xref: /linux/arch/x86/kvm/cpuid.c (revision 572af9f284669d31d9175122bbef9bc62cea8ded)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  * cpuid support routines
5  *
6  * derived from arch/x86/kvm/x86.c
7  *
8  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9  * Copyright IBM Corporation, 2008
10  */
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/kvm_host.h>
14 #include "linux/lockdep.h"
15 #include <linux/export.h>
16 #include <linux/vmalloc.h>
17 #include <linux/uaccess.h>
18 #include <linux/sched/stat.h>
19 
20 #include <asm/processor.h>
21 #include <asm/user.h>
22 #include <asm/fpu/xstate.h>
23 #include <asm/sgx.h>
24 #include <asm/cpuid.h>
25 #include "cpuid.h"
26 #include "lapic.h"
27 #include "mmu.h"
28 #include "trace.h"
29 #include "pmu.h"
30 #include "xen.h"
31 
32 /*
33  * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
34  * aligned to sizeof(unsigned long) because it's not accessed via bitops.
35  */
36 u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
37 EXPORT_SYMBOL_GPL(kvm_cpu_caps);
38 
39 u32 xstate_required_size(u64 xstate_bv, bool compacted)
40 {
41 	int feature_bit = 0;
42 	u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
43 
44 	xstate_bv &= XFEATURE_MASK_EXTEND;
45 	while (xstate_bv) {
46 		if (xstate_bv & 0x1) {
47 		        u32 eax, ebx, ecx, edx, offset;
48 		        cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
49 			/* ECX[1]: 64B alignment in compacted form */
50 			if (compacted)
51 				offset = (ecx & 0x2) ? ALIGN(ret, 64) : ret;
52 			else
53 				offset = ebx;
54 			ret = max(ret, offset + eax);
55 		}
56 
57 		xstate_bv >>= 1;
58 		feature_bit++;
59 	}
60 
61 	return ret;
62 }
63 
64 #define F feature_bit
65 
66 /* Scattered Flag - For features that are scattered by cpufeatures.h. */
67 #define SF(name)						\
68 ({								\
69 	BUILD_BUG_ON(X86_FEATURE_##name >= MAX_CPU_FEATURES);	\
70 	(boot_cpu_has(X86_FEATURE_##name) ? F(name) : 0);	\
71 })
72 
73 /*
74  * Magic value used by KVM when querying userspace-provided CPUID entries and
75  * doesn't care about the CPIUD index because the index of the function in
76  * question is not significant.  Note, this magic value must have at least one
77  * bit set in bits[63:32] and must be consumed as a u64 by cpuid_entry2_find()
78  * to avoid false positives when processing guest CPUID input.
79  */
80 #define KVM_CPUID_INDEX_NOT_SIGNIFICANT -1ull
81 
82 static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
83 	struct kvm_cpuid_entry2 *entries, int nent, u32 function, u64 index)
84 {
85 	struct kvm_cpuid_entry2 *e;
86 	int i;
87 
88 	/*
89 	 * KVM has a semi-arbitrary rule that querying the guest's CPUID model
90 	 * with IRQs disabled is disallowed.  The CPUID model can legitimately
91 	 * have over one hundred entries, i.e. the lookup is slow, and IRQs are
92 	 * typically disabled in KVM only when KVM is in a performance critical
93 	 * path, e.g. the core VM-Enter/VM-Exit run loop.  Nothing will break
94 	 * if this rule is violated, this assertion is purely to flag potential
95 	 * performance issues.  If this fires, consider moving the lookup out
96 	 * of the hotpath, e.g. by caching information during CPUID updates.
97 	 */
98 	lockdep_assert_irqs_enabled();
99 
100 	for (i = 0; i < nent; i++) {
101 		e = &entries[i];
102 
103 		if (e->function != function)
104 			continue;
105 
106 		/*
107 		 * If the index isn't significant, use the first entry with a
108 		 * matching function.  It's userspace's responsibility to not
109 		 * provide "duplicate" entries in all cases.
110 		 */
111 		if (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index)
112 			return e;
113 
114 
115 		/*
116 		 * Similarly, use the first matching entry if KVM is doing a
117 		 * lookup (as opposed to emulating CPUID) for a function that's
118 		 * architecturally defined as not having a significant index.
119 		 */
120 		if (index == KVM_CPUID_INDEX_NOT_SIGNIFICANT) {
121 			/*
122 			 * Direct lookups from KVM should not diverge from what
123 			 * KVM defines internally (the architectural behavior).
124 			 */
125 			WARN_ON_ONCE(cpuid_function_is_indexed(function));
126 			return e;
127 		}
128 	}
129 
130 	return NULL;
131 }
132 
133 static int kvm_check_cpuid(struct kvm_vcpu *vcpu,
134 			   struct kvm_cpuid_entry2 *entries,
135 			   int nent)
136 {
137 	struct kvm_cpuid_entry2 *best;
138 	u64 xfeatures;
139 
140 	/*
141 	 * The existing code assumes virtual address is 48-bit or 57-bit in the
142 	 * canonical address checks; exit if it is ever changed.
143 	 */
144 	best = cpuid_entry2_find(entries, nent, 0x80000008,
145 				 KVM_CPUID_INDEX_NOT_SIGNIFICANT);
146 	if (best) {
147 		int vaddr_bits = (best->eax & 0xff00) >> 8;
148 
149 		if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
150 			return -EINVAL;
151 	}
152 
153 	/*
154 	 * Exposing dynamic xfeatures to the guest requires additional
155 	 * enabling in the FPU, e.g. to expand the guest XSAVE state size.
156 	 */
157 	best = cpuid_entry2_find(entries, nent, 0xd, 0);
158 	if (!best)
159 		return 0;
160 
161 	xfeatures = best->eax | ((u64)best->edx << 32);
162 	xfeatures &= XFEATURE_MASK_USER_DYNAMIC;
163 	if (!xfeatures)
164 		return 0;
165 
166 	return fpu_enable_guest_xfd_features(&vcpu->arch.guest_fpu, xfeatures);
167 }
168 
169 /* Check whether the supplied CPUID data is equal to what is already set for the vCPU. */
170 static int kvm_cpuid_check_equal(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
171 				 int nent)
172 {
173 	struct kvm_cpuid_entry2 *orig;
174 	int i;
175 
176 	if (nent != vcpu->arch.cpuid_nent)
177 		return -EINVAL;
178 
179 	for (i = 0; i < nent; i++) {
180 		orig = &vcpu->arch.cpuid_entries[i];
181 		if (e2[i].function != orig->function ||
182 		    e2[i].index != orig->index ||
183 		    e2[i].flags != orig->flags ||
184 		    e2[i].eax != orig->eax || e2[i].ebx != orig->ebx ||
185 		    e2[i].ecx != orig->ecx || e2[i].edx != orig->edx)
186 			return -EINVAL;
187 	}
188 
189 	return 0;
190 }
191 
192 static struct kvm_hypervisor_cpuid __kvm_get_hypervisor_cpuid(struct kvm_cpuid_entry2 *entries,
193 							      int nent, const char *sig)
194 {
195 	struct kvm_hypervisor_cpuid cpuid = {};
196 	struct kvm_cpuid_entry2 *entry;
197 	u32 base;
198 
199 	for_each_possible_hypervisor_cpuid_base(base) {
200 		entry = cpuid_entry2_find(entries, nent, base, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
201 
202 		if (entry) {
203 			u32 signature[3];
204 
205 			signature[0] = entry->ebx;
206 			signature[1] = entry->ecx;
207 			signature[2] = entry->edx;
208 
209 			if (!memcmp(signature, sig, sizeof(signature))) {
210 				cpuid.base = base;
211 				cpuid.limit = entry->eax;
212 				break;
213 			}
214 		}
215 	}
216 
217 	return cpuid;
218 }
219 
220 static struct kvm_hypervisor_cpuid kvm_get_hypervisor_cpuid(struct kvm_vcpu *vcpu,
221 							    const char *sig)
222 {
223 	return __kvm_get_hypervisor_cpuid(vcpu->arch.cpuid_entries,
224 					  vcpu->arch.cpuid_nent, sig);
225 }
226 
227 static struct kvm_cpuid_entry2 *__kvm_find_kvm_cpuid_features(struct kvm_cpuid_entry2 *entries,
228 							      int nent, u32 kvm_cpuid_base)
229 {
230 	return cpuid_entry2_find(entries, nent, kvm_cpuid_base | KVM_CPUID_FEATURES,
231 				 KVM_CPUID_INDEX_NOT_SIGNIFICANT);
232 }
233 
234 static struct kvm_cpuid_entry2 *kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu)
235 {
236 	u32 base = vcpu->arch.kvm_cpuid.base;
237 
238 	if (!base)
239 		return NULL;
240 
241 	return __kvm_find_kvm_cpuid_features(vcpu->arch.cpuid_entries,
242 					     vcpu->arch.cpuid_nent, base);
243 }
244 
245 void kvm_update_pv_runtime(struct kvm_vcpu *vcpu)
246 {
247 	struct kvm_cpuid_entry2 *best = kvm_find_kvm_cpuid_features(vcpu);
248 
249 	/*
250 	 * save the feature bitmap to avoid cpuid lookup for every PV
251 	 * operation
252 	 */
253 	if (best)
254 		vcpu->arch.pv_cpuid.features = best->eax;
255 }
256 
257 /*
258  * Calculate guest's supported XCR0 taking into account guest CPUID data and
259  * KVM's supported XCR0 (comprised of host's XCR0 and KVM_SUPPORTED_XCR0).
