist or the requested function is out of range;
1170 	 * the effective CPUID entry is the max basic leaf.  Note, the index of
1171 	 * the original requested leaf is observed!
1172 	 */
1173 	return kvm_find_cpuid_entry(vcpu, basic->eax, index);
1174 }
1175 
1176 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1177 	       u32 *ecx, u32 *edx, bool exact_only)
1178 {
1179 	u32 orig_function = *eax, function = *eax, index = *ecx;
1180 	struct kvm_cpuid_entry2 *entry;
1181 	bool exact, used_max_basic = false;
1182 
1183 	entry = kvm_find_cpuid_entry(vcpu, function, index);
1184 	exact = !!entry;
1185 
1186 	if (!entry && !exact_only) {
1187 		entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1188 		used_max_basic = !!entry;
1189 	}
1190 
1191 	if (entry) {
1192 		*eax = entry->eax;
1193 		*ebx = entry->ebx;
1194 		*ecx = entry->ecx;
1195 		*edx = entry->edx;
1196 		if (function == 7 && index == 0) {
1197 			u64 data;
1198 		        if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1199 			    (data & TSX_CTRL_CPUID_CLEAR))
1200 				*ebx &= ~(F(RTM) | F(HLE));
1201 		}
1202 	} else {
1203 		*eax = *ebx = *ecx = *edx = 0;
1204 		/*
1205 		 * When leaf 0BH or 1FH is defined, CL is pass-through
1206 		 * and EDX is always the x2APIC ID, even for undefined
1207 		 * subleaves. Index 1 will exist iff the leaf is
1208 		 * implemented, so we pass through CL iff leaf 1
1209 		 * exists. EDX can be copied from any existing index.
1210 		 */
1211 		if (function == 0xb || function == 0x1f) {
1212 			entry = kvm_find_cpuid_entry(vcpu, function, 1);
1213 			if (entry) {
1214 				*ecx = index & 0xff;
1215 				*edx = entry->edx;
1216 			}
1217 		}
1218 	}
1219 	trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1220 			used_max_basic);
1221 	return exact;
1222 }
1223 EXPORT_SYMBOL_GPL(kvm_cpuid);
1224 
1225 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1226 {
1227 	u32 eax, ebx, ecx, edx;
1228 
1229 	if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1230 		return 1;
1231 
1232 	eax = kvm_rax_read(vcpu);
1233 	ecx = kvm_rcx_read(vcpu);
1234 	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1235 	kvm_rax_write(vcpu, eax);
1236 	kvm_rbx_write(vcpu, ebx);
1237 	kvm_rcx_write(vcpu, ecx);
1238 	kvm_rdx_write(vcpu, edx);
1239 	return kvm_skip_emulated_instruction(vcpu);
1240 }
1241 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1242