260  */
261 static u64 cpuid_get_supported_xcr0(struct kvm_cpuid_entry2 *entries, int nent)
262 {
263 	struct kvm_cpuid_entry2 *best;
264 
265 	best = cpuid_entry2_find(entries, nent, 0xd, 0);
266 	if (!best)
267 		return 0;
268 
269 	return (best->eax | ((u64)best->edx << 32)) & kvm_caps.supported_xcr0;
270 }
271 
272 static void __kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *entries,
273 				       int nent)
274 {
275 	struct kvm_cpuid_entry2 *best;
276 	struct kvm_hypervisor_cpuid kvm_cpuid;
277 
278 	best = cpuid_entry2_find(entries, nent, 1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
279 	if (best) {
280 		/* Update OSXSAVE bit */
281 		if (boot_cpu_has(X86_FEATURE_XSAVE))
282 			cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
283 					   kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE));
284 
285 		cpuid_entry_change(best, X86_FEATURE_APIC,
286 			   vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
287 	}
288 
289 	best = cpuid_entry2_find(entries, nent, 7, 0);
290 	if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
291 		cpuid_entry_change(best, X86_FEATURE_OSPKE,
292 				   kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE));
293 
294 	best = cpuid_entry2_find(entries, nent, 0xD, 0);
295 	if (best)
296 		best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
297 
298 	best = cpuid_entry2_find(entries, nent, 0xD, 1);
299 	if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
300 		     cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
301 		best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
302 
303 	kvm_cpuid = __kvm_get_hypervisor_cpuid(entries, nent, KVM_SIGNATURE);
304 	if (kvm_cpuid.base) {
305 		best = __kvm_find_kvm_cpuid_features(entries, nent, kvm_cpuid.base);
306 		if (kvm_hlt_in_guest(vcpu->kvm) && best)
307 			best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
308 	}
309 
310 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
311 		best = cpuid_entry2_find(entries, nent, 0x1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
312 		if (best)
313 			cpuid_entry_change(best, X86_FEATURE_MWAIT,
314 					   vcpu->arch.ia32_misc_enable_msr &
315 					   MSR_IA32_MISC_ENABLE_MWAIT);
316 	}
317 }
318 
319 void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
320 {
321 	__kvm_update_cpuid_runtime(vcpu, vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
322 }
323 EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime);
324 
325 static bool kvm_cpuid_has_hyperv(struct kvm_cpuid_entry2 *entries, int nent)
326 {
327 #ifdef CONFIG_KVM_HYPERV
328 	struct kvm_cpuid_entry2 *entry;
329 
330 	entry = cpuid_entry2_find(entries, nent, HYPERV_CPUID_INTERFACE,
331 				  KVM_CPUID_INDEX_NOT_SIGNIFICANT);
332 	return entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX;
333 #else
334 	return false;
335 #endif
336 }
337 
338 static bool guest_cpuid_is_amd_or_hygon(struct kvm_vcpu *vcpu)
339 {
340 	struct kvm_cpuid_entry2 *entry;
341 
342 	entry = kvm_find_cpuid_entry(vcpu, 0);
343 	if (!entry)
344 		return false;
345 
346 	return is_guest_vendor_amd(entry->ebx, entry->ecx, entry->edx) ||
347 	       is_guest_vendor_hygon(entry->ebx, entry->ecx, entry->edx);
348 }
349 
350 static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
351 {
352 	struct kvm_lapic *apic = vcpu->arch.apic;
353 	struct kvm_cpuid_entry2 *best;
354 	bool allow_gbpages;
355 
356 	BUILD_BUG_ON(KVM_NR_GOVERNED_FEATURES > KVM_MAX_NR_GOVERNED_FEATURES);
357 	bitmap_zero(vcpu->arch.governed_features.enabled,
358 		    KVM_MAX_NR_GOVERNED_FEATURES);
359 
360 	/*
361 	 * If TDP is enabled, let the guest use GBPAGES if they're supported in
362 	 * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
363 	 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
364 	 * walk for performance and complexity reasons.  Not to mention KVM
365 	 * _can't_ solve the problem because GVA->GPA walks aren't visible to
366 	 * KVM once a TDP translation is installed.  Mimic hardware behavior so
367 	 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
368 	 * If TDP is disabled, honor *only* guest CPUID as KVM has full control
369 	 * and can install smaller shadow pages if the host lacks 1GiB support.
370 	 */
371 	allow_gbpages = tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
372 				      guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
373 	if (allow_gbpages)
374 		kvm_governed_feature_set(vcpu, X86_FEATURE_GBPAGES);
375 
376 	best = kvm_find_cpuid_entry(vcpu, 1);
377 	if (best && apic) {
378 		if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
379 			apic->lapic_timer.timer_mode_mask = 3 << 17;
380 		else
381 			apic->lapic_timer.timer_mode_mask = 1 << 17;
382 
383 		kvm_apic_set_version(vcpu);
384 	}
385 
386 	vcpu->arch.guest_supported_xcr0 =
387 		cpuid_get_supported_xcr0(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
388 
389 	kvm_update_pv_runtime(vcpu);
390 
391 	vcpu->arch.is_amd_compatible = guest_cpuid_is_amd_or_hygon(vcpu);
392 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
393 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
394 
395 	kvm_pmu_refresh(vcpu);
396 	vcpu->arch.cr4_guest_rsvd_bits =
397 	    __cr4_reserved_bits(guest_cpuid_has, vcpu);
398 
399 	kvm_hv_set_cpuid(vcpu, kvm_cpuid_has_hyperv(vcpu->arch.cpuid_entries,
400 						    vcpu->arch.cpuid_nent));
401 
402 	/* Invoke the vendor callback only after the above state is updated. */
403 	kvm_x86_call(vcpu_after_set_cpuid)(vcpu);
404 
405 	/*
406 	 * Except for the MMU, which needs to do its thing any vendor specific
407 	 * adjustments to the reserved GPA bits.
408 	 */
409 	kvm_mmu_after_set_cpuid(vcpu);
410 }
411 
412 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
413 {
414 	struct kvm_cpuid_entry2 *best;
415 
416 	best = kvm_find_cpuid_entry(vcpu, 0x80000000);
417 	if (!best || best->eax < 0x80000008)
418 		goto not_found;
419 	best = kvm_find_cpuid_entry(vcpu, 0x80000008);
420 	if (best)
421 		return best->eax & 0xff;
422 not_found:
423 	return 36;
424 }
425 
426 /*
427  * This "raw" version returns the reserved GPA bits without any adjustments for
428  * encryption technologies that usurp bits.  The raw mask should be used if and
429  * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
430  */
431 u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
432 {
433 	return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
434 }
435 
436 static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
437                         int nent)
438 {
439 	int r;
440 
441 	__kvm_update_cpuid_runtime(vcpu, e2, nent);
442 
443 	/*
444 	 * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
445 	 * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
446 	 * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
447 	 * faults due to reusing SPs/SPTEs. In practice no sane VMM mucks with
448 	 * the core vCPU model on the fly. It would've been better to forbid any
449 	 * KVM_SET_CPUID{,2} calls after KVM_RUN altogether but unfortunately
450 	 * some VMMs (e.g. QEMU) reuse vCPU fds for CPU hotplug/unplug and do
451 	 * KVM_SET_CPUID{,2} again. To support this legacy behavior, check
452 	 * whether the supplied CPUID data is equal to what's already set.
453 	 */
454 	if (kvm_vcpu_has_run(vcpu)) {
455 		r = kvm_cpuid_check_equal(vcpu, e2, nent);
456 		if (r)
457 			return r;
458 
459 		kvfree(e2);
460 		return 0;
461 	}
462 
463 #ifdef CONFIG_KVM_HYPERV
464 	if (kvm_cpuid_has_hyperv(e2, nent)) {
465 		r = kvm_hv_vcpu_init(vcpu);
466 		if (r)
467 			return r;
468 	}
469 #endif
470 
471 	r = kvm_check_cpuid(vcpu, e2, nent);
472 	if (r)
473 		return r;
474 
475 	kvfree(vcpu->arch.cpuid_entries);
476 	vcpu->arch.cpuid_entries = e2;
477 	vcpu->arch.cpuid_nent = nent;
478 
479 	vcpu->arch.kvm_cpuid = kvm_get_hypervisor_cpuid(vcpu, KVM_SIGNATURE);
480 #ifdef CONFIG_KVM_XEN
481 	vcpu->arch.xen.cpuid = kvm_get_hypervisor_cpuid(vcpu, XEN_SIGNATURE);
482 #endif
483 	kvm_vcpu_after_set_cpuid(vcpu);
484 
485 	return 0;
486 }
487 
488 /* when an old userspace process fills a new kernel module */
489 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
490 			     struct kvm_cpuid *cpuid,
491 			     struct kvm_cpuid_entry __user *entries)
492 {
493 	int r, i;
494 	struct kvm_cpuid_entry *e = NULL;
495 	struct kvm_cpuid_entry2 *e2 = NULL;
496 
497 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
498 		return -E2BIG;
499 
500 	if (cpuid->nent) {
501 		e = vmemdup_array_user(entries, cpuid->nent, sizeof(*e));
502 		if (IS_ERR(e))
503 			return PTR_ERR(e);
504 
505 		e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
506 		if (!e2) {
507 			r = -ENOMEM;
508 			goto out_free_cpuid;
509 		}
510 	}
511 	for (i = 0; i < cpuid->nent; i++) {
512 		e2[i].function = e[i].function;
513 		e2[i].eax = e[i].eax;
514 		e2[i].ebx = e[i].ebx;
515 		e2[i].ecx = e[i].ecx;
516 		e2[i].edx = e[i].edx;
517 		e2[i].index = 0;
518 		e2[i].flags = 0;
519 		e2[i].padding[0] = 0;
520 		e2[i].padding[1] = 0;
521 		e2[i].padding[2] = 0;
522 	}
523 
524 	r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
525 	if (r)
526 		kvfree(e2);
527 
528 out_free_cpuid:
529 	kvfree(e);
530 
531 	return r;
532 }
533 
534 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
535 			      struct kvm_cpuid2 *cpuid,
536 			      struct kvm_cpuid_entry2 __user *entries)
537 {
538 	struct kvm_cpuid_entry2 *e2 = NULL;
539 	int r;
540 
541 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
542 		return -E2BIG;
543 
544 	if (cpuid->nent) {
545 		e2 = vmemdup_array_user(entries, cpuid->nent, sizeof(*e2));
546 		if (IS_ERR(e2))
547 			return PTR_ERR(e2);
548 	}
549 
550 	r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
551 	if (r)
552 		kvfree(e2);
553 
554 	return r;
555 }
556 
557 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
558 			      struct kvm_cpuid2 *cpuid,
559 			      struct kvm_cpuid_entry2 __user *entries)
560 {
561 	if (cpuid->nent < vcpu->arch.cpuid_nent)
562 		return -E2BIG;
563 
564 	if (copy_to_user(entries, vcpu->arch.cpuid_entries,
565 			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
566 		return -EFAULT;
567 
568 	cpuid->nent = vcpu->arch.cpuid_nent;
569 	return 0;
570 }
571 
572 /* Mask kvm_cpu_caps for @leaf with the raw CPUID capabilities of this CPU. */
573 static __always_inline void __kvm_cpu_cap_mask(unsigned int leaf)
574 {
575 	const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
576 	struct kvm_cpuid_entry2 entry;
577 
578 	reverse_cpuid_check(leaf);
579 
580 	cpuid_count(cpuid.function, cpuid.index,
581 		    &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
582 
583 	kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
584 }
585 
586 static __always_inline
587 void kvm_cpu_cap_init_kvm_defined(enum kvm_only_cpuid_leafs leaf, u32 mask)
588 {
589 	/* Use kvm_cpu_cap_mask for leafs that aren't KVM-only. */
590 	BUILD_BUG_ON(leaf < NCAPINTS);
591 
592 	kvm_cpu_caps[leaf] = mask;
593 
594 	__kvm_cpu_cap_mask(leaf);
595 }
596 
597 static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
598 {
599 	/* Use kvm_cpu_cap_init_kvm_defined for KVM-only leafs. */
600 	BUILD_BUG_ON(leaf >= NCAPINTS);
601 
602 	kvm_cpu_caps[leaf] &= mask;
603 
604 	__kvm_cpu_cap_mask(leaf);
605 }
606 
607 void kvm_set_cpu_caps(void)
608 {
609 #ifdef CONFIG_X86_64
610 	unsigned int f_gbpages = F(GBPAGES);
611 	unsigned int f_lm = F(LM);
612 	unsigned int f_xfd = F(XFD);
613 #else
614 	unsigned int f_gbpages = 0;
615 	unsigned int f_lm = 0;
616 	unsigned int f_xfd = 0;
617 #endif
618 	memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));
619 
620 	BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
621 		     sizeof(boot_cpu_data.x86_capability));
622 
623 	memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
624 	       sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)));
625 
626 	kvm_cpu_cap_mask(CPUID_1_ECX,
627 		/*
628 		 * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
629 		 * advertised to guests via CPUID!
630 		 */
631 		F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
632 		0 /* DS-CPL, VMX, SMX, EST */ |
633 		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
634 		F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
635 		F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
636 		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
637 		0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
638 		F(F16C) | F(RDRAND)
639 	);
640 	/* KVM emulates x2apic in software irrespective of host support. */
641 	kvm_cpu_cap_set(X86_FEATURE_X2APIC);
642 
643 	kvm_cpu_cap_mask(CPUID_1_EDX,
644 		F(FPU) | F(VME) | F(DE) | F(PSE) |
645 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
646 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
647 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
648 		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
649 		0 /* Reserved, DS, ACPI */ | F(MMX) |
650 		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
651 		0 /* HTT, TM, Reserved, PBE */
652 	);
653 
654 	kvm_cpu_cap_mask(CPUID_7_0_EBX,
655 		F(FSGSBASE) | F(SGX) | F(BMI1) | F(HLE) | F(AVX2) |
656 		F(FDP_EXCPTN_ONLY) | F(SMEP) | F(BMI2) | F(ERMS) | F(INVPCID) |
657 		F(RTM) | F(ZERO_FCS_FDS) | 0 /*MPX*/ | F(AVX512F) |
658 		F(AVX512DQ) | F(RDSEED) | F(ADX) | F(SMAP) | F(AVX512IFMA) |
659 		F(CLFLUSHOPT) | F(CLWB) | 0 /*INTEL_PT*/ | F(AVX512PF) |
660 		F(AVX512ER) | F(AVX512CD) | F(SHA_NI) | F(AVX512BW) |
661 		F(AVX512VL));
662 
663 	kvm_cpu_cap_mask(CPUID_7_ECX,
664 		F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
665 		F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
666 		F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
667 		F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/ |
668 		F(SGX_LC) | F(BUS_LOCK_DETECT)
669 	);
670 	/* Set LA57 based on hardware capability. */
671 	if (cpuid_ecx(7) & F(LA57))
672 		kvm_cpu_cap_set(X86_FEATURE_LA57);
673 
674 	/*
675 	 * PKU not yet implemented for shadow paging and requires OSPKE
676 	 * to be set on the host. Clear it if that is not the case
677 	 */
678 	if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
679 		kvm_cpu_cap_clear(X86_FEATURE_PKU);
680 
681 	kvm_cpu_cap_mask(CPUID_7_EDX,
682 		F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
683 		F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
684 		F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
685 		F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16) |
686 		F(AMX_TILE) | F(AMX_INT8) | F(AMX_BF16) | F(FLUSH_L1D)
687 	);
688 
689 	/* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
690 	kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
691 	kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
692 
693 	if (boot_cpu_has(X86_FEATURE_AMD_IBPB_RET) &&
694 	    boot_cpu_has(X86_FEATURE_AMD_IBPB) &&
695 	    boot_cpu_has(X86_FEATURE_AMD_IBRS))
696 		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
697 	if (boot_cpu_has(X86_FEATURE_STIBP))
698 		kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
699 	if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
700 		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
701 
702 	kvm_cpu_cap_mask(CPUID_7_1_EAX,
703 		F(SHA512) | F(SM3) | F(SM4) | F(AVX_VNNI) | F(AVX512_BF16) |
704 		F(CMPCCXADD) | F(FZRM) | F(FSRS) | F(FSRC) | F(AMX_FP16) |
705 		F(AVX_IFMA) | F(LAM)
706 	);
707 
708 	kvm_cpu_cap_init_kvm_defined(CPUID_7_1_EDX,
709 		F(AVX_VNNI_INT8) | F(AVX_NE_CONVERT) | F(AMX_COMPLEX) |
710 		F(AVX_VNNI_INT16) | F(PREFETCHITI) | F(AVX10)
711 	);
712 
713 	kvm_cpu_cap_init_kvm_defined(CPUID_7_2_EDX,
714 		F(INTEL_PSFD) | F(IPRED_CTRL) | F(RRSBA_CTRL) | F(DDPD_U) |
715 		F(BHI_CTRL) | F(MCDT_NO)
716 	);
717 
718 	kvm_cpu_cap_mask(CPUID_D_1_EAX,
719 		F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES) | f_xfd
720 	);
721 
722 	kvm_cpu_cap_init_kvm_defined(CPUID_12_EAX,
723 		SF(SGX1) | SF(SGX2) | SF(SGX_EDECCSSA)
724 	);
725 
726 	kvm_cpu_cap_init_kvm_defined(CPUID_24_0_EBX,
727 		F(AVX10_128) | F(AVX10_256) | F(AVX10_512)
728 	);
729 
730 	kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
731 		F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
732 		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
733 		F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
734 		0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
735 		F(TOPOEXT) | 0 /* PERFCTR_CORE */
736 	);
737 
738 	kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
739 		F(FPU) | F(VME) | F(DE) | F(PSE) |
740 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
741 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
742 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
743 		F(PAT) | F(PSE36) | 0 /* Reserved */ |
744 		F(NX) | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
745 		F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
746 		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
747 	);
748 
749 	if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
750 		kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
751 
752 	kvm_cpu_cap_init_kvm_defined(CPUID_8000_0007_EDX,
753 		SF(CONSTANT_TSC)
754 	);
755 
756 	kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
757 		F(CLZERO) | F(XSAVEERPTR) |
758 		F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
759 		F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON) |
760 		F(AMD_PSFD) | F(AMD_IBPB_RET)
761 	);
762 
763 	/*
764 	 * AMD has separate bits for each SPEC_CTRL bit.
765 	 * arch/x86/kernel/cpu/bugs.c is kind enough to
766 	 * record that in cpufeatures so use them.
767 	 */
768 	if (boot_cpu_has(X86_FEATURE_IBPB)) {
769 		kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
770 		if (boot_cpu_has(X86_FEATURE_SPEC_CTRL) &&
771 		    !boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB))
772 			kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB_RET);
773 	}
774 	if (boot_cpu_has(X86_FEATURE_IBRS))
775 		kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
776 	if (boot_cpu_has(X86_FEATURE_STIBP))
777 		kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
778 	if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
779 		kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
780 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
781 		kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
782 	/*
783 	 * The preference is to use SPEC CTRL MSR instead of the
784 	 * VIRT_SPEC MSR.
785 	 */
786 	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
787 	    !boot_cpu_has(X86_FEATURE_AMD_SSBD))
788 		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
789 
790 	/*
791 	 * Hide all SVM features by default, SVM will set the cap bits for
792 	 * features it emulates and/or exposes for L1.
793 	 */
794 	kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
795 
796 	kvm_cpu_cap_mask(CPUID_8000_001F_EAX,
797 		0 /* SME */ | 0 /* SEV */ | 0 /* VM_PAGE_FLUSH */ | 0 /* SEV_ES */ |
798 		F(SME_COHERENT));
799 
800 	kvm_cpu_cap_mask(CPUID_8000_0021_EAX,
801 		F(NO_NESTED_DATA_BP) | F(LFENCE_RDTSC) | 0 /* SmmPgCfgLock */ |
802 		F(NULL_SEL_CLR_BASE) | F(AUTOIBRS) | 0 /* PrefetchCtlMsr */ |
803 		F(WRMSR_XX_BASE_NS)
804 	);
805 
806 	kvm_cpu_cap_check_and_set(X86_FEATURE_SBPB);
807 	kvm_cpu_cap_check_and_set(X86_FEATURE_IBPB_BRTYPE);
808 	kvm_cpu_cap_check_and_set(X86_FEATURE_SRSO_NO);
809 
810 	kvm_cpu_cap_init_kvm_defined(CPUID_8000_0022_EAX,
811 		F(PERFMON_V2)
812 	);
813 
814 	/*
815 	 * Synthesize "LFENCE is serializing" into the AMD-defined entry in
816 	 * KVM's supported CPUID if the feature is reported as supported by the
817 	 * kernel.  LFENCE_RDTSC was a Linux-defined synthetic feature long
818 	 * before AMD joined the bandwagon, e.g. LFENCE is serializing on most
819 	 * CPUs that support SSE2.  On CPUs that don't support AMD's leaf,
820 	 * kvm_cpu_cap_mask() will unfortunately drop the flag due to ANDing
821 	 * the mask with the raw host CPUID, and reporting support in AMD's
822 	 * leaf can make it easier for userspace to detect the feature.
823 	 */
824 	if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
825 		kvm_cpu_cap_set(X86_FEATURE_LFENCE_RDTSC);
826 	if (!static_cpu_has_bug(X86_BUG_NULL_SEG))
827 		kvm_cpu_cap_set(X86_FEATURE_NULL_SEL_CLR_BASE);
828 	kvm_cpu_cap_set(X86_FEATURE_NO_SMM_CTL_MSR);
829 
830 	kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
831 		F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
832 		F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
833 		F(PMM) | F(PMM_EN)
834 	);
835 
836 	/*
837 	 * Hide RDTSCP and RDPID if either feature is reported as supported but
838 	 * probing MSR_TSC_AUX failed.  This is purely a sanity check and
839 	 * should never happen, but the guest will likely crash if RDTSCP or
840 	 * RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in
841 	 * the past.  For example, the sanity check may fire if this instance of
842 	 * KVM is running as L1 on top of an older, broken KVM.
843 	 */
844 	if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) ||
845 		     kvm_cpu_cap_has(X86_FEATURE_RDPID)) &&
846 		     !kvm_is_supported_user_return_msr(MSR_TSC_AUX))) {
847 		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
848 		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
849 	}
850 }
851 EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
852 
853 struct kvm_cpuid_array {
854 	struct kvm_cpuid_entry2 *entries;
855 	int maxnent;
856 	int nent;
857 };
858 
859 static struct kvm_cpuid_entry2 *get_next_cpuid(struct kvm_cpuid_array *array)
860 {
861 	if (array->nent >= array->maxnent)
862 		return NULL;
863 
864 	return &array->entries[array->nent++];
865 }
866 
867 static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
868 					      u32 function, u32 index)
869 {
870 	struct kvm_cpuid_entry2 *entry = get_next_cpuid(array);
871 
872 	if (!entry)
873 		return NULL;
874 
875 	memset(entry, 0, sizeof(*entry));
876 	entry->function = function;
877 	entry->index = index;
878 	switch (function & 0xC0000000) {
879 	case 0x40000000:
880 		/* Hypervisor leaves are always synthesized by __do_cpuid_func.  */
881 		return entry;
882 
883 	case 0x80000000:
884 		/*
885 		 * 0x80000021 is sometimes synthesized by __do_cpuid_func, which
886 		 * would result in out-of-bounds calls to do_host_cpuid.
887 		 */
888 		{
889 			static int max_cpuid_80000000;
890 			if (!READ_ONCE(max_cpuid_80000000))
891 				WRITE_ONCE(max_cpuid_80000000, cpuid_eax(0x80000000));
892 			if (function > READ_ONCE(max_cpuid_80000000))
893 				return entry;
894 		}
895 		break;
896 
897 	default:
898 		break;
899 	}
900 
901 	cpuid_count(entry->function, entry->index,
902 		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
903 
904 	if (cpuid_function_is_indexed(function))
905 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
906 
907 	return entry;
908 }
909 
910 static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
911 {
912 	struct kvm_cpuid_entry2 *entry;
913 
914 	if (array->nent >= array->maxnent)
915 		return -E2BIG;
916 
917 	entry = &array->entries[array->nent];
918 	entry->function = func;
919 	entry->index = 0;
920 	entry->flags = 0;
921 
922 	switch (func) {
923 	case 0:
924 		entry->eax = 7;
925 		++array->nent;
926 		break;
927 	case 1:
928 		entry->ecx = F(MOVBE);
929 		++array->nent;
930 		break;
931 	case 7:
932 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
933 		entry->eax = 0;
934 		if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
935 			entry->ecx = F(RDPID);
936 		++array->nent;
937 		break;
938 	default:
939 		break;
940 	}
941 
942 	return 0;
943 }
944 
945 static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
946 {
947 	struct kvm_cpuid_entry2 *entry;
948 	int r, i, max_idx;
949 
950 	/* all calls to cpuid_count() should be made on the same cpu */
951 	get_cpu();
952 
953 	r = -E2BIG;
954 
955 	entry = do_host_cpuid(array, function, 0);
956 	if (!entry)
957 		goto out;
958 
959 	switch (function) {
960 	case 0:
961 		/* Limited to the highest leaf implemented in KVM. */
962 		entry->eax = min(entry->eax, 0x24U);
963 		break;
964 	case 1:
965 		cpuid_entry_override(entry, CPUID_1_EDX);
966 		cpuid_entry_override(entry, CPUID_1_ECX);
967 		break;
968 	case 2:
969 		/*
970 		 * On ancient CPUs, function 2 entries are STATEFUL.  That is,
971 		 * CPUID(function=2, index=0) may return different results each
972 		 * time, with the least-significant byte in EAX enumerating the
973 		 * number of times software should do CPUID(2, 0).
974 		 *
975 		 * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
976 		 * idiotic.  Intel's SDM states that EAX & 0xff "will always
977 		 * return 01H. Software should ignore this value and not
978 		 * interpret it as an informational descriptor", while AMD's
979 		 * APM states that CPUID(2) is reserved.
980 		 *
981 		 * WARN if a frankenstein CPU that supports virtualization and
982 		 * a stateful CPUID.0x2 is encountered.
983 		 */
984 		WARN_ON_ONCE((entry->eax & 0xff) > 1);
985 		break;
986 	/* functions 4 and 0x8000001d have additional index. */
987 	case 4:
988 	case 0x8000001d:
989 		/*
990 		 * Read entries until the cache type in the previous entry is
991 		 * zero, i.e. indicates an invalid entry.
992 		 */
993 		for (i = 1; entry->eax & 0x1f; ++i) {
994 			entry = do_host_cpuid(array, function, i);
995 			if (!entry)
996 				goto out;
997 		}
998 		break;
999 	case 6: /* Thermal management */
1000 		entry->eax = 0x4; /* allow ARAT */
1001 		entry->ebx = 0;
1002 		entry->ecx = 0;
1003 		entry->edx = 0;
1004 		break;
1005 	/* function 7 has additional index. */
1006 	case 7:
1007 		max_idx = entry->eax = min(entry->eax, 2u);
1008 		cpuid_entry_override(entry, CPUID_7_0_EBX);
1009 		cpuid_entry_override(entry, CPUID_7_ECX);
1010 		cpuid_entry_override(entry, CPUID_7_EDX);
1011 
1012 		/* KVM only supports up to 0x7.2, capped above via min(). */
1013 		if (max_idx >= 1) {
1014 			entry = do_host_cpuid(array, function, 1);
1015 			if (!entry)
1016 				goto out;
1017 
1018 			cpuid_entry_override(entry, CPUID_7_1_EAX);
1019 			cpuid_entry_override(entry, CPUID_7_1_EDX);
1020 			entry->ebx = 0;
1021 			entry->ecx = 0;
1022 		}
1023 		if (max_idx >= 2) {
1024 			entry = do_host_cpuid(array, function, 2);
1025 			if (!entry)
1026 				goto out;
1027 
1028 			cpuid_entry_override(entry, CPUID_7_2_EDX);
1029 			entry->ecx = 0;
1030 			entry->ebx = 0;
1031 			entry->eax = 0;
1032 		}
1033 		break;
1034 	case 0xa: { /* Architectural Performance Monitoring */
1035 		union cpuid10_eax eax;
1036 		union cpuid10_edx edx;
1037 
1038 		if (!enable_pmu || !static_cpu_has(X86_FEATURE_ARCH_PERFMON)) {
1039 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1040 			break;
1041 		}
1042 
1043 		eax.split.version_id = kvm_pmu_cap.version;
1044 		eax.split.num_counters = kvm_pmu_cap.num_counters_gp;
1045 		eax.split.bit_width = kvm_pmu_cap.bit_width_gp;
1046 		eax.split.mask_length = kvm_pmu_cap.events_mask_len;
1047 		edx.split.num_counters_fixed = kvm_pmu_cap.num_counters_fixed;
1048 		edx.split.bit_width_fixed = kvm_pmu_cap.bit_width_fixed;
1049 
1050 		if (kvm_pmu_cap.version)
1051 			edx.split.anythread_deprecated = 1;
1052 		edx.split.reserved1 = 0;
1053 		edx.split.reserved2 = 0;
1054 
1055 		entry->eax = eax.full;
1056 		entry->ebx = kvm_pmu_cap.events_mask;
1057 		entry->ecx = 0;
1058 		entry->edx = edx.full;
1059 		break;
1060 	}
1061 	case 0x1f:
1062 	case 0xb:
1063 		/*
1064 		 * No topology; a valid topology is indicated by the presence
1065 		 * of subleaf 1.
1066 		 */
1067 		entry->eax = entry->ebx = entry->ecx = 0;
1068 		break;
1069 	case 0xd: {
1070 		u64 permitted_xcr0 = kvm_get_filtered_xcr0();
1071 		u64 permitted_xss = kvm_caps.supported_xss;
1072 
1073 		entry->eax &= permitted_xcr0;
1074 		entry->ebx = xstate_required_size(permitted_xcr0, false);
1075 		entry->ecx = entry->ebx;
1076 		entry->edx &= permitted_xcr0 >> 32;
1077 		if (!permitted_xcr0)
1078 			break;
1079 
1080 		entry = do_host_cpuid(array, function, 1);
1081 		if (!entry)
1082 			goto out;
1083 
1084 		cpuid_entry_override(entry, CPUID_D_1_EAX);
1085 		if (entry->eax & (F(XSAVES)|F(XSAVEC)))
1086 			entry->ebx = xstate_required_size(permitted_xcr0 | permitted_xss,
1087 							  true);
1088 		else {
1089 			WARN_ON_ONCE(permitted_xss != 0);
1090 			entry->ebx = 0;
1091 		}
1092 		entry->ecx &= permitted_xss;
1093 		entry->edx &= permitted_xss >> 32;
1094 
1095 		for (i = 2; i < 64; ++i) {
1096 			bool s_state;
1097 			if (permitted_xcr0 & BIT_ULL(i))
1098 				s_state = false;
1099 			else if (permitted_xss & BIT_ULL(i))
1100 				s_state = true;
1101 			else
1102 				continue;
1103 
1104 			entry = do_host_cpuid(array, function, i);
1105 			if (!entry)
1106 				goto out;
1107 
1108 			/*
1109 			 * The supported check above should have filtered out
1110 			 * invalid sub-leafs.  Only valid sub-leafs should
1111 			 * reach this point, and they should have a non-zero
1112 			 * save state size.  Furthermore, check whether the
1113 			 * processor agrees with permitted_xcr0/permitted_xss
1114 			 * on whether this is an XCR0- or IA32_XSS-managed area.
1115 			 */
1116 			if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
1117 				--array->nent;
1118 				continue;
1119 			}
1120 
1121 			if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
1122 				entry->ecx &= ~BIT_ULL(2);
1123 			entry->edx = 0;
1124 		}
1125 		break;
1126 	}
1127 	case 0x12:
1128 		/* Intel SGX */
1129 		if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
1130 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1131 			break;
1132 		}
1133 
1134 		/*
1135 		 * Index 0: Sub-features, MISCSELECT (a.k.a extended features)
1136 		 * and max enclave sizes.   The SGX sub-features and MISCSELECT
1137 		 * are restricted by kernel and KVM capabilities (like most
1138 		 * feature flags), while enclave size is unrestricted.
1139 		 */
1140 		cpuid_entry_override(entry, CPUID_12_EAX);
1141 		entry->ebx &= SGX_MISC_EXINFO;
1142 
1143 		entry = do_host_cpuid(array, function, 1);
1144 		if (!entry)
1145 			goto out;
1146 
1147 		/*
1148 		 * Index 1: SECS.ATTRIBUTES.  ATTRIBUTES are restricted a la
1149 		 * feature flags.  Advertise all supported flags, including
1150 		 * privileged attributes that require explicit opt-in from
1151 		 * userspace.  ATTRIBUTES.XFRM is not adjusted as userspace is
1152 		 * expected to derive it from supported XCR0.
1153 		 */
1154 		entry->eax &= SGX_ATTR_PRIV_MASK | SGX_ATTR_UNPRIV_MASK;
1155 		entry->ebx &= 0;
1156 		break;
1157 	/* Intel PT */
1158 	case 0x14:
1159 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
1160 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1161 			break;
1162 		}
1163 
1164 		for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1165 			if (!do_host_cpuid(array, function, i))
1166 				goto out;
1167 		}
1168 		break;
1169 	/* Intel AMX TILE */
1170 	case 0x1d:
1171 		if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1172 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1173 			break;
1174 		}
1175 
1176 		for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1177 			if (!do_host_cpuid(array, function, i))
1178 				goto out;
1179 		}
1180 		break;
1181 	case 0x1e: /* TMUL information */
1182 		if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1183 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1184 			break;
1185 		}
1186 		break;
1187 	case 0x24: {
1188 		u8 avx10_version;
1189 
1190 		if (!kvm_cpu_cap_has(X86_FEATURE_AVX10)) {
1191 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1192 			break;
1193 		}
1194 
1195 		/*
1196 		 * The AVX10 version is encoded in EBX[7:0].  Note, the version
1197 		 * is guaranteed to be >=1 if AVX10 is supported.  Note #2, the
1198 		 * version needs to be captured before overriding EBX features!
1199 		 */
1200 		avx10_version = min_t(u8, entry->ebx & 0xff, 1);
1201 		cpuid_entry_override(entry, CPUID_24_0_EBX);
1202 		entry->ebx |= avx10_version;
1203 
1204 		entry->eax = 0;
1205 		entry->ecx = 0;
1206 		entry->edx = 0;
1207 		break;
1208 	}
1209 	case KVM_CPUID_SIGNATURE: {
1210 		const u32 *sigptr = (const u32 *)KVM_SIGNATURE;
1211 		entry->eax = KVM_CPUID_FEATURES;
1212 		entry->ebx = sigptr[0];
1213 		entry->ecx = sigptr[1];
1214 		entry->edx = sigptr[2];
1215 		break;
1216 	}
1217 	case KVM_CPUID_FEATURES:
1218 		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
1219 			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
1220 			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
1221 			     (1 << KVM_FEATURE_ASYNC_PF) |
1222 			     (1 << KVM_FEATURE_PV_EOI) |
1223 			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
1224 			     (1 << KVM_FEATURE_PV_UNHALT) |
1225 			     (1 << KVM_FEATURE_PV_TLB_FLUSH) |
1226 			     (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
1227 			     (1 << KVM_FEATURE_PV_SEND_IPI) |
1228 			     (1 << KVM_FEATURE_POLL_CONTROL) |
1229 			     (1 << KVM_FEATURE_PV_SCHED_YIELD) |
1230 			     (1 << KVM_FEATURE_ASYNC_PF_INT);
1231 
1232 		if (sched_info_on())
1233 			entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
1234 
1235 		entry->ebx = 0;
1236 		entry->ecx = 0;
1237 		entry->edx = 0;
1238 		break;
1239 	case 0x80000000:
1240 		entry->eax = min(entry->eax, 0x80000022);
1241 		/*
1242 		 * Serializing LFENCE is reported in a multitude of ways, and
1243 		 * NullSegClearsBase is not reported in CPUID on Zen2; help
1244 		 * userspace by providing the CPUID leaf ourselves.
1245 		 *
1246 		 * However, only do it if the host has CPUID leaf 0x8000001d.
1247 		 * QEMU thinks that it can query the host blindly for that
1248 		 * CPUID leaf if KVM reports that it supports 0x8000001d or
1249 		 * above.  The processor merrily returns values from the
1250 		 * highest Intel leaf which QEMU tries to use as the guest's
1251 		 * 0x8000001d.  Even worse, this can result in an infinite
1252 		 * loop if said highest leaf has no subleaves indexed by ECX.
1253 		 */
1254 		if (entry->eax >= 0x8000001d &&
1255 		    (static_cpu_has(X86_FEATURE_LFENCE_RDTSC)
1256 		     || !static_cpu_has_bug(X86_BUG_NULL_SEG)))
1257 			entry->eax = max(entry->eax, 0x80000021);
1258 		break;
1259 	case 0x80000001:
1260 		entry->ebx &= ~GENMASK(27, 16);
1261 		cpuid_entry_override(entry, CPUID_8000_0001_EDX);
1262 		cpuid_entry_override(entry, CPUID_8000_0001_ECX);
1263 		break;
1264 	case 0x80000005:
1265 		/*  Pass host L1 cache and TLB info. */
1266 		break;
1267 	case 0x80000006:
1268 		/* Drop reserved bits, pass host L2 cache and TLB info. */
1269 		entry->edx &= ~GENMASK(17, 16);
1270 		break;
1271 	case 0x80000007: /* Advanced power management */
1272 		cpuid_entry_override(entry, CPUID_8000_0007_EDX);
1273 
1274 		/* mask against host */
1275 		entry->edx &= boot_cpu_data.x86_power;
1276 		entry->eax = entry->ebx = entry->ecx = 0;
1277 		break;
1278 	case 0x80000008: {
1279 		/*
1280 		 * GuestPhysAddrSize (EAX[23:16]) is intended for software
1281 		 * use.
1282 		 *
1283 		 * KVM's ABI is to report the effective MAXPHYADDR for the
1284 		 * guest in PhysAddrSize (phys_as), and the maximum
1285 		 * *addressable* GPA in GuestPhysAddrSize (g_phys_as).
1286 		 *
1287 		 * GuestPhysAddrSize is valid if and only if TDP is enabled,
1288 		 * in which case the max GPA that can be addressed by KVM may
1289 		 * be less than the max GPA that can be legally generated by
1290 		 * the guest, e.g. if MAXPHYADDR>48 but the CPU doesn't
1291 		 * support 5-level TDP.
1292 		 */
1293 		unsigned int virt_as = max((entry->eax >> 8) & 0xff, 48U);
1294 		unsigned int phys_as, g_phys_as;
1295 
1296 		/*
1297 		 * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
1298 		 * the guest operates in the same PA space as the host, i.e.
1299 		 * reductions in MAXPHYADDR for memory encryption affect shadow
1300 		 * paging, too.
1301 		 *
1302 		 * If TDP is enabled, use the raw bare metal MAXPHYADDR as
1303 		 * reductions to the HPAs do not affect GPAs.  The max
1304 		 * addressable GPA is the same as the max effective GPA, except
1305 		 * that it's capped at 48 bits if 5-level TDP isn't supported
1306 		 * (hardware processes bits 51:48 only when walking the fifth
1307 		 * level page table).
1308 		 */
1309 		if (!tdp_enabled) {
1310 			phys_as = boot_cpu_data.x86_phys_bits;
1311 			g_phys_as = 0;
1312 		} else {
1313 			phys_as = entry->eax & 0xff;
1314 			g_phys_as = phys_as;
1315 			if (kvm_mmu_get_max_tdp_level() < 5)
1316 				g_phys_as = min(g_phys_as, 48);
1317 		}
1318 
1319 		entry->eax = phys_as | (virt_as << 8) | (g_phys_as << 16);
1320 		entry->ecx &= ~(GENMASK(31, 16) | GENMASK(11, 8));
1321 		entry->edx = 0;
1322 		cpuid_entry_override(entry, CPUID_8000_0008_EBX);
1323 		break;
1324 	}
1325 	case 0x8000000A:
1326 		if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
1327 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1328 			break;
1329 		}
1330 		entry->eax = 1; /* SVM revision 1 */
1331 		entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
1332 				   ASID emulation to nested SVM */
1333 		entry->ecx = 0; /* Reserved */
1334 		cpuid_entry_override(entry, CPUID_8000_000A_EDX);
1335 		break;
1336 	case 0x80000019:
1337 		entry->ecx = entry->edx = 0;
1338 		break;
1339 	case 0x8000001a:
1340 		entry->eax &= GENMASK(2, 0);
1341 		entry->ebx = entry->ecx = entry->edx = 0;
1342 		break;
1343 	case 0x8000001e:
1344 		/* Do not return host topology information.  */
1345 		entry->eax = entry->ebx = entry->ecx = 0;
1346 		entry->edx = 0; /* reserved */
1347 		break;
1348 	case 0x8000001F:
1349 		if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
1350 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1351 		} else {
1352 			cpuid_entry_override(entry, CPUID_8000_001F_EAX);
1353 			/* Clear NumVMPL since KVM does not support VMPL.  */
1354 			entry->ebx &= ~GENMASK(31, 12);
1355 			/*
1356 			 * Enumerate '0' for "PA bits reduction", the adjusted
1357 			 * MAXPHYADDR is enumerated directly (see 0x80000008).
1358 			 */
1359 			entry->ebx &= ~GENMASK(11, 6);
1360 		}
1361 		break;
1362 	case 0x80000020:
1363 		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1364 		break;
1365 	case 0x80000021:
1366 		entry->ebx = entry->ecx = entry->edx = 0;
1367 		cpuid_entry_override(entry, CPUID_8000_0021_EAX);
1368 		break;
1369 	/* AMD Extended Performance Monitoring and Debug */
1370 	case 0x80000022: {
1371 		union cpuid_0x80000022_ebx ebx;
1372 
1373 		entry->ecx = entry->edx = 0;
1374 		if (!enable_pmu || !kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) {
1375 			entry->eax = entry->ebx;
1376 			break;
1377 		}
1378 
1379 		cpuid_entry_override(entry, CPUID_8000_0022_EAX);
1380 
1381 		if (kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
1382 			ebx.split.num_core_pmc = kvm_pmu_cap.num_counters_gp;
1383 		else if (kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
1384 			ebx.split.num_core_pmc = AMD64_NUM_COUNTERS_CORE;
1385 		else
1386 			ebx.split.num_core_pmc = AMD64_NUM_COUNTERS;
1387 
1388 		entry->ebx = ebx.full;
1389 		break;
1390 	}
1391 	/*Add support for Centaur's CPUID instruction*/
1392 	case 0xC0000000:
1393 		/*Just support up to 0xC0000004 now*/
1394 		entry->eax = min(entry->eax, 0xC0000004);
1395 		break;
1396 	case 0xC0000001:
1397 		cpuid_entry_override(entry, CPUID_C000_0001_EDX);
1398 		break;
1399 	case 3: /* Processor serial number */
1400 	case 5: /* MONITOR/MWAIT */
1401 	case 0xC0000002:
1402 	case 0xC0000003:
1403 	case 0xC0000004:
1404 	default:
1405 		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1406 		break;
1407 	}
1408 
1409 	r = 0;
1410 
1411 out:
1412 	put_cpu();
1413 
1414 	return r;
1415 }
1416 
1417 static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1418 			 unsigned int type)
1419 {
1420 	if (type == KVM_GET_EMULATED_CPUID)
1421 		return __do_cpuid_func_emulated(array, func);
1422 
1423 	return __do_cpuid_func(array, func);
1424 }
1425 
1426 #define CENTAUR_CPUID_SIGNATURE 0xC0000000
1427 
1428 static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1429 			  unsigned int type)
1430 {
1431 	u32 limit;
1432 	int r;
1433 
1434 	if (func == CENTAUR_CPUID_SIGNATURE &&
1435 	    boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
1436 		return 0;
1437 
1438 	r = do_cpuid_func(array, func, type);
1439 	if (r)
1440 		return r;
1441 
1442 	limit = array->entries[array->nent - 1].eax;
1443 	for (func = func + 1; func <= limit; ++func) {
1444 		r = do_cpuid_func(array, func, type);
1445 		if (r)
1446 			break;
1447 	}
1448 
1449 	return r;
1450 }
1451 
1452 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
1453 				 __u32 num_entries, unsigned int ioctl_type)
1454 {
1455 	int i;
1456 	__u32 pad[3];
1457 
1458 	if (ioctl_type != KVM_GET_EMULATED_CPUID)
1459 		return false;
1460 
1461 	/*
1462 	 * We want to make sure that ->padding is being passed clean from
1463 	 * userspace in case we want to use it for something in the future.
1464 	 *
1465 	 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
1466 	 * have to give ourselves satisfied only with the emulated side. /me
1467 	 * sheds a tear.
1468 	 */
1469 	for (i = 0; i < num_entries; i++) {
1470 		if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
1471 			return true;
1472 
1473 		if (pad[0] || pad[1] || pad[2])
1474 			return true;
1475 	}
1476 	return false;
1477 }
1478 
1479 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
1480 			    struct kvm_cpuid_entry2 __user *entries,
1481 			    unsigned int type)
1482 {
1483 	static const u32 funcs[] = {
1484 		0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
1485 	};
1486 
1487 	struct kvm_cpuid_array array = {
1488 		.nent = 0,
1489 	};
1490 	int r, i;
1491 
1492 	if (cpuid->nent < 1)
1493 		return -E2BIG;
1494 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1495 		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1496 
1497 	if (sanity_check_entries(entries, cpuid->nent, type))
1498 		return -EINVAL;
1499 
1500 	array.entries = kvcalloc(cpuid->nent, sizeof(struct kvm_cpuid_entry2), GFP_KERNEL);
1501 	if (!array.entries)
1502 		return -ENOMEM;
1503 
1504 	array.maxnent = cpuid->nent;
1505 
1506 	for (i = 0; i < ARRAY_SIZE(funcs); i++) {
1507 		r = get_cpuid_func(&array, funcs[i], type);
1508 		if (r)
1509 			goto out_free;
1510 	}
1511 	cpuid->nent = array.nent;
1512 
1513 	if (copy_to_user(entries, array.entries,
1514 			 array.nent * sizeof(struct kvm_cpuid_entry2)))
1515 		r = -EFAULT;
1516 
1517 out_free:
1518 	kvfree(array.entries);
1519 	return r;
1520 }
1521 
1522 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry_index(struct kvm_vcpu *vcpu,
1523 						    u32 function, u32 index)
1524 {
1525 	return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1526 				 function, index);
1527 }
1528 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry_index);
1529 
1530 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
1531 					      u32 function)
1532 {
1533 	return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1534 				 function, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
1535 }
1536 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
1537 
1538 /*
1539  * Intel CPUID semantics treats any query for an out-of-range leaf as if the
1540  * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
1541  * returns all zeroes for any undefined leaf, whether or not the leaf is in
1542  * range.  Centaur/VIA follows Intel semantics.
1543  *
1544  * A leaf is considered out-of-range if its function is higher than the maximum
1545  * supported leaf of its associated class or if its associated class does not
1546  * exist.
1547  *
1548  * There are three primary classes to be considered, with their respective
1549  * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
1550  * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
1551  * class, CPUID.<base>.EAX contains the max supported leaf for the class.
1552  *
1553  *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
1554  *  - Hypervisor: 0x40000000 - 0x4fffffff
1555  *  - Extended:   0x80000000 - 0xbfffffff
1556  *  - Centaur:    0xc0000000 - 0xcfffffff
1557  *
1558  * The Hypervisor class is further subdivided into sub-classes that each act as
1559  * their own independent class associated with a 0x100 byte range.  E.g. if Qemu
1560  * is advertising support for both HyperV and KVM, the resulting Hypervisor
1561  * CPUID sub-classes are:
1562  *
1563  *  - HyperV:     0x40000000 - 0x400000ff
1564  *  - KVM:        0x40000100 - 0x400001ff
1565  */
1566 static struct kvm_cpuid_entry2 *
1567 get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
1568 {
1569 	struct kvm_cpuid_entry2 *basic, *class;
1570 	u32 function = *fn_ptr;
1571 
1572 	basic = kvm_find_cpuid_entry(vcpu, 0);
1573 	if (!basic)
1574 		return NULL;
1575 
1576 	if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
1577 	    is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
1578 		return NULL;
1579 
1580 	if (function >= 0x40000000 && function <= 0x4fffffff)
1581 		class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00);
1582 	else if (function >= 0xc0000000)
1583 		class = kvm_find_cpuid_entry(vcpu, 0xc0000000);
1584 	else
1585 		class = kvm_find_cpuid_entry(vcpu, function & 0x80000000);
1586 
1587 	if (class && function <= class->eax)
1588 		return NULL;
1589 
1590 	/*
1591 	 * Leaf specific adjustments are also applied when redirecting to the
1592 	 * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1593 	 * entry for CPUID.0xb.index (see below), then the output value for EDX
1594 	 * needs to be pulled from CPUID.0xb.1.
1595 	 */
1596 	*fn_ptr = basic->eax;
1597 
1598 	/*
1599 	 * The class does not exist or the requested function is out of range;
1600 	 * the effective CPUID entry is the max basic leaf.  Note, the index of
1601 	 * the original requested leaf is observed!
1602 	 */
1603 	return kvm_find_cpuid_entry_index(vcpu, basic->eax, index);
1604 }
1605 
1606 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1607 	       u32 *ecx, u32 *edx, bool exact_only)
1608 {
1609 	u32 orig_function = *eax, function = *eax, index = *ecx;
1610 	struct kvm_cpuid_entry2 *entry;
1611 	bool exact, used_max_basic = false;
1612 
1613 	entry = kvm_find_cpuid_entry_index(vcpu, function, index);
1614 	exact = !!entry;
1615 
1616 	if (!entry && !exact_only) {
1617 		entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1618 		used_max_basic = !!entry;
1619 	}
1620 
1621 	if (entry) {
1622 		*eax = entry->eax;
1623 		*ebx = entry->ebx;
1624 		*ecx = entry->ecx;
1625 		*edx = entry->edx;
1626 		if (function == 7 && index == 0) {
1627 			u64 data;
1628 		        if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1629 			    (data & TSX_CTRL_CPUID_CLEAR))
1630 				*ebx &= ~(F(RTM) | F(HLE));
1631 		} else if (function == 0x80000007) {
1632 			if (kvm_hv_invtsc_suppressed(vcpu))
1633 				*edx &= ~SF(CONSTANT_TSC);
1634 		}
1635 	} else {
1636 		*eax = *ebx = *ecx = *edx = 0;
1637 		/*
1638 		 * When leaf 0BH or 1FH is defined, CL is pass-through
1639 		 * and EDX is always the x2APIC ID, even for undefined
1640 		 * subleaves. Index 1 will exist iff the leaf is
1641 		 * implemented, so we pass through CL iff leaf 1
1642 		 * exists. EDX can be copied from any existing index.
1643 		 */
1644 		if (function == 0xb || function == 0x1f) {
1645 			entry = kvm_find_cpuid_entry_index(vcpu, function, 1);
1646 			if (entry) {
1647 				*ecx = index & 0xff;
1648 				*edx = entry->edx;
1649 			}
1650 		}
1651 	}
1652 	trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1653 			used_max_basic);
1654 	return exact;
1655 }
1656 EXPORT_SYMBOL_GPL(kvm_cpuid);
1657 
1658 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1659 {
1660 	u32 eax, ebx, ecx, edx;
1661 
1662 	if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1663 		return 1;
1664 
1665 	eax = kvm_rax_read(vcpu);
1666 	ecx = kvm_rcx_read(vcpu);
1667 	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1668 	kvm_rax_write(vcpu, eax);
1669 	kvm_rbx_write(vcpu, ebx);
1670 	kvm_rcx_write(vcpu, ecx);
1671 	kvm_rdx_write(vcpu, edx);
1672 	return kvm_skip_emulated_instruction(vcpu);
1673 }
1674 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1675